
MEME MEDIA AND
MEME MARKET ARCHITECTURES

ffirs.qxd 4/26/2004 9:42 AM Page i

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Stamatios V. Kartalopoulos, Editor in Chief

M. Akay R. J. Herrick M. S. Newman
J. B. Anderson R. F. Hoyt M. Padgett
R. J. Baker D. Kirk W. D. Reeve
J. E. Brewer R. Leonardi S. Tewksbury
M. E. El-Hawary G. Zobrist

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor

Christina Kuhnen, Associate Acquisitions Editor

IEEE Computer Society, Sponsor
CS Liaison to IEEE Press, Michael Williams

Technical Reviewers

Nicolas Spyratos, University of Paris South, France
Klaus P. Jantke, German Research Center for AI (DFKI)

Patrice Boursier, University of La Rochelle, France

ffirs.qxd 4/26/2004 9:42 AM Page ii

MEME MEDIA AND

MEME MARKET ARCHITECTURES
Knowledge Media for Editing, Distributing,
and Managing Intellectual Resources

YUZURU TANAKA
Hokkaido University, Japan

IEEE Computer Society, Sponsor

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

ffirs.qxd 4/26/2004 9:42 AM Page iii

Copyright © 2003 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Tanaka, Y. (Yuzuru)
Meme media and meme market architectures: Knowledge media for editing, distributing, and managing

intellectual resources / Yuzuru Tanaka.
p. cm.

Includes bibliographical references and index.
ISBN 0-471-45378-1 (cloth)
1. Multimedia systems. 2. Knowledge management. 3. Computer architecture. 4. Mass

media. I. Title.

QA76.575.T355 2003
006.7—dc21 2003041112

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

ffirs.qxd 4/26/2004 9:42 AM Page iv

CONTENTS

Preface xvii

1 Overview and Introduction 1

1.1 Why Meme Media? 1
1.2 How Do Meme Media Change the Reuse of Web Contens? 3
1.3 How Do Meme Media Work? 7
1.4 Frequently Asked Questions and Limitations 8
1.5 Organization of this Book 9

2 Knowledge Media and Meme Media 11

2.1 Introduction to Knowledge Media and Meme Media 11
2.1.1 Information Life Cycle and Knowledge Media 13
2.1.2 Artificial Intelligence Versus Knowledge Media 15
2.1.3 Meme Media for All Users 17
2.1.4 Meme Media and Compound Documents 20
2.1.5 Objects and Media 21
2.1.6 Multimedia, Hypermedia, and Meme Media 26
2.1.7 Meme Media and Meme Pools 27

2.2 From Information Technologies to Media Technologies 27
2.2.1 Information Architectures and Media Architectures 28
2.2.2 Roles of Media 29

v

ftoc.qxd 4/26/2004 9:44 AM Page v

2.2.3 History of Books 30
2.2.4 From Information Processing to Social

Information Infrastructure 31
2.2.5 Editing, Distribution, and Management 31
2.2.6 Superdistribution of Knowledge Media 00

2.3 Summary 34
References 34

3 Augmentation Media Architectures and Technologies— 35
A Brief Survey

3.1 History and Evolution of Augmentation Media 36
3.1.1 Pioneers 36
3.1.2 Evolution of Personal-Augmentation Media 38
3.1.3 The Evolution of Group-Augmentation Media 40
3.1.4 The Evolution of Organization-Augmentation Media 42
3.1.5 The Evolution of Social-Augmentation Media 44

3.2 History and Evolution of Knowledge-Media Architectures 45
3.2.1 Compound-Document Architectures 45
3.2.2 Media Toolkit Systems 47
3.2.3 IntelligentPad as a Meme Media System 48

3.3 Meme Media and their Applications 48
3.3.1 Office-Information Systems 49
3.3.2 Scientific Publication 50
3.3.3 Education Tools 51
3.3.4 Networked Multimedia Systems 52
3.3.5 Geographic Information Systems 52
3.3.6 Design Applications 53
3.3.7 DIY Software for Client Systems 53

3.4 Web Technologies and Meme Media 55
3.4.1 Open Hypermedia Systems 55
3.4.2 Client-Side Web Programs and XML 56
3.4.3 Server-Side Web Programs 58

3.5 Summary 59
References 60

4 An Outline of IntelligentPad and Its Development History
67

4.1 Brief Introduction to IntelligentPad 67
4.1.1 The Motivation for Our Project 68

vi CONTENTS

ftoc.qxd 4/26/2004 9:44 AM Page vi

4.1.2 Synthetic Media Architecture 69
4.1.3 Meme Media Architecture 70

4.2 IntelligentPad Architecture 70
4.2.1 Pad Architecture 71
4.2.2 Paste Operation and Slot Connection 71
4.2.3 IntelligentPad as a Meta-Tool 74
4.2.4 Pads as Meme Media 77

4.3 Worldwide Marketplace Architectures for Pads 80
4.4 End-User Computing and Media Toolkit System 81
4.5 Open Cross-Platform Reusability 85
4.6 Reediting and Redistribution by End-Users 86
4.7 Extension toward 3D Representation Media 88
4.8 Summary 89

References 90

5 Object Orientation and MVC 92

5.1 Object-Oriented System Architecture—A Technical
Introduction 93

5.2 Class Refinement and Prototyping 94
5.3 Model, View, Controller 95

5.3.1 MVC Construct 95
5.3.2 Dependencies in MVC 96
5.3.3 Pluggable VC 98

5.4 Window Systems and Event Dispatching 99
5.4.1 Event Dispatching 100
5.4.2 Redrawing of Overlaid Windows 102
5.4.3 From Windowpanes to Visual Objects 103

5.5 Summary 103
References 104

6 Component Integration 106

6.1 Object Reusability 107
6.2 Components and Application Linkage 107
6.3 Compound Documents and Object Embedding/Linking 113
6.4 Generic Components 114
6.5 What to Reuse—Components or Sample Compositions? 115
6.6 Reuses and Maintenance 116
6.7 Integration of Legacy Software 118
6.8 Distributed Component Integration and Web Technologies 119

CONTENTS vii

ftoc.qxd 4/26/2004 9:44 AM Page vii

6.8.1 CORBA and Application Server Component
Technologies 119

6.8.2 Web Services and their Integration 121
6.8.3 The Internet as a Platform and Universal Document

Interface 122
6.8.4 The Internet as Shared Memory Spaces for Objects 123
6.8.5 Distributed Object Technologies and Meme Media

Components 124
6.9 Summary 125

References 125

7 Meme Media Architecture 128

7.1 Current Megatrends in Computer Systems 128
7.2 Primitive Media Objects 129

7.2.1 Wrapper Architecture 130
7.2.2 Frame Architecture of Each Pad 131
7.2.3 MVC Architecture of Each Pad 130

7.3 Composition through Slot Connections 134
7.3.1 Distributed Versus Centralized Compositions 135
7.3.2 Update Dependency in Centralized Compositions 135
7.3.3 Update Dependency Architecture for Compositions 135

7.4 Compound-Document Architecture 136
7.5 Standard Messages between Pads 137
7.6 Physical and Logical Events and their Dispatching 140

7.6.1 Physical and Logical Events 141
7.6.2 Position Events and their Dispatching 141
7.6.3 User-Event Dispatching Mechanism 142
7.6.4 Geometrical-Operation Notification 146

7.7 Save and Exchange Format 146
7.8 Copy and Shared Copy 147
7.9 Global Variable Pads 149
7.10 Summary 149

References 150

8 Utilities for Meme Media 152

8.1 Generic Utility Functions as Pads 152
8.2 FieldPad for the Event Sharing 153

8.2.1 How to Share Events 154

viii CONTENTS

ftoc.qxd 4/26/2004 9:44 AM Page viii

8.2.2 FieldPad for Sharing Events 156
8.2.3 Manipulation of Event Information Data 160
8.2.4 Controllers over FieldPads 162
8.2.5 Conflict Resolution 164
8.2.6 Nested Shared Environments 164
8.2.7 Wormholes among Different Spaces 166

8.3 StagePad for Programming User Operations 166
8.3.1 An Outline of StagePad 167
8.3.2 Scripts and Casting 168
8.3.3 The Action Mechanism of StagePad 174
8.3.4 Dramas within Dramas 176
8.3.5 Dressing Rooms 178
8.3.6 Applications for Improving Pad Operability 180

8.4 Geometrical Management of Pads 181
8.5 Proxy Pads to Assimilate External Objects 181
8.6 Legacy Software Migration 185
8.7 Special Effect Techniques 186

8.7.1 The Clipping of a Pad 186
8.7.2 Alpha Channel 186
8.7.3 Zooming, Tilting, and Panning 187
8.7.4 Dissolution 187

8.8 Expression Pad 188
8.9 Transformation Pads 188
8.10 Summary 189

References 190

9 Multimedia Application Framework 191

9.1 Component Pads for Multimedia Application Frameworks 191
9.1.1 Text Processing Pads 192
9.1.2 Tables and Figures 192
9.1.3 Multimedia Pads 194

9.2 Articulation of Objects 195
9.2.1 Articulation of Multimedia Objects 195
9.2.2 Operations and Relations over Multimedia Objects 198
9.2.3 Application Linkage 198

9.3 Hypermedia Framework 199
9.4 Summary 204

References 204

CONTENTS ix

ftoc.qxd 4/26/2004 9:44 AM Page ix

10 IntelligentPad and Databases 205

10.1 Relational Databases, Object-Oriented Databases, and
Instance Bases 205

10.2 Form Bases 208
10.2.1 Database Proxy Pads 208
10.2.2 Form Bases with a Single Form 209
10.2.3 Form Bases with Multiple Forms 210
10.2.4 Form Interface to Databases 211
10.2.5 QBE on Form Interface 214

10.3 Pads as Attribute Values 215
10.4 Multimedia Database 219

10.4.1 Articulation of Objects by Pads 219
10.4.2 Movie Databases 220
10.4.3 Articulated Objects in Media Objects 224

10.5 Hypermedia Database 224
10.5.1 Management of a Large Hypermedia Network 224
10.5.2 Hyperlinks as Queries 226

10.6 Geographical Information Databases 228
10.7 Content-Based Search and Context-Based Search 232
10.8 Management and Retrieval of Pads 234

10.8.1 Search for Pads with Partially Specified
Composition Structure 234

10.8.2 The Encoding of View Composition Structures 238
10.9 Summary 239

References 240

11 Meme Pool Architectures 242

11.1 Pad Publication Repository and the WWW 242
11.2 Pad Publication and Pad Migration 244
11.3 Web Pages as Pad Catalog 245
11.4 URL-Anchor Pads 248
11.5 HTMLViewerPad with Embedded Arbitrary Composite Pads 250
11.6 New Publication Media 253

11.6.1 An Application to Scientific Publication 253
11.6.2 Publication and Reuse of Documents, Tools, Services,

and Agents 257
11.7 Annotation on Web Pages 258
11.8 Piazza as a Meme Pool 260

x CONTENTS

ftoc.qxd 4/26/2004 9:44 AM Page x

11.9 Reediting and Redistributing Web Content as Meme
Media Objects 263
11.9.1 Web Content as Memes 264
11.9.2 Application of Meme Media Technologies to

Web Content 265
11.9.3 Related Research 266
11.9.4 XML and Pads 267
11.9.5 Extraction of an Arbitrary Web Content as Two-

Dimensional Meme Media Objects 269
11.9.6 Direct Editing of HTML Views 272
11.9.7 Automatic Generation of Default Slots 275
11.9.8 Visual Definition of Slots for Extracted Web Content 279
11.9.9 Example Applications 280
11.9.10 Composition with More than One Wrapped

Web Application 282
11.10 Redistribution and Publication of Meme Media Objects as

Web Content 285
11.11 Summary 288

References 289

12 Electronic Commerce for Pads 291

12.1 Electronic Commerce 291
12.2 From Pay-per-Copy to Pay-per-Use 293
12.3 Digital Accounting, Billing, and Payment 294
12.4 Ecology of Pads in the Market 295
12.5 Superdistribution of Pads 297
12.6 Pad Integration and Package Business 301
12.7 Summary 303

References 304

13 Spatiotemporal Editing of Pads 305

13.1 Geometrical Arrangement of Pads 305
13.1.1 Tree Arrangement 305
13.1.2 Pad Cabinet Arrangement and Picture

Index Arrangement 310
13.2 Time-Based Arrangement of Pads 311
13.3 Spatiotemporal Editing of Pads 315

13.3.1 Temporal Control of Geometrical Arrangement 316

CONTENTS xi

ftoc.qxd 4/26/2004 9:44 AM Page xi

13.3.2 Moving Pads 316
13.3.3 Hypermovie Framework 318

13.4 Information Visualization 320
13.5 Summary 323

References 324

14 Dynamic Interoperability of Pads and Workflow Modeling 325

14.1 Dynamic Interoperability of Pads Distributed across Networks 325
14.2 Extended Form-Flow System 331

14.2.1 Form-Flow Model in IntelligentPad 331
14.2.2 Virtual Forms to Assimilate Transaction-Based

Systems 335
14.2.3 Form Generators and Form Annihilators 336

14.3 Pad-Flow Systems 337
14.4 Dynamic Interoperability across Networks 338

14.4.1 Network Publication of Form-Flow and
Pad-Flow Systems 338

14.4.2 Bottom-up Integration across Networks 338
14.5 Workflow and Concurrent Engineering 339

14.5.1 Workflow Systems 340
14.5.2 Pad Flow as Workflow 342
14.5.3 Concurrent Engineering 343
14.5.4 Web Technologies and Workflow Systems 344

14.6 Summary 345
References 345

15 Agent Media 347

15.1 Three Different Meanings of Agents 347
15.2 Collaborative-and-Reactive Agents and Pads 348
15.3 Mobile Agents and Pads 351
15.4 Pad Migration and Script Languages 354
15.5 Summary 355

References 355

16 Software Engineering with IntelligentPad 357

16.1 IntelligentPad as Middleware 357
16.2 Concurrent Engineering in Software Development 359
16.3 Components and Their Integration 361

xii CONTENTS

ftoc.qxd 4/26/2004 9:44 AM Page xii

16.4 Patterns and Frameworks in IntelligentPad 363
16.4.1 Architectural Patterns, Design Patterns, Idioms,

and Frameworks 363
16.4.2 Sample Composite Pads as Architectural Patterns 363
16.4.3 Pad Packages with Sample Compositions as

Application Frameworks 365
16.4.4 Slot List as a Pattern 366

16.5 From Specifications to a Composite Pad 366
16.5.1 Use-Case Modeling 367
16.5.2 System Decomposition 368
16.5.3 From an Action Diagram to a Composite Pad 370

16.6 Pattern Specifications and the Reuse of Pads 373
16.6.1 Application Specification and Pattern Description for

Primitive Pads 373
16.6.2 Pattern Description of Composite Pads 374
16.6.3 Composition and Decomposition of Patterns 377
16.6.4 Pattern Descriptions and the Reuse of Pads 379
16.6.5 An Example Development Process 381

16.7 IntelligentPad as a Software Development Framework 384
16.8 Summary 384

References 385

17 Other Applications of IntelligentPad 386

17.1 Capabilities Brought by the Implementation in IntelligentPad 387
17.2 Tool Integration Environments and Personal Information

Management 387
17.3 Educational Applications 389

17.3.1 Teaching Japanese to Foreign Students 390
17.3.2 CAI in Physics and Mathematics 392
17.3.3 CAI in Control Theory 398

17.4 Web Page Authoring 400
17.5 Other Applications 401

17.5.1 CAD/CAM Applications 401
17.5.2 Financial Applications 403
17.5.3 Information Kiosk Systems 403
17.5.4 Electronic Libraries and Museums 403
17.5.5 Information Design Tools 405

17.6 Summary 406

CONTENTS xiii

ftoc.qxd 4/26/2004 9:44 AM Page xiii

18 3D Meme Media 407

18.1 3D Meme Media IntelligentBox 407
18.2 3D Application Systems 408
18.3 IntelligentBox Architecture 409

18.3.1 The Model-View-Controller Modeling 409
18.3.2 Parent–Child Relationship between Boxes 410
18.3.3 Message-Sending Protocol for Slot Connections 410
18.3.4 Shared Copies 410

18.4 Example Boxes and Utility Boxes 410
18.5 Animation with IntelligentBox 412

18.5.1 Motion Constraint Boxes 412
18.5.2 Shape Deformation Boxes 414
18.5.3 A RoomBox for Defining a 3D Shared Workspace 416
18.5.4 A CameraBox for the Interactive Viewing of a

Box World 417
18.5.5 An Example Animation Composition 419

18.6 Information Visualization with IntelligentBox 419
18.6.1 Basic Functions for Interactive Information

Visualization 420
18.6.2 3D Visualization and Virtual Materialization of a Single

Retrieved Record 422
18.6.3 QBE Using a 3D Interface to a Database 425
18.6.4 Boxes as Attribute Values 426
18.6.5 Information Visualization and Virtual Materialization

Framework Using IntelligentBox 427
18.6.6 3D Information Visualization of the WWW 436

18.7 Component-Based Framework for Database Reification 437
18.7.1 Flexible Definition of Visualization Schemes 437
18.7.2 Information Materialization through

Query Composition 439
18.8 Virtual Scientific Laboratory Framework 445
18.9 3D Meme Media and a Worldwide Repository of Boxes as a

Meme Pool 451
18.10 Summary 452

References 454

19 Organization and Access of Meme Media Objects 457

19.1 Organization and Access of Intellectual Resources 457
19.2 Topica Framework 459

xiv CONTENTS

ftoc.qxd 4/26/2004 9:44 AM Page xiv

19.3 The Application Horizon of the Topica Framework 462
19.4 Queries over the Web of Topica Documents 465
19.5 Related Research 468
19.6 Summary 471

References 472

20 IntelligentPad Consortium and Available Software 474

20.1 IntelligentPad Consortium 474
20.2 Available Software 475
20.3 Concluding Remarks 476

Author Index 477

Subject Index 479

About the Author 497

CONTENTS xv

ftoc.qxd 4/26/2004 9:44 AM Page xv

PREFACE

In retrospect, the last three decades of computer systems can be summarized as follows.
In the 1970s, we focused on the integrated management of enterprise or organization in-
formation. The relational model of databases proposed in 1970 provided a mathematical
foundation for the discussion of the logical structure and operation of a database indepen-
dent of its physical implementation and applications. It works as a pivot with various dif-
ferent candidates of implementation, and with various different applications. Such inde-
pendence encouraged studies on its physical organization without considering its
applications, and also studies on its applications and semantic data models without con-
sidering its physical organization. The former studies led to the development of high-
performance relational database management systems, and the latter studies to the devel-
opment of natural language interfaces and graphical user interfaces to databases, which
led to the extension of queries toward object-orientation and logical inference. Integrated
management of information increased data consistency and data integrity of enterprise
and organization information, which information management using file systems could
not achieve.

In the 1980s, we focused on the integrated environment of personal information pro-
cessing and office information processing. The rapid development of personal computers
and workstations that began in the late 1970s provided personal tools for writing docu-
ments, calculating tables, drawing pictures, and making charts. Their developers became
interested in embedding figures, tables, and charts in document pages for printing. This is
what we call desktop publishing. Then they became interested in directly editing such
printed image of documents on the display screen and developed so-called WYSIWYG
(what you see is what you get) systems. At the same time, developers became interested in
keeping chart representations of data consistent with a table representations of the same
data, which required a functional linkage between chart tools and table tools. Such func-
tional linkages were also applied to the data consistency between these tools and a data-
base, which led to the development of so-called integrated personal environment and of-

xvii

fpref.qxd 4/26/2004 9:45 AM Page xvii

fice environment systems. These systems had to deal with functional linkages between
different tools and different servers. They had to embed graphical representations of these
different tools in document pages and manage these graphical objects to respond to user
operations. They required a uniform way of treating different tools, their graphical repre-
sentations, user events, and database servers as entities that react to given messages issued
either from users or from other entities. The object-orientation studies that began in the
mid-1970s and bloomed in the 1980s provided a solution to these requirements. The ob-
ject orientation, together with integrated personal environment and office environment
systems, led to the development of compound-document architectures, object-oriented
GUI systems, visual programming environments, multimedia authoring tools, object-ori-
ented languages, and object-oriented databases.

The last decade in 1990s can be easily characterized by the World-Wide Web (WWW)
and its browsers. Although preceded by related visions like Xanadu, proposed in the
1960s, both the WWW and its browsers were developed in the 1990s. In the 1990s, we fo-
cused on publication and browsing of intellectual assets. People became liberated in pub-
lishing their intellectual assets. The WWW and its browsers have brought an enormous
change to our social life. However, many of you will agree to the claim that this is just a
beginning of a bigger change.

What will characterize this new decade of 2000? This book will answer this question.
“Meme market” is the answer. “Meme” is a term coined by Richard Dawkins. He pointed
out a similarity between genetic evolution of biological species and cultural evolution of
knowledge and art, and used “meme” to denote the cultural counterpart of a biological
gene. As biological genes are replicated, recombined, mutated, and naturally selected,
ideas are replicated, recombined, modified with new fragments, and selected by people.
The acceleration of memetic cultural evolution requires media to externalize memes, and
to distribute them among people. Such media should allow people to reedit their knowl-
edge content and redistribute them. Such media may be called meme media. They work as
knowledge media for the reediting and redistribution of intellectual assets.

Although the WWW and browsers enabled us to publish and browse intellectual assets,
they could not liberate these assets from the servers that store them. This situation is simi-
lar to that before Johann Gutenberg’s invention of printing technologies. Books in the li-
brary were secured by chains, and could not be taken out. After his invention, books be-
came portable media that could be distributed among people, and became independent of
the time and place of their publication, which significantly increased the chance of repli-
cation, recombination, mutation, and natural selection of memes published in books. The
WWW and browsers do not enable people to reedit and redistribute memes published in
meme media. When memes are liberated from their servers and distributed among people
for their reediting and redistribution, they are accumulated by society to form a meme
pool, which will work as a gene pool to bring a rapid evolution of intellectual assets
shared by this society. This will cause an explosive increase of intellectual assets, similar
to the flood of consumer products in our present consumer societies. The explosive in-
crease of intellectual assets is not only inevitable, but also fundamental for their rapid evo-
lution, since these increased intellectual assets form a sufficiently large meme pool and
increase the chance and the variety of recombination. Meme media will bring us a con-
sumer society and consumer culture of knowledge resources, which requires new services
for distribution, management, and retrieval. The variety of consumer products was mainly
brought about by business competition. Therefore, it is fundamental to introduce business
activities into a meme pool, which will make it a meme market.

xviii PREFACE

fpref.qxd 4/26/2004 9:45 AM Page xviii

This book focuses on meme media: their potential for enabling technology, their soft-
ware architecture, and their applications. It also focuses on meme pool and meme market
architectures for the reediting and redistribution of memes without violating competitive
business activities. The reader may download sample systems from the following Web-
sites: http://ca.meme.hokudai.ac.jp/index.html, which is administered at Hokkaido Uni-
versity, and http://www.pads.or.jp/english/, which is administered by the IntelligentPad
Consortium.

I started this research project in early 1987. My goal at that time was to develop a me-
dia toolkit architecture for the open integration of personal and office information pro-
cessing environments. Then around 1992, I came across the concept of meme media.
Since 1989 when my group finished the development of the first Smalltalk implementa-
tion of the system, our group has been living in the system and coevolving with it. We
have learned a lot from the different versions of the system about in which direction to
conduct the project. We are still opening new vistas for detailed study. This is one of the
reasons why I have spent several years writing this book.

My collaborators and I established a consortium in 1993 for the promotion of system
architectures. Since then, I have worked with many collaborators in industry and acade-
mia. They became fascinated by the system concept and/or system architecture, and dedi-
cated themselves to work as system developers, application developers, evangelists, or
managers. These people include Toshifumi Murata of Softfront, Jun-ichi Fujiwara of Sap-
poro Electronics Center, Tatezumi Furukawa, Nobuyuki Makimura, Taiji Okamoto of Fu-
jitsu, Yasushi Miyaoka, Masafumi Shimoda, Kazuyuki Tanaka of Hitachi Software,
Kazushige Oikawa of K-Plex Inc., Yuji Miyawaki of Fuji Xerox, Katsuhiko Sakaguchi of
Canon (now with Softfront), Nobuya Kawachi of Khangrande, Takeshi Mori of NEC,
John Cheuck of Metrowerks, Jiro Yamada of C’s Lab, Seigo Matsuoka of Editorial Engi-
neering Laboratory, Yoshimitsu Hirai of JIPDEC, Takafumi Noguchi of Kushiro Technical
Collage, Takeshi Sunaga of Tama Art Collage, Shin Nitoguri of Tokyo Gakugei Universi-
ty, Yoshiaki Yanagisawa of National Language Research Institute, Kazuhiro Sato and
Masaki Chiba of Sapporo Gakuin Collage, Mina Akaishi, Akihiro Yamamoto, Makoto
Haraguchi, Kiyoshi Kato of Hokkaido University, and Yoshihiro Okada of Kyushu Uni-
versity. The people who contributed to the research and development of IntelligentPad/In-
telligentBox and their applications are too numerous to list. Some of them influence the
direction of my research. Kazushige Oikawa introduced me to Xerox PARC’s views on
object-oriented paradigms in early 1980s. Seigo Matsuoka enlarged my research vision
toward media as cultural infrastructures. Ryoichi Mori, who proposed “superdistribution”
in 1983, encouraged me to integrate meme media and meme pool architectures with the
idea of superdistribution. I was also encouraged and supported by many other people.
They include Setsuo Ohsuga of Waseda University, Makoto Nagao of Kyoto University,
Yasushi Takeda of Hitachi, Tsutomu Sato of Hitachi Software, Iwao Toda of Fujitsu, Yukio
Mizuno of NEC, and Tohru Takahashi of Canon. Marvin Minsky, Donald Knuth, Doug
Engelbart, Ted Nelson, and Bill Atkinson privately encouraged me and supported my pro-
ject.

With the support of these people, I have continuously obtained significant support
from the Agency for Science and Technologies and Ministry of Education (Japan). From
1991 to 1995, I conducted a project under the support from Agencies for Science and
Technologies. In 1995, I won a three-year Grant in Aid for Specially Promoted Research
from the Ministry of Education. In the same year, the ministry set up the Meme Media
Laboratory for my research. In 1999, the ministry selected me to conduct a new five-year

PREFACE xix

fpref.qxd 4/26/2004 9:45 AM Page xix

project on “intuitive human interface for the organization and access of intellectual as-
sets” based on meme media and meme pool architectures. This book will cover most of
the research achievements of these projects. In the Meme Media Laboratory, I started col-
laborations with Klaus Jantke of the German Research Center for Artificial Intelligence
(DFKI), and Nicolas Spyratos of the University of Paris South. They and their colleagues
are now helping me to distribute the concept and architecture of meme media in Europe.

I would like to express my thanks to all these people. Without their help, I could not
have written this book. The project is still in progress. I had to omit many new ideas in this
book only because they are not implemented in any version. Furthermore, the systems are
still opening new vistas for detailed study.

I also would like to thank my former students involved in IntelligentPad or Intelligent-
Box projects. Takamoto Imataki and Akira Nagasaki worked on the development of Intel-
ligentPad, while Yoshihiro Okada worked on IntelligentBox. Akira Nagasaki also studied
the FieldPad architecture for event sharing, while Mina Akaishi studied the StagePad ar-
chitecture for scripting user operations. Mitsunori Nakagawa studied workflow applica-
tions, while Ryota Hirano studied the decomposability and composability of specifica-
tions based on the meme media architecture. My present students are also making
significant contributions to meme media and meme pool architectures. They include Kim-
ihito Ito working on the Web application linkage, Makato Ohigashi and Tsuyoshi Sug-
ibuchi on database visualization, and Jun Fujima on Topica framework. In writing this
book, Aran Lunzer and Bruce Darling of the Meme Media Laboratory helped improve the
draft of the book.

I would like to thank Hokkaido University and the Graduate School of Engineering for
providing me a comfortable research environment, and, especially, Ryozaburo Tagawa for
the pleasure of conducting research projects in Sapporo.

Finally, I would like to thank my wife Tazune and daughter Shikiko; they have been pa-
tiently waiting for the completion of this writing project and encouraging me. I also would
like to thank my parents.

YUZURU TANAKA

Sapporo, Japan
April 2003

xx PREFACE

fpref.qxd 4/26/2004 9:45 AM Page xx

CHAPTER 1

OVERVIEW AND INTRODUCTION

This book examines meme media architectures and their application frameworks devel-
oped by the author and his colleagues for allowing people to reedit and redistribute intel-
lectual resources over the Internet just through direct manipulation. Intellectual resources
denote not only multimedia documents, but also application tools and services provided
by local or remote servers. They cannot be simply classified as information content since
they also include tools and services.

Media used to externalize some of our knowledge as intellectual resources and to dis-
tribute them among people are generally defined as knowledge media. Some people may
use the term “information media” to denote a similar type of media. Whereas information
media denote those media that externalize information content, knowledge media are
used to externalize not only information content but also tools and services, and, further-
more, to distribute them among people. Some knowledge media that provide direct ma-
nipulation operations for people to reedit and redistribute their content are called meme
media. Chapters 2 and 3 discuss the details of these definitions. This chapter shows why
we need meme media, and how meme media change the environment of publishing, reed-
iting, and redistributing intellectual resources for their further reuse by other people.

1.1 WHY MEME MEDIA?

During the last decade, we observed the rapid accumulation of intellectual resources on
the Web. These intellectual resources include not only multimedia documents, but also ap-
plication tools running on the client side, and services provided by remote servers. Today,
from the Web, you can almost obtain whatever information items, application tools, or
services you may think of. You can just access some search engine and type in appropriate
keywords that characterize the intellectual resource you want to access. Then the search
engine returns an address list of candidate Web pages. In this list, you will probably find
more than one appropriate Web page including the intellectual resource you want to get.

1

tan-1.qxd 4/29/2003 9:48 AM Page 1

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

The publication and reuse of intellectual resources using Web technologies can be
characterized by the schematic model in Figure 1.1. In order to publish your set of intel-
lectual resources, you have to represent it in HTML (Hyper Text Markup Language), and
to register it in an HTTP (Hyper Text Transfer Protocol) server on the Internet. The world-
wide distribution of HTTP servers, together with the HTTP protocols on the Internet,
forms a worldwide publication repository called the WWW (World-Wide Web), or simply
the Web. Web publication uses a compound document representation of intellectual re-
sources. Compound documents denote documents with embedded content such as multi-
media content, visual application tools, and/or interactive services provided by servers.
Such a compound document published on the Web is called a Web page. In order to access
Web pages published by other people, you need to know their URL (Uniform Resource
Locator) address. You may input a URL to a Web browser such as Internet Explorer or
Netscape Navigator to view the corresponding Web page. Some Web pages may have a
button to upload or to download a file to and from a remote server. Some others may have
input forms for you to fill in. Such Web pages use your inputs to issue a query to the cor-
responding application server or database server, which then sends back a new Web page
as its output.

In the model in Figure 1.1, we do not have any support for extracting any portion of
published Web pages, combining them for their local reuse, or publishing the newly de-
fined composite object as a new Web page. We need some support to reedit and redistrib-
ute Web content for their further reuse.

It is widely recognized that a large portion of our paperwork consists of taking some
portions of already existing documents, and rearranging their copies in different formats
on different forms. This tendency has been significantly growing since we began to per-
form our paperwork on personal computers. Since the reediting is so fundamental in our
daily information processing, personal computers introduced the copy and paste opera-
tions as fundamental operations. Now these operations are undoubtedly the most fre-
quently used operations on digital content.

Figure 1.2 shows a new model that the author proposes in this book for the worldwide
publication, reediting, and redistribution of intellectual resources. As in the case of the
Web, you can publish a set of your intellectual resources as a compound document into a
worldwide publication repository. You can use a browser to view such documents pub-

2 OVERVIEW AND INTRODUCTION

Publication

infrastructure

server

server

client

Browse

+ dowmload/upload

Figure 1.1 The publication and reuse of intellectual resources using Web technologies.

tan-1.qxd 4/29/2003 9:48 AM Page 2

lished by other people. In addition to these operations, you can extract any portions of
viewed documents as reusable components, combine them together to define a new com-
pound document for your own use, and publish this new compound document in the
repository for its reuse by other people. This new model of publishing, reediting, and re-
distributing intellectual resources assumes that all these operations can be performed only
through direct manipulation. Meme media technologies that are discussed in detail in this
book realize this new model. They provide the direct manipulation operations necessary
for reediting and redistributing intellectual resources. Current Web technologies provide
none of these direct manipulation operations.

1.2 HOW DO MEME MEDIA CHANGE THE REUSE OF
WEB CONTENT?

Figures 1.3 to 1.5 show an example process of reediting and redistributing intellectual re-
sources over the Web. The “meme media” technologies provide these operations as gener-
ic operations on intellectual resources represented as “meme media” objects. This exam-
ple accesses two Web pages, i.e., Lycos Finance Stock Quotes and Charts, and Yahoo
Finance Currency Conversion (Figure 1.3). The former allows you to specify an arbitrary
company, and then shows its current stock quote together with its stock quote chart. The
latter allows you to specify two currencies and the amount in one of them, and then out-
puts its conversion to the other currency. Browsers showing the two Web pages are
wrapped by meme media wrappers, and work as meme media objects. These wrapped
browsers allow us to specify any input forms and/or any displayed objects such as charac-
ter strings and images to work as I/O ports for interoperation with other meme media ob-
jects. You can directly specify which portions will work as ports through mouse opera-
tions.

On the conversion Web page, you may fill in the source and target currency input forms
with “U.S. dollar” and “Japanese Yen.” Then you may specify the amount input form to
work as an I/O port, and the character string representing the converted amount to work as

1.2 HOW DO MEME MEDIA CHANGE THE REUSE OF WEB CONTENT? 3

reediting

redistribution

drag & drop

drag

& drop

userA

userC

userBmeme pool

Figure 1.2 A new model that the author proposes in this book for the worldwide publication, reed-
iting, and redistribution of intellectual resources.

tan-1.qxd 4/29/2003 9:48 AM Page 3

an output port. You may connect a text I/O component to each of these ports, make the
wrapped browser hide its display, and resize it (Figure 1.4). The result is a currency conver-
sion tool from U.S. dollars to Japanese Yen. This tool wraps the Yahoo Finance Currency
Conversion service, and works as an interoperable meme media object. Through mouse op-
erations, you can also specify that the dollar input port will work as the primary port of this
media object.

On the Stock Quote and Chart Web page, you may input some company in the input
form, and specify the output portion representing the current stock quote to work as an
output port (Figure 1.3). Now you can paste the wrapped currency conversion tool on this
Stock Quote and Chart Web page, and connect the primary port of the conversion tool to
the current stock quote port of the Stock Quote and Chart page (Figure 1.5). This defines
a composite tool that combines two services provided by the two different servers. Now
you may input a different company in the input form of the base Web page. Then the com-
posite tool will return its current stock quote both in U.S. dollars and in Japanese yen.

Meme media technologies also allow us to republish this composite tool as a new Web
page. Other people can access this Web page and reuse its composite function using a
legacy Web browser.

Figure 1.6 shows another example of reediting Web content to define a new tool as a
Web page. Here we access the Google search engine, and specify its keyword input form
to work as an input port, and the first four search-result Web links to work as output ports.
Then we make the background display of this page invisible, and paste one text I/O com-
ponent and four browsers, all represented as meme media objects, on this page. The text
I/O component is connected to the keyword input port, whereas the four browsers are con-

4 OVERVIEW AND INTRODUCTION

Lycos Finance Stock
Quotes and Charts

Yahoo Finance
Currency Conversion

port definition

Figure 1.3 Access of two Web pages, i.e., Lycos Finance Stock Quotes and Charts, and Yahoo Fi-
nance Currency Conversion, and specification of I/O ports on the former Web page.

tan-1.qxd 4/29/2003 9:48 AM Page 4

nected to the four Web link ports. The result is a new tool that accesses Google to search
for Web pages including input keywords, and shows the first four candidate Web pages.
You may publish this tool as a new Web page on the Web.

If we apply meme media representation to all types of intellectual resources including
those on the Web and local tools, we can combine extracted Web contents with local tools
to compose a new tool. Figure 1.7 shows such an example. Here we access the Yahoo
Finance Historical Prices Web page. You may input a company code to obtain the details of
its stock quote changes as a table. Meme media technologies allow you to extract this table
as a meme media object just through mouse operations. The extracted meme media object

1.2 HOW DO MEME MEDIA CHANGE THE REUSE OF WEB CONTENT? 5

Figure 1.4 You can easily wrap the Yahoo Finance Currency Conversion page to create a new in-
teroperable tool, simply by specifying the amount input form and the converted amount to work as
an I/O port or as an output port, respectively.

Lycos Finance Stock Quotes and Charts

wrapped currency
conversion tool

Figure 1.5 You can paste the wrapped currency conversion tool on the Stock Quote and Chart
Web page, and connect the primary port of the conversion tool to the current stock quote port of the
Stock Quote and Chart page to define a new composite tool.

tan-1.qxd 4/29/2003 9:48 AM Page 5

6 OVERVIEW AND INTRODUCTION

slots

text I/O pad

web browser pad

Figure 1.6 You can easily wrap the Google Web page to define a portal that shows the first four
candidate Web pages for arbitrarily given keywords.

Figure 1.7 Application of meme media representation to all types of intellectual resources includ-
ing those on the Web and local tools allows us to easily combine extracted Web content with local
tools for the composition of new tools.

tan-1.qxd 4/29/2003 9:48 AM Page 6

has a polling function to periodically access the Yahoo Finance server for updating its table
contents. In this figure, the extracted table is dropped on a table tool to transfer its contents
to this tool. This table tool allows you to extract a column as another meme media object,
which you may drag and drop on a chart tool to obtain its chart representation.

All the above examples tell us how fundamental the reediting and redistribution opera-
tions are to the creative reuse of a large accumulation of available contents, application
tools, and services. These operations are especially fundamental in the evolution of
knowledge in science and technology. Based on the knowledge of published research
works, researchers make new assumptions, evaluate them, establish new knowledge, and
publish it for others to reuse. People used to use books and journals to publish their
knowledge. Because of this restriction, they had to type printed table data for analysis us-
ing computer programs. They had to develop a program to calculate a printed formula
even if the author of this formula had already developed such a program. Publication with
paper media did not allow authors to publish their new formulas together with the corre-
sponding calculation programs. Web publishing has remarkably changed these situations.
We can make a copy of Web content and paste it on a local document or on a table we are
currently editing. We can publish a formula together with its calculation program. Howev-
er, we cannot reedit Web contents including application tools and services through direct
manipulation.

In bioinformatics, for example, more than 3000 different services are now available on
the Web. They include data base services, data analysis services, simulation services, and
related reference information services. Researchers in this field, however, have no tools to
interoperate some of these services for their own use. There is no way on the client side to
connect the output of one service to the input form of another service other than making a
copy of the appropriate output text portion on the source page and pasting it in the input
form of the target page. Meme media technologies that we will discuss in detail in this
book will open a new vista in the advanced reuse and interoperation of such services.

1.3 HOW DO MEME MEDIA WORK?

Instead of directly dealing with component objects as in the case of object-oriented, com-
ponent-based software systems, meme media wrap each object with a standard media
wrapper and treat it as a meme media object. They can wrap not only Web content as
shown in the previous sections, but also any objects including multimedia documents,
multimedia components, application programs, and services provided by either local or
remote servers. Each meme media object has both a standard user interface and a standard
connection interface. The user interface of every meme media object has a card-like view
on the screen and a standard set of operations such as “move,” “resize,” “copy,” “paste,”
and “peel.” As a connection interface, every meme media object provides a list of I/O
ports called slots, a standard set of messsages—“set” and “gimme”—to access each of
these slots, and another standard message, “update,” to propagate a state change of one
meme media object to another.

Since meme media objects have card-like appearances on the screen, they are called
pads. This book will also introduce the three-dimensional version of meme media, called
boxes. You may paste a pad on another pad through mouse operation on the screen. You
may use paste operations in arbitrary ways; for example, to overlay multiple translucent
component pads of the same size, or to arrange multiple component pads on the same

1.3 HOW DO MEME MEDIA WORK? 7

tan-1.qxd 4/29/2003 9:48 AM Page 7

base component pad. When a pad P2 is pasted on another pad P1, the pad P2 becomes a
child pad of P1, and P1 becomes the parent pad of P2. Our meme media architecture allows
you to connect each child pad to one of the slots provided by its parent pad. Each child
pad interoperates with its parent pad by exchanging three standard messages through their
slot connection. No pad may have more than one parent pad. Pads are decomposable per-
sistent objects. You can easily decompose any composite pad by simply peeling off the
primitive or composite pad from its parent pad.

1.4 FREQUENTLY ASKED QUESTIONS AND LIMITATIONS

Some readers of this book may think that Web service technologies can provide us with
similar functions for the interoperation of Web contents. Web service technologies enable
us to interoperate services published over the Web. However, they assume that the API
(application program interface) library to access such a service is a priori provided by the
server side. You need to write a program to interoperate more than one Web service.
Meme media technologies, on the other hand, provide only the client-side direct manipu-
lation operations for users to reedit intellectual resources embedded in Web pages, to de-
fine a new combination of them together with their interoperation, and to republish the re-
sult as a new Web page. Chapter 11 of this book will compare, in detail, the meme media
technologies on the Web with Web service technologies. In addition, meme media tech-
nologies are applicable not only to the Web, but also to local objects. Meme media can
wrap any documents and tools, and make each of them work as interoperable meme media
objects. Their wrapping, however, cannot use the same generic wrapper as in the case of
wrapping Web contents. Different types of tools may require different wrappers.

Some other readers of this book may become worried about the copyright problem.
Copyright policies, however, have been reconsidered and modified every time people in-
troduced new media technologies. Whenever a new media technology is introduced, the
consensus on new copyright policies gradually coevolves with new copyright protection
and/or license management technologies. We have been and are observing such coevolu-
tion of new policies with the Web technologies. Some have established closed services on
the Web that are exclusive to their members, whereas others have established a closed net-
work, such as the I-mode cellular phone network in Japan by NTT DoCoMo, to imple-
ment a micropayment scheme for charging each access to the registered information ser-
vices. Many other types of license and account management are currently being tried on
the Web. The same situation will occur for meme media technologies. Chapter 12 of this
book provides a basis to solve the technological aspects of this problem.

Meme media may wrap any objects, whether they are texts, images, figures, charts, or
program modules, to provide them with both their visual representations on the display
screen and I/O ports to interoperate with each other. Between 1993 and 1997, major soft-
ware industries in Japan mistook meme media technologies for CBSD (component-based
software development) technologies. Around that time, Fujitsu tried to exploit meme me-
dia technologies as the basis of their middleware architecture. Since meme media objects
work as interoperable components, and allow us to combine them together easily through
direct manipulation, their technologies are applicable to the component-based develop-
ment of client systems with visual man–machine interfaces. Chapter 16 of this book dis-
cusses software engineering with meme media technologies.

It should be noted, however, that there are significant differences in the granularity of
reusable components between their applications to the reediting and redistribution of in-

8 OVERVIEW AND INTRODUCTION

tan-1.qxd 4/29/2003 9:48 AM Page 8

tellectual resources and their use as component-based software development environ-
ments. Whereas components in the former applications are reused by users who reedit
content only through direct manipulation, those in the latter applications are reused by
programmers for software development. Although users are usually not interested in mod-
ifying internal mechanisms of tools, programmers like to modify them. Therefore, the
typical granularity of reusable components in the latter applications is generally much fin-
er than that in the former applications.

It should be also pointed out that meme media technologies cannot be applied to the
development of all types of software. Their application is limited to the development of
client systems with compound-document interfaces. It is obvious that we cannot even de-
fine any visual components if we try to apply meme media technologies to the develop-
ment of some language compilers.

Meme media objects are assumed to be manually combined by users to compose new
ones. Meme media technologies themselves do not focus on how machine intelligence
can perform such composition for given specifications; they provide only a basic frame-
work on which you may study such machine intelligence.

In order to make some object work as a meme media object, you have to wrap it with a
meme media wrapper. In general, this is not an easy task, and requires programming skill.
However, for those objects with de facto standard object architectures such as the HTML
document architecture and the Microsoft ActiveX control architecture, we can a priori
provide generic meme media wrappers; users can easily wrap any of these objects, with-
out writing any program, to make them work as meme media objects.

1.5 ORGANIZATION OF THIS BOOK

This book proposes meme media architectures and their application frameworks. Chapter
1 gives a brief description of why we need meme media, how meme media change the en-
vironment of publishing, reediting, and redistributing intellectual resources for their fur-
ther reuse by other people, and what the limitations of meme media are. It also provides
guidelines on how to read this book.

Chapter 2 gives a philosophical introduction to knowledge media and meme media. It
clarifies the difference between information media, knowledge media, and meme media.
Then it discusses the importance of meme media for all kinds of human interaction with
information and knowledge through their life cycle. Meme media together with their
worldwide publication repository form a meme pool, i.e., a worldwide pool of reeditable
and reusable intellectual resources. Such a meme pool will evolve through people’s reedit-
ing and redistributing meme media objects. Chapter 2 discusses the similarity between bi-
ological evolution and meme pool evolution, and clarifies what kind of technologies are
required to accelerate meme pool evolution. We will review the history of books to see the
importance of media architectures, and to understand the roles of knowledge media and
meme media.

Chapter 3 gives a survey of past and current research and development efforts and
technologies that are closely related to meme media and meme pool architectures and
technologies. It gives a brief technological history of augmentation media and knowledge
media on computers, and a brief survey on current Web technologies as knowledge media
technologies. It also clarifies the difference between Web technologies and meme media
technologies.

Chapter 4 gives an outline of two meme media systems—IntelligentPad and Intelli-

1.5 ORGANIZATION OF THE BOOK 9

tan-1.qxd 4/29/2003 9:48 AM Page 9

gentBox. They externalize some of our knowledge respectively using 2D (two-dimension-
al) and 3D (three-dimensional) representations.

If you are interested in meme media concepts, but not in the technical details, you may
read only Chapters 1, 2, 3, and 4. These first four chapters focus on concepts rather than
technical details. They are intended to help readers understand the concept of meme me-
dia, their use in related technologies, and their capabilities as well as limitations. The re-
maining chapters, which constitute the main body of this book, clarify the technical de-
tails of meme media architectures, their utilities, and their application frameworks.

If your interest is in technical aspects of meme media architectures, you should pro-
ceed to Chapters 5, 6, and 7. These chapters focus on the basic architecture of the 2D
meme media system, IntelligentPad. Chapters 5 and 6 provide basic knowledge on the
MVC (model, view, controller) framework, and on component integration architectures,
respectively. These two chapters are fundamental to understanding the component archi-
tecture and the interoperation architecture of meme media systems. Chapter 7 gives the
technical details of 2D meme media architectures.

Chapters 8, 11, 12, and 19 focus on meme media utilities and their architectures. Chap-
ter 8 provides basic utilities. These include a collaboration tool for more than one user,
and a script programming tool to simulate user’s manipulation of meme media objects.
Chapter 11 gives the architectures for publishing meme media objects, and discuses their
relationships to Web technologies. This chapter will propose several different versions of
meme pool architectures. Chapter 11 is the highlight of this book. If you are interested in
how meme media objects can be published, reedited, and redistributed to form a world-
wide meme pool, you should read this chapter. Readers interested in Web services are also
strongly recommended to read this chapter. Chapter 12 clarifies how the reediting and re-
distribution of meme media objects can be allowed without violating the rights of authors
and distributors. Readers who are interested in copyrights and the billing should read this
chapter. Chapter 19 deals with how to organize and access a huge accumulation of meme
media objects, and proposes a new framework named Topica. In this chapter, readers in-
terested in Semantic Web will find another approach to the semantic organization and ac-
cess of intellectual resources.

Chapters 9, 10, 13, 14, and 17 focus on its application frameworks. Chapters 9 and 10
provide multimedia and database application frameworks, respectively. Readers who are
involved in the development of database applications are strongly urged to read Chapter
10. Chapter 13 gives application frameworks for the spatiotemporal editing of meme me-
dia objects. Chapter 14 discusses the interoperability of meme media objects and work-
flow modeling to coordinate their interoperations. Chapter 17 gives a survey of other ap-
plications of meme media.

Chapters 15 and 16 discuss software engineering aspects of meme media technologies.
Chapter 15 introduces concurrency among meme media objects, whereas Chapter 16 dis-
cusses CBSD with meme media technologies. If you are interested in software engineer-
ing aspects of meme media technologies, you should read Chapter 16.

Chapter 18 extends the preceding discussions to 3D representation in meme media. If
you are interested in 3D computer animation, 3D information visualization, or 3D scien-
tific visualization, you will learn in this chapter how 3D meme media technologies pro-
vide direct manipulation capabilities as well as the capabilities of reediting and redistrib-
uting their environments and component objects.

Chapter 20 gives some concluding remarks with information about available meme
media software systems.

10 OVERVIEW AND INTRODUCTION

tan-1.qxd 4/29/2003 9:48 AM Page 10

CHAPTER 2

KNOWLEDGE MEDIA AND MEME MEDIA

Media to externalize some of our knowledge as intellectual resources and to distribute
them among people are generally defined as knowledge media. Knowledge media that
provide direct manipulation operations for people to reedit and to redistribute their con-
tent are called meme media.

This chapter gives a philosophical introduction to knowledge media and meme media.
It will answer the following questions:

1. What kind of media technologies will enable us to edit, distribute, and manage a
large variety of knowledge in the age of personal computers connected to the Inter-
net?

2. What distinguishes knowledge media and meme media from multimedia and hyper-
media?

3. What are the potential of meme media? How will meme media change our society?

4. What are the limitations of meme media?

You may just read this chapter and Chapter 4 to obtain a rough sketch of meme media,
their concept, technologies, and potential.

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA

In his inspiring book, The Dragons of Eden, Carl Sagan briefly described the coevolution
of biological species and the mechanisms for information inheritance between individuals
[1]. Primitive creatures can inherit information only through genes of their parents; they
can inherit only genetic information. The development of brains, however, led to oral
communication and, for human beings alone, unlike the other creatures, development of
external ways to record and store information. The most typical one is a book. Such infor-
mation is referred to as being “extrasomatic,” in contrast to “somatic” information stored

11

tan-2.qxd 5/15/2003 1:25 PM Page 11

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

in a brain. The externalization of knowledge fragments out of brains and into books makes
them continue to exist independently from their previous owners. Books carry knowledge
across time and space, allowing us to share knowledge with people who died thousands of
years ago, or with those in different countries. The development of extrasomatic ways of
storing knowledge remarkably accelerated the evolution of human beings and their cul-
tures.

Marshall McLuhan considered media to be not only communication mediators but also
augmentors of our physical capabilities such as seeing, hearing, speaking, walking, grasp-
ing, understanding, and thinking [2]. In this sense, books serve as augmentators of our
memory.

Computers were originally developed as computation tools; they augment our natural
computation capabilities. Computers can store a large amount of information, so they can
also serve as augmentors of our memory. People have been trying to externalize various
human capabilities and to implement them in computers. In this sense, today’s personal
computers are augmentation media that provide us with various tools for entertainment
and thought; they provide tools to augment our individual capabilities. Some researchers
and developers have been further expanding the target of augmentation from individual
people to groups of people; their goal is to provide group-augmentation media that sup-
port collaborative activities. Their systems are called groupware systems.

Media for the externalization of knowledge enable each of us to extrasomatically
record and archive knowledge fragments, and to distribute them to other people in our
community. This encourages people to reuse and to edit the archived knowledge to create
new knowledge fragments, which are again added to the knowledge shared by society.
This accumulation is what we call a culture. Books are typical examples of such media.
Their main role is not the augmentation of individuals or groups, but the distribution and
the accumulation of knowledge as common property of our society. Knowledge media are
such media. The WWW (World-Wide Web) is an advanced example of knowledge media.
The process of knowledge accumulation in a society consists of six activities to:

1. Externalize

2. Record and archive

3. Distribute

4. Share

5. Quote or to reuse

6. Edit fragments of knowledge

The current Web technologies support these six activities at the level of representation de-
scription languages such as HTML (Hyper Text Markup Language), XML (Extensible
Markup Language), and XSL (Extensible Stylesheet Language). However, they do not
provide users with direct manipulation operations for reediting and redistributing Web
content. Therefore, Web content is not widely reused, except static content such as texts
and images. There are no tools for us to directly extract some portion of Web pages,
whether they are static or dynamic, to recombine them together through direct manipula-
tion, and to publish the composed result as a new Web page. The augmentation of soci-
eties for the promotion of their cultural evolution requires a new type of knowledge media
that provides direct manipulation operations for these six activities in an integrated way.

Biological evolutions are based on genes. We require media similar to genetic media

12 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 12

for the augmentation of societies and to promote their cultural evolution. Such media
should be able to replicate themselves, to recombine themselves, and to be naturally se-
lected by their environment. They may be called “meme media” since they carry what
Richard Dawkins called “memes” [3]. Their environment in this context means the soci-
ety of their producers and consumers, namely, authors and users. Strictly speaking,
meme media do not replicate nor recombine themselves. Their users replicate them and
recombine them through direct manipulation. Mark Stefik also pointed out in 1986 the
importance of understanding and building an interactive knowledge medium that em-
bodies the characteristics of memes to distribute and to exchange knowledge fragments
in a society [4].

The accumulation of memes in a society will form a meme pool, which will work as a
gene pool to bring about a rapid evolution of knowledge resources shared by society. This
will cause an explosive increase of knowledge resources, similar to the flood of consumer
products in our present consumer societies. The explosive increase of knowledge re-
sources is not only inevitable, but also fundamental for society’s rapid evolution since
such increase forms a sufficiently large meme pool and increases the chances for the vari-
ety of recombination. Meme media will bring us a consumer society and consumer cul-
ture of knowledge resources, which requires new services for distribution, management,
and retrieval.

This book focuses on meme media: their potential as enabling technology, their soft-
ware architecture, and their applications.

2.1.1 Information Life Cycle and Knowledge Media

People interact with information in various ways. We have a lot of verbs to express these
interactions. Some examples are listed below:

1. Generation of new information—conceive, create, generate, acquire

2. Externalization of information—externalize, write, scribe, represent

3. Recording of information—record, archive, store, remember, accumulate

4. Protection of information—protect, hide, secure, control

5. Communication of information—communicate, tell, inform, exchange

6. Distribution of information—distribute, publish, open, leak, broadcast

7. Sharing of information—share

8. Reference to information—reference, cite, quote, reuse

9. Editing of information—edit, process, compose, arrange

10. Search of information—search, retrieve, look for, seek

11. Analysis of information—analyze, evaluate

12. Management of information—manage

13. Annihilation of information—annihilate, discard, forget, destroy, eliminate

Information can be thought of as having its own life cycle during which people interact
with it through these actions. Information that is either created or acquired by a person is
either just kept in his or her brain, or externalized through some medium outside of him-
or herself. The externalization requires some medium. Here we consider only the case in
which information is externalized. We are interested in the application of computer tech-

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 13

tan-2.qxd 5/15/2003 1:25 PM Page 13

nologies to externalized information.
Once information is externalized, it is shared by different individuals across time and

space. Externalization of media can be classified into four categories depending on
whether they can hold information across different times or different locations (Figure
2.1). Each of them is further classified into three categories depending on the number of
people who are involved (Figure 2.2). The human voice is a medium used by people shar-
ing the same moment and the same location. Over the telephone, it becomes a medium
used by people sharing the same moment at different locations. A media like memo
boards or monuments are used by people at the same location at different times. A book
falls in the upper right quadrant in Figure 2.1, where information can be shared across dif-
ferent times and different locations.

Externalization of information is not independent from its editing. The editing of infor-
mation, on the other hand, requires that it be already externalized. Externalized fragments
of information can be distributed or published. They can be quoted in another fragment of
information, or can be recombined into a new fragment of information. When they lose
their significance, they are discarded. In some cases, they continue to exist but the infor-
mation necessary to access them is discarded. The accumulation of externalized informa-
tion fragments sooner or later requires their management, which makes people create a
new type of information, i.e., information to access existing information. This new type of
information is called meta-information.

During its life cycle, a fragment of information may change its representation and
medium. However, it cannot exist at any moment without some representation and some
medium. People always interact with fragments of information through their media. The
use of personal computers as augmentation media has led to the development of various
tools to support these interactions. Among them are word processors, spreadsheets, chart
tools, drawing tools, and database management systems. These tools are augmentation
media. They are not only media in McLuhan’s sense, but also media that carry fragments
of knowledge. Word processors, for example, carry their procedural knowledge on how to
perform word processing. Although such knowledge is not readable, it can be transported
to other people so that they may apply the same knowledge to their own documents. In
this view, information media and the tools applied to them are both considered to be
knowledge media. Tools as media behave as information media. They are used to exter-
nalize procedural or rule-based knowledge. They can be distributed among people, pro-
vided this does not violate their copyrights. They can be combined to define new tools, al-

14 KNOWLEDGE MEDIA AND MEME MEDIA

different
monumental

media
transportable

media
Time

same ephemeral media concurrent media

same different

Space

Figure 2.1 Classification of externalization media in terms of time and space.

tan-2.qxd 5/15/2003 1:25 PM Page 14

though usually it is not easy to do so.
People interact with fragments of information through various tools and media during

the life cycle of these information fragments. These tools and media have been indepen-
dently developed, and cannot effectively interact with each other. Furthermore, tools have
been considered different from media. “Media,” in daily conversation, means only tools
for communication among different people. From McLuhan’s point of view, media are
augmentation tools. The total support of our interaction with fragments of information
and knowledge requires a universal set of media that may cover all kinds of human inter-
action with information and knowledge through their life cycle. These media must be able
to cooperate with each other through functional linkage and data conversion. Otherwise,
they cannot continuously support our activities at different stages of the information life
cycle in a seamless way.

2.1.2 Artificial Intelligence Versus Knowledge Media

In his reflective and perspective paper published in 1986 [4], Mark Stefik of Xerox PARC
said, “The most widely understood goal of artificial intelligence is to understand and
build autonomous, intelligent, thinking machines. A perhaps larger opportunity and com-
plementary goal is to understand and build an interactive knowledge medium.”

He picked out three stories about the growth of knowledge and cultural change. They
concern the spread of hunting culture, the spread of farming culture, and the rapid change
in late 19th to early 20th century France that led peasants to recognize their identity as
“Frenchmen.” The first two stories illustrate how the complexity of a culture affects its
diffusion rate. The last story shows that a technology can accelerate cultural change. It
discusses the introduction of roads and railroads in France between the years 1870 and
1914, and the subsequent sweeping changes and modernization that took place.

Then he took up Richard Dawkins’ concept of memes, and reinterpreted the above sto-
ries in terms of memes. In his book, The Selfish Gene, Dawkins suggested provocatively
that ideas (he called them memes) are like genes and that societies have meme pools in

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 15

Figure 2.2 Further classification of externalization media in terms of people.

Person

same different public

ephemeral
media

idea generation
face-to-face

communication
speech

monumental
media

memo board message board bulletin board

concurrent
media

n.a. telecommunication broadcasting

transportable
media

portable memo letter publication

tan-2.qxd 5/15/2003 1:25 PM Page 15

just the same way as they have gene pools. Basic human capabilities for communication
and imitation modulate the rate at which the memes spread. The spreading rate of memes,
however, is not the only factor that determines the evolution rate of a culture. Roads did
more than change France into a marketplace for goods. They also transformed it into a
marketplace for memes. By bringing previously separate memes into competition, roads
triggered a shift in equilibrium. Ideas from faraway places were continuously reinterpret-
ed and reapplied. The very richness of this process accelerated the generation of recombi-
nant memes.

Memes require carriers, each of which is an agent that can remember a meme and
communicate it to another agent. People are such carriers and so are books. However,
there is an important difference. People can apply knowledge, whereas books only store it.
Programs running on computers can apply knowledge as well, which makes computer
systems very important for creating an active knowledge medium.

Stefik then compares books with expert systems. Books can simply store fragments of
knowledge. It is people who apply books, distribute them, and recombine them into new
books. Expert systems can store and also apply fragments of knowledge. However, it is
difficult for people to apply expert systems, to distribute them, or to recombine them into
new expert systems. Books are passive knowledge media that we can edit, whereas expert
systems are active knowledge media that we cannot presently edit. We need new active
knowledge media that we can edit. Meme media defined in this book are such media.

He also pointed out that building a knowledge medium is a long-term goal, comple-
mentary to the goal of building artificially intelligent agents. He predicted that this goal
would be reached through other work in the larger field of computer science, such as data-
bases and network technology.

The evolution rate of a meme pool depends on several factors. Among them are

1. The number of people accessing this pool

2. How easy it is for them to recombine memes

3. How often they encounter interesting memes

There are three corresponding ways to accelerate the meme pool evolution:

1. To increase the number of people accessing the pool, we may establish a worldwide
reservoir of memes and provide an easy way of accessing this reservoir.

2. To make meme recombination easier, we may develop a user-friendly editing sys-
tem for end-users to compose, decompose, and recombine memes.

3. Finally, to increase the chance for people to encounter interesting memes, we may
develop a good browser or a good reference service system for people to search the
meme pool for what interests them.

In addition to these three ways of accelerating evolution of the meme pool, we should not
forget the fourth way, which is based on a fundamental hypothesis of population genetics:
when two groups become isolated from each other there is always genetic drift, a change
in the relative distribution of genes, between the two gene pools. In general, larger popula-
tions have more stable distributions in their gene pools than smaller populations. Some-
times, however, new species appear and displace related species much more rapidly than
would be predicted by the apparent change of environment or expected rate of genetic

16 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 16

drift. This phenomenon of speciation and displacement is called a punctuated equilibrium
[5]. The leading model for explaining this process comprises three stages: isolation, drift,
and displacement. First, a group becomes geographically isolated from the main popula-
tion. This group undergoes selection and genetic drift more rapidly than does the larger
body. Finally, the geographic isolation is removed, and the slightly fitter group competes
against and displaces the original population. This hypothesis can be read in the context of
memes as follows: To accelerate meme pool evolution, it is not a good strategy to provide
a single monolithic meme pool. Instead, it is better to provide a meme pool that enables
people to dynamically develop smaller subpools for subcommunities, to cultivate a local
culture in each of them, and to dynamically merge some of them.

Such a punctuated equilibrium in a meme pool can be observed in various situations.
Interdisciplinary studies between two well-developed research fields may often yield new
development. Researchers like to organize a small community for intensive and deep dis-
cussion whenever a new research field starts to develop. Lego Group, famous for its toy
block systems, distributes more than 60 new kits with different stories and themes every
year, which has stimulated the development of new meme subpools of Lego culture: a
doll’s house world, an airport world, a train station world, a zoo world, a pirates’ world, and
so on.

2.1.3 Meme Media for All Users

Media may restrict people who utilize their content. A language as a medium allows only
those who can speak it to access its content. In the history of media, human beings have
always been searching for more universal media than those already available. The aim is
to distribute, exchange, share, edit, and reuse varieties of knowledge among people across
time and space.

On the other hand, the total support of our interaction with fragments of information
and knowledge requires a universal set of media that may cover all kinds of interaction
through the life cycle of information and knowledge. These media must be able to cooper-
ate with each other through functional linkage and data conversion. Otherwise, they can-
not continuously support our activities at different stages of the information life cycle in a
seamless way. As Alan Kay pointed out [6], current personal computers have effectively
developed into meta-media. They provide a universal set of media to cover varieties of in-
teraction with information and knowledge fragments throughout their life cycle. These
media can be easily used by end-users. However, they cannot cooperate effectively with
each other. Their cooperation requires definition by a program, which is too difficult or
even impossible to write unless a standard application linkage protocol is defined a priori
among these media.

Although steady progress has been made, many have observed that current personal
computers are still relatively hard for a novice to use. A lot of tools are available for end-
users, but it is hard either to connect them or to extract a specific portion of the function pro-
vided by one of them. These tools are not decomposable. For example, although sorting
modules are used in lots of tools, none of them can be extracted as an independent module
reusable for different applications. As things stand now, user-friendliness, higher-level lan-
guages, and most advanced features of end-user computing are typically determined by the
perceptions and the imaginations of computer developers and software programmers.
These language and user-interface designers determine what is best for the naive end-user
through analyzing what is best for themselves. “User friendliness” and “naive end-users”

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 17

tan-2.qxd 5/15/2003 1:25 PM Page 17

are the most misleading words. User-friendly systems often denote foolproof systems.
Naive end-users are often considered as those who can only use foolproof systems. These
are typical misunderstandings of computer developers and software designers.

Professional photographers are not satisfied with foolproof cameras that allow them
only to release the shutter. They have better or more specific knowledge than camera de-
velopers about the setting of aperture and shutter speed. They are nonetheless end-users,
because they have no engineering knowledge of cameras. We often observe that some
widely used professional tools are too sophisticated and complicated for nonprofessionals
to use. They are still user-friendly systems for professionals. Foolproof tools, on the other
hand, are likely to have limited capability in order to simplify their operations. This is,
however, a lazy way of designing tools. Limitations on the capability of a tool also limit
the capability of its users.

Foolproof tools, however, may popularize the process for which they are intended.
Foolproof cameras have popularized the art of taking pictures. Such popularization en-
larges the meme pool of the corresponding function, and increases the number of people
who share this pool.

Foolproof tools and professional tools should be able to functionally interoperate with
each other and with other tools. Otherwise, we may have two isolated, independent meme
pools, one of amateurs and the other of professionals. Lego Group, for example, has been
providing two types of toy blocks—Lego blocks and Dupro blocks. Dupro blocks were
specially designed for younger children below four or five years old. Although Dupro
blocks are much bigger in size than Lego blocks, these two types of blocks are designed to
be connected with each other.

There are seven groups of meme media users:

1. Novice end-users: inexperienced or untrained users who have some difficulty in
learning the art of utilizing the media functions. Children under the age of three or
four are the typical examples. Their meme media should be robust against misuse.
They do not learn from instructions but through trial and error. Such use should not
result in any system errors. At the same time, most of the possible functions should
interest the users. Otherwise, they will lose their interest and give up using the me-
dia. Meme media should provide point-and-click and drag-and-drop playgrounds of
interoperable and interactive documents and tools. These documents and tools
should be usable in combination with those for nonnovice users.

2. Nonprofessional end-users: the public at large—users who do not care about either
the engineering needed to implement various media functions or the professional
skill required to utilize these functions. They can learn from instruction manuals and
from examples. It is especially important to provide them with various sample groups
of application tools as well as online manuals. They can start with these samples, and
decompose them or replace some part with another to compose new tools.

3. Professional end-users: users who do not care about the engineering to implement
various media functions, but are eager to develop their professional skill to utilize
these functions in their professional activities. Among them are engineers, physi-
cists, chemists, medical doctors, mathematicians, biologists, lawyers, economists,
accountants, designers, architects, and teachers. They have profound knowledge in
their fields. Some of them may even develop their programming skill to program
their tools by themselves. These people are classified in the next category, i.e., su-

18 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 18

perusers. Professional end-users form a community in each of their professional
fields, and exchange both their knowledge resources on meme media and their
know-how about how to utilize these media. Such a society often includes some su-
perusers who develop professional tools for the society to share. Such a society also
forms a niche market of tools, which fosters the tool development business. It is es-
pecially important to provide a networked infrastructure for these users to easily ex-
change their meme media objects. The reediting and the redistribution of meme me-
dia objects by these users are especially important to form a meme pool of
knowledge in each of their professional societies.

4. Superusers: professional users who have developed their programming skill so they
can develop useful tools by themselves to support their professional activities. Al-
most every professional field has such superusers. Some portion of the develop-
ment tools for the meme media should be open to the public to encourage these su-
perusers to utilize them to develop varieties of useful meme media objects. Their
meme media objects, when published, will significantly increase the value of the
meme pools for their professional field, which will encourage more people to share
these pools, and more superusers to develop more tools. This positive feedback
loop will accelerate the evolution of these meme pools, and hence the evolution of
both the professional fields and their societies.

5. System Integrators: users’ consultants who advise users on how to utilize meme
media, or to integrate available meme media to compose new ones that fulfill users’
requirements. They just combine tools available in the market. There is a large busi-
ness opportunity for them.

6. Application developers: including database designers and administrators, various ap-
plication system developers, custom software developers, and so on. Meme media
promise to help application developers by the use of patterns and frameworks for va-
rieties of typical applications. Patterns and frameworks are the concepts on which
some object-oriented software development researchers have recently come to focus
their attention [7, 8]. The use of patterns in design activities was first proposed by
Christopher Alexander in the area of architecture [9]. A pattern in meme media
means a common composition structure and hence a common editing structure of
meme media shared by the composite tools for the same typical application. As de-
tailed in later chapters, form interfaces of a database, for example, share the same
composition structure when implemented by the composition of meme-media ob-
jects. A framework in meme media means a set of meme-media components and the
composition rules that are typically used in the development of a specific kind of ap-
plication. Patterns and frameworks allow users to develop their applications just by
editing these patterns and frameworks. Patterns and frameworks are also provided for
Lego blocks as varieties of kits that come with sample composition manuals. These
have been playing an essential role in promoting sales. The patterns and frameworks
are themselves developed by application developers. These are accumulated as ap-
plication developers’ know-how, and shared by developers. Application developers
reuse their patterns and frameworks to develop new application systems. Patterns and
frameworks themselves may also become commercial products.

7. System developers: including developers of platforms, application-independent
servers, and general-purpose utility systems. Among these systems are spread-
sheets, word processors, operating systems, and database servers. For these experts,

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 19

tan-2.qxd 5/15/2003 1:25 PM Page 19

meme media help them to accumulate and to exchange their know-how. In the de-
velopment of client systems, they can use patterns and frameworks of meme-media
objects. However, system development by composition of meme-media objects is
not relevant for the development of server systems.

Several different features of meme media will satisfy the varying needs of these different
kinds of users.

2.1.4 Meme Media and Compound Documents

Meme media can be loosely described as media that can carry any kinds of knowledge re-
sources, dynamically interrelate them to cooperate with each other, and allow people to
distribute, exchange, share, and reuse these resources. Our knowledge resources include
numerical data, multimedia documents, hardware tools, software tools, facts, rules, infer-
ence rules, inference tools, artifacts, design models, and the knowledge about how to ac-
cess these resources. Current computer systems are already effective at handling these,
apart from hardware tools and artifacts themselves. Indeed, they can even handle the de-
sign models of hardware tools and artifacts. Current computers can carry these kinds of
knowledge resources. However, they cannot dynamically interrelate them so that they co-
operate with each other, nor do they allow people to distribute, exchange, share, and reuse
these resources.

Meme media should provide knowledge resources as generic components so that their
users can easily combine them and edit composite documents and tools to dynamically in-
terrelate them. Meme media should also allow us to distribute them as decomposable ob-
jects so that we can easily extract any component or any composed portion to reuse for
different purposes.

One possible approach that would satisfy these requirements is the adoption of the
compound-document model as the basic media architecture, and the extension of this doc-
ument-media architecture to cope with other types of knowledge. The compound-docu-
ment model was first adopted on computers by desktop publishing systems. They allowed
us to embed images, drawings, tables, and charts into a single text page. Since then, the
variety of embedded components available for compound documents has gradually in-
creased to include animations, video clips, and script programs. Now, the compound-doc-
ument model can treat any object in the object-orientation paradigm as an embedded com-
ponent whenever this object is given an appropriate media component representation.
Objects in the object-oriented paradigm are, in general, reactive; they exchange messages
with each other. Some of them interact with their users. The model with this extension is
called the reactive compound-document model.

Meme media provide any object with its reactive media-component representation,
which allows us to embed this object, as a media component, into another reactive media
component. Meme media components are different from GUI (graphical user interface)
objects. They use GUI objects to implement their representation on the display screen.
Every meme media component consists of two objects: a display object and a model ob-
ject. Its display object defines its appearance and its reaction to user operations as a media
component on the screen, whereas its model object defines its content. The display object
changes the appearance depending on the content defined by the model object. The ap-
pearance is not uniquely determined by the content. The appearance also includes styles,
formats, and decorations. Furthermore, the appearance may reflect only some part of the

20 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 20

content. For example, some meme media components may appear as blank cards with
some functions. These functions are the contents of these meme media components, but
have nothing to do with their appearance.

Since meme media are reactive objects, their composition is not simply layout compo-
sition as in the case of nonreactive compound documents. The embedding of a component
into another should also define a functional linkage between the two. Such a composite
object is called a composite meme media object. When a component is peeled off from
another component, their functional linkage should be broken. Our system-design prob-
lem is how to merge these two different composition operations—the physical layout-
composition operation and the logical functional-composition operation—into a single
simple operation. The functional linkage definition through layout composition is quite
different from diagrammatic visual programming methods that visually define a program
as a data-flow graph with visually represented functional component objects as its nodes.
Visual programming methods represent both application objects and GUI objects as icons
on the screen and allow users to set links between arbitrary pairs of icons. They may also
allow users to embed some GUI object icons into other GUI object icons. However, their
embedding operations have nothing to do with their functional linkage operations. Meme
media, however, basically unify a layout-composition operation and a functional-compo-
sition operation into a single operation.

Meme media objects are persistent objects. They continue to exist unless explicitly
deleted. For their future reediting, composite meme media objects should be kept decom-
posable. Ease of object composition is the common goal shared by current authoring
tools, toolkit systems, and visual programming tools. However, these systems do not
maintain composed objects as decomposable objects. Although these systems only focus
on rapid prototyping, meme media also focus on the future reediting of composite objects
and reuse of the results.

Meme media also require a distribution infrastructure to form a meme pool. In addition
to offline distribution infrastructures such as the traditional book-publishing market, we
need an online distribution infrastructure through the Internet to accelerate meme pool
evolution. A peer-to-peer transportation facility is not sufficient to form a meme pool. We
have to organize a marketplace wherein all people can publish their achievements, browse
through the achievements published by others, and arrange selling and buying of these
achievements between arbitrary pairs of people. Meme media thus require another medi-
um that works as their marketplace.

Like genes, meme media objects should be capable of recombination, replication, and
mutation. These media objects should be subject to natural selection. These operations are
performed by people who access their meme pool. Mutation of meme media objects de-
notes the addition of a new component to an existing composite object. The natural selec-
tion is based on how often each meme media object is replicated for its reuse, and, as a
consequence, on how many replicas exist in a meme pool for each meme media object.

2.1.5 Objects and Media

From the software engineering point of view, a meme media architecture constitutes a
new object-oriented software architecture both for the graphical user interface and for
object wiring and containment. It is also a new fine-grain component software architec-
ture.

Meme media are different from GUI systems. Conventionally, the GUI was considered

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 21

tan-2.qxd 5/15/2003 1:25 PM Page 21

to be secondary. The primary consideration was always the application systems them-
selves. Their GUI was considered after the complete development of application pro-
grams. GUI toolkit systems based on this convention represent each application program
that is to be provided with its GUI as a single icon on the screen, and allow users to graph-
ically define links between this icon and various GUI widgets (Figure 2.3). These links
define functional linkage between the application program and these GUI widgets. Meme
media, however, are based on the media-based architecture in which every user-manipula-
ble object is provided with a standard software wrapper that works as a medium to hold
this object. This composite is called a primitive media object; its original object works as
its content object. Users cannot directly manipulate any content objects; only primitive
media objects are user-manipulable objects. Primitive media objects are atomic since they
are not user-decomposable.

For each object, the wrapper defines its physical representation and logical structure.
Its physical representation defines its appearance on the screen and direct manipulabili-
ty, whereas its logical structure defines the functional linkage interface to other primi-
tive media objects. The wrapper of a primitive media object provides its content object
not only with its visual image but also with its direct manipulability. In object-oriented
GUI terminology, this wrapper works as a display object for its content object. As shown
in Figure 2.4, each primitive media object should be implemented as a pair consisting of
a display object and a content object. The wrapper of each primitive media object also
defines its functional linkage interface to other primitive media objects, which implies
that the application linkage protocol of each primitive media object should be defined

22 KNOWLEDGE MEDIA AND MEME MEDIA

Figure 2.3 A human interface as the second matter to consider.

tan-2.qxd 5/15/2003 1:25 PM Page 22

not by its content object but by its display object. This allows us to directly manipulate
functional linkages. The standardization of primitive media objects results in the stan-
dardization of their wrappers, namely of their physical representation and their logical
structure.

Primitive media objects require some interapplication communication mechanism to
combine some of their functions and/or GUIs. They may use some of the four different
graphical definitions of interapplication communication mechanisms, i.e., (1) cut-and-
paste, (2) drag-and-drop, (3) object wiring, and (4) object containment. The first two
probably require no explanation. Object wiring involves graphical definition of a link to
interrelate two different application objects. Object containment involves a reactive com-
pound document model in which a reactive compound document created by a client appli-
cation may contain various component objects linked to different server applications. The
object-containment mechanisms are further classified into two categories: (1) widget con-
tainment, and (2) media containment (Figure 2.5). In widget containment, the link be-
tween a component and a server application is not fixed. It needs to be defined by the ob-
ject-wiring mechanism. A single server application can be differently linked to more than
one component. GUI-toolkit systems are widget-containment systems; NeXT Interface-
Builder [10] falls into this category. In media containment, the link between a component
and a server application is fixed and never changes wherever this component is embed-
ded; this fixed pair defines a primitive media object. The embedding of a primitive media
object into another primitive media object defines an application linkage between these
two primitive media objects. IntelligentPad, developed by my group, adopts the media-
containment mechanism [11]. Suppose that you make a copy of an object with some em-
bedded objects. With widget containment, this copy cannot inherit its original’s links to
the server applications; it loses the original function. With media containment, however,
such a copy inherits its original function.

In OLE terminology [12], both “object linking” and “object embedding” mean what
we call object containment in this section. With OLE’s object linking, the containment of
a component only holds a reference pointer to the original component, whereas with
OLE’s object embedding, the contained component is an independent copy of the original
component.

Current computers handle various types of intellectual resources [Figure 2.6 (a)].
These include multimedia documents, system utilities, application systems, and user envi-
ronments. Unless a system provides a dedicated functional linkage between any pair of

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 23

 GUI

 object

media object

display object content object

display screen internal processing

Figure 2.4 A GUI object and a media object.

tan-2.qxd 5/15/2003 1:25 PM Page 23

these object types, it fails to integrate these objects [Figure 2.6 (b)]. By a functional link-
age is meant not only a data-communication linkage but also an application linkage
through message exchange. Different pairs require different types of linkages. If there are
n different types, we require O(n2) different types of linkages. This is the essential chal-
lenge of integration systems that are open to the future addition of new intellectual re-
source types.

Meme media architectures solve this problem by separating media from their con-
tents and standardizing the logical structure and the interface of the primitive media ob-
jects. Media of a certain type in general play their most important role in providing a
uniform access protocol for various types of intellectual resources. Books are the most
typical example. They have a long history of development of their common structure
starting with a front cover, followed by a table of contents, then a body with hundreds
of pages, indices, and ending with a rear cover. Books are organized in this way to pro-
vide their readers with a uniform access protocol. Although media of the same kind
share the same organization structure, their contents can contain different structures of
information. The same idea is adopted by meme media architectures. Each primitive me-
dia object consists of its wrapper and its content [Figure 2.7 (a)]. Its wrapper defines its

24 KNOWLEDGE MEDIA AND MEME MEDIA

Figure 2.5 Widget containment and media containment. (a) Widget containment. (b) Media
containment.

GUI Appl.

serverclient

GUI
Appl.

server icon

definition

GUI
Appl.

run time

serverclient serverclient

(a)

(b)

tan-2.qxd 5/15/2003 1:25 PM Page 24

standard media structure and interface. It is up to the developer of each primitive media
object to decide how its content object is implemented in the standard wrapper.
Although meme media basically use an object-oriented architecture, their architectures
are more restricted. Therefore, we call them media-based architectures to distinguish
them from conventional object-oriented architectures.

In a media-based architecture, only one type of functional linkage is used to connect
any pair of wrappers [Figure 2.7 (b)]. In IntelligentPad, developed by our group as a
meme media system, each wrapper has an arbitrary number of connection jacks called
slots, and a single pin-plug to connect itself to one of the slots of another wrapper (Figure
2.8). IntelligentPad calls its primitive media object a “pad.” The wrapper architecture and
the standard linkage facility are provided by the kernel of the IntelligentPad system. Nei-
ther users nor media object developers have to worry about them. Chapter 7 will give the
architectural details of IntelligentPad, and Chapter 18 will show a 3D extension of Intelli-
gentPad.

2.1 INTRODUCTION TO KNOWLEDGE MEDIA AND MEME MEDIA 25

Figure 2.6 Objects and their linkages in object-oriented architectures. (a) Three independent
objects. (b) Different functional linkages for different object pairs.

(a) (b)

Figure 2.7 Objects and their linkages in media-based architectures. (a) Three independent media
objects. (b) The same linkage mechanism for different media–object pairs.

(a) (b)

tan-2.qxd 5/15/2003 1:25 PM Page 25

2.1.6 Multimedia, Hypermedia, and Meme Media

Research studies on meme media share technological and application interest with multi-
media and hypermedia studies.

Multimedia studies are focused on how to deal with various forms of information on
computers. Multimedia researches have been extending their scope to deal with texts,
charts, drawings, tables, images, movies, sounds, script programs, and environments.
They have developed dedicated technologies to edit, distribute, and manage each of these
different forms of information. Additionally, they have developed a compound document
architecture that allows us to embed different forms of information on a single document
page. A compound document looks like a printed text page with embedded images,
charts, and tables. Its page may even contain embedded movies and/or sounds. Recent
multimedia studies have also focused on how to edit, distribute, and manage compound
documents. These include studies on multimedia-document editors with scripting lan-
guages [13], multimedia exchange formats based on various compression technologies
[14], and multimedia databases using various retrieval technologies [15].

Hypermedia studies are focused on associative, referential, and/or quotation relation-
ships among multimedia documents, and navigational exploration along some of these re-
lationships. They focus on nonlinear organization of a multimedia-document space for
writing and reading. Ted Nelson, who coined the term “hypertext,” also coined the word
“docuverse” to denote this nonlinear writing, reading, publishing, annotating, and/or
quoting space of documents [16]. He considered not only a personal “docuverse” but also
a worldwide “docuverse” shared by a lot of people writing and reading documents. Later,
the WWW and the Web browser technologies had partially implemented his dream of a
world-wide docuverse.

Meme media studies are focused on new types of media that work as memes carrying
various kinds of knowledge. They address uniform and integrated ways to edit, distribute,
and manage all kinds of intellectual resources on present networked computer systems.
These resources include multimedia documents, application tools, knowledge rules, and
design models. Meme media studies are aimed at forming an open set of primitive media
components and a standard functional-composition mechanism allowing the easy compo-
sition/decomposition of multimedia documents and tools through direct manipulation.

26 KNOWLEDGE MEDIA AND MEME MEDIA

a pad as a

media object

intellectual

resource

display

pin plug

connection jacks
(slots)

Figure 2.8 The logical structure of each pad that works as a generic media component.

tan-2.qxd 5/15/2003 1:25 PM Page 26

Meme media studies are also focused on a worldwide marketplace architecture for the
publication of various intellectual resources on meme media, their reuse, reediting, and
the redistribution of reedited intellectual resources; it is assumed that all these operations
are performed by end-users through direct manipulation.

When they are published, composite multimedia documents need not be decompos-
able. However, when they are published, composite meme media objects, must be kept de-
composable for their further reediting by other people.

2.1.7 Meme Media and Meme Pools

As Mark Stefik pointed out, meme media should work as memes [4]. They should be able
to be recombined, replicated, and naturally selected by people. Since they should be easily
recombined, they should be easily composed from primitive components and be distrib-
uted as decomposable composites. The set of primitive components should be open for fu-
ture extension. The replication of meme media objects is done by copy operations. Each
copy of a meme media object, when created, has the same state as the original, and later
changes its state independently from its original’s state.

The natural selection of memes by people requires a marketplace wherein people can
easily publish and sell the meme media objects they composed, browse what others have
published, buy copies of what they want, and bring these copies into their own private
space for their reuse. Such a marketplace cannot be formed by simply providing the meme
media with peer-to-peer transportability through worldwide networks. In peer-to-peer
transportation, people cannot publish what they have composed without specifying who
will reuse them; they cannot browse the products of other people without asking each per-
son to show what he or she has. We need a marketplace that works as a meme pool. Its for-
mation requires a worldwide publication reservoir.

Meme media requires the development of three subsystems, namely, a meme media
editing system, a meme media management system, and a meme pool system. A meme
media editing system provides us with an open library of primitive meme media objects,
and enables us to create composite meme media objects by easily and directly combining
these components. A meme pool system provides a worldwide marketplace of meme me-
dia objects. We are especially interested in a meme pool system that works on the Internet.
A meme media management system works as a database system for media objects. We
have to consider two types of meme media management systems: one for the local man-
agement of meme media objects, and the other for the global clearing service. The latter
manages and searches meme media objects in the worldwide meme pool system.

Chapter 11 will give the details of our meme media and meme pool architectures based
on the IntelligentPad architecture that will be described in Chapter 7. Chapter 10 will dis-
cuss architectural details on meme-media management systems.

2.2 FROM INFORMATION TECHNOLOGIES TO MEDIA TECHNOLOGIES

Since their birth, computers have been tools for information processing. Computer sci-
ence and software engineering have been focusing their studies on information structures
and information operations. No one had ever paid much attention to media structures or
media operations on computer systems before the architectural studies on hypermedia
systems. This is quite an unusual situation in the history of human cultures. Human beings

2.2 FROM INFORMATION TECHNOLOGIES TO MEDIA TECHNOLOGIES 27

tan-2.qxd 5/15/2003 1:25 PM Page 27

have spent a lot of years in developing each of the various types of media. Let us consider
the history of books. After the invention of the “codex,” the folded and sewn manuscript
books, it took more than 1300 years for books to have page numbers. It took more than
another century to develop indices. It really took an incredibly long time to establish their
current structure. Now, it is time for us to focus on media structures and media operations
on computer systems.

2.2.1 Information Architectures and Media Architectures

Today’s advanced information society has three major problems. The first problem is the
so-called “information explosion”; it arises from the fact that information production
technologies have developed much more rapidly than the technologies for information
management, retrieval, and filtering. Today’s information explosion has resulted from the
following two causes:

1. People’s insufficient understanding of the ecology of information in the research
and development of conventional information processing technologies

2. People’s insufficient attention to the important roles of media in human societies

In designing information processing technologies, people have not focused on how and
why varieties of information are communicated, classified, acquired, filtered, and discard-
ed. Information system developers have not yet formed any mental models about the eco-
logical systems of information. We need a new media architecture that may foster such
mental models. In our long human history, whenever new media technologies were devel-
oped, they always brought with them new mental models on how to manipulate and to
manage information.

The second problem is the so-called “software crisis.” Although information productiv-
ity has remarkably improved in these decades, software productivity still remains the
same as 10 or 20 years ago. The ever-increasing demand for new software systems is
caused by seriously increasing backlogs. The remarkable improvement of information
productivity during the past couple of decades can be attributed to the development of
document editing, reproduction, and distribution technologies. These technologies are not
yet well developed for software.

There have been many projects aimed at improving software productivity. Software de-
velopers tried to provide software components and to distribute them for their reuse. How-
ever, none has managed to achieve particular success. The main reason, I believe, lies in
the fact that none of them considered the distribution of composed software products in a
reeditable form. They only considered the distribution of components. They assumed that
the composite products need not be decomposable. In fact, however, it is hard for us to
completely understand the role of a component used in a specific situation only from its
functional description. Some knowledge about its use in a certain context would greatly
help us in understanding how to use it. Together with the publication of various compo-
nents, we need to publish instances of their typical use within composed software prod-
ucts. In this respect, some researchers in object-oriented software development recently
have begun to emphasize the use of patterns and/or frameworks [7, 8], which corresponds
to the above discussion. The distribution of components is not sufficient to promote their
reuse. We need to distribute a complete application product in its decomposable form so
that other people can easily decompose this into subsystems, not only to reuse some of

28 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 28

them for other purposes, but also to learn how to use each component with others. This re-
quires a new type of medium that externalizes software modules as user-manipulable vis-
ible components and allows us to easily edit them through their direct composition and
decomposition.

Recently, many people have discussed the importance of open system architectures in
which varieties of application software systems in their open market are dynamically in-
teroperable with each other across different platforms. Dynamic interoperability means
that a user can dynamically define functional linkage among more than one application
and make them interoperate with each other. However, we cannot have such systems with-
out developing new media capable of supporting the editing and distribution of software
modules as user-manipulable visual objects.

Chapter 5 will discuss the architectural details of software components, their integra-
tion, and their network distribution. Chapter 16 will discuss software engineering using
the knowledge-media system architecture of IntelligentPad.

The third problem is the fact that current computer systems are still poor vehicles for
our culture. As discussed in Section 2.1.1, we need the development of new knowledge
media that totally support our interaction with information fragments through their life
cycle.

All these three problems can be attributed to the lack of a new type of media that would
allow us to edit, distribute, and manage all kinds of intellectual resources including multi-
media documents and software modules in a uniform and integrated manner. Their editing
must define not only their physical layout but also their functional linkages. It is time for
us to shift our focus from information architectures to media architectures.

2.2.2 Roles of Media

From the engineers’ point of view, media play the following three important roles:

1. A medium adds varieties of functions to an information fragment.

2. Media of the same type treat varieties of information in a uniform way, and provide
them with a standard access and operation protocol.

3. A medium integrates varieties of information.

In the history of media, human beings developed various media to provide information
fragments with various functions, including verbalization media, visualization media,
recording media, archiving media, transportation media, and replication media.

Media provide varieties of information with the same standard access and operation
protocol. Books are good examples. Although books may contain various types of infor-
mation, their forms are standardized for easy use and management. Books share the same
structure. They have a series of pages sewn together and contain a table of contents fol-
lowed by the body and indices. This standard structure provides a uniform protocol for the
access and the manipulation of different types of information. As mentioned above, it took
a long time to develop this standard structure.

A medium allows people to editorially arrange various information fragments from
different sources, and to integrate them to create a single new intellectual resource. Vari-
ous articles are collected in a newspaper as a single new intellectual resource. A notebook
is used to record fragments of ideas, quotations, and references, and it later works as a
new source of knowledge.

2.2 FROM INFORMATION TECHNOLOGIES TO MEDIA TECHNOLOGIES 29

tan-2.qxd 5/15/2003 1:25 PM Page 29

The concept of media that play the above-mentioned roles, when successfully imple-
mented on computers, will allow us to treat varieties of information and knowledge using
a single type of media. Such media provide their content information and knowledge with
various functions, and furthermore, standardize the protocol for accessing and managing
varieties of information and knowledge. They can be used to integrate different informa-
tion and knowledge fragments into a single intellectual resource.

2.2.3 History of Books

It is worthwhile to review how books, the most advanced conventional knowledge medi-
um, developed into their present form.

The Egyptian book took the form of a scroll, usually composed of twenty papyrus
sheets, each of the same dimensions, rolled round a wooden, bone, or ivory bar or cylin-
der. The writing used on papyri ran parallel to the horizontal fibers, and was usually only
on one side, in narrow columns that were progressively numbered. The columns were
termed “paginae.” Each column was composed of a variable number of lines. The length
of scrolls varied according to need.

Papyrus appeared in Greece around the seventh century BC. The Greeks called the un-
written sheet of papyrus “charters,” which in Latin became “charta,” hence “card.” Greeks
called the papyrus scroll “chilindros”; the Romans, “volumen” or “liber.”

A text of long works was divided among several scrolls, keeping the length of each
portion more or less the same, while respecting chapter breaks. Short texts, on the other
hand, were joined together in a single scroll, indicating a tendency to adopt a uniform
length. Long scrolls were naturally difficult to store. For this reason, the Romans put suit-
able works such as poetry on small scrolls, whereas historical works were on scrolls of a
larger format. The nature of the scroll forced authors to publish their works in relatively
short sections, hence the divisions into somewhat short books of the major works of Latin
authors. One of the most important characteristics of media is that the form of media in-
fluences not only the style of its knowledge content but, furthermore, the way that both
writers and readers think about that content.

A strip bearing the identification of the work was glued on to the outside of the scroll;
it was called the “index” or “titulus.” When, much later on, works came to be given titles,
they were written at the inner end of the scroll, probably because placing them within the
roll served to protect them.

The folded and sewn manuscript book is properly called a “codex.” During the early
first century AD, the scroll or “volumen” met competition from, and was then replaced by,
the codex. The codex is a group of “quires” sewn together, each quire consisting of a num-
ber of folded sheets. Usually, a quire consisted of four sheets folded in half to make eight
leaves or folios, i.e., 16 pages. Though it is not clear when the codex superseded the scroll,
from the fourth century onward, the codex gradually took the place of the volumen as the
normal form for books. The format, that is, the height and the width of the page, became
known as “forma” or “volumen” during the Middle Ages. The oldest format was square.
This was followed by a rectangular shape with the height greater than the width. In a spe-
cial category are miniature volumes, or books of unusual shapes and sizes. Some were
created for practical reasons, others merely as exercises of virtuosity.

Like their predecessors the papyrus scrolls, medieval manuscripts usually did not have
title pages. Instead, a phrase from the beginning of the text was written at the head of the
text. The name of the author was not stated. Attention was drawn to the opening phrase by

30 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 30

the use of red ink and large capital letters. Information about the author and the work’s ti-
tle were placed at the end of the book.

Since the large number of quires needed to make a codex could easily be gathered in
the wrong order when bound, copyists developed the custom of numbering the quires with
marks on the last pages. In the thirteenth century, after the founding of the first universi-
ties had increased the demand for books, a system was needed that would also indicate the
order of the pages within each quire, to permit the designer and illuminator to work in se-
quence on the same volume without any confusion. By the end of the thirteenth century,
the folios were sometimes numbered throughout a volume.

The history of books is a good example of how long it takes to develop one type of me-
dia. Note that this long history was required to develop the structure of the medium,
namely the presentation structure of information, but not the representation structure of
information.

2.2.4 From Information Processing to Social Information Infrastructure

Current computers are capable of dealing with varieties of intellectual resources. Among
them are multimedia documents, tools, procedures, rules, and design models. This list
covers most of our descriptive knowledge. Although it is important to add new types of in-
tellectual resources to this list, much more important and fundamental for us is how to
provide these intellectual resources with functional linkage mechanisms, and how to make
these resources exchangeable and reusable across different platforms through networks.

Computers are rapidly proliferating today, and not independent from one another;
many of them are mutually connected by the Internet. Typically, more than one computer
is used by a single user, who often needs to transport data and documents from one com-
puter to another to perform his or her jobs. WWW on the Internet [17] and its browser
systems such as NCSA Mosaic [18], Netscape Navigator [19], and Microsoft Internet Ex-
plorer allow people to publish, exchange, and reuse multimedia documents and data. Vari-
eties of new browser technologies are rapidly expanding the types of intellectual resources
that we can exchange through the Internet.

Human beings, as social creatures, communicate with others to exchange information
and ideas, and share common knowledge and culture. Although computer systems in
1980s dramatically expanded the repertoire of what can be processed, they provided only
personal and organizational information-processing and management environments.
Computer systems in 1990s, together with their Internet connections, have opened a new
vista toward worldwide publishing and reuse of intellectual resources. Computers and net-
works are coming to work together as a social information infrastructure for sharing intel-
lectual resources. Our focus on information systems is shifting from information-process-
ing technologies to social information infrastructures. Meme media will work as
fundamental vehicles for social information infrastructures.

2.2.5 Editing, Distribution, and Management

Conventionally, engineers have focused on communication aspects of media. In addition
to communication aspects, media have various other aspects. Especially for knowledge
media, the most important aspects are the editing, distribution, and management of
knowledge fragments. Currently available media on computers are too immature to evalu-
ate from these three aspects. Books are well-matured conventional knowledge media.

2.2 FROM INFORMATION TECHNOLOGIES TO MEDIA TECHNOLOGIES 31

tan-2.qxd 5/15/2003 1:25 PM Page 31

They have coevolved with professionals, institutions, and systems for editing, distribu-
tion, and management.

Almost nothing is known of Egyptian libraries of the New Kingdom period
(1500–1085 BC). In general, libraries were associated with temples or other religious cen-
ters. At Edfu, in southern Egypt, the wall of a Temple of Horus was decorated with a list
of the works in the library. In the tomb of a father and son found near Thebes, inscriptions
include the title “librarian.” Ptolemy II Philadelphia (285–246 BC), a son of Ptolemy I
Soter who made Alexandria the Egyptian capital, founded the famous Alexandrian Li-
brary, with the intention of bringing together all of Greek literature in the best copies,
edited and assembled with the help of professionals.

The art of bookmaking was well organized in Greece, and books were exported. Initially,
the copyist and the bookseller were one and the same person. Only around the fifth century
BC did book dealers, called “bibliopoli,” begin to form a separate profession and carry on
their trade in shops open to the public. Besides being the places where books were sold,
these shops were meeting places where the educated gathered to listen to readings of the
newest works, to determine whether to buy them or hire the authors. Such readings offered
the producers and sellers of books a chance to assess popular taste in order to meet the need
for new works. The active book trade in the Greek world is confirmed by the existence of
several celebrated public and private libraries. For example, Pisistratus, Tyrant of Athens,
founded a public library in 550 BC, and Aristotle’s private library was well known.

Around the first century BC, the “editor” appears. The first and most famous of these
was Titus Pomponius Atticus, a friend of Cicero’s. He was also a librarian. He gathered
around him a large number of copyists who worked to create both works for his personal
library and works to be sold. We know that Titus Pomponius paid for the publication of the
works of Cicero and recovered his costs from the sale of the books. However, nothing like
author’s royalties then existed. Indeed, no law protected literary property and everyone
was free to copy any text and sell the book at any price.

The invention of portable media to record varieties of knowledge was immediately fol-
lowed by the development of editors, libraries, and markets. This is surprising when we
notice that all this happened before the invention of printing technologies, during the time
when their replication required lots of time, money, and skill.

Communication is not always the main function of media. Media that are portable and
capable of recording knowledge would soon be extended to support their editors, and pro-
mote the development of meta-media for their management and distribution.

Due to the development of the open system concept and the popularization of the Inter-
net, media on computers are becoming more portable across different platforms through
the Internet. Media history clearly indicates that these portable media will soon extend
their capability to support their editors, and develop their meta-media for their manage-
ment and worldwide distribution. This change will happen very rapidly since, unlike the
case of books before Johann Gutenberg, the replication of computer media does not re-
quire any time, money, or skill. The only serious obstacle might be the necessity to devel-
op new royalty and security services. However people’s desire to share varieties of knowl-
edge with each other will surely overcome this drawback; researchers will develop new
technologies such as “superdistribution” proposed by Ryoichi Mori [19]. Superdistribu-
tion does not restrict the replication or redistribution of media content. It charges a user
for his or her every use of media content, instead of charging for getting each copy of
them. The former charging scheme is called pay-per-use billing, whereas the latter is
called pay-per-copy billing.

32 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 32

2.2.6 Superdistribution of Knowledge Media

Distribution of software products has a unique characteristic that distribution of physical
products does not have. Replication of software products does not require any cost. Copy
protection has been required in distribution of commercial software products. However,
ease of replication is not always a demerit. It allows users to redistribute software products
to other users without any cost, which accelerates the distribution and brings natural se-
lection of products by users. Ease of replication plays an essential role in the distribution
of knowledge media. If replication is prohibited, knowledge media cannot work as meme
media. How can we allow replication in distribution of commercial software products?
Ryoichi Mori addressed this question more than 20 years ago, and proposed the concept
of “superdistribution” in 1983. It requires a shift from pay-per-copy to pay-per-use billing.
Superdistribution realizes pay-per-use billing by keeping and collecting usage records that
hold who has used how much of what. Varieties of simplification are possible. This book
also discusses and extends these in Chapter 12 for the distribution, reediting, and redistri-
bution of meme media objects.

2.3 SUMMARY

Media for the externalization of knowledge enable each of us to extrasomatically record
and archive knowledge fragments, and to distribute them to other people in our communi-
ty. This encourages people to reuse and to edit the archived knowledge to create new
knowledge fragments, which are again added to the knowledge shared by society. This ac-
cumulation is what we call a culture. The augmentation of societies for the promotion of
their cultural evolution requires a new type of media.

Biological evolution is based on genes. We require similar genetic media for the aug-
mentation of societies to promote their cultural evolution. Such media should be able to
replicate themselves, recombine themselves, and be naturally selected by their environ-
ment. They may be called meme media. The accumulation of memes in a society will
form a meme pool, which will work as a gene pool to bring about rapid evolution of
knowledge resources shared by this society. This will cause an explosive increase of
knowledge resources, similar to the flood of consumer products. Meme media will bring
us a consumer society and consumer culture of knowledge resources, which requires new
services for distribution, management, and retrieval.

People interact with fragments of information through various tools and media during
the life cycle of these information fragments. These tools and media have been indepen-
dently developed, and cannot effectively interact with each other. The total support of our
interaction with fragments of information and knowledge requires a sufficiently large set
of different media that may collaboratively cover all kinds of human interaction with in-
formation and knowledge through their life cycle. These media must be able to cooperate
with each other through functional linkage and data conversion.

Meme media can be loosely described as media that can carry any kinds of knowledge
resources, dynamically interrelate them to cooperate with each other, and allow people to
distribute, exchange, share, and reuse these resources. Our knowledge resources include
numerical data, multimedia documents, hardware tools, software tools, facts, rules, infer-
ence rules, inference tools, artifacts, design models, and the knowledge about how to ac-
cess these resources. Current computer systems are already effective at handling these.

2.3 SUMMARY 33

tan-2.qxd 5/15/2003 1:25 PM Page 33

However, they cannot dynamically interrelate them so that they cooperate with each other,
nor do they allow people to distribute, exchange, share, and reuse these resources.

Meme media should provide knowledge resources as generic components so that their
users can easily combine them and edit composite documents and tools to dynamically in-
terrelate them. Meme media should also allow us to distribute them as decomposable ob-
jects so that we can easily extract any component or any composed portion to reuse for
different purposes.

REFERENCES

1. C. Sagan. The Dragons of Eden: Speculations on the Evolution of Human Intelligence. Ballan-
tine Books, New York, 1989

2. M. McLuhan. Understanding Media, The Extensions of Man. McGraw-Hill, New York, 1964.

3. R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1976.

4. M. Stefik. The Next Knowledge Medium. AI Magazine, 7(1): 34–46, 1986.

5. N. Eldredge and S. J. Gould. Punctuated equilibrium: An alternative to phyletic gradualism. In
Models in Paleobiology (J. M. Schopf, ed.), Freeman Cooper, San Francisco, 82–115, 1972.

6. A. C. Kay. The Reactive Engine. Ph.D. thesis, University of Utah, 1969.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, 1995.

8. F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, West Sussex, UK, 1996.

9. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A Pat-
tern Language. Oxford University Press, New York, 1977.

10. B. Webster. The NeXt Book, Second edition, Addison-Wesley, Reading, MA, 1991.

11. Y. Tanaka, and T. Imataki. IntelligentPad: A hypermedia system allowing functional composi-
tion of active media objects through direct manipulations. In Proceedings of IFIP’89, pp.
541–546, 1989.

12. Micosoft Corporation. OLE2 Programmer’s Reference, Volume One: Working with Windows
Objects; Volume Two: Creating Programmable Applications with OLE Automation. Microsoft
Corporation, Redmond, WA, 1994.

13. P. Ackermann. Developing Object-Oriented Multimedia Software. dpunkt, Heidelberg, Ger-
many, 1996.

14. K. Sayood. Introduction to Data Compression. Morgan Kaufmann, San Francisco, 1996.

15. V. S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kaufmann, San
Francisco, 1998.

16. T. H. Nelson. Literary Machines. Edition87.1. (self-published), 1987.

17. T. Berners-Lee, R. Cailliau, N. Pellow, and A. Secret. The World-Wide Web Initiative. In Pro-
ceedings of INET’93, 1993.

18. M. Andreessen. MCSA Mosaic Technical Summary. NCSA Mosaic Technical Summary 2.1,
1993.

19. R. Mori and M. Kawahara. Superdistribution: The concept and the architecture. Transactions of
the IEICE, E73(7): 1133–1146, 1990.

34 KNOWLEDGE MEDIA AND MEME MEDIA

tan-2.qxd 5/15/2003 1:25 PM Page 34

CHAPTER 3

AUGMENTATION MEDIA ARCHITECTURES
AND TECHNOLOGIES—A BRIEF SURVEY

Marshall McLuhan considered media to be not only communication mediators but also as
an augmentators of our physical capabilities, i.e., seeing, hearing, speaking, walking,
grasping, understanding, and thinking [1]. Today’s personal computers are considered to
be augmentation media that provide us with various tools for entertainment and thought
[2]. They provide tools to augment our individual capabilities. Some are expanding their
target of augmentation from individuals to groups to provide group-augmentation media
that support collaborative activities. Such systems are called groupware systems [3, 4].
Some others are further expanding their target of augmentation to organizations for the in-
tegrated management of resources, projects, and achievements [5, 6]. Their resources in-
clude people, money, equipment, and materials; their achievements comprise contracts,
products, and profits. Some projects consume certain resources to yield specific achieve-
ments, whereas others change their resources and/or their achievements. Enterprise inte-
gration systems are examples of organization augmentation systems [7].

Knowledge media such as the Web have further expanded the target of augmentation
from groups and organizations to communities or societies. People in a group or in an or-
ganization share a definite common goal such as making a decision, designing a system, or
solving a problem, but people in a society share their achievements and reuse them to pro-
duce new achievements. People in a society share an accumulation of their achievements,
which we call their culture. Current Web technologies, however, do not provide direct ma-
nipulation operations for reediting and redistributing knowledge resources. When provided
with such direct manipulation operations, knowledge media will work as meme media.

This chapter is a survey of past and current research and development (R&D) efforts
and technologies that are closely related to meme media and meme pool architectures and
technologies. It contains a brief technological history of augmentation media and knowl-
edge media on computers, and a brief survey of current Web technologies as knowledge
media technologies. This chapter lists potential applications of meme media technologies.
It also clarifies the difference between Web technologies and meme media technologies.

35

tan-3.qxd 5/15/2003 1:27 PM Page 35

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

3.1 HISTORY AND EVOLUTION OF AUGMENTATION MEDIA

Augmentation media on computers may be divided into four categories based on the tar-
gets of the augmentation:

1. Personal-augmentation media

2. Group-augmentation media

3. Organization-augmentation media

4. Social-augmentation media

3.1.1 Pioneers

The origin of the personal-augmentation computer-media technologies can be found in
Vannevar Bush’s article entitled “As We May Think,” which was published in The Atlantic
Monthly in 1945 [8]. He claimed that the progress of research was being stymied by the
inability of researchers to find and access relevant information. He proposed the
“memex” system, a microfiche-based system of documents and links. Some of the re-
quirements he specified for this system are fast access to information, the ability to anno-
tate, and the ability to link and to store a trail of links.

Doug Engelbart, who found Bush’s article and avidly read it in a Red Cross library on
the edge of the jungle on Leyte, one of the Philippine Islands, in the fall of 1945, was
much influenced by this article. Subsequently, he went back to Stanford University and
finished his B.S. in electrical engineering after the war, and worked for the NACA until
1951, when he got fed up with his goalless role. He then formulated the goal for which his
later works represent the pursuit vehicle. He started his project at SRI, and in 1962 pub-
lished his research program in a paper entitled “Augmenting Human Intellect: A Concep-
tual Framework.” This set Engelbart’s research agenda for the next 35 years [9]. He sought
to define and implement the functionality necessary for computers to augment human
abilities. The functions he thought necessary include links between texts, electronic mail,
document libraries, separate private space for users’ personal files, computer screens with
multiple windows, and the facilitation of work done in collaboration with more than one
person. He invented the mouse, outline processor, idea processor, and on-line help sys-
tems integrated with software. He was responsible for the first substantive implementa-
tions of electronic mail, word processing, and shared-screen teleconferencing. His system
AUGMENT is marketed by McDonnell Douglas. He now heads the Bootstrap Institute,
which aims to build software and hardware prototypes that will help office workers col-
laborate. He has been focusing his studies not simply on personal augmentation, but seri-
ously on group and organization augmentation. He also focused on the coevolution of
augmentation systems and the people who use these environments as users and/or devel-
opers. Engelbart made significant contributions to the establishment of current hardware
and software architectures of workstations and personal computers, as well as to the estab-
lishment of basic ideas of the current personal-augmentation media. At the same time, he
was the pioneer who tried to apply augmentation-media technologies to the performance
improvement of collaborative work and enterprise activity. He originated the studies on
group- and organization-augmentation media.

Ted Nelson coined the word “hypertext” and presented it to the world. Initially, he

36 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 36

wanted to develop a system in which fragments of ideas could be written and stored to-
gether with the associative, referential, and quotation relationships among them. Each
idea fragment might well be relevant to more than one subject. It should be stored in dif-
ferent contexts without making copies, for copies may lose consistency. He insisted that
any chunk of information in one text should be quotable at any location in other texts, and
that this quotation relationship should be maintained through further reediting and reusing
of these texts. Any update of the original should be immediately reflected in its quota-
tions. He called this type of link between two information chunks in different contexts
“transclusion links” to distinguish them from associative, referential, and navigational
links [10]. In contradistinction to those who came after him, he mainly focused on system
models for nonlinear writing. In nonlinear writing, chunks of writing need not be
arranged in a linear sequence; each chunk can be related to more than one context without
losing the consistency and dependency among them.

One day, Nelson read about the death of a person who, people thought, was writing a
book on daily life in New York. No manuscript was found; his life work just disappeared.
Nelson attributed this to the difficulty of personally publishing one’s own work. This lead
him to envision a worldwide electronic publishing reservoir that people could electroni-
cally access through their own terminals or the terminals at franchise shops. Anyone could
publish his or her works in this reservoir, explore the reservoir to browse some others’
works, and purchase any chunks of text from others’ works for reuse in his or her own
works without violating copyright. He conceived all of the above in the early 1960s. Since
then, he has been relentlessly fighting to construct “Xanadu,” a worldwide publishing
reservoir with “transclusion” and royalty services [11].

In the late 1960s, Nelson advised Andries van Dam and his team at Brown University
to develop the Hypertext Editing System on an IBM 360 [12]. This system was intended
to serve two purposes: to produce printed documents clearly and efficiently, and to ex-
plore the hypertext concept. From 1988 to 1992, Autodesk, Inc. invested in Xanadu and
supported Xanadu Operating Co. In 1994, Nelson moved to Sapporo, Japan, to join the
Sapporo HyperLab and began joint projects with Yuzuru Tanaka (the author of this book)
at Hokkaido University. In 1996, he joined the faculty of Keio University.

His vision has stimulated researchers to develop hypermedia system technologies, the
World-Wide Web [13], and HTML browser systems such as NCSA Mosaic [14], Netscape
Navigator, and Microsoft Internet Explorer. However, Xanadu has not yet been construct-
ed. Nelson started from personal-augmentation media and continues to aim at social-aug-
mentation media.

Based on the Hypertext Editing System, Andries van Dam conducted his second hy-
pertext project at Brown, completing his File Retrieval and Editing System (FRESS) in
1982 [15]. The latest hypertext project at Brown is called “Intermedia” [16]. His team de-
veloped Intermedia-based applications for the teaching and learning of biology and eng-
lish literature at Brown [17]. This system was used both by professors to develop course-
ware systems, and by students to learn subjects and to write reports.

Carnegie-Mellon University developed another hypermedia system called ZOG [18],
which is the last of what Frank Halasz calls the first-generation hypertext systems [19].
ZOG was specially designed to provide fast response to a large number of people. The
first-generation systems were all originally designed to run on mainframes. They only
dealt with text, though their model can be equally applied to other media.

The researchers at XEROX PARC inherited these research results achieved in 1960s.
Their primary concern was the development of a personal computer and an active media

3.1 HISTORY AND EVOLUTION OF AUGMENTATION MEDIA 37

tan-3.qxd 5/15/2003 1:27 PM Page 37

system running on it. Alan Kay, for example, proposed Reactive Engine in 1969 [20],
which, renamed “Dynabook” in 1972 [21], motivated the development of the personal
computer Alto machine [22] and the interactive object-oriented interpretive language
Smalltalk [23].

In 1967, Nicholas Negroponte formed the Architecture Machine Group in the Archi-
tecture Department at MIT. Although the initial goal was to use computers for architectur-
al design, a new focus developed: that of making computers easier to use. In 1976, the Ar-
chitecture Machine Group proposed a research program to the U.S. Defense Advanced
Research Projects Agency (DARPA) entitled “Augmentation of Human Resources in
Command and Control through Multiple Media Man–Machine Interaction.” This proposal
resulted in the Spatial Data Management System (SDMS) [24]. The SDMS media room
contained an instrumental Eames chair, large projection screen, and side-view video
screens. While seated in the chair, the user could use joysticks, a touch screen, or stylus to
navigate through the information space viewed on the large screen. The first version orga-
nized the space hierarchically, with lower levels reachable via ports. SDMS II [25] used a
single global space and zooming could be employed to get more detailed views. Later,
voice-based navigation and control were added to the system. DARPA then asked Com-
puter Corporation of America (CCA) to develop a practical version of SDMS [26].

In the late 1970s, Negroponte and his group began the Aspen project [27]. Film shots
taken from a moving vehicle traveling through the town of Aspen were stored on
videodiscs. They were accessed interactively to simulate driving through the town. A
touch screen allowed the user to control the speed and direction of travel. Images of the
facades of significant buildings were also stored on videodiscs. The user could stop at any
of these buildings and access associated information. From 1980 to 1983, the group also
developed a prototype of the electronic book [28]. Pages turned like ordinary books when
the user slid his fingers across a touch screen.

In 1985, Negroponte opened the MIT Media Lab [29]. He focused on the multimedia
technologies at the intersection of three previously distinct industries: television, publish-
ing, and computers. He aimed at a new emerging medium, characterized by the auditory
and visual richness of television, the accessibility and personal quality of books, and the
interactivity and expressive potential of computers.

3.1.2 Evolution of Personal-Augmentation Media

In early 1980’s, the second-generation hypertext authoring products came onto the market
with the emergence of workstation-based, research-oriented systems like KMS [30] and
Intermedia [16]. These systems ran on workstations that supported more sophisticated
user interfaces than earlier systems. KMS, a commercial implementation of ZOG, came
onto the market in 1983. It was capable of storing text and graphics in any node.

Around the same time, Peter Brown began to develop the first commercial hypertext
authoring system for a personal computer. It was called Guide [31] in 1985 when Office
Workstations Limited began to market it for the Apple Macintosh. Guide had less func-
tionality than earlier mainframe and workstation-based hypertext products, but had rich
graphical-user-interface capabilities.

In 1986, Xerox PARC released NoteCards [32], which pioneered in the application of
a card metaphor to hypertext; each node is represented on-screen as a card. Cards are
classified as to their types, such as text, graphics, and animation. NoteCards, KMS, and

38 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 38

Intermedia all support graphics and animation nodes as well as formatted text. They also
provide graphical overviews of the link network spanned among nodes to aid naviga-
tional access.

In 1987, Bill Atkinson developed HyperCard, which was then released by Apple as
bundled software for Macintosh computers. As a hypermedia system, it had the least func-
tionality for linking and navigation among those available at that time. HyperCard impos-
es a card metaphor on its node. Cards have the same fixed size. No card can be simultane-
ously displayed with others. A hyperdocument is called a stack, and HyperCard programs
are called “stackware.” Each card can be linked to others via link anchors that work as
buttons on this card. A mouse-click on such a button will replace the current card on the
screen with the target card.

HyperCard made two contributions. First, it popularized the hypermedia concept. The
second and probably more significant contribution is the fact that it served as a standard
multimedia development platform for several years. HyperCard popularized new system
design and development methodologies that are not based on how to process information,
but on how to put information fragments, together with their functions and interrelation-
ships, into a standard media framework.

Analyst, a commercial product developed at Xerox XSIS Lab., was an integrated hy-
permedia system. Using a hypermedia framework, it integrated a wide range of object-
oriented applications, including word processing, desktop publishing, spreadsheets,
forms, graphics, images, databases, and maps, with rule-based organization tools and an
expert-system shell. It extensively used a media framework, especially a compound-docu-
ment framework, for the first time to integrate varieties of applications. The set of these
applications was, however, not open for future extension. Analyst was a closed integration
OIS (office information system).

During the 1980s, many multimedia research groups were formed. Two notable ones
are Olivetti Research Lab and Apple Computer Multimedia Lab. The former has two sub-
groups: the Cambridge, England, research group, and the California research group. The
Cambridge group had two multiyear projects. Pandora, a joint effort with Cambridge Uni-
versity, focused on developing a peripheral box for creating a multimedia workstation test
bed. The second project developed a dynamic locator system called Active Badge. By us-
ing sensors located throughout the building and sensor badges carried by each individual,
anyone could be located. This system is a group-augmentation media system. The Califor-
nia group focused on desktop audio, and developed VOX [33] for managing audio for
multimedia conferencing.

Apple Computer Multimedia Lab, on the other hand, focused particularly on the area
of education. They developed many interactive multimedia titles by supplementing educa-
tional movies with additional documentation, simulation, navigational tools, and activities
that involve students in subject matter.

Paralleling the development of hypermedia systems, various visual computing tech-
nologies have been developed during the last 15 years. For example, window widgets have
been developed to provide construction toolkits for visual presentation of information on
display screen windows. These include X-Window (X11) with Xlib and Xt Intrinsics-
Based Toolkit [34], OSF-Motif [35], OPEN LOOK Intrinsics Toolkit (OLIT) [36], Xview
Toolkit [37], Sun’s NeWS [38], NextStep Application Kit [39], HP NewWave [40], Bor-
land ObjectWindows class library [41], and Apple’s MacApp [42]. Window systems have
also been improved to support flexible linkage with applications, effective redrawing of

3.1 HISTORY AND EVOLUTION OF AUGMENTATION MEDIA 39

tan-3.qxd 5/15/2003 1:27 PM Page 39

overlaid windows, and efficient and sophisticated dispatching of user events to window
objects. The progress of multimedia technologies and widow systems has allowed us to
integrate varieties of media on a single display screen and, furthermore, on a single dis-
play window. These technologies encouraged the research and development of visual pro-
gramming, which in turn, resulted in the extension of window systems and their toolkit
systems, enabling users to directly define functional linkage among display objects. These
will be detailed in Chapter 5, especially in Section 5.4.

3.1.3 The Evolution of Group-Augmentation Media

The rapid progress of computing environments in the last couple of decades has replaced
terminals with desktop computers connected by networks, and has provided software
tools with WIMP (window, icon, menu, and pointer) user interfaces. These changes were
first recognized as a trend toward networked computing for group augmentation and orga-
nization augmentation. Computers as personal-augmentation media have enabled people
to produce higher-quality documents. Their network connection has enabled people to
distribute these documents to each other in less time, and has significantly improved peo-
ple’s office work. These, however, aid each individual to work separately, rather than as a
group of people working collaboratively.

Paul Wilson noted in 1991 that the fundamental requirement for supporting group
work is two-way communication, which can be used in two ways: to share information,
and to share a virtual workspace [43]. In 1984, Irene Greif and Paul Cashman introduced
the term computer-supported cooperative work (CSCW) as a way of describing how com-
puting technology can help people to work together in groups [44]. They made it clear that
CSCW tools will only work if they reflect and augment the way people actually talk,
work, and live together. This is more than just making the tools easy to use. Ellis described
CSCW-enabling technology using two main characteristics: the style of interaction and
the geographical location of the participants [45]. The former includes synchronous
(same-time) cooperation such as brainstorming, and asynchronous (different-time) coop-
eration such as collaboration through mail.

Potential applications for CSCW cover wide areas in which communication technology
is used to coordinate activities by keeping participants advised of what awaits their atten-
tion, to help reduce the need for meetings, and to provide a shared information space. Wil-
son listed the following application types [43]:

1. Collaboration tools help groups agree on missions, allocate tasks and roles, and un-
dertake specific group activities.

2. Meeting room systems support face-to-face meeting activities.

3. Desktop video conferencing enables two or more geographically separated people
to work together using a common screen display, video images of other people in
separate windows, and an integrated voice connection.

4. Procedure processing or workflow technology automate paper-based forms han-
dling and provide full summary information about status, whereabouts, and over-
runs.

Among these four, the last one falls in the category of organization-augmentation sys-
tems, which will be detailed in the next section.

40 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 40

Tom Rodden classified the enabling technologies for CSCW into four types: message
systems, computer conferencing, meeting rooms, and coauthoring and argumentation sys-
tems [46].

Message systems evolved from the early electronic mail facility. They are classified
into three control models—formal, semiformal, and informal—based on how much their
messages are structured and coordinated. The formal control model has the highest degree
of task-prescriptivity. It provides a configurable message system to support structured
group work. Among those systems using the formal control model are Coordinator pro-
posed by Terry Winograd in 1986 [47], CHAOS by de Cindio et al. in 1986 [48], Domino
by Thomas Kreifelts and Gerd Woetzel in 1986 [49], Cosmos by John Bowers and John
Churcher in 1988 [50], and Amigo by Thore Danielson et al. in 1986 [51]. Coordinator is
based on the principles of speech–act theory. It transposes conversational routines to a
networked format in which groupwork team members declare their agreements and com-
mitments. The software asks participants to declare, to promise and commit, and to artic-
ulate the conditions of satisfaction of a request. The computer then holds them account-
able for the commitments in a public record. The informal control model was adopted by
Information Lens, developed by Thomas Malone et al. in 1986 [52]. The Information
Lens lets users specify rules that automatically file or reroute incoming messages based
on their content. Strudel, proposed by Allen Shepherd et al. in 1990 [53], is an example of
a semiformal control model system. The Imail system adds intelligence to the messages
themselves [54]. It has a language for attaching scripts to messages. Scripts are sender-
specified programs that execute in the receiver’s environment to query the receiver, to re-
port back to the sender, or to cause the message to be rerouted.

Computer conferencing systems originated in EMISARI, developed in the United
States in the early 1970s [55]. EMISARI consisted of two parts: Party-Line for point-to-
point communication between two users, and Discussion for providing on-line file storage
of topic-specific messages for all users to access. These two components are building
blocks of the traditional conferencing systems that followed, which addressed asynchro-
nous group activities. The progress of high-bandwidth local area networks promoted the
development of real-time conferencing systems, which address synchronous group activi-
ties and support real-time cooperation and concurrent access to the shared information
space.

There are two different basic approaches for implementing real-time computer confer-
encing systems. The first one embeds an unmodified single-user application in a confer-
encing environment that multiplexes the application’s output to each participant’s display.
Input comes from one user at a time. A floor-passing protocol exchanges input control
among users. The second approach is to design the application specifically to account for
the presence of multiple users. RTCAL, proposed by Irene Greif in 1988 [56], supports
meeting scheduling among a group of users by providing a shared workspace of informa-
tion from participants’ on-line calendars. Cognoter by Mark Stefik et al. [57] is a real-
time group-note-taking system. These systems are based on the first approach.

The progress of multimedia technologies has promoted the development of desktop
conferencing systems. There are two fundamental aspects to desktop conferencing sys-
tems: telepresence and teleworking. Telepresence can be enhanced by adding live video
images of participants on the screen. As Stephen Gale pointed out, the video conferencing
capability must be integrated with the teleworking environment, i.e., it must be a shared
computing environment [58]. Electronic bulletin boards are early attempts to provide
asynchronous shared computing environments. Some provided a real-time electronic ver-

3.1 HISTORY AND EVOLUTION OF AUGMENTATION MEDIA 41

tan-3.qxd 5/15/2003 1:27 PM Page 41

sion of a chalkboard that multiple users could add to or modify [59].
An example of desktop conferencing is the MMConf system [60], which provides a

shared display of a multimedia document, as well as communications channels for voice
and shared pointers. Another example is the Bell Labs’ Rapport system [61]. Rapport is
an experimental groupware system that allows coworkers to jointly edit computer files
while discussing them using voice and video. It provides a uniform interface, which al-
lows a favorite word processor, CAD system, or financial planning program to be used on
almost any project.

A meeting room system often consists of a screen projector and some networked
workstations or terminals, and can be used to conduct decision conferences. These are
called Group Decision Support Systems (GDSS). Four software elements are identified
for the construction of decision conferencing: decision analysis software, modeling soft-
ware, voting tally software, and display software. Many GDSSs were implemented as
electronic meeting rooms. An example is the Colab system developed at Xerox PARC
by Mark Stefik et al. [59]. Text and images can be easily manipulated on the shared
electronic chalkboard. Colab provided two kinds of windows: public interactive win-
dows accessible to the entire group and private windows with limited access. Another
example is the PlexCenter Planning and Decision Support Laboratory developed at the
University of Arizona [62]. The facility provided a large U-shaped conference table with
eight personal workstations, a workstation in each of four breakout rooms, and a large
screen projection system that could display screens of individual workstations or a com-
pilation of screens. Later, the number of workstations was increased to 24 to support up
to 48 people.

Coauthoring and argumentation systems are multiuser hypertext systems, wherein the
hypertext document is created by several users. Some of these editors such as ForCom-
ment [63] are for asynchronous use, and conveniently separate the text supplied by the au-
thor from the comments of reviewers. Real-time group editors allow a group of people to
edit the same object at the same time. They usually divide the object into logical seg-
ments. They allow concurrent read access to any segment, but only one writer per seg-
ment. Examples include Collaborative Editing System (CES) by Irene Greif et al. [56],
Shared Book by Lewis and Hodges [64], and Quilt by Robert Fish et al. [65]. The Mer-
cury system by Kaiser et al. is an editor intended for programming teams. It informs users
when their code needs to be changed because of program modifications made by others.
The DistEdit system by Michael Knister et al. [66] tried to provide a toolkit for building
multiple group editors. Idea generation and issue analysis in group discussion were also
developed using multiuser hypertext systems as their basic framework.

A large number of groupware products are now available. Some are commercial prod-
ucts, whereas others are experimental systems. Some are classified in one of the above-
mentioned categories, whereas others have capabilities in more than one category.

3.1.4 The Evolution of Organization-Augmentation Media

Group augmentation focuses on both telepresence and teleworking. For small groups, the
augmentation focuses more on the telepresence of each participant’s personality, whereas
for large groups, the augmentation focuses more on teleworking and coordination, rather
than on individual personalities. Such augmentation of organizations could involve
groups with hundreds or thousands of people. In such cases, we require coordination of a
large number of interrelated activities, resource scheduling of people, products, and mon-

42 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 42

ey, and information management and distribution of all documents.
Coordination systems focus on the integration and harmonious adjustment of individ-

ual work efforts toward the accomplishment of a larger goal of a group. These systems al-
low individuals to view their actions, as well as the relevant actions of others, within the
context of the overall goal. They may trigger users’ actions. Coordination systems are cat-
egorized by one of four types of models: form-oriented models, procedure-oriented mod-
els, conversation-oriented models, or communication-structure-oriented models. Of these,
only the third type focuses on group augmentation, whereas the remaining three types fo-
cus on organization augmentation. Conversation-oriented models are based on the obser-
vation that people coordinate their activities through their conversation; they are based on
“speech–act theory.” Coordinator was such a system.

Form-oriented models focus on the routing of documents and forms in organizational
procedures. They model organizational activities as fixed processes. Some systems tried
to introduce more flexible process support. In Electronic Circulation Folders (ECF) by
Karbe et al., exception handling is addressed through migration specifications that de-
scribe all the possible task migration routes in terms of steps to be carried out in process-
ing organizational documents [67]. Some form-based models are called form-flow mod-
els; they model organizational activities as flows of forms through varieties of form
converters that are triggered by varieties of events [68, 69].

Procedure-oriented models view organizational procedures as programmable process-
es. The development of process programs is a rigorous process consisting of specification,
design, implementation, and testing/verification phases.

Communication-structure-oriented models describe organizational activities in terms
of role relationships. In ITT, developed by Anatol Holt et al., a user’s electronic work envi-
ronment is composed of a set of centers; each center represents a function for which the
user is responsible [70, 71]. Within the centers are roles that perform the work. Centers
and roles have connections to other centers and roles, and the behavior of the connections
is governed by the role scripts of the interacting roles.

Workflow-management software is a computer system that manages the flow of work
among participants, according to a defined procedure consisting of a number of tasks. It
coordinates user and system participants, together with the appropriate data resources,
which may be accessible directly or off-line, to achieve defined objectives.

Concurrent engineering is another type of cooperative work used in industry [72]. It is
defined as an attempt to optimize the design of a product and manufacturing process to
achieve reduced lead times and improved quality and cost by the integration of design and
manufacturing activities, and by maximizing parallelism in working practices. Many au-
thors have shown that although there are great advantages to this strategy, it is also risky;
some have pointed out that development and production costs are about 100 times as
much as research costs. Consequently, because in the concurrent engineering paradigm
there is a rapid commitment of resources to any project, a mistake can be expensive if it is
not caught very early. If time is lost as a result of these mistakes, the effects can be severe.

Concurrent engineering requires that the old, functionally based department structures,
in which the development of products was carried out sequentially, be replaced by prod-
uct-based teams that combine people from all aspects of the product life cycle, including
researchers, designers, engineers, and suppliers’ representatives. It is a potential applica-
tion field of group- and organization-augmentation media technologies.

Chapter 14 will give the architectural details on form-flow and workflow application
frameworks based on IntelligentPad, and discuss their applications to concurrent engi-

3.1 HISTORY AND EVOLUTION OF AUGMENTATION MEDIA 43

tan-3.qxd 5/15/2003 1:27 PM Page 43

neering.

3.1.5 The Evolution of Social-Augmentation Media

Social augmentation is the most recent augmentation media concept. When we started our
project in 1987, we could find only one example of social-augmentation media—Xanadu,
proposed by Ted Nelson [11], a system concept that has been awaiting its implementation
for 30 years. It is not just a hypertext system. It aims at a worldwide publishing repository.
In Xanadu, users all over the world can easily access various documents published by in-
stitutes and people all over the world, easily quote any fragment of information from oth-
ers’ publications with automatic royalty arrangement by the system, and easily publish
their writings, which may possibly include quotes from others without violating any law.
Users of this system share neither decision-making nor performance-achievement goals,
but they share the culture accumulated in the Xanadu repository.

During the last decade, we have been experiencing the incredibly rapid evolution of so-
cial-augmentation media, namely the WWW (World-Wide Web) [13] and its browser sys-
tems: NCSA Mosaic [14], Netscape Navigator, and Microsoft Internet Explorer. WWW is
a system for creating and browsing distributed hypertexts. WWW hypertexts link ma-
chines around the globe, and contain links to files and newsgroups as well as to Telnet,
Gopher, Archie, and ftp servers on the Internet. Within WWW, a document may contain
links to other documents, parts of a document, files, Telnet sites, newsgroups, etc. The
links can be local or to any machines on the Internet. These links are called URLs (univer-
sal resource locators). WWW documents are authored using the HyperText Markup Lan-
guage (HTML) [73], a subset of SGML [74].

Until the launching of the NCSA Mosaic effort, WWW had primarily been developed
by volunteers, since the original team’s main concern was supporting high-energy physics
research at CERN. The NSF has funded the NCSA Mosaic effort. Mosaic is an extended
version of WWW that supports extensions such as support for formatted text with fonts,
as well as embedded images, sound, video, and text/voice annotation. In 1995, Netscape
Navigator, the further-extended commercial product, almost overtook Mosaic. Then, Mi-
crosoft released another browser—Internet Explorer.

HotJava is a Web browser that makes the Internet “come alive.” HotJava builds on the
Internet browsing techniques established by Mosaic and Netscape, and expands them by
implementing the capability to add arbitrary behavior, which transforms static data into
dynamic applications. Using HotJava, you can add applications that range from interac-
tive science experiments in educational material to games and specialized shopping appli-
cations. HotJava provides a new way for users to access these applications that are written
in Java programming language [75]. Software transparently migrates from a server to a
client across the network.

Later, Netscape was extended to provide plug-in capability for Java application pro-
grams called applets. It is noteworthy that Java applets were originally intended to run
only on Web pages at client sites, which is sometimes called “Web-top computing.” They
were not originally intended to run in local environments of client sites. The classes nec-
essary to run Java objects on a Web page can be managed by the server providing this
page. The server can send each client only those classes necessary to run these objects.
When we want to run these objects outside the Web page together with local objects, the
execution requires two different kinds of objects, i.e., those objects whose classes are de-
fined in the server, and the others whose classes are defined locally. This execution re-

44 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 44

quires the consistent merging of these two different sets of classes, causing the so-called
class-migration problem. Though it is not impossible, the migration of Java objects across
the network to local environments of client sites requires an additional class-migration
management mechanism.

In 1994, IntelligentPad, a meme-media system developed at Hokkaido University, was
provided with a meme-pool system using existing Web browser systems as catalogs of
media components called pads [76]. This system allowed users to click an arbitrary pad
image in such a catalog for downloading this pad into their local environments. In 1996,
IntelligentPad was provided with a special Web browser pad that shows HTML files as
Web pages, and furthermore allows us to embed arbitrary composite media objects in an
arbitrary Web page for publishing through the Internet [77]. Client users opening this
page can directly drag out such an embedded media object into their own environments
and reuse it locally. This new meme-pool system is now used by Hitachi Software, one of
the three providers of commercial IntelligentPad systems, for the free distribution of their
sample composite applications through the Internet. These samples run on their shareware
version of IntelligentPad, and can be easily decomposed and reused. Unlike HotJava, In-
telligentPad, with one of these two meme-pool systems, supports the distribution of inter-
active multimedia documents, application tools, and services that end-users can easily
decompose and reuse in combination with any other media objects composed in Intelli-
gentPad environments.

Chapter 11 will detail the meme-pool architectures based on IntelligentPad. Chapter 12
will discuss the architectural details of how we can introduce business activities into
meme pools to make them work as meme markets.

3.2 HISTORY AND EVOLUTION OF KNOWLEDGE MEDIA
ARCHITECTURES

The first introduction of a paper media concept into a computer system was probably
done by Ivan Sutherland in early 1960s. Sketch Pad used a media metaphor of a paper
sheet on which users could directly draw pictures [78]. Then came NLS [9, 79] and AUG-
MENT [79] by Doug Engelbart, who developed and demonstrated, in late 1960s, most of
the fundamental software and hardware components that constitute the user interfaces of
current workstations. Then Alan Kay proposed Reactive Engine in 1969 [20], which was
later renamed as Dynabook [21]. He presented a clear view of computers as media, or as
meta-media. Then in 1970s, Xerox PARC developed personal workstations starting with
Alto [22], leading to Star [80], and also object-oriented interactive languages such as
Smalltalk [23] for the development of a direct-manipulation graphical user interface.

3.2.1 Compound-Document Architectures

The adoption of compound-document editing began in the early 1980s with desktop pub-
lishing (DTP), and has developed as shown in Figure 3.1. The Star workstation from Xe-
rox is the most typical example [80]. Desktop publishing enabled us to layout various
types of media on a single page. This encouraged the development of languages to control
printers for various fonts and page layouts. The WYSIWYG (what you see is what you
get) concept extended such languages to show print images on display screens. The exten-

3.2 HISTORY AND EVOLUTION OF KNOWLEDGE MEDIA ARCHITECTURES 45

tan-3.qxd 5/15/2003 1:27 PM Page 45

sion was not only for the preview of documents, but also for the direct editing of the print-
ed image of documents. Among these languages is a Display PostScript, which enabled us
to program animations and to replace some figures in compound documents with anima-
tions. This extension is not only the extension of document presentation, but also the ex-
tension of document processing and management. Extended documents can be E-mailed,
and can be managed by document file systems, both in the same way as conventional doc-
uments can be.

Around the mid 1980s, video boards enabled display windows to show video cuts (or
clips) with sound, and enabled us to interact with video cuts. In early systems, these video
cuts used analog video signals as input signals. The user interaction with such a video cut
actually controlled the VCR that supplied its analog video signals. Then the progress of
video compression technologies such as JPEG [81, 82] and MPEG [83, 84] allowed com-
puter systems to digitally store video cuts together with sound, and to play them in real time.
This progress further extended compound documents to include video cuts as embedded
components. This extension opened a door to the multimedia desktop presentation (DTPR).
These extended documents can be mailed and managed in the same way as conventional
documents.

Next, people began to seek a way to handle different types of components in a uniform
way. This encouraged object-oriented system design, which allowed us to embed pro-
grams in complex documents. Such documents became reactive media objects. The em-

46 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

compound documents

toolkit

object orientation

video board

Display PostScript

DTP

presentation I

presentation II

desktop media

IntelligentPad

compound documents, animation

text, chart, table, figure, image

reactive documents

reactive documents, server systems, application programs

synthetic media

multimedia documents, update propagation

compound documents with animation, video, sound

multimedia documents

compound documents with animation

Figure 3.1 The development of compound-document editing systems.

tan-3.qxd 5/15/2003 1:27 PM Page 46

bedding of a program originated in such documents with command buttons; a click of
such a button invoked a script program. Trillium system by Austin Henderson used such
buttons to rapidly prototype a control panel for a photocopy machine [85]. In addition to
these buttons, Trillium also used several types of display panels that could be pasted on
the base panel. Such systems are sometimes called glue systems since they allow users to
glue together visual components through direct manipulations.

Some other people further tried to embed display objects of various application pro-
grams into compound documents as components. Such an extension allows us to embed a
spreadsheet or a drawing tool in a multimedia document as a component. Furthermore,
some tried to handle these display objects in the same way that we handle documents. This
allows us to paste a chart not only on a document, but also on any visual application tool
such as a spreadsheet. Since we are dealing with application tools, we must consider how
to define the application linkages. Two kinds of linkages have been proposed: object con-
tainment and object wiring. Object containment functionally relates an embedded compo-
nent object to its base object. Object wiring adopts the direct setting of a graphical link to
interrelate two different application objects. HP’s NewWave was the first commercial at-
tempt for object containment and wiring [40]. Around 1995, we saw two competitive
commercial attempts to integrate compound document architectures with object contain-
ment and wiring—Microsoft’s OLE (Object Linking and Embedding) [86] and CI (Com-
ponent Integration) Lab’s OpenDoc [87]. CI Lab was established by Apple, IBM, and
Novel, but unfortunately soon closed.

3.2.2 Media Toolkit Systems

Object-oriented programming allows two different styles of programming. Class-hierar-
chy programming (or refinement-based programming) defines classes in their hierarchy
to allow subclasses to inherit properties of their superclasses. Synthetic programming (or
composition-based programming), on the other hand, defines a set of object instances to
serve as primitive objects. Programmers can make a copy of any object instance to create
a new independent instance with the same property as the original. They can combine sev-
eral instances of different types to define a new composite object. Class-hierarchy pro-
gramming originated in program development, whereas synthetic programming originat-
ed both in direct manipulation of visible objects, and in prototyping techniques based on
the reusability paradigm.

Around the mid-1980s, the synthetic paradigm of object-oriented programming devel-
oped such GUI toolkit systems for window systems as Xt of MIT [34], Andrew Toolkit of
CMU [88], OPEN LOOK Toolkit [36], and Motif Toolkit [35]. In the beginning of 1987,
this trend encouraged our group to apply the toolkit approach to the design of reactive me-
dia, which led to our proposal for synthetic media, a media-embedding architecture. This
resulted in the development of IntelligentPad as a media toolkit system [89]. Its visual
components are called pads. Pads are inherently different from widgets. In any window
toolkit, widgets and windows belong to different classes. No widget can serve as a win-
dow. Some widgets do not allow others to be pasted on them. Every pad, however, can
work both as a window and as a component of a window. Whereas a pad always has its
model component in itself as well as its display object, widgets might be considered as
display objects without a model. Chapter 7 will describe the architectural details of Intel-
ligentPad, and Chapter 5 will give the preliminaries on object-orientation and the MVC
(model-view-controller) programming scheme. Chapter 4 will describe the architectural
details of component integration.

3.2 HISTORY AND EVOLUTION OF KNOWLEDGE MEDIA ARCHITECTURES 47

tan-3.qxd 5/15/2003 1:27 PM Page 47

Around the late 1980s, database management system (DBMS) providers began to pro-
vide each of their DBMS products with a form construction kit, a toolkit for users to con-
struct a form interface to a database. A form interface is a visual interface that provides
users with an office-form view of retrieved records. Among these form construction kits
are Studio from Ontologics and GainMomentum from Sybase. Section 10.2 will show a
form-interface architecture based on our knowledge-media architecture, IntelligentPad.

3.2.3 IntelligentPad as a Meme Media System

Toolkits and construction kits focus on easy and rapid construction of graphical user in-
terfaces, but IntelligentPad focuses on easy decomposition of composed objects as well as
on easy composition of objects. IntelligentPad was initially developed as a media toolkit
system, and later, around 1992, extended to serve as a meme media system. The evolution
of a meme pool requires that end-users can easily reedit and redistribute meme media ob-
jects. For this reason, meme media need to provide not only ease of composition, but also
ease of decomposition.

Neither toolkits nor construction kits for rapid prototyping enable easy decomposition
of what is already composed. In these systems, an application linkage between compo-
nents is either textually described or graphically defined by directly setting a link between
them. Some of these systems even request users to textually describe which components
are geometrically embedded in what other component. This makes it difficult for us to ex-
tract a primitive or composite component from a composite object. If the relationships of
the component to the remaining body are textually described, we have to understand these
descriptions and modify them to remove the component. If the relationships of the com-
ponent to be removed are defined by graphical links, we have to find all these links, un-
derstand them, and remove them without modifying the remaining web of links. Intelli-
gentPad has solved this problem by restricting the use of functional linkages to only those
between each component object and its container object. When we remove a primitive or
composite pad from a whole composite pad, we need only to examine a single connection
between this pad and its container pad to understand their relationships and both the
generic function and interface of the component.

Chapter 7 will detail IntelligentPad architecture. Chapter 6 will give detailed consider-
ations of why we have chosen its restricted functional linkage architecture for component
integration.

3.3 MEME MEDIA AND THEIR APPLICATIONS

Meme media are defined as new computer media that uniformly handle multimedia docu-
ments and application tools; they are easy to edit, to distribute, and to manage. Meme me-
dia include the following:

1. Multimedia with intelligence: A meme media object may serve as a multimedia ob-
ject with some internal intelligent mechanism with which users can interact through
direct manipulation of this media object on a screen. Chapter 9 will describe multi-
media application frameworks based on IntelligentPad.

2. Directly manipulable and reusable software components: Meme media components

48 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 48

can be used for easy and direct composition of application systems. Chapter 16 will
discuss software engineering with IntelligentPad.

3. GUI construction kit: Meme media components can be used to construct a graphi-
cal user interface for any application system through direct manipulation of these
building blocks. Chapters 9, 10, and 13 include such applications.

4. A framework for integrating documents and tools: Meme media allow users to in-
terrelate varieties of documents and tools, not only through static definition of ap-
plication linkages, but also through their dynamic definition, which provides an
open integrated environment of documents and tools that can be flexibly interrelat-
ed. Chapter 9 will provide a detailed discussion.

5. Publication media for multimedia documents and tools: Meme media with multi-
media documents and tools can be published on CD-ROMs or through the Internet.
Published documents and tools can not only be viewed but also executed on differ-
ent machines. Chapter 11, especially Section 11.6, will provide a detailed discus-
sion.

6. Reeditable and redistributable media for intellectual resources: Meme media can
carry any kind of intellectual resource that computers can handle. They can be used
to exchange, distribute, and reedit these intellectual resources. Users can decom-
pose a composite meme media object, and reuse some of its components to com-
pose a new composite meme media object. Chapter 11 will give the architectural
details on meme pool architectures. Chapter 12 will integrate them with the idea of
superdistribution to propose a meme market system architecture.

In the following subsections we will list potential application areas of meme media.

3.3.1 Office-Information Systems

A variety of office-information tools can be represented as meme media objects. Exam-
ples include multimedia document editors, multimedia document filing systems, spread-
sheets, business chart tools, databases, report generators, schedule managers, form con-
verters, electronic mail systems, statistic analyzers, simulators, expert systems,
presentation tools, and various transaction processing systems. These systems and the
records they process can all be represented as meme media objects. A database manage-
ment system, for example, may be represented as a meme media object that can under-
stand query messages and control commands, and send out retrieved records. For exam-
ple, a media object holding a single record is embedded in a database media object. This
record media object interprets the message about the retrieved record, and holds each at-
tribute value in its register. Text output media objects are pasted onto this media object.
They are linked one-by-one to different registers of the record media object; these regis-
ters hold the values of different attributes. The database media object here represents a
database, whereas the record media object with text output media objects represents a
record. Users can make a copy of this record media object together with text output media
objects. This copy holding a retrieved record can be temporarily pasted on a chart tool me-
dia object to input the record value to this chart tool. Users can dynamically interoperate
varieties of documents and tools. Users may also a priori define a functional linkage be-
tween the record media object and the chart tool media object. In this case, each database
access automatically changes the display of this chart tool.

3.3 MEME MEDIA AND THEIR APPLICATIONS 49

tan-3.qxd 5/15/2003 1:27 PM Page 49

Representation of varieties of documents, records, and tools in office-information pro-
cessing as meme media objects enables us to integrate them not only through a priori de-
signed functional linkages, but also through interactively specified interoperation link-
ages among documents and tools.

Meme media provide a framework for developing integrated tool systems like Xerox
SIS’s Analyst, but, unlike Analyst, meme media provide an open integration environment.
Meme media also work as a form construction kit for databases, which requires the devel-
opment of a database media object specially designed for each specific database manage-
ment system. Such a meme media object that works as a proxy of some external object
like a database management system is called a proxy meme media object. Office-informa-
tion systems are sometimes modeled by a set of form flows and form conversion process-
es. This model is called a form-flow model. Meme media can easily represent forms and
form conversion tools. They can also easily represent form flows as application linkages
among form conversion tools. Therefore, meme media can provide a development frame-
work for form flow systems.

The IntelligentPad system is already used as an open integrated business-tool system
and a form-construction kit for databases. Furthermore, our group developed a framework
on IntelligentPad for form-flow systems. A commercial version of IntelligentPad was also
used to integrate an interactive multimedia catalog of automobiles at distributed sales of-
fices with the central database for planning production and shipping. The customer’s in-
teractive selection of models, colors, and optional equipment is directly sent to the central
database in order for the production line to immediately respond to this new order.

Chapters 9 and 10 will, respectively, describe multimedia application frameworks and
database application frameworks based on IntelligentPad. Chapter 14 will discuss form-
flow and workflow frameworks. Section 17.2 will describe a PIM (personal information
management) application of IntelligentPad.

3.3.2 Scientific Publication

A cut of a film that is removed before it is shown or broadcast is called an out-take. Mak-
ing a film results in lots of out-takes. Most are removed not because of their quality, but
because of time and length restrictions. We have the same situation in scientific publica-
tion. Lots of work and data become out-takes. Furthermore, we have no means to publish
research papers with large quantities of related data, related video with sound, or software
programs developed for these studies. Researchers have been daily repeating the same ef-
forts that others have already made.

The use of meme media will enable scientists to publish their reports together with
these out-takes, and related data, movies, and software tools. A formula in a document can
be represented as an embedded meme media object, which may contain a program to eval-
uate this formula. A chart in a document can be also an embedded meme media object
that contains a large quantity of raw data. Readers of a document can make a copy of such
meme media objects representing a formula or a chart, and make them interoperate with
their personal tools that are also represented as meme media objects. You may drag and
drop such a formula media object onto your own special chart tool to obtain a chart repre-
sentation. Or you may drag and drop a chart media object, embedded in some scientific
paper, onto your polynomial approximation tool to obtain an approximate polynomial rep-
resentation of the data in this chart.

Furthermore, if these publications are supported by a marketplace implemented on the

50 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 50

Internet so that users can freely publish their work and access anyone else’s, meme media
will allow people to recombine others’ published tools to create new tools. This market-
place, working as a meme pool for meme media objects, will accelerate the evolution of
tools and, furthermore, the development of each scientific area. First, each scientific area
will form a meme pool. Then, people will start to exchange documents and tools across
different areas. This will bring about a punctuated equilibrium, in which, according to a
hypothesis of population genetics, new species appear and displace related species much
more rapidly than would be predicted. Formation of interdisciplinary research areas will
be much accelerated by the use of meme media.

Chapter 11 will provide the details on meme pool architectures. Section 11.6 will dis-
cuss the application of meme media to scientific publications.

3.3.3 Education Tools

Meme media allow each multimedia component to include some internal intelligent
mechanism. Intelligent multimedia components can react to user operations and/or coop-
erate with other intelligent multimedia components or tool components. Meme media can
provide such intelligent multimedia components with various tools and components,
which makes it much easier for users to develop interactive multimedia systems integrat-
ed with simulation and analysis tools, or to provide construction kits for end-users to de-
velop such systems by themselves. These features of meme media make them suitable for
educational applications.

Meme media can provide all the following facilities necessary for education tools:

1. Interactivity with multimedia documents

2. Dynamic linkage among experimental data, simulation tools, and analysis tools

3. Provision of database management functions for a large number of multimedia doc-
uments and data

4. Guiding facilities based on student modeling

5. Microworlds with interoperable objects and tools that users can directly play with

6. Building blocks for constructing interactive objects and tools in microworlds

A microworld is a computer-aided instruction (CAI) system with directly manipulable in-
teractive objects and tools. These objects and tools constitute a virtual world in which the
user can play with these objects and tools through direct manipulations to learn the sub-
ject of this world through his or her experience. This type of CAI systems was first pro-
posed by Seymour Papert [90]. Meme media enable us to publish education systems with
some or all of the facilities mentioned above either on CD-ROMs or through the Internet.
Networked multimedia service functions that we will describe next allow the dynamic
downloading of documents and tools from remote servers to a user’s local environment,
and allow some of these tools to cooperate in real time with some functions of remote
servers. Remote learning and remote teaching systems represent applications of these
functions.

Takafumi Noguchi at Kushiro Technical Collage has used IntelligentPad to develop
various CAI systems with microworld construction kits. These systems include not only
interactive multimedia documents, but also interoperable experiment tools, simulation
tools, and analysis tools. His target areas include basic mathematics, basic mechanics, and

3.3 MEME MEDIA AND THEIR APPLICATIONS 51

tan-3.qxd 5/15/2003 1:27 PM Page 51

basic electronic circuit theory. Subsection 17.3.2 will provide details of his systems and
application frameworks. A group of linguists teaching Japanese to foreign college stu-
dents organized a research group in 1995 to develop CAI systems using IntelligentPad;
Shin Nitoguri of Tokyou Gakugei University and Yoshiaki Yanagisawa at The National
Language Research Institute are the leaders of this group. Subsection 17.3.1 will descibe
their systems and application frameworks.

3.3.4 Networked Multimedia Systems

Meme media can provide a special media object working as a URL anchor button; when
clicked, it issues a URL to retrieve a file from a remote server. Such a button may be made
transparent, and defined to be intelligent enough to change its size and location with time
on another meme media. Pasted on a movie media object, such a button can be instructed
to always cover a specific object appearing in the movie. This transparent rectangular but-
ton would then always minimally cover this object, and would define this moving area as a
hot spot. The size and location of such a button can be specified only in certain sample
frames of the movie. The changes between these sample frames are interpolated. This
framework, then, enables us to develop a networked “hypermovie” system. A hypermovie
is a hypermedia using video. Any objects in movies can be specified to work as anchors
that link to other movies. These links may point to local objects or remote objects in re-
mote servers. This configuration may also work with video-on-demand systems, which
can be applied to a variety of networked video services.

URLs of such anchors may not necessarily point to other movies; they may point to any
meme-media objects, including documents and tools. Among the most typical applica-
tions are networked museum services and networked library services, in which users can
easily navigate through a large remote library of video movies, multimedia documents,
and interoperable tools, just by accessing them through their computers. Applications also
include interactive movie guide systems for cable TV programs.

Section 9.3 will give the details of the hypermovie framework. Section 11.4 will show
how to extend hypermovie links to jump across networks.

3.3.5 Geographic Information Systems

Geographical information systems (GISs) deal with interactive maps, their multiple-layer
configurations, varieties of interactive objects on these maps, and varieties of viewers of
these maps, all of which can be represented as meme media objects. Interactive maps can
utilize the interactivity of meme media. Their multiple-layer configuration can be imple-
mented by the overlay of meme media objects and the application linkage mechanisms
among them. Interactive objects can be represented as anchors pointing to documents or
tools. Viewers of the maps can be also meme media objects that interoperate with interac-
tive maps. The meme media representation of maps also simplifies their interoperation
with databases.

Nigel Waters, a professor in the Department of Geography, University of Calgary,
pointed out the potential application of IntelligentPad to GIS [91]. His article envisaged a
situation where a map display, a traffic simulation model, a video image of an intersec-
tion, and a display in graph form are all represented as mutually interacting pads. It point-
ed out that a system with these pads would not only be a great pedagogical device, but
would also be invaluable for planning.

52 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 52

Section 10.6 will give the architectural details of a GIS based on IntelligentPad, and
descibe its applications to urban design systems.

3.3.6 Design Applications

Designers use a variety of media to externalize their initial design ideas, and to play with
them directly, using their hands and eyes for further brainstorming and improvement. De-
signers of shapes or structures can use a variety of physical materials for their modeling.
Designers of physical objects can use either physical models or simulation models for fur-
ther brainstorming and improvement.

Today, designers are confronted with the design of information [92]: how to present,
access, and process varieties of information and knowledge. We do not have sufficient
methodologies or notations for this kind of design. For example, we do not have any good
general notation or methodology to describe multiple concurrent spatiotemporal motions.
In making animated films, for example, artists use lots of sketches. Rough story ideas are
often worked out in thumbnail sketches. Group discussion use a storyboard, a large board
on which are pinned sketches telling a story in comic strip fashion. Detail design is sum-
marized in a continuity script, which describes each scene in a whole sequence with a
sketch and a script [93]. In addition to these, they use layout drawings, and even floor plan
drawings. They draw lots of sketches for analysis and suggestion of structures, motions,
and colors for each character. A similar situation also holds for live-action films and stage
performances.

Edward Tufte has collected, in his three famous books [94–96], varieties of methods
used for envisioning information. However, these do not include any good general nota-
tion or methodology to describe multiple concurrent spatiotemporal motions. Only a few
notational methods are known for such description. One is the musical score; another ex-
ample is the “labanotation” in choreography [97].

This lack of notation and methodology seriously limit designers’ capabilities. Design-
ers have to figure out the overall behavior in their own minds. This is equivalent to the sit-
uation of communicating with others without a sufficiently large vocabulary, or of trying
to figure out mechanical motion without using mechanical equations and their calculus
rules. Designers of information require meme media objects that will enable them to easi-
ly prototype their design ideas, and to play with them for the development of additional
ideas. Meme media, since they are interoperable, also allow designers to keep their ideas
in active forms, and to exchange their active ideas with others.

Subsection 17.5.5 will describe a trial by Takeshi Sunaga of Tama Art Collage of using
IntelligentPad as an information design tool.

Meme media might be used to develop CAD systems for the design of physical func-
tional objects. They may also play a significant role for those dynamic physical objects
whose design cannot be independent from the understanding and design of their spa-
tiotemporal behaviors.

Subsection 17.5.1 will describe the potential of IntelligentPad and its 3D extension, In-
telligentBox, in CAD/CAM applications.

3.3.7 DIY Software for Client Systems

Software tools and their components can be also represented as meme media objects.

3.3 MEME MEDIA AND THEIR APPLICATIONS 53

tan-3.qxd 5/15/2003 1:27 PM Page 53

Some of these components may provide just their logical functions; they are represented
as blank sheets on the display screen. They exist on the screen to allow users to directly
manipulate them. Meme media representation of these components enables users not only
to combine them easily for the composition of new tools, but also to decompose compos-
ite tools in order to reuse some of their components. Sample compositions for typical ap-
plications work as “patterns” that instruct users how to construct similar tools by them-
selves. Meme media enable users to distribute and exchange such patterns among
themselves.

IntelligentPad was once considered by the mass media as DIY (do it yourself) soft-
ware, i.e., a new CASE (computer-aided software engineering) tool, that allows us to
combine modules for the composition of arbitrary applications as easily as combining
Lego blocks for constructing animals, vehicles, and buildings [98].

Meme media representation is not suitable for defining server programs, such as data-
base management systems and numerical simulators, as compositions with primitive com-
ponents. Users use these server systems as they are through some client applications.
Server programs are atomic components in users’ environments. Therefore, meme media
represent each server system as an atomic meme media object. Client applications, on the
other hand, need to be customizable to satisfy varying requirements and tastes of users;
they must consist of various components for the customization of functions and user inter-
faces. Meme media representation is suitable for these components.

The commercially available versions of IntelligentPad have been extensively used by
system engineers to develop custom-made client applications. The most important phase
in such development is the customer interview, which is necessary to help customers clar-
ify their image about the system’s appearance and usability. Conventionally, system engi-
neers have to develop the GUI part of a system on order before implementing its internal
mechanism, so that the customer is able to clarify his or her image of the system and pro-
vide appropriate comments on the candidate design. The actual development of applica-
tions does not start before the completion of such interviews. IntelligentPad has changed
this process; instead of using GUI components to develop only the GUI part, system engi-
neers can directly combine meme media components to compose a candidate implemen-
tation of the client application system. They can overlap the actual system-development
process with the customer-interview phase. This new concurrent engineering method re-
markably shortens development time. Furthermore, this approach allows customers to fur-
ther modify the developed system by themselves. Chapter 16 will focus on software engi-
neering with IntelligentPad.

One frequently mentioned problem of software component systems is the migration
of legacy systems [99]. A legacy system means an already existing system developed in-
dependently from the component systems and already used by many users. Any legacy
system with no GUI can be easily transported into a meme media environment by just
developing a special meme media object that works as a proxy for this system. Legacy
systems with their own GUI are, however, very difficult to transport into a meme media
environment. IntelligentPad Consortium established a mutual membership with CI Labs
in 1995 to partially solve this problem. Our plan was to develop a linkage mechanism
between IntelligentPad and OpenDoc, and to make legacy systems based on OpenDoc
interoperate with knowledge media objects in IntelligentPad. This plan was unfortunate-
ly not realized due to the sudden closing of CI Labs. Fujitsu has developed a bilateral
conversion tool between ActiveX controls and pads for the same purpose. Takeshi Mori
et al. at NEC developed a special ActiveX control that works as a run-time environment

54 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 54

for IntelligentPad with which pads can be executed and manipulated. Using this ActiveX
control, and assuming that Internet Explorer is used as a Web browser, we can publish
pads with their run-time environment by embedding this environment in arbitrary Web
pages.

Section 6.7 will discuss in detail the legacy-system migration problem in general. Sec-
tion 8.6 will show how to migrate legacy systems in the IntelligentPad architecture.

3.4 WEB TECHNOLOGIES AND MEME MEDIA

Since 1996, we have seen significant progress in Web technologies. The client-side script-
ing technologies such as JavaScript [100] and VBScript (Visual Basic Script) [101] intro-
duced dynamic behaviors into Web pages. The server-side scripting technologies such as
JSP (Java Server Pages) [102], ASP (Active Server Pages) [103], and Java Servelets
[104], as well as CGI (Common Gateway Interface) [105] and its script languages like
Perl [106], introduced invocations of Web server programs that update Web pages. J2EE
(Java2 Enterprise Edition) [107] introduced component-based application development
utilizing components running on different application servers distributed over intranet-
works, and has enabled us to embed services defined by the orchestration of distributed
application components, including database servers. Web services [108] and SOAP tech-
nologies [109] allowed service providers to publish their services as Web services, service
brokers to provide inquiry services about Web services, and service requesters to ask ser-
vice brokers for the retrieval of desired Web services and to invoke the found Web ser-
vices. Web services and SOAP technologies allowed us to embed a large variety of public
Web services and/or their compositions in a Web page.

These Web technologies are tools for Web page designers to compose a complicated
application by simply combining public Web services, and making the composed service
available on a Web page. Web page designers have to write HTML definitions accessing
Web services through SOAP proxies. These tools are definitely not for Web readers. Ap-
plication of meme media technologies to Web technologies will allow Web readers to ex-
tract any components of any Web pages with embedded tools and services, to paste these
extracted pads together to combine their functions, to embed the composed pad into a new
Web page, and to publish this page not only for their private use but also for others’ use.
The reediting of Web pages with tools and services using meme media technologies does
not require Web readers to rewrite HTML definitions using the knowledge of Web ser-
vices and SOAP.

3.4.1 Open Hypermedia Systems

Up to now, hypermedia research groups have mainly focused their efforts on linking ser-
vices among intellectual resources for navigation and interoperability. They basically as-
sumed that hypermedia contents were just viewed without making copies, reediting, or re-
distributing them among people. Over the last several years, the Open Hypermedia
Working Group (OHSWG) has been working on a standard protocol to allow interoper-
ability across a range of application software components. The group first focused on the
separation of link services from document structures, which enables different hypermedia
systems to interoperate with each other, and client applications to create, edit, and activate
links that are managed in separate link databases [110]. Microcosm [111] and Multicard

3.4 WEB TECHNOLOGIES AND MEME MEDIA 55

tan-3.qxd 5/15/2003 1:27 PM Page 55

[112] are examples that work as reference systems of link servers. The hypertext commu-
nity also focused on the interoperability with database systems, which introduced higher-
level functionality: for example, HyperBase [113] on a relational foundation, and HBI
[114] on a semantic platform. The interoperability with databases also led to the idea of
separating component storage, run time, and document content issues. The Dexter Hyper-
text Reference Model [115] proposed a layered architecture to separate them. As an alter-
native to such a layered architecture, the open hypertext community collaboratively devel-
oped a standard protocol, OHP [116], for different interdependent services to interoperate
with each other. These architectures worked as a basis to apply link services to the Web
[117]. HyperDisco [118] and Chimera [119] proposed such interoperable service models,
which were later applied to the Web [120, 121].

The OHSWG approach was based on the following principles: the separation of link
services and the standardization of a navigational and/or functional linking protocol
among different applications and services. The standard protocol may rely on either API
libraries or an on-the-wire communication model using such a standard transport medium
as a socket. The group is further expanding the linking service functionality by introduc-
ing collaborative spatial structures [122], computational aspects, or dynamically defined
abstract communication channels [123]. Recently, an Israeli venture company, BrowseUp,
developed an annotation server and a new browser that allow us to select any portion of
any Web page, and to make an annotation on it in a public and/or local file. BrowseUp al-
lows us to use legacy document systems like Word and Excel to make local annotation
files.

Meme media research that has been conducted independently from the open hypertext
community has been focused on the replication, reediting, and redistribution of intellectu-
al resources. To achieve this goal, our group adopted a visual wrapper architecture. Any
component, whether it is an application or a service, small or large, is wrapped by a visual
wrapper with direct manipulability and a standard interface mechanism. These wrappers
work as media to carry different types of intellectual resources. A media object denotes an
intellectual resource wrapped by such a standard wrapper. Our wrapper architecture al-
lows users to define a composite media object by combining primitive media objects.
Composite media objects allow further recombination. Users can exchange those compos-
ite media objects through the Internet.

Application of meme media technologies to OHS technologies simply means that ob-
jects in the latter framework are wrapped by meme media wrappers, which will introduce
meme media features to those objects without losing any of their OHS features.

3.4.2 Client-Side Web Programs and XML

The evolution of the Web has disseminated the use of HTML for representing compound
documents with embedded application programs to interact with users. These embedded
application programs are called Web programs. Some Web programs run locally on the
Web browser, namely, in the client environment, whereas others invoke server programs in
or through Web servers. The former Web programs are called client-side Web programs;
the latter ones are called server-side Web programs.

Client-side Web programs are defined either as script programs or as Java applets.
They can be embedded in HTML texts. Script programs are written in interpreter lan-
guages such as JavaScript [100] and VBScript [101], whereas Java applets are written in
Java, and assume that the client platform installs JavaVM (Java Virtual Machine) [124].

56 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 56

Although the client-side Web programming in HTML texts has enabled us to define Web
pages with dynamically interacting objects, HTML does not allow script programs to dy-
namically move an embedded component on a Web page. DHTML (Dynamic HTML)
[125] has solved this problem by separating the style definition of each Web page as a
style sheet. This allows us to manipulate the Web page style in script programs, which en-
ables us to dynamically move components on Web pages. In 1998, W3C (WWW Consor-
tium) proposed DOM (Document Object Model) [126, 127] to standardize the operations
on the structure and components of HTML documents, which standardized the specifica-
tion of DHTML between two de facto browsers, i.e., Netscape Navigator and Internet Ex-
plorer. Style sheets are useful not only to manipulate styles in script programs, but also to
apply the same style to more than one Web page. W3C proposed CSS1 (Cascading Style
Sheets Level 1) in 1996 and CSS2 in 1998 [128] as the standard specification of style
sheets. An HTML file may either embed a style sheet in its header part, specify a style
sheet in a tag to which you apply this style sheet, or span a reference link, using a <link>
tag, to an independent style sheet file.

The separation of style sheets from HTML documents, together with the introduction
of DOM, made people focus on the logical structure of Web page content. HTML does
not allow us to identify logical document components such as the title, the list of authors,
chapters, paragraphs, and each item in each list. XML (eXtensible Markup Language) has
been developed since 1996 to solve this problem, and was released as XML1.0 in 1998
[129]. XML describes the logical structure of documents, whereas XSL (eXtensible Style
sheet Language) describes the document styles [130]. XML allows us to use tags with
user-defined names to identify logical components of documents. Each component to ar-
ticulate is identified in the textual definition of the document by enclosing this part with a
begin-tag <tag-name> and an end-tag </tag-name>. XML and HTML are both offsprings
of SGML (Standard Generalized Markup Language) [131]. HTML discarded the articula-
tion of logical document components and introduced hyperlink capabilities. XML sepa-
rated the style definition as an independent file, simplified SGML functions, and intro-
duced hyperlink capabilities. To render an XML file using a XSL style sheet file on a
browser, we use XSLT (XSL Transformations) to convert this XML file to an HTML file
[132]. HTML was also extended to cope with XML capabilities and to merge the advan-
tages of these two languages, which defined XHTML (eXtensible HTML) [133].

An XML document consists of the XML declaration part, the DTD (document type de-
finition) if any, and the XML instance, i.e., the document definition body. The XML dec-
laration part specifies the XML version and character codes. The DTD defines the
schema, i.e., the skeleton structure, of the XML document. It specifies the hierarchical
structure among tag names to be used in the XML instance. The DTD may be specified as
an independent file. In such a case, we call it an external subset. Otherwise, we call the
DTD an internal subset. An external subset can be shared by more than one XML docu-
ment. We call XML documents with DTDs valid XML documents, and those without
DTDs well-formed XML documents. Tagged components can be nested in XML docu-
ments. Each component in an XML document can be uniquely identified by a concatena-
tion of tag names of all the components including the specified component from the out-
most one to the inmost one. We call this concatenation the XPath [134] of the component.
When you want to merge two XML documents into a single one, their tag names may
cause conflicts, i.e., the same name may be used to identify different components. To
solve this problem, XML enables us to define an independent name space for each docu-
ment. Tags in a merged context can be uniquely identified using name space names as

3.4 WEB TECHNOLOGIES AND MEME MEDIA 57

tan-3.qxd 5/15/2003 1:27 PM Page 57

their prefixes.
Some Web page authoring tools such as Dreamweaver [135] enable users to define and

embed JavaScript programs without knowing the JavaScript grammar. Java applets are
small application programs written in Java. You may embed a Java applet in your Web
page specifying a Java applet file name by enclosing it with an HTML tag, <applet code>.
When this HTML file is downloaded, the embedded Java applet is also downloaded from
a Web server, and executed by the local JavaVM.

Client-side Web programs define Web documents with embedded animation graphics
and/or visual tools running on the client computer, but without any embedded services
provided by remote servers.

From 1994 to 1998, we introduced different HTMLViewerPads by wrapping three dif-
ferent browsers—Mosaic, Netscape Navigator, and Internet Explorer—with pad wrappers
[136]. Each of them works as a pad with the full functionality of each wrapped browser.
Sections 11.1 to 11.7 will describe in detail the architectures of these browser pads. Sec-
tion 11.5 describes a browser pad that enables you to publish a Web page with embedded
pads, and allows others to drag them out for reuse while browsing this page [137]. Section
11.7 shows how IntelligentPad technology enables us to annotate Web pages through a
browser pad [138]. Sections 11.9 and 11.10 illustrate how meme media technologies en-
ables us to extract some portions of Web pages, including application tools and services,
paste them together with slot connections to compose a new compound document, and
publish it on the WWW so that other people can browse it using a legacy Web browser.
Section 11.9.4 shows how we can use XML to define a pad. Section 11.10 describes how
the use of JavaScript for the description of slot connections among pads defined in HTML
will define composite pads that we can play on legacy browsers.

3.4.3 Server-Side Web Programs

A server-side Web program executes the processing requested by a client on a server ma-
chine. It may interoperate with other servers such as database servers to perform advanced
services such as querying a database.

Server-side Web programs can be classified into two different types. The first type
makes the Web server invoke an external program through, for example, a CGI (common
gateway interface) [105]. The second type executes programs using extended functions in-
stalled in the Web server. CGI is an interface mechanism for a Web server to invoke a
server-side program, and to return the processing result to the client. A CGI program de-
notes a program used in CGI. CGI programs are written in script languages such as Perl
[106] or other development languages. CGI, however, invokes a new process whenever it
is accessed by a client. It may generate a lot of processes, consuming a lot of resources,
which may significantly lower the system performance. The second type of server-side
Web program that utilizes extended functions installed in a Web server includes Web ap-
plications using either Java servelets [104] or such server-side scripting technologies as
ASP (Active Server Pages) [103] and JSP (Java Server Pages) [102].

A Web application using the JSP technology or a Java servelet executes the processing
in a run time environment called a container. A Web application using the ASP technology
runs ASPs in a run time environment similar to a container. This environment for ASPs is
called an IIS (Internet information server). In such a Web application, each request from a
client does not invoke a new process, but creates only a new thread in the same container,
namely, in the same process space, to process this request. This multithread processing re-

58 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 58

duces resource consumption and also improves performance, since the container becomes
resident once the Web application is invoked.

JSP programs are converted to Java servelets to be executed. A Java servelet is an in-
dependent program file, but a JSP program is inserted in an HTML file using a JSP tag,
<% .. %>. A Java servelet needs to explicitly rewrite and print an HTML file to output
a new page, but a JSP program is embedded in an HTML file as an element, which sim-
plifies the definition of an output page.

To utilize a server-side Web application from a Web page, you may use a form and/or a
link to a CGI program. To access a database Web site, you may enter a keyword in a text
box form, and click the start button to invoke the server-side database retrieval program.

More than one client may access a single Web server. A sequence of requests from the
same client may be intermingled with other request sequences from different clients.
Cookie [139] is a technology for a Web server to identify consecutive requests from the
same client. A Web page with a Cookie, when accessed, creates a file in the client com-
puter to store the access date and time and the user-identifying information. When the
same Web site is accessed, the Web browser searches for the Cookie file corresponding to
this Web site, reads this Cookie if it is found, and sends the read-out information to the
Web server. The Web server may use this information to perform the appropriate service
for the requesting client.

Java servelets can manage each session with each client. Each servelet container as-
signs different IDs to different clients. When accessed by a client, each servelet container
creates a new object for the session with this Web browser, and assigns a new ID to this
browser. A Web page using a Java servelet, when accessed, creates a Cookie storing a new
session ID, and stores it as a client file. Requests from different clients may invoke the
same servelet, which receive different session IDs as Cookie values from different clients.
Using these session IDs, each servelet can return the result to the requesting client.

Server-side Web programs are capable of defining Web documents with embedded ser-
vices provided by remote servers. These embedded services provide input forms in Web
pages for users to input data. An output from such a server is returned to the client as a
Web page. ASP and JSP allow us to define Web documents with embedded animation
graphics and/or tools running not on the client computers, but on the servers. These em-
bedded components are secure in the sense that they are executed on the server side.

We used server-side Web programming technologies to introduce proxy pads that work
as proxies of remote servers such as database servers [140]. Chapter 10 will show how
database proxy pads will play essential roles in the database-form interface framework in
the meme media architecture. Section 18.6 will describe the 3D extension of our database
access framework using database proxy boxes, and propose a component-based database
visualization and materialization framework [141].

3.5 SUMMARY

Augmentation media on computers can be classified into four categories based on the tar-
gets of augmentation; they are personal-augmentation media, group-augmentation media,
organization-augmentation media, and social-augmentation media. They have been devel-
oped in this order. Knowledge media have expanded the target of augmentation from
groups and organizations to communities or societies. Knowledge media with 2D repre-
sentation have developed compound document architectures. WWW and its browsers

3.5 SUMMARY 59

tan-3.qxd 5/15/2003 1:27 PM Page 59

work as knowledge media systems. Current Web technologies, however, do not provide
direct manipulation operations for reediting and redistributing knowledge resources.
When provided with such direct manipulation operations, knowledge media will work as
meme media.

When applied to Web content, meme media technologies make the WWW work as a
meme pool, wherein people can publish their intellectual resources as Web pages, access
some Web pages to extract some of their portions as meme media objects through drag-
and-drop operations, visually combine these meme media objects together with other
meme media objects to compose new intellectual resources, and publish these resources
again as Web pages. Our framework will open a new vista in the circulation and reuse of
knowledge represented as multimedia documents, application programs, services, and/or
compositions made from them. Meme media technologies provide Web content with reed-
iting and redistributing functions, which are orthogonal to the functions that the rapidly
growing Web technologies are focusing on to expand.

REFERENCES

1. M. McLuhan. Understanding Media, The Extensions of Man. McGraw-Hill, New York, 1964.

2. M. von Wodtke. Mind Over Media: Creative Thinking Skills for Electronic Media. McGraw-
Hill, New York, 1993.

3. R. Johansen. Groupware: Computer Support for Business Teams. Free Press, New York, 1988.

4. S. Khoshafian and M. Buckiewicz. Introduction to Groupware, Workflow, and Workgroup
Computing. Wiley, New York, 1995.

5. W. H. Davidow and M. S. Malone. The Virtual Corporation: Structuring and Revitalizing the
Corporation for the 21st Century. Harper-Collins, New York, 1993.

6. Y. Jyachandra. Re-Engineering the Networked Enterprise. McGraw-Hill, New York, 1994.

7. C. J. Petrie, Jr. (ed.). Enterprise Integration Modeling. MIT Press, Cambridge, MA, 1992.

8. V. Bush. As We May Think. Atlantic Monthly, 176(1): 101–108, 1945.

9. D. C. Engelbart. A conceptual framework for the augmentation of man’s intellect. In P. W.
Howerton and D. C. Weeks (eds.), Vistas in Information Handling: I. The Augmentation of
Man’s Intellect by Machine. Spartan Books, Washington, DC, pp. 1–29, 1963.

10. T. H. Nelson. A file structure for the complex, the changing, and the intermediate. In Proceed-
ings of the ACM National Conference, pp. 84–100, 1965.

11. T. H. Nelson. Literary Machines. Edition87. 1. (self-published), 1987.

12. A. van Dam. Hypertext ‘87 keynote address. CACM 31(7): 887–895, 1988.

13. T. Berners-Lee, R. Cailliau, N. Pellow, and A. Secret. The World-Wide Web Initiative. In Pro-
ceedings INET’93, 1993.

14. M. Andreessen. MCSA Mosaic Technical Summary. NCSA Mosaic Technical Summary 2.1,
1993.

15. N. Yankelovich, N. Meyrowitz, and A. van Dam. Reading and writing the electronic book.
IEEE Computer, 18(10): 15–30, 1985.

16. N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M. Drucker. Intermedia: The concept and
the construction of a seamless information environment. IEEE Computer, 21(1): 81–96, 1988.

17. N. Yankelovich, G. P. Landow, and D. Cody. Creating Hypermedia Materials for English liter-
ature students. ACM SIGCUE Outlook, 19(3–4): 12–25, 1987.

18. C. K. Robertson, D. McCracken, and A. Newell. The ZOG approach to man–machine commu-

60 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 60

nication. Intl. J. Man–Machine Studies, 14: 461–488, 1981.

19. F. G. Halasz. Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems. CACM, 31(7): 836–852, 1988.

20. A. C. Kay. The Reactive Engine. Ph. D. thesis, University of Utah, 1969.

21. A. C. Kay and A. Goldberg. Personal dynamic media. IEEE Computer, 10(3), 1977.

22. C. P. Thacker et al. Alto: A personal computer. In Siewiorek et al. (eds.), Computer Structures:
Principles and Examples, Chapter 33, McGraw-Hill, New York, 1982.

23. A. Goldberg and A. C. Kay (eds.). Smalltalk-72 Instruction Manual. Xerox Palo Alto Re-
search Center, Techniocal Report No. SSL 76-6, March 1976.

24. N. Negroponte. Media room. In Proceedings of the Society for Information Display. 22(2):
109–113, 1981

25. R. Bolt. Put-that-there: Voice and gesture at the graphics interface. ACM Computer Graphics,
14(3): 262–270, 1980.

26. C. F. Herot. Spatial Management of Data. ACM Transactions on Database Systems. 5(4):
493–514, 1980.

27. A. Lippman, Movie-maps: An application of the optical videodisc to computer graphics. Com-
puter Graphics, 14(3): 32–42, 1980.

28. D. Backer. Prototype for the electronic book. In M. Greenberger (ed.), Media for a Technolog-
ical Future—Electronic Publishing Plus. Knowledge Industry Publications, Washington, DC,
1985.

29. S. Brand. The Media Lab. Viking Penguin, New York, 1987.

30. R. Akscyn, D. L. McCracken, and E. Yoder. KMS: A distributed hypertext for sharing knowl-
edge in organizations. CACM, 31(7): 820–835, 1988.

31. P. J. Brown. Turning ideas into products: The guide system. In Proceedings of ACM Hyper-
text’87, pp. 33–40, 1987.

32. F. Halasz, T. P. Moran, and R. H. Trigg. NoteCards in a nutshell. In Proceedings of ACM
CHI+GI’87, pp. 45–52, 1987.

33. B. Arons, C. Binding, K. A. Lantz, and C. Schmandt. The VOX Audio Server. In Proceedings
of IEEE 2nd International. Workshop in Multimedia Communications, 1989.

34. P. Asente, and R. Swick. The X Window System Toolkit. Digital Press, Bedford, MA, 1990.

35. D. A. Young. The X Window System Programing and Applications with Xt: OSF/Motif Edition.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

36. D. A. Young and J. A. Pew. The X Window System Programing and Applications with Xt: OPEN
LOOK Edition. Prentice-Hall, Englewood Cliffs, NJ, 1992.

37. D. Heller. Xview Programming Manual. O’Reilly & Associates, Sebastopol, CA, 1991

38. J. Gosling, D. S. H. Rosenthal, and M. J. Arden. NeWS Book: An Introduction to the Net-
work/Extensible Window System. Springer-Verlag, New York, 1989.

39. NeXT. NextStep Environment: Concepts. NeXT, Inc.

40. Hewlett-Packard. HP NewWave Environment General Information Manual. Hewlett-Packard,
Cupertino, CA, 1988.

41. Borland. ObjectWindows for C++: User’s Guide. Borland, Scotts Valley, CA, 1991.

42. D. A. Wilson, L. S. Rosenstein, and D. Shafer. C++ Programming with MacApp. Addison-
Wesley, Reading MA, 1990.

43. P. Wilson. Computer Supported Cooperative Work: An Introduction. Intellect, Oxford, UK
1991.

44. I. Greif (ed.). Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf-
mann, San Mateo, CA, 1988.

45. C. A. Ellis, S. J. Gibbs, G. L. Rein. Computer groupware: Some issues and experiences,

REFERENCES 61

tan-3.qxd 5/15/2003 1:27 PM Page 61

CACM 34(1):38–58, 1991.

46. T. Rodden. A survey of CSCW systems. Interacting with Computers. 3: 319–353, 1991.

47. T. Winograd. A language/action perspective on the design of cooperative work. In Proceedings
of CSCW’86, pp. 203–220, 1986.

48. F. De Cindio, G. De Michelis, C. Simone, R. Vassalo, and A. M. Zanaboni. CHAOS as coordi-
nation technology. In Proceedings of CSCW’86, pp. 325–342, 1986.

49. T. Kreifelts and G. Woetzel. Distribution and error handling in an office procedure system. In
Proc. IFIP WG 8.4 Working Conference on Office Systems Methods and Tools, pp. 197–208,
1986.

50. J. Bowers and J. Churcher. Local and global structuring of computer mediated communica-
tion: Developing linguistic perspectives on CSCW in COSMOS, In Proceedings of CSCW’88,
pp. 125–139, 1988.

51. T. Danielsen, A. Patel, R. Speth, U. Pankoke-Babatz, W. Prinz, P. A. Pays, and K. Smaaland.
The AMIGO project—Advanced group communication model for computer-based communi-
cations environment. In Proceedings of CSCW’86, pp. 115–142, 1986.

52. T. W. Malone, K. R. Grant, and F. A. Turbak. The information lens: An intelligent system for
information sharing in organizations. In Proceedings of CHI’86 Conference on Human Fac-
tors in Computing Systems, 1986.

53. A. Shepherd, N. Mayer, and A. Kuchinsky. Strudel—An extensible electronic conversation
toolkit. In Proceedings of CSCW’90, pp. 93–104, 1990.

54. J. Hogg. IntelligentMessage system. In D. Tsichritzis (ed.), Office Automation. Springer-Ver-
lag, New York, pp. 113–133, 1985.

55. S. R. Hiltz and M. Turoff. The Network Nation: Human Communication via Computer, Addi-
son-Wesley, Boston, MA, 1978.

56. I. Greif and S. Sarin. Data sharing in group Work. In I. Greif (ed.), Computer-Supported
Cooperative Work: A Book of Readings, Morgan Kaufmann, San Mateo, CA, pp. 477–508,
1988.

57. M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS revisited: Early expe-
riences with multiuser interfaces. ACM Transactions on Office Information Systems, 5(2):
147–167, 1987.

58. S. Gale. Desktop video conferencing: technical advances and evaluation issues. Computer
Communications, 15: 517–526, 1992.

59. M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman. Beyond the chalk-
board: Computer support for collaboration and problem solving in meetings. CACM, 30(1):
32–47, 1987.

60. T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MMConf: An infrastruc-
ture for building shared multimedia applications. In Proceedings of CSCW’90, pp. 329–342,
1990.

61. S. R. Ahuja, J. R. Ensor, S. E. Lucco. A comparison of application sharing mechanisms in real-
time desktop conferencing system. In Proceedings of COIS’90, pp. 238–248, 1990.

62. L. M. Applegate, B. R. Konsynski, and J. F. Nunamaker. A group decision support system for
idea generation and issue analysis in organization planning. In Proceedings of CSCW’86, pp.
16–34, 1986.

63. R. Dalton. Group-writing tools: Four that connect. Information Week, March, 62–65, 1987.

64. B. T. Lewis and J. D. Hodges. Shared Books: Collaborative publication management for an of-
fice information system. In R. B. Allen (ed.), Proceedings of Conference on Office Informa-
tion Systems, ACM Press, New York, pp. 197–204, 1988.

65. R. S. Fish, R. E. Kraut, D. P. Leland, and M. Cohen. Quilt: A collaborative tool for cooperative

62 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 62

writing. In R. B. Allen (ed.), Proceedings of Conference on Office Information Systems, ACM
Press, New York, pp. 30–37, 1988.

66. M. J. Knister and A. Prakash. DistEdit: A distributed toolkit for supporting multiple group ed-
itors. In Proceedings of CSCW’90, pp. 343–355, 1990.

67. B. Karbe, N. Ramsperger, and P. Weiss. Support of cooperative work by electronic circulation
folders. In Proceedings of Conference on Office Information Systems, pp. 109–117, 1990.

68. M. M. Zloof. QBE/OBE: A language for office and business automation. IEEE Computer,
14(5): 13–22, 1981.

69. S. B. Yao, A. R. Hevener, Z. Shi, and D. Luo. FORMANAGER: An office forms management
system. ACM Transactions Office Information Systems, 2(3): 235–262, 1984.

70. A. W. Holt. Diplans: A new language for the study and implementation of coordination. ACM
Transactions Office Information Systems, 6(2): 109–125, 1988.

71. A. W. Holt, H. R. Ramsey, and J. D. Grimes. Coordination system technology as the basis for a
programming environment. Electrical Commun., 57(4): 307–314, 1983.

72. H. -J. Bullinger and J. Warschat (eds.). Concurrent Simultaneous Engineering Systems—The
Way to Successful Product Development. Springer-Verlag, London, 1996.

73. T. Berners-Lee and D. Connolly. Hypertext Markup Language—A Representation of Textual
Information and Metainformation for Retrieval and Interchange; Internet draft. WWW,
ftp://info.cern.ch/pub/www/doc/html-spec.ps, 1993.

74. C. F. Goldfarb. The SGML Handbook. Oxford University Press, Oxford, UK, 1990.

75. D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Sebastopol, CA, 1996.

76. Y. Tanaka. From augmentation media to meme media: IntelligentPad and the world-wide
repository of pads. In Information Modelling and Knowledge Bases, VI (ed. H. Kangassalo et
al.), IOS Press, Amsterdam, pp. 91–107, 1995.

77. Y. Tanaka. Meme media and a world-wide meme pool. In Proceedings of ACM Multimedia 96,
pp. 175–186, 1996.

78. I. Sutherland. Sketchpad: A man–machine graphical communication system. In Proceedings
of the Spring Joint Computer Conference, 23, pp. 329–346, 1963.

79. D. C. Engelbart. The augmented knowledge workshop. In A. Goldberg (ed.), A History of Per-
sonal Workstations. Addison-Weley, Reading, MA, pp. 187–236, 1988.

80. D. C. Smith et al. The Star user interface: An overview. In Proceedings of AFIPS Conference,
pp. 515–528, 1982.

81. G. K. Wallace. The JPEG still picture compression standard. CACM, 34: 31–44, 1991.

82. W. B. Pennebaker and J. L. Mitchell. JPEG Still Picture Compression Standard. Van Nostrand
Reinhold, New York, 1993.

83. ISO/IEC IS 11172. Information Technology—Coding of Moving Pictures and Associated Au-
dio for Digital Storage Media up to about 1. 5 Mbits/s.

84. ISO/IEC IS 13818. Information Technology—Generic Coding of Moving Pictures and Associ-
ated Audio Information.

85. A. Henderson. The Trillium user interface design environment. In Proceedings of CHI’86, pp.
221–227, 1986.

86. Micosoft Corporation. OLE2 Programmer’s Reference. Volume One: Working with Windows
Objects. Volume Two Creating Programmable Applications with OLE Automation. Microsoft
Corporation, Redmond, WA, 1994.

87. Component Integration Laboratories. OpenDoc: The New Shape of Software. Component Inte-
gration Laboratories, Sunnyvale, CA, 1994.

88. A. J. Palay. Toward an “operating system” for user interface components. In M. Blattner and R.

REFERENCES 63

tan-3.qxd 5/15/2003 1:27 PM Page 63

Dannenberg (eds.), Multimedia Interface Design, ACM Press, New York, pp. 339–355, 1992.

89. Y. Tanaka and T. Imataki. IntelligentPad: A hypermedia system allowing functional composi-
tion of active media objects through direct manipulations. In Proceedings of of IFIP’89, pp.
541–546, 1989.

90. S. Papert. Mindstorm: Children, Computers, and Powerful Ideas. Basic Books, New York, 1980.

91. N. Waters. POGS: Pads of Geographic Software. GIS World, 8(11): 82, 1995.

92. R. Jacobson (ed.). Information Design. MIT Press, Cambridge, MA, 1999.

93. F. Thomas and O. Johnston. The Illusion of Life—Disney Animation. Hyperion, New York, 1981.

94. E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT,
1983.

95. E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

96. E. R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics
Press, Cheshire, CT, 1997.

97. A. Hutchinson. Labanotation—The System of Analyzing and Recording Movement. Third Edi-
tion, Routledge/Theatre Arts Books, New York, 1977.

98. B. Johstone. DIY software. New Scientist. 147, 1991: 26–31, 1995.

99. M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces and The
Incremental Approach. Morgan Kaufmann, San Francisco, 1995.

100. D. Flanagan and P. Ferguson (eds.). JavaScript: The Definitive Guide. O’Reilly & Associates,
Sebastopol, CA, 2001.

101. P. Lomax and R. Petrusha (eds.). VB and VBA in a Nutshell. O’Reilly & Associates, Se-
bastopol, CA, 1998.

102. S. Brown, L. Kim, J. Falkner, B. Galbraith, R. Johnson, R. Burdick, D. Cokor, S. Wilkinson
and G. Taylor. Professional JSP. Wrox Press, Chicago, 2001.

103. A. K. Weissinger and R. Petrusha (eds.). ASP in a Nutshell. O’Reilly & Associates, Se-
bastopol, CA, 2000.

104. J. Hunter and W. Crawford. Java Servlet Programming. O’Reilly & Associates, Sebastopol,
CA, 2001.

105. S. Gundavaram and A. Oram (eds.). CGI Programming on the World Wide Web. O’Reilly &
Associates, Sebastopol, CA, 1995.

106. L. Wall and M. Loukides (eds.). Programming Perl, 3rd ed., O’Reilly & Associates, Se-
bastopol, CA, 2000.

107. Java 2 Enterprise Edition. http://java.sun.com/j2ee/tutorial.

108. W3C Consortium. Workshop on Web Services. http://www.w3.org/2001/01/WSWS, 2001.

109. D. Box, et al. Simple Object Access Protocol (SOAP) 1. 1, W3C NOTE. http://www.w3.org/
TR/SOAP/, 2000 (The latest version is available at http://www.w3.org/TR/ soap12/)

110. L.,Carr, W. Hall, and D. De Roure. The evolution of hypertext link services. ACM Computing
Survey, 31(4), 1999.

111. A. M. Fountain, W. Hall, I. Heath, and H. C. Davis. Microcosm: An open model with dynamic
linking. Proceedings of ACM European Conference on Hypertext ‘90 (ECHT ‘90), Versailles,
pp. 298–311, 1990.

112. A. Rizk and L. Sauter. Multicard: An open hypermedia system, Proceedings of ACM Euro-
pean Conference on Hypertext ‘92 (ECHT ‘92), Milan, pp. 4–10, 1992.

113. H. Schütt and N. A. Streitz. Hyperbase: A hypermedia engine based on a relational database
management system. Proceedings of ACM European Conference on Hypertext ‘90 (ECHT
‘90), Versailles, pp. 95–108, 1990.

114. J. L. Schase and J. J. Legget, et al. Design and implementation of the HBI hyperbase manage-

64 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 64

ment system. Electronic Publishing: Origination, Dissemination and Design, 6(2), 35–63,
1993.

115. F. G. Halasz and M. D. Schwartz. The Dexter hypertext reference model. Communications of
ACM, 37(2), 30–39, 1994.

116. H. C. Davis, A. Lewis, and A. Rizk. OHP: A draft proposal for an open hypermedia protocol.
ACM Hypertext ‘96, Open Hypermedia Systems Workshop, Washington, DC, 1996.

117. K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing Dexter-based hypermedia services for
the World Wide Web. Proceedings of ACM Hypertext ‘97, Southampton, UK, pp. 146–156,
1997.

118. U. K. Will and J. J. Leggett. The HyperDisco approach to open hypermedia systems. Proceed-
ings of ACM Hypertext ‘96, Washington DC, pp. 140–148, 1996.

119. K. M. Anderson, R. N. Taylor, and E. J. Whitehead. Chimera: Hypertext for heterogeneous
software environments. Proceedings of ACM European Conference on Hypermedia Technolo-
gy (ECHT ‘94), Edinburgh, pp. 94–106, 1994.

120. U. K. Will, and J. J. Leggett. Workspaces: The HyperDisco approach to internet distribution.
Proceedings of ACM Hypertext 97, Southampton, UK, pp. 13–23, 1997.

121. K. M. Anderson. Integrating open hypermedia systems with the World Wide Web. Proceed-
ings of ACM Hypertext ‘97, Southampton, UK, pp. 157–167, 1997.

122. O. Reinert, D. Bucka-Lassen, C. A. Pedersen, and P. J. Nürnberg. CAOS: A collaborative and
open spatial structure service component with incremental spatial parsing. Proceedings of
ACM Hypertext ‘99, Darmstadt, Germany, pp. 49–50, 1999.

123. L. Moreau and N. Gibbins, et. al. SoFAR with DIM agents: An agent framework for distrib-
uted information management. Proceedings of Fifth International Conference and Exhibition
on the Practical Application of Intelligent Agents and Multi-Agents, Manchester, UK, 2000.

124. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley Long-
man, Reading, MA, 1999.

125. Microsoft Corporation. Dynamic HTML. http://msdn.microsoft. com/library/ default.
asp?url=/workshop/author/dhtml/dhtml.asp.

126. Document Object Model (Dom): Level 1 Specification, Vol. 1, iUniverse, Incorporated , 1999.

127. Document Object Model (Dom): Level 2 Specification: Version 1.0, Vol. 1. iUniverse, Inc.,
1999.

128. E. A. Meyer and L. Lejeune (eds.). CSS Pocket Reference. O’Reilly & Associates, Sebastopol,
CA, 2001.

129. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, Extensible Markup Language (XML) 1.0,
W3C Recommendation. http://www.w3.org/TR/1998/REC-xml-19980210, 1998.

130. S. Adler et al. Extensible Stylesheet Language (XSL) Version 1.0, W3C. http://www.w3.org/
TR/xsl/, 2000.

131. E. Maler, M., Eve, and J. E. Andaloussi. Developing SGML DTDs: From Text to Model to
Markup. Prentice Hall PTR, Upper Saddle River, NJ, 1995.

132. J. Clark. XSL Transformations (XSLT) Version 1.0, W3C Recommendation. http://www.w3.org/
TR/xslt, 1999.

133. World Wide Web Consortium. XHTML 1.0: The Extensible HyperText Markup Language.
http://www.w3.org/TR/xhtml1/, 2000.

134. J. Clark and S. DeRose, XML Path Language (XPATH) Version 10, W3C Recommendation.
http://www.w3.org/TR/xpath.html, 1999.

135. Dreamweaver Macromedia. Dreamweaver MX. http://www.macromedia.com/software/
dreamweaver/.

136. Y. Tanaka. Meme media and a world-wide meme pool. Proceedings of ACM Multimedia 96,

REFERENCES 65

tan-3.qxd 5/15/2003 1:27 PM Page 65

pp. 175–186, 1996.

137. Y. Tanaka. Meme media and a world-wide meme pool. Proceedings of the Fourth ACM Inter-
national Multimedia Conference, Boston, 175–186, 1996.

138. Y. Tanaka, J. Fujima, and T. Sugibuchi. Meme media and meme pools for re-editing and redis-
tributing intellectual assets. In Hypermedia: Openness, Structural Awareness and Adaptivity,
Springer L NCS 2266, pp. 28–46, 2002.

139. S. St. Laurent. Cookies. McGraw-Hill, New York, 1998.

140. Y. Tanaka. Meme media and databases. International Symposium on Cooperative Database
Systems for Advanced Applications, Kyoto, 174–183, 1996.

141. Y. Tanaka and T. Sugibuchi. Component-based framework for virtual information materializa-
tion. Discovery Science, Springer LNAI 2226, pp. 458–463, 2002.

66 AUGMENTATION MEDIA ARCHITECTURES AND TECHNOLOGIES—A BRIEF SURVEY

tan-3.qxd 5/15/2003 1:27 PM Page 66

CHAPTER 4

AN OUTLINE OF INTELLIGENTPAD AND
ITS DEVELOPMENT HISTORY

The previous chapter introduced the concept of meme media and their potentialities. This
chapter briefly introduces our approach to the technologies that enables meme media to
work on networked computing environments, and proposes 2D and 3D meme media ar-
chitectures: IntelligentPad and IntelligentBox. It takes a closer look at the development
history of IntelligentPad; how our research group has coevolved with IntelligentPad and
IntelligentBox to reach the concept of meme media.

4.1 BRIEF INTRODUCTION TO INTELLIGENTPAD

Multimedia studies have been focusing on media richness, whereas hypermedia studies
have been focusing on associative linkages among multimedia objects. Multimedia sys-
tems and hypermedia systems both handle multimedia components, but not software com-
ponents in general. Our research project has been focusing on a universal media architec-
ture that can uniformly deal with both multimedia components and software components,
and provides not only associative linkage but also functional linkage among components.
This architecture is called IntelligentPad.

IntelligentPad represents each component as a pad, which looks like a sheet of paper
on the screen. IntelligentPad applies a compound-document architecture to both multime-
dia documents and software components. It defines functional linkage between two com-
ponent objects by physically embedding one component into the other in the framework
of compound documents. Namely, a pad can be pasted onto another pad. This physical
containment relationship also defines a functional linkage between these two pads. Com-
ponent pads can be pasted together to define varieties of multimedia documents and tools
as composite pads. Such a composition defines not only the physical layout of compo-
nents in a composed pad, but also the functional linkage among these components. Unless
otherwise specified, composite pads are always decomposable to their component pads.

67

tan-4.qxd 5/15/2003 3:39 PM Page 67

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

4.1.1 The Motivation for Our Project

Our IntelligentPad project began in early 1987. Around that time, many tools were avail-
able on personal computers for office information processing. They included word
processors, spreadsheets, drawing tools, and chart tools. Some systems integrated sever-
al different kinds of tools for easy exchange of data. Users could readily get a chart rep-
resentation of data calculated by a spreadsheet. In some advanced systems, users could
directly manipulate data on a chart to change the corresponding data in a spreadsheet.
These systems were called integrated business software systems. For end-users, person-
al computers were no longer machines to program, but tools to be used without any pro-
gramming. However, people were not satisfied with these integrated business software
systems. In such systems, no two tools can exchange data unless the system has an a pri-
ori defined linkage between them. Furthermore, no tool can be integrated with others
unless it has been defined as a part of the original tool set. At that time, users were also
unable to reuse any function that was not provided as a member tool, even if it was used
by several member tools. For example, we could find a sorting function in almost every
member tool in such integrated business software. However, we could not extract this
function for use in another context. Each member tool was atomic, and not decompos-
able. These systems were closed-integration systems. No user-defined tools could be
added later as member tools. The demand for an open-integration system was rapidly in-
creasing.

At that time, it seemed that whenever we wanted to do some office work on our com-
puters, we could find all the necessary functions somewhere among the tools we had al-
ready installed in our computers. However, in most cases, we could not perform what we
wanted since it was difficult or even impossible for us to extract those required functions
from the existing tools, combine them, and apply the composed function to perform the
required task. This is a typical problem that still bothers users today.

In our daily intellectual activities, whenever we conceive an idea, we try it out, observe
the result to evaluate it, and eventually proceed to conceive a new idea. In our intellectual
activities, we repeat this process of “think,” “try,” and “see” as shown in Figure 4.1. When
applied to problem-solving contexts, researchers call such a repetitive process a
plan–do–see loop. Many feel that computers can be applied to support this process, speed-
ing it up and driving progress around this cycle. This requires seamless support of the
three phases: think, try, and see.

68 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

think

seetry

Figure 4.1 Our intellectual activities repeat thinking, trying, and seeing, in that order.

tan-4.qxd 5/15/2003 3:39 PM Page 68

The first phase is mainly performed by humans. The second phase requires the repre-
sentation of each idea and its execution. The third phase requires various evaluation and
analysis tools. The first and the third phases are the application areas of artificial-intelli-
gence systems and computation-intensive systems, but we do not have appropriate sys-
tems that effectively support the second phase.

To solve this problem, we need a system in which end-users can directly manipulate
various functions and arbitrarily define functional linkages among them. These functions,
however, do not include internal functional modules of server systems such as database-
management systems, compilers, and numerical-computation systems. End-users use
these server systems as they are provided by their developers. Functions that end-users
want to directly manipulate and compose are client-system functions. For example, in or-
der to view the population distribution in a certain geographical area, we may use either a
simple table showing the population of each city, or a map with a bar indicator placed at
each city to show its population. These two different views, however, access the same
database with the same query. They use the same server as it is provided, but they provide
different visual representations for the same retrieved data. To satisfy varieties of users’
requirements, client systems must be easily customizable by end-users.

Client systems are not GUI (graphical user interface) assemblies. An editor, for exam-
ple, is a client system that cannot be constructed from GUI tools. It may be thought of as
consisting of two subsystems: One is a display object that works as a window showing, for
instance, some text or table; the other is an internal program that performs the word pro-
cessing or the table calculation. To distinguish GUI objects and such composite systems,
we call the latter ones media objects (see Figure 2.4).

When the author of this book started the IntelligentPad project in 1987, he had a vague
estimate that about one hundred different component pads would be sufficient to define
any multimedia document and any tool. Based on this prediction, the project tried to de-
velop both the IntelligentPad kernel system and a “complete” set of component pads as a
construction kit [1, 2]. The project termed this system a media-toolkit system.

4.1.2 Synthetic Media Architecture

Around 1989, we realized that our prediction was wrong. Pads are combined to define
both functions and layout designs. For computable functions, we can list a finite number
of primitive functions necessary and sufficient to compose any computable function. For
layout designs, however, there is no such concept of computational completeness. You can
easily find more than 50 different models of Walkman-style audio cassette players with
almost the same set of functions, not only from Sony but also from many others.

Around the same time, we realized that not only multimedia components and tool com-
ponents, but also various server systems like DBMSs, E-mail systems, application sys-
tems, and their environments, can be represented as pads and, therefore, can be combined
with other pads. Most of these new pads have no need for GUIs; they may look like blank
sheets. The openness of the set of component pads and the expansion of the pad represen-
tation scope made it important to define each pad as a generic object independently from
the pad it is functionally linked to. Such generic definition of pads requires standardiza-
tion of the message exchange interface between pads. This led us to the current Intelli-
gentPad architecture in which every pad defines its functional interface as a list of slots,
and uses only three standard messages—“set,” “gimme” and “update”—to communicate
with other pads [3, 4]. This architecture is called a synthetic media architecture.

4.1 BRIEF INTRODUCTION TO INTELLIGENTPAD 69

tan-4.qxd 5/15/2003 3:39 PM Page 69

4.1.3 Meme Media Architecture

If there is effectively no limit to the number of different component pads, there arises a
question; who provides all these varieties of pads? Can a single provider provide all of
them? If the answer is yes, then other competitors will also develop similar competing
systems and provide other sets of components. These systems will provide mutually in-
compatible components, which will then lead to the same troublesome situation we are
facing now. We must allow multiple vendors and volunteers to provide this large variety of
mutually compatible pads. In addition, to support compatibility in use, we must ensure
that the IntelligentPad kernel facilities are standardized across different computing plat-
forms.

Around 1991, these considerations led us to the extension of the IntelligentPad archi-
tecture toward a social infrastructure for the exchange and distribution of intellectual re-
sources. Pads can represent various kinds of intellectual resources. The standardization of
IntelligentPad systems running on different platforms guarantees the cross-platform
transportability of pads. Users can easily exchange pads with each other and use them in
their own environments. These considerations finally led us to the concept of “meme me-
dia,” which we first proposed in 1993. Since then, we have been focusing our research on
a marketplace architecture for the distribution, reediting, and redistribution of pads not
only by pad developers, but also by end-users. This, then, is an architecture that can real-
ize the concept of the “meme pool” discussed in Chapter 2.

In 1994, we developed a pad publication system on the Internet using either Mosaic or
Netscape pages as catalog pages for pads [5, 6, 7]. Users can browse these catalog pages
and select pads to download from remote servers into their local IntelligentPad environ-
ments.

4.2 INTELLIGENTPAD ARCHITECTURE

Instead of directly dealing with component objects, IntelligentPad wraps each object with
a standard pad wrapper and treats it as a pad. Each pad has both a standard user interface
and a standard connection interface. The user interface of every pad has a card-like view
on the screen and a standard set of operations like “move,” “resize,” “copy,” “paste,” and
“peel.” As a connection interface, every pad provides a list of slots, a standard set of mess-
sages—“set” and “gimme”—to access each of these slots, and another standard mes-
sage—“update”—to propagate a state change from one pad to another.

IntelligentPad provides an open-integration framework for multimedia-document com-
ponents and software components. Once it is wrapped with a standard pad wrapper and
defined as a pad, any object can be assimilated into an IntelligentPad environment. It is up
to each developer to decide how to wrap his or her object with a pad wrapper.

4.2.1 Pad Architecture

In IntelligentPad, a component pad consists of a display object and a model object (Figure
4.2). The display object defines both the view on the display screen and its reaction to user
events, whereas the model object defines its internal state and behavior. Wide varieties of
documents and tools can be represented as component and composite pads. You may use
paste operations in arbitrary ways; for example, to overlay multiple translucent compo-

70 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

tan-4.qxd 5/15/2003 3:39 PM Page 70

nent pads of the same size, or to arrange multiple component pads on the same base com-
ponent pad. Unless otherwise specified, both component pads and composite pads are just
referred to as pads. Component pads are called primitive pads. Users can easily replicate
any pad, paste a pad onto another, and peel a pad off a composite pad, all through direct
manipulation. These operations can be equally applied to both primitive pads and com-
posite pads. When a pad P2 is pasted on another pad P1, the pad P2 becomes a child pad of
P1, and P1 becomes the parent pad of P2. Instead of “child” and “parent,” we also use
“slave” and “master,” respectively. No pad may have more than one parent pad (Figure
4.3). Pads are decomposable persistent objects. You can easily decompose any composite
pad by simply peeling off the primitive or composite pad from its parent pad.

4.2.2 Paste Operation and Slot Connection

Figure 4.4 shows a bookshelf and books that are all constructed by pasting various primi-
tive pads. The opened book shows text items with scroll bars on both pages, and a map of
Japan with several bar meters on the right-hand page. The scroll-bar pads and the bar-me-
ter pads actually share the same function that detects the mouse location and sends the un-

4.2 INTELLIGENTPAD ARCHITECTURE 71

MVC

Controller ModelView message

sending

update propagation
message

sending

Figure 4.2 The internal structure of each pad.

P3P2

P1
P3

P2

P1

Figure 4.3 Application linkages in the media-based architecture.

tan-4.qxd 5/15/2003 3:39 PM Page 71

derlying pad a value between 0 and 1 depending on the detected relative location. There-
fore, you could replace the scroll bar with a copy of one of the bar meters (Figure 4.5).
When you paste a bar meter onto a text pad, you have to connect this bar meter to the text
pad’s text-scrolling function. You can specify this connection just by selecting the “scroll”
slot from the list of slots defined by the text pad.

A list of slots defines the application-linkage interface of each pad. Each slot can be
accessed either by a “set” message—set <slot_name> <value>—or by a “gimme” mes-
sage—gimme <slot_name>. Each of these two messages invokes the respective procedure
attached to the slot. Each slot si may have two attached procedures, proci,set for the “set”
message and proci,gimme for the “gimme” message. The default for proci,set stores the para-
meter value into the slot register, whereas the default for proci,gimme returns the slot-
register value, but more complex procedures can be created by programming if desired.
The slots and attached procedures, set by the developer, define the internal mechanism of
each pad.

When a pad P2 is pasted on another pad P1, IntelligentPad constructs a linkage between
their view parts (Figure 4.6). This defines a dependency of P2 to P1; we call it “a depen-
dency from P1 to P2.” If P1 has more than one slot, we have to select one to associate it
with P2. This selection can be specified on a connection sheet (Figure 4.7). The selected
slot name is stored in a standard variable of the child pad P2 named slotName. A child pad
can send either “set �slotName <value>” message or “gimme �slotName” message to
its parent. The up arrow before slotName means that the slot name stored in slotName be-
comes the real parameter. A pad that is a parent to one or more children can inform the

72 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.4 Composite pads define a bookshelf and books.

tan-4.qxd 5/15/2003 3:39 PM Page 72

children of changes to its own state by sending the “update” message (which has no argu-
ments). The interpretation of the update message again depends on the implementation of
the sender and the receiver pads. It is usually used to inform the child pads of a parent’s
state change.

In the definition of pads, programmers use “pset <value>” and “pgimme” messages,
which the IntelligentPad kernel automatically converts to “set �slotName <value>” and
“gimme �slotName” messages. Therefore, programmers can define a pad without speci-
fying which pad it communicates with.

4.2 INTELLIGENTPAD ARCHITECTURE 73

Figure 4.5 The replacement of a scroll bar in a text page with a bar meter.

MVC

Controller ModelView message

sending

MVC

↓gimme [<slot_name>]

↓set [<slot_name>] <value>

↑update

P1

P2

Figure 4.6 The standard message interface between pads.

tan-4.qxd 5/15/2003 3:39 PM Page 73

IntelligentPad allows us to disable some of the three standard messages, “set,”
“gimme” and “update,” on the connection sheet. If we disable “gimme” and “update,” the
child pad works as an input device to its parent pad. If we only disable the “set” message,
the child pad works as an output device of the parent pad; its output value is automatically
updated whenever the parent pad changes its state. If we disable both the “set” and “up-
date” messages, the child pad works as an on-demand output device: Its output is not au-
tomatically updated by the parent pad’s state change; it reads the parent pad’s slot and out-
puts the value whenever it is requested.

The two messages “set s v” and “gimme s” sent to a pad P are forwarded to its parent
pad if P does not have the slot s. We call this mechanism message delegation.

Besides the three slot-related messages mentioned above, any pad can send additional
standard messages for geometrical operations to its parent as well as to its child pads. These
include “move,” “copy,” “delete,” “hide,” “show,” “open,” “close,” “resize,” and “paste” mes-
sages. These messages can be applied to pads without specifying a slot connection. The set
of these standard messages with the slot-related ones defines the standard interface of pads.

4.2.3 IntelligentPad as a Meta-Tool

Figure 4.8 shows another example set of pads. Pulleys and springs on the right-hand of
Figure 4.8(a) are animated by transparent pads. By pasting these pads together, you can
easily connect animated springs and pulleys. When pasted together, two pads automatical-

74 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.7 Specification of a slot connection on a connection sheet to connect a bar meter to the
scroll slot of the underlying text pad.

tan-4.qxd 5/15/2003 3:39 PM Page 74

ly adjust the location of their animated parts so that these parts work as if they are directly
connected. These springs and pulleys constitute a construction set for a microworld,
wherein learners can play with a given set of objects; furthermore, they can decompose
these objects, and recombine their components to create new objects.

Any pad accepts “copy” and “shared-copy” requests. Shared copies of the same pad
share the same state. The state of a primitive pad is defined as the state of its model part.
Therefore, shared copies of a primitive pad share the same model object. The state of a
composite pad is defined as the state of the base pad. Therefore, shared copies of a com-
posite pad share the same model object for their base pads. Shared copies, however, can-
not share a user event applied to one of them except insofar as it changes the shared state.
A user event may change the pad view without changing its state. For example, it may
change only the relative location of a component pad in a composite pad. To share events
such as this, we require an event-sharing mechanism. To be applicable to any pad and any
event, the event-sharing mechanism should be provided as an independent generic func-
tion. In IntelligentPad architecture, every independent generic function should be imple-
mented as an independent pad so that its generic actions can be applied to arbitrary pads
according to users’ wishes. The base pad of the leftmost pad in Figure 4.9 works as such
an event-sharing pad. We call it a FieldPad since it represents a field in which all user
events are managed for sharing. In Figure 4.9, the pulley-and-spring pad is pasted on the
FieldPad, and the whole composite pad is duplicated by a shared-copy operation. These
two copies share every user event applied to either of them.

In Figure 4.10, a campus map of our university has been pulled off the bookshelf. It has
pictures of several persons at different sites. Each picture is actually a pad clipped into
that shape. This clipping facility is also provided as a shape-mask pad. When a pad is
pasted on a shape-mask pad, it is clipped into the shape of this shape-mask pad. Each pic-
ture pad on the campus map can transport any pad to an a priori specified IP address. If
you want to send one of the shared copies in Figure 4.9 to one of the persons shown on the
campus map, you can just drag this copy to the person’s picture and drop it there. The

4.2 INTELLIGENTPAD ARCHITECTURE 75

Figure 4.8 Connections of springs and pulleys that are animated by transparent pads. (a) Compo-
nent pads representing springs and pulleys. (b) A composition with pads from (a).

(a) (b)

tan-4.qxd 5/15/2003 3:39 PM Page 75

76 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.9 Shared copies of a FieldPad with arbitrary pads on it share all the user events applied
to any one of these copies.

Figure 4.10 Picture pads on a campus map can send any pads to a priori specified workstations.

tan-4.qxd 5/15/2003 3:39 PM Page 76

copy is automatically sent to the workstation of that person. Shared copies transported
across a network continue to share the same state.

All the pads mentioned above were developed before 1993, and demonstrated at the
TED (Technology Entertainment and Design) 4 Conference organized by Richard Wur-
man in Kobe, Japan in 1993. At this conference, I gave a talk on “From Augmentation
Media to Meme Media,” in which I first proposed the concept of “meme media.”

Figure 4.11 shows toolkit pads for learning elementary functions and geometry. By
peeling and pasting function names, parameters, triangles, circles, or scales in these envi-
ronments, learners can easily design their own experiments and experience the repetitive
think–try–see process.

Figure 4.12 shows an industrial plant simulator. By adding copies of component pads,
the user can easily change the configuration of the plant. Figure 4.13 shows a form inter-
face to a relational database. IntelligentPad works as a form-construction kit for relational
databases and object-oriented databases. The base pad in this figure works as an interface
to the database. Such a pad that works as a proxy of some external object is called a proxy
pad. Such external objects include industrial plants, databases, computer-controlled de-
vices, and numerical computation programs running on supercomputers. A single proxy
pad may relate to more than one external object. A typical example is the view integration
of two different databases: the proxy pad issues mutually related queries to respective data-
bases, and combines the two records retrieved from the different databases to define a sin-
gle record. The proxy pad provides a slot for each attribute of this record. By associating an
appropriate pad with each slot that represents an attribute of this composed record type, you
can define a single form whose items are actually retrieved from two different databases.

Video pads show video cuts. Various video editing tools are available as primitive or
composite pads.

Figure 4.14 shows a research paper. It is, however, not an ordinary static document. In
fact, every formula in it is a pad with a program to calculate the formula. Here we made a
copy of such a formula pad. Every chart stores the data used to plot the chart. You can
make a copy of a formula in such a reactive document and paste it onto your own chart
tool pad to evaluate it from your own viewpoint.

These examples include a lot of useful tools. Some are composite pads, some others
are component composite pads, and others are primitive pads. The distribution and the ex-
change of useful tools and documents among users who share the same interests will sure-
ly stimulate the evolution of their scientific culture.

4.2.4 Pads as Meme Media

Pads can be easily replicated and edited. Furthermore, they can be easily transported from
one system to another via networks or off-line media. If the source and destination sys-
tems share the same class library, the transport of a composite-pad instance sends the des-
tination system only the pad type ID and the current state of each component primitive
pad together with the composition structure; this set of information is called the save-
format information of the pad, since it is used to save and load this pad to and from a file.
If the systems do not share all the required classes, transportation requires the inclusion of
some class definitions.

However, the transportability of pads is not sufficient for the distribution and exchange
of pads among users. This in itself will not form a meme pool. We need an open market-
place where each end-user can display, browse, sell, buy, and exchange various pads.

4.2 INTELLIGENTPAD ARCHITECTURE 77

tan-4.qxd 5/15/2003 3:39 PM Page 77

78 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.11 Microworlds for learning elementary functions and geometry.

tan-4.qxd 5/15/2003 3:40 PM Page 78

4.2 INTELLIGENTPAD ARCHITECTURE 79

Figure 4.12 An industrial plant simulator developed as a composite pad.

Figure 4.13 A form interface to a relational database.

tan-4.qxd 5/15/2003 3:40 PM Page 79

4.3 WORLDWIDE MARKETPLACE ARCHITECTURES FOR PADS

Our first open-marketplace architecture uses WWW and Netscape Navigator. The WWW
works as a worldwide pad repository, and Netscape Navigator provides for a hypermedia
catalog of pads to navigate this repository [5, 6]. We assume that every site in the commu-
nity of our concern installs an IntelligentPad system with the same class library. As shown
in Figure 4.15, each page displayed in Netscape Navigator describes some pad using text
and images. In addition to the ordinary functions of Netscape Navigator, this catalog has
the following extended functions. Pad names in textual descriptions and visual images of
pads work as special anchors. A mouse click on one of these special anchors will pop up a
new window with a copy of the requested pad. The original of this pad may be stored any-
where in the world, using the save format described above. When an anchor is clicked,
Netscape Navigator issues a file transfer request to the WWW server at this remote site.
After a while, the local Netscape Navigator receives this file, and then invokes the Intelli-
gentPad system to reconstruct the pad using its save-format information. This reconstruc-
tion does not differ from the pad reconstruction process necessary for the loading of a pad
from a local file.

This mechanism is quite easily implemented using Netscape Navigator’s facility for
mapping a customer-defined file-name extension to an invocation of an application pro-

80 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.14 A composite pad representing a reactive research paper.

tan-4.qxd 5/15/2003 3:40 PM Page 80

gram. We used “pad” as the customer-defined file-name extension, and mapped this to the
invocation of a special file loader in the IntelligentPad system. Although the implementa-
tion mechanism is quite simple, it has opened a new vista in the distribution and exchange
of knowledge resources.

Our second open-marketplace architecture provides a special web browser pad that
shows HTML files as web pages, and furthermore allows us to embed arbitrary composite
media objects into any web page to publish them through the Internet [8]. Client users
opening this page can directly drag out these embedded media objects into their own envi-
ronments to reuse them there. Chapter 11 describes the details of these open-marketplace
architectures as well as their successors.

4.4 END-USER COMPUTING AND MEDIA TOOLKIT SYSTEM

The IntelligentPad architecture has several versions for implementation. It was first im-
plemented in Smalltalk 80, then in SmalltalkAgents, and also in C++ using InterViews.
Now we have four more commercially developed versions in C++, three for Windows PC,
and the other for Macintosh. Two Windows PC versions are now commercially available

4.4 END-USER COMPUTING AND MEDIA TOOLKIT SYSTEM 81

Figure 4.15 A pad catalog on Netscape, and an IntelligentPad system with a window, including
the downloaded pad.

tan-4.qxd 5/15/2003 3:40 PM Page 81

and their functions are being actively enhanced. The others are now available free as is,
without any further revision.

The Smalltalk 80 version of IntelligentPad has more than 600 primitive pads. Some
may differ from others in minor aspects. They are roughly classified into nine categories,
namely: (1) model pads, (2) view pads, (3) controller pads, (4) data converter pads, (5)
proxy pads, (6) geometrical management pads, (7) generator/consumer pads, (8) pad con-
verter pads, and (9) ornament pads.

A model pad has an application system as its model. Its view has nothing to do with its
function. It is either a blank pad or mapped with some texture. Model pads are usually
used as base pads.

A view pad works as an input and/or output device. It is connected to a slot of another
pad. Figure 4.16 shows a calculator and all of its components. Its base pad is a model pad
that defines all the functions of the calculator, whereas the buttons and the digital display
are view pads.

A controller pad changes the event-dispatch mechanism; it intercepts user events and
applies its own dispatch mechanism to them. The FieldPad is a controller pad, which is
usually blank or transparent.

A data converter pad is inserted between two pads to perform the required data conver-
sion between these two pads; data converter pads are also usually blank or transparent.

A proxy pad works as a proxy of an external object; this external object might be an
application program, a computer-controlled device, a computer-controlled plant system,
or a server system such as a database management system. A proxy pad communicates
with its external object, and is usually blank.

82 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

Figure 4.16 A hand calculator and all of its component pads.

tan-4.qxd 5/15/2003 3:40 PM Page 82

A geometrical management pad manages the geometrical arrangement of its child
pads on itself. Usually, geometrical management pads have no slot connection with their
child pads. A grid alignment pad is an example of a geometrical management pad: when
a pad is pasted onto a grid pad, it moves this pad to align the left top corner of this pad
to the nearest grid point. Figure 4.17 shows another geometrical management pad, a tree
pad, that arranges its child pads at the nodes of a one-level tree. Since a tree pad can
also be put on another tree pad, we can easily construct a tree with an arbitrary number
of levels.

A generator/consumer pad either generates a pad on the screen or hides a pad from the
screen. For example, an anchor pad, when clicked, pops up its registered pad. When
clicked again, it hides this pad. A trash pad eliminates whatever pad is dropped there.

A pad-converter pad accepts a pad as its input and outputs another pad. It processes
pads and converts them to new ones.

An ornament pad is pasted on another pad without any slot connection. It decorates its
parent pad with some chosen texture or lettering.

From the end-users’ point of view, the diversity of the primitive pad library makes it
difficult or even impossible to discover the pads necessary for what they want to con-
struct. Each user can use only those primitive pads whose functions are already familiar to
him or her. Whenever a user uses a new pad, he or she has to consult the manual. There-
fore, a large library of primitive pads by itself will not encourage users to reuse them. For
this reason, the IntelligentPad system provides a large number of sample composite pads.
Some are included in the initial system file, and others are provided by sample-pad Web
pages through the Internet. They cover a variety of application areas, and are indexed with
keywords.

4.4 END-USER COMPUTING AND MEDIA TOOLKIT SYSTEM 83

Figure 4.17 A tree pad arranges its child pads as nodes of a one-level tree. Tree pads can also be
put on another tree pad to define a multiple-level tree.

tan-4.qxd 5/15/2003 3:40 PM Page 83

Suppose that you want to construct a form interface to an Oracle database. By search-
ing the library using the keywords “database” and “form interface,” you may find a sam-
ple composite pad that works as a form interface to some database, say Informix. This
sample tells you that you have to use a database proxy pad corresponding to your data-
base-management system as the base pad. It also tells you that a RecordPad should be
connected to the #currentRecord slot of the base pad, and that the output form can be de-
fined on this RecordPad using various types of view pads. With these guidelines, you can
easily construct your own form interface. Samples work as so-called “patterns.” Christo-
pher Alexander, a postmodern architect, introduced “pattern language” into architectural
design [9]. He decomposed design and planning problems into a series of components,
and listed fundamental “patterns” that can be used to synthesize various architectural
forms. Each pattern is associated with the situation in which it can be applied. This idea is
recently being applied to object-oriented software development [10, 11]. Sample compos-
ite pads provided by the IntelligentPad system play the role of patterns in this sense.

End-users of IntelligentPad are similar to children playing with Lego toy blocks. They
need to get used to the available components and their uses. Lego Group releases more
than 60 new Lego block kits every year into the market. These kits vary from vehicles to
amusement parks, and come with instructions on how to construct them. These kits also
work as patterns. Children start by imitating these sample construction patterns. Then
they gradually get used to the components and their uses, and start to construct their own
original models.

End-users typically are those who do not have the skills, motivation, or resources need-
ed to develop new primitive pads. However, such users can paste and peel existing pads,
and can use IntelligentPad’s other construction facilities—an end-user pad programming
language, an authoring language, and a model description pad. Commercial product ver-
sions of IntelligentPad running on Windows PCs adopt Visual Basic as a programming
language for end-users to develop new primitive pads. The authoring language uses the
metaphor of a stage; it is used to program how to coordinate the behavior of pads on a spe-
cial pad called a StagePad. A program in this language can manipulate all the pads on a
StagePad in the same way as a user might directly manipulate them. It can also read and
write the primary slot value of any pad on the StagePad. Users can interact with these
pads, and the StagePad can be programmed with actions to perform in accordance with
such interaction events. A model description pad works as a model pad. Users can easily
describe the relationships among its data slots using mathematical expressions.

The most difficult task for end-users is the search of the component library and the
sample pad library for existing pads that can help satisfy their requirements. Generally
speaking, search methods can be classified into four categories: (1) browsing, (2) naviga-
tion, (3) quantification of contents, and (4) quantification of context. Quantification of
contents is a search for the objects whose contents satisfy a given condition, whereas
quantification of context is for objects situated in a specified context. IntelligentPad pro-
vides basic facilities to develop these four types of search services.

For browsing pads, we have a catalog pad that looks like a book. Its page shows various
pads with their descriptions. Some of these are actual pads that can be just copied and
reused. Some others are images of pads. Each of these has a URL pointer to a local or re-
mote file storing the corresponding actual pad. When one of these images is clicked, the
corresponding pad is downloaded into a local IntelligentPad environment for reuse. Chap-
ter 11 details the pad catalog architecture. Chapter 19 gives a new framework for organiz-
ing and accessing a huge number of pads.

84 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

tan-4.qxd 5/15/2003 3:40 PM Page 84

Our research group has a special interest in pad catalogs. The situation we will possibly
encounter when IntelligentPad becomes a social infrastructure for the distribution and ex-
change of various intellectual resources will be very similar to our present consumer soci-
ety. Our society is full of consumer products, increasing day by day. There are often many
alternatives available to satisfy a given need; they may have different qualities, different
prices, different designs, additional values, or different prestige. How can we find the
product that satisfies both our needs and our tastes? Our choice is usually based on the in-
formation we obtain about the products, and our society provides various kinds of infor-
mation about new products. Obviously, such information is fundamental to the evolution
of our consumer society. The same is true for pads. The distribution and exchange infra-
structure for pads cannot be formed without the coevolution of new information providers
to publish catalogs of pads in the market.

IntelligentPad also provides hypermedia facilities for navigational search of pads. An
anchor pad can register any pad by holding either the pad itself or a pointer to the pad.
When clicked, an anchor pad pops up its registered pad on the screen. When clicked
again, it hides this pad. An anchor pad is resizable and can be made transparent. It can be
pasted at any location on any pad.

IntelligentPad also provides various database facilities for quantification search of
pads. Our group is undertaking projects on this subject, which will be described in Chap-
ter 10.

4.5 OPEN CROSS-PLATFORM REUSABILITY

One goal of the IntelligentPad project is to provide a social infrastructure for the general
distribution and exchange of intellectual resources. To achieve this goal, the Intelligent-
Pad architecture has been designed to satisfy the following four kinds of openness:

1. Open kernel technology: The kernel system is open to the public as shareware to-
gether with a basic primitive pad library and sample composite pads for typical ap-
plications. In addition, we developed an evaluation version of IntelligentPad and
made its source code public for free reference.

2. Open pad-development library: An API (application program interface) library, suf-
ficiently rich for pad developers to develop new primitive pads, is made available to
the public.

3. Open set of primitive pads: Newly developed primitive pads can be immediately
used in combination with other pads. The set of primitive pads is open for future ex-
tension.

4. Cross-platform compatibility: Pads can be transported across different platforms,
and reused in different environments.

To achieve the last of these, cross-platform compatibility, we have to solve two problems:
how to transport each pad from one IntelligentPad system to another IntelligentPad sys-
tem, and how to cope with different platforms.

Generally speaking, there are three levels of object migration across different systems.
The shallowest level assumes that the two systems share the same class library. In this
case, the migration of an object only requires the transportation of the class name and the

4.5 OPEN CROSS-PLATFORM REUSABILITY 85

tan-4.qxd 5/15/2003 3:40 PM Page 85

state of this object. This mechanism cannot be used for sending any object whose class de-
finition is not already installed on the destination system.

The middle level of object migration assumes that the two systems share only the basic
common portion of the class library. It is further assumed in this case that each object de-
finition only derives its properties from classes within the basic class library. In this case,
the source system can send any object to the destination. The source sends the definition
code of each object. Such definition codes refer to only those classes within the basic
class library, and can be executed by both of the two systems.

The deepest level of object migration assumes no common class library. In this case,
we have to migrate not only the objects but also all the classes used in their definitions.
Class migration requires special consideration, and causes a performance problem. This is
addressed in later chapters.

The current IntelligentPad systems support the middle level of pad migration and,
hence, as a special case, the shallowest level. They cope with pad migration across dif-
ferent platforms by programming at the API level. Our project specified the API of the
pad programming. This API includes not only the pad manipulation functions for slot
access and geometrical management of pads, but also the event dispatching and the dis-
play redrawing functions that are specially defined for user interaction with pads. We
jointly developed commercially available versions of IntelligentPad with Fujitsu and
Hitachi Software, for Windows PC and Macintosh. They shared the same API and the
same basic class library. They were mutually compatible systems. The two most recent
versions for Windows PC, available from Hitachi Software and K-Plex Inc., however, are
not mutually compatible with each other. Each of them independently supports the mid-
dle level of pad migration. Pads in each version can migrate between two machines run-
ning this version.

4.6 REEDITING AND REDISTRIBUTION BY END-USERS

IntelligentPad was often viewed by the mass media as do it yourself (DIY) software [12].
It is true that we can compose a new tool just by combining existing pads, as long as this
composition requires no new components. However, although some versions of Intelli-
gentPad provide an end-user pad programming language, an authoring language, and/or a
model description pad, it is still difficult for the majority of end-users to develop new
pads. To alleviate this difficulty, various sample composite pads can be provided for typi-
cal applications. This will be done by vendors, by volunteers, and even by users them-
selves. If these samples are distributed among users, users need not always compose their
application tools from the basic components. Users can use an appropriate sample as their
base, rearrange its component pads, or replace one component with another to compose
what they need. This is no longer a programming process; it is an editing process or, more
strictly speaking, a reediting process. The reediting of composite pads representing vari-
eties of documents and tools will yield new documents and tools as composite pads.
These new composite pads also work as good samples for users’ pad composition. So they
too should be published by their composers, namely by end-users. Therefore, it is impor-
tant for IntelligentPad to allow not only pad vendors to distribute their pads, but also end-
users to redistribute reedited pads to other users. The facilities for end-users to reedit and
to redistribute pads are the most fundamental functions of the IntelligentPad system.

86 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

tan-4.qxd 5/15/2003 3:40 PM Page 86

Without them, IntelligentPad could not hope to satisfy its user community. These are fun-
damental for pads to work as meme media.

Assuming that there emerge just 1000 pad programmers around the world, and that
each of them would develop, say, three primitive pads a year. The total number of primi-
tive pads would increase by 3000 pads every year. Within three years, we would have 9000
different primitive pads of a sufficiently large variety. Suppose, then, that we may have
1,000,000 users who can reedit and redistribute pads, and that each of them might com-
pose five different pads a year. Then we will have a 5,000,000 increase of composite pads
every year, pads that we will be able to work with and reedit for different uses. This is an
enormous number. Furthermore, this is not a dream.

The realization of this, however, presents several problems from the business point of
view. How can venders do business? Does this scenario conflict with someone’s business
strategy? The first issue can be approached by shifting from pay-per-copy billing to pay-
per-use billing. Many proposals for the implementation of pay-per-use billing are already
emerging, as will be discussed in Chapter 12. The second question causes a much more
difficult problem. It is obvious that users desire open systems that allow not only the reuse
of objects but also the reediting and the redistribution of objects. The author of this book
believes that there are only two possible scenarios. The first scenario assumes the symbio-
sis of different platform providers, whereas the second assumes the convergence of differ-
ent platforms to a single one. The author has no answers to the question of which scenario
will actually play out. However, he believes that the first scenario is much healthier for the
competitive coevolution of our technologies.

Current WWW technologies provide a worldwide publication repository for people to
publish their multimedia documents in HTML, to navigate through those published by
other people, and to browse any of them. You may embed any tools or services in your
published HTML document. To define such services, you may set up servers such as data-
base servers, file servers, and application servers.

Although the current Web technologies have allowed us to browse huge accumulations
of intellectual resources published on the Web, we have no good tools yet to flexibly reed-
it and redistribute these intellectual resources for their reuse in different contexts. We need
OHS (open hypermedia system) technologies for the advanced reuse of Web-published in-
tellectual assets. Meme media technologies will work as such OHS technologies to anno-
tate Web-published resources, and to reedit and redistribute some portions of their copies
with embedded tools and services, without changing their originals, for their reuse in dif-
ferent contexts together with different applications [23, 24].

In Section 11.9, we apply our 2D meme media technologies for the reediting and re-
distribution of content in Web pages. These Web contents include live content and Web
applications. Live content denotes content that autonomously changes its state. Meme
media technologies allow us to reedit and to redistribute live content and Web applica-
tions as well as static multimedia content [24]. Users need not edit HTML definitions of
Web documents. Users can easily extract any document components through drag-
and-drop operations, and paste them together on the screen to define both the layout and
the functional linkages among them. Web content extracted from Web documents will
become reeditable and redistributable objects when wrapped with pad wrappers. You
may send reedited Web content across the Internet by attaching it to an e-mail.
Recipients with IntelligentPad installed in their platforms can reuse, further reedit, and
redistribute Web content.

4.6 REEDITING AND REDISTRIBUTION BY END-USERS 87

tan-4.qxd 5/15/2003 3:40 PM Page 87

4.7 EXTENSION TOWARD 3D REPRESENTATION MEDIA

Although pads in IntelligentPad are 2D representation media, the idea and the basic archi-
tecture of IntelligentPad can be also applied to develop 3D media components. We call
such 3D components “boxes,” and have developed a 3D meme media system architecture
called IntelligentBox [25, 26]. Chapter 18 of this book will give the details of this system
architecture. The ideas of IntelligentPad can be similarly applied to IntelligentBox as fol-
lows.

1. Each component is wrapped by a 3D representation wrapper with a list of slots as
its standard functional linkage interface to other components.

2. Each component has an MVC architecture.

3. View linkage among components can be used to define composite 3D objects.

4. Each component in a composition has no more than one parent component, and can
access no more than one of this parent’s slots.

5. The updating of components propagates from each component to its child compo-
nents.

6. Components and their compositions work as meme media, and their worldwide
repository forms a meme pool.

Boxes may have arbitrary internal functions as well as arbitrary 3D visual display func-
tions. Different functions define different boxes. Composite boxes are also simply re-
ferred to as boxes, unless this causes any confusion. Just as pads in IntelligentPad can rep-
resent not only multimedia documents but also application tools, boxes in IntelligentBox
can represent not only computer animation graphics, but also various tools, including
server systems, application systems, and their environments. Boxes can also represent in-
formation visualization systems and scientific visualization systems as compositions us-
ing animation boxes, application system boxes, and proxy boxes for computation servers
or database servers. IntelligentBox allows us to integrate computer animation with infor-
mation visualization and scientific visualization.

The right-hand side of Figure 4.18 shows a simple example of a composite box using
some primitive boxes shown in the left-hand side of this figure. In this example, the motor
of a car is implemented as a counting process having a cylindrical shape. Its model has an
integer-value slot, and works as an incremental counter. The ToggleButtonBox connected
to the #startStop slot of the motor works as a toggle-button switch to start and stop this
counting process. When the toggle-button is pushed down, and the #startStop slot of the
motor therefore becomes true, the motor regularly and continuously increases its slot val-
ue in unit steps until the #startStop slot becomes false again. The example composite box
has two toothed wheels. Each of them is put in a transparent RotationBox. One of the two
RotationBoxes is defined as a child of the motor box, while the other is defined both as a
child of the former, and as the parent of the long shaft with two rear wheels. The motor
box sends its child, RotationBox, an “update” message whenever it increases its counter
value, which makes RotationBox issue a “gimme” message to read out the counter value
and rotate itself to the angle proportional to this value. Whenever the first RotationBox ro-
tates, it sends the second RotationBox an “update” message, and makes it also rotate. If
these two toothed wheels have different numbers of teeth, we may insert a transparent
converter between these two RotationBoxes to change their ratio of rotation speeds.

88 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

tan-4.qxd 5/15/2003 3:40 PM Page 88

4.8 SUMMARY

This chapter has briefly introduced our approach to the technologies that enable meme
media to work on networked computing environments, and has proposed 2D and 3D
meme media architectures—IntelligentPad and IntelligentBox.

IntelligentPad represents each component as a pad, which looks like a sheet of paper
on the screen. IntelligentPad applies a compound-document architecture to both multime-
dia documents and software components. It defines functional linkage between two com-
ponent objects by physically embedding one component into the other in the framework
of compound documents, namely, a pad can be pasted onto another pad. This physical
containment relationship also defines a functional linkage between these two pads. Com-
ponent pads can be pasted together to define varieties of multimedia documents and tools
as composite pads. Such a composition defines not only the physical layout of compo-
nents in a composed pad, but also the functional linkage among these components. Unless
otherwise specified, composite pads are always decomposable to their component pads.

Although pads in IntelligentPad are 2D representation media, the idea and the basic ar-
chitecture of IntelligentPad can be also applied to develop 3D media components. We call
such 3D components “boxes,” and have developed a 3D media system architecture called
IntelligentBox.

In these two systems, each component is wrapped by a 2D or 3D representation wrap-
per with a list of slots as its standard functional linkage interface to other components.
Each component has an MVC architecture. View linkage among components can be used
to define composite objects. Each component in a composition has no more than one par-
ent component, and can access no more than one of this parent’s slots. The updating of
components propagates from each parent component to its child components. Compo-
nents and their compositions work as meme media, and their worldwide repository forms
a meme pool.

4.8 SUMMARY 89

Figure 4.18 Primitive boxes in IntelligentBox, and an interactive composite box composed with
these primitive boxes.

tan-4.qxd 5/15/2003 3:40 PM Page 89

REFERENCES

1. Y. Tanaka and T. Imataki. IntelligentPad: A hypermedia system allowing functional composi-
tion of active media objects through direct manipulations. In Proceedings of IFIP ‘89, pp.
541–546, 1989.

2. Y. Tanaka. A toolkit system for the synthesis and the management of active media objects. In
Proceedings of Deductive and Object-Oriented Databases, pp. 76–94, 1989.

3. Y. Tanaka. A synthetic dynamic-media system. In Proceedings of the International Conference
on Multimedia Information Systems, pp. 299–310, 1991.

4. Y. Tanaka, A. Nagasaki, M. Akaishi, and T. Noguchi. Synthetic media architecture for an ob-
ject-oriented open platform. In Personal Computers and Intelligent Systems, Information Pro-
cessing 92, Vol. III, North Holland, pp. 104–110, 1992.

5. Y. Tanaka. From augmentation to meme media. In Proceedings of ED-MEDIA 94, pp. 58–63,
1994.

6. Y. Tanaka. From augmentation media to meme media: IntelligentPad and the world-wide repos-
itory of pads. In Information Modelling and Knowledge Bases, Vol. VI (ed. H. Kangassalo et al.),
IOS Press, Amsterdam. pp. 91–107, 1995.

7. Y. Tanaka. A meme media architecture for fine-grain component software. In Object Technolo-
gies for Advanced Software (ed. K. Fuiatsugi and S. Matsuoka), Springer-Verlag, New York, pp.
190–214, 1996.

8. Y. Tanaka. Meme media and a world-wide meme pool. In Proceedings of ACM Multimedia 96,
pp. 175–186, 1996.

9. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A Pat-
tern Language. Oxford University Press, New York, 1977.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, 1995.

11. F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, Chichester, UK, 1996.

12. B. Johstone. DIY Software. New Scientist, 147, 1991, 26–31, 1995.

13. D. Flanagan and P. Ferguson (eds.). JavaScript: The Definitive Guide. O’Reilly & Associates,
Sebastopol, CA, 2001.

14. P. Lomax and R. Petrusha (eds.). VB and VBA in a Nutshell. O’Reilly & Associates, Sebastopol,
CA, 1998.

15. S. Brown, L. Kim, J. Falkner, B. Galbraith, R. Johnson, R. Burdick, D. Cokor, S. Wilkinson and
G. Taylor. Professional JSP. Wrox Press, Chicago, 2001.

16. A. K. Weissinger and R. Petrusha (eds.). ASP in a Nutshell. O’Reilly & Associates, Sebastopol,
CA, 2000.

17. J. Hunter and W. Crawford. Java Servlet Programming. O’Reilly & Associates, Sebastopol, CA,
2001.

18. S. Gundavaram and A. Oram (eds.). CGI Programming on the World Wide Web. O’Reilly & As-
sociates, Sebastopol, CA, 1995.

19. L. Wall and M. Loukides (eds.). Programming Perl, 3rd edition, O’Reilly & Associates, Se-
bastopol, CA, 2000.

20. Java 2 Enterprise Edition. http://java.sun.com/j2ee/tutorial.

21. W3C Consortium. Workshop on Web Services. http://www.w3.org/2001/01/WSWS, 2001.

22. D. Box et al. Simple Object Access Protocol (SOAP) 1.1, W3C NOTE, http://www.w3.org/TR/
SOAP/, 2000 (The latest version is available at http://www.w3.org/TR/soap12/.)

23. Y. Tanaka, J. Fujima, and T. Sugibuchi. Meme media and meme pools for re-editing and redis-

90 AN OUTLINE OF INTELLIGENTPAD AND ITS DEVELOPMENT HISTORY

tan-4.qxd 5/15/2003 3:40 PM Page 90

tributing intellectual assets. In Hypermedia: Openness, Structural Awareness and Adaptivity,
Springer L NCS 2266, 28–46, 2002.

24. Y. Tanaka, D. Kurosaki, and K. Ito. Live document framework for re-editing and redistributing
contents in WWW. In Proceedings of 12th European–Japanese Conference on Information
Modelling and Knowledge Bases, Krippen, Germany, 2002

25. Y. Okada and Y. Tanaka,. IntelligentBox: A constructive visual software development system
for interactive 3D graphic applications. In Proceedings of the Computer Animation 1995 Con-
ference, pp. 114–125, 1995.

26. Y. Okada and Y. Tanaka. Collaborative environments of intelligentBox for distributed 3D
graphics applications. The Visual Computer CGS, special issue 14(4): 140–152, 1998.

REFERENCES 91

tan-4.qxd 5/15/2003 3:40 PM Page 91

CHAPTER 5

OBJECT ORIENTATION AND MVC

Before going into the details of meme media technologies, we need to know basic con-
cepts and frameworks of the object-oriented way of describing and developing software
systems. This chapter provides a brief introduction to object orientation based on the au-
thor’s view, which works as a basis for readers to understand the subsequent chapters.

The large and rapid shift toward object orientation in 1990s was driven by users’ un-
ending demands both for more functionality from their computing systems, and for sim-
pler, easier to use computing environments. Computing environments with increased
functionality and ease of use require more complex underlying systems, and more lines of
code to be organized, managed, and maintained. This calls for software development that
is more rapid, less expensive, and more flexible.

Object orientation aims to provide better paradigms and tools for:

1. Modeling a real world as close to a user’s perspective as possible

2. Interacting easily with a computational environment, using familiar metaphors

3. Constructing reusable software components and easily extensible libraries of soft-
ware modules

4. Easily modifying and extending implementations of components without having to
recode everything from scratch

Object orientation attempts to satisfy the needs of both end-users and developers of soft-
ware products. This is accomplished via real-world modeling capabilities.

Chapter 5 gives a brief introduction to object orientation and its generic system archi-
tecture. A special object-oriented programming framework is used to define visual objects
that interact with their users. This framework is called MVC (model, view, and controller),
and is extensively used to define modern window systems. Our meme media architectures
described in later chapters are also based on the MVC framework.

92

tan-5.qxd 5/15/2003 3:51 PM Page 92

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

5.1 OBJECT-ORIENTED SYSTEM ARCHITECTURE—A TECHNICAL
INTRODUCTION

In object orientation, a system is not considered as a set of procedures and subroutines in-
voked by them. Instead, a system is viewed as a model of a real world with entities and
events. Entities of a real world such as a memo pad, a pen, and an eraser are all modeled
as objects, and each event in this real world is modeled as a message sent from one object
to another. Each object can interpret a set of messages and provide appropriate responses.
This set is called the interface of the object. Each object responds to a message either by
changing its state or by sending further messages to other objects.

Some objects may have their graphical representations on a display screen. User de-
vices such as a mouse and a keyboard are considered resource objects. The object that re-
ceives a user event through such a resource object is called the target object of the event.
User manipulation of these resource objects either results in messages sent directly to the
target object, or causes state changes that the target object can later query to detect the oc-
currence of this user manipulation. This allows users to directly manipulate graphically
represented objects on a display screen. System events are also considered to be messages
sent from system-resource objects. The system clock and an interval timer are modeled as
system-resource objects. Each of them either interrupts the activity of some other object
by sending messages, or responds to messages sent by other objects.

Objects with their GUI (graphical user interface) representations and their direct-ma-
nipulation capabilities make it possible to introduce familiar metaphors of real-world ob-
jects and object manipulations into computational environments. Examples of such
metaphors include document icons, file folders, a printer icon, a postbox, and a mail-
box—all accessible through drag-and-drop manipulation. For example, a drag-and-drop
operation of a document icon onto a printer icon starts the printing of the document.

Objects are information-hiding modules; they are encapsulated. The user only needs to
know their interfaces. Assembling objects to create some system requires only the knowl-
edge of their interfaces. This requires only the specification of message flows among
these objects. Each object works as a component of the assembly. The developer of each
component object may be different from the developer of other component objects, and
also from the person who assembles these objects into some system. Objects can be used
as elements of more than one system; they form an extensible library of reusable software
components.

Increasing demand for object orientation has spurred the development of a variety of
object-oriented languages. Such languages, however, have to deal with object-oriented de-
scribing, as well as with object-oriented modeling. Real worlds have only entities as ob-
jects, whereas their descriptions may deal not only with entities as objects but also their
properties or the descriptions of these properties as objects. The same property might be
shared by more than one entity. Entities sharing the same property form a conceptual
group. This group has both its extensional meaning as a set of entities and its intentional
meaning as a category. A pen, for example, is an entity, whereas the word “pen” denotes a
category.

Categories in our conceptual space are related to each other through various relation-
ships such as “is-a” relationships. A relationship “A is-a B” holds between two categories
if the property of B is satisfied by the property of A. Many language designers have treat-
ed both entities and categories as objects. Entities are called instance objects, or just ob-
jects, whereas categories are called class objects, or just classes. Classes allow us to treat

5.1 OBJECT-ORIENTED SYSTEM ARCHITECTURE—A TECHNICAL INTRODUCTION 93

tan-5.qxd 5/15/2003 3:51 PM Page 93

properties as objects, which further allows us to reuse not only instance objects but also
their classes in programming. Suppose that a relationship “A is-a B” holds between two
classes. The class B is called a superclass of the class A, and A is called a subclass of B. In
this case, the description of A can reuse the description of B, and only needs to specify the
additional part of the property. This reuse of property description is called property inher-
itance.

In object orientation, the property of an object is specified by the set of messages it ac-
cepts and its response to each of these messages. The response definition for each mes-
sage is called the method of the message. The “is-a” relation among classes defines a hi-
erarchy of classes with more general classes at higher levels and more specific classes at
lower levels. Each class is defined by specifying its set of messages and its method for
each of these messages. Property inheritance allows the programming of each object to
inherit the specification of some of its messages from its superclass unless otherwise
specified in its definition. The specification of each message includes its name, format,
and method.

Property inheritance also allows us to define a new class by reusing the definition of an
already defined similar class. We can just define this new class as an immediate subclass
of the similar class. Then we need to specify only the new additional messages as well as
those that are defined by the superclass but need to be modified. The redefinition of some
superclass messages by a subclass is called message overloading or, simply, overloading.
The addition and the overloading of messages provide an easy way to modify and extend
components without having to recode them from scratch.

5.2 CLASS REFINEMENT AND PROTOTYPING

As described in the preceding section, object orientation models a real world as a set of in-
stance objects sending messages to each other. These objects work as reusable compo-
nents. Their accumulation will form an extensible library of components. The majority of
object-oriented languages, on the other hand, focus on the intentional description of class-
es, and the reuse of class descriptions through the property-inheritance mechanism. Prop-
erty inheritance, however, is not fundamental to object orientation. Furthermore, some ob-
ject-oriented languages have no concept of classes. Self is such a language [1]. Property
inheritance is essentially an object-oriented way of reusing program codes, which need
not be identical to the object-oriented way of modeling a real world. The reuse of descrip-
tion is based on an “is-a” hierarchy among classes, whereas the reuse of objects as
reusable components in a different assembly needs to focus on the composition with in-
stance objects. The former leads to the class-refinement programming paradigm; the latter
to the synthetic-programming paradigm, namely, the prototyping paradigm.

Class-refinement programming starts from the definition of a general class, and gradu-
ally increases the necessary classes as subclasses of already defined classes. Synthetic
programming, namely, the prototyping, uses a library of reusable objects as components,
and combines some of them to compose application systems. The definition of a new
component object may or may not use an object-oriented language. Even if each compo-
nent has its corresponding class, a composed application has no corresponding class.

Class-refinement programming can also define a relationship between a class and its
component classes. For example, the class of technical reports has component classes in-
cluding the title class, the author class, the class of abstracts, the class of chapters, and the

94 OBJECT ORIENTATION AND MVC

tan-5.qxd 5/15/2003 3:51 PM Page 94

class of references. Such relations defined in class definitions are, however, static and de-
fined a priori by developers. They cannot be modified by users playing with objects in this
application environment. Users can assign different instance objects of the specified class
to each placeholder of such a relation. However, they cannot define a new type of compo-
sition by themselves.

The prototyping paradigm provides more functionality to users, allowing them to even
synthesize new objects by themselves, whereas the refinement paradigm provides users
with only those objects and their operations that their developers have defined a priori.

Meme media should exploit the prototyping paradigm so that users can easily replicate
any meme media objects, combine them to compose arbitrary meme media objects, and
recombine composite meme media objects to make new ones. Static composition defined
by a priori described classes cannot cope with the ever-expanding variety of knowledge
fragments and their structures.

5.3 MODEL, VIEW, CONTROLLER

Object orientation, with the aim of modeling a real world as close to a user’s perspective as
possible, and of providing users with familiar metaphors for their easy interaction with a
computational environment, has developed a special framework for graphical representa-
tion and direct manipulation of objects on display screens. Direct manipulation of objects
requires these objects to have their GUI representations on a display screen. In the object-
orientation paradigm, these GUI representations must be implemented as objects, which we
term display objects. An object with its GUI representation may separate its display func-
tion as its display object. The remaining portion forms a model object. Even an object with-
out any GUI capability, when paired with an appropriate display object, becomes a directly
manipulable object. Such an original object works as a model object. A model object and its
display object are functionally combined through the message exchange between them to
form a composite object. Each display object can be further considered as a composite ob-
ject with two component objects. One of these deals with the graphical display output; the
other handles the mouse and keyboard events coming from the user to this display object.
The former is called a view object; the latter is called a controller object.

5.3.1 MVC Construct

The MVC scheme, or the model–view–controller scheme [2], is a standard framework or,
in more precise terminology, a standard pattern used to provide any application object
with both its graphical view on the display screen and direct manipulation capability. It
treats the application object as a “model,” and provides this with two other objects, its
“view” and its “controller.”

The model of an MVC construct can be any object. Its view is responsible for provid-
ing this model object with a visual representation. For example, a view designed for dis-
playing binary trees might display the tree graphically. Alternatively, it might display the
tree textually, with indentation conventions to indicate the hierarchical relationships. You
may even partition the display into several subviews, each designed to display the same
model in a different way or to display a different aspect of the same model.

The controller of an MVC construct is responsible for interfacing between the user and
the model/view. It interprets keyboard characters along with mouse movements and click-

5.3 MODEL, VIEW, CONTROLLER 95

tan-5.qxd 5/15/2003 3:51 PM Page 95

ing. It either handles the interactions locally, passing the information directly to the view
for processing, or performs some local processing before passing the information along. It
is also concerned with activating and deactivating itself. If a view has subviews, each sub-
view has a corresponding controller for handling its own interface interactions.

There are several advantages of using the MVC scheme:

1. The MVC scheme allows a single model object to have more than one view, i.e.,
more than one display representation.

2. The MVC scheme permits views to be used as parts for assembly into larger units.
New kinds of views can be constructed using views as subviews.

3. The MVC scheme permits controllers to be interchanged, allowing different user-
interaction modes, for example, ranging from the expert mode to the nonexpert
mode.

4. The MVC scheme separates input processing from output processing. An input
through one of the multiple views of the same model changes the model state,
which updates all these views and their output.

The MVC scheme specifies not only the use of three objects but also the connections
among them as shown in Figure 5.1. Views have exactly one controller and one model.
They can also have subviews and a superview. Controllers have exactly one view and one
model. Models can have many views associated with them. Each view knows explicitly
about its model and its controller. Each controller knows explicitly about its model and its
view. However, there is no explicit connection from the model to the other two. Neverthe-
less, they must be connected if a change to the model is to be reflected in all of its views.
The simplest solution is for the model itself to explicitly signal the views. This requires
each object that works as a model to be able to easily add a field for keeping track of re-
lated views. This solution is, however, unreasonable since the MVC scheme aims to allow
any object to work as a model.

5.3.2 Dependencies in MVC

The MVC scheme uses either of the following two solutions. Assuming that the total
number of active models in the system is reasonably small, the first solution keeps all ob-

96 OBJECT ORIENTATION AND MVC

M

VCController

Model

View

update propagation

message sending

Figure 5.1 A basic MVC (model–view–controller) framework.

tan-5.qxd 5/15/2003 3:51 PM Page 96

jects playing the role of models in a global identity dictionary of the system. Each model
serves as a key in this dictionary, and associated value is a collection of views on that
model. The second solution provides a model object with a local instance variable for
maintaining its views. A special protocol is provided whereby a model can signal its views
of a change. The model explicitly sends itself a “changed” message. Then the system ac-
cesses either the global identity dictionary or the local instance variable to retrieve the list
of all the views on this model, and then sends each of these views an “update” message.

This generic mechanism can be used for arbitrary dependency maintenance. If a
change of object A may effect a change in object B, we say that there is a dependency
from object A to object B. Object A is termed a sponsor; object B is termed a dependent.
Keeping track of dependent views of models is a particular application of this generic
mechanism.

The dependency maintenance mechanism above maintains a consistency among multi-
ple views of the same model by propagating its state change to all the views, even if the
model is modified only through one of these views or by a separate process.

Sponsors can communicate with their dependents in the following three ways: (1) by
broadcasting a zero- or one-parameter message, (2) by indicating that they have changed,
or (3) by requesting that they be allowed to make a change. The first and second methods
use “changed” (and hence “update”) messages with and without parameters, whereas the
third uses “changedRequest” (and hence “updateRequest”) messages with and without
parameters. An “updateRequest” message to a dependent returns “true” if the sponsor
should be allowed to update itself; otherwise, it returns “false.” If the message takes a pa-
rameter, the recipient takes this into account when returning a value.

Dependents, on the other hand, react either to an “update” command or to a query by a
sponsor asking for permission to modify itself.

A complex view may consist of several subviews, each in turn potentially containing
additional subviews. The individual views in the hierarchy are explicitly connected as
shown in Figure 5.2. If view B is above view A in such a hierarchy, as shown in this fig-

5.3 MODEL, VIEW, CONTROLLER 97

M

VC

Subview CSubview B

Controller C

Controller A

Controller B

Model A

View CView B

View A

VC VC

Subview C

Subview B

View A

Figure 5.2 A view hierarchy and its MVC-implementation structure.

tan-5.qxd 5/15/2003 3:51 PM Page 97

ure, B is called a subview of A, whereas A is a superview of B. The root view in the hi-
erarchy is the top-level view. Views are provided with operations for extracting subviews
and the superview if they have any. Controllers, on the other hand, do not form a hier-
archy by themselves. Each of them is associated with a view, and their views may form
a hierarchy.

Meme media represent each media object with a simplified version of the MVC
scheme. The IntelligentPad architecture uses a dependency not only from the model of
each pad to its view, but also from the view of each pad to the views of its child pads.

5.3.3 Pluggable VC

Each controller is always paired with a view, and vice versa. Such a pair is sometimes
called a display object. Each display object has two functions. One is the graphical display
of some aspect of its model, and the other is the response to user events. Many display ob-
jects pop up a menu in response to a mouse event, and then detect which entry is selected
by the mouse. Many display objects display the same type of objects, but deal with differ-
ent models, aspects, and menus. There are two ways to cope with this variety. The first
method creates specialized classes of the single, more general display object class. The
second method uses different instances of the same display object class, but embeds the
different data needed for the different applications in these instances; it uses a generic
class definition with some parameters to deal with different models, their different as-
pects, and different menus. The first method is called the specialization approach; the sec-
ond is called the pluggable VC approach [3]. Earlier versions of Smalltalk were entirely
based on the specialization approach, but the pluggable VC approach later became more
popular.

As mentioned in the previous subsection, a single model may have more than one dis-
play object. Different display objects may have different pop-up menus, and may deal
with different aspects of the same model. They graphically display these aspects. Some
display objects accept users’ input to modify these aspects of the same model. In order to
make each display object independent from these differences, we need to move all the in-
formation about these differences from these display objects to the model. This defines
each display object as a pluggable VC that is parameterized with one model and three
message selectors. The model must respond to these message selectors. For example,
pluggable text display objects can be created from the same generic class TextView by
specifying a model along with three message selectors:

TextView
on: aModel
aspect: aspectSelector
change: changeSelector
menu: menuSelector

These selectors (actually symbols) must be designed to perform the following tasks.

1. “aspectSelector” (no parameters) is used to specify an aspect of the model. It
should return the value of the model’s aspect.

2. “changeSelector” (one parameter) must update the model in response to a user
modification in the display object. Its parameter is the revised value for the model’s

98 OBJECT ORIENTATION AND MVC

tan-5.qxd 5/15/2003 3:51 PM Page 98

aspect. The model has the option to accept or neglect the change. If it accepts, the
method should return “true,” otherwise “false.”

3. “menuSelector” (no parameter) must return a menu as an object.

The parameterized class definition for these pluggable display objects can use “model
perform: aspectSelector” to obtain the model aspect, “model perform: changeSelector
with: newAspect” to modify this aspect with a new value, and “model perform: menuSe-
lector” to obtain the menu selector. This definition is generic in the sense that it does not
directly use any model-specific messages.

To accommodate the view, the model must be provided with the following methods for
these messages, and with some additional ones.

1. An “aspectSelector” that returns its specified aspect as an object

2. A “changeSelector” that accepts a modified value of the specified aspect as an ob-
ject, and returns “true” or “false” depending on whether or not the change request
was accepted and made

3. A “menuSelector” that returns a menu as an object

4. External changes to the model that affect the aspect being viewed should send a
“self changed: aspectSelector” message. This message is issued only if the model’s
aspect becomes different from its previous version

5. A method “changeRequestFrom: aView” that returns a Boolean indicating
whether or not the display object is allowed to change the model’s aspect

These mechanisms for pluggable display objects permit application-specific behaviors
to be added to these display objects without having to construct specialized classes for
these objects. These display objects can be plugged onto any object if it is provided with
the above-mentioned methods. In order to plug a pluggable display object onto some
model, we only need to specify its model parameter and its three message selector para-
meters using “on: aspect: change: menu:.”

In meme media systems, each primitive meme media object is atomic. Pads are atomic
in IntelligentPad. Meme media objects need not exploit the pluggable VC approach. Such
exploitation, however, allows the developer to provide the library of display objects inde-
pendently from the library of model objects, which allows pad developers to combine an
arbitrary display object with an arbitrary model object to define a new primitive pad. The
pluggable VC mechanism is used only by pad developers, not by pad users. IntelligentPad
architecture, however, exploits the pluggable connection between a pad and its child pads.
Users can use this pluggable connection to compose and decompose composite pads.

5.4 WINDOW SYSTEMS AND EVENT DISPATCHING

Easy interaction with entities in a computational environment using familiar metaphors
requires not only their object-oriented graphical representation, but also their reactiveness
to user events. Typical user events are mouse events and keyboard events. These should
normally be applied to the outermost graphical object at the mouse cursor location. Some
objects may be able to grab these events when they are changed to their event-grabbing
mode. Such a mode change is also specified by a mouse event. Different events may de-

5.4 WINDOW SYSTEMS AND EVENT DISPATCHING 99

tan-5.qxd 5/15/2003 3:51 PM Page 99

fine different event-grabbing modes. For each type of event-grabbing mode, no more than
one object can be simultaneously changed to this mode. While there is one object in some
type of event-grabbing mode, all the user events of this type are applied to this object.
Both the detection of user events and their application to appropriate objects are summa-
rized as the event dispatching, and performed by event dispatchers.

When you have several tasks to perform concurrently, you must have an independent
working environment for each of them. These working environments should be simultane-
ously opened on the display screen. Each has its own graphical objects. Each of these envi-
ronments should remember which graphical object is currently grabbing events, even if the
mouse cursor temporarily leaves this environment. The graphical representation of such an
environment is called a top-level window, i.e., a window that is not subordinate to any oth-
ers. Each top-level window is given an independent process to run its controller. The acti-
vation and deactivation of these processes are coordinated by the window manager.

5.4.1 Event Dispatching

When visual objects are all modeled by MVC triples, their controllers work as event dis-
patchers. The dispatching of events to the outermost graphical object, namely the one
without any subviews, is performed by the following method defined for the controllers of
graphical objects.

ControlActivity
self controlToNextLevel

When this method is invoked, the controller executes the following method to dispatch
the current user event it has received to the controller of its subview that has a mouse cur-
sor in it:

ControlToNextLevel
|aSubView|

aSubView � view subViewWantingControl.
aSubView ~~ nil ifTrue: [aSubView controller startUp]

The same process is repetitively executed by the controller of the subview, which is de-
fined by the following startUp method:

startUp
self controlInitialize.
self controlLoop.
self controlTerminate

where

controlLoop
[self isControlActive] whileTrue: [self controlAcitivity]

Whether the controller is active or not depends on the characteristics of the graphical
object. Here we show the two candidate definitions:

100 OBJECT ORIENTATION AND MVC

tan-5.qxd 5/15/2003 3:51 PM Page 100

isControlActive
“Remains active as long as the mouse cursor is within the view.”
�self viewHasCursor

isControlActive
“Remains active as long as no button is pressed outside the view.”
�status == #active and: [

sensor anyButtonPressed ifTrue: [self viewHasCursor] ifFalse: [true]]

For example, the second definition can be used to grab the keyboard events.
The specific event reactions that are characteristic of each pad are defined by overwrit-

ing the “ControlActivity” method or the “controlLoop” method itself. For example, the
typical “controlActivity” method is defined as follows:

controlActivity
|insideView|

insideView � self viewHasCursor.
sensor redButtonPressed & insideView

ifTrue: [�self redButtonActivity].
sensor yellowButtonPressed & insideView

ifTrue: [�self yellowButtonActivity].
sensor blueButtonPressed & insideView

ifTrue: [�self blueButtonActivity].
super controlActivity

The “xxButtonPressed” method is used to check if the “xx” button is pressed, where-
as the “xxButtonActivity” method defines how to react when the “xx” button is pressed.
The last line of the above method performs the “controlActivity” method for the standard
controller.

In the above discussion, we have assumed that the same single process executes these
methods. The controllers with these methods are used by graphical objects that are run by
the same single process.

Windows are also graphical objects. They are classified into two categories—sched-
uled windows and unscheduled windows. Scheduled windows are given independent
processes, and run independently from other scheduled windows. They correspond to top-
level windows, i.e., windows that are not subordinate to any others. Unscheduled win-
dows correspond to subordinate windows in a multilevel window, and execute as part of
the process associated with the top-level scheduled window. Scheduled windows have
scheduled controllers, whereas unscheduled windows have unscheduled controllers.

Unscheduled controllers are defined similarly to the controllers of graphical objects we
have described above. Scheduled controllers, on the other hand, are defined as follows.

The activation and deactivation of the scheduled window controllers are coordinated
by the window manager. Whereas the process manager is responsible for all processes in
the system, the window manager is responsible for one of them, i.e., the process corre-
sponding to the active window controller. In order for a controller to become active, the
window manager creates a process for it and schedules it. The window manager will not
permit a second controller to be made active while the first is still executing. It maintains
a list of scheduled controllers and chooses one for activation. A process is constructed

5.4 WINDOW SYSTEMS AND EVENT DISPATCHING 101

tan-5.qxd 5/15/2003 3:51 PM Page 101

corresponding to this chosen controller, and it is scheduled for execution. When the
process completes, another controller is chosen, and the algorithm is repeated.

A window process is created and activated by sending the window manager the mes-
sage “searchForActiveController.” This method yields the following two consequences.
(1) One of the scheduled controllers is selected, and a process is created for it. (2) The
process sending the activation message is terminated. The process associated with the
controller to be activated both starts up the chosen controller and then, after it terminates,
chooses a new controller for subsequent activation. The starting-up and the termination of
the chosen controller are done by sending the “startUp” message described above.

Termination of a scheduled controller occurs when the message “isControlActive” to
this controller returns a “false” value. A typical case is leaving a mouse cursor off the cor-
responding view. The condition may vary depending on the definition of this method for
each controller. When the active controller is terminated, the “searchForActiveCon-
troller” method searches the list of scheduled controllers for another scheduled controller
to activate. This new one should be the one that is requesting the activation. It is detected
by the “isControlWanted” message, which returns a true value if the receiver controller,
for example, has the mouse cursor within its view. This condition may also vary depend-
ing on the definition of this method for each controller.

The mechanisms described above activate and deactivate scheduled windows, and dis-
patch user events appropriately to unscheduled windows or graphical objects on sched-
uled windows. Most modern window systems exploit these mechanisms, which are based
on the MVC framework—X-Windows of MIT [4], Sun NeWS [5], and various versions of
Microsoft Windows. Most window systems provide a library of primitive graphical ob-
jects, termed widgets; the library is called a window toolkit. Examples of window toolkits
include Xt of MIT [6], Andrew Toolkit of CMU [7], OPEN LOOK Toolkit [8], Motif
Toolkit [9], and Macintosh ToolBox, Some toolkit systems have object-oriented applica-
tion development frameworks using these toolkits. Such frameworks include MacApp
[10], Actor on top of MS Windows, NeXTStep Application Kit [11], Interface Builder
[12], and HP’s NewWave with Object Management Facility (OMF) and NewWave Office
[13]. Some of these, for example, Interviews [14], its extension Fresco [15], Tcl and the
Tk Toolkit [16], Visual Tcl [17], ET++ [18], and Taligent framework [19] provide their
frameworks with their own toolkits and powerful programming languages. Some object-
oriented application development framework systems with GUI toolkits focus especially
on the integration of different media. Such multimedia toolkit systems include MAEstro
Multimedia Authoring Environment [20], MADE [21], MediaMosaic Multimedia Editing
Environment [22], MediaView [23], CMIFed [24], Mbuild [25], active media approach
[26], and MET++ [27].

5.4.2 Redrawing of Overlaid Windows

Windows and graphical objects may be overlaid on each other. They may redraw them-
selves when they update themselves. The redrawing of one object sometimes damages
what has been drawn by others, which requires the propagation of redrawing among over-
laid objects. Inappropriate redrawing schemes may make the overlaid objects flap on each
other.

Suppose that graphical object A partially covers graphical object B. Both may change
their drawings. Suppose first that the background color of object A is neither transparent
nor translucent. Object A needs to save the damage area image of object B so that it may

102 OBJECT ORIENTATION AND MVC

tan-5.qxd 5/15/2003 3:51 PM Page 102

leave this image when it changes its location. When object B changes its display graphics,
it also needs to notify object A so that it updates the saved damage-area image of object B.
This simple redrawing scheme, however, may make objects B and A redraw the over-
lapped area twice, which may cause flaps of this area. Here the flaps are only caused by
the propagation of the redrawing. This can be solved by using the so-called double-buffer-
ing technique. Redrawing by each object is not directly drawn on the display screen until
the redrawing propagation is completed. Each object redraws itself on an off-the-screen
canvas. The final image after the completion of the redrawing propagation is then sent
from this off-the-screen canvas to the display screen. Some systems allow us to mask a
portion of the redrawing area in order not to redraw this portion. In such a system, object
B can redraw itself without using any off-the-screen canvas, masking the area covered by
object A.

If the background color of object A is transparent or translucent, the above-mentioned
masking method does not work. This case requires a double-buffering technique to avoid
any flaps of the overlapped area. The damage area also needs to be held by object A.

5.4.3 From Windowpanes to Visual Objects

The application of the MVC framework is not restricted to windowpanes; it can be ap-
plied to any visual objects. Recent versions of IntelligentPad systems also applied the pad
framework to arbitrary graphical objects that you may directly put on a desktop or on a
Web top. Kamui-Mintara, a recent Windows PC version developed by Hitachi Software,
allows you to define pads in any shape, and to put them directly on a desktop. You may
paste one of them on another in the same way as in the preceding versions. Plexware, an-
other recent version from K-Plex Inc., allows you to manipulate pads on a Web page.

Among those object-oriented systems using the MVC framework for user-defined
graphical objects, the most interesting recent proposal may be Squeak [28], which is an
open programming language designed especially for personal computing and multimedia.
Using Squeak, you can easily program the behavior of graphical objects, by visually com-
bining slips representing either objects or messages on the display to compose a scenario
for these objects. Squeak is a general-purpose programming language, whereas Intelli-
gentPad is a media framework. Definitely, there are lots of potentialities in using Squeak
as the base language of an IntelligentPad system, which we plan to do in the future.

5.5 SUMMARY

In object orientation, a system is viewed as a model of a real world with entities and
events. Entities are all modeled as objects, whereas each event is modeled as a message
sent from one object to another. Each object can interpret a set of messages and provide
appropriate responses. This set is called the interface of the object. Each object responds
to a message either by changing its state or by sending further messages to other objects.

Some objects may have their graphical representations on a display screen. User de-
vices such as a mouse and a keyboard are considered resource objects. The object that re-
ceives a user event through such a resource object is called the target object of the event.
User manipulation of these resource objects either results in messages sent directly to the
target object, or causes state changes that the target object can later query to detect the oc-
currence of this user manipulation. This allows users to directly manipulate graphically

5.5 SUMMARY 103

tan-5.qxd 5/15/2003 3:51 PM Page 103

represented objects. A special object-oriented programming framework is used to define
visual objects that interact with their users. This framework is called MVC (model, view,
and controller), and used to define modern window systems. Our media architectures de-
scribed in later chapters are also based on the MVC framework.

Objects work as reusable components. Their accumulation will form an extensible li-
brary of components. The majority of object-oriented languages, on the other hand, focus
on the intentional description of classes, and the reuse of class descriptions through the
property-inheritance mechanism. Property inheritance is essentially an object-oriented
way of reusing program codes, which need not be identical to the object-oriented way of
modeling a real world. The reuse of description is based on an “is-a” hierarchy among
classes, whereas the reuse of objects as reusable components in a different assembly needs
to focus on the composition with instance objects. The former leads to the class-refine-
ment programming paradigm, whereas the latter leads to the synthetic-programming para-
digm, namely the prototyping paradigm.

Meme media should exploit the prototyping paradigm so that users can easily replicate
any meme media objects, combine them to compose arbitrary meme media objects, and
recombine composite meme media objects to make new ones.

This chapter has also given a brief introduction to pluggablity of objects, and event-
dispatching/redrawing mechanisms among graphical objects that are overlaid with each
other on a display screen.

REFERENCES

1. D. Ungar and R. Smith. Self: The power of simplicity. In Proceedings of the OOPSLA Confer-
ence, pp. 227–241, 1987.

2. G. Krasner and S. Popo. A cookbook for using the model-view-controller user interface para-
digm in smalltalk-80. Journal of Object-Oriented Programming 1(3): 26–49, 1988.

3. W. R. LaLonde and J. R. Pugh. Inside Smalltalk. Volume II. Prentice-Hall, Englewood Cliffs,
NJ, 1991.

4. R. Scheifler and J. Gettys. X Window System: The Complete Reference to X lib, X Protocol, IC-
CCM, XLFD, 2nd edition. Digital Equipment Corp., 1990.

5. J. Gosling, D. S. H. Rosenthal, and M. J. Arden. NeWS Book: An Introduction to the
Network/Extensible Window System. Springer Verlag, New York, 1989.

6. P. Asente and R. Swick. The X Window System Toolkit. Digital Press, Bedford, MA, 1990.

7. A. J. Palay. Toward an “operating system” for user interface components. In M. Blattner and R.
Dannenberg (eds.), Multimedia Interface Design. ACM Press, New York, pp. 339–355, 1992.

8. D. A. Young and J. A. Pew. The X Window System Programing and Applications with Xt: OPEN
LOOK Edition. Prentice-Hall, Englewood Cliffs, NJ, 1992.

9. D. A. Young. The X Window System Programing and Applications with Xt: OSF/Motif Edition.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

10. D. A. Wilson, L. S. Rosenstein, and D. Shafer. C++ Programming with MacApp. Addison-Wes-
ley, Reading, MA, 1990.

11. NeXT. NextStep Developer’s Library. NeXT, Inc., 1992.

12. B. Webster, The NeXt Book, 2nd edition. Addison-Wesley, Reading, MA, 1991.

13. Hewlett-Packard. HP NewWave Environment General Information Manual. Hewlett-Packard,
Cupertino, CA, 1988.

104 OBJECT ORIENTATION AND MVC

tan-5.qxd 5/15/2003 3:51 PM Page 104

14. M. Linton, J. Vlissides, J., and P. Calder. Composing user interfaces with interviews. IEEE
Computer, 22(2): 8–22, 1989.

15. M. Linton and C. Price. Building distributed user interface with Fresco. The X Resource, 5,
77–88, 1993.

16. J. K. Ousterhout. Tcl and Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

17. D. H. Young The Visual Tcl Handbook. Prentice-Hall PTR, Upper Saddle River, NJ, 1997.

18. A. Weinand, E. Gamma, and R. Marty. ET++—An object-oriented application framework in
C++. Structured Programming, 10(2), 1989.

19. S. Cotter and M. Potel. Inside Taligent Technology. Addison-Wesley, Reading, MA, 1995.

20. G. D. Drapeau. Synchronization in the MAEstro Multimedia Authoring Environment. In Pro-
ceedings of ACM Multimedia ‘93, 1993.

21. I. Herman, G. J. Reynolds, and J. Davy. MADE: A multimedia application development envi-
ronment. In Proceedings of the IEEE International Conference on Multimedia Computing and
Systems, 1994.

22. J.-K. Lin. MediaMosaic—A multimedia editing environment. In Proceedings of UIST ‘92,
1992.

23. R. L. Phillips. MediaView—A general multimedia digital publication system. CACM, 34(7),
1991.

24. G. van Rosum, J. Jansen, K. S. Mullender, and D. C. A. Bulterman. CMIFed: A Presentation en-
vironment for portable hypermedia documents. In Proceedings of ACM Multimedia ‘93, 1993.

25. R. Hamakawa and J. Rekimoto. Object composition and playback models for handling multi-
media data. In Proceedings of ACM Multimedia ‘93, 1993.

26. S. Gibbs. Composite multimedia and active objects. In Proceedings of OOPSLA ‘91, 1991.

27. P. Ackermann. Developing Object-Oriented Multimedia Software Based on the MET++ Appli-
cation Framework. dpunkt—Verlag fuer digitale Technologie GmbH, Heidelberg, Germany,
1996.

28. M. Guzdial and K. Rose. Squeak: Open Personal Computing and Multimedia, Prentice-Hall,
Upper Saddle River, New Jersey, 2002.

REFERENCES 105

tan-5.qxd 5/15/2003 3:51 PM Page 105

CHAPTER 6

COMPONENT INTEGRATION

Although the highly advanced production technologies in use today depend heavily on
computer systems, especially on their software, the production of software today is much
like the production of hand-crafted goods in the nineteenth century. Software develop-
ment is labor intensive; it takes too long to accomplish and costs too much. Once their de-
velopment has been completed, today’s software systems are typically inflexible and diffi-
cult to repair or modify. So-called rapid application development is even worse; it
typically results in ad hoc software architectures that are difficult to scale up and main-
tain.

The highly advanced production technologies of today are the result of factoring out
frequently used mechanisms as standard components and trying to design systems as
compositions with such standard components. Mass production of standard components
by specialized component providers results in the uniformity of their qualities, and sig-
nificantly improves the average quality. The use of components introduces a hierarchy
in the process of designing systems. The detailed design of each component is not re-
ferred to in the scheme of how to assemble components to compose a product. The as-
sembly line is also concurrently designed in the process of designing each composite
product, which allows the designer to optimize the cost performance of the assembling
process.

This chapter provides a brief introduction to software components—the necessity to
reuse existing software components, architectures for defining and assembling them,
frameworks for their visual representation and direct manipulation, and integration of
legacy software systems. We will also focus on the maintainability of composed systems;
flexible composition structures may provide ease of composition, but may result in poor
maintainability.

Components expose only their interfaces, which is usually not sufficient to imagine
how to reuse them. The ways of using each component are not independent from its con-
texts. In this chapter, we will also focus on the use of sample compositions as representa-
tions of component contexts.

106

tan-6.qxd 5/15/2003 3:55 PM Page 106

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

6.1 OBJECT REUSABILITY

Object-oriented programming has opened up two ways of reusing existing software. One
is the reuse of defining codes, and the other is the reuse of running object instances as
components. Software development based on either or both of these two types of reusing
existing software is called component-based software development [1, 2].

The reuse of a code fragment requires knowledge both of its original context and of its
reuse context. One mechanism that allows this type of reuse is property inheritance. This
mechanism assumes a hierarchy of class definitions. For each class, the subclass inherits
its definition code from this superclass with some overriding modifications. Code frag-
ments to be reused are not objects themselves. They are not components since their reuse
requires knowledge of its content details. They are not semantically meaningful units. The
same is true for any code fragment to be newly added. This implies that this method of
reusing codes requires programming expertise. The cost of programming the overriding
portion is roughly proportional to the size of this portion with respect to the whole. This
type of reuse reduces the programming cost only by a constant factor; it cannot signifi-
cantly improve application development performance.

Another mechanism that allows the reuse of codes is the definition of a new class as a
composite class constructed with existing classes. For example, the class of technical re-
ports may have the following component classes—title, author, abstract, chapter, and ref-
erence. Most properties of a composite class are those of the component classes, with
some properties additionally defined. Component classes are just called components.
Here again, the definition of a composite class requires not only programming expertise,
but also knowledge of its components—their messages, message formats, parameter
types, and return value types.

The reuse of running object instances, on the other hand, requires no knowledge of
their content details. It does, however, require a coherent way to functionally combine
these instances to compose a new compound object. Object instances with such a coher-
ent connection mechanism work as application software components, collectively termed
component software, or simply componentware. A sufficiently large library of compo-
nents replaces the programming of codes with the assembly of components.

Furthermore, the composition structures also become reusable if they are appropriately
restricted and kept regular enough to discuss their abstract patterns. This leads to architec-
tural patterns and application frameworks for system development with software compo-
nents.

Meme media should exploit the reuse of running object instances since they are reused
not by programmers but by end-users who have no programming expertise. They should
be provided with a sufficiently large library of components, which should be open for fu-
ture extension by many different component providers.

6.2 COMPONENTS AND APPLICATION LINKAGE
The reuse of running object instances means either their reuse by program codes or by ob-
ject compositions. Their reuse by a program code means that some of their functions and
properties are utilized by a program; the reuse of running object instances by an object
composition means that they can be arbitrarily combined together to define a new com-
posite object. Both cases require each reusable object instance to expose its interface as a
list of message names. Such reusable object instances are called components. Some mes-

6.2 COMPONENTS AND APPLICATION LINKAGE 107

tan-6.qxd 5/15/2003 3:55 PM Page 107

sages invoke methods of components, whereas some others access properties of compo-
nents. Some messages may work as events to components. Some component systems such
as ActiveX Controls [3] and JavaBeans [4] distinguish these different uses of messages.
However, these are all essentially nothing but messages. The use of such an exposed mes-
sage of an application object by a program to invoke its method is called an application
linkage between the program and the application object.

In the reuse of components by a program code, the programmer explicitly specifies
which components to utilize and which of their exposed messages to send to these compo-
nents in order to access their functions (Figure 6.1). The programmer needs to know a pri-
ori the interface of each component he or she reuses.

In the reuse of components by an object composition, the functional connection of one
component to another requires at least that one of them can send a message to the other.
This implies that each component needs to expose its interface so that others can access
its functions through this interface. Furthermore, the reuse of components by an object
composition must guarantee the pluggability of components. Each component in a com-
position should be easily replaceable with another component having similar functionali-
ty. This similar functionality need not be accessed by the same message used to access the
original component’s functionality. This implies that the program of each component
should explicitly specify neither the components it accesses nor the messages it uses to
access their functions. The program of each component must be independent from the
component it may access and from the message it may send to this component.

The functional connection of one component to another is specified outside of any
components’ program codes by a component-integration environment, which is called by
different names such as authoring tool or construction environment. Some component-in-
tegration environments are static, whereas others are dynamic. Static component-integra-
tion environments compose a specified composition during the load-and-link time of re-

108 COMPONENT INTEGRATION

..........

..........

..........

CompB mess(i)
..........
..........

CompC mess(j)
..........
...........

mess(i)

mess(j)

CompC

CompB

program code

CompA

component

exposed message

Figure 6.1 The reuse of components by a program code.

tan-6.qxd 5/15/2003 3:55 PM Page 108

quired components, whereas dynamic component-integration environments can compose
a specified composition during the run time of required components.

The pluggability of components requires each component program to implicitly speci-
fy which other components it accesses and which messages it uses for each of these ac-
cesses. Each component program must define the placeholders for the components it ac-
cesses in a specific composition, and also the placeholders for the messages it uses for
each of these accesses in this composition (Figure 6.2). Placeholders of the former type
are called component placeholders; those of the latter type are called message placehold-
ers. A component-integration environment is used by a composer, i.e., a person who inte-
grates components, to specify the filler for each of these placeholders of the components
that are reused in a composition (Figure 6.3).

Suppose that a component accesses m other components with n different messages.
The program of this component uses m different component placeholders {comp(i)} and n
different message placeholders {message(j)}. Its component access is stated in the pro-
gram as follows:

Disp send: message(j) to: comp(i) with: parameters

Here, comp(i) and message(j) are, respectively, its ith component placeholder and its jth
message placeholder, and Disp denotes a message dispatcher. These placeholders will be
filled in later when a composer specifies a composition using a component-integration en-
vironment. The component placeholders provided by a component are called the plugs of
this component; the number of plugs is referred to as the connectivity of the component.

The simplest model of pluggable components is obtained by restricting each compo-
nent to have only one component placeholder and one message placeholder (Figure 6.4).
Let us call this simplified composition model a “uniplug” composition model. This sim-

6.2 COMPONENTS AND APPLICATION LINKAGE 109

..........

..........

..........

Comp1 mess1
..........
..........

Comp2 mess2
..........
...........

mess(i)

mess(j)

CompC

CompB

program code

CompA

indirect reference
at run t ime

direct reference
at compi le t imecomponent

exposed message

Comp2

mess1

mess2

Comp1

place holders

Figure 6.2 Pluggable components use pairs of placeholders, one for a component ID and the
other for a message.

tan-6.qxd 5/15/2003 3:55 PM Page 109

110 COMPONENT INTEGRATION

..........

..........

..........

Comp mess
..........
..........

Comp mess
..........
...........

mess(i) CompB

program code

CompA

mess1

Comp1

placeholders

Figure 6.4 Pluggable components, each with only one component placeholder and only one mes-
sage placeholder.

..........

..........

..........

Comp1 mess1
..........
..........

Comp2 mess2
..........
...........

CompC

CompB

CompA

Comp2

mess1

mess2

Comp1

M essage
Place

Hol der
message

mess1 message(i)

mess2 message(j)

Comp.
Place

Hol der
Comp.

Comp1 CompB

Comp2 CompC

Component
Integration
Environment
(Component
Integrator)

Figure 6.3 A component integrator is used to specify the place filler for each placeholder of plug-
gable components.

tan-6.qxd 5/15/2003 3:55 PM Page 110

plifies composition specification, which is fundamental in the component integration by
end-users.

Furthermore, you may consider each pair of a component and one of its exposed mes-
sages as an object. Such an object is called a “slot” (Figure 6.5). Now the above-men-
tioned component access statement is replaced with the following.

Disp send: (comp(i), message(j)) with: parameters

This may be further replaced with the following:

Slot of: (comp(i), message(j)) send: parameters

Here, “Slot of: (comp(i), message(j))” becomes a slot when it is evaluated. Now the mes-
sage “send:” is interpreted as a message accepted by any slot. We may further extend the
slots to accept more than one standard message as shown in Figure 6.6, where “sendi:” is
the ith message accepted by any of the slots.

As a special case of this framework, we may restrict the slot accessing messages to the
following two:

Slot set: value
Slot gimme

A “set:” message sends a parameter value to a slot, whereas a “gimme” message requests
a return value from a slot. A uniplug model that exploits this simplest version of the slot
framework is shown in Figure 6.7. As described in the next chapter, our meme media
components exploit this model. The parameter of a “set:” message and the return value of

6.2 COMPONENTS AND APPLICATION LINKAGE 111

..........

..........

..........

Slot1 send: param
..........
..........

Slot2 send: param
..........
...........

slot(j)

slot(i)

Slot2 = slot(j)

Slot1 = slot(i)

CompB
Plug2

plug1slots

slots

CompA

CompB

slots

Figure 6.5 Each pair of a component and one of its exposed messages can be considered as an ob-
ject called a slot. Now the plugging is the binding between the formal name “Slot” and an actual slot
object “slot(i).”

tan-6.qxd 5/15/2003 3:55 PM Page 111

a “gimme” message may have different value types even if they access the same slot. The
pair of these two value types defines the slot type.

Systems for component reuse by program codes do not require component pluggabili-
ty, and provide no standard framework such as component and message placeholders for
the implicit specification of reused components and messages. ActiveX [3] and Java [5]
including JavaBeans [4] both fall in this category. JavaBeans, however, has several com-
ponent integration environment systems such as Java Studio from Sun Microsystems,
JBuilder from Borland, and VisualAge from IBM. Java Studio, for example, uses a wiring
window to define linkages among components, and another separate window to define
the layout of forms corresponding to some components. A form is a display object of a
component, and works as an input/output cell. Most component integration environment
systems separately treat the definition of functional linkages among components and the
layout definition of input/output forms.

Our meme media architecture, IntelligentPad, exploits the uniplug model and the slot-
connection framework for the pluggable connection between a pad and its child pads. Fur-
thermore, it has merged the definition of functional linkages and the layout definition of
input/output forms into pad paste operations.

112 COMPONENT INTEGRATION

..........

..........

..........
.........

Slot send1: param
..........
..........

Slot send2: param
..........
...........

slot(i)

Slot = slot(i)

CompB

plug

slots

CompA

Figure 6.6 A uniplug model that allows each slot to accept more than one standard message.

..........

..........

..........
.........

 Slot set: param
..........
..........

 Slot gimme
..........
...........

slot(i)

Slot = slot(i)

CompB

plug

slots

CompA

Figure 6.7 A uniplug model that allows each slot to accept either a “set” or “gimme” message.

tan-6.qxd 5/15/2003 3:55 PM Page 112

6.3 COMPOUND DOCUMENTS AND OBJECT EMBEDDING/LINKING

As described in Section 2.1.4, the compound-document model was first adopted on com-
puters by desk-top publishing systems. These allowed us to put images, drawings, tables,
and charts into a single text page. Since then, the compound-document model has gradu-
ally increased the variety of embedded components to include animations, video cuts, and
script programs. Now, the compound-document model can put any object in the object-
orientation paradigm into a single document page whenever this object is given an appro-
priate media-component representation (Figure 6.8). Objects in the object-oriented para-
digm are in general reactive. They exchange messages with each other, and some react to
users’ operations. The model with this extension is called the reactive compound-docu-
ment model.

We can put an object into a document page in two ways. The document may contain this
object, or it may contain only a reference pointer to this object (Figure 6.9). The former is
called “object embedding,” and the latter is referred to as “object linking.” Microsoft’s OLE
(Object Linking and Embedding) [6] was named after this. Both ways define the view inte-
gration based on the compound-document model. By the term “compound-document ar-
chitectures,” we simply denote architectures with this view-integration framework based on

6.3 COMPOUND DOCUMENTS AND OBJECT EMBEDDING/LINKING 113

compound documents

toolkit

object orientation

video board

Display PostScript

DTP

presentation I

presentation II

desktop media

IntelligentPad

compound documents, animation

text, chart, table, figure, image

reactive documents

reactive documents, server systems, application programs

synthetic media

multimedia documents, update propagation

compound documents with animation, video, sound

multimedia documents

compound documents with animation

Figure 6.8 From compound documents to the object-oriented compound-document architecture.

tan-6.qxd 5/15/2003 3:55 PM Page 113

the compound-document model. Such compound-document architectures include
Microsoft’s OLE, its extension ActiveX [3], CI Lab’s OpenDoc [7], and HP’s NewWave [8].

Although the original compound document model has only two levels—the text docu-
ment as the first level, and the component objects as the second level—it can be easily ex-
tended to allow each component to have other components on itself. Furthermore, the
base need not be a text document; it may be any component with a media-component rep-
resentation. For example, in the extended compound-document model, a spreadsheet
placed in a text document may have a video component in its cell. This also extends the
compound-document architecture. Unless otherwise specified, in this book, the com-
pound-document architecture refers to the extended compound-document architecture.

The application linkage among components in an extended compound-document may
have a different structure from its view integration structure. The application linkage
among components and the view integration of components may define two independent
structures. Java Studio, a component-integration environment for JavaBeans, for example,
has two windows—one to define a layout of input and output forms, and the other to wire
JavaBeans objects with each other to define application linkage among them. Most com-
pound-document architecture systems exploit the simple compound-document architec-
ture, and separately define the view integration structure and the application linkage
structure.

Our meme media architecture, IntelligentPad, exploits the extended compound-docu-
ment architecture, and allows its users to simultaneously define both the view integration
structure and the application linkage structure among pads.

6.4 GENERIC COMPONENTS

A component is more generic if it imposes less restriction on the components it can be
combined with. Components that do not explicitly specify which components to access
are more generic than those that explicitly specify which components to access. Compo-
nents that explicitly specify neither which components to access nor which messages to
use for these accesses are furthermore generic. The wider variety of components that can
be combined with a component makes the component more generic. Pluggable compo-
nents reused by object compositions are much more generic than components reused by
program codes.

114 COMPONENT INTEGRATION

ObjectDocument

copy

Figure 6.9 Two ways of putting an object in a document. (a) Object embedding. (b) Object
linking.

Document Object

(a) (b)

tan-6.qxd 5/15/2003 3:55 PM Page 114

Components that do not explicitly specify which components to access but explicitly
specify which messages to use for these accesses could be made more generic if we could
somehow standardize the message names among components. This may work for some
specific application domains, but definitely not in general. The implicit specification of
partner components and the messages to access them is fundamental for a component to
be generic. The program of such a component uses component placeholders and message
placeholders to access other components. These placeholders will be filled in later when a
composer specifies a composition using a component-integration environment.

The exploitation of slots with standard slot-access messages allows each component to
implicitly access some slots with explicitly specified standard slot-accessing messages.
This also makes the components sufficiently generic. The parameter and the return value
of such an implicit component-access statement may take different object types for differ-
ent combinations of place fillers. Components that automatically perform necessary con-
versions for different types are more generic than those without this function. However,
this function may introduce too much overhead to each component.

Components may have some messages that can be accepted by any component. Some
components may just neglect some of these messages after accepting them. These mes-
sages can be explicitly used in programming a component without making this compo-
nent less generic. An example of such messages is an “update” message that is used to no-
tify that the sender component has just been updated. This “update” message takes no
parameters. The “copy” message is another example. It replicates each component. In a
system in which all components have display representation, the “move” message to
change their location on the display, and the “resize” message to resize them are also ex-
amples of such messages.

6.5 WHAT TO REUSE—COMPONENTS OR SAMPLE COMPOSITIONS?

In the following sections, we only consider the reuse of components by object composi-
tions. A composite portion of a composite object may also be considered as a reusable
component. Components that are not decomposable are primitive components, whereas
those that are themselves composite objects are composite components. The pluggability
of a composite component in a composition depends on how many different plugs are
used to connect this composite component to the rest. Fewer plugs lead to higher plugga-
bility of the composite component. The simplest case uses no more than one plug to con-
nect a composite component to the rest. Under this restriction, any composition will have
a tree-structured connection structure among primitive components. As described in the
next chapter, our meme media components basically satisfy this restriction.

Components expose only their interfaces, which is usually not sufficient for us to
imagine how to reuse them. Many projects on reusable components have failed in the past
for this specific reason. The ways of using each component are not independent of its con-
text. A slider component may scroll texts on a text window, skim a video cut, or change
the volume of a sound. Its role may change in different contexts. Furthermore, if two dif-
ferent components used in two different compositions have similar contexts in these com-
positions, and if one of them is used in another context, it is highly probable that the other
can be also used in this new context. Various contexts of a component provide information
about varieties of its use.

Contexts of a component can be presented as sample compositions using this compo-

6.5 WHAT TO REUSE—COMPONENTS OR SAMPLE COMPOSITIONS? 115

tan-6.qxd 5/15/2003 3:55 PM Page 115

nent. When provided with sample compositions, component libraries provide much more
information about components and the ways to reuse them. Furthermore, instead of pro-
viding a component library, we may provide a library of sample compositions. Each com-
ponent in a sample composition may be associated with those components that may be
substituted for the original component in this context. What are reused are not compo-
nents but sample compositions. In their reuse, sample compositions are partially decom-
posed, and some composite components are recombined with new components.

When described at a certain level of abstraction, some mutually different components
may be considered identical to each other, and, furthermore, some mutually different com-
positions may be considered identical with each other. We may consider more than one
such level of abstraction. Such repetitively appearing abstract structures of compositions
are so-called patterns [9, 10] and frameworks [11]. They are also reused to compose new
objects. Chapter 16 will discuss patterns and frameworks in detail in the context of our
meme media architecture, IntelligentPad.

6.6 REUSE AND MAINTENANCE

A large library of reusable generic components allows us to rapidly develop sophisticated
applications. However, the rapid prototyping with components does not necessarily lead
to good maintainability of the developed applications. The maintainability of a composite
application indicates how easy we can replace each of its primitive and composite compo-
nents with a new version or with a different component that has similar functionality. A
component with more plugs to connect itself to the remainder is harder for us to replace
with another than a component with fewer plugs (Figure 6.10). Compositions with cyclic
connections are also harder for us to maintain than those without cyclic connections (Fig-
ure 6.11).

The simplest case is the acyclic uniplug composition model that makes each compo-
nent provide only one plug to connect itself to another without forming cyclic connec-
tions. Suppose we pull out a plug of a component in some composition. When we pull out

116 COMPONENT INTEGRATION

Figure 6.10 A component with multiple plugs to connect itself to the remainder is harder to re-
place with another than a component with a single plug. (a) Components with multiple plugs (diffi-
cult to replace a component). (b) Components with a single plug (easy to replace any component).

(a) (b)

tan-6.qxd 5/15/2003 3:55 PM Page 116

a plug, the component resets its single component placeholder to break its connection to
another component. In the acyclic uniplug composition model, pulling out a plug always
decomposes any composition to two independent composite components.

The reuse of components should take into account the ease of future maintenance of
whatever is composed. The acyclic uniplug composition model provides each composite
application with good maintainability. It defines each application as a tree-structured
composition with components as its nodes. All the implicit component accesses are per-
formed along the edges of this tree, but some explicit component accesses with standard
messages need not be performed along these edges. Explicit component accesses inde-
pendent from these edges also make the maintenance of composite applications difficult.
Their maintenance becomes much easier if we restrict explicit component accesses to
those along these edges. The acyclic uniplug composition model that satisfies this further
restriction is called the tree composition model. As described in the next chapter, our
meme media components basically satisfy the tree composition model.

Because of the simple connection structures among components, the tree composition
model is likely to complicate the data structures of parameters and return values that are
exchanged between components in compositions. Components with multiple plugs can
simplify these data structures, but lead to spaghetti-like connections and seriously reduce
maintainability. The complex data structures of connections in the tree composition mod-
el, when interpreted as the semantics of each connection, provide useful information for
the maintenance of each connection.

Some readers may think that the tree composition model cannot decompose programs
with loops into components. Actually, it can decompose such programs in a restricted but
desirable way. A single program loop, for example, consists of a loop skeleton and a se-
quence of procedures in this loop. The tree composition model decomposes such a pro-
gram loop into a single base component that represents the loop skeleton and as many
child components as there are procedures. The base component has as many slots as there
are child components. Each child component is connected to the corresponding slot of the
base component. The base component periodically invokes these child components in the
specified order. The tree composition model does not break the loop structure of the orig-

6.6 REUSE AND MAINTENANCE 117

Figure 6.11 Compositions with cyclic connections are harder to maintain than those without
cyclic connections. (a) A composition with cyclic connections. (b) A composition without cyclic
connections.

(a) (b)

tan-6.qxd 5/15/2003 3:55 PM Page 117

inal program, which is desirable from the viewpoint of maintainability. The tree composi-
tion model shares the same philosophy as the structured programming. The tree composi-
tion model can deal with any programs. In this sense, there is no restriction in its applica-
bility. However, it strongly guides you in decomposing programs into components to
achieve better maintainability.

6.7 INTEGRATION OF LEGACY SOFTWARE

Generic and pluggable components must expose their interfaces and implicitly access oth-
er components using either component/message placeholders or slots. Such components
need not be objects if they satisfy these conditions. By adding an additional code, any pro-
gram can be wrapped with a new exposed interface through which it is accessed, and
through which it implicitly accesses other components. Such an additional code is called a
wrapper. Components are not necessarily objects defined in some object-oriented system.
Although they may not have class definitions or property inheritance, they have to expose
their interfaces as lists of messages, and be able to implicitly access each other through
component placeholders and message placeholders.

Therefore, in principle, any program becomes a pluggable component when it is
wrapped by an appropriate wrapper. The functionality of such a component, however, de-
pends on which functions of the wrapped program the wrapper can expose as messages of
this component. Whatever wrappers might be used, functions that are not accessible from
the outside of the original program cannot be exposed as messages of the components.
Whether the migration of a legacy system into a components environment will succeed or
not depends heavily on whether this legacy program allows us to invoke a sufficiently
large set of its functions from its outside.

Visual components need to interact with user operations. They expose standard mes-
sages for user events. When a user event is applied to a visual component, the event dis-
patcher detects this event and sends a corresponding appropriate standard message to this
visual component. When applied to a wrapped legacy system, such an event is handled ei-
ther by the wrapper or by the internal legacy system. If the legacy system has no GUI, its
wrapper can handle all such events. Otherwise, some events should be dispatched to the
GUI of the legacy system. The program of the legacy system must be able to accept such
dispatched events as messages. Furthermore, the event interpretation by the GUI of the
legacy system should be consistent to the standard event interpretation by visual compo-
nents. Otherwise, some inherent direct operations of the legacy system may be interpreted
as some of the standard operations of visual components. In such cases, we have to rede-
fine the mapping between events and operations of the legacy system, which is usually a
difficult task.

Furthermore, the migration of a legacy system with GUI into a visual component envi-
ronment requires special consideration on its drawing function. The drawing by a visual
component may damage, or be damaged by, the drawing by another component, which re-
quires each visual component to have the capability of redrawing and managing damaged
areas. The required capability is usually more than what is required for the GUI of the
original legacy system. This difference should be programmed when we wrap this legacy
system, which is again usually not an easy task. An often-used solution to this problem
makes the legacy system draw its display output off the screen, and maps this image as a
texture onto its visual component representation. This solution is sometimes called a

118 COMPONENT INTEGRATION

tan-6.qxd 5/15/2003 3:55 PM Page 118

“shadow copy” mechanism; it was used in HP NewWave architecture [8]. User events on
the visual component need to be dispatched to the off-the-screen GUI of the legacy sys-
tem.

6.8 DISTRIBUTED COMPONENT INTEGRATION AND
WEB TECHNOLOGIES

Systems using objects distributed over a network as their components need to use a stan-
dard protocol for exchange messages among component objects. They also need a lookup
service to find out a desired component object from a component repository, and to get its
reference as a proxy object, as well as a method to access it through the proxy. Such a
lookup service varies from a naming service to a content-addressable lookup service. A
naming service accepts an object name and returns its reference; a content-addressable
lookup service accepts a quantification condition of desired objects and returns their
proxies.

6.8.1 CORBA and Application Server Component Technologies

CORBA (Common Object Request Broker Architecture) [12] proposed by OMG (Object
Management Group) provides APIs called GIOPs (General Inter-ORB Protocols) for the
communication between CORBA objects using ORBs (Object Request Brokers). CORBA
uses IIOP (Internet Inter-ORB Protocol) as an intermediate protocol to bridge GIOP and
TCP (Transmission Control Protocol). An ORB is a program that enables each distributed
object to exchange messages with other distributed objects. CORBA objects may use any
language, but each of them needs to install a special interface to send and receive mes-
sages through an ORB. Each CORBA object uses two kinds of interface codes, i.e., a stub
for sending messages going through an ORB, and a skeleton for receiving messages com-
ing through an ORB. In CORBA, the coding of stubs and skeletons uses a special lan-
guage called IDL (Interface Definition Language).

JavaBeans [13] is a technology for Java program components called Beans. JavaBeans
specifies API between components. In Web applications, when a sever-side Java servelet
[14] receives a client request, it invokes the Bean for the requested processing with input
parameters. When the Bean completes its processing, the servelet sends back the result to
the client. You may use JSP (Java Server Pages) [15] for this output to the client. EJB (En-
terprise JavaBeans) [16] is a specification introducing distributed object technologies to
JavaBeans. EJB allows us to invoke components stored in different machines through a
network. Its components are called Enterprise Beans. They are classified into two cate-
gories. Session Beans manage client requests and control the processing; Entity Beans
perform database processing.

The execution of EJB requires an EJB server and an EJB container. An EJB server
manages EJB containers, and provides Enterprise Bean functions; an EJB container re-
sides in an EJB server and executes services provided by the EJB server. The invocation
of Enterprise Beans as well as Beans is performed by a Java servelet executed in a Web
server. Such a servelet is called an EJB client application. Each Enterprise Bean can also
invoke another Enterprise Bean. Such a caller Enterprise Bean needs to be installed with
the EJB client application function. Such invocations may make Enterprise Beans distrib-
uted in different servers cooperate with each other.

6.8 DISTRIBUTED COMPONENT INTEGRATION AND WEB TECHNOLOGIES 119

tan-6.qxd 5/15/2003 3:55 PM Page 119

Each EJB client application accesses an EJB server, and gets information about regis-
tered objects using JNDI (Java Naming and Directory Interface) [17]. JNDI provides API
to access the naming service that manages distributed objects with their names. Using
JNDI, you can invoke any object registered in an EJB server without knowing its location.
Each client application, then, asks an EJB container to create a Home object, which is re-
sponsible for creating and deleting Enterprise Bean instances. When creating an Enter-
prise Bean instance, the Home object also creates an EJB object that mediates the method
invocation of the Enterprise Bean instance. The EJB client application becomes able to in-
voke the methods of this Enterprise Bean through this EJB object. The processing result is
sent back to the client through this EJB object.

An application server is a software system that provides an execution environment for
EJB components. J2EE (Java2 Enterprise Edition) [18] is an extension of Java2 Standard
Edition, and includes API for EJB. Several venders provide application servers with J2EE
functionalities. These include IBM’s WebSphere, BEA WebLogic Server, and Oracle Ap-
plication Server. In an application server, an EJB container provides various functions for
the execution of EJB components. These functions include the interoperation between an
EJB component and an EJB server, transaction management, session management for
each client, life-cycle management of each EJB component instance, resource manage-
ment, management of retrieved data as Entity Bean objects, and capability management
of users and groups to restrict the access to EJB components.

The interoperation of a Web browser and a Web server over the Internet uses the HTTP
protocol. Systems with such interoperation are implemented as either two-layer systems
or three-layer systems. A two-layer system uses either a servelet or a JSP, and executes
them together with data management on a single computer. A three-layer system uses EJB
components to separate the application processing and the database processing from a
Web server. The application processing is executed by an independent application server,
i.e., an EJB server, whereas the database processing is performed by a database server.
These three layers, the Web server layer, the application server layer, and the database
server layer are sometimes called, respectively, the presentation layer, the business logic
layer, and the data layer.

J2EE provides APIs called RMI (Remote Method Invocation) and RMI/IIOP (Internet
Inter-Orb Protocol) for the communication between Enterprise Beans. RMI allows us the
use of Java to define the object interface to other distributed objects. Each component
uses two kinds of interface codes, i.e., a stub for outgoing messages and a skeleton for in-
coming messages. RMI/IIOP extends RMI for Enterprise Beans to communicate not only
with each other, but also with CORBA objects. The communication between a servelet or
a JSP and EJB components uses RMI or RMI/IIOP. For the communication between an
application server and a database server, J2EE provides an API called JDBC (Java Data-
base Connectivity) [19].

Microsoft’s component technology for Windows is called COM (Common Object
Model) [20]. COM components can be used in various languages including Visual Basic,
Visual C++, and Visual J++. COM components are stored as EXE or DLL files. A COM
library stores information about COM components, helps a client to locate a COM server
including the desired COM component, and creates an instance of the COM component.
The SCM (Service Control Manager) in the COM library sends back the client the refer-
ence information of the created COM object. ActiveX is basically the same as OLE. An
ActiveX control or an OLE control is a component based on OLE. Its reference is embed-
ded in an application. It is downloaded to a client through the Internet to execute there.

120 COMPONENT INTEGRATION

tan-6.qxd 5/15/2003 3:55 PM Page 120

Different from Java applets, ActiveX controls use native codes. DCOM (Distributed Com-
ponent Object Model) [21] is an extension of COM to cope with distributed objects. To
use a COM component in a server machine, a client uses RPC (Remote Procedure Call) to
ask the SCM (Service Control Manager) on the server machine for the instantiation of the
COM component and the invocation of this object. In DCOM, the communication be-
tween a client and a COM object on different machines use a proxy at the client side and a
stub at the server side. A proxy converts the COM object ID and parameters to the trans-
portation format; a stub reconverts the transportation format data for the COM object to
understand. These two conversions are called the marshalling and the unmarshalling, re-
spectively.

Windows DNA (Distributed InterNet Application) [22] is a technology used to support
application system development using distributed objects over the Internet. It basically
provides a framework for three-layer systems, consisting of the presentation layer, the
business logic layer, and the data layer. Windows DNA also provides ASP (Active Server
Pages) [23] using VBScript, which is similar to JSP using Java.

Application server component technologies allow us to develop complicated applica-
tion services accessible from Web documents. These application services can access ap-
plication components distributed over the Internet, and may involve database access and
transaction processing. Since the naming service by JNDI just returns the object location
for a given object name, application server component technologies are mainly applied to
intranetwork systems with definite sets of system components that are managed by their
names. These technologies are mainly used to integrate enterprise information systems
distributed over the network, and to make some functions accessible from Web browsers.

6.8.2 Web Services and Their Integration

Web service [24] is a technology for application programs distributed over the Internet to
mutually utilize their services. Web service provides three mechanisms: the publication
mechanism for each application to register itself as a Web service in a registry; the inquiry
mechanism for a client or a Web service to find another registered Web service based on
its provider’s name, service name, service category, or service interface information; and
the binding mechanism for the requesting client or Web service to invoke the retrieved
Web service. UDDI (Universal Description, Discovery and Integration) [25] allows appli-
cations to register themselves as Web services in a UDDI directory, and allows clients or
Web services to search a UDDI directory for those Web services satisfying the require-
ments. UDDI is also a Web service. UDDI works as a service broker. The requesting
client (or application) and the registering application, respectively, work as service re-
questers and service providers. The registration of a Web service uses WSDL (Web Ser-
vice Description Language) [26] to describe its detailed information. WSDL is an XML-
based language used to describe, for each Web service, the methods and parameters it
accepts, and its output format.

Clients can invoke a Web service in a different machine through a SOAP proxy as if
invoking a local program—a program to invoke the Web service—and obtain its pro-
cessing result. SOAP (Simple Object Access Protocol) [27] is an XML-based standard
common interface between components distributed over the Internet. In CORBA and
DCOM, components in different specifications cannot communicate with each other.
Therefore, these technologies are mainly used in local network environments. The inter-
operation of components distributed over the Internet requires a standard common API

6.8 DISTRIBUTED COMPONENT INTEGRATION AND WEB TECHNOLOGIES 121

tan-6.qxd 5/15/2003 3:55 PM Page 121

based on both a standard message format and a standard RPC protocol over the Internet,
which led to the proposal of SOAP. SOAP uses XML to represent access requests and
return value data. Each request message in XML format is sent to a target component
using POST method. SOAP allows both COM objects and CORBA objects to commu-
nicate with each other.

Web service technologies allows us to define Web documents with embedded ser-
vices provided by Web servers. These Web services are published to an open repository
by service providers. Web service technologies allow us to define a composed embed-
ded service that orchestrates some public Web services using SOAP to perform its ser-
vice task. Such an orchestration can be also published as a Web service. For example, a
traveler agent may publish a flight reservation Web service, which may access flight
reservation Web services of mutually competitive airlines to find the best offer.
Interoperation of Web services defines integrated services, either for customers or for
member companies, in a B2B (business-to-business) alliance. Various software vendors
provide visual authoring tools for the composition or orchestration of Web services and
its embedding into a Web page. For the composition and/or orchestration part, they pro-
vide UML-based visual programming environments and/or text editor environments
with wizards, as well as the function to search and bind Web services in these environ-
ments. For the embedding of defined services into a Web page, they provide visual form
layout editors that allow us to arrange forms on a Web page. These authoring tools also
allow us to relate each form and a Web service parameter. Some allow you to specify a
parameter in a text editor or in a diagrammatic programming environment to create a
new form, which you can drag and drop anywhere on a form-layout editor. Some others
allow you to create a form first, and to click it to open a text editor with a wizard, so
you can specify which Web service to use. They are basically authoring tools for Web
service integrators and Web page designers, and not for Web page readers. Some ven-
dors provide personal portal editors for Web page readers to lay out fragments of differ-
ent Web pages on a single canvas using frames. Microsoft’s Digital Dashboard [28] is
such a tool. These tools, however, provide no functional linkage mechanism between
fragments of Web pages.

In 2000, a newly established venture company, K-Plex Inc. of San Jose, California, de-
veloped a new version of the IntelligentPad system called Plexware. This version uses
XML both as the save format of pads and for the message exchange with servers.
Plexware uses SOAP to communicate with Web services. Pads in Plexware run on an In-
ternet Explorer browser. Plexware has wrapped Internet Explorer and provides its full
function as a standard component pad.

6.8.3 The Internet as a Platform and Universal Document Interface

Microsoft.NET [29] is a new technology to make the Internet work as a single platform.
Microsoft Windows uses ActiveX technologies for embedding a Windows document in
another Windows document of a different type. Windows applications, including Words
and Excel, are ActiveX objects. Web documents and applications running on Web pages,
however, use XML and SOAP technologies that are different from ActiveX technologies.
Microsoft.NET tries to unify these two different worlds of applications and documents.

ActiveX technologies allow us to embed an Excel worksheet in a Word document. A
client receiving such a document, however, cannot reuse this document unless it installs
all the application software systems required to execute those ActiveX objects used in the

122 COMPONENT INTEGRATION

tan-6.qxd 5/15/2003 3:55 PM Page 122

document. Web documents do not cause such problems; embedded applications are either
downloaded for execution or invoked when required.

Microsoft.NET proposes the universal canvas technology as a unified document inter-
face to replace ActiveX technology. When a universal canvas is used as a document page,
the application program corresponding to each displayed data item is automatically in-
voked through the Internet and provides its function. Microsoft.NET tries to achieve inde-
pendence from any OSs and programming languages. Programs in Microsoft.NET use
class libraries provided by Microsoft.NET Framework. They are compiled to IL (Interme-
diate Language) codes, which CLR (Common Language Runtime) converts to native
codes to execute. These mechanisms are similar to Java programs, Java codes, and
JavaVM, but the programming with Microsoft.NET Framework allows us to use various
de fact languages including C++, VB, COBOL, Pascal, Smalltalk, and Perl. Microsoft
provides Visual Studio.NET and Microsoft.NET Framework SDK to support program de-
velopment with Microsoft.NET Framework.

IBM Internet Technology Group and IBM Research proposed a new technology called
Sash [30] that allows us to use standard Web technologies like HTML, XML, and
JavaScript to develop applications utilizing client machines’ performance and resources.
These applications are called weblications. Sash enables Web application developers to
utilize the desktop functions. Weblications run outside of browsers, directly on clients’
desktops.

These technologies will unify desktop environments and the Web, which means the
unification of applications and documents in these two environments. These documents
may include local and remote application tools and services.

6.8.4 The Internet as Shared Memory Spaces for Objects

Sun Microsystems proposed a new technology called Jini [31] for various service-provid-
ing objects distributed over the Internet to dynamically organize a federation, or a dynam-
ically defined flexible network, of objects. Some of these objects may not need to run on
client computers or on servers, but may run in electronic appliances or other devices con-
nected to the Internet by wire or radio.

The essential function of Jini is its Lookup service, which works as a broker between
service provider objects and client objects. Neither of them needs to know each other in
advance. Jini’s Lookup service organizes participating objects into service groups. More
than one Lookup service can maintain the same service group. One Lookup service may
work as a gateway to another Lookup service.

Jini enables each object that wants to participate in some service group to discover this
group. Actually, this discovery process finds a Lookup service that manages some objects
in this service group, and makes this Lookup service return its RMI stub, i.e., its proxy, to
the requester object for accessing this Lookup service. Through this proxy, the requester
object can join the desired service group by registering its RMI interface instance as its
proxy to the found Lookup service. This process is called a Join process. The Lookup ser-
vice identifies each registered proxy with its interface type. A newly participating object
sends a presence announcement packet to the network. This packet contains its IP address,
its port number, and a name list of service groups it wants to participate in. This packet is
multicast to Lookup services in the same domain. Each Lookup service monitors packets
to identify each announcement packet. When a Lookup service finds an announcement
packet, the service searches the name list in the packet for a service group that matches

6.8 DISTRIBUTED COMPONENT INTEGRATION AND WEB TECHNOLOGIES 123

tan-6.qxd 5/15/2003 3:55 PM Page 123

with one of its service groups. If it finds such a service group, the Lookup service returns
its RMI stub as its reference to the sender object of this packet. When an object participat-
ing in some service group accesses its services, this object sends a request to the Lookup
service, and gets an RMI stub, or a proxy, of a desired service object. Such a request spec-
ifies the interface type. This process is called a lookup process. These three processes, a
discovery process, a join process, and a lookup process, provide a distributed mechanism
for service provider objects and client objects to dynamically organize federations to col-
laborate for specific purposes.

Sun Microsystems proposed another new technology called JavaSpace [32] for objects
on the network. A JavaSpace works as a shared memory defined over the network for
reading, writing, and taking out shared objects. Objects stored in a JavaSpace are content-
addressable, i.e., you may read or take out objects in a JavaSpace by specifying their tem-
plate and some of their attribute values. A JavaSpace provides objects on the network with
a blackboard system such as those used in AI. Some objects may define tasks and write
them in a JavaSpace, whereas others may search the JavaSpace for unfinished tasks that
they can process, take them out to perform, and return the result in the JavaSpace. The
idea of such a mechanism originates in Linda, proposed by David Hillel Gelernder in
1982. His Mirror Worlds, published in 1991 [33], extends the basic idea, and proposed a
tuple space, which became the basis of a JavaSpace. In a tuple space, each entry written in
this space is a tuple, i.e., a list of attribute–value pairs. Objects can issue an SQL-like
query to a tuple space to find desired tuples, read or take out these tuples, and write new
tuples in a tuple space.

When applied to meme media, Jini and JavaSpace technologies will make meme media
objects dynamically pluggable to various accessible federations of services on the Inter-
net.

6.8.5 Distributed-Object Technologies and Meme Media Components

As described in the preceding subsections of Section 6.8, lookup services play the most
important roles in distributed-object environments, especially in open environments over
the Internet. Such environments consist of service providers, service brokers, and ser-
vice requesters. Service providers register their services to lookup services. Service bro-
kers orchestrate more than one service to perform sophisticated services. They ask
lookup services for desired services, and register their newly defined composite services
to lookup services. Service requesters simply ask lookup services for desired services,
and invoke them to perform their tasks. Distributed-object technologies assume that all
these players—service providers, service brokers, and service requesters—are software
objects. Therefore, each lookup service should provide methods for software objects to
specify what kind of services they want to access. Some lookup services allow software
objects to specify services by their names; some others allow the specification by their
interface. Others allow objects to specify services by their templates and attribute val-
ues. Lookup services return a reference to the found service, or a proxy of the found
service.

In meme media component environments, we assume that users manually combine
media components to define composite media objects. Meme media composition means
not only layout composition, but also functional composition by defining linkage among
components. Meme media component technologies, therefore, focus on an easy direct-
manipulation way of arranging components on another component as well as function-

124 COMPONENT INTEGRATION

tan-6.qxd 5/15/2003 3:55 PM Page 124

ally connecting them. It is the user, not a program, who accesses lookup services for
primitive and/or composite components satisfying requirements. As opposed to lookup
services that are mainly for programs, lookup services for humans require interactive ac-
cess facilities for navigation, visual definition of queries, and direct manipulation for re-
trieving and registering visual components. Chapter 19 focuses on this subject for meme
media objects.

6.9 SUMMARY

This chapter has given a brief introduction to software components: why it is necessary to
reuse existing software, architectures for defining and assembling components, frame-
works for their visual representation and direct manipulation, and integration of legacy
software. We have also focused on the maintainability of composed systems and why flex-
ible composition structures may provide ease of composition, but may result in poor
maintainability.

The pluggability of components requires each component program to implicitly speci-
fy which other components it accesses and which messages it uses for each of these ac-
cesses. Each component program must define the placeholders for the components it ac-
cesses in a specific composition, and also the placeholders for the messages it uses for
each of these accesses. Placeholders of the former type are called component placehold-
ers; those of the latter type are called message placeholders. Furthermore, you may con-
sider each pair of a component and one of its exposed messages as an object. Such an ob-
ject is called a slot. As a special case of this framework, we may restrict the slot accessing
messages to “Slot set: value” and “Slot gimme.” A “set:” message sends a parameter val-
ue to a slot, whereas a “gimme” message requests a return value from a slot.

The simplest model of composition allows each component to access only one other
component through a single slot. As described in the next chapter, our meme media com-
ponents exploit this model.

Systems using objects distributed over a network as their components need a lookup
service to find a desired component object from a component repository and to get its ref-
erence as a proxy object, as well as a method to access it through the proxy. Such a lookup
service varies from a naming service to a content-addressable lookup service. In meme
media component environments, we assume that users manually combine media compo-
nents to define composite media objects. It is a user, not a program, who accesses lookup
services for primitive and/or composite components satisfying requirements. As opposed
to lookup services mainly for programs, lookup services for humans require interactive
access facilities for navigation, visual definition of queries, and direct manipulation for
retrieving and registering visual components. Chapter 19 focuses on this subject for meme
media objects.

REFERENCES

1. A. W. Brown (ed.). Component-Based Software Engineering. IEEE Computer Society Press,
Los Alamitos, CA, 1996.

2. O. Nierstrasz and D. Tsichritzis. Object-Oriented Software Composition. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

REFERENCES 125

tan-6.qxd 5/15/2003 3:55 PM Page 125

3. A. Denning. ActiveX Controls Inside Out. Microsoft Press, Redmond, WA, 1997.

4. R. Englander. Developing Java Beans. O’Reilly & Associates, Sebastopol, CA, 1997.

5. D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Sebastopol, CA, 1996.

6. Microsoft. Object Linking and Embedding Programmer’s Reference. Microsoft Press, Red-
mond, WA, 1992.

7. J. Feiler, and A. Meadow. Essential OpenDoc: Cross-Platform Development for OS/2, Macin-
tosh, and Windows Programmers. Addison-Wesley, Reading, MA, 1996.

8. Hewlett-Packard. HP NewWave Environment General Information Manual. Cupertino, CA,
1988.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, 1995.

10. F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, Chichester, UK, 1996.

11. A. A. R. Cockburn. The impact of object-orientation on application development. IBM System
Journal, 32(3), 1993.

12. Object Management Group. The Common Object Request Broker: Architecture and Specifica-
tion, 2.5 edition, September 2001.

13. M. Morrison. Presenting Javabeans. Sams, Indianapolis, IN, 1997.

14. J. Hunter, W. Crawford. Java Servlet Programming. O’Reilly & Associates, Sebastopol, CA,
2001.

15. S. Brown, L. Kim, J. Falkner, B. Galbraith, R. Johnson, R. Burdick, D. Cokor, S. Wilkinson, and
G. Taylor. Professional JSP, Wrox Press, Chicago, 2001.

16. R. Monson-Haefel and M. Loukides (Editor). Enterprise JavaBeans. O’Reilly & Associates,
Sebastopol, CA, 2001.

17. R. Lee and S. Seligman. The Jndi API Tutorial and Reference: Building Directory-Enabled
Java Applications, Addison Wesley Longman, Reading, MA, 2000.

18. Java 2 enterprise edition. http://java.sun.com/j2ee/tutorial.

19. G. Reese and A. Oram (eds.). Database Programming with JDBC and Java, Second Edition.
O’Reilly & Associates, Sebastopol, CA, 2000.

20. D. Rogerson. Inside COM: Microsoft’s Component Object Model with CDrom. Redmond, WA,
Microsoft Press, 1996.

21. F. E. Redmond. Dcom: Microsoft Distributed Component Object Model with CDrom. IDG
Books Worldwide, Boston, MA, 1997.

22. S. J. Peterson and L. W. Storms. Microsoft Windows DNA Exposed. Sams, Indianapolis, IN,
1999.

23. A. K. Weissinger and R. Petrusha (eds.). ASP in a Nutshell. O’Reilly & Associates, Sebastopol,
CA, 2000.

24. W3C Consortium. Workshop on Web Services. http://www.w3.org/2001/01/WSWS, 2001.

25. UDDI community. Universal Description, Discovery, and Integration. http://www.uddi.org.

26. Erik Christensen et al., Web Services Description Language (WSDL) 1.1, W3C Note,
http://www.w3.org/TR/wsdl, 2001.

27. D. Box, et al. Simple Object Access Protocol (SOAP) 1.1, W3C NOTE, http://www.w3.org/
TR/SOAP/, 2000 (The latest version is available at http://www.w3.org/TR/soap12/.)

28. Microsoft. Digital Dashboard Integrating Microsoft Project Central into a Digital Dashboard.
http://www.microsoft.com/office/project/evaluation/ProjCen/digidash.asp, 2000.

29. T. L. Thai and H. Lam. .NET Framework Essentials. O’Reilly & Associates, Sebastopol, CA,
2001.

126 COMPONENT INTEGRATION

tan-6.qxd 5/15/2003 3:55 PM Page 126

30. Sash: The Javascript Runtime. http://sash.alphaworks.ibm.com/.

31. I. Kumaran and S. I. Kumaran. Jini Technology: An Overview. Prentice-Hall PTR, Upper Saddle
River, NJ, 2001.

32. E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces Principles, Patterns, and Practice. Addison
Welsey Longman, Reading, MA, 1999.

33. D. Gelernter. Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox . . . How It
Will Happen and What It Will Mean. Oxford University Press, New York, 1992.

REFERENCES 127

tan-6.qxd 5/15/2003 3:55 PM Page 127

CHAPTER 7

MEME MEDIA ARCHITECTURE

Our meme media architecture, IntelligentPad, is based upon the following architectural
concepts:

1. Wrapper architecture

2. Frame architecture

3. MVC architecture

4. Update-dependency architecture

5. Compound-document architecture

The first three define the architecture of primitive components, whereas the last two de-
fine the composition architecture.

This chapter provides the technical details of IntelligentPad with respect to these five
basic architectural concepts.

7.1 CURRENT MEGATRENDS IN COMPUTER SYSTEMS

Current computer system environments cannot be discussed without the four keywords (1)
networks, (2) open architecture, (3) downsizing, and (4) multimedia. Demands are increas-
ing for new system architectures that allow us to integrate, in a bottom-up way, heteroge-
neous PCs and workstations through networks, and to easily construct various application
systems with sufficient performance without spending too much money. Such systems
should be able to easily reconfigure themselves to immediately respond to frequently oc-
curring new requirements for the extension of system functions and application domains.
They should allow us to arbitrarily combine and to recombine various data and program re-
sources that are distributed across networks, and to easily construct required systems.

Software development also increases demands for new system development environ-
ments in which fundamental functions are provided as functional components and their

128

tan-7.qxd 5/15/2003 4:09 PM Page 128

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

various combinations define various application systems. Such environments are called
component software or, simply, componentware.

From the users’ points of view, application systems with sophisticated GUI (graphical
user interface) representations are becoming indistinguishable from multimedia com-
pound documents. The distinction between these two is becoming insignificant. This leads
to compound-document architectures, in which the application of the compound docu-
ment framework is extended further to include application systems as components. This
trend, together with componentware architectures, is still evolving; examples of com-
pound-document architectures include OpenDoc [1], ActiveX [2], and Webtop computing
with Java [3]. In Webtop computing, Web pages that originally represent documents work
as desktop environments for running Java applet application objects.

The idea of applying the compound document framework to application systems is not
limited to display representation. It can be extended to creation and editing, management
and retrieval, publication and distribution, quotation, reediting, and redistribution. Hyper-
media research activities in the 1980s such as those described in [4, 5, 6, 7, 8] accelerated
this trend. The popularization of the WWW [9] and Web browser systems like NCSA Mo-
saic [10], Netscape Navigator, and Microsoft Internet Explorer during the last decade, to-
gether with the appearance of Java [3] and Web page authoring tools, indicates that the ap-
plication of the compound-document framework to application systems can already be
observed in the publication and distribution of application systems. Various search engine
services such as Yahoo, Alta Vista, and Google further indicate that this trend is already
seen in the management and retrieval of application systems. Instead of directly searching
for application systems, these search engines are used to indirectly search for those Web
page documents that include these application systems.

Furthermore, the growing interest in intranet technologies indicates that the renovation
of large organizations through restructuring and reengineering [11] has increased the need
for new information environments where users can easily access not only data and docu-
ment resources but also application systems, and easily define application linkages for
dynamically constructing arbitrary work flows among different resources. Compound-
document architectures for editing, managing, and distributing both multimedia docu-
ments and application systems are promising for such intranet information environments.

7.2 PRIMITIVE MEDIA OBJECTS

Our meme media architecture, IntelligentPad, satisfies the above-mentioned require-
ments. It adopted the following architectural concepts:

1. Wrapper architecture

2. Frame architecture

3. MVC architecture

4. Update-dependency architecture

5. Compound-document architecture

The first three define the architecture of primitive components, whereas the last two de-
fine the composition architecture. Let us first consider the architecture of primitive com-
ponents.

7.2 PRIMITIVE MEDIA OBJECTS 129

tan-7.qxd 5/15/2003 4:09 PM Page 129

7.2.1 Wrapper Architecture

Wrapper architectures are commonly used in component software systems. The basic idea
is similar to the use of cabinets for AV-system components. All-in-one type AV systems
were replaced by AV-system components such as tuners, turntables, cassette tape decks,
compact disc players, video cassette recorders, amplifiers, graphic equalizers, TV moni-
tors, and loudspeakers. This replacement allowed each user to configure his or her own
system according to desired performance, cost, and taste by arbitrarily combining his or
her favorite components selected from a great variety of products made by various com-
panies. This was accomplished by first dividing the overall function of all-in-one-type AV
systems into mutually rather independent functions, and then encapsulating each of these
functions within a cabinet of standard shape and size. This allowed us to stack these com-
ponents any way we liked. Each AV-system component allows flexible functional linkage
with others by providing a set of connection jacks on the back panel of its cabinet. These
connection jacks are all of standard shape and size. One connection jack receives an audio
signal and another outputs a video signal. Some may be used for unilateral communica-
tion with another component, whereas others may be used for bilateral communication.

The AV-component architecture can be summarized as follows:

1. Components are physically wrapped with standard cabinets, not only to hide their
internal circuits, but also to allow flexible physical layout of an arbitrarily selected
set of components.

2. Each component provides a set of connection jacks of standard shape and size.

3. Each connection jack receives and/or sends some kind of signals. Every connection
jack is labeled with its name. Some connection jacks use a naming convention for
their names to note the specifications of what kind of signals they receive and/or
send, whereas others require operation manuals for the details of such specifica-
tions.

4. These connection jacks are hidden from the front view of system components.

The IntelligentPad architecture wraps each functional component with a wrapper. Such a
wrapper provides any content object with a visible shape, and enables its user to directly
manipulate it on a display screen. It gives each object a card image. Such cards are called
pads. In general, an object wrapped by a wrapper with some media image is called a me-
dia object. Pads are examples of media objects. Pads are instances, not classes. They are
persistent instance objects. To create a new pad instance that has the same features as an
existing one, you may make a copy of it. Copies of the same pad share the same pad type.
Pads may have arbitrary planar shapes and sizes. The default shape of pads is a rectangle.
A pad can be put on another pad. Multiple pads can be arranged on a single pad to define
a layout, or they can be overlaid one over another with some of them being made translu-
cent. Each content object with a GUI can display its graphics on the surface of its wrap-
per, whereas those without any GUI are represented as blank-sheet pads. Some pads can
be resized, whereas others cannot.

7.2.2 Frame Architecture of Each Pad

A frame in general is a prototype describing a standard situation or object. A frame holds
slots with different aspects, which are described by declarative or procedural facets. De-

130 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 130

clarative facets associate values to slots, whereas procedural facets introduce so-called re-
flexes, or daemons, which are procedures activated on slot accesses. Frame-based lan-
guages and frame architectures were originally inspired by Marvin Minsky’s frame idea
[12].

IntelligentPad also exploits a frame architecture for each pad. Each pad provides a set
of slots that work as connection jacks. Each slot may receive and/or send some kind of
signal. Every slot has a name. A naming convention is used for some slots to indicate their
roles and communication data types. In general, an on-line reference manual is required to
find the role and the communication data type of each slot. Slots are hidden from the sur-
face view of pads. Any slot of a pad can be selected from the special pop-up menu of this
pad.

The content object in each pad can be accessed only through its slots. The Intelligent-
Pad architecture provides two types of standard access messages for each slot—“set” and
“gimme.” Each “set” message takes a single parameter value, whereas each “gimme”
message takes no parameters. Corresponding to these two kinds of slot accesses, each slot
s is defined by two methods, i.e., the “set” method, Procs,set, to be invoked by a “set” mes-
sage, and the “gimme” method, Procs,gimme, to be invoked by a “gimme” message. The de-
fault method for a “set” message sets the parameter value to a special register dedicated to
this slot, whereas the default method of a “gimme” message returns the current value of
the same dedicated register. A slot whose methods are both defined as default methods is
called a data slot. Its value is the value of its dedicated register. The logical function of
each pad is specified by its slots and by the two methods defined for each of these slots.

7.2.3 MVC Architecture of Each Pad

Since every media object is visible and can be directly manipulated on a display screen, it
has a display object as its component. The remaining part is called the model part of the
media object, whereas the display component is further divided into two parts, i.e., its
view part and its controller part. The view part defines its visual appearance on a display
screen and the controller part defines its reactions to user events through a mouse or a
keyboard. The representation of a visible and directly manipulable object with three such
components is well known as the MVC (model-view-controller) representation frame-
work [13]. From the users’ point of view, every media object is atomic and indivisible.

A pad can define some of its slots in its model part and the others in its view part,
called, respectively, the model slots and the view slots of this pad. No slots are defined in
controller parts. Some of the view slots define the geometrical properties and the slot-
connection properties of the pad. They are just called properties. These include the fore-
ground color, the background color, the extent, the relative origin on the parent pad, the
enable/disable flags for “set,” “gimme,” and “update” messages, the border width, the vis-
ibility flag, the nickname, the primary slots for the “set” and “gimme” messages, and the
border type. Model slots are public in the sense that they can be accessed from the outside
of the pad. The model may have additional slots that can be internally accessed by its view
and by itself. These slots are private slots.

The IntelligentPad architecture uses a specialized version of the MVC construct to rep-
resent each pad, as shown in Figure 7.1. Different from the well-known MVC structure,
this special version has no direct linkage between its controller and its model.

When the controller detects either a mouse event or a keyboard event, it asks its view
for the message selector of the corresponding action, and then asks its view to perform the

7.2 PRIMITIVE MEDIA OBJECTS 131

tan-7.qxd 5/15/2003 4:10 PM Page 131

method for this message. The view must define the methods for the following messages to
answer the message selector name:

blueButtonViewAction (the action to take when the blue button is down)

redButtonDownAction (the action to take when the red button is down)

redButtonUpAction (the action to take when the red button is up)

redButtonWentDownAction (the action to take when the red button goes down)

keyboardViewAction (the action to take when a key is pressed)

Each of these messages may return “nil” if the pad has no special action for its corre-
sponding user event. The methods for these messages return the message selectors of the
corresponding actions. For example, the ButtonPadView, used as the view of a button pad,
define the redButtonDownAction as follows.

redButtonDownAction
�#selected: “this makes the view to perform ‘selected: aPoint’ when the red button
is down.”

The method for selected: is defined as follows in the view.

selected: aPoint
“If the ‘selected’ flag is not already set,”
self isSelected

ifFalse: [“set the ‘selected’ flag,”
internals at: #isSelected put: true.
“and request to redraw itself.”
self invalidate]

To ask the view to perform the corresponding action, the controller sends the following
message to the view.

perform: action with: aPoint

The parameter “action” is the message selector obtained from the view. In the above ex-
ample, it is the message selector “#selected:.”

The view can send its model no other messages than “set: data to: slotName” and “get:
slotName,” where “slotName” may be any of the public model slots or private model

132 MEME MEDIA ARCHITECTURE

MVC

Controller ModelView message

sending

update
message

sending

Figure 7.1 Each pad is represented by a specialized version of the MVC construct.

tan-7.qxd 5/15/2003 4:10 PM Page 132

slots. The model can send its view no other messages than “update: aSymbol,” where the
current implementation uses only “nil” for “aSymbol.”

The “set:” and “get:” messages are defined as follows:

Messages to the model

set: data to: slotName
(self slotList includes: slotName)

ifFalse: [�nil].
(self respondsTo: (‘set’, slotName, ‘:’) asSymbol)

ifTrue: [self perform: (‘set’, slotName, ‘:’) asSymbol with: data]
ifFalse: [self setDefault: data to: slotName]

setDefault: data to: slotName
slots at: slotName ifAbsent: [�self].
(slots at: slotName)=data ifTrue: [�nil].
slots at: slotName put: data.
self changed

get: slotName
�(self respondsTo: (‘get’, slotName) asSymbol)
ifTrue: [self perform: (‘get’, slotName) asSymbol]
ifFalse: [self getDefault: slotName]

getDefault: slotName
�slots at: slotName ifAbsent: [nil]

The first line of the “set” method examines if the slotName is included in the slot list
of the model. Let this slotName be a string “index”, for example. The third line exam-
ines if the model has a method for the message selector “setindex”. If it has, the fourth
line makes the model perform its method for the message selector “setindex”, with data
as its parameter. Otherwise, the “index” slot is considered as a data slot, and the entry
with the same name “index” is selected from the data slot list, and its value is set to the
specified data. Whenever the data slot value is updated, the changed message is sent to
the model.

For the same slotName, for example, the first line of the “get” method examines if the
model has a method for the message selector “getindex”. If it has, the second line makes
the model perform its method for the message selector “getindex”. Otherwise, the “index”
slot is considered as a data slot; the entry with the same name “index” is selected from the
data slot list, and its value is used as the return value.

The “update:” method is defined in the view as follows:

Messages to the view

update: aSymbol
self viewUpdate
self refreshDisplay
self padUpdate

7.2 PRIMITIVE MEDIA OBJECTS 133

tan-7.qxd 5/15/2003 4:10 PM Page 133

The first line performs the necessary updates of the view properties and the view internal
variables in correspondence to the model’s update. The second line refreshes the display
of the view if necessary. When we need to refresh the display, the method for “refreshDis-
play” is defined as follows:

refreshDisplay
self invalidate

The third line of the “update:” method performs the update of the pads that are function-
ally combined with this pad. These pads are combined through the slot connection mech-
anism that will be explained in the next subsection.

padUpdate
self updateToSlaves.
self updateToMaster

updateToMaster
(self setFlag and: [self master notNil])
ifTrue:

[self master set: (Array with: slotName with:
(self get: self primarySlotForSet) copy)]

updateToSlaves
self slaves do: [:pad |(pad isKindOf: PadView) ifTrue: (pad updatePad)]

The method “padUpdate” first updates all of its child pads, and then updates its parent
pad. The method “updateToMaster” updates the parent pad by sending the connection
slot of the parent the current value of the primary slot. This corresponds to the execution
of a “set” message to the parent pad. Section 7.5 will give a detailed explanation on this
mechanism.

The state of a pad is the list of all the variables of this pad, with each variable asso-
ciated with its current value. This is the state of a pad as a media object. It consists of
the states of the three components of this pad, i.e., the model state, view state, and con-
troller state. In addition to its state, every pad defines its logical state, which is a subset
of all the variables in its model. It is up to the programmer of a pad to decide which sub-
set to define as its logical state. For example, let us consider a pad that works as a bar
meter. This pad may have two variables: one to hold the current value and the other to
hold the current range. Its logical state may be defined to include either two of them or
only the current value. In the latter case, the current range may be included either in the
model state or in the view state. These alternatives define bar meter pads with different
semantics.

7.3 COMPOSITION THROUGH SLOT CONNECTIONS

The first three of the five architectures that IntelligentPad adopted define the architecture
of primitive components. We have discussed these architectures in the previous section.
Here we will discuss in detail the last two architectures that define the pad composition

134 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 134

architecture. They are an update-dependency architecture and a compound-document ar-
chitecture.

7.3.1 Distributed Versus Centralized Compositions

Compositions with primitive components are classified into two types: distributed com-
positions and centralized compositions. Every centralized composition has one distin-
guished primitive component object whose logical state represents the logical state of the
composed object, whereas no distributed composition has such a primitive component ob-
ject. Such a primitive component object is called the supervisory component of the com-
posed object. It should be noticed that the above definition depends on how we define the
logical state of the composed object. A centralized composition system is a component
software system that only allows centralized compositions.

A centralized composition, when its supervisory component is removed, can be de-
composed into a set of compositions with no functional linkage among them. These com-
positions are called child compositions of the original composition. Child compositions of
a centralized composition have mutually disjoint sets of component objects. Otherwise,
more than one child composition share the same object and, hence, have a functional link-
age among themselves. In a centralized composition system, each child composition is
also a centralized composition and, hence, it can be further decomposed by removing its
supervisory component. Therefore, in a centralized composition system, any composed
object has a tree structure composition, which simplifies the management and mainte-
nance of composed objects.

7.3.2 Update Dependency in Centralized Compositions

In a centralized composition system, we can define a dependency among the primitive
component objects. For composition C, let components(C), supervisor(C), and child-com-
positions(C) denote, respectively, the set of primitive component objects, the supervisory
component, and the set of child compositions of C. Obviously, there exists a dependency
from supervisor(C) to every primitive component object oi in components(C). We call this
dependency an update dependency among primitive component objects, and denote it as
supervisor(C) � oi. This terminology will be explained later. If a � b and a � c both
hold, we simply denote them as a � bc.

Let S be a centralized composition system. Let us consider a directed graph with all the
primitive component objects in S as its nodes. We define its links as follows. There exists
a link o1 ⇒ o2 from a node o1 to another node o2 if and only if the following three condi-
tions all hold:

1. o1 � o2

2. o1 � o2

3. There exists no such node o (�o1, o2) that satisfies o1 � o and o � o2

We call this graph a composition graph. Obviously, any composition graph is a set of di-
rected trees. Each tree in a composition graph represents a composition, while its root rep-
resents the supervisory component of this composition.

Let us now consider how to define a functional linkage between two component ob-
jects o1 and o2 to satisfy o1 ⇒ o2. By definition, the logical state of this composition with

7.3 COMPOSITION THROUGH SLOT CONNECTIONS 135

tan-7.qxd 5/15/2003 4:10 PM Page 135

o1 and o2 is the logical state of o1. Therefore, in general, any change of the logical state in
o1 should be immediately informed to o2. Of course, this capability need not be utilized by
any of such compositions. Anyway, we need to provide a standard message to inform such
state changes. We call it an update message. Every component, on the other hand, needs to
define a method to react to this update message. The component object o2 need not know
the overall logical state information of o1, but may reference some portion of this infor-
mation. The component object o1, in general, has more than one such component as o2. In-
stead of informing them with different portions of the updated logical state, we chose the
strategy to make o1 send the same message “update” without any parameters.

The component object o2, if it wants, should be able to control or monitor some portion
of the logical state of o1. Furthermore, suppose that each component can be accessed only
through its slots. Although the component object o2 may access more than one slot of o1,
we chose another strategy to restrict this number to one. This choice has several advan-
tages. It simplifies not only composition operations but also the management and mainte-
nance of composed objects. Each component object can hold its right to define which por-
tions of its logical state can be controlled or monitored by the other component objects.
This is defined by its design strategy as to what kinds of slots to provide. Furthermore, the
definition of the component object o2 need not refer either to the specific component ob-
ject o1 or to its specific slot. All these specifications can be dynamically defined when we
combine these components.

7.3.3 Update Dependency Architecture for Compositions

These design choices lead to the following standard interface protocol between compo-
nent objects. To define a composition o1 ⇒ o2, the component object o2 is connected to
only one of the slots of o1. The component object o2 can access this slot by “set” and/or
“gimme” messages, whereas its definition need not refer either to the component object
o1 or to its slot name. The component object o1, on the other hand, can send only “update”
messages to o2. We call such a primitive composition “a slot connection” of two compo-
nent objects. The component object o1 is the parent or master of this slot connection, and
the object o2 is its child or slave. Furthermore, no component object can become a child of
more than one parent.

7.4 COMPOUND-DOCUMENT ARCHITECTURE

In compound-document architectures, component objects are all represented as document
components, and each functional linkage between two components is defined by directly
embedding one of their document-component representations into the other on the display
screen through mouse operations. This identifies composition operations on components
with editing operations on their document-component representations. The embedding of
a document component into another by a direct mouse operation is called a “paste” opera-
tion. We impose a restriction that the logical state of a compound document is the logical
state of its base component, namely, of the bottom one. Under this restriction, the compo-
sition graph of each composition becomes isomorphic to the embedding structure of its
compound-document representation.

The IntelligentPad architecture adopts a compound-document architecture, and impos-
es the above-mentioned restriction. You may use paste operations in arbitrary ways; for

136 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 136

example, to overlay multiple translucent pads of the same size, or to arrange multiple pads
on the same base pad. Users can easily replicate any pad, paste one pad on another, and
peel a pad off a composite pad. These operations can be equally applied both to any prim-
itive pads and to any composite pads. When a pad P2 is pasted on another pad P1, pad P2

becomes a child of P1 and is termed its child pad or slave pad. Pad P1 becomes the parent
of P2, and is called its parent pad or master pad. No pad may have more than one parent
pad. Pads are decomposable persistent objects. You can easily decompose any composite
pad by simply peeling off any primitive or composite component pad from its parent pad.

The linkage between a child pad and its parent pad is defined by a “paste” operation,
which is more closely related to their view parts than either their model parts or their con-
troller parts. Therefore, their linkage is actually set between their view parts. Later, we
will define shared copies of the same pad. Although they share the same model, each of
them has its dedicated display object. Different shared copies of the same pad should be
able to have different child pads. The linkage between two pads through their view parts
satisfies this requirement.

7.5 STANDARD MESSAGES BETWEEN PADS

When a pad P2 is pasted on another pad P1, the IntelligentPad system constructs a linkage
between their view parts (Figure 7.2). This defines an update dependency from P1 to P2. If
P1 has more than one slot, we have to select one of them to associate it with P2. This selec-
tion can be specified on a connection sheet (Figure 7.3). The selected slot name is stored in
an instance variable slotName of the child pad P2. A child pad can send either a “set: data
to: slotName” message or “gimme: slotName” message to its parent, whereas the parent
pad, when its state is changed, can send some of its child pads an “updatePad” message
without any parameter to propagate an update event. The interpretation of the “updatePad”
message again depends on the implementation of the sender and the receiver pads. It is usu-
ally used to inform the child pads of a parent’s state change. The slot name stored in the vari-
able slotName becomes the real parameter of “set:” and “gimme:” messages. In the defin-
ition of each pad, its programmer cannot a priori know the name of its parent’s slot that will
be used for the slot connection. The indirect reference of the connection slot in “set:” and
“gimme:” messages solves this problem. IntelligentPad allows us to disable some of the
three standard messages—“set:,” “gimme:,” and “updatePad”—between a parent pad and
a child pad, which can be specified on the connection sheet. The two messages “set: data

7.5 STANDARD MESSAGES BETWEEN PADS 137

MVC

Controller ModelView message

sending

MVC

↓gimme [<slot_name>]

↓set [<slot_name>] <value>
update↑

P1

P1

P2

P2

Figure 7.2 The pasting of a pad on another defines a functional linkage between these pads.

tan-7.qxd 5/15/2003 4:10 PM Page 137

to: slotName” and “gimme: slotName” sent to a pad P are forwarded to its parent pad if P
does not have any slot of the name specified by slotName.

Among its data slots, each pad has three special slots—the primary slot, the primary
slot for “set” messages, and the primary slot for “gimme” messages. They are obtained
by sending, respectively, “primarySlot”, “primarySlotForSet”, and “primarySlot-
ForGimme” messages to the view. The primary slot is used to access a pad using “set”
and “gimme” messages without explicitly specifying the slot name. Such accesses are
used by script programs of StagePads, which will be detailed in Section 8.3. The primary
slot for “set” messages is used to keep the parameter value for the next “set:” message to
its parent pad, whereas the primary slot for “gimme” messages is used to hold the return
value of the last “gimme:” message to its parent pad.

In the four commercially available versions of IntelligentPad, we have merged these
three different primary slots into a single one. In these systems, the primary slot of a pad
provides the parameter value for the next “set:” message to its parent pad and receives the
return value of each “gimme” message sent to its parent pad. Furthermore, the primary
slot of a pad can be dynamically selected by the user out of all the slots of this pad. Users
can open the property sheet of each pad to change its primary slot. When a script program
sets a value to the primary slot, this slot receives this parameter value. When a script pro-
gram sends a “gimme” message to the primary slot, the slot provides a value as a return
value. For the provision of a value, the slot is internally accessed by a “get:” message,
whereas, for the reception of a value, the slot is internally accessed by a “set:” message.

138 MEME MEDIA ARCHITECTURE

Figure 7.3 A bar meter is connected to the scroll slot of the underlying pad. This slot connection
is specified by opening the corresponding connection sheet.

tan-7.qxd 5/15/2003 4:10 PM Page 138

The method for “set:” message is already defined in the previous section. The methods
for the remaining two standard messages are defined as follows.

gimme: slotname
|data|
(self propertyList keys include: slotname)

ifTrue: [�self propertyGet: slotname].
(self slotNames includes: slotname)

ifTrue: [data:=(self get: slotname) copy.
�data]

ifFalse: [self master notNil ifTrue: [�self master gimme: slotname]].
�nil

updatePad
|data|
self updateFlag

ifTrue: [data:= self sendGimme: slotName.
data notNil ifTrue: [self set: data to: self primarySlotForGimme]]

sendGimme: slotname
self master isNil ifTrue: [�nil].
�self gimmeFlag

ifTrue: [self master gimme: slotname]
ifFalse: [nil]

The second line of the “gimme:” method examines if the “slotname” refers to properties
of the view. If it does, then the value of this referred property is read out as the return val-
ue. Otherwise, the fourth line examines if this pad has the specified slot as its slot. If it
has, the slot is accessed by a “get:” message, and its return value is returned to the sender
pad of this message. Otherwise, this “gimme:” message is delegated to its parent pad, and
its return value is returned to the sender pad of this message.

The method for the “updatePad,” when the updateFlag is set to enable this message,
performs “self sendGimme: slotName,” which, when gimmeFlag is also set to enable
“gimme” messages, sends a “gimme:” message to the specified slot of the parent pad. Its
return value is then set to the primary slot for “gimme” of this pad.

In a default way of defining a pad, we use “self sendGimme: slotName” in the view to
send a “gimme” message to its parent pad, and “self setDefault: data to: self primary-
SlotForSet” in the model to send a “set:” message to its parent pad. The method for “set-
Default” is defined as follows.

setDefault: data to: slotname
slots at: slotname ifAbsent: [�self].
(slots at: slotname) = data ifTrue: [�nil].
slots at: slotname put: data.
self changed

The execution of “self setDefault: data to: self primarySlotForSet” causes the model to
send an “update” message to the view, which then causes the view to perform “self

7.5 STANDARD MESSAGES BETWEEN PADS 139

tan-7.qxd 5/15/2003 4:10 PM Page 139

viewUpdate,” “self refreshDisplay,” and “self padUpdate,” in this order. The last of
them executes “self updateToSlaves” and “self updateToMaster.” The latter will send
the specified connection slot of its parent pad the “set:” message with the current value of
the primary slot for “set” messages. The following is the previously given definition of the
method “updateToMaster.” The first two lines check if the “set” message is enabled. The
following two lines update the value of the connection slot.

updateToMaster
(self setFlag and: [self master notNil])
ifTrue:

[self master set: (Array with: slotName with:
(self get: self primarySlotForSet) copy)]

Of course, you may directly use “self master set: data to: slotName” to send a “set” mes-
sage to the parent pad. In this case, you have to define all the necessary updates.

In addition to these three standard messages—“set:,” “gimme:,” and “updatePad,”—
any pad can send some other standard messages for geometrical operations to its parent as
well as to its child pads. Among these messages are included the following:

changeRelativeOrigin: aPoint to change the relative location on its parent pad
relativeOrigin to obtain its relative location on its parent pad
changeExtent: aPoint to resize the pad
extent to obtain its size
changeBorderWidth: anInteger to change its border width
borderWidth to obtain its border width
moveTo: aPoint offset: anOffset to move the pad to the specified location
copyTo: aPoint offset: anOffset to make its copy at the specified location
setBackgroundColorName: aSymbol to set its background color to the specified one
backgroundColor to obtain its background color
setForegroundColorName: aSymbol to set its foreground color to the specified one
foregroundColor to obtain its foreground color

These are the messages to the wrappers, but not to the contents. Since wrappers are stan-
dardized, these messages can be applied to any pads without specifying any slot connec-
tion. Unless otherwise specified, geometrical messages have nothing to do with the logi-
cal states of pads and, hence, they are independent from the update dependencies among
pads. Each pad may send geometrical messages to any pad that is not either its child pad
or its parent pad.

Geometrical messages together with the three standard messages—“set:,” “gimme:”
and “updatePad”—define the standard interface between pads.

7.6 PHYSICAL AND LOGICAL EVENTS AND THEIR DISPATCHING

IntelligentPad is an open system that can communicate asynchronously with various re-
sources. Interaction can occur with people, extended devices, other applications and ob-
jects (communicating with sockets or OLE), and with server systems (database and

140 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 140

WWW servers). IntelligentPad receives status changes of these asynchronously operating
resources as events.

Although two separate resources may be viewed by IntelligentPad as identical in
type, differences in the operating systems and resource handlers may prevent
IntelligentPad from processing their events in the same manner. Even if pads that could
handle multiple platforms were developed, the inability to use the source program across
multiple platforms would result in overlapping efforts and increased cost of pad plat-
form development.

The concept of virtual resources and logical events were introduced to overcome the
differences in the operating systems and resource handlers. The ability of the virtual re-
sources to handle additional registration, and to define resource types and logical event
systems, facilitates the expansion of resources and satisfies the diverse requirements of
resource handling.

7.6.1 Physical and Logical Events

IntelligentPad can handle various resources as real resources that can become an event-
generation source. These include the system clock; an interval timer; input devices such
as a mouse, pen, and keyboard; external devices such as sensors and actuators; communi-
cation means such as sockets, OLE, DDE, and CORBA [14]; other applications; other ob-
jects to communicate with; and information management systems such as databases,
WWW, and E-mail. The OS notifies the IntelligentPad system about the events in the real
resources as event messages. These raw events are physical events.

Logical events are converted physical events. Although the physical events are in the
event-expression format defined by the OS, the logical events are in the expression format
defined by the IntelligentPad system. Virtual resources cause logical events. The defini-
tion and registration of new virtual resources to an Intelligentpad system expand the re-
sources and logical events that the IntelligentPad system can utilize. A virtual resource re-
ceives a physical event generated in a real resource, converts it to a logical event, and then
places it in the logical event queue. Pads can request logical events of virtual resources.
Pads specify the type of the logical event that they desire to receive by using the parameter
of a request. The virtual resource delivers the generated logical event to the pad that re-
quested it.

A pad can also request a logical event grab of a virtual resource. The logical event grab
makes it possible to take a logical event prior to other pads, and to decide whether to de-
liver this particular event to other pads that requested it. Normally, a logical event grab
should be avoided because it limits other pads’ ability to receive events and affects the op-
eration of other pads. Each virtual resource defines the type of grabbable logical events
and the way in which they are specified.

7.6.2 Position Events and Their Dispatching

Among various events, position events require special considerations for pads to behave
like directly manipulable objects. A position event is an event including the position infor-
mation. Mouse events are examples of position events. A position event is usually
processed by the outermost pad at this position, namely by the pad whose portion at this
position is not covered by any other pad. As shown in Figure 7.4, the overlay structure

7.6 PHYSICAL AND LOGICAL EVENTS AND THEIR DISPATCHING 141

tan-7.qxd 5/15/2003 4:10 PM Page 141

among pads does not coincide with their parent–child relationships. A pad may be partial-
ly or fully covered by another independent pad. Furthermore, a pad may have a child pad
that partially or fully covers another child pad.

A special pad, upon receiving an event, can selectively delegate this event to another
pad. The target pad need not be placed immediately under the recipient. For example, you
may consider a special pad that searches for the outermost pad under its parent pad to del-
egate mouse events it receives, and to display on itself the target pad’s portion it covers.
When pasted on some pad, this special pad makes a hole on its parent pad. Every mouse
event within the hole is delegated to the target pad.

Unless otherwise specified by each pad, three mouse button events are assigned to the
following direct manipulation of pads. The right button, called the blue button, is used to
drag a pad, whereas the middle button, called the yellow button, is used to resize a pad.
The left button, called the red button, is used by each pad to define its specific operations.
When the right button is clicked while pressing of the shift key, the pad pops up an opera-
tion menu including the following entries: “move,” “resize,” “copy,” “connection,”
“shared copy,” “property,” “primary slot,” “free,” and “delete.” A selection of one of them
will invoke its operation method.

7.6.3 User-Event Dispatching Mechanism

User events through a mouse and a keyboard are detected by the following methods of the
PadController class and its superclass, Controller.

For class Controller:

startUp
self controlInitialize.
self controlLoop.
self controlTerminate

142 MEME MEDIA ARCHITECTURE

Figure 7.4 The overlay structure among pads does not necessarily coincide with the parent–child
relationship hierarchy among them.

tan-7.qxd 5/15/2003 4:10 PM Page 142

where, for class PadController:

controlInitialize
(view isKindOf: PadView) ifTrue: [view enter]

controlTerminate
(view isKindOf: PadView) ifTrue: [view leave]

controlLoop
|previousState state|
state := self sensor redButtonPressed.
state ifTrue: [self redButtonDown: self sensor cursorPoint].
[previousState := state copy.

self poll
state := self sensor redButtonPressed.
state

ifTrue: [previousState
ifTrue: [self redButtonDown: self sensor cursorPoint]
ifFalse: [self redButtonWentDown: self sensor cursorPoint]]

ifFalse: [previousState
ifTrue: [self redButtonWentUp: self sensor cursorPoint]
ifFalse: [self redButtonUp: self sensor cursorPoint]].

self isControlActive]
whileTrue: [self controlActivity].

(state or: [previousState]) ifTrue: [self redbuttonUp: view bounds center]

When the mouse cursor enters a pad, its controller performs the “controlLoop”
method to detect various mouse and keyboard events. The loop from the fourth line to the
fifteenth line of the “controlLoop” method tries to detect the four different events caused
by the red button of the mouse. When it detects any of these events, it asks the view if this
pad defines the corresponding action, and makes it perform this action (which will be ex-
plained later). This loop also repetitively performs the following method.

For class PadController:

controlActivity
self sensor yellowButtonPressed & self viewHasCursor

ifTrue: [�self yellowButtonActivity].
self sensor blueButtonPressed & (self viewHasCursor & view isFixed not)

ifTrue: [�self blueButtonActivity].
self sensor keyboardPressed

& (view keyboardViewAction notNil & self viewHasCursor)
ifTrue: [�self keyboardActivity].

super controlActivity.
�nil

This method further examines if any of the remaining mouse-button events and key-
board events has occurred. These would include such events as pressing the yellow button,
the blue button, and the keyboard. When this method detects any of these events, it makes

7.6 PHYSICAL AND LOGICAL EVENTS AND THEIR DISPATCHING 143

tan-7.qxd 5/15/2003 4:10 PM Page 143

the pad perform the corresponding action (which will be explained later). Then the
method performs the following method in the while loop of the “controlLoop.”

For class Controller:

controlActivity
self controlToNextLevel

controlToNextLevel
|aSubView|
aSubView�view subViewWantingControl.
aSubView isNil ifFalse: [aSubView controller startUp]

The execution of “super controlActivity” transfers the event management from the cur-
rent pad to its child pad that includes the mouse cursor. Even during the execution of the
“controlLoop,” the mouse may change its location. This transfer is necessary to dispatch
each mouse event to the outermost pad at its cursor location.

The “controlLoop” execution exits from its loop when “self isControlActive” be-
comes false. This message performs the following method.

For class PadController:

isControlActive
�[self viewHasCursor and:

[(self sensor blueButtonPressed and: [view isFixed]) not and:
[view isVisible]]]

The condition “self isControlActive” becomes false if the mouse exits from the pad,
the blue button is pressed, or the pad becomes invisible. In this case, the “controlLoop”
execution exits from its loop, and if the red button is still down, assumes that the red but-
ton is released and performs the corresponding action.

When the “controlLoop” method detects any mouse event, it performs the corre-
sponding action among the following:

“self redButtonDown: self sensor cursorPoint”
“self redButtonWentDown: self sensor cursorPoint”
“self redButtonWentUp: self sensor cursorPoint”
“self redButtonUp: self sensor cursorPoint”

Each pad uses the red button to define its specific operations. For example, the redBut-
tonDown method is defined as follows:

redButtonDown: aPoint
|action|
(action := view redButtonDownAction) isNil

ifTrue: [�self]
ifFalse:[view perform: action with: aPoint]

This performs the red button action defined for this pad if any. The other methods are also
similarly defined.

144 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 144

The “controlLoop” also performs the following in the “controlActivity” method:

“self yellowButtonActivity”
“self blueButtonActivity”
“self keyboardActivity”

The “yellowButtonActivity” and the “blueButtonActivity” methods are defined similar-
ly to the above-mentioned red button activities:

blueButtonActivity
|action|
(action := view blueButtonViewAction) isNil

ifTrue: [self sensor shiftdown
if True: [�self shiftBlueButtonActivity].
self moveWithDrag]

ifFalse:[view perform: action with: self sensor cursorPoint]

yellowButtonActivity
|action|
(action := view yellowButtonViewAction) isNil

ifTrue: [self resizeWithDrag]
ifFalse: [view perform: action with: sensor cursorPoint]

The blue button is used to drag a pad whereas the yellow button is used to resize a pad.
When the blue button is clicked with the pressing of the shift key, the pad pops up an op-
eration menu including the following entries: “move,” “resize,” “copy,” “connection,”
“shared copy,” “property,” “primary slot,” “free,” and “delete.” A selection of any one of
them will invoke its operation method:

shiftBlueButtonActivity
|index|
index := (PopUpMenu labels: ‘move\resize\copy\connection\shared

copy\property\primary slot\free\delete’ withCRs) startUp.
index > 0 ifTrue:

[self perform: (#(#moveWithDrag #resizeWithDrag
#copyPad #changeConnection #sharedCopyPad
#openPropertySheet #openprimarySlotSheet #free #delete) at:
index)]

The “keyboardActivity” is defined as follows:

keyboardActivity
|key|
[self sensor keyboardPressed]

whileTrue: [key := self sensor keyboard].
(key isKindOf: Character)

ifFalse: [�self].
self keyIn: key

7.6 PHYSICAL AND LOGICAL EVENTS AND THEIR DISPATCHING 145

tan-7.qxd 5/15/2003 4:10 PM Page 145

keyIn: keyChar
|action|
(action := view keyboardViewAction) isNil

ifTrue: [�self]
ifFalse: [view perform: action with: keyChar]

When a key input occurs, this method asks the view of the pad if it will respond to a
keyboard event, and, if it will, tells the view to perform the corresponding action with the
input key.

All the above define the event dispatch mechanism for user events applied to pads.

7.6.4 Geometrical-Operation Notification

Every geometrical operation applied to a pad notifies its completion to the parent of this
pad. Unless otherwise specified, each pad receiving such a notification further propagates
this to its parent pad. Such geometrical operations on a pad include its moving, resizing,
pasting, peeling, and slot connection; the releasing of its slot connection; its copying,
property change, and selection; the releasing of its selection; its deletion and grouping;
the releasing of its grouping; and its saving, showing, and hiding. The notification of their
completion can be used by another underlying pad such as a stage pad to trigger some of
its performance.

These notifications of geometrical operations use the parent–child relationships among
pads, which is different from the position event dispatching among pads. These notifica-
tions include the following operation completion events: “moved,” “resized,” “copied,”
“pasted,” “peeled,” “mclicked” (mouse clicked), and “keyIn” (key input).

When one of these operations, say moving a pad from (100, 20) to (30, 50), is complet-
ed, this pad sends the following message to its parent pad:

sendEvent: “moved” from: P with: #(100@20 30@50)

The recipient parent pad further forwards this message to its parent pad if it has one. It is
up to each recipient pad to utilize this information or not.

7.7 SAVE AND EXCHANGE FORMAT

The IntelligentPad system defines both the save format and the exchange format of com-
posite pads. The save-format representation of a pad is used to store this pad in a file. You
need not store its pad classes. You only need to store the current state of each of its compo-
nent pads, all the parent–child relationships among them, and all the slot connections
among them. The save-format representation of a pad consists of this set of information,
which is necessary and sufficient to reconstruct the original pad using the pad class library.

The exchange-format representation of a pad is used to transport this pad among dif-
ferent IntelligentPad systems sharing the same pad library. The implementation details of
the shared library may differ in different systems. The exchange-format representation of
a pad consists of all the information necessary and sufficient to reconstruct the same pad
at the destination site. It logically provides the same information as the save-format repre-
sentation of the same pad.

146 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 146

The save format and the exchange format of the same composite pad may be identical.
Each prototype version of IntelligentPad uses the same format for these two, whereas the
commercially available versions of IntelligentPad use different formats for these two. The
exchange format is standardized among mutually compatible different IntelligentPad sys-
tems, whereas the save format depends on the specific version and its underlying platform
to optimize the save and load performance.

The exchange-format representation of a composite pad is in text format. It consists of
the header description, a set of pad descriptions, and the update-propagation order de-
scription. The header description includes the creation date, the storing date, the creator,
the number of pads, and other descriptions of the context in which this composite pad is
created. Each pad description consists of the common area, the model information area,
and the view information area. The common area of a pad includes its pad class name; pad
version, pad name; pad ID in the exchange-format representation; parent pad ID; model-
sharing pad ID; enable/disable flags for “set,” “gimme,” and “update” messages; connect-
ed slot name; origin; extent; show/hide flag; background color; transparency; and opera-
tion-protection information. The model and the view information areas contain their state
information as lists of pairs (item name and value).

The order of update propagation affects the operation of compound pads. The update-
propagation order description consists of the copy-order description and the connection-
order description. When the model of a pad is updated, all of its shared copies should re-
ceive update propagation in some order. This order is specified by a list of model-sharing
pads for each set of shared copies. The copy-order description consists of such lists. When
a slot is updated, the update message is issued to all the child pads that are connected to
this slot in some order. This order is specified by a list of child pads. The connection-order
description consists of such lists.

7.8 COPY AND SHARED COPY

For any pad, whether it is primitive or composite, the IntelligentPad architecture allows us
to make shared copies as well as nonshared copies. Shared copies of the same object share
its logical state. In the IntelligentPad architecture, the logical state of a primitive pad is de-
fined by its model. Furthermore, the logical state of a composite pad is defined as the log-
ical state of its base pad. Therefore, a shared copy P� of a primitive pad P shares its model
component with P, but has a dedicated view component and a dedicated controller compo-
nent (Figure 7.5). Shared copies of a composite pad are defined as sharing the state of
their base pad, as shown in Figure 7.6. The IntelligentPad architecture considers the mod-
el component of a composite pad to be the model component of its base pad.

The IntelligentPad architecture allows us to electronically send a shared copy of an ar-
bitrary pad to other users at different sites. Its receiver can share the model of this pad
with its sender. Shared copies of the same pad distributed across a computer network may
concurrently request their model component to update its state. In order to resolve any
conflict among them, shared copies at different sites are assigned with different priority
numbers. Shared copies with larger priority numbers have higher priorities. IntelligentPad
divides the updating process of each pad into three phases, i.e., the update-request phase,
the model-update phase, and the view-update phase. Each request is sent to the model
component, then updates this component and makes it update all of its view components.
With respect to their update, pads are classified into two types, i.e., combinatorial pads

7.8 COPY AND SHARED COPY 147

tan-7.qxd 5/15/2003 4:10 PM Page 147

and sequential pads. A combinatorial pad determines its next state independently from its
current state, whereas a sequential pad requires its current state information to determine
its next state. A combinatorial pad may accept a new update request with the higher prior-
ity, neglecting the preceding one under the processing, if the pad is still in either the up-
date-request phase or the model-update phase. However, if it is already in the view-update
phase, it cannot neglect the preceding update under the processing to accept a new one. A
sequential pad, on the other hand, can accept a new update request with the higher priori-
ty, neglecting the preceding one under the processing, only when the pad is still in the up-
date-request phase. IntelligentPad allows us to associate each shared copy with an arbi-
trary number as its priority level. An update request from a shared copy with i as its
priority level is defined to have the same priority level i.

148 MEME MEDIA ARCHITECTURE

CC VV

M

P’P

P’P

M

Figure 7.5 A shared copy P� of a primitive pad P shares its model component with P.

M

independent copies

shared copies

Composite

pad P’

PP’

Composite

pad P

the model of the base pad

Figure 7.6 Shared copies of the same composite pad.

P 'P

tan-7.qxd 5/15/2003 4:10 PM Page 148

7.9 GLOBAL VARIABLE PADS

Global variables are variables commonly accessed by more than one pad without using
slot connections. If the current time is defined as a global variable, pads can easily refer to
the current time in their programs without explicitly connecting themselves to any slot
that provides the current time. Global variables are usually used by an application package
of pads as shared variables accessible by any of these pads. A package of physical simula-
tion pads, for example, may use global variables to share physical constants.

If all global variables are accessible by any pad, they have a single level of access struc-
ture. It is desirable to introduce a hierarchy to the access of global variables. In the case of
single-level global variables, we may consider that these global variables are defined in
the desktop. Similarly, we may consider a special pad that defines some global variables
that can be accessed by any other pads over this pad. Such a pad is called a global-variable
pad. Global-variable pads can be pasted on any other pads. They introduce a hierarchy to
the access of global variables. This hierarchy observes the so-called scope rule as shown
in Figure 7.7. A pad can access a global variable if and only if this variable is defined by a
global-variable pad under this pad, and there is no other global-variable pad with the same
name variable between these two pads.

A global-variable pad may not have slots or slot connection capability to its parent pad.
Furthermore, it may or may not issue an “update” message when its global variable is up-
dated. All these definitions of a global-variable pad are up to its developer. Some global-
variable pads may provide only read-only variables.

7.10 SUMMARY

Our meme media architecture, IntelligentPad, is based on the following architectural con-
cepts.

1. Wrapper architecture

2. Frame architecture

3. MVC architecture

7.10 SUMMARY 149

accessible to both any xi and any yj.

y1, y2, yn

accessible to any xi but not to yi.

x1, x2, xn

global
variable
pad

global
variable
pad

Figure 7.7 A hierarchy of global variable pads defines the access-scope hierarchy of their global
variables.

tan-7.qxd 5/15/2003 4:10 PM Page 149

4. Update-dependency architecture

5. Compound-document architecture

The IntelligentPad architecture wraps each functional component with a wrapper. Such a
wrapper provides any content object with a visible shape, and enables its user to directly
manipulate it on a display screen. It gives each object a card image. Such cards are called
pads.

IntelligentPad exploits a frame architecture for each pad. Each pad provides a set of
slots that work as connection jacks. The content object in each pad can be accessed only
through its slots. The IntelligentPad architecture provides two types of standard access
messages for each slot—“set” and “gimme.”

The IntelligentPad architecture uses a specialized version of the MVC construct to rep-
resent each pad.

To define a composition, a component object is connected to only one of the slots of
another object. The former object can access this slot by “set” and/or “gimme” messages,
whereas its definition need not refer either to the latter component object or to its slot
name. The latter component object, on the other hand, can send only “update” messages to
the former. The latter component is the parent or master of this connection; the former is
its child or slave. Furthermore, no component object can become a child of more than one
parent.

The IntelligentPad architecture adopts the compound-document architecture. You may
use “paste” operations in arbitrary ways; for example, to overlay multiple translucent pads
of the same size, or to arrange multiple pads on the same base pad. Pads are decompos-
able persistent objects.

IntelligentPad is an open system that can communicate asynchronously with various
resources. Although two separate resources may be viewed by IntelligentPad as identical
in type, differences in the operating systems and resource handlers can prevent it from
processing the events in the same manner. The concept of virtual resources and logical
events were introduced to overcome the differences in the operating systems and resource
handlers.

REFERENCES

1. J. Feiler and A. Meadow. Essential OpenDoc: Cross-Platform Development for OS/2, Macin-
tosh, and Windows Programmers. Addison-Wesley, Reading, MA, 1996.

2. A. Denning. ActiveX Controls Inside Out. Microsoft Press, Redmond, WA, 1997.

3. D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Sebastopol, CA, 1996.

4. E. Berk and J. Devlin (eds.). Hypertext/Hypermedia Handbook. Intertext Publications, Mc-
Graw-Hill, New York, 1991

5. H. Brown (ed.). Hypermedia/Hypertext and Object-Oriented Databases. Chapman & Hall,
London, 1991.

6. R. Rada. Hypertext: From Text to Expertext. McGraw-Hill, London, 1991.

7. N. Woodhead. Hypertext and Hypermedia: Theory and Applications. Addison-Wesley, Wilm-
slow, UK, 1991.

8. J. Nielsen. Hypertext and Hypermedia. Academic Press, Cambridge, MA, 1993.

9. T. Berners-Lee, R. Cailliau, N. Pellow, and A. Secret. The World-Wide Web Initiative. In Pro-
ceedings of INET’93, 1993.

150 MEME MEDIA ARCHITECTURE

tan-7.qxd 5/15/2003 4:10 PM Page 150

10. M. Andreessen. MCSA Mosaic Technical Summary. NCSA Mosaic Technical Summary 2.1,
1993.

11. M. Hammer and J. Champy. Reengineering Corporation: A Manifesto for Business Revolution.
HarperBusiness, New York, 1993.

12. M. Minski. A framework for representing knowledge. In P. Winston (ed.), The Psychology of
Computer Vision, pp. 211–281, McGraw-Hill, New York, 1975.

13. W. R. LaLonde and J. R. Pugh. Inside Smalltalk. Volume II. Prentice-Hall, Englewood Cliffs,
NJ, 1991.

14. Object Management Group. The Common Object Request Broker: Architecture and Specifica-
tion. Wiley, New York, 1992.

REFERENCES 151

tan-7.qxd 5/15/2003 4:10 PM Page 151

CHAPTER 8

UTILITIES FOR MEME MEDIA

The previous chapter described the IntelligentPad architecture. This chapter provides the
system with basic utility tools for modifying, coordinating, inspecting, managing, or
transporting pads. These tools are also implemented as pads. This allows us to apply these
tools to any pads, including themselves.

A FieldPad is used to define a shared workspace with arbitrary pads; its copies with all
the pads on it share every user event. A StagePad allows users to write a script program
for manipulating multiple pads and performing a series of steps. It can manipulate any
pads on itself in the same way as we directly manipulate them. It also allows users’ inter-
actions. It can associate each user event with a corresponding action. When a user event is
applied, it triggers the corresponding action. A proxy pad works as a proxy of an external
object such as a database server, a file server, or an application system. It communicates
with the external object to integrate the function of this object with other pads.

8.1 GENERIC UTILITY FUNCTIONS AS PADS

IntelligentPad treats every manipulable object as a pad. It also tries to treat every generic
function as a pad. Furthermore, as a special case, IntelligentPad treats generic functions
that are applied to pads as pads, thus allowing us to apply such functions to another copy
of the same function. Utility functions for controlling, coordinating, arranging, editing,
managing, searching, transporting, and distributing pads are all generic functions that are
applied to pads. Once they are implemented as pads, their functions can be applied to any
pads, including themselves.

Utility functions for pads are generic functions applicable to all kinds of pads. These
functions are classified as follows:

1. Modify a target pad

2. Coordinate a group of pads

152

tan-8.qxd 5/15/2003 4:21 PM Page 152

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

3. Inspect a target pad

4. Manage and retrieve pads

5. Transport a target pad

The modification of pads is further classified into the following:

a. Modification of the controller part of a target pad

b. Modification of the view part of a target pad

c. Modification of the model part of a target pad

Controller modification changes user events and their dispatch mechanism. View mod-
ification changes the appearance of pads on the display. The clipping of a pad into some
shape and the rotation of a pad to some angle are examples of view modification. Model
modification changes the internal processing function of a pad. An example is the addi-
tion of a new slot to a target pad.

The coordination function is further classified into the following:

a. Spatial coordination

b. Temporal coordination

c. Spatiotemporal coordination

Spatial coordination geometrically arranges pads, whereas temporal coordination controls
the timing of the activation of pads. Spatiotemporal coordination controls both the activa-
tion and the movement of target pads.

The inspection function examines the structure and the status of a target pad. For ex-
ample, the inspection of a composite pad structure represents the composition structure as
a tree of components.

The management and retrieval functions store a variety of pads, index them, and help
us to find the pads we want.

All these utility functions need to be represented as pads. Once represented as pads,
these functions are easily applied to any pads through direct manipulations by end-users.
They are mostly represented as base pads on which target pads are placed.

When a pad is pasted on another pad, the child pad usually works as an input and/or
output device of the parent pad. However, this is not the only relationship we can define
between a pad and its parent. Utility function pads used as base pads apply their functions
to their child pads.

8.2 FIELDPAD FOR THE EVENT SHARING

Shared copies of the same pad share the same state, i.e., the same model object. The state
of a composite pad is defined as the state of the base pad. Shared copies, however, cannot
share a user event applied to one of them unless it only changes the shared state. A user
event may change the pad view without changing its state. For example, it may change
only the relative location of a component pad in a composite pad. Hence, we require an
event-sharing mechanism as an independent primitive function.

8.2 FIELDPAD FOR THE EVENT SHARING 153

tan-8.qxd 5/15/2003 4:21 PM Page 153

8.2.1 How to Share Events

In order for us to collaborate through network connections, we must share the same envi-
ronment of pads. This requires the sharing of events, including mouse and keyboard
events, among the distributed copies of the same environment. Event sharing has the fol-
lowing two ways of implementation. Events need to be detected at each site. The detected
events are sent to the central arbiter, and made consistent with each other. This arbitration
neglects some events if necessary. Mutually consistent events are applied either to the
master copy of the environment, or to all the copies of the environment. The former ap-
proach requires each slave copy of the environment to work just as a monitor display of
what happens to the original copy. Such slave copies are called view copies. The latter ap-
proach requires every copy to have the same set of pads with the same initial states. Every
copy of the same environment has the same pads with the same initial states at the same
relative locations on this copy, and receives the same sequence of events (Figure 8.1).
Therefore, all the environment copies behave in the same way unless some pads exhibit
nondeterministic behaviors.

The view copy of a pad can be implemented in either of the following two ways. The
first method multiplies the view part of the original pad, and uses copies of the original
view part as the view copies (Figure 8.2). The message traffic between each view copy
and the original is the same as the traffic between the view part and the model part of the
original pad. The second method uses only a copy of the original’s display image as a view
copy (Figure 8.3). Each copy changes its image whenever the original changes its display
image. Such a copy of the original is sometimes called a shadow copy. Whenever it
changes its display image, the original pad needs to send its bitmap image to each of its
shadow copies.

Event sharing has also two ways of implementation. The first multiplies the controller
of the original pad and uses each of these copies to detect events at each site. Detected
events are all dispatched to the original pad and arbitrated there to neglect conflicting
events. This controller-copy method is combined with the view-copy method to define
copies of the same environment. Each copy consists of a view copy of the original, and the

154 UTILITIES FOR MEME MEDIA

×

(1)user event

(2)event dispatching

The same
relative
location

a pad environment

another copy of
the same pad
environment

Figure 8.1 Every copy of the same environment has the same pads with the same initial states at
the same relative locations on this copy. Each copy receives the same sequence of user events.

tan-8.qxd 5/15/2003 4:21 PM Page 154

8.2 FIELDPAD FOR THE EVENT SHARING 155

C M

C M

C M

C

V

V

V

V M

V

its view copy (a single pad)

original composite pad

C

image copy

Figure 8.3 The second method for the view copy uses only a copy of the original’s display image
as a view copy.

C M

C M

C M

C

V

V

V

V M

V

V

V

V

its view copy

original composite pad

Figure 8.2 The first method defines a view copy by providing only the view part for every com-
ponent of the original pad.

tan-8.qxd 5/15/2003 4:21 PM Page 155

controller copy of the original. These two components are not locally connected but re-
motely connected through the original pad.

The second way of sharing events uses a special mechanism to intercept all the events
over the shared environment. Intercepted events are arbitrated by a centralized mechanism
and then made consistent with each others. They are sent back to every copy of the shared
environment and applied there. We call this approach the interceptor approach. The inter-
ceptor approach is further classified into the following two approaches. The first one uses
a transparent pad as the event interceptor; it covers a desktop area to make it a shared en-
vironment (Figure 8.4). This pad is called an EventInterceptorPad. The second approach
uses a special base pad to define an event-sharing field (Figure 8.5). This base pad is
called a FieldPad [1, 2]. The event-sharing mechanism with a FieldPad is consistent with
the definition of the shared copies of the same composite pad if we consider a pad envi-
ronment on a FieldPad to be a composite pad with this FieldPad as the base pad. Only the
model part of the base FieldPad is shared by these shared copies.

8.2.2 FieldPad For Sharing Events

A FieldPad used as the base of an environment cannot physically intercept events unless
we change the event dispatch mechanism of each pad. We solve this problem as follows
(Figure 8.6). Whenever a pad is put over a FieldPad, its controller is replaced with a spe-
cial controller. When the pad is dragged out from the FieldPad, its controller is changed to
the original one. A new controller sends the event information of each event on it to the
nearest FieldPad below itself. This FieldPad receives event information through its view

156 UTILITIES FOR MEME MEDIA

(1)user event

(3)event
application

(3)event
application

(2)event dispatching

EventInterceptorPad
(transparent)

user environment 2

user environment 1

Figure 8.4 The first method of sharing events uses a transparent pad as an event interceptor,
which covers a desktop area to make it a shared environment.

tan-8.qxd 5/15/2003 4:21 PM Page 156

8.2 FIELDPAD FOR THE EVENT SHARING 157

FieldPadFieldPad

FieldPad

user environment 2

user environment 1

(1)user event

(2)event
sensing

(4)event data
application

(4)event data
application

(3)event data sharing

Figure 8.5 The second method of sharing events uses a FieldPad to define an event-sharing field.

C MV C’ MV

C MV

FieldPad

Figure 8.6 A FieldPad intercepts all the events applied to those pads over itself. (a) Whenever a
pad is put over a FieldPad, its controller is replaced with a special controller. (b) A new controller
sends the event information of each event to the topmost FieldPad below itself.

C’ M

C’ M

C M

C’

V

V

V

V M

FieldPad1

FieldPad2

FieldPad2

FieldPad1

(a) (b)

tan-8.qxd 5/15/2003 4:21 PM Page 157

part, which then sends this to its model part (Figure 8.7). The model part is shared by all
the shared copies of this FieldPad, and arbitrates events coming from different copies to
make them consistent. It may neglect conflicting events. Each accepted event is sent back
to every view part copy of this FieldPad. For each arrival of event information, each view
then searches for the pad to apply this event. This pad is found as the outermost pad at the
event location. The event location is obtained from the event information.

In the real implementation, we divided the function of a FieldPad into two independent
functions and implemented each of them as a pad (Figure 8.8). They are the EventSens-
ingPad and the EventApplicationPad. An EventSensingPad intercepts each event, trans-
lates it to its event information data, and sends this information to the corresponding
EventApplicationPad through a slot connection between them. This EventApplicationPad
sends this information to its model part, which arbitrates events coming from different
copies to make them consistent. Each accepted event is sent back to every view part copy
of the EventApplicationPad. Each view part copy of the EventApplicationPad then
searches for the pad to apply this event. This pad is found as the outermost pad at the
event location relative to each view of the EventApplicationPad.

Figure 8.8 shows the details. When a user applies a user event to a pad P, its controller
sends the corresponding event information to the nearest EventSensingPad below P. This
information consists of the event type and the relative location of the event over this
EventSensingPad. This EventSensingPad stores this event information in its model slot.
Its model notifies its view that its model has been updated. The view of the EventSensing-
Pad reads this slot value and sends this event information to the event slot of its parent pad

158 UTILITIES FOR MEME MEDIA

M

MVC’ M V C’

VC V C

(6) (6)

(4) (4) Each accepted
event is sent
back to every

view part copy.

(3) arbitration of events
coming from
different copies

(5)(5) Each view searches
for the pad to apply
this event.

(2) model update
with event
information

FieldPad

(1) event
information

shared
copies

FieldPad

Pad P

Pad P

(0) event

Figure 8.7 The event-sharing mechanism implemented by shared copies of the same FieldPad.

tan-8.qxd 5/15/2003 4:21 PM Page 158

EventApplicationPad. The view of the EventApplicationPad stores this event information
to the event slot defined in the model part. This model is shared by more than one view of
the same EventApplicationPad. The model notifies its update to all of its views. Each of
these views then reads out the stored event information and sends it to the controller of the
target pad over itself. Then the controller of the target pad sends the corresponding mes-
sage to the view of the target pad.

Each view of the EventApplicationPad finds the target pad using the relative location
of the event. The target pad over each view of the EventApplicationPad is identified as
the outermost pad at this relative location over this view. This method of identifying the
target pad from its location is based upon the following two assumptions. First, the
EventApplicationPad and the paired EventSensingPad have the same size. Second, the
relative locations of pads over a pair of these pads are kept the same among their dif-
ferent copies.

The moving of a pad over a FieldPad by means of a mouse may generate a large se-
quence of mouse events that successively changes the state of the FieldPad, which may se-
riously deteriorate the performance. Our implementation treats each pad-moving opera-
tion as a single event with two locations as its parameters—the origin and the destination
of the movement.

The separation of the two functions of a FieldPad as an EventSensingPad and an Even-
tApplicationPad allows us to insert a pad between them to filter or modify events that the
EventSensingPad sends to the EventApplicationPad.

8.2 FIELDPAD FOR THE EVENT SHARING 159

M

MVC’

VC

(5)

(6)

(4)(4)

(3)

(2)

(1)

EventApplicationPad

EventSensingPad

EventSensingPadMVC’

EventApplicationPaduser event

Figure 8.8 In the real implementation, we divided the function of a FieldPad into two independent
pads—an EventSensingPad and an EventApplicationPad.

tan-8.qxd 5/15/2003 4:21 PM Page 159

8.2.3 Manipulation of Event Information Data

During your collaboration with other people, you may have to leave the workspace for a
while. When you come back, you might like to see the sequence of all the events that oc-
curred during your absence and then rejoin the collaboration. The use of a special pad called
QueuePad, shown in Figure 8.9, enables you to temporarily stop the transfer of the shared
events to a FieldPad pasted on a shared copy of this QueuePad, hold all the events in the
queue buffer in their arrival order, and send these stored events one by one to the FieldPad
later in response to a user’s request. Instead of sharing the FieldPad model, this configura-
tion with a FieldPad on each shared copy of the QueuePad shares the QueuePad model. Each
view of a QueuePad works as an input queue buffer for data items coming from its model. A
new input to a QueuePad changes its model with this input value, and then the model sends
this value to its view, or to all of its views if there exist any shared copies of this pad.

A QueuePad has such slots as #queueInput, #queueOutput, #numberOfEvents, #start-
ToQueue, #outputSingleEvent, and #outputEvents. The slot #queueInput is used to re-
ceive event information from its model or from its parent pad, whereas the slot #queue-
Output holds the first event stored in the queue. The length of the queue is held by the slot
#numberOfEvents. To start the queuing of events, you can send a “true” to the slot #start-
ToQueue. This also temporarily breaks the transfer of each event either from its model or
from its parent pad to its child pad FieldPad. To output the events stored in the queue to
the child pad FieldPad, you can send a “true” either to the slot #outputSingleEvent or to
the slot #outputEvents. The former outputs only the first event of the queue, whereas the
latter outputs all the events in the queue one after the other. Whenever the last event in the
queue is output, the QueuePad resumes the direct transfer of each input event either from

160 UTILITIES FOR MEME MEDIA

M

(7)’

(6)’ (6)

(8)

(7)

(6)

(3)

(2)

(1)

(5)

(5)

(4)

(8)’

user event

#startToQueue

#outputEvents

#queueInput

#queueOutput

queue buffer

FieldPad

QueuePad

Figure 8.9 A QueuePad allows you to leave the shared workspace for a while. It allows you to see
the sequence of all the events that have occurred during your absence when you come back, and
then to rejoin the collaboration.

tan-8.qxd 5/15/2003 4:21 PM Page 160

its model or from its parent pad to the child pad. Figure 8.9 shows how a QueuePad is
used, where the two button pads connected to the slots #startToQueue and #outputEvents
can be used, respectively, to suppress and to resume the participation in the collaboration.
A FieldPad can be also used with a QueuePad to take an event log.

You may sometimes want to enlarge or to reduce some copies of the shared environ-
ment to arbitrary sizes. The configuration shown in Figure 8.10 answers this requirement.

8.2 FIELDPAD FOR THE EVENT SHARING 161

M

(7)

(6)

(1)

(2)

(3)

(5)(5)
(4)

FieldPad

BasePad

user event

(7)

(9)

(8)

(6)

×2

Figure 8.10 A coordinate translation pad is used between a FieldPad and a BasePad to enlarge or
reduce a copy of the shared environment to an arbitrary size. (a) A shared event occurred in the
right-hand environment. (b) A shared event occurred in the left-hand environment.

M

(1)

FieldPad

translation pad

BasePad

(7)(7)

(9)

(2)

(9)

(10)

(8)
(8)

(6)

×2

÷2

(5)

(4) (3)

user event

(a)

(b)

tan-8.qxd 5/15/2003 4:21 PM Page 161

It uses another pad with a slot to store a single event. This pad is used as the base pad to
share event information. In Figure 8.10, the right FieldPad is pasted directly on a copy of
this pad with its slot connection to this event-holding slot, whereas the left one is connect-
ed to another copy of this pad via a coordinate-translation pad. This translation pad multi-
plies each coordinate of the location in the event information coming from its child pad by
a specified parameter value, and sends the translated location together with the event type
to its parent pad. It also divides each coordinate of the location in the event information
coming from its parent pad by the same specified parameter value, and sends the translat-
ed location together with the event type to its child pad. In this example, the parameter is
set to 2, and the height and the width of the composite pad on this pad are both doubled
from its original size. This yields a four-times enlarged shared environment.

The same mechanism with a different coordinate-translation pad can define a shared
environment copy that is turned upside-down from its original. This is especially useful
for board games for two players. The definition of such a shared environment also needs a
special tool pad that turns any dropped-in composite pad upside-down and pops up the re-
sulting pad.

8.2.4 Controllers over FieldPads

Instead of replacing the original pad controller with the special one used only over the
FieldPad, we may extend the function of the original controller to work in both ways. Fig-
ure 8.11 shows the extended controller. This controller has two switches. Different combi-
nations of their states allow different ways of using pads over an EventSensingPad and/or
an EventApplicationPad. Table 8.1 summarizes them.

The extended controller works as the original controller when SW1 is turned off and
SW2 is connected to the “int” terminal. When it is used over a FieldPad, or a pair of an

162 UTILITIES FOR MEME MEDIA

to the view part of this pad

the controller part
of a pad

user event

to EventApplicationPad

to EventSensingPad

Event detector

Event message
sender

ext

int SW1
SW2

Figure 8.11 The extended controller has two switches. Different combinations of their states al-
low different ways of using pads over an EventSensingPad and/or an EventApplicationPad.

tan-8.qxd 5/15/2003 4:21 PM Page 162

EventSensingPad and an EventApplicationPad, its SW1 should be turned on and SW2
should be connected to the “ext” terminal.

If we turn on SW1 and connect SW2 to “int,” we can use this controller for all the pads
over an EventSensingPad to detect all the user events over this EventSensingPad, and to
send their information to somewhere else. You may use this combination to take a log of
user events. If we turn off SW1 and connect SW2 to “ext,” we can use this controller for
all the pads over an EventApplicationPad to apply event information coming from this
EventApplicationPad. These pads cannot be directly manipulated. The configuration in
Figure 8.12 uses these two different types of controllers over an EventSensingPad and
over an EventApplicationPad, respectively. Furthermore, the EventSensingPad is connect-
ed to the EventApplicationPad via shared copies of a basic pad. The two environments in
this configuration may run on different machines connected through a network. This
mechanism allows you to monitor on your own display screen all the operations done by
another user on a different display screen.

8.2 FIELDPAD FOR THE EVENT SHARING 163

M

(7)

(8)

(5)

(2)

(3)

(2)

(1)

(4)

user event

BasePad

EventApplicationPad EventSensingPad

BasePad

SW1: off

SW2: ext

SW1: on

SW2: int

Figure 8.12 Two different types of controllers are used over an EventSensingPad and over an
EventApplicationPad, respectively, which allows us to monitor on our own display screen all the op-
erations done by another user on a different display screen.

Table 8.1 Different combinations of the two switches in Figure 8.11
allow different ways of using pads over the EventSensingPad and/or the
EventApplicationPad

SW1 SW2 Use

on int For a pad over an EventSensingPad
off ext For a pad over an EventApplicationPad
on ext For a pad over a FieldPad
off int For pads other than those above

tan-8.qxd 5/15/2003 4:21 PM Page 163

8.2.5 Conflict Resolution

The event-sharing mechanism using a FieldPad shares event information through its
shared copies. FieldPad is classified among combinatorial pads. Its next state is deter-
mined by the new event information and does not depend on its current state. As discussed
in Section 7.7, a combinatorial pad may accept a new update request with the higher pri-
ority, neglecting the preceding one under the processing, if the pad is still in either the up-
date-request phase or the model-update phase. It cannot accept a new update, neglecting
the preceding one under the processing, if it is already in the view-update phase. There-
fore, a FieldPad accepts new event information with the higher priority, neglecting the
preceding one under the processing, unless its views are being updated with the preceding
one. The same is true with the EventApplicationPad.

8.2.6 Nested Shared Environments

FieldPads or pairs of an EventSensingPad and an EventApplicationPad can be overlaid as
shown in Figure 8.13. Shared copies of this composite pad are defined as shown in Figure
8.14. This allows us to define the nesting of more than one different shared space, as
shown in Figure 8.15, where users A and B can interact with all the pads in the nested two
shared spaces, whereas a user C can interact only with an internal shared space. Figure
8.16 shows the message-sending paths in a nested shared environment.

When an event occurs over the FieldPad FP1 that consists of the EventSensingPad
ESP1 and the EventApplicationPad EAP1, it is detected by ESP1 and its information is
sent to the EventApplicationPad EAP0 through the EventSensingPad ESP0. The Even-
tApplicationPad EAP0 updates its model, which then sends back this event information to
all of its views. The view of EAP0 then propagates this event information to EAP1, which
then updates its model. The model of EAP1 is shared by its two views. Its update is prop-
agated to the two views EAP1 and EAP1�. Both of them apply the new event information
to pad P and pad P�, respectively.

164 UTILITIES FOR MEME MEDIA

EventSensingPad
EventApplicationPad

FieldPad2

FieldPad1

FieldPad2
FieldPad1

shared space 1

shared space 2

Figure 8.13 FieldPads or pairs of an EventSensingPad and an EventApplicationPad can be over-
laid one over the other.

tan-8.qxd 5/15/2003 4:21 PM Page 164

When an event occurs over the FieldPad FP1�, it is detected by the EventSensingPad
ESP1�, and sent to the EventApplicationPad EAP1�, which updates its model with this
new event information. Then this model sends this information to its other view FP1,
which further sends this information to EAP0 through ESP0. The remaining event appli-
cation process proceeds in the same way as described above.

Every change of event information goes to the bottommost EventApplicationPad to
resolve any event conflict. This process passes the event information from each
EventSensingPad to the next underlying EventSensingPad. The application of each event
information goes from the bottommost EventApplicationPad to the target pad. This

8.2 FIELDPAD FOR THE EVENT SHARING 165

M

M

FieldPad1

EventSensingPad
EventApplicationPad

shared environment
for the user C

To the shared
environment
for the user B

shared environment for the user A

FieldPad2’FieldPad2

Figure 8.14 Shared copies of a composite pad with more than one FieldPad.

FieldPad2
FieldPad1

external shared
space

internal
shared space

FieldPad2
FieldPad1 FieldPad2

shared environment for the
user B

shared environment
for the user C

shared environment for the user A

Figure 8.15 Overlaid FieldPads define the nesting of more than one different shared space. Users
A and B can interact with all the pads in the two nested shared spaces, whereas a user C can interact
only with an internal shared space.

tan-8.qxd 5/15/2003 4:21 PM Page 165

process passes event information from each EventApplicationPad to the next overlying
EventApplicationPad.

8.2.7 Wormholes among Different Spaces

Different FieldPads as well as different desktops define different workspaces. We cannot
directly move a pad from one workspace to another workspace. We need a special pipe
that connects one workspace to another. We may use the metaphor of a wormhole for this
pipe, where the entrance and the exit of each pipe may be called a black hole and a white
hole, respectively. Our system provides black holes and white holes as pads. Each black
hole may be paired with more than one white hole, whereas each white hole is paired with
only one black hole. Figure 8.17 shows how black holes and white holes are used to allow
the transfer of pads across different workspaces. If you drop a pad on the BlackHolePad
on the desktop of user A, this pad is transferred to each of the two WhiteHolePads on the
two copies of the same FieldPad—one on the desktop of user A, and the other on the desk-
top of user B. Whichever user may drag this pad out of a WhiteHolePad onto a FieldPad, it
is moved into the shared space.

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS

End-users of IntelligentPad cannot develop a new component pad. They can just paste and
peel existing pads. To ease this restriction, IntelligentPad provides several facilities, in-
cluding an end-user pad programming language, an authoring language, and a model-
description pad. Commercial product versions of IntelligentPad running on Widows PCs
adopt Visual Basic as their end-user programming language for end-users to develop new
component pads. A model description pad works as a model pad. Users can easily de-

166 UTILITIES FOR MEME MEDIA

M

M

EventSensingPad
EventApplicationPad

shared environment
for the user C

shared environment
for the user A

FP1’FP1

FP0
EAP0

ESP0

EAP1

ESP1

user event user event

(8)

(5)

(4)
(3)

(3)

(2)

(1)

(7)

(6) (5) (4)

(3)

(2)

(1)

(5)

(4)

(3)

(2)

(1)

EAP1’

ESP1’

Figure 8.16 Message-sending paths in nested shared environments.

tan-8.qxd 5/15/2003 4:21 PM Page 166

scribe the relationships among its data slot values using expressions. A Fujitsu commer-
cial product version of IntelligentPad running on Windows PCs provides a procedure pad
that allows us to define the relationship among its slot values using an interpreter pro-
gramming language whose syntax is similar to C++. The authoring language uses the
metaphor of a stage, and coordinates the behavior of pads on a special pad called
StagePad. It provides a generic function to manipulate multiple pads and to perform a se-
ries of steps. It can manipulate any pads on the StagePad in the same way as we directly
manipulate them. It can also read and write the primary slot value of any pad on the
StagePad. It also allows user interactions. It can associate each user event with a corre-
sponding action. When a user event is applied, it triggers the corresponding action. At pre-
sent, only the Smalltalk version of IntelligentPad provides the StagePad utility.

8.3.1 An Outline of StagePad

StagePad uses a drama metaphor. Other attempts at using a drama metaphor have been
made before by several groups. One such system is the Rehearsal [3] system that offers a

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 167

Figure 8.17 A pair of a BlackHolePad and a WhiteHolePad defines a wormhole between two dif-
ferent spaces to transport pads from one space to the other.

tan-8.qxd 5/15/2003 4:21 PM Page 167

visual programming environment and regards a Smalltalk object as a “performer.” The
system offers a visual programming environment by using Smalltalk objects visually.
These “performers” appear on a “stage” and act according to cues that are sent to them.

StagePad applies the drama metaphor in order to control pads. It can automate whatev-
er tasks a user can do by manipulating more than one document and/or tool composed as
pads. The distinctive feature of StagePad is that all structures are standard since all the el-
ements that comprise a drama are pads. Any composite pad can become a performer on a
StagePad, and hence a StagePad with some composite pads on itself may also become a
performer on another StagePad. The composition and decomposition of pads can be also
programmed in a StagePad. Thus, the compositional elements of a drama have all been
created as components. Furthermore, a drama itself can be made as a component, i.e., a
compositional element of another drama

A drama is organized around a stage, dressing rooms, performers, a script, and an audi-
ence. The stage in the drama is a StagePad and has a pad called a DressingRoomPad to
hold performers while they are not on the stage. Performers, called actor pads, are pads
whose performance we want to coordinate. An actor pad must be on a StagePad or on a
DressingRoomPad. A pad called a TextEditorPad is used to describe a script. The TextEd-
itorPad describes the actions of actors. Its contents are transmitted to the StagePad via its
slot connection to the StagePad.

The StagePad transmits messages to every actor as directed to by the script whenever
there happens to be a pad action or a user event such as a mouse or keyboard input. The
respective pads begin their actions as directed. In this way, actor pads unfold a drama on
the StagePad. The user is not simply a passive audience, but can change the flow of a dra-
ma by writing a script or generating user events.

Figure 8.18 illustrates a simple application that uses a StagePad. It shows a counter and
an AnimationPad with an image of a gorilla pasted on a StagePad. An AnimationPad
stores multiple images and exchanges them in consecutive order to display them over and
over. The function of a CounterPad is to count up or down depending on the command it
receives. ButtonPads for sending commands and a DisplayPad for displaying the count are
combined together, and the resulting composite pad and the AnimationPad are pasted on
top of a base pad having no specific functions. The directions written in the script are
“when the gorilla is clicked, delete the gorilla and click the count-up button,” and “when
the gorilla moves, move it right first for 20, and then left for 10.” When the gorilla is
moved or is clicked, the contents of the script are enacted. A simple gorilla hunt game is
implemented in this way.

In Figure 8.19, a KeyboardPad is pasted onto a StagePad. The music keyboard has the
function of playing a sound that corresponds to the command it receives. ButtonPads are
pasted on the keyboard. The directions written in the script are “when ‘do’ is clicked, click
in ‘mi,’ then click in ‘so,’” and “when ‘ti’ is clicked, click in ‘re,’ then in ‘so.’” Thus, the
script is enacted if “do” or “ti” is clicked.

8.3.2 Scripts and Casting

A script is one of the elements that comprise a drama. Scripts describe procedures and
constraints for acting out user’s intentions on every pad placed on a StagePad. Every pad
on a StagePad follows actions written in a script. A relationship between role names and
pads that actually put on a performance with those actors must be defined in order to use

168 UTILITIES FOR MEME MEDIA

tan-8.qxd 5/15/2003 4:21 PM Page 168

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 169

Figure 8.18 A gorilla-hunting game implemented with a StagePad.

Figure 8.19 The automatic playing of a keyboard implemented with a StagePad.

tan-8.qxd 5/15/2003 4:21 PM Page 169

role names in a StagePad script and to indirectly designate pads. A CastingList provides
relationships corresponding to designated role names and the actual pads listed within a
script. Scripts and CastingLists are described in detail below.

A. Scripts. StagePad scripts are written to be independent of pads used as actor pads
that perform on a StagePad. Thus, any pad can be used as an actor pad independent of
the script. Furthermore, a script written under the assumption that it would be used by a
certain stage can be used by a different stage without changing a word. Scripts and ac-
tors are reusable components due to the independence of scripts and actor pads. The fol-
lowing method is used in StagePad to preserve the independence of scripts. First, pad
references within scripts use role names, and the mapping between role names and ac-
tor pads are explicitly and independently specified on a special pad called a CastingList.
The commands that can be used in the script are restricted to those fundamental opera-
tions users can directly carry out on pads. If a script uses commands that only specific
pads can understand, it turns out that the types of pads that can be assigned a given role
name become limited and the independence of scripts is not preserved. Therefore,
scripts are restricted to use only those fundamental-operation commands that every pad
understands. In order to send some command other than fundamental operations to some
target pad on a StagePad, you can paste on this pad a CommandButtonPad whose click
sends this command to the target pad. In the script program, you only need to click this
CommandButtonPad.

A StagePad performs its script program based on an event-driven mechanism. A drama
progresses as it is triggered by certain events, and then directs to every pad a series of ac-
tions to occur. The script is written as a set of event–action pairs, each of which specifies
a triggering event and a sequence of consecutive actions to follow this event.

B. Script Description
(1) Description Format. Event–action pairs in a script are written in the following format:
“When a given event occurs, make each specified performer execute the following se-
quence of commands.” First, the event name that triggers the execution of actions is writ-
ten after the reserved keyword “on,” which is then followed by directions to actors. These
directions refer to role names, and do not directly refer to any actor pads. The end of an
event–action pair is marked with the reserved keyword “end” followed by the event name:

on [event_name]
[actor1]command1.
[actor2]command2.
[actor3]command3.

end [event_name]

(2) Slot Reference. Every pad has a slot specified to work as its primary slot. Scripts
can send “set” and “gimme” messages to the primary slots of its actor pads to set and get
values to and from them.

(3) Commands to Actor Pads. Scripts can use the following set of commands to per-
form actions on pads:

move to <destination> move the pad
copy <location> copy the pad

170 UTILITIES FOR MEME MEDIA

tan-8.qxd 5/15/2003 4:21 PM Page 170

delete delete the pad
hide hide the pad
show show the pad
open open the pad icon
close iconify the pad
resize to <new size> change the pad size
paste on <actor> paste the pad on the specified pad
assoc <new slot> change the pad connection
mclick send the pad a click event
mdrag to <destination> send the pad a drag event with the specified destination
mkey <key> send the pad the specified key input

(4) Constraints between Pads (Constraints on Pad Positions) Scripts enable us to im-
pose some constraints on pads. Pads with attached constraints regulate actions by always
meeting those constraints. In Figure 8.20, a constraint is attached to keep PadA a distance
x away from PadB. Based on this constraint, whenever PadB is moved, PadA will always
change its location to meet that constraint:

<actor1> is <x> from <actor2> actor1 maintains a distance x from actor2
<actor1> is touching <actor2> actor1 touches actor2
<actor1> is <x> overlapping <actor2> actor1 overlaps actor2 by a distance x

(5) Control Statements. The following control statements are used when writing a se-
ries of actions for a pad:

if <condition> then <action> else <action> end if
while <condition> <action> end while
until <condition> <action> end until
repeat <n> <action> end repeat

C. Casting List. Role names are used within a script to refer to actor pads. The rela-
tionship between a role name and an actor pad must be defined in order for a StagePad to
manipulate this actor pad. The linking of these two items is done in a CastingList. A Cast-

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 171

x

x

x

x

Pad A
Pad B

Figure 8.20 A constraint is attached to keep PadA a distance x away from PadB. Based on this
constraint, whenever PadB is moved, PadA will always change its location to meet this constraint.

tan-8.qxd 5/15/2003 4:21 PM Page 171

ingList is an association list formed from a list of role names and relative locations on the
StagePad called operation points:

CastingList((role_name1 (OP11 OP12 OP13 . . .))
(role_name2 (OP21 OP22 OP23 . . .))
................................),

where each OPij is an operation point.
When a user uses the mouse to perform an operation on a pad to click, move, or copy this

pad, the user first moves the mouse cursor into the region of the pad where he or she intends
to perform any operation. The location of the mouse cursor at the time of this operation is
called its operation point. An operation point holds a location point on some pad over the
StagePad. When a script executes a command on a role name, this command is actually ap-
plied to the operation point that is associated with this role by the CastingList. If the com-
mand is a pad operation, it is applied to the pad with this operation point on itself.

Each operation point is assigned to a pad over the StagePad in advance. The pad as-
signed to the operation point becomes the actor pad. As a result, actor pads can be direct-
ed via operation points from the StagePad to perform the same variety of pad operations
that users can directly apply to these pads using a mouse. Operation points are used to
handle both pad operations by a user and those by a StagePad in a uniform manner.

The independence of actor pads from the script can be preserved by the CastingList
that associates each role name to an operation point. When operations via a StagePad ma-
nipulate primitive and composite pads on a StagePad, the functions held by those pads are
not lost since both pad operations by a user and those by a StagePad are handled in a uni-
form way. For example, when the music keyboard is placed on a StagePad as in Figure
8.21, the keyboard pad maintains its function as a keyboard while following the directions
from the StagePad via operation points. The keyboard does not change its operation of
playing sounds for a pressed key, whether it is on the StagePad or peeled off the StagePad.
Figure 8.21 also shows the CastingList and the operation points. Because they use opera-
tion points, StagePads have the advantage of being able to use all pads created in the Intel-
ligentPad system without losing any of their functions.

Pads can be made to perform their roles as written in the script through the use of a
CastingList that links role names with these pads. By assigning the same role to different
pads or allocating more than one role to the same pad, the same script can develop differ-
ent dramas on the same StagePad. Various dramas can be realized by changing assign-
ments.

D. References to Actor Pads. Figure 8.22 shows how script commands are trans-
mitted to actor pads in the composition example of Figure 8.23. The following conven-
tions are used when designating pads and using role names in a script:

(1) <RoleName> the pad with the operation point associated with this role name

Figure 8.23 shows pads with their accompanying operation points that have been allo-
cated to role names. The move command in “Jiro move,” the first line of the script in Fig-
ure 8.22, is transmitted to the operation point OP2 by the association {Jiro: OP2} in the
CastingList. The operation point OP2 sends this move message to pad PadB, the pad on
which this operation point is defined, and pad PadB executes the move command.

172 UTILITIES FOR MEME MEDIA

tan-8.qxd 5/15/2003 4:21 PM Page 172

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 173

Figure 8.21 The independence of actor pads from a script is preserved by a CastingList that asso-
ciates each role name to an operation point.

CastingList
 Taro : OP1

 Jiro : OP2

Script
 Jiro move
 Pad at @Jiro move
 @Jiro move

@Jiro move

Pad at @Jiro move
Jiro move

Pad B

Pad A

StagePad

Figure 8.22 The transmission of script commands to actor pads in the composition shown in Fig-
ure 8.23.

tan-8.qxd 5/15/2003 4:21 PM Page 173

(2) Pad at @<RoleName> the outermost pad at the operation point associated with this
role name

The command in the second line of the script in Figure 8.22, “Pad at @Jiro move,” is
transmitted to the operation point OP2 by the association {Jiro: OP2} in the CastingList.
The operation point OP2 uses its own location information to search for the outermost
pad at this location, and sends this pad PadA a move message. Pad PadA then executes
this move command.

(3) @<RoleName> the operation point associated with this role name

The command “@Jiro move,” the third line of the script in Figure 8.22, is transmitted
to the operation point OP2 by the association {Jiro: OP2} in the CastingList. The opera-
tion point OP2 moves itself.

Convention (1) can always refer to a particular pad, (2) can refer to a pad from location
information, and (3) refers to the operation point itself.

8.3.3 The Action Mechanism of StagePad

The action mechanism of StagePad is divided into three parts. The first part reads in a
script and analyzes it, the second part detects events and interprets them, and the third part
directs actor pads as described by a script (Figure 8.24).

A. Script Analysis. Script analysis is performed by a ScriptParser. A parsed script is
then stored in the StagePad in the form of an association list. In this association list, the
name of an event works as a key and holds as its record the sequence of actions triggered
by this event. When the ScriptParser analyzes the script, it also extracts role names to cre-
ate all the entries of the CastingList.

B. Event Interpretation. StagePads handle two types of events. The first type in-
cludes user events such as mouse clicks and drags. The second type includes events gener-
ated through the actions of pads. For each basic pad operation, the corresponding pad-
event type exists.

174 UTILITIES FOR MEME MEDIA

StagePad

Pad COP2

OP1

Pad B

Pad A

CastingList

Taro : OP1

Jiro : OP2

Figure 8.23 A StagePad and a CastingList.

tan-8.qxd 5/15/2003 4:21 PM Page 174

StagePads start a drama when triggered by events. Thus, all events on a StagePad must
be detected. In the IntelligentPad system, regardless of whether a pad generates an event
or a pad detects a user event, the notification about this event and the pad where it oc-
curred is propagated successively to all the pads under this pad. StagePads utilize this
mechanism to detect events.

Furthermore, StagePads need to interpret each transmitted event notification, and to
convert its related pad to the corresponding role name. This is necessary because
StagePads can refer to actor pads in the scripts only through role names. Figure 8.25
shows an example of moving pad PadA in the situation shown in Figure 8.23. When an
event notification [PadA move] is transmitted from PadA, the StagePad interprets this
event notification as [Pad at @ Jiro move] and also as [Taro move] because the pad PadA
is referred to in the script as [Pad at @Jiro] and [Taro].

C. Script Execution. When an event is generated on a StagePad, its event notification
is transmitted to the StagePad. The event notification triggers a search of the script for the
event–action pair that the StagePad must enact. Once the StagePad finds the event-action
pair to be enacted, it follows the directions described in its action part, gets the operation

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 175

Taro : OP1

Jiro : OP2

on mouse click:
(taro move,
jiro move)

Taro move:
 (Jiro copy)

EventQueue

StagePad

DressingRoomPad

CastingList

OP2
OP1

PadA
PadB

Event

ScriptParser

Script

Script

on mouse click
 Taro move to x1@y1.
 Jiro move to x2@y2.
end mouse click

on Taro move
 Jiro copy.
end Taro move

Figure 8.24 The mechanism of a StagePad.

tan-8.qxd 5/15/2003 4:21 PM Page 175

points referred to in the CastingList, and sends the directions to actor pads through them.
Actor pads act in accordance to those directions. Those actions are also sent back to the
StagePad as event notifications, and the StagePad must perform the above process in re-
sponse to those event notifications. Each event notification is temporarily stored in a
queue in order to finish the processing for prior event notifications in a sequential order
before processing the new event notification. The queue saves generated event notifica-
tions in the temporal order, and the StagePad processes these event notifications in the or-
der they were saved to the queue.

In Figure 8.24, a mouse click is transmitted to a StagePad as a user event. The
StagePad executes the corresponding action part in the script and the corresponding actor
pad then transmits an event notification back to the StagePad on the completion of its ac-
tion. When the StagePad finishes executing the script corresponding to the mouse click,
the following two events, “Taro move” and “Jiro move,” are stored in the queue. Next, the
action part corresponding to the event “Taro move” is executed. The queue then holds
“Jiro move” and “Jiro copy” as event notifications. Since no event–action pair exists for
either of these two events, the StagePad deletes those events from the queue without send-
ing any other directions, and completes its operation.

D. Scripting Function. StagePads provide a scripting function, which allows us to de-
scribe script commands by manually demonstrating a sequence of operations on pads us-
ing the mouse. For example, when pad PadA in Figure 8.26 is moved, the script command
“Taro move to x@y” is automatically generated by this function and displayed on the edi-
tor screen. By using this function, users can actually move pads and verify their actions
while creating script commands.

8.3.4 Dramas within Dramas

In an IntelligentPad system, pads are handled as components. Primitive pads and applica-
tion pads created through the combination of primitive pads are used as components when
building new composite pads. StagePad is also a primitive pad in this system. Application
pads created using StagePads can compose a drama, which in turn can be used as a com-
ponent. All the pads on a StagePad can be manipulated without changing their indepen-

176 UTILITIES FOR MEME MEDIA

PadA

Taro at @Jiro move

Taro move

event

event
queue

StagePad

event

PadA move
translate

Figure 8.25 The propagation and the interpretation of events in the example shown in Figure 8.23.

tan-8.qxd 5/15/2003 4:21 PM Page 176

dence. Thus, application pads using StagePads can use particular StagePads as building
blocks while still maintaining their independence. In other words, dramas within dramas
can be composed by pasting StagePads on top of other StagePads.

Dramas within dramas are smaller dramas that exist within larger dramas. Smaller dra-
mas are themselves independent dramas and can work as components of a larger drama.
Dramas created using StagePads can be combined into other dramas since they are repre-
sented as pads and work as modular components. Hence, the script that accompanies each
combined drama does not have to be rewritten. Scripts within such StagePads are enacted
independently, but dramas are developed as if the scripts were combined into a single
script. In other words, combining StagePads is the same as combining scripts.

Figure 8.27 shows a combined drama in which StagePadA is pasted on StagePadB. The
corresponding two CastingLists are shown as CastingListA and CastingListB in the fig-
ure. In this situation, the actions of PadA are interpreted as the actions of “Taro” and of
“Pad at @Jiro” in StagePadA, and triggers some scripts in StagePadA. Similarly, the ac-
tions of PadB are interpreted as the actions of “Jiro” in StagePadA, and these trigger some

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 177

Taro move to x@yPadA

EventQueue

Event Script

Figure 8.26 The automatic script-generation mechanism.

OPB2OPB1OPA2

OPA1

PadB

PadA PadD

PadC

PadE

StagePadB

StagePadA

CastingListB
 Momoko : OPB1

 Sakura : OPB2

CastingListA
 Taro : OPA1

 Jiro : OPA2

Figure 8.27 A hierarchy with two stage pads.

tan-8.qxd 5/15/2003 4:21 PM Page 177

other scripts in StagePadA. Furthermore, the actions of PadB are also interpreted as the
actions of “Momoko” in StagePadB, and these also trigger some scripts in StagePadB.
Actors in small dramas can also perform a different role in a larger drama.

Figure 8.28 shows the composition structure with seven StagePads for a CAI applica-
tion called “The Training of the Fox-Boy”. The total number of pads used, including
StagePads, is 112. The total drama was composed by combining individual independent
dramas. Every StagePad implements a drama using various existing pads as actor pads
such as an AnimationPad, an EnumerationPad that enumerates pads pasted on itself, and a
pad to calculate the addition of integers. Figure 8.29 shows a performance of this drama,
which is a story about a Buddhist priest explaining calculation problems to the fox boy.
StagePads are used in every scene to compose a story. Stage2 is a scene in which a fox
boy takes the form of a boy. Stage3 is a scene of a dialogue between the fox boy and the
priest. Stage4 is the fox boy’s monologue. Stage5 is another dialogue with the priest and
contains scenes Stage6 and Stage7. Every scene is controlled by Stage1. If this applica-
tion were created using a single StagePad, a script would have to be written to cover
dozens of events, and would have to handle more than 100 role names. The composition
shown in Figure 8.28 is much easier to handle since there are at most 20 role names per
each StagePad, and the script has to respond only to a few triggering events per each
StagePad. Furthermore, in the case of a single StagePad, each pad would have to search
through more than 100 role names at run-time, beginning with the actor pads, and have to
select the required event–action pair from among the dozens available. Compared with
Figure 8.28, the programming burden increases phenomenally and the execution speed
becomes quite slow. Furthermore, the composition of Figure 8.28 can be freely modified
while developing a drama by changing part of the script and/or the allocation of role
names to actor pads, in contrast to the rather hard work of modifying an entire drama con-
sisting of a single StagePad.

8.3.5 Dressing Rooms

A large number of miscellaneous pads are used when developing applications with com-
plex motion. Some device is needed for handling these pads efficiently to simplify author-
ing on a limited screen. At each moment of a drama, some actors are on the stage, while
others are not. Those actors who are not temporarily on the stage are waiting outside the
stage. Dressing rooms are such places for actors. Similarly, we can introduce Dressing-
RoomPads in StagePads.

178 UTILITIES FOR MEME MEDIA

Stage 2

Stage 1

Stage 3 Stage 4 Stage 5

Stage 6 Stage 7

Figure 8.28 Layers of StagePads used in “The Training of the Fox-Boy.”

tan-8.qxd 5/15/2003 4:21 PM Page 178

8.3 STAGEPAD FOR PROGRAMMING USER OPERATIONS 179

The user is
requested to input
an answer in this
small square.

The fox boy asks
you to pick up two
strawberries.

The master checks
your calculation by
moving two baskets
onto a calculation
tool.

Figure 8.29 Snapshots from “The Training of the Fox-Boy” that were created using seven
StagePads.

tan-8.qxd 5/15/2003 4:21 PM Page 179

A DressingRoomPad has multiple pages. Pads can be pasted on every page. The
StagePad can use these pages to keep pads to be used later, or to temporarily hide pads
from the stage. Different pads are kept on different pages.

Actor pads are moved between a StagePad and a DressingRoomPad by directly drag-
ging and dropping them, or by executing a script command that contains the keyword
“DressingRoom(i)” or “@DressingRoom(i)” as the parameter of a move command, where
an index i specifies a page.

8.3.6 Applications for Improving Pad Operability

StagePads can be also used to customize the operability of existing pads. For example,
consider the operability of copy operations on pads. Usually, when a pad is copied, a user
opens a menu using the mouse and selects the copy command. This operation can be
changed by using a StagePad in such a way that only a double click on a pad can create a
copy. The script of the StagePad shown in Figure 8.30 realizes this modification. It con-
tains the statement “When ‘pad’ is double-clicked, copy ‘pad.’” When the pad assigned to
the role name “pad” is double-clicked, this statement creates a copy of the pad. This mod-
ification of the operability does not require any redefinition of the pad.

The script of the StagePad shown in Figure 8.31 contains the description “When ‘but-
ton1’ is clicked, repeat the click operation of ‘button2’ twice.” The role name “button2” is
allocated to the count-up button P2 on a CounterPad, while the role name “button1” is al-
located to the button pad P1 which is pasted on the count-up button P2. P1 and P2 are made
to be the same size. Since P1 is on top of P2, users cannot see the count-up button. Al-
though P2 actually sends two count-up commands to the CounterPad, only P1 is recog-
nized by the user as the count-up button pad. Thus, a new CounterPad can be implement-
ed that increments in steps of two for every mouse click.

Usually, we have to rewrite the pad definition program to customize its operability.
StagePads allow us to customize the pad operability without redefining the pad.

StagePad is generically defined. It can use any kinds of pads as actor pads. Further-
more, StagePad is also a pad, which allows us to use StagePads on various utility pads
whose functions can be applied to any pad. These utility pads include StagePad itself and
FieldPad. StagePads with actor pads can be easily reedited, published through networks,
and managed by database systems.

180 UTILITIES FOR MEME MEDIA

resize

copy

Pad1

move

Copying by a
double click

Copying by a
menu selection

StagePad

Pad1

Figure 8.30 A customization of a copy operation.

tan-8.qxd 5/15/2003 4:21 PM Page 180

A stage play consists of a stage, a backstage, actors and actresses, scenery, a script, and
an audience. The stage is represented by a StagePad that may have DressingRoomPads
working as a backstage. Any pad can be considered as either an actor/actress or scenery
on the stage. The script corresponds to a script program that is input to a StagePad through
a text editor pad. The audience may interact with a stage play. The audience of a StagePad
corresponds to its user. Our StagePad allows its user to interact with its pads during the
performance.

8.4 GEOMETRICAL MANAGEMENT OF PADS

Most drawing tools in use today can define a grid on a drawing sheet. They allow us to
specify an arbitrary length for the grid interval. Such a grid has gravity at each grid point.
Every point specified by a user is automatically adjusted to its closest grid point. This
helps users to align graphical objects to horizontal and/or vertical lines. This grid is an ex-
ample of geometrical management tools for graphical objects.

Such a grid sheet is also useful for geometrical arrangement of pads. In IntelligentPad,
such a sheet is also considered a pad. A geometrical management pad arranges pads in
some regular geometrical pattern. Some arrange pads in a grid pattern, whereas others
arrange them in a hierarchy. In order to add a pad to the arrangement, you may drop the
pad at any location sufficiently close to one of the regular positions defined on the geo-
metrical management pad. Since geometrical management pads are themselves pads, they
can be dropped together with other types of pads on another geometrical management
pad. Figure 8.32 shows such an example; a grid alignment pad is used to regularly arrange
four pads, each using a tree arrangement pad.

Geometrical management pads will be detailed in Chapter 13.

8.5 PROXY PADS TO ASSIMILATE EXTERNAL OBJECTS

From the viewpoint of the client–server model, IntelligentPad provides a WYSIWIG
client environment that merges a development environment and a runtime environment.
You can easily develop various client tools and use them through direct manipulation. The
connection of these tools to various servers running on different machines, however, re-
quires a new mechanism. To access a server from an IntelligentPad environment, we need

8.5 PROXY PADS TO ASSIMILATE EXTERNAL OBJECTS 181

StagePad
CounterPad

ButtonPad

reset
P1

P2

Figure 8.31 A customization of a counter operation.

tan-8.qxd 5/15/2003 4:21 PM Page 181

an object in this environment that communicates with this external server. Every access to
this server passes through this object to reach the server. This object, hence, works as a
proxy of this external server.

Since every manipulable object in an IntelligentPad system is represented as a pad, we
represent this proxy object as a pad. We call such a pad a proxy pad. Physically, a proxy
pad has a pad view. Logically, it has a list of slots that are necessary and sufficient to ac-
cess various functions of the corresponding server. When an access of a function is re-
quested through one of its slots, the proxy pad communicates with its remote server, and
possibly changes its state depending on the response from the server.

A proxy pad can be provided for any kind of external object including servers; these
servers include database servers, file servers, mail servers, number crunching servers, VOD
(video-on-demand) servers, and HTTP servers. External objects that are not servers are
computer-controlled and/or computer-monitored systems, including industrial plant sys-
tems, measurement tools, sensor systems, robots, audiovisual devices, and music synthe-
sizers.

Let us first start with a simple example, a computer-controlled VCR. Our design goal
is a console panel as shown in Figure 8.33. We implement this as a composite pad. This
console consists of a base, a set of buttons, and a frame number indicator. These are all in-
dependent primitive pads. The base pad works as a proxy to the VCR. Different VCRs
may require different control protocols, which require different proxy pads. Other compo-
nent pads can be reused for different VCRs.

182 UTILITIES FOR MEME MEDIA

Figure 8.32 A geometrical management pad is used to arrange pads regularly on another pad.

tan-8.qxd 5/15/2003 4:21 PM Page 182

The proxy of a VCR is required to provide at least the following slots: #play, #stop,
#pause, #fastForward, #rewind, #record, and #frameNumber (Figure 8.34). We assume
that the video is displayed on a dedicated monitor display. The first six slots are data
slots with logical binary values. The first five of them work in a similar way. When ac-
cessed by a “set” message with “true” as its parameter value, each of them sets itself to
“true,” resets the other four to “false,” and sends its corresponding signal to the VCR.
The slot #play starts to play the tape. The slot #stop stops playing, fast forwards, or
rewinds the tape. The slots #fastForward and #rewind fast-forward and rewind the tape,
respectively. The slot #record, when accessed by a “set” message with “true” as its pa-
rameter value, changes the VCR mode from the playing mode to the recording mode,
and vice versa. The slot #play, when accessed by a “set” message in the recording mode,
starts to record the input video on the tape. You may paste a light pad with its connec-
tion into each of these slots. A light pad, when it receives an “update” message, reads
the connected slot value. If the value is “true,” it turns its light on. Otherwise, it turns
its light off. These light pads work as indicator lights. The slot #frameNumber is also a
data slot. It always indicates the frame number of the current frame. An integer display
pad is pasted on the proxy pad with its connection to the slot #frameNumber. This dis-
play pad works as a frame number indicator.

Now we will show another example of a proxy pad. Figure 8.35 shows an interface of a
relational database. We implement this as a composite pad, consisting of a base and two
windows: one to input a query text, and another to show a form representation of a re-
trieved record. It also has several buttons to start searching the database, and to show the

8.5 PROXY PADS TO ASSIMILATE EXTERNAL OBJECTS 183

#frameNumber#record#rewind#fastFoward#stop #pause#play

000405786
integer
display pad

ButtonPadButtonPadButtonPads

Figure 8.34 A proxy pad for a computer-controllable VCR is used with ButtonPads and a display
pad.

000405786

Figure 8.33 A console panel of a computer-controllable VCR.

tan-8.qxd 5/15/2003 4:21 PM Page 183

next or the previous candidate record. These are all independent primitive pads. The base
pad works as a proxy to the database system.

The proxy of a database system must provide at least the following slots: #search, #in-
sert, #query, #result, #currentRecord, #nextCandidate, and #previousCandidate (Figure
8.36). These slots perform the following functions. The slot #search, when accessed by a
“set” message, sends a query in the slot #query to the database and starts the search. The
slot #insert, when accessed by a “set” message, inserts a record in the slot #currentRecord

184 UTILITIES FOR MEME MEDIA

Figure 8.35 A form interface to a relational database.

PadnPad2Pad1

attrnattr2attr1

ButtonPad

TextPad

ButtonPad

ButtonPad

ButtonPad

current-
record

next-
candidate

search insert querydelete previous-
candidate

DB

DBProxyPad

RecordPad
ButtonPad

Figure 8.36 The composition structure of the database-form interface shown in Figure 8.35.

tan-8.qxd 5/15/2003 4:21 PM Page 184

into the database. The slot #query holds an SQL query, which is input to this slot by a
“set” message. The slot #result holds a list of records obtained as a retrieval result. The
proxy of a database has a current record cursor that points to one record in the retrieved
record list. The pointed record is held in the slot #currentRecord. The slot #nextCandi-
date, when accessed by a “set” message, advances the pointer to the next record, whereas
the slot #previousCandidate, when accessed by a “set” message, moves the pointer to the
previous record. We paste button pads with their connections into the slots #search, #in-
sert, #nextCandidate, and #previousCandidate. The query input uses a text input pad with
its connection to the slot #query. Each record is represented as a form with several entries
corresponding to its different attributes. This form itself is a composite pad, which we
paste on the database proxy pad with its connection to the slot #currentRecord.

Proxy pads are powerful means to integrate various external objects with an environ-
ment of pads. They enable end-users to define such integration through direct manipula-
tion.

When applied to an industrial plant, the proxy pad and the plant simulation pad with
the same slot list can mutually substitute for each other. You may start with a simulator
pad to develop and debug a console panel as a composite pad. If its slots are compatible
with the proxy pad for the real plant, you can simply replace the simulator pad in the de-
veloped system with this proxy pad to obtain the final product. The simulator pad may
have more slots than the proxy pad to enable us to debug the system easily.

8.6 LEGACY SOFTWARE MIGRATION

Legacy software signifies application systems that had been widely used by a community
of users, or frequently by an individual user, before the introduction of a new system par-
adigm. Legacy software migration refers to making these legacy systems usable in a new
system paradigm. IntelligentPad is an example of a new system paradigm. It forces each
manipulable object to be a pad. Hence, legacy software migration in IntelligentPad means
to either wrap a legacy system with a pad wrapper or to provide it with its proxy pad.

Any legacy software system, if it has no GUI, can be easily assimilated into an Intelli-
gentPad environment just by developing its proxy pad. If it has its own GUI, its migration
into an IntelligentPad environment is not an easy task. In this case, we use a pad wrapper
to make the legacy system behave like a pad.

The simplest generic way of wrapping a legacy system uses a shadow copy and an
event dispatching mechanism. A pad wrapper logically works as a proxy pad. A pad wrap-
per is a pad that makes its size the same as the display area size of the original legacy sys-
tem. It makes a legacy system display its GUI off the screen, and maps the display bit map
image onto itself. The wrapper detects all the events including mouse events and keyboard
events, and dispatches them to the same relative location on the off-the-screen display of
the legacy system. This method requires that each legacy system allows us to take its
shadow copy and dispatch any detected events to it. If legacy systems are developed based
on some standard development framework satisfying these requirements, they can be eas-
ily migrated into IntelligentPad environments.

OLE, ActiveX, and OpenDocs are all such frameworks. Fujitsu’s version of Intelligent-
Pad provides a converter that helps us to convert any ActiveX object to its pad representa-
tion. It also provides a reverse converter that helps us to convert any composite pad to its
ActiveX object representation. Since the development of tools that can be defined as com-

8.6 LEGACY SOFTWARE MIGRATION 185

tan-8.qxd 5/15/2003 4:21 PM Page 185

binations of existing pads is much easier in IntelligentPad than with the ActiveX frame-
work, this reverse converter is quite useful for Microsoft Windows users and application
developers.

8.7 SPECIAL EFFECT TECHNIQUES

8.7.1 The Clipping of a Pad

Pads need not be rectangular. The shape of a pad defines both its view area and its event de-
tection area. Pads may be circular or triangular. Furthermore, we may consider shapes as
generic functions applicable to any pads. A shape as a generic function clips pads in this
shape. The IntelligentPad paradigm considers such shape functions also as pads. These
pads are called shape-mask pads. When a pad is put on a shape-mask pad, it is clipped to the
defined shape. Its view and its event detection area are both clipped to this shape. Some
shape-mask pads have regular shapes such as a triangle, circle, or star (Figure 8.37). They
are also resizable. A special shape-mask pad allows us to draw a shape freehand using a
mouse. A pad put on this shape-mask pad is cut out in this shape (Figure 8.38).

8.7.2 Alpha Channel

Alpha channel is a special hardware mechanism that makes some display objects translu-
cent in order not to hide their underlying objects. Alpha channel software simulates this
function. Alpha channel allows us to set the translucency rate. This parameter is denoted
by �. Alpha channel is applied to the background of each pad. When applied to a compos-
ite pad, alpha channel treats it as a single pad. It does not show a portion of its component
pad that is covered by another component.

186 UTILITIES FOR MEME MEDIA

Figure 8.37 An oval shape mask pad cuts a composite pad into an oval shape.

tan-8.qxd 5/15/2003 4:21 PM Page 186

Alpha channel is used in IntelligentPad to put a large number of pads on a limited dis-
play area. Instead of considering alpha channel as a function of each pad, we consider it to
be a generic function that can be applied to any pad, and define it as a pad. When a pad is
put on it, the alpha channel pad makes this pad translucent. You may put an arbitrary num-
ber of pads on an alpha channel pad with some of them overlapping with each other. They
are all made translucent.

8.7.3 Zooming, Tilting, and Panning

We may also consider a pad working as a pad environment that can be zoomed in and out,
tilted up and down, and panned left and right. It consists of several buttons and a pad that
works as a scope window to see this environment. You may put any pads on this scope
window pad. The scope window shows only a small portion of a huge environment with a
large number of pads on it. The left and right panning moves the ground to the right and
left respectively. You may zoom in on any pads on the ground to obtain its close-up view.
When you put a new pad into this environment through the scope window, the size of the
pad is automatically adjusted to the current zooming rate. When you drag a pad out of the
scope window, its size is changed to the original.

8.7.4 Dissolution

Dissolution is an effect that gradually changes the end of one video cut to the beginning of
another cut. The same technique is used to change slides from one to another. A dissolu-
tion pad works as a base pad that holds pads on itself. When clicked or sent an “update”
message, the dissolution pad dissolves itself as well as all the pads on it, and disappears. It
provides various types of dissolution patterns. This dissolution pad with some pads on it
can be put on another composite pad to completely cover this pad. This underlying pad
may also be another dissolution pad with some pads on it.

8.7 SPECIAL EFFECT TECHNIQUES 187

Figure 8.38 A pad put on a shape-mask pad can be cut into an arbitrary shape.

tan-8.qxd 5/15/2003 4:21 PM Page 187

8.8 EXPRESSION PAD

A pad may have slots whose relationship is so simple that we can describe it using mathe-
matical expressions. An ExpressionPad is a generic pad that can be specified to have an
arbitrary number of data slots with arbitrary names. For each of its slots, it allows us to
specify its “gimme” procedure as an expression of slots. This expression determines the
return value of a “gimme” message.

For example, suppose that the “gimme” expressions of an ExpressionPad with three
data slots, #A, #B, and #C, are defined as

#A: �#A
#B: �#B
#C: �#A+#B

This pad adds the values of the two slots #A and #B and stores the result in #C whenever
a “gimme” message accesses the slot #C. Suppose that the “gimme” expressions of anoth-
er ExpressionPad with three data slots, #A, #B, and #C, are defined differently as

#A: �#C-#B
#B: �#C-#A
#C: �#A+#B

Whenever a “gimme” message accesses one of these slots to read its value, this new pad
maintains the relationship among these three slots to satisfy #C=#A+#B. The left arrow in
front of each expression means that the evaluated value also updates the corresponding slot.

The ExpressionPad with the second definition works as follows. Suppose that three
number pads P1, P2, and P3 are respectively connected to these three slots #A, #B, and #C.
You can specify the input/output mode of each of these three pads through the setting or
resetting of the three flags that respectively specify the enabling and disabling of the three
standard messages to/from the ExpressionPad. If we enable the “update” message only to
P3, the ExpressionPad performs the substitution #C := #A+#B. In this case, a new input to
P1 or P2 will send this input value to the ExpressionPad to change its state, which issues
an “update” message to P3. The pad P3 then issues a “gimme” message to the slot #C,
which returns the value #A+#B. If we enable the “update” message only to P1 (or P2), the
ExpressionPad performs the substitution #A := #C-#B (or #B := #C-#A). In this case, a
new input to P2 (or alternatively P1) or P3 will send this input value to the ExpressionPad
to change its state, which issues an “update” message to P1 (P2). The pad P1 (P2) then is-
sues a “gimme” message to the slot #A (#B), which returns the value #C-#B (#C-#A). The
pad to which the update propagation from its parent ExpressionPad is enabled is said to be
floating, whereas the other two pads are said be fixed.

When specifying expressions, an ExpressionPad opens a dialog sheet for you to speci-
fy the expressions.

8.9 TRANSFORMATION PADS

Some applications require geometrical linear transformations or the rotation of pads.
Some versions of the IntelligentPad system provide these generic functions as pads. These

188 UTILITIES FOR MEME MEDIA

tan-8.qxd 5/15/2003 4:21 PM Page 188

transformations need to transform not only the display images of pads from the original to
the transformed one, but also the event-location coordinates from the transformed one to
the original. When a pad is put on a transformation pad, it is transformed by the stored
transformation matrix. When a pad is dragged out of the transformation pad, it returns to
its original view. Transformations can be multiply applied to the same pad. The pad is first
put on the first transformation pad. Then this composite pad is put on the second transfor-
mation pad. Similarly, an arbitrary number of transformations can be applied to a single
pad.

Figure 8.39 shows an example transformation applied to a text pad. The transformed
pad still works as a pad.

Using such transformation pads, you can define a clock hand as a pad. This pad rotates
around one of its edges. Its angle is determined by the value read from its parent pad. Fig-
ure 8.40 shows an example clock composed with hand pads. It is further transformed by a
transformation pad.

8.10 SUMMARY

In IntelligentPad, utility functions for controlling, coordinating, arranging, editing, man-
aging, searching, transporting, and distributing pads are all implemented as pads. This al-
lows us to apply these tools to any pads, including themselves.

A FieldPad is used to define a shared workspace with arbitrary pads; its copies with all
the pads on it share every user event. A FieldPad detects every user event that occurs over

8.10 SUMMARY 189

Figure 8.39 An example transformation applied to a text pad.

tan-8.qxd 5/15/2003 4:21 PM Page 189

itself, converts it to event information data, and then stores the data in its model part. Its
model informs its view of the update. If its shared copies exist, their views are all in-
formed of the update. Each view, then, individually applies the event to the target pad that
exists over itself.

A StagePad allows users to write a script program for manipulating multiple pads and
performing a series of steps. It can manipulate any pads on itself in the same way as we di-
rectly manipulate them. It also allows users’ interactions. It can associate each user event
with a corresponding action. When a user event is applied, it triggers the corresponding
action.

A proxy pad is a blank sheet that works as a proxy of an external object such as a data-
base server, a file server, or an application system. It communicates with the external ob-
ject to integrate the function of this object with other pads.

Since utility pads are also pads, they can be put in a utility environment defined by any
of these utility pads.

REFERENCES

1. Y. Tanaka, A. Nagasaki, M. Akaishi, and T. Noguchi. Synthetic media architecture for an object-
oriented open platform. Personal Computers and Intelligent Systems, Information Processing
92, Vol III, Madrid. North Holland, Amsterdam, pp. 104–110, 1992.

2. Y. Tanaka. From augmentation to meme media. In Proceedings of ED-MEDIA 94, Vancouver,
pp. 58–63, June, 1994.

3. W. Finzer and L. Gould. Programming by Rehearsal. Byte, June 1984, pp. 187–210.

190 UTILITIES FOR MEME MEDIA

Figure 8.40 Transformation pads allow you to define clock needles as pads, and further to trans-
form a whole clock using these needles.

tan-8.qxd 5/15/2003 4:21 PM Page 190

CHAPTER 9

MULTIMEDIA APPLICATION FRAMEWORK

Typical application functions are also generic functions. They form an application library.
Once these functions in the application library are implemented as pads, they can be com-
bined with other pads to easily develop sophisticated applications. For a typical applica-
tion, we can extract generic functions as pads and specify their typical construction struc-
ture. For each typical application, a set of generic pads and their typical construction
structure form the development framework, called an application framework. This chapter
shows frameworks for multimedia and hypermedia applications. These frameworks in-
clude pads to represent texts, images, tables, charts, and movies. They also include pads
that allow a user to cover a portion of a multimedia pad in order to articulate an object
shown in this area.

9.1 COMPONENT PADS FOR MULTIMEDIA APPLICATION FRAMEWORKS

Multimedia processing and management have various typical and well-defined technolo-
gies that can be provided as application frameworks [1, 2, 3, 4]. These have typical com-
ponents and constructions. IntelligentPad can provide these basic components as primitive
pads, and these typical constructions as sample composite pads.

9.1.1 Text Processing Pads

Typical word processors consist of a base window, a text window, a scroll bar, a margin
scale, a command button area with many command buttons, and a menu bar with several
pull-down menus. These can all be provided as pads, including two pads working as the
base window and the text window, respectively, that provide complicated functions. Al-
though these two pads provide complicated functions, they need not be further decom-
posed to simpler pads.

Instead of separating the text window from the other areas, we may also consider a sin-
gle primitive pad that works as a word processor. Such a text pad provides all the basic

191

tan-9.qxd 4/29/2003 3:05 PM Page 191

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

word processing commands as its slots. To scroll the text, you can paste a scroll bar on this
text pad with its connection to the scroll slot. To insert some object at the current cursor
location, you can paste a pull-down menu pad with varieties of object type names with its
connection to the insert slot of the text pad. A click on the pull-down menu pad will open
its list, from which you can select one object type. The selected object type is sent to the
insert slot of the text pad, which then opens another pad for you to specify the object.

We may also consider another text pad that works as a text viewer without word-pro-
cessing capabilities. The HTMLViewerPad we will discuss in Section 11.5 is such a pad.

Text processing pads are among the most complicated primitive pads. They deal with a
large number of objects that cannot be represented as individual pads, such as characters,
words, phrases, paragraphs, sections, and chapters. Unfortunately, most versions of Intel-
ligentPad have no component pads yet that work as word processors. All versions, howev-
er, provide text editor pads.

9.1.2 Tables and Figures

A spreadsheet is implemented in IntelligentPad either as a primitive pad or as a composite
pad. A primitive spreadsheet pad is a single pad that works as an ordinary spreadsheet sys-
tem. It has a slot for each of its entry cells, which allows us to connect other pads to the
values of its entry cells. You may, for example, paste a database access pad with its con-
nection to one of the entry cells. The database access pad accesses a database to retrieve a
value, which is directly input to this entry cell.

A spreadsheet as a composite pad consists of a base pad and an entry pad for each cell
entry. The base pad is a blank pad with a slot for each cell entry. Instead of using a regular
entry pad for each cell, you may use any pad whose value is compatible with the entry val-
ue. You may also arrange cells in any layout pattern. Figure 9.1 shows such a composite
spreadsheet with a hand calculator for one of its entry cells.

192 MULTIMEDIA APPLICATION FRAMEWORK

Figure 9.1 A composite spreadsheet with a hand calculator used for one of its entry cells. The cal-
culation result becomes the cell value. When the cell changes its value, the calculator reads this val-
ue to set its accumulator.

tan-9.qxd 4/29/2003 3:05 PM Page 192

A chart tool is also considered either as a primitive pad or as a composite pad. A primi-
tive chart pad looks like an ordinary chart tool. It has a slot to specify the name of the chart,
a slot for a data table, a slot for each of the table entries, a slot to add a new table row, a slot
specifying the name of each table row, a slot for the value list of each table row, a slot to add
a new table column, a slot specifying the name of each table column, a slot for the value list
of each table column, and some more slots to specify, for the chart representation of each
table row, the minimum value, the maximum value, the value range, and the line color.

The composite pad representation of a chart tool depends on the type of the chart. A
bar graph can be considered to consist of a base pad and a bar meter pad for each bar. A
line chart consists of a base pad, and, for each line, a transparent pad that is the same size
as the base pad.

Instead of using an ordinary bar meter, you may use a pad as shown in Figure 9.2. This
allows you to register a pad that is associated with the value unit it represents. The figure
shows a pad with a car image, which is used as a unit to measure values in a chart.

A drawing tool is also considered a pad. This pad may look like an ordinary drawing
tool with an operation menu on its left side, or it may just work as a canvas without any
menu. In the latter case, primitive drawing objects such as a line, a spline curve, a circle,
and a rectangle are all represented as pads. When you drop a copy of such an object at
some location on a drawing tool pad, this pad is absorbed, and the corresponding object is
drawn at this location on the drawing tool. Once it is drawn, you can select this object to
move it, copy it, or resize it. The painting of an area with a color is also specified by drop-
ping a color pad in this area.

Drawing tool pads are also some of the most complicated primitive pads. They deal
with a large number of objects that cannot be represented as pads. These are lines, curves,
circles, rectangles, colors, and shades. Unfortunately, most versions of IntelligentPad still
have no component pads that work as drawing tools. This problem, however, is not a tech-
nological matter but a business matter. If IntelligentPad becomes widely accepted, the
provision of such a drawing-tool pad will become a good business.

9.1 COMPONENT PADS FOR MULTIMEDIA APPLICATION FRAMEWORKS 193

registered
template

Figure 9.2 A pad with a car image is used as a unit to measure values in a chart.

tan-9.qxd 4/29/2003 3:05 PM Page 193

9.1.3 Multimedia Pads

Multimedia pads include image, sound, and video pads. An image pad stores an image in
some format, and displays this image on itself. Different image formats define different
types of image pads. Each has at least a data slot through which another pad can input and
output an image in the specified format. When a new image is input to this slot, it displays
this image on itself and issues a “set” message to its parent pad with this image data as its
parameter value. When it receives an “update” message from its parent pad, it issues a
“gimme” message to read out new image data from its parent pad, sets this image in its
image slot, and displays this image on itself. These are the basic functions of all image
pads. Different functions may define different image pads with different sets of slots.
Some may have a slot to hold a color table, and others may have a command slot to invoke
an edge-detection procedure on the stored image.

Various image processing functions can also be implemented as independent primitive
pads. For example, an edge-detection function can be implemented as a primitive pad
with a command slot to start the processing, another command slot to make it transparent,
and two data slots to hold the original image and the resulting image. When the start slot
is accessed by a “set” message, an edge-detection pad reads the underlying image it cov-
ers, and applies its edge-detection processing to display the result on itself. Since it does
not use any slot connection to read its underlying image, its function can be applied not
only to image pads but also to any other pads and any display areas on the screen.

Sounds are also treated as pads. Each sound pad stores a sound record in some format.
When clicked, it makes a sound. Different sound formats define different types of sound
pads. Each of them has at least a data slot #sound through which another pad can input
and output a sound in the specified format. When a new sound is input to this slot, it
makes this sound and issues a “set” message to its parent pad with this sound data as its
parameter value. When it receives an “update” message from its parent pad, it issues a
“gimme” message to read out new sound data from its parent pad, sets this sound in its
#sound slot, and makes this sound. These are the basic functions of all the sound pads.
Different functions may define different sound pads with different sets of slots. Some may
have a slot to change the time scale, and others may have a command slot to suspend their
sounds when their sound data are updated.

MIDI sounds are also treated as pads. A MIDI pad stores a MIDI code sequence. When
clicked, it plays the music. Each MIDI pad has at least one data slot through which anoth-
er pad can input and output a MIDI code sequence. When a new code sequence is input to
this slot, it issues a “set” message to its parent pad with this code sequence as its parame-
ter value. When it receives an “update” message from its parent pad, it issues a “gimme”
message to read out the new code sequence from its parent pad, and sets this sequence in
its code sequence slot. Every MIDI pad has these basic functions. Different functions de-
fine different MIDI pads with different sets of slots.

Video clips are also considered to be pads. A video pad stores a video clip in some for-
mat. It has command slots to play, fast forward, and rewind the video clip, and a data slot
to input and output the current frame number. Different video formats define different
types of video pads. Each has a data slot through which another pad can input and output
a video clip in the specified format. When a new video clip is input to this slot, it issues a
“set” message to the parent pad with this video clip as its parameter value. When it re-
ceives an “update” message from the parent pad, it issues a “gimme” message to read out
the new video clip from the parent pad, and sets this video clip in its video slot. Every

194 MULTIMEDIA APPLICATION FRAMEWORK

tan-9.qxd 4/29/2003 3:05 PM Page 194

video pad provides these basic functions. Different functions may define different video
pads with different sets of slots.

9.2 ARTICULATION OF OBJECTS

9.2.1 Articulation of Multimedia Objects

In multimedia systems, we have to deal with various types of objects. They should be first
classified into two categories, i.e., container objects and content objects. Container ob-
jects are container media that carry content information. Books, pages, cards, display
windows, and communication packets are all examples of container objects. They provide
the respective structures and operations of these containers. A media object is defined as a
container object with its content objects. Content objects are further classified into two
categories. Some of them are clearly articulated, i.e., easily machine-identifiable from
their representations, whereas others are not (Table 9.1) [5]. Machine-readable texts have
such content objects as characters, words, phrases, sentences, paragraphs, sections, and
chapters. They are all articulated objects. Tables have such content objects as entries,
columns, and rows. Tabulation tools clearly articulate these objects. Each table format it-
self is a container object. Charts have such content objects as items, item values, and
curves. A curve is considered here as a sequence of item value objects. Chart tools articu-
late these objects. Each chart type itself is a container object. Figures drawn by drawing
tools have such content objects as points, line segments, shapes, and their composites.
Drawing tools articulate these objects. The ground of each figure is a container object. All
the content objects of drawing tools are articulated, whereas most content objects in im-
ages, movies, and sounds are not articulated.

A photograph of a town may show people, roads, cars, and buildings. Images have such
nonarticulated content objects. They are not easily machine-recognizable. Movies have

9.2 ARTICULATION OF OBJECTS 195

Table 9.1 Multimedia objects and their articulation

Articulated Nonarticulated
Container object content object content object

Marked-up machine Page, book Characters, words, phrases. n.a.
readable text Sentences, paragraphs,

sections, chapters

Table Table format Entries, columns, rows n.a.

Chart Chart type, format Items, item values, curves n.a.

Figure Canvas Points, line segments, n.a.
shapes, their composites

Image Frame n.a. Physical objects
shown

Coded sound Score Notes, bars, instruments n.a.

Natural sound Tape Time frame Notes, bars, instruments

Movie Frame Cuts Cuts, scenes, physical
objects shown

tan-9.qxd 4/29/2003 3:05 PM Page 195

both articulated and nonarticulated objects. Frames are articulated container objects,
whereas cuts are either articulated or nonarticulated content objects, depending on
whether or not the cut-change signal is available. Physical objects shown in movies are all
nonarticulated content objects. As to sounds and voices, we have to distinguish coded
ones from recorded ones. Coded sounds have such articulated content objects as notes,
bars, and instruments. These content objects are hard to recognize in recorded music.
However, we often want to identify a priori specified time segments of music or speech.
They are inherently nonarticulated content objects, but the a priori given time frames to
identify them are articulated objects.

Our main concern here is how to articulate nonarticulated multimedia objects. Multi-
media systems should allow us to directly select and manipulate not only articulated ob-
jects but also nonarticulated content objects. The most widely used general solution is the
use of a reference-frame object for each content object. For recorded music or speech, a
reference-frame object defines the shortest time segment that includes one of the music or
speech portions you want to identify. This reference-frame object indirectly specifies the
corresponding music or speech portion. For an image, a reference-frame object defines
the minimum rectangular area that covers one of the content objects you want to identify
in this image. This reference-frame object indirectly specifies the corresponding area of
the image. Reference-frame objects are articulated objects. Time segments work as tem-
poral reference frames, whereas rectangular areas work as spatial reference frames. A ref-
erence-frame object for a cut in a movie defines a time segment. For an object appearing
in a movie, its reference-frame object defines a mobile variable-size rectangular area that
minimally covers this object in every video frame showing this object.

Pads in IntelligentPad are suitable for the representation of container objects, media ob-
jects, and reference frames in multimedia systems. Pads represent multimedia containers as
windows or window widgets. They can be easily combined to graphically represent books,
pages, cards, and compound document frameworks. Since pads can hold any kind of infor-
mation and can provide slots to access the contents in various ways, they can easily repre-
sent media objects with sufficient interface to access their content objects. For the access of
nonarticulated content objects in a media object, we can provide this media object with a
special slot named #referenceFrame that receives the location and size of a reference frame
and returns the corresponding portion of its content information (Figure 9.3). If the content
is an image, then the return value is the portion of this image specified by the reference
frame. A “set” message with the location and size of a reference frame as its parameter val-
ue is used to send this parameter to the #referenceFrame slot. After this operation, a
“gimme” message is used to read the corresponding portion of the content information.

Spatial reference frames can be represented as transparent pads that cover the target
content objects. They can be pasted on top of their target media object pads to minimally
cover their target content objects. These reference-frame pads provide slots to interface to
the target contents. These slots include the #name slot to hold the name of the content ob-
ject, #location slot to hold its relative location on its parent pad, and #extent slot to hold its
size. The oid (object identifier) of this reference-frame pad semantically works as the oid
of the corresponding content object. Any pads with the above-mentioned functionality can
work as reference-frame pads. IntelligentPad, however, provides some standard pads for
usage as reference-frame pads. These include anchor pads and viewer pads. An anchor
pad allows us to register a reference pointer to any composite pad. When mouse-clicked, it
loads this registered pad and pops it up on the screen (Figure 9.4). Anchor pads without
any further functionality are not connected to any of the slots provided by their parent me-

196 MULTIMEDIA APPLICATION FRAMEWORK

tan-9.qxd 4/29/2003 3:05 PM Page 196

9.2 ARTICULATION OF OBJECTS 197

((x, y), (a, b))

(x, y)

(a, b)

ReferenceFramePad (ViewerPad)

media object

Figure 9.3 For the access of nonarticulated content objects in a media object, we can provide a
media object with a special slot named “#referenceFrame” that receives the location and size of a
reference frame and returns the corresponding portion of its content information.

file:

<file>

pop-up

the registered pad

save file of the
registered pad

anchor

display screen

a click on
the anchor

Figure 9.4 An anchor pad allows us to register a reference pointer to any composite pad. When
mouse-clicked, it loads this registered pad and pops it up on the screen.

image

((x, y),
(a, b))

ReferenceFramePad (ViewerPad)

media object

#contents

#referenceFrame

tan-9.qxd 4/29/2003 3:05 PM Page 197

dia object pads. A viewer pad, on the other hand, is connected to the #referenceFrame slot
of its parent media object pad (Figure 9.3). It has the #contents slot to hold the copy of the
corresponding portion of the content information. It also works as an anchor pad.

9.2.2 Operations and Relations over Multimedia Objects

Articulated objects are units of operations. Among the operations in multimedia systems
are the following [5]:

1. File operations (save, load)

2. Edit operations (create, delete, edit)

3. Quantification, i.e., condition specification in database queries

4. Link operations

5. Context specification

6. Composition operations

7. Overlay operations

Edit operations are applied to each single object, whereas composition operations are
applied to a set of multiple objects to combine them and to obtain a compound object.
Each object may be referred to in specifying some of its properties. Each object may work
as an anchor. It may link itself to another object or work as a destination anchor that is
pointed to by another object. The specification of an object also specifies its context,
which is also an object. For example, we can specify those figures showing a square as
one of its components. Here we only specify a shape object. Those figures are specified as
the contexts of such objects. Multimedia documents and components can be overlaid in
multiple layers using the �-channel technology.

These operations are applicable not only to articulated objects, but also to reference
frames of nonarticulated objects. Original images, movies, and sounds are kept un-
changed in files. File operations save and load only reference-frame objects. Edit opera-
tions are applied only to the copies of the portions selected by reference-frame objects.
These copies become properties of the reference-frame objects. Quantification is also ap-
plied to reference-frame objects. It specifies only those properties that can be easily calcu-
lated in real time. Otherwise, such quantification cannot be processed within a reasonable
amount of time. In images, spatial relationships between two reference-frame objects are
such properties. In movies, we can treat spatiotemporal relationships among reference-
frame objects. Each reference-frame object can work as an anchor. It can link its corre-
sponding nonarticulated object to another object, or it can work as a destination anchor
that is pointed to by another object. Each reference-frame object can tell which object is
its context. Reference-frame objects can be combined to a compound object, and they also
can be overlaid with multimedia documents and components.

The pad representation of reference-frame objects uses anchor pads for those content
objects that do not require edit operations. For those requiring edit operations, it uses view-
er pads.

9.2.3 Application Linkage

Application linkages in object-oriented systems are represented by either the object con-
tainment or the object wiring. The object containment embeds a media object in another

198 MULTIMEDIA APPLICATION FRAMEWORK

tan-9.qxd 4/29/2003 3:05 PM Page 198

media object. It just defines a geometrical containment relationship or further defines
functional linkage between the two media objects. The object containment can be easily
defined in IntelligentPad by the paste operation. The pasted child pad may just sit on the
parent pad without any functional linkage, or it may be connected to one of the slots pro-
vided by the parent pad to establish a functional connection. An extreme case of the object
containment in IntelligentPad is the pasting of one translucent pad, defined as a pad
whose background color is set to translucent, on another pad of the same size. Intelligent-
Pad allows us to make any pad translucent. This extreme case is used to overlay multiple
layers of information that are mutually geometrically related with each other. Computer
mapping systems conventionally use such overlay representation.

The object wiring uses wiring links to connect two spatially separated objects. Naviga-
tion links (cold, warm, and hot links) in hypermedia and transclusion in Xanadu are exam-
ples of object wiring. In general, messages can be exchanged between the two objects
through object wiring. IntelligentPad uses the shared copy operation for the object wiring.
It also provides the wiring pad. Its shared copy works together with the original as two ter-
minals connected by a cable. These two terminals transport any value from one to the oth-
er. The cable may work as either a bidirectional channel or a unidirectional channel. These
two modes can be easily selected by the specification of the #mode slot. Anchor pads im-
plement cold navigation links, i.e., links without functional linkage facility. Wiring pads
implement warm and hot navigation links. Hot navigation links provide automatic update
propagation, while warm navigation links propagate updates only when requested.

9.3 HYPERMEDIA FRAMEWORK

A hypermedia system consists of a set of nodes and a set of links. Each node is a com-
pound document, whereas each link relates a component object in one node either to an-
other node or to another component in another node. The source component of a link is
called its source anchor, or simply its anchor; its destination component is called its desti-
nation anchor. Either users or application system providers span these links to define as-
sociative, quotational, annotative, or referential relationship between nodes. Users use
these links to navigate from one node to another. In hypertext systems, forerunners of hy-
permedia systems, nodes were just simple text documents, and their components were
words and phrases. In conventional hypermedia systems, nodes are compound multimedia
documents, and their components are words and phrases in texts, various kinds of embed-
ded multimedia objects, and their articulated objects. These embedded multimedia objects
include charts, tables, figures, images, movies, and sounds. Reactive hypermedia systems
are those with reactive nodes. Their nodes may include components that change their
states against user operations. Interactive charts and spreadsheets are such reactive com-
ponents. The introduction of reactive nodes has extended the roles of links. A cold link is
a navigational link. A hot link is used not only to navigate from its source component to its
destination node, but also to automatically propagate the state change of its source to its
destination. A warm link is also used both for navigation and for update propagation, but
it performs the update propagation only when it is requested by the destination node.

IntelligentPad has completely removed the distinction between multimedia documents
and application tools based on the compound document architecture. Here we consider re-
active hypermedia systems in which any composite pad works as a node. The introduction
of reactive nodes also requires that the function of their links be extended. These function-

9.3 HYPERMEDIA FRAMEWORK 199

tan-9.qxd 4/29/2003 3:05 PM Page 199

al links should be objects. In the IntelligentPad architecture, all the objects that we can di-
rectly manipulate should be basically provided as pads. Therefore, links should be basical-
ly provided as pads. There are, however, articulated objects that cannot be represented by
pads. These include character strings on text pads, composite objects drawn on a drawing
pad, and lines, points, and bars on a chart pad. In order to make them work as source an-
chors of links, the linking function must be provided by their base pads, i.e., by their text
pads, drawing pads, and chart pads. When considered as nonarticulated objects, some of
these articulated objects that cannot be represented by pads can be indirectly treated by
the use of transparent reference-frame pads that minimally cover these objects. Figure 9.5
shows a case in which a phrase in a text document is covered by three transparent anchor
pads linked to the same destination pads. Figure 9.6 shows another case in which some
objects on a chart are covered by transparent anchor pads. This technique, however, does
not work for editable texts in which target strings may change their relative locations, nor
for figure components whose areas overlap each other. Anchors that cannot be represent-
ed by anchor pads need to be managed for their creation and activation by container media
pads such as text, image, drawing, table, chart, sound, and video pads.

Here we only consider anchors represented by pads. An anchor pad has a slot to hold a
file name, which specifies the file storing the exchange format representation of its desti-
nation pad. To set a file name to this slot you can temporarily paste a text input pad on this
pad with its connection to this slot, and input the file name to this text pad, which might
be peeled off after the input. When it is mouse-clicked, an anchor pad accesses the speci-
fied file to read out the stored exchange format representation, and pops up the converted
composite pad on the desktop. Anchor pads can be resized, and be made transparent.
When pasted, anchor pads do not establish a slot connection to their parent pads. They are
functionally independent from their parent pads.

200 MULTIMEDIA APPLICATION FRAMEWORK

Figure 9.5 A phrase in a text document can be covered by three transparent anchor pads linked to
the same destination pads.

A Short Introduction to IntelligentPad

tan-9.qxd 4/29/2003 3:05 PM Page 200

Figure 9.7 (a) shows a composite pad with an anchor pad, which is intentionally made
visible. When mouse clicked, this anchor pad pops up another composite pad, as shown in
Figure 9.7 (b).

For a nonarticulated object in a movie, the anchor pad should be able to change its size
and location to cover this object wherever it appears. Such an anchor needs to know the
frame changes of the underlying movie. We call such an anchor pad a hypermovie anchor
pad [6]. The state of a movie pad is the frame number. A movie pad has a slot to hold the
current frame number. Whenever a frame change occurs, a movie pad issues an “update”
message to its child pads. Hypermovie anchor pads can use this “update” message to read
out the current frame number from its parent movie pad. In order to change its size and lo-
cation for different frames, a hypermovie anchor pad keeps a table that stores its size and
location in some sampled frames. It linearly interpolates its size and location in the other
frames. This table is constructed by step-by-step manual instructions to this hypermovie
anchor pad regarding of its size and location in all the sampled frames. In each sampled
frame, the hypermovie anchor pad is manually adjusted with respect to its size and loca-
tion to minimally cover the target object in the movie. Each frame may contain more than
one hypermovie anchor pad.

This architecture is however not efficient in its performance. The improved architec-
ture uses an anchor table pad that keeps all the information of hypermovie anchors used
on a single movie pad. This information includes, for each hypermovie anchor, a table of
its size and location in sampled frames and the name of the file storing its destination pad.
This anchor table pad is made transparent and overlaid on the movie pad. Its size coin-
cides with the movie pad. When mouse-clicked at some location, this pad gets the current
frame number from the underlying movie pad, searches its tables to find out the anchor
whose interpolated area in this frame includes this location, and finally pops up the pad
stored in the file specified by this anchor. The tables in this anchor table pad are con-
structed through step-by-step manual instruction regarding the size and the location of
each anchor pad in all sampled frames. In each sampled frame, the hypermovie anchor
pad is manually adjusted on the transparent anchor table pad that covers the movie pad so

9.3 HYPERMEDIA FRAMEWORK 201

Figure 9.6 Some objects on a chart can be covered by transparent anchor pads.

tan-9.qxd 4/29/2003 3:05 PM Page 201

202 MULTIMEDIA APPLICATION FRAMEWORK

Figure 9.7 When an anchor pad is mouse-clicked, it pops up another composite pad. (a) A com-
posite pad with an anchor pad. (b) The anchor pad pops up another composite pad.

Figure 9.8 A composite tool pad is used to manually adjust the location and size of each hyper-
movie anchor pad in each sampled frame of a movie.

(a)

(b)

tan-9.qxd 4/29/2003 3:05 PM Page 202

that the anchor pad minimally covers the target object in the movie. Each frame may con-
tain more than one hypermovie anchor pad. Figure 9.8 shows a composite tool pad that
can be used to perform such instruction. Its user first puts a movie pad on this tool and
covers it with an anchor table pad. The user can put an arbitrary number of anchor pads on
the anchor table pad in any frame. When a new anchor pad is first put on the anchor table
pad, its link information is automatically input to the anchor table pad. The user of this
tool can forward the movie to the next sample frame by shifting the slide lever, and then
change the size and location of each anchor pad in the new frame. When the instruction is
completed, the movie pad with the anchor table pad can be peeled from this tool to be
used as a hypermovie system.

Figure 9.9 (a) is an example of hypermovies thus defined. The first movie shows a cor-
ridor of some university laboratory. Each door in this movie is minimally covered by an an-

9.3 HYPERMEDIA FRAMEWORK 203

Figure 9.9 An example hypermovie. When we click a door, the anchor-table pad pops up another
movie that enters the selected room. (a) An example hypermovie. (b) A mouse click on a door pops
up the lower-right hypermovie showing the inside of the room. A mouse-click on a student in this
room pops up the lower left hypermovie featuring him.

(a)

(b)

tan-9.qxd 4/29/2003 3:05 PM Page 203

chor that changes its size and location to trace this door in the movie. Anchors are all a pri-
ori registered in a transparent anchor table pad that fully covers the movie. When we click a
door, the anchor table pad identifies which anchor is clicked and pops up the destination
pad. In this example, this pad plays another movie that enters the room and shows the inte-
rior [Figure 9.9(b)]. Here again, each student in this movie is covered by an anchor. A mouse
click on one of these students opens up a different movie featuring this student.

9.4 SUMMARY

Multimedia processing and management have various typical and well-defined technolo-
gies that can be provided as application frameworks. These have typical components and
constructions. IntelligentPad can provide these basic components as primitive pads, and
these typical constructions as sample composite pads. These frameworks include pads to
represent texts, images, tables, charts, and movies. They also include pads that allow a
user to cover a portion of a multimedia pad in order to articulate an object shown in this
area. Such a pad that covers some nonarticulated object on a multimedia pad is called a
reference frame.

Articulated objects are targets of operations. These operations in multimedia systems
include the following [5]:

1. File operations (save, load)

2. Edit operations (create, delete, edit)

3. Quantification, i.e., condition specification in database queries

4. Link operations

5. Context specification

6. Composition operations

7. Overlay operations

These operations are applicable not only to articulated objects, but also to reference
frames of nonarticulated objects. Such reference frames are represented as transparent
pads that minimally cover the target nonarticulated objects.

REFERENCES

1. S. Gibbs and D. C. Tsichritzis. Multimedia Programming: Objects, Environments, and Frame-
work. Addison Wesley Longman, Inc., Reading, MA, 1994.

2. L. deCarmo. Core Java Media Framework. Prentice-Hall PTR, Upper Saddle River, NJ, 1999.

3. P. Ackermann. Developing Object-Oriented Multimedia Software: Based on the Met++ Applica-
tion Framework. Morgan Kaufmann, San Francisco, 1997.

4. I. Herman, S. M. Marshall, and D. J. Duke Premo. A Framework for Multimedia Middleware:
Specification, Rationale, and Java Binding. Springer-Verlag, New York, 1999.

5. Y. Tanaka. IntelligentPad as meme media and its application to multimedia databases. Informa-
tion and Software Technology, 38: 201–211, 1996.

6. Y. Tanaka. Meme media and a world-wide meme pool. In Proceedings of ACM Multimedia 96,
pp. 175–186, 1996.

204 MULTIMEDIA APPLICATION FRAMEWORK

tan-9.qxd 4/29/2003 3:05 PM Page 204

CHAPTER 10

INTELLIGENTPAD AND DATABASES

The easy composition of new pads will bring a rapid accumulation of a large number of
different pads. It will become seriously difficult for us to find an appropriate pad out of
such an accumulation. We will need a new technology for the management and retrieval
of pads. In this chapter, we will consider how to manage and search a large set of pads,
and how the required technologies are related to relational database and object-oriented
database technologies. We will consider two alternative ways of storing pads. If we have
to manage a large number of pads of a few different forms, we can keep the form infor-
mation outside the databases; we only need to store the state information of pads in the
databases. Such a database is called a form base. If we have to manage composite pads of
a large number of different forms, we need database facilities not only to manage the
states of the pads but also to manage their different forms. In such cases, there is no rea-
son to separately manage the state and the form of each pad. Such a database is termed a
pad base. This chapter will provide both a framework for form bases and a foundation for
pad bases.

10.1 RELATIONAL DATABASES, OBJECT-ORIENTED DATABASES,
AND INSTANCE BASES

In the relational model of databases, each database is represented as a set of relations [1].
Each relation is a set of records with the same set of attributes, each attribute taking an
atomic value. Records are called tuples in this model. Each tuple in a relation can be
uniquely identified by the value of a set of attributes. One such minimal attribute set is
specified as the primary key of the relation. Relational database systems manage tuples in
each relation by providing them with identifiers called tuple identifiers. In each relation, a
one-to-one correspondence holds between the primary key values and the tuple identi-
fiers. Relational database systems provide indices for some attributes in order to improve

205

tan-10.qxd 5/15/2003 4:40 PM Page 205

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

their search performance. An index for an attribute of a relation maps each existing value
of this attribute to a list of identifiers of those tuples that take this specified value for this
specified attribute. In each relation, the attributes with indices are called indexed attribut-
es.

In the object-oriented database (OODB) model [2–7], each database is a set of classes.
A class in this model plays two roles. First, it defines an object type. Second, it represents a
set of objects of the defined type. Objects of the same type accept the same set of messages.
Objects in an OODB are uniquely identified by their object identifiers, and persistent in the
sense that they continue to exist unless explicitly deleted. Classes in OODBs correspond
both to relations and to relation types in relational databases, whereas objects and the mes-
sages accepted by them, respectively, correspond to records and their attributes.

One of the most serious problems in OODBs is their performance. OODBs allow us to
write message-sending sentences even for the specification of query conditions, which
means that these messages are sent to all the objects in a target class in order to select
those satisfying these conditions unless this message-sending can be a priori evaluated. If
a message to an object just returns a value and does not cause any other side effects, i.e., if
it works as an attribute of this object, this message sending can be a priori evaluated. If a
message we use in query specifications works as an attribute, and if its return values can
be indexed, then we can a priori provide an index file for this message to map each exist-
ing return value of this message to a list of object identifiers of those objects that return
this specified value when receiving this message. The provision of such an index file for
every message that is used in the condition specification part of the queries can improve
the performance of query processing to the performance level of relational databases.

OODBs are roughly classified into two categories, structural OODBs and behavioral
OODBs. In a structural OODB, all the messages used in the condition specification part
of queries work as attributes, i.e., none of them cause any side effects other than returning
values. Their return values may be simple or complex. They might even be multimedia
documents including images, video movies, maps, and charts. The quantification of ob-
jects uses only those messages whose return values can be indexed. Structural OODBs
can provide each class with indices for all of the messages used in the condition specifica-
tion part of the queries. Their performance, therefore, is comparable to that of relational
database systems. Structural OODBs whose messages all work as attributes are some-
times called extended relational databases. They are extended from relational databases
by allowing attributes to take complex and/or composite values. Examples of structural
OODBs include Postgress [8] and UniSQL. [9]. Postgress was later marketed as Illustra
[10], which was then integrated with Informix.

Behavioral OODBs are those OODBs that are not structural. Since these cannot take
advantage of the indexing technique, they inherently suffer in their search performance
when applied to large databases. For this reason, a behavioral OODB is sometimes con-
sidered as an extension of an object-oriented programming language through the intro-
duction of object persistency. Such an extended language is called a DBPL (database pro-
gramming language). Such behavioral OODBs are called DBPL databases. From a
practical point of view, behavioral OODB systems, namely DBPL database systems, are
only applicable to either small databases or to object-by-object retrieval systems that do
not extensively use complicated set operations. Examples of behavioral OODBs include
ObjectStore [11], using an extension of C++; GemStone [12], using an extension of
Smalltalk; ODMG model [4]; Orion [13], with its model patterned on Smalltalk and Lisp;
and O2 [3].

206 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:40 PM Page 206

Object-oriented programming, as you know, includes two different programming para-
digms, the refinement paradigm and the composition paradigm. In the refinement para-
digm, we define objects starting from general objects and proceeding to more specific
ones by adding new properties to the previously defined objects. Objects are defined by
their properties. A set of properties defines a type of objects. This is called an object class,
or simply a class. Each class is defined as a refinement of a previously defined class. To
distinguish objects from their classes, they are called instance objects. In the refinement
paradigm, each new instance object can be created only through sending a message, new,
to some class.

In the composition paradigm, on the other hand, a new instance object is defined by
combining some existing instance objects. Combined instance objects are functionally
linked together to define a composite instance object. Although primitive objects may
have their corresponding classes, composite ones have no corresponding classes. This is
quite different from the situation of the refinement paradigm. The composition paradigm
is extensively used especially in GUI toolkit systems.

Most object-oriented languages are based on the refinement paradigm with the pro-
gramming capabilities of the composition paradigm. Some exceptional object-oriented
languages, however, strictly observe the composition paradigm. They have no concept of
classes.

Instance bases are databases that are object-oriented. They are, however, quite different
from OODBs. An OODB is a set of classes, i.e., a set of object sets, and is based on the re-
finement paradigm of the object-oriented programming. An instance base, on the other
hand, is based on the composition paradigm of the object-oriented programming, and
stores various composite objects. The composition paradigm, together with the gradually
widening exploitation of the componentware approach to software engineering, is rapidly
increasing the importance of instance bases. Instance bases in this sense, however, are not
yet well developed or even well studied with respect to their storage schemes and their
search algorithms.

Let us now consider how the management of pads relates to these different types of
databases. We will first consider what to store in the databases. A composite pad only
needs to store its exchange format representation; no other information needs to be stored
in databases. The exchange format representation of a composite pad includes two kinds
of information. One is the form information that describes what kinds and sizes of com-
ponent pads are used, how they are geometrically pasted, and which slot is used in each
connection between component pads. The other is the state information of this pad. The
state information needs to be sufficient to specify the current values of all of its internal
variables whose values are not specified by its form information. Composite pads with the
same form information but with different states are said to share the same form. Without
loss of generality, we can assume that the state information is of the record type, i.e., it can
be represented as a list of attribute–value pairs for the ordered attribute set that is deter-
mined by each form.

Let P be a composite pad, F and S be its form and state information, respectively. To
guarantee mutual convertibility between P and (F, S), we must provide procedures to
compute the following three functions:

1. f: P�F

2. s: P�S

3. g: (F, S)�P

10.1 RELATIONAL DATABASES, OBJECT-ORIENTED DATABASES, AND INSTANCE BASES 207

tan-10.qxd 5/15/2003 4:40 PM Page 207

These functions satisfy P = g[f (P), s(P)]. Instead of using the function f, you may use an-
other function f � that maps the exchange format representation r(P) of P to the form in-
formation of P, i.e., f �[r(P)] = f (P). Furthermore, the function g can be replaced with a
new function g�, defined as �xy. r[g(f �(x), y)]. For any composite pad P� sharing the same
form with the pad P, it holds that g�[r(P�), s(P)] = r{g[f (P), s(P)]}. The function r and its
inverse are both provided by the IntelligentPad kernel. The function s can be also replaced
with a new function s� defined as s�[r(x)]=s(x). Instead of providing procedures to com-
pute f, s, and g, we can provide procedures for f �, s�, and g�.

Now we may consider two alternative ways of storing pads. If we have to manage a
large number of pads of a few different forms, we can keep the form information outside
the databases; we only need to store the state information of pads in the databases. Such a
database is called a form base. If the state information of a record type has only atomic
and simple values for its attributes, we can use a relational database system to store these
pads. If some attributes allow variable-length data, continuous data such as movies and
sounds, or complex data such as compound documents and other relations, we can use an
extended relational database system or a structural OODB system. In this case, we can
even deal with a composite pad storing other composite pads in some of its state attribut-
es.

If we have to manage composite pads of a large number of different forms, we need
database facilities not only to manage the states of pads but also to manage their different
forms. In such cases, there is no reason to separately manage the state and the form of
each pad. Such a database is termed a pad base. Pad bases should be instance bases by
their nature. Because the R&D of instance bases is at an early stage, pad bases require lots
of pioneering studies and development efforts.

Behavioral OODBs, namely DBPL databases, have no direct relations with the man-
agement of pads. IntelligentPad is a system that tries to keep its users as far away as possi-
ble from writing programs by themselves. It provides users with direct operations to com-
pose new objects from existing ones. Therefore, it is inherently a different approach from
DBPL databases.

10.2 FORM BASES

Form bases deal with the management of a large number of composite pads with a rather
small variety of different forms. They assume management of these forms outside their
database systems. Their databases store and manage only the state information of com-
posite pads.

10.2.1 Database Proxy Pads

Any relational or object-oriented database system �, when provided with its proxy pad
DBProxyPad(�), can be easily integrated with other tools in the IntelligentPad environ-
ment. Its proxy pad looks like a blank-sheet pad, and provides a list of slots including
#query slot, #result slot, #currentRecord slot, #search slot, #insert slot, #delete slot,
#nextCandidate slot, and #previousCandidate slot. The slot #query receives an SQL or an
object-oriented SQL query. When the proxy pad receives “true” in its #search slot, it
sends the SQL query stored in #query slot to the database system to perform this search.
When a search result is sent back from the database, the proxy pad stores this list of

208 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:40 PM Page 208

records in its #result slot. At the same time, it makes its internal variable “cursor” point to
the first record in the record list, and stores this record in #currentRecord slot. When the
proxy pad receives “true” in its #nextCandidate slot or in its #previousCandidate slot, it
respectively changes its variable “cursor” to point to the next or to the previous record,
and replaces the record in #currentRecord slot with this new record.

10.2.2 Form Bases With a Single Form

Let us first consider a simple case in which all pads share the same single form. The data-
base only stores their state information as records of a relation. Database function can be
brought into this environment by a database proxy pad, DBProxyPad. For the time being,
let us assume that queries are textually specified. Each retrieved record corresponds to a
composite pad with this specified form. To convert each record to the corresponding pad
and vice versa, we need a special pad. We call this a PadGeneratorPad. This conversion
also requires the form information. We assume that instead of this form information, this
PadGeneratorPad is given an example composite pad of this form. This PadGeneratorPad
performs two conversions. It can apply the function g� to the given two inputs to obtain
the exchange format representation of the corresponding composite pad. The two inputs
are the exchange format representation of an example pad of this form and a record re-
trieved from the database. It can also apply the function s� to the exchange format repre-
sentation of any composite pad of this form to obtain its state information that is stored in
the database as its record.

The PadGeneratorPad has the following two slots, #padSlot and #padGeneratorSlot.
The slot #padSlot is used to input the exchange format representation of an example pad
of this form. This slot is connected to a SaverPad as shown in Figure 10.1. To register a

10.2 FORM BASES 209

SaverPadLoaderPad

DBproxyPad

#padGeneratorSlot

generated pad

PadGeneratorPad

pop up

input of an example pad

#currentRecord

#padSlot

registered exchange
format representation

DB

a record
(a pad state)

state
assign

Figure 10.1 A pad-generator pad has the following two slots: the pad slot and the pad generator slot.
The pad slot is used to input the exchange-format representation of an example pad of this form.

tan-10.qxd 5/15/2003 4:40 PM Page 209

form as the database form interface, you can just drag and drop an example pad of this
form on this SaverPad. When sent an update message from a DBProxyPad, this PadGener-
atorPad reads the #currentRecord slot of the DBProxyPad to get the next candidate record
as the state information of the next pad to output. Using this information together with the
exchange format representation stored in its #padSlot, the PadGeneratorPad generates the
exchange format representation of the next pad to output, and stores this result in its #pad-
GeneratorSlot. When the generation is completed, the PadGeneratorPad issues an “up-
date” message to a LoaderPad connected to its #padGeneratorSlot. The LoaderPad, when
sent an “update” message, deletes any pads on itself, reads the #padGeneratorSlot of the
PadGeneratorPad to obtain an exchange format representation, and generates the corre-
sponding composite pad on itself.

When we click the button pad connected to the #nextCandidate slot of the DBProxy-
Pad, a new record is set to the #currentRecord slot of the DBProxyPad, which then sends
an “update” message to the PadGeneratorPad to generate the next pad and to replace the
previous pad with this new one.

10.2.3 Form Bases With Multiple Forms

When we need to deal with multiple forms, we can extend the architecture discussed in
the preceding section as follows.

First, we need a new pad to store the exchange format representations of multiple pads.
We call this a PadListPad. This pad has several slots including #padSlot, #indexSlot, #in-
sertSlot, and #deleteSlot. It stores an ordered list of pads with index numbers. A Saver-
LoaderPad is pasted on the PadListPad with its connection to the #padSlot. Two Button-
Pads are connected to the #insertSlot and the #deleteSlot, respectively. The #indexSlot
holds the current index number. If we drop a pad on the SaverLoaderPad, its exchange for-
mat representation is sent to the #padSlot of the PadListPad. If we click the insert button,
i.e., the ButtonPad connected to the #insertSlot, at this time, the exchange format repre-
sentation of this new pad is inserted at the current index position in the stored list of pads.
When an index number is given through its #indexSlot or as a return value of its “gimme”
message sent to its parent pad, the PadListPad outputs the exchange format representation
of the corresponding pad in the stored list to its parent pad by sending a “set” message
with this pad as the parameter value.

We paste this PadListPad on an extended PadGeneratorPad with its connection to the
#padSlot as shown in Figure 10.2. An extended PadGeneratorPad has the same slots as the
original. It also reads a record from its parent pad. Each record, however, is assumed to
have an additional attribute whose value works as a form selector number. The construc-
tion of such an output record format needs to be specified by each query. The extended
PadGeneratorPad reads such a record from the #currentRecord slot of the DBProxyPad,
divides it into a form selector number and a pure record, and sends an “update” message
to the pad connected to its #padSlot. The PadListPad, when it receives this “update” mes-
sage, sends a “gimme” message to get the form selector number from the extended Pad-
GeneratorPad, selects the corresponding exchange format representation, and sends this
back to the extended PadGeneratorPad. The remaining operations of the extended Pad-
GeneratorPad are the same as the original ones. Furthermore, we do not have to provide
both versions of the PadGeneratorPad. The extended version can replace the original one
with some minor alterations.

210 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:40 PM Page 210

10.2.4 Form Interface to Databases

In the preceding two sections, we tried to provide the most general frameworks for form
bases. The most typical form bases, on the other hand, are those with a single form that
works as a form interface to some relational database.

A database proxy pad, DBProxyPad, performs all the details necessary to access a
database. You may easily paste various pads on this DBProxyPad with their connection to
the #currentRecord slot to define a visual representation of each retrieved record. You
may also paste pads with their connections to the #result slot to visually present the distri-
bution of retrieved records or to arrange visual representations of records. Here we first
consider the case in which we visually present each retrieved record one at a time.

The whole set of pads available in IntelligentPad works as a form construction kit for
the visual interface of this database. A RecordPad is a blank-sheet pad. When it receives
an “update” message, it reads out a record-type value, i.e., an association list, from its par-
ent pad and holds this record. Some versions of IntelligentPad call a RecordPad a Dictio-
naryPad. A RecordPad allows us to add an arbitrary number of special slots called at-
tribute slots. For this function, it has a special slot, #addSlot. When it is accessed by a
“set” message with a new slot name as its parameter, the “set” procedure of this slot adds

10.2 FORM BASES 211

SaverLoaderPad

LoaderPad

DBproxyPad

#padGeneratorSlot

generated pad

PadListPad

PadGeneratorPad

pop up

Padi *

Padi *

padi

i
i

i

padi

padj

input of an example pad

#currentRecord

#deleteSlot
#padSlot

#indexSlot

ButtonPad

#insertSlot

#padSlot

DB

(record, form selector)

state
assign

((1, pad1),
(2, pad2),
......)

registered exchange
format representation

Figure 10.2 In order to deal with multiple forms, the architecture in Figure 10.1 can be extended
as shown here.

tan-10.qxd 5/15/2003 4:40 PM Page 211

a new slot with this name to the list of attribute slots in this RecordPad. A RecordPad has
another special slot, #removeSlot, that is used to remove a specified slot from its list of at-
tribute slots. Each attribute slot, when requested to send back its value, reads out the
stored record and gets the value of the attribute having the same name as this attribute-slot
name. If the record does not have the same attribute name, this attribute slot returns the
value “nil.” When a record pad is pasted on the DBProxyPad with its connection to the
#currentRecord slot of this proxy pad, it works as a base pad to define a form representa-
tion of each record that will be retrieved from the DBProxyPad (Figure 10.3). This com-
posite pad is represented by our notation as

DBProxyPad(�)
[#query: . . . ,
#search:ButtonPad1,
#insert:ButtonPad2,
#delete:ButtonPad3,
#previousCandidate:ButtonPad4,
#nextCandidate:ButtonPad5,
#currentRecord:RecordPad[#attrb1:Pad1, #attr2:Pad2, . . . , #attrn:Padn]
. . .
].

The pad Padi is a display pad that shows the value of the attribute attri. Some examples of
such a display pad are TextPad, ImagePad, MoviePad, and BarMeterPad. A mouse click of
the pad ButtonPad1 invokes a search of the database. A click of the pad ButtonPad5 ad-
vances the record cursor to the next candidate record in the list of retrieved records stored
in the result slot.

Different from GUI forms, this form with a RecordPad as its base pad can be easily
copied and sent to other users or to some tool pads. This copy holds the record that its
original had when we made this copy.

212 INTELLIGENTPAD AND DATABASES

PadnPad2Pad1

attrnattr2attr1

ButtonPad

TextPad

ButtonPad

ButtonPad

ButtonPad

#current-
Record

#next-
Candidate#search#insert #query#delete

#previous-
Candidate

DB

DBProxyPad

RecordPad
ButtonPad

Figure 10.3 A RecordPad that is pasted on the DBProxyPad with its connection to the #current-
Record slot of this proxy pad works as a base pad to define a form representation of each retrieved
record.

tan-10.qxd 5/15/2003 4:41 PM Page 212

In its typical use on a DBProxyPad, a RecordPad divides each retrieved record into a
set of attribute–value pairs. Each attribute value is set to the slot with the same name as its
attribute name. Depending on the value type of each attribute slot, you may connect a text
viewer pad, an image viewer pad, a drawing viewer pad, or a video viewer pad to this slot.
You may arbitrarily design the layout of these viewer pads on the RecordPad. A DBProxy-
Pad with a RecordPad pasted with some viewer pads is called a form-based DB viewer, or
a form interface to a database. Figure 10.4 shows an example of a form-based DB viewer.

Instead of pasting a RecordPad on a DBProxyPad, you may paste some type of relation
viewer pad and connect it to the #result slot of the DBProxyPad. A relation viewer pad vi-
sually presents records in the relation. A table representation pad is an example of a rela-
tion viewer pad.

For the setting of a query in the #query slot of a DBProxyPad, you can simply use a
text-input pad, TextInputPad. A TextInputPad is pasted on the DBProxyPad(�) and con-
nected to the #query slot of the DBProxyPad(�), i.e., DBProxyPad(�)[#query:TextInput-
Pad]. An SQL query q written on this TextInputPad is sent to the #query slot of the proxy
pad, i.e., DBProxyPad(�)[#query�q]. Instead of using such a simple TextInputPad, you
may use any composite pad to generate an SQL query. For example, you may consider a
pad, Q(#department, #comparator, #salary), which generates a parameterized SQL query
Q(x,�, y):

select name, age, photo
from Employee
where department = x

and salary � y.

You may paste three TextInputPads on this pad with their connection to these three slots,
and paste this composite pad on the proxy pad to connect itself to the #query slot of the
proxy, i.e.,

10.2 FORM BASES 213

Figure 10.4 An example of a form-based DB viewer.

tan-10.qxd 5/15/2003 4:41 PM Page 213

DB ProxyPad(�) [#query: Q[#department: TextPad1,
#comparator: TextPad2,
#salary: TextPad3)]].

This allows you to simply specify a department name, a comparison operator, and an
amount of salary for the retrieval of employees’ information.

A restriction on the DB proxy pad makes it represent a view relation. This requires one
more slot named #view slot. This slot is used to store a view definition. This view defini-
tion also specifies the structure of records stored in the #currentRecord slot. The attribut-
es of these records are those defined by this view. When a query is issued through the
#query slot, this pad modifies this query with the view definition and sends the modified
query to the database system. To avoid the view update problem, the translation of an up-
date request on this view to a DB update request should be clearly defined in this
pad. Such a restricted DB proxy pad is called a DBViewPad. A text pad can be used to
input a view definition sentence, viewDefinition, to the #view slot, i.e.,
DBViewPad(�)[#view�viewDefinition]. This Pad works as a proxy pad to a database
�view with the view relation as its only one relation, i.e.,

DBViewPad(�)[#view�viewDefinition] = DBProxyPad(�view)

10.2.5 QBE on Form Interface

In the preceding sections, we have been assuming that the #currentRecord slot of a
DBProxyPad is a data slot. Actually, it is not. Its access by a “gimme” message invokes its
“gimme” procedure, which reads out the record pointed to by the cursor from the record
list stored in the #result slot, and returns this record value. Its access by a “set” message,
on the other hand, sets its parameter value to a special internal variable, “input-record,” of
the DBProxyPad. The record stored in this input-record variable is used to insert and
delete records into and from the database. These operations are successfully performed
only when the following two conditions are satisfied: (1) this record type is a projection of
some relation R in the database, and (2) this record completely specifies the value of the
primary key of R. Otherwise, these operations will fail. When its #insert slot is set to
“true,” a DBProxyPad tries to insert the record in the input-record variable into the data-
base. When its #delete slot is set to “true,” the DBProxyPad tries to delete the record of R
identified by the record in the input-record variable.

A DBProxyPad issues an “update” message to all of its child pads connected to either
its #result slot or its #currentRecord slot when and only when it receives a result relation
from the database or its cursor changes.

The input-record variable is also used in search operations. In this case, each attribute
value of the record in the input-record variable needs to be either “nil” or a pair comprised
of a comparison operator �i and any value vi of this attribute. The content of the input-
record variable, in this case, specifies a condition C*, defined as the conjunction of
Ai.�i.vi for all the attributes with nonnil values. Suppose that the query q stored in the
#query slot of the DBProxyPad is

q: select attribute list
from relation list
where C

214 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 214

We define a new query q(C*) as

q(C*): select attribute list
from relation list
where C and C*

When its #search slot is set to “true,” the DBProxyPad reads out both the query q in its
#query slot and the condition C* from its input-record variable, generates a new query
q(C*), and sends this to the database to retrieve the result relation.

The input-record variable is initially set to a record with “nil” for each of its attributes.
The insert and delete operations both reset the input-record variable to its initial value
when they complete their execution. The condition C* corresponding to this initial value
is defined to be logically true.

This extension of the DBProxyPad allows us to construct a QBE (query-by-example)
[14] type form interface without making any more changes to the preceding discussion.
We use a RecordPad not only for the output display of the retrieved records but also for
the QBE type specification of a query. A RecordPad has a special slot called the
#setRecord slot. When set to “true,” the “set” procedure of this slot sends a “set” mes-
sage to its parent pad together with its #record slot value as the message parameter.
When connected to the #currentRecord slot of a DBProxyPad, a RecordPad with a
ButtonPad connected to its #setRecord slot works as a QBE-based input form. When its
button is clicked, it sends its record value, which actually specifies a query based on the
QBE convention, to the input-record variable of the DBProxyPad, which, in turn, gener-
ates a modified query q(C*) from the query q specified by its #query slot. Figure 10.5
shows a composite form-based DB viewer that allows the QBE-based query specifica-
tion.

10.3 PADS AS ATTRIBUTE VALUES

In Section 10.2, we saw that a database service can be represented as a pad. Here, we will
see that pads can be treated as database values. Each composite pad has its exchange for-
mat representation, which is just a variable-length string. This string can be stored in data-
bases as an attribute value if this attribute allows a variable-length string as its value. This
means that any object that can be represented as a composite pad can be stored in those re-
lational databases that allow variable-length data as attribute values [15]. These objects in-
clude interactive multimedia objects such as images, movies, and sounds; interactive
charts and tables; interactive maps; database access forms, various application tools; and
compound documents embedding any of these objects.

Figure 10.6 shows a form interface to a database with an interactive image pad as an at-
tribute value. The corresponding slot of the record pad stores the exchange format repre-
sentation of an interactive image pad as its value. To generate a composite pad from its
exchange format representation, and vice versa, a special pad, SaverLoaderPad, is pasted
on the record pad and connected to this slot (Figure 10.7). When it receives an “update”
message, a SaverLoaderPad issues a “gimme” message to retrieve an exchange format
representation value from its parent, and generates the corresponding composite pad on it-
self. It also works as a saver. When a composite pad is dragged and dropped on it, a Saver-
LoaderPad converts this composite pad to the exchange format representation and issues a

10.3 PADS AS ATTRIBUTE VALUES 215

tan-10.qxd 5/15/2003 4:41 PM Page 215

“set” message with this representation as a parameter value to store this representation
into the connected slot of its parent pad.

The database in Figure 10.6 stores information about cars for sale. Clients can specify
a query to retrieve the full information on any specified cars, including photos. This sys-
tem, however, treats each image as a composite pad with some transparent anchor pads
pasted on an image pad. Each anchor pad is a priori associated with a form-based DB
viewer, i.e., each anchor pad, when clicked, pops up the registered form-based DB viewer.
Each DB viewer has an a priori registered SQL query in its query slot. This query may be
issued either to the same database or to a different database. When mouse-clicked, each
anchor pad pops up the registered form-based DB viewer and instructs this pad to issue its
registered query. The retrieved result will be shown on this form-based DB viewer. If you

216 INTELLIGENTPAD AND DATABASES

Figure 10.5 A composite form-based DB viewer that allows QBE-based query specifications.

tan-10.qxd 5/15/2003 4:41 PM Page 216

10.3 PADS AS ATTRIBUTE VALUES 217

transparent anchor pad

Figure 10.6 This form interface treats each car image as a composite pad with a transparent an-
chor pad pasted on an image pad.

ButtonPad

ImagePad

SaverLoader
Pad

Text
Pad

Text
Pad

TextPad

ButtonPad

ButtonPad

ButtonPad

#current-
Record

#video#age#name

#next-
Candidate#search #insert #query#delete

#previous-
Candidate

DB

DBProxyPad

RecordPad
ButtonPad

AnchorPad

Figure 10.7 To generate a composite pad from its exchange-format representation, and vice versa,
a special pad, SaverLoaderPad, is pasted on the record pad and connected to the slot storing the ex-
change-format representation of a pad.

tan-10.qxd 5/15/2003 4:41 PM Page 217

want to show users of this automobile database various options on several items such as
body colors and wheel covers, you can just paste two anchor pads on the photo pad and
store this composite pad in the photo attribute of the database. A mouse-click on each of
these anchor pads will pop up the corresponding form-based DB viewer showing the pos-
sible choices of the selected item. Figure 10.8 shows such a photo pad and a popped-up
form showing options of wheel covers.

In this application, we want to use copies of the same anchor pad to cover all the wheels
of different automobiles. These copies are necessarily associated with the same DB viewer.
Therefore, this form-based DB viewer needs to modify its registered query depending on
which specific car model we are viewing on the original form-based DB viewer. This de-
pendency between the current record in the original form-based DB viewer and the regis-
tered form-based DB viewer is implemented as follows. Instead of registering a form-based
DB viewer alone to an anchor pad, we register it together with a record-holding pad as its
parent pad. We also use a special anchor pad with its connection slot name set to #record
slot. When clicked, this special anchor pad on the photo pad reads out the #record slot of the
underlying RecordPad to get the current record value, and pops up the registered form-
based DB viewer with its parent pad holding this record value. The popped-up form-based
DB viewer with its parent pad holds the current record value of the original form-based DB
viewer, and hence it can modify its query depending on this record value.

Figure 10.9 shows another form interface to a database. This system has the same com-
position architecture as shown in Figure 10.7. This form interface shows a stage pad as an

218 INTELLIGENTPAD AND DATABASES

transparent anchor pad

Figure 10.8 A mouse click on a transparent anchor pad that covers a wheel cover portion of the
car image pops up the corresponding form-based DB viewer showing the possible choices of the se-
lected item.

tan-10.qxd 5/15/2003 4:41 PM Page 218

attribute value. When activated, this stage pad together with its actor pads gives step-by-
step instructions for this cooking recipe. Different recipes can be retrieved from the data-
base together with their instructions by appropriately specifying queries.

10.4 MULTIMEDIA DATABASE

Multimedia databases [16–18] have to deal with several different categories of objects—
container objects, media objects, articulated content objects, and reference frames for
nonarticulated content objects. IntelligentPad represents media objects and container ob-
jects as primitive pads. Reference frames are represented as anchor pads or viewer pads.
Here we consider a multimedia database architecture based on an object-oriented data-
base and IntelligentPad.

10.4.1 Articulation of Objects by Pads

Section 9.2 showed how to articulate nonarticulated multimedia objects. The most widely
used general solution is the use of a reference-frame object for each content object. For
recorded music or speech, it defines the shortest time segment that includes one of the

10.4 MULTIMEDIA DATABASE 219

query specifications a retrieved record A stage pad shows how to cook this.

previous
record

next
record

Figure 10.9 This form interface shows a stage pad as an attribute value. When activated, this stage
pad together with its actor pads gives a step-by-step instruction on this cooking recipe. Different
recipes can be retrieved from the database by appropriately selecting meat or fish, which vegetables
to use, and the cooking style.

tan-10.qxd 5/15/2003 4:41 PM Page 219

music or speech portions you want to identify. This reference-frame object indirectly
specifies the corresponding music or speech portion. For an image, it defines the mini-
mum rectangular area that covers one of the content objects you want to identify in the
image. This reference-frame object indirectly specifies the corresponding area of the im-
age. Reference-frame objects are articulated objects. Time segments work as temporal ref-
erence frames, whereas rectangular areas work as spatial reference frames. The reference-
frame object for a cut in a movie defines a time segment. For an object appearing in a
movie, the reference-frame object defines a mobile variable-size rectangular area that
minimally covers this object in every video frame showing this object.

Pads in IntelligentPad are suitable for the representation of container objects, media
objects, and reference frames in multimedia systems. Spatial reference frames can be rep-
resented as transparent pads that cover the target content objects. They can be pasted on
top of their target media object pads to minimally cover their target content objects. Intel-
ligentPad provides anchor pads and viewer pads for use as reference-frame pads. An an-
chor pad is used in the example shown in Figures 10.6 and 10.7 to pop up another form-
based DB viewer pad, as shown in Figure 10.8.

Pads are all object instances. Primitive pads have their corresponding pad classes,
whereas composite pads are defined by pasting primitive pads and have no corresponding
classes. Since object-oriented databases manage object instances based on their class
structures, they can manage only primitive pads as objects, and cannot manage composite
pads. They can, however, manage the parent–child pad relationship between pads as an
object relationship. Furthermore, the save format string representation of a composite pad
can be stored in databases as a string value.

Here we consider a multimedia database architecture based on an object-oriented data-
base and IntelligentPad. For each primitive pad class, our database has a corresponding
relation that has attributes corresponding to all the data slots of this pad class. This rela-
tion stores all the pads of this class. This relation also has another attribute to store oids
(object identifiers) of pads. The parent–child pad relation stores all the parent–child pad
pairs of oids with their child pad’s locations on the corresponding parents.

Since articulated content objects have their corresponding classes, they can be man-
aged by such databases. IntelligentPad, however, cannot represent them as pads. It treats
them as slot values of primitive pads representing the corresponding media objects.

10.4.2 Movie Databases

In this section, we discuss movies to show how their objects are represented as pads and
managed by a database [19]. IntelligentPad represents each movie as a pad. This pad
shows a QuickTime movie. It has a data slot that always indicates the current frame num-
ber. A reference frame for a physical object shown in a movie is a transparent pad that
changes its size and location to minimally cover this same object in each frame of this
movie pad. Users can specify its location and size in some sample frames using such a
tool as shown in Figure 9.8. This tool itself is defined as a composite pad. It enables you
to specify the location and the size of each reference-frame pad in arbitrarily selected
sample frames of an arbitrarily given movie pad. Each reference-frame pad interpolates its
location and size in other frames from the given values in sample frames. Reference-
frame pads have the following data slots: #objectName, #cutNumber (for the cut number),
#frameNumber, #location, and #size.

The database includes two relations, one for movie pads and the other for reference-

220 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 220

frame pads. We assume that movies are a priori segmented into cuts, and that reference-
frame pads have both #frameNumber slot and #cutNumber slot:

Movie(oid, title, author, date, location),
MovieReference(oid, #objectName, movieOid, #cutNumber,

#frameNumber, #location, #size)

where oid in MovieReference is the oid of the reference-frame pad. Figure 10.10 shows
example cuts of movies and the corresponding relations. Reference-frame pads are used
here to articulate butterflies and flowers appearing in these cuts. For simplicity, it is as-
sumed that all the frames that show the same object are recorded in the relation
MovieReference. In a practical system, it is sufficient to store sample frames in
MovieReference.

This rather simple system architecture provides large capabilities for the manipulation
of movies. These include the following operations, both on articulated content objects and
on reference frames covering nonarticulated content objects:

1. File operations (save, load)

2. Edit operations (create, delete, edit)

3. Quantification, i.e., condition specification in database queries

4. Link operations

5. Context specification

6. Composition operations

7. Overlay operations

File operations are obviously supported. Edit functions are also supported if we use view-
er pads for reference-frame objects.

Our system architecture allows various kinds of quantification on various objects.
While the quantification on articulated objects needs no further explanation, our system
architecture also allows us to quantify nonarticulated objects. Suppose that there are lots
of movies showing butterflies and flowers as shown in Figure 10.10, and that we want to
find all the movie cuts in which a swallowtail is flying over a dandelion. We assume that
butterflies and flowers are all minimally covered with reference-frame pads. This retrieval
request can be described by the following SQL query:

select movie.oid, mref1.#cutNumber, mref1.oid, mref1.#frameNumber
from movie in Movie; mref1, mref2 in MovieReference
where movie.oid=mref1.movieOid=mref2.movieOid

and mref1.#frameNumber=mref2.#frameNumber
and mref1.#objectName=‘swallowtail’
and mref2.#objectName=‘dandelion’
and mref1.#location.y+mref1.#size.y < mref2.#location.y
and mref1.#location.x+mref1.#size.x > mref2.#location.x
and mref2.#location.x+mref2.#size.x > mref1.#location.x.

We show this result in Figure 10.11(a) for the example relations shown in Figure 10.10.
This result can be grouped by movie.oid, mref1.#cutNumber, and mref1.oid to obtain

10.4 MULTIMEDIA DATABASE 221

tan-10.qxd 5/15/2003 4:41 PM Page 221

154153152151150

355354353352351350

215214213212

MPc:cut 26

MPb:cut 7

MPa:cut 15

MPa:cut 10

211210

104103102101100

RFi

RFh

RFg

RFfRFe

RFd

RFc

RFb

RFa

Figure 10.10 Example cuts of movies, and the corresponding relation. Reference frame pads are
used here to articulate butterflies and flowers appearing in these cuts. (a) Example cuts of movies.
(b) The corresponding relation.

(a)

oid
#object
Name

#movie
Oid

#cut
Number

#frame
Numbe

r
#location #size

RFa swallowtail MPa cut10 100
RFa swallowtail MPa cut10 101
RFa swallowtail MPa cut10 102
RFb dandelion MPa cut10 100
RFb dandelion MPa cut10 101
RFb dandelion MPa cut10 102
RFb dandelion MPa cut10 103
RFb dandelion MPa cut10 104
RFc swallowtail MPa cut 15 211
RFc swallowtail MPa cut 15 212
RFd dandelion MPa cut 15 211
RFd dandelion MPa cut 15 212
RFd dandelion MPa cut 15 213
RFd dandelion MPa cut 15 214
RFd dandelion MPa cut 15 215
RFe swallowtail MPb cut 7 351
RFe swallowtail MPb cut 7 352
RFf swallowtail MPb cut 7 354
RFf swallowtail MPb cut 7 355
RFg dandelion MPb cut 7 350
RFg dandelion MPb cut 7 351
RFg dandelion MPb cut 7 352
RFg dandelion MPb cut 7 353
RFg dandelion MPb cut 7 354
RFg dandelion MPb cut 7 355
RFh swallowtail MPc cut 26 152
RFh swallowtail MPc cut 26 153
RFh swallowtail MPc cut 26 154
RFi dandelion MPc cut 26 150
RFi dandelion MPc cut 26 151
RFi dandelion MPc cut 26 152
RFi dandelion MPc cut 26 153

(b)

MovieReference(oid, #objectName, #movieOid, #cutNumber,
 #frameNumber, #location, #size)

tan-10.qxd 5/15/2003 4:41 PM Page 222

three attributes: movie.oid, mref1.#cutNumber, and mref1.#frameNumber/(movie.oid,
mref1.#cutNumber, mref1.oid), where A/B means the grouping of A values with respect
to different B values. From the third set-value attribute, we can calculate the minimum
min(mref1.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)) and the maximum
max(mref.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)) of this set, which
are shown in Figure 10.11(b). Let pad be a function from a pad oid to its corresponding
pad. Then the movie cuts we want are obtained as pad(movie.oid)|[t1,t2], where t1 =
min(mref.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)), t2 =
max(mref.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)), and |[t1,t2] de-
notes the selection of the cut between these two frame numbers. This gives us a subse-
quence of the cut selected by the retrieved combinations of movie.oid and mref1.#cut-
Number. Such a subsequence may include frames without either dandelions or
swallowtails. However, it starts and ends with frames including both of them in the speci-
fied spatial relationship, and includes no cut changes. By concatenating these subse-
quences in the order of movie.oid and mref1.#cutNumber, we will obtain a single movie
sequence.

Our architecture also allows us to span a link from any nonarticulated object in any
movie to another pad. An anchor pad is used as a reference frame to cover this nonarticu-
lated object. The specification of a reference frame also specifies its underlying movie
pad and some of its frame numbers. Therefore, our architecture provides context-specifi-
cation functions. Composition operations and overlay operations are both provided by In-
telligentPad itself.

Our system architecture can also deal with images and sounds in a similar way.

10.4 MULTIMEDIA DATABASE 223

movie.
oid

mref1.
#cut

Number

mref1.
oid

mref1.
#frame
Number

MPa cut 10 RFa 101
MPa cut 10 RFa 102
MPa cut 15 RFc 211
MPa cut 15 RFc 212
MPa cut 15 RFc 213
MPb cut 7 RFe 351
MPb cut 7 RFe 352
MPb cut 7 RFf 354
MPb cut 7 RFf 355
MPc cut 26 RFh 152
MPc cut 26 RFh 153

movie.
oid

mref1.
#cut

Number
t1 t2

MPa cut 10 101 102
MPa cut 15 211 213
MPb cut 7 351 352
MPb cut 7 354 355
MPc cut 26 152 153

(a) (b)

Figure 10.11 The result relation obtained by the query is grouped by movie.oid, mref1.#cutNum-
ber, and mref1.oid to obtain two attributes movie.oid and mref1.#frameNumber/(movie.oid,
mref1.#cutNumber, mref1.oid). From the second set-value attribute, we can calculate the minimum
min(mref1.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)) and the maximum
max(mref.#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)) of this set. t1 = min(mref.
#frameNumber/(movie.oid, mref1.#cutNumber, mref1.oid)). t2 = max(mref.#frameNumber/
(movie.oid, mref1.#cutNumber, mref1.oid)). (a) Retreived result. (b) Movie scene.

tan-10.qxd 5/15/2003 4:41 PM Page 223

10.4.3 Articulated Objects in Media Objects

Our architecture uses its object-oriented database to manage articulated objects in media
objects. Here we examine texts to show how our architecture manages articulated objects
in texts.

IntelligentPad represents each text as a text pad. A text pad is associated with a text file
storing its text string and works as a screen editor of its text file. Users can easily move its
cursor, scroll the text, and specify any portion of the text, all through direct manipulations
using a mouse. A text pad also allows its user to register hypertext link anchors and to in-
voke them by a mouse operation. It provides a special slot, #edit, to access any articulated
object. Its access by a “set” message with a parameter (ref <loc1> <loc2>) makes this text
pad update its currentObject register to the text portion between two locations <loc1> and
<loc2>. A “set” message with (insert <loc> <text>) makes this pad insert the text string
<text> at the location <loc>. A “set” message with (del <loc1> <loc2>) makes this pad
delete the text portion between <loc1> and <loc2>. An access of this #edit slot by a
“gimme” message makes this pad return the value of its currentObject register.

In our multimedia database architecture using IntelligentPad and an object-oriented
database, texts are stored not in text files, but in the database. Each text pad is therefore
modified so that it can read and write the text contents to and from the database.

Such architecture supports file operations, quantification, link operations, and context
specification on articulated content objects. Furthermore, since text pads can be pasted to-
gether with any pads, they allow composition operations and overlay operations.

Similarly, articulated content objects in figures and tables are all managed by our data-
base, whereas figures and tables themselves are represented as pads that access the data-
base to display and to edit their contents.

10.5 HYPERMEDIA DATABASE

As shown in Section 9.3, IntelligentPad provides all the functions necessary to construct
hypermedia documents as pads. In this section, we will consider such cases in which the
number of nodes and links become so large that we need a database to manage them.

10.5.1 Management of a Large Hypermedia Network

We assume that pads that work as hypermedia nodes are stored by a database, and that
they are identified in this database by their pids (pad identifiers). This database called a
hypermedia database stores pads as a relation, Pad(PID, PadExchangeFormat). The at-
tribute PID holds the pid of a pad, whereas the attribute PadExchangeFormat holds the ex-
change format representation of this pad.

For reasons of simplicity, here we only consider anchors that are represented as pads.
Different from anchor pads that keep the file name of their destination pads, these pads,
which are linked to certain pads in the hypermedia database, use their surrogates. Such
pads are called DBAnchorPads. When clicked, DBAnchorPads issue the following SQL
query to the hypermedia database:

select PadExchangeFormat
from Pad
where PID=pid

224 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 224

where pid is the pid that the DBAnchorPad keeps in itself. The DBAnchorPad then con-
verts the exchange format representation thus obtained to a composite pad and pops it up
on the desktop.

New nodes and new links can be added to this hypermedia system as follows. Figure
10.12 shows a tool that saves and loads pads to and from a hypermedia database. This tool
uses a DBProxyPad, a SaverLoaderPad, and a PidExtractorPad. This SaverLoaderPad is
connected to the exchange format slot of the PidExtractorPad. The PidExtractorPad is
connected to the #currentRecord slot of the DBProxyPad. When a single record is re-
trieved from the relation Pad, it is stored in the #currentRecord slot. The proxy pad issues
an “update” to the PidExtractorPad, which reads the #currentRecord slot of the proxy pad.
The readout record consists of a pid and a exchange format string of a pad. The PidEx-
tractorPad separates these values and makes them independently accessible through its
#pid slot and its #exchangeFormat slot. This PidExtractorPad then propagates the update
to the SaverLoaderPad, which reads the #exchangeFormat slot of the PidExtractorPad to
convert its value to a composite pad. The resulting pad is popped up on the SaverLoader-
Pad. When a composite pad is dropped on it, the SaverLoaderPad converts this composite
pad to its exchange format representation and sends this value to the PidExtractorPad,
which extracts its pid and sets this pid to its #pid slot.

The DBAnchorGeneratorPad that is connected to the #pid slot of the PidExtractorPad
in Figure 10.12 generates a DBAnchorPad with its destination pid set to the readout #pid
slot value. When a DBAnchorPad is dropped on it, this DBAnchorGeneratorPad extracts
its destination pid and sends this to the #pid slot of its parent pad.

Suppose we want to span a new link from one composite pad to another composite pad,
both of which are already stored in the hypermedia database. In this case, we can drop the
destination pad on the SaverLoaderPad, which converts it to its exchange format represen-
tation and sends the result to the PidExtractorPad. This pad then extracts the pid of the

10.5 HYPERMEDIA DATABASE 225

PidExtractorPad
ButtonPad

Any PadA DB anchor pad

SaverLoader
Pad

DBAnchor
GeneratorPad

ButtonPad

ButtonPad

ButtonPad

ButtonPad

#current-
Record

#ExchangeFormat#PID

#next-
Candidate#search #insert #delete

#previous-
Candidate

DB

DBProxyPad

(0)

(2)

(1)

(4)

(3)

(4)

(4)

(3)

(4)

(3)

(3)

(4)

(2)

(1)

Figure 10.12 A tool that saves and loads pads to and from a hypermedia database uses a
DBProxyPad, a SaverLoaderPad, and a PidExtractorPad.

tan-10.qxd 5/15/2003 4:41 PM Page 225

new destination pad and holds this in its #pid slot. We use another special pad called a
DBAnchorGeneratorPad. This pad is pasted on the PidExtractorPad with its connection to
the #pid slot. When it receives an “update” message from the PidExtractorPad, it reads out
a pid from the the #pid slot and generates a new DBAnchorPad with this pid as its desti-
nation. You can paste this generated DBAnchorPad on the source pad to cover its source
anchor object. Since the source pad is added with a new anchor, we have to replace its ex-
change format representation stored in the database with its updated version. For this pur-
pose, we use the tool in Figure 10.12 again. We drop this updated version of the source
pad on the SaverLoaderPad, which sends its exchange format representation together with
its pid to the #currentRecord slot of the DBProxyPad through the PidExtractorPad. When
we click the button connected to the #insert slot of the DBProxyPad, this proxy pad up-
dates the database by replacing the corresponding record of this pad with its new version.

Suppose that we want to span a new link from a node in the database to a new node that
is not in the database. We use the same tool shown in Figure 10.12. First, we register this
new pad into the database. At this time, we also obtain a new DBAnchorPad with the pid
of this new pad. Then we paste this anchor on the source pad and replace the record of this
source pad with its updated version.

To delete a node, we can just delete its record from the database using the same tool
shown in Figure 10.12. As the result of such deletion operations, a DBAnchorPad may fail
to search the database for its destination pad. In this case, the DBAnchorPad pops up
nothing. To delete a link, we delete its source anchor, namely the DBAnchorPad pasted on
the source pad. Since this updates the source pad, we have to update the database by re-
placing the old record for this source pad with its new version.

10.5.2 Hyperlinks as Queries

The use of a hypermedia database allows us to specify some of its links as queries to this
database for the retrieval of their destination nodes. The hypermedia database may store
any additional relations that allow us to quantify pads in terms of their various properties.
Let PadProperty be such a relation, i.e., PadProperty(PID, Attr1, Attr2, . . . , Attrn), where
Attr1, Attr2, . . . , Attrn are properties describing each pad. An anchor of this kind does not
specify the pid of its destination node, but specifies a query for the retrieval of its candi-
date destination nodes. Such a query has the following form:

select p.PadExchangeFormat
from p inPad, q in PadProperty
where p.PID=q.PID

and
Pred(q.Attr1, q.Attr2, , q.Attrn)

Here, Pred(x1, x2, . . ., xn) is an arbitrary n-place predicate. Anchors associated with such
queries are represented by QueryAnchorPads. A QueryAnchorPad stores a query that can
be input through its #query slot. When clicked, a QueryAnchorPad issues its query to the
hypermedia database, retrieves a list of candidate pads, and pops up a special pad with
this list of pads. This list stores the exchange format representation of pads. This special
pad, called a PadListPad, has such slots as #listLength slot, #currentIndex slot, #current-
Pad slot, #nextPad slot, and #previousPad slot. The #listLength slot holds the length of the
stored list. The #currentPad slot holds one of the pads in this list as the current pad, while
the #currentIndex slot holds the index number of the current pad in the list. The #current-

226 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 226

Pad slot is connected to a SaverLoaderPad. The #nextPad slot and the #previousPad slot,
respectively, increase and decrease the #currentIndex slot value by one. Figure 10.13
shows the pad composition structure of a hypermedia database system using QueryAn-
chorPads. A destination node of a query anchor is not a single pad, but a list of pads. To
browse pads in this list one after another, you can click the button pad connected to the
next pad slot of the pad list pad.

The above discussion assumed that the destination pad specification does not depend
on properties of the source pad. For hyperlinks that depend on both the source and desti-
nation pad properties, we can extend both QueryAnchorPads and the queries to the pad
database as follows. An extended QueryAnchorPad, when clicked by a user, first sends a
message to its parent pad to obtain the parent’s pid. This parent pad’s pid (or master pid),
mpid, is used in the following extended query to the pad database:

select p.PadExchangeFormat
from p inPad, q1, q2 in PadProperty
where p.PID=q2.PID

and q1.PID=mpid
and Pred�(q1.Attr1, . . , q1.Attrn, q2.Attr1, . . , q2.Attrn)

where Pred�(x1, x2, . . ., xn, y1, y2, . . . , yn) is an arbitrary 2n-place predicate.

10.5 HYPERMEDIA DATABASE 227

SaverLoaderPad

PadListPad
QueryAnchorPad

#currentPad

#previous

#next

#currentIndex

#listLength

a list of pads
query

pop upclick

pop up

#query

QueryAnchorPad

DB

PadListPad

SaverLoaderPad

Figure 10.13 An example use of a QueryAnchorPad and its composition structure.

tan-10.qxd 5/15/2003 4:41 PM Page 227

10.6 GEOGRAPHICAL INFORMATION DATABASES

GIS (Geographical Information System) is no doubt one of the most potential application
fields of IntelligentPad. Nigel Waters, who is a professor at the Department of Geography,
University of Calgary, pointed out the potential application of IntelligentPad to GIS in an
article published in GIS World [20]. His article, entitled “POGS: Pads of Geographic Soft-
ware,” envisaged a situation in which a map display, a traffic simulation model, a video
image of an intersection, and a display in graph form are all represented as mutually inter-
acting pads. He indicated that a system with these pads would not only be a great peda-
gogical device, but would be invaluable for planning. Furthermore, he pointed out that
one of the GIS functions, which is becoming increasingly important, is providing software
patches to carry out operations the software does not address in its existing form. Some-
times, if the patch is extremely useful and becomes popular, it may be incorporated into a
later software version. Waters envisaged a situation, however, in which the patches are all
in the form of pads that would be passed around among the members of list, evolving and
merging to meet the needs of a variety of different users.

GIS is still evolving with respect to its functional capabilities. Therefore, it is not yet
possible to provide a standard framework for GIS. Here we consider only a small portion
of its basic pads and their interactions.

A map shows various objects. They include roads, rivers, railways, intersections, areas,
buildings, and names. Some maps do not articulate any of these; such maps are just im-
ages. Other maps articulate all of these objects. Still other maps articulate some of these
objects, but not others. Buildings, areas, and intersections in a map can be easily articulat-
ed if we cover them with reference-frame pads. These reference-frame pads might be
masked by shape-mask pads to match their shapes to the target objects. Names on a map
can also be articulated by using text pads to display them, or by using transparent refer-
ence-frame pads to cover them. Reference-frame pads, however, do not articulate roads,
rivers, or railways. The pad that draws them should articulate these objects. Reference-
frame pads may be either anchor pads or viewer pads. The use of reference-frame pads
with the hypermedia framework or the hypermedia database framework makes it easy to
develop GIS applications with hypermedia or hypermedia database capabilities.

In addition to the hypermedia navigation interaction, we may also consider various in-
teractions between GIS pads. The most simple and most important interaction is the view
integration of overlaid multiple pads whose background colors are made transparent or
translucent. Pads at different layers may access different databases to show different maps
of the same area, such as roadmaps, bus route maps, and subway maps. A mouse event on
a map to pick up some object is delegated to the next-lower-layer map if there is no object
at the specified location on the current layer map. This event delegation function is one of
the fundamental functions of map pads and allows us to pick up any objects at any layers
of overlaid maps. They communicate with each other to display the same area at the same
scale.

In a GIS environment, various simulations are considered especially useful for plan-
ning purposes. Their examples include traffic flows and jams, sunshine availability, flows
of people, and the spread of floods. Their simulations should be displayed over the map of
the corresponding area. IntelligentPad represents such simulation tools as pads that visu-
alize the simulations on themselves. Such a simulation pad, when made translucent, can
also be overlaid on a map pad showing the simulated area. It communicates with the un-
derlying map pad to adjust its location, size, and scale with those of the underlying map.

228 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 228

Figure 10.14 shows a sunshine-simulation pad overlaid on a map pad. Wataru
Kowaguchi of Hitachi Software Engineering Co. developed this system together with the
accessing of a map database during his stay in our laboratory as a visiting researcher in
1994. This simulation pad accesses the same database that is accessed by the underlying
map pad, and extracts information about the height of each building to calculate shadow
areas at a given time on a given day of the year. This simulation pad has two slots to spec-
ify the time and the day of the year. If we paste a clock and a calendar with their connec-
tions, respectively, to the time slot and the day slot, we will be able to directly specify
these values through this clock and the calendar.

Some urban designers consider IntelligentPad to be a competent platform system for
the development of urban design systems. They want to use GIS in combination with so-
called “what-if ” queries and simulations. For example, they want to simulate how modi-
fied configurations of streets, crossings, parking lots, and/or shops may affect the flows of
pedestrians and cars. This requires the original geographical information, its modification
with respect to a new configuration of streets, crossings, parking lots, and/or shops, and a
simulation system that uses all this information. If their component objects are represent-
ed as pads, they can be overlaid to communicate with each other.

Sapporo Electronic Center, an external organization of Sapporo City Government to
promote R & D activities in Sapporo, has developed an experimental GIS system for the
urban design and administration of Sapporo City using IntelligentPad in cooperation with
three major IPC members: Fuji Xerox, Hitachi Software Engineering, and Fujitsu. This
project is planning to extend the prototype system for practical use by all the departments
and ward offices of Sapporo City Government. The interoperability and exchangeability
of pads allow these departments and offices to exchange various types of geographical in-

10.6 GEOGRAPHICAL INFORMATION DATABASES 229

direction and angle of
the sunshadow area caused by

the right lower building

Figure 10.14 A sunshine-simulation pad overlaid on a map pad accesses the same database that is
accessed by the underlying map pad and extracts information about the height of each building to
calculate shadow areas at a given time on the given day of the year.

tan-10.qxd 5/15/2003 4:41 PM Page 229

formation, to reuse them in different contexts, and to make them functionally linked with
different kinds of administrative information.

Figure 10.15 shows a display hard copy of the IntelligentPad-based GIS that has been
developed during the preliminary studies for the above-mentioned project. The map is re-
trieved from a GIS database through a proxy pad. The system uses a legacy GIS engine
for the management of GIS databases. In this example scene, the translucent square pad
over the map allows you to specify a region within a specified distance from a specified
location. This pad extracts all the buildings within the specified region as independent ob-
jects, and displays them on itself. You can move this pad to another tool, and drop its con-
tent information about the selected buildings into the tool. This GIS system provides vari-
ous types of region specification pads. Another example is a pad that extracts objects
within a specified distance from a river or a street. The system is also capable of evaluat-
ing what-if queries.

Another interesting interaction between pads in a GIS environment is the one between
a map pad and a movie pad, as shown in Figure 10.16. A movie pad has a slot whose value
is the ratio of the current frame number to the total number of its frames. This slot is
called the #frameRatio slot. If we connect a slider pad to this slot, we can forward or
rewind the movie by sliding the slider lever right and left. A TrajectoryPad is a special pad
that can only move along a specified trajectory on an arbitrary pad. It has a slot whose
value changes from 0 to 1.0 in proportion to its distance along the trajectory from the
source end to its current location. This value becomes 1.0 when the TrajectoryPad reaches

230 INTELLIGENTPAD AND DATABASES

Figure 10.15 A display hard copy of the IntelligentPad-based GIS that has been developed during
the preliminary studies for the urban-planning project.

tan-10.qxd 5/15/2003 4:41 PM Page 230

the destination end. This slot is called the #distanceRatio slot. Furthermore, if we change
this slot value, the TrajectoryPad moves to the corresponding location on the trajectory. Its
trajectory can be specified by sample locations on the trajectory. It interpolates these
points to obtain the trajectory. When we try to drag a TrajectoryPad using a mouse, it only
moves along the specified trajectory. When used on a map pad, any route between two lo-
cations on a map can be set to a TrajectoryPad as its trajectory. Suppose that we paste two
shared copies of a WiringPad, one on a TrajectoryPad with its connection to the #dis-
tanceRatio slot and the other on a movie pad with its connection to the #frameRatio slot.
Suppose also that the TrajectoryPad is a priori instructed to move along a route on a map,
and that the movie shows the change of scenery along this route. If we move the Trajecto-
ryPad on a map along the route, the movie pad shows the corresponding change of
scenery along the same route. Furthermore, if we forward or rewind the movie by means
of a slider pasted on it, the TrajectoryPad also moves forward or backward along the route
to tell us the location of the current movie scene on the map. In Figure 10.16, a Trajecto-
ryPad on a map pad is wired to a video pad.

A movie pad can get a frame number from its parent pad to show this frame. An Up-
wardRangeConverterPad has a #nominator slot, #denominator slot, #ratio slot, and a #val-
ue slot. The value of the #ratio slot is the ratio of the #nominator slot value to the #de-
nominator slot value. Each value coming from its parent pad is multiplied by its #ratio slot
value and stored in its #value slot value. Suppose that we have a movie of some route on a
map. Let the length of the movie be L frames. Suppose also that we have a TrajectoryPad
for this route on the map, and that we paste an UpwardRangeConverterPad with its #nom-
inator and #denominator slots, respectively, set to L and 1.0. Then this composite pad
moves along the route on the map and changes its slot value from 0 to L. Suppose further

10.6 GEOGRAPHICAL INFORMATION DATABASES 231

trajectory pad

movie pad linked to
the trajectory pad

Figure 10.16 A map pad with a TrajectoryPad that is wired to a video pad.

tan-10.qxd 5/15/2003 4:41 PM Page 231

that we paste the movie pad on this composite pad. Then we obtain a video inspector as a
composite pad that we can move along the route on the map to see the change of scenery.
Figure 10.17 shows such a video inspector on a map pad.

Figure 10.17 also shows a mobile building-inspector pad, which you may move around
on the map to get the name of and additional information on the underlying building. This
pad, whenever it stops, accesses the GIS database to retrieve the information about the un-
derlying building.

10.7 CONTENT-BASED SEARCH AND CONTEXT-BASED SEARCH

When we search for something, we may browse through the target area, navigate through
related things along some relationship, or ask someone to take over the search by specify-
ing what to search for. The same situation holds for objects stored in computers. There are
three ways of searching for objects: search by browsing, navigation search, and quantifi-
cation search. The browsing of a catalog to find some objects is an example of the search
by browsing. The navigation search navigates along links that are a priori spanned among
objects to associate each object with its related objects. The quantification search speci-
fies a condition that uniquely characterizes those objects we want to get. There are two
ways of characterizing objects. We may quantify either their properties or the contexts in
which they exist. A search with the former type of quantification is called a content-based
search, whereas one with the latter type is called a context-based search.

In the case of pads, their properties are their pad types, sizes, background colors, slot
name list, and slot values, where the value of a slot means the return value of a “gimme”

232 INTELLIGENTPAD AND DATABASES

a video inspector pad
on a trajectory pad

large video
viewer

mobile building
inspector

linked

information about the
pointed building

type: hotel

name: Hotel
Crest Sapporo

Figure 10.17 A video inspector moves along a route on a map to show the changes of scenery
along this route.

tan-10.qxd 5/15/2003 4:41 PM Page 232

message sent to this slot. If a slot is a data slot, its value is the one stored in the associated
register in the pad. The context of a pad is the environment in which this pad exists. This
environment includes all the pads and their connection structures under or over this pad.
The properties of such a context include all the properties of the pads under or over this
pad and the connection structures among them. Since the desktop is also considered to be
a pad that provides slots for the user ID, the current time, and the system version, these
values are also properties of the context for any pad on the desktop.

The content-based search is the ordinary quantification search we perform in database
systems. The context-based search is not widely used, and hence not yet well studied.
Only a few research groups have recognized its importance and potential, and studied it
from its application side. These research studies, however, are mainly focused on the re-
trieval of objects through the quantification of the past user operation sequences applied
to these objects. For example, Euro PARC’s Forget-me-not system [21] was developed as
a subsystem of their Ubiquitous Computing Project. The Forget-me-not system records
for each user activity all the information about when and where he or she did what opera-
tion on which object. Users are allowed to select only some of these records to archive in
the system. Later, they can retrieve these activity records by partially specifying when,
where, and who did what operation on which object. This kind of search is based on per-
sonal memory. It cannot be applied to those objects that the user has never seen. Although
the object retrieval based on user’s personal history is also an interesting research topic,
here we will consider a different type of context-based search.

In Section 10.1, we classified the management of pads into two cases: one with a rather
small number of different forms, and the other with a large number of different forms. In
the former case, pads can be stored and managed by form bases developed on top of con-
ventional database management systems, as shown in Section 10.2. In the latter case,
however, we require a new type of database management system. The former case quanti-
fies the states or the contents of the pads to be retrieved, and has no need to quantify their
forms. It performs the content-based search. The latter case, however, needs to quantify
the contents and the forms of the pads to be retrieved. The quantification of contents leads
to the content-based search, but the quantification on forms requires the context-based
search.

In the latter case, forms of pads cannot be managed separately from the states of pads
for two reasons. First, the management of a large number of different forms requires an-
other database. Second, the pad states of different forms have different record types and
require a huge number of different relations to store them. There is no advantage to the
separate management of forms and states. We need a new database to directly manage and
retrieve a large variety of composite pads.

As discussed in Section 10.1, each composite pad has no corresponding object class.
The present OODB technologies cannot be applied to the management of pads since they
assume both the existence of a class definition for each object and each class has a large
number of instances. Their efficient search processing mainly depends on the indexing of
objects, which also assumes the existence of a class definition for each object.

Therefore, the required new database for the direct management and retrieval of a large
variety of composite pads cannot be implemented based on the current OODB technolo-
gies.

Let us further consider how we can quantify composite pads we want to search for.
Suppose we want to search a database for a pad with elementary calculation functions. How
can we specify such a pad? We do not know its name or its pad type. We have no idea about

10.7 CONTENT-BASED SEARCH AND CONTEXT-BASED SEARCH 233

tan-10.qxd 5/15/2003 4:41 PM Page 233

its slot names, its size, or its color. We cannot specify any of its properties. However, it is
quite probable that such a pad may be used as a base pad of a composite pad that works as
a hand calculator. Then the next question arises. How can we specify such a hand calcula-
tor? Can we specify it by its name? That may work sometimes, but not always. Several dif-
ferent names may be used for the same object. Some objects may not have popular names.
Which of the remaining properties can we specify if its name does not work? Can we spec-
ify its function? The same functions can be specified differently. It is hard to retrieve objects
with specified functions. However, its function is partially embodied by its composition
structure. Any hand calculator has more than 10 buttons and at least one digital display. We
can use this knowledge to specify the target pad as a pad having on itself more than 10 but-
ton pads as well as at least one digital display pad. This is nothing but a partial specification
of the context in which a copy of the target pad exists. The search for a calculation pad as a
pad used by a hand calculator resolves itself into a context-based search.

Another way to specify a pad uses its user’s memory about where it was, how it was
used, and/or when it was used. Suppose that you remember that you used a hand calcula-
tor on a video editing tool with its connection to a frame number slot of a movie pad. Sup-
pose that you used this calculator to calculate the length of two concatenated movies be-
tween 17:00 and 18:00 yesterday. In this case, the calculation pad in this calculator can be
specified as a pad that was pasted on a movie pad and then peeled off between 17:00 and
18:00 yesterday. If the system keeps the event log and the snapshots of the environment,
this specification may be sufficient to retrieve the target pad from the stored snapshots.
Such retrieval is also an example of a context-based search that has already been devel-
oped in our laboratory on the Smalltalk-80 version of the IntelligentPad system [22].

10.8 MANAGEMENT AND RETRIEVAL OF PADS

When managing and retrieving pads with a large variety of forms, we cannot manage their
forms separately from their states. We should directly store, manage, and retrieve pads,
which requires pad bases, i.e., a new kind of database to manage pads. Pad bases are in-
stance bases required to perform not only content-based searches, but also context-based
searches.

The performance of the content-based search can be easily and remarkably improved
by providing an indexed file for each content property of the pads in a pad base. The rela-
tion between each object and a value of each of its properties is represented by a well-
known object-attribute–value triple (oid, a, v), where oid, a, and v are respectively an ob-
ject identifier, a property of this object, and its value of this object. The indexed file for
this property a is a list of pairs, (v1, oid1), (v2, oid2), . . . , in ascending order of the first
component values. It may use some tree-structured file organization to speed up its access
for the retrieval of the object identifiers paired with the specified values. This is a well-
known method. We will not go into further detail here.

The context-based search, however, requires new methods to improve its performance.

10.8.1 Search for Pads with Partially Specified Composition Structure

The context-based search for pads retrieves from pad bases those pads that contain a spec-
ified composition structure as a substructure of its composition. Figure 10.18 shows a
composite pad that performs such search jobs. The base pad is a DB proxy pad that com-

234 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 234

municates with a GemStone object-oriented database management system. On this base
pad, there are two big pads working as windows to contain composite pads. The smaller
one on the base pad accepts a composite pad as a query specification, and sends its com-
position structure to the DB proxy pad. This composition structure is used as a partial
specification of the composition structure of the pads to retrieve. The larger pad on the
base pad is a pad loader pad. It pops up the retrieved candidate pads on itself one by one.
You can drag each of them out of this pad to use it for your own purposes.

By the composition structure of a composite pad we mean both its view composition
structure and its slot connection structure (Figure 10.19). Its view composition structure

10.8 MANAGEMENT AND RETRIEVAL OF PADS 235

Figure 10.18 This composite pad retrieves from a pad base those pads that contain a specified
composition structure as a substructure of their composition.

Pa
Pd

Pd

Pc

Pc

view composition
structure

slot connection
structure

Pb

Pb

Pa

#s3#s2

#s4

#s1

Pe

Pe

Pa

Pd

Pc

Pb

#s3
#s2

#s3

#s1

Pe

Figure 10.19 By the composition structure of a composite pad we mean both its view-composi-
tion structure and its slot-connection structure.

tan-10.qxd 5/15/2003 4:41 PM Page 235

describes what kinds of primitive pads are used and how they are pasted together. It is rep-
resented as a tree with its node representing a pad name and its edge representing a rela-
tion between a pad and its parent pad. The slot connection structure describes what kind
of primitive pads are used and which slots are used to connect them. It is also represented
as a tree with its node representing a pad name and its edge representing a slot connection.
Each edge is labeled with the name of the slot used for this connection. A partial specifi-
cation of a composition structure means a partial specification of either or both of these
trees. It is also represented as a tree of the same kind. Here we will only consider view-
composition structures. We can, however, treat slot-connection structures in the same way.

There are two general methods for the efficient search of a large amount of objects.
One uses index files, whereas the other uses signature files. The indexing methods are ap-
plicable only to a set of objects with an a priori defined set of attributes whose values are
specified by queries. Records in the same relation in a relational database and object in-
stances of the same class in an object-oriented database both satisfy this condition. We
can use their index files with respect to some of their attributes for their efficient search.
View-composition structures, however, have no a priori defined set of attributes whose
values are specified by their partial specifications.

A signature of an object is a bit string that partially characterizes this object. It is ob-
tained by encoding the corresponding object. Each property is mapped to one or several
bit positions in such bit strings. If the object satisfies the property, all the selected bits of
its signature are set to “1.” Starting from a bit string with all of its bits reset to “0,” we set
all the selected bits for every property that is satisfied by the object to obtain the signature
bit string of this object. Different sets of properties may degenerate into the same signa-
ture. Instead of searching a set of objects, a search for an object searches all of their signa-
tures. Since the size of a signature is much smaller than its object, a search of a signature
file can be much more efficiently performed than a search of objects. A query partially
specifies the target objects by specifying some properties they satisfy. A set of these prop-
erties can also be encoded to a bit string using the same encoding function. This bit string
is called a query signature. The query processing searches the signature file for those sig-
natures that have “1” at every bit position where the query signature has “1.”

The success of the signature file search depends on the design of the encoding func-
tion. In general, there are two measures for search quality: the hit–miss ratio and the false-
drop ratio. Signature file search does not fail to find any objects satisfying the specified
query. Its hit–miss ratio is zero. Because of the degeneration of the encoding, the pads
whose signatures match the query signature may not satisfy the query. These pads are
called false drops, whereas the retrieved pads that truly satisfy the query are called true
drops. The ratio of false drops to the total of false and true drops is the false-drop ratio.
The false-drop ratio should be kept as small as possible.

When applied to the search for pads with partially specified view-composition struc-
tures, signatures of pads are defined by encoding their view-composition structures. The
database stores both composite pads and their signatures. A partial specification of view-
composition structures is given by a sample composite pad, as shown in Figure 10.20. The
signature of this sample composite pad works as the query signature. Figure 10.21 shows
the search process. The query processing searches the signature file for those signatures
that have “1” at every bit position where the query signature has “1.” The system obtains
the identifiers of pads from the matched signatures and retrieves for each of these identi-
fiers the corresponding pad to see if it satisfies the query. This examination process is
called false-drop resolution.

236 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 236

237

a sample
composite
pad

the first of the three
retrieved composite pads

Three were found.

Figure 10.20 A partial specification of view-composition structures is given by a sample compos-
ite pad.

0 1 0 1 0 0 0 0

 filtering

0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
1 0 1 0 0 1 1 0
1 1 0 1 1 0 1 0

query signaturesignature file

pad base
retrieval
condition

false drop resolution

 list of OIDs

Figure 10.21 The query processing searches the signature file for those signatures that have “1” at
every bit position where the query signature also has “1.” The system obtains the identifiers of pads
from the matched signatures, and retrieves for each of these identifiers the corresponding pad to de-
termine if it really satisfies the query.

tan-10.qxd 5/15/2003 4:41 PM Page 237

10.8.2 The Encoding of View-Composition Structures

We use the following encoding function to obtain the signature of each composite pad.
This method is based on superimposed coding [23, 24]. Let L be the fixed length of signa-
tures. Primitive pads are assumed to be ordered and identified by its index number. We de-
note by Pk the primitive pad with an index number k.

(Step 0) Reset all the bits of a new bit map S of length L.
(Step 1) For every primitive pad Pk, in the given composite pad, compute h1(k) using a

hash function h1, and set the (h1(k)+1)st bit of the signature S, where
h1(k) = ak mod L

for some constant integer a that is prime with L.
(Step 2) For every primitive pad Pi in the given composite pad and its parent primitive

pad Pj if any, compute h2(j, i) using another hash function h2, and set the (h2(j,
i)+1)st bit of the signature S, where

h2(j, i)=bj+ci mod L
for some constant integers b and c. The integers b, c and L are mutually prime.

Figure 10.22 shows two example composite pads, the bits of their signatures set by step 1
and 2, and the resultant signatures. Uppercase characters from A to P represent pads
whose oids are from 1 to 16. The length of the signature is assumed to be 16. The constant
integers a, b, and c are chosen as 1, 3, and 5, respectively. Let us consider the first com-
posite pad, P1. The base pad N sets the 14th bit, whereas its child pad G sets the 7th bit of

238 INTELLIGENTPAD AND DATABASES

0

0

0

0

0

0

the coding of P2

Step 3

Step 2

Step 1

the coding of P1

component
pad types

P1

P2

type No.

P

16

O

15

N

14

M

13

L

12

K

11

J

10

I

9

H

8

G

7

F

6

E

5

D

4

C

3

B

2

A

1

Step 3

Step 2

Step 1

0

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

1

0

0

0

1

0

1

0

1

1

1

0

1

0

1

1

N

G

O

D

BG

N

M

KP

1

0

1

the coding of P2

Step 3

Step 2

Step 1 0

0

0

0

1

1

1

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 10.22 Two example composite pads, the bits of their signatures set by step 1 and 2, and the
resultant signatures.

tan-10.qxd 5/15/2003 4:41 PM Page 238

the signature. The parent–child relation between G and N sets the 13th bit of the signature.
As a result, we obtain a signature “0000001000001100” with three set bits. Similarly, we
obtain the signature “1111011000001110” for the second composite pad P2. The view
composition structure of P1 is a substructure of that of P2. All the bits that are set in the
signature of P1 are also set in the signature of P2. This property allows us to search a sig-
nature file instead of a file of pads. Figure 10.22 also shows another pad, P3, whose signa-
ture is computed as “0000001000101101.” The signature of P3 includes all the set bits in
the signature of P1. Therefore, the search of the signature file for the signature of P1 as a
query signature retrieves not only P2, but also P3. The latter pad, P3, however, does not in-
clude P1 as its substructure. Such a pad as P3 in this case is a false drop. The removal of
false drops that are possibly included in the retrieval result requires direct comparison of
each of them with the query pad.

10.9 SUMMARY

This chapter has shown two alternative ways of storing pads. If we have to manage a large
number of pads of a few different forms, we can keep the form information outside the
databases; we only need to store the state information of pads in the databases. Such a
database is called a form base. If the state information of a record type has only atomic
and simple values for its attributes, we can use a relational database system to store these
pads. If we have to manage composite pads of a large number of different forms, we need
database facilities not only to manage the states of the pads but also to manage their dif-
ferent forms. Such a database is termed a pad base. Pad bases should be instance bases by
their nature.

A form base uses a database proxy pad as a proxy to a database management system.
This pad looks like a blank-sheet pad and provides a list of slots including #query slot,
#result slot, #currentRecord slot, #search slot, #insert slot, #delete slot, #nextCandidate
slot, and #previousCandidate slot. You may paste a RecordPad on a database proxy pad
with its connection to the #currentRecord slot. The RecordPad provides each attribute of a
retrieved record as its slot. You may connect an appropriate output pad to each slot of the
RecordPad to compose a form interface of the database. The whole set of pads available in
IntelligentPad works as a form construction kit for the visual interface of this database.

IntelligentPad allows us to treat any composite pad as a database value. Each compos-
ite pad has its exchange format representation, which is just a variable-length string. This
string can be stored in databases as an attribute value if this attribute allows a variable-
length string as its value. This means any object that can be represented as a composite
pad can be stored in relational databases. These objects include interactive multimedia ob-
jects such as images, movies and sounds, interactive charts and tables, interactive maps,
database access forms, various application tools, and compound documents embedding
any of these objects.

A pad base is a new type of OODB. We cannot always specify a pad with its name, its
pad type, its slot names, its size, or its color. However, it is quite probable that we can
specify a part of its composition structure. For example, a pad that is able to calculate ele-
mentary functions may be used by a hand calculator as its base pad. A hand calculator has
more than 10 buttons pasted on some of its component pads, and at least one digital dis-
play.

10.9 SUMMARY 239

tan-10.qxd 5/15/2003 4:41 PM Page 239

This chapter has proposed a basic algorithm for this kind of search. The algorithm ex-
ploits superimposed coding of pad structures to define signatures of pads, and search
these signatures for those matched with a query signature.

REFERENCES

1. E. F. Codd. A relational model of data for large shared data banks. CACM, 13(6): 377–387,
1970.

2. D. Maier. Why isn’t there an object-oriented data model? In Proceedings of the IFIP 11th World
Computer Conference, 1989.

3. F. Bancilhon, C. Delobel, and P. Kanellakis (eds.). Building an Object-Oriented Database Sys-
tem: The Story of O2. Morgan Kaufmann, San Francisco, CA, 1992.

4. R. G. G. Cattel. Object Data Management, Version 2. Addison-Wesley, Reading, MA, 1994.

5. A. Kemper and G. Moerkotte. Object-Oriented Database Management. Prentice-Hall, Engle-
wood Cllifs, NJ, 1994.

6. C. Delobel, C. Lecluse, and P. Richard. Databases: From Relational Systems to Object-Orient-
ed Systems. International Thompson Publishing, London, 1995.

7. R. G. G. Cattel, and D. K. Barry (eds.). The Object Database Standard: ODMG 2.0. Morgan
Kaufmann, San Francisco, 1997.

8. M. Stonebraker and L. A. Rowe. The design of postgres. In Proceedings of ACM-SIGMOD In-
ternational Conference, 1986.

9. UniSQL. Next-Generation Software Solutions, UniSQL, Austin, TX, 1992.

10. Illustra Information Technologies. Illustra Object-Relational Database Management Systems.
Illustra, Oakland, CA, 1994.

11. T. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. CACM,
34(10): 50–63, 1991.

12. P. Butterworth, A. Otis, and J. Stein. The GemStone object database management System.
CACM, 34(10), 1991.

13. W. Kim. Introduction to Object-Oriented Databases. MIT Press, Cambridge, MA, 1990.

14. M. M. Zloof. Query-by-Example: A Database Language, IBM System Journal, 16(4): 324–343,
1977.

15. Y. Tanaka. Meme Media and Databases. In Cooperative Databases and Applications. (Proceed-
ings of the International Symposium on Cooperative Database Systems for Advanced Applica-
tions, 1996). pp. 22–31, 1997.

16. C. Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic Publishers,
Boston, MA, 1996.

17. B. Thuraisingham, K. C. Nwosu, and P. B. Berra. Multimedia Database Management Systems:
Research Issues and Future Directions. Kluwer Academic Publishers, Boston, MA, 1997.

18. V. S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kaufmann, San
Francisco, CA, 1998.

19. Y. Tanaka. IntelligentPad as meme media and its application to multimedia databases. Informa-
tion and Software Technology, 38: 201–211, 1996.

20. N. Waters. POGS: Pads of geographic software. GIS World, 8(11): 82, 1995.

21. M. Lamming and M. Flynn. “Forget-me-not” intimate computing in support of human memory.
In Proceedings of FRIEND21 ‘94 International Symposium on Next Generation Human Inter-
face. 1994.

240 INTELLIGENTPAD AND DATABASES

tan-10.qxd 5/15/2003 4:41 PM Page 240

22. Tanaka, Y. A Toolkit system for the synthesis and the management of active media objects. In
Proceedings of of Deductive and Object-Oriented Databases. pp. 76–94, 1989.

23. C. Faloutsos and S. Christodoulakis. Signature files: An access method for documents and its
analytical performance evaluation. ACM Transactions on Office Information Systems, 2(4):
267–288, 1984.

24. S. Stiassny. Mathematical analysis of various superimposed coding methods. American Docu-
mentation, 6: 155–169, 1960.

REFERENCES 241

tan-10.qxd 5/15/2003 4:41 PM Page 241

CHAPTER 11

MEME POOL ARCHITECTURES

In order to make pads work as memes in a society, we need a publication repository of pads
where people can publish composite pads, download published pads into their own local en-
vironment for their own use, recombine these downloaded pads with each other or with
their own pads to compose new pads, and replicate these composed pads to publish them for
other people’s use. The more useful or more interesting pads are likely to be replicated more
frequently and distributed more widely. Here we can see all the genetic operations neces-
sary for genetic evolution, namely, replication, recombination, mutation, and natural selec-
tion. In this sense, this repository works as a meme pool of pads that work as meme media.
In this chapter, we will propose several different architectures for the publication and reuse
of pads through the Internet. These architectures provide different levels of pad publication
facilities, ranging from a pad catalog on a Web page to a marketplace of pads. The former
provides a catalog of pads in which a click of a pad picture leads to the download of the cor-
responding pad from a remote pad server. The latter provides a virtual marketplace where
people can upload and download pads to and from the corresponding server through drag-
and-drop operations. This chapter also shows how meme media technologies can be direct-
ly applied to Web content to make the Web work as a meme pool.

11.1 PAD PUBLICATION REPOSITORY AND THE WWW

The evolution rate of a meme pool depends on the frequency and the variety of memetic re-
combination, which are ruled by several factors. These factors include the number of peo-
ple accessing this pool, how easy it is for them to recombine memes, and how often they en-
counter interesting memes. There are three corresponding ways to accelerate meme pool
evolution. To increase the number of people accessing the pool, we need to establish a
worldwide repository of memes, and to make it easy to access this repository. For the ease
of meme recombination, we need to develop a user-friendly editing system for end-users to
compose, decompose, and recombine memes. Finally, to increase the chance for people to

242

tan-11.qxd 5/15/2003 4:56 PM Page 242

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

encounter interesting memes, we need to develop a good browser or a good reference ser-
vice system for people to search the repository of memes for what they are interested in.

The second requirement is fulfilled by the meme media architecture, but the first and
the third require a worldwide repository of memes, a good browser, and/or a good refer-
ence service system to access this repository. In other words, we need to organize a mar-
ketplace where people can publish their achievements as pads, browse through all the
pads published by other people, and reuse any of these pads for their own use in their own
IntelligentPad environments. Pads as meme media require another medium that works as
their marketplace.

In addition to the above-mentioned three ways of accelerating meme-pool evolution,
we should not forget the fourth way, which is based on the hypothesis of “a punctuated
equilibrium” [1] in population genetics. This was discussed in Section 2.1.2. This hypoth-
esis can be interpreted in the context of memes as follows. For the acceleration of meme-
pool evolution, it is not a good strategy to provide a single, monolithic large meme pool.
Instead, it is better to provide a meme pool that enables people to dynamically develop
smaller subpools for subcommunities, to cultivate a local culture in each of them, and to
dynamically merge some of them. The WWW fits this strategy due to its nonmonolithic
complex web structure.

To bring a punctuated equilibrium to the meme pool of pads, this marketplace needs to
have a nonmonolithic complex structure such as the Web. Our IntelligentPad project set
up the following four subgoals in 1993 to develop such marketplace systems. The first
system uses the WWW and its browsers such as Netscape Navigator or Microsoft Internet
Explorer. Although the WWW works as a worldwide pad repository, Netscape Navigator
and Internet Explorer provide a hypermedia catalog of pads to navigate this repository.
Each Web page describes various pads using texts and images. Pad names in textual de-
scriptions and display-snapshot images of pads work as special anchors. A mouse click on
one of these special anchors will pop up an IntelligentPad window with a real working
copy of the requested pad. The original of this pad may be stored anywhere in the world. It
is stored there using the exchange format representation. When the anchor is clicked, the
browser issues a file transfer request to the HTTP server at this remote site. After a while,
the local Web browser receives this file, and then invokes the IntelligentPad system to re-
construct the pad using its exchange format representation.

The second system provides a special pad called a URLAnchorPad. When mouse-
clicked, a URLAnchorPad directly issues a URL (Universal Resource Locator) to the
HTTP server to retrieve another composite pad from a remote site. A URLAnchorPad,
when pasted on another pad, works as a link anchor in a hypermedia network spanned
across the Internet.

The third system provides a new Web browser that basically works similarly to Netscape
Navigator and Internet Explorer. This browser is also a pad called a HTMLViewerPad. It al-
lows us to publish any composite pads by embedding them in arbitrary Web pages. You can
publish any documents and tools as composite pads embedded in Web pages. You may even
publish a database client tool on a Web page. Since a HTMLViewerPad is also a pad, you
may embed a Web page in another Web page. Different from Java applets [2], embedded
pads can be copied and locally reused. Different from ActiveX controls [3], embedded
pads, after dragged out into a local environment from a Web page, can be decomposed and
hence locally reused in recombination with other local pads, or even with those embedded
in other Web pages. New pads thus composed in recombination of the original with local
pads can be further redistributed through the Internet.

11.1 PAD PUBLICATION REPOSITORY AND THE WWW 243

tan-11.qxd 5/15/2003 4:56 PM Page 243

The fourth system integrates the accounting, billing, and payment mechanism with the
preceding three different pad distribution systems; this will be discussed in the next chap-
ter.

We developed all these system technologies between 1994 and 1998. In 1998, we de-
veloped another architecture for forming a marketplace, in which a large public space is
provided for people to freely open their own stores. This system allows us to define a net-
work of marketplaces where each marketplace allows us to upload and to download pads
to and from the corresponding server through drag-and-drop operations.

These systems open up a new vista to a wide range of applications. Among those appli-
cations, we are especially interested in the publication, exchange, and reuse of scientific
knowledge. Section 11.7 takes nuclear reaction physics as an example field, and shows
how our system allows researchers in this field to publish both experimental data and
analysis tools together with their related documents, to browse the resources published by
others, to exchange them, and to reuse some of them.

11.2 PAD PUBLICATION AND PAD MIGRATION

IntelligentPad aims at the provision of social infrastructure for the distribution and ex-
change of various knowledge resources. To achieve this goal, we have to provide cross-
platform reusability of pads. Pads should be transportable across different platforms and
reusable in different environments. To achieve this cross-platform reusability, we have to
solve two problems, i.e., how to migrate each pad from one IntelligentPad system to an-
other, and how to cope with different platforms.

As explained in Section 4.5, there are three levels of object migration across different
systems. The shallowest-level object migration assumes that the two systems share the
same class library. In this case, the source system cannot send the destination any object
whose class definition is not in the destination. The middle-level object migration assumes
that the two systems share only the basic common portion of the class library. It is further
assumed in this case that each object definition only inherits its property from those class-
es in the basic common class library, but not from any classes outside of the basic portion
of the class library. In this case, the source system can send any object to the destination.
The deepest-level object migration assumes no common class library. In this case, we have
to migrate not only this object but also all the classes used in the definition of this object.

The Smalltalk 80 version IntelligentPad system supports the shallowest-level pad mi-
gration. It assumes that the source and the destination systems share the same class library
of objects. Two systems may, however, have different pad libraries. To transport a pad
from one system to another, the IntelligentPad system sends only the exchange format
representation of this pad.

The four commercially available versions of IntelligentPad also support the shallowest-
level pad migration across different platforms. They assume that the source and the desti-
nation systems share the same class library of objects. Furthermore, they allow the pro-
gramming at the API (application program interface) level. The API library includes not
only the pad manipulation functions for slot accesses and geometrical management of pads,
but also the event dispatching and the display redrawing functions that are specially defined
for user interaction with pads. Therefore, the source code definition of each pad can be
transported across different systems for its reuse. We have developed two old versions
among these four in cooperation with Fujitsu and Hitachi Software Engineering for two dif-

244 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:56 PM Page 244

ferent platforms, Windows PC and Macintosh. These two old versions share the same API
library and the same basic object class library. They are mutually cross-platform compati-
ble systems. These two old versions, as well as the other two developed by Hitachi Software
Engineering and K-Plex Inc., support the middle-level pad migration across different sys-
tems by transporting pads together with the required DLL definitions for them.

11.3 WEB PAGES AS PAD CATALOGS

The existing Web browsers such as Netscape Navigator and Internet Explorer allow us to
publish multimedia documents throughout the world. They allow us to publish pad cata-
logs that show, for each pad, its features and hard copy image. The worldwide publication
repository of pads can use this catalog publication function for its users to browse through
pads published into this repository.

We assume that every site in the community of our concern installs an IntelligentPad
system with the same class library. As shown in Figure 11.1, each Web page of a pad cata-
log describes various pads using texts and images. In addition to the ordinary functions of

11.3 WEB PAGES AS PAD CATALOGS 245

Figure 11.1 A mouse click on the image of a movie thumbnail pad in this web page of a pad cata-
log has popped up a new window with its copy downloaded from a remote server. In this example,
the downloaded movie thumbnail pad has been applied to a local movie pad to show its thumbnail.

tan-11.qxd 5/15/2003 4:56 PM Page 245

Web pages, this catalog has the following extended functions. Pad names in textual de-
scriptions and visual images of pads work as special anchors. A mouse click on one of these
special anchors will pop up a new window with a copy of the requested pad. The original of
this pad is stored in the destination file specified by the URL. This file may exist anywhere
in the Internet. The pad is stored in this file using its exchange format representation. When
the anchor is clicked, the Web browser issues a request to the Web server to transfer the des-
tination file from a remote site. When the Web browser at the client site receives this file, it
invokes a special file loader in the local IntelligentPad system to reconstruct the pad using
its exchange format representation. This reconstruction does not differ from the pad recon-
struction process necessary for the loading of a pad from a local file.

Such invocation requires a special mechanism to associate different types of anchors
with different application programs (Figure 11.2). The existing Web browsers have this fa-

246 MEME POOL ARCHITECTURES

Figure 11.2 A special mechanism associates different types of anchors with different application
programs to be invoked.

tan-11.qxd 5/15/2003 4:56 PM Page 246

cility. To identify each type of anchor, they use the file name extension of the destination
file. When registered to a Web browser, a file name extension works as an anchor type
called a “mime” type. Each mime type can be associated with an application program.

Each pad catalog uses “pad” as the file name extension of pad files, and registers this
extension to its Web browsers as their mime type to associate this type with an invocation
of the special file loader in the IntelligentPad system. When invoked, this loader pops up a
new IntelligentPad window with a reconstructed copy of the requested pad [4, 5].

The current version of IntelligentPad assumes that every site shares the same class li-
brary. This assumption requires periodic updating of the class library in each site. This up-
date can be manually performed by accessing the on-line IntelligentPad system journal
that is managed at a special site called the class-library-manager site. The WWW also
simplifies this manual update procedure (Figure 11.3). You can just open the home page
of the class-library-manager site and click the version-update button on this page. This an-
chor button specifies the URL of the system-update difference file. When clicked, this an-
chor fetches this file and invokes the system-update program. This invocation uses anoth-
er file name extension “ip” as its mime type.

The WWW and its Web browsers also make it easy for end-users to publish pads into
the worldwide repository (Figure 11.4). IntelligentPad provides a special pad called a

11.3 WEB PAGES AS PAD CATALOGS 247

Figure 11.3 The WWW also simplifies the periodical manual update of the class library at each
site.

tan-11.qxd 5/15/2003 4:56 PM Page 247

PublicationPad. You can drag and drop your pad onto this pad, which then saves this pad
into a new file in the local Web server. You have to specify this file name, whereas its
extension is automatically set to “pad.” The PublicationPad then pops up a text input pad
and asks you to input a description of this pad in HTML. It then rewrites the HTML file
storing your pad catalog to add the hard copy image and the textual description of the
pad you want to publish. In addition to the anchors you specified in the description, the
hard copy of the pad also works as an anchor when this catalog is viewed through a Web
browser.

11.4 URL-ANCHOR PADS

Instead of using Web browsers, we can directly span hypermedia links among pads dis-
tributed across the Internet. As described in Section 9.3, anchors of links can be represent-

248 MEME POOL ARCHITECTURES

Figure 11.4 The WWW and its web browsers also make it easy for end-users to publish pads into
the worldwide repository. The IntelligentPad provides a special pad called a PublicationPad. You can
drag and drop your pad onto this pad, which then saves this pad into a new file in the local WWW
server.

Filecabinet

Filecabinet.PAD

tan-11.qxd 5/15/2003 4:57 PM Page 248

ed as pads. Section 9.3 assumes that nodes are all stored in local files, whereas Section
10.5 assumes some nodes are stored in a local database. Anchor pads described in Section
9.3 use file names to specify their destination pads; DB anchor pads described in Section
10.5 use pids (pad identifiers) for the destination specification. Here we consider the case
in which nodes are distributed across the Internet. Each node is stored in a file located
somewhere in the world. To specify such a file, we can use a URL. IntelligentPad provides
a new anchor pad called a URLAnchorPad that specifies its destination pad using the
URL of its file.

When mouse-clicked, a URLAnchorPad directly issues an URL to an HTTP server to
retrieve a specified composite pad from a remote site. This resizable pad, when pasted
on another pad, works as a link anchor in a hypermedia network spanned across the
Internet. It can be made transparent and can be pasted at an arbitrary location on an ar-
bitrary pad.

Figure 11.5 shows an application of a URLAnchorPad. It is a city guide of Sapporo for
tourists. It shows a bird’s-eye view movie of the city. Every sight-seeing spot appearing in
this movie is covered by a transparent URLAnchorPad, which changes its size and loca-
tion to trace this spot. This figure shows another pad showing a picture of the old prefec-

11.4 URL-ANCHOR PADS 249

Figure 11.5 A city guide of Sapporo shows a bird’s-eye view movie of the city. Every sight-seeing
spot appearing in this movie is covered by a transparent URLAnchorPad, which changes its size and
location to trace this spot.

tan-11.qxd 5/15/2003 4:57 PM Page 249

tural government house. This pad was popped up by clicking on this government house in
the movie.

Other typical applications of this pad are networked museum systems and networked
libraries. A networked museum system provides remote users with various movies show-
ing exhibition rooms and various exhibits. While you view a movie showing some exhibi-
tion room, you may click on any exhibit to retrieve its movie or its detailed description.

A networked library provides remote users with various multimedia documents. A net-
worked library may use the HTMLViewerPad to publish multimedia documents with em-
bedded URL anchors. It may use URLAnchorPads on any composite pads to retrieve
HTMLViewerPads. Or it may publish Web pages with embedded pads.

11.5 HTMLVIEWERPAD WITH EMBEDDED ARBITRARY
COMPOSITE PADS

In 1995, we developed a new Web browser as a pad. This pad is called an
HTMLViewerPad. It basically works similarly to Netscape Navigator and Internet
Explorer. It allows us to publish any composite pads by embedding them in arbitrary
Web pages [Figure 11.6(a)] [6]. Our pad distribution system uses the exchange format
representation to embed arbitrary composite pads into HTML text files. Each composite
pad to be embedded is first stored in a file at an arbitrary site in the Internet using its
exchange format representation. The file name extension of this file must be specified
as “pad.” Then a URL pointer to this file is embedded in an HTML text, and this text is
published as a Web page. Figure 11.6(b) shows the HTML text for the Web page shown
in Figure 11.6(a).

When an HTMLViewerPad accesses a Web page without any embedded pads, it works
as a conventional browser such as Netscape Navigator and Internet Explorer. When an
HTMLViewerPad accesses a Web page with some embedded pads, it treats each embed-
ded pad as follows. When it receives the save format representation file of an embedded
pad from a remote site, it first treats this pad as a blank figure of the same size. This fig-
ure makes a space of this size in the Web page. Then the HTMLViewerPad constructs the
corresponding composite pad, and puts this pad in the saved space in the Web page. Any
page scroll of this Web page also moves this pad on the HTMLViewerPad so that it always
sits exactly in the space saved for this pad.

You can publish any documents and tools as composite pads embedded in Web pages.
You may even publish HTMLViewerPads accessing different Web pages by embedding
them in another Web page. You may also publish a database client tool on a Web page.
Figure 11.6(a) shows a Web page with an embedded composite pad that works as a form
interface to a remote database server. The site of this database server may be different
from the Web page site. You can specify a query on this form interface to access this data-
base [Figure 11.7(a)]. The retrieved picture of a car in this example is not a simple image.
It is actually a composite pad whose exchange format representation is stored in the data-
base as an attribute value. This composite pad has a transparent pad to cover the wheel
cover portion of the underlying picture. This transparent pad works as a link anchor of a
hypermedia spanned across the Internet, which was detailed in the previous section. When
mouse-clicked, this pad will pop up another form interface to the same database, and al-
low you to retrieve all the choices for the wheel covers of this car [Figure 11.7(b)].

250 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:57 PM Page 250

11.5 HTMLVIEWERPAD WITH EMBEDDED ARBITRARY COMPOSITE PADS 251

Figure 11.6 An HTMLViewerPad basically works similarly to Netscape Navigator, and allows us
to publish any composite pads by embedding them in arbitrary Web pages. (a) An HTMLViewerPad
showing a Web page with two embedded composite pads. (b) The HTML text defining the Web
page shown in (a).

(a)

(b)

tan-11.qxd 5/15/2003 4:57 PM Page 251

252

Figure 11.7 An access of a database through a database access tool embedded in a Web page. (a)
A database accessed through an embedded form-interface pad. The retrieved picture of a car is actu-
ally a composite pad whose save-format representation is stored in the database as an attribute val-
ue. This composite pad has a transparent anchor pad to cover the wheel-cover portion of the under-
lying picture. (b) A mouse click on the anchor pad that covers the wheel-cover portion of the
underlying picture pops up another form interface to the same database, and allows you to retrieve
all the choices for the wheel covers of this car.

(a)

(b)

tan-11.qxd 5/15/2003 4:57 PM Page 252

11.6 NEW PUBLICATION MEDIA

The HTMLViewerPad allows us to publish and acquire any objects as composite pads to
and from Web servers. These servers form worldwide publication repositories. Objects to
publish include multimedia documents, application programs working as interactive tools,
client tools accessing remote servers, and client tools communicating with remote appli-
cation programs.

When applied to scientific publications, this new publication repository allows us to
publish scientific papers together with reusable related data, reusable related tools, and re-
motely accessible related database services by embedding all of them in the documents.

11.6.1 An Application to Scientific Publication

The Web page shown in Figure 11.8(a) was made in 1995 for Masaki Chiba, who is re-
sponsible for the charged particle nuclear reaction database in Japan. He stayed in our lab-
oratory for one year and developed several database access tools as composite pads. This
page shows a copy of his research paper reporting these tools. We have embedded his tool
pads in his documents. The tool on the right-hand side of this page is just a display-snap-
shot image of his tool pad, whereas the left-hand one is an actual tool pad that is connect-
ed to a remote database server through the Internet. Chiba and Kiyoshi Kato are working
on an extended system to introduce it to the international research society as a standard
framework for the exchange, publication, and reuse of nuclear reaction data and their
analysis tools.

The nuclear reaction database stores a collection of data sets. Each data set is defined
as a data table from a series of nuclear reaction experiments. Data sets have attributes.
Different data sets may have different sets of attributes. To store these data sets in a rela-
tional database, we have to represent each data set as a set of triples consisting of its data
set ID, one of its attributes, and its value of this attribute. This set includes all the triples
for all of its attributes. We used the UniSQL database management system [7] and defined
on it a single relation with three attributes, i.e., data set ID, attribute name, and attribute
value, to store all these triples for all the data sets.

Researchers in nuclear reaction physics use this database to pick up some set of data
sets satisfying some condition of their attributes such as the reaction type, the incident
particle, the target nucleus, etc. Then they analyze the picked-up data sets using some
tools, or compare them with others.

The composite pad in Figure 11.8(a) allows you to access the remote nuclear reaction
database through the Internet. It gives you the distribution of data sets with respect to two
arbitrarily selected attributes [Figure 11.8(b)]. In this example, the X coordinate repre-
sents a set of different incident particles and the Y coordinate represents a set of different
target nuclei. Each dot in this chart is actually a pad. We call it a data-set pad. You may
click one of these data-set pads to show its detailed information, as shown in the display-
snapshot image of this tool.

Researchers can easily select one of these data-set pads and retrieve its content from
the same database using another tool pad. The HTMLViewerPad in Figure 11.9(a) shows
another page of Ciba’s research paper that includes this tool pad. You may drag and drop
the selected data-set pad into this tool pad. This tool accesses the same remote database
and retrieves its content as a pad [Figure 11.9(b)]. You may open one more different Web
page to the right of this Web page [Figure 11.10(a)]. This new Web page shows another re-

11.6 NEW PUBLICATION MEDIA 253

tan-11.qxd 5/15/2003 4:57 PM Page 253

254 MEME POOL ARCHITECTURES

Figure 11.8 An access tool for a nuclear-reaction database is published through the Internet to-
gether with a related research paper by embedding its pad representatioin in a Web page. (a) An ac-
cess tool for a nuclear-reaction database is embedded in a research paper. (b) The database access
tool in (a) gives you the distribution of data sets with respect to two arbitrarily selected attributes.

(a)

(b)

tan-11.qxd 5/15/2003 4:57 PM Page 254

11.6 NEW PUBLICATION MEDIA 255

Figure 11.9 The data set that has been selected by the tool in Figure 11.8 can be dropped on an-
other tool embedded in a different Web page to retrieve its content from the same nuclear-reaction
database. (a) Another page of the same research paper embeds another tool to retrieve the content of
a selected data set from the same nuclear reaction database. (b) The retrieved contents of the select-
ed data set is obtained as a gray pad.

(a)

(b)

tan-11.qxd 5/15/2003 4:57 PM Page 255

256 MEME POOL ARCHITECTURES

Figure 11.10 A transfer of data as a pad across different Web pages. (a) Another Web page with an
embedded chart tool is opened. (b) A data-set content pad is dragged and dropped into the chart tool
pad to show its data’s angular distribution of the reaction cross-sections.

(a)

(b)

tan-11.qxd 5/15/2003 4:57 PM Page 256

searcher’s document that includes a chart-drawing tool pad. You may move the data-set
content pad from Chiba’s Web page to this chart tool in the different Web document to plot
its content data [Figure 11.10(b)]. This chart shows an angular distribution of reaction
cross-sections.

As shown in this example, our pad distribution architecture allows you to publish arbi-
trary composite pads as embedded components of Web pages. The HTMLViewerPad al-
lows you to browse the worldwide repository of Web pages in your IntelligentPad envi-
ronment, and to reuse any composite pads embedded in Web pages in your own
environment of pads.

You may even open two Web pages side by side. They may be, for example, two differ-
ent research papers published by different researchers in different countries. You may re-
trieve experimental data as a pad through a database client pad in one of them, and drag
and drop it on a data analysis tool pad in the other research paper, or you may get two
composite pads, one from each of the two papers, and recombine them to construct a new
tool for your own use.

Different from Java applets [8] and ActiveX controls, embedded pads can be copied
and locally reused in combination with other local pads. The recombination of media ob-
jects in the market with local pads is fundamental for them to work as meme media. Java
and ActiveX inherently lack this function.

11.6.2 Publication and Reuse of Documents, Tools, Services, and Agents

The HTMLViewerPad allows us to publish and acquire any objects as composite pads to
and from Web servers. These servers form a worldwide publication repository. Objects to
be published include multimedia documents, application programs working as interactive
tools, client tools accessing remote servers, and client tools communicating with remote
application programs. The first and the second kind of objects may require no further ex-
planation. The third kind of objects can be regarded as services. Remote servers provide
these services. Their users can access these services through their client tools published as
pads. An object of the fourth kind works as an agent. The person who published this agent
provides an application program. The published pad that works as an agent works as a
proxy of this application program. It communicates with this program through Web
servers by using CGI commands. Such an agent pad, when its page is opened, requests its
user for a reply, or for some operation on this agent pad. For example, it may ask the user
to drag out itself and to drop itself on a specified local pad to acquire local information
through this pad. The agent pad can send back this acquired information to its remote ap-
plication program. It may even be able to delete itself when its mission is completed.

Service publication can even publish computer-controlled hardware facilities. Suppose
that your institute has a fully computer-controlled material-synthesizer system with vari-
ous measurement tools to analyze synthesized materials. Its synthesis process is fully con-
trolled by a computer through a large number of parameters. Its measurement tools are
also fully controlled by the same computer through their parameters, and the measured re-
sults are monitored by the same computer. If you develop proxy pads to communicate
with the control and monitor programs of this system and its measurement tools, you can
compose console panels for these facilities as composite pads, and publish them by em-
bedding them in your Web pages. This allows people all over the world to utilize your fa-
cilities, and allows material scientists to use various public facilities distributed all over
the world one after another to conduct their research projects. A researcher in Singapore

11.6 NEW PUBLICATION MEDIA 257

tan-11.qxd 5/15/2003 4:57 PM Page 257

may synthesize a new material using a facility in the United States, measure their charac-
teristics, and then analyze the measured data on a supercomputer installed in Japan. The
measurement data are also transported as a pad from one site to another site, from one
Web page to another Web page, or to a local environment. Researchers may even pick up
some components of these published facilities, recombine them to compose new facilities
for their use, and publish these new tools for their reuse by others.

11.7 ANNOTATION ON WEB PAGES

The publication and the reuse of various knowledge resources through the WWW will
lead to the encounter of a huge number of knowledge resources everyday. We may forget
most of them. However, some of them may become significantly important for our future
activities. In our everyday book reading, we annotate some pages with comments and
marks. Some of these annotations help us to get a summary when we read the same page
again. Some others, especially marks, help us to find some information by skimming the
book. Other annotations provide references and comments for our second reading. Among
various tools for the personal management of knowledge resources, annotation tools are
no doubt among the most useful.

Some annotation tools are already proposed for electronic publishing over the Web.
ComMentor allowed readers to add and share annotations on character strings in HTML
Web pages [9, 10]. An inserted, customizable, character-sized icon acts as both an annota-
tion cue and a link to the annotation text. Annotation content can be shown either as a sep-
arate page, in which case links or further annotations can be included and activated, or in
context as a temporary pop-up window when the middle mouse button is depressed. DLS
provided open hypermedia links on HTML Web pages [11, 12]. To distinguish between
inserted and original links, DLS offered a form for the user to select how added links
should be presented in a document. The Webvise system [13] and the related Arakne Envi-
ronment [14] included the possibility for collaborative annotations on character strings as
well as new links directly in an HTML Web page. Microsoft Office Web Discussion [15]
allows readers to add shared comment to selected paragraphs chosen by the author or an
entire HTML document on the Web. Readers use a small cue icon inserted at the end of an
annotated paragraph to expand or collapse its annotations in context within the page,
pushing later paragraphs downward. Multiple annotations can be expanded at once for
comparison. Readers cannot insert links in an annotation or in the body of the document.
iMarkup is a commercial Internet Explorer plug-in that allows readers to share annota-
tions with widely varying appearances to HTML Web pages [16]. Handwritten strokes
and Post-it®-like notes of many styles can be overlaid on the page and can be shrunk to
minimize occlusion. Character strings can also be highlighted and given hidden textual
annotations to be shown later in a pop-up ToolTip window. WEBTOUR [17] allows read-
ers to create active tours through HTML Web pages that include dynamic mouse gestures,
handwriting, and synchronized audio or video playback, and link traversals among pages.
BrowseUp developed an annotation server and a new browser that allow us to select any
portion of any Web page, and to make an annotation on it in a public and/or local file.
BrowseUp allows us to use legacy document systems like Word and Excel to make local
annotation files.

Most of them, however, do not allow us to overlay annotations directly on original
pages. Digital technology potentially allows us to overlay a transparent or translucent

258 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:57 PM Page 258

sheet for annotation on the original text, which may protect both the original text and its
appearance from any damage. In the IntelligentPad system architecture, the development
of such a transparent or translucent pad for annotation is an easy task.

Figure 11.11 shows a Web annotator composed with an IEPad and a WebAnnotation-
Pad. An IEPad is a pad that is obtained by wrapping Internet Explorer with a pad wrapper.
It has a #URLaddress slot to hold the URL of the current page. A WebAnnotationPad has
a double-layered structure with its base layer and its surface layer. It has three URL slots,
#originalURLaddress slot (which works as the primary slot), #annotationURLaddress
slot, and #associationURL slot that respectively hold the original page’s URL address, the
URL of the current annotation file, and the URL address of a URL conversion service
converting each original page’s URL to the URL of the corresponding annotation file. A
WebAnnotationPad has three different operation modes: the transparent mode, the
translucent mode, and the hiding mode. The surface layer works as a transparent or
translucent film covering the base layer and its child pads, if any. In its transparent mode,
a WebAnnotationPad makes its surface layer inactive and the background of this layer
transparent only show what is drawn or pasted on this layer. Every user event, including
pad pasting events, passes through the surface layer. You may use this mode to paste an
IEPad directly on the base layer of a WebAnnotationPad with its connection to #origi-
nalURLaddress slot; this IEPad is inserted between the base layer and the surface layer. In
its translucent mode, a WebAnnotationPad makes its surface layer active, and the back-
ground of this layer translucent. Only those user events that are not processed by this lay-
er pass through the surface layer. In its hiding mode, a WebAnnotationPad makes its sur-

11.7 ANOTATION ON WEB PAGES 259

Figure 11.11 A WebAnnotatorPad with an inserted IEPad, an annotative anchor pad, and an anno-
tative drawing.

tan-11.qxd 5/15/2003 4:57 PM Page 259

face layer, together with all the child pads of this layer, inactive and invisible; every user
event passes through the surface layer.

In its translucent mode, a WebAnnotationPad allows you to paste any pad on its surface
layer. The pasted pad works as a child pad of the surface layer. Any pad pasted on a We-
bAnnotationPad in its transparent or hiding mode becomes a child of the topmost pad at
this location under the surface layer. The surface layer also works as a drawing tool. This
function allows you to draw any figures as annotations to the Web page shown by the in-
serted IEPad. When an inserted IEPad scrolls its page, the WebAnnotationPad also scrolls
its surface layer for the same distance so that every child pad and every figure on the sur-
face layer keep their original relative locations on the Web page shown by the inserted
IEPad.

Each WebAnnotationPad has its associated local or remote file specified by the URL
address stored in #annotationURLaddress slot, and allows you to save its annotation in-
formation there, including its child pads and annotation figures, together with the URL
of the Web page shown by the inserted IEPad. Each WebAnnotationPad has another slot
#register for an external event to make it save its current state to its file. When we
change the URL of the inserted IEPad, this new URL is informed by this IEPad to the
base layer of the WebAnnotationPad through #originalURLaddress. Then the
WebAnnotationPad accesses the URL conversion service specified by #associationURL
slot with the value of #originalURLaddress slot, sets the returned address, if any, in the
#annotationURLaddress slot, and accesses this address to obtain the current annotations
on this original page.

A reference to any object as an annotation may use an AnnotationURLAnchorPad with
the URL of this object. You may paste such an AnnotationURLAnchorPad at any location
on a WebAnnotationPad in its translucent mode with a connection to either #origi-
nalURLaddress slot or #associationURLaddress slot. For the selection of #origi-
nalURLaddress slot, a click of such an AnnotationURLAnchorPad sets its content URL to
#originalURLaddress slot of the WebAnnotationPad, which tells the inserted IEPad to
read the new URL. Both the inserted IEPad and the WebAnnotationPad will load the cor-
responding Web page and annotation information, respectively. If you connect an Annota-
tionURLAnchorPad to #associationURLaddress slot, then the WebAnnotationPad uses
the URL sent from the anchor pad to access a different URL conversion server for con-
verting the current original page’s URL to a corresponding annotation file’s URL. This
mechanism is used to jump to a different user’s annotation on the same original page. Fig-
ure 11.11 shows an annotative comment “Get more detail information!” with an arrow
pointing to a system name in the Web page. It also has an AnnotationURLAnchorPad with
a caption “I’ve got some. See this page,” which points to another Web page. When clicked,
it sets a new URL to the WebAnnotationPad and its inserted IEPad.

11.8 PIAZZA AS A MEME POOL

Pad publication using HTMLViewerPads require the writing of an HTML definition to
embed each composite pad in a Web page. Some authoring tool may be provided as a
composite pad for users to easily specify this definition in a WYSIWYG way. However,
such an authoring tool separates the publication of pads to the WWW from the navigation
and retrieval of pads through the WWW. Users like to use drag-and-drop operations not
only to retrieve pads from the WWW but also to publish pads to the WWW. They like to
use a modeless browser to perform both the retrieval and publication seamlessly without

260 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:57 PM Page 260

changing the system mode.
Furthermore, the HTMLViewerPad as well as other currently available Web browsers

does not allow a user to publish his or her own information in another’s Web pages, nor to
span any links from another’s Web pages to his or her own Web pages. There is no way to
do so. Each user has to ask the owner of the Web page by sending, say, an e-mail to in-
clude his or her own information there or to span a link from this page to his or her own
Web page. This relation between users who want to publish their information and the own-
ers of Web pages is similar to the relation between tenants and owners. Each tenant is re-
quired to make a contract with the owner of the building in which he or she wants to open
his or her store. Although the owner–tenant system works well by allowing owners to su-
pervise the clustering of similar information content, there is another way of forming a
marketplace, in which a large public space is provided for people to freely open their
stores. We would like to provide this kind of worldwide publishing repository of pads in
which people can freely publish their pads for others to freely reuse them.

“Piazza Web” is a world-wide web of marketplaces, or piazzas, each of which works as
such a marketplace [19]. We can browse through Piazza Web, using a PiazzaBrowserPad
as shown in Figure 11.12. Each piazza has a corresponding file that stores a set of pads to-
gether with their geometrical arrangement. Such files are stored in special remote servers
called piazza servers. Each piazza is also represented as a pad called a PiazzaPad. Pads
can be dragged and dropped to and from a PiazzaPad to upload and download pads to and
from the associated remote server file. When a PiazzaPad is opened, all the pads regis-
tered to the associated server file are immediately downloaded onto this pad, arranged in
their registered locations, and made available. A PiazzaPad has a slot to specify a piazza
server with its URL address. When given an update message, a PiazzaPad saves all the
pads on itself with their current states and current locations into the corresponding server.
When given a new URL address, a PiazzaBrowserPad either generates a new PiazzaPad

11.8 PIAZZA AS A MEME POOL 261

Figure 11.12 International distribution and reuse of nuclear reaction data and analysis tools by us-
ing a PiazzaBrowserPad at the left top corner.

tan-11.qxd 5/15/2003 4:58 PM Page 261

on itself or uses the old PiazzaPad, depending on its specified mode, and sets this URL
address to the file address slot of the PiazzaPad to download the registered pads. An en-
trance link to a piazza is represented by an AnnotationAnchorPad, and can be put on an-
other piazza to define a link, with its connection to the file address slot of the PiazzaPad.
When clicked, the AnnotationAnchorPad sends its stored URL address to the file address
slot of the underlying PiazzaBrowserPad, which then opens this piazza. A PiazzaBrowser-
Pad has a save slot, which, when accessed by a set message from, say, a buttonPad con-
nected to this slot, sends an update message to its child PiazzaPad to make it save its child
pads to the server. Users are welcome to install their piazza servers anywhere, anytime,
and to publish their client pads. A piazza enables end-users to open their own gallery of
pads on the Internet, or to exhibit their pads in some other private or public space. Such
pad galleries work as flea markets, shops, shopping centers, community message boards,
community halls, or plazas. Some piazzas may be for personal use, whereas some others
may be shared by communities. Some piazzas may be shared by more than one communi-
ty, whereas some others may be open to the public.

Transportation of pads undefined at their destination requires their cross-platform mi-
gration; their execution on the destination platform requires that all the libraries necessary
for their execution be available there in advance. These libraries include pad definition li-
braries, API libraries, and class libraries. These are defined as DLLs (dynamic link li-
braries), and dynamically called on when required. Migration of a new pad to a different
platform requires migration of all the required DLLs that the destination lacks. Pads that
someone has uploaded to a PiazzaPad can be downloaded from the same PiazzaPad and
executed if and only if the destination platform has all the required DLLs. Each PiazzaPad
allows privileged users to upload a new pad together with its required DLLs. When anoth-
er user opens this PiazzaPad, it checks to see if the destination platform has all the re-
quired DLLs. If it does, this user can drag this pad out of the PiazzaPad. If it does not, the
PiazzaPad asks the user if he or she wants to download the missing DLLs. Only after the
required downloading, he or she can drag this pad out of this PiazzaPad. The automatic
DLL migration by piazza systems simplifies the distribution of pads among users.

Kiyoshi Kato’s group at Graduate School of Physics, Hokkaido University, applied In-
telligentPad and the piazza system to the international availability, distribution, and ex-
change of nuclear reaction experimental data and their analysis tools (Figure 11.12). For
example, user A may open a piazza and drag and drop a chart showing his experimental
results. User B later accesses the same piazza to see what user A has published. He drags
this pad out into his own environment, and overlays his own experimental results on this
chart by dragging and dropping his data pad onto this chart pad. Then he may drag this
updated pad into the same piazza together with the data pad that also shows the biblio-
graphic information. He may also drop a message pad into this piazza to inform user A of
this update.

The Meme Country Project that started in late 1999 became the first large-scale field
experiment of a meme pool. This was a joint project with a private research organization,
Editorial Engineering Laboratory, directed by Seigo Matsuoka, and various content
provider companies, including SONY Music Entertainment. Hokkaido University and Hi-
tachi Software participated as technical advisor and system developer, respectively. The
Meme Country Project aimed to establish a virtual country with various social infrastruc-
tures for the publication, finding, and utilization of knowledge, talents, and people, and to
match them with other knowledge, talents, and people. The project used IntelligentPad
technologies both for the construction of its infrastructures and for the representation of

262 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:58 PM Page 262

knowledge, talents, and people in this virtual country. During this one-year experiment,
more than 1500 people accessed the system to attend courses such as rhetoric, industrial
design, comics, animation, and Japanese poetry. Participants in each course were initially
all nonprofessionals. More than a hundred of them were very active, and about 20 of them
improved themselves to the professional level. Among them, five people received job of-
fers. EEL’s report says that meme media and meme pool technologies worked more effec-
tively in finding new talent over the Internet than expected. Editorial Engineering Labora-
tory is now enhancing the functionality of this system, and will start a new business
service based on the revised Meme Country system.

In 1999, IPC (IntelligentPad Consortium) started a new project, “Hijiri,” which works
as a community education tool to encourage people not only to learn their community cul-
ture but also to add new information about their own culture. This project is supported by
the Sapporo City Government and will be initially widely used at elementary schools in
Sapporo. This system basically uses the piazza system together with the same system
framework used by “Miyako” system, which will be described in Subsection 17.5.4. All
the multimedia contents are stored and managed by relational database management sys-
tems. It provides not only the same quality of presentation as those multimedia presenta-
tions using Macromind Director, but also full interactivity so that users can navigate
through any path. The front-end interface of the system uses IntelligentPad to provide an
interactive interface to the multimedia database content. Each jump from one presentation
stage to another is specified by a query to the back end relational database. Its evaluation
retrieves all the content necessary to construct the target presentation stage, including not
only archived multimedia content, but also both functional components such as hyperlink
anchor buttons and composition structures among these components. IPC extended
Miyako’s framework to allow users to add new information to databases through drag-
and-drop operations on the front-end system. Furthermore, we put the different presenta-
tion stages of the front-end system on different piazzas to allow people to share the differ-
ent stages of the Hijiri environment over the Internet. Users at different sites can access
the whole contents of Hijiri through the Miyako-like interface, and add new content to the
system through drag-and-drop operations. IPC completed the Hijiri Project in the spring
of 2002. Sapporo City has already used prototype versions of Hijiri for social studies in
some elementary and junior high schools. Students collect multimedia information about
their community areas through interviews and legwork, make their pad representations,
and place these pads at appropriate locations on the area maps drawn over different piaz-
zas.

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME
MEDIA OBJECTS

Meme media and meme pool architectures will play important roles when they are ap-
plied to a reasonably large accumulation of intellectual resources. The current situation of
the Web satisfies this condition. This section focuses on how to convert the intellectual re-
sources on the Web to meme media objects, whereas the preceding sections in this chapter
focused on how to convert Web technologies to implement meme pools for the intellectu-
al resources represented as pads. In the latter approach, we cannot deal with legacy Web
content objects as memes, i.e., as reeditable and redistributable objects. In the former ap-
proach, on the other hand, we can extract any components of Web pages, including multi-

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 263

tan-11.qxd 5/15/2003 4:58 PM Page 263

media, application tool, and/or service components, recombine them to define a new lay-
out and a new composite function, and publish the result as a new Web page.

11.9.1 Web Content as Memes

Research topics of science and technology are becoming more diversified and segmented
into more and more categories. The number of interdisciplinary research topics has also
increased. With increasingly sophisticated research in science and technology, there is a
growing need for interdisciplinary and international availability, distribution, and ex-
change of the latest research results, in reeditable and redistributable organic forms, in-
cluding not only research papers and multimedia documents, but also various tools devel-
oped for measurement, analysis, inference, design, planning, simulation, and production.
Similar needs are also growing for the interdisciplinary and international availability, dis-
tribution, and exchange of ideas and works among artists, musicians, designers, archi-
tects, directors, and producers. This content, including multimedia documents, application
tools, and services, is being accumulated on the Web at a remarkable speed that we have
never experienced with other kinds of publishing media. Large amounts of content are
now already on the Web, waiting for their advanced reuse and reediting, including the re-
combination of their components for new layouts and new composite functions.

Current Web technologies provide a worldwide publication repository for people to
publish their multimedia documents in HTML, to navigate through those published by
other people, and to browse any of them. You may embed any tools or services in your
published HTML document. To define such services, you may set up servers such as data-
base servers, file servers, and application servers. Although the current Web technologies
have allowed us to browse the huge accumulation of intellectual resources published on
the Web, we have no good tools yet to flexibly reedit and redistribute these intellectual re-
sources for their reuse in different contexts. We need OHS (open hypertext system) tech-
nologies for the advanced reuse of Web-published intellectual resources. Meme media and
meme pool technologies will work as such OHS technologies to annotate Web-published
resources, and to reedit and redistribute some portions of their copies with embedded
tools and services, without changing their originals, for their reuse in different contexts
together with different applications.

In this section, we apply our two-dimensional meme media technologies for the reedit-
ing and redistribution of content in Web pages. This Web content includes live content ob-
jects and Web applications. A live content object denotes a content object that au-
tonomously changes its states. You may also embed an IntelligentBox environment with
composite boxes in a HTML document to publish in the Web. Such IntelligentBox envi-
ronments also become components of Web documents. Meme media technologies allow
us to reedit and to redistribute live content objects and Web applications as well as static
multimedia content objects. Users need not edit HTML definitions of Web documents.
They can easily extract any document components through drag-and-drop operations, and
paste them together on the screen to define both the layout and the functional linkages
among them. Web content extracted from Web documents will become reeditable and re-
distributable objects when wrapped with pad wrappers. You may send reedited Web con-
tent across the Internet by attaching it to an e-mail. Recipients with IntelligentPad in-
stalled in their platforms can reuse, further reedit, and redistribute this Web content. Our
framework also provides for the flattening of pads to HTML documents, which allows
you to publish reedited Web content as new Web pages.

Meme media technologies, when applied to Web content, also open new vistas in the

264 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:58 PM Page 264

circulation and reuse of scientific knowledge. In bioinformatics, for example, there are al-
ready many different kinds of database services, analysis services, and related reference
information services; most of them are available as Web applications. However, they are
serviced by independent groups and are hard to interoperate with each other. Therefore,
even gene annotations with information available from some public service requires either
manual operations or a program code to automate them. Meme media technologies enable
researchers in this field to dynamically extract and combine public services, such as ho-
mology search of gene databases and other related information services, and to make
them interoperate with each other.

11.9.2 Application of Meme Media Technologies to Web Content

Current Web technologies do not fully allow you to arbitrarily reedit and redistribute pub-
lished documents with embedded services. You may select any textual or image portion of
a Web page by mouse operation to make its copy, and paste this copy in your local docu-
ment, for example, in the MS Word format. However, you cannot extract arbitrary portions
of Web pages and combine them together to compose a new document. If a portion to be ex-
tracted from a Web page has dynamic content that may change values whenever the page is
refreshed or accessed, we would like to keep its copy alive by periodically updating its con-
tent. Such a copy is called a live copy, whereas a copy whose value is frozen at the time it is
created is called a dead copy. We call such dynamic content live content. Examples of live
content include stock prices in stock market information pages and the space-station loca-
tion information published in the International Space Station home page.

The reediting of Web content requires the following capabilities:

1. Easy extraction of an arbitrary Web-document portion together with its style

2. Keeping live content objects alive after arbitrary reediting

3. Easy reediting of Web content objects that may be extracted from different Web
pages by combining them to define both a new layout and a new functional compo-
sition.

Web content objects may include not only multimedia content, but also live content and/or
Web applications. A Web application denotes a client man–machine interface that access-
es an HTTP server from a Web page.

In addition to these, the redistribution of reedited Web documents requires

4. Easy redistribution of reedited Web content across the Internet.

The publication of reedited Web content as a new Web page further requires

5. Easy conversion of reedited Web content to HTML format

6. Easy registration of an HTML document to an HTTP server

Here, we will propose the use of meme media technologies to achieve the first four of the
above capabilities. Meme media technologies provide the following capabilities:

a. The wrapping of an arbitrary object with a standard visual wrapper to define a me-
dia object having a two-dimensional representation on a display screen. A wrapped

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 265

tan-11.qxd 5/15/2003 4:58 PM Page 265

object may be a multimedia document, an application program, or any combination
of them.

b. The reediting of meme-media objects. You can visually combine a meme-media ob-
ject with another meme media object on the display screen by mouse operations,
and define a functional linkage between them. You may take out any component
meme media object from a composite meme media object.

c. The redistribution of meme media objects. Meme media objects are persistent ob-
jects that you can send and receive for their reuse, for example, by e-mail across the
Internet.

Here we use IntelligentPad technologies to achieve the first four of the abovementioned
six capabilities. Now our goal can be paraphrased as follows:

i. How to extract any portion of a Web document and to wrap it with a pad wrapper
with some slot definitions

ii. How to incorporate periodic server-access capabilities in the wrapping of live Web
content

Once we have solved problem (i), IntelligentPad will give solutions both to the easy reedit-
ing of Web content objects together with their functional linkages, and to the easy redistri-
bution of reedited Web content objects across the Internet. The publication of reedited Web
content objects as new Web documents further requires solving the following problem:

iii. How to convert a composite pad to an HTML document and to register this to an
HTTP server

We call such a conversion a flattening operation.

11.9.3 Related Research

Some user-customizable portal sites such as MyYahoo provide another way to personalize
Web pages. If you have a priori registered your interests, the system will customize the
Web page only to show what you are interested in. Such a system allows you to customize
only limited portions of Web documents in a restricted way. Furthermore, such a service
allows you to access only those documents it manages.

HTML4.01 provides a special HTML tag <iframe>, or inline frame, that allows us to
embed an arbitrary Web document in a target Web page. However, it does not allow us to
directly specify either a Web document portion to be extracted or a location in the target
document at which to insert the extracted document. We need to edit HTML definitions.

Turquoise [20] and Internet Scrapbook [21] adopt programming-by-demonstration
technologies to support the reediting of Web documents. You may change the layout of a
Web page on the screen to define a customized one, and apply the same editing rule
whenever the Web page is accessed for refreshing. They enable us to change layouts, but
not extract any components or to functionally connect them together. Transpublishing [22]
allows us to embed Web documents in a Web page. It also offers license management and
charge accounting technologies. The embedding uses a special HTML tag to embed a
document.

266 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:58 PM Page 266

Example tools for extracting a document component from a Web document include
W4F [23], DEByE [24], and WbyE [25]. W4F provides a GUI support tool to define an
extraction. Users, however, still need to write some script programs. The system creates a
wrapper class written in Java from user’s manipulations. To use this wrapper class, users
need to write program codes. DEByE provides a more powerful GUI support tool. How-
ever, it outputs the extracted document components in XML format. Its reuse requires
some knowledge on XML. WbyE is an extention of DEByE. These systems, however, do
not provide any tools for the user to visually combine two wrapped Web application and to
compose a single tool with an integrated function. There are also several research studies
about recording and playing a macro operation on a Web browser. Such approach also re-
quires users to have expertise to customize recorded operation sequences described in
some language.

As detailed in Section 3.4, hypermedia research groups have mainly focused their ef-
forts on the linking services among intellectual resources for the navigation and inter-
operability among them. They basically assumed that hypermedia content was just
viewed without making copies, reediting, or redistributing them among people. Over the
last seven years, the Open Hypermedia Working Group (OHSWG) has been working on
a standard protocol to allow interoperability across a range of application software com-
ponents. The OHSWG approach was basically based on the separation of link services
and the standardization of a navigational and/or functional linking protocol among dif-
ferent applications and services. The standard protocol may rely on either API libraries
or an on-the-wire communication model using such a standard transport medium as a
socket.

Meme media research that has been conducted independently from the open hypertext
community has been focused on the replication, reediting, and redistribution of intellectu-
al resources. To achieve this goal, our group adopted a visual wrapper architecture. Any
component, whether it is an application or a service, small or large, is wrapped by a visual
wrapper with direct manipulability and a standard interface mechanism. Application of
meme media technologies to OHS technologies simply means that objects in the latter
framework are wrapped by meme media wrappers, which will introduce meme media fea-
tures to those objects without loosing any of their OHS features.

During the last several years, we saw significant progress in Web technologies, includ-
ing client-side scripting technologies, server-side scripting technologies, and Web service
technologies. These Web technologies are tools for Web page designers to compose a
complicated application by simply combining public Web services and making the com-
posed service available on a Web page. Web page designers have to write HTML defini-
tions accessing Web services through SOAP proxies. These tools are definitely not for
Web readers. Application of meme media technologies to Web technologies will allow
Web readers to extract any components of any Web pages, to paste these extracted pads to-
gether to combine their functions, to embed the composed pad in another Web page, and
to publish this page not only for their private use but also for others’ use.

11.9.4 XML and Pads

The conversion of Web document components to pads requires a way to represent HTML
or XHTML documents as pads. Although the HTMLviewerPad can represent any HTML
document as a pad, we still need a way to make any HTML component of such a pad work
as a slot. The value of such a slot is the value of the corresponding HTML component.

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 267

tan-11.qxd 5/15/2003 4:58 PM Page 267

The display object and the model object of a primitive pad are usually defined in C++
code, which makes it difficult for nonprogrammers to develop a new pad. Some pads have
very simple internal mechanisms that require no coding. These include multimedia docu-
ments with some parameters exported through their pad slots. For the definition of such a
document, we may use XHTML or a pairing of XML and XSL to define its content and
style, which requires no programming expertise. You may specify any of its phrases en-
closed by a begin-tag and an end-tag to work as a slot value [26]. An IEPad, a special
HTMLviewerPad, when provided with document content in XML and a style in XSL,
generates the corresponding XHTML text to view on itself. It also generates a slot for
each specified phrase in the original XML or XSL texts. For the development of an IEPad,
we wrapped Microsoft Internet Explorer with a pad wrapper and provided it with slot-de-
finition capability.

Figure 11.13 shows a parameterized XHTML that displays any text string in the speci-
fied orientation. Two parameters are parenthesized with tags to specify that they work as
slots. Figure 11.14 shows its viewing by an IEPad, which has two child pads: one used to
input a string and the other to specify the angle. In addition to these functions, an IEPad
allows us to embed any composite pad in an XHTML text using a special tag, and gener-

268 MEME POOL ARCHITECTURES

Figure 11.13 An XHTML text defining two slots and one embedded pad.

tan-11.qxd 5/15/2003 4:58 PM Page 268

ates this pad on itself when viewing this XHTML text. The XHTML text in Figure 11.13
embeds a composite pad working as an analog clock, whereas Figure 11.14 shows the
composite analog clock pad embedded in the document viewed by an IEPad.

11.9.5 Extraction of Arbitrary Web Content as Two-Dimensional
Meme Media Objects

Web documents are defined in HTML format. An HTML view denotes an arbitrary
HTML document portion represented in the HTML document format. The pad wrapper
to wrap an arbitrary portion of a Web document needs to be capable of both specifying
an arbitrary HTML view and rendering any HTML document. We call this pad wrapper
an HTMLviewPad; it is different from the HTMLviewerPad discussed in Section 11.5.
Its rendering function is implemented by wrapping a legacy Web browser such as
Netscape Navigator or Internet Explorer. In our implementation, we wrapped Internet
Explorer. The specification of an arbitrary HTML view over a given HTML document
requires the capability of editing the internal representation of HTML documents, name-
ly, DOM trees. The DOM tree representation allows you to identify any HTML-docu-
ment portion, which corresponds to a DOM tree node, with its path expression. Figure
11.15 shows an HTML document with its DOM tree representation. The highlighted
portion in the document corresponds to the highlighted node whose path expression is
/HTML[0]/BODY[0]/TABLE[0]/TR[1]/TD[1]. A path expression is a concatenation of
node identifiers along a path from the root to the specified node. Each node identifier
consists of a node name, i.e., the tag given to this node element, and the number of its
sibling nodes located to the left of this node.

Sometimes you may need to specify, among sibling nodes, a node with a specific char-
acter string as a substring of its textual content. You may specify such a node as tag-
name[MatchingPattern:index], where MatchingPattern is the specified string, and index
selects one node among those siblings satisfying the condition.

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 269

Figure 11.14 The viewing of the parameterized XHTML text in Figure 11.13.

tan-11.qxd 5/15/2003 4:58 PM Page 269

You may need to extract some character string in a text node. Its path expression lo-
cates this node, but does not locate such a substring. We will extend the path expression to
use a regular expression for locating such a substring in a text node. For the DOM tree in
Figure 11.16(a), the node /HTML[0]/BODY[0]/P/txt(.* (\d\d:\d\d).*) specifies the virtual
node shown in Figure 11.16(b).

The definition of an HTML view consists of the specification of the source document
and a sequence of view editing operations. The specification of a source document uses
its URL. Its retrieval is performed by the function “getHTML” in such a way as

doc = getHTML(“http://www.abc.com/index.html”, null)

The second parameter will be used to specify a request to the Web server at the retrieval
time. Such requests include POST and GET. The retrieved document is kept in DOM for-
mat. The editing of an HTML view is a sequence of DOM tree manipulation operations
selected from the following:

1. EXTRACT: Delete all the nodes other than the subtree with the specified node as
its root [Figure 11.17(a)].

2. REMOVE: Delete the subtree with the specified node as its root [Figure 11.17(b)].

3. INSERT: Insert a given DOM tree at the specified relative location of the specified
node [Figure 11.17(c)]. You may select the relative location out of CHILD, PAR-
ENT, BEFORE, and AFTER (Figure 11.18).

An HTML view is specified as follows:

defined-view = source-view.DOM-tree-operation(node)

where source-view may be a Web document or another HTML document, and node is
specified by its extended path expression. The following is an example view definition
with the nested use of the above syntax:

270 MEME POOL ARCHITECTURES

Figure 11.15 An HTML document with its DOM tree and a path expression.

tan-11.qxd 5/15/2003 4:58 PM Page 270

view1 = doc
.EXTRACT(“/HTML/BODY/TABLE[0]/”)
.EXTRACT(“/TABLE[0]/TR[0]/”)
.REMOVE(“/TR[0]/TD[1]/”);

You may also specify two subtrees extracted either from the same Web document or from
different Web documents, and combine them to define a view:

doc = getHTML(“http://www.abc.com/index.html”, null);
view2 = doc

.EXTRACT(“/HTML/BODY/TABLE[0]/”)

.EXTRACT(“/TABLE[0]/TR[0]/”);

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 271

Figure 11.16 A DOM tree and the path expression of a virtual node.

Figure 11.17 REMOVE, EXTRACT, and INSERT operations on DOM trees.

tan-11.qxd 5/15/2003 4:58 PM Page 271

view1 = doc
.EXTRACT(“/HTML/BODY/TABLE[0]/”)
.INSERT(“/TABLE[0]/TR[0]/”, view2, BEFORE);

You may create a new HTML document and insert it into an HTML document:

doc1 = getHTML(“http://www.abc.com/index.html”, null);
doc2 = createHTML(“<TR>Hello World</TR>”);
view1 = doc1

.EXTRACT(“/HTML/BODY/TABLE[0]/”)

.INSERT(“/TABLE[0]/TR[0]/”, doc2, BEFORE);

11.9.6 Direct Editing of HTML Views

Instead of specifying a path expression to identify a DOM tree node, we will make the
HTMLviewPad dynamically frame different extractable document portions for different
mouse locations so that its user may move the mouse cursor around to see every ex-
tractable document portion (Figure 11.19). This method, however, cannot distinguish dif-
ferent HTML objects with the same display area. To identify such objects, we use an addi-
tional console panel with two buttons and a node specification box. The node
specification box changes its value while you move the mouse to select different docu-
ment portions. The first button is used to move to the parent node in the corresponding
DOM tree, whereas the second is used to move to the first child node.

When the HTMLviewPad frames what you want to extract, you can drag the mouse to
create another HTMLviewPad with this extracted document portion. The new HTML-
viewPad renders the extracted DOM tree on itself. Figure 11.20 shows an example extrac-
tion using such a mouse-drag operation, which internally generates the following edit
code:

doc = getHTML(“http://www.abc.com/index.html”, null);
view = doc

.EXTRACT(“/HTML/BODY/TABLE[0]/”);

The HTMLviewPad provides a pop-up menu of view–edit operations, including EX-
TRACT, REMOVE, and INSERT. After you select an arbitrary portion, you may select ei-

272 MEME POOL ARCHITECTURES

Figure 11.18 Different insertion locations.

tan-11.qxd 5/15/2003 4:58 PM Page 272

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 273

Figure 11.20 Live extraction of an element using a mouse-drag operation.

Figure 11.19 The mouse movement changes the extractable element marked with a frame.

tan-11.qxd 5/15/2003 4:58 PM Page 273

ther EXTRACT or REMOVE. Figure 11.21 shows an example remove operation, which
generates the following code:

doc = getHTML(“http://www.abc.com/index.html”, null);
view = doc

.EXTRACT((“/HTML/BODY/TABLE[0]/”)

.REMOVE(“/TABLE[0]/TR[1]/”);

The INSERT operation uses two HTMLviewPads showing a source HTML document and
a target one. You may first specify the INSERT operation from the menu, and specify the
insertion location on the target document by directly specifying a document portion and
then specifying a relative location from the menu including CHILD, PARENT, BEFORE,
and AFTER. Then, you may directly select a document portion on the source document,
and drag and drop this portion on the target document. Figure 11.22 shows an example in-
sert operation, which generates the following code, in which the target HTMLviewPad
uses a different name space to merge the edit code of the dragged-out HTMLviewPad to
its own edit code:

A::view =A::doc
.EXTRACT(“/HTML/BODY/. . ./TD[1]/. . ./TABLE[0]”)
.REMOVE(“/TABLE[0]/TR[1]/”);

view = doc
.EXTRACT(“/HTML/BODY/. . ./TD[0]/. . ./TABLE[0]/”)
.REMOVE(“/TABLE[0]/TR[1]/”)
.INSERT(“/TABLE[0]”, A::view, AFTER);

The dropped HTMLviewPad is deleted after the insertion.

274 MEME POOL ARCHITECTURES

Figure 11.21 Direct manipulation for removing an element from a view.

tan-11.qxd 5/15/2003 4:58 PM Page 274

11.9.7 Automatic Generation of Default Slots

The HTMLviewPad allows you to map any node values of its view and any events on its
view to its newly defined slots. The definition of such a node-slot mapping takes the fol-
lowing form:

MAP(<node>, NameSpace)

where <node> is specified by its path expression and NameSpace defines a slot name. An
example of such a mapping is as follows:

MAP(“/HTML/BODY/P/txt()”, “#value”)

Depending on the node type, the HTMLviewPad changes the node value evaluation to
map the most appropriate value of a selected node to a newly defined slot. We call these
evaluation rules node-mapping rules. Each node-mapping rule has the following syntax:

target-object => naming-rule(data-type)<MappingType>
naming-rule : naming rule for the new slot
data-type : data type of the slot
MappingType : <IN|OUT|EventListener|EventFire>

Slots defined with the OUT type are read-only ones. The IN-type mapping defines a
rewritable slot. The rewriting of such a slot may change the display of the HTML view
document. The EventListener-type mapping defines a slot that changes its value whenev-
er an event occurs in the node selected on the screen. The EventFire-type mapping, on the
other hand, defines a slot whose update triggers a specified event in the node selected on
the screen.

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 275

Figure 11.22 Direct manipulation for inserting a view in another view.

tan-11.qxd 5/15/2003 4:58 PM Page 275

For a general node such as </HTML/. . ./txt()>, </HTML/. . ./attr()>, or </HTML/. . .
/P/>, the HTMLviewPad automatically defines a default slot, and sets the text in the se-
lected node to this slot. If the text is a numerical string, it converts this string to a numeri-
cal value, and sets this value to the slot (Figure 11.23):

a text in the selected node (character string)
=> NameSpace::#Text(string)<OUT>

a text in the selected node (numerical string)
=> NameSpace::#Text(number)<OUT>

For a table node such as </HTML/. . ./TABLE/>, the HTMLviewPad converts the table
value to its CSV (comma-separated value) representation, and automatically maps it to a
newly defined default slot of text type (Figure 11.24).

For an anchor node such as </HTML/. . ./A/>, the HTMLviewPad automatically per-
forms the following three mappings to define three default slots (Figure 11.25):

a text in the selected node
=> NameSpace::#Text(string, number)<OUT>

href attribute of the selected node
=> NameSpace::#refURL(string)<OUT>

URL of the target object
=> NameSpace::#jumpURL(string)<EventListener>

276 MEME POOL ARCHITECTURES

Figure 11.23 The mapping of a text-string node to define a slot.

Figure 11.24 The mapping of a table node to define a slot.

tan-11.qxd 5/15/2003 4:58 PM Page 276

For example, let us consider a case in which we extract an anchor defined as follows:

Next Page

The first mapping sets the text “Next Page” to a string- (or number-) type default slot,
NameSpace::#Text. The second mapping sets the href “./next.html” to a string-type de-
fault slot, NameSpace::#refURL. The third mapping is of the EventListener type. When-
ever the anchor is clicked, the target URL is set to a string-type default slot, Name-
Space::#jumpURL.

For a form node such as </HTML/. . ./FORM/>, the HTMLviewPad automatically per-
forms the following three mappings to define three default slots (Figure 11.26):

the value attribute of the INPUT node with the name attribute in the selected node
=> NameSpace::#Input_type_name(string, number)<IN, OUT>

Submit action
=> NameSpace::#FORM_Submit(boolean)<EventFire>

the value obtained from the server
=> NameSpace::#FORM_Request(string)<EventListener>

type = <text|pasword|file|checkbox|radio|hidden|submit|reset|button|image>
name = <name> attribute in the INPUT node

For example, let us consider a case in which we extract a form defined as follows:

<FORM action=”./search”>
<INPUT Type=txt name=keyword>

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 277

Figure 11.25 The mapping of an anchor element to define three slots.

tan-11.qxd 5/15/2003 4:58 PM Page 277

<INPUT Type=submit value=”search”>
</FORM>

The first mapping rule for a form sets the input keyword to a string- (or number-) type de-
fault slot, NameSpace::#Input_text_keyword. The second mapping rule is an EventFire-
type mapping. Whenever a TRUE is set to a Boolean type default slot, #FORM_Submit,
the HTMLviewPad triggers a form-request event. The third mapping is of the EventLis-
tener type. Whenever an event sending a form request occurs, the HTMLviewPad sets the
corresponding query to a string-type default slot, NameSpace::#FORM_Request.

Each HTMLviewPad has the additional following four default slots. The #UpdateInter-
val slot specifies the time interval for the periodical polling of referenced HTTP servers.
A view defined over a Web document refreshes its content by periodically retrieving this
Web document in an HTTP server. The #RetrievalCode slot stores the code to retrieve the
source document. The #ViewEditingCode slot stores the view definition code. The #Map-
pingCode slot stores the mapping definition code. The HTMLviewPad updates itself by
accessing the source document. Whenever either the #RetrievalCode slot or the
#ViewEditingCod slot is accessed with a set message, the interval timer invokes the
polling, a user specifies its update, or it becomes active after its loading from a file. In ad-
dition to these four slots, the HTMLviewPad automatically creates slots defined by the
mapping code that is set to the #MappingCode slot.

278 MEME POOL ARCHITECTURES

Figure 11.26 The mapping of a form element to define three slots.

tan-11.qxd 5/15/2003 4:58 PM Page 278

11.9.8 Visual Definition of Slots for Extracted Web Content

Our HTMLviewPad also allows users to visually specify any HTML node to work as a
slot. In its node-specification mode, an HTMLviewPad frames different extractable doc-
ument portions of its content document for different mouse locations so that its user may
change the mouse location to see every selectable document portion. This method, how-
ever, cannot distinguish different HTML objects with the same display area. To identify
one out of different HTML objects with the same display area, we use the same console
panel used to extract Web content. When the HTMLviewPad frames what you want
to work as a slot, you can click the mouse to pop up a dialog box to name this slot.
Since each extracted Web component uses an HTMLviewPad to render its content,
it also allows users to specify any of its portions to work as its slot. We call such a
slot thus defined an HTML-node slot. The value of an HTML-node slot is the HTML
view of the selected portion. The HTMLviewPad converts ill-formed HTML into well-
formed HTML to construct its DOM tree. Therefore, you may connect an HTML-
viewPad to an HTML-node slot to view the corresponding HTML view. If the HTML-
node slot holds an anchor node, the HTMLviewPad connected to this slot shows the
target Web page.

Figure 11.27 shows an HTMLviewPad showing a Yahoo Japan’s Web page with an em-
beded Web application to convert U.S. dollars to Japanese yen based on the current ex-
change rate. On this pad, you can visually specify the input form for inputting the dollar
amount and the output text portion showing the equivalent yen amount to work as slots.
The HTML path of the input form is represented as

HTML[0]/BODY[0]/DIV[0]/FORM[0]/INPUT[0]/text[(.*)]
whereas the HTML path of the selected output text portion is represented as

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 279

Figure 11.27 A Web application to convert U.S. dollars to Japanese yen and its wrapping with two
slot definitions.

Japanese yen

U.S. dollar

tan-11.qxd 5/15/2003 4:58 PM Page 279

HTML[0]/BODY[0]/TABLE[0]/TR[0]/TD[1]/A[0]/attr[href]

You may name the corresponding HTML-node slots as #dollarAmount, and #yenAmount
respectively. The HTMLviewPad allows you to suspend the rendering of its content. In
this mode, you may use an HTMLviewPad with an HTML view as a blank pad with an ar-
bitrary size. Figure 11.27 shows, on its right hand side, a currency rate converter pad. We
have defined this pad from the above-mentioned Web page just by defining two slots, re-
sizing the HTMLviewPad, and pasting two text IO pads with their connections to the
#dollarAmount and #yenAmount slots.

Such a pad wraps a Web application, providing slots for the original’s input forms and
output text strings. We call such a pad a wrapped Web application. Since a wrapped Web
application is a pad that allows you to change its primary slot assignment, you may speci-
fy any one of its slots to work as a primary slot.

Figure 11.28 shows an HTMLviewPad with a Lycos Web page for a real-time stock-
price browsing service. We have wrapped this page defining a slot for the current stock
price. Then we pasted the wrapped currency conversion Web application with its #dol-
larAmount specified as its primary slot on this wrapped Lycos stock-price page. We con-
nected the conversion pad to the newly defined current stock-price slot. The right-hand
side of this figure shows a composite pad combining these two wrapped Web applications.
For the input of different company names, we used the input form of the original Web
page. Since this Web application uses the same page layout for different companies, the
same path expression correctly identifies the current stock-price information part for
every different company.

11.9.9 Example Applications

The HTMLviewPad allows us to extract an arbitrary HTML element from the Web docu-
ment it displays. The direct dragging out of this portion creates another HTMLviewPad

280 MEME POOL ARCHITECTURES

Figure 11.28 The wrapping of a stock-price information service and the pasting of the wrapped
currency conversion service in Figure 11.27 on this wrapped service.

tan-11.qxd 5/15/2003 4:58 PM Page 280

showing the extracted portion. The periodic polling capability of the latter HTMLviewPad
keeps the extracted document portion alive. You may paste such a live copy in pad form on
another pad with a slot connection for functional composition. You may also paste a pad
on such a live copy in pad form and connect the former pad to one of the slots of the latter.
Using such operations, you may compose an application pad integrated with live copies of
document portions extracted from different Web pages.

Figure 11.29 shows the plotting of the NASA Space Station’s orbit and Yohkoh Satel-
lite’s orbit. We used a world map with a plotting function. This map has a pairing of a
#longitude[1] slot and a #latitude[1] slot, and creates, on user’s demand, more pairs of the
same type slots with different indices. First, you need to access the home pages of the
space station and the satellite. These pages show the longitude and the latitude of the cur-
rent locations of these space vehicles. Then, you may make live copies of the longitude
the latitude in each Web page, and paste them on the world map with their connection to
the #longitude[i] and #latitude[i] slots, respectively. The live copies from the space station
Web page use the first slot pair, whereas those from the satellite Web page use the second
slot pair. These live copies update their values every 10 seconds by polling the source Web
pages. The independent two sequences of plotted locations show the orbits of the two
space vehicles.

Figure 11.30 shows an application to the real-time visualization of stock-prices
changes. First, you need to access the Yahoo Finance Web page showing the current
Nikkei average stock price in real time. Then, you may make a live copy of the Nikkei av-
erage index and paste it onto a DataBufferPad with its connection to #input slot. A Data-
BufferPad associates each #input slot input with its input time, and outputs this pair in
CSV format. We pasted this composite pad on a TablePad with its connection to the #data
slot. A TablePad adds every #data slot input at the end of the list stored in CSV format.
You need to change the primary slot of the TablePad to the #data slot to paste this pad on a
GraphPad with its connection to the #input slot. A GraphPad adds a new vertical bar pro-
portional to the input value whenever it receives a new #input slot value.

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 281

Figure 11.29 The plotting of the NASA Space Station’s orbit and Yohkoh Satellite’s orbit.

tan-11.qxd 5/15/2003 4:58 PM Page 281

Figure 11.31 shows another page of the Yahoo Finance service. This page shows, for a
specified company, the time series of its stock prices over a specified period. You may
make a live copy of this table and paste it on a TablePad with its connection to the #input
slot. The contents of the extracted table are sent to the TablePad in CSV format. You may
paste the same live copy on a GraphPad with its connection to the #list slot, which pro-
duces the chart shown in this figure.

Figure 11.32 shows a Yahoo Maps Web page. You can obtain a map for a location you
specify. You may make live copies of its map display portion, its zooming control panel,
and its shift control panel, and paste the two control panels on the map display with their
connections to the #RetrievalCode slot of the map display. Whenever you click some but-
ton on either of these control panels, the control panel sets the URL of the requested page
and sends this URL to the #RetrievalCode slot of the map display. Such a URL may in-
clude a query to the specified server. The map display then accesses the requested page
with a new map and extracts the map portion to display.

11.9.10 Composition With More than One Wrapped Web Application

When applied to over-the-counter services in e-banking, our framework enables financial
planners to dynamically collect appropriate live information and Web applications from
the Web as well as local Web pages that access internal databases, to dynamically com-
bine them together for composing customized portfolios of live stock-market information,

282 MEME POOL ARCHITECTURES

Figure 11.30 The real-time drawing of a stock-price chart using a live copy.

tan-11.qxd 5/15/2003 4:58 PM Page 282

11.9 REEDITING AND REDISTRIBUTING WEB CONTENT AS MEME MEDIA OBJECTS 283

Figure 11.31 The real-time drawing of a stock-price chart using a live copy of a table element.

Figure 11.32 Composition of a map tool using a map service and its control panels.

tan-11.qxd 5/15/2003 4:58 PM Page 283

and to send them to their clients by e-mail. Financial planners can reedit the live portfolios
according to their clients’ demands. Clients can also reedit the proposed live portfolios to
define summaries or focused information. They can also combine more than one live
portfolio obtained from different financial planners to define a cross-comparison view.

Our framework also opens a new vista in the circulation and reuse of scientific knowl-
edge. In bioinformatics, for example, there are already many different kinds of database
services, analysis services, and related reference information services. Most of them are
available as Web applications. However, they are hard to interoperate with each other, for
two reasons. First, different Web applications use different data formats. Second, there is
no way on the client side to connect the output of one Web application to the input form of
another Web application other than by making a copy of the appropriate output text por-
tion on the source page and pasting it in the input form of the target page. SOAP allows
you to write a program to functionally integrate more than one Web services, but it is a
server-side programming tool and hard to use for nonprogrammers. Our framework to ex-
tract and wrap Web applications uses the HTML format for the data exchange. It allows us
to visually specify what to extract and wrap, and which portions to export as slots. It al-
lows us to use paste-and-peel pad operations to combine extracted Web contents together
with other pads for the composition of a new functionally integrated tool.

Figure 11.33 shows a composite tool that integrates DDBJ’s Blast homology search ser-
vice, GenBank Report service, and PubMed’s paper reference service. Blast service allows
us to input a sample DNA sequence, and outputs genes with similar DNA sequences. We
have specified the input form and the accession number of the first candidate gene to work
as slots. The accession number works as an anchor linking to a GenBank Report Web page

284 MEME POOL ARCHITECTURES

Accession number

Paper Abstract

DNA sequence

Homology Search

Paper Search

Entry Search

Paper title

Paper title

A new integrated tool

Accession number

Figure 11.33 Visual composition of a new tool that integrates DDBJ’s Blast homology search ser-
vice, GenBank Report service, and PubMed’s paper reference service.

tan-11.qxd 5/15/2003 4:58 PM Page 284

containing the detailed information about this gene. Its corresponding slot contains the
URL to the target GenBank Report page. We have pasted an HTMLviewPad with its con-
nection to this second slot. As a result, this child HTMLviewPad shows the corresponding
GenBank Report page. This page contains bibliographic information about the related re-
search papers. We have visually specified the title portion of the first research paper to work
as a slot of this pad. We have also wrapped the PubMed service with its input form to work
as a slot. PubMed service returns a list of full documents that contain given keywords. We
have made this slot work as the primary slot. By pasting this wrapped PubMed service on
the HTMLviewPad showing a GenBank Report page with its connection to the title slot,
you will obtain a composite tool that functionally integrates these three services.

11.10 REDISTRIBUTION AND PUBLICATION OF MEME MEDIA OBJECTS
AS WEB CONTENT

Whenever you save a wrapped Web-document portion extracted from a Web page, the sys-
tem saves only the pad type, namely “HTMLviewPad,” the values of the two slots, #Re-
trievalCode slot and #ViewEditingCode slot, and the path expression and name of each
user-defined slot. Copies of such a live copy share only such meta-information with the
original. They access the source Web page whenever they need to update themselves. This
is an important feature from a copyright point of view, since every update of such a copy
requires a server access. The redistribution of a live copy across the Internet requires only
the sending of its save-format representation. When a live copy is activated on the destina-
tion platform, it invokes the retrieval code stored in the #RetrievalCode slot, executes the
view editing code in the #ViewEditingCode slot to display only the defined portion of the
retrieved Web document, and defines every user-defined slot. You can further extract any
of its portions as a live copy.

For the reediting of extracted Web contents, our framework provides two methods. One
of them allows you to insert an HTML view into another HTML view without any func-
tional linkage. The other allows you to paste an HTML view as a pad on another HTML
view as a pad with a slot connection between them. The former composition results in a
new HTML view, whereas the latter composition is no longer an HTML view. In order to
publish composed documents and/or tools as HTML documents in the Web, we need to
convert non-HTML view compositions to HTML views. We call such a conversion a flat-
tening operation. There may be several different methods to flatten composite pads but we
chose the simplest one—to use Active X representation of composite pads. As shown in
Figures 11.13 and 11.14, composite pads can be embedded in an HTML view. Using the
same visual operation to insert an HTML view in another HTML view, you can visually
insert a composite pad as a new HTML element in an arbitrary HTML view. Our system
also provides a tool to lay out more than one composite pad in a single page, and to con-
vert this page to an HTML view. Figure 11.34 shows the flattening of a special pad pasted
with more than one composite pad. Our system also provides a tool to easily register an
arbitrary HTML view to a specified HTTP server for its publication in the Web.

Although the use of ActiveX controls to embed composed pads in a Web page enables
Internet Explorer users to browse this page without losing any functionality of the embedded
composed pad except its decomposability, Netscape Navigator users cannot browse this page
to use this pad. Here, we propose another way of flattening non-HTML view composition of
more than one HTML view. Non-HTML view composition treats HTML views as pads, and

11.10 REDISTRIBUTION AND PUBLICATION OF MEME MEDIA OBJECTS AS WEB CONTENT 285

tan-11.qxd 5/15/2003 4:58 PM Page 285

combines them through slot connections. Our basic idea is the use of script programs to de-
fine both slots of each HTML view and the slot connection between two HTML views.

For the HTML representation of an HTML view working as a pad, we use script vari-
ables to represent its slots, its primary slot, its parent pad, the parent’s slot it is connected
to, and the list of child pads. As shown in Figure 11.35, we use JavaScript to define the
SetValue function to set a new value to a sepcified slot, the GimmeValue function to read
out the value of a specified slot, and the UpdateValue function to update the primary slot
value and to invoke every child pad’s UpdateValue function. To update the primary slot
value, we define a script program to invoke the parent’s GimmeValue function with the
connection slot as its parameter, and to set the return value to its own primary slot. Figure
11.35 shows an HTML view defined with two slots—#increment and #number—and the
three standard functions. This HTML view works as a counter with a number display and
a button to increment the number. The HTML view defines these components in HTML.

Figure 11.36 shows an HTML view composition with three HTML views; two work as

286 MEME POOL ARCHITECTURES

Figure 11.34 The flattening of a spatial arrangement of composite pads with extracted Web con-
tent, and the viewing of the result with Internet Explorer.

tan-11.qxd 5/15/2003 4:58 PM Page 286

11.10 REDISTRIBUTION AND PUBLICATION OF MEME MEDIA OBJECTS AS WEB CONTENT 287

Figure 11.35 A JavaScript program to define slots in an HTML view.

Figure 11.36 Use of a JavaScript program for an HTML-view composition with three HTML
views.

tan-11.qxd 5/15/2003 4:58 PM Page 287

child pads of the other. The parent HTML view is the counter with two slots, #increment
and #number. One child HTML view works as a button with its primary slot, #click,
whereas the other child HTML view works as a number display with its primary slot,
#value. The composition rewrites the HTML definition of the base pad to embed the
HTML definitions of the other two using <IFRAME> tags, and adds a script code using
<SCRIPT> tags to define slot connection linkages among them. The composed HTML
view works exactly the same as a composite pad combining the pad representations of
these three HTML views. Users may use a legacy Web browser to show this composite
view and to play with it.

We may use this mechanism to flatten a composite pad that uses only those pads ex-
tracted from some Web pages.

11.11 SUMMARY

In order to accelerate the evolution of memes in a meme pool, we need a worldwide
repository of memes and a good browser and/or a good reference service system to access
this repository. In other words, we have to organize a marketplace where people can pub-
lish their achievements as pads, browse through all the pads published by other people,
and reuse any of them for their own use in a local IntelligentPad environment.

Since 1993, our IntelligentPad project has developed four different types of market-
place systems. The first system uses the the WWW and its existing browsers such as
Netscape Navigator and Internet Explorer. Whereas WWW works as a worldwide pad
repository, Netscape Navigator or Internet Explorer provide a hypermedia catalog of pads
to navigate this repository. A mouse click on a pad name or a pad image in such a catalog
will pop up an IntelligentPad window with a real working copy of the requested pad.

The second system provides a special pad called a URLAnchorPad. When mouse-
clicked, a URLAnchorPad directly issues a URL (universal resource locator) to the HTTP
server to retrieve another composite pad from a remote site. A URLAnchorPad, when
pasted on another pad, works as a link anchor in a hypermedia network spanned across the
Internet.

The third system provides a new Web browser as a pad that basically works similarly to
Netscape Navigator and Internet Explorer. This browser allows us to publish any compos-
ite pads by embedding them in arbitrary Web pages. You can publish any documents and
tools as composite pads embedded in Web pages. The third system requires the writing of
an HTML definition to publish a composite pad by embedding it in a Web page. Users
like to use drag-and-drop operations not only to retrieve pads from the Web but also to
publish pads to the Web. Furthermore, the third system does not allow any user to publish
his or her own information in another’s Web pages, or to span any links from another’s
Web pages to his or her own Web pages. This relation is similar to the relation between
tenants and owners. Each tenant is required to make a contract with the owner of the
building in which he or she wants to open his or her store.

Although the owner–tenant system works well to supervise the clustering of similar in-
formation contents, there is another way of forming a marketplace—a large public space
is provided for people to freely open their stores. The fourth system allows us to define a
network of piazzas in which each piazza allows us to upload and to download pads to and
from the corresponding server through drag-and-drop operations.

Meme media and meme pool architectures will play important roles when they are ap-

288 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:58 PM Page 288

plied to a reasonably large accumulation of intellectual resources. The current situation of
the Web satisfies this condition. Although current Web technologies have already allowed
us to access a huge accumulation of intellectual resources, we have no good tools yet to
flexibly reedit and redistribute these intellectual resources for their reuse in different con-
texts. The latter half of this chapter proposed a wrapped-Web-content framework for reed-
iting and redistributing content in Web pages. This content includes live content objects
and Web applications. Our framework allows us to reedit and to redistribute live content
objects and Web applications as well as static multimedia content objects. They need not
edit HTML definitions of Web documents. They can easily extract any document compo-
nents as pads through drag-and-drop operations, and paste them together to define both
the layout and the functional linkages among them.

You may send reedited Web content across the Internet by attaching it to an e-mail. Re-
cipients with IntelligentPad installed in their platforms can reuse, further reedit, and redis-
tribute these live documents. Our framework also provides for the flattening of pads to
HTML documents, which allows you to publish reedited Web content as new Web pages.

Our wrapped-Web-content framework makes the Web work as a meme pool, in which
people can publish their intellectual resources, retrieve some of them, extract some of
their portions as pads, combine these pads together with other pads to compose new intel-
lectual resources, and publish these resources again as Web pages. Our framework will
open a new vista in the circulation and reuse of knowledge represented as multimedia
documents and/or application programs, especially in the fields of science and engineer-
ing.

REFERENCES

1. N. Eldredge and S. J. Gould. Punctuated equilibrium: An alternative to phyletic gradualism. In
Models in Paleobiology (J. M. Schopf, ed.), pp. 82–115. Freeman Cooper, San Francisco, 1972.

2. D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Sebastopol, CA, 1996.

3. A. Denning. ActiveX Controls Inside Out. Microsoft Press, Redmond, WA, 1997.

4. Y. Tanaka. From augmentation media to meme media: IntelligentPad and the world-wide repos-
itory of pads. In Information Modelling and Knowledge Bases, VI (H. Kangassalo et al., eds.),
pp. 91–107. IOS Press, Amsterdam, 1995.

5. Y. Tanaka. A meme media architecture for fine-grain component software. In Object Technolo-
gies for Advanced Software, (K. Fuiatsugi and S. Matsuoka, eds.), pp. 190–214. Springer-
Verlag, New York, 1996.

6. Y. Tanaka. Meme media and a world-wide meme pool. In Proceedings of ACM Multimedia 96,
pp. 175–186, 1996.

7. UniSQL. Next-Generation Software Solutions, UniSQL, Austin, TX, 1992.

8. D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Sebastopol, CA, 1996.

9. M. Roscheisen, C. Mogensen, and T. Winograd. Interaction design for shared World-Wide Web
annotations. In CHI’95 Conference Companion, pp. 328–329, 1995.

10. M. Roscheisen, C. Mogensen, and T. Winograd. Beyond browsing: Shared comments, SOAPs,
trails, and on-line communities. In Proceedings of the 3rd World Wide Web Conference, 1995.

11. L. A. Carr, D. DeRoure, W. Hall, and G. Hill. The distributed link service: A tool for publishers,
authors and readers. In Proceedings of the 4th International World Wide Web Conference, 1995.

12. W. Hall, H.C. Davis, and G. Huutchings. Rethinking Hypermedia: The MicroCosm Approach,
Kluwer Academic, Norwell, MA, 1996.

REFERENCES 289

tan-11.qxd 5/15/2003 4:58 PM Page 289

13. K. Grønbæk, L. Sloth, and P. Ørbæk. Webvise: Browser and proxy support for open hypermedia
structuring mechanisms of the World Wide Web. In Proceedings of the 8thWorld Wide Web Con-
ference, pp. 253–267, 1999.

14. N. O. Bouvin. Unifying strategies for Web augmentation. In Proceedings of ACM Hypertext
1999, pp. 91–100, 1999.

15. J. J. Cadiz, A. Gupta, and J. Grudin. Using Web annotations for asynchronous collaboration
around documents. In Proceedings of CSCW 2000, pp. 309–318, 2000.

16. iMarkup: Annotate, Organize and Collaborate on the Web. http://www.imarkup.com/products/
annotate_page.asp.

17. C. Sastry. D. Lewis, and A. Pizano. WEBTOUR: A system to record and play back dynamic
multimedia annotations on Web document content. In Proceedings of ACM Hypretext ‘96, pp.
140–148, 1996.

18. Y. Tanaka, J. Fujima, and T. Sugibuchi. Meme Media and Meme Pools for Re-editing and Re-
distributing Intellectual Assets. Hypermedia: Openness, Structural Awareness and Adaptivity.
Springer L NCS 2266, 28–46, 2002.

19. Y. Tanaka and J. Fujima. Topica framework for organizing and accessing intellectual assets on
meme media. In Proceedings of the 11th European–Japanese Conference on Information Mod-
elling and Knowledge Bases, 2001.

20. R. C. Miller, and B. A. Myers. Creating dynamic World Wide Web pages by demonstration.
Carnegie Mellon University School of Computer Science Technology Report, CMU-
CS–97–131, Pittsburgh, 1997.

21. A. Sugiura, and Y. Koseki. Internet Scrapbook: Automating Web Browsing Tasks by Demon-
stration. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST), pp. 10–18, 1998.

22. T. H. Nelson. Transpublishing for Today’s Web: Our Overall Design and Why It Is Simple.
http;//www.sfc.keio.ac.jp/ted/TPUB/Tqdesign99.html, 1999.

23. A. Sahuguet and F. Azavant. Building intelligent Web applications using lightweight wrappers.
Data and knowledge Engineering, 36(3): 283–316, 2001.

24. B. A. Ribeiro-Neto, A. H. F. Laender, and A. S. Da Silva. Extracting semistructured data
through examples. In Proceedings of the 8th ACM International Conference on Information and
Knowledge Management (CIKM’99), pp. 91–101, 1999.

25. P. B. Golgher, A. H. F. Laender, A. S. da Silva, and B. A. Ribeiro-Neto. An example-based envi-
ronment for wrapper generation. In Proceedings of International Workshop on the World Wide
Web and Conceptual Modeling, pp. 152–164, 2000.

26. Y. Tanaka and J. Fujima. Meme media and Topica architectures for editing, distributing, and
managing intellectual assets. In Proceedings of Kyoto International Conference On Digital Li-
braries: Research and Practice, pp. 208–216, 2000.

290 MEME POOL ARCHITECTURES

tan-11.qxd 5/15/2003 4:58 PM Page 290

CHAPTER 12

ELECTRONIC COMMERCE FOR PADS

Chapter 11 has shown how we can publish pads through the Internet, upload or download
them to and from a worldwide publication repository of pads, reuse them as they are, and
reedit them for different reuses. These publication systems provide free worldwide distrib-
ution and exchange of intellectual resources. However, they need to be combined with
some license management and royalty service to encourage people in the business world
to play significant roles in providing and distributing intellectual resources. This chapter
proposes a way of integrating the pay-per-use billing scheme with the worldwide publica-
tion repository of pads. This method is based on Ryoichi Mori’s idea of superdistribution.
It extends the original idea so that the provider and the distributor of each object are guar-
anteed to get the reasonable payment even if some component of this object is combined
with other objects and reused by some user after its redistribution. This mechanism intro-
duces business competition in providing and distributing intellectual resources, which
will significantly enrich their variety and promote their distribution. The introduction of
business activities changes a meme pool to a meme market.

12.1 ELECTRONIC COMMERCE

Electronic commerce means advertising, selling, and shopping for goods or services elec-
tronically through the Internet [Figure 12.1(a)] [1, 2]. In some cases, it also means paying
money electronically through the Internet [Figure 12.1(b)] and/or shipping goods or ser-
vices to the customers electronically through the Internet [Figure 12.1(c)]. Both Internet
malls and Net catalogs provide electronic commerce with electronic advertising and or-
dering functions. Some of them send invoices by traditional mail to request remittance.
Others electronically request the buyer for his or her credit card number. The credit card
company performs the remittance function by transferring some amount of money from
the buyer’s bank account to the seller’s bank account.

Physical goods are shipped to the customer by various methods. Some nonphysical
goods can be electronically shipped through the Internet. They are called electronic

291

tan-12.qxd 5/16/2003 7:03 AM Page 291

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

goods. They include multimedia documents and software products. It is difficult to pro-
duce copies of physical goods. The production of a copy costs as much as making the
original. The situation is, however, quite different for information and software. Just a se-
lection of the copy operation from an operation menu will immediately replicate the infor-
mation or software electronically in a computer. It costs the downloader nothing to do
this. Therefore, providers protect their products from illegal copies using various copy
protection mechanisms.

Multimedia creators use various photos, video clips, sounds, and music to develop new
multimedia products. Their variety is too large for each creator to produce by himself or
herself. Creators purchase the right to reuse these materials from their providers. The pur-
chasing of the right to reuse some content is different from the purchasing of their copies
with copy protection. The latter is based on the pay-per-copy billing scheme, whereas the
former requires a new, different billing scheme called the pay-per-use billing scheme [3]
(Figure 12.2). The pay-per-use billing allows us to reuse information and software.

Pads are also software. Their electronic advertising, selling, shopping, and shipping
will definitely grow their market and their variety. Pads can carry whatever computers can
store and manipulate. These include multimedia documents, application programs, nu-
merical data, records, rules, and mathematical expressions; their access and manipulation
environments; and various services for searching, accessing, processing, managing, deliv-
ering, and purchasing these goods, including database services, mail services, and cata-
log-shopping services. Pads work as universal media for editing, managing, and distribut-

292 ELECTRONIC COMMERCE FOR PADS

(a) (b)

(c)

Figure 12.1 Various types of electronic commerce. (a) Electronic commerce dealing with physi-
cal goods. (b) Use of electronic money or credit cards. (c) Electronic commerce dealing with infor-
mation, software, and services.

tan-12.qxd 5/16/2003 7:03 AM Page 292

ing all these electronic goods and services. Pads can be easily replicated. The copy protec-
tion of pads will deprive them of their roles to work as meme media. Their electronic
commerce requires a pay-per-use billing system.

12.2 FROM PAY-PER-COPY TO PAY-PER-USE

Pay-per-copy billing charges money for each copy of a product. It assumes that users can-
not make the copies by themselves. Once you have purchased a product, you can do any-
thing you like with it. You may decompose it to reuse some of its parts for your own pur-
pose, or you may even sell it to another user. Since you cannot make the copies by
yourself, you cannot reuse the same part simultaneously for more than one purpose, nor
can you sell the same product to more than one person. For this reason, the provider of the
product can protect his or her rights. The only possible violations of the provider’s rights
are the production of an imitation and reverse engineering by other providers.

When applied to software, the pay-per-copy billing must protect each product against
illegal copying. Software is easy to copy at no cost. Software providers have to protect
their products with copy protection mechanisms. Copy protection, however, prohibits
each user from reusing the same product simultaneously for more than one purpose.
Components of a toolkit system or a componentware system, however, must be easily
replicated and simultaneously reused in different constructs. If each of them were
protected against copying, they would not work as components. Toolkit and component-
ware product providers today protect their development environments against copy
operations. They allow us to replicate each component and to reuse its copies simulta-
neously in their development environments, but they prohibit us to replicate the devel-
opment environments. Such providers are selling their development capabilities as total
systems, but not individual components. Additional sets of components are sold as sys-
tem extensions, but not as individual component packages independent from the system
in which they are used. The price of these development environment systems is usually
high.

Some of these system providers also charge for each copy of their runtime environ-
ment, whereas others do not. The former also protect runtime environments from copy op-
erations, whereas the latter do not. Both types of system providers, however, do not allow

12.2 FROM PAY-PER-COPY TO PAY-PER-USE 293

(a) (b)

Figure 12.2 The pay-per-copy billing scheme (a) and the pay-per-use billing scheme (b).

tan-12.qxd 5/16/2003 7:03 AM Page 293

us to compose new tools in their runtime environments. Both of them protect their devel-
opment capabilities from copy operations. Furthermore, initial components are sold to-
gether with a development environment. Add-on component libraries are also provided by
the same provider of the initial system. Because of this restriction, the addition of a new
component library can be considered as a system revision to keep their customers from
moving away to other systems.

The situation is quite different in IntelligentPad systems. IntelligentPad makes no dis-
tinction between its development environment and its runtime environment. Composite
pads retain their decomposability. They can be transported to other users. A large number
of different providers provide primitive pads. Different providers who maintain mutual
compatibility provide the kernel systems. Users can combine component pads that are
provided by different providers to compose their own composite pads. They may make
their own copies and send them to other users for their reuse. Pads can be replicated, reed-
ited, and redistributed by end-users. The pay-per-copy billing system does not protect
their providers’ rights in this case.

Furthermore, some pads carry services instead of electronic contents. Examples of
these are database services, information retrieval services, and computation services. The
charge for providing such a service cannot be charged on the purchase of its carrying pad.
These pads usually work as proxy objects communicating through the Internet with their
servers at different sites. The charge should be calculated based on the amount of the ser-
vice provided to the user through this pad.

These considerations require a paradigm shift from the pay-per-copy billing scheme to
the pay-per-use billing scheme. The latter is mainly used for selling services and supplies
such as water, gas, and electricity. Their charge is calculated by measuring the amount of
services and supplies consumed. This measuring, when applied to software, is called in-
formation metering. Pay-per-use billing requires mechanisms for information metering,
billing, and remittance.

In case of IntelligentPad, pay-per-use billing should be applied to both the use of each
component pad and the use of each composition structure. The latter is also a proprietary
product of a system integrator. Different from the pay-per-copy billing, the pay-per-use
billing introduces micropayment, i.e., payment of a small amount of money. This also im-
plies a significant increase in payment transactions. Providers cannot deal with such a
huge number of micropayment transactions by themselves, which implies the involvement
of brokers, credit companies, and banks.

12.3 DIGITAL ACCOUNTING, BILLING, AND PAYMENT

Once the pay-per-use billing system is established, providers can publish their pads on
their web pages or piazzas. Users can open these pages or piazzas, and drag out the pads
they want. No charge is imposed at this stage. When a user uses each pad, a special mech-
anism that is partly implemented in each pad and partly implemented in each Intelligent-
Pad kernel system will meter the amount of use. The billing and the remittance are execut-
ed in several different ways. These include three major methods: the prepaid-card scheme,
the credit-card scheme, and the real-time-payment scheme.

The prepaid-card scheme uses prepaid cards issued by brokers. Users have to buy these
cards from the issuer prior to the use of pads. These cards are also pads. They are protect-
ed against illegal copies. Therefore, they can be sold through the conventional pay-per-

294 ELECTRONIC COMMERCE FOR PADS

tan-12.qxd 5/16/2003 7:03 AM Page 294

copy billing scheme. When you use a pad, you have to a priori provide your system with
the prepaid card issued by one of its brokers. The same pad may be sold by more than one
broker. When you use a composite pad, you have to provide your system with more than
one prepaid card to cover all the components. During the use of each pad, it dynamically
requests the corresponding prepaid card to deduct the corresponding charge. When the
deduction becomes impossible, the pad will suspend its operation.

The credit-card scheme uses similar cards to charge for the amount of use. Each use of
a pad adds the corresponding charge to the corresponding credit card. Users have to dial
up the credit company each month, for example, to send the charge record for the clearing
of their account. If they fail to do so, or if the accumulated charge exceeds an a priori set
limit, the pad will suspend its use of this credit card.

The real-time payment scheme assumes a line connection with the broker during the
use of pads. The metered charge is immediately sent to the broker for necessary remit-
tance whenever a pad is used. The remittance may be collected either by the transfer be-
tween bank accounts or by using electronic money.

12.4 ECOLOGY OF PADS IN THE MARKET

The distribution market of pads requires at least three kinds of players: providers, brokers,
and users (Figure 12.3). Each provider provides several brokers with various primitive
pads and composite pads. Brokers distribute these pads to users through various distribu-
tion channels. Each user may freely make copies of any of the pads in the distribution
market, use them as they are or recombine them, and redistribute some of the pads. Dif-

12.4 ECOLOGY OF PADS IN THE MARKET 295

Figure 12.3 Three kinds of players in the pad distribution market.

tan-12.qxd 5/16/2003 7:03 AM Page 295

ferent brokers may deal with the same pad of the same provider. They may charge differ-
ent amounts for the same use of the same pad.

A composite pad in the distribution market may consist of pads that are provided by
different providers and/or distributed by different brokers. Its use activates its various
component pads. Use of some component pads causes providers and/or brokers to charge
the user certain amounts of money. The charged amount should be paid to the provider
and the broker of each component pad.

In addition to the three basic kinds of players, we may also have to consider two oth-
er kinds of players in the business environment, namely pad integrators and package
providers (Figure 12.4). Pad integrators uses primitive pads provided and distributed by
others, combine them to compose their own composite pads, and provide these compos-
ite pads to the distribution market through brokers. They may or may not make a con-
tract with the provider and/or the broker of each primitive pad they use. Suppose that an
integrator I uses a pad Pa, which is provided by a provider P and distributed by a broker
B, to compose a composite pad Pb. When a user uses the pad Pb and hence the pad Pa,
he should be charged for his use of Pa, and his payment should finally go both to its
provider and to its broker. This should be always guaranteed whether or not the use of
Pa by the integrator I is based upon any contract with P and B. If the integrator I wants
to provide Pa with a special discount charge for its use under a special contract with its
provider P and/or its broker B, he must be able to do that. This discount-rate use of Pa
should be limited to its use in Pb. Furthermore, the integrator should be able to charge
users for their use of the composition Pb even if he provides none of the components of
Pb.

296 ELECTRONIC COMMERCE FOR PADS

Figure 12.4 Integrators and package providers in the pad distribution market.

tan-12.qxd 5/16/2003 7:03 AM Page 296

A package provider provides sets of primitive and composite pads as package software.
These sets may include no pads developed by the package provider. Similar to pad inte-
grators, package providers may or may not make contracts with the provider and/or the
broker of each primitive pad they use. The selected collection of the pads that are provid-
ed by different providers and distributed by different distributors is itself considered as the
property of the package provider. If the package provider wants to provide each member
of a package with a special discount charge for its use under a special contract with its
provider and/or its broker, he must be able to do that. This discount-rate use of each pad in
a package should be limited within any environment of this package.

12.5 SUPERDISTRIBUTION OF PADS

Superdistribution means secure distribution of software and/or multimedia content based
on the pay-per-use billing scheme. Ryoichi Mori first proposed this scheme in 1983 [4].
Similar concepts were also proposed by others. Brad Cox first discussed this concept in
the context of software components [3].

Mori and the author of this book both believe that the IntelligentPad architecture and
the superdistribution scheme will play mutually complementary roles to establish an in-
frastructure for the exchange and the reuse of knowledge resources in our society. IPC
(IntelligentPad Consortium) has been also discussing how to introduce the superdistribu-
tion mechanism into the IntelligentPad system architecture. The following is an outline of
our consensus. IPC implemented a simplified version of the pad superdistribution system
for feasibility studies in 1998 with the support of IPA (Information-technology Promotion
Agency), using a commercially available version of IntelligentPad.

The key point of the superdistribution system is how to implement an information me-
tering mechanism. The information metering meters the use of each primitive pad.

The metered amount is then deducted from a prepaid card, or charged to a credit
card. Here we consider only these two types of payment. Prepaid cards and credit cards
are both independent objects. Each person may have more than one prepaid card and
more than one credit card. Since IntelligentPad treats every manipulable object as a pad,
it should treat both prepaid cards and credit cards as pads. The information metering
should be performed between each primitive pad and the corresponding prepaid or cred-
it card.

The information metering requires an account module that keeps the information about
how much each pad is used. Before using each pad, users have to install the account mod-
ule that is provided by one of this pad’s brokers. Once installed, each account module re-
sides in the system, and keeps its account information in a file. This file should be secure-
ly protected from rewriting. Different brokers need to provide different account modules.
Each pad communicates with its broker’s account module to meter the amount of its use.
This communication should be securely protected and use different protocols for different
brokers. The same pad must use different protocols for different account modules if it is
distributed by more than one broker. Furthermore, this protocol should not be known to
anyone other than the broker who uses it. To satisfy these requirements, the information
metering requires two modules (Figure 12.5). The first one is the account module. The
second one is the request module. A request module is provided by a broker and used by a
pad provider who has contracted with this broker for the distribution of this pad. A request
module is built into a pad by the pad provider under contract with the broker. Different

12.5 SUPERDISTRIBUTION OF PADS 297

tan-12.qxd 5/16/2003 7:03 AM Page 297

brokers provide different request modules. The request module of a broker can securely
communicate with the account module of the same broker.

The charging strategies may differ for different providers and for different pads. Using
its built-in request module, each pad can securely send a charge amount to the account
module. It is up to its provider how to meter the use of a pad. For example, a pad may send
corresponding charge information whenever its “update” procedure or either the “set” or
the “gimme” procedure of one of its slots is invoked [Figure 12.6(a)]. A pad that carries a
picture image may send corresponding charge information whenever its printing proce-
dure is invoked [Figure 12.6(b)]. Such an image pad is free to view on the screen, but
charges for its printout.

The account module may have an independent account for each provider, or a single
account. In the former case, the broker can later use this information to divide the prof-
it among all the contractor providers. In the latter case, the broker needs some other in-
formation to fairly divide the profit among all the contractor providers. In the latter case,
brokers can simply sell a prepaid card to a user, who then loads this card pad in his or
her system to add its credit amount to the account of the corresponding account module.
In the former case, the independent account for each provider may be further divided
into subaccounts for different pad groups with different charging policies. The variety of
charging policies available for brokers depends on the business strategy of each broker.
The wider variety of charging policies leads to the larger overhead in exchanging mes-
sages among pads. Some providers may prefer better performance of their products to
the wide selection of charging policies. Some others may have the opposite preference.
A pairing of an account module and a request module can define a set of charging poli-
cies. Some pairs can even change their charging policy depending on the use history of
the pads and their messages. It may offer a new discount rate for a pad after a certain

298 ELECTRONIC COMMERCE FOR PADS

(a) (b)

Figure 12.5 Information metering by two modules provided by each broker. (a) Each broker pro-
vides an account module and a request module, whereas each pad provider embeds a request mod-
ule in his pads. (b) Each request module of a broker can securely communicate with the account
module of the same broker.

tan-12.qxd 5/16/2003 7:03 AM Page 298

amount of its use. Different pairs define different sets of charging policies. This mecha-
nism allows each broker to provide pad providers with a wide variety of charging poli-
cies.

Fair division of profit requires each account module to report its information periodi-
cally, say every month, to the broker. The simplest solution to satisfy this requirement is as
follows. Each user first makes a contract with a broker to get its account module with

12.5 SUPERDISTRIBUTION OF PADS 299

(a)

(b)

Figure 12.6 Using its statically bound request module, each pad can securely send a charge
amount to the account module. (a) A pad may send a corresponding charge information whenever
its “update” procedures or either the “set” or the “gimme” procedure of one of its slots is invoked.
(b) A pad that carries a picture image may send corresponding charge information whenever its
printing procedure is invoked.

tan-12.qxd 5/16/2003 7:03 AM Page 299

some credit amount, and installs this module in his or her system. Every use of a pad au-
tomatically deducts some credit amount from the appropriate account of the appropriate
account module. Whenever the remaining credit of an account module reaches zero, the
user sends back the account module, and asks the broker to load it with some credit
amount. The shipping and the sending of account modules can be done through the Inter-
net or telephone lines. The payment can use real credit cards. The remittance may be done
at the time of loading the new credit amount, or at the time of reporting the account infor-
mation. The former is the prepaid card scheme using real credit cards for purchasing pre-
paid cards, whereas the latter is the credit card scheme. In the latter case, the credit
amount that is loaded each time corresponds to the maximum charge allowed on the cred-
it card.

The system proposed here works for pads that can be redistributed and reedited
by end-users. Let us consider a general situation as shown in Figure 12.7. Here, a user
U2 obtained a composite pad Pa from another user U1, and U2 uses a component Pb
of Pa together with another pad Pc. The pad Pb is distributed into the market by a bro-
ker B1, whereas Pc is distributed by a broker B2. For the user U2 to use the composite
pad consisting of Pb and Pc, he has to make an a priori contract with the brokers B1 and
B2 to install all the account modules provided by B1 and by B2. Otherwise, the com-
posite pad will not work. The request module in Pb sends messages to the account mod-
ule provided by B1, whereas the request module in Pc sends messages to the account
module by B2. This guarantees the necessary charging for each use of the composite pad
by U2.

300 ELECTRONIC COMMERCE FOR PADS

Figure 12.7 A user U2 obtained a composite pad Pa from another user U1, and U2 uses a compo-
nent Pb of Pa together with another pad Pc. The pad Pb is distributed into the market by a broker B1,
whereas Pc is distributed by a broker B2. For the user U2 to use the composite pad consisting of Pb
and Pc, he has to a priori make contracts with the brokers B1 and B2 to install all the account mod-
ules provided by B1 and B2.

tan-12.qxd 5/16/2003 7:03 AM Page 300

Whenever a user makes a contract with a broker, he will receive an account pad from this
broker (Figure 12.8). He can just drop this pad on the account icon pad in his IntelligentPad
system to install all the account modules provided by this broker in the user’s IntelligentPad
environment. You can open this account icon pad to see all the registered account pads.

12.6 PAD INTEGRATION AND PACKAGE BUSINESS

Pad integrators who use pads developed by others to compose integrated systems should
be also able to claim payment for the use of the integration structures. We propose a spe-
cial pad for this requirement. This pad, called a ChargingPad, can be inserted between any
two pads that are pasted together and also between the bottom pad and the desktop (Figure
12.9). The same pad is also used to cover the topmost pads. Although it passes all the user
events and messages without any changes, it detects each passing of these events and is
able to send a charge through its request module to the corresponding account module.
Furthermore, if a user tries to peel or move this pad, the invoked procedure of this pad

12.6 PAD INTEGRATION AND PACKAGE BUSINESS 301

Figure 12.8 When a user makes a contract with a broker, he will receive an account pad from this
broker. He can just drop this pad on the account icon pad in his IntelligentPad system to install all
the account modules provided by this broker in the user’s IntelligentPad environment.

Figure 12.9 A ChargingPad can be inserted between any two pads. It passes all the user events
and messages without any changes, but detects their passing and is able to send a charge through its
request module to the corresponding account module.

tan-12.qxd 5/16/2003 7:03 AM Page 301

sends a high charge as a penalty to the corresponding account module. System integrators
can insert this pad at some appropriate positions of their composite pads.

Suppose that an integrator I uses a pad Pa that is provided by a provider P and distrib-
uted by a broker B to compose a composite pad Pb. When a user uses the pad Pb and
hence the pad Pa, he should be charged for his use of Pa, and his payment should finally
go both to its provider and to its distributor. The use of Pa makes its request module send
a message to an account module provided by B. The user is correctly charged for his use
of Pa.

If the integrator I wants to provide Pa with a special discount charge for its use under a
special contract with its provider P and/or its broker B, he must be able to do that. This is
guaranteed by the inserted ChargingPads (Figure 12.10). To reduce the charge for using
Pa, the integrator can use its child pad ChargingPad and/or its parent pad ChargingPad.
These ChargingPads take certain amounts from the account of the provider P and/or the
broker B, and add some amount to the account of the integrator I. The charge to the ac-
counts of P and B are based upon the contract of I with P and B. The ChargingPad allows
each integrator to charge users for their use of the composition Pb even if he provides
none of the components of Pb.

A package provider who provides sets of primitive and composite pads as package
software should be also able to claim payment for the use of these packages. We can also
use ChargingPad for this requirement. Each pad in a package is put on a ChargingPad and
covered by another ChargingPad (Figure 12.11). The request modules in these Charging-
Pads allow the package provider to charge users for their use of each pad in the package,
whereas the request module in the member pad allows the provider and/or broker of this
pad to charge users for their use of this pad.

If the package provider wants to provide each member of a package with a special dis-
count charge for its use under a special contract with its provider and/or its broker, he

302 ELECTRONIC COMMERCE FOR PADS

Figure 12.10 ChargingPads allow the integrator I to provide Pa with a special discount charge for
its use under a special contract with its provider P and/or its broker B.

tan-12.qxd 5/16/2003 7:03 AM Page 302

must be able to do that. This is also guaranteed by ChargingPads. To reduce the charge for
using a member pad, the package provider can use its child pad ChargingPad and/or its
parent pad ChargingPad. These ChargingPads take certain amounts from the account of
the pad provider and/or the pad broker, and add some amount to the account of the pack-
age provider. The charge to the accounts of the pad providers and pad brokers are based on
the contract of the package provider with them. The ChargingPad allows each package
provider to charge users for their use of his or her package even if he or she provides none
of its member pads.

12.7 SUMMARY

Electronic commerce means advertising, selling, and shopping for goods or services elec-
tronically through the Internet. Physical goods are shipped to the customer by various ve-
hicles. Some nonphysical goods can be electronically shipped through the Internet. They
include multimedia content and software. Pads are also software. Pads can be easily repli-
cated. The copy protection on pads will deprive them of their roles to work as meme me-
dia. Their electronic commerce requires a pay-per-use billing system.

The distribution market of pads requires at least three kinds of players: providers, bro-
kers, and users. A composite pad in the distribution market may consist of pads that are
provided by different providers and/or distributed by different brokers. Its use activates its
various component pads. Use of some component pads causes their providers and/or bro-
kers to charge the user certain amounts of money. The charged amount should be paid to
the provider and the broker of each component pad. Pay-per-use charging requires two
modules. The first one is the account module. The second one is the request module. A re-
quest module is provided by a broker and used by a pad provider who has contracted with
this broker for the distribution of this pad. A request module is built into a pad by the pad
provider under contract with the broker. Different brokers provide different request mod-
ules. The request module of a broker can securely communicate with the account module
of the same broker to update the account information kept in the account module. The ac-
count module may have an independent account for each provider. The broker can later
use this information to divide the profit among all the contractor providers. Fair division
of profit requires each account module to report its information periodically, say every
month, to the broker.

This mechanism introduces business competition in providing and distributing intel-
lectual resources, which will significantly enrich their variety and promote their distribu-
tion. The introduction of business activities changes a meme pool to a meme market.

12.7 SUMMARY 303

Figure 12.11 Each pad in a package is put on a ChargingPad and covered by another Charging-
Pad.

tan-12.qxd 5/16/2003 7:03 AM Page 303

REFERENCES

1. R. Kalakota and A. B. Whinston. Frontiers of Electronic Commerce. Addison-Wesley, Reading,
MA, 1996.

2. C. A. Jardin. Java Electronic Commerce Source Book. Wiley, New York, 1997.

3. B. Cox. Superdistribution: Objects as Property on the Electronic Frontier. Addison-Wesley,
Reading, MA, 1996.

4. R. Mori and M. Kawahara. Superdistribution: The concept and the architecture. Transactions of
IEICE, E73(7): 1133–1146, 1990.

304 ELECTRONIC COMMERCE FOR PADS

tan-12.qxd 5/16/2003 7:03 AM Page 304

CHAPTER 13

SPATIOTEMPORAL EDITING OF PADS

When a pad is pasted on another pad, the child pad usually works as an input and/or out-
put device of the parent pad. However, this is not the only relationship we can define be-
tween the two pads. In this chapter, we will consider the case in which the parent controls
the spatiotemporal arrangement of its child pads. We will begin with geometrical arrange-
ments, then consider time-based arrangements and spatiotemporal arrangements. Then we
will apply these arrangement functions to the information visualization of database
records and Web documents.

13.1 GEOMETRICAL ARRANGEMENT OF PADS

Most drawing tools in use today can define a grid on a drawing sheet. They allow us to
specify an arbitrary length for the grid interval. Such a grid has gravity at each grid point.
Every point specified by a user is automatically adjusted to its closest grid point. This
largely helps users to align graphical objects to horizontal and/or vertical lines. This grid
is an example of geometrical management tools for graphical objects.

In this section, we will first consider geometrical management tools for spatial
arrangement of pads. In the IntelligentPad architecture, these tools should also be defined
as pads. Such pads are called geometrical management pads. In the following, we will
show examples of geometrical management pads.

13.1.1 Tree Arrangement

Let us start with a tree as shown in Figure 13.1. This tree has a pad at each of its nodes.
We want to dynamically add and delete its node pads. A closer observation of this tree
tells us that it has a recursive construction structure as shown in Figure 13.2. This gives
us a hint on what kinds of pads are necessary for this kind of geometrical management.

305

tan-13.qxd 5/16/2003 7:18 AM Page 305

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

We require only one new primitive pad. Figure 13.3 shows this pad, called a TreePad. It
accepts the pasting of one pad at the left center on itself, and an arbitrary number of
pads at the right-hand side on itself. When a pad is pasted on it, a TreePad automatical-
ly enlarges its size to accommodate this pad as its new node [Figure 13.3(a)]. Pads past-
ed at the right-hand side are vertically arranged with either their left or right edges
aligned [Figure 13.3(b)]. There are two types of TreePads, depending on whether their
left or right edges are aligned. This process defines a two-level tree. A TreePad has slots
to specify two intervals: one between the right edge of the root pad and the leftmost
edge of the other pads, and the vertical interval between the two node pads. A TreePad
has another slot to specify its orientation from its root to its leaves. There are four pos-
sible orientations: left-to-right, right-to-left, top-to-bottom, and bottom-to-top. The first
two define horizontal trees, whereas the last two define vertical trees.

Since a TreePad is also a pad, it can be pasted at the right-hand side on another
TreePad. This increases the number of levels of the base tree, as shown in Figure 13.4.
Each TreePad can hide its borders when instructed through its slot to do so. A tree such as
the one in Figure 13.1 can thus be obtained.

306 SPATIOTEMPORAL EDITING OF PADS

Figure 13.1 A tree with a pad at each of its nodes.

tan-13.qxd 5/16/2003 7:18 AM Page 306

Figure 13.5 shows an application example of a TreePad. This tool has two windows
side by side. When an arbitrary composite pad is dropped into the left window, this tool
produces a composition structure comprised of a tree of primitive pads. This tool uses
TreePads to construct this tree.

Figure 13.6 shows another type of tree arrangement. This base pad, called a
RadiationalTreePad, arranges its child pads on a circle line whose radius is specified by
one of its slots. When too many pads are pasted, they may overlap. Since this base pad
is also a pad, it can be pasted on another pad with the same function. Figure 13.7 shows
such a case, in which the child RadiationalTreePad with a smaller radius is made trans-
parent.

13.1 GEOMETRICAL ARRANGEMENT OF PADS 307

Figure 13.2 Closer observation of the tree in Figure 13.1 tells us that it has a recursive construc-
tion structure.

tan-13.qxd 5/16/2003 7:18 AM Page 307

308 SPATIOTEMPORAL EDITING OF PADS

Figure 13.3 When pasted with some pad, a TreePad automatically enlarges its size to accommo-
date this new node. (a) One composite pad is placed to form a leaf. (b) Two other pads are placed to
form the root and a leaf.

(a) (b)

Figure 13.4 Since a TreePad is also a pad, it can be pasted as a leaf on another TreePad. (a) An ex-
ample tree. (b) A tree in (a) is embedded as the second leaf of the tree in Figure 13.3(b).

(a) (b)

tan-13.qxd 5/16/2003 7:18 AM Page 308

Figure 13.5 When an arbitrary composite pad is dropped into the left window, this tool yields
composition structure of a tree of primitive pads. It uses TreePads to construct this tree. (a) A com-
posite pad working as an X–Y plotter will be dropped into the left window of the tool. (b) The tool
pops up the composition structure of the input composite pad.

(a)

(b)

Figure 13.6 A RadiatinalTreePad arranges its slave pads on a circle whose radius is specified by
one of its slots.

309

tan-13.qxd 5/16/2003 7:19 AM Page 309

13.1.2 Pad Cabinet Arrangement and Picture Index Arrangement

The geometrical arrangement of pads has many possibilities. Figure 13.8 shows a file
cabinet for pads. You can drag and drop any pad into this cabinet. The location where you
released the mouse button determines the place in this list of pads to insert this new pad.
The new pad is given a white tag, which, when clicked, moves this pad to the front posi-
tion of the list. Only the front pad is operational.

These functions are all provided by the base pad, called a FileCabinetPad. Since this is
also a pad, it can be dragged and dropped on another FileCabinetPad. This defines nested
file cabinets for pads.

Instead of directly arranging various pads on a FileCabinetPad, you may arrange color
pads of the same size on a FileCabinetPad and put various pads on these color pads (Fig-
ure 13.9). These color pads work as file folders.

Figure 13.10 shows a pad management tool with a pictorial index. When you drag and
drop a pad onto this picture-index tool, it is stored in this tool, and its picture icon is added
at the end of the pictorial index provided by this tool. When you click one of these picture
icons, this tool gives you the corresponding composite pad. You may register any compos-
ite pads in this tool, including any other geometrical management pads. You may even
drag and drop this picture-index tool on another picture-index tool to define a nested pic-
ture-index tool.

310 SPATIOTEMPORAL EDITING OF PADS

Figure 13.7 Another RadiationalTreePad with a smaller radius is made transparent and put on a
RadiationalTreePad.

tan-13.qxd 5/16/2003 7:19 AM Page 310

13.2 TIME-BASED ARRANGEMENT OF PADS

The time-based arrangement of pads controls the hiding and showing of pads with respect
to the current time or the elapsed time. Functions of this kind should be also provided as
generic pads. These pads are called temporal arrangement pads. We will discuss some of
them below.

13.2 TIME-BASED ARRANGEMENT OF PADS 311

Figure 13.8 A file cabinet for pads allows you to drag and drop any pad into this cabinet.

Figure 13.9 Instead of directly arranging various pads on a FileCabinetPad, you may arrange col-
or pads of the same size on a FileCabinetPad to put varieties of pads on these color pads.

tan-13.qxd 5/16/2003 7:19 AM Page 311

Temporal arrangement requires a clock. We may consider four types of clocks.

1. Clocks that tell the current time

2. Clocks that tell an a priori specified time

3. Clocks that measure how much time has elapsed

4. Clocks that neither tell nor measure time, but provide pulses at a constant interval

Clocks of the first type are just called clocks, whereas those of the second type are called
alarm clocks. Clocks of the third type are called timers, whereas clocks of the fourth type
are called pulse generators. IntelligentPad represents clocks, alarm clocks, timers, and
pulse generators as primitive pads. Corresponding to these four different types, it provides
four different types of pads: ClockPads, AlarmClockPads, TimerPads, and PulseGenera-
torPads.

A ClockPad has the following slots. The #date and #time slots, respectively, when ac-
cessed by a “gimme” message, return the date and time registered in these slots. The date
consists of the year, the month, and the day, whereas the time consists of the hour, the
minute, and the second. A ClockPad provides all these components as slots. When ac-
cessed by a “gimme” message, each of these component slots returns the value of the cor-
responding component by extracting this component from either the #date or the #time
slot value. A clock pad provides one more slot. The #clock slot, when accessed by a “set”
message, makes this pad get the current date and time from the system clock and send an
“update” message to its child pads.

A ClockPad itself is passive in the sense that it does not autonomously change its state
without any message from another pad. To make it work as a clock that changes its value
at every second, we need a PulseGeneratorPad to send a message to the ClockPad at every
second. A PulseGeneratorPad can keep sending trigger signals at a constant time interval.

A PulseGeneratorPad, when activated, invokes a process to make this pad keep issuing
both an “update” and a “set” message at a specified constant time interval. Its #timeInter-

312 SPATIOTEMPORAL EDITING OF PADS

Figure 13.10 A pad management tool with a pictorial index.

tan-13.qxd 5/16/2003 7:19 AM Page 312

val slot specifies the time interval, which is set by a “set” message with a new time inter-
val as its parameter. When accessed by a “set” message, its #start and #stop slots, respec-
tively, activate and deactivate its process. A PulseGeneratorPad, when combined with a
ClockPad as shown in Figure 13.11(a), forms both a digital clock and an analog clock as
shown in Figure 13.11(b, c). The digital clock uses NumericalDisplayPads. Whenever it
receives an “update” from the PulseGeneratorPad, each NumericalDisplayPad sends a
“gimme” message to a time component slot in the ClockPad. The PulseGeneratorPad
keeps sending an “update” message every second. Therefore, our digital clock changes its
display every second. The analog clock uses three transparent circular meters whose value
ranges for one rotation are 12, 60, and, 60. These three pads work as the hour, minute, and
second needles.

13.2 TIME-BASED ARRANGEMENT OF PADS 313

Figure 13.11 A PulseGeneratorPad, when combined with a ClockPad, forms both a digital clock
and an analog clock. (a) A pulse generator is combined with a Clock pad to define a clock. (b) a dig-
ital clock composed as shown in (a). (c) An Analog clock composed as shown in (a).

(b) (c)

(a)

tan-13.qxd 5/16/2003 7:19 AM Page 313

An AlarmClockPad, when activated, invokes a process to make this pad issue both an
“update” and a “set” message when it reaches an a priori specified time. Its #start and
#stop slots, respectively, when accessed by a “set” message, activate and deactivate its
process. Its alarm time is set by “set” messages through its slots. Depending on what
kinds of slots are provided, we can have several kinds of AlarmClockPads. A DailyAlarm-
ClockPad has a #time slot, which is set by a “set” message with a new signaling time as its
parameter. Unless deactivated, it issues a signaling message at the specified time every
day. A WeeklyAlarmClockPad has a #dayOfTheWeek slot and a #time slot. Unless deacti-
vated, it issues a signaling message at the specified time on the specified day of the week
every week. A MonthlyAlarmClockPad has a #dayOfTheMonth slot and a #time slot. Un-
less deactivated, it issues a signaling message at the specified time on the specified day of
the month every month. An AnnualAlarmClockPad has a #dayOfTheYear slot and a #time
slot. It works similarly on the specified day every year. A general AlarmClockPad has a
#date slot and a #time slot. Unless deactivated, it issues a signaling message at the speci-
fied time on the specified day. Each of these pads also provides a slot to specify both day
and time through this single slot.

Figure 13.12 shows an example application of AlarmClockPads to a very simple kind
of temporal arrangement of pads. It uses two DaylyAlarmClockPads with 6:00 and 12:00,
respectively, as their signaling time. The former is connected to the open slot of an Open-
ClosePad, whereas the latter is connected to its close slot. This OpenClosePad, when its
#open slot is accessed by a “set” message, reveals itself. It hides itself when its #close slot
is accessed by a “set” message. This composite pad reveals itself at 6:00 every morning,
and hides itself at 12:00 noon. You may put any composite pads on the OpenClosePad.
This is an example of the temporal arrangement of pads. Figure 13.13 shows another ex-
ample. This uses an IndexPad and an EncoderPad. An IndexPad stores an ordered se-
quence of an arbitrary number of pads. They are indexed with numbers. It shows only one
of these pads on itself. This pad is specified by the index number that is held by the #cur-
rentIndex slot of the IndexPad. An EncoderPad has an arbitrary number of signal slots.
They are numbered as #signal(1), #signal(2), . . . , #singnal(n). This pad allows us to in-
crease or to decrease the number of signal slots. When its ith signal slot receives a “set”
message, an EncoderPad issues a “set” message with the integer i as its parameter. In Fig-
ure 13.13, the EncoderPad is connected to the #currentIndex slot of the IndexPad. Fur-
thermore, each signal slot of the EncoderPad is connected to an DailyAlarmClockPad.
This composite pad changes the pad that is shown at each a priori registered time.

314 SPATIOTEMPORAL EDITING OF PADS

Figure 13.12 AlarmClockPads are used to show and to hide the same pad at specified times.

tan-13.qxd 5/16/2003 7:19 AM Page 314

A TimerPad, when activated, invokes a process to make this pad issue both an “update”
and a “set” message in a specified time length. It stops (kills) the process when the speci-
fied time has passed. Its #timeInterval slot specifies the time interval, which is set by a
“set” message with a new time interval as its parameter. Its #start and #stop slots, respec-
tively, when accessed by a “set” message, activate and deactivate its process. Figure 13.14
shows a game pad sitting on a KillerPad. A KillerPad deletes itself with all the pads on it-
self when its #kill slot is accessed with a “set” message. In Figure 13.14, a TimerPad is
connected to the #kill slot of the KillerPad. The game in Figure 13.14 will disappear at the
end of the time interval.

13.3 SPATIOTEMPORAL EDITING OF PADS

There are several ways to combine temporal control with geometrical arrangement. Clock
pads can be used to control the geometrical arrangement. A MotionPad, whose motion can

13.3 SPATIOTEMPORAL EDITING OF PADS 315

Figure 13.13 This composite pad stores some pads and changes the pad to show at each a priori
registered time.

Figure 13.14 A game pad sitting on a KillerPad. A KillerPad deletes itself with all the pads on it-
self when its #kill slot is accessed with a “set” message. Here, a TimerPad is connected to the #kill
slot of the KillerPad.

tan-13.qxd 5/16/2003 7:19 AM Page 315

be a priori instructed in a step-by-step manner, can be used to make some pad change its
location and size on its parent pad whenever this MotionPad receives an “update” or a
“set” message to its clock slot. The hypermovie framework discussed in Section 7.3 is
also an example of spatiotemporal editing of pads.

13.3.1 Temporal Control of Geometrical Arrangement

Here we will show how to make clock pads control geometrical arrangement. The pasting
of an object pad on a geometrical arrangement pad invokes various geometrical arrange-
ment functions discussed in Section 13.1. Temporal control of paste operations can equiv-
alently specify temporal control of such invocations. Figure 13.15 shows a PasteControl-
Pad, which controls when to paste a registered pad on its parent pad. A PasteControlPad
has a #pad slot and a #timing slot. The #pad slot is used to register a composite pad into
the PasteControlPad, whereas the #timing slot is used to connect a signaling pad such as
an AlarmClockPad. The signal from the signaling pad triggers the PasteControlPad to
paste the registered pad onto its parent pad.

Figure 13.16 shows the use of a PasteControlPad together with a TreePad. Let us first
start with a single TreePad. For the root of this tree pad, we may directly paste any pad on
the root. For each of its leaves, we use a PasteControlPad with a registered pad and an
AlarmClockPad. The PasteControlPads are resized to their minimum size, and pasted on
the TreePad as its leaf pads [Figure 13.16(a)]. When each AlarmClockPad triggers the
pasting, the TreePad grows as shown in Figure 13.16(b). Since a TreePad is also a pad, it
can be registered into a PasteControlPad, and indirectly pasted on another TreePad. Figure
13.16(b) shows the budding process of a pad tree that is a priori thus defined.

13.3.2 Moving Pads

Another type of spatiotemporal control of pads uses a MotionPad. This pad changes its lo-
cation and size on its parent pad whenever it receives an “update” or a “set” message to its

316 SPATIOTEMPORAL EDITING OF PADS

Figure 13.15 A PasteControlPad is used to control when to paste a registered pad on its master pad.

tan-13.qxd 5/16/2003 7:19 AM Page 316

13.3 SPATIOTEMPORAL EDITING OF PADS 317

Figure 13.16 PasteControlPads are used to control the budding of a tree with pad leaves. (a) For
each leaf, we use a PasteControlPad with a registerd pad and an AlarmClockPad. Each PasteCon-
trolPad is resized to its minimum size and pasted on a TreePad as its leaf pad. (b) When each Alarm-
ClockPad triggers the pasting, the TreePad grows as shown here.

(a)

(b)

tan-13.qxd 5/16/2003 7:19 AM Page 317

#clock slot. Its motion can be a priori instructed in a step-by-step manner. The instruction
may skip some steps. The size and location at these skipped steps are interpolated from
the remaining steps using the spline interpolation scheme. The size and location are de-
fined relative to the underlying pad. Therefore, the resizing of the underlying pad will pro-
portionally change the size and location of the MotionPad. To provide a clock signal for a
MotionPad, you may connect a PulseGeneratorPad to the #trigger slot of the MotionPad.
A MotionPad can carry any composite pad on itself. More than one MotionPad can be put
on the same pad. For example, several MotionPads that carry different movie pads may be
put on another movie pad. An “update” message issued at each frame by the base movie
pad provides each MotionPad with a clock signal.

13.3.3 Hypermovie Framework

The hypermovie framework discussed in Section 9.3 is also an example of spatiotemporal
editing of pads. Here, we further extend the hypermovie framework.

The discussion in Section 9.3 assumed that each movie is played from its beginning.
Therefore, we stored each movie segment as a file, and accessed it through an anchor
pointing to this file. We assume that all the movie segments are concatenated to form a
single movie, and that the movie player can immediately start to play this movie from an
arbitrarily specified frame. QuickTime supports this function.

Anchors can be extended to point, not to another movie file, but to any frame of the un-
derlying movie. When clicked, such an anchor makes the movie seamlessly jump to the
specified frame to continue, as shown in Figure 13.17. In its general definition, such an
anchor is defined by a function f that maps a frame number i to another frame number j,
i.e., j = f(i). The input frame number of this function identifies the current frame in which
the anchor is clicked, whereas its output frame number specifies the destination frame to
which the clicked anchor makes the movie seamlessly jump. We can define such a func-

318 SPATIOTEMPORAL EDITING OF PADS

Figure 13.17 When clicked, a hypermovie anchor makes the movie seamlessly jump to the speci-
fied frame to continue.

tan-13.qxd 5/16/2003 7:19 AM Page 318

tion in several different ways. We may use an expression, a program, or a table to calculate
the function.

Although it is simple, this framework works for various applications using different
functions. Figure 13.18 shows some example functions. The first example divides the
movie into two segments of the same length n. It uses the function f(i) = i + n mod 2n,
where i is the current frame number. Figure 13.19 shows frame jumps caused by this func-
tion. Suppose that the first and the second halves of this movie both show the same rota-
tion of the same machinery, but with and without its exterior cover, respectively. When
you click the movie during the rotation of the exterior view, you can immediately remove
its cover to observe its internal mechanism. When clicked again, the movie shows the ex-
terior again.

The second example in Figure 13.18 divides the movie into k + 1 segments of different
lengths. The first of them has k mutually disjoint parts. The function is defined as shown
in the figure. If you click the movie in the ith part of the first segment, the movie jumps to
the first frame of the i + 1st segment. On the other hand, if you click the movie in the i +
1st segment, the movie jumps to the beginning of the ith part of the first segment. An ex-
ample application of this framework is as follows. The first segment shows a left-to-right
pan of panoramic scenery. You can specify k mutually disjoint sequences of frames in this
segment. Each of them shows some significant object. For the i + 1st segment, you can
use a movie shot that zooms in on the ith significant object. While you see a panoramic
view, you can click the movie to zoom in. If the zoom-in sequence is a priori provided,
you will see the zoom-in view.

Hypermovie anchor pads discussed in Section 9.3 can be also extended to specify
jumps within a single movie. Instead of a local file name or a URL, an extended hyper-

13.3 SPATIOTEMPORAL EDITING OF PADS 319

Figure 13.18 Various jump functions for hypermovies.

tan-13.qxd 5/16/2003 7:19 AM Page 319

movie anchor pad holds a function that maps a current frame number to a destination
frame number.

13.4 INFORMATION VISUALIZATION

A spatiotemporal arrangement of pads defines an interactive space. For pads representing
various kinds of information, their arrangement defines an interactive space of informa-
tion. Some people call such an environment “an information visualizer” or “a data visual-
izer” [1, 2], and its design “information visualization.” Some others call its design
methodology “the information architecture” [3]. The information architecture is the engi-
neering of how to design and to build a virtual space where we access and interact with
various kinds of information. Generally, information visualizers deal with a large number
of records and data. In most cases, these records and data are dynamically retrieved from
a repository such as a database or the Web.

Figure 13.20 shows a general framework for the composition of information visualiz-
ers. It uses a proxy pad as its base pad. This proxy pad works as a proxy to a database or
the Web. As a retrieval result, the proxy pad holds a list of records in its result slot. A Dis-
tributionChartPad is pasted on the proxy pad with its connection to the #result slot of the
proxy. This pad defines a two-dimensional distribution of pads representing records. This
distribution uses three slots of a DistributionChartPad. The #xCoordinate and the #yCoor-
dinate slots are used to specify two numerical value attributes of records. Each of these
two attributes may be either a basic attribute or a derived one defined as a function of
some basic attributes. For each record in the result list, the values of its selected two at-
tributes are used to locate its pad representation on the DistributionChartPad. The #recor-
dRepresentation slot is used to register a template pad for the #recordRepresentation. This
template pad for the #recordRepresentation uses a RecordPad as its base. It may define
such a form representation of a record as described in Section 10.2, or it may be just a
small anchor pad with an a priori registered form representation. In the latter case, only
small square pads are distributed on a DistributionChartPad. When clicked, each small
square pad pops up a form representation of its corresponding record. A Distribution-
ChartPad has also slots to specify the value range of X and Y coordinates. You may use
this framework to show a two-dimensional distribution of cars with respect to their prices

320 SPATIOTEMPORAL EDITING OF PADS

Figure 13.19 The example application of the frame jump function f(i) = i + n mod 2n.

tan-13.qxd 5/16/2003 7:19 AM Page 320

and production years. You may use the same framework to show the geographical distrib-
ution of birds whose locations are periodically updated by the data received through a
satellite from the transmitters attached to them. In this application, the DistributionChart-
Pad is made transparent, and a map pad is used under the distribution chart pad without
specifying any slot connection.

Instead of a DistributionChartPad, you may use a SequencerPad, or both of these. A
DistributionChartPad spatially arranges record-representing pads on itself, but a Se-
quencerPad temporally arranges the display timing of each record in the retrieved record
list. This temporal arrangement of record-representing pads uses five slots of a Se-
quencerPad. The #timeAxis slot is used to specify one numerical value attribute of
records. This attribute may be either a basic attribute or a derived one. For each record in
the result list, the value of its selected attribute is used to calculate the time to display its
pad representation on the SequencerPad. The #displayDuration slot is used to specify the
duration time to display each record. The #ready slot indicates the readiness of the se-
quential display of a record list, and the #play slot is used to start this sequential display of
records. The #recordRepresentation slot is used to register a template pad for the record
representation. This template pad for the record representation uses a record pad as its
base. As in the case of a DistributionChartPad, this template pad may define a form repre-
sentation of a record, as described in Section 10.2.

Spatiotemporal arrangement of record distribution uses a DistributionChartPad and
other two special pads. They are an AlarmClockPad and a HideAndShowPad. A Hide-
AndShowPad alternatively hides and shows its child pads whenever it receives an “up-
date” message, or a “set” message through its #switch slot. As shown in Figure 13.21, we
insert three tiers of pads between a RecordPad and its child pads. They are of the same

13.4 INFORMATION VISUALIZATION 321

Figure 13.20 A general framework for the composition of information visualizers with pads.

tan-13.qxd 5/16/2003 7:19 AM Page 321

size as the RecordPad. They are a HideAndShowPad at the top, and two AlarmClockPads
as the second and the third tiers. Two AlarmClockPads are connected to two attribute slots
of the RecordPad. These two attribute values determine when to show and when to hide
the record representation pad. The RecordPad and the lower two tiers of pads are all made
transparent. This composite pad is registered into the record representation slot of a Dis-
tributionChartPad. When a database is accessed, the retrieved records are stored in the
#result slot of the DBProxyPad, which sends an “update” message to the Distribution-
ChartPad to read this record list. The DistributionChartPad arranges the pad representa-
tion of each record on itself. Each record-representation pad shows itself when the first
“update” message comes from one of its AlarmClockPads, and hides itself when the sec-
ond “update” message comes from the other AlarmClockPad. This visualizes the retrieved
records in a spatiotemporal space.

Another type of spatiotemporal visualization of retrieved records represents each
record as a pad whose motion also depends on some of its attribute values. The pad repre-
sentation of a record in this case uses a composite pad as shown in Figure 13.22. The base
is again a RecordPad. On top of it, we paste a MotionControlPad with its connection to
one of the attribute slots. A MotionControlPad moves its parent pad over its grandparent
pad. Its motion is specified by the relative location on the grandparent pad and does not
change the relative locations of its child pads on itself.

322 SPATIOTEMPORAL EDITING OF PADS

Figure 13.21 Spatiotemporal arrangement of record distribution uses a DistributionChartPad, an
AlarmClockPad, and a HideAndShowPad.

tan-13.qxd 5/16/2003 7:19 AM Page 322

13.5 SUMMARY

IntelligentPad provides special pads for the spatiotemporal arrangements of pads. As to
the geometrical arrangements of pads, it provides a TreePad for the tree arrangement and
a FileCabinetPad for the pad cabinet arrangement.

Temporal arrangement requires a clock. We may consider four types of clocks. Intelli-
gentPad represents clocks, alarm clocks, timers, and pulse generators as primitive pads,
i.e., a ClockPad, an AlarmClockPad, a TimerPad, and a PulseGeneratorPad. These pads
are combined with an OpenClosePad to hide and show pads on this pad at predefined
times.

There are several ways to combine temporal control with geometrical arrangement.
Clock pads can be used to control the geometrical arrangement. A MotionPad whose mo-
tion can be a priori instructed in a step-by-step manner can be used to make some com-
posite pad change its location and size on another pad whenever the MotionPad receives
an “update” or a “set” message to its #clock slot. The hypermovie framework discussed in
Section 9.3 is also an example of spatiotemporal editing of pads.

A spatiotemporal arrangement of pads defines an interactive space. For pads represent-
ing various kinds of information, their arrangement defines an interactive space of infor-

13.5 SUMMARY 323

Figure 13.22 Another type of spatiotemporal visualization of retrieved records represents each
record as a pad whose motion also depends on some of its attribute values. The pad representation
of a record in this case uses such a composite pad as shown here.

tan-13.qxd 5/16/2003 7:19 AM Page 323

mation. Some people call such an environment an information visualizer. Spatiotemporal
arrangement pads can be used together with a database proxy pad to define a generic ap-
plication framework for information visualizers.

REFERENCES

1. A. Wierse, G. G. Grinstein, and U. Lang (eds.). Database Issues for Data Visualization. (IEEE
Visualization ‘95 Workshop Proc.). Lecture Notes in Computer Science 1183. Springer-Verlag,
Berlin, 1996.

2. R. Mattison. Data Warehousing: Strategies Technologies and Techniques. Chapter 19. Visualiza-
tion in Data Mining. McGraw-Hill, New York, 1996.

3. R. S. Wurman. Information Architects. Graphis Press, Zurich, 1996.

324 SPATIOTEMPORAL EDITING OF PADS

tan-13.qxd 5/16/2003 7:19 AM Page 324

CHAPTER 14

DYNAMIC INTEROPERABILITY OF PADS
AND WORKFLOW MODELING

Computer systems today must satisfy various application requirements through the bot-
tom-up, cross-platform, and right-sized integration of system components distributed
across networks. They are requested to immediately adapt themselves to the rapid changes
of system requirements and component technologies. They should enable their users to
easily build various systems just by dynamically combining varieties of data and applica-
tion resources distributed across networks. The increasing demand for management flexi-
bility in business organizations is accelerating this trend in computer systems. This chap-
ter will propose application frameworks for such demands based on the IntelligentPad
architecture.

14.1 DYNAMIC INTEROPERABILITY OF PADS DISTRIBUTED
ACROSS NETWORKS

IntelligentPad represents both data and application resources as pads. The dynamic com-
bination of distributed resources requires both dynamic interoperability of pads and the
reference of a remote pad. This remote reference itself should take the form of a pad in the
IntelligentPad Architecture. We call it a meta-pad.

IntelligentPad provides only two operations to define interoperations of pads. They are
“paste” and “drag-and-drop” operations. A “paste” operation dynamically defines a static
functional linkage between two pads. Once the linkage is defined, it exists until it is bro-
ken by a “peel” operation. A “drag-and-drop” operation, on the other hand, dynamically
applies the function of a target pad to an object pad. This function is applied only once to
the object pad when it is dropped on the target pad. The interoperation defined by a
“paste” operation is said to be static, whereas the one defined by a “drag-and-drop” oper-
ation is said to be dynamic.

325

tan-14.qxd 5/16/2003 7:24 AM Page 325

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

The target pad of a “drag-and-drop” operation should be an annihilator pad, which re-
ceives the dropped pad, stores this pad in itself, and hides this pad from the surface of it-
self. The target pad may access any slots of the object pad. The target pad needs to know
the slot name before it accesses this slot.

The output of a pad from a tool pad should pop up this pad on a pad that works as an
output port of the tool, which allows the user to directly drag this output pad for further
manipulations. Such a pad that works as an output port receives a pad as its new stored
value either from another pad or from an external system, generates this pad as a visual
object, and pops it up on itself. We call such a pad a generator pad.

Figure 14.1 shows a composite pad with one annihilator pad and two generator pads.
They are connected to an input slot and two output slots of the base pad, which, when an
object is input to its input slot, outputs two of its copies through its two output slots. When
you drop an arbitrary pad on the annihilator pad, you will obtain two of its copies on the
two generator pads. To use these copies, you can just drag them out of the two generator
pads. The annihilator pad absorbs the dropped pad and sends this pad to the underlying

326 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.1 A composite pad with one annihilator pad and two generator pads replicates any pad
that is dropped onto the annihilator pad, and pops the two copies upon the generator pads. (a) A
composite pad with a single annihilator pad and two generator pads, and a pad to feed into the anni-
hilator pad. (b) The input pad is replicated and the two copies are popped up on the generator pads.

(a)

(b)

tan-14.qxd 5/16/2003 7:24 AM Page 326

base pad, which then makes its copy and sends this copy together with the original to the
two output slots. These output slots are connected to the two generator pads. The base pad
sends an “update” message to the generator pads to fetch the current value of their con-
nected slots, which then makes these generator pads pop up the fetched copies of the input
pad.

In IntelligentPad, any processing service, when considered as an independent object,
should take the form of a composite pad. The same is true for its input and output objects,
whether they are data, texts, figures, images, or programs. They should all take the form
of pads. The drag-and-drop operation is the only way for end-users to dynamically associ-
ate each processing service with its input and output objects. The end-user computing
with various types of processing services needs to make these service tools defined as pad
converter pads that convert dropped pads to pop up result pads as outputs.

Our architecture for dynamic interoperability aims at the step-wise, bottom-up integra-
tion of already existing systems, i.e., integration of personal environments into a group
environment, group environments into a department environment, department environ-
ments into a company environment, and company environments into an enterprise envi-
ronment. We assume here that all these environments are implemented in IntelligentPad
systems. They are all assumed to consist purely of pads. We have no plan to integrate lega-
cy software without a priori wrapping each of them to work as a pad. Bottom-up integra-
tion aims to integrate already running systems to work interactively and consistently with-
out changing these systems.

The most difficult problem in bottom-up integration is how already existing systems
that are distributed across networks can know each other in order to communicate. To
solve this problem, we introduce the concept of meta-pads. A meta-pad works as a proxy
of some primitive pad, which we call the referent of this meta-pad. A meta-pad can be sent
to any machine different from the machine with its referent. Meta-pads are different from
proxy pads. A proxy pad works for an external object, whereas a meta-pad works for a re-
mote primitive pad. A pad may have more than one copy of its meta-pad. Meta-pads and
their referent always know how to access each other even if some of them travel across
networks. Each meta-pad holds the address of its referent pad, and the referent holds an
address list of its meta-pads. Here we classify referent primitive pads into five categories:
pad annihilators, pad generators, pad converters, pad gates, and others. The functions of
their meta-pads differ from each other.

A meta-pad for a pad annihilator is used to drop a locally available pad onto a remote
annihilator pad. When a pad is dropped on it, the meta-pad transports this pad to its refer-
ent annihilator, and drops it there (Figure 14.2). A meta-pad for a pad generator is used to
retrieve a new pad that is popped up on the pad generator at a remote site. When a pad is
popped up on its referent, the meta-pad receives a meta-pad of this newly generated pad
and pops it up on itself (Figure 14.3).

A pad converter performs some conversion of pads. It has input-port slots and output-
port slots. Each input-port slot has its corresponding queue buffer. When it receives a
“set” message with some pad as its parameter, an input-port slot adds this pad to the cor-
responding input queue. Each output-port slot, when accessed by a “gimme” message,
gets the pad stored in the corresponding register, and returns it to the message sender; if
the corresponding register is empty, this output-port slot returns “nil.” A pad converter
starts its execution as an independent process whenever the preceding conversion has
been completed, and all the new inputs necessary for the new conversion are available in
input queues. For each output slot, this conversion process sets the corresponding register

14.1 DYNAMIC INTEROPERABILITY OF PADS DISTRIBUTED ACROSS NETWORKS 327

tan-14.qxd 5/16/2003 7:24 AM Page 327

with a new pad, and sends an “update” message to the child pads connected to this slot.
Each conversion is considered complete when all the output slots have been accessed by
“gimme” messages to return new pads to their senders.

To input a pad into an input-port slot by a drag-and-drop operation, we need to paste an
annihilator pad called an InputPortPad with its connection to this slot. Similarly, to pop up
a pad in an output-port slot, we need to paste a generator pad called an OutputPortPad
with its connection to this slot. Each OutputPortPad, when it receives an “update” mes-
sage, sends its parent pad a “gimme” message to get the next output pad, and pops this pad
up on itself.

A meta-pad for a pad converter has a subset of those slots in its referent pad converter.
It has input-port slots and output-port slots. These ports, however, have no queue buffers.
Each of its input-port slots, when receiving a pad or its meta-pad, inputs this pad to the
corresponding input-port slot of the referent pad converter. Every meta-pad that is input to
a pad converter autonomously retrieves its referent to replace itself with its referent when
required by the pad-conversion process. Each of its output-port slots, when accessed by a
“gimme” message, sends this message to the corresponding slot of the referent; if the ref-
erent returns a pad, this output port slot returns a meta-pad of this read out pad to the mes-
sage sender; otherwise, it returns “nil.” A meta-pad of a pad converter allows a user to use
this pad converter from a remote site (Figure 14.4).

328 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.2 A meta-pad for a pad annihilator is used to drop a locally available pad onto a remote
pad.

Figure 14.3 A meta-pad for a pad generator is used to retrieve a new pad that is popped up at a re-
mote site.

tan-14.qxd 5/16/2003 7:24 AM Page 328

A pad gate works as a queue buffer of pads. It has two modes—the output-enabled
mode and the output-disabled mode. It is a pad with a single input-port slot, a single out-
put-port slot, and a control slot. Pads are input through the input-port slot and stored in the
queue. When its queue is empty, a pad gate pad stays in the output-disabled mode. Other-
wise, when a “set” message accesses its control slot, a pad gate changes its mode to the
output-enabled mode. If a “gimme” message accesses its output-port slot during its out-
put-enabled mode, a pad gate outputs the first pad in the queue as the return value, and
changes its mode to the output-disabled mode. If a “gimme” message accesses its output
port slot during its output-disabled mode, it returns “nil.” A pad gate pad issues an “up-
date” message to its child pads whenever it changes its mode from the output-disabled
mode to the output-enabled mode.

A meta-pad for a pad gate has three slots: an input-port slot, an output-port slot, and
a control slot. It has, however, no queue buffers. Its input-port slot, when receiving a pad
or its meta-pad, inputs this pad to the input-port slot of the referent. Its output-port slot,
when accessed by a “gimme” message, sends this message to the output-port slot of the
referent. If the referent returns a pad, this output-port slot returns a meta-pad of this
read-out pad to the message sender; otherwise, it returns “nil.” Pad gates do not convert
input meta-pads to their referents. They treat their inputs as tokens without referring to
the contents. An access of the control slot of a meta-pad is transferred to its referent
pad-gate pad. A meta-pad of a pad gate allows a user to use this pad gate from a remote
site (Figure 14.5).

14.1 DYNAMIC INTEROPERABILITY OF PADS DISTRIBUTED ACROSS NETWORKS 329

Figure 14.4 A meta-pad of a pad converter allows a user to use this pad converter from a remote
site.

Figure 14.5 A meta-pad of a pad gate allows a user to use this pad gate from a remote site.

tan-14.qxd 5/16/2003 7:24 AM Page 329

In addition to the functions described above, every meta-pad has a signal slot and the
following functions. When receiving an “update” message, every meta-pad makes its ref-
erent pad invoke the “update” method (Figure 14.6). This function is used to detect a local
signal and to invoke the “update” procedure of a remote pad. When its referent pad is up-
dated, every meta-pad changes its signal slot value to “true,” and issues both an “update”
message and a “set” message with “true” as the parameter (Figure 14.7). This function is
used to locally detect an update of a remote referent pad. The signal slot can be reset to
“false” by sending a “set” message with “false” as its parameter.

For every meta-pad, its copies work for independent copies of the same referent,
whereas its shared copies work for the same referent.

Instead of directly dragging and dropping a pad to and from another pad, we can use
their meta-pads. If these referent pads exist at different sites, their interoperability cannot
be directly specified without using their meta-pads.

14.2 EXTENDED FORM-FLOW SYSTEM

The form-flow model is a kind of workflow model. It was intensively studied in the latter
half of 1970s and early 1980s [1, 2]. Recent advances in object-oriented modeling tech-

330 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.6 When receiving an “update” message, every meta-pad makes its referent pad invoke
the “update” method. This function is used to detect a local signal and to invoke the “update” proce-
dure of a remote pad.

Figure 14.7 When its referent pad is updated, every meta-pad changes its signal slot value to
“true,” and issues both an “update” message and a “set” message with “true” as the parameter. This
function is used to locally detect an update of a remote referent pad.

tan-14.qxd 5/16/2003 7:24 AM Page 330

nologies have simplified the systematic modeling of forms and their flows, and have re-
cently revitalized its study. The IntelligentPad architecture has further simplified form-
flow modeling. It can directly define forms as composite pads.

14.2.1 Form-Flow Model in IntelligentPad

The form-flow model consists of several different kinds of components. They include
forms, form converters, form generators, form annihilators, triggers, distributors, merg-
ers, inspectors, gates, detectors, and flow definitions (Figure 14.8).

Forms visually represent information. A single form has an arbitrary number of entry
cells. They are arbitrarily arranged on the base sheet of the form. Some entry cells may
contain smaller forms. Users cannot change the formats of forms. Some forms, however,
may allow users to fill in or rewrite some entry cells.

A form converter receives input forms and converts them to a single form or a se-
quence of forms of the same output format that is different from the input format. It
reads out some entry cells of the input forms to compute each entry cell of the output
forms. A form generator generates a form. It is a special type of form converter. The in-
formation necessary to generate a form does not come from any other forms, but from
an external system such as a database, an e-mail system, a fax machine, an industrial
plant, or a user interaction system. A form annihilator receives input forms and deletes
them from the system; it outputs their contents information to an external system such
as a database, an e-mail system, a fax machine, an industrial plant, or a user interaction
system.

A trigger is a module to generate a control signal that opens or closes a gate to control
a form flow from one module to another. Triggers may be various objects. A system alarm
clock, for example, is a trigger that issues a control signal at some specified time and date.

14.2 EXTENDED FORM-FLOW SYSTEM 331

Figure 14.8 Components of the form-flow model.

tan-14.qxd 5/16/2003 7:24 AM Page 331

A distributor has a single input port and multiple output ports. Depending on its selec-
tor signal, it selects one of its output ports to output the form it receives. A merger merges
more than one input flow to a single output flow.

An inspector receives each input form and outputs either a control signal or a selector
signal whose value depends on whether the input form satisfies the specified condition.
Its output signal is used to control a gate or a distributor.

A detector, when receiving an input form, immediately outputs this form and issues a
trigger signal.

The IntelligentPad architecture implements these components as composite pads. A
form uses a RecordPad as its base pad. Entry cells of a form may use various pads includ-
ing text, numerical, chart, image, sound, and video pads. They are pasted on a RecordPad
to compose a form.

A FormConverterPad is a blank-sheet pad with several slots including the #conversion-
Formulae slot, #inputForm slots, #outputForm slots, #inputFormFormat slots, #output-
FormFormat slots, and #reset slot. Its #conversionFormulae slot is used to specify formu-
las to calculate the output-form entries from the input-form entry values. Each
#inputForm slot is used to input a form to the form converter, whereas each #outputForm
slot is used to output a converted form. Each #inputFormFormat slot and each #output-
FormFormat slot are used to maintain pointers to example input and output forms that
work as the input and output form templates, respectively. The slot #reset is used to initial-
ize the form converter.

ConversionFormulaPads are all connected to the single same #conversionFormulae
slot of a FormConverterPad. Each conversion-formula pad enables us to specify its source
pads for each of its input variables, its destination pad for its single output variable, and
the formula to compute its output variable value from its input variable values. Suppose
that a ConversionFormulaPad defines a conversion function f (x1, x2, . . . , xn), and associ-
ates each input variable xi with a pad Pi, and its single output variable with Po. This Con-
versionFormulaPad sends a “set” message to its parent FormConverterPad to add a tuple
[f (x1, x2, . . . , xn), pid(P0), pid(P1), pid(P2), . . . , pid(Pn)] to the list of tuples stored in the
#conversionFormulae slot of this parent pad, where pid(P) denotes the pad identifier of a
pad P. Source pads are selected from the entry-cell pads of the example input forms and
other ConversionFormulaPads, whereas destination pads are selected from the entry-cell
pads of the example output forms and other ConversionFormulaPads. The conversion for-
mula can be input to the formula slot of this pad through a text-input pad connected to this
slot.

Some ConversionFormulaPads treat aggregate functions. Such a ConversionFormula-
Pad receives a set of inputs for a specified number of times, and calculates an aggregate
function such as summation, average, maximum, and minimum to obtain its output value.

Once you have finished with the specification of the input-form formats, output-form
format, and all the conversion functions, you may use this form converter to perform the
defined form conversion. Its input-port slots are all provided with associated queue
buffers. The conversion is executed by a dedicated process. It is started whenever the pre-
ceding conversion has been completed, and all the input forms necessary for the next con-
version become available in input-port queue buffers. Each input form is first examined if
its format matches the example form that the corresponding #inputFormFormat slot
points to. If it fails, this input form is neglected, and the next one in the queue is exam-
ined. Otherwise, the primary slot value of each of its child pads is set to the primary slot
of the corresponding child pad of the example form that the corresponding form-format

332 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

tan-14.qxd 5/16/2003 7:24 AM Page 332

slot points to. These primary slots are the primary slots for the “gimme” message. Then
each function stored in the #conversionFormulae slot is applied.

A FormConverterPad interprets the list in its #conversionFormulae slot as a data-flow
program, and execute this program. Its execution of an instruction [f (x1, x2, . . . , xn),
pid(P0), pid(P1), pid(P2), . . . , pid(Pn)] reads, from each source pad, its primary slot for the
“gimme” message, uses these values to compute the function value, and sends this value
to the destination pad through its primary slot for the “set” message. Let a terminal pad in
such a data-flow program denote a pad that appear as an output destination of some in-
struction, but never as an input source of any instruction. When all the terminal pads are
set with new values, a FormConverterPad makes a copy of the form pointed to by the
#outputFormFormat slot, then stores this pad in the #outputForm slot, and issues an “up-
date” message to its child pads. When its #outputForm slot is accessed by a “gimme”
message, and returns a converted form, this FormConverterPad completes a conversion. If
an OutputPortPad is connected to this slot, it then issues a “gimme” message to get the
form in the #outputForm slot and to pop up this form on itself. Some form converter may
require more than one input form coming through the same input port to complete a con-
version. Some others may generate more than one output forms of the same format in a
single conversion process.

Figure 14.9 shows a form converter with one form input and one form output. This
converter outputs a single form as a summary for every consecutive five input forms. The
left ConversionFormulaPad reads two cells of each input form, multiplies these two, and
outputs the product. The right ConversionFormulaPad receives this product, adds it to its
current sum, and outputs this sum for every five consecutive inputs. This sum is reset to
zero after every output. Whenever the summation function outputs a new value to a cell of
the output-form template, the template with this value is copied and stored in the #output-
Form slot as a new output form.

The implementation of form generators and form annihilators will be detailed later.
As trigger components, IntelligentPad provides various trigger-signal generators. They

include alarm-clock pads and interval-timer pads. A gate pad can be used as a first input
first output (FIFO) queue of forms; its control signal is used to enable a single output
from this queue.

A FlowDefinitionPad works as a circuit board on which various tool pads are connect-
ed with each other. It allows us to draw a cable from a primitive pad P1 of one composite
tool pad on itself to a primitive pad P2 of another composite tool pad on itself (Figure
14.10). This wiring adds a tuple (P2, P1) to the list stored in the FlowDefinitionPad. For
each tuple (Pi, Pj) in this list, a FlowDefinitionPad sends a “gimme” message to Pj to read

14.2 EXTENDED FORM-FLOW SYSTEM 333

Figure 14.9 A form converter that outputs a single form as a summary for every consecutive five
input forms.

tan-14.qxd 5/16/2003 7:24 AM Page 333

its primary slot for the “gimme” message whenever Pj issues an “update” message. This
FlowDefinitionPad then sends a “set” message to Pi to write this read out value to its pri-
mary slot for the “set” message. The tool pads include form converters, queue buffers,
distributors, mergers, and detectors. These composite tool pads use FormConverterPads,
PadQueuePads, PadDistributorPads, MergerPads, and PadDetectorPads as their base
pads, respectively.

A PadQueuePad has a #input slot, a #output slot, and a #outputRequest slot, and works
as a queue buffer. When a pad is input to the #input slot, it is added to the end of the pad
queue in the buffer. When a request signal is input to the #outputRequest slot, a
PadQueuePad outputs the first pad in its pad queue to its #output slot. If it has no pad to out-
put, it will immediately output the next input pad when it comes. A PadQueuePad issues an
“update” message whenever its #output slot is updated. A PadQueuePad implements a gate
that opens/closes the output gate of a queue buffer depending on its control signal.

A PadDistributorPad has a #input slot, several output slots, and a #selector slot. It has
also an input queue, not only for the #input slot, but also for the #selector slot. When a pad
is input through its #input slot, it is added to the pad queue. When a selector number is in-
put to the #selector slot, it is added to the selector queue. If the selector queue is not emp-
ty, a PadDistributorPad outputs the first pad in the pad queue to the output slot that is se-
lected by the first selector in the selector queue. If a PadDistributorPad has no pad to
output, it will immediately output the next input pad to the next selected output slot when
a new pad is input to the pad queue. A PadDistributorPad issues an “update” message
whenever one of its output slots is updated.

A MergerPad has several input slots, a #output slot, and a #outputRequest slot. It has
also a single input pad queue and an output request queue. When a pad is input through
one of its input slots, it is added to the pad queue. When a request signal is input to the
#outputRequest slot, a MergerPad outputs the first pad in its buffer to its #output slot. If it
has no pad to output, it will immediately output the next input pad when it comes. A
MergerPad issues an “update” message whenever its #output slot is updated.

A PadDetectorPad has a #input slot, a #output slot, and a #signal slot. When a pad is
input to the #input slot, this pad is immediately output to the #output slot, the Boolean
value “true” is set to the #signal slot, and an “update” message is issued. When a pad is
read out from the #output slot, the Boolean value “false” is set to the #signal slot. A Pad-
DetectorPad is used to signal the availability of a pad to another tool pad.

In addition to these pads, any composite pads can be used as tool pads on FlowDefini-
tionPads.

334 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.10 A FlowDefinitionPad works as a circuit board on which various tool pads are con-
nected with each other.

tan-14.qxd 5/16/2003 7:24 AM Page 334

Instead of using FlowDefinitionPads, we may use wiring pads to transport forms from
an output-port slot of some pad to an input-port slot of another pad. Wiring pads send the
value of a slot of one pad to a slot of another pad whenever the source slot changes its val-
ue. To use a wiring pad, you can paste a wiring pad on the source pad with its slot connec-
tion to the source slot, and also paste a shared copy of this wiring pad on the destination
pad with its slot connection to the destination slot. Different from ordinary shared copies,
a shared copy of a wiring pad can receive any update of the original, but cannot propagate
its update to the original.

14.2.2 Virtual Forms to Assimilate Transaction-Based Systems

In form-flow systems, it is hard to maintain consistency among the contents of forms. In-
telligentPad provides a shared-copy operation to maintain the consistency among copies
of the same form. This, however, does not work for maintaining the integrity of the con-
tents of different forms. Some forms will have such integrity, while others may not. This
can be resolved by the use of a database to maintain the integrity of such forms. This is the
main reason why the form-flow model attracted mainly database researchers’ attention
during late 1970s and early 1980s.

We introduced the concept of virtual forms for this purpose. Virtual forms are kept
consistent with the databases. Each virtual form represents a record of some view rela-
tion defined over a database. They access their related databases to fill in their unspec-
ified entries, or to insert their records to the databases. Their programs define their ways
of accessing databases. Here we define two special types of virtual forms: reader forms
and writer forms. A reader form distinguishes some of its entries from others, and al-
lows its users or form converters to fill in only those entries. We call these entries input
entries. The reader form automatically fills in the remaining entries by accessing the
database. A writer form, when all of its entries are filled in, inserts this record into the
database.

Virtual forms can be considered proxies of the database views discussed in Section
10.2. An example of a reader form is an employee-record form. It has entries such as ID#,
name, age, sex, address, salary, etc. If employee records are kept in a database, it is not
necessary for either users or form converters to specify any entry values other than the
ID#. The remaining entry values can be retrieved from the database using the given ID#.
Furthermore, this reader form always presents the up-to-date entry values, consistent with
the database, whenever these values are requested to be read.

When a reader form is input to a form converter as its input form, the form converter
requests this reader form to present all the required entry values. This request makes the
reader form access its related database to retrieve those values. A reader form may also be
registered as an output form of a form converter. In such a case, the form converter fills in
only its input entries. When a copy of the reader form is output, it fills in its remaining en-
tries by accessing the related database.

Writer forms are only used as output forms of form converters. They are not used as in-
put forms of any form converter. When a form converter has filled in all of its entries, a
writer form accesses the related database to insert the record it holds to the database. Then
the converter outputs this form, which will not be further rewritten and will work as a real
form.

Virtual forms may also work as proxies for any other transaction-based systems and
external devices. They include production-line control systems, delivery-control systems,
warehouse-control systems, shipping-control systems, fax machines, e-mail systems, and

14.2 EXTENDED FORM-FLOW SYSTEM 335

tan-14.qxd 5/16/2003 7:24 AM Page 335

user-interaction systems. The rewriting of a writer form means that it controls a produc-
tion line, a delivery system, a warehouse system, or a shipping system. When applied to a
fax machine or an e-mail system, it means the transmission of a letter constructed from
the form record and an a priori registered letter template. Its destination might also be de-
termined from some entry values of the form record. When applied to a user-interaction
system, it means the presentation of the form record to a user.

The accessing of a transaction-based system or external device by a reader form, on the
other hand, means the monitoring of this system. When applied to a production line, a de-
livery system, a warehouse system, or a shipping system, it means the monitoring of their
states. When applied to an e-mail system, it means the access of the first message in the
message queue. When applied to a user-interaction system, it prompts the user to input re-
quested values.

We can monitor and control any transaction-based systems and any user-interaction
systems through their virtual forms. Furthermore, these virtual forms can be manipulated
by an integrated form-flow system. Virtual forms extend the form-flow model to integrate
not only office work, but also all the enterprise activities that office workers control and
monitor. Furthermore, this integration completely encapsulates those transaction-based
subsystems and hides their details from users of the form-flow system (Figure14.11).

14.2.3 Form Generators and Form Annihilators

Form generators and form annihilators also work as proxies of external objects such as a
database, an e-mail system, a fax machine, an industrial plant, or a user-interaction sys-
tem. Different from virtual forms, they do not travel through a form-flow system by them-

336 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.11 Virtual forms are used to integrate various transaction-based systems with form-
flow systems by encapsulating them and hiding their details from users.

tan-14.qxd 5/16/2003 7:25 AM Page 336

selves. Instead, they generate or consume forms that travel. A form generator allows us to
register a reader form. A reader form accesses the external system when it receives a read
request. A form generator, on the other hand, is triggered by its associated external system
to request its registered virtual form to access this external system. The form generator
then generates a form with the same format and the same contents as the result of this reg-
istered virtual form. The generated form may or may not be a virtual form. Form genera-
tors for e-mail systems can transform any messages they receive to forms, and forward
them to various tools in form-flow systems. Every form generator also issues an “update”
message and a “set” message as ready signals when it has generated a form. These signals
can be used as trigger signals.

A form annihilator allows us to register a writer form. It accepts as its input a real form
with the same format of the registered form. When an input form arrives, it maps the con-
tents of this form to the registered writer form, deletes the input form, and tells this writer
form to output its message to the corresponding external system. When applied to an e-
mail system, a form annihilator can automatically generate an e-mail text and its destina-
tion address from each input form, and send this text to this destination. Every form anni-
hilator also issues an “update” message and a “set” message as ready signals when it
completes its execution. These signals can be used as trigger signals.

Form generators and form annihilators together with some virtual forms can integrate
external communication systems and transaction-based systems with form-flow systems.

14.3 PAD-FLOW SYSTEMS

The form-flow system architecture in IntelligentPad can be further extended to a pad-flow
system architecture, which deals with flows of various pads instead of form pads. In pad-
flow systems, form converters are extended to pad converters. Form annihilators and form
generators are extended to pad annihilators and pad generators, respectively. Other com-
ponent pads for form-flow systems are used in the same way in pad-flow systems. They
are triggers, distributors, mergers, inspectors, gates, detectors, and flow definitions.

Pad-flow systems can model flows of objects through various processing services.
They can treat any objects that can be represented as pads. The connection of an output
port of one service to an input port of another service can be defined either by a FlowDe-
finitionPad or by a wiring pad.

Processing services are represented by pad converters. A pad converter has some num-
ber of input-port slots, a #outputPort slot, and a #reset slot. It has a queue for each of its
input ports. Different from form converters, pad converters do not have input-form format
slots, output-form format slots, or conversion-formulae slots.

The conversion is executed by a dedicated process. It is started whenever the preceding
conversion has been completed, and all the input pads necessary for the next conversion
become available in input-port queue buffers. Each conversion computes an output pad
from the input pads; it sends this output pad to the #outputPort slot, and makes this pad
converter issue an “update” message to its child pads. When its #outputPort slot is ac-
cessed by a “gimme” message and returns a converted pad, this pad converter completes a
conversion. If an OutputPortPad is connected to this #ouputPort slot, it issues a “gimme”
message to get the output pad in the #outputPort slot, and pops up this pad on itself.

For example, we may treat an input image as an image pad, and consider an edge-de-
tection program as a pad converter. Then the converter outputs the processed image as a

14.3 PAD-FLOW SYSTEMS 337

tan-14.qxd 5/16/2003 7:25 AM Page 337

pad. An InputPortPad and an OutputPortPad are pasted on this pad converter with their
connection to the input-port slot and the output-port slot, respectively. This composite pad
allows users to drag and drop any image pad on its InputPortPad, and pops up the edge-
detected image as a pad on its OutputPortPad.

Pads to flow through pad-flow systems might be proxy pads of some external objects.
Proxy pads in pad-flow systems play the same role as virtual forms in form-flow systems.
The details on how a pad converter, a pad annihilator, or a pad generator process their in-
put and output proxy pads are left to the definition of its processing function.

14.4 DYNAMIC INTEROPERABILITY ACROSS NETWORKS

Form-flow systems as well as form converters define form-processing services. More
generally, pad-flow systems and pad converters, respectively, define complex and simple
object-processing services. As discussed in Chapter 11, these systems as pads can be pub-
lished through the Internet or intranets by embedding them in web pages. This type of
publication, however, transports the processing services themselves to client machines.
There should be another type of publication, i.e., the publication of service ports. Each
service has its input and output ports. Instead of publishing a service program itself, we
may only publish its input and output ports. When a service has published its input and
output ports by embedding its pad representations in a Web page, we can open this page
and drag and drop an object pad into the input-port pad to request its processing. When
the processing completes, the result will be popped up on the output-port pad on the same
page. We can drag out this pad for further local use.

14.4.1 Network Publication of Form-Flow and Pad-Flow Systems

The publication of service ports uses InputPortPads, OutputPortPads, and their meta-
pads. InputPortPads are pad annihilators, whereas OutputPortPads are pad generators.
These meta-pads, when published through their embedding in Web pages, can be used
by remote users to input and output pads to and from the services with their referent in-
put- and output-port pads. The publication of service ports allows us to open several
Web pages one after the other or simultaneously to drag and drop pads from one service
to another across the Internet to perform a sequence of pad conversions. It allows us to
dynamically link several processing services distributed around the world to perform a
complex job.

When more than one user simultaneously accesses the same service, the publication of
service ports fails to distinguish the set of inputs and outputs of each user from those of
others. To solve this problem, we can publish a meta-pad of a pad converter, and use its
different copies for different users. This also replicates the service program running on the
service site. It is also possible to extend a pad converter and its meta-pads for a single-
service program to process more than one request. This extension can use the colored to-
ken technique that is well known in data-flow programming.

14.4.2 Bottom-up Integration across Networks

Pads for form-flow systems and pad-flow systems provide an easy way for end-users to
define flows of work in an office, a laboratory, a factory, a bank, an enterprise, and, fur-

338 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

tan-14.qxd 5/16/2003 7:25 AM Page 338

thermore, across these organizations. These works are, however, inherently distributed
through a local area network or even through a global area network.

Meta-pads provide a method to integrate more than one form-flow or pad-flow system
distributed across networks. Instead of directly connecting forms and form converters, or
pads and pad converters, we can connect their meta-pads on a flow-definition pad. The re-
sulting composite pad works as a remote controller of forms and form converters, or of pads
and pad converters. If the meta-pads are published on a Web page through the Internet or an
intranet, we can define the connection of remote pads and remote converters in our own lo-
cal environment. Furthermore, these pads and converters may be distributed across net-
works; their meta-pads can be published through the Internet by embedding them in arbi-
trary Web pages. By dragging these meta-pads out of different Web pages, we can wire the
output of one of them to the input of another. The publication of meta-pads and their con-
nection at a client site provide a remote patch board for pads and pad converters. Figure
14.12 shows such a definition. This example integrates two existing systems using meta-
pads. These two may run on different sets of machines. The remote controller can be de-
fined either on a machine in one of these two sets or on another machine.

We can also use a meta-pad for a flow-definition pad on which a form-flow or pad-
flow network is already defined. This allows us to integrate more than one subsystem that
is also an integration of smaller subsystems.

Figure 14.13 shows a display screen copy of an example form-flow system. The top
middle composite pad defines a form flow using meta-pads. This flow has meta-pads for
three form converters. It also shows these three form converters, one in the left middle
window, and two others in the bottom window. Some example input forms and their corre-
sponding output forms are shown in the right middle window.

14.5 WORKFLOW AND CONCURRENT ENGINEERING

Workflow is a metaphorical view of activities in an organization as a set of jobs flowing
through various processing services [3]. Some services are provided by software systems,

14.5 WORKFLOW AND CONCURRENT ENGINEERING 339

Figure 14.12 The publication of meta-pads and their connection at a client site provides a remote
patch board for pads and pad converters.

tan-14.qxd 5/16/2003 7:25 AM Page 339

whereas others are provided by people. Workflow systems seek to assist, automate, and
control the processing of work. They can play pivotal enabling roles for the successful im-
plementation of reengineered business processes or the incremental quality improvement
gains in business transactions.

14.5.1 Workflow Systems

Workflow systems connote the framework for automating and enhancing the flow of work
activities or task activities between workers and processes. A workflow application auto-
mates the sequence of actions, activities, or tasks used to run the process, including track-
ing the status of each process instance, as well as tools for managing the process itself.
Workflow does not have to be structured. Its primary function is to facilitate the fulfill-
ment of projects and deliverables by a team. Workflow software is the tool that empowers
individuals and groups in both structured and unstructured environments to automatically
manage a series of recurrent or nonrecurrent events in a way that achieves the business
objectives of the company. It actively manages the coordination of activities among peo-
ple in general business processes. Whether used primarily as a tool to enhance existing in-
frastructures or as a tool to implement business reengineering, we have to remember that
workflow means tools. Workflow technologies themselves do not have inherent solutions
to solve business-process problems. There must be a design step, which is a major strate-

340 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

Figure 14.13 A display screen copy of an example form-flow system. The top middle composite
pad defines a form flow using meta-pads.

tan-14.qxd 5/16/2003 7:25 AM Page 340

gic business evaluation of the processes in the organization, the culture within the organi-
zation, and the adoption of the proper technology to bring about the change or improve-
ment. The workflow system must support groups and collaboration. The groups and indi-
viduals involved can be either local users or remote users. The collaboration capabilities
of the workflow system must specify the scope of collaboration. Workflow systems often
support cases, forms, tracking, approval, and decision trees. All these functions involve
collaboration by workers with different roles. The workflow system must have specific
targets, goals, and deliverables.

Workflow systems have their roots and initial implementations in document imaging.
The primary purpose of these systems was to convert existing paper documents and office
procedures using paper-based information into digitized documents and automated infor-
mation flow. The converted paper documents appear either as images, editable forms, or
free text. When they are introduced into a document imaging system, they become objects
with attributes and content. For efficient retrieval and manipulation of document images,
both attribute-based indexing and content-based indexing are supported. The images,
forms, or generated text documents can either be viewed or updated by office workers.
The update can be in the form of annotations on top of the image documents or through
updating keywords and attribute values of the objects. Often, the processing of the images
follows well-defined procedures in a corporation.

Now, however, with the proliferation of various electronic interchange mechanisms for
documents, forms, spreadsheets, and other types of objects, a substantial amount of infor-
mation is generated digitally to start with. The new generation workflow systems have
similar goals as their document imaging applications, namely to replace paper-based busi-
ness processes with their computerized electronic counterparts.

One distinction that is often made between various workflow solutions is whether
they are message-based or server-based [4]. The former systems are basically e-mail-
based with extensions to cope with notifications, receipts, forms, rule-base forwarding,
advanced filing, and digital signatures. Some of them incorporate flow capabilities to
automate the flow of messages of frequently used business transactions. The latter sys-
tems are implemented on top of a commercial database management system or a pro-
prietary DBMS. Most of the workflow-engine functionality is executed on the server
node. The engine is responsible for handling workflow activation, tracking, notifications,
rules, and so on. The workflow engine interfaces with transport engines to deliver the
objects on a workflow’s route. The client node handles the graphical user interface of the
workflow.

Workflow systems are often classified into three categories—transaction- or produc-
tion-based, ad hoc, and administrative [4].

With transaction or production workflow systems, there is typically a very involved
policy or procedure described and imposed by a corporation. They are at the very heart of
the business of the corporation. The tasks carried out by production workflow systems are
followed day by day with little change. These procedures and processes usually involve
various departments within an organization.

Many tasks and activities in corporation, however, are more project-oriented and do
not use extensive processes and procedures. Ad hoc workflow applications have goals and
deliverables whose steps and the dynamics between users are more difficult to define in
detail and to any degree of predictability. Ad hoc workflow systems tend to involve more
creative and usually higher-level knowledge workers. They do not require elaborate pro-
ject-management systems, which are just overkill. However, they need to provide some

14.5 WORKFLOW AND CONCURRENT ENGINEERING 341

tan-14.qxd 5/16/2003 7:25 AM Page 341

sort of control for making sure the various tasks and responsibilities of participants are
delivered on time, and that the deliverables are acceptable. They also need to constantly
communicate intermediate results for approval, recommendation, and so on.

Administrative workflow systems handle routine administrative tasks. Most systems
that deal with routing of forms fall into this category. They provide the facilities for the
creation of simple forms, the routing of forms, iteration of form completion by approval
personnel and workers, and the control over deadlines including notifications and alarms
to remind people to perform tasks.

14.5.2 Pad Flow as Workflow

Pads have enabled us to edit, distribute, manage, and, of course, interact with various in-
tellectual resources in the same way as we deal with paper documents. These intellectual
resources include multimedia documents, forms, maps, drawings, programs, rules, appli-
cation tools, client tools to access various servers, and whatever else we can treat as pads.
Pad-flow systems allow us to automate well-defined flow of all these kinds of intellectual
resources and their processing, which is also represented as pad converter pads, and can
be treated as a kind of intellectual resource. They can also track the status of each process
instance by monitoring #signal slots of PadDetectorPads; each of these PadDetectorPads
is used to detect a pad transfer from an output port of one pad converter to an input port of
another pad converter.

The message-based workflow systems can be easily implemented using the pad mail
system, which can cope with notifications, receipts, forms, rule-base forwarding, ad-
vanced filing, and digital signatures. The server-based workflow systems can also be easi-
ly implemented using database proxy pads as well as other kinds of server proxy pads.

Workflow systems must be able to integrate the two types of services: services by ap-
plication programs and services by people. The pad-flow framework can integrate those
distributed services that are provided by pad converters. It connects the meta-pads of their
input and output ports to define flow paths among them. This framework can also inte-
grate various human activities into these flows. Each human activity accesses either an in-
put port or an output port in these flows. The pad-flow framework represents these ports
as slots. Furthermore, an InputPortPad and an OutputPortPad with their connections to an
input-port slot and an output-port slot, respectively, allow us to access these ports by drag-
and-drop operations. The meta-pads for these two IO port pads enable us to access these
ports from a remote site, which means that any human activities can be integrated into pad
flows through various pad converters. The publication of these meta-pads through the In-
ternet by embedding them in Web pages would further allow any authorized people any-
where in the world to get involved in the workflow system. Therefore, the pad-flow frame-
work can integrate the two types of distributed services, those by software systems and
those by people. With these capabilities, pad-flow systems can cope with all the three
types of workflow systems—transaction- or production-workflow systems, ad hoc work-
flow systems, and administrative workflow systems.

Furthermore, pad-flow systems can support not only the flow-based cooperation mod-
el, but also various other cooperation models including check-out/check-in client/server
models, smart container models, hot linking with other data and applications, and various
shared work space models. In the check-out/check-in client/server model, collaborative
workers lock and check out a version of an object in the project, process it, then check the
object back in, and unlock this object. The checked-in object is a new version. This model

342 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

tan-14.qxd 5/16/2003 7:25 AM Page 342

can be easily implemented using database proxy pads. Smart containers such as smart
folders or smart compound documents determine which objects they should contain. Vir-
tual forms work as smart containers. The proxy pads of data and applications realize hot
linking with them. For various kinds of shared spaces, IntelligentPad provides the shared
copy mechanism and the event sharing mechanism.

14.5.3 Concurrent Engineering

During the last 10 years, the life cycle time of products from different branches of indus-
try decreased dramatically while the time spent on product development greatly in-
creased. Due to these changes, the pay-off period between market entry and amortization
increased as well. Companies have to cope with a tremendous shift from a seller’s to a
buyer’s market, i.e., the supply of products is higher than the demand. The customer’s ex-
pectations have become more integrated and demanding. Standard products are rejected
in favor of individual solutions to problems that meet the specific wishes of the customer.
A variety of products in the market and short reaction time at a low-cost level must be en-
sured.

Each company has to reduce the time to market to raise market share, improve the
overall quality that meets the needs and wishes of the customers, and reduce product- and
process-development costs to decrease the pay-off period. Concurrent engineering is an
attempt to improve efficiency in the product-development process to meet these require-
ments [5]. The improvement of efficiency requires the optimization of the three factors—
costs, quality, and time. The target can be reached by the following three approaches—
parallelisation of subprocesses and tasks to eliminate delays, integration of departments
and persons to improve communication, and standardization of the product-development
process to improve understanding and to minimize confusion and misunderstanding.

Parallelisation in the product-development process implies the cutting and optimiza-
tion of time. Processes that do not have any dependencies on the other processes can be
carried out simultaneously. Even processes that have dependencies on the others may
sometimes start their processing without waiting for the full completion of all the preced-
ing processes.

Standardization is applied at two different levels. Standardization of processes means
the definition of particular orders of activities to structure processes that are often repeat-
ed. Standardization of products, on the other hand, means the structuring of products in
terms of their systems, elements, and construction kits. The objectives of standardization
are to avoid repetition and needless work as well as to learn from the existing experience
of the company. The form of standardization can vary from guidelines to compulsory
arrangements and rules, or to fixed detailed operations.

Integration means working in interdisciplinary teams, thinking and behaving in a
process-oriented way, and realizing a common objective instead of advancing the interests
of departments. Another important aspect of integration is data integration within a com-
pany. CALS (continuous acquisition and life-cycle support) is such an attempt to integrate
data and documents within a company.

Parallelisation requires controlled and concurrent access to distributed data and infor-
mation, multiple project management, visualization of information/data flow from and to
another process, the structuring of the project/product into distinct interrelated or inde-
pendent work packages, the possibility of dividing the project into its components, sup-
port of parallel access to different tasks of an installed project, and mechanisms to free in-

14.5 WORKFLOW AND CONCURRENT ENGINEERING 343

tan-14.qxd 5/16/2003 7:25 AM Page 343

formation/data in time for other users to enable concurrent and simultaneous work on a
project.

Standardization requires cross-platform compatibility, distributed database access ca-
pability, standard interfaces to exchange data between different tools and frameworks, the
facility to reuse results and work packages in different projects, libraries of reusable re-
sults and work packages, and tools to detect and to evaluate similarities between products.

Integration must integrate different kinds of users, provide each of them with their own
customized version of the integration platform, provide a common graphical user inter-
face, support users in controlling the processes, allow users to access different tools, en-
able users at different sites to communicate with each other and to share the same re-
sources, manage the status of results, keep track of their consistency, manage all
interdependencies between work packages, and inform the participants of the effect of the
work.

These requirements can be fulfilled by pad-flow systems if appropriate pads are newly
developed and added to the current varieties of pads. Concurrent engineering is no doubt
one of the most challenging application fields of IntelligentPad. Pads allow us to ex-
change and to share not only information and data, but also any kinds of intellectual re-
sources. Pads with standard forms can be efficiently managed by conventional databases.
Database proxy pads and their publication through the WWW allow distributed access to
these databases. Pad-flow systems can standardize repetitive processes to automate them
without excluding ad hoc intervention of project members. Pads provide project members
with a uniform integrated environment in which every manipulable objects, including not
only deliverables but also processes and projects, are all represented as pads.

14.5.4 Web Technologies and Workflow Systems

During the last decade, we saw significant progress in Web technologies. These include
client-side scripting technologies, server-side scripting technologies, component-based
application development utilizing application servers, and Web service. Web service is a
technology for application programs distributed over the Internet to mutually utilize their
services. Web service provides three mechanisms: the publication mechanism for each ap-
plication to register itself as a Web service into a registry, the inquiry mechanism for a
client or a Web service to find another registered Web service, and the binding mechanism
for the requesting client or Web service to invoke the retrieved Web service. Clients can
invoke a Web service in a different machine through a SOAP proxy as if it invokes a local
program. The interoperation of components distributed over the Internet requires a stan-
dard, common API based on both a standard message format and a standard RPC protocol
over the Internet, which led to the proposal of SOAP.

Web service technologies allow us to define a Web document with a composed embed-
ded service that orchestrates some public Web services using SOAP to perform its service
task. Such an orchestration may define a workflow, and can be also published as a Web
service. For example, a traveler agent may publish a flight reservation Web service, which
may access flight reservation Web services of mutually competitive airlines to find the
best fare. Interoperation of Web services defines integrated services, either for customers
or for member companies, in a B2B (business-to-business) alliance. Such a workflow sys-
tem that is defined as an orchestration of Web services may include as its component a
Web page through which a worker may receive a task, perform it, and return the result to

344 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

tan-14.qxd 5/16/2003 7:25 AM Page 344

the workflow. Various software vendors provide visual authoring tools for the composition
or orchestration of Web services and its embedding into a Web page. They are basically
authoring tools for Web service integrators and Web page designers, and not for Web page
readers.

Plexware, a new version of the IntelligentPad system developed by K-Plex Inc. in
2000, uses SOAP to communicate with Web services. Pads in Plexware run on an Internet
Explorer browser. Plexware has wrapped Internet Explorer and provides its full function
as a standard component pad. Plexware allows us to treat Web documents as pads. Recent
technologies described in Sections 11.9 and 11.10 enable Web page readers to extract
multimedia content, application tools, and services from Web pages as pads, and to paste
them together to compose new pads. Such technologies together with the framework de-
scribed in this chapter enable us to easily construct workflow and/or pad flow systems,
utilizing services embedded in different Web pages.

14.6 SUMMARY

The dynamic combination of distributed resources requires both dynamic interoperability
of pads and the reference of a remote pad. This remote reference takes the form of a pad
called a meta-pad. IntelligentPad provides only two operations to define interoperations
of pads: “paste” and “drag-and-drop” operations. A “paste” operation dynamically de-
fines a static functional linkage between two pads, whereas a “drag-and-drop” operation
dynamically applies the function of a target pad to an object pad.

A meta-pad works as a proxy of some primitive pad, which is called the referent of this
meta-pad. A meta-pad can be sent to any machine different from the machine with its ref-
erent. Different from proxy pads working for some external objects, a meta-pad works for
a remote primitive pad. Each meta-pad holds the address of its referent pad; the referent
holds an address list of its meta-pads.

A meta-pad for a pad converter has a subset of those slots in its referent pad converter.
It allows a user to use this pad converter from a remote site. When receiving an “update”
message, every meta-pad makes its referent pad invoke the “update” method. When its
referent pad is updated, every meta-pad changes its signal slot value to “true,” and issues
both an “update” message and a “set” message with “true” as the parameter.

This chapter also proposed an application framework for the extended form-flow mod-
el. It is an extended model since it can assimilate any transaction-based system as a virtu-
al form. A virtual form for a database, for example, works as a form that is always kept
consistent with the database contents. This extended model of form flow can be further
extended to deal with flows of pads instead of flows of forms. This pad-flow model works
as a generic model of workflow systems. These flows can be implemented across net-
works using meta-pads.

REFERENCES

1. M. M. Zloof. QBE/OBE: A language for office and business automation. IEEE Computer, 14(5):
13–22, 1981.

2. S. B. Yao, A. R. Hevener, Z. Shi, and D. Luo. FORMANAGER: An office forms management

REFERENCES 345

tan-14.qxd 5/16/2003 7:25 AM Page 345

system. ACM Trans. Office Information Systems, 2(3): 235–262, 1984.

3. G. Poyssick, and S. Hannaford. Workflow Reengineering. Adobe Press, Mountain View, CA,
1996.

4. S. Khoshafian, and M. Buckiewicz. Introduction to Groupware, Workflow, and Workgroup Com-
puting. Wiley, New York, 1995.

5. G. Sohlenius. Concurrent enginering. Ann. CIRP, 42(2): 645, 1992.

346 DYNAMIC INTEROPERABILITY OF PADS AND WORKFLOW MODELING

tan-14.qxd 5/16/2003 7:25 AM Page 346

CHAPTER 15

AGENT MEDIA

Although IntelligentPad is basically a single-thread system, it can be extended to a
multiple-thread system to deal with concurrent processing of pads. Such a system with
concurrently operating pads may work as a multiple-agent system. This chapter will intro-
duce a concurrent IntelligentPad architecture, and show some of its applications.

In a distributed environment, a single-thread IntelligentPad may concurrently work
with other ones running in different sites. The latter half of this chapter will introduce a
framework for developing mobile-agent systems in IntelligentPad.

15.1 THREE DIFFERENT MEANINGS OF AGENTS

Software agents date back to the early days of artificial intelligence (AI) work and Carl
Hewitt’s concurrent actor model [1]. Since then, the word “agent” in computer science
and software engineering has had several different meanings [2]. First, it is used in the
context of distributed AI systems [3] and/or emergent computing systems. Each of these
systems tries to model a complex intelligent system as a system of a large number of mu-
tually communicating autonomous processing modules with much simpler capabilities.
They call these modules collaborative agents, or simply agents. Collaborative agents em-
phasize autonomy and cooperation with other agents. Their examples include MII [4], Ar-
chon [5], and OASIS [6].

Second, agents in the context of human–computer interaction are interface agents.
They are computer-generated virtual creatures that can interact with users in natural lan-
guages to aid in their access to various documents and applications. In 1987, Apple Com-
puter produced a videotape narrated by John Sculley, showing scenarios of how future
versions of their personal computers would look. Their visionary system called “Knowl-
edge Navigator” uses an intelligent agent in its interface [7]. Studies on interface agents
include those at MIT’s Media Lab [8, 9].

Third, agents may be mobile. Mobile agents are software modules that can travel
through networks to interact with other modules at different sites. They partially execute

347

tan-15.qxd 5/1/2003 10:54 AM Page 347

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

themselves at different sites. Different from remote-procedure calls that send messages to
invoke some remote procedures residing at different sites and communicate with them,
mobile agents send themselves to remote sites, execute their codes there to interact with
other native objects, and possibly return to their home sites. Mobile agents can deliver
messages to distributed remote objects, and/or collect information from distributed re-
mote objects. Studies on mobile agent systems led to development of their programming
languages. Telescript from General Magic is the most famous one. Java is also used to
program mobile agents, but it does not provide specific protocols for them.

Mobile agents are becoming increasingly significant, especially in the context of elec-
tronic commerce [10, 11]. They will play important roles both in the secure delivery of in-
formation content, software products, and services, and in the secure payment for their use.

The fourth type of agents are information/Internet agents. They perform the role of
managing, manipulating, or collaborating with information from many distributed
sources, especially from those on the WWW. They could be mobile. However, this is not
the norm as yet. They are sometimes called Internet robots or Internet sofbots (software
robots) [12]. Jasper agents developed at BT Laboratory are examples of such agents [13].

The fifth type of agents are reactive agents. Reactive agents represent a special catego-
ry of agents that do not process internal, symbolic models of their environments. Instead,
they respond in a stimulus–response manner to the present state of the environment in
which they are embedded. Studies on such agents date back to the research of Brooks in
1986 [14], and the later work by Maes [15], Brooks [16], Connah [17], and Ferber [18].

Other types of agents are hybrid agents and heterogeneous agent systems. Hybrid agents
refer to those whose constitution is a combination of two or more agent philosophies with-
in a single agent [19], whereas heterogeneous agent systems refer to integrated set-ups of at
least two or more agents that belong to two or more different agent classes [20].

In this chapter, we will focus on two types of agents, collaborative-and-reactive agents,
and mobile agents. We will discuss how they are implemented as pads.

15.2 COLLABORATIVE-AND-REACTIVE AGENTS AND PADS

IntelligentPad can be extended to run more than one pad concurrently. The extended ver-
sion is called Concurrent IntelligentPad, which we developed using Smalltalk Agents in
1995. When sending a “set” or an “update” message, each pad need not wait for the com-
pletion of the invoked procedures in the target pads. It can proceed its execution concur-
rently with the execution of these invoked procedures. When sending a “gimme” message,
however, each pad waits for the return value. The “gimme” procedure of the recipient pad
can continue its execution even after sending back the return value. Concurrent
IntelligentPad provides several concurrency control pads for the synchronization among
pads. They control the synchronization of messages among pads. Here we will list only
some of them.

A pair of a PrecedentPad and a FollowerPad controls the order of two independent
messages. Each of them is inserted between two pads that are connected through a slot
connection. A PrecedentPad detects a message that passes through itself. It signals its Fol-
lowerPad when it detects some message. A FollowerPad has a slot to suspend and to hold
an incoming message. If it has already been signaled by its PrecedentPad, a FollowerPad
passes the incoming message to its recipient pad. Otherwise, it holds this message until it
is signaled. The FollowerPad forwards the suspended message to its recipient when it is
signaled. Shared copies of the same PrecedentPad signal their common FollowerPad when

348 AGENT MEDIA

tan-15.qxd 5/1/2003 10:54 AM Page 348

all the copies detect some messages. Shared copies of the same FollowerPad are simulta-
neously signaled.

Figure 15.1(a) shows an example use of these pads, where Pp is a PrecedentPad in-
structed to detect a “set” message as the preceding message, and Pf is a FollowerPad in-
structed to suspend an “update” message as the follower message. In this example, the
FollowerPad receives an “update” message before the PrecedentPad receives a “set” mes-
sage. Therefore, the “update” message is suspended before reaching the pad Pc. If the two
messages are received in the opposite order, the “update” message that is received later
than the “set” message is immediately transferred to the pad Pc. Figure 15.1(b) shows
how these pads control the concurrent execution of component pads.

A VerticalUpdatePad sends “update” messages to its child pads in either ascending or
descending order of their top-edge y coordinate [Figure 15.2(a)], whereas a Horizon-
talUpdate Pad sends “update” messages to its child pads in either ascending or descending
order of their left-edge x coordinate [Figure 15.2(b)]. These pads sequentially activate
concurrently operational pads using their geometrical relationships.

Concurrent IntelligentPad also introduces active pads. A pad is active if it continues to
execute its code unless explicitly killed. Otherwise, it is passive. Active pads can commu-
nicate with each other through slot connections. They are autonomous modules that can be
combined to compose more complex functions. They might be called autonomous agents.

15.2 COLLABORATIVE-AND-REACTIVE AGENTS AND PADS 349

Figure 15.1 A pair of a PrecedentPad and a FollowerPad controls the evaluation order between
two messages among pads. (a) An example use of a PrecedentPad and a FollowerPad. (b) Message
control by a PrecedentPad and a FollowerPad.

(a) (b)

tan-15.qxd 5/1/2003 10:54 AM Page 349

The remarkable advances in digital image and video technologies and their network dis-
tribution technologies are significantly increasing their presence in the market. We are con-
fronted by the difficulty of how to find the images and videos we want from the huge num-
ber available. Research studies on image and video databases aim to solve this problem.
They are mainly based on two different approaches. The first one uses local image features
and their spatial relationships to specify queries, whereas the second uses the shapes of ex-
tracted object edges to specify queries. The first approach uses several local image features
such as colors or textures, and tries to identify image areas having each of these features. A
database user selects some of these features and specifies their spatial relationship. For ex-
ample, he or she may qualify the images wanted as those with light blue around the top area,
white around the middle area, and green around the bottom area. The system might find an
image showing a clear sky above a snowy mountain with a spread of green forest at its foot.
The second method uses an edge detection filter to extract object edges. Then it encodes
these object shapes to efficiently compare them with reference shapes.

The first method is suitable for the parallel processing with many autonomous agents.
Each agent is responsible for detecting areas with one specific local feature. Different
agents detect different features. More than one agent can be used to concurrently search
for the same feature. Concurrent IntelligentPad can represent such an agent as an agent
pad. Suppose that several different colors are used as local features. A color detection
agent pad, when put on an image pad, scans the image from left to right and from top to
bottom. It computes the average color of the underlying area it covers, and compares the

350 AGENT MEDIA

Figure 15.3 Each color-detection agent pad replicates itself to cover all the areas of its designated
color.

Figure 15.2 Geometrical control of the child-pad-activation order. (a) VerticalUpdatePad sends
“update” messages to its child pads in either the ascending or descending order of their top-edge y
coordinate. (b) HorizontalUpdatePad sends “update” messages to its child pads in either the ascend-
ing or descending order of their left-edge x coordinate.

(a) (b)

tan-15.qxd 5/1/2003 10:54 AM Page 350

average with its given color. When the difference is within the allowance, it leaves its copy
there and proceeds. Otherwise, it just proceeds to the next cell area. For each of the colors
of your concern, you may put more than one color detection agent pad on this image.
They will concurrently scan mutually disjoint areas.

Figure 15.3 shows an original image on the left. When we put several color detection
agent pads on this image, we will obtain the result shown on the right. Here, for better vis-
ibility, the result is shown separately from the underlying image. If you calculate, for each
color, the first- and the second-order moment of the spatial distribution of agent pads that
detect this color, this pair will work as a signature of the spatial distribution of this color.
A query can be specified either by putting several color pads of arbitrary sizes on a blank
pad, or by using a sample image on which various color pads are already in place, as
shown in Figure 15.4. This specifies a spatial distribution of colors. The latter method is
used to retrieve images whose color distributions are similar to the sample image. The
system will calculate, for each of these colors, the first- and second-order moment of the
spatial distribution of this color. This pair is called a signature of the query for this color.
The search compares, for each color, the color signature of each stored image with the
color signature of the query. If their difference is small enough for each of the colors in
the query, the compared stored image will be output as a candidate image.

15.3 MOBILE AGENTS AND PADS

Mobile agents travel through networks to visit various sites and to interact with objects
there. Some return to their home sites, whereas others do not. Each mobile agent must
have capabilities to specify the following, and to execute the specified mission:

1. Travel course: Which sites to visit in what order?

2. Interaction objects: Which objects to interact with at each visited site?

3. Interaction operation: How to interact with each of them?

If mobile agents can interact with any objects at any sites through any operations, then
even a network virus can be easily implemented as a mobile agent. We therefore need to
introduce appropriate and reasonable restrictions on them.

Here we present an application framework of IntelligentPad for the implementation of
mobile agents. In IntelligentPad, a mobile agent should be also a pad. Mobile agent pads

15.3 MOBILE AGENTS AND PADS 351

Figure 15.4 A visual query to an image database, in which the features of stored images are ex-
tracted by placing color-detection agent pads on these images.

tan-15.qxd 5/1/2003 10:54 AM Page 351

must dynamically interact with other pads. We assume that the interaction between a trav-
eling agent pad and pads in each local site is coordinated by a special pad that is a priori
installed at this local site under an agreement between the owner of the agent and the user
of this local environment. This special pad is considered as an example of the pad convert-
ers we discussed in Section 14.1 (Figure 15.5). A pad converter is used with an InputPort-
Pad and an OutputPortPad that are connected to its #input and #output port slots, respec-
tively. When a pad is dropped on the InputPortPad, it is input to the pad converter and
processed there. For example, when an agent pad is dropped on the InputPortPad, it is ab-
sorbed, and the pad converter may make some local pads that are kept under its supervi-
sion communicate with this agent pad by accessing its special slot with “set” and
“gimme” messages. After the completion of such communication, the same agent pad
with a different state will be popped up on the OutputPortPad. The use of such special pad
converters to coordinate the agent’s interaction at each destination site simplifies and stan-
dardizes the interaction of agent pads with local pads.

In this simplified framework for agent pads to interact with local pads, the local pro-
cessing is governed by special pad converters, and not by agent pads. Agent pads are pas-
sively accessed through their special slots by these pad converters, and cannot actively ac-
cess slots of any local pads. We could, of course, propose different frameworks in which
agent pads take the initiative in the local processing. However, we intentionally propose
this passive agent interaction with local pads for security reasons. Although the local pad
takes the initiative in the interaction with an agent pad, this interaction is itself invoked by
the arrival of the agent pad. In this model, a special pad converter is a priori installed in
each local system under an agreement with its owner. Agent pads cannot perform any op-
erations in each local system other than those agreed to by its owner.

The remaining problem we have to solve for agent pads is how to specify their travel
courses. Since we use pad converters as local interaction objects, we can use meta-pads of
InputPortPads, OutputPortPads, and FlowDefinitionPads. Suppose that we want to make
an agent pad visit pad converters P(1), P(2), . . . , P(n), in this order. Let MetaIn(i) and

352 AGENT MEDIA

Figure 15.5 The interaction between a traveling agent pad and pads at each local site is coordinat-
ed by a special pad converter that is a priroi installed at this local site under an agreement between
the owner of the agent and the user of this local environment.

tan-15.qxd 5/1/2003 10:54 AM Page 352

MetaOut(i) be meta-pads for the InputPortPad and the OutputPortPad on P(i). The travel
route of this agent pad is specified by FlowDefinitionPads that connect MetaOut(i) to
MetaIn(i + 1) for each i. These FlowDefinitionPads need to travel together with the agent
pad. Furthermore, we want to activate the ith FlowDefinitionPad that specifies a connec-
tion from MetaOut(i) to MetaIn(i + 1) only when the agent is visiting the pad converter
P(i). Otherwise, whenever the agent visits a new site, each meta pad MetaOut(i) needs to
inform its original output port pad of its new site address. This is necessary to maintain
the communication channel from each OutputPortPad to its meta pad. In order to avoid
the unnecessary rewriting of site addresses, we need to activate MetaOut(i) only when it
needs to be used.

Pads become active when they are loaded onto the desktop. Therefore, the agent pad
needs to store all the FlowDefinitionPads as inactive pads in itself. While the agent pad is
visiting the ith pad converter, it only loads the ith FlowDefinitionPad on itself as an active
composite pad. For this purpose, we use a special pad called an IndexedPadManager that
can store more than one composite pad. It indexes the stored pads in the order of their reg-
istration. When it receives an “update” message, this pad replaces its current child pad
with its next stored pad.

Figure 15.6 shows an overall composition structure of an agent pad. The base pad has a
function to issue an “update” message whenever it is put on an input port pad. The agent
body is a pad that communicates with each pad converter. The IndexedPadManager holds
FlowDefinitionPads. When visiting the ith pad converter, only the ith FlowDefinitionPad
becomes active on the IndexedPadManager. After its interaction with local pads through
the ith pad converter, the agent pad pops up on MetaOut(i), which the ith FlowDefinition-
Pad, then sends to the next input meta pad MetaIn(i + 1). This transfers the agent pad to
the next pad converter that may exist at a different site.

The agent body may be a composite pad, which allows us to replace its components
with other pads, and also to extend its function by pasting some other pads on it. There-
fore, a whole agent pad is also reeditable, and its components are reusable.

The client site of this agent pad can send it out by just dropping this pad onto the pad
MetaIn(1), i.e., a meta-pad of the InputPortPad connected to the #inputPort slot of the
first pad converter.

The owner of each pad converter that coordinates the interaction between a traveling
agent pad and pads in each local site can publish its meta-pad together with the meta-pads

15.3 MOBILE AGENTS AND PADS 353

Figure 15.6 Overall composition structure of an agent pad.

tan-15.qxd 5/1/2003 10:54 AM Page 353

of IO port pads pasted on this pad converter through the Internet by embedding them in a
Web page.

The IntelligentPad approach to mobile agents has a large spectrum of application
areas. Under the coordination of pad converters provided by destination sites, agent pads
can interact with any types of local pads in each destination site they visit. These local
pads might be data holding pads, multimedia document pads, application tools, database
proxy pads, or proxy pads of industrial plant systems, computer-controlled devices, data
acquisition systems, or transaction-based systems such as shipping and inventory man-
agement systems. Agent pads may only extract content data from some local pads of these
types, or they may acquire some local pads as they are. At each site it visits, an agent pad
may further process what it acquires there. An agent pad may also process itself to change
its state or its composition structure.

The use of mobile agent pads allows us to provide typical mobile agent applications
with application frameworks that consist of component pads and generic pad-composition
structures. Each of these frameworks provides a construction kit including component
pads and sample compositions for nonprogrammers to easily define the functions of both
the mobile agents and the local pad converters.

15.4 PAD MIGRATION AND SCRIPT LANGUAGES

Agent pads require the migration of pads across different systems. As discussed in Sec-
tion 11.2, there are three levels of pad migration across different systems. The shallowest-
level pad migration assumes that the two systems share the same class library. In this case,
the migration of a pad only requires the transportation of its exchange format representa-
tion. The middle-level pad migration assumes that the two systems share only the basic
common portion of the class library. It is further assumed in this case that each primitive
pad definition only inherits its property from those classes in the basic common class li-
brary, but not from any classes outside of the basic portion of the class library. In this
case, the source system can send any object to the destination. The source sends the defi-
nition code of this object. The deepest-level object migration assumes no common class
library. In this case, we have to migrate not only this object but also all the classes used in
the definition of this object. Class migration requires special consideration, and causes a
performance problem.

Our strategies for pad migration have converged to the middle-level pad migration. In
other words, we use a hierarchically organized class library only to define the kernel and
the primitive pad library of the IntelligentPad system. Two of the four commercially avail-
able versions of the IntelligentPad system cope with pad migration across different plat-
forms including Windows PC and Macintosh by programming at the API level. These two
versions share the same API library and the same basic object class library. They are mu-
tually cross-platform compatible systems. Although the middle-level pad migration works
well across different machines of the same platform type, it causes some problems if the
platforms differ between the target and source machines. The two different commercially
available systems, for example, use C++ to define pads. Since object codes cannot be ex-
ecuted on a different platform, the middle-level pad migration across different platforms
requires the transportation of the source code that defines the pad and the recompiling of
this source code on the target machine. This means that the providers cannot protect their
source codes. To solve this problem, we need a new programming language and its inter-

354 AGENT MEDIA

tan-15.qxd 5/1/2003 10:54 AM Page 354

preter. Its program codes should be able to be encrypted, and decrypted by its interpreters
when they are executed. We call such a language a script language for cross-platform mi-
gration. IPC (IntelligentPad Consortium) is not yet working on such a language.

15.5 SUMMARY

The word “agent” in computer science and software engineering has several different
meanings. First, it is used in the context of distributed AI systems and/or emergent com-
puting systems to denote mutually communicating autonomous processing modules
called collaborative agents. Agents in the context of human–computer interaction are in-
terface agents. They are computer-generated virtual creatures that can interact with users.
The third type are mobile agents. They are software modules that can travel through net-
works to interact with other modules at different sites. The fourth type are information/In-
ternet agents. They perform the role of managing, manipulating, or collaborating informa-
tion from many distributed sources, especially from those on the WWW. The fifth type are
reactive agents. Reactive agents represent a special category of agents that respond in a
stimulus–response manner to the present state of the environment in which they are em-
bedded.

This chapter has focused on two types of agents, collaborative-and-reactive agents and
mobile agents, and discussed how they are implemented as pads.

REFERENCES

1. C. Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence,
8(3): 323–364, 1977

2. H. S. Nwana and D. T. Ndumu. A brief introduction to software agent technology. In N. R. Jen-
nings and M. J. Wooldridge (eds.), Agent Technology: Foundations, Applications, and Markets.
Springer-Verlag, Berlin, 1998.

3. M. N. Huhns and M. P. Singh. Distributed Artificial Intelligence for Information Systems.
CKBS-94 Tutorial, University of Keele, UK.

4. C. S. Winter, R. Titmuss, and B. Crabtree. Intelligent agents, mobility and multimedia informa-
tion. In Proceedings of the First International Conference on the Practical Application of Intel-
ligent Agents and Multi-Agent Technology ‘96, pp. 22–24, 1996.

5. T. Wittig (ed.). ARCHON: An Architecture for Multi-Agent Systems. Ellis Horwood, London,
1992.

6. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems. pp. 312–319, 1995.

7. J. Sculley. The Relationship between business and higher education: A perspective on the 21st
century. CACM, 32(9): 1056–1061, 1989.

8. P. Kozierok and P. Maes. A learning interface agent for scheduling meetings. In Proceedings of
ACM-SIGCHI International Workshop on Intelligent User Interfaces, pp. 81–93, 1993.

9. H. Lieberman. Letizia: An agent that assists Web browsing. In Proceedings of IJCAI 95, AAAI
Press, Menlo Park, CA, 1995.

10. P. Wayner. Agents Unleashed: A Public Domain Look at Agent Technology. AP Professional,
Chestnut Hill, MA, 1995.

11. C. A. Jardin. Java Electronic Commerce Source Book. Wiley, New York, 1997.

REFERENCES 355

tan-15.qxd 5/1/2003 10:54 AM Page 355

12. O. Etzioni and D. Weld. A softbot-based interface to the Internet. CACM, 37(7): 72–76, 1994.

13. N. J. Davies and R. Weeks. Jasper: Communicating information agents. In Proceedings of the
Fourth International Conference on the World Wide Web, 1995.

14. R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. Robotics and Au-
tomation, 2(1): 14–23, 1986.

15. P. Maes. Designing Autonomous Agents: Theory and Practice from Biology to Engineering and
Back. MIT Press, London, 1991.

16. R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47: 139–159, 1991.

17. D. Connah. The design of interacting agents for use in interfaces. In M. D. Brouwer-Janse and
T. L. Harringdon (eds.), Human–Machine Communication for Educational System Design.
NATO ASI Series F, Vol. 129. Springer-Verlag, Berlin, 1994.

18. J. Ferber. Simulating with reactive agents. In E. Hillebrand and J. Stender (eds.), Many Agent
Simulation and Artificial Life, pp. 8–28. IOS Press, Amsterdam, 1994.

19. J. P. Muller, M. Pishel, and M. Thiel. Modeling reactive behavior in vertically layered agent ar-
chitectures. In M. Wooldridge and N. Jennings (eds.), Intelligent Agents. Lecture Notes in Arti-
ficial Intelligence, Vol. 890, pp. 261–276. Springer-Verlag, Berlin, 1995.

20. M. R. Genesereth and S. P. Ketchpel. Software agents. CACM 37(7): 48–53, 1994.

356 AGENT MEDIA

tan-15.qxd 5/1/2003 10:54 AM Page 356

CHAPTER 16

SOFTWARE ENGINEERING
WITH INTELLIGENTPAD

In this chapter, we will review IntelligentPad from software engineering points of view.
First of all, IntelligentPad is a middleware system. When used as a software development
system, it provides a lot of concurrent collaborations among requirements analysts, inter-
face designers, system architects, system programmers, debuggers, and system evalua-
tors. IntelligentPad can deal with both coarse-grain components and fine-grain compo-
nents. They are all equally treated as pads.

When experts work on a problem arising in some situation, it is quite unusual for them
to try to solve it without using their knowledge on how they themselves or others in the
same or related domains have ever solved similar problems in similar situations. Such
knowledge, when described as a rule, is called a pattern. A typical pad composition for a
typical application works as a pattern in this sense.

In the latter half of this chapter, we will use object-oriented software development
methods to compose a pad from its specification. Then we will provide a formal approach
to this problem.

16.1 INTELLIGENTPAD AS MIDDLEWARE

Middleware introduces a middle layer between the layer of operating systems and the lay-
er of application programs [1]. It aims to hide the difference of underlying platforms in-
cluding their hardware and operating systems, by setting up a standard middle layer. From
the application development point of view, it aims to provide standard frameworks for the
development of typical application programs, a standard library of application compo-
nents, and standard infrastructures for developing, distributing, managing, accessing, and
using these components and frameworks.

Middleware treats each server as an atomic object, and provides its proxy object as a
standard component. A proxy object communicates with its server. It hides the detailed

357

tan-16.qxd 5/16/2003 7:34 AM Page 357

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

mechanism of the server, and provides only the input and output functions of the server.
Middleware focuses on client application systems and their composition. It provides a
standard linkage mechanism to combine application components. Some middleware sys-
tems provide some of their components with their views on the display screen. Some oth-
ers provide every component with its view. Some allow us to embed visual components
into compound documents. The physical embedding does not necessarily imply function-
al linkage between the embedded component and its base component.

Middleware has become increasingly important since the remarkable success of the
WWW and its browsers. It allows us to plug in application systems in Web pages. These
application systems can be easily downloaded at any client site. If it is compatible with
the client platform, a downloaded system can be executed there. This capability opens
up a new vista toward the distribution of reusable components across platforms.
Furthermore, a plugged-in client application system can communicate with its remote
server. Distributed-object technologies such as CORBA [2] support the communication
among distributed objects. The WWW and its browsers have introduced a third tier be-
tween the tier of servers and the tier of clients (Figure 16.1). This model of system ar-
chitectures is called a three-tier model [1, 3], whereas the conventional client–server
model is called a two-tier model. The three-tier model makes clients, servers, and their
connections network-transparent. They are liberated from their home locations. This
technology trend will liberate any components from their home locations. The publica-
tion of client applications results in the publication of services provided by their servers.
The distribution of components across networks realizes the distribution of documents,
tools, and services.

IntelligentPad has already achieved all the above-mentioned goals of middleware. Its
standard API library hides the difference between platforms. Its pads work as reusable
components. Their connection is simplified and standardized. They can be transported
across different platforms, and can be published by embedding them in Web pages. Docu-
ments, tools, and services are all represented as pads, and therefore can be published
through the Internet.

358 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.1 The three-tier architectural model.

tan-16.qxd 5/16/2003 7:34 AM Page 358

16.2 CONCURRENT ENGINEERING IN SOFTWARE DEVELOPMENT

In Section 14.5, we observed that pad flow systems can provide basic frameworks for con-
current engineering systems. Here we focus on concurrent engineering in software devel-
opment, especially development of client software systems. As intended since its birth, In-
telligentPad can cover the development of most client software systems, which implies
that pad flow systems can deliver not only documents and data products, but also client
software products as pads. Various versions of products and their components can be de-
livered to and from workers and systems with different responsibilities and different func-
tions.

These workers include requirement analysts, interface designers, system architects,
system programmers, system integrators, component debuggers, system debuggers, and
system evaluators. A requirement analyst interviews customers to extract their require-
ments, and clearly specifies the requirements. An interface designer also interviews cus-
tomers and designs a satisfactory user interface. A system architect divides the whole sys-
tem into component modules so that the connection structure among them may satisfy the
user’s design framework. A system architect also specifies the interface protocols among
these component modules. A system programmer develops those components that are not
available from the library of reusable components. A system integrator combines compo-
nents to compose a required system. A component debugger debugs the newly developed
components, whereas a system debugger debugs a composed system. A system evaluator
evaluates the performance and the usability of the developed system.

Automated processing systems include a system-documentation tool and a system-
analysis tool. A system-documentation tool draws a connection-structure diagram of a
given composite system. A system-analysis tool examines the statistics of a given com-
posite system, and reports what kinds of components constitute the system, how many
copies of each component are used, how many other components on the average are con-
nected to each component, and so on.

Concurrent engineering is an attempt to introduce concurrent activities among these
workers and processing systems. The most familiar conventional life cycle model of
software development is the well-known “waterfall” life cycle model, which consists of
a sequence of six steps—the software-concept step, the requirement-analysis step, the
architectural-design step, the detailed-design step, the coding-and-debugging step, and
the system-testing step (Figure 16.2). The waterfall model allows no concurrent activi-
ties among different stages, although it may allow backing up to the previous stage. A
project review is held at the end of each step to determine whether it is possible to ad-
vance to the next phase. The waterfall model is document-driven, which means that the
main work products that are carried from one step to another are documents. In the pure
waterfall model, the steps are also discontinuous. They do not overlap. The waterfall
model performs well for product cycles in which you have a stable product definition
and when you are working with well-understood technical methodologies. In such cases,
the waterfall model helps you find errors in the early, low-cost stages of a project. The
waterfall model also helps to minimize planning overhead because you can do all the
planning up front. The disadvantages of the waterfall model arise from the difficulty of
fully specifying requirements at the beginning of a project. This contradicts modern
business needs; the goal is often not to achieve what you said you would at the begin-
ning of a project, but to achieve the maximum possible within the time and resources
available.

16.2 CONCURRENT ENGINEERING IN SOFTWARE DEVELOPMENT 359

tan-16.qxd 5/16/2003 7:34 AM Page 359

When pads are used to develop client software products, different workers and various
kinds of automated processing can exchange various versions of intermediate develop-
ment results as pads. In IntelligentPad, a client software system is either a composite pad,
or a set of composite pads that are mutually connected by wiring pads. An interface de-
signer first draws a rough sketch of the GUI, which is passed to a system architect. A sys-
tem architect designs the composition structure of the system, and specifies the slot list of
each component pad. The result is a composition diagram as shown in Figure 16.3, with
functional specification of each slot and the data type specification of each slot-access
message. More than one system architect can share this information to collaborate. If the
overall system can be divided into several subsystems, each system architect may work on
an individual subsystem. The architectural design results are passed to a system program-
mer. He or she first searches the library of reusable pads for necessary component pads,
and develops each unfound pad by himself or herself. System programmers sometime de-
velop a dummy pad for some required component. Although a dummy pad does not com-
pletely provide the required internal mechanism, it can partially mimic the required pad.
Some dummy pads mimic only the slot connections of the required pads; others partially
simulate the IO operations of the required pads. More than one programmer can work on
different component pads. Interface designers may use both nonfunctional pads and func-
tional pads such as buttons, sliders, and display pads to design the GUI. They can some-
times use dummy pads, which provides more reality in the process of interaction design.
IntelligentPad further allows an interface designer to modify the developed product. He or
she may change the layout of components, or even replace some of them with an alterna-
tive pad of the same function. A system integrator combines the pads from the library and
the newly developed pads, in the same structure as the composition diagram, to compose
a system that satisfies the system requirements. A component debugger debugs each com-
ponent pad independently from other components. A system debugger may use dummy
pads to test the connection of each component pad with the other components. A system
evaluator may also sometimes use dummy pads to evaluate the usability of a component
pad or a component composite pad.

The processes mentioned above indicate that there is much concurrency among them-
selves. Similarly there is also much concurrency between these workers’ processes and

360 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.2 Waterfall life cycle model of software development.

tan-16.qxd 5/16/2003 7:34 AM Page 360

various kinds of automated processing. The sharing and exchange of such intermediate
development results and their documents, both as pads, by using the pad flow system
framework enable both these workers and processing tools at distributed remote locations
to collaborate in the development of client software systems.

16.3 COMPONENTS AND THEIR INTEGRATION

The granularity of components ranges from a complex database server to a simple button.
The IntelligentPad architecture can deal with different sizes of components. It can deal
with both coarse-grain components and fine-grain components. They are all equally treat-
ed as pads. Furthermore, the grain size of a component has nothing to do with its pad size.
A coarser-grained component pad can be pasted on a finer-grained component pad.

Componentware inherently involves three waves. In the first wave, components are de-
veloped and utilized inside the same software production company and its subcontractors.
They are utilized only by application developers to reduce production time and cost. The
reduction of production time and cost will encourage software production companies put
more emphasis on customer satisfaction. User taste will push software production compa-
nies to increase the variety of products that essentially provide the same function, which
will lead them to develop customization technologies and to increase the variety of com-
ponents for customization. This change will develop in a very short time, which will make
each software production company unable to develop all the necessary components by
themselves. Some existing software companies have their specialties. Demands for a large

16.3 COMPONENTS AND THEIR INTEGRATION 361

Figure 16.3 A composition diagram shows the composition structure of a system with the specifi-
cation of the slot list for each component pad.

tan-16.qxd 5/16/2003 7:34 AM Page 361

variety of high-quality standard components will grow these specialized companies to be-
come dedicated component developer companies. They will supply components to soft-
ware production companies. They will compete with each other in their specialties. Some
may produce good digital video components, whereas others may be good at database ap-
plication components. Their components will be licensed to application development
companies, or sold to application users through distributors. Application users will pur-
chase both application products and application components through distributors. They
will customize purchased application products with components they have. No distribu-
tion flow of components is legally allowed among application users.

The application development companies will shift their roles from the coding to the in-
tegration design. They will design how to decompose their products to standard, specific
components, ask their subcontractors to develop these specific components, design how
to assemble these components to compose the products, and perform their assembly. Each
of them will develop some special components to differentiate its products from those of
others.

In the business application market, these application development companies sell not
only application products but also component integration services and frameworks. For
example, various database applications share not only components but also their integra-
tion structures. This common denominator, including both fundamental components and
an integration architecture, is called an application framework for database applications.
Application frameworks can be found in many typical applications.

In the end-user market, components will become consumer products and their variety
will increase. The same function will be provided by different components with different
tastes. This variety will synergistically enlarge their market. This phenomenon is com-
monly observed in the consumer product market. Sony’s Walkman portable CTRs syner-
gistically enlarged their market with their followers by the variety of colors and designs
brought by these followers. Components as consumer products must be frequently re-
vised. Components as consumer products should be considered expendable. Because of
their repetitive revision, their life cycles are very short. This is true even for end-user ap-
plication systems such as word processors and drawing tools. These application systems
are frequently revised to maintain customers’ satisfaction. If not, new systems will replace
them. Most of them are not durable for more than a year without any revision. The pur-
chase price of components will become remarkably lower to encourage users to keep buy-
ing new components. Some suppliers will even distribute free application products and
components to enlarge their market, which will allow users to exchange these products
and components.

The increased variety of application components will stimulate the creativity of end-
users, and encourage them not only to customize purchased products with optional com-
ponents, but also to recombine them to compose new custom products. This causes no li-
cense problems. This change will bring us a new possibility of viewing end-users as
application developers. Their potentiality to enrich the variety of available application
software is remarkably high. Without the distribution of these custom products among
users, however, this potentiality will not be realized.

The third wave will arrive when even end-users will become able to distribute and ex-
change application components among themselves. This change requires a shift from the
purchase of products to the purchase of product usage, i.e., from the pay-per-copy billing
to the pay-per-use billing. The pay-per-copy system requires copy protection, but the pay-
per-use system allows users to make copies of products. Furthermore, in the pay-per-use

362 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:34 AM Page 362

system, users can recombine products to compose custom products, and redistribute them
among themselves. The redistributed custom products may include components and as-
sembly structures that are both some other developers’ property. Each use of them should
be appropriately metered, and the corresponding charge should be paid to their owners.
We have seen in Chapter 12 that the pay-per-use billing scheme can be well integrated
with the reediting and redistributing capabilities of pads.

16.4 PATTERNS AND FRAMEWORKS IN INTELLIGENTPAD

When experts work on a problem arising in some situation, it is quite unusual for them to
try to solve it without using their knowledge of how they themselves or others in the same
or related domains have ever solved similar problems in similar situations. Such knowl-
edge consists of rules, each of which is represented by a triple consisting of

1. A situation or a context

2. A problem arising in this context

3. Its solution

The architect Christopher Alexander called such a group of rules a pattern [4, 5]. He de-
fines this term as follows: Each pattern describes a problem that occurs over and over
again in our environment, and then describes the core of the solution to that problem in
such a way that you can use this solution a million times over without ever doing it the
same way twice.

Contexts and problems can be described at various different levels of abstraction. Their
description at different levels of abstraction defines different levels of their similarities.
Whichever domains they are working in, experts repeatedly encounter similar situations
and similar problems. The similarities may range from abstract ones to concrete ones, and
from functional ones to structural ones. The level at which we discuss similarities affects
our interpretation of what is and isn’t a pattern.

16.4.1 Architectural Patterns, Design Patterns, Idioms, and Frameworks

Patterns can be also found in various levels of software architecture. Experts in software
engineering know these patterns from their experience and reuse them in developing ap-
plications. The pioneers of patterns in software development are Ward Cunningham and
Kent Beck who came up with five patterns dealing with the design of user interfaces [6].
The first published work about the use of patterns in software engineering was Erich
Gamma’s doctoral thesis in 1991. Later with Richard Helm, Ralph Johnson, and John
Vlissides, he extended his work and published a seminal work Design Patterns—Elements
of Reusable Object-Oriented Software [7], which extensively dealt with patterns at a cer-
tain abstraction level, i.e., design patterns.

A design pattern provides a scheme for refining the subsystems or components of a
software system, or the relationships between them. It describes a commonly recurring
structure of communicating components that solves a general design problem within a
particular context [7].

In 1992, James Coplien published the book Advanced C++ Programming Styles and
Idioms [8]. Some other pioneers of patterns are Douglas Schimidt, who focused on indus-

16.4 PATTERNS AND FRAMEWORKS IN INTELLIGENTPAD 363

tan-16.qxd 5/16/2003 7:34 AM Page 363

trial communication systems [9], Peter Coad, who presented about two hundred patterns
in his book [10], and Wolfgang Pree, who focused on structural principles of design pat-
terns for framework development [11]. In 1996, Frank Bushmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal published the book Pattern-Oriented Soft-
ware Architecture—A System of Patterns [12] to deal with patterns at more levels of ab-
straction than those dealt with by Design Patterns [7]. They grouped patterns into three
categories—architectural patterns, design patterns, and idioms.

According to them, an architectural pattern expresses a fundamental structural organi-
zation schema for software systems. It provides a set of predefined subsystems, specifies
their responsibilities, and includes rules and guidelines for organizing the relationship be-
tween them. Architectural patterns help in structuring a software system into subsystems.
Design patterns support the refinement of subsystems and components, or the relation-
ships between them. An idiom is a low-level pattern specific to a programming language.
It describes how to implement particular aspects of components or the relationships be-
tween them using the features of the given language [12].

A framework is a partially complete software system that is intended to be instantiat-
ed on its use. It defines the overall architecture for a family of systems, and provides its
basic components and the relationships between them. These remain unchanged in in-
stantiation. A framework also defines its parts that can be adapted to specific applica-
tion needs.

16.4.2 Sample Composite Pads as Architectural Patterns

Around 1994, when Fujitsu and Hitach Software Engineering developed the first com-
mercially available versions of IntelligentPad and their system engineers began to use it
internally for the development of various different application systems, these system de-
velopers also became aware of the frequent use of similar composition structures of pads
in the development of different application systems. Students in my laboratory had the
same experience around 1992.

One of the most typical example of such frequently used composition structures can be
found in business applications using databases. These applications require form interfaces
to databases. As detailed in Section 10.2, a form interface to a database uses a DBProxy-
Pad as the base pad, and, on top of it, a RecordPad with its connection to the #curren-
tRecord slot of the DBProxyPad. To each attribute slot of the RecordPad is connected a
TextPad, an ImagePad, a VideoPad, or some other display pad depending on the type of
this attribute value. This description is an example of architectural patterns, or more pre-
cisely, an application architectural pattern. It describes the solution part of a pattern. In In-
telligentPad however, we do not need to textually describe the solution part of this pattern
as above. Instead, we can provide a sample composite pad that works as a form interface
to a sample database. We can further provide several different proxy pads for several
widely used DBMSs.

Such a sample composite pad works as a pattern, or more precisely, as its solution
scheme. It satisfies the following definition of patterns for software architecture:

A pattern for software architecture describes a particular recurring design problem that arises
in specific design contexts, and presents a well-proven generic scheme for its solution. The
solution scheme is specified by describing its constituent components, their responsibilities
and relationships, and the way in which they collaborate [12].

364 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:34 AM Page 364

A form interface is a particular recurring design problem that arises in specific design
contexts, i.e., business application systems accessing databases. The composition struc-
ture of a sample form interface pad presents a well-proven generic scheme for the solution
to this problem. This composition structure as a solution scheme is specified by describ-
ing its constituent component pads, their responsibilities and relationships defined by slot
connections, and the way in which they collaborate by exchanging standard messages
with various types of parameters.

Our Web browser pad enables us to make a catalogue of such sample composite pads,
which describes each pattern with textual descriptions of its context and problem, and
contains an embedded sample composite pad we can play with. A sample composite pad
may be used as a component of another sample composite pad. Patterns are mutually re-
lated. Each pattern in this catalogue is associated with its related patterns by navigation
links. For example, a sample form interface composite pad in our pattern catalogue should
be related to a sample QBE (query-by-example) DB interface, and various kinds of sam-
ple information-visualization tool pads in this pattern catalogue. This sample form inter-
face composite pad may also be related to the form-flow framework described in the
framework catalogue for IntelligentPad users. These are linked by bilateral links. Suppose
that a sample form interface has an ImagePad to display an image-type attribute. The pat-
tern catalogue may provide this ImagePad with an annotation and several link anchors that
jump to a Video Pad, a SaverLoaderPad, and an ImagePad having several anchor pads on
it. These are the pads that can replace the original ImagePad in the sample form interface.

16.4.3 Pad Packages with Sample Compositions as
Application Frameworks

Applications of a certain typical class often share a large number of primitive pads as
commonly used components. Furthermore, they often share the same set of composition
structures to combine these commonly used components. These commonly used compo-
nents and composition structures are what we call the framework of such applications. A
sample composite pad and its basic primitive pads constitute an application framework in
IntelligentPad systems. A framework may include optional component pads that can re-
place some components of the sample composite pad. The framework for a form-flow
system, for example, provides several example form-flow systems as sample composite
pads, and a set of component pads including sample forms, sample virtual forms, sample
form converters, sample form generators and consumers, meta-pads, and all the primitive
pads for form-flow systems. It provides these pads together with the textual description of
their functions, their slots and composition structures, and how to use each of them. Our
Web browser pad enables us to make a catalogue of frameworks that includes all these
pads and their descriptions. Pads and their descriptions in this catalogue may be associat-
ed through navigation links with related frameworks in the same catalogue, and also with
related patterns in the pattern catalogue.

In IntelligentPad, an application package means a family of primitive and composite
pads whose slots are standardized with respect to their names and the types of data that
are sent and obtained through the slots. This allows us to easily combine components
without knowing the detail semantics of each slot. Similar situation can be observed
among AV components, in which not only the shape of their connection jacks and pin-
plugs are standardized, but also the various signals that go through these connection jacks.
Video devices are connected by three cables—yellow, red, and white—which send video

16.4 PATTERNS AND FRAMEWORKS IN INTELLIGENTPAD 365

tan-16.qxd 5/16/2003 7:34 AM Page 365

and left and right sound signals, respectively. The corresponding connection jacks are la-
beled with “video,” “left,” and “right.” Once we have learned this convention, we do not
need any instruction to connect a TV monitor to a laser disc player, or a video camera to a
VCR. The same is true for a package of pads in IntelligentPad. More than one package
may share the same convention. They are said to belong to the same package family. More
than one package family may coexist in the same application field. They correspond to
different communities with different cultures. Although pads in different package families
may not be mutually compatible, the introduction of appropriate converter pads by either
of these communities or by the third vender may make them interoperable with each oth-
er.

Takafumi Noguchi at Kushiro Technical Collage has used an IntelligentPad system to
develop a package family of CAI tools in basic physics and mathematics. He developed
several packages for various fields, including basic mechanics, basic electronic circuitry,
and basic mathematical functions. Their pads, however, exploit the same convention with
respect to their slot names and slot data types, and can be easily combined based on the
naming convention of their slots.

16.4.4 Slot List as a Pattern

The architecture of pads itself is considered as a design pattern or as an architectural pat-
tern. Each primitive pad is represented as a simplified version of MVC. A pad pasted on
another pad is linked through the connection between their views. Each primitive pad pro-
vides a list of slots, each of which can be accessed only by either a “set” or a “gimme”
message. Furthermore, each pad accepts “update” messages. These three messages can be
issued only through the view-connection links among pads. An “update” message goes
from a parent pad to its child pad, whereas the other two go from a child pad to its parent.

The process of developing a new primitive pad also has a common pattern. We first
specify a list of its slots, then specify for each of these slots its “set” procedure and
“gimme” procedure, and also specify its “update” procedure. Furthermore, we specify
event handlers that are invoked when some events occur. These include the handler that is
invoked when we put this pad on another, and the one that is invoked when another pad is
put on this pad. Using this standard pattern of programming new pads, we can develop a
wizardry system that guides our pad development. Fujitsu’s commercially available ver-
sion of IntelligentPad provides such a wizardry system. For the definition of each proce-
dure, it first provides its default definition, and allows us to rewrite it. If its default defin-
ition satisfies our requirements, we do not need to rewrite it.

16.5 FROM SPECIFICATIONS TO A COMPOSITE PAD

Various kinds of software development methods can be applied to pad development, with
some customization to the IntelligentPad Architecture. In this book, we will show two
methods for the application specification and its translation to a composite pad. The first
method describes an application using an action diagram, and translates this diagram to a
composite pad. The second method is a semiformal method. It provides a formal way to
describe an application as a list of slots. Each slot is associated with its access dependen-
cy relationship. In this method, we initially assume that the total application can be imple-
mented as a single pad. The method then gives alternative ways to replace this single pad

366 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:34 AM Page 366

with an equivalent composite pad. This method can maximally reuse existing pads. Here
in this section, we will discuss the first method. In the next section, we will discuss the
second one.

16.5.1 Use-Case Modeling

Any description of a single way of using a system or application is called a use case. A use
case is a class of top-level usage scenarios that captures how a black-box application is
used by its users. They are used to recognize different scenarios of interaction between a
system and its user and also between subsystems, and then to elicit, understand, and de-
fine functional requirements of the system. A resultant diagram that documents a system’s
behavior as a set of use cases, actors, and the communication arcs between them, is called
a use-case model [13]. Actors represent whatever communicates with the system. The user
is also an actor.

A use-case model can be decomposed into subsystems. The top-level system describes
the whole behavior of the system. System X in Figure 16.4 represents the top-level sys-
tem. The requirements of each subsystem are described as a set of lower-level use cases.
The use cases b1 and b2 in the figure are lower-level use cases of the use case b for Sys-
tem X.

As a method to describe use cases from the user’s view point, we can use task analysis.
The task analysis is used to elicit, understand, and define functional requirements, and to
construct an interactive system model [14]. A task model is represented as a tree with
tasks as its nodes. A task describes a job independently from its implementation from the
user’s point of view. A task model thus obtained represents requirements of the user inter-
face of the system.

Figure 16.5 shows a task model. Each task is identified by its identifier. A task con-
structed with subtasks is provided with such a task process as “do (2.5.1), (2.5.2), (2.5.3),”
“optionally, do (2.5.1), (2.5.3),” which specifies which subtasks are executed, which of
them are optionally executed, and in which order they are executed. The first one in this
figure is a generic task model that generalizes more than one task model with the same
task hierarchy but with different types of generated objects.

16.5 FROM SPECIFICATIONS TO A COMPOSITE PAD 367

Figure 16.4 A use-case model can be decomposed into subsystems.

tan-16.qxd 5/16/2003 7:34 AM Page 367

The initial stage of the task analysis extracts and identifies some tasks. The second
stage organizes these tasks in a task hierarchy, and refines each task to its subtasks. The
extraction and recognition of tasks are subjective matters, and where to stop further re-
finement must be considered. A general criterion for this decision is to stop further de-
composition whenever we reach a task that specifies its execution method. The purpose of
the task modeling is to specify what kind of activities the user requires. The refinement of
tasks in the task modeling thus connects the use-case model to the application model,
which allows us to construct the user-interface model and the application model as two in-
dependent processes.

16.5.2 System Decomposition

System decomposition [15] is a traditional method for structured software development,
and has been proposed by many people [15, 16, 17]. A system is hierarchically decomposed
into three levels—functions, processes, and procedures, from top to bottom in this order. A
function denotes a group of actions and decision-making that completely support an aspect
of a system. A process denotes an action to be executed. A process can be further decom-
posed into dependent processes. Processes at the lowest level of decomposition are called
elementary processes. Whereas a process denotes a single action without any specification
of its execution mechanism, a procedure denotes a specific method to execute a process.
Procedures are further decomposed into dependent procedures until they as a whole de-
scribe an executable program structure. Figure 16.6(a) shows a concept of system decom-

368 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.5 In a task model, a task constructed with subtasks is provided with such a task process
as “do (2.5.1), (2.5.2), (2.5.3), optionally, do (2.5.1), (2.5.3),” which specifies which subtasks are
executed, which of them are optionally executed, and in which order they are executed.

tan-16.qxd 5/16/2003 7:34 AM Page 368

position, whereas Figure 16.6(b) shows a decomposition diagram that is used to describe
system decomposition. Decomposition diagrams can use constructs to represent optional
branches, conditional branches, exclusive branches, and ordered sequences.

Figure 16.7 shows a structure of a composite pad. The outermost (i.e., topmost) pads in
a composition are GUI components that receive user inputs, or output data to a user. These
pads directly interact with a user. Those pads closer to the bottom implement subsystem
functions and mutually connect with each other through slots. Those pads closer to a user
mainly perform interactions with users, whereas those closer to the bottom perform inter-
actions between subsystems. The former pads perform use cases, and their composition
structures may be considered to embody task hierarchies, whereas the composition struc-
ture of the latter pads can be interpreted to describe a system decomposition structure.

This observation leads us to the pad development method described in the next subsec-
tion, where tasks are hierarchically decomposed into subtasks based on given scenarios of
how the system is used by its user, and the relationships among these tasks are analyzed to
decompose the system. This decomposition structure will tell us how to compose a pad to
satisfy the specifications.

16.5 FROM SPECIFICATIONS TO A COMPOSITE PAD 369

Figure 16.6 System decomposition and a decomposition diagram. (a) System decomposition. (b)
A decomposition diagram.

(b)

(a)

tan-16.qxd 5/16/2003 7:34 AM Page 369

16.5.3 From an Action Diagram to a Composite Pad

A scenario of an interactive system consists of tasks to interact with users. Some of these
tasks are sequentially executed, some others are optionally executed, and some are execut-
ed in an arbitrary order. We will use the constructs in Figure 16.8 to represent different ex-
ecution orders among tasks. These notations are extensions of those used by the action di-
agram method.

Different scenarios describing different aspects of the same system are finally integrat-
ed into a single scenario. Tasks that interact with users represent procedures necessary to
respond to user operations. Figure 16.9 shows a scenario for an automatic teller machine,
from which sequences and loops of tasks can be extracted. These sequences and loops of
tasks are grouped to form tasks at higher levels. In Figure 16.9, the total task consists of
two subtasks. The left-hand one is named an authorization task, whereas the right-hand
one is named an accounting task.

Instead of vertically arranging tasks in optional execution and in random execution, we
will horizontally arrange tasks even in these cases. The three subtasks in the accounting
subtasks can be given the following names: deposit, withdrawal, and completion. Figure
16.10 shows a task hierarchy thus obtained.

This hierarchy can be interpreted as a pad composition structure. Tasks are interpreted
to represent pads. The topmost tasks represent input and/or output pads, whereas the low-
er pads define internal mechanism. Now we have to specify what kinds of slots to provide

370 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.7 The composition structure of a composite pad.

Figure 16.8 Notations used for scenario description based on the action diagram.

tan-16.qxd 5/16/2003 7:34 AM Page 370

for each task, and which slot to use in each linkage between tasks. The specification of
these should proceed upward from the bottom level, since the specifications of internal
mechanisms are more stable than those for the user interactions.

Let us first consider an interface between authorization and accounting. Since the ac-
counting task must record “who did what operation,” it must get information from the au-
thorization task about who was authorized. On the other hand, the authorization task must
know about the completion of the accounting task. Therefore, these two tasks should be
able to exchange the user ID and the execution completion flag. Furthermore, only autho-
rized users should be allowed to access the accounting task. We need a mechanism to
block user interaction with the accounting task. We may use a SlideCoverPad for this
blocking.

The authorization task prompts the account number input and the password input in
this order. These inputs can be considered as the inputs to the authorization subsystem.
Both the account number input and the password input may use text input pads, whereas
the canceling may use a button pad. The authorization needs to wait for the completion of
the accounting, and requires more than one state, which means that the modeling by a
state transition machine may work well for the authorization subsystem.

The accounting task processes the deposit task, the withdrawal task, and the comple-
tion task of the system. Both the deposit task and the withdrawal task access the account

16.5 FROM SPECIFICATIONS TO A COMPOSITE PAD 371

Figure 16.9 An extended action diagram that describes a scenario for an automatic teller machine.
The deposit and the withdrawal of money are simulated by drag-and-drop operations of money
pads.

Figure 16.10 A task hierarchy of the system described in Figure 16.9.

tan-16.qxd 5/16/2003 7:34 AM Page 371

record. The deposit task reports to the accounting task how much money comes in, where-
as the withdrawal task not only reports how much money goes out, but also has to check
first if the balance is greater than the withdrawal request.

Figure 16.11 shows a composite pad we have developed based on the task hierarchy in
Figure 16.10. In this figure, we simulate the deposit and withdrawal of money by drag-
and-drop operations of money pads.

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS

The preceding section described how specifications with an action diagram can be trans-
lated to a composite pad. Here we will show a semiformal method to translate specifica-
tions to composite pads. It provides a formal way to describe an application as a list of
slots. Each slot is associated with its access dependency relationship. This means that the
total application is initially considered as a single pad. The method then gives alternative
ways to replace this single pad with an equivalent composite pad. This method can maxi-
mally reuse existing pads

372 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.11 A composite pad we have developed based on the task hierarchy in Figure 16.10.

tan-16.qxd 5/16/2003 7:34 AM Page 372

16.6.1 Application Specification and Pattern Description for
Primitive Pads

In this method, we first assume that an application to develop can be implemented as a
single pad. We can use this assumption without loss of generality. Based on this assump-
tion, we specify this pad at a certain level of abstraction. When we develop a pad, we usu-
ally start by listing all the slots, then we specify for each of these slots the functions of its
“set” and “gimme” procedures, and, finally, we specify the “update” procedure. Our ab-
stract specification of a pad follows this development process. We first specify a list of
slots with their names and their types. The type of each slot is specified by a pair of two
data types—one for the parameter of its “set” message, and the other for the return value
of its “gimme” message.

The function of each slot procedure is specified in an abstract way using a depen-
dency relationship among slot accesses. If a “set” access to a slot #x further causes a
“set” access to another slot #y, and if this update propagation requires all the return val-
ues of “gimme” accesses to some slots #z1, #z2, . . . , #zn, we say that there is a slot-up-
date dependency from #x to #y with references to #z1, #z2, . . . , #zn, and represent this
dependency as #x � #y (#z1, #z2, . . . , #zn). The list of slots #z1, #z2, . . . , #zn may in-
clude either #x or #y, or both of them. This dependency describes two facts. First, it tells
us that there is an update dependency from a slot #x to #y. Second, all of the slots #z1,
#z2, . . . , #zn need to be referenced simultaneously. We call this set {#z1, #z2, . . . , #zn}
a reference base.

Let us consider a form interface to a database as an example application. Suppose that
the records we want to visually show have three attributes: name, age, and photo. Our first
step in this method specifies all the slots in this application. This list of slots may include
the following slots:

#search: (bool, bool)
#query: (text, text)
#result: (record list, record list)
#cursor: (integer, integer)
#record: (record, record)
#previous: (bool, bool)
#next: (bool, bool)
#name: (text, text)
#age: (integer, integer)
#photo: (image, image)

The slot access dependencies are given as follows, where #changed(P), #set(P), and
#gimme(P) are three dummy slots that represents the issuing of an “update” message, a
“set” message, and a “gimme” message from this pad P, respectively.

#search � #set(P) (#query)
When a search is requested, the query is read and sent out to the database using
a “set” message.

#result � #record, #changed(P) (#result, #cursor)
When a new retrieved result is obtained, the current record is also updated,
which requires accesses of #cursor and #result. An “update” message is issued.

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 373

tan-16.qxd 5/16/2003 7:34 AM Page 373

#cursor � #record, #changed(P) (#result, #cursor)
When a cursor is updated, the current record should be also updated, which re-
quires accesses of # result and #cursor. An “update” message is issued.

#record � #name, #age, #photo, #changed(P) (#record)
When a record is updated, its attribute values should be all updated. An “up-
date” message is issued.

#previous � #cursor, #changed(P)(#cursor)
When the previous record is requested, the cursor should be updated using its
current value. An “update” message is issued.

#next � #cursor, #changed(P) (#cursor)
When the next record is requested, the cursor should be updated using its cur-
rent value. An “update” message is issued.

#gimme(P) � #result, #cursor, #changed(P).
When the pad reads the retrieved result from its parent, it updates #result, and
resets its #cursor. An “update” message is issued.

These dependencies, when neglecting their reference parts, are transitive. If two depen-
dencies #s1 � #s2 and #s2 � #s3 both hold, then the third dependency #s1 � #s3 also
holds.

The specification of the “update” procedure is also given as a slot access dependency
using a dummy slot #update(P). In the above example, this dependency is given as fol-
lows:

#update(P) � #gimme(P).
When an “update” message is received, the pad issues a “gimme” message to
its parent pad to read the retrieved result.

Thus, a single pad is specified with its slot list S and its slot-update dependency set D. The
set S does not include any dummy slots. This pair (S, D) can be considered as a pattern de-
scription of this pad. In the following subsections, we call this pair the pattern of a primi-
tive pad.

The slot-update dependency relation, neglecting its reference part, defines a partial or-
der among slots, including dummy slots, which allows us to obtain a Hasse diagram for a
given set of dependencies. Two slots satisfying #s1 � #s2 and #s2 � #s1 are said to be
equivalent. Mutually equivalent slots are merged to a single node in a Hasse diagram. Fig-
ure 16.12 shows the Hasse diagram for the above example with each maximal reference
base being enclosed by a circle. If a reference base is a proper subset of another reference
base, the former one is not shown in the Hasse diagram. We call this diagram an extended
Hasse diagram.

16.6.2 Pattern Description of Composite Pads

Now we consider the pattern description of composite pads. Let us consider a composi-
tion P1[#s: P2], which means that a pad P2 is pasted on another pad P1, and that P2 is
connected to a slot #s of P1. Let (S1, D1) and (S2, D2) be pattern descriptions for P1 and
P2, respectively. Without loss of generality, we can assume that S1 and S2 are mutually
disjoint. Otherwise, they can be easily renamed to satisfy this assumption. Then the pat-
tern description (S, D) for this composite pad is given as follows:

374 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:34 AM Page 374

S = S1 � S2,
D = D1 � D2 � Ds � Dg � Du,

where Ds, Dg, and Du are given as follows:

Ds = {#set(P2) � #s} if the slot connection enables “set” messages, � otherwise
Dg = {#gimme(P2) � �(#s)} if the slot connection enables “gimme” messages, � oth-

erwise
Du = {#changed(P1) � #update(P2)} if the slot connection enables “update” mes-

sages and if these “update” messages are sent to all the child pads,
{#s � #update(P2)} else if the slot connection enables “update” messages and if

each slot update issues “update” messages only to those child pads con-
nected to this slot,

� otherwise

Here, the dependency #gimme(P2) � �(#s) in Dg only states that the set {#s} is a refer-
ence base.

Now let us consider a single pad that is equivalent to this composite pad. This single
pad should have S as its slot list. Its dummy slots include #set(P) [= #set(P1)], #gimme(P)
[= #gimme(P1)], #update(P) [= #update(P1)], and #changed(P), where #changed(P)
merges the two dummy slots #changed(P1) and #changed(P2). Other dummy slots such as
#set(p2), #gimme(P2), and #update(P2) do not communicate with other pads, and hence
can be removed. However, before removing these dummy slots, we have to calculate the
transitive closure of the dependency set D.

Let us consider the two pads whose pattern descriptions are given as follows:

(1) CounterPad (S1, D1)
slots:

#up : (bool, bool)
#down : (bool, bool)
#count : (integer, integer)

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 375

#changed#photo#age#name

#record

#next#previous#gimme

#result

#update

#cursor

#set

#search #query

Figure 16.12 An extended Hasse diagram for the update dependencies in the example, with each
reference base enclosed by a circle.

tan-16.qxd 5/16/2003 7:34 AM Page 375

dependencies:
#up � #count(#count)
#down � # count(#count)
#count � #changed(CounterPad), #set(CounterPad)(#count)
#gimme(CounterPad) � #count
#update(CounterPad) � #gimme(CounterPad)

(2) CollectionPad (S2, D2)
slots:

#collection : (list, list)
#currentItem : (object, object)
#index : (integer, integer)

dependencies
#collection � #currentItem (#index, #collection)
#index � #currentItem (#index, #collection)
#gimme(CollectionPad) � #collection, #index
#update(CollectionPad) � #gimme(CollectionPad)

Suppose that they are combined as CollectionPad[#index: CounterPad] with all three mes-
sages enabled. We also suppose that an update in CollectionPad issues an “update” mes-
sage only to those child pads connected to those updated slots. Then the pattern descrip-
tion (S, D) of the composite pad becomes as follows:

S = S1 � S2
D = D1 � D2

� {#set(CounterPad) � #index, #gimme(CounterPad) � �(#index), #index
� #update(CounterPad)}

The dependency closure of the equivalent single pad is obtained as follows:

{#up � #up, #count, #index, #currentItem, #changed(P),
#down � #down, # count, #index, #currentItem, #changed(P),
#count � #count, #index, #currentItem, #changed(P),
#collection � #currentItem, #changed(P),
#index � #count, #index, #currentItem, #changed(P)
#gimme(P) � #gimme(P), # count, #index, #collection, #currentItem,

#changed(P),
#update(P) � #update(P), #gimme(P), # count, #index, #collection,

#currentItem, #changed(P)}

Figure 16.13 shows the extended Hasse diagram for this dependency set. A glance at this
extended Hasse diagram tells us it is similar to the previous extended Hasse diagram
shown in Figure 16.12. If we neglect #name, #age and #photo slots, and rename slot
names appropriately, the current diagram coincides with one of the two parts in the previ-
ous diagram. This means that the current composite pad can possibly be used to imple-
ment a part of the previous specification.

376 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:34 AM Page 376

16.6.3 Composition and Decomposition of Patterns

Let H1 and H2 be the extended Hasse diagram representations of two pads P1 and P2, and
H be the extended Hasse diagram representation of the pattern description of the compos-
ite pad P1[#s: P2]. We express this relationship as

H = H1*#sH2

We define another operator /#s as

H1 = H/#sH2

Let H2� be the extended Hasse diagram representation of the pattern description (S2�, D�)
satisfying that H2� has the extended Hasse diagram H2 as its subgraph. Suppose further
that the difference set S2� – S2 and S are mutually disjoint. The division operator /#s can
be extended as

H1 = H/#sH2�

The division operator depends on which of the three messages are enabled, and also on
whether the parent pad broadcasts or selectively sends update operations to its child pads.
For simplicity, here we assume that each pad issues an “update” only to those child pads
connected to those slots whose values are updated. In the default implementation of pads,
they issue updates to all of their child pads. However, when a pad receives an “update,” it
sends a “gimme” message to read the parent’s slot to which it is connected, and examines
if the read out value is the same as the last read out value it holds. If they are the same, the
pad considers that there has been no update in this slot. In the default implementation,
each pad initially holds a reference value as the last read out value. Therefore, the default
implementation of pads does not contradict with the above assumption.

The decomposition of an extended Hasse diagram H into H1 and H2 requires that H
has a node #s whose removal divides H into two parts. We call such nodes division nodes.
Figure 16.14 shows an extended Hasse diagram that has only one division node, #collec-

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 377

Figure 16.13 An extended Hasse diagram for the update dependencies in the composed pad.

tan-16.qxd 5/16/2003 7:34 AM Page 377

tion. The node #currentItem is a division node of the corresponding Hasse diagram, but
not a division node of this extended Hasse diagram.

Suppose that a pad P is equivalent to a composite pad with P� as its base pad. Then
“set” and “gimme” messages from the pad P should correspond to those from P�, and “up-
date” messages to P should correspond to those to P�. Therefore, for an arbitrary single
pad P, the extended Hasse diagram H of its pattern description can be divided into three
parts Hupper, Hmiddle, and Hlower, as shown in Figure 16.15, so that the middle part includes
all of the three dummy slots, #set, #gimme, and #update. Each of the other two parts may
be null. Let #s1 and #s2 be the two division nodes in this division. Let us rename their
copies in the upper and the lower parts #s1� and #s2�, respectively, as shown in Figure
16.15. The middle part includes the dependencies from #update(P) and #gimme(P), and
the dependency to #set(P). These are the interface to its parent pad, and hence should be
implemented by the base pad after any possible decomposition. Let Pupper, Pmiddle, and
Plower denote the pads corresponding to these three parts of the Hasse diagram. Their com-
position, which is equivalent to P, is given by Pmiddle[#s1: Pupper][#s2: Plower] (Figure
16.16).

Since the dummy slots #set, #gimme, and #update should reside in the same compo-
nent after any possible division, the Hasse diagram as shown in Figure 16.17 cannot be
further decomposed, although it has a division node.

The slot connection [#s2: Plower] must implement an access dependency from the slots
in the parent pad Pmiddle to its child pad Plower, which implies that the connection should
enable both “update” and “gimme” messages. If #s2� has any incoming edges, then ac-
cesses of #s2� may need to propagate to #s2 in Pmiddle, which implies that the connection
should also enable “set” messages. In this case, we have to add dependencies
#gimme(Plower) � #s2�, #update(Plower) � #gimme(Plower), and #s2� � set(Plower). Other-
wise, we can just replace #s2� with # gimme(Plower).

The other slot connection [#s1: Pupper] needs to implement an access dependency from
the slots in the child pad to its parent pad, which implies that the connection should enable

378 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.14 A correct decomposition and an incorrect decomposition of an extended Hasse dia-
gram.

tan-16.qxd 5/16/2003 7:34 AM Page 378

“set” messages. If #s1� has any outgoing edges, then accesses of #s1 may need to propa-
gate to #s1� in Pupper, which implies that the connection should also enable both “update”
and “gimme” messages. In this case, we have to add dependencies #gimme(Pupper) �
#s1�, #update(Pupper) � #gimme(Pupper), and #s1� � set(Pupper). Otherwise, we can just re-
place #s1� with # set(Pupper).

Figure 16.16 shows all these possibilities of decomposition.

16.6.4 Pattern Descriptions and the Reuse of Pads

The reuse of pads requires specification matching between the required function and
reusable existing pads. We can use the pattern descriptions as signatures of the specifica-
tions both for the required function and for reusable pads. Their extended Hasse diagrams
give their canonical representations. If an extended Hasse diagram coincides with another

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 379

Figure 16.15 For an arbitrary single pad P, its extended Hasse diagram may be divided into three
parts.

Figure 16.16 A composite pad corresponding to the decomposition shown in Figure 16.15. The
left gray arrow representing a pair of “update” and “gimme” messages is required if #s1� has any
outgoing edges in Figure 16.15. The gray arrow representing a “set” message is required if #s2� has
any incoming edges in Figure 16.15.

tan-16.qxd 5/16/2003 7:34 AM Page 379

extended Hasse diagram after renaming its slots, they are said to match each other. This
coincidence includes both the matching of their structures and the node types of each cor-
responding pair. We express this matching as H1 = �H2, where � denotes a renaming
function. The relation that H1 is a subgraph of �H2 is expressed as H1 � �H2.

Suppose that we are given a specification P. Let H be its extended Hasse diagram. Sup-
pose that H is divided into two parts H(1) and H(2) as H = H(2)*#s(1) H(1). Suppose fur-
ther that there exists a reusable pad P(1) whose extended Hasse diagram H(1)� satisfies
H(1) � �(1) H(1)� for some renaming function �(1). Then it holds that H � H(2)�#s(1)

�(1)H(1)�. Similarly, suppose that H is divided into n parts H(1), H(2), . . . , H(n) as

H = {(. . . [H(n)*#s(n – 1) H(n – 1)] * . . .)*#s(2) H(2)}*#s(1) H(1)

Suppose further that, for each i, there exists a reusable P(i) whose extended Hasse dia-
gram H(i)� satisfies H(i) � �(i) H(i)� for some renaming function �(i). Then it holds that

H � ((. . . (H(n)�*#s(n – 1) �(n – 1)H(n – 1)�) * . . .)*#s(2) �(2)H(2)�)*#s(1) �(1) H(1)�

Then the specification using reusable pads is likely to be implemented as follows:

P � �(1) . . . �(n – 1){(. . . (P(n)[#s(n – 1): P(n – 1)]) . . .)[#s(2): P(2)]}[#s(1): P(1)].

This process requires the search of the signatures of reusable pads for such H(i)� that sat-
isfies H(i) � �(i) H(i)� for some divider subgraph H(i) and for some renaming function
�(i).

Given an extended Hasse diagram H of a pad P that we want to implement, we can di-
vide this into three parts, Hupper, Hmiddle, and Hlower. The middle part, Hmiddle, cannot be
further divided, whereas the remaining two parts, if any, can be further divided at their di-
vision nodes to atomic components as shown in Figure 16.18(a). Suppose that the pad P
can be composed using reusable pads as

P � �(1) . . . �(n – 1){(. . . (P(n)[#s(n – 1): P(n – 1)]) . . .)[#s(2): P(2)]}[#s(1): P(1)]

380 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.17 The dummy slots #set, #gimme, and #update should reside in the same component
after any possible division.

tan-16.qxd 5/16/2003 7:35 AM Page 380

Then, for every component Hi in Figure 16.18(a), there always exists one and only one
pad P(j) in this composition, as shown in Figure 16.18(b), such that the extended Hasse
diagram H(j)� of �(j)P(j) includes Hi as its subgraph.

The efficient algorithm for this kind of search requires further research.

16.6.5 An Example Development Process

Here we consider a client application system for library services. Its specification is given
as follows.

slots:
#key (string, string)
#template (string, string); Several different queries are stored.
#query (string, string)
#search (bool, bool)
#dbFile (fileName, fileName)
#result (recordList, recordList)
#total (integer, integer); Total number of retrieved records.
#up (bool, bool)
#down (bool, bool)
#index (integer, integer)
#record (record, record)
#title (string, string)
#author (string, string)

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 381

Figure 16.18 Decomposition of an extended Hasse diagram, and its coverage with extended Has-
sse diagrams of some reusable components. (a) Decomposition of an extended Hasse diagram to
atomic components. (b) Some set of reusable pads covers the given extended Hasse diagram with
their extended Hassse diagrams.

(a) (b)

tan-16.qxd 5/16/2003 7:35 AM Page 381

dependencies:
#key � #query (#key, #template)
#search � #result (#query, #dbFile)
#result � #total(#result)
#index � #record (#result, #index)
#up � #index (#index)
#down � #index (#index)
#record � #title (#record)
#record � #author (#record)

We show the corresponding extended Hasse diagram in Figure 16.19, and its division in
Figure 16.20. Our primitive pad library covers this diagram as shown in Figure 16.20. We
show the corresponding pad composition in Figure 16.21.

382 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

Figure 16.19 An example extended Hasse diagram and its division. (a) An extended Hasse dia-
gram of the example pad specification. (b) Division of the extended Hasse diagram.

(a)

(b)

tan-16.qxd 5/16/2003 7:35 AM Page 382

16.6 PATTERN SPECIFICATIONS AND THE REUSE OF PADS 383

Figure 16.20 Our primitive pad library covers the diagram in Figure 16.19 as shown here.

Figure 16.21 A composite pad that has been developed from the example specification using our
pad library.

tan-16.qxd 5/16/2003 7:35 AM Page 383

16.7 INTELLIGENTPAD AS A SOFTWARE
DEVELOPMENT FRAMEWORK

When considered as a software development environment, IntelligentPad is an evolving
environment. The current version provides hundreds of components and some number of
sample composite pads. Unfortunately, these sample composite pads are not well related
with each other. Each sample composite pad, as a pattern, should be related to other sam-
ple composite pads that can replace some of their components with this pad, and also to
those that can be used as optional components of this pad.

When published through the WWW, the catalogues of patterns and frameworks de-
scribed in Sections 16.4.2 and 16.4.3 can be distributed through the Internet. Anyone any-
where in the world can publish his or her patterns and frameworks with association links
to other patterns and frameworks published by others at different sites. Anyone can access
and reuse each of them. This repository of patterns and frameworks evolves itself through
the publication of new patterns and frameworks by the people sharing this repository, and
through the spanning of new links among them by people.

Such a repository will help us to form a pattern-and-framework community whose
members add new patterns and frameworks to this repository, relate them to the already
registered ones, and retrieve some of these patterns and frameworks to reuse in different
but related applications. Since patterns and frameworks in IntelligentPad systems are pro-
vided as executable and decomposable composite pads, they themselves or their compo-
nents can be directly reused as executable modules in similar applications, and easily
modified to reuse in different applications by replacing some of their components with
other pads. Newly developed composite pads can be also published as patterns or frame-
works into the shared repository, which also works as a meme pool. This repository of pat-
terns and frameworks evolves itself and accelerates the evolution of patterns and frame-
works for software development in IntelligentPad.

16.8 SUMMARY

IntelligentPad is an example of middleware that introduces a middle layer between the
layer of operating systems and the layer of application programs. IntelligentPad provides
standard pad frameworks for the development of typical application programs, a standard
pad library of application components, and standard infrastructures for developing, dis-
tributing, managing, accessing, and using these pads and frameworks. IntelligentPad al-
lows concurrent engineering in software development. Typical composite pads for typical
applications work as architectural patterns in application developments.

Various kinds of software development methods can be applied to pad development
with some customization to the IntelligentPad architecture. This chapter has shown two
methods for application specifications and their translation to composite pads. The first
method describes an application using an action diagram, and translates this diagram to a
composite pad. The second method is a semiformal method. It provides a formal way to
describe an application as a list of slots. Each slot is associated with its access dependen-
cy relationship. This means that the total application is initially assumed to be a single
pad. The method then gives alternative ways to replace this single pad with an equivalent
composite pad. This method can maximally reuse existing pads.

384 SOFTWARE ENGINEERING WITH INTELLIGENTPAD

tan-16.qxd 5/16/2003 7:35 AM Page 384

REFERENCES

1. D. T. Dewire. Second-Generation Client/Server Computing. McGraw-Hill, New York, 1997.

2. Object Management Group. The Common Object Request Broker: Architecture and Specifica-
tion. Wiley, New York, 1992.

3. T. W. Ryan. Distributed Object Technology: Concepts and Applications. Prentice-Hall PTR,
Upper Saddle River, NJ, 1997.

4. C. Alexander. The Timeless Way of Building. Oxford University Press, New York, 1979.

5. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A Pat-
tern Language. Oxford University Press, New York, 1977.

6. J. O. Coplien. The History of Patterns. See http://c2.com/cgi/wiki?HistoryOfPatterns, 1995.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, 1995.

8. J. O. Coplien. Advanced C++—Programming Styles and Idioms. Addison-Wesley, Reading,
MA, 1992.

9. D. C. Schmidt. ACE—The ADAPTIVE Communication Environment. See http:/siesta.cs.wustl.
edu/~schmidt/ACE.html, 1996.

10. P. Coad, D. North, and M. Mayfield. Object Models—Patterns, Strategies, and Applications.
Yordon Press, Prentice Hall, Upper Saddle River, NJ, 1995.

11. W. Pree. Meta Patterns—A means for capturing the essentials of reusable object-oriented de-
sign. In Proceedings of ECOOP ‘94, pp. 150–162, 1994.

12. F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, Chichester, UK, 1996.

13. I. Jacobson, M. Ericsson, and A. Jacobson. The Object Advantage: Business Process Reengi-
neering with Object Technology. ACM Press, New York, 1955.

14. B. Kaplan and J. Goodsen. Task Analysis. Technical Report The Dalmatian Group Inc., 1995.

15. J. Martin, and C. McClure. Diagramming Techniques for Analysts and Programmers. Prentice-
Hall, Englewood Cliffs, NJ, 1985.

16. A. S. Fisher. CASE Using Software Development Tools. Wiley, New York, 1988.

17. J. Martin and C. McClure. Action Diagrams, Prentice-Hall, Englewood Cliffs, NJ, 1985.

REFERENCES 385

tan-16.qxd 5/16/2003 7:35 AM Page 385

CHAPTER 17

OTHER APPLICATIONS
OF INTELLIGENTPAD

In Chapters 9 and 10, we showed applications of IntelligentPad to multimedia systems
and database systems, and the generic frameworks for these applications. Chapter 14
showed application frameworks for form-flow systems and workflow systems. Chapters 8,
11, 12, 13, and 15 showed utility pads for defining a shared workspace, coordinating a
group of pads, defining a meme pool, introducing economic activities to a meme pool to
make it a meme market, and defining mobile agents as pads. With these frameworks and
utilities, IntelligentPad can cover a large range of interactive applications.

This chapter will show some potential application examples of IntelligentPad. They are
classified as follows:

1. Tool integration environments and PIM (personal information management)

2. Educational applications

3. Web page authoring

4. CAD/CAM applications

5. GIS with planning capabilities

6. Financial applications

7. Information kiosk

8. Electronic libraries/museums and digital archives

9. Exchange of scientific and technological data and tools

10. Matchmaking place among creators, connoisseurs, and buyers

Some of these applications were described in preceding chapters. Section 10.6 discussed
applications to GIS with planning capabilities, and Sections 11.6 and 11.8 described
aaplications to the exchange of scientific and technological data and tools. Section 11.8
also introduced Seigo Matsuoka’s Meme Country Project, which aimed to establish a vir-
tual country with various social infrastructures for the publication, finding, and utilization

386

tan-17.qxd 5/16/2003 7:38 AM Page 386

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

of knowledge, talents, and people, and for their matching with other knowledge, talents,
and people. This chapter shows some of the applications of IntelligentPad that have not
been referred to in the preceding chapters.

17.1 CAPABILITIES BROUGHT BY THE IMPLEMENTATION
IN INTELLIGENTPAD

IntelligentPad has versatile application fields. It has the capability of covering all kinds of
client application systems that use two-dimensional graphical representations. Each appli-
cation may require the development of new primitive pads. Some primitive pads may be
too complicated to be called primitive pads, and require professional programmers to de-
velop them. Application development in an IntelligentPad system introduces the follow-
ing five significant capabilities to the developed systems:

1. User-definable dynamic linkage among different systems

2. What-if trials without destroying original resources or processes

3. User customizability

4. Reuses of components, patterns, and frameworks

5. Distribution of components through the Internet, and their reediting and redistribu-
tion by end-users

IntelligentPad allows us to easily combine existing applications and/or their components
by dynamically defining linkages among any of them. Furthermore, it allows us to exe-
cute what-if trials without destroying original resources or processes. A what-if trial ex-
amines what will happen if something is assumed. What-if trials are especially important
in trial-and-error jobs. Such jobs include design, planning, simulation, and decision mak-
ing. System products provided as pads can be made totally or partially user-customizable.
The product provider can control the decomposability of each connection among the
product’s components. This also allows us to reuse components of products, composition
patterns of products, and frameworks provided by package products. Composite pads can
be distributed through the Internet, and reused at the destination sites. They can be further
reedited there just by peeling off some pads and pasting some new pads. The resulting
composite pad can be redistributed again through the Internet.

17.2 TOOL INTEGRATION ENVIRONMENTS AND PERSONAL
INFORMATION MANAGEMENT

The very first reason for developing IntelligentPad was to make various tools interopera-
ble through direct manipulations by their users. Once various system libraries, whether
they have graphical user interfaces or not, have been represented as primitive pads with
appropriate slots, they can be easily and dynamically combined to perform more complex
jobs. Command-based utilities of operating systems are good candidates for pad applica-
tions. For example, a file browser can be represented as a pad. Each file can be also repre-
sented as a pad with a slot returning its contents when accessed by a “gimme” message.

PIM (Personal Information Management) consists of various tools, including a schedule
calendar, a to-do list, an address list, memos, and tools to communicate with other comput-

17.2 TOOL INTEGRATION ENVIRONMENTS AND PERSONAL INFORMATION MANAGEMENT 387

tan-17.qxd 5/16/2003 7:38 AM Page 387

ers and PDAs (personal data adapters). These tools should be able to exchange whatever ob-
jects we select with each other whenever we need them. If the objects they deal with are rep-
resented as pads, they can be easily dragged and dropped from one tool to another.

Pads and their anchor pads can be pasted at any locations on any pads. Let us consider
a pad that allows you to input a person’s name. Suppose that its click will pop up another
pad that retrieves a photo, the address, the phone number, and the e-mail address of this
person from a database to present them as pads on itself. If such a pad is used in a sched-
ule calendar to memorize the person to meet at some time on some day, you can click this
pad to obtain his e-mail address pad, and stick this address pad on an e-mail pad to send
this mail to him. Or you can just click such a pad on a schedule calendar to obtain his
phone number pad, and click this phone number pad to put yourself through to this per-
son. On a schedule calendar, you may use a special alarm-clock pad whose alarm time is
automatically set to the day and the time determined by its location on the schedule calen-
dar pad. From this alarm time you may subtract arbitrary years, months, weeks, days,
hours, and minutes by dropping special pads on this alarm-clock pad. This makes it possi-
ble to activate an alarm clock some minutes, hours, or days ahead of the scheduled time.
Anchor pads pasted on such an alarm-clock pad will pop up the associated pads at its
alarm time.

A to-do list as a pad may also hold various pads on itself. Furthermore, its anchor pad
can be pasted on an alarm-clock pad that is pasted on an appropriate location of the sched-
ule-calendar pad. This to-do list will be popped up at the specified time on the specified
day. You can easily drag and drop any job represented as a pad from one to-do list pad at
some location on the calendar to another to-do list pad at another location on the calendar.

Memo pads can be also represented as pads. You may put any pads on them. Memo
pads and their anchors can be pasted on any pads, including alarm-clock pads, a schedule
calendar, to-do list pads, other memo pads, maps, and text pads.

Figure 17.1 shows a PIM system developed by C’s Lab. Inc. using an IntelligentPad
system. Here you can see an address list on the right, a calendar on the left, and an e-mail
system at the center. The format of the address table entries can be easily customized

388 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.1 A PIM system developed by C’s Lab. Inc. using an IntelligentPad system.

tan-17.qxd 5/16/2003 7:39 AM Page 388

through the editing of the pad shown in the “Preference” window below the e-mail sys-
tem. If you click an entry of the address list, the address-list pad will pop up a slip pad as
shown at the center top. This slip pad shows only the name of the selected person, but con-
tains all the detailed information. When you click its left button, such a slip expands itself
to show its details as shown at the left-bottom corner of the address list. When dropped on
the address entries of the e-mail system, such a slip pad sends the e-mail address part of
its content information to the corresponding entries of the e-mail system.

Figure 17.2 shows a scrapbook for pads at its center top. The same company that devel-
oped the above-mentioned PIM utility also developed this scrapbook. Any composite pad
can be put on this pad. Only the reduced image of the original pad is visually registered on
this pad. When you click this image, the scrapbook will pop up its original pad. The right-
top pad is also a scrapbook, which is registered at the left-top corner in the previous scrap-
book. This figure shows two more pads popped up from this scrapbook.

17.3 EDUCATIONAL APPLICATIONS

IntelligentPad provides all kinds of facilities necessary for education tools:

1. Interactivity with multimedia documents

2. Dynamic linkage among experimental data, simulation tools, and analysis tools

3. Provision of large reference databases of multimedia documents and data

4. Guiding facility based on student modeling and/or monitoring

5. Microworlds with interoperable objects and tools that users can directly play with

6. Building blocks for constructing objects and tools in microworlds

17.3 EDUCATIONAL APPLICATIONS 389

Figure 17.2 A scrapbook for pads developed by C’s Lab. Inc. using an IntelligentPad system.

tan-17.qxd 5/16/2003 7:40 AM Page 389

IntelligentPad enables us to publish education systems with some or all of these facilities
either on CD-ROMs or through the Internet.

17.3.1 Teaching Japanese to Foreign Students

A group of linguists teaching Japanese to foreigners organized the first user community
of IntelligentPad around 1994. The community now includes not only teachers but also
their students in Asia, Europe, America, and Oceania. They were not satisfied with previ-
ously available systems such as Directors and HyperCards. They wanted to provide arbi-
trary functional modules with arbitrary shapes and textures, and to put them at arbitrary
locations on a card, without writing a single line of code. They asked Hitachi Software
Engineering Corp., one of the most active IPC members, to help them use IntelligentPad.
They found that most of their worksheets could be classified into a rather small number of
different types.

One such type, for example, asks a student to select one out of many choices. It an-
swers “correct” if he or she selects the correct one. Otherwise, it answers “incorrect.”
These selection buttons are laid out differently for different problems. We need to provide
only two types of buttons. A correct button answers “correct,” whereas an incorrect button
answers “incorrect.” A group of problems of this type starts with a single sentence telling
you to select one out of several sentences that follow. All these sentences can be written
on a single pad. A correct sentence is covered by a transparent correct button, whereas in-
correct sentences are covered by incorrect buttons. Once these two buttons are provided,
this authoring becomes a foolproof job. Another group of problems of this type have a sin-
gle sentence telling you to select one out of the several pictures that follow. The sentence
and these pictures may be images on a single pad. You can just cover these pictures with
appropriate transparent buttons. No more work is required for the authoring. Figure 17.3
shows two worksheets that can be easily authored using the above-mentioned single
framework.

One of the most difficult things in the Japanese language is the proper use of post-
positional particles after subjects, objects, locations, and times. A sentence with several
postpositional particles left unspecified works as a good exercise for students to select

390 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.3 Various worksheets that can be easily authored using the same framework.

tan-17.qxd 5/16/2003 7:40 AM Page 390

the most appropriate postpositional particle out of many candidates to fill in in each of
the positions left unspecified. This type of exercise begins with an instruction telling
you to fill in each empty box in the given sentence with the most appropriate candidate
selected out of the given candidates. Each empty box and each candidate are both rep-
resented as pads. If the most appropriate candidate pad is put on an empty-box pad, the
candidate pad will stay there. Otherwise, the candidate pad will be returned to its origi-
nal position. This worksheet uses a base pad to hold other component pads on itself—a
text pad showing a sentence with several postpositional particles left unspecified,
empty-box pads to cover each position of the unspecified postpositional particles, and a
set of candidate pads to fill in empty boxes (Figure 17.4). The same framework can be
used in various different worksheets. An example is a picture of animals with name tags.
It asks you to put an appropriate name tag on each of the animals in this picture. Each
animal is covered by a transparent empty-box pad, whereas each name tag is represent-
ed by a candidate pad.

Each empty-box pad is a single PlaceHolderPad with a #index slot storing a positive
integer, whereas each candidate pad may be a composite pad with a PlaceFillerPad as its
base pad. A PlaceFillerPad has also a #index slot, and remembers its previous position.
When put on another pad, it checks to see if the underlying pad is a PlaceHolderPad,
sends this PlaceHolderPad a “gimme” message to read its #index slot, and compares this
value with its own #index slot value. If the underlying pad is not a PlaceHolderPad
or these index numbers do not match each other, the PlaceFillerPad will return to
its original position. Otherwise, the PlaceFillerPad will stay there. You may paste an im-
age pad or a text string pad on top of each PlaceFillerPad to make various types of can-
didate pads. The grouping operation can protect such composite pads from decomposi-
tion.

Shin Nitoguri of Tokyo Gakugei University, in cooperation with Hitachi Software En-
gineering Corp., has developed several frameworks and provided each of them with nec-
essary primitive pads and some sample composite pads. He published a Japanese lan-
guage textbook for foreign students together with a CD-ROM including many worksheets
developed in IntelligentPad.

17.3 EDUCATIONAL APPLICATIONS 391

Figure 17.4 A worksheet teaching how to use postpositional particles in Japanese after subjects,
objects, locations, and times.

tan-17.qxd 5/16/2003 7:40 AM Page 391

17.3.2 CAI in Physics and Mathematics

Takafumi Noguchi of Kushiro Technical Collage has developed several CAI systems in el-
ementary mechanics, elementary electronics, and elementary mathematical functions
(Figure 17.5).

Figure 17.6 shows a mechanical system with pulleys and springs connected together.
Probes are used to measure the tension of some ropes, and the values of two probes are
sent to an XY plotter using wiring pads to show the functional relationship between them.
The plotter shows that the value of the upper probe is always twice as large as the value of
the lower probe when we change the weight in the weight box. Each of these pulleys and
springs is animated on a separate transparent pad. Figure 17.7 shows primitive pads repre-
senting springs, two types of pulleys, a weight box, weights, and latches. It also shows a
composite system with these components.

Figure 17.8 shows how components are pasted together to define a mechanical system.
Figure 17.8(a) shows the situation just after the pasting of the upper spring onto the other
one. At this instance, components are not yet functionally linked together. Figure 17.8(b)
shows how component pads are pasted and connected together. The starter pad starts the
coordination of all the components over itself whenever it receives event information
about the pasting or the moving of a pad over itself. It coordinates the components so they

392 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.5 CAI systems in elementary mechanics, elementary electronics, and elementary math-
ematical functions.

tan-17.qxd 5/16/2003 7:40 AM Page 392

17.3 EDUCATIONAL APPLICATIONS 393

Figure 17.6 A mechanical system with pulleys and springs is connected to an XY plotter.

Figure 17.7 A composite pad and its decomposition to primitive component pads.

tan-17.qxd 5/16/2003 7:40 AM Page 393

may operate together. Spring pads and pulley pads are designed to operate in response to
the messages from a starter pad. As shown in 17.8(b), when either a paste event or a move
event occurs over a starter pad, this event information is sent to the starter pad. The starter
pad then sends an “update” message to the component pad pasted on itself. Each compo-
nent pad, when receiving an “update” message, propagates this update by sending its “up-
date” messages to all of its child pads.

Component pads are well designed so that they redraw their pictures of mechanical
components to make them visually connected and operate together. Each component pad
has several different linkage points. Each linkage point corresponds to one of the slots.
When you paste another pad around one of these linkage points, the parent pad automati-

394 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.8 Message flows among components of a mechanical system. (a) A simple example
composition with two springs. (b) The composition structure of the composite pad in (a).

(b)

(a)

tan-17.qxd 5/16/2003 7:40 AM Page 394

cally connects the child pad to the corresponding slot. Each latch as well as each weight
box has one linkage point at its center. Each spring has two linkage points at its two ends.
Each pulley has three linkage points—two at the two ends of its rope, and one at the end
of the harness mounting the wheel. Each spring pad divides its area into the upper and the
lower areas at the center of its displayed spring. These two areas include the upper and the
lower linkage points, respectively. They are called linkage areas of the spring pad.

When a spring pad outputs information about its linkage points, it outputs an informa-
tion pair for these two points. Each component on top of a spring pad receives such an in-
formation pair, and selects only the portion related to itself.

In Figure 17.8, up arrows represent “update” messages, whereas down arrows repre-
sent “set” messages. When a component receives an “update” message, it reads the con-
nected slot of its parent pad to get the necessary information. Each parameter value sent to
or read from component pads is represented as an association list of the following struc-
ture:

[(<message1>.value1), (<message2>.value2), . . . , (<messagen>.valuen)],

where <messagei> is a keyword and valuei is its value. In the following, we show the de-
tails of the linkage mechanism using the example in Figure 17.8, where it is assumed that
the displacement coefficient of each spring is 1, and that each of the weights and the
weight box weighs 10 grams.

1. Messages 1, 2, 3, 6, and 7 are “update” messages that request the recipient pads
for their statuses. Message 1 triggers messages 2 and 6, which then further trigger
messages 3 and 7. Each sender pad of theses messages stores in its connection
slot an association list of the form [(<giveData>.true)]. Any physical constant,
such as the gravitational constant, that all the components must use can be deliv-
ered to them if we add its information to this association list to store
[(<giveData>.true), (<gravity>.9.8)] in the connection slot.

2. Sending the “update” message 3 to the weight pad makes this pad to read the list
[(<giveData>.true), (<gravity>.9.8)], which requests this pad to send back the “set”
message 4 with its state. This state is represented as [(<weight>.10)].

3. The weight box pad that has received the “set” message 4 reads the association list
that has been sent to its connection slot, gets the value 10 of the keyword <weight>,
adds its own weight 10 to this value to obtain the total weight 20, and sends the
“set” message 5 to its parent pad. Its parameter is also an association list
[(<free>.true), (<point>.Pe), (<weight>.20)], where the first item (<free>.true) de-
notes that the weight box is not fixed, the second item (<point>.Pe) shows the posi-
tion of its linkage points, and the last item shows the total weight.

4. The latch that has received the data request message through an “update” message
immediately sends the “set” message 8 with an association list [(<fix>.true),
(<point>.Pf), (<constant>.0)] as its parameter, where the first item (<fix>.true) de-
notes that the latch is fixed, the second item shows the position of its linkage point,
and the last item shows its displacement coefficient. Since the latch is not a spring,
its displacement coefficient is 0.

5. The spring pad that has received the message 8 reads out the association list
[(<fix>.true), (<point>.Pf), (<constant>.0)] from its slot, uses these values to calcu-

17.3 EDUCATIONAL APPLICATIONS 395

tan-17.qxd 5/16/2003 7:40 AM Page 395

late its state, and sends the “set” message 9 with an association list [(<fix>.true),
(<point>.Pd), (<constant>.1)] as its parameter. The first item of this list denotes that
the spring is fixed to the latch. The second item shows the position of the spring’s
lower linkage point after the upper linkage point has been fixed to the linkage point
Pf of the latch. The last item denotes that its displacement coefficient is 1.

6. The lower spring pad that has received the set messages 5 and 9 reads out the two
association lists from its two slots connected to its child pads. From the first associ-
ation list [(<fix>.true), (<point>.Pd), (<constant>.1)] and the <weight> part of the
second association list [(<free>.true), (<point>.Pe), (<weight>.20)], the lower
spring pad knows that its upper linkage point must satisfy Pa = Pd + (0, 20), where
the displacement 20 is obtained by multiplying the displacement coefficient 1 by
the weigh 20. The lower spring pad also knows that its length is expanded by 20,
which is the product of its own displacement coefficient 1 and the weight 20 ap-
plied to it. Therefore, the lower spring pad can calculate the position of its lower
linkage point as Pb = Pa + (0, 20) = Pd + (0, 40). The lower spring pad sets the asso-
ciation list [(<point>.[((P1, P2), Pa) ((P3, P4), Pb)]), (<weight>.[(20) (20)])] to the
two slots connected to its child pads, where [a b] denotes an array of data. The list
((P1, P2), Pa) denotes that the upper linkage point is at Pa, and that the upper linkage
area is a rectangle defined by two diagonal nodes P1 and P2. The item
(<weight>.[(20) (20)]) denotes that a downward force of magnitude 20 is applied to
each of the two linkage points Pa and Pb. This spring pad then issues “update” mes-
sages 10 and 11 to its child pads.

7. The weight box pad that has received the “update” message 10 reads the slot of its
parent by a “gimme” message. It knows that there are two linkage areas (P1, P2) and
(P3, P4) defined in its parent pad, selects the (P3, P4) including its own linkage point
Pe, gets the position Pb that is paired with this selected area (P3, P4), and moves it-
self so that Pe coincides with the position P b.

8. The upper spring pad that has received the “update” message 11 reads the slot of its
parent by a “gimme” message. It knows that there are two linkage areas (P1, P2) and
(P3, P4) defined in its parent pad, selects the (P1, P2) including its own floating link-
age point Pd, gets the position Pa that is paired with this selected area (P1, P2), and
redraw its picture of a spring so that Pc and Pd coincide with the positions Pf and Pa,
respectively. This spring pad then stores the association list {(<point>.[((P5, P6), Pc)
((P7, P8), Pd)]), (<weight>.[(20) (20)])} in its two connection slots, and sends an
“update” message to its child pad. The latch pad receiving this message does not
move since it is fixed.

Figure 17.9 shows a motor with gears and XY plotters. Here again, each component such
as a motor and a gear is a pad. Each XY plotter is also composed with primitive pads. The
motor rotates at a constant angular velocity triggered by its underlying clock-pulse-gener-
ator pad. Each gear pad has a reference position at its edge and two slots representing the
X and Y coordinate values of this point. The rotation of a gear moves its reference point
and changes these slot values. Each of the two left XY plotters plot the value of one of
these slots as a function of time to draw a sine curve.

Figure 17.10 shows a pad environment developed for the learning of elementary func-
tions. Here you can easily define a complex composite function by pasting together func-
tion pads, constant pads, and variable pads as shown in Figure 17.11. Such a composite

396 OTHER APPLICATIONS OF INTELLIGENTPAD

tan-17.qxd 5/16/2003 7:41 AM Page 396

pad is pasted on top of another pad with its connection to a slot of its parent pad. This par-
ent pad can request the composite pad to evaluate the function value and send this value to
this connection slot. Any pad that requests its child pad to send a value to its slot can be
used as the parent of such a composite pad. The message flows in this composition are
similar to those in the mechanical system example described above.

When a pad in such a composition wants to request its child pad to evaluate the func-

17.3 EDUCATIONAL APPLICATIONS 397

Figure 17.10 A pad environment for leaning elementary functions.

Figure 17.9 A motor with gears and XY plotters. They are all composed with component pads.

tan-17.qxd 5/16/2003 7:42 AM Page 397

tion value, it sends an association list of the form [(<giveData>.true)(<variable>.v)] to its
slot that is connected to the function-evaluating child pad, and sends this child pad an “up-
date” message, where v denotes the value of the variable. The recipient child pad sends a
“gimme” message to its parent to read out this association list. In such a composition, as-
sociation lists of this type are sent from every pad to its child pads, starting from the bot-
tommost pad, and proceeding toward the topmost constant or variable pads. Each topmost
pad returns to its parent pad either its constant value or its variable value depending on
whether it is a constant pad or a variable pad. Its recipient can evaluate its function value,
and send it to its parent pad using a “set” message.

Figure 17.12 shows a pulley-and-spring composite pad whose weight is changed by an
external device connected to this computer system. This external device consists of a
volt/ampere meter with a variable resistor. The video at the right-top corner shows that a
user is rotating a knob of the variable resistor to change the meter output value. This me-
ter’s output value is input to the computer system to proportionally change the weight of
the weight pad. The lower-right composite pad works as a controller of the volt/ampere
meter. Its base pad is a proxy pad of the volt/ampere meter. One of its output slots is con-
nected to the #weight slot of the weight pad by a wiring pad. The use of such external sen-
sors and actuators together with their proxy pads will allow us to relate external changes
and actions to some behaviors of pads.

17.3.3 CAI in Control Theory

Eiichi Ishikawa, a technical staff member of Meme Media Laboratory, has developed a
CAI system for the study of PID controllers. His system uses the mutually compatible two
commercial versions of IntelligentPad available from Fujitsu and Hitachi Software Engi-
neering, and runs on a PC and Macintosh. Figure 17.13 shows a controller and a con-
trolled object, while Figure 17.14 shows the response of the system. The development of
this whole system did not require any coding except the program defining the controlled

398 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.11 Message flows among component pads for playing with elementary functions. (a)
An example composition of a mathematical function. (b) Message flows in the composition in (a).

(b)(a)

tan-17.qxd 5/16/2003 7:42 AM Page 398

17.3 EDUCATIONAL APPLICATIONS 399

Figure 17.12 A pulley-and-spring composite pad whose weight is changed by an external device
connected to this computer system.

Figure 17.13 Composite pads working as a controller and a controlled object.

tan-17.qxd 5/16/2003 7:42 AM Page 399

object. Students can replace this controller with a new one they design, or replace this
controlled object with another provided by their teacher or by themselves. They can
change the external noise, the input signals, and the output display.

17.4 WEB PAGE AUTHORING

Tokyo Electric Power Company has been publishing lots of information about their re-
search and development activities, nuclear power technologies and operations, as well as
their service information through the WWW. However, they found it difficult to update
their home-page contents in a timely manner because the writing in HTML requires time-
consuming manual operations to enter and edit texts, numbers, and multimedia data such
as photos and graphs, and to handle hyperreferences for making scenarios.

Masaki Nakamura and Morihiro Shiozawa of Tokyo Electric Power Company and
Keizo Uchiyama of Tokyo Electric Computer Service solved this problem by using Intel-
ligentPad technologies. Their system allows us to define a web page just by pasting to-
gether texts, photos, videos, tables, graphs, and other data objects. If you want to insert an
image, you can first paste an image pad at a desired location, resize it, and then open its
associated file selector to select an image file as shown in Figure 17.15. The selected im-
age is displayed on this image pad. This system automatically generates the HTML de-
scription of your contents, which can be published through the World Wide Web or in-
tranets. You can just click the “HTML generation” button to generate the HTML file and
to save it in the local server (Figure 17.16). To define a new hyperlink, you can just choose
a character string for an anchor, and select the destination page from the file selector.

400 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.14 Composite pads showing the response of the system in Figure 17.13.

tan-17.qxd 5/16/2003 7:42 AM Page 400

17.5 OTHER APPLICATIONS

Other applications that some IPC members are interested in include CAD/CAM systems,
financial analysis systems, information kiosk systems, and electronic library and museum
systems. Takeshi Sunaga of Tama Art Collage is interested in using IntelligentPad as a
tool for information design.

17.5.1 CAD/CAM Applications

Drawings in CAD/CAM can be treated as pads, which enable them to exchange data and
messages among themselves. Objects in a drawing can be also treated as pads pasted on
the base drawing pad, which enables each component to communicate with the total sys-
tem modeled by the base pad. The paste and peel of components also change the system
model or its parameters stored in the base pad.

The base models and these components in CAD/CAM systems are usually managed
by database systems to maintain coherency among replicated uses of the same model
and the same component by different drawings. Each of these drawings not only refers
to these models and components, but also updates them. Their management by a data-

17.5 OTHER APPLICATIONS 401

Figure 17.15 If you want to insert an image, you can first paste an image pad at a desired location,
resize it, and then open its associated file selector to select an image file.

tan-17.qxd 5/16/2003 7:42 AM Page 401

base maintains not only their integrity, but also the coherency among their replicated
references in different systems. Every modification of a base model or a component in
one system updates its representation in the database. Every reference of a base model
or a component accesses the database to retrieve its most recent version. Every object
reference is updated on demand. This mechanism is quite similar to the use of virtual
forms instead of real forms. To achieve this goal you may extend each drawing pad and
each component pad to retrieve their contents from a database and to update them by
updating the database.

The above mechanism guarantees coherency among replicated references on demand.
The real-time coherency among them can be also achieved by treating them as shared
copies of the same pad.

CAD/CAM systems also require what-if trial capabilities that allow us to observe,
without destroying any resources or any processes, what happens if we try something.
IntelligentPad makes it easy to provide application frameworks capable of performing
what-if trials. However, special considerations are necessary to replicate proxy pads and
shared copies of pads. In CAD/CAM systems without either the on-demand coherency
mechanism or the real-time coherency mechanism, what-if trials can simply use inde-
pendent copies of drawings and components. In CAD/CAM systems with the on-de-

402 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.16 You can just click the “HTML generation” button to generate an HTML file and to
save it in the local server.

tan-17.qxd 5/16/2003 7:42 AM Page 402

mand coherency mechanism, what-if trials should be related to the version control
mechanism of databases.

17.5.2 Financial Applications

Financial applications are also considered prospective application areas of IntelligentPad.
Stock market analysis and portfolio management both require visual presentation and var-
ious capabilities including the exchange of their contents with other systems, what-if sim-
ulation over themselves, and direct access to transaction services through themselves.
Furthermore, they must be presented on clients’ computer through the Internet, and
clients should be able to access various services through these presentation sheets. It is
quite natural to represent these as pads.

17.5.3 Information Kiosk Systems

Information kiosk systems help visitors to cities, towns, museums, libraries, company of-
fices, department stores, and malls to find how to access what they want to see, to visit, to
read, to buy, or whom they want to meet. Information kiosk systems are naturally suited to
the capabilities of IntelligentPad. A typical information kiosk system consists of a map
with some recommended tour routes, guided tour presentations, access entrances to other
pages, an automatic dial-up service, service-request-form pages, and information-presen-
tation pages. The first page is a map with several anchors working as access entrances to
other pages. A click on one of them pops up a new page, which may be also a map or a
service page. A service page enables us to communicate with a service or a person
through an input/output form or a phone connection. All these pages and their component
objects can be represented as pads.

17.5.4 Electronic Libraries and Museums

Electronic museum and/or library systems are also systems of increasing importance to
which IntelligentPad can be directly applied. They deal not only with multimedia docu-
ments, but also with scientific tools, data, facts, and rules, all in a unified manner. They
should have the capabilities of network publication of these contents and their search ser-
vices. IntelligentPad represents these contents and services as pads. Its HTMLViewerPad
can publish all of them through the Internet by embedding them in arbitrary Web pages.
Old manuscripts are published as images. Their pad representation allows us to overlay
annotations to them as an independent pad. A single manuscript page may have more than
one annotation pad. These annotation pads can make their annotation texts visible when
requested. Otherwise, they hide their texts. URL anchor pads can be pasted on annotation
pads to span links among document and tool pads across the Internet.

Seigo Matsuoka of Editorial Engineering Laboratory Inc. and Ken-ichi Imai of Kyoto
Stanford Research Institute applied IntelligentPad to the production of a digital archive
system, “The Miyako,” of Kyoto’s cultural heritage with the support of MMCA (Multime-
dia Contents Association) (Figure 17.17). “Miyako” in Japanese means an old capital, es-
pecially Kyoto. The design of this system had the following requirements:

1. All the multimedia contents should be stored and managed by a relational database
management system.

17.5 OTHER APPLICATIONS 403

tan-17.qxd 5/16/2003 7:42 AM Page 403

404 OTHER APPLICATIONS OF INTELLIGENTPAD

Figure 17.17 A digital archive system, “The Miyako,” of Kyoto’s cultural heritage used Intelli-
gentPad to develop its fully interactive front-end system and an RDB as its back end to store digital
content.

tan-17.qxd 5/16/2003 7:42 AM Page 404

2. It should provide the same quality of presentation as those multimedia presenta-
tions using Macromind Director.

3. It should provide full interactivity so that users can navigate through any path.

In order to satisfy these requirements, the development team exploited IntelligentPad to
develop the front-end interface of the system. Each jump from one presentation stage to
another is specified by a query to the back-end relational database. Its evaluation retrieves
all the content necessary to construct the target presentation stage, including not only
archived multimedia content, but also both functional components such as hyperlink an-
chor buttons, and composition structures among these components.

This system has various features. One of them is the association search using the ar-
chetype of each item. Temples, for example, are classified into several categories, each of
which has an archetype for the layout of buildings and gardens. The Miyako allows you to
retrieve associated information through these archetypes. Another feature is the naviga-
tion through associative relationships among motifs appearing in various items. For exam-
ple, a pine tree often appears with a crane in paintings. Japanese culture has rich associa-
tive relationships among flowers, trees, insects, animals, mountains, rivers, and seasons.
The Miyako allows you to pick up one motif appearing in a retrieved multimedia item, to
obtain all the possible motifs in some associative relationships, and to pick up one to find
other items having the selected motif.

17.5.5 Information Design Tools

Today, designers are confronted with the design of information: how to present, access,
and process varieties of information and knowledge. We do not have sufficient method-
ologies or sufficient notations for this kind of design. Takeshi Sunaga of Tama Art Collage
started his career as a product designer and established a new department of information
design. This was the first establishment of such a department in Japan, and it encouraged
many followers.

In his information design course, he first sets up some goal such as designing a tool to
support travel planning. Students then brainstorm on this subject in groups, using idea
sketches. Each group presents their design idea to other groups to obtain comments and
further discussion. Then each group further elaborates on the details of their design
through the mock-up development using Macromind Director.

Takeshi was confronted with two problems. First, they had no tools to complete their
designs. Macromid Director enabled them to present the flows of operations and the cor-
responding state changes of the tool they wanted to design, which they could not well pre-
sent with idea sketches. However, Macromind Director enabled them only to develop
mock-ups. With Macromind Director, they could not develop fully interactive systems ac-
cessing various servers. This is a serious problem since, in information design, we design
not only the visual appearance of the system, but also the process of users’ interaction
with the system. Mock-ups developed with Macromind Director do not allow designers to
flexibly change their design of users’ interaction processes in a trial-and-error manner.
Second, Macromind Director separates the script programming phase from the presenta-
tion phase, which makes it difficult for designers to use this tool in their brainstorming.
Designers have to finish with the design of both users’ interaction processes and the sys-
tem’s state changes before using Macromind Director.

17.5 OTHER APPLICATIONS 405

tan-17.qxd 5/16/2003 7:42 AM Page 405

Takeshi started to use IntelligentPad in his design course. He asked pad developers at
Hokkaido University and IPC to collaborate in his design course. Using IntelligentPad,
pad developers and designers can collaborate from the very first stage of the design
process. Furthermore, design with IntelligentPad removes the difference between mock-
ups and real interactive systems, which allows designers to use pads even in their brain-
storming. This kind of collaboration also stimulated pad developers a lot. Using conven-
tional system development, they have never participated in the brainstorming phase of
information design. They observed in such collaboration a remarkable reduction of sys-
tem development time and cost.

17.6 SUMMARY

IntelligentPad has the capability of covering all the client application systems that use
two-dimensional graphical representations. Their implementation in an IntelligentPad
system introduces the following five significant capabilities:

1. User-definable dynamic linkage among different systems

2. What-if trials without destroying original resources or processes

3. User customizability

4. Reuses of components, patterns, and frameworks

5. Distribution of components through the Internet, and their reediting and redistribu-
tion by end-users

These functions are especially required by such applications as PIM (personal informa-
tion management), Web page authoring, CAD/CAM applications, GIS (Geographical In-
formation System) with planning capabilities, financial applications, information kiosk
systems, electronic library/museum applications, and the exchange of scientific and tech-
nological data and tools.

406 OTHER APPLICATIONS OF INTELLIGENTPAD

tan-17.qxd 5/16/2003 7:42 AM Page 406

CHAPTER 18

3D MEME MEDIA

Both the concept of meme media and the IntelligentPad architecture can be extended to
three-dimensional (3D) representation media. This chapter will discuss IntelligentBox, a
3D extension of IntelligentPad. IntelligentBox provides some components that Intelligent-
Pad does not. These components include, for example, a shape deformation box that de-
forms a wire-frame model that is put in this box. IntelligentBox provides application
frameworks not only for interactive 3D animation but also for interactive information vi-
sualization and interactive scientific visualization.

18.1 3D MEME MEDIA INTELLIGENTBOX

Pads in IntelligentPad are two-dimensional (2D) representation media, but the idea and
the basic architecture of IntelligentPad can also be applied to 3D representation media.
The idea of IntelligentPad consists of the following:

1. Each component is wrapped by a 2D representation wrapper with a list of slots as
its standard functional linkage interface to other components.

2. Each component has an MVC architecture.

3. View linkage among components defines a composite object as a compound docu-
ment.

4. Each component in a composition has no more than one parent component, and can
access no more than one of this parent’s slots.

5. Each slot can be accessed by one of the two standard messages, “set” and “gimme.”
Each slot defines two different methods for these two messages.

6. The updating of components propagates from each parent component to its chil-
dren.

7. Components work as meme media, and their worldwide repository forms a meme
pool.

407

tan-18.qxd 5/16/2003 8:09 AM Page 407

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

Exactly the same idea can be applied to 3D representation media, with some small modi-
fications to the first and third principles.

1. Each component is wrapped by a 3D representation wrapper with a list of slots as
its standard functional linkage interface to other components.

3. View linkage among components defines a composite 3D object.

The result is the 3D meme media architecture called IntelligentBox. Its components are
called boxes.

Boxes may have arbitrary internal functions as well as arbitrary 3D visual display func-
tions. Different functions define different boxes. Composite boxes are also simply re-
ferred to as boxes unless this causes any confusion. Just as pads in IntelligentPad can rep-
resent not only multimedia documents but also application tools, boxes in IntelligentBox
can represent not only 3D computer animation graphics but also various application tools
including 3D information visualization systems and 3D scientific visualization systems.
Furthermore, IntelligentBox allows us to integrate 3D computer animation with 3D infor-
mation visualization, 3D scientific visualization, and 3D application systems.

18.2 3D APPLICATION SYSTEMS

3D application software is in great demand for various application fields including med-
ical science, mechanical engineering, architecture, molecular biology, genome informat-
ics, electromagnetism, fluid dynamics, statistical data analysis, other scientific and busi-
ness fields requiring scientific visualization and/or information visualization, and
entertainment business such as computer animation production and 3D arcade/TV game
production.

There already exist a lot of 3D application software development toolkit systems avail-
able in the market. They include virtual reality toolkit systems, 3D computer-animation
development toolkit systems, and 3D GUI toolkit systems.

Virtual reality toolkit systems include WorldToolkit [1], WalkThrough [1], VREAM
[1], SUPERSCAPE VRT [1], REND386 [1], MR Toolkit [2], SilTools [3], and MERL
[4]. SUPERSCAPE VRT, for example, consists of two individual parts, i.e., an editor
and a visualizer. Developers design 3D scenes using the editor. It also provides devel-
opers with SUPERSCAPE Control Language. Using this language, developers define
the behaviors of each 3D object in a virtual world. The visualizer is the run-time soft-
ware that works as an interpreter to interpret user-defined programs and to execute
them. The SilTools is an integrated simulation system used to justify manufacturing
processes of industrial products. Other systems are more or less similar to the SUPER-
SCAPE VRT. Their users have to write script programs using a script language to define
behaviors of objects in virtual worlds. The standardization of VRML (Virtual Reality
Modeling Language) [5] has encouraged development efforts in this area. VRML-based
virtual reality toolkit systems include Virtual Studio 97 and VRCreator. Java is also ex-
tended by various groups to cope with 3D graphics capabilities. Java 3D is such an ex-
ample. VRML Consortium used Java to add intelligent interactivity to VRML animation
objects.

Computer-animation development toolkit systems provide a modeling tool and a ren-
dering tool for the creation of 3D scenes. None of them treats every 3D object appearing

408 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:09 AM Page 408

in a 3D scene as a reactive object, nor provides any mechanism that allows us to dynami-
cally combine individual reactive 3D objects into a reactive composite 3D object.

3D GUI toolkit systems include 3D Widget [6] and IRIS Inventor [7]. Both of them
provide 3D components that have 3D shapes to be changed by direct manipulations on the
screen. They enable developers to edit these 3D components to create 3D scenes. The def-
inition of 3D components and their mutual relations in these systems, however, requires
programming by developers.

Different from these systems, every 3D object in IntelligentBox has its own function
and reacts to user events. IntelligentBox provides a dynamic functional composition
mechanism that enables us to directly combine 3D objects on the screen to compose a
complex 3D object. Only primitive component boxes need to be programmed by their de-
velopers. We do not assume that there exists a sufficiently large closed set of primitive
components to cover various applications. Instead, we assume that market competition
will encourage box developers to provide new primitive components.

18.3 INTELLIGENTBOX ARCHITECTURE

The IntelligentBox system architecture has inherited three basic mechanisms from the In-
telligentPad system architecture [8]. They are (1) Model-View-Controller (MVC) model-
ing, (2) parent-child relationships, and (3) the message-sending protocol through the slot-
connection mechanism. The following three subsections explain these basic mechanisms
briefly.

18.3.1 The Model-View-Controller Modeling

Each box in IntelligentBox systems consists of three individual objects: a model, a view,
and a controller. Its model defines an internal mechanism of each box. Its view defines
the 3D graphical appearance of each box, and its controller defines how each box reacts to
user events. The controller decodes such a user event as a mouse drag, a mouse click, and
a keyboard input, and sends an appropriate message to its corresponding view, which, if
necessary, sends another message to the corresponding model. Whenever a model
changes its state, this update information is propagated to the corresponding view.

Each box is logically modeled as a list of slots, each of which can be accessed by each
of the two standard messages, a “set” message and a “gimme” message. Corresponding to
each slot, a box has two procedures that are respectively invoked by a “set” and a
“gimme” message. When default definitions are used for these procedures, the corre-
sponding slot works as a data slot, namely as a data register to read and write a value.
Some slots are defined in the model part, whereas the others are defined in the view part.

In addition to slots, each box has properties such as dimension, orientation, its angle,
and so on. A box may define some of these properties as slots, which allows other boxes
to change those properties through their slot connection linkages to this box. A Rotation-
Box has a cylinder shape, and rotates itself corresponding to user operations. It has a slot
named #ratio whose value changes from 0.0 to 1.0 in proportion to its rotation angle. An
ExpandBox expands and shrinks its height corresponding to user operations. It has also a
slot named #ratio whose value changes from 0.0 to 1.0 in proportion to its height. These
boxes change their shapes when their #ratio slots are set with new values. Direct manipu-
lation of these boxes changes not only their shapes but also their #ratio slot values.

18.3 INTELLIGENTBOX ARCHITECTURE 409

tan-18.qxd 5/16/2003 8:09 AM Page 409

18.3.2 Parent–Child Relationship between Boxes

In any composition, each component box can be connected to a single slot of no more
than one other box. The former becomes a child box or a slave box of the latter, whereas
the latter is called a parent box or a master box of the former. Each child box is managed
by the coordinate system defined by its parent box. In the case of IntelligentPad, the cor-
responding constraint between a pad and its parent pad naturally coincides with the con-
straint of paste operations: each pad cannot be pasted on more than one pad. In the case of
IntelligentBox, this constraint between a box and its parent box naturally coincides with
the constraint of embedding operations; each box cannot be embedded in more than one
coordinate system. However, because of the invisibility of each coordinate system, it may
look as if there is no such natural constraint on the box composition operations. Intelli-
gentBox provides a linkage viewer to show parent–child relationships among all the com-
ponent boxes in a selected composite box. The viewer shows these relationships as a tree
with component box names as its nodes.

A rendered image of a composite box is naturally defined as the combination of the
rendered images of its component boxes. Sometimes, it is required to hide some compo-
nents in a composition, along with their functions contributing to the composite boxes. In-
telligentBox allows us to make any box transparent.

18.3.3 Message-Sending Protocol for Slot Connections

The slot connection connects a child box to a single slot of its parent box. The child box
can access this slot of its parent box by either a “set” message or a “gimme” message. A
“set” message takes one parameter, whereas a “gimme” message has no parameter. The
parent box can send an “update” message to its child boxes. This message takes no para-
meter. In their default definitions, a “set” message writes its parameter value into the cor-
responding slot register in the parent box, whereas a “gimme” message reads the value of
this slot register. An “update” message tells the recipient that a state change has occurred
in the sender box. The developer of each box may overload the definition of the two slot
access procedures of each slot and the “update” procedure to change the default interpre-
tation of these three standard messages.

In addition to these three standard messages, each box can accept geometrical mes-
sages such as “resize,” “move,” “copy,” “hide,” and “show.”

18.3.4 Shared Copies

Shared copies of a box are also defined in the same way as in IntelligentPad. Shared copies
of a primitive box share their model. Shared copies of a composite box share the model of
the base box, i.e., its component primitive box that has no parent. Shared copies are often
used to temporarily connect more than one composite box in a manner similar to the use of
wiring pads. For this purpose, IntelligentBox provides a wiring box whose two shared
copies work as two terminals of a connection cable. It can be connected to any type of slots.

18.4 EXAMPLE BOXES AND UTILITY BOXES

The IntelligentBox system provides basic primitive boxes used as input devices or output
devices [8]. They include, for example, a push button, a rotary controller, and a slide-bar

410 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:09 AM Page 410

meter. It also provides various converters that adequately convert slot values of other box-
es. Figure 18.1 shows a simple example of a composite box using some primitive boxes.

In this example, the motor of a car is nothing but a counting process having a cylinder
shape. Its model has an integer-value slot. It works as an incremental counter. The toggle
button connected to the #start/stop slot of the motor works as the switch to start and stop
this counting process. Once the toggle button is pushed down, and the #start/stop slot of
the motor becomes “true,” the motor keeps increasing its slot value incrementally until the
start/stop slot becomes “false” again.

The example composite box has two toothed wheels. They have geometrical shapes,
but no functionality. Each of them is defined as a child of a transparent RotationBox,
which embeds this toothed wheel in the coordinate system of the RotationBox. The
RotationBox rotates together with the internal toothed wheel. One of the two
RotationBoxes is defined as a child of the motor box, whereas the other is defined both
as a child of the former and the parent of the long shaft with two wheels. The motor box
sends its child RotationBox an “update” message whenever it increases its counter val-
ue, which makes this child RotationBox issue a “gimme” message to read out the
counter value and to rotate itself to the angle proportional to this read out value.
Whenever the first RotationBox rotates, it sends the second RotationBox an “update”
message, and makes it also rotate. If these two toothed wheels have different numbers of
teeth, you can insert a transparent converter box between these two RotationBoxes to
change their units of rotation.

The following list shows some of the currently available primitive boxes.

1. General purposes reactive boxes. These include boxes to be used as input and/or
output devices. They include RotationBox, ExpandBox, SliderMeterBox, Tog-
gleSwitchBox, ScalingBox, AutoDirectingBox, 3D-RotationBox, PushButton-
Box, and MoverBox.

2. Filtering boxes. These are boxes to be inserted between two message-exchanging
boxes for the data conversion between them. They include RangeBox, FilterBox,
MinmaxBox, and VectorRangeBox.

3. Storage boxes. These work as data registers and hold some data shared by more
than one box. They include IOBufferBox, ListBox, VectorBox, and Dictionary-
Box.

4. Motion-constraint boxes (detailed in the next section): TrajectoryBox, Trajectory-
MoverBox, CreepingBox, etc.

18.4 EXAMPLE BOXES AND UTILITY BOXES 411

Figure 18.1 A simple example of a composite box using some primitive boxes.

tan-18.qxd 5/16/2003 8:09 AM Page 411

412 3D MEME MEDIA

5. Shape deformation boxes (detailed in the next section): FFDControlBox, Mesh-
Box, RFFDControlBox, etc.

6. Boxes for creating CG animation: KeyFrameAnimationBox, CameraBox, Light-
Box, etc.

7. Boxes for coloring and labeling other boxes: ColorBox, StringBox, etc.

8. Boxes for developing distributed applications: RoomBox, TranslationBox, etc.

9. Boxes for playing sound files: SfplayerBox, SfvolumeBox, etc.

10. Other functional boxes: ProcessBox, CommandBox, SceneSwapBox, System-
FunctionBox, OperationBox, CollisionCheckBox, EnvironmentBox, etc.

IntelligentBox is an open system; its component library is open for future extension. Us-
ing some of the boxes listed above, you can develop, for example, a car-driving simulator
as shown in Figure 18.2, and distributed 3D graphic applications presented in later sec-
tions. All of them can be simply composed by combining primitive boxes without writing
any programs.

18.5 ANIMATION WITH INTELLIGENTBOX

Our IntelligentBox Project is focusing on three major application fields—interactive com-
puter animation, interactive information visualization, and interactive scientific visualiza-
tion. Among them, interactive computer animation is the most direct application of Intelli-
gentBox. Shapes as well as motions and shape transformations can be all treated as
generic components. Furthermore, lights and cameras can be also treated as generic com-
ponents. IntelligentBox can provide all these generic components as primitive boxes, and
allow us to easily combine them through slot connections [8].

18.5.1 Motion Constraint Boxes

Any box that moves or rotates itself also moves or rotates its child boxes attached to itself.
Such a box imposes various motion constraints on its child boxes. A TrajectoryBox and a

Figure 18.2 A car-driving simulator composed with primitive boxes. The window at the top left
corner provides the driver’s view.

tan-18.qxd 5/16/2003 8:09 AM Page 412

TrajectoryMoverBox introduce a motion constraint that restricts the motion of any box to
an a priori defined trajectory. A TrajectoryBox specifies a trajectory, whereas a Trajecto-
ryMoverBox is constrained to move along the trajectory defined by its parent Trajectory-
Box. The shape of the TrajectoryBox is not a polyhedron but a 3D curve. When a Trajec-
toryMoverBox becomes a child of a TrajectoryBox, such a constraint is imposed on this
TrajectoryMoverBox. Any composite box that is defined as a child of this Trajectory-
MoverBox moves together with this TrajectoryMoverBox. For example, the space shuttle
in Figure 18.3 is defined as a child of a TrajectoryMoverBox, which is constrained to
move along the trajectory defined by a TrajectoryBox.

A TrajectoryBox has a slot called a #trajectorySlot. This slot holds a set of vertices
defining a trajectory. Its child TrajectoryMoverBox reads this slot to obtain the trajectory
data, which determines the motion of this TrajectoryMoverBox. A TrajectoryMoverBox
has a slot named a #currentPositionSlot. This slot takes a value between 0.0 and 1.0, and
indicates at which position on its trajectory this TrajectoryMoverBox is located. Direct
manipulation of a TrajectoryMoverBox to move along its trajectory changes this slot val-
ue. On the other hand, the change of this slot value moves this TrajectoryMoverBox to the
location on its trajectory determined by this slot value.

A CreepingBox introduces another motion constraint. It restricts itself to move around
on the surface of its parent box. A CreepingBox imposes a constraint on its child box to
move only on the surface of its parent box. The relationship between a CreepingBox and
its parent box is the same as the relationship between a TrajectoryMoverBox and its parent
TrajectoryBox.

Figure 18.4 shows an example use of a CreepingBox, where an insect moves around on
a wooden block. The CreepingBox used here is defined as a child of the wooden-block
box, and also as a parent of a composite box modeling a moving insect. A CreepingBox

18.5 ANIMATION WITH INTELLIGENTBOX 413

Figure 18.3 A space shuttle that is defined as a child of the TrajectoryMoverBox is constrained to
move along the trajectory defined by the TrajectoryBox.

tan-18.qxd 5/16/2003 8:09 AM Page 413

414 3D MEME MEDIA

has a #creepingFaceSlot. This slot indicates one of the parent box faces on which the
CreepingBox currently sits on. A CreepingBox has also a #speedSlot. Direct manipulation
of this slot value through some value-changing box connected to it moves the Creeping-
Box at the speed determined by this slot value.

The insect in Figure 18.4 is simply composed from a few kinds of primitive boxes,
though it looks rather complicated. Its body consists of three boxes that form its head, tho-
rax, and abdomen. Each of its six legs consists of the three boxes that form the thigh, shank,
and foot, and three RotationBoxes. The three RotationBoxes work as joints for the remain-
ing three boxes. They share the same slot value by using the remaining three boxes to prop-
agate the single slot value held by the thorax. Each RotationBox multiplies this slot value
with its parameter value held in another slot to determine its rotation angle. Adequate se-
lection of this parameter value for each RotationBox animates the six legs appropriately.

18.5.2 Shape Deformation Boxes

An FFD-ControlBox performs various free-form deformations on its child box, which is
modeled by wire frames. It exploits the algorithm proposed in [9], which can freely de-
form an arbitrary shape of any 3D object through the deformation of another 3D object.
The former object is called the controlled object, whereas the latter object is called the
control object. Furthermore, we call the vertices of the control object and those of the
controlled object the control points and the controlled points, respectively. New locations
of the control points determine the new positions of controlled points through calculations
based on the tricubic Bézier hyperpatch definition [10] using control points as its parame-
ters. Direct deformation of the control object through mouse operations will simultane-
ously deform its controlled object. An FFD-ControlBox calculates this algorithm.

Figure 18.5 illustrates the deformation of a spherical box using an ElasticController-
Box as its control object. This spherical box is treated as the controlled object. An FFD-

Figure 18.4 An example use of a CreepingBox, in which an insect moves around on a wooden
box.

tan-18.qxd 5/16/2003 8:09 AM Page 414

ControlBox is used as its parent box. User manipulation of the ElasticControllerBox can
change its horizontal length, which simultaneously expands or squeezes the spherical box
based on the FFD function calculated by the FFD-ControlBox.

As shown in Figure18.6, the FFD-ControlBox has two slots: #controlledPointsSlot and
#controlPointsSlot. The slot #controlPointsSlot holds the set of vertices of the control box,
whereas the slot #controlledPointsSlot holds the set of vertices of the controlled box. For
the control box, you may use any box that issues “set” messages with its current set of ver-
tices. An ElasticControllerBox is such an example. For the controlled box, you may use
any box that issues “gimme” messages to read out its new set of vertices and changes its
shape. Wire-frame-modeled boxes are all such examples.

For an arbitrary box to be used as a control box, you may use a VertexBox. When its
#valueSlot is accessed by a “set” message, a VertexBox reads the set of vertices of the
sender box using one of the standard geometrical messages, and sends this set of vertices
to its parent box. Any box can be specified as a child of a VertexBox that is connected to
#controlPointSlot of an FFD-ControlBox. Whenever this box changes its shape and issues
a “set” message with some value as its parameter, its parent VertexBox will read the set of
vertices of this sender box and sends this set to #controlPointSlot of an FFD-ControlBox.

This further allows us to use any composite box as a controller object, as shown in Fig-
ure18.7, where three transparent blocks are connected by three RotationBoxes working as

18.5 ANIMATION WITH INTELLIGENTBOX 415

Figure 18.5 A deformation of a spherical box using an ElasticControllerBox as its control object.

Figure 18.6 An FFD-ControlBox has two slots: a #controlledPointsSlot and #controlPointsSlot.
The #controlPointsSlot holds the set of vertices of the control box, whereas the #controlledPointsS-
lot holds the set of vertices of the controlled box.

tan-18.qxd 5/16/2003 8:09 AM Page 415

416 3D MEME MEDIA

joints. These three RotationBoxes always share the same slot value using slot connections
among them, and hence share the same rotation angle. Direct manipulation of these Rota-
tionBoxes imitates the tail fin motion of a shark. This composite box covers the tail fin
portion of a wire-frame-modeled shark, which is connected to the #controlledPointsSlot
of the FFD-ControlBox.

18.5.3 A RoomBox for Defining a 3D Shared Workspace

IntelligentBox provides a primitive box called a RoomBox to make it easy to construct an
interactive 3D workspace shared by more than one user distributed through the Internet
[11]. A RoomBox is the 3D counterpart of a FieldPad in IntelligentPad.

A RoomBox has a slot used as a buffer to store each user event within this box as its
value. A RoomBox with some boxes as its child boxes define a workspace to be shared; its
child boxes are the only objects in this space. The RoomBox works as the base box of this
composite box. Shared copies of this composite box can be distributed across the network.
They share every user event within this shared workspace. Different users at different sites
may view different copies from different positions, and at different angles. Any user event
of any one of these users is applied to all these copies. The conflict resolution is per-
formed based on the comparison of the priority numbers associated with these shared
copies. Shared spaces can be nested by nesting more than one RoomBox. The event-dis-

Figure 18.7 Three transparent boxes are connected by three RotationBoxes working as joints.
These three RotationBoxes always share the same slot value using slot connections among them
and, hence, share the same rotation angle. Direct manipulation of this composite box imitates the
tail fin motion of a shark.

tan-18.qxd 5/16/2003 8:09 AM Page 416

patching mechanism in such a nested environment is exactly the same as that of nested
FieldPads. Similar to a BlackHolePad and a WhiteHolePad, IntelligentBox provides a
BlackHoleBox and a WhiteHoleBox. These are used to transport boxes between different
workspaces, i.e., among different shared workspaces and different desktop spaces.

18.5.4 A CameraBox for the Interactive Viewing of a Box World

IntelligentBox also provides a primitive box called a CameraBox for the interactive view-
ing of a box world (Figure 18.8). A CameraBox works as a video camera in a world of box-
es. In Figure 18.8, the camera view is shown in the separate window placed at the
upper-right corner. Camera parameters such as the zoom rate can be controlled through the
slots of a CameraBox. You may connect some value-changing boxes to these slots, and di-
rectly manipulate them to change these slot values. In order to control the camera motion,
you can use motion constraint boxes. The real-time view of a camera is shown in a separate
window. This view is computed using the position and the direction of the CameraBox.
Boxes in this view are not just their images. They are still manipulable boxes. Their manip-
ulation through a camera view will be applied to the original boxes. Furthermore, the live
view of a CameraBox can be texture-mapped in real time onto a surface of an arbitrary box
in a different box world. As pointed out in [12], the introduction of a CameraBox is espe-
cially useful for interactive 3D simulators such as flight simulators and car-driving simula-
tors (Figure 18.2), where it is put at the pilot’s or the driver’s eye position in a vehicle to give
his or her view of the external environment defined by other boxes.

Figure 18.9 illustrates a simple use of a CameraBox together with a RoomBox. They
are two display snapshots of two different sites taken at the same time. The upper right
small view of each snapshot is a CameraBox view. The larger window in each snapshot is
the main IntelligentBox window. IntelligentBox allows us to exchange the roles of these
two windows whenever necessary.

Suppose that we want to construct a car-driving simulator. Its user should be able to sit
in a car as if driving. The car goes forward, backward, and makes a turn when its user di-
rectly manipulate its gear shift and steering wheel. These actions should also change the

18.5 ANIMATION WITH INTELLIGENTBOX 417

Figure 18.8 A CameraBox works a video camera in a world of boxes.

tan-18.qxd 5/16/2003 8:09 AM Page 417

418 3D MEME MEDIA

user’s view. A CameraBox can be simply set at the driver’s-eye position to obtain this
view. We have developed an avatar box in the shape of a human. Wearing a motion-cap-
ture system, you can make this avatar mimic your body motion. You can easily obtain your
avatar’s view by setting a CameraBox at the avatar’s-eye position.

IntelligentBox also provides a LightBox as a generic component. Its parameters such
as the intensities of red, green, and blue (RGB) color components and its wideness are all
controlled through its corresponding slots by other boxes. To control its motion, you can
use motion-constraint boxes. Using multiple LightBoxes, you can simultaneously control
multiple lights in an easy way. Figure 18.10 shows an example use of a CameraBox and a
LightBox. Both of them move around a flying eagle. They keep shooting the flying eagle.
A pair of special boxes is used to satisfy such a constraint; one is attached to the flying ea-
gle, and the other is attached to the CameraBox. Another pair is used to satisfy the con-
straint between the flying eagle and the LightBox.

Figure 18.10 A flying eagle with a CameraBox and a LightBox.

Figure 18.9 A simple use of a CameraBox together with a RoomBox.

tan-18.qxd 5/16/2003 8:09 AM Page 418

18.5.5 An Example Animation Composition

Figure 18.9 shows the display snapshots of two different machines sharing the same work-
space. This workspace defines an interactive tank-battle game environment. The user who
operates the left-hand system controls one of the two tanks. The other user operates the
right-hand system to control the other tank. The upper-right small view in each snapshot is
a camera view. Each CameraBox is set on the left side of the battery on each tank. A wire-
framed cube is a RoomBox, which can be made invisible if necessary. All the 3D objects
are defined as descendant boxes of the RoomBox. They are shared by these two users.
Each tank is a MoverBox that moves forward/backward or turns left/right responding to
its user’s mouse operation. Each user can control his own tank manually, observing the
battlefield through his own camera view.

Figure 18.11 shows a distributed virtual reality application. This snapshot shows a vir-
tual 3D space with two mobile robots. They are controlled by different users at different
sites on the Internet. Each robot is a MoverBox with a CameraBox at its head. The upper-
right small view is a camera view of one robot, whereas the lower-right small view is the
camera view of the other robot. Each user can move his own robot, observing the shared
field through his own camera view. Each user can manipulate any reactive objects in this
field. He or she can directly open or close the door of each room.

IntelligentBox allows us to construct these types of distributed interactive 3D graphic
applications just by directly combining primitive boxes on a screen without writing any
programs.

The tank-battle game and the robot environment were originally developed as single-
user systems. Use of a RoomBox simply extended these applications to multiuser sys-
tems.

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX

Our research group defines information visualization not only as the 3D visual presenta-
tion of a large set of data or records, but also as an architectural design of an interactive

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 419

Figure 18.11 A distributed virtual reality application. The left-hand snapshot shows a virtual 3D
space with two mobile robots, whereas the two right-hand snapshots are the camera views of these
robots. These robots are controlled by different users at different sites on the Internet.

tan-18.qxd 5/16/2003 8:09 AM Page 419

3D space in which we virtually materialize a large set of data and records and interact
with them. Information architecture denotes these two aspects of information visualiza-
tion. Conventional information visualization systems have been focusing only on the for-
mer aspect. We will propose in this section a generic visualization framework that virtual-
ly materializes records as interactive 3D objects. The componentware architecture of
IntelligentBox, developed by my group, provides the basis of this application framework.
The materialization may use any interactive composite object defined in IntelligentBox as
a virtual materialization template. You can associate the parameters of this composite ob-
ject with arbitrarily selected attributes of the record. We will further extend this frame-
work to use more than one template depending on some attribute values, and also to mate-
rialize the coordinate systems in which we materialize records so that users can easily
change the view of record distribution to possibly find a significant structure among
them. We will also show some applications including interactive animation of gene ex-
pression profiles in the process of cell division.

18.6.1 Basic Functions for Interactive Information Visualization

Interactive information visualization of a large set of data or records is one of the most
promising applications of interactive 3D graphics. Recently, many papers have been pub-
lished on information visualization. They are extensively surveyed by Stuart K. Card, Jock
D. Mackinlay, and Ben Shneiderman in [13]. Visualization of data objects or records maps
some of their attributes to their visual representation parameters and some others to their
arrangement parameters. As to the object representation, these systems use a multimedia
document card representation [14, 15, 16], a colored texture representation [17], or a com-
bination of 2D primitive boxes or 3D primitive blocks that change each of their sizes and
colors [18, 19, 20, 21]. As to the arrangement of visualized objects, some use 1D [14, 17],
2D [15, 18], or 3D [16, 19, 22] arrangements, or their nesting [21,23, 24] for multidimen-
sional arrangement, whereas others use hierarchical [25, 26] or network [27, 28] arrange-
ments. Some information visualization tools use a specially designed multidimensional
data representation called a parallel coordinates representation, in which each data object
is represented as a line in a line graph, and X and Y coordinates represent multiple coordi-
nates and the value of each object in each coordinate, respectively [29].

Each of these systems, however, proposes a specific way of viewing a large set of data
using 3D graphics and animation technologies. Each of them provides no more than a
couple of a priori designed ways of representing each object and of arranging objects. In
other words, these systems focus on proposing new visualization schemes. Different ap-
plications, however, deal with different data or records, and require different visualization
schemes, i.e., different record-representation schemes and different record-arrangement
schemes. Data analysts in each application are potentially the best designers of visualiza-
tion schemes. This is especially the case in scientific research fields such as astrophysics,
geophysics, nuclear-reaction physics, genome informatics, and molecular biology, in
which researchers are developing new data analysis tools. We believe that the next gener-
ation of information visualization systems should allow these data analysts to design their
own information visualization schemes, and to develop their own information visualiza-
tion tools. This requires a toolkit system, i.e., a component-based generic application
framework, for the information visualization of data and records.

Furthermore, the current systems also lack a generic framework to associate each da-
tum with an arbitrarily defined fully interactive 3D object. They provide only limited ways

420 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:09 AM Page 420

of interacting with visualized objects and their environment. Their interactivity allows
users only to change viewpoints [30], to distort [15, 21, 31, 32, 33, 34] or to zoom [35, 36,
37] a viewing space for seamlessly controlling levels of details, to select some visualized
objects to change their visualization properties [20], to request additional, detailed, or re-
lated information by issuing a new query [38, 39], or to navigate through different views.
These operations are closely tied to the proposed visualization schemes. Users are allowed
to interact with the systems only through these a priori designed operations. Visualized
objects in these systems allow users only to select some of them, to change their proper-
ties or the levels of their detail, or to click on some of them to pop up related objects or
views. Their visual objects do not materialize records as interactive 3D animation objects
in a virtual world. For example, users cannot make copies of a visual object to reuse them
in a different virtual reality (VR) environment. Suppose that we visualize records as hu-
mans walking at different speeds proportional to the values of some attribute. We want to
put them on streets in an a priori defined virtual town. This requires an extension of infor-
mation visualization to virtual materialization of records as interactive animation objects.

This section proposes a generic framework for developing virtual materialization sys-
tems based on a componentware architecture for 3D applications. Our approach visualizes
a large set of data by materializing each record as a fully interactive animation object, and
allows data analysts to develop their own visualization schemes and tools by combining
reusable components. Data analysts can share their visualization tools with each other as
reusable and decomposable composite objects.

Virtual materialization of data or records must provide the following five functions:

1. Retrieval of source data or records

2. Association of each of the retrieved data or records with its visual presentation

3. Visual presentation of each datum or record as an interactive virtual object

4. Geometrical arrangement of visualized records in a 3D space

5. Scope control to visualize a limited number of records among the retrieved ones

For the retrieval of source data, we have to specify conditions on data or records; the sys-
tem retrieves only those data or records satisfying these conditions out of a huge informa-
tion repository such as databases or the WWW.

For the association of each of the retrieved data or records with its visual presentation,
we need to register a composite 3D object as a representation template of each record. For
each of the retrieved data or records, the system uses an independent copy of this regis-
tered composite object, and makes this copy represent this record.

The visual presentation of each data or record is defined by a composite 3D object.
Users should be able to associate some of its parameter values with some attributes of
records. Some attribute may determine the size of the composite 3D object, whereas some
other may specify its shape. Some may specify its texture, its orbit, or its interaction.

For the geometrical arrangement of these visual objects, we can use one, two, or three
attributes of retrieved records to determine their positions in a specified one-, two-, or
three-dimensional arrangement

The scope of visualization selects some of the retrieved records. This selection is per-
formed based on the value of some attribute. Several different selection schemes can be
used. One selection scheme uses one numerical attribute of records, and selects, out of all
the retrieved records, only a specified number of records. They are the first records when

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 421

tan-18.qxd 5/16/2003 8:09 AM Page 421

they are arranged in the ascending order of the values of this attribute, neglecting those
whose values of this attribute are less than a specified value. This specified number and
the specified threshold value are called the scope width and the scope bottom, respective-
ly. Another selection scheme also uses one numerical attribute of records, and selects out
of all the retrieved records only those whose values of this attribute fall between two spec-
ified boundary values. These boundary values are called the scope bottom and the scope
top, respectively.

This section proposes application frameworks for the visualization and the virtual ma-
terialization of database records. We use as their basis the IntelligentBox system architec-
ture. Our visualization and virtual materialization of database records uses a composite
box as a template to represent each record, and makes each visualized record an interac-
tive animation object.

18.6.2 3D Visualization and Virtual Materialization of a Single
Retrieved Record

Before giving the details of the information visualization and virtual materialization
framework, let us extend the form interface framework from 2D representation to 3D rep-
resentation. This requires two of the above-mentioned five basic functions of information
visualization and virtual materialization. They are the retrieval of source data or records,
and the visual presentation of each datum or record.

The retrieval of source data or records from a database is performed by a DBProxy-
Box. This box works as a proxy of a database. A proxy box in general has both a 3D phys-
ical shape and a list of slots, and works as a proxy of some external object such as a serv-
er, an application program, or a plant system monitor. A proxy box is used to integrate the
corresponding external system into an IntelligentBox environment. A DBProxyBox has a
slot list including #query, #search, #insert, #delete, #result, #previousCandidate,
#nextCandidate, and #currentRecord. When the #search slot is accessed by a “set” mes-
sage, the DBProxyBox issues the query held by the #query slot to the Database. The re-
trieved result is stored in the #result slot. The DBProxyBox has a cursor that points to one
of the records in the #result slot. The pointed record is held by the #currentRecord slot.
The two other slots, the #previousCandidate slot and the #nextCandidate slot, when ac-
cessed by a “set” message, move the cursor backward and forward. Different DBMSs re-
quire different DBProxyBoxes. A DBProxyBox performs all the details necessary to ac-
cess a database. You may easily connect various boxes to this DBProxyBox with their
connection to the #currentRecord slot to define a 3D visual representation of each re-
trieved record, or with their connection to the #result slot to visually present the 3D distri-
bution of retrieved records. Here we first consider the case in which we visually present
one retrieved record at a time.

Similar to the framework of form interfaces to databases, you can connect a Record-
Box to a #currentRecord slot of the DBProxyBox. This RecordBox reads this slot, and
holds the read out current record. The whole set of boxes available in IntelligentBox
works as a 3D record-representation construction kit for the visual interface to this data-
base. The RecordBox can take any shape and any texture. When it receives an “update”
message, it reads out a record from its parent box and holds this record. It allows us to add
an arbitrary number of special slots called attribute slots. For this function, it has a special
slot #addSlot. When it is accessed by a “set” message, its “set” procedure pops up a dialog
box, asks the user to type in a new slot name, and then adds a new slot with this name to

422 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:09 AM Page 422

the list of attribute slots in this RecordBox. A RecordBox has another special slot, the #re-
moveSlot, that is used to remove a specified slot from its list of attribute slots. The “set”
procedure of this special slot pops up a menu list of slots, and asks the user to specify
which one to remove. Each attribute slot, when requested to send back its value, reads out
the stored record and gets the value of the attribute having the same name as this attribute-
slot name. If the record does not have the same attribute name, this attribute slot returns
the value “nil.” When a RecordBox is connected to a DBProxyBox with its connection to
#currentRecord slot of this proxy box, it works as a base box to define a 3D representation
of each record that will be retrieved from the DBProxyBox (Figure18.12). This composite
box is represented by our notation as

DBProxyBox(�)
[#query: . . . ,
#search:PushButtonBox1,
#insert: PushButtonBox2,
#delete: PushButtonBox3,
#previousCandidate: PushButtonBox4,
#nextCandidate: PushButtonBox5,
#currentRecord:RecordBox [#attr1:Box1, #attr2:Box2, . . . , #attrn:Boxn]
. . .
].

The box Boxi is a 3D display box that shows the value of the attribute attri. Some exam-
ples of such a display box are TextBox, ImageBox, MovieBox, RotationBox, ExpandBox,
SliderMeterBox, and MoverBox. A mouse click on the box ButtonBox1 invokes a search
of the database. A click on the box ButtonBox5 advances the record cursor to the next can-
didate record in the list of retrieved records stored in #result slot.

Different from 3D GUI representation, this 3D representation with a RecordBox as its
base box can be easily copied and sent to other users or to some tool boxes. This copy
holds the record that its original had when we made this copy.

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 423

Figure 18.12 A 3D visualization framework for records retrieved from databases.

tan-18.qxd 5/16/2003 8:09 AM Page 423

424 3D MEME MEDIA

In its typical use on a DBProxyBox, the RecordBox divides each retrieved record into a
set of attribute-value pairs. Each attribute value is sent to the slot with the same name as its
attribute name. Depending on the value type of each attribute slot, you may connect a text,
image, video viewer, rotating, or moving box to this slot. You may arbitrarily design the geo-
metrical arrangement of these viewer boxes within or around the RecordBox. A
DBProxyBox with a RecordBox combined with some viewer boxes is called a 3D DB view-
er, or a 3D interface to a database. Figure 18.13 shows an example of a 3D DB viewer.

Instead of connecting a RecordBox to a DBProxyBox, you may connect some type of
relation viewer boxes to the #result slot of the RecordBox, which works as a 3D informa-
tion visualizer of retrieved records. A relation viewer box visually presents records in the
relation. The details are discussed in Subsection 18.6.5.

For the setting of a query in the query slot of a DBProxyBox, you can simply use a
text-input box called TextInputBox. The text-input box is connected to the #query slot of
the proxy box DBProxyBox(�), i.e., DBProxyBox(�)[#query:TextInputBox]. An SQL
query q written on this text-input box is sent to the #query slot of the proxy box, i.e.,
DBProxyBox(�)[#query�q]. Instead of using such a simple text-input box, you may use
any composite box to generate an SQL query. For example, a parameterized SQL query
Q(x, �, y),

select name, age, photo
from Employee
where department = x

and salary � y

can be generated by a box Q-Box(#department, #comparator, #salary). You may combine
three text-input boxes on this box with their connection to these three slots, and connect
this composite box to the query slot of the proxy, i.e.,

Figure 18.13 An example 3D database viewer.

tan-18.qxd 5/16/2003 8:09 AM Page 424

DBProxyBox(�) [#query: Q-Box[#department: TextBox1,
#comparator: TextBox2,
#salary: TextBox3)]].

This allows you to simply specify a department name, a comparison operator, and an
amount of salary for the retrieval of employees’ information.

A restriction on the DB proxy box will make it represent a view relation. This requires
one more slot named #view slot. This slot is used to store a view definition. This view de-
finition also specifies the structure of records stored in the #currentRecord slot. The at-
tributes of these records are those defined by this view. When a query is issued through
the #query slot, this box modifies this query with the view definition and sends the modi-
fied query to the database system. To avoid the view update problem, the translation of an
update request on this view to a DB update request should be clearly defined in this box.
Such a restricted DBProxyBox is called a DBViewBox. A text box can be used to input a
view definition sentence, viewDefinition to #view slot, i.e., DBViewBox(�)[#view�
viewDefinition]. This box works as a proxy box to a database �view with the view relation
as its only one relation, i.e.,

DBViewBox(�)[#view�viewDefinition] = DBProxyBox(�view)

18.6.3 QBE Using a 3D Interface to a Database

In the preceding section, we have been assuming that the #currentRecord slot of a
DBProxyBox is a data slot. Actually, it is not. Its access by a “gimme” message invokes
its “gimme” procedure, which reads out the record pointed to by the cursor from the
record list stored in the #result slot, and returns this record value. Its access by a “set”
message, on the other hand, sets its parameter value to a special internal variable “input-
record” of the DBProxyBox. The record stored in this input-record variable is used to in-
sert and delete records to and from the database. These operations are successfully per-
formed only when the following two conditions are satisfied: (1) this record type is a
projection of some relation R in the database, and (2) this record completely specifies
the value of the primary key of R. Otherwise, these operations will cause the so-called
view update problem. When its #insert slot is set to “true,” the DBProxyBox tries to in-
sert the record in the input-record variable into the database. When its #delete slot is set
to “true,” the DBProxyBox tries to delete the record of R identified by the record in the
input-record variable.

The DBProxyBox issues an “update” message to all of its child boxes connected to ei-
ther its #result slot or its #currentRecord slot when and only when it receives a result rela-
tion from the database or its cursor changes.

The input-record variable is also used in search operations. In this case, each attribute
value of the record in the input-record variable needs to be either nil or a pair of a com-
parison operator and any value of this attribute value type. The content of the input-record
variable, in this case, specifies a condition C* on some of its attributes. Suppose that the
query q stored in #query slot of the DBProxyBox is

q: select attribute list
from relation list
where C.

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 425

tan-18.qxd 5/16/2003 8:09 AM Page 425

We define a new query q(C*) as

q(C*): select attribute list
from relation list
where C and C*.

When its #search slot is set to “true,” the DBProxyBox reads out both the query q in its
#query slot and the condition C* from its input-record variable, generates a new query
q(C*), and sends this to the database to retrieve the resulting relation.

The input-record variable is initially set to a record with “nil” for its every attribute.
The insert and delete operations both reset the input-record variable to its initial value
when they complete their execution. The condition C* corresponding to this initial value
is defined to be always “true.”

These extensions of the DBProxyBox allow us to construct a QBE (query-by-example)
type 3D interface without making any more changes to the preceding discussion. We use a
RecordBox not only for the output display of the retrieved records but also for the QBE-
type specification of a query. The RecordBox has a special slot called the #setRecord slot.
When set to “true,” the “set” procedure of this slot sends a “set” message to its parent box
together with its #record slot value as the message parameter. When connected to the
#currentRecord slot of a DBProxyBox, the RecordBox with a PushButtonBox connected
to its #setRecord slot works as a QBE-based input tool. When its button is clicked, it sends
its record value, which actually specifies a query based on the QBE convention, to the in-
put-record variable of the DBProxyBox, which, in turn, creates a modified query q(C*)
from the query q specified by its #query slot.

18.6.4 Boxes as Attribute Values

In Subsection 18.6.2, we saw that a database service can be represented as a box. Here, we
will see that boxes can be treated as database values. Each composite box has its exchange
format representation, which is just a variable-length string consisting of a description of
its composition structure and the current state of each component box. The composition
structure description describes both geometrical configuration and slot connections. This
string can be stored in databases as an attribute value if this attribute allows variable-
length strings as its values. This means any objects that can be represented as composite
boxes can be stored in those relational databases that allow variable-length data as at-
tribute values. Those objects include interactive multimedia objects such as images,
movies, sounds, interactive charts and tables, interactive maps, database access forms,
various application tools, interactive 3D animation systems, interactive 3D models in
CAD/CAM application systems, interactive 3D simulators, walkthrough 3D environ-
ments, interactive information visualization and virtual materialization tools, interactive
scientific visualization tools, and compound 3D applications that embed any of these ob-
jects.

Let us consider a 3D interface to a database with an interactive 3D car-modeling box as
an attribute value. The corresponding slot of the record box stores the exchange format
representation of an interactive animation box as its value. To generate a composite box
from its exchange format representation, and vice versa, a special box SaverLoaderBox is
connected to this slot of the RecordBox (Figure 18.14). When it receives an “update”
message, a SaverLoaderBox issues a “gimme” message to retrieve an exchange format

426 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:09 AM Page 426

representation value from its parent, and generates the corresponding composite box. It
also works as a saver. When a composite box is dragged and dropped on it, a SaverLoad-
erBox converts this composite box to the exchange format representation, and issues a
“set” message with this representation as a parameter value to store this representation
into the connected slot of its parent box.

Such a composite box that is popped up by a RecordBox through a SaverLoaderBox
may have some transparent button boxes. Each of these button boxes may hold a URL.
When clicked, it issues this URL to retrieve another box from somewhere on the Internet
or from a local file. This box may work as another database viewer to the same or a differ-
ent database to retrieve related information as a composite box or as a set of composite
boxes.

18.6.5 Information Visualization and Virtual Materialization Framework
Using IntelligentBox

Our information visualization and virtual materialization framework using IntelliegntBox
provides five basic functions: the retrieval of source data or records, the association of
each of the retrieved data or records with its visual presentation, the visual presentation of
each datum or record, the geometrical arrangement of visualized records in a 3D space,
and the scope control of visualization.

The visual presentation of each datum or record can use arbitrary boxes and their arbi-
trary compositions, and need not be provided by the framework. Here we will only deal
with the visualization and virtual materialization of records retrieved from a database. The
association of each of the retrieved data or records with its visual presentation requires an
authoring tool described later.

The retrieval of source data or records is performed by a DBProxyBox as described in

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 427

Figure 18.14 A composition framework for a database viewer to cope with boxes as attribute val-
ues.

tan-18.qxd 5/16/2003 8:09 AM Page 427

428 3D MEME MEDIA

the preceding sections. The information visualization and virtual materialization of re-
trieved records uses the #result slot of this box. This slot holds all the retrieved records.

The geometrical arrangement of visualized records in a 3D space can be performed
in two different ways. You may embed a geometrical displacement box in the template
composite box, and associate its displacement parameters with some attributes of each
retrieved record. When each retrieved record is materialized using this template, the dis-
placement box displaces the materialized record at a location determined by its parame-
ter values. Instead, you may materialize each record without using any displacement
box, but with a RecordBox instead. This RecordBox is used as the base box of the tem-
plate composite box, and is made invisible when records are materialized. The geomet-
rical arrangement of materialized records uses an arrangement box. It has three special
slots—#X, #Y, and #Z—to define its coordinate system by associating one record at-
tribute with each of these three slots. Such an arrangement box reads each materialized
record it contains to get the values of the specified three attributes, and locates each ma-
terialized record at the position determined by these attribute values.

The scope control of the visualization uses a ScopeWindow box, which has among its
slots a #result slot, #recordList slot, #attributeSelection slot, #scopeBottom slot, and
#scopeWidth slot (Figure 18.15). A ScopeWindow box is used with its connection to the
#result slot of a DBProxyBox. When it receives an “update” message, the ScopeWindow
box reads this list from the #result slot of the DBProxyBox and stores this list in its #result
slot. Its #attributeSelection slot is set with the name of a numerical value attribute. Its
#scopeBottom slot is set with a value v0 of this attribute, whereas its #scopeWidth slot is
set with a natural number n. The ScopeWindow selects only the first n records whose val-
ue of this selected attribute is greater than or equal to the value v0, and stores the list of
these selected records in its #recordList slot. The specification of v0 and n may use Rota-
tionBoxes with appropriate value range conversion boxes. These can be connected to the
#scopeBottom slot and the #scopeWidth slot of the ScopeWindow box.

The association of each of the retrieved records with its visual presentation uses a

Figure 18.15 A 3D information-visualization framework for records in databases.

tan-18.qxd 5/16/2003 8:09 AM Page 428

RecordManager box. This box has among its slots a #registration slot and a necessary
number of #record slots. Its #record slots are indexed with integers. It is used with its con-
nection to the #recordList slot of a ScopeWindow box. When it receives an “update” mes-
sage from its parent, the RecordManager box reads out a record list from its parent, gener-
ates as many #record slots in itself as the length of this list, and distributes each record
value in this read out list to one of these #record slots. Its #registration slot can hold an ar-
bitrary composite box. When the ScopeWindow generates as many #record slots in itself
as the length of the record list, it also makes the same number of copies of the registered
composite box, and connects each of them to each of these generated #record slots. When
it completes the distribution of the records to these slots, the ScopeWindow issues an “up-
date” message to each copy of the registered composite box, which reads each #record
slot to change its properties such as shape, size, texture, and motion.

The composite box to be registered should use a RecordBox as its base box. Any com-
posite box can be defined as its child. Each component of this composite box can access
any attribute slot provided by the base RecordBox, which allows us to associate each
record attribute with some component’s function of the composite box used to represent
each record.

Figure 18.16 shows an example virtual materialization of database records. It uses a
3D doll as a 3D representation of each record. The height of each doll and the name label
are associated with the two attributes of records. You may even model this doll to stamp
and to change its pace, and associate this stamping speed with another record attribute
(Figure 18.17).

Since each 3D record representation is a composite box, it can also be modeled to re-
spond to user events. This allows us to easily develop interactive information visualization
and/or virtual materialization systems.

Instead of using a single template to materialize each retrieved record, you may use dif-
ferent templates for different values of a specified attribute. Figure 18.18 shows such an
example using two different dolls for different genders to materialize personnel records.
You can use the same framework as shown in Figure 18.15 even for the virtual material-
ization that uses multiple templates. We use a special box SelectorBox to merge multiple
templates into a single template. A SelectorBox allows you to register more than one tem-
plate as its child boxes. It gives an index number to identify each registered template. A
SelectorBox also allows you to pick up one record attribute, and to associate its different
values or different value intervals with different index numbers. When it is connected to
one attribute slot of a RecordBox, a SelectorBox reads this slot value, obtains the corre-
sponding index number, and selects the corresponding template.

These basic boxes including a DBProxyBox, a ScopeWindow box, and a RecordMan-
ager box may take any shape. In Figure 18.19, their composition forms a treasure chest.
Its lid works as a search button. The two RotationBoxes on the front face of this box spec-
ify the scope bottom and the scope width. The balls and cubes flying out of this treasure
chest represent retrieved records. Their video textures and orbits are determined by the
specified record attributes. This capability allows us to naturally embed database accesses
and their resulting visualization and materialization in arbitrarily designed interactive 3D
environments.

Figure 18.20 shows a virtual materialization of the solar system using planet and satel-
lite data stored in a database. When the database is accessed, the system generates all the
planets moving around the sun. Each planet includes, in its representation, a database ac-

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 429

tan-18.qxd 5/16/2003 8:09 AM Page 429

430 3D MEME MEDIA

cess mechanism. The Earth can be further clicked to show the moon moving around it.
Different from visualization of records, the materialization of records using 3D interactive
objects allows us to interact with the visualized result. For example, you may put a camera
box at an arbitrary location on an arbitrary planet or satellite as shown in the figure, and
open its camera-view window to observe not only the motion of the sun and the other
planets and satellites, but also various eclipses.

Instead of embedding a geometrical displacement box in the template composite box to
geometrically distribute materialized records depending on their values of specified at-

Figure 18.16 An example information visualization of a database access that uses a 3D doll as a
3D representation of each record. (a) Association of some attributes with slots of a composite box.
(b) 3D representation of retrieved records.

(b)

(a)

tan-18.qxd 5/16/2003 8:10 AM Page 430

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 431

Figure 18.18 Virtual materialization using multiple different templates.

Figure 18.19 A composition with three basic boxes—a DBProxyBox, a ScopeWindow box, and a
RecordManager box—may take any shape such as a treasure chest. Each record is represented as a
flying ball whose video texture and orbit are determined by the specified record attributes.

Figure 18.17 Virtual materialization of records in databases, using a stamping doll as the record
template.

tan-18.qxd 5/16/2003 8:10 AM Page 431

432 3D MEME MEDIA

tributes, you may use an arrangement box to geometrically distribute materialized
records. The composite template does not use any displacement box, but a RecordBox as
its base box instead. This RecordBox provides a slot for each attribute of the retrieved
records. An arrangement box is a rectangular wire-frame box, and may contain an arbi-
trary number of composite boxes in this rectangular area. It has three special slots—#X,
#Y, and #Z—to define its coordinate system by associating one record attribute to each of
these three slots. Such an arrangement box reads each materialized record it contains to
get the values of the specified three attributes, and locates each materialized record at the
position determined by these attribute values.

Figure 18.21 shows the virtual materialization of 7000 fixed stars retrieved from the
HIPPARCOS (HIgh-Precision PARallax COllecting Satelite) catalog database. This ma-
terialization represents each star record as a tiny ball, and uses a standard arrangement
box to distribute materialized star records in a 3D coordinate system. You can see the
template composite box on top of the arrangement box. Instead of this tiny ball repre-
sentation, you may use any composite box to materialize each star record. All the other
boxes in our materialization framework are made invisible in this example. Figure
18.21(a) shows the initial situation immediately after the record retrieval from the data-
base. It shows all of the 7000 materialized records at the origin of this arrangement box.
Figure 18.21(b) shows how the introduction of three coordinate-axis components that
are represented as arrows defines a 3D coordinate system in an arrangement box and
distributes these 7000 materialized star records in this space. Each coordinate-axis box
allows you to specify one record attribute. For each record, the value of this attribute de-
termines the displacement of this record along this coordinate axis. In this example, we

Figure 18.20 Interactive animation of the solar system generated from a database allows you to
put a camera at arbitrary locations on arbitrary planets and/or satellites.

tan-18.qxd 5/16/2003 8:10 AM Page 432

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 433

Figure 18.21 HIPARCOS catalog database and the virtual materialization and arrangement of its
records. (a) All the stars are materialized at the origin. (b) The introduction of three coordinate com-
ponents defines a coordinate system, and distributes stars at their relative cosmic locations from the
Earth.

(b)

(a)

tan-18.qxd 5/16/2003 8:10 AM Page 433

434 3D MEME MEDIA

Figure 18.21 (continued) HIPARCOS catalog database and the virtual materialization and
arrangement of its records. (c) Some area in (b) is picked up, copied, and enlarged with a different
coordinate system. (d) Those stars deviating from the characteristic structure are picked up by two
rectangular boxes, and mapped again in the coordinate system in (b) to place them at their relative
cosmic locations from the Earth.

(d)

(c)

tan-18.qxd 5/16/2003 8:10 AM Page 434

used the coordinate system in which stars are placed at the relative cosmic location from
the Earth. As shown in Figure 18.21(c), you can select a rectangular subarea using an-
other arrangement box, and make a shared copy of this arrangement box. You may put a
different coordinate system into this copy. This allows you to inspect some portion of
records through a different view. In this example, the new X coordinate axis represents
the primary colors of stars, the Y coordinate axis the ordinal number of each star
arranged in descending order of brightness, and the Z coordinate axis the inverse of the
brightness. This new coordinate system arranges most of the materialized stars in a char-
acteristic structure as shown in (c). There are some exceptional stars deviating from this
characteristic structure. As shown in Figure 18.21(d), you can easily select these excep-
tional stars by enclosing them with several rectangular boxes, send their content stars to
a single arrangement box, and introduce again the original coordinate system used in
Figure 18.21(b), which shows us relative locations of these exceptional stars from the
Earth. As shown in Figure 18.21(e), you may select a subset of stars from the arrange-
ment in Figure 18.21(c), and arrange this set of records in a different coordinate system
using a different representation for each star record. Here, each star record is represent-
ed by a combination of two orthogonal variable-length bars.

As an application of our framework, we have been collaborating with Gojobori’s
group at the National Institute of Genetics in Japan to develop an interactive animation
interface to access the cDNA database for the cleavage of an ascidian (sea squirt) egg
from a single cell into 64 cells. The cDNA database stores, for each cell and for each
gene, the expression intensity of this gene in this cell. Figure 18.22 shows the system we

18.6 INFORMATION VISUALIZATION WITH INTELLIGENTBOX 435

Figure 18.21 (continued) HIPARCOS catalog database and the virtual materialization and
arrangement of its records. (e) A set of stars is selected and arranged in a different coordinate sys-
tem with different record representation.

(e)

tan-18.qxd 5/16/2003 8:10 AM Page 435

436 3D MEME MEDIA

developed for Gojobori’s group. First of all, it animates the cell division process from a
single cell to 64 cells. It has two buttons to forward or to reverse the division process.
When you click an arbitrary cell, the system shows the expression intensity of each of a
priori specified genes as shown in the left lower part of this figure. You may also arbi-
trarily pick up three different genes to observe their expression intensities in each cell.
The expression intensities of these three genes are associated with the intensities of
three color components (red, green and blue) to highlight each cell of the cleavage ani-
mation. The wire-frame cube that encloses the whole egg performs this function.
Keeping this highlighting function active, you can forward or reverse the cell-division
animation. The development of this system took only several hours using the geometri-
cal models of cells that were designed by other people. The cDNA database is stored in
an Oracle DBMS, which IntelligentBox accesses using Java JDBC.

18.6.6 3D Information Visualization of the WWW

Information visualization of the WWW is increasing its importance. It will provide not
only a 3D interface to the WWW and a 3D representation of Web pages, but also a 3D
representation of its linkage structures. These are the current major focuses of the Infor-
mation Visualization Project in my research group.

Most of them are still ongoing projects. Here we will show only one of them (see Fig-
ure 18.23). In this figure, some walls in a museum show Web pages with embedded com-
posite pads. You can interact with any of these Web pages. Each embedded pad is also ac-
tive, and can be dragged out and dropped on any wall. An embedded pad, when clicked,
pops up a composite box.

Figure 18.22 Virtual materialization of a cDNA database for the cleavage of a sea squirt egg from
a single cell to 64 cells.

tan-18.qxd 5/16/2003 8:10 AM Page 436

18.7 COMPONENT-BASED FRAMEWORK FOR DATABASE REIFICATION

Various research fields in science and technology are now accumulating large amounts of
data in databases, using recently developed computer-controlled, efficient data-acquisi-
tion tools for measurement, analysis, and observation. Researchers believe that such ex-
tensive data accumulation in databases will allow them to simulate various physical,
chemical, and/or biological phenomena on computers without carrying out any time-con-
suming and/or expensive real experiments. Information visualization for DB-based simu-
lation requires each visualized record to work as an interactive object. Current informa-
tion visualization systems visualize records without materializing them as interactive
objects. Researchers in these fields develop their individual or communal mental models
from their target phenomena, and often like to visualize information based on these mod-
els. We will propose here a generic component-based framework for developing virtual
materialization of database records, i.e., database reification. This framework provides
visual interactive components not only for (1) accessing databases, and (2) defining an in-
teractive 3D object as a template to materialize each record in a virtual space as shown in
the previous section, but also for (3) specifying and modifying database queries, and (4)
defining a virtual space and its coordinate system for such information materialization.
These components are all represented as boxes, i.e., components in the IntelligentBox ar-
chitecture.

18.7.1 Flexible Definition of Visualization Schemes

Recently, extensive application of information technologies in various social activities
such as production, distribution, sales, finance, communication, transportation, education,
and welfare has enabled us to file large amounts of personal records on these social activ-
ities and to store them in databases. Information visualization technologies as well as data
mining technologies aim to support people in extracting such knowledge resources. Most
of the current information visualization systems propose various specific visualization
schemes, assuming typical application fields and typical analysis methods in these fields.
However, they allow us to visually specify queries to a database to retrieve data for visual-

18.7 COMPONENT-BASED FRAMEWORK FOR DATABASE REIFICATION 437

Figure 18.23 Some walls in this museum show Web pages with embedded composite pads.

tan-18.qxd 5/16/2003 8:10 AM Page 437

ization. Some of them even allow us to dynamically change parameters of queries to
change visualization results.

Ahlberg and Shneiderman proposed starfield displays [40] that plot items from a data-
base as small selectable spots (either points or small 2D figures) using two of the ordinal
attributes of the data as the variables along the display axes. The displayed information
can be filtered by changing the range of displayed values on each axis. A query that is dy-
namically defined by users’ manipulation of sliders and toggles is called a dynamic query.
IVEE [41] and its commercialized version, Spotfire, support dynamic queries. IVEE im-
ports database relations and automatically creates environments holding visualizations
and query devices. IVEE offers multiple visualizations such as maps and starfields, and
multiple query devices, such as sliders, alphasliders, and toggles. Arbitrary graphical ob-
jects can be attached to database objects in visualizations. Multiple visualizations may be
active simultaneously. Users can interactively lay out and change different types of query
devices. Users may retrieve details on demand by clicking on visualization objects.

Semiologies of graphic representation methods have been developed by various re-
searchers to gain understanding of the visualization design space. Among these, A
Presentation Tool (APT) [42], BOZ[43], and SAGE [44] use knowledge-based approaches
for synthesizing appropriate visualizations by combining common business visualizations
such as bar charts and XY charts. APT create visualization based on a characterization of
the underlying data and of the user’s choice of the relations to be visualized. APT checks by
means of formal criteria which information may be conveyed via a particular graphical
technique (the criterion of expressivity) and how effectively such a technique may present
the information to be communicated (the criterion of effectiveness). These criteria were
used in 2D mappings, but can also be applied to 3D mappings. In such systems, a ranked
list of possible mappings is usually used for each data type; the best set of mappings for the
whole data set is then chosen as a constraints satisfaction problem. Whereas APT generates
visualization presentation from data description, BOZ uses task description for the auto-
matic generation of the presentation. In addition to automatic generation of the presenta-
tion, SAGE provides computer-supported-data graphic design tools, in which users can in-
teractively specify and/or search and choose from a library of previously created graphics.

AVS [45] and IBM DataExplorer [46] are commercially available visualization envi-
ronment systems with object-oriented visual components for computation and graphics.
They provide visual programming environments for users to easily construct data-flow
programs for visualization.

Multiple coordinated visualization uses multiple views of the same data, keeping their
contents synchronized. It enables users to rapidly explore complex information. Users of-
ten need unforeseen combinations of coordinated visualizations that are appropriate for
their data. Snap-Together Visualization [47] enables data users to rapidly and dynamically
mix and match visualizations and coordinations to construct custom exploration inter-
faces without programming. Snap-Together’s conceptual model is based on the relational
database model. Users load relations into visualizations, then coordinate them based on
the relational joins between them. Users can create different types of coordinations such
as brushing, drill down, overview and detail view, and synchronized scrolling of different
views. DEVise [48] is another visualization system that allows us to create coordinated
multiple visualizations by specifying links among them. DEVise supports several differ-
ent link types for us to specify different coordination types including brushing-and-link-
age, drill down, aggregation, etc. Visage [49] generalizes such coordination, allowing
users to drag and drop and then brush tabular data elements among many types of visual-

438 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:10 AM Page 438

izations, including charts and geographical maps. Visage is information-centric, which
means that data objects are represented as first-class interface objects, which can be ma-
nipulated using a common set of basic operations, such as drill down and roll up, applica-
ble regardless of where they appear: in a hierarchical table, a slide show, a map, or a query.
Tioga 2 (Tioga DataSplash) [50] is a system that supports visualization of database infor-
mation. Visualization is specified via a boxes-and-arrows data-flow diagram in which the
arrows represent data and the boxes represent operations. There are facilities for making
composites and groups and for zooming in to obtain more details. Tioga DataSplash is a
direct manipulation semantic zoom system in which users can construct and navigate vi-
sualizations. This system has been implemented on top of the POSTGRES object-rela-
tional database management system.

Various research fields in science and technology are now accumulating large amounts
of data in databases, using recently developed computer-controlled, efficient data-acquisi-
tion tools for measurement, analysis, and observation of physical, chemical, and biologi-
cal phenomena. Data analysis and knowledge-extraction methods in these fields are still
the targets of research and development efforts. Researchers in these fields currently fo-
cus on the accumulation of all the data they can now acquire for their future analysis.
They believe that such an extensive data accumulation in databases will allow them to
simulate various physical, chemical, and biological phenomena on computers without car-
rying out any time-consuming and expensive real experiments. Here, we call such a new
way of research in science “data-based science.” Information visualization will no doubt
be one of the most powerful tools in data-based science. Current information visualization
technologies, however, do not satisfy the requirements of data-based science for the fol-
lowing reasons.

Information visualization for DB-based simulation requires each visualized record to
work as an interactive object. It should be easy enough for these researchers, who are not
necessarily computer experts, to define the functionality of each visualized record as well
as the spatial record arrangement. Current information visualization systems visualize
records without materializing them as interactive objects in a virtual environment. Instead
of information visualization systems, we need an information materialization framework
that allows us to materialize each record as an interactive visual object in a virtual space.
Furthermore, researchers in these fields develop their individual or communal mental
models from their target phenomena, and often like to visualize information based on
these models. We need to provide these researchers with a new visualization environment
in which they can easily define their own visualization schemes as well as various query
conditions.

This section shows a generic component-based framework for developing virtual mate-
rialization of database records. This framework provides visual interactive components for
(1) accessing databases, (2) specifying and modifying database queries, (3) defining an
interactive 3D object as a template to materialize each record in a virtual space, and (4)
defining a virtual space and its coordinate system for the information materialization.
These components are represented as boxes, i.e., components in the IntelligentBox archi-
tecture.

18.7.2 Information Materialization through Query Composition

Figure 18.24 shows an example composition for information materialization. It specifies
the above-mentioned four functions as a flow diagram from left to right. The leftmost box

18.7 COMPONENT-BASED FRAMEWORK FOR DATABASE REIFICATION 439

tan-18.qxd 5/16/2003 8:10 AM Page 439

440 3D MEME MEDIA

is a TableBox, which allows us to specify a database relation to access; it outputs an SQL
query with the specified relation in its “from” clause, leaving its “select” and “where”
clauses unspecified:

select
from specified_relation
where

The database is stored in a local or remote database server running, for example, an Ora-
cle DBMS. When cliked, a TableBox pops up the list of all the relations stored in the data-
base, and allows us to select one of them. To obtain the list of all the accessible relations in
the database, the TableBox issues an SQL query through JDBC (Java Database Connec-
tivity) to query the DDD (Data Dictionary and Directory) storing information about all
the relations in the database.

The second box is a TemplateManagerBox, which allows us to specify a composite box
used as a template to materialize each record. It allows us to register more than one tem-
plate, and to select one from those registered for record materialization. When we select a
template named Ball, for example, the TemplateManagerBox adds a virtual attribute,
“Ball” as TEMPLATENAME, in the “select” clause of the input query, and outputs the
modified SQL query. For an input query

select X
from Y
where C

it outputs a modified query

select X, “Ball” as TEMPLATENAME
from Y
where C

The database has an additional relation to store the registered templates. This relation
TEMPLATEREL has two attributes; TEMPLATENAME and TEMPLATEBOX. The sec-

Figure 18.24 An example composition for information materialization.

tan-18.qxd 5/16/2003 8:10 AM Page 440

ond attribute stores the template composite box specified by the first attribute. The speci-
fied SQL query is later joined with the relation TEMPLATEREL to obtain the template
composite box from its name. When this join is performed, the virtual attribute “Ball” as
TEMPLATENAME works as a selection operation TEMPLATENAME = “Ball” on the
relation TEMPLATEREL, and makes the attribute name TEMPLATEBOX refer to the
composite box named Ball. When we register a new template composite box, the Tem-
plateManagerBox accesses the database DDD to obtain all the attributes of the relation
specified by the input SQL query. It adds slots for these attributes to the base box of the
template composite box, defining a one-to-one relation between these attributes and new-
ly defined slots. The record materialization later assigns each record value to a copy of
this template box, which decomposes this record value to its attribute values and stores
them in the corresponding attribute slots of the base box.

The third component in the example is a RecordFilterBox, which allows us to specify
an attribute attr, a comparison operator �, and a value v. This specification modifies the
input query by adding a new condition attr � v in its “where” clause. The RecordFilterBox
accesses the database DDD to know all the accessible attributes.

The last component in this example is a ContainerBox with four more components:
an OriginBox, and three AxisBoxes. A ContainerBox accesses the database with its in-
put query, and materializes each record with the template composite box. Whereas an
OriginBox specifies the origin of the coordinate system of the materialization space,
each AxisBox specifies one of the three coordinate axes, and allows us to associate this
with one of the accessible attributes. When you click a button at the center of each
AxisBox, it pops up a list of accessible attributes by accessing the database DDD. Each
AxisBox also normalizes the values of the selected attribute by evaluating the database
for the minimum and maximum values of the specified attribute. Suppose that attr and
� denote the selected attribute name and the normalization factor for this attribute, re-
spectively. You may not put an AxisBox in parallel with one of the three coordinate axes
of the ContainerBox. Let lx, ly, and lz denote the projected lengths of the AxisBox to the
X, Y, and Z axes of the ContainerBox, respectively. OriginBoxes and AxisBoxes also use
query modification methods to perform their functions. An OriginBox, when put in a
ContainerBox, gets its relative location (ox, oy, oz) from the ContainerBox, and adds
three derived attributes—ox as Xcoordinate, oy as Ycoordinate, and oz as Zcoordinate—
in the “select” clause of the input query. Each AxisBox, on the other hand, converts the
current query

select . . . , xexpr as Xcoordinate,
. . . , yexpr as Ycoordinate,
. . . , zexpr as Zcoordinate, . . .

from . . .
where . . .

to the following modified query:

select . . . , xexpr +lx×�×attr as Xcoordinate,
. . . , yexpr +ly×�×attr as Ycoordinate,
. . . , zexpr +lz×�×attr as Zcoordinate, . . .

from . . .
where . . .

18.7 COMPONENT-BASED FRAMEWORK FOR DATABASE REIFICATION 441

tan-18.qxd 5/16/2003 8:10 AM Page 441

442 3D MEME MEDIA

In addition to the components used in the above example, the framework provides two
more components: a JoinBox and an OverlayBox. A JoinBox accepts two input SQL
queries, and defines their relational join as its output query. It allows us to specify the join
condition. An OverlayBox accepts more than one query, and enables a ContainerBox to
overlay the materialization of these input queries. From the query modification point of
view, it outputs the union of two input queries with template specifications.

By using a ContainerBox together with an OriginBox and AxisBoxes as a template
composite box, we can define a nested structure of information materialization as shown
in Figure 18.25. The X coordinate is specified to represent the annual production quantity
of cabbage. The displacement of the origin of each record materializing ContainerBox
from the map plane indicates the annual production quantity of cabbage in the specified
year in the corresponding prefecture, while each record materializing ContainerBox
shows cabbage production changes during the last 20 years.

A SelectorBox is a rectangular box that you can put inside a record materializing
ContainerBox with each of its three axes automatically kept parallel to the corresponding
axis of the ContainerBox. A SelectorBox cuts out the materialization space with two planes
perpendicular to each coordinate axis, and selects only those records materialized within
the specified region. A SelectorBox performs this visual selection of records by adding the
following conditions in the “where” clause of the input query to output the modified query:

Xcoordinate BETWEEN Xmin AND Xmax
^ Ycoordinate BETWEEN Ymin AND Ymax
^ ZCoordinate BETWEEN Zmin AND Zmax

Xmin and Xmax are calculated from the minimum and the maximum X coordinate values
of the SelectorBox in the ContainerBox. The other four values are similarly calculated.

Figure 18.25 A nested structure of information materialization.

tan-18.qxd 5/16/2003 8:10 AM Page 442

Figure 18.26 shows a record selection example using a SelectorBox, and its visualization
overlaid with the original set of records. The three coordinate axes in the overlaid visual-
ization on the right-hand side use another set of three attributes different from the original
visualization on the left-hand side. The output query of the SelectorBox uses a bigger
template to clarify the selected records in the overlaid visualization.

Our framework also allows us to store wire-frame 3D models of various shapes in a
database, and to materialize some of them in a visualization space. It enables us to quanti-
fy some of these shapes by visually constructing a query. For this purpose, our framework
provides a special box, ProtoShapeBox, to work as a shape template. When its #shape slot
is bound with a record attribute value representing a wire-frame 3D model, a ProtoShape-
Box changes its shape to the specified shape. You may join a relation storing shape
records with a relation storing compositions with these shapes to retrieve information
about a specific composite shape, including its component shapes and their relative loca-
tions. Our framework enables us to visually specify such a join operation and a selection
operation to materialize a specified composite shape.

Figure 18.27 shows materialization of human organs in the chest area. It accesses a re-
lation storing the shape data together with the names of organs, and joins it to another re-
lation storing the relation between each organ and the names of the areas to which they
belong, as well as the relative location of this organ inside each of these areas. This mate-
rialization allows the user to specify an area to materialize on a RecordFilterBox. This ex-
ample specified the chest area. Finally, the output query is sent to a ContainerBox to ma-
terialize all the organs in the chest area.

In our framework, each materialized record is associated with a query obtained by
modifying the input query of the ContainerBox with an additional condition to identify
this record in the “where” clause. Our framework provides another basic component
called a QueryExtractionBox to extract the associated query from a materialized record.
You may take the heart out of the materialization in Figure 18.27, and put it in a
QueryExtractionBox. You may join the output query of this box with a relation that
works as a directory of gene expression libraries for each organ. You may connect the
output of the JoinBox to a materialization tool to obtain accessible libraries about the
heart. These libraries are gene expression profiles for the atrial muscle and the ventricle

18.7 COMPONENT-BASED FRAMEWORK FOR DATABASE REIFICATION 443

Figure 18.26 A record selection example using a SelectorBox, and its visualization overlaid with
the original set of records.

tan-18.qxd 5/16/2003 8:10 AM Page 443

444 3D MEME MEDIA

muscle. You may put each materialized library in another QueryExtractionBox, and join
it to another relation storing a gene expression profile of each library. You may connect
this output to another materialization tool to materialize the gene expression profile of
the selected library. Figure 18.28 shows these operations and the resultant materializa-
tion.

We have applied our new component-based database materialization framework to
materialize the animation of the sea squirt cleavage so that it visualizes the gene ex-
pression profile of each cell. The gene expression profiles and cleavage process infor-
mation, as well as cell shape data, are all stored in a database. Our new framework en-
abled us to dynamically construct the same functionalities provided by the previous
system shown in Figure 18.22 within 15 minutes, without writing any program codes or
any SQL queries.

Figure 18.28 Use of QueryExtractionBoxes to extract the associated queries from materialized
records, and further materialization with the extracted queries.

Figure 18.27 Materialization of human organs in the chest area using a ProtoShapeBox as the
record materialization template.

tan-18.qxd 5/16/2003 8:10 AM Page 444

18.8 VIRTUAL SCIENTIFIC LABORATORY FRAMEWORK

Virtual scientific laboratories are another prospective application area of IntelligentBox.
Different from conventional scientific visualization systems, virtual scientific laboratories
reify scientific phenomena in virtual interactive 3D environments, and allow us not only to
observe invisible phenomena, but also to directly manipulate intangible phenomena.

AVS [45], the most widely used scientific visualization tool, for example, allows us to
visually construct a program by defining data flows among functional modules that can be
selected from a large library of such modules. Its computation result is graphically pre-
sented as a 2D or 3D image in a separate window. Users can interact with its visual pro-
grams, but not with its visual outputs. Its visual outputs are just graphical images, not in-
teractive objects. We may consider its program and its visual output as the genotype and
the phenotype of a computation, respectively. AVS and other currently available scientific
visualization tools allow us to visually and directly interact with the genotypes but not
with the phenotypes. Our project focuses on the visual and direct interactivity with pheno-
types and, furthermore, the unification of the genotype and the corresponding phenotype
so that we can directly change various conditions of a computation by directly manipulat-
ing its phenotype.

The unification of the genotype and the corresponding phenotype is fundamental to
real-time interactive simulations based on scientific computations. There are significantly
increasing demands for such interactive simulations in education, advanced research, and
high-tech engineering [51, 52, 53, 54, 55, 56]. However, because of the computation-
intensive nature of scientific simulations, some systems allow us to interact only with the
visualized genotype to change simulation conditions, whereas others use a priori comput-
ed data for different conditions, and allow us to interact with the phenotype only to
change the data file used for the rendering.

Our framework aims to unify the genotype and the phenotype of scientific simulations
in a generic way. To achieve this goal, our group developed a generic linkage mechanism
between an IntelligentBox system and an AVS module network. An AVS module network
is an AVS program defined as a network of AVS modules. Repetitively used AVS module
networks constitute a library of scientific visualization software components. We may de-
fine, for each of these AVS module networks, its proxy as a primitive box of Intelligent-
Box. This proxy box wraps the AVS module network, and works as an interactive visual
component box in an IntelligentBox environment. Our virtual scientific laboratory frame-
work provides a generic wrapper box, AVSModuleWrapperBox, for wrapping an arbitrary
AVS module network to define its proxy box.

All the parameters in such an AVS module network define the corresponding slots in
the proxy box for this module network. Some proxy boxes work purely as computation
components, whereas others provide 3D graphical outputs on their surface or within
themselves. Some of them provide volume-rendering functions. Proxy boxes may have
additional functions. Some proxy boxes, for example, may change some of their slot val-
ues, namely some parameter values of their corresponding AVS module network, when
they change the relative location within their parent box.

Slot connections among these boxes define dynamical linkages among their corre-
sponding AVS module networks. This allows us to directly construct both a scientific
computation program and a visualization environment just by combining primitive boxes.
The visualization result also allows us to interact through direct manipulation of the visu-
alizing boxes.

18.8 VIRTUAL SCIENTIFIC LABORATORY FRAMEWORK 445

tan-18.qxd 5/16/2003 8:10 AM Page 445

446 3D MEME MEDIA

Figure 18.29 shows how an AVS module network is wrapped by an AVSModuleWrap-
perBox to define a proxy box. When you wrap an AVS module network, the AVSMod-
uleWrapperBox allows you to specify some ports in this AVS module network to work as
slots of the proxy box. You may select these ports from more than one AVS module in the
module network. You may arbitrarily name these slots. Each proxy box stores, for each of
its slots, the information about which port of which AVS module is associated with this
slot. When a “set” message sends a new value to one of these slots, the proxy box trans-
fers this value to the corresponding port in the AVS module network. When the AVS mod-
ule network outputs a new value to one of these ports that are associated with slots, the in-
terface module explained later sends this value with the output port address to the proxy
box, which then transfers this value to the corresponding slot, and issues an “update” mes-
sage to each of its child boxes.

The slot connection between two proxy boxes indirectly connects the corresponding
two AVS module networks through these proxy boxes and their linkage. This is function-
ally equivalent to the direct connection of these two AVS module networks in an AVS en-
vironment. Figure 18.30 shows the detailed mechanism of an AVSModuleWrapperBox.
Our framework provides two server modules in the AVS system for the communication
between an AVSModuleWrapperBox and an AVS module network. These server modules
are the ib2avs server and the avs2ib server. An ib2avs server receives data from a proxy
box, whereas an avs2ib server sends data to a proxy box. Our framework uses V language
for AVSModuleWrapperBoxes to send commands to these two server modules to load an
AVS module network and to connect type conversion modules to it. Our framework also
provides another server module, ib daemon, which, when invoked by an AVSMod-
uleWrapperBox, creates a dedicated ib2avs server module and a dedicated avs2ib server
module, and asks them to perform the remaining required task.

An AVSModuleWrapperBox has the following four slots: a #avshost slot to hold the
name of the host machine running an AVS system, a #avsport slot to hold the port number
of the ib daemon server module, a #avsnet.directorypath to hold the absolute path name of
the directory in which the wrapped AVS module network is stored, and a #avsnet.filename

Figure 18.29 AVS program modules are wrapped by AVSModuleWrapperBoxes to define proxy
boxes, which you may combine through slot connections to indirectly connect AVS program mod-
ules.

tan-18.qxd 5/16/2003 8:10 AM Page 446

to hold the name of the AVS module network to wrap. To wrap an AVS module network,
you need to set the necessary values to the four slots of an AVSModuleWrapperBox. Then
you need to specify some input ports together with their modules to work as new input
slots of the proxy box. You also need to specify some output ports together with their
modules to work as new output slots of the proxy box.

These server modules use the TDS (tagged data stream) format for their data exchange
with AVSModuleWrapperBoxes and other AVS components. TDS data consist of four
fields: the first field holds the size of data, the next two fields work as the data type tag
and the address tag, and the last holds value data. The data type tag specifies the data type
of the exchanged data, whereas the address specifies which port of the AVS program
module will receive or has sent the communication data. The ib2avs server module dis-
patches its input data to a specified port of a specified component. The address tag is used
to specify this component and the port. The avs2ib server module, on the other hand,
sends its input data together with the port address to the proxy box. This port address
specifies the port that has output the communication data. The proxy box transfers the re-
ceived data to the slot associated with the specified port. The TDS data type is further
classified into three different ones: StreamTDS, TaggedBinary, and fieldTDS data types.
The StreamTDS format is for the communication between an AVSModuleWrapperBox
and a wrapped AVS module, i.e., between a proxy box and AVS. The TaggedBinary for-
mat is used for the exchange of large data such as geometrical shape data or array data be-
tween boxes through the structure sharing without sending the whole data copy. The
fieldTDS format is the same as the AVSfield type used for exchanging large data such as
multidimensional array data between AVS components through the structure sharing
without sending the whole data copy. Our framework also provides data conversion mod-
ules in AVS for the conversion between various data types and the TDS data type.

18.8 VIRTUAL SCIENTIFIC LABORATORY FRAMEWORK 447

Figure 18.30 Details of the mechanism to wrap an AVS module network with an AVSMod-
uleWrapperBox.

tan-18.qxd 5/16/2003 8:10 AM Page 447

448 3D MEME MEDIA

Our framework also provides the following visualization component boxes: an AVSGe-
omBox that changes itself to the shape specified by the AVS geometry data that is set to
its #AVSGeom.data slot, and a ClipBox to cut another box with a specified plane.

Figure 18.31 is an example application of our virtual scientific laboratory framework.
The left-hand window in the upper display hard copy visualizes an equipotential surface
of the electrical field caused by charged particles, whereas the right-hand lower window
shows the corresponding composed AVS module network. You can directly move or repli-
cate each of these charged particles. Such manipulation of particles changes the corre-
sponding parameters of the AVS program and makes it compute the new field. The result
is instantaneously visualized, or materialized, by an equipotential surface-rendering box.
The RotationBox at the left-bottom corner in the upper display hard copy is used to
change the potential value to render its equipotential surface. The lower display hard copy
shows the vector field, which you can easily obtain by using a vector-field displaying box.

Figure 18.32 shows another example application of our framework. This system visual-
izes the electromagnetic field and the surface current caused by a cellular phone, as well
as its radio pattern. You may directly change the relative location and/or length of the an-
tenna and the size of the cellular phone body to examine the changes in the electromag-

Figure 18.31 An example application of our scientific visualization framework.

tan-18.qxd 5/16/2003 8:10 AM Page 448

netic field, the surface current on the phone body, and the radio pattern. Different from the
previous example, this system uses a solver behind the AVS system. Since a solver is in-
voked by an AVS module, use of such a solver does not change the interface between an
IntelligentBox system and an AVS system. Figure 18.33 shows how an AVSModuleWrap-
perBox wraps an AVS module network accessing a solver. The example system used a
NEC2 solver developed at Lawrence Livermore Research Laboratory. The input filter and
the output filter in this figure are necessary to convert data types between the AVS system
and the solver. Figure 18.34 shows the whole composition structure of this system. Each
horizontal line segment represent a box, whereas each vertical line segment represent a
slot connection between the lower parent box and the upper child box. AMWBoxes denote
AVSModuleWrapperBoxes. Each AMWBox(Read_UCD) wraps a Read . . UCD AVS

18.8 VIRTUAL SCIENTIFIC LABORATORY FRAMEWORK 449

Figure 18.32 Another example application of our framework for the interactive simulation of the
electromagnetic field and the radio pattern caused by a cellular phone.

Figure 18.33 An AVSModuleWrapperBox may wrap an AVS module network calling up a solver.

tan-18.qxd 5/16/2003 8:10 AM Page 449

module. One reads the radio pattern geometry data file, whereas the other reads the sur-
face current geometry data file. Each has two slots. i.e., a #(I)filename slot to store the
file name of the geometry data to read, and a #(O)AVSGeom.data slot to store AVS geom-
etry data. An AMWBox(orthoslice) wraps Read.File and orthoslice modules. It is used to
display a cross section of the electromagnetic field. It has the following four slots: a
#(I)filename slot to store the file name of the geometry data to read, a #(I)plane.axis slot
to specify which of the three planes—xy, yz, and zx—to use as the cutting plane, a
#(I)plane.number slot to specify which of the three planes—xy, yz, and zx—to display,
and a #(O)AVSGeom.data slot to store AVS geometry data.

We are especially interested in the application of this technology to medical science,
molecular biology, genome informatics, electromagnetism, and fluid dynamics. When ap-
plied to a wind-tunnel simulator, you will be able to enter the virtual wind tunnel and di-
rectly change the shapes and the angles of the fuselage, fin, and wings of an aircraft to ob-
serve the changes in airflow. When it becomes possible to compute fluid dynamics in real
time, our approach will realize such an interactive virtual wind tunnel.

We are also interested in integrating our virtual scientific laboratory framework with
our component-based database materialization framework, especially for advanced
CAD/CAM applications. When applied to CAD databases, our database materialization
framework enables us to model not only the shapes but also the functions of our product

450 3D MEME MEDIA

Figure 18.34 The whole composition structure for the interactive virtual simulation of the electro-
magnetic field caused by a cellular phone.

tan-18.qxd 5/16/2003 8:10 AM Page 450

components and their compositions, to store them in a CAD database, and to retrieve de-
sired components and compositions as materialized interactive 3D objects. You may put
these retrieved objects in a virtual science laboratory environment to evaluate them
through interactive simulations.

18.9 3D MEME MEDIA AND A WORLDWIDE REPOSITORY OF BOXES AS
A MEME POOL

In IntelligentBox, each box has its save-format representation, which also works as its ex-
change-format representation used for its network transportation. Boxes can be easily re-
combined with each other, easily replicated, and easily transported to other users for reuse.
All these operations can be easily performed by end-users. Boxes work as 3D meme media.

We need a worldwide repository of boxes in which people around the world can publish,
access, reuse, reedit, and redistribute various boxes. Such a repository will work as a meme
pool of 3D meme media. In 1996, the IntelligentPad/IntelligentBox Project developed a
special pad called an IntelligentBoxPad that works as a window for the execution of
IntelligentBox. On this pad, you can execute an IntelligentBox environment and manipulate
its boxes. You may open any number of IntelligentBoxPads in your single IntelligentPad
system, and transport any boxes from any one of them to another. Since IntelligentBoxPads
are pads, our HTMLViewerPad enables us to embed them in arbitrary Web pages and to
publish them through the Internet. Figure 18.35 shows a Web page with an embedded

18.9 3D MEME MEDIA AND A WORLDWIDE REPOSITORY OF BOXES AS A MEME POOL 451

Figure 18.35 A web page with an embedded IntelligentBoxPad on which a composite box is pub-
lished.

tan-18.qxd 5/16/2003 8:10 AM Page 451

IntelligentBoxPad on which a composite box is published. This facility provides Intelli-
gentBox with its worldwide repository of composite boxes, i.e., its meme pool.

Figure 18.36 shows a 3D extension of a PiazzaPad. This MarketplaceBox is associated
with a server, and shows in itself all the boxes registered in this server. Using an Intelli-
gentBoxPad embedded in a Web page, you can publish a MarketplaceBox through the In-
ternet. At the client site, you may open such a Web page with a MarketplaceBox, drag out
some box into your local environment, or drag some box into this MarketplaceBox to reg-
ister this new box to the associated server.

Different from objects defined in VRML [5], embedded boxes can be copied and local-
ly reused in combination with other local boxes, or even with those embedded in other
Web pages. None of the current VRML systems adopt a wrapper architecture to wrap
each VRML object with a standard wrapper, whereas the IntelligentBox wraps each of its
objects with a standard wrapper that provides a standard connection interface among vari-
ous VR objects. Boxes are not just 3D graphical objects or software components. Each of
them is a software component wrapped by a wrapper with a standard interface, and has its
own 3D graphical representation.

The superdistribution of composite boxes allowing their reediting and redistribution by
end-users requires only the same technologies as those for composite pads. The embed-
ding of IntelligentBoxPads in Web pages realizes a worldwide 3D meme pool. The em-
bedding of a request module in each primitive box enables each box provider to charge
each use of this box to the user’s account, which is managed by an account module in-
stalled in each IntelligentBox kernel system.

18.10 SUMMARY

A 3D meme media architecture, IntelligentBox, inherited its design concept and architec-
ture from IntelligentPad. Each component is wrapped by a 3D representation wrapper
with a list of slots as its standard functional linkage interface to other components. Each
component has an MVC architecture. View linkage among components defines a com-
posite 3D object. Instead of pasting a pad on another pad, we can bind a box in the coordi-

452 3D MEME MEDIA

Figure 18.36 A MarketplaceBox works as a 3D extension of a PiazzaPad.

tan-18.qxd 5/16/2003 8:11 AM Page 452

nate system of another box. This defines a parent–child relationship between these two
components. Each component in a composition has no more than one parent component,
and can access no more than one of this parent’s slots. Each slot can be accessed by each
of the two standard messages, “set” and “gimme.” Each slot defines two different methods
for these two messages. The updating of components propagates from each parent compo-
nent to its children. Composite boxes work as meme media, and their worldwide reposito-
ry forms a meme pool.

Different from VRML and its extension with Java, IntelligentBox provides an open set
of interactive 3D components that can be directly manipulated for use and directly com-
bined to define composite applications. Composed boxes are kept decomposable, unless
otherwise specified, for their future reediting by end-users.

Instead of a FieldPad, IntelligentBox provides a RoomBox to define a shared work-
space. You can make a shared copy of any box.

IntelligentBox provides application frameworks not only for interactive 3D animation
but also for interactive information visualization and interactive scientific visualization.
For interactive animation, it provides motion-constraint boxes, shape-deformation boxes,
and camera boxes. A motion-constraint box imposes a constraint on the motion of its child
box. A shape-deformation box deforms its child box. A camera box provides a real-time
view taken by this camera.

For interactive information visualization and virtual materialization, IntelligentBox
uses a special box that works as a proxy of an external database system. Instead of repre-
senting each record in 2D form, we use a 3D animation template to represent each record.
This template is defined as a composite box. When registered as a template, some of its
slots are associated with record attributes. This template has its display offset as its slot,
which is also associated with some record attributes. Each record retrieved from a data-
base is represented as a 3D animation object using this template.

Various research fields in science and technology are now accumulating large
amounts of data in databases. Researchers believe that such an extensive data accumu-
lation in databases will allow them to simulate various physical, chemical, and/or bio-
logical phenomena on computers without carrying out any time-consuming and/or ex-
pensive real experiments. Information visualization for DB-based simulation requires an
information materialization framework that allows us to materialize each record as an
interactive visual object in a virtual space. Furthermore, researchers in these fields de-
velop their individual or communal mental models on their target phenomena, and often
like to visualize information based on their own mental models. We need to provide
these researchers with a new visualization environment in which they can easily define
their own visualization schemes as well as various query conditions. Our component-
based database materialization framework provides visual interactive components for (1)
accessing databases, (2) specifying and modifying database queries, (3) defining an in-
teractive 3D object as a template to materialize each record in a virtual space, and (4)
defining a virtual space and its coordinate system for the information materialization.
These components are represented as boxes.

For interactive scientific visualization or virtual scientific laboratories, IntelligentBox
provides a generic linkage mechanism with the AVS system. This allows us to define a
box as a program module of AVS so that combination of such boxes defines a composi-
tion of an AVS program, and the manipulation of such a box changes parameter values of
its corresponding AVS program module. These allow us to define a virtual laboratory in
which we can construct a scientific simulation world through direct manipulation of a pri-

18.10 SUMMARY 453

tan-18.qxd 5/16/2003 8:11 AM Page 453

454 3D MEME MEDIA

ori given components, directly manipulate objects in this world to change situations, and
interactively observe the simulation result in this world.

REFERENCES

1. D. Sampe, B. Roehl, and J. Eagan. Virtual Reality Creations. Waite Group Press, Corte Madera,
CA, 1993.

2. D. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled situation in virtual reality with the MR
toolkit. ACM Transactions on Information Systems, 11(3): 287–317, 1993.

3. G. Chris. XOBS: A formalism for representing the behavior of virtual objects. In Proceedings
of the 4th Annual Conference On AI Simulation and Planning in High Autonomy Systems, 1993.

4. D. B. Anderson, J. W. Barrus, et al. Building multiuser interactive multimedia environments at
MERL. In Proceedings of IEEE Multimedia 95, pp. 77–82, 1995.

5. NCSA. Virtual Reality Modeling Language. Technical Report, National Center for Super Com-
puting Applications. See http://www.ncsa.uiuc.edu/General/VRML/ VRMLHome.html, 1995.

6. D. B. Conner, S. S. Snibbe, K. P. Herndon, D. C. Robbins, and R. C. Zeleznik. 3D widgets. In
Proceedings of ACM SIGGRAPH’92 Symposium on Interactive 3D Graphics, pp. 183–188,
1992.

7. P. S. Strauss, and R. Carey. An object-oriented 3D graphics toolkit. In Proceedings of ACM SIG-
GRAPH’92 Symposium on Interactive 3D Graphics, pp. 341–349, 1992.

8. Y. Okada and Y. Tanaka,. IntelligentBox: A constructive visual software development system
for interactive 3D graphic applications. In Proceedings of the Computer Animation ‘95 Confer-
ence, pp. 114–125, 1995.

9. T. W. Sederburg. Free-form deformation of solid geometric models. ACM SIGGRAPH, 20(4):
151–160, 1986.

10. P. Bézier. General distortion of an ensemble of biparametric surfaces. Computer Aided Design,
10(2): 341–349, 1992.

11. Y. Okada and Y. Tanaka. Collaborative environments of IntelligentBox for distributed 3D graph-
ic applications. In Proceedings of the Computer Animation ‘97 Conference, pp. 22–30, 1997.

12. C. Ware, and S. Osborne. Exploration and virtual camera control in virtual three dimensional
environments, In Proceedings of ACM SIGGRAPH ‘86, pp. 175–183, 1986.

13. S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization—
Using Vision to Think. Morgan Kaufmann, San Francisco, 1999.

14. E. Freeman, and S. Fertig: Lifestreams. Organizing your electronic life. In Proceedings of AAAI
Fall Symposium on AI Applications in Knowledge Navigation, 1995.

15. J. D. Mackinlay, G. G. Robertson, and S. K. Card. The perspective wall: Detail and context
smoothly integrated. In Proceedings of CHI’91, New York, pp. 173–180, 1991.

16. S. K. Card, G. G. Robertson, and W. York. The web book and the web forager: An information
workspace for the World-Wide-Web. In Proceedings of CHI’96, New York, pp. 111–117, 1996.

17. S. G. Eick, J. L. Steffen, and E. E. Sumner. Seesoft—A tool for visualizing line oriented soft-
ware statistics. IEEE Transaction on Software Engineering, 18(11): 957–968, 1992.

18. C. Ahlberg and E. Wistrand. IVEE: An information visualization and exploration environment.
In Proceedings of Info-Vis’95, New York, pp. 66–73, 1995.

19. T. Bray. Measuring the Web. Computer Networks and ISDN Systems, 28(7–11): 992, 1996.

20. M. C. Chuah, S. F. Roth, J. Mattis, and J. A. Kolojejchick. SDM: Malleable information graph-
ics. In Proceedings of InfoVis’95, New York, pp. 36–42, 1995.

21. R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale. Narcissus: Visualising information. In
Proceedings of InfoVis’95, New York, pp. 90–96, 1995.

tan-18.qxd 5/16/2003 8:11 AM Page 454

22. W. Wright. Information animation applications in the capital markets. In Proceedings of Info-
Vis’95, New York, pp. 19–25, 1995.

23. S. Feiner and C. Beshers. Worlds within worlds: Metaphors for exploring n-dimensional virtual
worlds. In Proceedings of UIST’90, pp. 76–83, 1990.

24. D.A. Keim and H. P. Kriegel. VisDB: Database exploration using multidimensional visualiza-
tion. IEEE Computer Graphics and Applications, Sept. 1994, 40–49.

25. G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3D visualizations of
hierarchical information. In Proceedings of CHI’91, pp. 189–194, 1991.

26. B. Johnson and B. Shneiderman. Treemaps: A space-filling approach to the visualization of hi-
erarchical information structures. In Proceedings of InfoVis’91, pp. 275–282, 1991.

27. K. M. Fairchild, S. E. Poltrock, and G. W. Furnas. SemNet: Three dimensional representations
of large knowledge bases. In R. Guindon (ed.), Cognitive Science and Its Applications for Hu-
man–Computer Interaction, Lawrence Erlbaum, Hillsdale, NJ, pp. 201–233, 1988.

28. S. G. Eick and G. J. Wills. Navigating large networks with hierarchies. In IEEE Proceedings of
InfoVis’93, pp. 204–210, 1993.

29. A. Inselberg. Multidimensional detective. In Proceedings of InfoVis’97, pp. 100–107, 1997.

30. J. Lamping and R. Rao. The hyperbolic browser: A focus+context technique for visualizing
large hierarchies. Journal of Visual Languages and Computing, 7(1): 33–55, 1996.

31. R. Rao and S. K. Card. The table lens: Merging graphical and symbolic representations in an in-
teractive focus+context visualization for tabular information. In Proceedings of CHI’94, pp.
318–322, 1994.

32. Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented representation
technique. ACM Trans. on Computer–Human Interaction, 1(2): 126–160, 1994.

33. M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Extending distortion viewing
from 2D to 3D. IEEE Computer Graphics and Applications, July/Aug., 42–51, 1997.

34. G. G. Robertson and J. D. Mackinlay. The DocumentLens. In Proceedings of UIST’93, pp.
101–108, 1993.

35. J. Rekimot and M. Green. The information cube: Using transparency in 3D information visual-
ization. In Proceedings of WITS’93, pp. 125–132, 1993.

36. U. Wiss and D. A. Carr. An empirical study of task support in 3D information visualizations. In
Proceedings of InfoVis’98, pp. 392–399, 1999.

37. B. B. Bederson and J. D. Hollan. Pad++: A zooming graphical interface for exploring alternate
interface physics. In Proceedings of UIST’94, pp. 17–22, 1994.

38. C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling of dynamic query
filters with Starfield displays. In Proceedings of CHI’94, pp. 313–317, 1994.

39. K. Fishkin and M. C. Stone. Enhanced dynamic queries via movable filters. In Proceedings of
CHI’95, pp. 415–420, 1995.

40. C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling of dynamic query
filters with Starfield displays. In Proceedings of ACM CHI’94, ACM Press, New York, 1994.

41. C. Ahlberg E. Wistrand. IVEE: An information visualization and exploration environment. In
Proceedings of IEEE Symposium on Information Visualization, Atlanta, 66–73, 1995.

42. J. MacKinlay. Automating the design of graphical presentations of relational information. ACM
Transactions on Graphics, 5(2): 110–141, 1986.

43. S. M. Casner. A task-analytic approach to the automated design of graphic presentations. ACM
Transactions on Graphics 10(2): 111–151, 1991.

44. S. Roth, J. Kolojejchick, and J. Goldstein. Interactive graphic design using automatic presenta-
tion knowledge. In Mark T. Maybury and Wolfgang Wahlster (eds.), Intelligent User Interfaces,
Morgan Kaufmann, San Francisco, pp. 237–242, 1998.

45. C. Upson, T. Faulhauber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and A.

REFERENCES 455

tan-18.qxd 5/16/2003 8:11 AM Page 455

van Dam. The application visualization system: A computational environment for scientific vi-
sualization. IEEE Computer Graphics and Applications, 9(4): 30–42, July, 1989.

46. Data Explorer Reference Manual. IBM Corp., Armonk, NY, 1991.

47. C. North and B, Shneiderman. Snap-together visualization: a user interface for coordinating vi-
sualizations via relational schemata. In Proceedings of Advanced Visual Interfaces 2000, Paler-
mo, Italy, pp. 128–135, 2000.

48. M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Myllymaki,
and K. Wenger. DEVise: Integrated querying and visual exploration of large datasets. In Pro-
ceedings of ACM SIGMOD, May, 1997.

49. S. A. Roth et al. Visage: A user interface environment for exploring information. In Proceed-
ings of Information Visualization, 3–12, 1996.

50. A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. Tioga–2: A direct manipulation database
visualization environment. In Proceedings of the 12th International Conference on Data Engi-
neering, pp. 208–217, New Orleans, LA, 1996.

51. Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization and
Graphics, IEEE Press, Piscataway, NJ, 2001.

52. M. Schulz, F. Reck, W. Bartelheimer, and T. Ertl. Interactive visualization of fluid dynamics
simulations in locally refined Cartesian grids (case study). In Proceedings of the conference on
Visualization ‘99, San Francisco, 1999.

53. K. Vidim�ce, J. T. Foley, D. C. Banks, and Y. Chi. WebTOP: 3D interactive optics on the Web. In
Proceedings of the Web3D-VRML 2000 Fifth Symposium on Virtual Reality Modeling Lan-
guage, Monterey, 2000.

54. G. Leach and J. Gilbert. VRML molecular dynamics trajectories. In Proceedings of the Fourth
Symposium on Virtual Reality Modeling Language. Paderborn, Germany, 1999.

55. S. Chakaveh, U. Zlender, D. Skaley, K. Fostiropoulos, and D. Breitschwerdt. DELTA’s virtual
physics laboratory (case study): A comprehensive learning platform on physics astronomy. In
Proceedings of the Conference on Visualization ‘99, San Francisco, 1999.

56. K. Ma and T. W. Crockett. Parallel visualization of large-scale aerodynamics calculations: A
case study on the Cray T3E. In Proceedings of the 1999 IEEE Symposium on Parallel Visualiza-
tion and Graphics, San Francisco, 1999.

456 3D MEME MEDIA

tan-18.qxd 5/16/2003 8:11 AM Page 456

CHAPTER 19

ORGANIZATION AND ACCESS OF
MEME MEDIA OBJECTS

The meme media and meme pool architectures that we have discussed in the preceding
chapters will bring about a rapid accumulation of memes in our societies, which will re-
quire a new way of organizing and accessing them. No conventional information organi-
zation method—table-based, hierarchical, or indexed—is suitable for organizing and al-
lowing access to a huge number of heterogeneous intellectual resources. The situation
here is similar to the management and access of commodities. Commodities of the same
type can be managed by a single database, but there are so many different types that con-
sumers cannot tell which commodity belongs to which type, or which database manages
which type. To solve this problem, we used to use documents or spaces to arrange infor-
mation about mutually related commodities. Examples include catalogs, stores, depart-
ment stores, malls, and towns. Here we propose a new framework for organizing and ac-
cessing intellectual resources. This framework uses documents to contextually and/or
spatially select and arrange mutually related resources. Examples of such documents may
include figures, images, movies, maps, and any combinations of them. These documents,
as well as their component resources, are all represented as meme media objects. There-
fore, these documents, together with related resources, may also be arranged in other doc-
uments, which forms a complex web of such documents.

19.1 ORGANIZATION AND ACCESS OF INTELLECTUAL RESOURCES

Pads and boxes are subject to international distribution, exchange, and reuse. Data, tools,
and documents, either in pad or box form, serve as intellectual resources in our societies.
The meme media and meme pool architectures that we have discussed in the preceding
chapters will rapidly increase the variety of such intellectual resources, and encourage
their accumulation.

457

tan-19.qxd 5/2/2003 9:21 AM Page 457

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

In this chapter, we will consider how to manage and access a huge accumulation of in-
tellectual resources represented as pads or boxes. Here we will consider only pads, but our
conclusions are also applicable to boxes. Let us first consider if databases can manage
pads. If the platform has the pad definition code and all the necessary DLLs, a composite
pad only needs to store its exchange format representation; no other information needs to
be stored. The exchange format representation of a composite pad includes two kinds of
information. One is the form information that describes what kinds and sizes of compo-
nent pads are used, how they are geometrically pasted together, and which slot is used in
each connection between component pads. The other is the state information of this pad.
The state information needs to be sufficient to specify the current values of all of its inter-
nal variables whose values are not specified by its form information. Composite pads with
the same form information but with different states are said to share the same form. With-
out loss of generality, we can assume that the state information is of the record type, i.e., it
can be represented as a list of attribute-value pairs for the ordered attribute set that is de-
termined by each form.

If we need to manage a large number of pads of a few different forms, we can store the
state information of pads in a database with as many relations as the different forms, and
keep the form information of these forms outside the database. Such a database is called a
form base. If the state information of a record type has only atomic and simple values for
its attributes, we can use a relational database management system to store these pads. If
some attributes allow variable-length data, stream data such as movies and sounds, or
complex data such as compound documents and other relations, we can use an extended
relational database management system or a structural OODB management system. In
this case, we can even deal with a composite pad storing other composite pads in some of
its state attributes.

Pads representing various intellectual resources accumulated in our societies, however,
have a huge number of different forms. Although we may store a group of pads of the
same form in a single database relation, we have to manage a huge number of different re-
lations together with the same number of different forms.

The situation here is similar to the management and access of commodities. Different
from standardized prefabricated parts that are usually managed by databases, there are a
huge variety of commodities and no common attributes to describe them, which makes it
difficult to manage them with databases. Commodities of the same type can be managed
by a single database, but there are so many different types that consumers cannot tell
which commodity belongs to which type, or which database manages which type. Types
are usually defined by producers, and not always directly related to functions, uses, or ap-
pearances that consumers can identify. For the integration of a reasonable number of data-
bases, you may introduce an ontological meta-level description to integrate the member
database schemas, as well as a query translation mechanism between the meta-level
schema and the member database schemas. Some systems like SIMS [1] and OBSERVER
[2] enable us to provide such an integrated ontology for relational and flat databases, and
perform the necessary query conversions. Some other systems like FLORID [3], ONTO-
BROKER [4], and MOMIS [5] even introduced the reasoning capabilities of logic sys-
tems to integrate more than one object-oriented database. These systems, however, cannot
be applied to such cases in which we cannot describe integrated ontological schemas. To
solve this problem in our daily lives, we typically use documents or spaces to arrange in-
formation about mutually related commodities for ease of access. Examples of such docu-

458 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

tan-19.qxd 5/2/2003 9:21 AM Page 458

ments are catalogs published by producers or independent publishers, advertising
brochures from producers or stores, books, periodicals, and newspaper articles referring
to commodities. Catalogs adopt various different criteria in the selection and arrangement
of commodities. Books, periodicals, and newspapers may refer to each other. Examples of
commodity-organizing spaces include shops, department stores, malls, and towns. The
first three use planned selections and arrangements, whereas the selections and arrange-
ments in towns evolve over time. Shops are nested in malls and department stores, which
are nested in towns.

Let us consider one more example. “The Trinity” is one of the most popular themes of
Christian paintings. Each painting with this theme includes the images of the Father, the
Son, and the Holy Spirit. Suppose you have a collection of these three images extracted
from a large number of paintings of the Trinity. Our question here is where to store this
collection so that we or even other people can access this collection in a future. You may
think that we can define a relation in a database to store this collection. This relation has
three attributes, the Father, the Son, and the Holy Spirit. Each tuple is a triple of file point-
ers, pointing to the three images extracted from the same painting. This solution, however,
does not tell where to memorize the fact that this newly created relation represents the col-
lection of three images from a large number of paintings of the Trinity. We have to deal
with a huge number of different concepts as well as relations among them. “The trinity” is
only one of them. A potential solution in this example may be to store this collection in as-
sociation with the article on the Trinity in some encyclopedia.

19.2 TOPICA FRAMEWORK

Based on the above observations, here we propose a new framework for the organization
of and access to intellectual resources represented as pads. This framework uses docu-
ments to contextually and/or spatially select and arrange mutually related intellectual re-
sources. Such documents may be texts, images, figures, movies, maps, or compound doc-
uments consisting of various multimedia components. These documents as well as these
intellectual resources are all represented as pads. Therefore, these documents may be also
arranged together with related resources in other documents.

We call this framework “Topica,” after Aristotle’s Topica. In the Topica framework,
documents used to arrange resources are called Topica documents. Each Topica document
is a pad that displays a document and stores relations among some other Topica docu-
ments and/or some pads. Such a document is represented by an XHTML text, with some
slot definitions. Relations in a Topica document are called “Topica tables,” and may be
defined by tables, or by queries that may access local or remote databases, XHTML texts
defining other Topica documents, or relations defined in other Topica documents. A Topi-
ca document has some areas through which users can store and retrieve other Topica doc-
uments, pads, or character strings; we call these areas on a Topica document “topoi.” Each
topos is basically associated with an attribute of the Topica tables stored in the Topica doc-
ument. Each attribute within a Topica table may take as its value a character string, an ex-
change format representation of a pad, or a URL identifying a Topica document or a pad
stored in a local or remote file.

A topos of a Topica document is either a geometrically specified area of this document
or a tagged text string in the XHTML document that is viewed by this Topica document.

19.2 TOPICA FRAMEWORK 459

tan-19.qxd 5/2/2003 9:21 AM Page 459

Figure 19.1 shows an XHTML document on “the Trinity” in Christianity, where a special
kind of tag is used to specify that the three phrases—”the Father,” “the Son” and “the
Holy Spirit”—in this article, together with the title “Trinity, The,” work as four topoi of
this Topica document, which stores a relation among the images of the three depicted
within each of a number of paintings of the Trinity. Instead of directly storing images, the
relation stores URLs of these image files. We can use a Topica viewer pad to view the cor-
responding Topica document as a pad. The Topica viewer pad is basically Microsoft Inter-
net Explorer (IE) wrapped by the pad wrapper. It has extended IE to perform topoi func-
tions. Topica documents may also provide some slots, which can be easily defined by
using special tags in their XHTML definitions. Figure 19.2 shows the Topica document of
the XHTML definition in Figure 19.1, a selector popped up by double-clicking “the Fa-
ther” topos, and the selection of one candidate within this selector to pop up the corre-
sponding image. This selection automatically influences the information available through
other topoi. The clicking of “the Son” topos now pops up a selector showing only one
candidate. All these images also work as Topica documents. Each image of a whole Trini-
ty painting includes three topoi covering the Father, the Son, and the Holy Spirit, respec-
tively, and a Topica table that refers to the Topica table in the original Trinity article as
shown in Figure 19.3.

Topoi are different from Xlink [6] and XPointer [7] in the following two respects. First,
topoi on the same Topica document are related with each other by the Topica table stored
in this Topica document. Second, you may drag and drop new Topica documents into
some topoi to update the Topica table.

460 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

Figure 19.1 An XHTML definition of a Topica document on the Trinity.

tan-19.qxd 5/2/2003 9:21 AM Page 460

461

Figure 19.2 A Topica document on the Trinity defined by the XHTML text in Figure 19.1

Figure 19.3 A Topica document showing a painting of the Trinity shares the same Topica table as
the Topica document in Figure19.1.

tan-19.qxd 5/2/2003 9:21 AM Page 461

19.3 THE APPLICATION HORIZON OF THE TOPICA FRAMEWORK

Figure 19.4 shows the management of invitation letters using a Topica document. Invita-
tion letters from the same person for the same category of purposes may share the same
letter template, which the person can reuse repeatedly to generate letters by filling in the
blanks. This Topica document, on the one hand, works as a template; underlined italicized
strings may be rewritten to generate different letters. The same Topica document, on the
other hand, works to store and manage all the letters created using this template; the un-
derlined italicized strings work as topoi. When clicked, each topos pops up a selector
showing all the candidate strings filling in this placeholder; a selection of one of them re-
places the current string, and rewrites the letter by replacing all other topoi with appropri-
ate strings. The figure shows the case in which we have selected “Prof. Y. Tanaka” for the
topos just after “Dear.” This Topica document has another topos to store resumés sent by
invitees; an instantiation to some specific invitation letter also instantiates this topos to
pop up the resumé of the selected invitee. Here the resumé of “Prof. Tanaka” is popped
up. This resumé also works as a Topica document with some topoi. When you send invita-
tion letters, you may also send the template for a resumé, and ask the invitee to fill in and
send back this form. All the returned resumés can be stored in the same single Topica doc-
ument.

Topoi of a Topica document may be defined in terms of the transposed image of the
stored relation. Figure 19.5 shows a Topica document that stores a relation between file
names and files. The transposed image of this relation has file names as its attributes; it
has a single tuple specifying for each file name the URL of the corresponding file. The
Topica document in this figure can switch views between the default and its transposition.

462 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

Figure 19.4 A Topica document for the management of invitation letters together with invitees’
résumes.

tan-19.qxd 5/2/2003 9:21 AM Page 462

Its XHTML definition is generated by processing its XML content using one or the other
of its two stored XSL styles. These two styles access the stored relation in different ways
to define different sets of topoi. Figure 19.6(a) shows the XML definition of the contents,
whereas Figure 19.6(b) shows the XSL definition of the transposed file directory view in
the right-hand side of Figure 19.5.

Suppose you have presented talks at many conferences in the past. For each confer-
ence, you have files of the call-for-paper mail, the submitted paper manuscript, the letter
of acceptance with reviewers’ comments, the camera-ready manuscript, the conference
program, and the Power Point presentation. With our conventional file directory system,
you have two alternative ways to store these files. You may either define an independent
folder for each conference to store all the related files, or define six different folders for
six different categories of files. In the first case, you cannot scan through all the files of
the same category. In the second case, you cannot jump from one file to another of a dif-
ferent file category of the same conference. The Topica document in Figure 19.7 solves
this problem. It looks like a file directory. Each folder in this directory corresponds to one
of the six file categories, and works as a topos. Double-clicking on it pops up a selector
that looks like another file directory listing all the files of this category. A selection of one
file in this selector determines the corresponding conference, and restricts every other
topos to show only those files of the same conference.

Since the definition of a Topica document exploits XHTML, and is viewed by an exten-
sion of the IEPad (Internet Explorer pad), it is not difficult to extend an arbitrary Web page
document to work as a Topica document without losing any of its functionality. For exam-
ple, home pages of Holiday Inn hotels at different locations use different documentation
styles, but they provide information on several common entities including hotel name, lo-
cation, pictures, address, telephone number, and fax number. Each of these home pages can
be easily translated to a Topica document with these entities working as topoi. These Topica
documents share the same Topica table, which could be a view relation defined over, for ex-
ample, the Holiday Inn headquarters database. You may also define the Holiday Inn logo in
each of these Topica documents to work as another topos, which lists the home-page Topica
document URLs of the selected hotels on its corresponding selector.

Each Topica document may play three different roles. First, it works as is. Second, it may
work as a template in a way as shown in the invitation-letter example. Third, it works as a

19.3 THE APPLICATION HORIZON OF THE TOPICA FRAMEWORK 463

Figure 19.5 This Topica document storing a relation between file names and files can switch from
one view to its transposition, and vice versa.

tan-19.qxd 5/2/2003 9:21 AM Page 463

464 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

Figure 19.6 The XML contents definition and the XSL definition of the transposed view in Fig-
ure 19.5. (a) XML definition of the file directory contents. (b) XSL definition of the right-hand di-
rectory view in Figure 19.5.

(a)

(b)

tan-19.qxd 5/2/2003 9:21 AM Page 464

schema of the stored Topica table; you may use a Topica document to specify a query to the
Topica table. The last role will be detailed in the following section. To distinguish these
three different roles of the same Topica document, we have introduced three modes for each
Topica document: the document mode, the template mode, and the schema mode. You can
change the mode of a Topica document by popping up the right button menu of this docu-
ment. Unless otherwise specified, each Topica document is in its document mode.

If we restrict every Topica document to store a single relation with a single tuple, then
each topos works as an anchor to another Topica document. Therefore, Topica documents
can include Web page documents as their special cases.

Topica documents are natural extensions of Web documents. Once they are in the Web,
they become subject to search engines such as Google and Yahoo. Such search engines
help you search for Topica documents including given keywords. Instead of directly
searching for specific pads or boxes, you may search for a Topica document storing them
or their addresses in its Topica table. If the target pads or boxes are a priori stored in an ap-
propriate Topica document, this document may include some keywords related to these
pads or boxes. You may send these keywords to some search engines to find this Topica
document. Such a search performs a context search to find specific pads or boxes. Topica
documents work as the contexts of pads and boxes, and search engines can use the textual
information of Topica documents to index them for their search.

19.4 QUERIES OVER THE WEB OF TOPICA DOCUMENTS

The Topica framework provides a unified approach for organizing and accessing local
and/or remote files, databases, conventional Web documents, and Topica documents over
the Internet. In addition, the framework allows us to describe queries in XML-QL that, by
navigating through these different types of information, quantifying properties of some

19.4 QUERIES OVER THE WEB OF TOPICA DOCUMENTS 465

Figure 19.7 A Topica document that works as a file directory with six categories of files.

tan-19.qxd 5/2/2003 9:21 AM Page 465

documents on the navigation path, and picking up selected resources on the way, can con-
struct the XHTML documents and relations of new Topica documents. Figure 19.8 shows
an example XML-QL query.

This query accesses a Topica document identified by the variable $myReferenceBook,
whose value is specified elsewhere, and retrieves all the books from its topos named “en-
cyclopedia.” Then it selects “Christianity” for the “topics” topos defined on each title
page of these books, i.e., encyclopedias, to retrieve all the articles on Christianity from
each of these books. Then it searches these articles for those with “Trinity” as its header,
and retrieves all the images of “the Father” from each of these article Topica documents.
Finally, it generates a new Topica document storing the collection of these retrieved im-
ages in its “image” topos.

The XML-QL description above, however, has a serious problem. Is it reasonable to as-
sume that the user knows all the Topica tag names necessary to specify this query? Obvi-
ously, the answer is “No.” However, he or she can navigate through Topica documents
along a single path consistent with this query. Figure 19.9 shows a history of such a navi-
gation starting from a file directory “myReferenceBook,” and ending with an article on
“Trinity, The.”

By changing these Topica documents to the schema mode, you can specify a query as
shown in Figure 19.10. This visual query specification basically exploits the QBE (query-

466 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

Figure 19.8 An example of XHTML to create a new Topica document by navigating through ex-
isting ones.

tan-19.qxd 5/2/2003 9:21 AM Page 466

19.4 QUERIES OVER THE WEB OF TOPICA DOCUMENTS 467

Figure 19.9 A single-path navigation that is consistent with the query in Figure 19.8.

Figure 19.10 The same query as the XML-QL query in Figure 19.8

tan-19.qxd 5/2/2003 9:22 AM Page 467

by-example) convention. Every underlined topos value works as a variable, which may
specify either a text string or a Topica document. You may specify these variables either
on a Topica document in its schema mode or on a topos selector window. In its schema
mode, every Topica document has one additional topos at the top-left corner, which is
used to specify the URLs of Topica documents sharing the same schema with this Topica
document. This query searches for all the possible navigation paths starting from the di-
rectory “myReferenceBook,” and ending with an article including the string “Trinity” in
its header. The query also specifies an output Topica document with the phrase “the Father
images” specified as a topos, and equates this topos with “the Father” topos of the “Trini-
ty, The” Topica document by using the same variable for these topoi. All the Topica docu-
ments in the condition part of this query should be interpreted as schemas, whereas the
one in the output part defines a template. The query in Figure 19.10 specifies the same
query as the XML-QL query in Figure 19.8.

The visual query specification using Topica documents in their schema mode assumes
that Topica documents of the same category or on the same topics use the same Topica tag
names in their definitions. This convention of using the same tag names spreads among
people either through standardization efforts, or through the extensive replication and dis-
tribution of the same Topica document among people to reuse its contents, style, and/or
schema in their production of new Topica documents. Topica documents as templates
and/or schemas will also become intellectual properties, and provide new business oppor-
tunities.

19.5 RELATED RESEARCH

The idea of using topoi, i.e., loci or places to put things you want to memorize, is the es-
sential part of the art or science of memory, one of the ancient Greek arts of rhetoric. This
science has origins in what is surely a myth about the poet Simonides of Ceos. This idea
was called the Method of Loci. Later, Cicero (106–43 B.C.) wrote a few pages on the sci-
ence in his classic work, “De Oratore.” The definitive treatment in Greek literature is the
classic work of an unknown author (previously thought to be Cicero), “Ad Herennium.”
The method tells you to first construct a so-called memory palace having any structure
that can be imagined, i.e., a building or even a book. Students would carefully walk
through the halls of the memory palace, remembering every room. To memorize, say, a
large text, you could walk into the first room in your memory palace and place the first
stanza of your address next to a distinctive object, the second stanza next to another ob-
ject, and so on. Rehearsing consisted of walking back through your memory palace, re-
membering each of the distinctive objects in the rooms, and then walking past each object,
and collecting the stanza of text associated with it.

Like much of the wisdom of the Greeks, this science faded from the public view. Mem-
orization was still important, and it caught the attention of Thomas Aquinas in his “Sum-
ma Theologica.” He listed the development of artificial memory and memory-enhancing
techniques under the virtue of Prudence. He wrote: “Man cannot understand without im-
ages; the image is a similitude of a corporeal thing, but understanding is of universals
which are to be abstracted from particulars.” Then the memory arts became almost a fad.
Of particular note was a Dominican monk, Giordano Bruno, who became a famous prac-
titioner of this science, and wrote “The shadows of Idea.”

The arts of memory attracted attention again after the publication of “The Art of Mem-

468 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

tan-19.qxd 5/2/2003 9:22 AM Page 468

ory” by Frances A. Yates in 1974 [8]. Since then, the arts of memory have been attracting
researchers, especially in architecture [9] and hypermedia [10]. Spatial hypertext/hyper-
media studies [11, 12], though without any explicit reference to the arts of memory, share
the same consciousness with Thomas Aquinas on the effective use of images, diagrams,
and spatial arrangements for our better understanding.

Spatial hypertext lets users express categories and interrelationships through the visual
similarity and colocation of information objects. Office workers frequently shuffle papers
to make sense of them, and use the physical space around their offices as important ad-
juncts to their more organized file cabinets [13, 14]. People may find it difficult to express
how or why content is interconnected, but they are accustomed to arranging media, either
physical or electronic, in space. In noncomputational environments, people fasten docu-
ments together with paper clips, or staple them, but often interconnections are left implic-
it, to be resolved only if use demands it. They sometimes prefer to express relationships
among objects by using geometric cues like proximity and alignment, and visual cues like
graphical similarity. VIKI [15], WebSquirrel [16], D-Lite [17], WebForager [18], and Data
Mountain [19], early spatial hypertext systems, emphasized the expression and manipula-
tion of information structures implicit in the layout of their components. Users can easily
change a visual property or move an object. The resulting hypertext is not meant as a pub-
lication, but as a continual work in progress for an individual or small group. Visual
Knowledge Builder (VKB) [12], the successor of VIKI, added support for long-term col-
laboration and tasks requiring explicit links; it includes a history mechanism that records
the evolution of the spatial hypertext and local, global, and historical links for explicit
navigational connections between chunks of information.

Whereas spatial hypertext/hypermedia studies focus on the use of visual similarity and
colocation of information objects to express relationships among objects, the Topica
framework focuses on how we can associate an n-ary relation among n topoi, or n loci, de-
fined on an ordinary and/or spatial hypermedia document, and use such documents as
cues to find out appropriate relations for organizing and accessing various kinds of intel-
lectual resources represented as pads.

Although the Topica framework also shares basic ideas with the arts of memory, it de-
pends more on ideas in Aristotle’s “Topica” than those in Cicero’s “De Oratore.” Aristo-
tle’s “Topica” denotes a catalog of topoi; it lists rhetorical patterns especially for debates.
Each pattern is a parameterized sentence with some variables. Instantiation of these vari-
ables with some concrete entities in a current debate context will generate a sentence you
can use in the debate. The same idea can be applied to any situations in which you need to
express your ideas or to compile your knowledge. In the Topica framework, each Topica
document may work as such a rhetorical pattern. Topoi defined on such a document may
work as parameters or place holders of the pattern.

The Topica framework also shares the concept of the Semantic Web of how to make
vast amounts of information resources (data, documents, programs) available. The Topica
framework focuses on collaborative organization of resources. People may use some ex-
isting document, or, if necessary, define a new document to define and to store a relation
among intellectual resources. Since each Topica document is also an intellectual resource,
people may use a Topica document to define and to store a relation among Topica docu-
ments. In the web of Topica documents, meta-level description of semantic relationships
among Topica documents uses relations defined over the set of Topica documents, and
stores each of these relations in some Topica document. Each Topica document in its
schema mode works as an RDF (resource description framework) schema of the Semantic

19.5 RELATED RESEARCH 469

tan-19.qxd 5/2/2003 9:22 AM Page 469

Web defining an n-ary relationship among Topica documents. Whereas Topica focuses on
facilities for users to organize resources for ease of their future access, Semantic Web fo-
cuses on facilities for information resource providers and brokers to describe semantic re-
lationships among resources so that their and/or requesters’ programs may access these re-
sources based on the described semantic relationships. Since Topica is a natural extension
of the current Web, and exploits XML, an application of Semantic Web technologies to
Topica will provide Topica with ontological semantic relationships among Topica docu-
ments. The relationships stored in Topica documents are emergent, and collaboratively or-
ganized through individuals’ independent activities of publishing new Topica documents
and storing new relations among Topica documents in other Topica documents. The rela-
tionships described by Semantic Web technologies, on the other hand, are based on the on-
tology among Web objects, and mainly defined by organizations or communities, but not
intended to be defined by individuals independently. These two types of relationships
among Topica documents are complementary and enrich the semantics of Topica docu-
ments and their web.

The Semantic Web originated in Tim Berners-Lee’s proposal in 2001 [20] of a new
form of Web content that is meaningful to computers and linked to be easily processable
by machines on a global scale. This new vision is attracting great attention. Central to the
vision of the Semantic Web are ontologies. Ontologies are seen as facilitating knowledge
sharing and reuse between agents, be they human or artificial [21]. Better knowledge
about the meaning, usage, accessibility, or quality of Web resources will considerably fa-
cilitate automated processing of available Web content and services. The Resource De-
scription Framework (RDF) [22, 23] enables the creation and exchange of resource meta-
data as any other Web data. RDF provides (1) a standard representation language for
meta-data based on directed labeled graphs in which nodes are called resources (or liter-
als) and edges are called properties; (2) a schema definition language (RDFS) [23] for
creating vocabularies of labels for these graph nodes (called classes) and edges (called
property types); and (3) an XML syntax for expressing meta-data and schemas. RDF al-
lows us to superimpose several descriptions of the same Web resources in a variety of ap-
plication contexts. RDF is particularly useful for real-scale Semantic Web applications
such as knowledge portals and e-marketplaces. In knowledge portals such as the Open Di-
rectory Project (ODP) (www.dmoz.org), CNET (home.cnet.com), and XMLTree
(www.xmltree.com), various information resources such as sites are aggregated and clas-
sified under large hierarchies of thematic categories or topics. The descriptions are ex-
ploited by push channels aiming at personalizing portal access, using a standard like the
RDF Site Summary [24]. Entire catalog of portals can be also exported in RDF. White (or
yellow) pages of emerging e-marketplaces also require RDF resource descriptions. De-
scriptions involve not only information about potential buyers and sellers, but also about
provided/requested Web services. Standards like UDDI [25] and ebXML [26] are intend-
ed to support registries with service advertisements using keywords for categorization un-
der geographical, industry, or product classification taxonomies.

Query languages for querying both RDF resource descriptions and related schemas
have also recently been proposed. These include DAML-OIL [27, 28] and RQL [29]. RDF
schemas have substantial differences from XML DTDs [30] or the more recent XML
Schema proposals [31, 32]. Due to multiple classification, resources may have quite irreg-
ular structures modeled only through an exception mechanism in the XML proposals.
These XML proposals cannot distinguish between entity labels and relationship labels.
On the other hand, XML element content models cannot be expressed in RDF since prop-

470 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

tan-19.qxd 5/2/2003 9:22 AM Page 470

erties are unordered, optional, and multivalued. Therefore, query languages proposed for
semistructured or XML data, such as LOREL [33], StruQL [34], XML-QL [35], XML-
GL [36], Quilt [37], or XQuery [38], fail to interpret the semantics of RDF node or edge
labels.

Topic Maps [39] also aim to introduce semantic interrelations among documents. The
structural information conveyed by topic maps includes the groupings of addressable in-
formation objects around topics (occurrences), and the relationships between topics (asso-
ciations). A topic map defines a multidimensional topic space—a space in which the loca-
tions are topics, and in which the distances between topics are measurable in terms of the
number of intervening topics that must be visited in order to get from one topic to anoth-
er, and the kinds of relationships that define the path from one topic to another, if any,
through the intervening topics, if any. In addition, information objects can have properties
as well as values for those properties assigned to them externally. These properties are
called “facet types.” Several topic maps can provide topical structure information about
the same information resources. The Topic Maps architecture is designed to facilitate
merging topic maps without requiring the merged topic maps to be copied or modified.
The base notation of topic maps is SGML. An interchangeable topic map always consists
of at least one SGML document, and it may include and/or refer to other kinds of infor-
mation resources. Like Semantic Web technologies, Topic Map technologies are comple-
mentary with the Topica framework.

19.6 SUMMARY

Meme media and meme market system architectures will significantly accelerate the evo-
lution of memes in our societies, which will lead to a need for new ways of organizing and
accessing them. This chapter has explored a new framework called “Topica” for organiz-
ing and accessing the huge accumulation of intellectual resources in our societies. Topica
uses documents to contextually and/or spatially select and arrange mutually related intel-
lectual resources. Each Topica document stores relations among some other Topica docu-
ments and/or meme media objects. Relations in a Topica document are called “Topica ta-
bles,” and may be defined by tables, queries that may access local or remote databases, or
relations defined in other Topica documents. A Topica document has some areas on itself
through which users can store and retrieve other Topica documents, meme media objects,
or character strings. We call these areas on a Topica document “topoi.” Each topos is basi-
cally associated with an attribute of the Topica tables stored in the Topica document. Each
attribute within a Topica table may take as its value a character string, a URL identifying a
Topica document, or a meme media object stored in a local or remote file. The Topica
framework provides a unified approach for organizing and accessing local and/or remote
files, databases, conventional Web documents, and Topica documents over the Internet. It
uses documents to contextually and/or spatially select and arrange mutually related intel-
lectual resources distributed over the Internet.

Since Topica is a natural extension of the current Web, and exploits XML, an applica-
tion of Semantic Web technologies to Topica will provide Topica with ontological seman-
tic relationships among Topica documents. The relationships stored in Topica documents
are emergent, and collaboratively organized through individuals’ independent activities,
whereas the relationships described by Semantic Web technologies are based on the ontol-
ogy among Web objects, and mainly defined by organizations or communities. These two

19.6 SUMMARY 471

tan-19.qxd 5/2/2003 9:22 AM Page 471

types of relationships among Topica documents are complementary and enrich the seman-
tics of Topica documents and their web.

REFERENCES

1. Y. Arens and C. Knoblock. SIMS: Retrieving and integrating information from multiple
sources. SIGMOD Records, 22(2): 562–563, June 1993.

2. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query pro-
cessing in global information systems based on interoperation across pre-existing ontologies.
Distributed and Parallel Databases, 8(2): 223–271, 2000.

3. R. Himmeroeder, P. Kandzia, B. Ludaescher, W. May, and G. Lausen. Search, analysis, and inte-
gration of Web documents: A case study with FLORID. In Proceedings of the International
Workshop on Deductive Databases and Logic Programming (DDLP), pp. 47–57, UK, 1998.

4. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based access to dis-
tributed and semi-structured information. In DS-8: Semantic Issues in Multimedia Systems.
Kluwer-Academic, Norwell, MA, 1999.

5. S. Bergamaschi, S. Carstano, and M. Vincini. Semantic integration of semistructured and struc-
tured data sources. SIGMOD Record, 28(1): 54–59, 1999.

6. S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink). Version 1.0.
http://www.w3.org/TR/xlink/, June, 2001.

7. S. DeRose, E. Maler, and R. D. J. (eds.). XML Pointer Language (XPointer). Version 1.0.
http://www.w3.org/TR/xptr/, Sept. 2001.

8. F. A. Yates. The Art of Memory. University of Chicago Press, Chicago, 1974.

9. D. Lyndon and C. W. Moore. Chambers for a Memory Palace. MIT Press, Cambridge, MA,
1996.

10. J. Wong and P. Storkerson. Hypertext and the art of memory. Visible Language, 33(1): 126–157,
1999.

11. C. Marshall and F. M. Shipman III. Spatial hypertext: Designing for change. CACM, 38(8):
88–97, 1995.

12. F. M. Shipman III, H. Hsich, P. Maloor, and J. M. Moore. The visual knowledge builder: A sec-
ond generation spatial hypertext. In The 12th ACM Conference on Hypertext and Hypermedia,
pp. 113–122, 2001.

13. T. W. Marlone. How do people organize their desks? Implications for the design of office infor-
mation systems. ACM Trans. Office Information Systems, 1(1): 99–112, 1983.

14. R. Mander, G. Salomon, and Y. Y. Wong. A “Pile” metaphor for supporting organization of in-
formation. In Proceedings of ACM CHI’72, Monterey, pp. 627–634, 1992.

15. C. C. Marshall, F. Shipman, and J. H. Coombs. VIKI: Spatial Hypertext Supporting Emergent
Structure. In Proceedings of the ACM European Conference on Hypermedia Technology (ECHT
‘94), Edinburgh, pp. 13–23, 1994.

16. M. Bernstein. Web Squirrel. Eastgate Systems, Watertown, MA, 1996.

17. S. B. Cousins, A. Paepcke, T. Winograd, E. A. Bier, and K. Pier. The digital library integrated
task environment (DLITE). In Proceedings of ACM Digital Libraries ‘97, pp. 142–151, 1997.

18. S. K. Card, G. G. Robertson, and W. York. The WebBook and the Web Forager: An information
workspace for the World-Wide Web. In Proceedings of ACM SIGCHI ‘96, Vancouver, pp.
111–17, 1996.

19. G. G. Robertson, M. Czerwinski, K. Larson, D. Robbins, D. Thiel, and M. van Dantzich. Data
mountain: Using spatial memory for document management. In Proceedings of ACM UIST ‘98,
San Francisco, pp. 153–162, 1998.

472 ORGANIZATION AND ACCESS OF MEME MEDIA OBJECTS

tan-19.qxd 5/2/2003 9:22 AM Page 472

20. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):
34–43, 2001.

21. D. Fennel. Ontologies. Silver Bullet for Knowledge Management and Electronic Commerce.
Springer-Verlag, Berlin, 2001.

22. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Specifica-
tion. W3C Recommendation, 1999.

23. D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema Specification 1.0.
W3C Candidate Recvommendation, 2000.

24. G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D. Galbraith, R. V.
Guha, K. MacLeod, E. Miller, A. Swartz, and E. van der Vlist. Rich Site Summary Specification
Protocol (RSS 1.0). August 2000.

25. The UDDI Community. Universal Description, Discovery, and Integration (uddi v2.0).
http://www.uddi.org/, October 2001.

26. The ebXML Community. Enabling a Global Electronic Market (ebxml v. 1.4). http://www.
ebxml.org/, February 2001.

27. F. van Harmelen, P. Patel-Schneider, and I. Horrocks. Reference Description of the DAML+OIL
Ontology Markup Language. http://www.daml.org/2001/03/reference. html, March 2001.

28. R. Fikes. DAML+OIL Query Language Proposal. August 2001. http://www.daml.org/
listarchive/joint-committee/0572.html

29. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A declar-
ative query language for RDF*. In The 11th International World Wide Web Conference
(WWW2002), Hawaii, pp. 592–603, 2002.

30. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. W3C
Recommendation, February 1998. http://www.w3.org/TR/REC-xml/.

31. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures.
W3C Candidate Recommendation, October 2000. http://www.w3.org/TR/xmlschema-1/.

32. M. Maloney and A. Malhotra. XML Schema Part 2: Datatypes. W3C Candidate Recommenda-
tion, October 2000. http://www.w3.org/TR/xmlschema-2/.

33. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1): 68–88, 1997.

34. M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. System demonstration—
Strudel: A Web-site management system. In Proceedings of ACM SIGMOD Conference on
Management of Data, Tucson, AZ, May 1997. Exhibition Program.

35. A. Deutsch, M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for XML.
In Proceedings of the 8th International World Wide Web Conference, Toronto, Canada, 1999.

36. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a graphical
language for querying and restructuring XML documents. In Proceedings of International
World Wide Web Conference, Toronto, Canada, 1999.

37. D. Florescu D. Chamberlin, and J. Robie. Quilt: An XML query language for heterogeneous
data sources. In WebDB’2000, pp. 53–62, Dallas, May 2000.

38. D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery: A Query Lan-
guage for XML. Working draft. World Wide Web Consortium, June 2001. http://www.w3.org/
TR/xquery/.

39. M. Biezunski, M. Bryan, and S. Newcomb. ISO/IEC FCD 13250:1999—Topic Maps. http://
www.ornl.gov/sgml/sc34/document/0058.htm, April, 1999.

REFERENCES 473

tan-19.qxd 5/2/2003 9:22 AM Page 473

CHAPTER 20

INTELLIGENTPAD CONSORTIUM
AND AVAILABLE SOFTWARE

The main goal of our project is to share, with people all over the world, our concept of
meme media, meme pools, and meme markets. We have developed IntelligentPad (IP), In-
telligentBox, and Piazza to allow people to experience meme media and meme pools in
externalizing, editing, and managing their intellectual resources, and, furthermore, in dis-
tributing, reediting, and redistributing them among people all over the world. We estab-
lished the IntelligentPad Consortium in 1993 in order to provide a forum for the further
promotion, research, and development of IntelligentPad. We have developed several ver-
sions of IntelligentPad systems using different implementation languages including
Smalltalk, C++, and Java. This chapter will give you information about the consortium
and the available software systems.

20.1 INTELLIGENTPAD CONSORTIUM

The IntelligentPad Consortium (IPC) is an international consortium that was started in
Japan in July of 1993. It was established in order to provide a forum for the further pro-
motion, research, and development of IntelligentPad and its related technologies. The IP
Consortium is a nonprofit, privately funded organization with over 50 members including
companies, institutes, and prominent individuals from Japan and worldwide. The IP Con-
sortium is vendor neutral, open to all, and welcomes individuals and organizations from
all over the world to join in its efforts to further develop and promote the IP architecture
and software component integration to bring us closer to a meme media society.

The IntelligentPad Consortium is open to all individuals and organizations that would
like to join. To join the IP Consortium, just visit IPC’s website at http://www.pads.or.jp/eng-
lish/ for a membership application. With a wide range of membership schemes, anyone
from the individual who would like to work with personal-use pad development to the large

474

tan-20.qxd 5/16/2003 8:39 AM Page 474

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

transnational corporation that would like to develop a distributed enterprise-wide, pad-
based system can join the IP Consortium.

Different from other Japanese initiatives of the past, for example, SIGMA, TRON, and
The 5th Generation Computer Project, the IP Consortium is a nonprofit association that is
entirely privately funded (i.e., no government funding) with members from industry and
academia. National government bodies like the Japan Ministry of Economy, Trade and In-
dustry (METI) are not members, and the IP Consortium recognizes the merits of remain-
ing an independent, private, and global consortium. The history of the IP Consortium has
been a truly “bottom-up” development. The concept was developed in the research circles
of academia and picked up momentum with interest from industry. The IP Consortium is
also primarily focused on software technology, although the impacts of IP are socially far-
reaching. The Japanese members of the IP Consortium are represented by the actual key
individuals involved in the day-to-day development of object-oriented, middleware, and
open systems.

20.2 AVAILABLE SOFTWARE

We have developed several versions of IntelligentPad systems. Our laboratory at
Hokkaido University developed the Smalltalk-80 version, the SmalltalkAgent version,
and the X-widget version. The X-widget version provided a systematic method to de-
velop new pads using existing X-widgets as their display objects. All these systems were
mainly focused on the basic architectural research on new systems, new generic utilities,
and new application frameworks. Among them, the Smalltalk-80 version is the most
complicated system, with more than 600 different primitive pads. They were, however,
not intended for public use. All the technologies developed in these systems have been
immediately transferred to the IP Consortium and its members. The IPC developed the
evaluation version using Interviews in 1994, which was downloadable from IPC’s Web
site. This version was used to encourage open discussions on kernel system technolo-
gies. In 1993, two of the IP Consortium members, Fujitsu and Hitachi Software devel-
oped commercial versions running on the Windows PC and Macintosh, respectively.
Both of them are programmed in C++, and are cross-platform compatible with each oth-
er. Then, in 1999, Hitachi Software released a new version for the Windows PC. Fuji
Xerox brushed up our lab’s Smalltalk-80 version to develop a new Smalltalk version. In
1999, Fuji Xerox also developed a Java version of IntelligentPad. A research group in
Fujitsu has also developed a Java Beans version, in which pads can be defined by com-
bining Java Beans. In 2000, a newly established venture company, K-Plex Inc., in San
Jose, developed a new version of the IntelligentPad system called Plexware. This version
uses XML both as the save format of pads and for message exchange with servers.
Plexware uses SOAP to communicate with Web services. Pads in Plexware run on an
Internet Explorer browser. Plexware has wrapped Internet Explorer and provides its full
function as a standard component pad. You can visit IPC’s website at http://
www.pads.or.jp/english/ to download the C++ versions and the Java version free for
nonprofit use. We will also include Plexware in this list.

IntelligentBox now has two versions developed by our university laboratory, one for
Unix workstations and the other for Windows PCs. Different from university versions of
IntelligentPad, these versions were intended to be distributed free for nonprofit use from
the initial stage of their development. They are written in C++ using Open GL, and easily

20.2 AVAILABLE SOFTWARE 475

tan-20.qxd 5/16/2003 8:39 AM Page 475

transportable to any machines running C++ and Open GL. The system can be downloaded
from our Web site at http://ca.meme.hokudai.ac.jp/.

20.3 CONCLUDING REMARKS

Our current research activities are focused on application frameworks, mathematical
treatment of patterns and their composition/decomposition, management and retrieval of
pads and boxes, superdistribution of pads and boxes, a virtual laboratory or interactive
scientific visualization environment based on IntelligentBox technologies, a new type of
information browser called Topica for the organization and access of intellectual assets,
and meme pool/meme market infrastructures.

Meme media technologies are essentially wrapper technologies to wrap various appli-
cations and/or data with a standard media wrapper having connectors for interoperation.
They can wrap existing legacy applications and data to work as meme media objects. Al-
though the required tools for the reediting and redistribution of meme media objects over
the Internet should have been also developed as pads, we had no legacy wrapping tools for
making such pads before the development of Web technologies. When we established IPC
in 1993, most members were interested in the application to software development, and
did not focus on the reediting and redistribution of meme media objects by people over
the Internet. Thanks to the development of Web technologies, we developed the required
tools for the reediting and redistribution of meme objects over the Internet simply by
wrapping these Web technologies. Such wrapping has enabled nonprogrammers to easily
convert legacy applications, data, and/or services that are available through Web pages to
meme media objects, to reedit them to compose new applications or composite services
combined with complex data, and redistribute these composite media objects by attaching
them to e-mails or by publishing them as new Web pages. Developers may easily add new
functionalities to legacy programs when they wrap them with standard wrappers. With the
current rapid development of Web technologies, meme media technologies are now in-
creasing their potentialities, especially to enable people to reedit and coordinate Web con-
tent for new purposes, and to redistribute newly composed content through the Web.

Meme media technologies, when applied to Web content, open a new vista in the circu-
lation and reuse of scientific knowledge and cultural heritage. In bioinformatics for exam-
ple, there are already thousands of different database and analysis services on the Web.
However, they are serviced by independent groups, and are difficult to interoperate with
each other. Except for a few well-known typical combinations that have already become
routine, there are no a priori defined ways of coordinating some of them to discover new
knowledge. Such a combination itself is a target of research studies. Researchers want to
combine Web content, including applications, data, and services, using a straightforward
approach. Meme media technologies will allow them to do this. In addition, people can
exchange such composite content as components embedded in documents, annotate any
portions of such a document, extract any portions, combine them to define a new compos-
ite object, embed it in another document, and publish such a document again. Such media
will be our next-generation knowledge media.

476 INTELLIGENTPAD CONSORTIUM AND AVAILABLE SOFTWARE

tan-20.qxd 5/16/2003 8:39 AM Page 476

Engelbart, Doug, 36, 45

Ferber, Jacques, 348
Fish, Robert, 42

Gale, Stephen, 41
Gamma, Erich, 363
Gelernder, David Hillel, 124
Gojobori, Takashi, 435
Greif, Irene, 40-42
Gutenberg, Johann, 32

Helm, Richard, 363
Henderson, Austin, 46
Hewitt, Carl, 347
Holt, Anatol, 43

Imai, Ken-ichi, 403

Johnson, Ralph, 363

Karbe, Bernhard H., 43
Kato, Kiyoshi, 253, 262
Kay, Alan, 17, 37, 45
Knister, Michael, 42
Kreifelts, Thomas, 41

Mackinlay, Jock D., 420

AUTHOR INDEX

477

Ahlberg, Christopher, 438
Alexander, Christopher, 19, 84, 363
Aristotle, 459, 469
Atkinson, Bill, 39

Beck, Kent, 363
Berners-Lee, Tim, 470
Bowers, John, 41
Brooks, Rodney A., 348
Brown, Peter, 38
Bruno, Giordano, 468
Bush, Vannevar, 36
Bushmann, Frank, 364

Card, Stuart K., 420
Cashman, Paul, 40
Chiba, Masaki, 253
Churcher, John, 41
Cicero, Marcus Tullius, 468
Coad, Peter, 364
Connah, David, 348
Coplien, James, 363
Cox, Brad, 297
Cunningham, Ward, 363

Danielson, Thore, 41
Dawkins, Richard, xviii, 13, 15
de Cindio, Fiorella, 41

tan-ai.qxd 5/16/2003 9:03 AM Page 477

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

Maes, Pattie, 348
Malone, Thomas, 41
Matsuoka, Seigo, 262, 386, 403
McLuhan, Marshall, 15, 35
Meunier, Regine, 364
Minsky, Marvin, 131
Mori, Ryoichi, 32-33, 291, 297

Negroponte, Nicholas, 38
Nelson, Ted, 26, 36, 44
Nitoguri, Shin, 52, 391
Noguchi, Takafumi, 51, 366, 392

Papert, Seymour, 51
Pree, Wolfgang, 364

Rodden, Tom, 40
Rohnert, Hans, 364

Sagan, Carl, 11
Schimidt Douglas, 363
Scully, John, 347
Shepherd, Allen, 41

478 AUTHOR INDEX

Shneiderman, Ben, 420, 438
Simonides of Ceos, 468
Sommerlad, Peter, 364
Stal, Michael, 364
Stefik, Mark, 13, 15, 27, 41-42
Sunaga, Takeshi, 53, 401, 405
Sutherland, Ivan, 45

Thomas Aquinas, 468-469
Tufte, Edward, 53

van Dam, Andries, 37
Vlissides, John, 363

Waters, Nigel, 52
Wilson, Paul, 40
Winograd, Terry, 41
Woetzel, Gerd, 41
Wurman, Richard, 77

Yanagisawa, Yoshiaki, 52
Yates, Frances A., 469

tan-ai.qxd 5/16/2003 9:03 AM Page 478

Annihilator pad, 326–328
Annotation, 258–260, 341
AnnotationAnchorPad, 262
AnnotationURLAnchorPad, 260
API library(–ies), 244, 262, 358
Application

linkage, 24, 107–108, 114, 198
model, 368
package, 365
server, 119–120

Application framework, 325, 362
multimedia, 191
sample compositions as, 365

A Presentation Tool (APT), 438
Arakne Environment, 258
Archie, 44
Architectural Patterns, 363–364, 366
Architecture–design step, 359
Architecture Machine Group, 38
Archon, 347
Arrangement box, 428, 432
Articulated

content objects, 195–196, 219, 221
objects, 195, 198–220, 224

Articulation of objects, 195, 219
Artificial intelligence, 15, 347
Artificial memory, 468
Arts of memory, 468–469

SUBJECT INDEX

479

Access dependency, 372, 374, 378
Account

module, 297–298, 300–301, 452
pad, 301

Action Diagram, 366, 370
Active Badge, 39
ActiveX, 112, 114, 120, 129, 185, 285
ActiveX control, 54, 108, 120–121, 243, 257
Actor, 102
Actor model, 347
Acyclic uniplug composition, 117
Ad hoc workflow system, 341–342
Administrative workflow system, 342
Agent, 347

pad, 257, 352–354
Alarm clocks, 312, 333
AlarmClockPad, 312, 314, 316, 321–322
Alignment, 469
Alpha Channel, 186–187
Alto, 38, 45
Amigo, 41
Analyst, 39, 50
Anchor, 318, 465

node, 276
pad, 196–201, 216–227, 249, 320
table pad, 201–203

Andrew Toolkit, 47, 102
Animation composition, 419

bindsub.qxd 4/26/2004 12:37 PM Page 479

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

ASP (Active Server Pages), 55, 58, 121
Aspects, 98
Aspen project, 38
Association

list, 395, 398
search, 405

Attribute slot(s), 211–213
Attribute-value pairs, 213, 424
AUGMENT, 36, 45
Augmentation media, 12, 35–36

personal, 36, 38
group, 36, 40
organization, 36, 42
social, 36, 44

Authoring tool, 108
AutoDirectingBox, 411
Automatic DLL migration, 262
Autonomous agent, 349–350
Avatar, 418
AVS, 438, 445, 449

module, 450
module networks, 445–446

AVSGeomBox, 448
AVSModuleWrapperBox, 445–447, 449
AxisBoxes, 441

Behavioral OODB, 206, 208
Billing, 294
Bioinformatics, 7, 265
BlackHoleBox, 417
BlackHolePad, 166
Bootstrap Institute, 36
Bottom-up integration, 325, 327, 338
Boxes as attribute values, 426
BOZ, 438
Broker(s), 294–303
Browser(s), 243, 358
BrowseUp, 56, 258
Brushing-and-linkage, 438
B2B (business-to-business), 122
Business

reengineering, 340
transactions, 341

Business-logic layer, 120

CAD/CAM, 386, 401–402, 450
CAD database, 451
CAI, 178, 366, 392, 398
CALS (Continuous Acquisition and Life-cycle

Support), 343
CameraBox, 412, 417–418
Car-driving simulators, 417

480 SUBJECT INDEX

CASE (computer-aided software engineering),
54

CastingList, 170–174, 177
Catalog(ue) of

frameworks, 365
patterns and frameworks, 384
topoi, 469

CBSD (component-based software
development), 8

cDNA database, 435–436
Centralized composition, 135
CG animation, 412
CGI (Common Gateway Interface), 55, 58

command, 257
Changed message, 97
CHAOS, 41
Charge accounting, 266
Charging

policies, 298–299
strategies, 298

ChargingPad, 301–303
Child

box, 410
pad, 71, 137

Chimera, 56
Class(es), 93, 206

libraries, 262
migration, 44
refinement, 94

Class-hierarchy programming, 47
Class-library-manager site, 247
Class-refinement programming paradigm, 94
Cleavage

animation, 436
process, 444

Client objects, 123
Client-server model, 358
Client-side scripting, 55, 267, 344
Client-side Web programs, 56
ClipBox, 448
Clipping, 75, 186
Clock(s), 312
ClockPad, 312–313
CLR (Common Language Runtime), 123
CMIFed, 102
CNET, 470
Coarse-grain components, 357, 361
Coauthoring and argumentation systems, 42
Codex, 30
Coding-and-debugging step, 359
Coevolution, 36
Cognoter, 41

bindsub.qxd 4/26/2004 12:37 PM Page 480

Colab, 42
Cold link, 199
Collaboration tools, 40
Collaborative agent, 347
Collaborative Editing System (CES), 42
CollisionCheckBox, 412
Color detection agent pad, 350–351
ColorBox, 412
Colored token, 338
COM (Common Object Model), 120
Combinatorial pad(s), 147, 164
CommandBox, 412
Commands to Actor Pads, 170
ComMentor, 258
Commercial version(s), 475
Commodities, 457–458
Commodity-organizing spaces, 459
Communal mental models, 437
Communication-structure-oriented models, 43
Community, 262

education tool, 263
message board, 262

Component, 106–108, 293, 325, 331
debugger, 359–360
placeholder, 109, 115
software, 107, 129

Component-based
framework, 437
software development, 107

Component-integration, 106
environment, 108–109
services, 362

Componentware, 107, 129, 207, 293, 361, 421
Composition, 106, 134, 377

graph, 135
paradigm, 207
structure, 307, 370, 426

Composition-based programming, 47
Compound document, 26, 113, 199

architecture(s), 45, 113–114, 128–129, 136
extended, 114
model, 20, 113

Computer conferencing systems, 41
Computer-controlled

device, 82
hardware facilities, 257
plant system, 82
VCR, 182

Concurrent engineering, 43, 343–344, 359
Concurrent processing, 347
Concurrent IntelligentPad, 347–350
Conflict Resolution, 164

SUBJECT INDEX 481

Connection sheet, 72, 74, 137
Connection-structure diagram, 359
Constraints between Pads, 171
Construction

environment, 108
kit(s), 48, 354

ContainerBox, 441–443
Container objects, 195, 219–220
Content-based search, 232–234
Content objects, 195
Context(s), 363

of a component, 115
Context-based search, 232–234
Control

object, 414
points, 414
signal, 331–332

Controlled
object, 414
points, 414

Controller(s), 95, 100, 131, 409
copy method, 154
pad, 82
object, 415
over FieldPads, 162

Convention, 366
Conversion function, 332
ConversionFormulaPad, 332–333
Cookie, 58
Coordinate system, 410
Coordination systems, 43
Coordinator, 41
Copy protection, 292–293
Copyist, 32
Copyright, 8, 285
CORBA (Common Object Request Broker

Architecture), 119, 358
Cosmos, 41
Credit card, 297

scheme, 294–295, 300
Credit company(-ies), 294–295
CreepingBox, 411–414
Cross-platform

compatibility, 344
compatible systems, 354
integration, 325
migration, 262
reusability, 85, 244
transportability of pads, 70

CSCW (computer-supported cooperative
work), 40

CSS1 (Cascading Style Sheets Level 1), 57

bindsub.qxd 4/26/2004 12:37 PM Page 481

CSS2 (Cascading Style Sheets Level 2), 57
CSV (comma-separated value), 276, 281–282
Cultural evolution, xviii, 12
Culture, 12
Customization technologies, 361
Cyclic connection, 116

DailyAlarmClockPad, 314
Damage-area, 103
DAML-OIL, 470
Data

analysts, 421
converter pad, 82
integration, 343
layer, 120
slot, 131, 233
visualizer, 320

Database(s), 183, 209, 215–218, 224–226,
320–322, 331, 335–336, 427, 441

form interface to, 373
IntelligentPad and, 205
management system, 82, 233
materialization framework, 450
Oracle, 84
proxy of, 422
proxy pads, 208–209, 211, 342–343
reification, 437
relational, see Relational database(s)
server, 120, 250, 253
service, 253
system(s), 401

Data-based science, 439
DataBufferPad, 281
Data-communication linkage, 24
DataExplorer, 438
Data-flow

program(s), 333, 438
programming, 338

DataMountain, 469
DBAnchorGeneratorPad, 226
DBAnchorPad, 224–226
DB-based simulation, 437
DBPL (database programming language),

206
databases, 206, 208

DBProxyBox, 422–428
DB proxy pad, 235
DBProxyPad, 208–215, 225–226, 322, 364
DBViewBox, 425
DBViewPad, 214
DCOM (Distributed Component Object

Model), 121

482 SUBJECT INDEX

DDBJ’s Blast search, 284
DDD (Data Dictionary and Directory),

440–441
Dead copy, 265
Debuggers, 357
DEByE, 267
Decomposition, 377

diagram, 369
Deepest-level

object migration, 244
of object migration, 86
pad migration, 354

Default slot(s), 275–276
Delivery-control systems, 335
Dependency, 72, 375
Design

applications, 53
pattern(s), 363–366

Desktop
publishing, xvii, 45, 113
video conferencing, 40

Destination anchor, 199
Detailed-design step, 359
Detector(s), 331–332, 334, 337
Development

environment(s), 293–294
toolkit, 408

DEVise, 438
Dexter hypertext reference model, 56
DHTML (dynamic HTML), 56
DictionaryBox, 411
DictionaryPad, 211
Digital Dashboard, 122
Direct editing of HTML Views, 272
Direct manipulation, 409, 414, 416
Discovery process, 124
Displacement box, 428
Display object, 20, 70, 95, 131, 268
Display PostScript, 45
Dissolution, 187
DistEdit, 42
Distributed

AI system, 347
component integration, 119
composition, 135
database, 344
objects, 119, 358
virtual reality, 419

Distributed-object technologies, 124, 358
Distribution market of pads, 295–296
Distribution of components, 387
DistributionChartPad, 320–322

bindsub.qxd 4/26/2004 12:37 PM Page 482

Distributor(s),
of objects (in electronic commerce), 291
form-, 331–334
pad-, 337

Division
nodes, 377–380
operator, 377

DIY (do it yourself) software, 53, 86
D-Lite, 469
DLLs (dynamic link libraries), 262
DLS, 258
DNA sequence, 284
Document imaging system, 341
Document mode, 465
Docuverse, 26
DOM (Document Object Model), 57

tree(s), 269–272, 279
Domino, 41
Double-buffering, 103
Downsizing, 128
Drag-and-drop operation, 325, 327
Drama(s), 168

metaphor, 167
within Dramas, 176–177

Drawing tool pads, 193
Dreamweaver, 57
DressingRoomPad(s), 168, 178, 180–181
Drill down, 438
DTD (document type definition), 57
DTPR (desktop presentation), 46
Dummy

pads, 360
slot(s), 374–375, 378

Dynabook, 38, 45
Dynamic

interoperability, 325, 327
linkage, 387, 389

E-banking, 282
ebXML, 470
Ecology of

information, 28
pads, 295

Edge-detection, 337
Edit code, 272, 274
Editor, 32
Education Tools, 51
Educational applications, 386, 389
EJB (Enterprise JaveBeans), 119

client application, 119
container, 119
server, 119–120

SUBJECT INDEX 483

Electromagnetic field, 448
Electromagnetism, 450
Electronic

bulletin boards, 41
commerce, 291–293, 348
goods, 291–293
libraries, 386, 403
money, 295
museums, 403

Electronic Circulation Folders (ECF), 43
E-mail system(s), 331, 335–336
Embedded

pad, 250, 257
service, 344

Emergent computing system, 347
EMISARI, 41
End-user computing, 81, 327
Enterprise Beans, 119
Entity Beans, 119
EnvironmentBox, 412
ET++, 102
Evaluation version, 475
Event(s), 93, 131–132, 154

dispatch, 156
dispatcher, 100, 118
interceptor, 156
notification, 175–176

EventApplicationPad, 158, 162–165
Event-action pair, 170
Event-dispatching, 99–100, 185

mechanism, 142, 416
Event-driven mechanism, 170
Event-grabbing mode, 99–100
EventFire-type mapping, 275, 278
EventInterceptorPad, 156
EventListener type, 275, 277–278
EventSensingPad, 158, 162–165
Event-sharing, 153

field, 156
mechanism, 75

Evolution of patterns and frameworks, 384
Exchange format, 146
Exchange format representation,

of pads, 200, 207–210, 215, 225–226,
250

of boxes, 426, 451, 458
Exchange of scientific and technological data

and tools, 386
ExpandBox, 409, 411
Expert system(s), 16

shell, 39
ExpressionPad, 188

bindsub.qxd 4/26/2004 12:37 PM Page 483

Extended
compound-document architecture, see

Compound document, extended
form-flow system, see Form flow system(s),

extended
Hasse diagram(s), see Hasse diagram(s),

extended
path expression, see Path expression,

extended
relational database(s), see Relational

database(s), extended
External

device, 398
objects, 181
server, 182

Externalization media, 14
Extracted Web content, 279
Extraction, 269

Facet types, 471
Fair division of profit, 299
False drop(s), 236, 239

resolution, 236
Fax machine(s), 331, 335–336
Federation, 123
FFDControlBox, 412, 414–416
FieldPad, 75, 82, 153–165, 416–417
FieldTDS format, 447
File

cabinet, 310
directory, 463

File Retrieval and Editing System (FRES), 37
FileCabinetPad, 310
FilterBox, 411
Filtering box(es), 411
Financial

applications, 386, 403
planner, 282, 284

Fine-grain components, 357, 361
Flattening

of pad, 264–266
operation, 285

Flea market, 262
Flight simulators, 417
FLORID, 458
Flow-based cooperation model, 342
Flow definition(s), 331, 337
Flow-definition pad, 339
FlowDefinitionPad, 333–335, 337, 352–353
Flow diagram, 439
Fluid dynamics, 450
FollowerPad, 348–349

484 SUBJECT INDEX

ForComment, 42
Forget-me-not system, 233
Form(s), 112, 205–210, 311–339

annihilators, 331, 336–337
construction kit, 50, 211
converter(s), 331, 334–339
generator(s), 331, 336–337
information, 207
interface, 84, 210–218, 250, 364–365, 373
node, 277
representation, 320

Form base(s), 205, 208–210, 233, 458
Form-based DB viewer, 213, 215–216, 218
Form flow, 331

model(s), 43, 50, 330–331, 335
Form flow system(s), 336–339

extended, 330
Form-layout editor, 122
Form-oriented models, 43
Form-processing service, 338
FormConverterPad, 332–334
Frame, 131

architecture, 129–130
Framework(s), 19, 28, 362–365, 391
Free-form deformations, 414
Fresco, 102
FRESS (File Retrieval and Editing System), 37
Ftp servers, 44
Functional-composition, 21
Functional linkage, 21–24, 112, 264, 266, 325,

358, 407

Gate(s), 331–332, 337
GemStone, 206, 235
GenBank Report, 284–285
Gene(s), 284–285, 436

annotation, 265
expression, 443–444

Generator pad, 326–328
Generator/consumer pad, 82–83
Generic component, 114
Genetic drift, 16
Genome informatics, 450
Genotype, 445
Geographic Information Systems, see GIS
Geographical information databases, 228, 230
Geometrical arrangement(s), 305, 315–316,

421, 428
Geometrical management, 181

pad, 82–83, 305
Geometrical message, 140
Geometrical-operation notification, 146

bindsub.qxd 4/26/2004 12:37 PM Page 484

Get method, 133
Gimme message, 72, 112, 131, 136, 410
Gimme method, 131, 139
GIOPs (General Inter-ORB Protocols), 119
GIS (Geographical Information System), 52,

228, 386
database, 228, 230
engine, 230

Global variable pad, 149
Glue systems, 47
Gopher, 44
Granularity of reusable component, 8
Graphical similarity, 469
GraphPad, 281–282
Grid, 305

alignment pad, 83
Group-augmentation media, 36, 40
Group Decision Support System (GDSS), 42
GUI (graphical user interface), 20, 22, 93, 129

representations, 95
toolkit(s), 102, 207

Guide, 38
Guided tour, 403

Hash function, 238
Hasse diagram(s), 374

extended, 374–382
HBI, 55
HideAndShowPad, 321–322
Hiding mode, 259
Hijiri, 263
HIPPARCOS (HIgh-Precision PARallax

COllecting Satellite) catalog database,
432

History of book, 30
Homology search, 265, 284
HorizontalUpdatePad, 349
Hot link, 199
Hot linking, 342–343
HotJava, 44
HTML, 44

browser, 37
document(s), 57, 269
node, 279
path, 279–280
view, 269–270, 275, 279–280, 285–288

HTML-node slot(s), 279–280
HTMLViewerPad, 192, 243, 250–257,

260–261, 267–268, 403, 451
HTMLviewPad, 269, 272–281, 285
HTTP server(s), 243, 278, 285
HyperBase, 55

SUBJECT INDEX 485

HyperCard, 39
HyperDisco, 56
Hyperlink(s), 405

as queries, 226
Hypermedia, 26, 469

catalog of pads, 80, 243
database, 224–228
framework, 199
research, 129, 267

Hypermovie, 52, 319
anchor pad, 201, 203
framework, 318

Hypertext, 26, 36
Hypertext Editing System, 37
HyperText Markup Language (HTML), 44

Idioms, 363–364
IDL (Interface Definition Language), 119
IEPad (Internet Explorer pad), 259–260, 268,

463
IIS (Internet Information Server), 58
IL (Intermediate Language), 123
Illustra, 206
Image database, 350
Imail, 41
Indexed attributes, 206
IndexedPadManager, 353
IndexPad, 314
Industrial plant, 185, 331, 336
Information

agent, 348
architecture(s), 28, 320, 420
design, 401, 405–406
kiosk, 386, 403
life cycle, 13
materialization framework, 439
media, 1
metering, 294, 297
productivity, 28
visualizer, 320

Information Lens, 41
Information visualization, 320, 429

current, 437
framework, 422, 427
of database records, 305
of the WWW, 436
with IntelligentBox, 419–421

Inline frame, 266
Input form, 280
Input-form format, 332
Input/output forms, 112
InputPortPad, 328, 338, 342, 352, 353

bindsub.qxd 4/26/2004 12:37 PM Page 485

Inquiry mechanism, 344
Inspector(s), 331–332, 337
Instance

bases, 205, 207, 234
objects, 207

Integrated
hypermedia system, 39
management, xvii
ontology, 458
personal environment, xvii

Integration, 343–344
of legacy software, 118

Integrity, 335
Intelligent agent, 347
IntelligentBox, 264, 408–409, 412, 427, 445,

474–475
Architecture, 409

IntelligentBoxPad, 451, 452
IntelligentPad, 23, 25, 45, 67, 129–131, 141,

152, 181, 187–188, 193, 196, 199, 208,
211, 219–220, 263, 327, 337, 347, 351,
358–359, 366, 387, 474

and databases, 205
application fields of, 344
application examples of, 386
architecture, 70, 99, 136, 200, 297, 325,

331–332
as a media toolkit system, 47
as a meme media system, 48
as a software development framework, 384
capabilities of, 403
commercially available versions of, 54, 147,

364
environment, 257, 264
Fujitsu’s version of, 185
patterns and frameworks in, 363
project, 243
system, 137, 146, 175, 244–245, 259, 294,

475
Smalltalk version of, 167
software engineering with, 357
technologies, 262, 266

IntelligentPad Consortium (IPC), see IPC
Interaction process, 405
Interactive simulation, 445
Interface, 107–108

agents, 347
builder, 102
designer(s), 357, 359–360

Intermedia, 37–38
Internet

agent, 348

486 SUBJECT INDEX

robots, 348
sofbots, 348

Internet Explorer, 37, 44, 122, 129, 243, 245,
250, 268–269, 285, 460, 475

Internet Scrapbook, 266
Interval-timer, 333
Interviews, 81, 102, 475
IOBufferBox, 411
IP Consortium, see IPC
IPC (IntelligentPad Consortium), 263, 297,

474–475
IRIS Inventor, 409
ITT, 43
IVEE, 438

Java, 44, 112, 129, 267, 348
3D, 408
applets, 44, 56, 121, 243, 257

Java Beans version (of IntelligentPad), 475
Java Studio, 112, 114
JavaBeans, 108, 112, 114, 119
JavaScript, 55–56, 286
JavaSpace, 124
JavaVM (Java virtual machine), 56
JBuilder, 112
JDBC (Java Database Connectivity), 120, 436,

440
Jini, 123
JNDI (Java Naming and Directory Interface),

120–121
Join process, 124
JoinBox, 442
JPEG, 46
JSP (Java Server Pages), 55, 58, 119
J2EE (Java2 Enterprise Edition), 55, 120

Kamui–Mintara, 103
KeyFrameAnimationBox, 412
KillerPad, 315
KMS, 38
Knowledge media, xviii, 1, 11–12, 14, 35, 45

architecture, 45
Knowledge Navigator, 347

Labanotation, 53
Layout

composition, 21
definition, 112
of forms, 112

Legacy software, 185, 327
migration, 185

bindsub.qxd 4/26/2004 12:37 PM Page 486

Legacy system, 118
Lego, 17, 19, 54, 84
Letter template, 462
Libraries, 32
License management, 266, 291
LightBox, 412, 418
Linda, 124
Linkage

areas, 395
point, 394

Linking service(s), 55, 267
Link(s), 199
ListBox, 411
Live

content, 264–265
copy, 265, 281–282, 285
portfolios, 284
Web content, 266

LoaderPad, 210
Local image features, 350
Loci, 468
Logical

event, 141
state, 134–136

Long term collaboration, 469
Lookup

process, 124
server, 123
services, 124

LOREL, 471

MacApp, 39, 102
Macintosh ToolBox, 102
Macromind Director, 263
MADE, 102
MAEstro multimedia authoring environment,

102
Maintainability, 116
Management of pads, 207
Manipulation of Event Information, 160
Map, 228, 230
Market(s), 32
Marketplace(s), 243, 261

architecture, 27
of pads, 242
network of, 244

MarketplaceBox, 452
Marshalling, 121
Matchmaking place, 386
Materialization of

human organ, 443
records, 430

SUBJECT INDEX 487

Mbuild, 102
Media

architectures, 28
component, 113–114
containment, 23
object(s), 22–23, 130, 220
toolkit, xix, 47–48, 81

Media-based architecture, 22
Media Lab, 38
MediaMosaic multimedia editing environment,

102
Mediaview, 102
Medical science, 450
Meeting room system(s), 40, 42
Meme(s), xviii, 13, 22, 27, 242
Meme Country Project, 262, 386
Meme market, xviii, 291, 474
Meme media, xix, 1, 11, 13, 26, 27, 33, 35, 54,

99, 107, 111, 117, 242, 263, 264, 265,
457, 474

architecture, 24, 70, 128, 243
components, 124
object(s), 7, 266, 269, 285
system, 45, 48

Meme pool, xviii, 13, 27, 242, 263–264, 291,
384, 451, 457, 474

architectures, 242
evolution, 242–243
system, 45

Meme recombination, 242
Memex, 36
Memory-enhancing techniques, 468
Memory palace, 468
Mental models, 439
Mercury, 42
MergerPad, 334
Mergers, 331, 334, 337
MERL, 408
MeshBox, 412
Message(s), 93, 206

overloading, 94
placeholder, 109, 115
systems, 41

Message-based (workflow), 341
workflow systems, 342

Message-sending protocol, 409–410
MET++, 102
Meta-information, 14
Meta-pad, 327–330, 338–339, 342, 352–353
Metaphor of a stage, 84
Method of Loci, 468
Methods of components, 108

bindsub.qxd 4/26/2004 12:37 PM Page 487

Microcosm, 55
Micropayment, 294
Microsoft .NET, 122
Microworlds, 51, 389
Middle-level

object migration, 244
of object migration, 86
pad migration, 354

Middleware, 357–358
Migration of (a) legacy system(s), 54, 118
MII, 347
Mime type, 247
MinmaxBox, 411
Miyako, The, 263, 403, 405
MMConf, 42
Mobile agent(s), 347–348, 351, 354
Mock-up development, 405
Model, 95, 131, 409

object, 20, 70, 75, 95, 268
pad, 82
slot, 131

Model-description pad, 166
Model-update phase, 147
Model-View-Controller, see MVC
Molecular biology, 450
MOMIS, 458
MonthlyAlarmClockPad, 314
Motif Toolkit, 47, 102
Motion-constraint boxes, 411–412
MotionControlPad, 322
MotionPad, 315–316, 318
MoverBox, 411, 419
Movie

databases, 220
pad, 201, 230–232

MPEG, 46
MR Toolkit, 408
Multicard, 55
Multimedia

application framework, 191
database(s), 219–220
development platform, 39
pads, 194
toolkit, 102

Multiple
forms, 210
templates, 429

Multiple-thread system, 347
Multiuser systems, 419
MVC (model-view-controller), 95, 100, 131,

407, 409
architecture, 88, 128–129, 131

488 SUBJECT INDEX

Natural selection of memes, 27
Navigation

link(s), 199
search, 232
through associative relationships, 405

NCSA Mosaic, 37, 44, 129
NEC2 solver, 449
Nested shared environments, 164
Netscape Navigator, 37, 44, 80, 129, 243, 245,

250, 269, 285
Network virus, 351
Networked multimedia systems, 52
NeWS, 39, 102
NewWave, 39, 47, 102, 114, 119
Next Interface-Builder, 23
NextStep Application Kit, 39, 102
NLS, 45
Node-mapping rule, 275
Node-slot mapping, 275
Node-specification mode, 279
Nonarticulated

content objects, 195–196, 219, 221
object(s), 200–201, 223

Nonlinear
reading, 26
writing, 26, 37

Nonmonolithic complex structure, 243
Nonprofessional end-users, 18
NoteCards, 38
Novice end-users, 18
Nuclear reaction

database, 253
experimental data, 262

OASIS, 347
Object(s), 20, 93, 206

composition, 108
container, 198
containment, 23, 47, 199
embedding, 23, 113
identifiers, 206
linking, 23, 113
migration, 85, 244
reusability, 107
wiring, 23, 47, 198–199

Object–attribute-value, 234
Object Linking and Embedding, 47
Object Management Facility (OMF), 102
Object orientation, xviii, 92
Object-oriented

database(s) (OODB), see OODB
describing, 93

bindsub.qxd 4/26/2004 12:37 PM Page 488

GUI, xviii, 22
languages, 93
modeling, 93, 330
paradigm, 113
programming, 47, 107, 207
software development methods, 357
SQL query, 208
system architecture, 93
visual components, 438

Object-processing services, 338
ObjectStore, 206
ObjectWindows, 39
OBSERVER, 458
ODMG model, 206
Off-the-screen

canvas, 103
display, 185

Office information processing, xvii
Office Web Discussion, 258
OHP, 56
OHS (Open Hypertext System), 264, 267
OIS (Office Information System), 39, 49
OLE (Object Linking and Embedding), 23, 47,

113–114, 120, 185
OLE control, 120
OMG (Object Management Group), 119
ONTOBROKER, 458
Ontologies, 470
OODB, 205–207, 219–220, 233, 235
Open architecture, 128
Open Directory Project (ODP), 470
Open GL, 475
Open hypermedia

links, 258
systems, 55

Open Hypermedia Working Group (OHSWG),
55, 267

Open integration, 70
OPEN LOOK, 102

(Intrinsics) Toolkit, 39, 47
Open system, 32, 412
OpenClosePad, 314
OpenDoc, 47, 54, 114, 129, 185
Operation points, 172–174
OperationBox, 412
Oracle Application Server, 120
ORBs (Object Request Brokers), 119
Orchestration (of Web services), 122, 344, 345
Organization and access, 457
Organization-augmentation media, 36, 42
OriginBox, 441
Orion, 206

SUBJECT INDEX 489

Ornament pad, 82, 83
OSF-Motif, 39
O2, 206
Output-form format, 332
OutputPortPad, 328, 333, 337–338, 342,

352–353
Over-the-counter service, 282
Overlaid windows, 102
OverlayBox, 442
Overloading, 94
Owner–tenant system, 261

Package,
business, 301
family, 366
providers, 296–297, 302–303
software, 297

Pad(s), 7, 25, 45, 67, 130, 152–153, 200, 220
annihilator, 327, 337–338
architecture, 70
as attribute values, 215
cabinet arrangement, 310
catalog, 242, 245
development, 366
galleries, 262
gate, 327, 329
generator(s), 327, 337–338
integration, 301
integrators, 296
migration, 244, 354
publication, 244
wrapper, 269

Pad base(s), 205, 208, 234
Pad converter(s), 327–328, 337–339, 352–354

pad(s), 82–83, 327, 342
PadDetectorPad, 334, 342
PadDistributorPad, 334
Pad flow

as workflow, 342
framework, 342
system(s), 337–339, 342, 344, 359, 361

PadGeneratorPad, 209–210
PadListPad, 210, 226
PadQueuePad, 334
Panning, 187
Parallel coordinates representation, 420
Parallelisation in the product-development

process, 343
Parent

box, 410
pad, 71, 137

Parent–child relationships, 409–410

bindsub.qxd 4/26/2004 12:37 PM Page 489

Paste operation(s), 71, 112, 136, 199, 325
PasteControlPad, 316
Path expression, 269, 272, 275, 285

extended, 270
Pattern(s), 19, 28, 84, 95, 357, 363–366, 374,

377, 384
and framework community, 384
catalogue, 365
description(s), 374–379
language, 84

Pay-off period, 343
Pay-per-copy, 32–33, 87, 292–294, 362
Pay-per-use, 32, 33, 87, 291–294, 297, 362
Payment transactions, 294
PDA (Personal Data Adapter), 388
Peel operation, 325
Persistent object, 21
Personal-augmentation media, 36
Phenotype, 445
Physical event, 141
Piazza(s), 260–262, 294, 474

server(s), 261–262
system, 263
Web, 261

PiazzaBrowserPad, 261–262
PiazzaPad, 261–262, 452
Picture index arrangement, 310
PidExtractorPad, 225–226
PIM (Personal Information Management), 386,

388
PlaceFillerPad, 391
PlaceHolderPad, 391
Plan–do–see loop, 68
Planning overhead, 359
Plant simulation, 185
PlexCenter Planning and Decision Support

Laboratory, 42
Plexware, 103, 122, 345, 475
Pluggability of components, 108
Pluggable

components, 109, 114
VC, 98

Plugs, 109
Polling, 278, 281
Population genetics, 16, 243
Portal access, 470
Portfolio, 282
Position event, 141
POSTGRES, see Postgress
Postgress, 206, 439
PrecedentPad, 348–349
Prepaid card, 295, 297–298

490 SUBJECT INDEX

scheme, 294, 300
Presentation layer, 120
Primary

key, 205, 214
slot, 138, 280, 332, 334

Procedure-oriented models, 43
ProcessBox, 412
Production-line control systems, 335
Production workflow system(s), 341–342
Professional end-users, 18
Programming-by-demonstration, 266
Properties, 93

of components, 108
inheritance, 94, 107

ProtoShapeBox, 443
Prototyping, 94

paradigm, 94
Provider(s), 291–300, 302–303
Proximity, 469
Proxy(-ies), 182–184, 335–336

box, 445–447
object(s), 294, 357
of a database, 184
pad(s), 77, 82, 181–183, 185, 225, 230, 320,

327, 338, 354, 398, 402
Publication

mechanism, 344
media, 253
of service ports, 338

Publication repository, 2, 242, 245, 253, 264,
291

of pads, 242
PublicationPad, 248
PubMed, 284–285
Pulse generators, 312
PulseGeneratorPad, 313, 318
Punctuated equilibrium, 17, 243
PushButtonBox, 411

Q-Box, 424–425
QBE (query-by-example), 214–215, 425–426,

466
Quantification

of contents, 84
of context, 84
search, 232–233

Query(-ies), 213–215, 226, 236, 282, 350, 422,
424–426, 465

anchor, 227
languages, 470
modification, 441
signature, 236

bindsub.qxd 4/26/2004 12:37 PM Page 490

QueryAnchorPad, 226–227
QueryExtractionBox, 443–444
Queue buffers, 334
QueuePad, 160
Quilt, 42, 471

RadiationalTreePad, 307
Radio pattern, 448
RangeBox, 411
Rapid

application development, 106
prototyping, 21

Rapport, 42
RDF (resource description framework),

469–470
schema, 470

RDF Site Summary, 470
Reactive

agents, 348
compound-document model, 113

Reactive Engine, 37, 45
Reader form(s), 335–337
Real-time-payment scheme, 294–295
RecordBox, 422–424, 426–429, 432
RecordFilterBox, 441, 443
RecordManager, 429
RecordPad, 84, 211–213, 215, 217–218, 320,

322, 332, 364
Redistribution, 2, 86, 285, 387
Redrawing, 102–103
Reediting, 2, 86, 387
Reengineering, 129
Reference base, 373–375
Reference frame(s), 219–223

object(s), 196, 198, 219–220
pad(s), 200, 220–221, 228

Reference service, 243
References to Actor Pads, 172
Refinement-based programming, 47
Refinement paradigm, 207
Regular expression, 270
Rehearsal, 167
Relational database(s), 205, 208

extended, 206, 208, 458
Relational join, 442
Relational model of databases, xvii, 205
Relations, 205
Remittance, 291, 294–295, 300
Remote-procedure call, (See RPC)
Remote reference, 325
REND 386, 408
Rendering, 269

SUBJECT INDEX 491

Request module, 297–298, 301, 452
Requirement(s), 359

analysis step, 359
analysts, 357, 359

Resource Description Framework, (See RDF)
Resource objects, 93
Retrieval code, 285
Reusable Object-Oriented Software, 363
Reuse of

code, 107
components, 108, 387
defining code, 107
frameworks, 387
pads, 379
patterns, 387
running object instances, 107
Web content, 3

Reverse engineering, 293
RFFDControlBox, 412
Rhetorical patterns, 469
Right-sized integration, 325
RMI (Remote Method Invocation), 120

stub, 123
RMI/IIOP (Internet Inter-Orb Protocol), 120
Role(s)

name(s), 170–172, 178
of media, 28–29

RoomBox, 412, 416–419
RotationBox, 88, 409, 411, 414, 416
Route on a map, 231
Routing of forms, 342
Royalty(-ies), 32

service(s), 37, 291
RPC (Remote Procedure Call), 121, 348
RQL, 470
RTCAL, 41
Runtime environment(s), 293–294

SAGE, 438
Sample

composite Pads, 364
compositions, 115

Sapporo HyperLab, 37
Sash, 123
Save format, 77, 146, 285
SaverLoaderBox, 426–427
SaverLoaderPad, 210, 215, 225, 227
SaverPad, 209–210
ScalingBox, 411
SceneSwapBox, 412
Scheduled

controllers, 101–102

bindsub.qxd 4/26/2004 12:37 PM Page 491

Scheduled (continued)
windows, 101

Schema mode, 465–466, 468
Scientific

publication, 50, 253
visualization, 445

SCM (Service Control Manager), 120–121
Scope

control, 421, 428
of visualization, 421

ScopeWindow, 428–429
Script(s), 170

program, 286
Scroll, 30
SDMS, 38
Search engine, 129
Secure payment, 348
Security, 352
Selector signal, 332
SelectorBox, 429, 442–443
Semantic Web, 469–471
Semiologies of graphic representation methods,

438
SequencerPad, 321
Sequential pad, 148
Servelets, 58, 119
Server-based (workflow), 341–342
Server proxy pads, 342
Server-side

programming, 284
scripting, 55, 267, 344
Web programs, 58

Service(s), 293–294, 342
broker, 124
by application programs, 342
by people, 342
provider (objects), 123–124
publication, 257
requester, 124

Session Beans, 119
Set

message, 72, 112, 131, 136, 410
method, 131

SfplayerBox, 412
SfvolumeBox, 412
SGML, 44, 57, 471
Shadow copy(ies), 119, 154, 185
Shallowest-level

object migration, 244
of object migration, 85
pad migration, 354

Shape deformation boxes, 412, 414

492 SUBJECT INDEX

Shape-mask pad, 75, 186
Shared Book, 42
Shared copy(-ies), 75, 147, 156, 158, 199, 335,

348–349, 410, 416
Shared field, 419
Shared work space models, 342
Shipping-control systems, 335
Signature(s), 236–239, 351

files, 236
SilTools, 408
SIMS, 458
Sketch Pad, 45
SliderMeterBox, 411
Slot(s), 7, 25, 111, 115, 131, 409, 460

access procedures, 410
list, 366
name, 275
reference, 170
type, 112

Slot connection, 71, 134, 136, 285–286, 410,
446, 449

framework, 112
mechanism, 409
structure, 235–236

Slot-update dependency, 373–374
Smalltalk, 38, 45, 81
Smalltalk-80 version of IntelligentPad, 475

new, 475
SmalltalkAgents, 81, 348

version, 475
Smart

compound documents, 343
folders, 343

Smart container(s), 343
models, 342

Snap-Together Visualization, 438
SOAP (Simple Object Access Protocol), 55,

121–122, 267, 284, 344–345, 475
Social-augmentation media, 36–37, 44
Social information infrastructure, 31
Software

agent, 347
component(s), 106, 297
development framework, 384
engineering, 357
productivity, 28

Software-concept step, 359
Solver, 449
Source anchor, 199
Spatial Data Management System, see SDMS
Spatial

hypertext(/hypermedia), 469

bindsub.qxd 4/26/2004 12:37 PM Page 492

reference frames, 196
relationships, 350

Spatiotemporal
arrangement, 305, 320–321
editing, 305, 315, 318
visualization, 322

Specialization approach, 98
Specification, 381
Spotfire, 438
Spreadsheet pad, 192
SQL query, 208, 213, 216, 221, 224, 424,

440–442, 444
parameterized, 213, 424

Squeak, 103
Stackware, 39
Stage pad, 218
StagePad, 84, 167–172, 174–181
Standardization of product, 343
Star, 45
Starfield displays, 438
State information of a pad, 207, 209
State of a pad, 134
Storage boxes, 411
StreamTDS format, 447
StringBox, 412
Structural OODB, 206, 208, 458
Strudel, 41
StruSQL, 471
Student modeling, 389
Style, 268

sheets, 57
Subclass, 94
Subview(s), 96–98
Sunshine-simulation, 229
Superclass, 94
Superdistribution, 32–33, 291, 297, 452

of pads, 297
SUPERSCAPE VRT, 408
Superusers, 19
Superview, 98
Supervisory component, 135
Surface current, 448
Synthetic media architecture, 69
Synthetic programming, 47, 94

paradigm, 94
System

analysis tool, 359
architects, 357, 359–360
clock, 312
debugger(s), 359–360
decomposition, 368–369
developers, 19

SUBJECT INDEX 493

documentation tool, 359
evaluators, 357, 359
integrator(s), 19, 294, 302, 359–360
programmers, 357, 359–360
requirements, 325
resource objects, 93
testing step, 359

SystemFunctionBox, 412

Table node, 276
TableBox, 440
TablePad, 281–282
TaggedBinary format, 447
Taligent framework, 102
Target object, 93
Task(s), 370–371

analysis, 368
model, 367

Tcl and Tk Toolkit, 102
TCP (Transmission Control Protocol), 119
TDS (Tagged Data Stream) format, 447
Telescript, 348
Telnet, 44
Template, 440, 468

composite box, 428, 441
mode, 465
pad, 320

TemplateManagerBox, 440, 441
Temporal control of geometrical arrangement,

316
Text

pad, 224
processing pads, 191

3D
application software, 408
computer-animation, 408
DB viewer, 424
GUI toolkit, 408–409
interface to a database, 424
meme pool, 452
shared workspace, 416
Widget, 409

3D meme media, 88, 407, 451
architecture, 408

Three-dimensional (3D) representation media,
407

Three-tier model, 358
Tilting, 187
Time-based arrangements, 305
Timer(s), 312
TimerPads, 312, 315
Tioga 2 (Tioga DataSplash), 439

bindsub.qxd 4/26/2004 12:37 PM Page 493

Tioga DataSplash, see Tioga 2
ToggleButtonBox, 88
ToggleSwitchBox, 411
Tool integration environment, 386
Toolkit(s), 47–48, 293, 420
ToolTip, 258
Top-level

view, 98
window(s), 100–101

Topic
maps, 471
space, 471

Topica, 459
document(s), 462–463, 465–466, 468–470
framework, 459, 465, 469, 471
table, 459–460, 465
viewer pad, 460

Topoi, (See Topos)
Topos, 459–460, 462–463, 465–466, 468–469
Trajectory, 413
TrajectoryBox, 411–413
TrajectoryMoverBox, 411, 413
TrajectoryPad, 230–231
Transaction-based systems, 335–337
Transaction workflow system(s), 341–342
Transclusiion, 37, 199

links, 37
Transformation(s), 188–189
TransformationPad(s), 188–189
TranslationBox, 412
Translucent mode, 259–260
Transparent mode, 259
Transposed file directory view, 463
Transpublishing, 266
Trash pad, 83
Travel route, 353
Tree, 306–307, 316

arrangement, 305–307
composition model, 117
pad, 83

TreePad, 306–307
Trigger(s), 331–333, 337
Trillium, 46
Tuple(s), 205

identifiers, 205
Turquoise, 266
Two-tier model, 358

Ubiquitous Computing Project, 233
UDDI (Universal Description, Discovery and

Integration), 121, 470
UML, 122

494 SUBJECT INDEX

Uniplug composition model, 111
Uniplug model, 111–112
UniSQL, 206, 253
Unmarshalling, 121
Unscheduled

controllers, 101
windows, 101–102

Update
message, 73, 97, 115, 136, 410
method, 133
propagation, 199, 373

Update dependency, 135, 373
architecture, 128–129

Update-request phase, 147–148
UpdatePad method, 139
UpwardRangeConverterPad, 231
URL (Universal Resource Locator), 44, 243,

246–250, 259–262, 270, 282, 285, 319,
427, 459

anchor pad (s), 248
conversion server, 260

URLAnchorPad, 243, 249–250
Use case, 367

model, 367–368
User

customizability, 387
interaction system, 331, 336

User interface, 359
model, 368

Utility functions, 152

VBScript (visual basic script), 55–56, 121
VectorBox, 411
VectorRangeBox, 411
VertexBox, 415
Video database, 350
View, 95, 131, 409

composition structures, 235–236, 238
copy(-ies), 154
definition, 214, 270
editing code, 285
integration, 113–114
linkage, 407–408
pad, 82
relation, 214, 425
slot, 131

View-copy method, 154
View update

phase, 147–148
problem, 214

Viewer pad(s), 196, 198, 219–220
VIKI, 469

bindsub.qxd 4/26/2004 12:37 PM Page 494

VirticalUpdatePad, 349
Virtual

attribute, 440
form(s), 335–338, 343, 402
resource, 141

Virtual materialization, 420–422, 427, 429, 437
framework, 422, 427
of database records, 437

Virtual reality toolkit, 408
Virtual scientific laboratory, 445

framework, 448
Virtual space, 320
Virtual Studio 97, 408
Visage, 438–439
Visual definition of slots, 279
Visual Knowledge Builder (VKB), 469
Visual programming, 21
Visual Tcl, 102
VisualAge, 112
Visualization

of records, 430
schemes, 420–421, 437, 439

VOX, 39
VRCreator, 408
VREAM, 408
VRML (Virtual Reality Modeling Language),

408, 452

WalkThrough, 408
Warehouse-control systems, 335
Warm link, 199
Waterfall (life cycle) model, 359
WbyE, 267
Web(, The), 35, 258, 263–264, 320

application(s), 264–265, 279–280, 284
browser, 129, 245, 250, 261, 267, 269, 288
content, 264, 269, 285
content as memes, 264
document(s), 123, 264
page, 281
page authoring, 386, 400
page authoring tool, 129
server(s), 119–120, 253, 257
service(s), 8, 55, 121, 267, 344–345, 470
technologies, 55, 119, 264–267, 344

Web-top computing, 44, 129
WebAnnotationPad, 259–260
WebForager, 469
WebLogic Server, 120
WebSphere, 120
WebSquirrel, 469
WEBTOUR, 258

SUBJECT INDEX 495

Webvise, 258
WeeklyAlarmClockPad, 314
W4F, 267
What-if

queries, 229
trial(s), 387, 402

WhiteHoleBox, 417
WhiteHolePad(s), 166, 417
Widget(s), 47

containment, 23
WIMP (window, icon, menu, and pointer) user

interface, 40
Wind-tunnel simulator, 450
Window(s), 101

manager, 101–102
systems, 99

Windows DNA (Distributed InterNet
Application), 121

Wire-frame 3D models, 443
Wiring

box, 410
pad(s), 199, 335, 337
window, 112

Wizardry system, 366
Workflow, 40, 339

management software, 43
model, 330
modeling, 325
systems, 340–341, 344

World-Wide-Web (WWW), see WWW, the
WorldToolkit, 408
Worldwide

marketplace architectures, 80
publishing reservoir, 37

Worldwide repository, 242–243, 451–452
of boxes, 451
of memes, 242–243

Wormholes, 166
Wrapped Web application, 280, 282
Wrapped Web-document, 285
Wrapper architecture, 25, 128–130, 452
Writer form(s), 335–337
WSDL (Web Service Description Language),

121
WWW (World-Wide Web), the, xviii, 2, 12, 26,

37, 44, 80, 87, 129, 243, 358
WYSIWYG, 45

X-widget version, 475
X-Window(s), 39, 102
Xanadu, xviii, 37, 199
Xanadu Operating Co, 37

bindsub.qxd 4/26/2004 12:37 PM Page 495

Xerox PARC, 37–38
XHTML (extensible HTML), 57, 268

definition, 463
document(s), 267, 460, 466
text, 459

Xlib and Xt Intrinsics-Based Toolkit, 39
Xlink, 460
XML (Extensible Markup Language), 56–57,

121–122, 267–268
content, 463

XML DTD, 470
XML-GL, 471
XML-QL, 465–466, 471
XML Schema, 470
XMLTree, 470

496 SUBJECT INDEX

XPath, 57
XPointer, 460
XQuery, 471
XSL (extensible style sheet language), 57, 268

styles, 463
XSLT (XSL transformations), 57
Xt, 47, 102
Xview Toolkit, 39

Yahoo Finance, 282
Yahoo Maps, 282

ZOG, 37–38
Zooming, 187

bindsub.qxd 4/26/2004 12:37 PM Page 496

497

ABOUT THE AUTHOR

Yuzuru Tanaka has been a professor of Computer Architecture in Electronics and Infor-
mation Engineering Division of Hokkaido University, Japan since 1990. He founded the
Meme Media Laboratory at the university in 1995. He also worked as a professor of Digi-
tal Library at the Graduate School of Informatics, Kyoto University between 1998 and
2000. He received his Masters degree in electronics and Ph.D. in computer science from
Kyoto University and University of Tokyo, respectively. Dr. Tanaka’s research areas in-
cluded database design theory, database machine architecture, and component-based me-
dia architecture. His current research focuses on meme media system architectures, Intel-
ligentPad and IntelligentBox, and their integration with Web technologies. IntelligentPad
has been attracting Japanese industries and government organizations. This led to the es-
tablishment of the IntelligentPad Consortium in 1993, and later in 1995, to an alliance
with CI Labs in United States. In 1994, Dr. Tanaka received the grand prize of annual
technological achievement awards from Nikkei BP.

babout.qxd 4/26/2004 12:44 PM Page 497

 Meme Media and Meme Market Architectures: Knowledge Media for Editing, Distributing, and
 Managing Intellectual Resources. Yuzuru Tanaka

Copyright 2003 Institute of Electrical and Electronics Engineers, Inc. ISBN: 0-471-45378-1

