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As the economy of incentives as a whole in terms of

organization is not usually stressed in economic theory

and is certainly not well understood, I shall attempt to

indicate the outlines of the theory.

Chester Barnard (1938)
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Foreword

The development of the theory of incentives has been a major advance in eco-
nomics in the last thirty years. The objective of this book is to provide easy access
to this theory for undergraduate and first-year graduate students in economics. Our
goal is not to be as complete as possible in covering and surveying the many
contributions that have flourished in the realm of incentive theory. Instead, our
contribution is methodological and intended to offer students some initial clues
for analyzing the issues raised by this theory. As much as possible we have favored
the simplest models to explain the core of the theory. The exposition has been
divided into three books for methodological clarity. This volume presents the basic
principal-agent theory with complete contracts. It allows a first exposition of the
transaction costs created by contracting under asymmetric information without
having to appeal to sophisticated game theory concepts.

The book allows for two levels of reading. Certain sections in some chapters
are marked with a star to the right of the section head. A first reading should
concentrate on the non-starred sections. These sections are accessible to readers
who have a simple knowledge of maximization with inequality constraints. Most
essential economic lessons can be understood from this first level of reading. Cov-
ering the starred sections will enable students to manipulate the concepts for better
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assimilation and will put them in contact with the advanced topics of the field.
Going through the text and checking the proofs should provide a good way for stu-
dents to appropriate the material. Throughout the book we have listed under the
heading the major references that are useful to pursue the study of incentive
theory.

We thank our students whose excitement for the topic has led to this enterprise
of trying to synthesize what we have learned in incentive theory. We are grateful
also to Cécile Aubert, Gary Biglaiser, Xavier Carpentier, Pierre Dubois, Yolande
Hiriart, Wu Kai, Fahad Khalil, Claudio Mezzetti, Jérôme Pouyet, and Stéphane
Straub, who have offered comments on the first draft and to Marie-Pierre Boé who
cheerfully and repeatedly revised our chapters.
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Introduction

It is surprising to find that Schumpeter (1954) does not mention the word
“incentives” in his monumental history of economic thought. Today, for many
economists, economics is to a large extent a matter of incentives: incentives to
work hard, to produce good quality products, to study, to invest, to save, etc.
How to design institutions that provide good incentives for economic agents has
become a central question of economics.

Maybe Schumpeter’s omission arose because, when he was writing, eco-
nomics was mostly concerned with understanding the theory of value in large
economies. For that purpose, neoclassical economics in particular postulates ratio-
nal individual behavior in the market. In a perfectly competitive market, this
assumption translates into profit maximization for firms’ owners, which implies cost
minimization. In other words, the pressure of competitive markets solves the prob-
lem of incentives for cost minimization. Similarly, consumers faced with exogenous
prices have the proper incentives for maximizing their utility levels. The major
project of understanding how prices are formed in competitive markets can pro-
ceed without worrying about incentives.
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However, by treating the firm as a black box the theory remains silent on how
the owners of firms succeed in aligning the objectives of its various members, such
as workers, supervisors, and managers, with profit maximization. When economists
began to look more carefully at the firm, either in agricultural or managerial eco-
nomics, incentives became the central focus of their analysis. Indeed, for various
reasons, the owner of the firm must delegate several tasks to the members of the
firm. This necessity raises the problem of managing information flows within the
firm. The problem of managing information flows was the first research topic
for economists, once they mastered behavior under uncertainty, thanks to Von
Neumann and Morgenstern (1944). This line of research culminated in the the-
ory of teams (Marschak and Radner [1972]), which recognized the decentralized
nature of information but postulated identical objective functions for the members
of the firm considered as a “team.” How to coordinate actions among the members
of the team by the proper management of information was the central focus of
this research. Incentive questions were still outside the scope of the analysis.

However, as soon as one acknowledges that the members of a firm may have
different objectives, delegation becomes more problematic as recognized early on
by Marschak (1955) and also by Arrow when he observes that

by definition the agent has been selected for his specialized knowl-
edge and the principal can never hope to completely check the agent’s
performance (1963a).

Delegation of a task to an agent who has different objectives than the prin-
cipal who delegates this task is problematic when information about the agent is
imperfect. This problem is the essence of incentive questions. If the agent had a
different objective function but no private information, the principal could propose
a contract that perfectly controls the agent and induces the latter’s actions to be
what he would like to do himself in a world without delegation. Again, incentive
issues would disappear.

Conflicting objectives and decentralized information are thus the two basic
ingredients of incentive theory. The essential paradigm for the analysis of market
behavior by economists is one where economic agents pursue, at least to some
extent, their private interests. What is proposed by incentive theory is that this
major assumption be maintained in the analysis of organizations, small markets,
and any other kind of collective decision-making. This paradigm has its own lim-
its. Social behavior, particularly in small groups, is more complex, and norms of
behavior that are culturally inculcated or developed over time play a large role
in shaping societies. However, it would be foolish not to recognize the role of
private incentives in motivating behavior in addition to these cultural phenomena.
The purpose of this book is to synthesize what we have learned from the incen-
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tives paradigm.1 We hope that the step-by-step approach taken here, as well as our
attempt to present many different results in a unified framework, will help readers
not only to know more about incentive theory, but also to apply this indispensable
tool when thinking about society.

The starting point of incentive theory corresponds to the problem of delegat-
ing a task to an agent with private information. This private information can be of
two types: either the agent can take an action unobserved by the principal, the case
of moral hazard or hidden action; or the agent has some private knowledge about
his cost or valuation that is ignored by the principal, the case of adverse selection
or hidden knowledge. Incentive theory considers when this private information is
a problem for the principal, and what is the optimal way for the principal to cope
with it. Another type of information problem that has been raised in the litera-
ture is the case of nonverifiability, which occurs when the principal and the agent
share ex post the same information but no third party and, in particular, no court of
law can observe this information. One can study to what extent the nonverifiability
of information is also problematic for contractual design.

We will discover that, in general, these informational problems prevent soci-
ety from achieving the first-best allocation of resources that could be possible in a
world where all information would be common knowledge. The additional costs
that must be incurred because of the strategic behavior of privately informed eco-
nomic agents can be viewed as one category of the transaction costs emphasized
by Williamson (1975). They do not exhaust all possible transaction costs, but
economists have been rather successful during the last thirty years in modelling
and analyzing these types of costs and providing a good understanding of the lim-
its set by these on the allocation of resources. This work shows that the design
of proper institutions for successful economic activity is more complex than one
could have thought a priori. This line of research also provides a whole set of
insights on how to begin to take into account agents’ responses to the incentives
provided by institutions.

As the next chapter will illustrate, a brief look at the history of economic
thought shows that incentive theory was pervasive in many areas of economics,
even though it was not central to economic thinking. Before describing how we
will present this theory, it may be worth mentioning how the major achievement
of economics, namely the general equilibrium theory (GE), met incentives.

General equilibrium theory was capable of producing powerful generaliza-
tions and able to deal with uncertainty, time, externalities, and extending the

1How private incentives interact with cultural norms of behavior might be the next important
step of research needed to offer sensible advice on the design of institutions. Nevertheless, it is our
conviction that for such a goal the mastering of incentive theory is a must.
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validity of the invisible hand as long as the appropriate competitive markets could
be set up.2 However, at the beginning of the seventies, works by Akerlof (1970),
Spence (1974), and Rothschild and Stiglitz (1976) showed in various ways that
asymmetric information was posing a much greater challenge and could not be
satisfactorily imbedded in a proper generalization of the Arrow-Debreu theory. The
problems encountered were so serious that a whole generation of general equilib-
rium theorists momentarily gave up the grandiose framework of GE to reconsider
the problem of exchange under asymmetric information in its simplest form, i.e.,
between two traders. In a sense, the theorists went back to basics. They joined
another group trained in game theory and in the theory of organizations, and
together they built the theory of incentives, which we take as encompassing con-
tract theory and mechanism design.

We will present incentive theory in three progressive steps. This book is the
first step; in it we consider the principal-agent model where the principal delegates
an action to a single agent through the take-it-or-leave-it offer of a contract. Two
implicit assumptions are made here. First, by postulating that it is the principal who
makes a take-it-or-leave-it contract offer to the agent, we put aside the bargaining
issues that are a topic for game theory.3 Second, we assume the availability of a
benevolent court of law that is able to enforce the contract and impose penalties
if one of the contractual partners adopts a behavior that deviates from the one
specified in the contract.4

Three types of information problems will be considered—adverse selection,
moral hazard, and nonverifiability. Each of those informational problems leads to
a different paradigm and, possibly, to a different kind of agency cost. On top of
the usual technological constraints of neoclassical economics, these agency costs
incorporate the informational constraints faced by the principal at the time of
designing the contract.

In this book, we will assume that there are no restrictions on the contracts that
the principal can offer. As a consequence, the design of the principal’s optimal con-
tract reduces to a simple optimization problem.5 This simple focus will turn out

2See Mas-Colell, Whinston and Green (1995) for a recent textbook exposition.
3See, for example, Osborne and Rubinstein (1994) and Muthoo (1999).
4Let us stress here the importance of this assumption, which is apparently innocuous because in

equilibrium no penalty is ever paid and the role of the court is minimal in what follows. However,
judges must be given proper incentives to enforce contracts. We may rely here on the idea that in
repeated relationships the desire to maintain their reputation will provide the appropriate incentives.
This latter assumption is a little bit problematic since once could also appeal to the same reputation
argument to justify that the principal-agent relationship may achieve allocative efficiency in repeated
relationships even in the absence of any contract, with the appropriate cooperative behavior being
self-enforcing.

5Thus, solving for the optimal contract requires only the simple tools of optimization theory.



Introduction • 5

to be enough to highlight the various trade-offs between allocative efficiency and
the distribution of information rents arising under incomplete information. The
mere existence of informational constraints may generally prevent the principal
from achieving allocative efficiency. The main objective of the analysis under-
taken in this volume is therefore the characterization of the allocative distortions
that the principal finds desirable to implement in order to mitigate the impact of
informational constraints.

Our next book will be the second step of our analysis. We will consider there,
situations with one principal and several agents, still without any restriction on the
principal’s contracts. Asymmetric information may not only affect the relationship
between the principal and each of his agents, but it may also plague the relation-
ships between agents. Moreover, maintaining the hypothesis that agents adopt an
individualistic behavior, those organizational contexts require a new equilibrium
concept, the Bayesian-Nash equilibrium, which describes the strategic interaction
between agents under incomplete information. Three main themes arise in this
context. First, the organization may have been built to facilitate a joint decision
between the agents. In such a context, the principal must overcome the free-rider
problems that may exist among agents when they must undertake a collective deci-
sion. Second, the principal may attempt to benefit from the competition between
the agents to relax the informational constraints and better reduce the agents’
information rents. Auctions, tournaments, yardstick competition, and supervision
of one agent by another are all mechanisms designed by the principal with this
purpose in mind. Third, the mere attempt by the principal to use competition
among agents may also trigger their collusion against the principal. The princi-
pal must now worry not only about individual incentives, but also about group
incentives in a multiagent organization.

Our third book will be the final step of the analysis and will study the impli-
cations of various imperfections in the design of contracts: informed principal,
limited commitment, renegotiation, implicit incentives, imperfect coordination
among various principals, and incomplete contracting due to the nonverifiability
of a parameter relevant for assessing the value of trade. The dynamics of some
of these imperfect contractual relationships call for the extensive use of another
equilibrium concept, the perfect Bayesian equilibrium. Equipped with this tool,
we will be better able to describe the allocation of resources resulting from such
imperfect contractual relationships.

In this book we proceed as follows. Chapter 1 gives a brief account of the
history of thought concerning incentive theory. It shows that incentives questions
have been present in many areas of economics over the last two centuries, even
though it is only recently that their importance has been recognized and that
economists have undertaken their systematic treatment. Chapter 2 presents the
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basic rent extraction-efficiency trade-off that arises in principal-agent models with
adverse selection. Extensions of this framework to more complex environments
are discussed in chapter 3. Chapter 4 presents the two types of agency conflicts
under moral hazard: the trade-offs between the extraction of a limited liability rent
and efficiency and also between insurance and efficiency. Again, extensions of this
basic framework are discussed in chapter 5. Chapter 6 considers the nonverifia-
bility paradigm, which in general does not call for economic distortions. Mixed
models with adverse selection, moral hazard, and nonverifiability are the subject
of chapter 7. The extension of principal-agent models with adverse selection and
moral hazard to dynamic contexts with full commitment is discussed in chapter 8.
Finally, chapter 9 discusses a number of simple extensions of the basic framework
used throughout the book.



1 Incentives in
Economic Thought

Incentive theory1 emerges with the division of labor and exchange.2 The division
of labor induces the need for delegation. Historically, the first contracts probably
appeared in agriculture, when landlords contracted with their tenants. It is no
wonder then that Adam Smith encountered incentive problems in his discussion
of sharecropping contracts (section 1.1). Delegation was also needed within firms,
hence the importance of the topic in the theory of organizations (section 1.2).

For private goods, competitive markets ensure efficiency despite the decen-
tralized nature of the information about individuals’ tastes and firms’ technolo-
gies. Implicitly, yardstick competition solves adverse selection problems and the
fixed-price contracts associated with exogenous prices solve moral hazard prob-
lems. However, markets fail for pure public goods, and public intervention is thus

1The reader totally unfamiliar with this topic may benefit from reading Chapters 2 and 4 before
Chapter 1 to become acquainted with some basic vocabulary.

2Actually, one could also argue that incentive issues arise within the family if one postulates
different objective functions for the members of the family.
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needed. In this case, the mechanisms used for those collective decisions must solve
the incentive problem of acquiring the private information that agents have about
their preferences for public goods (section 1.3). Voting mechanisms are particular
incentive mechanisms that lack monetary transfers for which the same question of
strategic behavior, i.e, not voting according to one’s true preferences, can be raised
(section 1.4).

For private goods, increasing returns to scale creates a situation of natural
monopoly far removed from the world of competitive markets. When the monopoly
has private information about its cost or demand, its regulation by a regulatory
commission becomes a principal-agent problem (section 1.5).

Exchange raises incentive issues when the commodity that is bought has a
value unknown to the buyer but known to the seller. In particular, this issue is
the case in insurance markets when the insurance company buys a risk plagued
with moral hazard or adverse selection. The insurance company faces a principal-
agent problem with each insured agent, but may nevertheless have a statistical
knowledge of the distribution of risks (section 1.6). A similar situation occurs when
a government attempts to redistribute income between wage earners of different
and unknown productive abilities (section 1.7) or when a monopolist looks for
the optimal discriminating contract to offer to a population of consumers with
heterogeneous tastes for its product (section 1.8). Of course, incentive issues were
encountered in managing socialist economies, where profit incentives of managers
were suppressed by public ownership of the means of production (section 1.9). The
idea that, in noncompetitive economies, it is necessary to design mechanisms tak-
ing into account communication and incentive constraints was further developed
by theorists dealing with nonconvex economies, and this work led to the mecha-
nism design methodology (section 1.10). The mechanism design methodology is a
useful tool for understanding the allocation of resources in multiagent frameworks
when information is decentralized. A natural field in which to apply this method-
ology is the theory of auctions. Auctions are mechanisms used by principals to
benefit from the competition among several agents (section 1.11).

1.1 Adam Smith and Incentive Contracts
in Agriculture

In his discussion of the determination of wages, Adam Smith (1776, bk. 1, chap. 7)
recognized the contractual nature of the relationship between the masters and the
workers. He asserted the conflicting interests of those two players and recognized
that the bargaining power was not evenly distributed between them; the masters



Incentives in Economic Thought • 9

generally had all the bargaining power. In the modern language of the theory of
incentives, the masters are principals and the workers, their agents:

What are the common wages of labour, depends everywhere upon the
contract usually made between those two parties, whose interests are not
the same. The workmen desire to get as much, the masters to give as
little as possible.

—Smith (1776, bk. 1, chap. 7, p. 66)

Smith also stressed one of the basic constraints that we model later on, the
agent’s participation constraint, which limits what the principal can ask from the
agent:

A man must always live by his work, and his wages must at least be
sufficient to maintain him.

—Smith (1776, p. 67)

Smith did not have a vision of economic actors as long-run maximizers of
utility. He worried about the consequences of high-power incentives for short-run
maximizers:

Workmen . . . when they are liberally paid by the piece, are very apt to
overwork themselves, and to ruin their health and constitution in a few
years.

—Smith (1776, bk. 1, chap. 8, p. 81)

He stressed the lack of appropriate incentives for slaves:

[T]he work done by slaves, though it appears to cost only their mainte-
nance, is in the end the dearest of any. A person who can acquire no
property, can have no other interest but to eat as much, and to labour as
little as possible.

—Smith (1776, bk. 1, chap. 8, p. 365)

To explain the survivance of such highly inefficient contracts, Adam Smith also
appealed to noneconomic motives:

The pride of man makes him love to domineer, and nothing mortifies
him so much as to be obliged to condescend to persuade his inferiors.

—Smith (1776, bk. 1, chap. 8, p. 365)

Smith’s most precise and famous discussion of incentives appeared in book 3,
chapter 2, when he wanted to explain the discouragement of agriculture in Europe
after the fall of the Roman Empire. He described the status of metayers (known
as coloni partarii in ancient times and as steel-bow tenants in Scotland):
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The proprietor furnished them with the seed, cattle and instruments of
husbandry. The produce was divided equally between the proprietor and
the farmer.

—Smith (1776, bk. 3, chap. 2, p. 366)

However, Smith did not conclude that metayers would not exert the appropri-
ate level of effort to maximize social value, as modern incentive theory would
claim:

Such tenants, being free men, are capable of acquiring property, and
having a certain proportion of the produce of the land, they have a plain
interest that the whole produce would be as great as possible, in order
that their own proportion may be so.

—Smith (1776, bk. 3, chap. 2, p. 366)

At several places in this volume, we see the fundamental trade-off between
incentives and the distribution of the gains from trade. Clearly Smith was not
aware of this trade-off. Rather, he saw the most serious incentive problems in the
absence of tenants’ investment in the land, and in the unobservable misuse of
husbandry instruments provided by the proprietor.

It could never, however, be the interest even of this last species of culti-
vators (the metayers) to lay out, in the further improvement of the land,
any part of the little stock they might save from their own share of the
produce, because the lord, who laid out nothing, was to get one-half of
whatever it produced. . . . It might be the interest of metayer to make
the land produce as much as could be brought out of it by means of the
stock furnished by the proprietor; but it could never be in his interest to
mix any part of his own with it. In France . . . the proprietors complain
that their metayers take every opportunity of employing the master’s cat-
tle rather in carriage than in cultivation; because in the one case they
get the whole profits for themselves, in the other they share them with
their landlords.

—Smith (1776, bk. 3, chap. 2, p. 367)

Note the ambiguous might, which shows that Smith probably envisioned
under-effort but that he considered it secondary compared to the under-investment
effect. However, the alternative use of cattle is a typical example of what we will
call a hidden action problem or a moral hazard problem.

Smith’s criticism of sharecropping has been the point of departure of a large
literature in agricultural economics, history of thought, and economic theory trying
to understand the characteristics of sharecropping contracts. Following Smith, and
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until Johnson (1950), economists considered sharecropping to be a “practice which
is hurtful to the whole society,” an unexplained failure of the invisible hand that
should be either discouraged by taxation or improved by appropriate sharing of
variable factors.3 A better understanding of the phenomenon was only achieved
when the economists reconsidered the problem in the context of the principal-
agent theory.4

1.2 Chester Barnard and Incentives in Management

As we saw above, Smith (1776) already discussed the problems associated with
piece-rate contracts in the industry. Babbage (1835) went a step further by under-
standing the need for precise measurement of performances to set up efficient
piece-rate or profit-sharing contracts:

It would, indeed, be of great mutual advantage to the industrious work-
man, and to the master manufacturer in every trade, if the machines
employed in it could register the quantity of work which they perform,
in the same manner as a steam-engine does the number of strokes it
makes. The introduction of such contrivances gives a greater stimulus to
honest industry than can readily be imagined, and removes one of the
sources of disagreement between parties.

—Babbage (1835, p. 297)

Also, Babbage proposed various principles to remunerate labor:

The general principles on which the proposed system is founded, are

1. That a considerable part of the wages received by each person should
depend on the profits made by the establishment; and,

2. That every person connected with it should derive more advantage
from applying any improvement he might discover than he could by
any other course.

(Babbage 1989, Vol. 8, p. 177)

However, Barnard (1938) is the one who can probably be credited with the
first attempt to define a general theory of incentives in management, in chapter 11
(the economy of incentives) and chapter 12 (the theory of authority) of his cele-
brated book The Functions of the Executive, which he wrote after a long career in

3See Schickele (1941) and Heady (1947).
4See Stiglitz (1974).
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management, most notably as president of the New Jersey Bell Telephone Com-
pany:

[A]n essential element of organizations is the willingness of persons to
contribute their individual efforts to the cooperative system. . . . Inade-
quate incentives mean dissolution, or changes of organization purpose,
or failure to cooperate. Hence, in all sorts of organizations the affording
of adequate incentives becomes the most definitely emphasized task in
their existence. It is probably in this aspect of executive work that failure
is most pronounced.

—Barnard (1938, p. 139)

Actually, Barnard had a broad view of incentives, involving both what we would
now call monetary and nonmonetary incentives:

An organization can secure the efforts necessary to its existence, then,
either by the objective inducements it provides or by changing states of
mind. . . . We shall call the process of offering objective incentives “the
method of incentives”; and the processes of changing subjective attitudes
“the method of persuasion.”

—Barnard (1938, p. 142)

The incentives may be specific or general:

The specific inducements that may be offered are of several classes,
for example: a) material inducements; b) personal non material oppor-
tunities; c) desirable physical conditions; d) ideal benefactions. Gen-
eral incentives afforded are, for example: e) associational attractiveness;
f) adaptation of conditions to habitual methods and attitudes; g) oppor-
tunity of enlarged participation; h) the condition of communion.

—Barnard (1938, p. 142)

Barnard also stressed the ineffectiveness of material incentives, which at the time
were almost exclusively considered by economic theory:

[E]ven in purely commercial organizations, material incentives are so
weak as to be almost negligible except when reinforced by other incen-
tives.

—Barnard (1938, p. 144)

Persuasion . . . includes: a) the creation of coercive conditions (as forced
exclusion of indesirables); b) the rationalization of opportunities (if the
conviction that material things are worth while . . . succeeds in capturing
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waste effort and wasted time . . . it is clearly advantageous); c) the incul-
cation of motives.5

—Barnard (1938, p. 149)

Barnard pointed out the necessary delicate balance of the various types of
incentives for success. Furthermore, such a good balance is highly dependent on
an unstable environment (through competition in particular) and on the internal
evolution of the organization itself (growth, change of personnel). Finally, in his
chapter on authority, Barnard recognized that incentive contracts do not rule all
the activities within an organization. The distribution of authority along communi-
cation channels is also necessary to achieve coordination and promote cooperation:

Authority arises from the technological and social limitations of cooper-
ative systems on the one hand, and of individuals on the other.

—Barnard (1938, p. 184)

In modern language, Barnard is saying that the incompleteness of contracts
and the bounded rationality of members in the organization require that some
leaders be given authority to make decisions in circumstances not addressed specif-
ically by the contracts. His main point is to stress the need to satisfy ex post partic-
ipation constraints of members who accept noncontractual orders only if they are
compatible with their own long-run interests:

A person can and will accept a communication as authoritative only
when . . . at the time of his decision, he believes it to be compatible with
his personal interest as a whole.

—Barnard (1938, p. 165)

Barnard’s work emphasized the need to induce appropriate effort levels from
members of the organization—the moral hazard problem—and to create authority
relationships within the organization to deal with the necessary incompleteness
of incentive contracts. Not until a few decades later did Arrow (1963a) intro-
duce into the literature on the control of management, the idea of moral hazard,
borrowed from the world of insurance. This work would be further extended by
Wilson (1968) and Ross (1973), who redefined it explicitly as an agency problem.
The chapter on authority written by Barnard directly inspired Simon’s (1951) for-
mal theory of the employment relationship. Finally, Williamson (1975) followed
Barnard and Simon to develop his transaction costs theory for the case of sym-
metric but nonverifiable information between two parties.6 Grossman and Hart

5Between parentheses are examples given later in the text.
6See Williamson’s citation at the beginning of chapter 6.
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(1986) modeled this paradigm, which led to the large body of recent literature on
incomplete contracts.7

1.3 Hume, Wicksell, Groves: The Free-Rider Problem

Hume (1740) may be credited with writing the first explicit statement of the free-
rider problem:

Two neighbours may agree to drain a meadow, which they possess in
common; because it is easy for them to know each others mind; and each
must perceive, that the immediate consequence of his failing in his part,
is the abandoning the whole project. But it is very difficult, and indeed
impossible, that a thousand persons shou’d agree in any such action;
it being difficult for them to concert so complicated a design, and still
more difficult for them to execute it; while each seeks a pretext to free
himself of the trouble and expence, and wou’d lay the whole burden on
others.

—Hume (1740, p. 538)

At the end of the nineteenth century, a lively debate over public finance took
place among European economists about the “benefit” approach and the “ability
to pay” approach to taxation. In particular, Mazzola, Pantaleoni, and de Viti de
Marco in Italy, and Sax in Austria, used the “modern” concepts of marginal utility
and subjective value, extending the benefit approach implicit in the writings of
many authors of the eighteenth century, such as Bentham, Locke, and Rousseau.
Wicksell (1896), in his discussion of Mazzola’s contribution, pointed out what
became known later as the free-rider problem, which had been ignored in the
benefit approach to taxation:

If the individual is to spend his money for private and public uses so that
his satisfaction is maximized he will obviously pay nothing whatsovever
for public purposes. . . . Whether he pays much or little will affect the
scope of public service so slightly, that for all practical purposes, he
himself will not notice it at all. Of course, if everyone were to do the
same, the State will soon cease to function.

—Wicksell (1896, p. 81)

Wicksell suggested a solution: the principle of (approximative) unanimity and
voluntary consent. Each item in the public budget must be voted simultaneously

7See Hart (1995) and Tirole (1999) for recent syntheses.
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with the determination of its financing and must be accepted only if unanimity (or
quasi-unanimity) is obtained.8 If we could ignore strategic behavior, this process
would lead to Pareto optimality. However, which one of the Pareto optima will be
reached depends upon the sequential realization of the decision-making process.
Indeed, this is the main reason justifying strategic behavior by the participants as
they try to manipulate the path of the procedure.

With the exception of Bowen’s (1943) voting procedure discussed in the next
section, nothing was proposed until the seventies to solve the free-rider prob-
lem, which appeared formidable. Nevertheless, in 1971, Drèze and Vallée Poussin
extended the literature on the iterative planning procedures of the sixties to public
goods. At each step of the procedure, agents announce their marginal rates of sub-
stitution between public goods and the private good. They noted that revelation
of the true marginal rates of substitution was a maximin strategy, which is a weak
incentive property.

Finally, Clarke (1971), Groves (1973) and Groves and Loeb (1975), making
strong restrictions on preferences to evade the Gibbard-Satterthwaite Impossibility
Theorem,9 provided mechanisms with monetary transfers inducing truthful reve-
lation of preferences and making the Pareto optimal public good decision. The
literature that followed substantially developed incentive theory and mechanism
design methodology.10

1.4 Borda, Bowen, Vickrey: Incentives in Voting

Since the beginning of the theory on voting, the issue of strategic voting was
noticed. Borda (1781) recognized it when he proposed his famous Borda rule:

My scheme is only intended for honest men.

We have to wait for Bowen (1943) to see a first attempt at addressing the
issue of strategic voting. For allocating public goods, Bowen (as we mentioned in
section 1.3) was searching in voting for an alternative to the missing expression of
preferences that exists in markets for private goods. He realized the difficulty of
strategic voting:

At first thought it might be supposed that this information could be
obtained from his vote. . . . But the individual could not vote intelligently,
unless he knew in advance the cost to him of various amounts of the

8This notion was later formalized by Foley (1967).
9See section 1.4 in this chapter.
10See Green and Laffont (1979) and Aspremont and Gérard-Varet (1979).
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social good, and in any case the results of voting would be unreliable if
the individual suspected that his expression of preference would influ-
ence the amount of cost to be assessed against him.

—Bowen (1943, p. 45)

Bowen assumed that the distribution of the cost of the public good was exoge-
nously fixed (e.g., equal sharing of cost) and considered successive votes on incre-
ments of the public good. He observed that at each step it is in the interest of
each voter to vote yes or no according to his true preferences. Such a procedure
leads to the optimal level of public good if agents are myopic and consider only
their incentives at each step.11 Black (1948), years after Borda, Condorcet, Laplace,
and Dogson, reconsidered the theory of voting and exhibited a wide class of cases
(single-peaked preferences) for which majority voting leads to the transitivity of
social choice, a solution to the 1785 Condorcet paradox. Black eliminated, by
assumption, strategic issues:

When a member values the motions before a committee in a definite
order, it is reasonable to assume that, when these motions are put against
each other, he votes in accordance with his valuation.

—Black (1948, p. 134), cited in Arrow and Scitovsky (1969)

When Arrow (1951) founded the formal theory of social choice by proving
that there is no “reasonable” voting method yielding a nondictatorial social tran-
sitive ranking of social alternatives when no restriction is placed on individual
preferences, he also abstracted from the gaming issues and noticed that

[t]he point here, broadly speaking, is that, once a machinery for making
social choices from individual tastes is established, individuals will find
it profitable, from a rational point of view, to misrepresent their tastes
by their actions or, more usually, because some other individual will be
made so much better off by the first individual’s misrepresentation that he
could compensate the first individual in such a way that both are better
off than if everyone really acted in direct accordance with his tastes.”12

—Arrow (1951, p. 7)

In a paper that provides a very lucid exposition of Arrow’s impossibility the-
orem, Vickrey (1960) raised the question of strategic misrepresentation of pref-
erences in a social welfare function that associates a social ranking to individual
preferences:

11See Green and Laffont (1979, chap. 14) for a more detailed analysis of this procedure.
12Note that the last part of this quotation refers to incentives for groups.
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There is another objection to such welfare functions, however, which is
that they are vulnerable to strategy. By this is meant that individuals may
be able to gain by reporting a preference differing from that which they
actually hold.

—Vickrey (1960, p. 517)

and

Such a strategy could, of course, lead to a counterstrategy, and the process
of arriving at a social decision could readily turn into a “game” in the
technical sense.

—Vickrey (1960, p. 518)

Dummett and Farquharson (1961) would indeed pursue the analysis of such
voting games in terms of noncooperative Nash equilibria. Vickrey (1960) further
explained that the social welfare functions that satisfy the assumptions of Arrow’s
theorem, in particular the independence assumption, are immune to strategy.
Then comes his conjecture, acknowledged by Gibbard (1973):

It can be plausibly conjectured that the converse is also true, that is, that
if a function is to be immune to strategy and to be defined over a com-
prehensive range of admissible rankings, it must satisfy the independence
criterion, though it is not quite so easy to provide a formal proof of this.

—Vickrey (1960, p. 588)

Therefore, Vickrey is led, through Arrow’s theorem, to an impossibility result,
namely the nonexistence of any method of aggregating individual preferences or of
any voting mechanism that is nonmanipulable. The route toward the impossibility
of nonmanipulable and nondictatorial mechanisms via Arrow’s theorem was sug-
gested. A complete proof, the greatest achievement of social choice theory since
Arrow’s theorem, came thirteen years later in Gibbard (1973).13 The importance
of Gibbard’s theorem for incentive theory lies in showing that with no prior knowl-
edge of preferences, nondictatorial collective decision methods cannot be found
where truthful behavior is a dominant strategy. The positive results of incentive
methods in practice will have to be looked for in restrictions on preferences, as in
the principal-agent theory, or in the relaxation of the required strength of incentives
by giving up dominant strategy implementation.

13See also Satterthwaite (1975).
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1.5 Léon Walras and the Regulation of
Natural Monopolies

Walras (1897) defined a natural monopoly as an industry where monopoly is the
efficient market structure and suggested, following Smith (1776), to price the prod-
uct of the firm by balancing its budget. This led to the Ramsey (1927) and Boiteux
(1956) theory of optimal pricing under a budget constraint.

After some price cap regulation attempts in the nineteenth century, the prac-
tice of regulation was rate of return regulation, which ensures prices covering costs
inclusive of a (higher than the market) cost of capital. This led to the Averch and
Johnson (1962) over-capitalization result, which was largely overemphasized.

In 1979, Loeb and Magat finally put the regulation literature in the frame-
work of the principal-agent literature with adverse selection by stressing the lack
of information of the regulator. They proposed to use a Groves dominant strategy
mechanism, which solves the problem of asymmetric information at no cost when
there is no social cost in transfers from the regulator to the firm.

Baron and Myerson (1982) transformed the problem into a second-best prob-
lem by weighting the firm’s profit with a smaller weight than consumers’ surplus
in the social welfare function maximized by the regulator. In this scenario, opti-
mal regulation entails a distortion from the first-best (pricing higher than marginal
cost) to decrease the information rent of the regulated firm. Laffont and Tirole
(1986) used a utilitarian social welfare function with the same weight for profit and
consumers’ surplus, but introduced a social cost for public funds (due to distortive
taxation), which also creates a rent-efficiency trade-off. Their model features both
adverse selection and moral hazard, but the ex post observability of cost (commonly
used in regulation) makes it technically an adverse selection model.14 This model
was developed in Laffont and Tirole (1993) along many dimensions (dynamics,
renegotiation, auctions, political economy, etc.).

1.6 Knight, Arrow, Pauly: Incentives in Insurance

The notion of moral hazard, i.e., the ability of insured agents to affect the proba-
bilities of insured events, was well known in the insurance profession.15 However,

14See chapter 7 in this book.
15See, for example, Faulkner (1960) and Dickerson (1957).
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the insurance writers tended to look upon this phenomenon as a moral or ethical
problem affecting their business.

Arrow (1963b) introduced this concept in the economic literature and argued
that it led to a market failure because some insurance markets would not emerge
due to moral hazard.16 Arrow was quite influenced by the moral connotation of
the concept and looked for solutions involving changes of ethical attitudes. Pauly
(1968) rejected this approach, by arguing that it was quite natural for agents to
react to zero price—like demanding more health care if treatment was free—
and that the noninsurability of some risks did not imply a market failure in that
no proof was given of the superiority of public intervention faced with the same
informational problems. Pauly (1974) and Helpman and Laffont (1975) showed
that competitive insurance markets (with linear prices) were inefficient in the sense
that an uninformed government could improve upon the free market outcome.

Spence and Zeckhauser (1971) looked for more sophisticated contracts (non-
linear prices). They solved the maximization of the welfare of a representative
agent with a break-even constraint for the insurance company and the moral haz-
ard constraint that each agent chooses his level of self-protection optimally. When
the self-protection variable is chosen before nature selects the states of nature (i.e.,
who has an accident, who does not), they obtained the moral hazard model with
a continuum of agents and a break-even constraint. When the self-protection vari-
able is chosen after nature selects the states of nature, they have both moral hazard
and adverse selection, making the problem quite close to the Mirrlees optimal
income tax problem (as already noted by Zeckhauser 1970).17

Ross (1973) expressed the pure principal-agent model with only moral hazard
and an individual rationality constraint for the agent before it received its modern
treatment in Mirrlees (1975), Guesnerie and Laffont (1979), Holmström (1979),
Shavell (1979), and later in Grossman and Hart (1983).

16LeRoy and Singell (1987) make the claim we share that, by uncertainty, Knight (1921) meant
situations in which insurance markets collapse because of moral hazard or adverse selection: “The
classification or grouping (necessary for insurance) can only to a limited extent be carried out by
any agency outside the person himself who makes the decisions, because of the peculiarly obstinate
connection of a moral hazard with this sort of risks” (Knight 1921, p. 251); “We have assumed . . .
that each man in society knows his own powers as entrepreneur, but that men know nothing about
each other in this capacity. . . . The presence of true profit, therefore, depends . . . on the absence of
the requisite organization for combining a sufficient number of instances to secure certainty through
consolidation. With men in complete ignorance of the powers of judgement of other men it is hard
to see how such organization can be effected” (ibid., 284).

However, Knight did not recognize that problems of moral hazard and adverse selection could be
attenuated or eliminated with properly structured contracts.

17Spence and Zeckhauser (1971) do not go much beyond writing first-order conditions for this
problem, and refer to Mirrlees (1971) when they use the Pontryagin principle. See section 1.7 for a
discussion of the Mirrlees model.
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The Pareto inefficiency of competitive insurance markets (with linear prices)
with adverse selection was shown in Rothschild and Stiglitz (1976),18 and their
successors studied various forms of competition in nonlinear tariffs. As in the case
of moral hazard, one can also study the optimal nonlinear tariff, which maximizes
the expected welfare of a population of agents having private information about
their own risk characteristics.19 However, this problem was encountered earlier in
the literature on price discrimination with quality replacing quantity.20

1.7 Sidgwick, Vickrey, Mirrlees: Redistribution
and Incentives

The separation of efficiency and redistribution in the second theorem of welfare
economics rests on the assumption that lump-sum transfers are feasible. As soon
as the bases for taxation can be affected by agents’ behavior, dead-weight losses are
created. Then raising money for redistributive purposes destroys efficiency. More
redistribution requires more inefficiency. A trade-off appears between redistribution
and efficiency. When labor income is taxed, the leisure-consumption choices are
distorted and the incentives for work are decreased. Sidgwick (1883) in his Method
of Ethics was apparently the first writer to recognize the incentive problems of
redistribution policies:

It is conceivable that a greater equality in the distribution of products
would lead ultimately to a reduction in the total amount to be distributed
in consequence of a general preference of leisure to the results of labor.

—Sidgwick (1883, chap. 7, sec. 2)

The informational difficulty associated with income taxation is that the supply
of labor is not observable and therefore not controllable, hence the distortion.
However, if the wage was observable, as well as income, the supply of labor would
be easily recovered. The next stage in the modelling of the problem was to assume
that the wage of an agent equates his innate ability (equal itself to his marginal
productivity), which is private information of the agents.21 Income, the observable
variable, is the product of a moral hazard variable—the supply of labor—and of
an adverse selection variable—ability.

18See also Akerlof (1970) and Spence (1973).
19See Stiglitz (1977).
20See Mussa and Rosen (1978) and Guesnerie and Laffont (1984) for modern treatments.
21Note here a difficulty: the wage is paid by the employer who must know the agent’s ability.

Implicitly, collusion between the employer and the agent is assumed.



Incentives in Economic Thought • 21

A major step was achieved by Vickrey, who was senior economist of the tax
research division of the United States Treasury Department and a tax expert for the
governor of Puerto Rico. As early as 1945, he used the insights of Von Neumann
and Morgenstern to model the optimal income tax problem as a principal-agent
problem where the principal is the tax authority and the agents are the taxpayers.
In his 1945 article, Vickrey defined the objective function of the government:

If utility is defined as that quantity the mathematical expression of which
is maximized by an individual making choices involving risk, then to
maximize the aggregate of such utility over the population is equivalent
to choosing that distribution of income which such an individual would
select were he asked which of various variants of the economy he would
become a member of, assuming that once he selects a given economy
with a given distribution of income he has an equal chance of landing
in the shoes of each member of it.

—Vickrey (1945, p. 329)

Equipped with this utilitarian social welfare criterion (with, in passing, the
Harsanyi [1955] interpretation of expected utility as a justice criterion), Vickrey
formulated the fundamental problem of optimal income taxation:22

It is generally considered that if individual incomes were made substan-
tially independent of individual effort, production would suffer and there
would be less to divide among the population. Accordingly some degree
of inequality is needed in order to provide the required incentives and
stimuli to efficient cooperation of individuals in the production process.

—Vickrey (1945, p. 330)

The question of the ideal distribution of income, and hence of the proper
progression of the tax system, becomes a matter of compromise between
equality and incentives.

—Vickrey (1945, p. 330)

He then proceeded to a formalization of the problem that is still the current
one. The utility function of any individual is made a function of his consumption
and of his productive effort. There is a relationship between the amount of output
and the amount of effort and unknown productive characteristics of the individual.
This leads to an alternative form of the utility function that depends on con-
sumption, output, and the individual’s characteristics. Taxation creates a relation-
ship between output and consumption. Adjusting his effort or output optimally,

22Vickrey viewed his work as a generalization of Edgeworth’s (1897) minimum sacrifice principle.
Also, Edgeworth’s optimal indirect taxation can be viewed as an incentive problem.
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the individual obtains his supply of effort characterized by a first-order condition,
which is the first-order condition of incentive compatibility for an adverse selection
problem. Vickrey stated the government’s optimization problem, which is to max-
imize the sum of individuals’ utilities under the incentive compatibility conditions
and the budget equation of the government. Recognizing a calculus of variation
problem, he wrote the Euler equation and gave up:

Thus even in this simplified form the problem resists any facile solution.
—Vickrey (1945, p. 332)

The Pontryagin principle was still years away, and it would be twenty-six years
before Mirrlees’s (1971) neat formulation and solution of the problem.23

Note that the problem analyzed here is not in the strict sense a delegation
problem as we defined it earlier. The principal is actually delegated by the taxpay-
ers the task of redistributing income, i.e., the choice of a particular public good.
The principal observes neither the effort level of a given agent nor his productive
characteristics. However, by observing output, which is a function of both, it can
reduce the problem to a one-dimensional adverse selection problem. The principal
is not facing a single agent over the characteristics of which he has an asymmetry
of information, but a continuum of them for which he knows only the distribu-
tion of characteristics. Nevertheless, the problem is mathematically identical to
a delegation problem with a budget balance equation instead of a participation
constraint.24

1.8 Dupuit, Edgeworth, Pigou: Price Discrimination

When a monopolist or a government wants to extract consumers’ surpluses in the
pricing of a commodity, it faces in general the problem of the heterogeneity of
consumers’ tastes. Even if it knows the distribution of tastes, it does not know the
type of any given consumer. By offering different menus of price-quality or price-
quantity pairs, i.e., by using second-degree price discrimination, the government
or monopolist can increase its objective function. Such an anonymous menu is
an incentive mechanism that leads consumers to reveal their type by their self-
selection in the menu.

Dupuit (1844) developed the concept of consumer surplus and used it to
discuss price discrimination. Dupuit was well aware of the incentive problems
faced by the pricing of infrastructures:

23Zeckhauser (1970) and Wesson (1972) formulated special cases of the optimal incentives-
redistribution problem that they solved approximately without being aware of the Vickrey model.

24At least when the types of the agents are independently distributed.
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The best of all tariffs would be the one which would make pay those
which use a way of communication a price proportional to the utility
they derive from using this service. . . . I do not have to say that I do not
believe in the possible application of this voluntary tariff; it would meet
an insurmountable obstacle in the universal dishonesty of passants, but
it is the kind of tariff one must try to approach by a compulsory tariff.

—Dupuit (1849, p. 223)

Edgeworth (1911–13) extended the theory for price discrimination for the
railways industry. Pigou (1920) characterized the different types of price discrimina-
tion. Gabor (1955) discussed block tariffs or two-part tariffs that had been recently
introduced in the electricity industry in England and showed that with one type
of consumers two-part tariffs are equivalent to first-degree price discrimination.
Oi (1971) derived an optimal two-part tariff. Mussa and Rosen (1978), Spence
(1977), and Goldman, Leland, and Sibley (1984) provided the general framework
to derive, for a monopolist, an optimal tariff that is nonlinear in prices or qualities,
substantially later than similar work in the income tax or insurance literature.

1.9 Incentives in Planned Economies

We must distinguish between the Soviet practice and the theory of planning devel-
oped in the Western countries. As explained by Berliner (1976),

In the early years of the Soviet period there was some hope that socialist
society could count on the spirit of public service as a sufficient motiva-
tion for economic activity. With the intense industrialization drive of the
thirties, however, that hope was gradually abandoned. In a historic dec-
laration in 1931, Stalin renounced the egalitarian wage ethic that had
obliterated “any difference between skilled and unskilled work, between
heavy and light work” (401).

Following his biting denunciation of “equality mongering,” there evolved a new
policy in which personal “material incentives”—primarily money incomes—
became the major instrument for motivating economic activity.

In the Soviet Union, a general set of managerial incentive structures devel-
oped during the thirties and lasted for three decades. In this classical period, the
managers’ incomes comprised a salary, a basic bonus, and the Enterprise Fund.
This incentive structure had many defects (problems with new products, no proper
incentives for cost minimization, ratchet effect, etc.). It was criticized and under
constant evolution. With the passing of Stalin, the discussion became more intense
and quite open with the 1962 Liberman paper in the Pravda and culminated in the



24 • Chapter 1

1965 Reform. Among Soviet specialists in the Western world, a literature studying
in detail the new Soviet incentive structure developed.25

In the famous socialist controversy of the thirties, incentives were largely over-
looked. Lange (1936) perceived no problem with imposing rules to managers:

The decisions of the managers of production are no longer guided by
the aim to maximize profit. Instead, there are certain rules imposed on
them by the Central Planning Board which aim at satisfying consumers’
preferences in the best way possible.

One rule must impose on each production plant the choice of the combi-
nation of factors of production and the scale of output which minimizes
the average cost of production.

The second rule replaces the free entry of firms into an industry or their
exodus from it. This leads to an equality of average cost and the price of
the product.

—Lange (1936, p. 62)

Lerner (1934) pointed out the difficulty arising with a small number of firms
having increasing returns to scale and reformulated the rules as: Every producer
must produce whatever he is producing at the least total cost, and a producer shall
produce any output or any increment of output that can be sold for an amount
equal to or greater than the marginal cost of that output or increment of output.26

Even in 1967, Lange did not see any problem of incentives in the working of the
socialist economy:

Were I to rewrite my essay today my task would be much simpler. My
answer to Hayek and Robbins would be: so what’s the trouble? Let us
put the simultaneous equations on an electronic computer and we shall
obtain the solution in less than a second. The market process with its
cumbersome tâtonnements appears old fashioned.27

—Lange (1967, p. 158)

It is therefore not surprising that the voluminous mathematical theory of
iterative planning developed in the sixties did not pay any attention to incen-

25Leeman (1970), Keren (1972), and Weitzman (1976).
26Note that Lerner was here simply rediscovering Launhardt’s (1885) marginal cost pricing princi-

ple that the latter associated with government ownership. This principle was most clearly articulated
by Hotelling (1939).

27When, at the end of his life, Lange recognized more fully the role of incentives, it was about the
innovation process and not the everyday life of the planning system: “What is called optimal alloca-
tion is a second-rate matter, what is really of prime importance is that of incentives for the growth of
productive forces (accumulation and progress in technology)” (private letters to T. Kowalik 1976).
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tives.28 Such a concern appeared only marginally in Drèze and de la Vallée
Poussin (1971), where truthful reporting of private characteristics was shown to
be a maximin strategy in a planning procedure for public goods. In 1974 Weitz-
man, who had participated in the development of the iterative planning literature,
made a direct criticism of the implicit idea that planning with prices was good for
incentives:

It seems to me that a careful examination of the mechanisms of succes-
sive approximation planning shows that there is no principal informa-
tional difference between iteratively finding an optimum by having the
center name prices while the firm responds with quantities, or by having
the center assign quantities while the firm reveals costs or marginal costs.

—Weitzman (1974, p. 478)

Considering an explicit planning problem with asymmetric information,
Weitzman compared price mechanisms and quantity mechanisms. This will be
the point of departure of the more general approach in terms of nonlinear prices
by Spence (1977). From then on, planning procedures were more systematically
studied from the point of view of incentives.29 However, by then, the lack of
interest for iterative planning was fairly general.

1.10 Leonid Hurwicz and Mechanism Design

When general equilibrium theorists attempted to extend the resource allocation
mechanisms to nonconvex environments they realized that new issues of commu-
nication and incentives arose:

In a broader perspective, these findings suggest the possibility of a more
systematic study of resource allocation mechanisms. In such a study,
unlike in the more traditional approach, the mechanism becomes the
unknown of the problem rather than a datum. . . . The members of
such a domain (of mechanisms) can then be appraised in terms of their
various “performance characteristics” and, in particular, of their (static
and dynamic) optimality properties, their informational efficiency, and
the compatibility of their postulated behavior with self-interest (or other
motivational variables).

—Hurwicz (1960, p. 28)

28See Heal (1973) for a synthesis.
29See Laffont (1985) for a survey.
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Hurwicz (1960) dedicated his paper to Jacob Marschak. Marschak was the
only major economist aware of incentive problems in the fifties, problems that he
chose not to study:

This raises the problem of incentives. Organization rules can be devised
in such a way that, if every member pursues his own goal, the goal of
the organization is served. This is exemplified in practice by bonuses to
executives and the promises of loot to besieging soldiers; and in theory,
by the (idealized) model of the laisser-faire economy. And there exist, of
course, also negative incentives (punishments). I shall have to leave the
problem of incentives aside.

—Marschak (1955, p. 128)

Marschak was familiar with the literature of statisticians who became aware
of incentive problems quite early. The problem of moral hazard arose in sampling
theory for quality control. Whittle (1954) and Hill (1960) understood that the
distributions of quality were endogenous and dependent on the care taken in the
production process. They studied how to take into account this noncontrollable
effort level in their analysis of quality from a sample. Adverse selection appeared
when forecasting probabilities of some events. Good (1952), McCarthy (1956), and
later Savage (1971) looked for payment formulas leading forecasters to announce
their true estimated probabilities and discovered the incentive constraints for the
revelation of information.

Economists working with Hurwicz developed a general framework, the mech-
anism design approach, which treated the competitive markets as just one partic-
ular institution in a much more general family of mechanisms run by benevolent
planners. During the sixties the emphasis of the research was on the commu-
nication costs required by nonconventional environments, until Groves (1973),
influenced by Schultze (1969),30 called for considering incentives in public policy
and constructed incentive-compatible mechanisms in a team problem.

The next major step was the understanding of the Revelation Principle,31

which shows that, with adverse selection and moral hazard, any mechanism for
organizing society is equivalent to an incentive-compatible mechanism by which
all informed agents reveal their private information to a planner who recommends

30Schultze (1969) wrote, “public action need not be simply the provision of public facilities . . . to
offset the economic losses caused by private actions. Rather the objectives of public policy, in such
cases, should include a modification of the ‘signals’ given and incentives provided by the market
place so as to induce private actions consistent with public policy” (p. 151).

31See Gibbard (1973), Green and Laffont (1977), Dasgupta, Hammond, and Maskin (1979) and
Myerson (1979).
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actions. The Revelation Principle provided the appropriate framework for the nor-
mative analysis of economies with asymmetric information and contracts that can
be written on all observable variables. It delivered a neat methodology to study
incentive theory that we will use in most of this book.32

1.11 Auctions

Auctions are mechanisms by which principals attempt to use the competition
among agents to decrease the information rents they have to give up to the agent
they are contracting with. It requires a modelling of the relationship between bid-
ders (the agents) who bid under incomplete information about the other agents’
valuations for the auctioned good or contract.

Even though auctions have been used at least as far back as 500 b.c. in
Babylon, the first academic work on auctions seems to date from 1954 with a
thesis on competitive bidding for securities in which Friedman (1956) presented
a method to determine optimal bids in a first-price, sealed-bid auction. In this
operations-research approach he assumed that there was a single strategic bidder.
In a monumental paper, Vickrey (1961) provided the first equilibrium theoretic
analysis of the first-price auction that he compared to the second-price auction,
often called the Vickrey auction.

It is only after the clarification of the Bayesian-Nash equilibrium concept by
Harsanyi (1967–68) that the theory of auctions was massively developed. Three
major models were particularly developed: the independent value model credited
to Vickrey (1961), the symmetric common value model to Rothkopf (1969) and
Wilson (1969; 1977), and the asymmetric common value model to Wilson (1967;
1969). In a major synthetic paper Milgrom and Weber (1982) showed that most of
these models are special cases of the affiliated value paradigm, and they clarified
the winner’s curse developed during empirical work about auctions for oil drilling
rights in the Gulf of Mexico (Capen, Clapp, and Campbell 1971). Myerson (1981)
used the general mechanism approach to characterize the optimal auctions in
models with private values or independent common values.

32Maskin’s (1999, first draft 1977) Nash implementation theorem is the major result when a
principal designs a mechanism to be played by agents who know their respective characteristics.



2 The Rent
Extraction-Efficiency
Trade-Off

Incentive problems arise when a principal wants to delegate a task to an agent.
Delegation can be motivated either by the possibility of benefitting from some
increasing returns associated with the division of tasks, which is at the root of eco-
nomic progress, or by the principal’s lack of time or lack of any ability to perform
the task himself, or by any other form of the principal’s bounded rationality when
facing complex problems. However, by the mere fact of this delegation, the agent
may get access to information that is not available to the principal. The exact
opportunity cost of this task, the precise technology used, and how good the match-
ing is between the agent’s intrinsic ability and this technology are all examples of
pieces of information that may become private knowledge of the agent. In such
cases, we will say that there is adverse selection.1

1It is sometimes said that there is hidden knowledge, probably a better expression for describing
this situation of asymmetric information. Adverse selection is rather a possible consequence of this



Rent Extraction-Efficiency Trade-Off • 29

The agency model analyzed in this chapter, as well as in most of the book,
will be cast in terms of a manager-worker relationship. Examples of such agency
relationships under adverse selection abound both in terms of their scope and their
economic significance. Both private and public transactions provide examples of
contracting situations plagued with informational problems of the adverse selec-
tion type. The landlord delegates the cultivation of his land to a tenant, who will
be the only one to observe the exact local weather conditions. A client delegates
his defense to an attorney who will be the only one to know the difficulty of the
case. An investor delegates the management of his portfolio to a broker, who will
privately know the prospects of the possible investments. A stockholder delegates
the firm’s day-to-day decisions to a manager, who will be the only one to know
the business conditions. An insurance company provides insurance to agents who
privately know how good a driver they are. The Department of Defense procures
a good from the military industry without knowing its exact cost structure. A reg-
ulatory agency contracts for service with a Public Utility without having complete
information about its technology…

The key common aspect of all those contracting settings is that the informa-
tion gap between the principal and the agent has some fundamental implications
for the design of the bilateral contract they sign. In order to reach an efficient
use of economic resources, this contract must elicit the agent’s private informa-
tion. This can only be done by giving up some information rent to the privately
informed agent. Generally, this rent is costly to the principal. This information cost
just adds up to the standard technological cost of performing the task and justifies
distortions in the volume of trade achieved under asymmetric information. The
allocative and the informational roles of the contract generally interfere. At the
optimal second-best contract, the principal trades off his desire to reach allocative
efficiency against the costly information rent given up to the agent to induce infor-
mation revelation. Under adverse selection, the characterization of the volume of
trade cannot be disentangled from the distribution of the gains from trade.

This chapter analyzes the contractual difficulties that appear when this dele-
gation of task takes place in a one-shot relationship. The fact that the relationship
is one-shot means that the principal and the agent cannot rely on its repetition to
achieve efficient trades.2 In this case, the bilateral short-term relationship between

asymmetric information. However, we will keep the by now classic expression of adverse selection to
describe a principal-agent problem in which the agent has private information about a parameter of
his optimization problem.

2See Fudenberg and Tirole (1991), Myerson (1991), and Osborne and Rubinstein (1994) for
analyses of these repeated relationships and applications of the so-called Folk Theorem, which guar-
antees that, under complete information, almost Pareto optimal trades can be achieved through
repeated relationships when agents have a common discount factor close enough to one.
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the principal and the agent can be regulated only by a contract. Implicit here is
the idea that there exists a legal framework for this contractual relationship. The
contract can be enforced by a benevolent court of law, and the agents are bound
by the terms of the contract. This implicit assumption on the legal framework of
trades is not peculiar to contract theory but prevails in most traditional studies of
market economies.

The main objective of this chapter is to characterize the optimal rent
extraction-efficiency trade-off faced by the principal when designing his contrac-
tual offer to the agent. This characterization proceeds through two steps. First,
we describe the set of allocations that the principal can achieve despite the
information gap from which he suffers. An allocation is an output to be produced
and a distribution of the gains from trade. Even under adverse selection, those
allocations can be easily characterized once one has described a set of incentive
compatibility constraints that are only due to asymmetric information. In addition
to those constraints, the conditions for voluntary trade require that some participa-
tion constraints also be satisfied to ensure that the agent wants to participate in the
contract. Incentive and participation constraints define the set of incentive feasible
allocations. Second, once this characterization is achieved, we can proceed to a
normative analysis and optimize the principal’s objective function within the set of
incentive feasible allocations. In general, incentive constraints are binding at the
optimum, showing that adverse selection clearly impedes the efficiency of trade.
The main lessons of this optimization are that the optimal second-best contract
calls for a distortion in the volume of trade away from the first-best and for giving
up some strictly positive information rents to the most efficient agents.

Implicit in this optimization are a number of assumptions worth stressing.
First, we assume that the principal and the agent both adopt an optimizing behav-
ior and maximize their individual utility. In other words, they are both fully ratio-
nal individualistic agents. Given the contract he receives from the principal, the
agent maximizes his utility and chooses output accordingly. Second, the principal
does not know the agent’s private information, but the probability distribution of
this information is common knowledge. There exists an objective distribution for
the possible types of the agent that is known by both the agent and the prin-
cipal, and this fact itself is known by the two players.3 Third, the principal is
a Bayesian expected utility maximizer. In designing the agent’s payoff rule, the
principal moves first as a Stackelberg leader under asymmetric information antic-
ipating the agent’s subsequent behavior and optimizing accordingly within the set
of available contracts.

3More generally, they both know that they know that ! ! !
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Section 2.1 describes the adverse selection canonical model that we use in
most of this book. For the sake of simplicity, we assume that the agent’s type, i.e.,
his cost parameter, can only take two possible values. The discrete type model
turns out to be sufficient to highlight the main phenomena arising under adverse
selection without having to deal with the technicalities of a continuum of types.4

In section 2.2, we provide the benchmark solution corresponding to the case where
the principal knows perfectly the agent’s cost function. Section 2.3 describes the
set of allocations that the principal can achieve despite the information gap from
which he suffers. Section 2.4 explains why the principal is generally obliged to
give up an information rent to the agent because of the latter’s informational
advantage. The optimization program of the principal who wants to maximize
his expected utility under the constraints of incentive compatibility and voluntary
trade is described in section 2.5. The optimal contract of the principal is obtained
and discussed in section 2.6. Two major illustrations are given in sections 2.7
and 2.8. Section 2.9 proves the revelation principle in the principal-agent setup.
This principle guarantees that there is no loss of generality in restricting the anal-
ysis to menus of two contrats when the agent’s private cost information takes only
two possible values. The analysis of the previous sections is then extended to more
general cost and revenue functions in section 2.10. This allows us to illustrate
new features of the rent extraction-efficiency trade-off. So far, the analysis assumed
risk neutrality of the agent and an interim timing of contracting, i.e., the principal
offers a contract to an agent once the latter has already learned his type. Sec-
tion 2.11 considers the more symmetric case where the contract can be offered at
the ex ante stage, i.e., before the agent learns his type. We perform this analysis
under various assumptions on the degrees of risk aversion of the principal and the
agent. Implicit in our whole analysis of this chapter is the assumption that the
agent and the principal can commit to the terms of the contract. This assumption
is discussed in section 2.12. Section 2.13 gives a closer look at the set of incen-
tive feasible allocations and in particular at the convexity of this set. We show
there the conditions under which stochastic mechanisms can be useful for the
principal. Given that the principal suffers from an information gap with the agent,
informative signals can be useful for improving contracting and the terms of the
rent extraction-efficiency trade-off. Section 2.14 studies the added value of these
informative signals. Finally, in section 2.15, we present many examples of con-
tracting relationships highlighting the generality of the framework provided in this
chapter.

4Nevertheless, Appendix 3.1 generalizes the results to the more technical case, often found in the
literature, where the agent’s type is drawn from a continuous and positive distribution on a compact
and convex set of possible types.



32 • Chapter 2

2.1 The Basic Model

2.1.1 Technology, Preferences, and Information

Consider a consumer or a firm (the principal) who wants to delegate to an agent
the production of q units of a good. The value for the principal of these q units is
S"q# where S′ > 0, S′′ < 0 and S"0# = 0. The marginal value of the good is thus
positive and strictly decreasing with the number of units bought by the principal.

The production cost of the agent is unobservable to the principal, but it is
common knowledge that the fixed cost is F and that the marginal cost $ belongs
to the set % = &$' $̄(. The agent can be either efficient "$# or inefficient "$̄# with
respective probabilities ) and 1− ). In other words, he has the cost function

C"q' $# = $q + F with probability ) (2.1)

or
C"q' $̄# = $̄q + F with probability 1− )! (2.2)

We denote by *$ = $̄ − $ > 0 the spread of uncertainty on the agent’s marginal
cost. When taking his production decision the agent is informed about his type $.
We stress that this information structure is exogenously given to the players.5

2.1.2 Contracting Variables

The economic variables of the problem we consider thereafter are the quantity
produced q and the transfer t received by the agent. Let ! be the set of feasible
allocations. Formally, we have

! = &"q' t# + q ∈ "+' t ∈ "(! (2.3)

These variables are both observable and verifiable by a third party such as a benev-
olent court of law. They can thus be included in a contract which can be enforced
with appropriate out-of-equilibrium penalties if either the principal or the agent
deviates from the requested output and transfer.

2.1.3 Timing

For most of the book, unless explicitly stated, we will maintain the timing defined
in figure 2.1, where A denotes the agent and P the principal.

5We will discuss the endogeneity of the information structure in chapter 9.
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Figure 2.1: Timing of Contracting Under Adverse Selection

Note that contracts are offered at the interim stage; there is already asymmetric
information between the contracting parties when the principal makes his offer.6

2.2 The Complete Information Optimal Contract

2.2.1 First-Best Production Levels

First suppose that there is no asymmetry of information between the principal and
the agent. The efficient production levels are obtained by equating the principal’s
marginal value and the agent’s marginal cost. Hence, first-best outputs are given
by the following first-order conditions

S′"q∗# = $ (2.4)

and
S′"q̄∗# = $̄! (2.5)

The complete information efficient production levels q∗ and q̄∗ should be both
carried out if their social values, respectively W ∗ = S"q∗# − $q∗ − F and %W ∗ =
S"q̄∗#− $̄q̄∗ − F , are non-negative. The social value of production when the agent
is efficient, W ∗, is greater than when he is inefficient, namely %W ∗. Indeed, we
have S"q∗# − $q∗ ≥ S"q̄∗# − $q̄∗ by definition of q∗, which maximizes S"q# − $q

and S"q̄∗#− $q̄∗ ≥ S"q̄∗#− $̄q̄∗ because $̄ > $. For trade to be always carried out,
it is thus enough that production be socially valuable for the least efficient type,
i.e., the following condition must be satisfied

%W ∗ = S"q̄∗#− $̄q̄∗ − F ≥ 0' (2.6)

6For reasons that we do not discuss now, the principal did not have the opportunity to offer a
contract to the agent before t = 0. We return to this issue later, in section 2.11, where we also
analyze the case of ex ante contracting.
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a hypothesis that we will maintain throughout this chapter. As the fixed cost F
plays no role other than justifying the existence of a single agent, it is set to zero
from now on in order to simplify notations.7

Note that, since the principal’s marginal value of output is decreasing, the
optimal production levels defined by (2.4) and (2.5) are such that q∗ > q̄∗, i.e.,
the optimal production of an efficient agent is greater than that of an inefficient
agent.

2.2.2 Implementation of the First-Best

For a successful delegation of the task, the principal must offer the agent a utility
level that is at least as high as the utility level that the agent obtains outside the
relationship (for each value of the cost parameter). We refer to these constraints
as the agent’s participation constraints. If we normalize to zero the agent’s out-
side opportunity utility level (sometimes called his status quo utility level),8 these
participation constraints are written as

t − $q ≥ 0' (2.7)

t̄ − $̄q̄ ≥ 0! (2.8)

To implement the first-best production levels, the principal can make the
following take-it-or-leave-it offers to the agent: If $ = $̄ (resp. $), the principal offers
the transfer t̄∗ (resp. t∗) for the production level q̄∗ (resp. q∗) with t̄∗ = $̄q̄∗ (resp.
t∗ = $q∗). Whatever his type, the agent accepts the offer and makes zero profit.
The complete information optimal contracts are thus "t∗' q∗# if $ = $ and "t̄∗' q̄∗#

if $ = $̄.
Importantly, under complete information delegation is costless for the princi-

pal, who achieves the same utility level that he would get if he was carrying out
the task himself (with the same cost function as the agent).

2.2.3 A Graphical Representation of the Complete
Information Optimal Contract

In figure 2.2, we draw the indifference curves of a $-agent (heavy curves) and of
a $̄-agent (light curves) in the "q' t# space. The isoutility curves of both types cor-

7We come back to another possible role of the fixed cost in section 2.6.3.
8This debatable assumption is relaxed in section 3.3.
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Figure 2.2: Indifference Curves of Both Types

respond to increasing levels of utility when one moves in the northwest direction.
These indifference curves are straight lines with a slope $ corresponding to the
agent’s type. Since $̄ > $, the isoutility curves of the inefficient agent $̄ have a
greater slope than those of the efficient agent. Thus, the isoutility curves for dif-
ferent types cross only once. Throughout this chapter and the next one we will
come back several times to this important property called the single-crossing or
Spence-Mirrlees property.

The complete information optimal contract is finally represented in figure 2.3
by the pair of points "A∗'B∗#. For each of those two points, the strictly concave
indifference curve of the principal is tangent to the zero rent isoutility curve of
the corresponding type. Note that the isoutility curves of the principal correspond
to increasing levels of utility when one moves in the southeast direction. Thus the
principal reaches a higher profit when dealing with the efficient type. We denote
by %V ∗ (resp. V ∗) the principal’s level of utility when he faces the $̄- (resp. $-) type.
Because the principal has all the bargaining power in designing the contract, we
have %V ∗ = %W ∗ (resp. V ∗ = W ∗) under complete information.

Remark: In Figure 2.3, the payment t∗ is greater than t̄∗, but we note
that t∗ can be greater or smaller than t̄∗ depending on the curvature
of the function S"·#, as it can be easily seen graphically.
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Figure 2.3: First-Best Contracts

2.3 Incentive Feasible Menu of Contracts

2.3.1 Incentive Compatibility and Participation

Suppose now that the marginal cost $ is the agent’s private information and
let us consider the case where the principal offers the menu of contracts
&"t∗' q∗#, "t̄∗' q̄∗#( hoping that an agent with type $ will select "t∗' q∗# and an
agent with type $̄ will select instead "t̄∗' q̄∗#.

From Figure 2.3, we see that B∗ is preferred to A∗ by both types of agents.
Indeed, the $-agent’s isoutility curve that passes through B∗ corresponds to a posi-
tive utility level instead of a zero utility level at A∗. The $̄-agent’s isoutility curve
that passes through A∗ corresponds to a negative utility level, which is less than the
zero utility level this type gets by choosing B∗. Offering the menu "A∗'B∗# fails to
have the agents self-selecting properly within this menu. The efficient type mimics
the inefficient one and selects also contract B∗. The complete information optimal
contracts can no longer be implemented under asymmetric information. We will
thus say that the menu of contracts &"t∗' q∗#, "t̄∗' q̄∗#( is not incentive compatible.
This leads us to definition 2.1:
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Definition 2.1: A menu of contracts &"t' q#, "t̄' q̄#( is incentive compatible
when "t' q# is weakly9 preferred to "t̄' q̄# by agent $ and "t̄' q̄# is weakly
preferred to "t' q# by agent $̄.

Mathematically, these requirements amount to the fact that the allocations must
satisfy the following incentive compatibility constraints

t − $q ≥ t̄ − $q̄ (2.9)

and
t̄ − $̄q̄ ≥ t − $̄q! (2.10)

Remark: Importantly, we do not presume the existence of any com-
munication between the principal and the agent. We will address the
issue of communication more fully in section 2.9. Incentive compati-
bility constraints should be mainly understood as constraints on final
allocations, i.e., on the agent’s choices. At a general level, those con-
straints are thus similar to the simple revealed preference arguments
used in standard consumption theory.10

Furthermore, for a menu to be accepted, it must yield to each type at least
his outside opportunity level. The following two participation constraints must be
satisfied:

t − $q ≥ 0' (2.11)

t̄ − $̄q̄ ≥ 0! (2.12)

Together, incentive and participation constraints define a set of incentive feasible
allocations achievable through a menu of contracts. This leads us to definition 2.2:

Definition 2.2: A menu of contracts is incentive feasible if it satisfies both
incentive and participation constraints (2.9) through (2.12).

The inequalities (2.9) through (2.12) fully characterize the set of incentive
feasible menus of contracts. The restrictions embodied in this set express additional
constraints imposed on the allocation of resources by asymmetric information
between the principal and the agent.11' 12

9In order to define incentive compatibility, it is common to impose weak rather than strong
preference. At an - cost for the principal, strict preference is easily obtained.

10See Varian (1992, chap. 3) for instance.
11It is straightforward to check that the set of incentive feasible contracts is nonempty.
12We show in section 2.9 that there is no loss of generality in considering menus of two contracts.

Accordingly, inequalities (2.9) through (2.12) characterize those constraints.
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2.3.2 Special Cases

• Bunching or Pooling Contracts: A first special case of incentive fea-
sible menu of contracts is obtained when the contracts targeted for
each type coincide, i.e., when t = t̄ = tp, q = q̄ = qp and both types
of agent accept this contract. For those contracts, we say that there is
bunching or pooling of types.
The incentive constraints are all trivially satisfied by these contracts.

Incentive compatibility is thus easy to satisfy, but at the cost of an
obvious loss of flexibility in allocations that are no longer dependent
on the state of nature. Only the participation constraints matter now.
However, the hardest participation constraint to satisfy is that of the
inefficient agent since inequality (2.12) implies inequality (2.11) for a
pooling contract.

• Shutdown of the Least Efficient Type: Another particular case occurs
when one of the contracts is the null contract "0' 0# and the nonzero
contract "ts' qs# is only accepted by the efficient type. Then, (2.9) and
(2.11) both reduce to

ts − $qs ≥ 0! (2.13)

The incentive constraint of the bad type reduces to

0 ≥ ts − $̄qs! (2.14)

If the inequality (2.14) is strict, only the efficient type accepts the contract. With
such a contract, the principal gives up production if the agent is a $̄-type. We will
say that it is a contract with shutdown of the least efficient type.

As with the pooling contract just seen above, the benefit of the "0' 0# option
is that it somewhat reduces the number of constraints since the incentive (2.9)
and the participation (2.11) constraints take the same form. Of course, the cost
of such a contract may be an excessive screening of types. Here, the screening of
types takes the rather extreme form of excluding the least efficient type.

2.3.3 Monotonicity Constraints

Incentive compatibility constraints reduce the set of feasible allocations. Moreover,
in well-behaved incentive problems these constraints put lots of structure on the
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set of feasible profiles of quantities. These quantities must generally satisfy a mono-
tonicity constraint which does not exist under complete information. In our simple
model, adding (2.9) and (2.10) immediately yields

q ≥ q̄! (2.15)

Independently of the principal’s preferences, incentive compatibility alone implies
that the production level requested from a $̄-agent cannot be higher than the
one requested from a $-agent. We will call condition (2.15) an implementability
condition. Any pair of outputs "q' q̄# that is implementable, i.e., that can be reached
by an incentive compatible contract, must satisfy this condition which is here
necessary and sufficient for implementability.

Indeed, suppose that (2.15) holds; it is clear that there exists transfers t̄ and t
such that the incentive constraints (2.9) and (2.10) both hold. It is enough to take
those transfers such that

$̄"q̄ − q# ≤ t̄ − t ≤ $"q̄ − q#! (2.16)

Remark: In our two-type model, the conditions for implementability
take a simple form. More generally, with more than two types (or
with a continuum), the characterization of these conditions might get
harder, as we demonstrate in appendix 3.1 and in section 3.1. The
conditions for implementability are also more difficult to characterize
when the agent performs several tasks on behalf of the principal (see
section 2.10).

2.4 Information Rents

To understand the structure of the optimal contract it is useful to introduce the
concept of information rent.

We saw in section 2.2 that, under complete information, the principal (who
has all the bargaining power by assumption) is able to maintain all types of agents
at their zero status quo utility level. Their respective utility levels U ∗ and %U ∗ at
the first-best satisfy

U ∗ = t∗ − $q∗ = 0 (2.17)

and

%U ∗ = t̄∗ − $̄q̄∗ = 0! (2.18)

Generally this will not be possible anymore under incomplete information, at least
when the principal wants both types of agents to be active.
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Take any menu &"t̄' q̄#, "t' q#( of incentive feasible contracts and consider the
utility level that a $-agent would get by mimicking a $̄-agent. By doing so, he
would get

t̄ − $q̄ = t̄ − $̄q̄ + *$q̄ = %U + *$q̄! (2.19)

Even if the $̄-agent utility level is reduced to its lowest utility level fixed at
zero, i.e., %U = t̄ − $̄q̄ = 0, the $-agent benefits from an information rent *$q̄
coming from his ability to possibly mimic the less efficient type. So, as long as the
principal insists on a positive output for the inefficient type, q̄ > 0, the principal
must give up a positive rent to a $-agent. This information rent is generated by the
informational advantage of the agent over the principal. The principal’s problem is
to determine the smartest way to give up the rent provided by any given incentive
feasible contract.

In what follows, we use the notations U = t − $q and %U = t̄ − $̄q̄ to denote
the respective information rent of each type.

2.5 The Optimization Program of the Principal

According to our timing of the contractual game, the principal must offer a menu
of contracts before knowing which type of agent he is facing. Therefore, he will
compute the benefit of any menu of contracts &"t' q#, "t̄' q̄#( in expected terms.
The principal’s problem writes as

(P ): max
&"t̄' q̄#,"t' q#(

)
(
S"q#− t

)
+ "1− )#

(
S"q̄#− t̄

)

subject to (2.9) to (2.12).

Using the definition of the information rents U = t− $q and %U = t̄− $̄q̄, we can
replace transfers in the principal’s objective function as functions of information
rents and outputs so that the new optimization variables are now &"U' q#, "%U' q̄#(.
This change of variables will sharpen our economic interpretations all along the
book. The focus on information rents enables us to assess the distributive impact of
asymmetric information. The focus on outputs allows us to analyze its impact on
allocative efficiency and the overall gains from trade. Instead of viewing allocations
as transfer-output pairs, this change of variable stresses that those allocations can
be considered as information rent-output pairs. Thus an allocation corresponds to
a volume of trade and a distribution of the gains from trade between the principal
and the agent.
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With this change of variables, the principal’s objective function can then be
rewritten as

)
(
S"q#− $q

)
+ "1− )#

(
S"q̄#− $̄q̄

)
︸ ︷︷ ︸

Expected Allocative Efficiency

−
(
)U + "1− )#%U

)
!

︸ ︷︷ ︸
Expected Information Rent

(2.20)

This new expression clearly shows that the principal wishes to maximize the
expected social value of trade minus the expected rent of the agent.13 The principal
is ready to accept some distortions away from efficiency in order to decrease the
agent’s information rent. We see below precisely how.

The incentive constraints (2.9) and (2.10), written in terms of information
rents and outputs, are respectively

U ≥ %U + *$q̄' (2.21)

%U ≥ U − *$q! (2.22)

The participation constraints (2.11) and (2.12) become respectively

U ≥ 0' (2.23)

%U ≥ 0! (2.24)

The principal wishes to solve problem "P # below:

(P ): max
&"U' q#,"%U' q̄#(

)"S"q#− $q#+ "1− )#"S"q̄#− $̄q̄#− ")U + "1− )#%U #

subject to (2.21) to (2.24).

We index the solution to this problem with a superscript SB, meaning second-best.

2.6 The Rent Extraction-Efficiency Trade-Off

2.6.1 The Optimal Contract Under Asymmetric Information

The major technical difficulty of problem "P #, and more generally of incentive
theory, is to determine which of the many constraints imposed by incentive com-
patibility and participation are the relevant ones, i.e., the binding ones at the
optimum of the principal’s problem.

13Note that a social utility maximizer putting an equal weight on the principal’s and the agent’s
expected utility in his objective function would be interested in maximizing expected allocative
efficiency only, without any concern for the distribution of information rents between the principal
and the agent. In this case, the first-best outputs would be also chosen. Asymmetric information then
would have no impact on allocative efficiency.
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A first approach could be to apply the Lagrangian techniques to problem "P #,
once one has checked that the problem is concave. Even in this two-type model
the number of constraints calls for a more practical route, where the modeler first
guesses which are the binding constraints and checks ex post that the omitted
constraints are indeed strictly satisfied. In a well-behaved incentive problem, this
route is certainly more fruitful. In our very simple model, such a strategy provides
a quick solution to the optimization problem. Moreover, it turns out to be more
useful to build the economic intuition behind this model.

Let us first consider contracts without shutdown, i.e., such that q̄ > 0. The
ability of the $-agent to mimic the $̄-agent implies that the $-agent’s participation
constraint (2.23) is always strictly satisfied. Indeed, (2.24) and (2.21) immediately
imply (2.23). If a menu of contracts enables an inefficient agent to reach his status
quo utility level, it will also be the case for an efficient agent who can produce at a
lower cost. Second, (2.22) also seems irrelevant because, as guessed from Section
2.3, the difficulty comes from a $-agent willing to claim that he is inefficient rather
than the reverse.

This simplification in the number of relevant constraints leaves us with only
two remaining constraints, the $-agent’s incentive constraint (2.21) and the $̄-
agent’s participation constraint (2.24). Of course, both constraints must be binding
at the optimum of the principal’s problem "P #. Suppose it is not so. Assume first
that %U = - > 0. Then the principal can decrease %U by - and consequently also
(from (2.21)) U by - and gain -. Therefore, %U = 0 is optimal. Also if U = *$q̄+ -,
- > 0, the principal can decrease U by - and gain )-. U = *$q̄ is also optimal.
Hence, we must have

U = *$q̄ (2.25)

and
%U = 0! (2.26)

Substituting (2.25) and (2.26) into (2.20), we obtain a reduced program "P ′# with
outputs as the only choice variables

"P ′#+ max
&"q' q̄#(

)
(
S"q#− $q

)
+ "1− )#

(
S"q̄#− $̄q̄

)
− )*$q̄!

Compared with the full information setting, asymmetric information alters the
principal’s optimization simply by the subtraction of the expected rent that has to
be given up to the efficient type. The inefficient type gets no rent, but the efficient
type $ gets the information rent that he could obtain by mimicking the inefficient
type $̄. This rent depends only on the level of production requested from this
inefficient type.



Rent Extraction-Efficiency Trade-Off • 43

Since the expected rent given up does not depend on the production level q
of the efficient type, the maximization of "P ′# calls for no distortion away from the
first-best for the efficient type’s output, namely

S′"qSB# = $ or qSB = q∗! (2.27)

However, maximization with respect to q̄ yields

"1− )#
(
S′"q̄SB#− $̄

)
= )*$! (2.28)

Increasing the inefficient agent’s output by an infinitesimal amount dq increases
allocative efficiency in this state of nature. The principal’s expected payoff is
improved by a term equal to the left-hand side of (2.28) times dq. At the same
time, this infinitesimal change in output also increases the efficient agent’s infor-
mation rent, and the principal’s expected payoff is diminished by a term equal to
the right-hand side above times dq.

At the second-best optimum, the principal is neither willing to increase nor to
decrease the inefficient agent’s output, and (2.28) expresses the important trade-off
between efficiency and rent extraction which arises under asymmetric information.
The expected marginal efficiency gain (resp. cost) and the expected marginal cost
(resp. gain) of the rent brought about by an infinitesimal increase (resp. decrease)
of the inefficient type’s output are equated.

To validate our approach based on the sole consideration of the efficient type’s
incentive constraint, it is necessary to check that the omitted incentive constraint
of an inefficient agent is satisfied, i.e., 0 ≥ *$q̄SB − *$qSB. This latter inequality
follows from the monotonicity of the second-best schedule of outputs since we
have qSB = q∗ > q̄∗ > q̄SB.

For further references, it is useful to summarize the main features of the
optimal contract (assuming that it is a contract without shutdown).

Proposition 2.1: Under asymmetric information, the optimal menu of
contracts entails:

• No output distortion for the efficient type with respect to the first-best,
qSB = q∗. A downward output distortion for the inefficient type, q̄SB < q̄∗

with

S′"q̄SB# = $̄ + )

1− )
*$! (2.29)

• Only the efficient type gets a positive information rent given by

USB = *$q̄SB! (2.30)

• The second-best transfers are respectively given by tSB = $q∗ + *$q̄SB

and t̄ SB = $̄q̄SB.
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2.6.2 A Graphical Representation of the Second-Best Outcome

Starting from the complete information optimal contract "A∗'B∗# that is not incen-
tive compatible, we can construct an incentive compatible contract "B∗'C# with
the same production levels by giving a higher transfer to the agent producing q∗

(figure 2.4). The contract C is on the $-agent’s indifference curve passing through
B∗. Hence, the $-agent is now indifferent between B∗ and C. "B∗'C# becomes an
incentive-compatible menu of contracts. The rent that is given up to the $-firm is
now *$q̄∗.

Rather than insisting on the first-best production level q̄∗ for an inefficient
type, the principal prefers to slightly decrease q̄ by an amount dq. By doing so,
expected efficiency is just diminished by a second-order term " 12 (S′′"q̄∗#("dq#2# since
q̄∗ is the first-best output that maximizes efficiency when the agent is inefficient.
Instead, the information rent left to the efficient type diminishes to the first-order
"*$dq#. Of course, the principal stops reducing the inefficient type’s output when
a further decrease would have a greater efficiency cost than the gain in reducing
the information rent it would bring about. The optimal trade-off finally occurs at
"ASB'BSB# as shown in figure 2.5.

Figure 2.4: Rent Needed to Implement the First-Best Outputs
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Figure 2.5: Optimal Second-Best Contracts ASB and BSB

2.6.3 Shutdown Policy

If the first-order condition in (2.29) has no positive solution, q̄SB should be set at
zero. We are in the special case of a contract with shutdown. BSB coincides with 0
and ASB with A∗ in figure 2.5. No rent is given up to the $-firm by the unique non-
null contract "t∗' q∗# offered and selected only by agent $. The shutdown of the
agent occurs when $ = $̄. With such a policy, a significant inefficiency emerges
because the inefficient type does not produce. The benefit of such a policy is that
no rent is given up to the efficient type.

More generally, such a shutdown policy is optimal when

)
(
S"q∗#− $q∗) ≥ )

(
S"qSB#− $qSB − *$q̄SB

)
+ "1− )#

(
S"q̄SB#− $̄q̄SB

)
(2.31)

or, noting that q∗ = qSB, when

)*$q̄SB ≥ "1− )#
(
S"q̄SB#− $̄q̄SB

)
! (2.32)

The left-hand side of (2.32) represents the expected cost of the efficient type’s
rent due to the presence of the inefficient one when the latter produces a positive
amount q̄SB. The right-hand side of (2.32) represents instead the expected benefit
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from transacting with the inefficient type at the second-best level of output. Shut-
down of the inefficient type is optimal when this expected benefit is lower than
the expected cost.

Remark: Looking again at the condition (2.29), we see that shutdown
is never desirable when the Inada condition S′"0# = +) is satisfied
and limq→0 S

′"q#q = 0. First, q̄SB defined by (2.29) is necessarily strictly
positive. Second, note that we can rewrite S"q̄SB# − "$̄ + )

1−)
*$#q̄SB

as S"q̄SB# − S′"q̄SB#q̄SB, which is strictly positive since S"q# − S′"q#q
is strictly increasing with q when S′′ < 0 and is equal to zero for
q = 0. Hence, S"q̄SB#− "$̄+ )

1−)
*$#q̄SB > 0 and shut-down of the least

efficient type does not occur.
The shutdown policy is also dependent on the status quo util-

ity levels. Suppose that, for both types, the status quo utility level is
U0 > 0. Then (2.32) becomes (dividing by 1− ))

)

1− )
*$q̄SB + U0 ≥ S"q̄SB#− $̄q̄SB! (2.33)

Therefore, for ) large enough, shutdown occurs14 even if the
Inada condition S′"0# = +) is satisfied. Note that this case also occurs
when the agent has a strictly positive fixed cost F > 0 (to see that, just
set U0 = F ).

Coming back to the principal’s problem "P #, the occurrence of shutdown can
also be interpreted as saying that the principal has, on top of the agent’s production,
another choice variable to solve the screening problem. This extra variable is the
subset of types, which are induced to produce a positive amount. Reducing the
subset of producing agents obviously reduces the rent of the most efficient type.
In our two-type model, exclusion of the least efficient type may thus be optimal.

2.7 The Theory of the Firm Under
Asymmetric Information

When the delegation of task occurs within the firm, a major conclusion of the
above analysis is that, because of asymmetric information, the firm does not max-
imize the social value of trade, or more precisely its profit—a maintained assump-
tion of most economic theory. This lack of allocative efficiency should not be

14Suppose on the contrary that (2.33) does not hold. Then q̄SB goes to zero as ) goes to one and
S"q̄SB#− $̄q̄SB as well as )

1−) *$q̄
SB go to zero. But then (2.33) must hold strictly for ) close enough

to one, a contradiction.
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considered as a failure in the rational use of resources within the firm. Indeed, the
point is that allocative efficiency is only one part of the principal’s objective. The
allocation of resources within the firm remains constrained optimal once informa-
tional constraints are fully taken into account.

This systematic deviation away from profit maximization can be interpreted
as an X-inefficiency à la Leibenstein (1966), who has stressed the management
failures that take place within the largest firms, i.e., those that are the most likely
to suffer from significant internal informational problems.

Williamson (1975) has also advanced the view that various transaction costs
may impede the achievement of economic transactions. Among the many ori-
gins of these costs, Williamson stresses informational impactedness as an important
source of inefficiency. Clearly, even in a world with a costless enforcement of
contracts, a major source of allocative inefficiency is the existence of asymmet-
ric information between trading partners. Of course, another important insight of
Williamson’s analysis is that transaction costs may be mitigated by the choice of
convenient organizational forms. This point does not contradict our interpreta-
tion of transaction costs as coming from informational problems if one is ready to
accept the view that various organizational forms generate different degrees and
costs of asymmetric information between partners, an issue which is clearly high
on the current research agenda of organization theory.15

The idea that various organizational forms are associated with different infor-
mation structures has been used by some authors to provide a theory of vertical
integration. Arrow (1975) suggested that an upstream firm may want to integrate
backward and acquire a downstream supplier to reduce the extent of asymmetric
information between those two units. An obvious limitation of this approach is
that it takes as exogenous the fact that vertical integration improves information.
This exogeneity has led to an important debate over the last fifteen years between
proponents of this idea (for instance, Williamson 1985) and opponents (such as
Grossman and Hart 1986).

One last point is worth stressing. Even though asymmetric information gener-
ates allocative inefficiencies, those inefficiencies do not call for any public policy
motivated by reasons of pure efficiency. Indeed, any benevolent policymaker in
charge of correcting these inefficiencies would face the same informational con-
straints as the principal. The allocation obtained above is Pareto optimal in the set
of incentive feasible allocations or incentive Pareto optimal. Nevertheless, the pol-
icymaker might want to implement different trade-offs between efficiency and rent

15See Aghion and Tirole (1997).
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extraction, as we will see in section 2.15.1 in the archetypical case of regulatory
intervention. In this case redistribution would be the motivation for public policy.

2.8 Asymmetric Information and Marginal
Cost Pricing

Let us view the principal as acting for a set of consumers and the agent as a firm
producing a consumption good. The first-best rules defined by (2.4) and (2.5) can
be interpreted as price equal to marginal cost since consumers on the market will
equate their marginal utility of consumption to price.

Under asymmetric information, price equates marginal cost only when the
producing firm is efficient "$ = $#. Using (2.29), we immediately get the expression
of the price p"$̄# for the inefficient type’s output

p"$̄# = $̄ + )

1− )
*$! (2.34)

Price is higher than marginal cost in order to decrease the quantity q̄ produced by
the inefficient firm and reduce the efficient firm’s information rent. Alternatively,
we can say that price is equal to a generalized (or virtual16) marginal cost that
includes, in addition to the traditional marginal cost of the inefficient type $̄, an
information cost that is worth )

1−)
*$. What is required is to generalize the concept

of cost to include the information cost imposed by asymmetric information.

2.9 The Revelation Principle

In the above analysis, we have restricted the principal to offer a menu of con-
tracts, one for each possible type. First, one may wonder if a better outcome could
be achieved with a more complex contract allowing the agent possibly to choose
among more options. Second, one may also wonder whether some sort of com-
munication device between the agent and the principal could be used to transmit
information to the principal so that the latter can recommend outputs and pay-
ments as a function of transmitted information. The revelation principle ensures
that there is no loss of generality in restricting the principal to offer simple menus
having at most as many options as the cardinality of the type space. Those simple
menus are actually examples of direct revelation mechanisms for which we now
give a couple of definitions.

16To use the expression coined by Myerson (1979).
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Definition 2.3: A direct revelation mechanism is a mapping g"·# from %
to ! which writes as g"$# = "q"$#' t"$## for all $ belonging to %. The
principal commits to offer the transfer t"$̃# and the production level q"$̃#
if the agent announces the value $̃ for any $̃ belonging to %.

Definition 2.4: A direct revelation mechanism g"·# is truthful if it is incen-
tive compatible for the agent to announce his true type for any type, i.e.,
if the direct revelation mechanism satisfies the following incentive compat-
ibility constraints:

t"$#− $q"$# ≥ t"$̄#− $q"$̄#' (2.35)

t"$̄#− $̄q"$̄# ≥ t"$#− $̄q"$#! (2.36)

Denoting transfer and output for each possible report respectively as t"$# = t,
q"$# = q, t"$̄# = t̄ and q"$̄# = q̄, we get back to the notations of the previous
sections and in particular to the incentive constraints (2.9) and (2.10).

A more general mechanism can be obtained when communication between
the principal and the agent is more complex than simply having the agent report
his type to the principal. Let # be the message space offered to the agent by a
more general mechanism. This message space can be very complex. Conditionally,
on a given message m received from the agent, the principal requests a production
level q̃"m# and provides a corresponding payment t̃"m#.

Definition 2.5: A mechanism is a message space # and a mapping g̃"·#
from # to ! which writes as g̃"m# = "q̃"m#' t̃"m## for all m belonging
to #.

When facing such a mechanism, the agent with type $ chooses a best message
m∗"$# that17 is implicitly defined as

t̃"m∗"$##− $q̃"m∗"$## ≥ t̃"m̃#− $q̃"m̃# for all m̃ in #. (2.37)

The mechanism "#' g̃"·## induces therefore an allocation rule a"$# = "q̃"m∗"$##'
t̃"m∗"$### mapping the set of types % into the set of allocations !. Then we are
ready to state the revelation principle in the one agent case.

Proposition 2.2: The Revelation Principle. Any allocation rule a"$#
obtained with a mechanism "#' g̃"·## can also be implemented with a
truthful direct revelation mechanism.

17Possibly, the agent’s best response can be a correspondence without changing anything below;
just pick one of the possible maximizers and call it m∗"$#. The agent being indifferent between those
maximizers, one generally assumes that the allocation most preferred by the principal is selected.
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Figure 2.6: The Revelation Principle

Proof: The indirect mechanism "#' g̃"·## induces an allocation rule a"$# =
"q̃"m∗"$##' t̃"m∗"$### from % into !. By composition of g̃"·# and m∗"·#, we can con-
struct a direct revelation mechanism g"·# mapping % into !, namely g = g̃ +m∗,
or more precisely g"$# = "q"$#' t"$## ≡ g̃"m∗"$## = "q̃"m∗"$##' t̃"m∗"$### for all $
in %.

Figure 2.6 illustrates this construction, which is at the core of the revelation
principle.

We check now that the direct revelation mechanism g"·# is truthful. Indeed,
since (2.37) is true for all m̃, it holds in particular for m̃ = m∗"$′# for all $′ in %.
Thus we have

t̃"m∗"$##− $q̃"m∗"$## ≥ t̃"m∗"$′##− $q̃"m∗"$′## for all "$' $′# in %2. (2.38)

Finally, using the definition of g"·#, we get

t"$#− $q"$# ≥ t"$′#− $q"$′# for all "$' $′# in %2! (2.39)

Hence, the direct revelation mechanism g"·# is truthful.
Importantly, the revelation principle provides a considerable simplification of

contract theory. It enables us to restrict the analysis to a simple and well-defined
family of functions, the truthful direct revelation mechanisms.

Earlier analyses of the set of incentive compatible mechanisms took
place in multiagent environments because their focus was the pro-

vision of public good, bargaining, or voting problems. It is out of the scope
of this volume to discuss multiagent models, but let us briefly mention that
dominant strategy implementation requires that each agent’s best strategy is
to reveal his type truthfully whatever the reports made by the other agents.
Gibbard (1973) characterized the dominant strategy (nonrandom) mecha-
nisms (mappings from arbitrary strategy spaces into allocations) when feasible
allocations belong to a finite set and when there is no a priori information
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on the players’ preferences (which are strict orderings). He showed that such
mechanisms had to be dictatorial, i.e., they had to correspond to the optimal
choice of a single agent. As a corollary he showed that any voting mecha-
nism (i.e., direct revelation mechanism) for which the truth was a dominant
strategy was also dictatorial. In this environment, anything achievable by a
dominant strategy mechanism can also be achieved by a truthful direct rev-
elation mechanism. So, Gibbard proved one version of the revelation prin-
ciple indirectly. For the case of quasi-linear preferences, Green and Laffont
(1977) defined dominant-strategy, truthful direct revelation mechanisms and
proved directly that, for any other dominant strategy mechanism, there is
an equivalent truthful direct revelation mechanism (and they characterized
the class of these mechanisms). Dasgupta, Hammond, and Maskin (1979)
extended this direct proof to any family of preferences. The revelation prin-
ciple can be extended to settings where several agents are privately informed
about their own types with the less demanding concept of Bayesian-Nash
equilibrium. In such a Bayesian context, the revelation principle requires that
each agent’s truthful report of his own type is a Bayesian-Nash equilibrium
(Myerson 1979). The expression “the revelation principle” finally appeared
in Myerson (1981).

2.10 A More General Utility Function for the Agent

Still keeping quasi-linear utility functions, let U = t−C"q' $# now be the agent’s
objective function with the assumptions: Cq > 0, C$ > 0, Cqq > 0 and Cqq$ > 0.
The generalization of the Spence-Mirrlees property used so far is now Cq$ > 0.
This latter condition still ensures that the different types of the agent have indif-
ference curves which cross each other at most once. It is obviously satisfied in
the linear case C"q' $# = $q that was analyzed before. Economically, this Spence-
Mirrlees property is quite clear; it simply says that a more efficient type is also
more efficient at the margin.

The analysis of the set of implementable allocations proceeds closely, as was
done previously. Incentive feasible allocations satisfy the following incentive and
participation constraints:

U = t −C"q' $# ≥ t̄ −C"q̄' $#' (2.40)

%U = t̄ −C"q̄' $̄# ≥ t −C"q' $̄#' (2.41)

U = t −C"q' $# ≥ 0' (2.42)

%U = t̄ −C"q̄' $̄# ≥ 0! (2.43)
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2.10.1 The Optimal Contract

Following the same steps as in section 2.5, the incentive constraint of an efficient
type in (2.40) and the participation constraint for the inefficient type in (2.43)
are the two relevant constraints for optimization. These constraints rewrite respec-
tively as

U ≥ %U +."q̄# (2.44)

where ."q̄# = C"q̄' $̄#−C"q̄' $# (with .′ > 0 and .′′ > 0 from the assumptions
made on C"·#) and

%U ≥ 0! (2.45)

Those constraints are both binding at the second-best optimum, which leads to
the following expression of the efficient type’s rent

U = ."q̄#! (2.46)

Since .′ > 0, reducing the inefficient agent’s output also reduces, as in Sec-
tion 2.6, the efficient agent’s information rent.

With the assumptions made on C"·#, one can also check that the principal’s
objective function is strictly concave with respect to outputs. The solution of the
principal’s program can finally be summarized as follows:

Proposition 2.3: With general preferences satisfying the Spence-Mirrlees
property, Cq$ > 0, the optimal menu of contracts entails:

• No output distortion with respect to the first-best outcome for the efficient
type, qSB = q∗ with

S′"q∗# = Cq"q
∗' $#! (2.47)

A downward output distortion for the inefficient type, q̄SB < q̄∗ with

S′"q̄∗# = Cq"q̄
∗' $̄# (2.48)

and

S′"q̄SB# = Cq"q̄
SB' $̄#+ )

1− )
.′"q̄SB#! (2.49)

• Only the efficient type gets a positive information rent given by USB =
."q̄SB#.

• The second-best transfers are respectively given by tSB = C"q∗' $# +
."q̄SB# and t̄ SB = C"q̄SB' $̄#.
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The first-order conditions (2.47) and (2.49) characterize the optimal solution
if the neglected incentive constraint (2.41) is satisfied. For this to be true, we need
to have

t̄ SB −C"q̄SB' $̄# ≥ tSB −C"qSB' $#+C"qSB' $#−C"qSB' $̄#' (2.50)

which amounts to

0 ≥ ."q̄SB#−."qSB#! (2.51)

We have .′ > 0 from the Spence-Mirrlees property, hence (2.51) is equivalent
to q̄SB ≤ qSB. But from our assumptions we easily derive that qSB = q∗ > q̄∗ >
q̄SB.18 So the Spence-Mirrlees property guarantees that only the efficient type’s
incentive constraint has to be taken into account.

The critical role played by the Spence-Mirrlees property in simplifying the
problem will appear more clearly in models with more than two types.19

Remark: The Spence-Mirrlees property is more generally a constant
sign condition20 on Cq$. If Cq$ < 0, then Proposition 2.3 is unchanged
except that now the inefficient type’s output is distorted upwards q̄SB >
q̄∗ > q∗. Indeed, in such a model, the first-best production level of
the inefficient type is higher than that level for the efficient type.
Moreover, the information rent of the efficient type is still ."q̄# =
C"q̄' $̄# − C"q̄' $#, but now an increase of q̄ is required to decrease
this rent because Cq$ < 0.

2.10.2 Nonresponsiveness

Coming back to our linear specification of the agent’s cost function, let us assume
that the principal’s return from contracting depends also directly on $ and is written
as S"q' $#. This is an instance of a common value model where the agent’s type
directly affects the principal’s utility function. On top of the usual assumptions of
a positive and decreasing marginal value of trade, we also assume that Sq$ > 1.
This latter assumption simply means that the marginal gross value of trade for the
principal increases quickly with the agent’s type. For instance, the efficient agent

18By definition of q∗, S′"q∗# = Cq"q
∗' $# < Cq"q

∗' $̄# because Cq$ > 0. Hence, using the fact that
S"q# − C"q' $̄# is concave in q and maximum for q̄∗, we have q∗ > q̄∗. Moreover, .′ > 0 implies
that S′"q̄SB# > Cq"q̄

SB' $̄#. Thus, we also have q̄SB < q̄∗.
19See Section 3.1 and Appendix 3.1 below.
20In Guesnerie and Laffont (1984), the Spence-Mirrlees property is called the constant sign (CS+

or CS−) assumption.
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produces a lower quality good than the inefficient one, and the principal prefers a
high quality good.

The first-best productions are now defined by Sq"q
∗' $# = $ and Sq"q̄

∗' $̄# =
$̄. With our assumption on Sq$, the first-best production schedule is such that
q∗ < q̄∗, i.e., it does not satisfy the monotonicity condition in (2.15) implied by
incentive compatibility.21

In this case, there exists a strong conflict between the principal’s desire to
have the $̄-type produce more than the $-agent for pure efficiency reasons and
the monotonicity condition imposed by asymmetric information. This is what
Guesnerie and Laffont (1984) call a phenomenon of nonresponsiveness in their
general analysis of the principal-agent’s model with a continuum of types. This
phenomenon makes screening of types quite difficult. Indeed, the second-best opti-
mum induces screening only when qSB = q∗ and q̄SB defined by

Sq"q̄
SB' $̄# = $̄ + )

1− )
*$ (2.52)

satisfy the monotonicity condition qSB ≥ q̄SB. However, when ) is small enough,
q̄SB defined in (2.52) is close to the first-best outcome q̄∗. Thus, we have q̄SB > qSB,
and the monotonicity condition (2.15) is violated. Nonresponsiveness forces the
principal to use a pooling allocation. Figure 2.7 illustrates this nonresponsiveness.

As in figure 2.4, the pair of first-best contracts "A∗'B∗# is not incentive com-
patible. But, contrary to the case of section 2.6.2, the contract C, which makes the
$-type indifferent to whether he tells the truth or takes contract B∗, is not incentive
compatible for the $̄-type who also strictly prefers C to B∗.

One possibility to restore incentive compatibility would be to distort q̄ down
to q∗, which would decrease the $-type’s information rent to yield contract D while
still preserving incentive compatibility for both types. By this action we would
obtain a pooling allocation at D. However, the principal can do better by choosing
another pooling allocation, which is obtained by moving along the zero isoutility
line of a $̄-type. Indeed, the best pooling allocation solves problem "P # below:

max
&"qp'tp#(

)S"qp' $#+ "1− )#S"qp' $̄#− tp(P ):

subject to

tp − $qp ≥ 0 (2.53)

tp − $̄qp ≥ 0! (2.54)

21Differentiating the expression and defining implicitly the first-best q∗"$# by Sq"q
∗"$#' $# = $, we

get dq∗
d$ "$# =

1−Sq$
Sqq

> 0.
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The harder participation constraint is obviously that of the least efficient type,
namely (2.54). Hence, the optimal solution is characterized by

)Sq"q
p' $#+ "1− )#Sq"q

p' $̄# = $̄ (2.55)

and

tp = $̄qp' (2.56)

with qp < q̄∗ because Sq$ > 0.
This pooling contract is represented by point E in figure 2.7 (which can

be to the left or to the right of D) where the indifference curve (the heavy line
through E) of the principal corresponds to the “average” utility function Ŝ"q#− t =
)S"q' $#+ "1− )#S"q' $̄#− t.

In summary, when nonresponsiveness occurs, the sharp conflict between the
principal’s preferences and the incentive constraints (which reflect the agent’s pref-
erences) makes it impossible to use any information transmitted by the agent about
his type.

Figure 2.7: Nonresponsiveness
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2.10.3 More than Two Goods

Let us now assume that the agent is producing a whole vector of goods q =
"q1' ! ! ! ' qn# for the principal. The agent’s cost function becomes C"q' $# with C"·#
being strictly convex in q. The value for the principal of consuming this whole
bundle is now S"q# with S"·# being strictly concave in q.

In this multi-output incentive problem, the principal is interested in a whole
set of activities carried out simultaneously by the agent. It is straightforward to
check that the efficient agent’s information rent is now written as U = ."q# with
."q# = C"q' $̄#−C"q' $#.

This leads to second-best optimal outputs. The efficient type produces the
first-best vector of outputs qSB = q∗ with

Sqi
"q∗# = Cqi

"q∗' $# for all i in &1' ! ! ! 'n(. (2.57)

The inefficient type’s vector of outputs q̄SB is instead characterized by the
first-order conditions

Sqi
"q̄SB# = Cqi

"q̄SB' $̄#+ )

1− )
.qi

"q̄SB# for all i in &1' ! ! ! 'n(, (2.58)

which generalizes the distortion of models with a single good.
Without further specifying the value and cost functions, it is hard to compare

the second-best outputs a priori with the first-best outputs defined by the following
n first-order conditions:

Sqi
"q̄∗# = Cqi

"q̄∗' $̄#' for all i in &1' ! ! ! 'n(. (2.59)

Indeed, it may well be the case that the n first-order conditions (2.58) define
a vector of outputs with some components q̄SB

i above q̄∗
i for a subset of indices i.

Turning now to incentive compatibility, summing the incentive constraints
U ≥ %U +."q̄# and %U ≥ U −."q# for any incentive feasible contract yields

."q# = C"q' $̄#−C"q̄' $̄#

≥ C"q' $#−C"q̄' $#

= ."q̄# for all implementable pairs "q̄' q#. (2.60)

Obviously, this condition is satisfied if the Spence-Mirrlees property Cqi$
> 0

holds for each output i and if the monotonicity conditions q̄i < q
i
for all i are

satisfied. Inequality (2.60) is indeed satisfied for the second-best solution (2.58),
because then q̄SB

i < q̄∗
i < q∗

i
= qSB

i
for all i. However, the reverse is not true. It

might well be the case that q̄SB
i > qSB

i
= q∗

i
for some output i and the condition

(2.60), which is a condition on the whole vector of outputs, nevertheless still holds
for the second-best vector of outputs q∗ and q̄SB.
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So, in general, the implementability condition (2.60) in a multi-output envi-
ronment is more complex than the simple monotonicity condition found in a
single-good setting.

2.11 Ex Ante versus Ex Post Participation Constraints

As we have already mentioned, in most of our discussion dealing with the case of
adverse selection, we consider the case of contracts offered at the interim stage,
i.e., once the agent already knows his type. However, sometimes the principal and
the agent can contract at the ex ante stage, i.e., before the agent discovers his type.
For instance, the contours of the firm may be designed before the agent receives
any piece of information on his productivity. In this section, we characterize the
optimal contract for this alternative timing under various assumptions about the
risk aversion of the two players.

2.11.1 Risk Neutrality

Suppose that, instead of contracting after the agent has discovered $, the principal
and the agent meet and contract ex ante, i.e., before the agent obtains infor-
mation. If the agent is risk neutral, his ex ante participation constraint is now
written as

)U + "1− )#%U ≥ 0! (2.61)

This ex ante participation constraint replaces the two interim participation con-
straints (2.23) and (2.24) in problem "P #. What matters now to ensure participation
is that the agent’s expected information rent remains non-negative.

From (2.20), we see that the principal’s objective function is decreasing in
the agent’s expected information rent. Ideally, the principal wants to impose a zero
expected rent to the agent and have (2.61) be binding.

Moreover, the principal must structure the rents U and %U to ensure that
the wedge between those two levels is such that the incentive constraints (2.21)
and (2.22) remain satisfied. An example of such a rent distribution that is both
incentive compatible and satisfies the ex ante participation constraint with an
equality is

U ∗ = "1− )#*$q̄∗ > 0 and %U ∗ = −)*$q̄∗ < 0! (2.62)

With such a rent distribution, the optimal contract implements the first-best out-
puts without cost from the principal’s point of view as long as the first-best is
monotonic as requested by the implementability condition. This may not be the
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case, for instance, when the nonresponsiveness property holds, as in section 2.10.2.
In that case, even under ex ante contracting and risk neutrality some inefficiency
still arises.22

In the contract defined by (2.62), the agent is rewarded when he is efficient
and punished when he turns out to be inefficient. There must be some risk in
the distribution of information rents to induce information revelation, but this risk
is costless for the principal because of the agent’s risk neutrality. However, to be
feasible, such an ex ante contract requires a strong ability of the court of law to
enforce contracts that could possibly lead to a negative payoff when a bad state of
nature realizes.23

Proposition 2.4: When the agent is risk neutral and contracting takes
place ex ante, the optimal incentive contract implements the first-best
outcome.

Remark: The principal has in fact much more leeway in structuring
the rents U and %U in such a way that the incentive constraints (2.21)
and (2.22) hold and the ex ante participation constraint (2.61) is an
equality. Consider the following contracts &"t∗' q∗#, "t̄∗' q̄∗#( where t∗ =
S"q∗#− T ∗ and t̄∗ = S"q̄∗#− T ∗, with T ∗ being a lump-sum payment
to be defined below. This contract is incentive compatible since

t∗ − $q∗ = S"q∗#− $q∗ − T ∗ > t̄∗ − $q̄∗ = S"q̄∗#− $q̄∗ − T ∗ (2.63)

by definition of q∗, and

t̄∗ − $̄q̄∗ = S"q̄∗#− $̄q̄∗ − T ∗ > t∗ − $̄q∗ = S"q∗#− $̄q∗ − T ∗ (2.64)

by definition of q̄∗.
Note that the incentive compatibility constraints are now strict

inequalities. Moreover, the fixed-fee T ∗ can be used to satisfy the
agent’s ex ante participation constraint with an equality by choosing
T ∗ = )"S"q∗#− $q∗#+ "1− )#"S"q̄∗#− $̄q̄∗#.

This implementation of the first-best outcome amounts to having
the principal selling the benefit of the relationship to the risk-neutral
agent for a fixed up-front payment T ∗. The agent benefits from the full
value of the good and trades off the value of any production against
its cost just as if he was an efficiency maximizer. We will say that the
agent is residual claimant for the firm’s profit.24

22So, one cannot conclude that the distortions imposed by incentive compatibility in the model
of section 2.1 are only due to the inability to contract before $ is revealed to the agent, i.e., to some
sort of contractual incompleteness. Some distortions may still arise with ex ante contracting.

23See section 9.2 for a weakening of this enforceability condition.
24We will obtain a similar first-best implementation under moral hazard in chapter 4.



Rent Extraction-Efficiency Trade-Off • 59

Harris and Raviv (1979) proposed a theory of the firm as a mech-
anism allocating resources at the ex ante stage. The first best allo-

cation remains implementable when the firm has a strong ability to enforce
contracts.

2.11.2 Risk Aversion

A Risk-Averse Agent
The previous section has shown us that the implementation of the first-best is
feasible with risk neutrality. The counterpart of this implementation is that the
agent is subject to a significant amount of risk. Such a risk is obviously costly if
the agent is risk-averse.

Consider now a risk-averse agent with a Von Neumann–Morgenstern utility
function u"·# defined on his monetary gains t− $q, such that u′ > 0, u′′ < 0 and
u"0# = 0. We suppose, as in section 2.11.1, that the contract between the prin-
cipal and the agent is signed before the agent discovers his type.25 The incentive
constraints are unchanged but the agent’s ex ante participation constraint is now
written as

)u"U #+ "1− )#u"%U # ≥ 0! (2.65)

As usual, we guess a solution such that (2.22) is slack at the optimum, and we let
the reader check this ex post. The principal’s program reduces now to

max
&"%U' q̄#,"U' q#(

)"S"q#− $q − U #+ "1− )#"S"q̄#− $̄q̄ − %U #'(P ):

subject to (2.21) and (2.65).

We summarize the solution in the next proposition.26

Proposition 2.5: When the agent is risk-averse and contracting takes
place ex ante, the optimal menu of contracts entails:

• No output distortion for the efficient type qSB = q∗. A downward output
distortion for the inefficient type q̄SB < q̄∗, with

S′"q̄SB# = $̄ + )"u′"%USB#− u′"USB##

)u′"USB#+ "1− )#u′"%USB#
*$! (2.66)

25If the contract is signed after the risk-averse agent discovers his type, the solution is the same as
with risk neutrality (proposition 2.1) since interim participation and incentive constraints take the
same form as with risk neutrality.

26See appendix 2.1 for the proof.
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• Both (2.21) and (2.65) are the only binding constraints. The efficient
(resp. inefficient) type gets a strictly positive (resp. negative) ex post
information rent, USB > 0 > %USB.

With risk aversion, the principal can no longer costlessly structure the agent’s
information rents to ensure the efficient type’s incentive compatibility constraint,
contrary to section 2.11.1. Creating a wedge between U and %U to satisfy (2.21)
makes the risk-averse agent bear some risk. To guarantee the participation of the
risk-averse agent, the principal must now pay a risk premium. Reducing this pre-
mium calls for a downward reduction in the inefficient type’s output so that the
risk borne by the agent is lower. As expected, the agent’s risk aversion leads the
principal to weaken the incentives.

For the constant absolute risk aversion utility function u"x# = 1−exp"−rx#
r

,
(2.66) leads to a closed-form expression for output:

S′"q̄SB# = $̄ + )

1− )
*$

(
1− 1

) + "1− )# exp"r*$q̄SB#

)
! (2.67)

Also, the efficient agent’s ex post utility writes as

USB = *$q̄SB + 1
r
ln"1− ) + ) exp"−r*$q̄SB## > 0 (2.68)

and the inefficient agent’s ex post utility is

%USB = 1
r
ln"1− ) + ) exp"−r*$q̄SB## < 0! (2.69)

Incentives (and outputs) decrease with risk aversion. If risk aversion goes to zero
"r → 0#, q̄SB converges towards the first-best value q̄∗. Indeed, we know from
Section 2.11.1 that, with risk neutrality and an ex ante participation constraint, the
optimal contract induces an efficient outcome. Moreover, the utility levels of both
types converge toward those described in (2.62).

When the agent becomes infinitely risk averse, everything happens as if he
had an ex post individual rationality constraint for the worst state of the world
given by (2.24). In the limit, the inefficient agent’s output q̄SB and the utility levels
USB and %USB all converge toward the same solution as in proposition 2.1. So, the
model of section 2.1 can also be interpreted as a model with ex ante contracting
but with an infinitely risk-averse agent at the zero utility level.

Salanié (1990) analyzed the case of a continuum of types. Pooling
for the least efficient types always occurs when risk aversion is

large enough. Laffont and Rochet (1998) showed a similar phenomenon
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with interim participation constraints when a regulator (the principal) max-
imizes ex ante social welfare and deals with a risk-averse regulated firm
(the agent).

A Risk-Averse Principal
Consider now a risk-averse principal with a Von Neumann–Morgenstern utility
function v"·# defined on his monetary gains from trade S"q#− t such that v ′ > 0,
v ′′ < 0 and v"0# = 0. Again, the contract between the principal and the risk-neutral
agent is signed before the agent knows his type.

In this context, the first-best contract obviously calls for the first-best output q∗

and q̄∗ being produced. It also calls for the principal to be fully insured between
both states of nature and for the agent’s ex ante participation constraint to be
binding. This leads us to the following two conditions that must be satisfied by the
agent’s rents U ∗ and %U ∗:

S"q∗#− $q∗ − U ∗ = S"q̄∗#− $̄q̄∗ − %U ∗ (2.70)

and

)U ∗ + "1− )#%U ∗ = 0! (2.71)

Solving this system of two equations with two unknowns "U ∗' %U ∗# yields

U ∗ = "1− )#
(
S"q∗#− $q∗ − "S"q̄∗#− $̄q̄∗#

)
(2.72)

and

%U ∗ = −)
(
S"q∗#− $q∗ − "S"q̄∗#− $̄q̄∗#

)
! (2.73)

Note that the first-best profile of information rents satisfies both types’ incen-
tive compatibility constraints since

U ∗ − %U ∗ = S"q∗#− $q∗ − "S"q̄∗#− $̄q̄∗# > *$q̄∗ (2.74)

(from the definition of q∗) and

%U ∗ − U ∗ = S"q̄∗#− $̄q̄∗ − "S"q∗#− $q∗# > −*$q∗' (2.75)

(from the definition of q̄∗). Hence, the profile of rents "U ∗' %U ∗# is incentive com-
patible and the first-best allocation is easily implemented in this framework. We
can thus generalize proposition 2.4 as follows:

Proposition 2.6: When the principal is risk-averse over the monetary gains
S"q#− t, the agent is risk-neutral, and contracting takes place ex ante, the
optimal incentive contract implements the first-best outcome.
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It is interesting to note that U ∗ and %U ∗ obtained in (2.72) and (2.73) are also
the levels of rent obtained in (2.63) and (2.64). Indeed, the lump-sum payment
T ∗ = )"S"q∗# − $q∗# + "1 − )#"S"q̄∗# − $̄q̄∗#, which allows the principal to make
the risk-neutral agent residual claimant for the hierarchy’s profit, also provides full
insurance to the principal. By making the risk-neutral agent the residual claimant
for the value of trade, ex ante contracting allows the risk-averse principal to get
full insurance and implement the first-best outcome despite the informational
problem.

Of course this result does not hold anymore if the agent’s interim participation
constraints must be satisfied. In this case, we still guess a solution such that (2.22)
is slack at the optimum. The principal’s program now reduces to

max
&"%U'q̄#'"U'q#(

)v
(
S"q#− $q − U

)
+ "1− )#v

(
S"q̄#− $̄q̄ − %U

)
(P ):

subject to (2.21) and (2.24).

Inserting the values of U and %U that were obtained from the binding con-
straints in (2.21) and (2.24) into the principal’s objective function and optimizing
with respect to outputs leads to qSB = q∗, i.e., no distortion for the efficient type,
just as in the case of risk neutrality and a downward distortion of the inefficient
type’s output q̄SB < q̄∗ given by

S′"q̄SB# = $̄ + )v ′"V SB#

"1− )#v ′"%V SB#
*$' (2.76)

where V SB = S"q∗# − $q∗ − *$q̄SB and %V SB = S"q̄SB# − $̄q̄SB are the principal’s
payoffs in both states of nature. We can check that %V SB < V SB since S"q̄SB# −
$q̄SB < S"q∗# − $q∗ from the definition of q∗. In particular, we observe that the
distortion in the right-hand side of (2.76) is always lower than )

1−)
*$, its value with

a risk-neutral principal. The intuition is straightforward. By increasing q̄ above its
value with risk neutrality, the risk-averse principal reduces the difference between
V SB and %V SB. This gives the principal some insurance and increases his ex ante
payoff.

For example, if v"x# = 1−e−rx

r
, (2.76) becomes S′"q̄SB# = $̄ + )

1−)
er"%V

SB−VSB#*$.
If r = 0, we get back the distortion obtained in section 2.6 with a risk-neutral
principal and interim participation constraints for the agent. Since %V SB < V SB, we
observe that the first-best is implemented when r goes to infinity. In the limit, the
infinitely risk-averse principal is only interested in the inefficient state of nature for
which he wants to maximize the surplus, since there is no rent for the inefficient
agent. Moreover, giving a rent to the efficient agent is now without cost for the
principal.
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Risk aversion on the side of the principal is quite natural in some
contexts. A local regulator with a limited budget or a specialized bank

dealing with relatively correlated projects may be insufficiently diversified to
become completely risk neutral. See Lewis and Sappington (1995) for an
application to the regulation of public utilities.

2.12 Commitment

To solve our incentive problem, we have implicitly assumed that the principal
has a strong ability to commit himself not only to a distribution of rents that will
induce information revelation but also to some allocative inefficiency designed to
reduce the cost of this revelation. Alternatively, this assumption also means that
the court of law can perfectly enforce the contract and that neither renegotiating
nor reneging on the contract is a feasible alternative for the agent and (or) the
principal. What can happen when either of those two assumptions is relaxed?

2.12.1 Renegotiating a Contract

A first source of limited commitment occurs when the principal can renegotiate
the contract offered to the agent along the course of actions. Renegotiation is
a voluntary act that should benefit both the principal and the agent. It should
be contrasted with a breach of contract, which can hurt one of the contracting
parties. One should view a renegotiation procedure as the ability of the contracting
partners to achieve a Pareto improving trade if any becomes incentive feasible
along the course of actions.

Once the different types have revealed themselves to the principal by selecting
the contracts "tSB' qSB# for the efficient type and "t̄ SB' q̄SB# for the inefficient type,
the principal may propose a renegotiation to get around the allocative inefficiency
he has imposed on the inefficient agent’s output. The gain from this renegotia-
tion comes from raising allocative efficiency for the inefficient type and moving
output from q̄SB to q̄∗. To share these new gains from trade with the inefficient
agent, the principal must at least offer him the same utility level as before rene-
gotiation. The participation constraint of the inefficient agent can still be kept at
zero when the transfer of this type is raised from t̄ SB = $̄q̄SB to t̄∗ = $̄q̄∗. How-
ever, raising this transfer also hardens the ex ante incentive compatibility constraint
of the efficient type. Indeed, it becomes more valuable for an efficient type to
hide his type so that he can obtain this larger transfer, and truthful revelation by
the efficient type is no longer obtained in equilibrium. There is a fundamental
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trade-off between raising efficiency ex post and hardening ex ante incentives when
renegotiation is an issue.

The ability to commit to a menu of contracts may not be too problematic
in some instances. Producing a quantity q may require building capacity up to
that level.27 Raising production as requested by the renegotiation procedure asks
for increasing the productive capacity and this can be excessively costly com-
pared to the allocative gains coming from a larger volume of trade. Moreover,
this commitment issue seems highly dependent on the use of a direct revela-
tion mechanism since renegotiation takes place after the agent has revealed his
type but before the principal imposes an output target.28 Therefore let us con-
sider the simple and equivalent indirect mechanism where the principal offers the
same menu to the agent but lets the agent choose the output himself (as we did
in section 2.9). This alternative mechanism does not require any communication
from the agent to the principal before production takes place. The agent makes the
choice of an output and, if this choice is irreversible, there is no scope for renegoti-
ation since the one-shot relationship ends. The commitment issue becomes much
more problematic in truly dynamic contexts where different actions take place at
various dates.29

2.12.2 Reneging on a Contract

A second source of imperfection arises when either the principal or the agent
causes a breach in the contract and thus reneges on their previous contractual
obligation. Let us take the case of the principal reneging on the contract.30 Indeed,
once the agent has revealed himself to the principal by selecting the contract
within the menu offered by the principal, the latter, having learned the agent’s
type, might propose the complete information contract which extracts all rents
without inducing any allocative inefficiency. Of course, this breach of contract
should be anticipated by the agent and the agent’s anticipation of the breach will
interfere with his truthful revelation in the first place. Additionally, the agent may
want to renege on a contract which gives him a negative ex post utility level as
we mentioned in section 2.11.1. In this case, the threat of the agent reneging a
contract signed at the ex ante stage forces the agent’s participation constraints to

27See Beaudry and Poitevin (1994) for a model along these lines.
28Beaudry and Poitevin (1993) and Wambach (1999) have analyzed such a timing of the renego-

tiation game.
29We will return to the difficult issues raised by the renegotiation of contracts in section 9.3.
30See section 8.2.4 and section 9.3 for other models where the agent may renege on the contract.
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be written in interim terms. Such a setting justifies the focus of this chapter on
the case of interim contracting.31

2.13 Stochastic Mechanisms /

We consider here the framework of section 2.10 with a general cost function
C"q' $#. Let us rewrite the principal’s problem as

max
&"q'U #,"q̄' %U #(

)
(
S"q#−C"q' $#

)
+ "1− )#

(
S"q̄#−C"q̄' $̄#

)
− )U − "1− )#%U'(P ):

subject to

U − %U −."q̄# ≥ 0' (2.77)

%U − U +."q# ≥ 0' (2.78)

U ≥ 0' (2.79)

%U ≥ 0! (2.80)

When S"·# is concave and C"·# is convex, the principal’s objective function
is concave in "q' q̄'U' %U #. Neglecting constraints (2.78) and (2.79) as usual, the
remaining constraints (2.77) and (2.80) define a convex set in "q' q̄'U' %U # if ."·# is
convex in q. Then the optimal mechanism cannot be stochastic. To show this result
suppose, on the contrary, that this mechanism is stochastic. A random direct reve-
lation mechanism is then a probability measure on the set of possible transfers and
outputs, which is conditional on the agent’s report of his type. Let &"q̃' Ũ #, " ˜̄q ' %̃U #(
be such a random stochastic mechanism. We can replace this stochastic mecha-
nism by the deterministic mechanism constructed with the expectations of those
variables, namely E" ˜̄q #'E"q̃#'E"Ũ #, and E" %̃U #, where E"·# denotes the expectation
operator. Since the principal’s objective function is strictly concave in q, this new
mechanism gives a higher expected utility to the principal by Jensen’s inequality.32

Similarly, when ."·# is convex, Jensen’s inequality also implies that −."E ˜̄q # ≥
−E"." ˜̄q ##, so that the new deterministic mechanism expands the feasible set
defined by the constraints in (2.77) and (2.80). The principal could thus achieve
a higher utility level with the new deterministic mechanism, which is a contra-

31In section 9.2, we will discuss further the issue of enforcement in such a context.
32Jensen’s inequality says that for any concave function f "·# and any random variable x̃: E"f "x̃## ≤

f "E"x̃##, when E"·# denotes the expectation operator, with a strict inequality if f "·# is strictly concave.
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diction. Therefore, a sufficient condition to ensure the deterministic nature of the
optimal contract is ."·# convex or, equivalently, Cqq$ > 0.

Let us explore briefly what happens if the assumption Cqq$ > 0 is no longer
satisfied everywhere. Substituting (2.77) and (2.80) into the principal’s objective
function, and taking into account that qSB = q∗ (where again S′"q∗# = Cq"q

∗' $#),
the principal’s problem amounts to maximizing an objective function

"1− )#
(
S"q̄#−C"q̄' $̄#

)
− )."q̄#' (2.81)

which may no longer be strictly concave in q̄ everywhere.
When this strict concavity is not satisfied, (2.81) may have several maximizers

among which the principal can randomize.33 Note that the randomness of con-
tracts only affects outputs. From risk neutrality, with the principal and the agent’s
objective functions being linear in transfers, the randomness of transfers is use-
less because any lottery of transfers can be replaced by its expected value without
changing the principal and the agent’s payoffs in any state of nature.

The lack of concavity of (2.81) in fact captures a deeper property: the possi-
ble lack of convexity of the set of incentive feasible allocations. To illustrate this
phenomenon, note that, for contracts such that (2.80) is binding and such that
q = q∗, (2.77) can then be written as

U ≥ ."q̄#! (2.82)

Figure 2.8 represents the set of implementable allocations in the "U' q̄# space and
shows that this set may not be convex when ."·# is nonconvex. Points A and B
are two possible deterministic maximizers of the principal’s (reduced) objective
function,34

"1− )#"S"q̄#−C"q̄' $̄##− )U ! (2.83)

However, the principal can obtain a greater payoff by committing himself to
randomize among incentive feasible allocations. Using such random direct reve-
lation mechanisms leads indeed to a convexification of the set of incentive feasi-
ble allocations as shown in figure 2.9.35 With the objective function (2.83) being
strictly concave in "U' q̄#, a unique maximizer to the principal’s problem exists,
and it is now given by point C.

33This randomization is, in this case, not uniquely defined.
34Note that this function is strictly concave in the space "U' q̄#.
35The convexification adds to the set of incentive feasible allocations the crossed area in figure 2.9.
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Figure 2.8: Multiple Maximizers

By being able to commit to a randomization through a stochastic mechanism,
the principal can achieve a payoff that is strictly greater than what he obtains
with deterministic mechanisms. Of course, the difficulty may come from the fact
that this randomization has to be verifiable by a court of law before it can be
employed in contracting. Ensuring this verifiability is a more difficult problem
than ensuring that a deterministic mechanism is enforced, because any deviation
away from a given randomization can only be statistically detected once a sufficient
number of realizations of the contracts have been observed. This suggests that such
a deviation can only be detected in a repeated relationship framework or when the
principal is involved in many bilateral one-shot principal-agent relationships and
always deviates in the same way. The enforcement of such stochastic mechanisms
in a bilateral one-shot relationship is thus particularly problematic. This has led
scholars to give up those random mechanisms or, at least, to focus on economic
settings where they are not optimal.

Stochastic mechanisms have been sometimes suggested in the insur-
ance, nonlinear pricing, and optimal taxation literatures (see Stiglitz

1987, Arnott and Stiglitz 1988, and Maskin and Riley 1984).
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Figure 2.9: Unique Maximizer with Randomization

2.14 Informative Signals to Improve Contracting /

In this section, we investigate the impacts of various improvements of the prin-
cipal’s information system on the optimal contract. The idea here is to see how
signals that are exogenous to the relationship can be used by the principal to bet-
ter design the contract with the agent. The simple observation of performances in
similar principal-agent relationships and the choice of monitoring structures are
examples of devices used to improve the agent’s control by mitigating the informa-
tion gap between the principal and his agent.

2.14.1 Ex Post Verifiable Signal

Suppose that the principal, the agent and the court of law observe ex post a veri-
fiable signal 0 which is correlated with $. This signal is observed after the agent’s
choice of production (or alternatively after the agent’s report to the principal in
a direct revelation mechanism). The contract can then be conditioned on both
the agent’s report and the observed signal that provides useful information on the
underlying state of nature.



Rent Extraction-Efficiency Trade-Off • 69

For simplicity, we assume that this signal may take only two values, 01 and
02. Let the conditional probabilities of these respective realizations of the signal
be 11 = Pr"0 = 01/$ = $# ≥ 1/2 and 12 = Pr"0 = 02/$ = $̄# ≥ 1/2! Note
that, if 11 = 12 = 1/2, the signal 0 is uninformative. Otherwise, 01 brings good
news—the fact that the agent is efficient—and 02 brings bad news, since it is more
likely that the agent is inefficient in this case.

Let us adopt the following notations for the ex post information rents: u11 =
t"$' 01# − $q"$' 01#, u12 = t"$' 02# − $q"$' 02#, u21 = t"$̄' 01# − $̄q"$̄' 01#, and
u22 = t"$̄' 02#− $̄q"$̄' 02#. Similar notations are used for the outputs qij . The agent
discovers his type and plays the mechanism before the signal 0 realizes. Then
the incentive and participation constraints must be written in expectation over the
realization of 0 . Incentive constraints for both types write respectively as

11u11 + "1− 11#u12 ≥ 11"u21 + *$q21#+ "1− 11#"u22 + *$q22# (2.84)

"1− 12#u21 + 12u22 ≥ "1− 12#"u11 − *$q11#+ 12"u12 − *$q12#! (2.85)

Participation constraints for both types are written as

11u11 + "1− 11#u12 ≥ 0 ' (2.86)

"1− 12#u21 + 12u22 ≥ 0! (2.87)

Note that, for a given schedule of output qij , the system (2.84) through (2.87)
has as many equations as unknowns uij . When the determinant of the system (2.84)
to (2.87) is nonzero, it is possible to find ex post rents uij (or equivalent trans-
fers) such that all these constraints are binding:36 In this case, the agent receives
no rent whatever his type. Moreover, any choice of production levels, in partic-
ular the complete information optimal ones, can be implemented this way. The
determinant of the system is nonzero when

1− 11 − 12 -= 0! (2.88)

Importantly, the condition (2.88) holds generically. It fails only if 11 = 12 = 1
2 ,

which corresponds to the case of an uninformative and useless signal.

Riordan and Sappington (1988) introduced the condition (2.88) in a
single-agent environment. Crémer and McLean (1988) generalized

this use of correlated information in their analysis of multiagent models. We
will cover the important topic of yardstick competition for multiagent organi-
zations in our next book.

36In fact, using Farkas’s lemma, one can even ensure that incentive constraints are strict inequalities
(see Crémer and McLean 1988 for details in a multiagent setting).
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2.14.2 Ex Ante Nonverifiable Signal

We keep the same informational structure as in section 2.14.1, but now we suppose
that a nonverifiable binary signal 0 about $ is available to the principal at the ex
ante stage. Before offering an incentive contract, the principal computes, using
the Bayes law, his posterior belief that the agent is efficient for each value of this
signal, namely

)̂1 = Pr"$ = $/0 = 01# =
)11

)11 + "1− )#"1− 12#
' (2.89)

)̂2 = Pr"$ = $/0 = 02# =
)"1− 11#

)"1− 11#+ "1− )#12
! (2.90)

Then the optimal contract entails a downward distortion of the inefficient agent’s
production q̄SB"0i#, which is for signals 01 and 02 respectively:

S′"q̄SB"01## = $̄ + )̂1
1− )̂1

*$ = $̄ + )11

"1− )#"1− 12#
*$ (2.91)

S′"q̄SB"02## = $̄ + )̂2
1− )̂2

*$ = $̄ + )"1− 11#

"1− )#12
*$! (2.92)

In the case where 11 = 12 = 1 > 1
2 , we can interpret 1 as an index of the

informativeness of the signal. Observing 01, the principal thinks that it is more
likely that the agent is efficient. A stronger reduction in q̄SB, and thus in the
efficient type’s information rent, is called for after 01. (2.91) shows that incentives
decrease with respect to the case without informative signal since " 1

1−1
> 1#. In

particular, if 1 is large enough, the principal shuts down the inefficient firm after
having observed 01. The principal offers a high-powered incentive contract only
to the efficient agent, which leaves him with no rent. On the contrary, because
he is less likely to face an efficient type after having observed 02, the principal
reduces less of the information rent than in the case without informative signal
since " 1−1

1
< 1#. Incentives are stronger.

Boyer and Laffont (2000) provided a comparative statics analysis of
the effect of a more competitive environment on the optimal contract

in an adverse selection framework. In their analysis, the competitiveness of
the environment is linked to the informativeness of the signal 0 .
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2.14.3 More or Less Favorable Distribution of Types

In the last two sections, 2.14.1 and 2.14.2, we considered “improvements” in the
information structure. More generally, even in the basic model of this chapter,
one may wonder how information structures can be ranked by the principal and
the agent in an adverse selection framework.37

We will say that a distribution ")̃' 1− )̃# is more favorable than a distribution
")' 1 − )# if and only if )̃ > ). Then the expected utility of the principal is
higher with a more favorable distribution. Indeed, we can define this expected
utility as

V ")# = )"S"q∗#− $q∗ − *$q̄SB")##+ "1− )#"S"q̄SB")##− $̄q̄SB")##' (2.93)

where we make explicit the dependence of V and q̄SB on ).
Using the Envelope Theorem, we obtain

dV ")#

d)
= "S"q∗#− $q∗ − *$q̄SB#− "S"q̄SB#− $̄q̄SB#

= "S"q∗#− $q∗#− "S"q̄SB#− $q̄SB#' (2.94)

which is strictly positive by definition of q∗.
The rent of the efficient type, *$q̄SB, is clearly lower when the distribution

is more favorable. As can be seen by differentiating (2.29), q̄SB")# is a decreasing
function of ). Incentives decrease as the distribution becomes more favorable. The
perspective of a more likely efficient type leads the principal to a trade-off that is
tilted against information rents, i.e., a trade-off that is less favorable to allocative
efficiency. For the ex ante rent of the agent, U ")# = )*$q̄SB")#, we have instead

dU ")#

d)
= *$q̄SB")#+ )*$

dq̄SB")#

d)
(2.95)

or, using (2.29),

dU ")#

d)
= *$q̄SB")#︸ ︷︷ ︸

>0

+ )"*$#2

"1− )#2S′′"q̄SB")##︸ ︷︷ ︸
<0

! (2.96)

Therefore, for *$ small enough, the expected rent increases when the dis-
tribution is more favorable, but it decreases when *$ is rather large. Note that if
there is shutdown when ) becomes larger, the expected rent decreases necessarily.

37An improvement of the information structure in the sense of Blackwell (1951) (see section 4.6.2
for a definition) does not necessarily increase the principal’s welfare. The reason is that, in addition
to its usual statistical effect, a better information structure affects the information rents and therefore
affects directly the principal’s objective function.
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The most interesting result is that, for *$ small, both the principal and the agent
gain from a more favorable distribution. There is no conflict of interests on the
choice of the information structure.

See Laffont and Tirole (1993, chap. 1) for a similar analysis in the
case of a continuum of types.

2.15 Contract Theory at Work

This section proposes several classical settings where the basic model of this chap-
ter is useful. Introducing adverse selection in each of these contexts has proved to
be a significative improvement of standard microeconomic analysis.

2.15.1 Regulation

In the Baron and Myerson (1982) regulation model, the principal is a regulator
who maximizes a weighted average of the consumers’ surplus S"q# − t and of
a regulated monopoly’s profit U = t − $q, with a weight 2 < 1 for the firm’s
profit. The principal’s objective function writes now as V = S"q#− $q − "1−2#U .
Because 2 < 1 it is socially costly to give up a rent to the firm. Maximizing
expected social welfare under incentive and participation constraints leads to qSB =
q∗ for the efficient type and a downward distortion for the inefficient type, q̄SB < q̄∗,
which is given by

S′"q̄SB# = $̄ + )

1− )
"1− 2#*$! (2.97)

Note that a higher value of 2 reduces the output distortion, because the regulator
is less concerned by the distribution of rents within society as 2 increases. If 2 = 1,
the firm’s rent is no longer costly and the regulator behaves as a pure efficiency
maximizer implementing the first-best output in all states of nature.

The regulation literature of the last fifteen years has greatly improved
our understanding of government intervention under asymmetric

information. We refer to Laffont and Tirole (1993) for a comprehensive view
of this theory and its various implications for the design of real world regula-
tory institutions.
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2.15.2 Nonlinear Pricing by a Monopoly

In Maskin and Riley (1984), the principal is the seller of a private good with
production cost cq who faces a continuum of buyers. The principal has thus a
utility function V = t − cq. The tastes of a buyer for the private good are such
that his utility function is U = $u"q#− t, where q is the quantity consumed and
t his payment to the principal. Suppose that the parameter $ of each buyer is
drawn independently from the same distribution on % = &$' $̄( with respective
probabilities 1− ) and ).

We are now in a setting with a continuum of agents. However, it is mathe-
matically equivalent to the framework of section 2.5 with a single agent. Now the
distribution of $ to be considered is the actual distribution of types, i.e., ) is the
frequency of type $̄ by the Law of Large Numbers. It is important to stress this
interpretation because it considerably enlarges the relevance of the principal-agent
model analyzed before.

Incentive and participation constraints can as usual be written directly in
terms of the information rents U = $u"q#− t and %U = $̄u"q̄#− t̄ as

U ≥ %U − *$u"q̄#' (2.98)

%U ≥ U + *$u"q#' (2.99)

U ≥ 0' (2.100)

%U ≥ 0! (2.101)

The principal’s program now takes the following form:

max
&"%U' q̄#,"U' q#(

)
(
$̄u"q̄#− cq̄

)
+ "1− )#

(
$u"q#− cq

)
−

(
)%U + "1− )#U

)
(P ):

subject to (2.98) to (2.101).

The analysis is the mirror image of that of section 2.5, where now the efficient
type is the one with the highest valuation for the good $̄. Hence, (2.99) and (2.100)
are the two binding constraints. As a result, there is no output distortion with
respect to the first-best outcome for the high valuation type and q̄SB = q̄∗, where
$̄u′"q̄∗# = c!

However, there exists a downward distortion of the low valuation agent’s out-
put with respect to the first-best outcome. We have qSB < q∗, where

(
$ − )

1− )
*$

)
u′"qSB# = c and $u′"q∗# = c! (2.102)

So the unit price is not the same if the buyers demand q̄∗ or qSB, hence the
expression of nonlinear prices.
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The literature on nonlinear pricing is huge. The interested reader
will find in Tirole (1988), Varian (1988), and Wilson (1993) excel-

lent reviews of this topic. In chapter 9, we discuss the link between direct
revelation mechanisms and nonlinear prices, and in particular how and when
the optimal direct mechanism can be implemented with a menu of simple
linear prices in the case of a continuum of types that has been the focus of
most of the nonlinear pricing literature.

2.15.3 Quality and Price Discrimination

Mussa and Rosen (1978) studied a very similar problem to the one in section
2.15.2, where agents buy one unit of a commodity with quality q but are vertically
differentiated with respect to their preferences for the good. The marginal cost
(and average cost) of producing one unit of quality q is C"q# and the principal
has the utility function V = t − C"q#. The utility function of an agent is now
U = $q − t with $ in % = &$' $̄(, with respective probabilities 1− ) and ).

Incentive and participation constraints can still be written directly in terms of
the information rents U = $q − t and %U = $̄q̄ − t̄ as

U ≥ %U − *$q̄' (2.103)

%U ≥ U + *$q' (2.104)

U ≥ 0' (2.105)

%U ≥ 0! (2.106)

The principal solves now:

max
&"U'q#,"%U'q̄#(

)"$̄q̄ −C"q̄##+ "1− )#
(
$q −C"q#

)
− ")%U + "1− )#U #(P ):

subject to (2.103) to (2.106).

Following procedures similar to what we have done so far, only (2.104) and
(2.105) are binding constraints. Finally, we find that the high valuation agent
receives the first-best quality q̄SB = q̄∗ where $̄ = C′"q̄∗#. However, quality is now
reduced below the first-best for the low valuation agent. We have qSB < q∗, where

$ = C′(qSB
)
+ )

1− )
*$ and $ = C′"q∗#! (2.107)

Interestingly, the spectrum of qualities (defined as the difference of qualities
between what is obtained respectively by the high valuation and by the low
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valuation agent) is larger under asymmetric information than under complete
information. This incentive of the seller to put a low quality good on the market
is a well-documented phenomenon in the industrial organization literature. Some
authors have even argued that damaging its own goods may be part of the firm’s
optimal selling strategy when screening the consumers’ willingness to pay for
quality is an important issue.

2.15.4 Financial Contracts

Asymmetric information significantly affects the financial markets. For instance, in
Freixas and Laffont (1990) the principal is a lender who provides a loan of size k
to a borrower. Capital costs Rk to the lender since it could be invested elsewhere
in the economy to earn the risk-free interest rate R. The lender has thus a utility
function V = t − Rk. The borrower makes a profit U = $ f "k# − t where $ f "k#
is the production with k units of capital and t is the borrower’s repayment to the
lender. We assume that f ′ > 0 and f ′′ < 0. The parameter $ is a productivity
shock drawn from % = &$' $̄( with respective probabilities 1− ) and ).

Incentive and participation constraints can again be written directly in terms
of the borrower’s information rents U = $ f "k#− t and %U = $̄f "k̄#− t̄ as

U ≥ %U − *$ f "k̄#' (2.108)

%U ≥ U + *$ f "k#' (2.109)

U ≥ 0' (2.110)

%U ≥ 0! (2.111)

The principal’s program takes now the following form:

max
&"U'k#,"%U'k̄#(

)
(
$̄f "k̄#− Rk̄

)
+ "1− )#

(
$ f "k#− Rk

)
−

(
)%U + "1− )#U

)
(P ):

subject to (2.108) to (2.111).

We let the reader check that (2.109) and (2.110) are now the two binding con-
straints. As a result, there is no capital distortion with respect to the first-best
outcome for the high productivity type and k̄SB = k̄∗ where $̄f ′"k̄∗# = R. In this
case, the return on capital is equal to the risk-free interest rate. However, there
also exists a downward distortion in the size of the loan given to a low productivity
borrower with respect to the first-best outcome. We have kSB < k∗, where

(
$ − )

1− )
*$

)
f ′
(
kSB

)
= R and $ f ′"k∗# = R! (2.112)
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Screening borrowers according to the size of their loans amounts
to some kind of rationing for the low productivity firms. This phe-

nomenon is well documented in the finance literature, and we refer to Freixas
and Rochet (1999, chap. 5) for a more complete analysis and further ref-
erences on screening in financial contracts. We will see in section 3.6 that
instead of using the loan size the lender may also rely on other screening
devices, like auditing or the threat of termination, to get valuable information
about the firm requesting financing.

2.15.5 Labor Contracts /

Asymmetric information also undermines the relationship between a worker and
the firm for which he works. In Green and Kahn (1983) and Hart (1983b) among
others, the principal is a union (or a set of workers) providing its labor force l
to a firm. To simplify the analysis, we assume that the union has full bargaining
power in determining the labor contract with the firm and that the latter has a
zero reservation utility.

The firm makes a profit $ f "l# − t, where f "l# is the return on labor and t
is the worker’s payment. We assume that f ′ > 0 and f ′′ < 0. The parameter $ is
a productivity shock drawn from % = &$' $̄( with respective probabilities 1 − )
and ). In the labor contracting literature, the firm knows the realization of the
shock and the union ignores its value. The firm’s objective is to maximize its profit
U = $ f "l#− t. Workers have a utility function defined on consumption and labor.
If their disutility of labor is counted in monetary terms and all revenues from the
firm are consumed, they get V = v"t − l# where l is their disutility of providing l
units of labor and v"·# is increasing and concave (v ′ > 0' v ′′ < 0).

In this context, the firm’s boundaries are determined before the realization of
the shock and contracting takes place ex ante. The ex ante participation constraint
is written in a way similar to (2.71). It should be clear that the model is similar to
that of section 2.11.2 with a risk-averse principal and a risk-neutral agent.

Using the results of that section, we know that the risk-averse union will
propose a contract to the risk-neutral firm which provides full insurance and
implements the first-best levels of employments l̄∗ and l∗, defined respectively by
$̄f ′"l̄∗# = 1 and $ f ′"l∗# = 1.

Let us now turn to the more difficult case where workers have a utility func-
tion exhibiting an income effect, and let us assume, to simplify, that V = v"t#− l.

The first-best optimal contract would still require efficient employment in
both states of nature. Moreover, it would also call for equating the worker’s
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marginal utility of income across states:

t∗ = t̄∗' (2.113)

and making the firm’s expected utility equal to zero:

)"$̄f "l̄∗#− t̄∗#+ "1− )#"$ f "l∗#− t∗# = 0! (2.114)

Solving those latter two equations for the pair of transfers "t̄∗' t∗) immediately
yields t̄∗ = t∗ = )$̄ f "l̄∗# + "1 − )#$ f "l∗# = E"$ f "l∗##, where E"·# denotes the
expectation operator with respect to $ and $̃ is the random effect.

Inserting this value of the transfer into the union’s objective function, the
principal chooses the levels of employment that are obtained as solutions to

"P #+ max
&"l̄'l#(

v
(
)$̄f "l̄#+ "1− )#$ f "l#

)
− ) l̄ − "1− )#l!

We immediately find the first-best levels of labor,

$̄f ′"l̄∗# = 1
v ′"E"$ f "l∗###

(2.115)

and

$ f ′"l∗# = 1
v ′"E"$ f "l∗###

! (2.116)

It follows that $̄ f ′"l̄∗# = $ f ′"l∗#. Using the fact that f ′′ < 0, we finally obtain
that l̄∗ > l∗. The firm uses more labor when the productivity shock is larger.

Let us now consider the case of asymmetric information. The firm’s incentive
compatibility constraints in both states of nature are written as

$̄f "l̄#− t̄ ≥ $̄f "l#− t (2.117)

in the good state $̄, and

$ f "l#− t ≥ $ f "l̄#− t̄ (2.118)

in the bad state $.
Summing (2.117) and (2.118), we immediately obtain the implementability

condition

l̄ ≥ l! (2.119)

Note that the first-best menu &"t∗' l∗#, "t̄∗' l̄∗#( satisfies (2.117) but vio-
lates (2.118). Therefore, let us look for an optimal incentive feasible contract
where the binding incentive constraint prevents the firm from claiming that a high
shock $̄ has realized when, in fact, a low shock $ has realized. In this example,
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Figure 2.10: First-Best Labor Contracts

the bad type $ wants to mimic the good type $̄. This may be surprising in view
of the previous analysis carried out in this chapter. To understand this result, it is
useful to look at figure 2.10 where we have represented the first-best contracts A∗

and B∗ of the $̄-firm and the $-firm respectively.
The indifference curves of the firm are concave in the "l' t# space with higher

levels of utility obtained as one moves towards the southeast. The $̄-indifference
curve has a greater slope than the $-one so that the single crossing property still
holds in our context.

At the first-best, the union requests a constant wage because it is averse to
monetary risk. A∗ and B∗ are thus on the same horizontal line. If the union offers
this pair of contracts under asymmetric information, the firm has an incentive to
always claim that state $̄ realized and obtain more labor. To avoid this, the union
may propose the incentive compatible menu "A∗'C#. The firm is then indifferent
between A∗ and C in state $ and strictly prefers A∗ to C in state $̄. This menu
is good from an allocative point of view, because the levels of employment are
still equal to their first-best values. However, this contract makes the union bear
an excessive risk in monetary transfers. This risk can be reduced by decreasing
the gap between l̄ and l. Because of the impact of asymmetric information on
the marginal utility of income of the union members in both states of nature,
it is hard to assess graphically how the second-best optimal contract should be
chosen.
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Let us move therefore to a formal derivation of this second-best contract. The
union’s problem writes now as

max
&"t̄'l̄#,"t'l#(

)"v"t̄#− l̄#+ "1− )#"v"t#− l#(P ):

subject to (2.118), and

)t̄ + "1− )#t ≤ )$̄f "l̄#+ "1− )#$ f "l#' (2.120)

where (2.120) is the firm’s ex ante participation constraint.
Let us denote the respective multipliers of these constraints with 3 and 1.

Optimizing with respect to t̄ and t leads to

)v ′"t̄ SB#+ 3− 1) = 0 (2.121)

"1− )#v ′"tSB#− 3− 1"1− )# = 0! (2.122)

Summing (2.121) and (2.122), we immediately obtain that 1 = )v ′"t̄ SB# +
"1− )#v ′"tSB# > 0. As expected, the firm’s participation constraint (2.120) is bind-
ing. Using (2.121) and (2.122), we also get 3 = )"1 − )#"v ′"tSB# − v ′"t̄ SB##. To
satisfy (2.118) and (2.119), it must be that t̄ SB ≥ tSB. Moreover, the equality holds
only if we have bunching and l̄ = l. For l̄ > l, the inequality is strict. In this case,
3 > 0 and the incentive constraint (2.118) is also binding. This allows us to finally
express the optimal second-best transfers as

t̄ SB = )$̄f "l̄SB#+ "1− )#$ f "lSB#+ "1− )#$"f "l̄SB#− f "lSB## (2.123)

tSB = )$̄f "l̄SB#+ "1− )#$ f "lSB#− )$"f "l̄SB#− f "lSB##! (2.124)

Substituting the transfers into the principal’s objective function and optimiz-
ing with respect to l̄ and l, we finally obtain

−) + 1)$̄f ′"l̄SB#− 3$ f ′"l̄SB# = 0 (2.125)

−"1− )#+ 1"1− )#$ f ′"lSB#+ 3$ f ′"lSB# = 0! (2.126)

Or, to put it differently:

$̄f ′"l̄SB# = 1
1

+ 3$

1)
f ′"l̄SB#' (2.127)

$ f ′"lSB# = 1
1

− 3$

1"1− )#
f ′"lSB#, (2.128)

where

1 = )v ′(E"$̃ f "l̃SB##+ "1− )#$"f "l̄SB#− f "lSB##
)

+ "1− )#v ′(E"$̃ f "l̃SB##− )$"f "l̄SB#− f "lSB##
)
' (2.129)
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and

3 = )"1− )#
(
v ′(E"$̃ f "l̃SB##− )$ "f "l̄SB#− f "lSB##

)

− v ′(E"$̃ f "l̃SB##+ "1− )#$ "f "l̄SB#− f "lSB##
))
! (2.130)

The system of four nonlinear equations (2.127) through (2.130) is quite hard
to solve. One reason for this difficulty is that one cannot immediately deduce
from (2.127) and (2.128) that l̄SB is smaller and lSB is larger than the corresponding
first-best values. Indeed, the marginal utility of income 1 changes between both
settings.

Nevertheless, one point is worth making. Assume that v ′′′ > 0;38 then, by
Jensen’s inequality

1 > v ′"E"$̃ f "l̃SB###! (2.131)

Using (2.128), we observe that

$ f ′"lSB# <
1

v ′"E"$̃ f "l̃SB###
! (2.132)

Conditionally on the level of labor l̄SB in state $̄ (which, keep in mind, is
no longer equal to the first-best level l̄∗) the inequality (2.132) shows that there
is an incentive to expand output in state $ above what would be optimal under
complete information. This can be interpreted as a source of overemployment in
the model.

In state $̄, things are less clear. To reduce the costly incentive con-
straint (2.118), the union wants l̄SB to be chosen closer to lSB than at the first-best.
However, because lSB has a priori been shifted upward, this does not imply that
l̄SB is below its first-best value. The complete comparison with the first-best levels
of employment depends on the utility function.

This section has illustrated how income effects make the analysis much harder
even in two-type models. Those income effects were avoided in the standard model
of this chapter since the principal’s marginal utility of income was one under com-
plete and asymmetric information. Doing so may be justified in partial equilibrium
settings where income effects may be negligible.

Green and Kahn (1983) and Chari (1983) have also highlighted the
incentives for overemployment in similar models but with a contin-

uum of types. Neglecting the impact on the marginal utility of income, all
types are induced to expand outputs when the local incentive constraints have
a positive multiplier. The normality of leisure can be shown to be a sufficient

38This assumption is ensured when v"·# has decreasing absolute risk aversion.
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condition for this property. For further references on this topic, the interested
reader can look at Hart and Holmström (1987) and the references therein.

Appendix 2.1: Proof of Proposition 2.5

Let us form the following Lagrangian for the principal’s problem

L"q' q̄'U' %U' 3' 1# = )"S"q#− $q − U #+ "1− )#"S"q̄#− $̄q̄ − %U #

+3"U − %U − *$q̄#+ 1")u"U #+ "1− )#u"%U ##' (2.133)

where 3 is the multiplier of (2.21) and 1 is the multiplier of (2.65).
Optimizing w.r.t. U and %U yields respectively

− ) + 3+ 1)u′"USB# = 0 (2.134)

− "1− )#− 3+ 1"1− )#u′"%USB# = 0! (2.135)

Summing (2.134) and (2.135), we obtain

1")u′"USB#+ "1− )#u′"%USB## = 1' (2.136)

and thus 1 > 0. Using (2.136) and inserting it into (2.134) yields

3 = )"1− )#"u′"%USB#− u′"USB##

)u′"USB#+ "1− )#u′"%USB#
! (2.137)

Moreover, (2.21) implies that USB ≥ %USB and thus 3 ≥ 0, with 3 > 0 for a
positive output y.

Optimizing with respect to outputs yields respectively

S′"qSB# = $ (2.138)

and

S′"q̄SB# = $̄ + 3

1− )
*$! (2.139)

Simplifying by using (2.137) yields (2.66).



3 Incentive and
Participation Constraints
with Adverse Selection !

The main theme of chapter 2 was to determine how the fundamental conflict
between rent extraction and efficiency could be solved in a principal-agent rela-
tionship with adverse selection. In the models presented in chapter 2, this conflict
was relatively easy to understand because it resulted from the simple interaction
of a single incentive constraint with a single participation constraint. A major diffi-
culty of incentive theory in general, and adverse selection models in particular, lies
in the numerous constraints imposed by incentive compatibility when one moves
away from the simple models of chapter 2.1

In this chapter, we consider more complex contractual environments that
have in common the fact that they raise further difficulties for the determination

1Even in those simple models, the optimal solution is only derived by first guessing which are
the binding incentive and participation constraints and then checking ex post that the remaining
constraints are really satisfied by the solution of the relaxed problem.



Incentive and Participation Constraints • 83

of the binding incentive and participation constraints. Those difficulties are not
only purely technical ones due to the increased mathematical complexity of the
models, but they are also deeply rooted in the economics of the problems under
scrutiny. They often lead to a quite novel analysis of the rent extraction-efficiency
trade-off, sometimes challenging its main insights, but always offering sharp and
interesting economic conclusions.

We can roughly classify the features of the new contractual settings analyzed
in this chapter into three broad categories. Each of these categories yields a partic-
ular perturbation of the standard rent extraction-efficiency trade-off. Let us briefly
describe these three categories.

• Conflict between several of the agent’s incentive constraints: In envi-
ronments that are more complex than the bare-bones model of chapter 2, the
agent may have more than two possible types. These models include the relatively
straightforward three-type extensions of the basic set up of chapter 2, the case of a
continuum of types often found in the literature, and also the less easy-to-handle
multidimensional modelling of adverse selection. In the case of multidimensional
modelling, new conflicts arise between several of the agent’s incentive constraints
of the agent.

In a unidimensional model with three types, the Spence-Mirrlees property
enables us to simplify the analysis considerably, because it suggests that only local
incentive constraints need to be taken into account. However, the sole consider-
ation of upward incentive compatibility constraints may be misleading, and the
optimal contract may call for some downward incentive compatibility constraints
to be binding as well. Bunching of different types on the same contract arises quite
naturally when the distribution of types does not satisfy the monotone hazard rate
property. Three-type models alone are enough to highlight this bunching phe-
nomenon. However, for the sake of completeness, appendices 3.1 and 3.2 at the
end of this chapter are entirely devoted to the case of a continuum of types. We
solve there for the optimal contract with a continuum of types. Also, we present
the techniques needed to replace the infinite number of incentive constraints with
a local incentive constraint, and we show the validity of this approach when the
Spence-Mirrless property holds. Then, we move on to solve for the optimal con-
tract with a continuum of types in the presence of bunching.

In practice, the agent’s private information is often multidimensional. A reg-
ulator is ignorant of both the marginal cost and the fixed cost of a regulated firm.
A bank is ignorant of both the quality of an investment and the risk aversion
of the investor. A monopolistic seller knows neither the willingness to pay nor
the marginal utility of income of the buyer. By the mere multidimensionality of
the type space, different types of agents cannot be unambiguously ordered, and
multidimensional models are still characterized by some conflicts between various
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incentive constraints. Nothing like the monotone hazard rate property guarantees
the full separation of types on different allocations in the multidimensional model.
However, at least in two by two discrete models, some analogies with the unidi-
mensional model of chapter 2 can still be drawn.

• Conflict between the agent’s incentive and type-dependent participation
constraints: Another significant simplification made in chapter 2 was to assume
that the status quo utility level of the agent was independent of his type (and
normalized to zero). Quite often, outside his relationship with the principal an
efficient agent has better opportunities than an inefficient agent. To model those
valuable opportunities, we assume that the agent gets an exogenous type-dependent
utility level when he is not trading with the principal. When the efficient type’s
status quo utility level becomes high enough, the principal finds that it is no
longer useful to reduce allocative efficiency to decrease the agent’s information
rent, which is bounded below by this outside opportunity. Keeping the efficient
agent within the relationship may even lead the principal to give him such a great
deal that the inefficient agent is also willing to take this offer, i.e., to mimic the
efficient type. The inefficient agent’s incentive constraint is then binding, a case
of so called countervailing incentives.

Instead of being deterministic, the agent’s outside opportunities may also be
random. This leads to random participation constraints and thus to a probabilistic
participation of some types. In a two-type model where only the inefficient type’s
participation is random, the contract must not only induce information revelation
by the efficient type but must also arbitrate between the benefit of trading more
often with an inefficient type and the cost of providing that inefficient type with
enough incentives to participate.

• Constraints on transfers: So far we have assumed that the monetary trans-
fers between the principal and the agent were unlimited. Several kinds of con-
straints can be imposed on these transfers.

Under ex ante contracting and with a risk-neutral agent, we showed in
section 2.11.1 that the first-best allocation was implementable provided that the
agent receives a negative payoff in the bad state of nature. However, agents are
often financially constrained and have limited liability. When such penalties are
restricted by different kinds of limited liability constraints, it becomes harder to
induce information revelation. The conflict between incentive compatibility and
ex ante participation constraints is no longer costless to solve. Second-best volumes
of trade are then distorted away from their first-best values. Nevertheless, the
direction of the distortion depends on the nature of the limited liability constraints.

In section 2.14.1 we have already seen how informative signals on the agent’s
type enabled the principal to improve the terms of the rent extraction-efficiency
trade-off. Auditing is an endogenous way to obtain such signals. Audit allows a
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costly enlargement of the principal’s tools that are available to screen the agent’s
types.2 At some cost, the principal may be able to verify with some probability the
agent’s message on his type. In cases where a lie is detected, the agent is punished
and has to pay a penalty, which again can be limited in different ways either by the
agent’s assets or his gains from trade with the principal. Of course, this threat of
an audit relaxes the incentive compatibility constraint. But the trade-off between
incentive compatibility and participation constraints is again dependent on the
particular constraints imposed on punishments.

Most of this book is concerned with principal-agent relationships where the
conflict between the principal and the agent is quite obvious and leads to binding
participation constraints. However, when the principal is a benevolent government
willing to redistribute income between heterogeneous agents, the agency conflict
comes from the interaction between the principal’s budget balance constraint and
the agent’s incentive constraint. Solving such problems requires slightly different
methods than those we have used so far. Indeed, for such models one cannot deter-
mine, sequentially, the distribution of information rents that implement a given
output profile at a minimal cost and then the second-best outputs. Instead, the
technical difficulties of such models come from the simultaneous characterization
of the second-best outputs and the profile of information rents. Those taxation
models highlight a new trade-off between allocative efficiency and redistribution.

Section 3.1 presents the straightforward three-type extension of the standard
model of chapter 2. In this section we discuss the Spence-Mirrlees property and
the monotone hazard rate property, which together ensure monotonicity of the
optimal schedule of outputs and the absence of any bunching of types. Section 3.2
deals with a bidimensional adverse selection model—solving it for the optimal out-
puts and comparing it with a standard unidimensional model. Section 3.3 offers
a careful analysis of a two-type model with type-dependent reservation utilities,
discussing all possible regimes of the solution. We also discuss several instances
where this modelling has turned out to be useful for understanding various eco-
nomic phenomena. Section 3.4 introduces random participation constraints. In
section 3.5, we look at the impacts that different limited liability constraints, on
either transfers or rents, may have on the allocation of resources under ex ante
contracting. The first constraints increase the volume of trade whereas the second
ones reduce it. In section 3.6, we analyze audit models and derive optimal audit
policies for punishments satisfying various constraints. Audit models are then com-
pared to models where incentives for truthful revelation are based on the threat of

2Another tool available to the principal to improve screening is the threat of terminating his
relationship with the agent. As we will show, one can draw some analogy between those latter models
and models with audit.
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terminating, with some probability, the relationship between the principal and the
agent. Finally, section 3.7 analyzes the trade-off between efficiency and redistribu-
tion. It shows how to optimize such an efficiency-equity trade-off. Appendices 3.1
and 3.2 deal with the case of a continuum of types for the basic model of section 2,
which exhibits a simple rent-efficiency trade-off.

3.1 More than Two Types

Suppose that " may take three possible values, i.e., # = $"% "̂% "̄&, with "̄ − "̂ =
"̂ − " = '" for simplicity, and with respective probabilities (% (̂, and (̄ such that
( + (̂ + (̄ = 1. We denote a truthful direct revelation mechanism in this three-type
environment by $)t% q*+ )t̂% q̂*+ )t̄% q̄*&. Using similar notations, information rents
write respectively as U = t − "q% Û = t̂ − "̂q̂, and "U = t̄ − "̄q̄. As a benchmark,
note that the first-best outputs are respectively given by S′)q∗* = "%S′)q̂∗* = "̂ and
S′)q̄∗* = "̄.

3.1.1 Incentive Feasible Contracts

For each of the three possible types, we now have the following incentive con-
straints: For the most efficient type ",

U ≥ Û + '"q̂% (3.1)

U ≥ "U + 2'"q̄+ (3.2)

for the intermediate type "̂,

Û ≥ "U + '"q̄% (3.3)

Û ≥ U − '"q+ (3.4)

for the least efficient type "̄,

"U ≥ Û − '"q̂% (3.5)

"U ≥ U − 2'"q, (3.6)

As an example, let us show how (3.1) and (3.2) are obtained. We want that a
"-agent does not announce "̂. This requires

U = t − "q ≥ t̂ − "q̂ = t̂ − "̂q̂ + )"̂ − "*q̂ (3.7)
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or

U ≥ Û + '"q̂, (3.8)

Additionally, we want a "-agent that does not pretend to be "̄. This requires

U = t − "q ≥ t̄ − "q̄ = t̄ − "̄q̄ + )"̄ − "*q̄ (3.9)

or

U ≥ "U + 2'"q̄, (3.10)

The six incentive constraints (3.1) to (3.6) can be classified into two categories:
local and global incentive constraints. Local incentive constraints involve adjacent
types, such as the upward incentive constraints (3.1) and (3.3) or the downward
incentive constraints (3.5) and (3.4). Global incentive constraints involve nonadja-
cent types, such as the upward incentive constraint (3.2) or the downward incentive
constraint (3.6).

To simplify the analysis and find the relevant binding constraints, we proceed
in two steps. First, as in chapter 2, intuition suggests that the most efficient types
want to lie upward and claim they are less efficient. Therefore, we can momen-
tarily ignore the downward incentive constraints, as we did in chapter 2. We are
left with the remaining upward incentive constraints (3.1), (3.2), and (3.3).

Second, the incentive constraints (3.1) to (3.6) also imply some imple-
mentability conditions on the schedule of outputs. Indeed, adding the incentive
constraints for two adjacent types yields q ≥ q̂ (use (3.1) and (3.4)) and q̂ ≥ q̄
(use (3.3) and (3.5)). Therefore, we get the monotonicity constraints

q ≥ q̂ ≥ q̄, (3.11)

This monotonicity helps to further simplify the set of relevant incentive con-
straints by getting rid of the global incentive constraint (3.2). Indeed, adding (3.1)
and (3.3) yields

U ≥ "U + '")q̂ + q̄*, (3.12)

But, using q̂ ≥ q̄, the second term of the right-hand side above is greater than
2'"q̄. Therefore, the global incentive constraint (3.2) is implied by the two local
incentive constraints (3.1) and (3.3) when the monotonicity constraint holds.

Finally, to obtain the optimal contract we will only consider the two upward
local incentive constraints with the monotonicity constraint on outputs (imply-
ing the global upward constraint), and we will check ex post that the downward
incentive constraints are also satisfied.
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3.1.2 The Optimal Contract

When this huge simplification in the set of incentive constraints is made, all rele-
vant constraints for the principal are reduced to the incentive constraints (3.1) and
(3.3), the implementability condition (3.11) and the least efficient type’s participa-
tion constraint

"U ≥ 0, (3.13)

The optimal contract thus solves the program )P * below:

max
$)U% q*+)Û% q̂*+)"U% q̄*&

()S)q* − "q − U * + (̂)S)q̂* − "̂q̂ − Û * + (̄)S)q̄* − "̄q̄ − "U *%(P ):

subject to (3.1), (3.3), (3.11), and (3.13),

It should be clear that constraints (3.1), (3.3), and (3.13) are all binding at the
optimal contract. This leads to the following expressions of the information rents,
U = '")q̂ + q̄*% Û = '"q̄, and "U = 0. Substituting the rents into the objective
function of problem )P *, the principal must finally solve program )P ′* below:

max
$)q%q̂%q̄*&

()S)q* − "q − '")q̂ + q̄** + (̂)S)q̂* − "̂q̂ − '"q̄* + (̄)S)q̄* − "̄q̄*%(P ′):

subject to (3.11).

Proposition 3.1 summarizes the solution of the principal’s problem.3

Proposition 3.1: In a three-type adverse selection model, the optimal con-
tract entails the following:

• Constraints (3.1), (3.3), and (3.13) are all binding.
• When (̂ > (̄(, the monotonicity conditions (3.11) are strictly satisfied.

Optimal outputs are given by qSB = q∗% q̂SB < q̂∗, and q̄SB < q̄∗ with

S′)q̂SB* = "̂ + (

(̂
'"% (3.14)

S′)q̄SB* = "̄ + ( + (̂

(̄
'", (3.15)

• When (̂ ≤ (̄(, some bunching emerges. We still have qSB = q∗, but now
q̂SB = q̄SB = qP < q∗, with

S′)qP * = "̄ + 2(
(̂ + (̄

'", (3.16)

3The proof is left to the reader as an exercise.
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When (̂ > (̄(, we have a straightforward extension of proposition 2.1. The
most efficient type’s production level is not distorted. Since his information rent,
namely U = '")q̂ + q̄*, depends now on the production levels of all the types
who are less efficient than the efficient type, those production levels must be
distorted downward to reach the optimal rent extraction-efficiency trade-off. The
reason for this expression of the "-agent’s rent is that all the local upward incen-
tive constraints, and only those constraints, are binding. The "̂-agent also has an
information rent, Û = '"q̄, because he can pretend to be a "̄-agent. This justifies
a second downward distortion of q̄. Only the least efficient agent gets a zero rent
"U = 0.4

If the profile of production levels obtained strictly satisfies the monotonicity
conditions (3.11), all of the other incentive constraints also hold strictly. If not,
some bunching emerges, as described in the second part of proposition 3.1. Bunch-
ing now arises from the conflict between the desire of the principal to implement a
schedule of outputs, which is increasing over an interval when only upward incen-
tive constraints are taken into account, namely q̂ < q̄, and the implementability
condition, which requires the opposite monotonicity, namely q̂ ≥ q̄. Indeed, when
(̂ is rather small and ( is rather large, the information rent of the "̂-type is not too
costly for the principal but that of a "-type is much more. Reducing those informa-
tion rents calls for strongly reducing q̂, but a reduction in q̄ is much less necessary.
In this case, the implementability condition limits the ability of the principal to
reduce the agent’s information rent and bunching emerges.

Remark: This source of bunching in a three-type model can be
compared to the one arising in the case of nonresponsiveness, seen
in section 2.10.2. There, the dependency of the gross surplus on
" (namely S)q% "* with Sq" > 1) introduced a conflict between the
desire of the principal to have an output increasing in " for pure effi-
ciency reasons and the need to satisfy the implementability condition,
even in a simple two-type model. In the present three-type model,
the principal’s gross surplus does not depend on ", but the probability
distribution of " is such that the virtual surplus, which is defined as
S)q* − )" + -"′<"Pr)"

′*
Pr)"*

*q and should be maximized by the principal
if only upward incentive constraints mattered, is maximized by a
schedule of outputs that increases over an interval. It appears again a
conflict between efficiency considerations and the implementability
conditions.

4All these features of the optimal contract are more general and hold for any number of types.
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Such bunching occurs in the basic model only when there are more than
two types, or with a continuum.5 Remember, indeed, that it never holds in the
standard two type model of section 2.3. To avoid bunching, modelers often chose
to impose a sufficient condition on the distribution of types, the monotonicity of
the hazard rate.

Definition 3.1: A distribution of types satisfies the monotone hazard rate
property if and only if

Pr)" < "̂*

Pr)" = "̂*
= (

(̂
<

Pr)" < "̄*

Pr)" = "̄*
= ( + (̂

(̄
, (3.17)

This sufficient condition ensures that the incentive distortions on the right-
hand sides of (3.14) and (3.15) are increasing with the agent’s type. The virtual
costs of the different types, namely ", "̂ + (

(̂
'", and "̄ + (+(̂

(̄
'", are thus ranked

exactly as the true physical costs. The virtual surplus is maximized by a decreas-
ing schedule of outputs. Asymmetric information does not perturb the ranking of
types.

Remark: With n types, i.e., # = $"1% , , , % "n&, and a distribution of
types such that Pr)"i* = (i > 0 for all i, the monotonicity of the
hazard rate property says that Pr)"<"i*

Pr)"="i*
=

∑i−1
k=1 (k
(i

is increasing in i. In
appendix 3.1, we provide the corresponding condition in the case of a
continuum of types.

3.1.3 The Spence-Mirrlees Property with More than
Two Types

When the local incentive constraints imply the global ones, it is sufficient to check
that the agent does not want to lie locally to be sure that he does not want to lie
globally. The incentive problem is then well behaved since there is a huge simpli-
fication in the number of relevant constraints. It is precisely this simplification that
yielded the clear analysis in the last section. This huge simplification holds for any
number of types, or even for a continuum6 if the agent’s utility function satisfies
the so-called Spence-Mirrlees property. Let us expand the scope of our previous
analysis and assume that the agent’s utility function, which is defined over allo-

5See appendix 3.2 for an analysis of bunching in the case of a continuum of types.
6See appendix 3.3.
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Figure 3.1: The Spence-Mirrlees Property

cations )q% t* in ! and types " in #, writes as U )q% t% "*.7 In this framework, the
Spence-Mirrlees property tells us that the marginal rates of substitution between
output and money can be ranked in a monotonic way. The following property
must thus be satisfied:

.

."

(
Uq

Ut

)
> 0

(or < 0)
for any )t% q% "* in !× #, (3.18)

Economically, this property means that the indifference curves always move
in the same direction as " changes. In figure 3.1 we have drawn the case where
the marginal rates of substitution Uq

Ut
, which are also the slopes of the agent’s

indifference curves, are increasing with the agent’s type. At point A, where the
indifference curves of a "- and a "̄-type cross each other, the indifference curve of
the "̂-type has the greater slope; and at point B, where the indifference curves of
a "̂-type and a "̄-type cross each other, the indifference curve of the "̄-type has a
greater slope.

Of course, the particular objective function used in chapter 2 and section 3.1.1,
namely U = t − "q, satisfies the Spence-Mirrlees property, because .

."
)
Uq

Ut
* = −1.

Also, the objective function used in section 2.10, U = t − C)q% "*, satisfies this
condition if Cq" > 0 (or Cq" < 0*, because .

."
)
Uq

Ut
* = −Cq".

7Working with non-quasi-linear utility functions turns out to be necessary when we analyze adverse
selection in the insurance market, as in section 3.3.2.
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Figure 3.2: Indifference Curves with Three Types and Where U = t − "q

Figure 3.2 illustrates why the Spence-Mirrlees property ensures that, when
upward local incentive constraints are binding, global ones and downward ones
are strictly satisfied. Suppose the agent is offered a menu $A%B%C& for which all
the upward local incentive constraints are binding. As can be easily seen in the
figure, the efficient type is indifferent between telling the truth and lying upward
to "̂, i.e., he is indifferent between contracts A and B. However, lying upward
up to "̄ would significantly reduce his utility level, because contract C is on an
indifference curve with a lower level of utility than what a "-type gets by choosing
A. Hence, the "-type’s global incentive constraint is satisfied. Similarly, consider
an agent with type "̂. This agent is indifferent between telling the truth and lying
upward up to "̄, i.e., he is indifferent between choosing B and C. However, by
lying downward, type "̂ would get contract A, which yields him a strictly lower
utility level. The downward incentive constraint is strictly satisfied.

The Spence-Mirrless property makes the incentive problem well behaved in
the sense that only local incentive constraints need to be considered. At a rough
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level, it is similar to a concavity condition in the usual maximization problems.
As for a concavity condition, the optimization of the agent’s problem is obtained
by looking at the benefits of local changes away from his truthful report strategy
as global changes are certainly dominated. The analysis of incentive problems
satisfying this property is very similar to that developed in chapter 2.

When the Spence-Mirrlees property holds, the analysis of chapter 2 can also
be easily extended8 to the case of a continuum of types /"% "̄0, which is what we
do in appendices 3.1 and 3.2. If it is not satisfied, the analysis of the continuum
case becomes quickly untractable, and the study of the finite-type case requires
that we consider all combinations of binding constraints and calls very quickly for
numerical methods.

Spence (1973) introduced the single-crossing assumption in his the-
ory of signaling on the labor market. Similarly, Mirrlees (1971) also

used a single-crossing assumption in his theory of optimal income taxation.
It was called the constant sign assumption in Guesnerie and Laffont (1984).
Araujo and Moreira (2000) provided an analysis of optimal contracts in which
the Spence-Mirrlees property may not be satisfied and types are distributed
continuously. Matthews and Moore (1987) provided an extensive study of the
set of incentive constraints in the case where this Spence-Mirrlees property
may not hold. They also solved an example.

3.2 Multidimensional Asymmetric Information

Another important limitation of our analysis of adverse selection in chapter 2 is that
the adverse selection parameter " was modeled as a unidimensional parameter. In
many instances, the agent simultaneously knows several pieces of information that
are payoff relevant and affect the optimal trade. For instance, a tax authority would
like to know both the elasticity of an agent’s labor supply and his productivity
before fixing his tax liability. Similarly, an insurance company would like to know
both the probability of accident for an insurer and his degree of risk aversion
before fixing the risk premium that the agent should pay. The producer of a good
knows not only the marginal cost of producing the good but also the associated
fixed cost. In all these situations, the unidimensional paradigm must be given up
in order to assess the full consequences of asymmetric information on the rent
extraction-efficiency trade-off.

8See Guesnerie and Laffont (1984).



94 • Chapter 3

3.2.1 A Discrete Bare-Bones Model

We now extend the analysis of chapter 2 to the case of bidimensional asymmet-
ric information. The simplest way to do so is to have the agent accomplish two
activities for the principal. Each of those activities is performed by the agent at
a marginal cost which is private information. Let us assume that the agent pro-
duces two goods in respective quantities q1 and q2 with a utility function U =
t − )"1q1 + "2q2*, with "i in $"% "̄& for i = 1% 2. We also assume that there is
no externality between the two tasks for the principal, so that the surpluses asso-
ciated with both tasks add up in the latter’s objective function, which becomes
V = S)q1* + S)q2* − t.

The probability distribution of the adverse selection vector " = )"1% "2* is now
defined by ( = Pr)"1 = "% "2 = "*% (̂

2 = Pr)"1 = "% "2 = "̄* = Pr)"1 = "̄% "2 =
"*% (̄ = Pr)"1 = "̄% "2 = "̄* with a positive correlation among types arising when
1 = ((̄ − (̂2

4 > 0. As usual, this distribution is common knowledge.
The components of the direct revelation mechanism are respectively denoted

by )t11% q11% q11* if )"1 = "% "2 = "*% )t12% q12% q21* if )"1 = "% "2 = "̄*% )t12% q21% q12* if
)"1 = "̄% "2 = "*, and )t22% q22% q22* if )"1 = "̄% "2 = "̄*, where we impose (without
a loss of generality) a symmetry restriction on transfers. Similar notations are used
for the information rents Uij . Because of the symmetry of the model, there are only
three relevant levels of information rents, U = U11% Û = U12 = U21, and "U = U22.
Similarly, we denote outputs by q11 = q% q12 = q̂2% q21 = q̂1, and q22 = q̄, and
transfers by t11 = t% t21 = t12 = t̂, and t22 = t̄. These notations, even though they
look quite cumbersome, unify the present multidimensional modelling with that
of section 3.1.1 above.

Again, following the logic of the unidimensional model, we may guess that
only the upward incentive constraints matter. The three following incentive con-
straints then become relevant:

U = t − 2"q ≥ t̂ − ")q̂1 + q̂2* = Û + '"q̂1% (3.19)

U ≥ t̄ − 2"q̄ = "U + 2'"q̄% (3.20)

Û = t̂ − "q̂2 − "̄q̂1 ≥ t̄ − )" + "̄*q̄ = "U + '"q̄, (3.21)

We can also expect the participation constraint of an agent who is inefficient
on both dimensions )"1 = "̄ and "2 = "̄* to be binding, i.e.,

"U = 0, (3.22)
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We leave it to the reader to check that adding incentive constraints for types
taken two by two yields the following impementability conditions:

q ≥ max)q̂1% q̄* (3.23)

and

q̂2 ≥ max)q̂1% q̄*, (3.24)

3.2.2 The Optimal Contract

We can expect (3.21) and (3.22) to be binding at the optimum. Then (3.19) and
(3.20) can be summarized as

U ≥ '"max)2q̄% q̄ + q̂1*% (3.25)

which should also be binding at the optimum to reduce the efficient agent’s infor-
mation rent.

After the substitution of the information rents as functions of outputs, the
principal’s optimization program can be reduced to:

max
$)q% q̂1% q̂2% q̄*&

()2S)q* − 2"q − '"max)2q̄% q̄ + q̂1**(P ′):

+(̂)S)q̂1* + S)q̂2* − "q̂2 − "̄q̂1 − '"q̄* + (̄)2S)q̄* − 2"̄q̄*,

We must distinguish two cases depending on the level of correlation 1
between both dimensions of adverse selection.

Case 1: Weak Correlation
Let us first assume that the solution is such that q̄ ≤ q̂1. In this case, max)2q̄%
q̂1 + q̄* = q̂1 + q̄ and optimizing )P ′* yields the following second-best outputs:

S′)qSB* = S′)q̂SB
2 * = "% (3.26)

S′)q̂SB
1 * = "̄ + (

(̂
'"% (3.27)

S′)q̄SB* = "̄ + ( + (̂

2(̄
'", (3.28)

This latter schedule of outputs is the solution when the posited monotonicity
condition q̄SB ≤ q̂SB

1 holds, i.e., when

(

(̂
≤ ( + (̂

2(̄
% (3.29)
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Figure 3.3: Binding Incentive Constraints with Weak Correlation

or, to put it differently, when 1 ≤ (̂
4 )2( + (̂*. This condition obviously holds in the

case where "1 and "2 are independently drawn, since the correlation is then zero
and 1 = 0. We leave it to the reader to check that all of the neglected incentive
and participation constraints are satisfied when (3.29) holds.

In the case of weak correlation, the binding constraints are only the local
ones. In figure 3.3, an arrow from a point in the type space, say A, to another one,
say B, means that A is attracted by B,9 i.e., the corresponding incentive constraint
is binding at the optimum.

Case 2: Strong Correlation
If we had perfect correlation, (̂ = 0, the binding incentive constraint would obvi-
ously be from )"% "* to )"̄% "̄*, as shown in figure 3.4. Then we would be back to
the usual unidimensional model along the diagonal.

More generally, for a strong positive correlation we may expect an intermedi-
ary case with the upward incentive constraints being binding as in figure 3.5.

Indeed, consider the case where the condition (3.29) does not hold. In this
case the outputs, defined by (3.27) and (3.28), are such that max)2q̄% q̂1 + q̄* = 2q̄,
a contradiction with our starting assumption q̄ ≤ q̂1. Let us assume that instead
we have q̄ > q̂1. In this case, max)2q̄% q̂1 + q̄* = 2q̄ and optimizing )P ′* leads to

9Border and Sobel (1987) coined this expression.
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Figure 3.4: Binding Incentive Constraint with Perfect Correlation

Figure 3.5: Binding Incentive Constraints with Strong Correlation



98 • Chapter 3

(3.27) and (3.28) being respectively replaced by

S′)q̂1* = "̄ (3.30)

and

S′)q̄* = "̄ + 2( + (̂

2(̄
'", (3.31)

However, we immediately observe that q̄ < q̂1 for those outputs. Again, this is
a contradiction with our starting assumption q̄ > q̂1. When (3.29) does not hold,
we necessarily have q̂1 = q̄ = qP , and bunching arises at the optimal contract.

To understand the origin of this bunching, let us first consider the case where
the principal is concerned only with the upward incentive compatibility con-
straints (3.19) and (3.21). With a strong correlation of types, the principal finds
the information rent left to the )"% "*-type to be very costly because this type is
relatively likely. Hence, the principal is led to reduce the output q̂1 significantly.
On the other hand, the intermediate type )"% "̄* is rather unlikely. Hence, the
principal finds it not very useful to reduce the output q̄ to reduce the latter’s infor-
mation rent. As a result, the schedule of outputs that would be implemented by
the principal, had he taken into account only the downward incentive constraints,
would be such that q̄ > q̂1. The high output q̄ requested from a )"̄% "̄*-type makes
the )"% "*-type willing to mimic the )"̄% "̄*-type rather than the intermediate type
)"% "̄*. With a strong correlation it is no longer correct to neglect the global incen-
tive constraint (3.2). Both the local incentive constraints (3.19) and the global
incentive constraints (3.2) are binding at the optimum, and this situation is only
possible when the optimal allocation entails some bunching.

Remark: Just as in the three-type model of section 3.1.2, a probability
distribution of types such that intermediate types are rather unlikely
creates bunching at the optimal contract.

Optimizing )P ′* with the added constraint q̄ = q̂1 still yields (3.26) but also

S′)qP * = "̄ + 2( + (̂

(̂ + 2(̄
'", (3.32)

We summarize our findings in proposition 3.2.

Proposition 3.2: In a symmetric bidimensional adverse selection setting,
the optimal contract with a weak correlation of types keeps many fea-
tures of the unidimensional case with two types; only upward incentive
constraints are binding. With a strong correlation, the optimal contract
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may instead entail some bunching; a global incentive constraint becomes
binding.

Finally, note that more complex situations arise when the correlation is nega-
tive, asymmetric distributions are postulated, or when the dimensionality of actions
is not the same as the dimensionality of the asymmetry of information.

We now describe two examples where modelling adverse selection with mul-
tidimensional types has proved to be useful.

Example 1: Unknown Fixed Cost
Let us suppose that the agent has a cost function C)"% q* = "1q + "2 where both
the marginal cost "1 and the fixed cost "2 are unknown. As shown in Baron and
Myerson (1982) and Rochet (1984), stochastic mechanisms, where the decision to
produce or not produce is used as a screening device, are useful in this context. To
explain why, let us introduce x in /0% 10 as the probability of a positive production.
As a function of the contracting variables q and x, the agent’s utility function now
writes as U = t − )"1qx + "2x*. This expression almost takes the same form as
what we have analyzed above. It is easy to show that the shutdown of some types
is also a valuable screening device to learn the value of the fixed cost "2.

Example 2: Unknown Cost and Demand
Let us assume that the agent is a retailer who serves a market with a linear inverse
demand P )q* = a − "1 − q, where "1 is an intercept parameter, which is the
first piece of private information of the agent. This agent has also a cost function
C)q* = "2q, where the marginal cost "2 is the second piece of private information
of the agent. The latter’s utility function writes finally as U = t̃+ )a− "1 − q*q −
"2q, where t̃ is the transfer received from the principal, here a manufacturer.
To simplify, we also assume that the manufacturer incurs no production cost for
the intermediate good he provides to the agent. Introducing a new variable t =
t̃ + aq − q2, the agent’s utility function rewrites as U = t − )"1 + "2*q. On the
other hand, the principal’s objective becomes V = aq − q2 − t. In this example
the bidimensional adverse selection model amounts to a unidimensional model,
where " = "1 + "2 is a sufficient statistic for all information known by the agent. If
each type "i belongs to # = $"% "̄&% " may take three possible values, 2"% "̄ + ",
or 2"̄. The framework of section 3.1 can then be used to derive the optimal
contract.

Remark: The dimensionality of the type space plays a crucial role in
determining the binding participation constraints. To understand this
point remember that, in a unidimensional case, the least efficient type’s
participation constraint is the only binding participation constraint (at
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least as long as shutdown is not optimal) and the same result holds for
a continuum of types (see appendix 3.1). Now suppose that it holds
also with a continuum of bidimensional types, i.e., only the least effi-
cient type on dimensions "1 and "2 is put at its reservation utility. Let
us imagine that the principal slightly uniformly decreases the whole
transfer schedule he offers to the agent by 2. Of course, a whole subset
of types around )"̄% "̄* prefers to stop producing. The efficiency loss for
the principal is roughly of the order 22. However, by uniformly reduc-
ing the whole transfer schedule, the principal reduces all information
rents of the remaining types by 2, which means he makes a gain of
the order 2)1− 22* ≈ 2. Therefore, the shutdown of a subset of types
with nonzero measure is always optimal.

Armstrong and Rochet (1999) provided a complete analysis of the
two-type model. The case of a continuum of types was first ana-

lyzed by McAfee and McMillan (1988), who attempted to generalize the
Spence-Mirrlees assumption to a multidimensional case, and Laffont, Maskin,
and Rochet (1987), who explicitly solved an example in the case where the
principal has only one output and one transfer with which to screen a bidi-
mensional adverse selection parameter (see also Sibley and Srinagesh 1997).
The result, that a shutdown of a nonzero measure of types is always opti-
mal for a continuum of types, is due to Armstrong (1996), who also offered
some closed-form solutions for the optimal contract when the set of types
includes the origin. See also Wilson (1993) on this point. The analysis of
Rochet and Choné (1998) is the most general. They showed that bunching of
types is always found in these bidimensional models, and they also provided
the so-called ironing and sweeping techniques designed to analyze this bunch-
ing issue. These techniques are difficult and outside the scope of this book.
Rochet and Choné (1998) also show that bunching implies that a whole set of
types with nonzero measure exists, such that q1 = q2 at the optimal contract.
They interpret this as a bundling requirement imposed by incentive com-
patibility. Finally, Armstrong (1999) pushed the idea that multidimensional
adverse selection problems may introduce a significant simplification in the
optimal contract between a seller (the principal) and a buyer (the agent) who
is privately informed of his type. Instead of explicitly computing this contract,
Amstrong provides a lower boundary on what can be achieved with simple
two-part tariffs and, using the Law of Large Numbers, shows that these con-
tracts can approximate the first-best when the number of products sold to this
buyer is large enough.
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3.3 Type-Dependent Participation Constraint and
Countervailing Incentives

The models in sections 3.1 and 3.2 have already illustrated the difficulties that
the modeler faces when there is no obvious order between the various incen-
tive constraints. The same kind of difficulties arise when the agent’s participa-
tion constraint is type-dependent. Indeed, those participation constraints may also
perturb the natural ordering of the incentive and participation constraints that
was discussed in chapter 2. Determining which participation and incentive con-
straints are binding becomes a more difficult task. To analyze those issues, we now
come back to our two-type model. In chapter 2, we made a simple and debat-
able assumption by postulating that the outside opportunities of the two types of
agents were identical (and without loss of generality normalized to zero). Then
we proved that the binding incentive constraint is always the efficient type’s con-
straint. However, in many cases there is a correlation (in general a positive one)
between the agent’s productivity in a given principal-agent relationship and his
outside opportunity. We now assume that the efficient agent’s outside utility level
is U0 > 0, and we still normalize the inefficient agent’s outside utility level to
zero. The efficient- and inefficient-type participation constraints are now written,
respectively, as

U ≥ U0% (3.33)

"U ≥ 0, (3.34)

3.3.1 The Optimal Contract with Type-Dependent
Status Quo

The principal’s problem is to optimize the expression (2.20), subject to the relevant
upward incentive compatibility constraints (IC) (2.21) and (2.22) and the new
type-dependent participation constraints (PC) (3.33) and (3.34). The solution to
this problem exhibits five different regimes, depending on the value of U0.

Case 1: Irrelevance of the Outside Opportunity Utility Level
This case arises when U0 < '"q̄SB. Then the optimal second-best solution (2.27),
(2.29), and (2.30), obtained in section 2.6, remains valid since the neglected par-
ticipation constraint (3.33) is satisfied by the solution discussed in proposition 2.1.
When the outside option does not provide a level of utility to the efficient agent
that is high enough, it does not affect the second-best contract.
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Figure 3.6: Type-Dependent Participation Constraint: Case 2

Case 2: Both PCs and the Efficient Agent’s IC Are Binding
This case arises when '"q̄∗ > U0 > ' "q̄SB. The former solution is now no longer
valid. To induce the efficient type’s participation, he must receive a higher level
of utility than the information rent obtained in the optimal second-best contract
corresponding to U0 = 0. Then, one can afford less distortion in the inefficient
type’s production level and choose q̄ such that U0 = '"q̄. As long as U0 belongs
to /'"q̄SB% '"q̄∗0, the incentive constraint of the efficient type and both participa-
tion constraints are simultaneously binding (see, for example, the pair of contracts
)A0%B0* in figure 3.6).

Case 3: Both PCs Are Binding
This case arises when '"q∗ > U0 > '"q̄∗. Still raising U0, the principal finds that
it is no longer optimal to use the inefficient type’s output to raise the efficient
agent’s information rent and induce his participation. Because output is already at
its first-best level, the remaining tool available to the principal to raise the efficient
agent’s rent is the transfer t, and we now have t = "q∗ +U0. This solution is valid
as long as the inefficient agent’s incentive constraint is not binding, i.e., as long
as 0 = "U > U0 − '"q∗ (see the pair of contracts )A0%B0* in figure 3.7; this case
remains valid as long as A0 is between C and D). In that region, both production
levels are the efficient ones.
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Figure 3.7: Type-Dependent Participation Constraint: Cases 3 and 4

Case 4: Both PCs and the Inefficient Agent’s IC Are Binding
This case arises when '"qCI > U0 ≥ '"q∗, where qCI is given by

S′)qCI* = " − 1− (

(
'"% (3.35)

with the superscript “CI” meaning countervailing incentives.10

When U0 continues to increase (A0 is now above D), the inefficient type is
now attracted by the allocation given to the efficient type, but the constraints (3.33)
and (3.34) remain binding. As a result, the efficient agent’s output is distorted
upwards to reach a value q, defined by U0 = '"q (corresponding to the point Ã0

above D in Figure 3.7).

Case 5: The Efficient Type’s PC and the Inefficient Type’s IC Are both Binding
This case arises when U0 > '"qCI . Let us maximize (2.20) under the constraints
(3.33) and (2.22). Assuming that those two constraints are binding, we obtain
U = U0 and "U = U0 −'"q. When we insert those expressions into the principal’s
objective function, we get a reduced-form program given by:

)P ′*3 max
$)q% q*&

()S)q* − "q* + )1− (*)S)q̄* − "̄q̄* + )1− (*'"q − U0,

10We will come back to the meaning of this term when we analyze case 5.
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Figure 3.8: Type-Dependent Participation Constraint: Case 5

Optimizing with respect to outputs yields no distortion for the inefficient type
who produces efficiently, q̄CI = q̄∗, and now yields an upward distortion charac-
terized in equation (3.35) for the efficient type, qCI > q∗. As U0 becomes greater
than '"qCI , a rent "UCI = U0 − '"qCI must now be given up to the inefficient
type (see the pair of contracts (ACI%BCI) in figure 3.8).

Figure 3.9 summarizes the profiles of production levels as functions of the
efficient type’s outside opportunity utility level U0. For U0 higher than '"q∗, we
are in the case of countervailing incentives. In order to attract the efficient type
who has such profitable outside opportunities, it is necessary to offer him a very
high transfer. However, then this contract becomes attractive for the inefficient
type. The production level of the efficient type is distorted upward to satisfy the
inefficient type’s incentive constraint. For U0 > '"qCI , even a positive rent must
be given up to the inefficient type to satisfy this constraint at the lowest cost.

Type-dependent utilities with interesting economic implications have
appeared successively in Kahn (1985) and Moore (1985) for mod-

els of labor contracts with type-dependent reservation wages, in Lewis and
Sappington (1989) for an extension of the Baron and Myerson (1982) regula-
tion model with fixed costs, in Laffont and Tirole (1990a) for the regulation
of bypass, in Feenstra and Lewis (1991) and Brainard and Martimort (1996)
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for a model of international trade, in Jeon and Laffont (1999) for a model
of downsizing the public sector, and in Saha (2001) for a model of corrup-
tion. Jullien (2000) provided a general theory of type-dependent reservation
utility with a continuum of types. Biglaiser and Mezzetti (1993, 2000) endo-
genized the agent’s reservation utility by explicitly modelling competition
between several principals. On this, see also Champsaur and Rochet (1989)
and Stole (1995).

Figure 3.9: Type-Dependent Participation Constraint: Output Distortions and Binding Constraints

3.3.2 Examples

State Dependent Fixed Costs
Lewis and Sappington (1989), who coined the expression countervailing incentives,
reconsidered the Baron-Myerson model with a firm having a fixed cost negatively
correlated with its marginal cost. The firm’s cost function is C)"% q* = "q + F )"*,
where " belongs to $"% "̄& with respective probabilities ( and 1− (. The fixed costs
are such that F )"* > F )"̄*, i.e., high marginal costs are associated with low fixed
costs and vice versa.
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In this model, incentive constraints are still expressed as (2.21) and (2.22).
The participation constraints instead become

U ≥ F )"* = F )"̄* + )F )"* − F )"̄** (3.36)

and

"U ≥ F )"̄*, (3.37)

It should be clear that, up to a constant term F )"̄*, the model is identical to
the one in section 3.3.1. The difference F )"* − F )"̄* > 0 plays the role of U0 and
may lead to countervailing incentives if it is large enough.

Remark: With more than two types, or with a continuum, countervail-
ing incentives may create some pooling for intermediate types. When
the agent’s status quo utility level is decreasing with the type ", those
intermediate agents are indeed torn between their desire to pretend
to be less efficient to save on their cost and their desire to pretend to
be more efficient to justify higher status quo utility levels and receive
higher transfers from the principal. In a related context, the optimal
contract has been interpreted by Lewis and Sappington (1991) as an
inflexible rule coming from the existence of countervailing incentives.

Lewis and Sappington (1989) studied a model with a continuum
of types and emphasized the bunching region they obtain in the

transition from upward to downward binding incentive constraints. Maggi
and Rodriguez-Clare (1995a) showed that bunching is due to the concavity
that Lewis and Sappington assume for the F )·* function. If F )·* is convex,
countervailing incentives are compatible with fully separating contracts.

Bypass
Laffont and Tirole (1990a) considered consumers of a network technology such as
electricity. Consumers are of two possible types, " and "̄, having utility function
U = "v)q* − t. They can either consume the good produced by the network
technology, which offers a menu of contracts, $)t% q*+ )t̄% q̄*&, or they can use an
alternative bypass technology which has a fixed cost 4 and a marginal cost d. By
choosing this latter option, consumers obtain the utility levels S = maxq$"v)q* −
4 − dq& and "S = maxq$"̄v)q*− 4 − dq&. The consumers’ participation constraints
become

U = "v)q* − t ≥ S% (3.38)

"U = "̄v)q̄* − t̄ ≥ "S = S+ "S− S, (3.39)
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Up to a change in the definition of the efficient and the inefficient type,
"S − S here plays the role that U0 plays in section 3.3.1 and can again give rise to
countervailing incentives.

When the network industry is very efficient, a regulated or profit-maximizing
network attracts all consumers with a discriminating menu of contracts. As its
efficiency deteriorates, it must distort the pricing scheme to maintain the high-
valuation consumers in the network, and the good deal made to these consumers
may attract low-valuation consumers and create countervailing incentives. Finally,
as the network efficiency deteriorates further, the profit-maximizing network lets
the high valuation consumers leave the network.

Downsizing the Public Sector
An inefficient public sector exhibits sometimes considerable labor redundancy.
Hence, downsizing constitutes a natural step for every public sector reform. How-
ever, downsizing is subject to adverse selection. To model this issue, Jeon and
Laffont (1999) assumed that a worker of the public firm has a private cost " in
$"% "̄& when working in that firm. Let Up)"* be the rent obtained by a "-worker in
the public firm and Um)"* be the rent he would obtain in the private sector with
the normalization Um)"̄* = 0.

A (voluntary) downsizing mechanism for a continuum /0% 10 of workers is a
pair of transfers and probabilities11 of being maintained in the firm, $)t% p*+ )t̄% p̄*&,
which must satisfy the participation constraints

U = t − p" + )1− p*Um)"* ≥ Up)"*% (3.40)

"U = t̄ − p̄"̄ ≥ Up)"̄*% (3.41)

and the incentive constraints

U = t − p" + )1− p*Um)"* ≥ t̄ − p̄" + )1− p̄*Um)"*% (3.42)

"U = t̄ − p̄"̄ ≥ t − p"̄, (3.43)

If we define the worker’s full cost "f as the sum of the production cost and his
rent in the private sector, "f = " + Um)"*, these equations can be rewritten as

t − p"f ≥ Up)"* − Um)"*% (3.44)

t̄ − p̄"̄f ≥ Up)"̄*% (3.45)

t − p"f ≥ t̄ − p̄"f % (3.46)

11These probabilities can also be interpreted as part-time work in the public firm.
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t̄ − p̄"̄f ≥ t − p"̄f , (3.47)

We can reduce the problem to the one treated in section 3.3 if we rewrite
the participation constraints in the following manner:

t̄ − p̄"̄f ≥ Up)"̄*% (3.48)

t − p"f ≥ Up)"̄* + Up)"* − Up)"̄* − Um)"*, (3.49)

Defining U0 = Up)"* − Up)"̄* − Um)"*, we could proceed as in section 3.3.
If "̄f > "f , i.e., '" > Um)"*, the worker with production cost " remains the

low full-cost worker. Furthermore, if Up)"* − Up)"̄* = '", i.e., the discrimination
in the public firm fits the productivity difference, then U0 = '"f and we have
necessarily countervailing incentives. Indeed, the difference of status quo payoffs
is larger than the largest information rent which can be given to the efficient
type p̄'"f ≤ '"f . The rent of the high full cost is then Up)"* − Um)"* − p'"f

and, to decrease this information rent, p is increased. This means that down-
sizing decreases under asymmetric information. This situation is illustrated in
figure 3.10.

Figure 3.10: Downsizing the Public Sector
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Consider a case where downsizing is large and the complete information
downsizing entails excluding all the inefficient workers (contract B) and a propor-
tion p∗ of efficient ones (contract A). Under incomplete information this requires
giving up a rent BB′ to the inefficient type and creates countervailing incentives.
In order to decrease this rent, p is increased to pCI (contracts )A′′%B′′*).

If "̄f < "f , the high full cost is the worker with low production cost. But we have
again countervailing incentives and the rent of the high full cost is p̄'"f + Up)"̄*.
Now '"f < 0 and p̄ is decreased. Downsizing increases again under incomplete
information, but now the workers with low production costs are excluded first.

International Trade and Protection
Private industries subject to international competition often obtain some protec-
tion from their national government to avoid delocalization. The goal of public
intervention is first to provide domestic firms with at least their profits when they
delocalize and, second, as in domestic regulation, to correct any market power.

To model such issues, let us consider a variation of the Baron-Myerson model
discussed in section 2.15.1. The domestic firm’s utility function is U = t− "C)q*,
with C)q* = q2

2 . The domestic regulator maximizes S)q + qf * − pwqf − "C)q* −
)1− 5*U , where qf is foreign production imported at the world price pw . Decreas-
ing returns are necessary here so that the national consumption is split in a nontriv-
ial way between national and foreign productions. Again, the efficiency parameter
" can take values in # = $"% "̄& with respective probabilities ( and 1− (.

It is clear that the first-best outcome is such that the domestic firm produces
at the world price and the residual domestic demand is imported at this price.
This leads to pw = "q∗ and pw = "̄q̄∗.

Under asymmetric information, and if regulation applies to a national public
enterprise that has no outside option, the second best policy becomes qSB = q∗,
and q̄SB given by

pw =
(

"̄ + (

1− (
)1− 5*'"

)
q̄SB, (3.50)

Consider now a private enterprise that could take all its assets away from
the national country and behave competitively in the world market. Participation
constraints for type " and "̄ become, respectively,

U ≥ U 0 = max
q

pwq − "C)q* = p2w
2"

(3.51)

and

"U ≥ "U0 = max
q

pwq − "̄C)q* = p2w
2"̄

, (3.52)
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In this model, we can redefine U0 as U0 = U 0 − "U0 = p2w'"

2"̄"
. The information

rents corresponding to the first-best outputs q∗ and q̄∗ are now '"q∗2

2 and '"q̄∗2
2 .

Hence '"q∗2

2 > U0 > '"q̄∗2
2 , and we are (up to a change in the cost function) in

case 3 above, leading to no countervailing incentives and with the participation
constraints of both types now binding.

Insurance Contracts Under Monopoly
In this example, we analyze an insurance problem where the agent’s reservation
utility is type-dependent. Another important feature of this environment is that
we have common values, i.e., the agent’s type directly affects the principal’s util-
ity. As we will see below, the type-dependent participation constraint makes the
implementation of the first-best full insurance policy impossible.

Standard microeconomic analysis shows that, under complete information,
all agents subject to some diversifiable risk should receive complete insurance
against this risk from a risk neutral insurance company. This conclusion fails under
asymmetric information. Let us consider a risk-averse agent with utility function
u)·*, which is increasing and concave (u′ > 0%u′′ < 0 with u)0* = 0*. The agent’s
initial wealth is w, but with probability " the agent suffers from a damage that has
value d. The agent is a low risk " < 1 (resp. high risk "̄, such that " < "̄ < 1) with
probability 1 − ( (resp. (). The agent knows his probability of accident, which
remains unknown to the insurance company. The agent’s wealth level is common
knowledge. The agent’s expected utility writes thus as U = "u)w − d + ta* + )1−
"*u)w − tn*, where ta is the agent’s reimbursement in case of a damage and tn
is what he pays to the insurance company when there is no accident. Many of
the technical difficulties encountered with this model come from the nonlinearity
of the agent’s utility function with respect to transfers. Nevertheless, note that the
Spence-Mirrlees property (3.18) is satisfied, because Uta

Utn
= −) "

1−"
*u

′)w−d+ta*
u′)w−tn*

is a
monotonically decreasing function of ".

To make things simpler, we assume that the risk-neutral insurance company
is a monopoly and maximizes the expectation of its profit V = −"ta + )1− "*tn.12

In this model where the quasi-linearity of the agent’s objective function is lost, it is
useful for the moment to keep incentive and participation constraints as functions
of transfers. This leads to the following expressions:

U = "u)w − d + ta* + )1− "*u)w − tn* ≥ "u)w − d + t̄a*

+ )1− "*u)w − t̄n*% (3.53)

12Because " enters the principal’s utility function, we are in a common value environment.
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"U = "̄u)w − d + t̄a* + )1− "̄*u)w − t̄n* ≥ "̄u)w − d + ta*

+ )1− "̄*u)w − tn*% (3.54)

U ≥ U 0% (3.55)

"U ≥ "U0% (3.56)

where U 0 (resp. "U0) is the reservation utility of the low- (resp. high- ) risk agent.
These reservation utilities are given by the expected utility that the agent gets in
the absence of any insurance, i.e., U 0 = "u)w − d* + )1 − "*u)w* ≡ u)w* and
"U0 = "̄u)w − d* + )1 − "̄*u)w* ≡ u)w̄*, where w denote the certainty income-
equivalent for types " and "̄, respectively. Note that "̄ > " implies that "U0 < U 0

and thus that w̄ < w. The low-risk agent thus has a higher reservation utility than
the high-risk agent.

Under complete information, the insurance company would provide full
insurance against damage for both types. In that case, we would have w − d+ t∗a =
w − t∗n = w, and w − d + t̄∗a = w − t̄∗n = w̄. Note that the pair of insurance con-
tracts $)t∗a% t

∗
n*+ )t̄∗a% t̄

∗
n*& is not incentive compatible. Indeed, since w̄ < w, the high-

risk agent is willing to take the insurance contract of the low-risk agent. By doing
so, the "̄-agent gets u)w* instead of u)w̄* for sure. This situation is represented
in figure 3.11. A∗ (resp. B∗) is the complete information contract of the agent
with a low (resp. high) probability of accident. A∗ and B∗ both provide full insur-
ance. Indifference curves correspond to higher levels of utility when one moves
in the northeast direction in figure 3.11, thus the "̄-agent prefers contract A∗ to
contract B∗.

Under asymmetric information, the principal’s program takes now the follow-
ing form:

max
$)t̄a% t̄n*+)ta% tn*&

)1− (*)−"ta + )1− "*tn* + ()−"̄t̄a + )1− "̄*t̄n*(P ):

subject to (3.53) to (3.56),

Because the reservation utilities are type-dependent, we are looking for a solu-
tion with countervailing incentives where the high-risk type is attracted by the
low-risk one. We first assume that (3.53) and (3.56) are the two nonbinding con-
straints of the program above. We will check ex post that this conjecture is in fact
true. Because of the nonlinearity of the model, this will be a slightly harder task
than usual.

It is now useful to rewrite the program using the following change of variables:
u)w − d+ ta* = ua and u)w − tn* = un. These new variables are the agent’s utility
levels whenever an accident occurs or not. Denoting the inverse function of u)·*
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Figure 3.11: Full Insurance Contracts

by h = u−1 and observing that it is an increasing and strictly convex function
(h′ > 0, h′′ > 0 with h)0* = 0*, one can check that the principal’s objective func-
tion is strictly concave, with a set of linear constraints, and the principal’s problem
can be rewritten as

max
$)ūa% ūn*+)ua%un*&

)1− (*)−"d + w − "h)ua* − )1− "*h)un**(P ):

+ ()−"̄d + w − "̄h)ūa* − )1− "̄*h)ūn**,

subject to

"̄ūa + )1− "̄*ūn ≥ "̄ua + )1− "̄*un% (3.57)

"ua + )1− "*un ≥ u)w*. (3.58)

Let us denote the respective multipliers of (3.57) and (3.58) with 6 and 7.
Optimizing the Lagrangian of the principal’s problem with respect to ua and un

yields, respectively,

−")1− (*h′)ua* − "̄6 + 7" = 0% (3.59)

−)1− "*)1− (*h′)un* − )1− "̄*6 + 7)1− "* = 0, (3.60)
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Optimizing with respect to ūa and ūn also yields

−"̄(h′)ūa* + "̄6 = 0% (3.61)

−)1− "̄*(h′)ūn* + )1− "̄*6 = 0, (3.62)

Using (3.61) and (3.62), it is immediately apparent that the high-risk agent
receives full insurance at the optimum:

ūa = ūn = ū, (3.63)

From (3.61), we get 6 = (h′)ū* > 0, and therefore (3.57) is binding. More-
over, summing (3.59) to (3.62), we get 7 = (h′)ū* + )1 − (*)"h′)ua* + )1 −
"*h′)un** > 0, and thus (3.58) is also binding. Knowing that (3.57) and (3.58) are
both binding, we also obtain:

ū = −'"'u+ u)w*% (3.64)

where un − ua = 'u is the difference of utilities of a low-risk agent between not
having and having an accident. The fact that (3.58) is binding also implies that one
can write ua = u)w* − )1− "*'u and un = u)w* + "'u. Inserting the expressions
of ua% ūa%un, and ūn into the principal’s objective function and optimizing with
respect to 'u,13 we obtain that the second-best value 'uSB is defined implicitly as
a solution to

('"

)1− (*")1− "*
h′)−'"'uSB + u)w**

= h′)u)w* + "'uSB* − h′)u)w* − )1− "*'uSB*, (3.65)

The left-hand side of (3.65) is positive, and thus we have h′)u)w*+ "'uSB* >
h′)u)w* − )1− "*'uSB*. Because h′)·* is increasing, we finally get

uSB
n − uSB

a = 'uSB > 0, (3.66)

To reduce the incentives of the high-risk agent to pretend that he is a low-
risk one, the insurance company let this latter agent bear some risk. Imperfect
insurance arises as a second-best optimum.

Remark: When '" is small enough, a simple Taylor expansion shows
that the right-hand side of (3.65) is close to h′′)u)w**'uSB, and we get
the following approximation:

'uSB = (

1− (
'"

h′)u)w**

h′′)u)w**
> 0, (3.67)

13It is easy to prove that the principal’s objective function is strictly concave with respect to 'u.
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The neglected participation constraint of the high risk agent
amounts to "USB = ūSB = −'"'uSB + u)w* > u)w̄*, which is now
automatically satisfied because, when '" is small enough, u)w*−u)w̄*
is positive and of order '", while '"'uSB is of order )'"*2.

More generally, the high risk agent’s participation constraint is not binding
as long as '"'uSB < u)w* − u)w̄* = '")u)w* − u)w − d**, or 'uSB < u)w* −
u)w − d*, where 'uSB is defined implicitly by (3.65). Using the strict concav-
ity of the principal’s objective function with respect to 'u, this latter condition
rewrites as

('"

)1− (*")1− "*
h′)"̄u)w − d* + )1− "̄*u)w**

< h′)u)w** − h′)u)w − d**% (3.68)

and holds, for instance, when d is large enough.
When this latter condition does not hold, the high risk agent’s participation

constraint is also binding. We are then in a case where the participation constraints
of both types are binding. This is the equivalent of case 3 in section 3.3.1, with
the specific features imposed by the nonlinearity of the agent’s utility function. As
long as both participation constraints (3.55) and (3.56) are the only binding ones,
we have 'uSB = u)w* − u)w − d*.

Figure 3.12 illustrates the optimal second-best solution in the )ua%un* plane
when only the low risk agent’s participation constraint is binding.

The contracts A∗ and B∗ are respectively offered to a "- and a "̄-agent under
complete information. Instead, ASB and BSB are now offered to those agents under
asymmetric information. The "̄-agent is indifferent between ASB and BSB and thus
weakly prefers the full insurance contract BSB. The "-agent strictly prefers ASB to
BSB but gets no information rent.

Stiglitz (1997) treated the case of a monopoly providing insurance to
risk-averse agents differentiated with respect to their probability of an

accident in the same manner as in the model above. Generally, the analysis
of the insurance market starts by supposing that this market is competitive.
Screening takes place in a competitive environment that is more complex
than the monopolistic screening enviornment we analyzed here (Rothschild
and Stiglitz 1976). An important feature of the analysis is that a pure strat-
egy contract equilibrium may fail to exist in such a context. Two different
routes were taken by researchers vis-à-vis this problem. Some argued that one
should change the equilibrium concept to ensure the existence of pure strat-
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Figure 3.12: The Optimal Insurance Contract Under Asymmetric Information

egy equilibria (Wilson 1977, Riley 1979, and Hellwig 1987). Others preferred
to prove the existence of mixed-strategy equilibria and derived their properties
(Dasgupta and Maskin 1986, and Rosenthal and Weiss 1984).

3.4 Random Participation Constraint

The previous section has shown how a deterministic but type-dependent participa-
tion constraint could perturb the standard results on the optimal rent extraction-
efficiency trade-off. We now perturb the agent’s participation constraint in another
direction, by allowing some randomness in the decision to participate. Instead of
the agent’s reservation utility being perfectly known, let us consider a risk-neutral
agent with a random participation constraint,

U ≥ 2̃ (3.69)

and

"U ≥ 2̃, (3.70)
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We assume that 2̃ is drawn from the interval /−2̄% 2̄0, centered at zero with a
cumulative distribution function G)2*. We denote by g)2* = G′)2* the density of
this random variable.

The motivation for such a stochastic specification of the reservation utility
levels is that the agent might have some random opportunity cost of accepting
the contract proposed by the principal and that this cost is already revealed to the
agent at the time of contracting, even if the principal has no ability to screen this
information.14 Alternatively, the agent may be facing a whole set of possible trad-
ing opportunities outside of his relationship with a given principal. Those trading
opportunities yield a random profit 2̃ to the agent. Implicit here is the idea that
the principal competes with other principals who have unknown characteristics.
However, this competition is still modeled as an exogenous black box.

In this model, the incentive constraints for both types remain, as usual,

U ≥ "U + '"q̄% (3.71)

and
"U ≥ U − '"q, (3.72)

A deterministic incentive-feasible contract $)U% q*+ )"U% q̄*& is accepted by both
types if and only if (3.69) and (3.70) both hold. Acceptance is now a random event.
A priori, both types only accept the contract with some probability, which is G)U *
for the "-type and G)"U * for the "̄-type. To simplify the analysis, we will assume
that 2̄ is small with respect to '"q̄. This assumption will imply that G)U * = 1,
and only the inefficient agent might not participate with some strictly positive
probability 1−G)"U *. The optimal contract must solve the program below:

max
$)"U% q̄*+)U% q*&

()S)q* − "q − U * + )1− (*G)"U *)S)q̄* − "̄q̄ − "U *%(P ):

subject to (3.71) and (3.72).

On top of the usual concavity of S)·*, assuming that (+)1−(*G)2*
g)2*

is increasing
with 2 ensures the quasi-concavity of this program. Its solution is then described
in the next proposition. It is indexed by a superscript R that means random partic-
ipation.

Proposition 3.3: Assume random participation constraints, but also that
2̄ is small enough. Then the optimal contract entails:

• The incentive constraint of the efficient agent (3.71) is binding.

14It is assumed implicitly that the principal does not attempt to elicit the value taken by the
random variable 2̃ with a stochastic mechanism.
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• The rent "UR and the output q̄R of an inefficient agent are determined
together as the solutions to

S′)q̄R* = "̄ + ('"

)1− (*G)"UR*
(3.73)

and

S)q̄R* − "̄q̄R = "UR + ( + )1− (*G)"UR*

)1− (*g)"UR*
, (3.74)

Two important remarks should be made at this point. First, since an inefficient
agent trades with the principal with a probability of less than one (i.e., G)"UR* < 1),
the principal finds it relatively more likely that he will face an efficient agent
on the condition that trade is being carried on. Hence, the principal is more
willing to distort the inefficient agent’s output downward to reduce the relatively
high expected cost of the efficient agent’s information rent. Indeed, q̄R defined by
(3.73) is more distorted than the usual second-best distortion q̄SB obtained with an
exogenously given zero participation constraint.

Second, the principal chooses a level of the inefficient agent’s rent "UR that
trades off the marginal gain of inducing slightly more participation by this type
against the marginal cost of this extra participation. The marginal gain of increasing
the rent by d"UR is precisely the net total surplus S)q̄R* − "̄q̄R − "UR times the
increase in probability that the inefficient agent chooses to participate, namely
)1 − (*g)"UR*d"UR. The marginal cost takes into account the fact that this extra
rent d"UR has to be given to all participating agents, i.e., both the efficient one who
trades with probability of one and also the inefficient one who contracts with a
probability of only G)"UR* less than one. The cost is thus )( + )1− (*G)"UR**d"UR.
The marginal benefit is equal to the marginal cost when (3.74) holds.

It is interesting to note that the output q̄R converges towards q̄SB defined
in (2.28) as 2̄ goes to zero. In this case the random participation constraint
almost becomes the usual deterministic participation constraint with zero reserva-
tion value.

Finally, the generalized monotone hazard rate property, namely (+)1−(*G)2*
)1−(*g)2*

increasing in 2, guarantees that "UR is strictly positive when S)q̄R* − "̄q̄R > 0.15

To induce a relatively more likely participation, the principal must a priori give to
the inefficient agent a strictly positive rent. Lastly, the probability that the ineffi-
cient type participates is strictly lower than one when S)q̄SB*− "̄q̄SB > 2̄+ 1

)1−(*g)2̄*
,

where q̄SB is the second-best optimal output with a deterministic participation
constraint.

15This latter condition always holds when S)·* satisfies the Inada condition S′)0* = +*.
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Rochet and Stole (2000) provided a complete analysis of a model
with random participation constraints and a continuum of types. In

such a setting, they also looked at the interesting case of competition among
principals.

3.5 Limited Liability

Sometimes the set of incentive-feasible contracts is constrained by some exogenous
limits on the feasible transfers between the principal and the agent. These exoge-
nous financial constraints could reveal the existence of previous financial contracts
that the agent might have already signed. Those constraints will of course affect
the usual rent-efficiency trade-off.

A first possible limit is that the net transfer of the agent, taking into account
his own asset holding l, should not be lower than zero. This leads to the following
limited liability constraints on transfers:

t ≥ −l (3.75)

and
t̄ ≥ −l, (3.76)

A possible motivation for this type of constraint is that the agent can use the
transfer received from the principal to cover a debt of level −l. The production
cost "q being already sunk, it does not enter into the left-hand sides of (3.75) and
(3.76).

A second limit on transfers arises when the agent’s information rent itself must
be greater than an exogenous value −l. This leads to the following limited liability
constraints on rents:

U ≥ −l% (3.77)

"U ≥ −l, (3.78)

The production cost "q is now incurred when the transfer t takes place. Again,
the interpretation is that contracting with the principal may involve negative rents
U or "U as long as those losses can be covered by the agent’s own liabilities l.
To assess the impact of these limited liability constraints, let us go back to the
framework of section 2.11. When contracting takes place ex ante, we have seen
that the first-best outcome can still be obtained provided that the inefficient risk-
neutral agent receives a negative payoff, "U ∗ < 0. Obviously this negative payoff
may conflict with the constraint (3.78).
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With ex ante contracting, we have already seen that the relevant incentive
and participation constraints are, respectively,16

U ≥ "U + '"q̄ (3.79)

and
(U + )1− (*"U ≥ 0, (3.80)

Adding the limited liability constraints, the principal’s program is written as

max
$)"U% q̄*+ )U% q*&

()S)q* − "q − U * + )1− (*)S)q̄* − "̄q̄ − "U *%(P ):

subject to (3.79), (3.80), and either $)3,75*% )3,76*& or $)3,77*% )3,78*&%

where limited liability constraints are either on transfers or on rents.17

The next two propositions summarize the features of the optimal contract
with a limited liability constraint on rents and transfers, respectively.18 We index
with a superscript L, meaning limited liability, the second-best optimal contracts
in these environments. We first focus on limited liability constraints on rents.

Proposition 3.4: Assume ex ante contracting and limited liability on
rents. Then, the optimal contract entails

• For l > ('"q̄∗, only (3.79) and (3.80) are binding and the first-best
outcome of section 2.11.1 remains optimal.

• For ('"q̄SB ≤ l ≤ ('"q̄∗, (3.79), (3.80), and (3.78) are all binding.
The efficient agent produces efficiently qL = q∗, and the inefficient
agent’s production is distorted downward from the first-best q̄L ≤ q̄∗,
with q̄L ≥ q̄SB and

l = ('"q̄L, (3.81)

• For l < ('"q̄SB, only (3.79) and (3.78) are binding. The efficient agent
produces efficiently qL = q∗, and the inefficient agent’s production is
equal to the second-best output with the ex post participation con-
straints, q̄L = q̄SB, defined in (2.28).

A limited liability constraint on ex post rents may reduce the efficiency of
ex ante contracting. If the limited liability constraint on the inefficient type is
stringent enough, the principal must reduce the inefficient agent’s output to keep

16We leave it to the reader to check that the inefficient agent’s incentive constraint is slack at the
optimum.

17Here we have analyzed the case where the two sets of constraints are mutually exclusive.
18The proofs of these propositions are in appendix 3.4.
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the limited liability constraint satisfied. The agent is then subject to less risk on the
allocation of ex post rents. When the limited liability constraint is even harder,
the principal must give up his desire to hold the ex ante participation constraint
binding. The limited liability constraint then implies an ex ante information rent.
Indeed, when l is small enough, the agent’s expected utility becomes U = −l +
('"q̄SB, which is then strictly positive.

Remark: Note the similarity of the solution obtained in Propo-
sition 3.4 with that obtained when the agent is risk averse in
section 2.11.2 (proposition 2.5). The limited liability constraint on
rents plays a similar role as the agent’s risk aversion. Indeed, in both
cases, the principal finds it costly to create a wedge between U and
"U , and reducing this cost calls for incentives that are lower powered
than one would find with risk neutrality and unlimited transfers.
More precisely, with a limited liability constraint on rents, everything
happens as if the agent has an infinite risk aversion below a wealth
of −l.19

Let us now turn to the case of limited liability constraints on transfers. Restrict-
ing the analysis to a few particular cases, we have the following characterization
of the optimal contract.

Proposition 3.5: Assume ex ante contracting and limited liability on
transfers. Then the optimal contract entails:

• For l ≥ −)(" + )1 − (*"̄*q̄∗, only (3.80) is binding and the first-best
outcome of section 2.11.1 remains optimal.

• For −)(" + )1− (*"̄*q∗ ≤ l ≤ −)(" + )1− (*"̄*q̄∗, (3.79), (3.80), and
(3.76) are all binding. The efficient agent produces efficiently qL = q∗,
and the inefficient agent’s production is distorted upwards from the first-
best, with q∗ > q̄L > q̄∗, and

l = −)(" + )1− (*"̄*q̄L, (3.82)

• For l < −)(" + )1 − (*"̄*q∗, there is bunching such that both types
produce the same output qL and (3.75), (3.76), (3.79), and (3.80) are
all binding. The constant output target qL is given by

l = −)(" + )1− (*"̄*qL, (3.83)

19The same kind of analysis comparing the effects of limited liability and risk aversion will be
applied in chapter 4 to the case of moral hazard.
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The limited liability constraints on transfers give rise to allocative distortions
that are rather different from those highlighted in proposition 3.4. As the limited
liability constraint (3.76) is more stringent, it becomes quite difficult to create
the wedge between U and "U that is necessary to ensure incentive compatibility.
However, to relax the limited liability constraint (3.76), the principal now increases
the inefficient type’s output. Indeed, using the information rent to rewrite (3.76),
we obtain

"U ≥ −l − "̄q̄, (3.84)

Therefore, distorting the inefficient type’s output upward relaxes this lim-
ited liability constraint. A limited liability constraint on transfers implies higher-
powered incentives for the agent. It is almost the same as what we would obtain by
assuming that the agent is a risk lover. The limited liability constraint on transfers
somewhat convexifies the agent’s utility function.

Of course, the principal cannot indefinitively raise the inefficient agent’s out-
put without conflicting with the implementability condition. Hence, some bunch-
ing emerges. In this case, the agent receives a fixed payment that covers their cost
in expectation. This transfer also satisfies the limited liability constraints (3.75) and
(3.76), which both take the same form.

It is interesting to note that the limited liability constraints on transfers can
only be binding when l is negative. This arises, for instance, when the transfer
received by the agent from the principal must be used to reimburse a loan contract
worth l.

Sappington (1983) derived the optimal contract under adverse selec-
tion and limited liability constraints. Lewis and Sappington (2000)

also provided a model involving moral hazard elements. Che and Gale (2000)
and Lewis and Sappington (2001) analyzed models where the agent is pri-
vately informed both of his ability and of his wealth. These latter papers
showed that the wealth level and the agent’s ability are complements in deter-
mining the probability that trade occurs with the agent.

3.6 Audit Mechanisms and Costly State Verification

Sometimes the principal would like to relax the efficient type’s incentive constraint
by making it somewhat costly for him to lie and claim that he is inefficient. One
important way to do so is by using an audit technology that can detect the agent’s
nontruthful report and allows for some punishment when a false report is detected.
This audit technology allows the principal, at a cost, to verify the state of nature
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announced by the agent. Of course, the mere fact that this technology is costly
may prevent its systematic use by the principal.

Let us assume that the principal owns an audit technology and that the agent’s
true type can be observed with probability p if the principal incurs a cost c)p*,
with c)0* = 0% c′ > 0, and c′′ > 0. To ensure interior solutions, we assume that the
following Inada conditions c′)0* = 0 and c′)1* = +* both hold.

3.6.1 Incentive-Feasible Audit Mechanisms

The possibility of an audit significantly enlarges the set of incentive-feasible mech-
anisms. An incentive mechanism includes not only the transfer t)"̃* and the output
target q)"̃* but also a probability of audit p)"̃* and a punishment P )"% "̃* if the
agent’s announcement "̃ differs from its observed true type ". We denote thereafter
by $)U% q% p% P *+ )"U% q̄% p̄%"P *& this audit mechanism with the obvious notations
P = P )"% "̄* and "P = P )"̄% "*. In equilibrium, the Revelation Principle applies
and reports are truthful. Therefore, those punishments are never used. They will
nevertheless significantly affect the incentive constraints.

Remark: We stress that the principal has the ability to commit to this
mechanism. We will comment on the importance of this assumption
later on. Furthermore, we do not allow rewards when audit reveals
that the agent has revealed truthfully.

The Revelation Principle still applies in this context, and there is no loss
of generality in focusing on truthful direct mechanisms satisfying the following
incentive constraints:

U = t − "q ≥ t̄ − "q̄ − p̄P % (3.85)

"U = t̄ − "̄q̄ ≥ t − "̄q − p"P , (3.86)

Note that the positive punishments P and "P relax those incentive constraints
if the audit is performed with a strictly positive probability.

Let us now turn to a description of those punishments. Punishments used in
the literature can be classified into two subsets:

• Exogenous Punishments: P (resp. "P ) cannot be greater than some
exogenous threshold l, so that

P ≤ l% (3.87)

"P ≤ l, (3.88)
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These exogenous punishments can be viewed as the maximal amount
of the agents’ assets that can be seized in the case of a detected lie.

• Endogenous Punishments: P (resp. "P ) cannot be greater than the
lying agent’s benefit from his false announcement:

P ≤ t̄ − "q̄% (3.89)

"P ≤ t − "̄q, (3.90)

In this case, the agent may have no asset to be seized by the principal.
Only his profit from the relationship can now be taken back.

Of course, these two sets of constraints on punishments are mutually exclusive.
On top of the constraints (3.85) through (3.90), the usual participation

constraints,

U ≥ 0% (3.91)

"U ≥ 0% (3.92)

still must be satisfied by any incentive-feasible audit mechanism.

3.6.2 Optimal Audit Mechanism

The principal’s problem is now written as

)P *3 max
$)"U%q̄%p̄%"P *+ )U%q%p%P *&

()S)q*−"q−U−c)p**+)1−(*)S)q̄*− "̄q̄−"U−c)p̄**%

subject to (3.85), (3.86), (3.91), (3.92), and either $)3,87*% )3,88*& or $)3,89*% )3,90*&.
A preliminary remark should be made. Although punishments help to relax

incentive constraints, they do not enter directly into the principal’s objective func-
tion since the Revelation Principle tells us that the agent’s reports are truthful and
lies never occur.

As usual, we conjecture that only the upward incentive constraint (3.85) and
the least efficient type’s participation constraint (3.92) are relevant.20

Let us now turn to the value of the punishments. Both with endogenous and
exogenous punishments, the constraint (3.87) and the constraint (3.89) should be
binding, respectively. Indeed, by raising the punishment as much as possible in
case of a detected lie by the efficient type, the principal can reduce the right-hand

20As an exercise, we leave it to the reader to find the conditions under which this statement is
true.
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side of the efficient agent’s incentive constraint as much as possible, making it
easier to satisfy. This is the so-called Maximal Punishment Principle.

Another important remark should be made at this point: there is no need to
audit an agent claiming that he is efficient, because the inefficient type’s incentive
constraint (3.86) is slack anyway and auditing is costly. Hence, we necessarily have
p = 0 at the optimum. Similarly, the value of "P is irrelevant when (3.86) holds
strictly.

Once (3.85) and (3.92) are both binding, we can also rewrite (3.89) as

U = '"q̄ − p̄P ≥ 0 or P ≤ '"q̄, (3.93)

We are thus led to optimize a reduced-form problem, which is written as

)P ′*3 max
$)q̄% q% p̄% P *&

()S)q* − "q − '"q̄ + p̄P * + )1− (*)S)q̄* − "̄q̄ − c)p̄**

subject to either (3.87) or (3.93).

Proposition 3.6 summarizes the solution. The superscript A means audit.

Proposition 3.6: With audit, the optimal contract entails:

• Maximal punishments and either (3.87) (with exogenous punishments)
or (3.93) (with endogenous punishments) is binding.

• No output distortion with respect to the first-best outcome for the efficient
type, qA = q∗, and a downward distortion for the less efficient type,

S′)q̄A* = "̄ + (

1− (
'"% (3.94)

with exogenous punishment, and

S′)q̄A* = "̄ + (

1− (
)1− p̄A*'"% (3.95)

with endogenous punishment.
• Only the inefficient type is audited with a strictly positive probability
p̄A, such that

c′) p̄A* = (

1− (
l% (3.96)

with exogenous punishment;

c′) p̄A* = (

1− (
'"q̄A% (3.97)

with endogenous punishment.
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A comparison of the results obtained with endogenous and with exogenous
punishments shows that, in both cases, a strictly positive probability of auditing
the least efficient type is obtained. This probability trades off the physical cost of
an audit against its benefit in diminishing the efficient type’s information rent. In
the case of an exogenous punishment, increasing the probability of audit of the
inefficient agent by a small amount dp̄ allows the principal to reduce the transfer
t of the efficient type by an amount Pdp̄, where P is the exogenous maximal
punishment. There is no distortion of production, which is still equal to the second-
best optimal output without audit. We have q̄A = q̄SB, where q̄SB is defined in
(2.28). Audit is only useful in reducing the incentive transfer, but it has no impact
on allocative efficiency.

With an endogenous punishment, the small increase dp̄ in the probability of
auditing allows the principal to reduce the transfer t to the efficient type by an
amount '"q̄dp̄. Output distortions become less valuable as a means of reducing
the efficient type’s information rent, and the audit becomes a substitute for high-
powered incentives shifting output upwards towards the first-best. We have now
q̄A > q̄SB. Audit now has an allocative impact.

Finally, note that the solution exhibited in proposition 3.6 in the case of an
exogenous punishment is really the solution as long as the efficient type’s partici-
pation constraint (3.91) is slack, i.e., when lp̄A < '"q̄A. Otherwise, the constraint
'"q̄ − lp̄ ≥ 0 must be taken into account in the principal’s organization. The
production distortion is then smaller, and the probability of audit p̄ lower.

Remark: Let us briefly comment on the commitment assumption.
The key lesson of these audit models is that the principal must commit
to auditing an inefficient firm with some probability in order to relax
the efficient type’s incentive constraint. Of course, such commitment
is ex post inefficient. Indeed, once the principal knows that only the
inefficient firm claims, in equilibrium, that it is inefficient, he has
no longer any incentive to incur the audit cost. However, if he does
not audit, the efficient agent anticipates this. This efficient agent will
not tell the truth anymore. Quite naturally, the lack of commitment
to an audit strategy generates a mixed strategy equilibrium, where the
efficient agent mixes between telling the truth or not and the principal
mixes between auditing or not auditing an inefficient report.

The Maximal Punishment Principle is a term coined by Baron and
Besanko (1984a). Border and Sobel (1987) provide a careful analysis

of the set of binding incentive constraints with a finite number of types. The
fundamental difficulty is that those models lose the Spence-Mirrlees property,
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and so the incentive problem with more than two types is badly behaved and
quickly becomes intractable as the number of types grows. Mookherjee and
P’ng (1989) analyzed an audit problem in an insurance setting. The specificity
of their model comes from the fact that the agent is no longer risk neutral.
A random audit significantly helps in relaxing the incentive constraint. Risk
aversion gives another reason for using a stochastic audit mechanism, namely,
increasing the risk exposure of an efficient agent if he lies and mimics an
inefficient one. Khalil (1997) offered a nice treatment of the case without
commitment. On this issue, see also Gale and Hellwig (1989). Reinganum
and Wilde (1985) and Scotchmer (1987) provide two noticeable contributions
to analyzing audit in the framework of the optimal taxation literature.

3.6.3 Financial Contracting

Audit models have been mainly developed in the financial contracting and optimal
taxation literature.21 These models are different from the model we just discussed
because of their focus on a continuum of types (profit levels) for the agent (for
convenience, think of the agent as a borrower), and because the only screening
instrument for the principal (a lender) is the probability of audit. In our model
of section 3.6.2, the screening instruments are less crude since the principal can
use the agent’s production even in the absence of an audit. Let us sketch this type
of a financial contracting model. If the profit " can take two possible values in
$"% "̄& with respective probabilities 1− ( and (, the incentive contract is written as
$)t% p% P *+ )t̄% p̄%"P *&. Note that, again, there is no point in auditing the high-profit
agent, and p̄ = 0 at the optimum. The high-profit agent’s incentive constraint thus
becomes

"̄ − t̄ ≥ "̄ − t − p"P % (3.98)

and the low-profit agent’s participation constraint is written as

" − t ≥ 0, (3.99)

In general, the financial contracting literature assumes endogenous punish-
ments, so that

"P ≤ "̄ − t, (3.100)

The justification of this assumption comes from the interpretation of the audit
model, which is generally made by the financial contracting literature. The audit is

21See Townsend (1978), Gale and Hellwig (1985), and Williamson (1987).
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often viewed as a costly bankruptcy procedure following a strategic announcement
of default by the manager of the indebted firm. In this case, the debtholders reap
all possible profits from the firm following a default. The lender’s problem is
written as follows:

)P *3 max
$t̄% "% p&

(t̄ + )1− (*)t − c)p**%

subject to (3.98) to (3.100).

It is readily apparent that all of those constraints are binding at the optimum.
This leads to the transfers tA = "% t̄A = "̄ − )1− pA*'", and the maximal punish-
ment PA = '" and an optimal probability of auditing an inefficient firm that is
now given by c′)pA* = (

1−(
'", where '" is again the high-profit firm’s information

rent when it is not audited by the principal.
In order to clarify the role of asymmetric information in constraining financ-

ing, let us consider the case where the lender provides an amount of cash I to
finance the borrower’s project. First-best efficiency calls for financing as long as
the venture’s expected profits cover the investment, i.e., as long as

V ∗ = ("̄ + )1− (*" − I > 0, (3.101)

Under asymmetric information, the lender’s net profit is written as

V SB = ("̄ + )1− (*" − ()1− pA*'" − )1− (*c)pA* − I% (3.102)

or, using the definition of pA,

V SB = V ∗ − )1− (*
(
c)pA* + )1− pA*c′)pA*

)
, (3.103)

When the Inada condition c′)0* = 0 holds, pA > 0, and c)pA* + )1 − pA* ·
c′)pA* > 0. Hence, the set of values of the investment such that the lender makes
a positive profit is reduced under asymmetric information. This can be interpreted
as the source of some credit rationing.

In a model with a continuum of types, Gale and Hellwig (1985)
show that the optimal contract with a deterministic audit involves

two different regions. In the first one, there is verification of announced low
profits if they are below a threshold R and of a full repayment if they are
over this region. In the second region, there is no verification and a fixed
repayment R. This optimal contract can be interpreted as a debt contract.



128 • Chapter 3

3.6.4 The Threat of Termination

In the audit model of the finance literature, the lender has only one tool with
which to screen the borrower’s type: the probability of an audit. When an audit
technology is not available, the lender may have to find other devices to induce
information revelation. One such device is the threat of terminating financing.

In a model with two levels of profit, Bolton and Scharfstein (1990) argue
that the threat of termination of a long-term relationship between a lender and
his borrower may play the same role as an audit and also relaxes the efficient
agent’s incentive constraint. They interpret their model as a debt contract where
the probability of refinancing is contingent on the agent’s past performance. To
understand the analogy between the Bolton and Scharfstein (1990) model and
the costly state verification literature discussed above, let us consider the fol-
lowing bare-bones model that stresses the threat of termination as an incentive
device.

A cashless agent requires an amount of funds I to start a project. With prob-
ability ( (resp. 1 − (), this project yields profit "̄ (resp. "). We will assume that
the project is socially valuable, ("̄ + )1 − (*" > I. Moreover, the worst profit is
already enough to finance the project, " > I. As in the literature on costly state
verification, the level of profit is nonobservable by the lender. The lender will
have to rely on the agent’s announcement of the realized profit to fix a repayment.
However, a payment alone is not enough to screen the agent’s type: the threat
of termination is the complementary screening device needed by the principal.
Moreover, we assume that the agent is protected by limited liability and can never
get a negative payoff.

Suppose now that the contractual relationship lasts for two periods with inde-
pendently and identically distributed types or profits " and without any discounting.
Then, the lender can use the threat of terminating financing to induce information
revelation in the first period as we will see later.

In the second period, it is still true that the maximal repayment that can
be obtained by the lender is " since this period ends the relationship and the
principal does not have enough instruments to induce information revelation in
this last period. Note that such a repayment yields an expected information rent
('" to the borrower if the relationship continues for the second period.

We denote a first period direct mechanism by $)t̄% p̄*+ )t% p*&. The probability
of not refinancing the firm (resp. the borrower’s payment) is now p̄ (resp. t̄) when
the agent reports having a high profit "̄ in the first period. A similar definition
applies to p (resp. t).



Incentive and Participation Constraints • 129

The first period incentive compatibility constraints for both types are therefore
written as

"̄ − t̄ + )1− p̄*('" ≥ "̄ − t + )1− p*('" (3.104)

and

" − t + )1− p*('" ≥ " − t̄ + )1− p̄*('", (3.105)

The intertemporal participation constraints for both types are also written as

"̄ − t̄ + )1− p̄*('" ≥ 0 (3.106)

and
" − t + )1− p*('" ≥ 0, (3.107)

Finally, because the agent is cashless to start with, the following first period
limited liability constraints must be satisfied:

"̄ − t̄ ≥ 0 (3.108)

and
" − t ≥ 0, (3.109)

Knowing that the repayment he gets in the second period is always ", the
principal’s program is thus

)P *3 max
$)t̄%p̄*+)t%p*&

()t̄ + )1− p̄*)" − I** + )1− (*)t + )1− p*)" − I** − I

subject to (3.104) to (3.109).

We leave it to the reader to check that (3.104) and (3.109) are the only
two constraints that are binding at the optimum. Hence, we obtain the following
values of the first-period payments: t = " and t̄ = " + )p − p̄*('". Inserting these
expressions into the principal’s objective function yields a reduced program that
depends only on the probabilities of refinancing p̄ and p:

)P ′*3 max
$)p̄%p*&

()" + )1− p̄*)("̄ + )1− (*" − I* − )1− p*('"*

+ )1− (*)" + )1− p*)" − I** − I,

We index this optimal contract with a superscript R meaning refinancing.
Because the project is valuable in expectation, it would be costly for the principal
not to refinance the project following a high first-period profit, and therefore we
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have p̄R = 0. Following a high first-period profit, the project is therefore always
refinanced with probability one.

Even if " > I, it may well be that the fixed investment I is large enough so
that

" − (2

1− (
'" − I < 0, (3.110)

In this case, it is never optimal to refinance a project following a low first-
period profit and pR = 1, as can be seen from )P ′* by looking at the coefficient of
p in the principal’s objective function. There exists a whole set of values for the
cost of the project I, namely I in /" − (2

1−(
'"% "0, which are such that it is efficient

to finance the project, under complete information, but asymmetric information
implies that those projects are nevertheless not renewed following that announce-
ment of a low first-period profit. It is interesting to note that the probability of
not refinancing the project plays the same role as the probability of audit in a
Townsend-Gale-Hellwig model. First, it relaxes the high-profit agent’s incentive
constraint. Second, like auditing, not renewing finance is also costly for the prin-
cipal, because projects are always socially valuable.

Finally, note that the lender’s intertemporal profit under asymmetric infor-
mation becomes V SB = ("̄ + )1− (*" − I + " − I. It is obviously lower than the
intertemporal profit when profit is verifiable V ∗ = 2)("̄ + )1 − (*" − I*, but it
is greater than realizing the project each period and asking for a payment " that
yields 2)" − I*.

The idea that the threat of termination of a relationship is a pow-
erful incentive device in an adverse selection framework is used in

many areas of incentive economics. An earlier contribution to the finance
and the labor literatures was made by Stiglitz and Weiss (1983). In the case
of sovereign debt, it has often been argued that the threat of not refinancing
a country could be used to foster debt repayment (see Allen 1983, and Eaton
and Gersovitz 1981).

3.7 Redistributive Concerns and the Efficiency-Equity
Trade-Off

In the rent extraction-efficiency trade-off analyzed so far, the principal wants
to minimize the information rent left to the agent for a given level of output.
The principal has no redistributive concerns vis-à-vis the agent. In the optimal tax-
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ation literature, starting with the seminal paper of Mirrlees (1971),22 the principal
(generally a government or a tax authority) wants to redistribute wealth among
members of society according to a particular social objective function G)·*, which
we will assume is increasing and strictly concave )G′ > 0 and G′′ < 0*. Of course,
for the redistribution problem to be nontrivial, agents have to be heterogeneous.
We will thus assume that with probability ( (resp. 1− () an agent is a high- (resp.
low- ) productivity one having a cost of production " (resp. "̄). An agent’s utility
function is thus written as usual as U = t− "q. The principal’s objective is instead
V = (G)U * + )1− (*G)"U *, where U = t − "q and "U = t̄ − "̄q̄.

This redistributive objective of the government is limited by the government’s
budget constraint. Typically, if the return from production of each type is S)q*, the
budget constraint requires that the government cannot redistribute more that what
is actually produced, i.e.,

(S)q* + )1− (*S)q̄* ≥ (t + )1− (*t̄, (3.111)

Using the definition of the information rents U and "U , the budget constraint
can be rewritten as

()S)q* − "q* + )1− (*)S)q̄* − "̄q̄* ≥ (U + )1− (*"U ,23 (3.112)

Under complete information, the principal can distinguish between high and
low productivity agents. The optimal redistribution scheme must solve the follow-
ing problem:

)P *3 max
$)U%q*+)"U%q̄*&

(G)U * + )1− (*G)"U *

subject to (3.112).

The problem is concave and the first-order conditions are necessary and suf-
ficient for optimality. Optimizing with respect to U and "U respectively yields

7 = G′)U ∗* = G′)"U ∗*% (3.113)

where 7 is the positive multiplier of (3.112).
When G)·* is strictly concave, the full information policy calls for complete

redistribution, so that U ∗ = "U ∗ = U ∗.

22We will cover this paper more extensively in chapter 7.
23 If the government must also cover a fixed spending B out of the society’s production, B must

be added on the right-hand side above. The only impact of this spending is that all transfers are
increased by a fixed amount B.
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Optimizing with respect to outputs yields the usual first-best productions q∗

and q̄∗. Hence, any agent, whatever his type, gets

U ∗ = ()S)q∗* − "q∗* + )1− (*)S)q̄∗* − "̄q̄∗*, (3.114)

Under complete information, the government chooses to maximize the “size
of the cake” before redistributing equal shares of it to everybody. There is no
conflict between efficiency and equality.

Let us now turn to the more realistic case where the agent’s productivity is
nonobservable. An incentive-feasible redistribution policy must now satisfy not only
the budget constraint (3.112) but also the following incentive constraints:

U − "U ≥ '"q̄ (3.115)

and
"U − U ≥ −'"q, (3.116)

First, note that the optimal first-best policy is such that U ∗ − "U ∗ = 0 <
'"q̄FB, i.e., the high-productivity agent’s incentive constraint is violated. Hence,
we suspect (3.115) to be binding under asymmetric information, and we look for
an optimal second-best policy as a solution to the following program:

)P *3 max
$)U%q*+)"U%q̄*&

(G)U * + )1− (*G)"U *%

subject to (3.112) and (3.115).24

Denoting the respective multipliers of (3.112) and (3.115) by 7 and 6, the
first-order conditions for optimality with respect to U and "U yield, respectively,

(G′)USB* = 7( − 6 (3.117)

and
)1− (*G′)"USB* = 7)1− (* + 6, (3.118)

Summing those last two equations, we obtain

7 = (G′)USB* + )1− (*G′)"USB* > 0% (3.119)

and the budget constraint is again binding. Also, we compute

6 = ()1− (*)G′)"USB* −G′)USB**, (3.120)

24 We leave it to the reader to check that the inefficient agent’s incentive constraint is slack at the
optimum.
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Because G)·* is concave and "USB < USB is necessary to satisfy the incen-
tive constraint (3.115) if q̄ > 0, we have 6 > 0, and the incentive compatibility
constraint is also binding.

Optimizing with respect to outputs immediately yields qSB = q∗, i.e., no dis-
tortion of the high-productivity agent’s output and a downward distortion of the
low-productivity agent’s output. Indeed, we have q̄SB < q̄∗, where

S′)q̄SB* = "̄ + 6

)1− (*7
'", (3.121)

Using the definitions of 6 and 7 given above, we finally obtain

S′)q̄SB* = "̄ + (

(
G′)"USB* −G′)USB*

(G′)U SB* + )1− (*G′)"USB*

)
'", (3.122)

We summarize all those results in proposition 3.7.

Proposition 3.7: Under asymmetric information, the optimal redistribu-
tive policy calls for a downward distortion of the low-productivity agent’s
output, q̄SB < q̄∗, and a positive wedge between the low- and the
high-productivity agents’ utilities, USB > "USB.

To induce information revelation by the high-productivity type, the princi-
pal raises his after-tax utility level and reduces that of the low-productivity type.
Introducing this unequal distribution of utilities is costly for the principal, who
maximizes a strictly concave social objective. To reduce this cost, and thereby
to reduce inequality, the principal decreases the low-productivity agent’s output.
Under asymmetric information, there exists a true trade-off between equity and
efficiency.

Remark: It is interesting to give an approximation of the distortion
described in (3.122) when '" is small enough. Using simple Taylor
expansions, we get G′)"USB* − G′)USB* ≈ −G′′)U ∗*)USB − "USB* =
−G′′)U ∗*'"q̄SB, and (G′)USB* + )1 − (*G′)"USB* ≈ G′)U ∗*. Hence,
we finally obtain

S′)q̄SB* ≈ "̄ − (
G′′)U ∗*

G′)U ∗*
)'"*2q̄SB, (3.123)

As the degree of the government’s inequality aversion −G′′)U∗*
G′)U∗*

increases, the principal becomes more averse to inequality, and he
must more significantly reduce the low-productivity agent’s output.
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The taxation literature has been mostly developed, following Mirrlees
(1971), in the case of a continuum of productivity shocks. As our

two-type model has already shown, the technical difficulties of such models
come from the impossibility to proceed in two steps as usual, i.e., first, find the
distribution of utilities and, second, optimize with respect to output. Those
two steps must be performed simultaneously by relying on complex optimiza-
tion techniques (calculus of variations or Pontryagin Principle). This makes
the analysis quite difficult, and explicit solutions are generally not available
(see Atkinson and Stiglitz 1980, Stiglitz 1987, and Myles 1997 for the tech-
niques needed to solve this problem in the case of a continuum of types).
A second peculiarity of the optimal solution with a continuum of types is
that both the lowest and the highest productivity agents produce the first-
best output, provided that second-order conditions are satisfied (Lollivier and
Rochet 1983). Otherwise, it may sometimes be optimal to have the least pro-
ductive agents producing zero output. For all other types, the production is
downward distorted as in our two-type example. The clear advantage of the
continuum model is that it gives realistic predictions on the taxation sched-
ule. This allows discussion of the progressivity or regressivity of this schedule.
The fact that high-productivity agents produce efficiently also implies that
the marginal tax rate faced by the highest productivity agents should be zero
in the optimal taxation literature. This seems nevertheless to contradict most
empirical observations.

Appendix 3.1: The Optimal Contract with a
Continuum of Types

Despite the fact that few new economic insights can be obtained in the continuum
case, we give a brief account of this case here, because most of the principal-agent
literature is written within this framework.

Reconsider the model of section 2.1 with " in # = /"% "̄0, with a cumulative
distribution function F )"* and a density function f )"* > 0 on /"% "̄0. Nothing in
the proof of proposition 2.1 is specific to the discrete case. Hence, the revelation
principle is still valid with a continuum of types, and we can restrict our anal-
ysis to direct revelation mechanisms $)q)"̃*% t)"̃**&, which are truthful, i.e., such
that

t)"* − "q)"* ≥ t)"̃* − "q)"̃* for any )"% "̃* in #2, (3.124)
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In particular, (3.124) implies

t)"* − "q)"* ≥ t)"′* − "q)"′*% (3.125)

t)"′* − "′q)"′* ≥ t)"* − "′q)"* for all pairs )"% "′* in #2, (3.126)

Adding (3.125) and (3.126) we obtain

)" − "′*)q)"′* − q)"** ≥ 0, (3.127)

Incentive compatibility alone requires that the schedule of output q)·* has to
be nonincreasing. This implies that q)·* is differentiable almost everywhere (a.e.),
from which we can derive that t)·* is also differentiable with the same points
of nondifferentiability. The most general class of direct revelation mechanisms to
consider is therefore the class of a.e. differentiable functions. In practice, we use
piecewise differentiable functions and in most cases differentiable functions. Here,
we will restrict the analysis to differentiable functions, but it can be immediately
extended to piecewise differentiable functions.25

(3.124) implies that the following first-order condition for the optimal response
"̃ chosen by type " is satisfied:

ṫ)"̃* − "q̇)"̃* = 0, (3.128)

For the truth to be an optimal response for all ", it must be the case that

ṫ)"* − "q̇)"* = 0% (3.129)

and (3.129) must hold for all " in # since " is unknown to the principal.
It is also necessary to satisfy the local second-order condition,

ẗ)"̃*
∣∣
"̃="

− "q̈)"̃*
∣∣
"̄="

≤ 0 (3.130)

or
ẗ)"* − "q̈)"* ≤ 0, (3.131)

But differentiating (3.129), (3.131) can be written more simply as

−q̇)"* ≥ 0, (3.132)

25Laffont and Tirole (1993, chap. 6) provide an example of an optimal discontinuous direct reve-
lation mechanism. See also Guesnerie and Laffont (1984).
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(3.129) and (3.132) constitute the local incentive constraints, which ensure
that the agent does not want to lie locally. Now we need to check that he does not
want to lie globally either, therefore the following constraints must be satisfied:

t)"* − "q)"* ≥ t)"̃* − "q)"̃* for any )"% "̃* in #2. (3.133)

From (3.129) we have

t)"* − t)"̃* =
∫ "

"̄
8 q̇)8* d8 = "q)"* − "̃q)"̃* −

∫ "

"̃
q)8* d8 (3.134)

or
t)"* − "q)"* = t)"̃* − "q)"̃* + )" − "̃*q)"̃* −

∫ "

"̃
q)8* d8% (3.135)

where )" − "̃*q)"̃* −
∫ "

"̃ q)8*d8 ≥ 0, because q)·* is nonincreasing.
So, it turns out that the local incentive constraints (3.128) also imply the

global incentive constraints.26

In such circumstances, the infinity of incentive constraints (3.133) reduces to
a differential equation and to a monotonicity constraint. Local analysis of incen-
tives is enough. Truthful revelation mechanisms are then characterized by the two
conditions (3.129) and (3.132).

Let us use the rent variable U )"* = t)"*− "q)"*, instead of the transfer as we
did in the text of chapter 2. The local incentive constraint is now written as27 (by
using (3.129))

U̇ )"* = −q)"*, (3.136)

The optimization program of the principal becomes

)P *3 max
$)U )·*%q)·**&

∫ "̄

"
)S)q)"** − "q)"* − U )"** f )"* d"%

subject to

U̇ )"* = −q)"*% (3.137)

q̇)"* ≤ 0% (3.138)

U )"* ≥ 0, (3.139)

26This is due to the fact that the Spence-Mirrlees property holds. See section 3.1.3 for a general
definition of this property.

27U̇ )"* = −q)"*+ )ṫ)"*− "q̇)"**, but the term in parentheses is zero from the first-order condition
(3.129). By employing the Envelope Theorem, the incentive constraint reduces to (3.136).
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Using (3.136), the participation constraint (3.139) simplifies to U )"̄* ≥ 0. As
in the discrete case, incentive compatibility implies that only the participation
constraint of the most inefficient type can be binding. Furthermore, it is clear from
the above program that it will be binding, i.e., U )"̄* = 0.

Momentarily ignoring (3.138), we can solve (3.137)

U )"̄* − U )"* = −
∫ "̄

"
q)8* d8 (3.140)

or, since U )"̄* = 0,

U )"* =
∫ "̄

"
q)8* d8, (3.141)

The principal’s objective function becomes

∫ "̄

"

(
S)q)"** − "q)"* −

∫ "̄

"
q)8* d8

)
f )"* d"% (3.142)

which, by an integration of parts, gives

∫ "̄

"

(
S)q)"** −

(
" + F )"*

f )"*

)
q)"*

)
f )"* d", (3.143)

Maximizing pointwise (3.143), we get the second-best optimal outputs

S′)qSB)"** = " + F )"*

f )"*
% (3.144)

which generalizes (2.27) and (2.29) to the case of a continuum of types.
If the monotone hazard rate property d

d"

(
F )"*
f )"*

)
≥ 0 holds,28 the solution qSB)"*

of (3.144) is clearly decreasing, and the neglected constraint (3.138) is satisfied.29

All types choose therefore different allocations and there is no bunching in the
optimal contract.

From (3.144), we note that there is no distortion for the most efficient type
(since F )"* = 0) and a downward distortion for all the other types.

28This sufficient condition is satisfied by most parametric single-peak densities (see Bagnoli and
Bergstrom 1989).

29If qSB)"* is increasing, it is not the solution. The solution, which involves bunching in some
intervals (i.e., qSB)"* constant on some intervals), can be easily obtained by the Pontryagin principle
(see appendix 3.2 and Guesnerie and Laffont 1984).
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All types, except the least efficient one, obtain a positive information rent at
the optimal contract

USB)"* =
∫ "̄

"
qSB)8* d8, (3.145)

Finally, one could also allow for some shutdown of types. The virtual surplus
S)q*−

(
" + F )"*

f )"*

)
q decreases with " when the monotone hazard rate property holds,

and shutdown (if any) occurs on an interval /"∗% "̄0. "∗ is obtained as a solution to

max
$"∗&

∫ "∗

"

(
S)qSB)"** −

(
" + F )"*

f )"*

)
qSB)"*

)
f )"*d",

For an interior optimum, we find that

S)qSB)"∗** =
(

"∗ + F )"∗*

f )"∗*

)
qSB)"∗*,

As in the discrete case, we leave it to the reader to check that the Inada
condition S′)0* = +* and the condition limq→0 S

′)q*q = 0 ensure the corner
solution "∗ = "̄.

Remark: The optimal solution above can be also derived by using the
Pontryagin principle.30 The Hamiltonian is then

H)q%U% 7% "* = )S)q* − "q − U *f )"* − 7q% (3.146)

where 7 is the co-state variable, U the state variable and q the control
variable.

From the Pontryagin principle,

7̇)"* = −.H

.U
= f )"*, (3.147)

From the transversality condition (since there is no constraint on
U )·* at "),

7)"* = 0, (3.148)

Integrating (3.147) using (3.148), we get

7)"* = F )"*, (3.149)

30See Kamien and Schwartz (1981) for an introduction to dynamic programming.
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Optimizing with respect to q)·* also yields

S′)qSB)"** = " + 7)"*

f )"*
% (3.150)

and inserting the value of 7)"* obtained from (3.149) again yields
(3.144).

We have derived, in three steps (through the use of the revelation princi-
ple, characterization of truthful direct revelation mechanisms, and optimization
of the principal’s expected welfare in the class of truthful direct revelation mech-
anisms), the optimal truthful direct revelation mechanism $)qSB)"*%USB)"**&, or
$)qSB)"*% tSB)"**&. It remains to be investigated if there is a simple implementation
of this mechanism. Since qSB)·* is decreasing,31 we can invert this function and
obtain "SB)q*. Then,

tSB)"* = USB)"* + "qSB)"* (3.151)

becomes

T )q* = tSB)"SB)q** =
∫ "̄

")q*
qSB)8* d8 + ")q*q, (3.152)

To the optimal truthful direct revelation mechanism we have associated a non-
linear transfer T )q*. We can check that the agent confronted with this nonlinear
transfer chooses the same allocation as when he is faced with the optimal revela-
tion mechanism. Indeed, we have d

dq
)T )q*− "q* = T ′)q*− " = dtSB

d"
· d"SB

dq
− " = 0,

since dtSB

d"
− " dqSB

d"
= 0.

Remark: In chapter 9, we will give one more result that is specific to
the continuum case, namely the possibility to implement (sometimes)
the optimal contract by a menu of linear contracts.

To conclude, the economic insights obtained in the continuum case are not
different from those obtained in the two-state case studied in this chapter. The
case of partial bunching where a whole set of types with nonzero measure choose
the same allocation is discussed in appendix 3.2.

The differentiable method was used in Mirrlees (1971) and Mussa
Rosen (1978), but the systematic approach of differentiable direct rev-

elation mechanisms was provided in Laffont and Maskin (1980), in the more

31When qSB)·* is not strictly decreasing, some care must be exerted in the writing below. A “flat”
in q)·* is associated with nondifferentiability of T )·*.
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general case of dominant strategy mechanisms for multiagent frameworks.
Baron and Myerson (1982) and Guesnerie and Laffont (1984) extended the
analysis to cases where the monotonicity condition may be binding. Milgrom
and Segal (2000) discussed the conditions under which (3.140) holds. They
showed that imposing piecewise continuously differentiability may be exces-
sive, and they offered less stringent conditions on the primitives (the agent’s
utility function) validating (3.140).

Appendix 3.2: Bunching in the Case of a
Continuum of Types

In this appendix we analyze the bunching problem in the case of a continuum of
types. The framework is that of appendix 3.1.

In the case of a continuum of types, the principal’s optimization program is
written (see appendix 3.1):

)P *3 max
$)U )"*%q)"**&

∫ "̄

"
)S)q)"** − "q)"* − U )"**f )"* d"

subject to

U̇ )"* = −q)"*% (3.153)

q̇)"* ≤ 0% (3.154)

U )"* ≥ 0% for all " in #, (3.155)

where (3.154) is the local second-order condition of the agent’s problem.
We can solve (3.153) for U )"* and, using U )"̄* = 0, substitute in the princi-

pal’s objective program. Then we define q)"* as the new state variable and y)"* =
q̇)"* as the control variable. )P * reduces to

)P ′*3 max
$)q)"*%y)"**&

∫ "̄

"

(
S)q)"** − "q)"* − F )"*

f )"*
q)"*

)
f )"* d"

q̇)"* = y)"* (3.156)

y)"* ≤ 0, (3.157)

We denote by 7)"* the multiplier of (3.156).
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The Hamiltonian is then

H)q% y% 7% "* =
(
S)q* −

(
" + F )"*

f )"*

)
q

)
f )"* + 7y, (3.158)

From the Pontryagin principle, we have

7̇)"* = −.H

.q
= −

(
S′)q)"** −

(
" + F )"*

f )"*

))
f )"*, (3.159)

Maximizing with respect to y)·* with the constraint (3.157) yields 7)"* ≥ 0,
with y)"* = 0 if 7)"* > 0.

Consider an interval where the monotonicity constraint (3.157) is not binding.
Then, 7)"* is zero on this interval (and therefore 7̇)"* = 0 also on this interval).
Maximizing with respect to q)·*, we find the second-best solution characterized by

S′)qSB)"** = " + F )"*

f )"*
, (3.160)

So, when the monotonicity constraint is not binding, the optimal solution
coincides with the second-best solution.

Consider now an interval /"0% "10 where the monotonicity constraint is bind-
ing. Then q)·* is constant in the interval. Denote this value by q̄. Because (3.157)
is not binding to the left of "0 and to the right of "1, from the continuity of the Pon-
tryagin multiplier 7)"* we have 7)"0* = 7)"1* = 0. Integrating (3.159) between
"0 and "1, we obtain

∫ "1

"0

(
S′)q̄* −

(
" + F )"*

f )"*

))
f )"* d" = 0% (3.161)

or, putting it differently,

S′)q̄* =
∫ "1

"0
)"f )"* + F )"** d"
∫ "1

"0
f )"* d"

, (3.162)

Integrating the numerator of (3.162) by parts, we get

S′)q̄* = "1F )"1* − "0F )"0*

F )"1* − F )"0*
, (3.163)

To determine the three unknowns "0% "1 and q̄, we have three equations,
namely (3.163) and q̄ = qSB)"0* = qSB)"1* from (3.160) at " = "0 and " = "1

(see figure 3.13).
There is bunching in the interval /"0% "10.

See Guesnerie and Laffont (1984) for more general solutions with
several possible intervals of bunching.
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Figure 3.13: Bunching

Appendix 3.3: The Spence-Mirrlees Property

The goal of this appendix is to see the importance of the Spence-Mirrlees property
in a general incentive problem.

Consider the general utility function U )q% t% "* for the agent with Ut > 0.
Local incentive compatibility for the direct revelation mechanism $)q)"̃*% t)"̃**& is
written as

Uq)q)"*% t)"*% "*q̇)"* + Ut)q)"*% t)"*% "*ṫ)"* = 0% (3.164)

The local second-order condition is written as (after using the first-order con-
dition)

Uq")q)"*% t)"*% "*q̇)"* + Ut")q)"*% t)"*% "*ṫ)"* ≥ 0% (3.165)

or, using the first-order condition,

q̇)"*

(
Uq")q)"*% t)"*% "* − Ut")q)"*% t)"*% "* ·

Uq)q)"*% t)"*% "*

Ut)q)"*% t)"*% "*

)
≥ 0%
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or, finally,

q̇)"* · Ut)q)"*% t)"*% "* · .

."̃

(
Uq)q)"*% t)"*% "̃*

Ut)q)"*% t)"*% "̃*

)∣∣∣∣
"̃="

≥ 0, (3.166)

Using the Spence-Mirrlees property at "̃ = ",

.

."

(
Uq

Ut

)
< 0% (3.167)

and Ut > 0, we conclude that q̇)"* ≤ 0.
Global incentive compatibility requires

U )q)"*% t)"*% "* ≥ U )q)"̃*% t)"̃*% "* for all )"% "̃* in #2, (3.168)

(3.168) can be rewritten as
∫ "

"̃
)Uq)q)8*% t)8*% "*q̇)8* + Ut)q)8*% t)8*% "*ṫ)8** d8 ≥ 0, (3.169)

or, using again the first-order condition to express ṫ)8*,

∫ "

"̃
q̇)8*Ut)q)8*% t)8*% "*

(
Uq)q)8*% t)8*% "*

Ut)q)8*% t)8*% "*
−

Uq)q)8*% t)8*% 8*

Ut)q)8*% t)8*% 8*

)

d8 ≥ 0, (3.170)

Because q̇)8* ≤ 0%Ut > 0, and using the Spence-Mirrlees property with 8 <
", we can conclude that

∫ "

"̃
q̇)8*Ut)q)8*%t)8*%"*

(
Uq)q)8*%t)8*%"*

Ut)q)8*%t)8*%"*
−
Uq)q)8*%t)8*%8*

Ut)q)8*%t)8*%8*

)

d8

≥
∫ "

"̃
q̇)8*Ut)q)8*%t)8*%"*

(
Uq)q)8*%t)8*%8*

Ut)q)8*%t)8*%8*
−
Uq)q)8*%t)8*%8*

Ut)q)8*%t)8*%8*

)

d8=0, (3.171)

Hence, the local second-order condition q̇)8* ≤ 0 also implies global optimal-
ity of the truth-telling strategy when the Spence-Mirrlees property (3.168) holds.

Remark: It is important to notice that, for reducing the second-order
condition to q̇)"* ≤ 0, we need only use the Spence-Mirrlees prop-
erty at )q)"*% t)"*% "*. However, to reach global incentive compatibility
we need this condition at )q)8*% t)8*% "* for any )8% "*, i.e., for any
)q% t% "*, which is a much stronger requirement.

For models linear in ", such as t − "C)q*, the “local Spence-
Mirrlees property” .

."
)−"C′)q)"̃***"̃=" < 0 for all " implies the “global

Spence-Mirrlees property” .
."

)−"C′)q)8*** for all )"% 8*.
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Appendix 3.4: Proofs of Propositions 3.4 and 3.5

We start with proposition 3.4. Suppose first that l < ('"q̄SB; we conjecture that the
relevant constraints are (3.79) and (3.78). Those constraints are obviously binding
to minimize the expected rent (U + )1− (*"U left to the agent. Hence, "UL = −l
and UL = −l + '"q̄. Inserting these values into the principal’s objective function
and optimizing with respect to q and q̄ yields qL = q∗ and q̄L = q̄SB.

This solution is valid as long as the agent’s ex ante participation constraint is
strictly satisfied, i.e., (UL + )1− (*"UL = −l + ('"q̄SB > 0.

Note that the "̄-agent’s incentive constraint and the limited liability constraint
(3.77) are both slack. Supposing that ('"q̄SB ≤ l ≤ ('"q̄∗, we then conjecture
that (3.80) is also binding. In this case we obtain that (UL + )1 − (*"UL = −l +
('"q̄L = 0, and thus the output distortion is explicitly defined by (3.81). This dis-
tortion continues to hold as long as q̄ ≤ q̄∗. For l > ('"q̄∗, the principal imple-
ments the first-best outcome by fixing UL = )1 − (*'"q̄∗ and "UL = −('"q̄∗.
These rents satisfy (3.79) and (3.80) with an equality. Moreover, the limited liabil-
ity constraints (3.77) and (3.78) also hold.

We now turn to the proof of proposition 3.5. Note first that we can rewrite
(3.75) and (3.76) respectively as

U ≥ −l − "q% (3.172)

"U ≥ −l − "̄q̄, (3.173)

Incentive compatibility still requires q ≥ q̄. In the optimal contract without
limited liability constraint, the contract with the highest value of "U is such that
"U = −('"q̄∗. The constraint is not binding if "U ≥ −l − "̄q̄∗ or if l ≥ −)(" +
)1 − (*"̄*q̄∗, in which case the first-best is still implemented. When l becomes
lower, the constraint (3.173) becomes binding and q̄ must be adjusted upward so
that l = −)(" + )1− (*"̄*q̄.

When l reaches −)(" + )1− (*"̄*q∗, the implementability condition becomes
binding, and bunching occurs with q = q̄ = qL and l = −)(" + )1− (*"̄*qL.

The contract is valuable as long as qL is lower than qmax, defined by S)qmax* =
)(" + )1− (*"̄*qmax, so that the principal makes a positive profit.



4 Moral Hazard: The Basic
Trade-Offs

In chapter 2, we stressed that the delegation of tasks creates an information gap
between the principal and his agent when the latter learns some piece of informa-
tion relevant to determining the efficient volume of trade. Adverse selection is not
the only informational problem one can imagine. Agents to whom a task has been
delegated by a principal may also choose actions that affect the value of trade or,
more generally, the agent’s performance. By the mere fact of delegation, the prin-
cipal often loses any ability to control those actions that are no longer observable,
either by the principal who offers the contract or by the court of law that enforces
it. Those actions cannot be contracted upon because no one can verify their value.
In such cases we will say that there is moral hazard.1

The leading candidates for such moral hazard actions are effort variables,
which positively influence the agent’s level of production but also create a disutility
for the agent. For instance, the yield of a field depends on the amount of time
that the tenant has spent selecting the best crops, or the quality of their harvesting.

1This situation is sometimes also referred to as hidden action. See section 1.6 for the origin of the
expression “moral hazard.”
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Similarly, the probability that a driver has a car crash depends on how safely he
drives, which also affects his demand for insurance. Also, a regulated firm may have
to perform a costly and nonobservable investment to reduce its cost of producing
a socially valuable good. The agent’s action may be a more complex array of
decisions that define the agent’s task or his job attributes. The agent may sometimes
choose among various projects to be carried out on behalf of the principal, each
project being associated with a particular stream of profit for the principal and a
particular nontransferable private benefit that the agent may get if this project is
selected. For example, the manager of a large corporation may divert the firm’s
resources into perks rather than in hiring new engineers for the firm’s research
lab.

It is important to stress that, as with adverse selection, moral hazard would not
be an issue if the principal and the agent had the same objective function. Crucial
to the agency cost arising under moral hazard is the conflict between the principal
and the agent over which action should be carried out. The nonobservability of the
agent’s action may then prevent an efficient resolution of this conflict of interest,
because no enforceable contract can ever stipulate which action should be taken
by the agent.

As in the case of adverse selection, asymmetric information also plays a crucial
role in the design of the optimal incentive contract under moral hazard. How-
ever, instead of being an exogenous uncertainty for the principal, uncertainty is
now endogenous. The probabilities of the different states of nature, and thus the
expected volume of trade, now depend explicitly on the agent’s effort. In other
words, the realized production level is only a noisy signal of the agent’s action.
This uncertainty is key to understanding the contractual problem under moral
hazard. If the mapping between effort and performance were completely determin-
istic, the principal and the court of law would have no difficulty in inferring the
agent’s effort from the observed output. Even if the agent’s effort was not observ-
able directly, it could be indirectly contracted upon, since output would itself be
observable and verifiable. The nonobservability of the effort would not put any real
constraint on the principal’s ability to contract with the agent, and their conflict
of interests would be costless to solve.

In a moral hazard context, the random output aggregates the agent’s effort
and the realization of pure luck. However, the principal can only design a contract
based on the agent’s observable performance. Through this contract the principal
wants to induce, at a reasonable cost, a high effort from the agent despite the
impossibility of directly conditioning the agent’s reward on his action. In general,
the nonobservability of the agent’s effort affects the cost of implementing a given
action. To illustrate this point we present a simple 2× 2 model, where a risk-averse
agent can choose a binary effort and the production level can be either high or
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low. A first step of the analysis in this chapter is to study the properties of incentive
schemes that induce a positive and costly effort. Such schemes must thus satisfy
an incentive constraint. Also, inducing the agent’s voluntary participation imposes
a standard participation constraint. Incentive feasible contracts are those satisfying
those two constraints. Among such schemes, the principal prefers the one that
implements the positive level of effort at minimal cost. This cost minimization
yields the characterization of the second-best cost of implementing this effort.
In general, this second-best cost is greater than the first-best cost that would be
obtained by assuming that effort is observable. The reason is that the incentive
constraint is generally binding for the incentive scheme implementing a positive
effort at minimal cost.

Once this first step of the analysis is performed, we can characterize the second-
best effort chosen by the principal. This second-best effort trades off the principal’s
benefit of inducing a given effort against the second-best cost of implementing this
effort, The main lesson of this second step of the analysis is that the second-best
effort may differ from the first-best one. An allocative inefficiency emerges as the
result of the conflict of interests between the principal and the agent.

Let us now see in more detail the terms of the moral hazard trade-offs. When
the agent is risk neutral, the nonobservability of effort has no effect on the effi-
ciency of trade. Moral hazard does not create any transaction cost. The principal
can achieve the same utility level as if he could directly control the agent’s effort.
This first-best outcome is obtained through a contract that is contingent on the level
of production. The agent is “incentivized” by being rewarded for good production
levels and penalized otherwise. Since the agent is risk neutral, he is ready to accept
penalties and rewards as long as the expected payment he receives satisfies his ex
ante participation constraint. Transfers can be structured to make the agent’s par-
ticipation constraint binding while inducing the desirable effort level. One way of
doing so is to make the agent residual claimant for the gains from trade and to grasp
all these expected gains by means of an ex ante lump-sum transfer.

If the risk-neutral agent has no wealth and cannot be punished, a new limited
liability constraint must be satisfied on top of the usual incentive and participation
constraints. In this case there is a conflict between the limited liability and the
incentive constraints. Indeed, punishment being now infeasible, the principal is
restricted to use only rewards to induce effort. This restriction of the principal’s
instruments implies that he must give up some ex ante rent to the agent. This
limited liability rent is costly for the principal, who then distorts the second-best
effort level below its first-best value to reduce the cost of this rent. As in the case of
adverse selection and the interim participation constraints of chapter 2, we have a
similar rent extraction-efficiency trade-off leading to a downward distortion in the
expected volume of trade.
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If the agent is risk averse, a constant wage provides full insurance but induces
no effort provision. Inducing effort requires the principal to let the agent bear
some risk. To accept such a risky contract, the agent must receive a risk premium.
There is now a conflict between the incentive and the participation constraints of
the agent. This leads to an insurance-efficiency trade-off. To solve this trade-off the
principal must distort the complete information risk-sharing agreement between
him and the agent to induce effort provision. As we will see in chapter 5, there is
no general lesson on how the second-best and the first-best efforts can be compared
in a moral hazard environment. However, in the model presented in this chapter,
which involves two levels of effort, one can still easily show that a high effort is
less often implemented by the principal than under complete information.

In section 4.1 we present the general moral hazard model highlighting the
stochastic nature of the production process in a 2× 2 (i.e., two-effort/two-outcome)
setting. We also describe the set of incentive feasible contracts that induce a high
level of effort, and we derive the first-best decision rule as a benchmark. In sec-
tion 4.2, we show that moral hazard imposes no real transaction cost on the effi-
ciency of contracting when the agent is risk neutral. Section 4.3 focuses on the
trade-off between extraction of the limited liability rent and allocative efficiency
under risk neutrality. Section 4.4 deals with the trade-off between insurance and
efficiency under risk aversion. These latter two sections are the core of the chapter.
We then extend the basic framework to provide various comparative statics results
on the optimal contract. In section 4.5, we generalize our previous insights to the
case of more than two levels of performance. This extension is worth pursuing to
analyze the conditions on the information structures that ensure the monotonicity
of the agent’s compensation schedule in the observed performance. In section 4.6,
we investigate the properties of various information systems from an agency point of
view. Here we prove an important property: any signal that informs the principal of
the agent’s effort should be included as an argument of his compensation payment.
Section 4.7 proposes a brief overview of the insights obtained from the moral hazard
paradigm to understand the theory of the firm. Section 4.8 develops a number of
bare-bones examples where the moral hazard paradigm has proved to be extremely
useful. Finally, section 4.9 briefly discusses the assumption of commitment.

4.1 The Model

4.1.1 Effort and Production

We consider an agent who can exert a costly effort e. Two possible values can be
taken by e, which we normalize as a zero effort level and a positive effort of one:
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e in !0" 1#. Exerting effort e implies a disutility for the agent that is equal to $%e&
with the normalizations $%0& = $0 = 0 and $%1& = $1 = $.

The agent receives a transfer t from the principal. We assume that his util-
ity function is separable between money and effort,2 U = u%t& − $%e&, with u%·&
increasing and concave (u′ > 0"u′′ < 0) and normalized so that u%0& = 0. Some-
times we will use the function h = u−1, the inverse function of u%·&, which is
increasing and convex (h′ > 0, h′′ > 0).

Production is stochastic, and effort affects the production level as follows:
the stochastic production level q̃ can only take two values !q" q̄#, with q̄ − q =
'q > 0, and the stochastic influence of effort on production is characterized
by the probabilities Pr%q̃ = q̄$e = 0& = (0, and Pr%q̃ = q̄$e = 1& = (1, with
(1 > (0. We will denote the difference between these two probabilities by '( =
(1 − (0.

Note that effort improves production in the sense of first-order stochastic dom-
inance, i.e., Pr%q̃ ≤ q∗$e& is decreasing with e for any given production q∗. Indeed,
we have Pr%q̃ ≤ q$e = 1& = 1 − (1 < 1 − (0 = Pr%q̃ ≤ q$e = 0&, and Pr%q̃ ≤
q̄$e = 1& = 1 = Pr%q̃ ≤ q̄$e = 0&. This property implies that any principal who has
a utility function v%·& that is increasing in production prefers the stochastic distri-
bution of production induced by the positive effort level e = 1 to that induced
by the null effort level e = 0. Indeed, we have (1v%q̄&+ %1− (1&v%q& = (0v%q̄&+
%1−(0&v%q&+ %(1 −(0&%v%q̄&− v%q&&, which is greater than (0v%q̄&+ %1−(0&v%q&
if v%·& is increasing. An increase in effort improves production in a strong sense in
this model with two possible levels of performance.

4.1.2 Incentive Feasible Contracts

Mimicking what we did in chapters 2 and 3, we start by describing incentive
feasible contracts in a moral hazard environment. In such an environment, the
agent’s action is not directly observable by the principal. The principal can only
offer a contract based on the observable and verifiable production level, i.e., a
function !t%q̃&# linking the agent’s compensation to the random output q̃. With
two possible outcomes q̄ and q, the contract can be defined equivalently by a pair
of transfers t̄ and t. Transfer t̄ (resp. t) is the payment received by the agent if the
production q̄ (resp. q) is realized. Keeping the same notations as in chapter 2, the

2This assumption facilitates notations and is irrelevant in this chapter. See chapter 5 for the case
of nonseparability and its possible impact on the main features of the optimal contract.
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risk-neutral3 principal’s expected utility is now written as

V1 = (1%S%q̄&− t̄&+ %1− (1&%S%q&− t& (4.1)

if the agent makes a positive effort %e = 1&, and

V0 = (0%S%q̄&− t̄&+ %1− (0&%S%q&− t& (4.2)

if the agent makes no effort %e = 0&. For notational simplicity, throughout this
chapter we will denote the principal’s benefits in each state of nature by S%q̄& = 'S
and S%q& = S.

The problem of the principal is now to decide whether to induce the agent
to exert effort or not and, if he chooses to do so, then to decide which incentive
contract should be used.

Each level of effort that the principal wishes to induce corresponds to a set
of contracts ensuring participation and incentive compatibility. In our model with
two possible levels of effort, we will say that a contract is incentive feasible if it
induces a positive effort and ensures the agent’s participation. The corresponding
moral hazard incentive constraint is thus written as

(1u%t̄&+ %1− (1&u%t&− $ ≥ (0u%t̄&+ %1− (0&u%t&) (4.3)

(4.3) is the incentive constraint that imposes upon the agent to prefer to exert
a positive effort. If he exerts effort, the agent faces the lottery that gives t̄ (resp. t)
with probability (1 (resp. 1 − (1) and not the lottery that yields t̄ (resp. t) with
probability (0 (resp. 1 − (0). However, when he does not exert effort, the agent
incurs no disutility of effort and saves an amount $.

Still normalizing the agent’s reservation utility at zero, the agent’s participation
constraint is now written as

(1u%t̄&+ %1− (1&u%t&− $ ≥ 0) (4.4)

(4.4) is the agent’s participation constraint that ensures that if the agent exerts
effort, it will yield at least his outside opportunity utility level. Note that this par-
ticipation constraint is ensured at the ex ante stage, i.e., before the realization of
the production shock.4

3We will restrict our analysis to risk-neutral principals. The risk aversion of the principal creates a
different benchmark for the complete information case in which the principal and the agent share
risk rather than having the principal insure completely the agent. With moral hazard most results
we provide can be extended at the cost of greater complexity.

4See section 2.11 for a similar timing in the case of ex ante contracting under adverse selection.
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Figure 4.1: Timing of Contracting Under Moral Hazard

Definition 4.1: An incentive feasible contract satisfies the incentive and
participation constraints (4.3) and (4.4).

The timing of the contracting game under moral hazard is summarized in
figure 4.1.

4.1.3 The Complete Information Optimal Contract

As a benchmark, let us first assume that the principal and a benevolent court of law
can both observe effort. This variable is now verifiable and can thus be included
into a contract enforced by the court of law. Then, if he wants to induce effort,
the principal’s problem becomes

%P &* max
!%t̄" t&#

(1%'S− t̄&+ %1− (1&%S− t&

subject to (4.4).

Indeed, only the agent’s participation constraint matters for the principal,
because the agent can be forced to exert a positive level of effort. If the agent were
not choosing this level of effort, his deviation could be perfectly detected by both
the principal and the court of law. The agent could be heavily punished, and the
court could commit to enforce such a punishment.

Denoting the multiplier of this participation constraint by + and optimizing
with respect to t̄ and t yields, respectively, the following first-order conditions:

−(1 + +(1u
′%t̄∗& = 0" (4.5)

−%1− (1&+ +%1− (1&u
′%t∗& = 0" (4.6)

where t̄∗ and t∗ are the first-best transfers.
From (4.5) and (4.6) we immediately derive that + = 1

u′%t∗& = 1
u′%t̄∗& > 0, and

finally that t∗ = t̄∗ = t∗.
With a verifiable effort, the agent obtains full insurance from the risk-neutral

principal, and the transfer t∗ he receives is the same whatever the state of nature.
Because the participation constraint is binding we also obtain the value of this
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transfer, which is just enough to cover the disutility of effort, namely t∗ = h%$&.
This is also the expected payment made by the principal to the agent, or the first-
best cost CFB of implementing the positive effort level. For the principal, inducing
effort yields an expected payoff equal to

V1 = (1
'S+ %1− (1&S− h%$&) (4.7)

Had the principal decided to let the agent exert no effort, e = 0, he would
make a zero payment to the agent whatever the realization of output. In this
scenario, the principal would instead obtain a payoff equal to

V0 = (0
'S+ %1− (0&S) (4.8)

Inducing effort is thus optimal from the principal’s point of view when V1 ≥
V0, i.e., (1

'S+ %1− (1&S− h%$& ≥ (0
'S+ %1− (0&S, or to put it differently, when

'('S︸ ︷︷ ︸
Expected

gain
of effort

≥ h%$&︸︷︷︸
First-best cost
of inducing

effort

" (4.9)

where 'S = 'S− S > 0.
The left-hand side of (4.9) captures the gain of increasing effort from e = 0

to e = 1. This gain comes from the fact that the return 'S, which is greater than
S, arises more often when a positive effort is exerted. The right-hand side of (4.9)
is instead the first-best cost of inducing the agent’s acceptance when he exerts a
positive effort.

Denoting the benefit of inducing a strictly positive effort level by B = '('S,
the first-best outcome calls for e∗ = 1 if and only if B ≥ h%$&, as shown in
figure 4.2.

Figure 4.2: First-Best Level of Effort
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4.2 Risk Neutrality and First-Best Implementation

If the agent is risk-neutral, we can assume that (up to an affine transformation)
u%t& = t for all t and h%u& = u for all u. The principal who wants to induce effort
must thus choose the contract that solves the following problem:

max
!%t̄" t&#

(1%'S− t̄&+ %1− (1&%S− t&(P ):

(1t̄ + %1− (1&t − $ ≥ (0t̄ + %1− (0&t (4.10)

(1t̄ + %1− (1&t − $ ≥ 0) (4.11)

With risk neutrality the principal can, for instance, choose incentive compat-
ible transfers t̄ and t, which make the agent’s participation constraint binding and
leave no rent to the agent. Indeed, solving (4.10) and (4.11) with equalities, we
immediately obtain

t∗ = − (0

'(
$ (4.12)

and

t̄∗ = 1− (0

'(
$) (4.13)

The agent is rewarded if production is high. His net utility in this state of
nature 'U ∗ = t̄∗ − $ is 'U ∗ = 1−(1

'(
$ > 0. Conversely, the agent is punished if

production is low. His corresponding net utility U ∗ = t∗ − $ is U ∗ = − (1
'(

$ < 0.
The principal (who is risk-neutral with respect to transfers) makes an expected

payment (1t̄
∗ + %1− (1&t

∗ = $, which is equal to the disutility of effort he would
incur if he could control the effort level perfectly or if he was carrying the agent’s
task himself. The principal can costlessly structure the agent’s payment so that the
latter has the right incentives to exert effort. Indeed, by increasing effort from e = 0
to e = 1, the agent receives the transfer t̄∗ more often than the transfer t∗. Using
(4.12) and (4.13), his expected gain from exerting effort is thus '(%t̄∗ − t∗& = $,
i.e., it exactly compensates the agent for the extra disutility of effort that he incurs
when increasing his effort from e = 0 to e = 1.

Here delegation is costless to the principal. Therefore, if effort is socially valu-
able in the first-best world, it will also be implemented by the principal with the
incentive scheme !%t̄∗" t∗&# when effort is no longer observed by the principal and
the agent is risk-neutral. Proposition 4.1 summarizes this result.
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Proposition 4.1: Moral hazard is not an issue with a risk-neutral agent
despite the nonobservability of effort. The first-best level of effort is still
implemented.

Remark 1: The reader will have recognized the similarity of these
results with those described in section 2.11. In both cases, when con-
tracting takes place ex ante, i.e., before the realization of the state
of nature, the incentive constraint, under either adverse selection or
moral hazard, does not conflict with the ex ante participation con-
straint with a risk-neutral agent, and the first-best outcome is still
implemented.

Remark 2: The transfers %t̄∗" t∗& defined in (4.12) and (4.13) yield
only one possible implementation of the first-best outcome, an imple-
mentation such that the incentive constraint (4.10) is exactly binding.
Other pairs of transfers can be used, which may induce a strict pref-
erence of the agent for exerting effort. Let us consider the following
transfers t̄∗′ = 'S − T ∗ and t∗

′ = S − T ∗, where T ∗ is an up-front pay-
ment made by the agent before output realizes. These transfers satisfy
the agent’s incentive constraint since:

'(%t̄∗
′ − t∗

′
& = '('S > h%$& = $" (4.14)

where the inequality comes from the fact that effort is socially opti-
mal in a first-best world. Moreover, the up-front payment T ∗ can be
adjusted by the principal to have the agent’s participation constraint
be binding. The corresponding value of this transfer is T ∗ = (1

'S +
%1−(1&S− $. With the transfers t̄∗′ and t∗

′ above, the agent becomes
residual claimant for the profit of the firm. The up-front payment T ∗

is thus precisely equal to this expected profit. The principal chooses
this ex ante payment to reap all gains from delegation.

Making the risk-neutral agent residual claimant for the hierarchy’s
profit is an optimal response to the moral hazard problem. In other
words, the principal then sells the property rights over the firm to the
agent. Indeed, a proper allocation of property rights is sufficient to
induce efficiency.5

5See Tirole (1999) for a more general discussion that demonstrates how a proper allocation of
property rights implements the optimal contract. See also section 5.2.5.
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On the contrary, inefficiencies in effort provision due to moral hazard will
arise when the agent is no longer risk-neutral. There are two alternative ways to
model these transaction costs. One is to maintain risk neutrality for positive income
levels but to impose a limited liability constraint, which requires transfers not to
be too negative. The other is to let the agent be strictly risk-averse. In sections 4.3
and 4.4 we analyze these two contractual environments and the different trade-offs
they imply.

4.3 The Trade-Off Between Limited Liability Rent
Extraction and Efficiency

Let us consider a risk-neutral agent. As we have already seen, (4.3) and (4.4) now
take the following forms:

(1t̄ + %1− (1&t − $ ≥ (0t̄ + %1− (0&t (4.15)

and

(1t̄ + %1− (1&t − $ ≥ 0) (4.16)

Let us also assume that the agent’s transfer must always be greater than
some exogenous level −l, with l ≥ 0. The framework is quite similar to that
of section 3.5, and we refer the reader to that section for some motivations and
discussions of the origins of such limited liability constraints on transfers. Limited
liability constraints in both states of nature are thus written as

t̄ ≥ −l (4.17)

and

t ≥ −l) (4.18)

These constraints obviously reduce the set of incentive feasible allocations
and may prevent the principal from implementing the first-best level of effort even
if the agent is risk-neutral. Indeed, when he wants to induce a high effort, the
principal’s program is written as

%P &* max
!%t̄" t&#

(1%'S− t̄&+ %1− (1&%S− t&

subject to (4.15) to (4.18).
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A first observation is that the transfers (4.12) and (4.13), allowing the imple-
mentation of the first-best, may not satisfy the newly added limited liability con-
straints. Proposition 4.2 summarizes the solution to %P &.6

Proposition 4.2: With limited liability, the optimal contract inducing
effort from the agent entails:

• For l > (0
'(

$, only (4.15) and (4.16) are binding. Optimal transfers are
given by (4.12) and (4.13). The agent has no expected limited liability
rent; EUSB = 0.

• For 0 ≤ l ≤ (0
'(

$, (4.15) and (4.18) are binding. Optimal transfers are
then given by:

tSB = −l" (4.19)

t̄SB = −l + $

'(
) (4.20)

Moreover, the agent’s expected limited liability rent EUSB is non-negative:

EUSB = (1t̄
SB + %1− (1&t

SB − $ = −l + (0

'(
$ ≥ 0) (4.21)

First, we note that only the limited liability constraint in the bad state of
nature may be binding. Indeed, since inducing effort requires the creation of a
positive wedge between t̄ and t, (4.18) necessarily implies (4.17). When the limited
liability constraint (4.18) is binding, the principal is limited in his punishments
to induce effort. The risk-neutral agent does not have enough assets to cover the
punishment requested by the principal if q is realized in order to induce effort
provision. The principal uses rewards when a good state of nature q̄ is realized. As
a result, the agent receives a non-negative ex ante limited liability rent described
by (4.21). Compared with the case without limited liability, this rent is actually
the additional payment that the principal must incur because of the conjunction
of moral hazard and limited liability.

As the agent is endowed with more assets, i.e., as l gets larger, the conflict
between moral hazard and limited liability diminishes and then disappears when-
ever l is large enough. In this case, the agent avoids bankruptcy even when he has
to pay the optimal penalty to the principal in the bad state of nature.

Let us now assume that l = 0 so that only non-negative transfers are feasible.
Therefore, we model a contractual environment in which the agent owns no asset

6The proof is in appendix 4.1.
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at the time of starting the relationship with the principal. When the principal
induces effort from the agent, the principal’s expected utility can be computed as

V SB
1 = (1

'S+ %1− (1&S− (1$

'(
) (4.22)

If the principal gives up the goal of inducing effort from the agent, he can
choose t = t̄ = 0 and instead obtain the expected utility level (4.8). It is worth
inducing effort if V SB

1 is greater than V0, i.e., when

'('S ≥ (1$

'(
= $ + (0$

'(
) (4.23)

The left-hand side of (4.23) is the gain of inducing effort, i.e., the gain of
increasing the probability of a high production level. The right-hand side is instead
the second-best cost CSB of inducing effort, which is the disutility of effort $ plus
the limited liability rent (0$

'(
. This second-best cost of implementing effort obvi-

ously exceeds the first-best cost. As it can easily been seen by comparing (4.23)
and the right-hand side of (4.9) (taken for the case of risk neutrality, i.e., for
h%$& = $), limited liability and moral hazard together make it more costly to
induce effort.

Figure 4.3 describes the reduced subset of values of B, justifying a high effort
from the agent when limited liability and moral hazard interact.

Moral hazard justifies an underprovision of effort when the benefit B =
'('S of a strictly positive effort lies between $ and (1

'(
$. Our analysis is summa-

rized in proposition 4.3.

Proposition 4.3: With moral hazard and limited liability, there is a trade-
off between inducing effort and giving up an ex ante limited liability rent
to the agent. The principal chooses to induce a high effort from the agent
less often.

Figure 4.3: First-Best and Second-Best Efforts with Moral Hazard and Limited Liability
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4.4 The Trade-Off Between Insurance and Efficiency

Let us now turn to the second source of inefficiency in a moral hazard context—
the agent’s risk aversion. When the agent is risk-averse, the principal’s program is
written as:

%P &* max
!%t̄" t&#

(1%'S− t̄&+ %1− (1&%S− t&

subject to (4.3) and (4.4).

It is not obvious that %P & is a concave program for which the first-order Kuhn
and Tucker conditions are necessary and sufficient. The reason for this possible
lack of concavity is that the concave function u%·& appears on both sides of the
incentive compatibility constraint (4.3). However, the following change of variables
shows that concavity of the program is ensured. Let us define ū = u%t̄& and u =
u%t&, or equivalently let t̄ = h%ū& and t = h%u&. These new variables are the levels
of ex post utility obtained by the agent in both states of nature. The set of incentive
feasible contracts can now be described by two linear constraints:

(1ū+ %1− (1&u− $ ≥ (0ū+ %1− (0&u" (4.24)

which replaces the incentive constraint (4.3), and also

(1ū+ %1− (1&u− $ ≥ 0" (4.25)

which replaces the participation constraint (4.4).
Program %P & can now be replaced by the new program %P ′&, which writes as

%P ′&* max
!%ū"u&#

(1%'S− h%ū&&+ %1− (1&%S− h%u&&

subject to (4.24) and (4.25).

Note that the principal’s objective function is now strictly concave in %ū"u&
because h%·& is strictly convex. The constraints are now linear and the interior of
the constrained set is obviously nonempty, and therefore %P ′& is a concave problem,
with the Kuhn and Tucker conditions being sufficient and necessary for character-
izing optimality.
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4.4.1 Optimal Transfers

Letting , and + be the non-negative multipliers associated respectively with the
constraints (4.24) and (4.25), the first-order conditions of this program can be
expressed as

−(1h
′%ūSB&+ ,'( + +(1 = − (1

u′%t̄SB&
+ ,'( + +(1 = 0" (4.26)

−%1− (1&h
′%uSB&− ,'( + +%1− (1& = − %1− (1&

u′%tSB&
− ,'( + +%1− (1& = 0"

(4.27)

where t̄SB and tSB are the second-best optimal transfers. Rearranging terms, we get

1
u′%t̄SB&

= ++ ,
'(

(1
" (4.28)

1
u′%tSB&

= +− ,
'(

1− (1
) (4.29)

The four variables %tSB" t̄SB" ," +& are simultaneously obtained as the solutions
to the system of four equations (4.24), (4.25), (4.28), and (4.29). Multiplying (4.28)
by (1 and (4.29) by 1 − (1, and then adding those two modified equations, we
obtain

+ = (1

u′%t̄SB&
+ 1− (1

u′%tSB&
> 0) (4.30)

Hence, the participation constraint (4.25) is necessarily binding.
Using (4.30) and (4.28), we also obtain

, = (1%1− (1&

'(

(
1

u′%t̄SB&
− 1

u′%tSB&

)
" (4.31)

where , must also be strictly positive. Indeed, from (4.24) we have ūSB − uSB ≥
$
'(

> 0 and thus t̄SB > tSB, implying that the right-hand side of (4.31) is strictly
positive since u′′ < 0. Using that (4.24) and (4.25) are both binding, we can
immediately obtain the values of u%t̄SB& and u%tSB& by solving a system of two
equations with two unknowns.

Note that the risk-averse agent does not receive full insurance anymore. This
result must be contrasted with what we have seen under complete information in
section 4.1.3. Indeed, with full insurance, the incentive compatibility constraint
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(4.3) can no longer be satisfied. Inducing effort requires the agent to bear some
risk. Proposition 4.4 provides a summary.

Proposition 4.4: When the agent is strictly risk-averse, the optimal con-
tract that induces effort makes both the agent’s participation and incentive
constraints binding. This contract does not provide full insurance. More-
over, second-best transfers are given by

t̄SB = h

(
$ + %1− (1&

$

'(

)
(4.32)

and
tSB = h

(
$ − (1

$

'(

)
) (4.33)

It is also worth noting that the agent receives more than the complete infor-
mation transfer when a high output is realized, t̄SB > h%$&. When a low output
is realized, the agent instead receives less than the complete information transfer,
tSB < h%$&. A risk premium must be paid to the risk-averse agent to induce his
participation since he now incurs a risk by the fact that tSB < t̄SB. Indeed, when
(4.4) is binding we have

$ = (1u%t̄
SB&+ %1− (1&u%t

SB& < u
(
(1t̄

SB + %1− (1&t
SB
)
" (4.34)

where the right-hand side inequality in (4.34) follows from Jensen’s inequality. The
expected payment (1t̄

SB + %1 − (1&t
SB given by the principal is thus larger than

the first-best cost CFB = h%$&, which is incurred by the principal when effort is
observable (as we have seen in section 4.1.3).

4.4.2 The Optimal Second-Best Effort

Let us now turn to the question of the second-best optimality of inducing a high
effort, from the principal’s point of view. The second-best cost CSB of inducing
effort under moral hazard is the expected payment made to the agent CSB =
(1t̄

SB + %1− (1&t
SB. Using (4.32) and (4.33), this cost is rewritten as

CSB = (1h

(
$ + %1− (1&

$

'(

)
+ %1− (1&h

(
$ − (1$

'(

)
) (4.35)

The benefit of inducing effort is still B = '('S, and a positive effort e∗ = 1
is the optimal choice of the principal whenever

'('S ≥ CSB = (1h

(
$ + %1− (1&

$

'(

)
+ %1− (1&h

(
$ − (1$

'(

)
) (4.36)
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Figure 4.4: Second-Best Level of Effort with Moral Hazard and Risk Aversion

With h%·& being strictly convex, Jensen’s inequality implies that the right-hand
side of (4.36) is strictly greater than the first-best cost of implementing effort CFB =
h%$&. Therefore, inducing a higher effort occurs less often with moral hazard than
when effort is observable. Figure 4.4 represents this phenomenon graphically.

For B belonging to the interval -CFB"CSB., the second-best level of effort is
zero and is thus strictly below its first-best value. There is now an under-provision
of effort because of moral hazard and risk aversion.

Proposition 4.5: With moral hazard and risk aversion, there is a trade-off
between inducing effort and providing insurance to the agent. In a model
with two possible levels of effort, the principal induces a positive effort from
the agent less often than when effort is observable.

In order to get further insights on the dependency of the second-best cost of
implementation on various parameters, we can specialize the model and assume
that h%u& = u+ ru2

2 , where r > 0 and u ≥ − 1
r
.7 Equivalently, u%x& = −1+

√
1+2rx
r

for
x ≥ − 1

2r . For this quadratic expression of h%·&, we have

CSB = E

(
ũSB + r

2
%ũSB&2

)
" (4.37)

where E%·& denotes the expectation operator and ũSB is the random utility level
that the agent gets in the different states of nature. More precisely, we have

CSB = E%ũSB&+ r

2
%E%ũSB&&2 + r

2
var%ũSB&" (4.38)

taking into account that (4.25) is binding at the optimal contract E%ũSB& = (1ū
SB +

%1− (1&u
SB = $. Moreover,

ūSB = $ + %1− (1&$

'(
(4.39)

7This quadratic specification can be viewed as an approximation of any inverse function h%u&
whenever u is small enough. Note that r can then be considered as the agent’s degree of absolute
risk aversion at zero, −u′′%x&

u′%x& $x=0 = r .
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and
uSB = $ − (1$

'(
) (4.40)

The agent receives a premium of %1−(1&$
'(

(in utility terms) when production
is high and suffers a penalty (1$

'(
(in utility terms) when production is low. This

risky payoff has a variance var%ũSB& = (1%1−(1&$
2

%'(&2
.

Gathering everything, we finally have the following expression of CSB:

CSB = $ + r$2

2
+ r$2(1%1− (1&

2%'(&2
) (4.41)

The first-best cost of implementing effort with such a utility function would
instead be

CFB = $ + r$2

2
) (4.42)

Hence, the agency cost AC, which is also the principal’s loss between his
first-best and second-best expected profit when he implements a positive effort, can
be defined as

AC = CSB −CFB = r$2(1%1− (1&

2%'(&2
) (4.43)

This agency cost increases with r , a measure of the agent’s degree of risk
aversion, with $, the cost of one unit of effort, and with / = (1%1−(1&

%'(&2
, which is a

measure of the informational problem for the principal. Everything else being kept
equal, it becomes harder and less often optimal for the principal to induce a high
effort as / increases. When (1 is close to 1

2 , / is larger. In this case, the variance
of the measured performance q̃ is the greatest possible one: the observable output
is a rather poor indicator of the agent’s effort. Therefore, more noisy measures of
the agent’s effort will more often call for inducing a low effort at the optimum
and for a fixed wage without any incentives being provided. Finally, note that / is
also larger when '( is small, i.e., when the difference in utilities u%t̄SB&− u%tSB&
necessary to incentivize the agent gets larger. More generally, the agency cost’s
dependence on / shows that the informational content of the observable output
plays a crucial role in the design of the optimal contract. This is a general theme
of agency theory that we will cover more extensively in section 4.6.
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4.5 More than Two Levels of Performance

We now extend our previous 2 × 2 model to allow for more than two levels
of performance.8 We consider a production process where n possible outcomes
can be realized. Those performances can be ordered so that q1 < q2 < · · · <
qi < · · · < qn. We denote the principal’s return in each of those states of nature by
Si = S%qi&. In this context, a contract is a n-uple of payments !%t1" ) ) ) " tn&#. Also,
let (ik be the probability that production qi takes place when the effort level is ek.
We assume that (ik > 0 for all pairs9 %i" k& with

∑n
i=1 (ik = 1. Finally, we keep

the assumption that only two levels of effort are feasible, i.e., ek in !0" 1#. We still
denote '(i = (i1 − (i0.

4.5.1 Limited Liability

Consider first the limited liability model of section 4.4. If the optimal contract
induces a positive effort, it solves the following program:

%P &* max
!%t1"))) "tn&#

n∑

i=1

(i1%Si − ti&"

subject to
n∑

i=1

(i1ti − $ ≥ 0" (4.44)

n∑

i=1

%(i1 − (i0&ti ≥ $" (4.45)

ti ≥ 0" for all i in !1" ) ) ) "n#) (4.46)

(4.44) is the agent’s participation constraint. (4.45) is his incentive constraint.
(4.46) are all the limited liability constraints that we simplify, with respect to sec-
tion 4.3, by assuming that the agent cannot be given a negative payment. i.e., the
agent has no asset of his own before starting the relationship with the principal.

8See appendix 4.2 for the case of a continuum of performances.
9Mirrlees (1975) has shown that if the support of probabilities varies with the level of effort,

then the first-best can be achieved. This is because there is a nonzero probability that the agent’s
performance reveals that he has not taken the postulated effort level, and he can be punished strongly
in that case.
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First, note that the participation constraint (4.44) is implied by the incentive
(4.45) and the limited liability (4.46) constraints. Indeed, we have

n∑

i=1

(i1ti − $ ≥
n∑

i=1

%(i1 − (i0&ti − $

︸ ︷︷ ︸
≥0 from %4)45&

+
n∑

i=1

(i0ti
︸ ︷︷ ︸

≥0 from %4)46&

)

Hence, we can neglect the participation constraint (4.44) in the optimization
of problem %P &.

Denoting the multiplier of (4.45) by , and the respective multipliers of (4.46),
by 0i the first-order conditions of program %P & lead to

−(i1 + ,'(i + 0i = 0" (4.47)

with the slackness conditions 0iti = 0 for each i in !1" ) ) ) "n#.
For i such that the second-best transfer tSBi is strictly positive, 0i = 0, and

we must have , = (i1
(i1−(i0

for any such i. If the ratios (i1−(i0
(i1

are all different,
there exists a single index j such that (j1−(j0

(j1
is the highest possible ratio. Then,

the structure of the optimal payments is bang-bang. The agent receives a strictly
positive transfer only in this particular state of nature j , and this payment is such
that the incentive constraint (4.45) is binding, i.e., tSBj = $

(j1−(j0
. In all other states,

the agent receives no transfer and tSBi = 0 for all i *= j . Finally, the agent gets a
strictly positive ex ante limited liability rent that is worth EUSB = (j0$

(j1−(j0
.

The important point here is that the agent is rewarded in the state of nature
that is the most informative about the fact that he has exerted a positive effort.
Indeed, (i1−(i0

(i1
can be interpreted as a likelihood ratio. The principal therefore

uses a maximum likelihood ratio criterion to reward the agent. The agent is only
rewarded when this likelihood ratio is maximum. Like an econometrician, the
principal tries to infer from the observed output what has been the parameter
(effort) underlying this distribution. But here the parameter is endogenous and
affected by the incentive contract.10

Definition 4.2: The probabilities of success satisfy the monotone likeli-
hood ratio property11 %MLRP & if (i1−(i0

(i1
is nondecreasing in i.

10Once he has observed that qi has realized, the principal wants to infer the most likely effort from
this sample. A statistician will infer that e = 1 (rather than e = 0) is the best estimate if the likelihood
ratio (i1

(i0
is larger than one or if (i1−(i0

(i1
> 0. The linearity in transfers of the utility function leads to

putting all the weight in the reward function on the state of nature that has the highest likelihood
ratio.

11If i = 2, this property reduces to the assumption made in section 4.1 (1 > (0.
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When this monotonicity property holds, the structure of the agent’s rewards
is quite intuitive and is described in proposition 4.6.12

Proposition 4.6: If the probability of success satisfies MLRP, the second-
best payment tSBi received by the agent may be chosen to be nondecreasing
with the level of production qi.

To understand this result intuitively, let us consider the case of n = 3. Then,
MLRP means

(11 − (10

(11
≤ (21 − (20

(21
≤ (31 − (30

(31
) (4.48)

Observe that MLRP is stronger than first-order stochastic dominance, which
amounts here to

(10 ≥ (11 (4.49)

(10 + (20 ≥ (11 + (21) (4.50)

Suppose (4.49) is false when MLRP holds. Then (11 > (10, which implies
(21 + (31 < (20 + (30. Then, we necessarily have either (21 − (20 < 0 or (31 −
(30 < 0, which contradicts (4.48)

Suppose (4.50) is false when MLRP holds and (10 ≥ (11. Then (10 + (20 <
(11 +(21, which implies (30 > (31 and (21 −(20 > 0. Again, it contradicts (4.48).

First-order stochastic dominance ensures that an increase of effort is good
for the principal in a very strong sense, namely that any principal with a utility
function increasing in q favors a higher effort level. However, this is not enough
to reward the agent with a transfer increasing in q. It must also be the case that a
higher production level is clear evidence that the agent has made a higher effort.
MLRP provides this additional information. As (4.48) shows, a higher effort level
increases the likelihood of a high production level more than the likelihood of a
low production level.

Innes (1990) characterizes optimal contracts in a model with a risk-
neutral principal and a risk-neutral agent, both with limited liability

constraints, using the first order approach described below for concave utility
functions (see also Park 1995). Milgrom (1981) proposes an extensive discus-
sion of the MLRP assumption.

12See appendix 4.3 for the proof.
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4.5.2 Risk Aversion

Suppose now that the agent is strictly risk-averse. The optimal contract that induces
effort must solve the program below:

%P &* max
!%t1"))) "tn&#

n∑

i=1

(i1%Si − ti&"

subject to

n∑

i=1

(i1u%ti&− $ ≥
n∑

i=1

(i0u%ti& (4.51)

and
n∑

i=1

(i1u%ti&− $ ≥ 0" (4.52)

where the latter constraint is the agent’s participation constraint.
Using the same change of variables as in section 4.4, it should be clear that

%P & is again a concave problem with respect to the new variables ui = u%ti&. Using
the same notations as in section 4.4, the first-order conditions of program %P & are
written as:

1
u′%tSBi &

= ++ ,

(
(i1 − (i0

(i1

)
for all i in !1" ) ) ) "n#) (4.53)

Multiplying each of these equations by (i1 and summing over i yields + =
Eq%

1
u′%tSBi &

& > 0, where Eq%·& denotes the expectation operator with respect to the
distribution of outputs induced by effort e = 1.

Multiplying (4.53) by (i1u%t
SB
i &, summing all these equations over i, and tak-

ing into account the expression of + obtained above yields

,

( n∑

i=1

%(i1 − (i0&u%t
SB
i &

)
= Eq

(
u%t̃SBi &

(
1

u′%t̃SBi &
− E

(
1

u′%t̃SBi &

)))
) (4.54)

Using the slackness condition ,%
∑n

i=1%(i1 − (i0&u%t
SB
i & − $& = 0 to simplify

the left-hand side of (4.54), we finally get

,$ = cov
(
u%t̃SBi &"

1
u′%t̃SBi &

)
) (4.55)

By assumption, u%·& and u′%·& covary in opposite directions. Moreover, a constant
wage tSBi = tSB for all i does not satisfy the incentive constraint, and thus tSBi cannot
be constant everywhere. Hence, the right-hand side of (4.55) is necessarily strictly
positive. Thus we have , > 0, and the incentive constraint (4.51) is binding.
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Coming back to (4.53), we observe that the left-hand side is increasing in tSBi
since u%·& is concave. For tSBi to be nondecreasing with i, MLRP must again hold.
Then higher outputs are also those that are the more informative ones about the
realization of a high effort. Hence, the agent should be more rewarded as output
increases.

The benefit of offering a schedule of rewards to the agent that increases with
the level of production is that such a scheme does not create any incentive for the
agent to sabotage or destroy production to increase his payment.13 However, only
the rather strong assumption of a monotone likelihood ratio ensures this intuitive
property. To show why, consider a simple example where MLRP does not hold.
Let the probabilities in the different states of nature be (10 = (30 = 1

6 , (20 = 2
3

when the agent exerts no effort and (11 = (21 = (31 = 1
3 when he exerts an effort.

Then we have
(11 − (10

(11
= (31 − (30

(31
= 1

2
>

(21 − (20

(21
= −1" (4.56)

and thus MLRP fails. Of course, when the principal’s benefits are such that S3 is
much larger than S2 and S1 (with q3 > q2 > q1 and S3 > S2 > S1), the principal
would like to implement a positive effort in order to increase the probability that
the state of nature 3 is realized. Since outputs q1 and q3 are equally informative of
the fact that the agent has exerted a positive effort, the agent must receive the same
transfers in both states 1 and 3 from (4.53). Since output q2 is also particularly
informative of the fact that the agent has exerted no effort, the second-best pay-
ment should be lower in this state of nature. Hence, the non-monotonic schedule
reduces the agent’s incentives to shirk and therefore reduces the probability that
state 2, which is bad from the principal’s point of view, is realized.

4.6 Informative Signals to Improve Contracting

As in the case of adverse selection analyzed in section 2.14, various verifiable
signals can be used by the principal to improve the provision of incentives to the
agent in a moral hazard framework. These pieces of information can be gathered
by different kinds of information systems that are internal to the organization in the
case of monitoring and supervision, or that are obtained by comparing the agent’s
performances with those of other related agents in the market place if such public
information is available. Those practices are sometimes called “benchmarking” or
“yardstick competition.”

13Implicit here is the idea that the principal does not observe the production q but that the agent
can show hard evidence that he has produced an amount q. This evidence can always be hidden
from the principal by destroying production. “Lying upward” and pretending to have produced more
than what has really been done is impossible.
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4.6.1 Informativeness of Signals

The framework of section 4.5, with multiple levels of performance, is extremely
useful when assessing the principal’s benefit from sources of information other than
the agent’s sole performance. To assess the role of improved information structures,
let us still assume that there are only two levels of production q̄ and q, and that
the principal also learns a binary signal 1̃ belonging to the set 2 = !10" 11#, which
depends directly on the agent’s effort. More precisely, the matrix in figure 4.5 gives
the probabilities of each signal 1i for i in {0,1} as a function of the agent’s effort.

Figure 4.5: Information Structure

Note that the signal 11 (resp. 10) is good news (resp. bad news), that the agent
has exerted a high level of effort. The signal is uninformative on the agent’s effort
when 30 = 31.

The signal 1̃ being verifiable, the principal now has the ability to condition
the agent’s performance on four possible different states of nature, yi, for i in
!1" ) ) ) " 4#. Each of these states is defined in table 4.1.

Table 4.1

Probability Probability
State of nature when e0 when e1

y1 = !q̄" 11# (10 = (030 (11 = (131
y2 = !q̄" 10# (20 = (0%1− 30& (21 = (1%1− 31&
y3 = !q" 11# (30 = %1− (0&30 (31 = %1− (1&31
y4 = !q" 10# (40 = %1− (0&%1− 30& (41 = %1− (1&%1− 31&
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The signal 1̃ is not related to output, but only to effort. We assume that it does
not affect the principal’s return from the relationship, and we have S1 = S2 = 'S
and S3 = S4 = S.14

Denoting the respective multipliers of the agent’s incentive and participation
constraints by , and +, the first-order conditions (4.53) now become

1
u′%tSB1 &

= ++ ,

(
(131 − (030

(131

)
" (4.57)

1
u′%tSB2 &

= ++ ,

(
(1%1− 31&− (0%1− 30&

(1%1− 31&

)
" (4.58)

1
u′%tSB3 &

= ++ ,

(
%1− (1&31 − %1− (0&30

%1− (1&31

)
" (4.59)

1
u′%tSB4 &

= ++ ,

(
%1− (1&%1− 31&− %1− (0&%1− 30&

%1− (1&%1− 31&

)
) (4.60)

Note that tSB1 = tSB2 and tSB3 = tSB4 only when 31 = 30, i.e., when 1̃ is not
informative of the agent’s effort. In this case, conditioning the agent’s contribu-
tion on a risk 1̃ unrelated to the agent’s effort is of no value to the principal.
This situation can only increase the risk borne by the agent without any incen-
tive benefit. Indeed, any compensation t%1̃" q̃& yielding utility u%t%1̃" q̃&& to the
agent can be replaced by a new scheme t̂%q̃& that is independent of 1̃ , such
that u%t̂%q̃&& = E1̃u%t%1̃" q̃&& for any q̃ without changing the agent’s incentive
and participation constraints. Furthermore, this new scheme is also less costly to
the principal, because Eq̃%t̂%q̃&& < E%1̃" q̃&t%1̃" q̃&. As proof of this latter inequal-
ity, note that, using the definition of t̂%q&, we have t̂%q& = h%E1̃ %u%t%1̃" q&&&&,
and thus

E
q̃
%t̂%q̃&& = E

q̃

(
h%E1̃ %u%t%1̃" q̃&&&&

)
< E

q̃

(
E
1̃
%h + u%t%1̃" q̃&&&

)

= E
%1̃" q̃&

%t%1̃" q̃&&" (4.61)

where the first inequality comes from using Jensen’s inequality for h%·& convex,15
and the second equality is the Law of Iterated Expectations.

Instead, when 1̃ is informative of the agent’s effort, conditioning the agent’s
reward on the realization of 1̃ has some positive incentive value as shown in
equations (4.57) through (4.60). We state this as a proposition:

14In fact, we could allow for some differences in the values of those surpluses in a more general
model, where the principal’s surplus would be written as S%q̃" 1̃&)

15The inequality is strict as soon as E%u%t%10" q̃&&& *= E%u%t%11" q̃&&&.
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Proposition 4.7: Any signal 1̃ that is informative of the agent’s effort
should be used to condition the agent’s compensation scheme.

This result is known as Holmström’s Sufficient Statistic Theorem
(1979). It was initially proved in a model with a continuum of out-

comes and a continuum of effort levels, but its logic is the same as above.
The most spectacular applications of the Sufficient Statistic Theorem arise in
multiagent environments. In such environments, it has been shown that the
performance of an agent can be used to incentivize another agent if their per-
formances are correlated, even if their efforts are technologically unrelated.
On this, see Mookherjee (1984) and the tournament literature (Nalebuff and
Stiglitz 1983, and Green and Stockey 1983).

4.6.2 More Comparisons Among Information Structures 4

The previous section has shown how the principal can strictly prefer a given infor-
mation structure !q̃" 1̃# to another structure !q̃# as soon as the signal 1̃ is informa-
tive of the agent’s effort. More generally, the choice between various information
structures will trade off the costs and benefits of these systems. The costs may
increase as the principal uses signals on the agent’s performance which are more
informative. The possible benefits come from reducing the agency costs.

Let us thus define an information structure (%e& as a n-uple !(i%e&#i∈!1"))) "n#
such that (i%e& ≥ 0 for all i and

∑n
i=1 (i%e& = 1 for each value of e. Again, we

assume that e can be either 0 or 1, and to simplify we denote (%1& = (.
A natural ordering of information systems is provided by Blackwell’s condition

stated in definition 4.3.

Definition 4.3: The information structure (%e& is sufficient, in the sense
of Blackwell, for the information structure (̂%e& if and only if there exists
a transition matrix16 P = %pij&" %i" j& ∈ !1" ) ) ) "n#2, that is independent of
e and that is such that (̂i%e& =

∑n
i=1 pij(j%e&, for all e in !0" 1#.

An intuitive example of this ordering is given by the garbling of an infor-
mation structure. Then, each signal of the information structure 1 is transformed
by a purely random information mechanism (independent of the signal consid-
ered) into a vector of final signals. The new information, say structure 2, is such
that the information structure 1 is sufficient for the information structure 2. The

16A transition matrix is such that pij ≥ 0 for all i, and
∑n

i=1 pij = 1 for all j .
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ordering implied by the Blackwell condition is an interesting expression of dom-
inance, because it is a necessary and sufficient condition for any decision-maker
to prefer information structure 1 to information structure 2.17 We want to under-
stand whether this natural statistical ordering among information structures also
ranks the agency costs in the incentive problems associated with these information
structures.18 To see that, let us define CSB%(& as the second-best cost of implement-
ing a positive effort when the information structure is ( . By definition, we have
CSB%(& = ∑n

i=1 (i1t
SB
i %(& = ∑n

i=1 (i1h%u
SB
i %(&&, where tSBi %(& is given by (4.53).

Note that we make the dependence of these transfers on the information system
explicit, because different information systems certainly do not yield the same
second-best transfers and implementation costs.

We are interested in comparing information structures according to their
agency costs. Let us first state definition 4.4.

Definition 4.4: The information structure ( is weakly more efficient than
the information structure (̂ if and only if CSB%(& ≤ CSB%(̂&.

We can then obtain the comparison outlined in proposition 4.8.

Proposition 4.8: If the information structure ( is sufficient for the infor-
mation structure (̂ in the sense of Blackwell, then ( is weakly more
efficient than (̂.

Proof: To prove this result, note first that the definition of the information system
(̂ implies that

CSB%(̂& =
n∑

i=1

(̂i1h%u
SB
i %(̂&& =

n∑

i=1

(
n∑

k=1

pik(k1

)

h%uSB
i %(̂&&

=
n∑

k=1

(k1

(
n∑

i=1

pikh%u
SB
i %(̂&&

)

≥
n∑

k=1

(k1h

(
n∑

i=1

piku
SB
i %(̂&

)

" (4.62)

where the second equality uses the definition of (̂ and the last line is obtained
from Jensen’s inequality.

However, uSB
i %(̂& implements a positive effort at a minimal cost when the

information structure is (̂. Hence, the agent’s incentive compatibility constraint∑n
i=1%(̂i1 − (̂i0&u

SB
i %(̂& = $, and his participation constraint

∑n
i=1 (̂i1u

SB
i %(̂& = $

17See Blackwell (1951) and (1953).
18If the principal wants to induce zero effort, he does so by offering a wage that is identically null

whatever the information system.
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are both binding. Using the definition of (̂ again, those two last equations are
written, respectively, as

n∑

i=1

(
n∑

k=1

pik%(k1 − (k0&

)

uSB
i %(̂& =

n∑

k=1

(

%(k1 − (k0&

(
n∑

i=1

piku
SB
i %(̂&

))

= $ (4.63)

and

n∑

i=1

(
n∑

k=1

pik(k1

)

uSB
i %(̂& =

n∑

k=1

(k1

(
n∑

i=1

piku
SB
i %(̂&

)

= $) (4.64)

Let us now define the ex post utility levels ũk =
∑n

i=1 piku
SB
i %(̂&. These new

utility levels implement the high level of effort for the information structure (
(from the right-hand equality of (4.63)) and make the agent’s participation con-
straint binding (from (4.64)). By definition of CSB%(&, we have

∑n
k=1 (k1h%ũk& ≥

CSB%(&.
Finally, using (4.62) we obtain CSB%(̂& ≥ ∑n

k=1 (k1h%ũk& ≥ CSB%(&.

Proposition 4.8 is due to Gjesdal (1982) and Grossman and Hart
(1983). Blackwell’s dominance between two information structures

implies a ranking between the agency costs of the two agency problems asso-
ciated with these information structures. However, the reverse is not true.
Indeed, Kim (1995) showed that an information structure ( is more efficient
than an information structure (̂ if the likelihood ratio of (̂ is a mean pre-
serving spread of that of (, i.e., if (̂i1−(̂i0

(̂i1
= (i1−(i0

(i1
+ zi, for all i in !1" ) ) ) "n#

where
∑n

i=1 zi = 0. It can be shown that this latter property is not implied
by Blackwell’s dominance. Jewitt (2000) generalized Kim’s results. Demougin
and Fluet (1999) endogenized the precision of the signal used by the princi-
pal to control the agent’s performance by explicitly allowing the principal to
detect mistakes made by the agent and by having the agent’s effort affect the
probability distribution of those mistakes.

4.7 Moral Hazard and the Theory of the Firm

The trade-off between risk and incentives provides one possible explanation of
the wage compensations used in firms.19 The widespread use of stock options for

19See Prendergast (1999) for a critical assessment of this trade-off through the light of some recent
empirical works trying to test the negative relationship between risk and incentives that is predicted
by the standard moral hazard model.
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CEOs can be seen as a result of the desire of the firm’s owners to let these agents
bear more risk so that they are better incentivized.20 Similarly, the use of low-
powered incentives for workers within the firm can, according to the paradigm,
be viewed as evidence that the firm’s owners have only imperfect measures of the
workers’ performances or that the workers are much more risk-averse than the top
management of the firm.

The moral hazard paradigm is not only useful for understanding the internal
structure of the firm, but it also provides insights on the relationship of the firm
with many of its possible stakeholders: equity-owners, debtholders, regulators, and
consumers. The corporate finance literature has advanced the view that the capital
structure of the firm is not irrelevant21 once agency conflicts are explicitly taken
into account.22 For instance, Jensen and Meckling (1976) argued that a conflict
exists between equity-owners and managers because the managers only get a frac-
tion of the firm’s profit but bear the full cost of their own effort in enhancing
the firm’s profitability. Later on, Jensen (1986) stressed that debt contracts have
significant value in this context because they force managers to pay out cash. By
paying cash, the amount of free-cash flows available to engage in perks and other
profit-reducing activities diminishes, and this strategy relaxes the agency problem.
Simultaneously, the debt contract also introduces a conflict of interests between
debtholders and equity-owners who fail to invest optimally at the ex ante stage
because they only get a fraction of the firm’s return. More generally, the corporate
finance literature has shown how the capital structure of the firm may be used as
a powerful incentive device.

Moral hazard within the firm may be also affected by the economic envi-
ronment in which the firm evolves. The general idea here is that markets may
complement the formal incentives that contracts offer. Fama (1980) was an earlier
contribution arguing that the labor market may provide enough implicit incentives
for the managers to exert effort. Managers are willing to build a reputation as being
efficient, and to do so they should exert the first-best level of effort even in the
absence of formal contracts. Holmström (1999a) formalized this idea in a model
where the manager’s talent is unknown and his past performances are affected by
effort, talent, and random noise.23 He showed that reputation generally fails to
provide enough incentives to the agent.

20Jensen and Murphy (1990) is an earlier paper arguing that top managers are hardly responsive to
incentives. Since then, several other studies have found much more evidence for this responsiveness.
See Chiappori and Salanié (2000) for a survey.

21Modigliani and Miller (1958) proved the irrelevance of the firm’s capital structure in a general
equilibrium framework with complete markets.

22See Harris and Raviv (1992) for a survey.
23See section 8.3 for a model along these lines.
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Since Leibenstein (1966), it has often been suggested that market discipline
might also tend to remove inefficiencies within the firm. Hart (1983b) argued that
the price mechanism may reduce the manager’s incentives to shirk. However, the
feedback between competition and the power of incentive contracts within the firm
is complex and highly dependent on the specifications made both on preferences
and on the nature of competition as it was later on argued by Scharfstein (1988a)
and Schmidt (1997).

Finally, it has also been argued that financial markets might play a role in
disciplining management. In a case where the firm performs too badly, outsiders
may take over the firm and replace its management to implement profit-enhancing
actions. The threat of a takeover may thus appear as a substitute to an ineffi-
cient provision of incentives. However, this simple argument fails to explain why
those profit-enhancing actions cannot be implemented by the initial owners of the
firm by changing the managers’ incentive schemes themselves. Two possible expla-
nations are that the raider may have acquired private information on the firm’s
technology24 or that synergies become possible once the raider has acquired the
firm.25

4.8 Contract Theory at Work

This section elaborates on the moral hazard paradigm discussed so far in a number
of settings that have been discussed extensively in the contracting literature.

4.8.1 Efficiency Wage

Let us consider a risk-neutral agent working for a firm, the principal. By exerting
effort e in !0" 1#, the firm’s added value is 'V (resp. V ) with probability (%e& (resp.
1 − (%e&). The agent can only be rewarded for a good performance and cannot
be punished for a bad outcome, since they are protected by limited liability.

To induce effort, the principal must find an optimal compensation scheme
!%t" t̄&# that is the solution to the program below:

%P &* max
!%t"t̄&#

(1%'V − t̄&+ %1− (1&%V − t&"

subject to

(1t̄ + %1− (1&t − $ ≥ (0t̄ + %1− (0&t" (4.65)

24On this see Scharfstein (1988b).
25Holmström and Tirole (1988) provided an overview of the literature on takeovers.
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(1t̄ + %1− (1&t − $ ≥ 0" (4.66)

t ≥ 0) (4.67)

The problem is completely isomorphic to that analyzed in section 4.3. The
limited liability constraint is binding at the optimum, and the firm chooses to
induce a high effort when '('V ≥ (1$

'(
. At the optimum, tSB = 0 and t̄SB > 0.

The positive wage t̄SB = $
'(

, is often called an efficiency wage because it induces
the agent to exert a high (efficient) level of effort. To induce production, the
principal must give up a positive share of the firm’s profit to the agent.

The macroeconomic literature on efficiency wages started with
Solow (1979) and Salop (1979) and was best developed by Shapiro

and Stiglitz (1984), who presented a treatment of the dynamic incentive
issues. When the performance of an agent is not easily verifiable, contracts
cannot promise a share of profit to the agent and must use the threat of
termination as a disciplinary device. Shapiro and Stiglitz (1984) argued
that this results in voluntary unemployment. Firms offer high real-wages
to prevent shirking by their workers. If any shirking is detected, agents are
fired and return to the unemployment pool. See Saint-Paul (1996) for a
survey. Carmichael (1985) and McLeod and Malcomson (1987) analyzed
the efficiency wage model using a more microeconomic perspective on the
self-enforceability of labor contracts in a dynamic context.

4.8.2 Sharecropping

The moral hazard paradigm has been one of the leading tools used by develop-
ment economists to analyze agrarian economies. In the sharecropping example,
the principal is now a landlord and the agent is the landlord’s tenant. By exerting
an effort e in !0" 1#, the tenant increases (resp. decreases) the probability (%e&
(resp. 1 − (%e&) that a large q̄ (resp. small q) quantity of an agricultural product
is produced. The price of this good is normalized to one so that the principal’s
stochastic return on the activity is also q̄ or q, depending on the state of nature.

It is often the case that peasants in developing countries are subject to strong
financial constraints. To model such a setting we assume that the agent is risk
neutral and protected by limited liability. When he wants to induce effort, the
principal’s optimal contract must solve

%P &* max
!%t" t̄&#

(1%q̄ − t̄&+ %1− (1&%q − t&

subject to (4.65) to (4.67))
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The optimal contract therefore satisfies tSB = 0 and t̄SB = $
'(

. This is again
akin to an efficiency wage. The expected utilities obtained respectively by the
principal and the agent are given by

EV SB = (1q̄ + %1− (1&q −
(1$

'(
" (4.68)

and

EUSB = (0$

'(
) (4.69)

The flexible second-best contract described above has sometimes been criti-
cized as not corresponding to the contractual arrangements observed in most agrar-
ian economies. Contracts often take the form of simple linear schedules linking
the tenant’s production to his compensation. As an exercise, let us now analyze a
simple linear sharing rule between the landlord and his tenant, with the landlord
offering the agent a fixed share 5 of the realized production. Such a sharing rule
automatically satisfies the agent’s limited liability constraint, which can therefore
be omitted in what follows. Formally, the optimal linear rule inducing effort must
solve

%P &* max
5

%1− 5&%(1q̄ + %1− (1&q&

subject to

5%(1q̄ + %1− (1&q&− $ ≥ 5%(0q̄ + %1− (0&q&" (4.70)

5%(1q̄ + %1− (1&q&− $ ≥ 0 (4.71)

Obviously, only (4.70) is binding at the optimum. One finds the optimal
linear sharing rule to be

5SB = $

'('q
) (4.72)

Note that 5SB < 1 because, for the agricultural activity to be a valuable ven-
ture in the first-best world, we must have '('q > $. Hence, the return on the
agricultural activity is shared between the principal and the agent, with high-
powered incentives (5 close to one) being provided when the disutility of effort $
is large or when the principal’s gain from an increase in effort '('q is small.

This sharing rule also yields the following expected utilities to the principal
and the agent, respectively

EV5 = (1q̄ + %1− (1&q −
((1q̄ + %1− (1&q

'q

)
$

'(
(4.73)
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and

EU5 =
((1q̄ + %1− (1&q

'q

)
$

'(
− $) (4.74)

Comparing (4.68) and (4.73) on the one hand and (4.69) and (4.74) on the
other hand, we observe that the constant sharing rule benefits the agent but not the
principal. A linear contract is less powerful than the optimal second-best contract.
The former contract is an inefficient way to extract rent from the agent even if
it still provides sufficient incentives to exert effort. Indeed, with a linear sharing
rule, the agent always benefits from a positive return on his production, even in
the worst state of nature. This positive return yields to the agent more than what is
requested by the optimal second-best contract in the worst state of nature, namely
zero. Punishing the agent for a bad performance is thus found to be rather difficult
with a linear sharing rule.

A linear sharing rule allows the agent to keep some strictly positive rent EU5.
If the space of available contracts is extended to allow for fixed fees 6, the principal
can nevertheless bring the agent down to the level of his outside opportunity by
setting a fixed fee 6SB equal to %

(1 q̄+%1−(1&q

'q
& $
'(

− $.

The literature on sharecropping, in its desire to be as close as possible
to real world practices, has often assumed at the outset that contracts

are linear (see Stiglitz 1974, Eswaran and Kotwal 1985, and Laffont and
Matoussi 1995 for an empirical analysis). As we will see in Section 9.5.2, this
linearity can be derived from more fundamental assumptions on contracting
abilities and preferences.

4.8.3 Wholesale Contracts

Let us now consider a manufacturer-retailer relationship. The manufacturer sup-
plies at constant marginal cost c an intermediate good to the risk-averse retailer,
who sells this good on a final market. Demand on this market is high (resp. low)
'D%p& (resp. D%p&) with probability (%e& where, again, e is in !0" 1# and p denotes
the price for the final good. Effort e is exerted by the retailer, who can increase
the probability that demand is high if after-sales services are efficiently performed.
The wholesale contract consists of a retail price maintenance agreement specify-
ing the prices p̄ and p on the final market with a sharing of the profits, namely
!%t" p&7 %t̄" p̄&#. When he wants to induce effort, the optimal contract offered by
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the manufacturer solves the following problem:

%P &* max
!%t" p&7%t̄" p̄&#

(1%%p̄ − c&'D%p̄&− t̄&+ %1− (1&%%p − c&D%p&− t&

subject to (4.3) and (4.4))

The solution to this problem is obtained by appending the following
expressions of the retail prices to the transfers given in (4.32) and (4.33):
p̄∗ + 'D%p̄∗&

'D′%p̄∗&
= c, and p∗ + D%p∗&

D′%p∗& = c. Note that these prices are the same as those
that would be chosen under complete information. The pricing rule is not affected
by the incentive problem, an example of what Laffont and Tirole (1993) called a
dichotomy property in another context.

4.8.4 Financial Contracts

Moral hazard is a very important issue in financial markets. Let us now assume that
a risk-averse entrepreneur wants to start a project that requires an initial investment
worth an amount I. The entrepreneur has no cash of his own and must raise
money from a bank or any other financial intermediary. The return on the project
is random and equal to 'V (resp. V ), with probability (%e& (resp. 1− (%e&), where
the effort exerted by the entrepreneur e belongs to !0" 1#. We denote the spread
of profits by 'V = 'V − V > 0. The financial contract consists of repayments
!%z̄" z&#, depending upon whether the project is successful or not.

To induce effort from the borrower, the risk-neutral lender’s program is writ-
ten as

max
!%z"z̄&#

(1z̄+ %1− (1&z− I(P ):

subject to

(1u%'V − z̄&+ %1− (1&u%V − z&− $

≥ (0u%'V − z̄&+ %1− (0&u%V − z&" (4.75)

(1u%'V − z̄&+ %1− (1&u%V − z&− $ ≥ 0" (4.76)

where (4.75) and (4.76) are respectively the agent’s incentive and participation
constraints. Note that the project is a valuable venture if it provides the bank with
a positive expected profit.

With the change of variables, t̄ = 'V − z̄ and t = V − z, the principal’s
program takes its usual form. This change of variables also highlights the fact that
everything happens as if the lender was benefitting directly from the return of the
project, and then paying the agent only a fraction of the returns in the different
states of nature.
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Let us define the second-best cost of implementing a positive effort CSB as we
did in section 4.4, and let us assume that '('V ≥ CSB, so that the lender wants
to induce a positive effort level even in a second-best environment. The lender’s
expected profit is worth

V1 = (1
'V + %1− (1&V −CSB − I) (4.77)

Let us now parameterize projects according to the size of the investment I.
Only the projects with positive value V1 > 0 will be financed. This requires the
investment to be low enough, and typically we must have

I < ISB = (1
'V + %1− (1&V −CSB) (4.78)

Under complete information and no moral hazard, the project would instead
be financed as soon as

I < I∗ = (1
'V + %1− (1&V ) (4.79)

For intermediary values of the investment, i.e., for I in [ISB" I∗], moral hazard
implies that some projects are financed under complete information but no longer
under moral hazard. This is akin to some form of credit rationing.26

Finally, note that the optimal financial contract offered to the risk-averse and
cashless entrepreneur does not satisfy the limited liability constraint t ≥ 0. Indeed,
we have tSB = h%$ − (1$

'(
& < 0. To be induced to make an effort, the agent must

bear some risk, which implies a negative payoff in the bad state of nature. Adding
the limited liability constraint, the optimal contract would instead entail tLL = 0
and t̄LL = h% $

'(
&. Interestingly, this contract has sometimes been interpreted in

the corporate finance literature as a debt contract, with no money being left to the
borrower in the bad state of nature and the residual being pocketed by the lender
in the good state of nature.

Finally, note that

t̄LL − tLL = h

(
$

'(

)
< t̄SB − tSB = h

(
$ + %1− (1&

$

'(

)

− h

(
$ − (1$

'(

)
" (4.80)

since h%·& is strictly convex and h%0& = 0. This inequality shows that the debt
contract has less incentive power than the optimal incentive contract. Indeed, it
becomes harder to spread the agent’s payments between both states of nature to
induce effort if the agent is protected by limited liability. To the agent, who is
interested only in his payoff in the high state of nature, only rewards are attractive.

26The reader will recognize the similarity of this result with that of section 3.6.3.
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Remark: The corporate finance literature, starting with Jensen and
Meckling (1976), has stressed that moral hazard within the firm may
not be due to the desire of the manager to avoid costly effort, but
instead might be due to his desire to choose projects with private
benefits. Those private benefits arise, for instance, when the manager
devotes the resources of the firm to consume perquisites.

The modelling of these private benefits is very similar to that of
the standard moral hazard problem viewed so far.27 Let us consider
that the risk-neutral manager can choose between a good and a bad
project. The shareholders’ return of the good project is 'V , with proba-
bility (1 and (0 otherwise. However, by choosing the bad project, the
manager gets a private benefit B that is strictly positive. A contract is
again a pair of transfers !%t̄" t&# where, assuming limited liability, t = 0.

The manager chooses the good project when the following incen-
tive constraint is satisfied:

(1t̄ ≥ (0t̄ + B" (4.81)

which amounts to

t̄ ≥ B

'(
) (4.82)

This constraint is obviously binding at the optimum of the
financier’s problem, and the financier gets an expected payoff V1 such
that

V1 = (1

(
'V − B

'(

)
− I" (4.83)

where I is the investment cost that the financier has incurred. Obvi-
ously, compared with complete information, the set of valuable invest-
ments is reduced under moral hazard because of the agency cost
incurred to avoid private benefits.

Holmström and Tirole (1994) presented a theory of credit rationing
based on a similar model with private benefits. Two differences come

from the fact that there is a competitive market of lenders and that the agent
may finance part of the project with equity. One conclusion of their model
is that wealthier agents find financing more easily.

27The private benefit is an output that is not observed by the principal, while effort is an unobserved
input.
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4.8.5 Insurance Contracts !

Moral hazard also undermines the functioning of insurance markets. We consider
now a risk-averse agent with utility function u%·& and initial wealth w. With prob-
ability (%e& (resp. 1 − (%e&) the agent has no (resp. an) accident and pays an
amount z̄ (resp. z) to an insurance company. The damage incurred by the agent
is worth d. Effort e in !0" 1# can now be interpreted as a level of safety care.

Monopoly
To make things simpler, and as in section 3.3.2, the insurance company is first
assumed to be a monopoly and to have all of the bargaining power when offer-
ing the insurance contract to the insuree. To induce effort from the insuree, the
optimal insurance contract must solve

%P &* max
!%z"z̄&#

(1z̄+ %1− (1&z

subject to

(1u%w − z̄&+ %1− (1&u%w − d − z&− $

≥ (0u%w − z̄&+ %1− (0&u%w − d − z&" (4.84)

(1u%w − z̄&+ %1− (1&u%w − d − z&− $ ≥ u%ŵ&" (4.85)

where ŵ is the certainty equivalent of the agent’s wealth when he does not pur-
chase any insurance and when he exerts an effort. The certainty equivalent ŵ is
implicity defined as u%ŵ& = (1u%w&+ %1− (1&u%w − d&− $.28

Note that the right-hand side of (4.85) is not zero. Except for this nonzero
reservation value, the problem is very close to that of section 4.5 after having
replaced variables so that the net transfers received by the agent are t̄ = w − z̄ and
t = w − d − z and having noticed that 'S = w and S = w − d.

Both constraints (4.84) and (4.85) are again binding at the optimum, and the
second-best cost of inducing effort is now written as

CSB%ŵ& = (1h

(
$ + u%ŵ&+ %1− (1&

$

'(

)

+ %1− (1&h

(
$ + u%ŵ&− (1$

'(

)
) (4.86)

28We assume that the agent wants to exert an effort in the absence of an insurance contract, i.e.,
u%w&− u%w − d& > $

'( . One could assume instead that he does not want to exert effort when he is
not insured. In this case, his status quo utility level would be (0u%w&+ %1− (0&u%w − d& = u%ŵ ′&.
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Without moral hazard this cost of inducing effort would instead be

CFB%ŵ& = h%$ + u%ŵ&&) (4.87)

Let us thus use AC%ŵ& = CSB%ŵ&−CFB%ŵ& to denote the agency cost due to
moral hazard incurred by the principal, i.e., the difference between the second-
best and the first-best cost of inducing effort. Differentiating with respect to ŵ, we
have

AC′%ŵ& = u′%ŵ&

(
(1h

′
(
$ + u%ŵ&+ %1− (1&

$

'(

)

+ %1− (1&h
′
(
$ + u%ŵ&− (1$

'(

)
− h′%$ + u%ŵ&&

)
> 0" (4.88)

if h′%·& is convex. In fact, we let the reader check that this latter convexity is ensured
when pu%x& < 3ru%x&, where pu%x& = −u′′′%x&

u′′%x& is the agent’s degree of absolute pru-
dence and ru%x& = −u′′%x&

u′%x& is his degree of absolute risk aversion.29

The fact that AC%ŵ& is monotonically increasing with ŵ can be interpreted
as saying that, as the agent’s wealth increases, there is more distortion due to moral
hazard in the decision of the insurance company to induce effort or not. However,
the sufficient condition on h%·& needed to obtain this result is somewhat intricate.
This highlights the important difficulties that modellers often face when they want
to derive comparative statics results from even a simple agency problem.

Competitive Market
The insurance market is often viewed as an archetypical example of a perfectly
competitive market where insurers’ profits are driven to zero. Without entering too
much into the difficult issues of competitive markets plagued by agency problems,
it is nevertheless useful to characterize the equilibrium contract inducing a positive
effort. Because of perfect competition among insurance companies, this contract
should maximize the agent’s expected utility subject to the standard incentive
compatibility constraint (written with our usual change of variables)

ū− u ≥ $

'(
" (4.89)

and subject to the constraint of non-negative profit for the insurance company

(1%w − h%ū&&+ %1− (1&%w − d − h%u&& ≥ 0) (4.90)

29This latter property holds when u%·& is CARA. See also Thiele and Wambach (1999) for similar
comparative statics.
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The equilibrium contract must therefore solve the following problem:

%P &* max
!%ū"u&#

(1ū+ %1− (1&u− $

subject to (4.89) and (4.90))

Denoting by ,̂ and +̂ the respective multipliers of those two constraints, the
necessary and sufficient first-order conditions for this concave problem are written,
respectively, as (with the superscript M for market equilibrium)

(1 + ,̂ = +̂(1h
′%ūM& (4.91)

and

1− (1 − ,̂ = +̂%1− (1&h
′%uM&) (4.92)

Summing those two equations immediately yields

+̂ = 1
(1h′%ūM&+ %1− (1&h′%uM&

> 0) (4.93)

Hence, the zero profit constraint of the firm is automatically satisfied by this
equilibrium contract. Similarly, we also find that

,̂ = (1%1− (1&
%h′%ūM&− h′%uM&&

(1h′%ūM&+ %1− (1&h′%uM&
> 0" (4.94)

because h%·& is convex and ūM > uM is necessary to guarantee that (4.89) holds.
The incentive compatibility constraint is thus also binding at the equilibrium con-
tract.

Denoting by UM the agent’s expected utility when exerting a positive effort,
the binding non-negative profit constraint of the insurance company can be rewrit-
ten as:

(1h

(
UM + $ + %1− (1&

$

'(

)
+ %1− (1&h

(
UM + $ − (1

$

'(

)

= w − d%1− (1&) (4.95)

The market does not break down as long as (4.95) defines implicity a value
UM, which is greater than what the agent gets by not taking any insurance contract,
i.e., u%ŵ& = (1u%w&+ %1− (1&u%w − d&− $. In fact, UM > u%ŵ& amounts to

(1h

(
u%ŵ&+ $ + %1− (1&

$

'(

)
+ %1− (1&h

(
u%ŵ&+ $ − (1

$

'(

)

< w − d%1− (1&) (4.96)
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Under complete information the agent would be perfectly insured and would
exert a positive effort. He would then get a positive expected utility U ∗, such that
h%U ∗ + $& = w − d%1 − (1&. Again, the market does not break down as long as
U ∗ > u%ŵ&, which amounts to

h%u%ŵ&+ $& < w − d%1− (1&) (4.97)

Note that (4.97) always holds when u%ŵ& = (1u%w&+ %1− (1&u%w − d&− $,
because then (1u%w&+ %1−(1&u%w − d& < u%w − d%1−(1&& by Jensen’s inequal-
ity. Hence, the market never breaks down under complete information. Because
h%·& is convex, Jensen’s inequality also implies that the left-hand side of (4.96) is
greater than h%u%ŵ&+ $&. Hence, the condition (4.96) may not hold even if (4.97)
always holds. Moral hazard may induce a market breakdown.

4.9 Commitment Under Moral Hazard 4

The assumption of full commitment to an incentive scheme was already discussed
in section 2.12 in the case of adverse selection. This issue is also quite important
under moral hazard. For instance, to induce a positive effort level the principal
must let the risk-averse agent bear some risk. However, once this effort is sunk, and
before uncertainty is resolved, the principal would like to offer more insurance to
the agent to avoid paying an excessive agency cost. For this reinsurance stage to
have any impact, the principal must be aware, maybe through direct observation of
the effort itself or by indirectly getting a signal correlated with the effort, that effort
has already been performed. Of course, the renegotiation stage would be perfectly
anticipated by the rational agent at the time of exerting effort. Renegotiation is
unlikely to lead to complete insurance ex post, because the agent would then have
no incentive to exert effort in the first place.

Fudenberg and Tirole (1990) showed how the possibility of renego-
tiation induced a mixed strategy in the effort provision of the agent.

The complexity of the model comes from the fact that the agent’s actual
choice of effort becomes an endogenous adverse selection variable at the
renegotiation stage. This creates an inefficiency. This inefficiency can be
avoided if the informed party makes the renegotiation offer, as in Matthews
(1995), who allowed renegotiation on the equilibrium path, or Ma (1994),
who focused on renegotiation-proof contracts. Finally, Hermalin and Katz
(1991) showed that the first-best outcome could be implemented when the
principal observes the nonverifiable effort of the agent before renegotiation,
because then renegotiation takes place under complete information.
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Appendix 4.1: Proof of Proposition 4.2

• First suppose that 0 ≤ l ≤ (0
'(

$. We conjecture that (4.15) and (4.18)
are the only relevant constraints. Of course, since the principal is
willing to minimize the payments made to the agent, both constraints
must be binding. Hence, tSB = −l and t̄SB = −l+ $

'(
. We check that

(4.17) is satisfied since −l + $
'(

> −l. We also check that (4.16) is
satisfied since (1t̄

SB + %1− (1&t
SB − $ = −l + (0

'(
$ ≥ 0.

• For l > (0
'(

$, note that the transfers t∗ = − (0
'(

$ and t̄∗ = $ +
%1−(1&
'(

$ > t∗ are such that both limited liability constraints (4.17) and
(4.18) are strictly satisfied, and (4.15) and (4.16) are both binding. In
this case, it is costless to induce a positive effort by the agent, and the
first-best outcome can be implemented.

Appendix 4.2: A Continuum of Performances

Let us now assume that the level of performance q̃ is drawn from a continuous dis-
tribution with a cumulative function F %·$e& on the support -q" q̄.. This distribution
is conditional on the agent’s level of effort, which still takes two possible values e
in !0" 1#. We denote by f %·$e& the density corresponding to the above distributions.
A contract t%q& inducing a positive effort in this context must satisfy the incentive
constraint

∫ q̄

q
u%t%q&&f %q$1&dq − $ ≥

∫ q̄

q
u%t%q&&f %q$0&dq" (4.98)

and the participation constraint

∫ q̄

q
u%t%q&&f %q$1&dq − $ ≥ 0) (4.99)

The risk-neutral principal’s problem is thus written as

%P &* max
!t%q&#

∫ q̄

q
%S%q&− t%q&&f %q$1&dq"

subject to (4.98) and (4.99))

Denoting the multipliers of (4.98) and (4.99) by , and +, respectively, the
Lagrangian of %P & writes as L%q" t& = %S%q&− t&f %q$1&+ ,%u%t&%f %q$1&− f %q$0&&−
$&+ +%u%t&f %q$1&− $&.
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Optimizing pointwise with respect to t yields

1
u′%tSB%q&&

= ++ ,

(
f %q$1&− f %q$0&

f %q$1&

)
) (4.100)

Multiplying (4.100) by f1%q& and taking expectations,30 we obtain, as in the
main text,

+ = E
q̃

(
1

u′%tSB%q̃&&

)
> 0" (4.101)

where E
q̃
%·& is the expectation operator with respect to the probability distribution

of output induced by an effort eSB. Finally, using this expression of +, inserting it
into (4.100), and multiplying it by f %q$1&u%tSB%q&&, we obtain

,%f %q$1&− f %q$0&&u%tSB%q&&

= f %q$1&u%tSB%q&&
(

1
u′%tSB%q&&

− E
q̃

(
1

u′%tSB%q̃&&

))
) (4.102)

Integrating over -q" q̄. and taking into account the slackness condition
,%
∫ q̄

q %f %q$1& − f %q$0&&u%tSB%q&&dq − $& = 0 yields ,$ = cov%u%tSB%q̃&&" 1
u′%tSB%q̃&& & ≥

0.
Hence, , ≥ 0 because u%·& and u′%·& vary in opposite directions. Also, , = 0

only if tSB%q& is a constant, but in this case the incentive constraint is necessarily
violated. As a result, we have , > 0. Finally, tSB%(& is monotonically increasing in
( when the monotone likelihood property d

dq
% f %q$1&−f %q$0&

f %q$1& & ≥ 0 is satisfied.

Appendix 4.3: Proof of Proposition 4.6

Indeed, let J be the set of indices j , such that (j1−(j0
(j1

= maxi!
(i1−(i0

(i1
#. If J =

!n#, then we have tn = $
(n1−(n0

and ti = 0 for i < n. Otherwise ti = 0 if i *∈ J ,
and for i ∈ J the transfer ti must satisfy the incentive constraint as an equality.
Thus,

∑
i∈J %(i1 − (i0&ti = $, and the principal (and the agent) are indifferent to

the profiles of positive transfers. For example, they can be chosen positive and
increasing.

30Note that
∫ q̄
q f %q$e&dq = 1 for e in {0,1}.



5 Incentive and
Participation Constraints
with Moral Hazard !

In chapter 4, we stressed the various conflicts that may appear in a moral hazard
environment. The analysis of these conflicts, under both limited liability and risk
aversion, was made easy because of our focus on a simple 2× 2 environment with
a binary effort and two levels of performance. The simple interaction between a
single incentive constraint with either a limited liability constraint or a participation
constraint was quite straightforward.

However, moral hazard models also inherit the major difficulties of Incen-
tive Theory, which we have already encountered in our investigation of complex
adverse selection models carried out in chapter 3. Indeed, when one moves away
from the 2× 2 (by far too simplistic) model of chapter 4, numerous incentive con-
straints have to be taken into account in complex moral hazard environments. The
analysis becomes much harder, and characterizing the optimal incentive contract
is a difficult task. Examples of such complex contracting environments abound.
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Effort may no longer be binary but, instead, may be better characterized as a
continuous variable. A manager may no longer choose between working or not
working on a project but may be able to fine-tune the exact effort spent on this
project. Even worse, the agent’s actions may no longer be summarized by a one-
dimensional parameter but may be better described by a whole array of control
variables that are technologically linked. For instance, the manager of a firm may
have to choose how to allocate his effort between productive activities and mon-
itoring his peers and other workers. The manager’s performances, i.e., his profit,
may also be better approximated as a continuous variable, a less crude assumption
than the one made in chapter 4.1 Real-world incentive schemes for the manager
of the firm are not based on a discrete number of performances but instead on
the more continuous level of profit of the firm. Lastly, the agent’s preferences
over effort and consumption may no longer be separable as we have assumed in
chapter 4.

Mirroring the analysis performed in chapter 3 for the case of adverse selec-
tion as much as possible, we argue here that complex contractual environments
with moral hazard also raise many new difficulties for the characterization of the
binding incentive and participation constraints. Again mimicking what was done
in chapter 3, we propose a classification of the new contractual settings analyzed
in the present chapter. Each of those categories corresponds to a particular pertur-
bation of the standard moral hazard trade-offs analyzed in chapter 2.

• Conflict between several of the agent’s incentive constraints: Let us con-
sider a first class of models where the agent can exert more than two possible levels
of effort. The agent may choose his one-dimensional action within a finite set,
or he may be able to fine-tune his effort supply continuously. In both cases, the
agent’s performance remains a single dimensional vector. Alternatively, the agent
may be performing several tasks on the principal’s behalf, thus controlling various
dimensions of effort and with each of those efforts affecting a particular aspect
of the agent’s performance. In those complex contracting environments, a major
difficulty is to ensure that local incentive constraints, which are the easiest ones to
handle, still drive the design of incentives.

When the agent’s performance has a single dimension, we first derive the
second-best cost of implementing any given level of effort. This cost is obtained by
minimizing the agent’s expected payment subject to his incentive and participation
constraints. As in chapter 4, it is true that the second-best cost is greater than the
first-best cost as soon as one incentive constraint is binding. Second, we generalize
the second-best analysis of chapter 4 to find the optimal effort level that the prin-

1Appendix 4.2 already gives an example of such an analysis with a continuum of performances
and two levels of effort.
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cipal wants to induce under moral hazard. This analysis already shows that there
is no general lesson on the nature of the distortion entailed by moral hazard. The
second-best level of effort may be either higher or lower than its first-best value,
contrary to our findings in the binary effort model of chapter 4. We then develop
the so-called first-order approach to moral hazard problems where effort is a con-
tinuous variable. This approach replaces the set of possible incentive constraints
by a local incentive constraint, a legitimate step provided that the agent’s problem
is concave. This concavity is in turn obtained under rather stringent assumptions,
namely that the cumulative distribution function of the performance level should
be a convex function of the agent’s effort (CDFC) and MLRP should also be sat-
isfied. As we have already seen in chapter 4, this latter property also implies that
the agent’s compensation schedule is nondecreasing with his performance.

In practice, the agent’s effort is often better characterized as a multidimen-
sional variable. For instance, a retailer selling goods on the manufacturer’s behalf
must reduce retailing costs but also improve after-sales services. A worker is not
only involved in productive tasks but also must sometimes monitor his peers. A
tenant must simultaneously choose the quality of the crops he seeds and the level
of physical investment he makes. A teacher must allocate his time between doing
research and supervising students. All of these examples belong to the class of mul-
titask incentive problems. In those models, agency costs are significantly affected by
the conflicts that may arise when incentivizing the various tasks performed by the
agent. The characterization of the optimal contract depends on the complementar-
ity or substitutability of the tasks. The technological relationship between tasks thus
has strong incentive consequences. Viewing the relationship between the principal
and his agent as a cluster of various transactions significantly expands the scope
of standard incentive theory. New issues arise in such a framework. For instance,
one can study how the distribution of efforts along those different dimensions of
the agent’s activity or the degrees of informativeness of the different performances
affect the power of incentives, deriving rich lessons for organizational design from
such an analysis.2

2Even though the relevant literature (see Holmström and Milgrom 1991 and 1994) has been
mostly developed in a particular framework (a framework that considers the case of a continuum of
possible performances, a continuum of possible effort levels on each task, and a disutility of effort
being evaluated in monetary terms with CARA utility functions), we have found it useful to recast
the lessons of this literature in a discrete framework that naturally extends the standard model of
chapter 4. By doing so, we clearly gain in consistency by offering an integrated framework throughout
the book. Moreover, this discrete modelling allows us to discuss the conditions under which nonlocal
incentive constraints affect the design of incentives, giving us strong economic intuitions about the
economic phenomenon at stake in this multitask environment. Nevertheless, we develop in section
9.6.2 the Holmström-Milgrom model in more detail.
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We also present a number of important examples of the multitask principal-
agent models. These applications cover a broad range of issues, such as the inter-
linking of agrarian contracts, the design of incentive schemes based on aggregate
performances, and finally the choice of whether to integrate vertically or not a
downstream unit and its consequences for the comparison between the power of
incentives in market environments and within firms.

• Strong conflict between the agent’s incentive and participation con-
straints: One peculiarity of the principal-agent models with risk aversion presented
so far is that, even though various incentive constraints might be taken into account
by the principal, the separability of the agent’s utility function between consump-
tion and effort implies that giving up an ex ante rent to the agent is never optimal
from the principal’s point of view. The conflict between incentives and insurance
is not strong enough to leave a rent to the agent. Instead, with a nonseparabil-
ity between consumption and effort in the agent’s utility function, the conflict
between incentive and participation constraints may become stronger, and it may
be better solved by leaving a positive ex ante rent to the agent. Leaving such a rent
allows the principal to benefit from wealth effects, which may reduce the cost of
providing incentives.

• Constraints on transfers: Finally, we also replace the conflict between
incentive and participation constraints by the conflict between incentive and bud-
get balance constraints that appear in the optimal taxation literature. Again, in a
model with a binary level of effort, under-provision of effort appears with moral
hazard.

Section 5.1 presents the straightforward extensions of the standard model of
chapter 4 to the cases where the agent can perform more than two and possibly a
continuum of levels of effort. In this section we discuss there the two-step charac-
terization of the second-best optimum, first with the derivation of the second-best
cost of implementing a level of effort, and second with the analysis of the trade-off
between the benefit and the cost of implementing any given effort. We prove, by
exhibiting an example, that the second-best level of effort in an insurance-efficiency
trade-off can be distorted upwards. Therefore, this shows that complex moral haz-
ard models may fail to perpetuate the simple lessons of chapter 4. Nevertheless, we
also provide a limited liability rent-efficiency trade-off with a continuum of levels
of effort where the basic lessons of section 4.5.1 carry over. There, the trade-off
between the extraction of the limited liability rent and allocative efficiency always
calls for a reduction in the expected volume of trade. Finally, this section ends
with an exposition of the first-order approach. The first-order approach allows the
modeler to replace the infinity of incentive constraints, which arise when the agent
controls a continuous effort variable, with a simple first-order condition. Section 5.2
deals with a multitask model, solving first for the optimal contracts that induce
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efforts on both dimensions of the agent’s activity and then deriving the second-
best level of effort on each of these dimensions. This analysis is first performed in
the simple framework of a risk-neutral agent who is protected by limited liability.
Then, we turn to the somewhat more complex case of risk aversion. We show the
possibility of diseconomies of scope in agency costs, and we discuss their precise
origins. Several examples of multitask agency models are then presented. Sec-
tion 5.3 analyzes the case where the agent’s utility function is no longer separable
between consumption and effort. In this section we discuss the conditions under
which the agent’s participation constraint may not be binding at the optimum. We
also provide a simple example of preferences where the disutility of effort can be
expressed in monetary terms for which, despite the nonseparability between effort
and consumption, the optimal contract keeps almost the same features as in the
case of separability.3 Finally, section 5.4 analyzes the trade-off between efficiency
and redistribution in a moral hazard context.

5.1 More than Two Levels of Effort

5.1.1 A Discrete Model

Let us extend the model of chapter 4 by allowing more than two levels of effort.
Consider the more general case, with n levels of production q1 < q2 < · · · < qn
and K levels of effort with 0 = e0 < e1 < · · · < eK−1 and the disutilities of effort
"#ek$ = "k for all k in %0& ' ' ' &K− 1(. We still make the normalization "0 = 0 and
assume that "k is increasing in k. Let )ik for i in %1& ' ' ' &n( also denote the prob-
ability of producing qi when the effort level is ek. Let Si = S#qi$ denote the value
for the principal of production qi for i in %1& ' ' ' &n(. The agent still has a separable
utility function over monetary transfer and effort U = u#t$ − "#e$, where u#·$ is
increasing and concave (u′ > 0 and u′′ ≤ 0) with the normalization u#0$ = 0. In
such an environment, a contract is a set of transfers %#t1& ' ' ' tn$( corresponding to all
possible output levels. As in chapter 4, we proceed in two steps. First, we compute
the second-best cost of inducing effort ek for the principal. We denote this cost by
CSB

k . Second, we find the optimal level of effort from the principal’s point of view,
taking into account both the costs and benefits of each action ek.

Let us thus denote by #Pk$ the cost minimization problem of a principal
willing to implement effort ek. Using our by now standard change of variables, the
important variables are the utility levels in each state of nature, i.e., ui = u#ti$

3This example will be useful later on in section 9.5.2, in which we will investigate how optimal
contracts may be linear in more structured moral hazard environments.
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or alternatively ti = h#ui$ where h = u−1 is increasing and convex #h′ > 0 and
h′′ > 0$. #Pk$ is now a convex problem that is written as:

(Pk): min
%#u1& ''' &un$(

n∑

i=1

)ikh#ui$

subject to

n∑

i=1

#)ik − )ik′ $ui ≥ "k − "k′ for all k′ &= k& (5.1)

n∑

i=1

)ikui − "k ≥ 0' (5.2)

(5.1) is the incentive constraint preventing the agent from exerting effort ek′ ,
for k′ &= k when the principal wants to implement effort ek. There are K− 1 such
constraints. (5.2) is the agent’s participation constraint when he exerts effort ek. We
denote the multiplier of (5.1) by *k′

k and still, as in chapter 4, the multiplier of
(5.2.) by +. The value of this problem is the second-best cost of implementation
CSB

k for effort ek.
It should be immediately clear that the second-best cost of implementing

effort ek is such that CSB
k ≥ CFB

k = h#"k$, where CFB
k denotes the first-best cost of

implementing effort ek. This is so because the presence of incentive constraints
in problem (Pk) implies that the value of this problem is necessarily not less than
under complete information. Note that the inequality above is strict whenever one
of the incentive constraints in (5.1) is binding at the optimum of #Pk$.

The necessary and sufficient first-order conditions for the optimization of pro-
gram (Pk) are thus written as

1
u′#tik$

= ++
∑

k′ &=k

*k′
k

(
)ik − )ik′

)ik

)
& i = 1& ' ' ' &n& (5.3)

where tik is the transfer given to the agent in state i when the principal wants to
implement effort ek.

The new difficulty coming from more than two levels of effort is that there
may be several incentive constraints binding, i.e., several multipliers *k′

k that may
be different from zero. Looking only at local incentive constraints may not be
enough to characterize the solution to #Pk$, and the optimal payments are then
the solutions of a complex system of nonlinear equations. However, if the only
binding incentive constraint is the local downward incentive constraint, the first-
order condition for problem #Pk$ is written simply as

1
u′#tik$

= ++ *k−1
k

(
)ik − )i#k−1$

)ik

)
' (5.4)
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When the cumulative distribution function of production is a convex function
of the level of effort, and when MLRP holds, the local approach described above
can be validated, as has been shown by Grossman and Hart (1983). We prove
this proposition in section 5.1.3 for the case of a continuum of effort levels and a
continuum of performances, but the same kind of proof also applies in this discrete
framework.4

Even if describing the behavior of the second-best cost of implementation
CSB

k is in general a difficult task, one may try to get some insights on how the
principal chooses the second-best level of effort. The optimal second-best effort is
indeed defined as eSB = argmaxek

∑n
i=1 )ikSi −CSB

k .5

Finding this second-best effort eSB is a rather difficult problem and there is,
a priori, no reason to be sure that it is below its first-best value. Under- as well as
over-provision of effort may now be obtained at the second-best effort.

Under-provision was obtained in chapter 4. To understand how over-provision
may also arise, let us consider the following example with three possible levels of
effort e0& e1, and e2, and two possible outcomes yielding 'S and S to the principal.
The probabilities that 'S is realized are, respectively, )0& )1, and )2, with )0 <
)1 < )2 and the corresponding disutilities of effort being "0 = 0 < "1 < "2.
Under complete information, the intermediate effort is chosen when

h#"1$

)1 − )0
< 'S− S <

h#"2$− h#"1$

)2 − )1
' (5.5)

The first inequality means that effort e1 is preferred to e0. The second inequal-
ity means that e1 is also preferred to e2.

Under moral hazard, let us first observe that the first-best effort e1 may no
longer be implementable. Indeed, let us denote by ū and u the levels of utility
offered to the agent when 'S and S realize. Incentive compatibility requires that

ū− u ≥ "1

)1 − )0
& (5.6)

so that the agent prefers exerting effort e1 rather than e0. Similarly, we must also
have

ū− u ≤ "2 − "1

)2 − )1
(5.7)

4Then, the MLRP condition says that )ik−)i#k−1$
)ik

is not decreasing in i for all k ≥ 1. The cumulative
distribution Fik =

∑i
j=1 )jk is convex in effort whenever Fik + Fik′ ≥ 2Fi# k+k′

2 $ for all #k& k
′$ in K2 (when

k+k′
2 is not an integer, one may choose E

[
k+k′
2

]
+ 1 where E#·$ denotes the integer part).

5If there are several such maximizers, just pick any of them.
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to ensure that the agent prefers exerting effort e1 than e2. However, when "2−"1
)2−)1

<
"1

)1−)0
, the set of payoffs #ū&u$, such that (5.6) and (5.7) are both satisfied, is empty.

Hence, e1 can no longer be implemented.
Effort e0 remains obviously implementable with a null payment in each state

of nature. Finally, effort e2 is implemented when the incentive constraint

ū− u ≥ max
{
"2 − "1

)2 − )1
,

"2

)2 − )0

}
& (5.8)

which ensures that effort e2 is preferred to both e1 and e0, and the participation
constraint

)2ū+ #1− )2$u− "2 ≥ 0& (5.9)

are both satisfied.
When "2−"1

)2−)1
< "2

)2−)0
, the maximand on the right-hand side of (5.8) is "2

)2−)0
.

Hence, the second-best cost of implementing effort e2 can easily be computed as

CSB
2 = )2h

(
"2 +

#1− )2$"2

)2 − )0

)
+ #1− )2$h

(
"2 −

)2"2

)2 − )0

)
' (5.10)

Therefore, effort e2 is second-best optimal when

'S− S >
CSB

2

)2 − )0
' (5.11)

It is easy to check that one can find values of 'S − S, so that (5.5) and (5.11)
both hold simultaneously. Our conclusion is in proposition 5.1.

Proposition 5.1: With more than two levels of effort, the second-best effort
level may be greater than the first-best level.

5.1.2 Two Outcomes with a Continuum of Effort Levels

To reduce the cumbersome difficulty of the discrete case, modellers have often
preferred to allow for a continuum of effort levels. With more than two states of
nature, one meets the soon-important technical problems analyzed in section 5.1.3.
With only two possible levels of performance, the analysis nevertheless remains
very tractable as we will demonstrate in this section. To make some progress in
this direction, we reparameterize the model by assuming that )#e$ = e, for all e
in -0& 1.. Hence, the agent’s effort level equals the probability of a high perfor-
mance. The disutility of effort function "#e$ is increasing and convex in e ("′ > 0
and "′′ > 0) with "#0$ = 0. Moreover, to ensure interior solutions, we assume that
the Inada conditions "′#0$ = 0 and "′#1$ = +( both hold. Let us finally consider
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a risk-neutral agent with zero initial wealth who is protected by the limited liability
constraints

t ≥ 0 (5.12)

and

t̄ ≥ 0' (5.13)

Faced with an incentive contract %#t& t̄$(, this agent chooses an effort e, such
that

e = arg max
ē∈-0&1.

ẽt̄ + #1− ẽ$t − "#ẽ$' (5.14)

By strict concavity of the agent’s objective function, the incentive constraint
rewrites with the following necessary and sufficient first-order condition:

t̄ − t = "′#e$' (5.15)

The principal’s program becomes

(P ): max
%#e&t̄&t$(

e'S+ #1− e$S− et̄ − #1− e$t

subject to (5.12), (5.13), and (5.15).

As in the model of section 4.3, the limited liability constraint in (5.12) (resp.
(5.13)) is again binding (resp. slack). Replacing t̄ with "′#e$ in the principal’s
objective function, the principal’s reduced program #P ′$ is written as

#P ′$/ max
e∈-0&1.

e'S+ #1− e$S− e"′#e$'

When "′′′ > 0 the principal’s objective function is strictly concave in e, and
direct optimization leads to the following equation defining the second-best level
of effort eSB:

0S = "′#eSB$+ eSB"′′#eSB$' (5.16)

This second-best effort is obviously lower than the first-best effort e∗, which is
defined by

0S = "′#e∗$' (5.17)

The first-best effort is such that the marginal benefit 0S of increasing effort
by a small amount de is just equal to the marginal disutility of doing so "′#e∗$de.
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Under moral hazard, the marginal benefit 0Sde must be equal to the marginal cost
"′#eSB$de plus the marginal cost of the agent’s limited liability rent eSB"′′#eSB$de.

Indeed, with moral hazard the limited liability rent of the agent is strictly
positive because this rent is also rewritten as EUSB = eSB"′#eSB$ − "#eSB$ > 0,
where the right-hand side inequality is derived from the convexity of "#·$, "#0$ =
0, and the fact that eSB > 0. Reducing this rent, which is costly from the principal’s
point view, calls for decreasing effort below the first-best.

Remark: The model with a risk-neutral agent protected by limited lia-
bility bears some strong resemblance to the adverse selection model of
chapter 2. Indeed, in both models the principal reduces the expected
volume of trade with the agent to reduce the latter’s information rent.
Distortions in effort are now replacing distortions in output to reduce
this information rent.

5.1.3 The First-Order Approach

Let us now consider the case where the risk-averse agent may exert a continuous
level of effort e in a compact interval -0& ē] and by doing so incurs a disutility
"#e$ which is increasing and convex ("′ > 0 and "′′ > 0) with "#0$ = 0. To
avoid corner solutions, we will also assume that the Inada conditions "′#0$ = 0
and "′#ē$ = +( are satisfied.

The agent’s performance q̃ may take any possible value in the compact inter-
val Q = -q& q̄. with the conditional distribution F #q+e$ and the everywhere positive
density function f #q+e$. We assume that F #·+e$ is twice differentiable with respect
to e and that those distributions all have the same full support Q.

Formally, a contract %t#q̃$( that implements a given level of effort e must now
satisfy the following incentive constraints:

∫ q̄

q
u#t#q$$f #q+e$ dq − "#e$ ≥

∫ q̄

q
u#t#q$$f #q+ẽ$ dq − "#ẽ$& for all ẽ in -0& ē.

(5.18)

and the participation constraint
∫ q̄

q
u#t#q$$f #q+e$ dq − "#e$ ≥ 0' (5.19)

The principal’s problem is thus

max
%#t#·$& e$(

∫ q̄

q
#S#q$− t#q$$f #q+e$ dq&(P ):

subject to (5.18) and (5.19).
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We denote by %#tSB#·$& eSB$( the solution to #P $. The first difficulty with this
problem is to ensure that such an optimum exists within the class of all admissible
functions t#·$. For instance, Mirrlees (1999) has shown that the problem may
sometimes have no optimal solution in the class of unbounded sharing rules. The
difficulty here comes from the lack of compacity of the set of incentive feasible
contracts.6 We leave aside these technicalities to focus on what we think is the
main difficulty of problem #P $—simplifying the infinite number of global incentive
constraints in (5.18) and replacing those constraints by the simpler local incentive
constraint:

∫ q̄

q
u#t#q$$fe#q+e$ dq − "′#e$ = 0& (5.20)

which is a necessary condition if the optimal effort level is positive.
This constraint simply means that the agent is indifferent about his choice

between effort e and increasing (or decreasing) his effort by an amount de when
he receives the compensation schedule %t#q̃$(.

Let us thus define #PR$ as the relaxed problem of the principal, where the
infinite number of constraints (5.18) have now been replaced by (5.20):

#PR$/ max
%#t#·$& e$(

∫ q̄

q
#S#q$− t#q$$f #q+e$ dq&

subject to (5.19) and (5.20).

We denote by %#tR#·$& eR$( the solution to this relaxed problem. We will first
characterize this solution. Then we will find sufficient conditions under which
the solution of the relaxed problem #PR$ satisfies the constraints of the original
problem #P $. Hence, we will have obtained a characterization of the solution for
problem #P $.

Let us first characterize the solution to the relaxed problem #PR$. Denoting
the multiplier of (5.20) by * and the multiplier of (5.19) by +, we can write the
Lagrangian L of this problem as

L#t& e$ = #S#q$− t$f #q+e$+ *#u#t$fe#q+e$− "′#e$$+ +#u#t$f #q+e$− "#e$$'
(5.21)

Pointwise optimization with respect to t#q$ yields

1
u′#tR#q$$

= ++ *
fe#q+eR$
f #q+eR$ ' (5.22)

6To solve this technical issue, some authors like Holmström (1979) and Page (1987) have put
further restrictions on the class of incentive schemes, such as for instance, equicontinuity.



198 • Chapter 5

The left-hand side of (5.22) is increasing with respect to tR#q$, because u′′ <
0. Provided that * > 0, MLRP (here in its strict version for simplicity),

1

1q

(
fe#q+e$
f #q+e$

)
> 0 for all q& (5.23)

guarantees that the right-hand side of (5.22) is also increasing in q. Hence, under
MLRP, tR#q$ is strictly increasing with respect to q.

Remark: Note that the probability that the realized output is greater
than a given q when effort e is exerted is 1− F #q+e$. Let us check that
increasing e raises this probability when MLRP holds. We have

Fe#q+e$ =
∫ q

q

fe#q+e$
f #q+e$ f #q+e$ dq =

∫ q

q
2#q& e$f #q+e$ dq& (5.24)

where 2#q& e$ = 1
1e
#log f #q+e$$ = fe#q+e$

f #q+e$ is the derivative of the log-
likelihood of f #·$. But, by MLRP, 2#q& e$ is increasing in q. 2#q& e$
cannot be everywhere negative, because by definition Fe#q̄+e$ = 0 =∫ q̄

q f #q+e$2#q& e$ dq. Hence, there exists q∗ such that: 2#q& e$ ≤ 0 if
and only if q ≤ q∗. Fe#q+e$ is decreasing in q (resp. increasing) on
-q& q∗. (resp. -q∗& q̄.$. Since Fe#q+e$ = Fe#q̄+e$ = 0, we necessarily have
Fe#q+e$ ≤ 0 for any q in -q& q̄.. Hence, when the agent exerts an effort
e which is greater than e′, the distribution of output with e dominates
the distribution of output with e′ in the sense of first-order stochastic
dominance.

We now show that indeed * > 0. Let us first denote by eR the effort level
solution of #PR$. Multiplying (5.22) by f #q+eR$ and integrating over -q& q̄. yields

+ =
∫ q̄

q

1
u′#tR#q$$

f #q+eR$ dq = E
q̃

(
1

u′#tR#q̃$$

)
&

since
∫ q̄

q fe#q+eR$ dq = 0. The expectation operator with respect to the distribution
of output induced by effort eR is denoted by E

q̃
#·$. Because u′ > 0, we have + > 0

and the participation constraint in (5.19) is binding.
Using (5.22) again, we also find

*fe#q+eR$
f #q+eR$ = 1

u′#tR#q$$
− E

q̃

(
1

u′#tR#q̃$$

)
' (5.25)
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Multiplying both sides of (5.25) by u#tR#q$$f #q+eR$ and integrating over -q& q̄.
yields

*
∫ q̄

q
u#tR#q$$fe#q+eR$dq = cov

(
u#tR#q̃$$&

1
u′#tR#q̃$$

)
& (5.26)

where cov#·$ is the covariance operator.
Using the slackness condition associated with (5.20), namely *#

∫ q̄

q u#tR#q$$×
fe#q+e$ dq − "′#e$$ = 0, we finally get

*"′#eR$ = cov
(
u#tR#q̃$$&

1
u′#tR#q̃$$

)
' (5.27)

Since u#·$ and u′#·$ covary in opposite directions, we necessarily have * ≥ 0.
Moreover, the only case where this covariance is exactly zero is when tR#q$ is
a constant for all q. But then the incentive constraint (5.20) can no longer be
satisfied at a positive level of effort. Having proved that * > 0, we derive the
following proposition from above.

Proposition 5.2: Under MLRP, the solution tR#q$ to the relaxed problem
#PR$ is increasing in q.

We can rewrite the agent’s expected utility when he receives the scheme
%tR#q$( and exerts an effort e as

U #e$ =
∫ q̄

q
u#tR#q$$f #q+e$ dq − "#e$&

= -u#tR#q$$F #q+e$.q̄q −
∫ q̄

q
u′#tR#q$$

dtR

dq
#q$F #q+e$ dq − "#e$

= u#tR#q̄$$−
∫ q̄

q
u′#tR#q$$

dtR

dq
#q$F #q+e$ dq − "#e$& (5.28)

where the second line is obtained simply by integrating by parts, and the third line
uses the fact that F #q+e$ = 0 and F #q̄+e$ = 1 for all e.

Since "′′ > 0, u′ > 0 and tR#q$ is increasing when MLRP holds, U #e$ is
concave in e as soon as Fee#q+e$ > 0 for all #q& e$. This last property is called the
convexity of the distribution function condition (CDFC).

Remark 1: Joined to MLRP, CDFC captures the idea that increasing
the agent’s effort also increases, at a decreasing rate, the probability
1− F #q+e$ that the realized output is greater than q.



200 • Chapter 5

Remark 2: Note that CDFC may not always hold. Let us assume, for
instance, that production is linked to effort as follows: q = e+ 3 where
3 is distributed on .−(&+(- with a cumulative distribution function
G#·$. Then, CDFC implies that the distribution of 3 has an increasing
density, a rather stringent assumption.

Remark 3: It may seem surprising that such stringent assumptions are
needed to prove the simple and intuitive result that the agent’s reward
increases as his performance increases. However, remember that the
dependence of tR#·$ on q (which is bad from the insurance point of
view) is interesting only to the extent that it creates incentives for
effort. For a higher q to be a signal of a high effort, it must be that an
increase of effort increases production unambiguously,7 but also that
the informativeness of q about e increases with q (this is ensured by
MLRP).

Since U #e$ is concave for a solution of the relaxed problem, the first-order
condition (5.20) is sufficient to characterize the incentive constraints. Accordingly,
the first-order conditions of problem (P ) are the same as those of problem #PR$.
Proposition 5.3 provides a summary.

Proposition 5.3: Assume that both MLRP and CDFC both hold. If the
optimal effort level is positive, it is characterized by the solution of a
relaxed problem #PR$ using the first-order approach in (5.20). We have
%#tSB#·$& eSB$( = %#tR#·$& eR$(.

This solution %tSB#·$& eSB( is then characterized by the binding participation
constraint (5.19), the incentive constraint (5.20), and the two first-order conditions
of the principal’s problem, namely (5.22) and

∫ q̄

q
#S#q$− tSB#q$$fe#q+eSB$dq + *

( ∫ q̄

q
u#tSB#q$$fee#q+eSB$dq − "′′#eSB$

)
= 0'

(5.29)

Given the highly restrictive assumptions imposed to prove proposition 5.3, the
validity of the first-order approach is somewhat limited. Furthermore, when the
first-order approach is not valid, using it can be very misleading. The true solution
may not even be one among the multiple solutions of the first-order conditions
for the relaxed problem.8 As a consequence, most of the applied moral hazard
literature adopts the discrete %0& 1( formalization outlined in chapter 4.

7In the sense of first-order stochastic dominance.
8Grossman and Hart (1983) offer a graphical illustration of this phenomenon.
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An example: Take S#q$ = q and the probability distribution of production
f #q+e$ = 1

e
exp#−q+e$& q ≥ 0.

Note that fe#q+e$ = #q−e$

e3
exp#−q/e$ and fe#q+e$

f #q+e$ =
#q−e$

e2
. This distribution satisfies

the MLRP property, since 1
1q

( fe
f

)
= 1

e2
> 0 for all q ≥ 0.

Moreover, we have F #q+e$=1−exp#−q/e$. Hence, Fe#q+e$=− q

e2
exp#−q/e$<

0, i.e., an increase of effort increases production in the first-order stochastic
dominance sense. Finally, Fee#q+e$ = #2e−q$q

e4
exp#−q/e$, so that CDFC is not

satisfied.
The agent has utility function U = 2

√
t − e2. (5.22) is immediately writ-

ten as

t#q$ =
(
++ *

#q − e$

e2

)2

' (5.30)

For a high enough status quo utility level U0 of the agent,9 one can solve
the binding participation constraint of the agent, the first order condition (5.20)
of the agent’s problem with respect to e, and the first order condition (5.29) of
the principal’s problem with respect to e, and obtain the optimal values of the
parameters *SB& +SB, and eSB of the transfer function, which becomes

tSB#q$ =
((

+SB − *SB

eSB

)
+ *SB

#eSB$2
q

)2

'

Note that the agent’s objective function is strictly concave despite the fact that
CDFC is not satisfied. Indeed,

E

(
2
√
tSB#q$

)
− e2 = 2

(
+SB − *SB

eSB

)
+ 2

*SB

#eSB$2
e − e2'

Designing by tFB the sure transfer associated with the first-best, figure 5.1
summarizes the analysis.

With respect to the first-best, the agent is punished for q ≤ q∗ and rewarded
for q > q∗. The agent bears some risk that induces him to exert some effort eSB,
which depends on U .

The first-order approach has been one of the most debated issues
in contract theory in the late seventies and early eighties. Mirrlees

(1975) was the first to point out the limits of this approach and argued that

9This is necessary to induce a non-negative value of t so that
√
t is always well defined. Indeed,

with such a utility function the agent cannot be punished with negative transfers, so his expected
utility must be positive.
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Figure 5.1: First-Best and Second-Best Transfers

it is valid only when the agent’s problem has a unique maximizer.10&11 Later
he offered a proof for the use of this approach when the conditions MLRP
and CDFC both hold. This proof was corrected by Rogerson (1985a). Finally,
Jewitt (1988) offered a direct proof that the multiplier of the local incentive
constraint was positive.12 Jewitt also showed that CDFC can be relaxed, pro-
vided that the agent’s utility function satisfies further fine properties. Brown,
Chiang, Ghosh, and Wolfstetter (1986) provided a condition validating the
first-order approach independently of restrictions on the information struc-
tures. Aloi (1997) extended the first-order approach to nonseparable utility
functions for the agent. Sinclair-Desgagné (1994) generalized the first-order
approach to the case where the principal observes several dimensions of the
agent’s performance. Grossman and Hart (1983) gave an exhaustive char-
acterization of the agent’s incentive scheme. Their approach is based on a
complete description of the incentive and participation constraints when the
performances take n ≥ 2 values and the agent’s effort belongs to a finite set.
Araujo and Moreira (2001) showed how to solve the moral hazard problem
in the absence of a first-order approach.

10See also Guesnerie and Laffont (1978).
11This mimeo was later published in Mirrlees (1999).
12We have used his proof in the text.
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5.2 The Multitask Incentive Problem

It is often the case that the agent does not exert a single-dimensional effort, par-
ticularly when he is involved in many related activities associated with the same
job. Such examples abound, as we will see in section 5.2.5 below. When the agent
simultaneously performs several tasks for the principal, new issues arise: How does
the technological interaction among those tasks affect incentives? What sort of
optimal incentive contracts should be provided to the agent? How do incentive
considerations affect the optimal mix of efforts along each dimension of the agent’s
performance?

5.2.1 Technology

To answer the above questions, we now extend the simple model of chapter 4
and let the agent perform two tasks for the principal with respective efforts e1 and
e2. For simplicity, we first assume that those two tasks are completely symmetric
and have the same stochastic returns Si = 'S or S, for i = 1& 2. Those returns
are independently distributed with respective probabilities )#e1$ and )#e2$. Since
there are basically only three possible outcomes, yielding 2'S&'S + S, and 2S to
the principal, a contract is in fact a triplet of corresponding payments #t̄& t̂& t$. t̄ is
given in case of success on both tasks, t̂ is given in case of success on only one
task and t is given when none of the tasks has been successful.13

Again, we normalize each effort to belong to %0& 1(. Note that the model
has, by symmetry, three possible levels of aggregate effort. The agent can exert
a high effort on both tasks, on only one task, or on no task at all. The reader
will recognize that the multitask agency model should thus inherit many of the
difficulties discussed in section 5.1. However, the multitask problem also has more
structure thanks to the technological assumption generally made on these tasks.
We will denote by "2& "1, and "0 = 0 the agent’s disutilities of effort when he
exerts, respectively, two high-effort levels, only one, or none. Of course, we have
"2 > "1 > 0. Moreover, we say that the two tasks are substitutes when "2 > 2"1,
and complements when instead "2 < 2"1. When tasks are substitutes, it is harder to
accomplish the second task at the margin when the first one is already performed.
The reverse holds when the two tasks are complements.

13It is a straightforward extension to allow the principal’s payoff to be symmetric and a nonlinear
function S#q̃1& q̃2$ of the random outputs q̃1 and q̃2. Various asymmetries can also be handled, as we
will see in section 5.2.4 below.
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5.2.2 The Simple Case of Limited Liability and
Substitutability of Tasks

In this section we begin by analyzing a simple example with a risk-neutral agent
protected by limited liability.

First-Best Outcome
Let us first assume that the principal performs the tasks himself, or alternatively
that he uses a risk-neutral agent to do so and that effort is observable.

Because the performances on each task are independent variables, the prin-
cipal’s net benefit of choosing to let the agent exert a positive effort on both tasks
is V FB

2 = 2#)1
'S+ #1− )1$S$− "2. Note also that CFB

2 = "2 is the first-best cost of
implementing both efforts in this case of risk neutrality.

If he chooses to let the agent exert only one positive level of effort, the prin-
cipal instead gets V FB

1 = )1
'S + #1− )1$S + )0

'S + #1− )0$S − "1. The first-best
cost of implementing only one effort is then CFB

1 = "1.
Finally, if he chooses to let the agent exert no effort at all, the principal gets

V FB
0 = 2#)0

'S+ #1− )0$S$.
Hence, exerting both efforts is preferred to any other allocation when V FB

2 ≥
max#V FB

1 &V FB
0 $, or to put it differently, when

0)0S ≥ max
{
"2

2
& "2 − "1

}
' (5.31)

When the two tasks are substitutes, we have "2 −"1 >
"2
2 . The more stringent

constraint on the right-hand side of (5.31) is obtained when the principal lets
the agent exert one positive level of effort.14 Figure 5.2 summarizes the first-best
choices of effort made by the principal as a function of the incremental benefit
0)0S associated with each task.

When tasks are substitutes a whole range of intermediate values of 0)0S
exist, which are simultaneously large enough to justify a positive effort on one task
and small enough to prevent the principal from willing to let the agent exert both
efforts.

Moral Hazard
Let us now turn to the case where efforts are nonobservable and the risk-neutral
agent is protected by limited liability.

14In this latter case, given the symmetry of the model, there is no loss of generality in assuming
that the only high effort is performed on task 1.
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Figure 5.2: First-Best Levels of Effort with Substitutes

Suppose first that the principal wants to induce a high effort on both tasks.
We leave it to the reader to check that the best way to do so is for the principal
to reward the agent only when q̃1 = q̃2 = q̄, i.e., when both tasks are successful.
Differently stated, we have t̄ > t̂ = t = 0.

The local incentive constraint that prevents the agent from exerting only one
effort is written as

)2
1 t̄ − "2 ≥ )1)0t̄ − "1' (5.32)

The global incentive constraint that prevents the agent from exerting no effort
at all is instead written as

)2
1 t̄ − "2 ≥ )2

0 t̄' (5.33)

Both incentive constraints (5.32) and (5.33) can finally be summarized as

t̄ ≥ 1
0)

max
{
"2 − "1

)1
&

"2

)1 + )0

}
'15 (5.34)

The principal’s problem #P $ is thus written as:

#P $/ max
%t̄(

)2
1 #2'S− t̄$+ 2)1#1− )1$#'S+ S$+ 2#1− )1$

2S

subject to (5.34).

The latter constraint is obviously binding at the optimum of #P $. The second-
best cost of implementing both efforts is thus CSB

2 = )1
0)

max
{
"2 − "1&

)1"2
)1+)0

}
. For

the principal, the net benefits from inducing a positive effort on both activities is
written as

V SB
2 = 2#)1

'S+ #1− )1$S$−
)1

0)
max

{
"2 − "1&

)1"2

)1 + )0

}
' (5.35)

15Note that the right-hand side of (5.34) is strictly positive. Hence, the limited liability constraint
t̄ ≥ 0 is automatically satisfied.
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If the principal chooses to induce only one effort, e.g., on task 1, he instead
offers a transfer t̂ = "1

0)
each time that q̃1 = q̄ and zero otherwise, just as in chapter

4. The second-best cost of implementing effort on a single task is thus CSB
1 = )1"1

0)
.

The second-best net benefit for the principal of inducing this single dimension of
effort is

V SB
1 = )1

'S+ #1− )1$S+ )0
'S+ #1− )0$S− )1"1

0)
' (5.36)

Again, there are three possible sets of parameters, characterizing different
zones for which the principal wants to induce either zero, one, or two efforts.

It is easy to check that the principal now chooses to exert zero effort more
often than under complete information, because

CSB
1 = )1"1

0)
> "1 = CFB

1 ' (5.37)

Let us turn to the determination of whether or not the principal induces two
positive efforts under moral hazard less often than under complete information.

We isolate two cases. First, when )0"2
)1+)0

≥ "1, one can check that the local
incentive constraint is the more constraining one for a principal willing to induce
both efforts from the agent. This means that t̄ = "2−"1

)10)
. Then, the inequality

)0"2
)1+)0

≥ "1 implies that

CSB
2 −CSB

1 = )1

0)
#"2 − 2"1$ ≥ CFB

2 −CFB
1 = "2 − "1' (5.38)

This inequality means that the principal induces those two efforts less often than
under complete information (figure 5.3).

The intuition behind this result is the following. Under moral hazard, the
cost of implementing either two efforts or one effort is greater than under complete
information. Because of the technological substitutability between tasks, what mat-
ters for evaluating whether both tasks should be incentivized less often than under
complete information is how the second-best incremental cost CSB

2 −CSB
1 can be

compared to the first-best incremental cost CFB
2 −CFB

1 . When the local incentive

Figure 5.3: Second-Best Levels of Effort with Substitutes
(
for )0"2

)1+)0
≥ "1

)
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constraint is binding it is harder to incentivize effort on a second task when a
positive effort is already implemented on the first one. The second-best cost of
inducing effort increases more quickly than the first-best cost as one goes from one
task to two tasks.

Remark: Note that )0 < )1 implies that the condition )0"2
)1+)0

> "1

is more stringent than the condition for task substitutability, namely
"2 > 2"1. For the second-best cost of implementation to satisfy (5.38),
it must be true that efforts are in fact strong substitutes. It is then much
harder to accomplish the second task at the margin when the first one
is already done.

Let us now turn to the case where )0"2
)1+)0

< "1 <
"2
2 . For such a weak substi-

tutability, the global incentive constraint is now the more constraining one for a
principal willing to induce both efforts from the agent. The transfer received by
the agent is thus t̄ = "2

#)1+)0$0)
. Then, )0"2

)1+)0
< "1 implies that we also have

CSB
2 −CSB

1 = )1#)1"2 − #)1 + )0$"1$

0)#)1 + )0$
< CFB

2 −CFB
1 = "2 − "1' (5.39)

The principal now prefers to induce both efforts rather than only one more often
than under complete information. The second-best cost of inducing effort increases
less quickly than the first-best cost as one goes from one task to two tasks. Intu-
itively, incentives create a complementarity between tasks which goes counter to
the technological diseconomies of scope.

We summarize these findings in proposition 5.4.

Proposition 5.4: Under moral hazard and limited liability, the degree
of diseconomies of scope between substitute tasks increases or decreases
depending on whether local or global incentive constraints are binding in
the principal’s problem.

The Case of Complements
Let us briefly discuss the case where the two tasks are complements. Figure 5.4
describes the values of benefit for which the principal wants to induce both efforts.

Under moral hazard, the global incentive constraint is now always binding
for a principal willing to induce both efforts. Indeed, the inequality "2

)1+)0
> "2−"1

)1

always holds when "2 < 2"1. Hence, we have also CSB
2 = )2

1"2
#)1+)0$0)

. The principal
now finds it harder to induce both efforts than under complete information, as
can be seen in figure 5.5.
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Figure 5.4: First-Best Levels of Effort with Complements

Figure 5.5: Second-Best Levels of Effort with Complements

Hence, the principal induces a pair of high efforts under moral hazard less
often than under complete information. Intuitively, the case of complementarity
is very much like the case of a single activity analyzed in chapter 4.

5.2.3 The Optimal Contract with a Risk-Averse Agent

In this section and the following one we assume that the agent is strictly risk-
averse. Because of the symmetry between tasks, there is again no loss of generality
in assuming that the principal offers a contract %#t̄& t̂& t$( where t̄ is given in case
of success on both tasks, t̂ is given when only one task is successful, and t is given
when no task succeeds.

Let us now describe the set of incentive feasible contracts that induce effort
on both dimensions of the agent’s activity. As usual, it is useful to express these
constraints with the agent’s utility levels in each state of nature as the new variables.
Let us thus define ū = u#t̄$, û = u#t̂$ and u = u#t$. We have to consider the
possibility that the agent could shirk, not only on one dimension of effort but also
on both dimensions. The first incentive constraint is a local incentive constraint
which is written as

#)1$
2ū+ 2)1#1− )1$û+ #1− )1$

2u− "2

≥ )1)0ū+ #)1#1− )0$+ )0#1− )1$$û+ #1− )1$#1− )0$u− "1' (5.40)
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The second incentive constraint is instead a global incentive constraint and
is written as

#)1$
2ū+ 2)1#1− )1$û+ #1− )1$

2u− "2

≥ #)0$
2ū+ 2)0#1− )0$û+ #1− )0$

2u' (5.41)

Finally, the agent’s participation constraint is

#)1$
2ū+ 2)1#1− )1$û+ #1− )1$

2u− "2 ≥ 0' (5.42)

If he wants to induce both efforts, the principal’s problem can be stated as:

#P $/ max
%#ū&û&u$(

#)1$
2#2'S− h#ū$$+ 2)1#1−)1$#'S+ S− h#û$$+ #1−)1$

2#2S− h#u$$&

subject to (5.40) through (5.42).

Structure of the Optimal Contract
A priori, the solution to problem #P $ may entail that either one or two incentive
constraints is binding. Moreover, when there is only one such binding constraint
it might be either the local or the global incentive constraint. We derive the
full-fledged analysis when the inverse utility function h = u−1 is quadratic, i.e.,
h#u$ = u+ ru2

2 for some r > 0 and u ≥ − 1
r
, in appendix 5.1. The next proposition

summarizes our findings.

Proposition 5.5: In the multitask incentive problem #P $ with h#u$ = u+
ru2

2 #r > 0$, the optimal contract that induces effort on both tasks is such
that the participation constraint (5.42) is always binding. Moreover, the
binding incentive constraints are:

• The local incentive constraint (5.40) in the case of substitute tasks, such
that "2 > 2"1.

• Both the local and the global incentive constraints (5.40) and (5.41)
in the case of weak complement tasks, such that

( #0)$2+2)1#1−)1$
#0)$2+)1#1−)1$

)
"1 ≤

"2 ≤ 2"1.
• The global incentive constraint (5.41) in the case of strong complement
tasks, such that "2 ≤

( #0)$2+2)1#1−)1$
#0)$2+)1#1−)1$

)
"1.

The incentive problem in a multitask environment with risk aversion has an
intuitive structure that is somewhat similar to the one obtained in section 5.2.2.
When efforts are substitutes, the principal finds it harder to provide incentives
for both tasks simultaneously than it was for only one task. Indeed, the agent
is more willing to reduce his effort on task 1 if he already exerts a high effort



210 • Chapter 5

on task 2. The local incentive constraint is thus binding. On the contrary, with
a strong complementarity between tasks, inducing the agent to exert a positive
effort on both tasks simultaneously rather than on none becomes the most difficult
constraint for the principal. The global incentive constraint is now binding. For
intermediary cases, i.e., with weak complements, the situation is less clear. All
incentive constraints, both local and global ones, are then binding.

Remark: The reader will have recognized the strong similarity
between the structure of the optimal contract in the moral hazard
multitask problem and the structure of the optimal contract in the
multidimensional adverse selection problem that was discussed in
section 3.2. In both cases, it may happen that either local or global
incentive constraints bind. A strong complementarity of efforts plays
almost the same role as a very strong correlation in the agent’s
types under adverse selection. It makes it more likely that the global
incentive constraint binds.

Optimal Effort
Let us turn now to the characterization of the optimal effort chosen by the principal
in this second-best environment. To better understand these choices it is useful to
start with the simple case where tasks are technologically unrelated, i.e., "2 = 2"1.

Suppose that the principal wants to induce effort on only one task. Under
complete information, the expected incremental benefit of doing so, 0)0S,
should exceed the first-best cost CFB

1 of implementing this effort:

0)0S ≥ CFB
1 = h#"1$ = "1 +

r"2
1

2
' (5.43)

With two tasks, and still under complete information, the principal prefers to
induce effort on both tasks rather than on only one when the incremental expected
benefit from implementing one extra unit of effort, which is again 0)0S, exceeds
the increase in the cost of doing so, i.e., CFB

2 − CFB
1 , where CFB

2 = h#2"1$ =
2"1 + r

2 #2"1$
2 is the first-best cost of implementing two efforts. This leads to the

condition

0)0S ≥ CFB
2 −CFB

1 = "1 +
3r"2

1

2
' (5.44)

It is easy to check that the right-hand side of (5.44) is greater than the right-
hand side of (5.43), because CFB

2 > 2CFB
1 as soon as r > 0. When 0)0S belongs

to -CFB
1 &CFB

2 −CFB
1 . only one effort is induced. Note for further reference that this

interval has a positive length CFB
2 − 2CFB

1 .
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Moreover, the inequality CFB
2 −CFB

1 > CFB
1 means that it is less often valuable

for the principal to induce both efforts rather than inducing one effort when effort
is verifiable. The latter inequality also means that the first-best cost of implement-
ing efforts exhibits some diseconomies of scope. Adding up tasks makes it more
costly to induce effort from the agent, even if those tasks are technologically unre-
lated and contracting takes place under complete information. The point here
is that inducing the agent to exert more tasks requires increasing the certainty
equivalent income necessary to satisfy his participation constraint. Adding more
tasks therefore changes the cost borne by the principal for implementing an extra
level of effort. Now that the agent has a decreasing marginal utility of consump-
tion, multiplying the level of effort by two requires multiplying the transfer needed
to ensure the agent’s participation by more than two. For that reason, the disec-
onomies of scope isolated above can be viewed as pure participation diseconomies
of scope.

Now, still with unrelated tasks, let us move to the case of moral hazard. Under
moral hazard, we already know from section 4.4 that, with the specification made
on the agent’s utility function, the second-best cost of implementing a single effort
is written as

CSB
1 = "1 +

r"2
1

2
+ r"2

1)1#1− )1$

2#0)$2
' (5.45)

The principal now prefers to induce one effort rather than none when

0)0S ≥ CSB
1 = CFB

1 + r"2
1)1#1− )1$

2#0)$2
& (5.46)

i.e., less often than under complete information.
In appendix 5.2, we also compute CSB

2 to be the second-best cost of imple-
menting a positive effort on both tasks. For unrelated tasks this cost writes as

CSB
2 = 2"1 +

r

2
#2"1$

2 + r"2
1)1#1− )1$

#0)$2
&

= CFB
2 + r"2

1)1#1− )1$

#0)$2
' (5.47)

This cost again has an intuitive meaning. Since tasks are technologically
unrelated, providing incentives on one of those tasks does not affect the cost of
incentives on the other. Just as in chapter 4, the principal must incur an agency
cost r"2

1)1#1−)1$

2#0)$2
per task on top of the complete information cost CFB

2 that is needed
to ensure the agent’s participation.
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Figure 5.6: First-Best and Second-Best Efforts with Unrelated Tasks

Given this agency cost, the principal prefers to induce two positive efforts
rather than only one when

0)0S ≥ CSB
2 −CSB

1 = CFB
2 −CFB

1 + r"2
1)1#1− )1$

2#0)$2
' (5.48)

(5.48) is more stringent than (5.46), because CSB
2 > 2CSB

1 .
When 0)0S belongs to -CSB

2 &CSB
2 −CSB

1 ., only one effort is induced under
moral hazard and this interval has length CSB

2 − 2CSB
1 . In fact, one can easily

observe that the second-best rules (5.48) and (5.46) are respectively “translated”
from the first-best rules (5.44) and (5.43) by adding the same term r"2

1)1#1−)1$

2#0)$2
,

which is precisely the extra cost paid by the principal to induce a positive effort
on a single dimension of the agent’s activities when there is moral hazard.

We conclude from this analysis that, with technologically unrelated tasks,
agency problems do not reduce the set of parameters over which the principal
induces only one effort from the agent, because CSB

2 − 2CSB
1 = CFB

2 − 2CFB
1 . This

can be seen in figure 5.6.16

Let us now turn to the more interesting case where efforts are substitutes, i.e.,
"2 > 2"1. On top of the participation diseconomies of scope already seen above,
our analysis will highlight the existence of incentives diseconomies of scope. To

16In this figure, we assume that it is task 1 that is performed when incentivizing only one effort is
optimal. This is without loss of generality by symmetry.
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see their origins, we proceed as before and first analyze the complete information
decision rule. The principal still prefers to induce one effort rather than none
when (5.43) holds. However, the principal prefers now to induce two efforts rather
than only one when

0)0S ≥ CFB
2 −CFB

1 & (5.49)

where CFB
2 = h#"2$ = "2 +

r"2
2

2 .
Again, we can check that the right-hand side of (5.49) is greater than the

right-hand side of (5.43) since

CFB
2 − 2CFB

1 = h#"2$− 2h#"1$ > h#2"1$− 2h#"1$ > 0& (5.50)

where the first inequality uses the facts that h#·$ is increasing and that "2 > 2"1

and the second inequality uses the convexity of h#·$.
Moving now to the case of moral hazard, the principal still prefers to induce

one effort rather than none when (5.46) holds. Moreover, the second-best cost of
inducing two efforts is now17

CSB
2 = "2 +

r"2
2

2
+ r#"2 − "1$

2)1#1− )1$

#0)$2
&

= CFB
2 + r#"2 − "1$

2)1#1− )1$

#0)$2
' (5.51)

Again, this expression has an intuitive meaning. In order to induce the agent
to exert two efforts that are substitutes, the principal must consider the more con-
straining local incentive constraint, which prevents the agent from exerting effort
on only one dimension of his activities. For each of those two local incentive
constraints,18 the incentive cost that should be added to the first-best cost of imple-
menting both efforts is r#"2−"1$

2)1#1−)1$
2#0)$2

, where "2 − "1 is the incremental disutility
of effort when moving from one effort to two efforts.

Hence, the principal prefers to induce both efforts rather than only one when

0)0S ≥ CSB
2 −CSB

1 = CFB
2 −CFB

1 + r)1#1− )1$

#0)$2

(
#"2 − "1$

2 − "2
1

2

)
' (5.52)

In a second-best environment, both efforts are incentivized less often than
only one. Indeed, the second-best decision rule to induce both efforts (5.52) is

17See appendix 5.2 for a derivation of this formula.
18The agent should prefer to exert two tasks instead of only task 1 or task 2.
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more stringent than the second-best decision rule (5.46) to induce only one,
since

CFB
2 −CFB

1 + r)1#1− )1$

#0)$2

(
#"2 − "1$

2 − "2
1

2

)

> CFB
1 + r)1#1− )1$"

2
1

2#0)$2
= CSB

1 ' (5.53)

We notice that again there are some diseconomies of scope in implementing
both efforts. However, those diseconomies of scope now have a double origin. First,
there are the participation diseconomies of scope that ensure that (5.50) holds
under complete information. Second, and contrary to the case of technologically
unrelated tasks, incentives diseconomies of scope now appear, since

r)1#1− )1$

#0)$2

(
#"2 − "1$

2 − "2
1

2

)

︸ ︷︷ ︸
#CSB

2 −CSB
1 $−#CFB

2 −CFB
1 $

>
r)1#1− )1$"

2
1

2#0)$2︸ ︷︷ ︸
CSB
1 −CFB

1

(5.54)

if and only if "2 > 2"1.
Moving from the first-best world to the case of moral hazard it becomes even

harder to induce effort on both tasks rather than on only one because of these
incentives diseconomies of scope. Figure 5.7 graphically shows the impact of these
new agency diseconomies of scope on the optimal decision rule followed by the
principal.

We also summarize our findings in proposition 5.6.

Proposition 5.6: When tasks are substitutes and entail moral hazard, the
principal must face some new incentives diseconomies of scope that reduce
the set of parameters such that inducing both efforts is second-best optimal.

This proposition highlights the new difficulty faced by the principal when
incentivizing the agent on two tasks under moral hazard. Incentives diseconomies
of scope imply that the principal will choose to induce effort on only one task
more often than under complete information. Task focus may be a response to
these agency diseconomies of scope.

Remark: The case of complements could be treated similarly. It would
highlight that incentives economies of scope exist when an agent per-
forms two tasks that are complements.
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Figure 5.7: First-Best and Second-Best Efforts with Substitute Tasks

5.2.4 Asymmetric Tasks

The analysis that we have performed in section 5.2.3 was simplified by our assump-
tion of symmetry between the two tasks. In a real world contracting environment,
those tasks are likely to differ along several dimensions, such as the noises in the
agent’s performances, the expected benefits of those tasks, or the sensitivity of the
agent’s performance on his effort. The typical example along these lines is that of
a university professor who must devote effort to both research and teaching. Those
two tasks are substitutes; giving more time to teaching reduces the time spent on
research. Moreover, the performances on each of those tasks cannot be measured
with the same accuracy. Research records may be viewed as precise measures of
the performance along this dimension of the professor’s activity. Teaching quality
is harder to assess.

To model such settings, we now generalize the multitask framework to the
case of asymmetric tasks, which we still index with a superscript i in %1& 2(. Task
i yields a benefit 'Si to the risk-neutral principal with probability ) i#eik$ = ) i

k and
a benefit Si with probability 1 − ) i

k when the agent exerts effort eik on task i.
Effort eik still belongs to %0& 1(, and we assume the same disutilities of effort as in
the symmetric case. Benefits and probabilities distributions may now differ across
tasks.
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A contract is now a four-uple %#t̄& t̂1& t̂2& t$( where t̂1 is offered when the
outcome is #'S1&S2$ and t̂2 is offered when #S1&'S2$ is realized. We must allow
for the possibility that t̂1 is possibly different from t̂2, contrary to our previous
assumption in section 5.2.3. Indeed, to take advantage of the asymmetry between
tasks, the principal may want to distinguish these two payments.

Let us again use our usual change of variables so that transfers are replaced
by utility levels in each state of nature: ū = u#t̄$& û1 = u#t̂1$& û2 = u#t̂2$, and
u = u#t$. An incentive feasible contract inducing a positive effort on both tasks
must satisfy two local incentive constraints,

)1
1)

2
1 ū+ )1

1 #1− )2
1 $û1 + #1− )1

1 $)
2
1 û2 + #1− )1

1 $#1− )2
1 $u− "2

≥ )1
0)

2
1 ū+ )1

0 #1− )2
1 $û1 + #1− )1

0 $)
2
1 û2 + #1− )1

0 $#1− )2
1 $u− "1& (5.55)

)1
1)

2
1 ū+ )1

1 #1− )2
1 $û1 + #1− )1

1 $)
2
1 û2 + #1− )1

1 $#1− )2
1 $u− "2

≥ )1
1)

2
0 ū+ )1

1 #1− )2
0 $û1 + #1− )1

1 $)
2
0 û2 + #1− )1

1 $#1− )2
0 $u− "1, (5.56)

and a global incentive constraint,

)1
1)

2
1 ū+ )1

1 #1− )2
1 $û1 + #1− )1

1 $)
2
1 û2 + #1− )1

1 $#1− )2
1 $u− "2

≥ )1
0)

2
0 ū+ )1

0 #1− )2
0 $û1 + #1− )1

0 $)
2
0 û2 + #1− )1

0 $#1− )2
0 $u' (5.57)

Finally, a contract must also satisfy the usual participation constraint,

)1
1)

2
1 ū+ )1

1 #1− )2
1 $û1 + #1− )1

1 $)
2
1 û2 + #1− )1

1 $#1− )2
1 $u− "2 ≥ 0' (5.58)

The principal’s problem is thus written as

#P $/ max
%#ū&û1&û2&u$(

)1
1)

2
1 #'S 1 + 'S 2 − h#ū$$+ )1

1 #1− )2
1 $#'S 1 + S2 − h#û1$$

+#1− )1
1 $)

2
1 #S1 + 'S 2 − h#û2$$

+ #1− )1
1 $#1− )2

1 $#S
1 + S2 − h#u$$&

subject to (5.55) to (5.58).

Again, to obtain an explicit solution to #P $ we specify a quadratic expression
for the inverse utility function so that h#u$ = u+ ru2

2 for some r > 0 and u ≥ − 1
r
.

The intuition built in section 5.2.3 suggests that local incentive constraints
are the most difficult ones to satisfy in the case where tasks are substitutes, i.e.,
when "2 > 2"1. This is indeed the case as it is confirmed in the next proposition,
which generalizes proposition 5.5 to the case of asymmetric tasks.
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Proposition 5.7: When tasks are substitutes, the solution to #P $ is such
that the local incentive constraints (5.55) and (5.56) and the participation
constraint (5.58) are all binding. The global incentive constraint (5.57) is
always slack.

Using the second-best values of ūSB& ûSB
1 & ûSB

2 , and uSB that we derive in
appendix 5.3, we can compute the second-best cost of implementing two positive
levels of effort CSB

2 . After easy computations, we find that

CSB
2 = "2 +

r"2
2

2︸ ︷︷ ︸
First-Best Cost CFB

2

+ r#0"$2

2

(
)1

1 #1− )1
1 $

#0)1$2
+ )2

1 #1− )2
1 $

#0)2$2

)

︸ ︷︷ ︸
Incentive Cost'

& (5.59)

where 0" = "2 − "1, 0)1 = )1
1 − )1

0 , and 0)2 = )2
1 − )2

0 .
This second-best cost can be given an intuitive interpretation. Under com-

plete information, ensuring the agent’s participation costs CFB
2 = "2 +

r"2
2

2 to the
principal. This is the first term of the right-hand side of (5.59). Under moral haz-
ard and with substitute tasks, each of the tasks i can be incentivized by giving a
bonus in utility terms19 #1 − ) i

1$
0"
0)i when S̃i = 'S, i.e., with probability ) i

1, and
imposing a punishment −) i

1
0"
0)i when S̃i = S, i.e., with probability 1−) i

1. Success
and failure on each task being independent events, the incentive costs of inducing
those two independent risks in the agent’s payoff just add up. These costs represent
the second bracketed term on (5.59). The above expression of CSB

2 will be used
throughout the next subsection.

5.2.5 Applications of the Multitask Framework

Aggregate Measures of Performances
Let us suppose that 'S 1 + S2 = S1 +'S2. In this case, the principal, by simply observ-
ing the aggregate benefit of his relationship with the agent, cannot distinguish the
successful task from the unsuccessful one. The only contracts that can be written
are conditional on the agent’s aggregate performance. They are thus of the form
%#t̄& t̂& t$(. With respect to the framework of section 5.2.4, everything happens as if
a new constraint t̂ = t̂1 = t̂2 was added. This restriction in the space of available
contracts is akin to an incomplete contract assumption. To show the consequences
of such an incompleteness, it is useful to use the expressions for ûSB

1 and ûSB
2 found

in appendix 5.3 to compute the difference of payoffs ûSB
1 − ûSB

2 = 0"
( 1
0)1 − 1

0)2

)
.

Given this value, the only case where the measure of aggregate performance does
as well as the measure of individual performances on both tasks is when 0)1 =

19See section 4.4.
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0)2, i.e., in the case of symmetric tasks analyzed in section 5.2.3. Otherwise,
there is a welfare loss incurred by the principal from not being able to distinguish
between the two intermediate states of nature.

Let us assume now that 0)1 < 0)2. This condition means that task 1 is
harder to incentivize than task 2, because an increase of effort has less impact
on performances. In this case, ûSB

1 should thus be greater than ûSB
2 if the benefits

of each task were observable. With only an aggregate measure of performance,
the principal is forced to set û1 = û2. Then it becomes more difficult to provide
incentives on task 1, which is the more costly task from the incentive point of view,
and easier to give incentives on task 2, which is the least costly. Consequently,
there may be a misallocation of the agent’s efforts, because he prefers to shift his
effort towards task 2. Even if task 1 is as valuable as task 2 for the principal, the
latter will find it less often optimal to incentivize this first task.

A simple example illustrates this point. Consider a retailer who must allocate
his efforts between improving cost and raising demand for the product he sells on
behalf of a manufacturer. If the only observable aggregate is profit, the optimal
retail contract is a sharing rule that nevertheless might induce the manager to
exert effort only on one task, e.g., the one that consists of enhancing demand, if
the latter task is easier to incentivize for the principal.

More or Less Informative Performances
Let us thus assume that the principal can still observe the whole vector of perfor-
mances #S̃1& S̃2$ and offers a fully contingent contract %#t̄& t̂1& t̂2& t$(. We now turn
to the rather difficult question of finding the second-best choice of efforts that the
principal would like to implement when tasks are asymmetric.

We have already derived the second-best cost CSB
2 of implementing two posi-

tive efforts in section 5.2.4. Had the principal chosen to implement a positive effort
on task 1 only, the second-best cost of implementing this effort would instead be

C1SB = "1 +
r"2

1

2
+ r"2

1)
1
1 #1− )1

1 $

2#0)1$2
'20 (5.60)

Similarly, the second-best cost of implementing a positive effort on task 2 is
written as

C2SB = "1 +
r"2

1

2
+ r"2

1)
2
1 #1− )2

1 $

2#0)2$2
' (5.61)

Let us denote the benefits obtained by the principal on each activity when he
induces a high level of effort by B1 = 0)10S1 and B2 = 0)20S2. The principal

20See section 4.4.
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prefers to induce e1 = e2 = 1, rather than e1 = e2 = 0, when B1 + B2 −CSB
2 ≥ 0.

The principal also prefers to induce e1 = e2 = 1 rather than e1 = 1 and e2 = 0
when B1 + B2 − CSB

2 ≥ B1 − C1SB. Similarly, e1 = e2 = 1 is preferred to e1 = 0
and e2 = 1 when B1 + B2 −CSB

2 ≥ B2 −C2SB.
Proceeding similarly, we could determine the set of values of the parameters

where inducing the pairs of efforts #e1 = 1& e2 = 0$ and #e1 = 0& e2 = 1$ are
respectively optimal. Figure 5.8a, b offers a complete characterization of all these
areas of dominance where it has been taken into account that some diseconomies
of scope exist in implementing a high effort on both tasks (i.e., CSB

2 > C1SB +C2SB)
when those tasks are substitutes.

In these figures all pairs of parameters #B1&B2$ lying on the northeast quadrant
of point B justify the implementation of two positive efforts. On the southwest
quadrant of point A, no effort is implemented. On the southeast (resp. northwest)
of the line joining A and B, only task 1 (resp. task 2) is incentivized.

When the performance on task 2 becomes more noisy, the variance of output
q̃2, which is )2

1 #1− )2
1 $#q̄

2 − q2$2, increases to )2′
1 #1− )2′

1 $#q̄
2 − q2$2. Comparing

(5.59) and (5.61), we observe that the cost CSB
2 increases more quickly than C2SB

with this variance. This effect increases the area of parameters #B1&B2$ where the
principal wants to induce e1 = 1 and e2 = 0, since point A is shifted to Â and
point B to B̂, as can be seen in figure 5.7.

The intuition behind this phenomenon is clear. When the performance on
task 2 becomes a more noisy signal of the corresponding effort, inducing effort
along this dimension becomes harder for the principal. By rewarding only the
more informative task 1, the principal reduces the agent’s incentives to substitute
effort e2 for effort e1. This relaxes the incentive problem on task 1, making it easier
to induce effort on this task. More often the principal chooses to have the agent
exert effort only on task 1. Finally, the agent receives higher powered incentives
only for the less noisy task, the one that is the most informative on his effort. This
can be interpreted as saying that the principal prefers that the agent focuses his
attention on the more informative activity.21

The Interlinking of Agrarian Contracts
In various contracting environments a principal is not involved in a single trans-
action with the agent but requires from the latter a bundle of different services
or activities. This phenomenon, called the interlinking of contracts, is pervasive
in agrarian economies where landlords sometimes offer consumption services,
finance, and various inputs to their tenants. This bundling of different contracting

21See the seminal paper of Holmström and Milgrom (1991) and the multitask model of section
9.5.2 in this book.
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Figure 5.8: (a) Optimal Effort Levels, (b) Optimal Effort Levels when Performance on Task 2 Is
More Noisy
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activities also occurs in more developed economies when input suppliers also offer
lines of credit to their customers.

This phenomenon can be easily modelled within a multitask agency frame-
work. To this end, let us consider a relationship between a risk-neutral landlord
and a risk-averse tenant similar to that described in section 4.8.2. The landlord
and the tenant want to share the production of an agricultural product (the price
of which is normalized to one for simplicity). However, and this is the novelty of
the multitask framework, the tenant can also make an investment Ĩ that, together
with his effort, affects the stochastic production process. The probability that q̄
is realized now becomes )#e& Ĩ$& where effort e belongs to %0& 1(. We will also
assume that 1)

1Ĩ
#e& Ĩ$ > 0, i.e., a greater investment improves the probability that a

high output realizes. For simplicity, we will assume that Ĩ can only take two values,
respectively 0 and I > 0. Denoting the interest rate by R, the cost incurred by the
agent, when investing I, is thus #1+ R$I. If Ĩ is not observed by the landlord, the
framework is akin to a multitask agency model where the principal would like to
control not only the agent’s choice of effort e but also his investment Ĩ.

As a benchmark, let us suppose that the investment I is observable and veri-
fiable at a cost C by the landlord. If the principal wants to make a positive invest-
ment, the incentive feasible contract inducing effort must satisfy the following
simple incentive constraint:

)#1& I$u#t̄ − #1+ R$I$+ #1− )#1& I$$u#t − #1+ R$I$− "

≥ )#0& I$u#t̄ − #1+ R$I$+ #1− )#0& I$$u#t − #1+ R$I$' (5.62)

Similarly, the following participation constraint must be satisfied:

)#1& I$u#t̄ − #1+ R$I$+ #1− )#1& I$$u#t − #1+ R$I$− " ≥ 0' (5.63)

The optimal incentive feasible contract inducing effort is thus a solution to
the following problem:

#P $/ max
%#t̄& t$(

)#1& I$#q̄ − t̄$+ #1− )#1& I$$#q − t$−C&

subject to (5.62) and (5.63).

Thereafter we will denote the solution to this problem by t̄v and tv.
Let us now assume that the investment is nonobservable by the landlord. The

choice of the investment level cannot be included in the contract. An incentive
feasible contract must now induce the choice of a positive investment if the prin-
cipal still finds this investment valuable. Two new incentive constraints must be
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added to describe the set of incentive feasible contracts. First, the following
constraint prevents an agent from simultaneously reducing his effort and his
investment:

)#1& I$u#t̄ − #1+ R$I$+ #1− )#1& I$$u#t − #1+ R$I$− "

≥ )#0& 0$u#t̄$+ #1− )#0& 0$$u#t$' (5.64)

Second, we must take into account the incentive constraint inducing invest-
ment when the agent already exerts an effort:

)#1& I$u#t̄ − #1+ R$I$+ #1− )#1& I$$u#t − #1+ R$I$− "

≥ )#1& 0$u#t̄$+ #1− )#1& 0$$u#t$− "' (5.65)

To simplify the analysis of the possible binding constraints, let us also assume
that

0)#I$ = )#1& I$− )#0& I$ > )#1& 0$− )#0& 0$ = 0)#0$' (5.66)

This assumption ensures that the investment has more impact on the prob-
ability that q̄ is realized when the agent already exerts a positive effort. There is
thus a complementarity between effort and investment.

In this case, any contract-inducing effort at minimal cost when the investment
is performed will not induce this effort when no such investment is made. Indeed,
to check this assertion, note that

u#t̄$− u#t$ < u#t̄ − #1+ R$I$− u#t − #1+ R$I$ = "

0)#I$
<

"

0)#0$
' (5.67)

The first inequality uses t̄ > t, and the fact that u#·$ is concave. The equality uses
the fact that (5.62) is binding if the effort is induced at minimal cost. Finally, the
second inequality uses the assumption (5.66). Therefore, (5.64) is more stringent
than (5.65). (5.64) may be the more constraining of the incentive constraints when
both investment and effort are nonobservable. In this case, the contract offered
when Ĩ is contractible, namely %#t̄v& tv$(, may no longer be optimal. When Ĩ is
nonobservable, a simultaneous shirking deviation along both the effort and the
investment dimensions may occur.22

The benefit of controlling the agent’s investment comes from the reduction
in the agency cost. Of course, this benefit should be traded off against the possible

22The reader will recognize here the similarity of the analysis with the case of strong complements
analyzed in section 5.2.3. The difference comes from the fact that the cost of investment is now in
monetary terms.
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fixed cost that the principal would incur if he wanted to establish the monitor-
ing system that would make Ĩ directly controllable. The interlinking of contracts
may thus appear as an institutional response to the technological complementarity
between effort and investment in a world where verifying investment is not too
costly.

Braverman and Stiglitz (1982) analyzed a model of tenancy-cum-
credit contracts, and they show that the landlord may encourage the

tenant to get indebted to him when, by altering the terms of the loan contract,
he induces the landlord to work harder. Bardhan (1991) reviewed the other
justifications for interlinking transactions. In particular, he argued that the
interlinking of contracts may help, in nonmonetized economies, by reducing
enforcement costs.23

Vertical Integration and Incentives
Sometimes it may be hard to contract on the return for some of the agent’s activi-
ties. A retailer’s building up of a good reputation or goodwill and the maintenance
of a productive asset are examples of activities that are hard or even impossible to
measure. Even though no monetary payments can be used to do so, those activ-
ities should still be incentivized. The only feasible contract is then to allocate or
not the return of the activity to the agent. Such an allocation is thus akin to a
simple bang-bang incentive contract. Hence, some authors like Demsetz (1967),
Holmström and Milgrom (1991), and Crémer (1995) have argued that ownership
of an asset entitles its owner to the returns of this asset. We stick to this definition
of ownership in what follows and analyze the interaction between the principal’s
willingness to induce effort from the agent and the ownership structure.

Let us thus consider a multitask principal-agent relationship that is somewhat
similar to that in section 5.2.3. By exerting a maintenance effort e1 normalized
to one, the risk-averse agent can improve the value of an asset by an amount V .
This improvement is assumed to take place with probability one to simplify the
analysis. We assume that V is large enough so that inducing a maintenance effort
is always optimal. The important assumption is that the proceeds V cannot be
shared between the principal and the agent. Whoever owns the asset receives all
proceeds from the asset. The only feasible incentive contract is the allocation of
the returns from the asset between the principal and the agent.

The agent must also perform an unobservable productive effort e2 in %0& 1(
whose stochastic return is, on the contrary, contractible. As usual, with probability
)1 (resp. )0) the return to this activity is 'S and, with probability 1 − )1 (resp.

23See chapter 9 for a model of enforcement.
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1 − )0), this return is S when the agent exerts e2 = 1 (resp. e2 = 0). Efforts on
production and maintenance are substitutes, so that "2 > 2"1. Finally, we assume
that the inverse utility function is again quadratic: h#u$ = u+ ru2

2 for some r > 0
and u ≥ − 1

r
.

In this context, a contract first entails a remuneration %#t̄& t$( contingent on
the realization of the contractible return and, second, an allocation of ownership
for the asset. We analyze in turn the two possible ownership structures in the
following cases.

Case 1: The Principal Owns the Asset
When the principal owns the asset, he benefits from any improvement on its
value. Since the agent does not benefit from his maintenance effort but bears
all the cost of this effort, he exerts no such effort and e1 = 0. Of course, when
V is large enough this outcome is never socially optimal. The optimal contract
in this case can be derived as usual. The following second-best optimal transfers
t̄SBP = h#"1 + #1−)1$"1

0)
$ and tSBP = h#"1 − )1"1

0)
$ implement a positive productive

effort.
On the condition that the maintenance effort is null, e1 = 0, inducing effort

on the productive task is then optimal when

0)0S > CSB
1 = "1 +

r"2
1

2
+ r"2

1)1#1− )1$

2#0)$2
' (5.68)

Case 2: The Agent Owns the Asset
When V is large enough, the agent is always willing to exert the maintenance
effort. Nevertheless, inducing effort on the productive task requires the following
incentive constraint to be satisfied:

)1u#t̄ + V $+ #1− )1$u#t + V $− "2

≥ )0u#t̄ + V $+ #1− )0$u#t + V $− "1& (5.69)

as well as the participation constraint

)1u#t̄ + V $+ #1− )1$u#t + V $− "2 ≥ 0' (5.70)

As usual, both constraints above are binding at the optimum of the principal’s
problem. This yields the following expression of the second-best transfers: t̄SBA =
−V + h#"2 + #1−)1$0"

0)
$ and tSBA = −V + h#"2 − )10"

0)
$, where 0" = "2 − "1.

Under the agent’s ownership, the principal gets the following payoff by induc-
ing a productive effort:

V A
1 = )1

'S+ #1− )1$S+ V −CSB
2 & (5.71)
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where

CSB
2 = )1h

(
"2 +

#1− )1$0"

0)

)
+ #1− )1$h

(
"2 −

)10"

0)

)

= "2 +
r"2

2

2
+ r#"2 − "1$

2)1#1− )1$

2#0)$2
' (5.72)

By instead offering a fixed wage t̄ = t = t, no productive effort is induced
and t is chosen so that the agent’s participation constraint u#t + V $ − "1 ≥ 0 is
binding.24 One easily finds that

V A
0 = )0

'S+ #1− )0$S+ V −CFB
1 & (5.73)

where CFB
1 = "1 +

r"2
1

2 .
When V is large enough, the agent should own the asset in order to obtain

this socially valuable proceed. The principal then induces a productive effort only
when V A

1 > VA
0 , i.e., if and only if 0)0S ≥ CSB

2 −CFB
1 .

Under the assumption that tasks are substitutes, it is easy to check that CSB
2 −

CFB
1 ≥ CSB

1 ' Hence, when the agent owns the asset, inducing a productive effort
becomes more costly for the principal than when the agent does not own it.
The principal chooses less often to induce a productive effort than when he owns
the asset himself.

However, it is worth noting that, on the condition that inducing effort remains
optimal, the agent should be put under a higher powered incentive scheme when
he also owns the asset. Indeed, under agent’s ownership, we have

t̄SBA − tSBA = h

(
"2 + #1− )1$

0"
0)

)
− h

(
"2 − )1

0"
0)

)
&

= 0"

0)

(
1+ r##1− 2)0$"2 − #1− 2)1$"1$

20)

)
' (5.74)

When the principal owns the asset, the power of incentives is instead given
by

t̄SBP − tSBP = "1

0)

(
1+ r#1− 2)0$"1

20)

)
' (5.75)

The comparison of these incentive powers amounts to comparing 0" and "1.
For substitute tasks, the agent is thus given higher powered incentives when he
owns the asset.

24Note that the agent prefers to exert the maintenance effort when V ≥ h#"1$.
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The intuitive explanation is as follows. Under vertical separation, the agent has
greater incentives to exert effort on maintenance. The only way for the principal to
incentivize the agent along the production dimension is to put him under a high-
powered incentive scheme. Otherwise, the agent would systematically substitute
away effort on production to improve maintenance. Asset ownership by the agent
also comes with high-powered incentives akin to piece-rate contracts. Instead, less
powered incentives, i.e., fixed wages, are more likely to occur under the principal’s
ownership.

Holmström and Milgrom (1994) discussed the strong complemen-
tarity between asset ownership and high-powered incentive schemes,

arguing in a model along the lines above (but without any wealth effects),
that this complementarity comes from some substitutability between efforts
in the agent’s cost function of effort. They built their theory to fit a number
of empirical facts, notably those illustrated by the studies of Anderson (1985)
and Anderson and Schmittlein (1984). Those latter authors argued that the
key factor explaining the choice between an in-house sales office and an exter-
nal sales firm is the difficulty of measuring the agent’s performance. More
costly measurement systems call for the choice of in-house sales. Holmström
(1999b) also advanced the idea that measurement costs may be part of an
explanation of the firm’s boundaries.

5.3 Nonseparability of the Utility Function

The separability in transfer and effort of the agent’s utility function simplifies the
principal-agent theory with moral hazard by ensuring that the agent’s participation
constraint is binding. However, it neglects one significant incentive effect, namely
that one way to provide incentives is to make the agents richer by decreasing their
marginal disutility of effort. The interaction between consumption and effort is
clearly important in development economics when one wants to study agrarian
contracts. For example, richer agents may be able to have a better diet, which
increases their resistance. Then, the optimal compensation may entail a fixed
payment whose objective is to bring the agent to a utility level where the marginal
disutility of effort is lower. This type of compensation may require leaving him
a rent which has a different (even though related) motivation than the limited
liability rent exhibited in chapter 4.

In section 5.3.1, we show graphically how nonseparability calls for relaxing the
participation constraint. Nevertheless, section 5.3.2 provides an example without
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wealth effect where the nonseparability is not exploited by the principal to relax
the participation constraint.

5.3.1 Nonbinding Participation Constraint

Let us now assume that the agent has a general utility function defined over
transfers and effort, namely U = u#t& e$. Contrary to the standard framework used
so far, we no longer postulate a priori the separability between transfer and effort.
Effort can still take either of two values e in %0& 1(; to simplify notations, let us
denote u1#t$ = u#t& 1$ and u0#t$ = u#t& 0$. Because effort is costly, we obviously
have u1#t$ < u0#t$ for all t. Moreover, for i in %0& 1(, ui#·$ is still increasing and
concave in t for all t #u′

i > 0&u′′
i < 0$.

For what follows, it is also interesting to denote the inverse function of u0#·$
by h0#·$, which is increasing and convex (h′

0 > 0 and h′′
0 > 0). Consider the case

where u1#·$ is a concave transformation of u0#·$, i.e., u1#·$ = g - u0#·$ with g#·$
increasing and concave. Intuitively, this means that exerting effort makes the agent
more averse to monetary lotteries.

In this framework, incentive and participation constraints are written respec-
tively as

)1u1#t̄$+ #1− )1$u1#t$ ≥ )0u0#t̄$+ #1− )0$u0#t$ (5.76)

and

)1u1#t̄$+ #1− )1$u1#t$ ≥ 0' (5.77)

Extending the methodology of chapter 4, we now introduce the following
change of variables: ū0 = u0#t̄$, and u0 = u0#t$. With these new variables, the
incentive and participation constraints (5.76) and (5.77) are written respectively as

)1g#ū0$+ #1− )1$g#u0$ ≥ )0ū0 + #1− )0$u0 (5.78)

and

)1g#ū0$+ #1− )1$g#u0$ ≥ 0' (5.79)

The risk-neutral principal’s problem is thus written as

max
%#ū0&u0$(

)1#'S− h0#ū0$$+ #1− )1$#S− h0#u0$$(P ):

subject to (5.78) and (5.79).
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Figure 5.9: Solution in the Case of Separability

The fact that g#·$ is concave ensures that the constrained set C of incentive
feasible contracts #ū0&u0$ is a nonempty convex set.25 Since the principal’s objec-
tive function is strictly concave, the first-order Kuhn and Tucker conditions will
again be necessary and sufficient to characterize the solution to this problem.26

Instead of proposing a general resolution to this problem, we restrict our-
selves to a graphical description of the possible features of the solution for general
functions u1#·$ and u0#·$ to satisfy the above properties. As a benchmark, it is use-
ful to represent graphically the usual case of separability where, in fact, we have
u1#t$ = u0#t$− " for all t. In this case, we have immediately g#u$ = u− " for all
u, and u1#·$ is simply a linear transformation of u0#·$.

In figure 5.9, we have represented the set C of incentive feasible contracts
in the case of a separable utility function. It is a dieder turned downward and
lying strictly above the 45- line. The principal’s indifference curve V SB is inversely
U -shaped. It is graphically obvious that the optimal contract must therefore be
on the extremal point ASB of the dieder. We easily recover our analytical result

25This set is obviously not empty, as it can be easily seen in figure 5.9.
26The convexity of C and the concavity of the objective functions ensure that stochastic mecha-

nisms are not useful. See section 2.13 for a related argument in the case of adverse selection.
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Figure 5.10: Solution in the Case of Nonseparability

of section 4.4. The risk-averse agent receives less than full insurance at the opti-
mum, and the agent’s participation constraint is also binding.

Let us now turn to the case of nonseparability, which is the focus of this
section. Figure 5.10 represents the set C of incentive feasible contracts and the
possible second-best optimal contract A.

With a nonseparability, the binding incentive constraint (5.78) defines a locus
of contracts that is no longer a straight line but a strictly convex curve in the plan
#u0& ū0$.27

Similarly, the binding participation constraint (5.79) also defines a convex
locus. The set C of incentive feasible contracts is again strictly convex, with an
extremal point A still obtained when both constraints are binding. However, the
strict convexity of C now leaves some scope for the optimal contract to be at point
BSB, where only the incentive constraint is binding. In this case, the best way to
solve the incentive problem is to give up a strictly positive ex ante rent to the

27Moreover, note that this curve is increasing whenever 1−)0
1−)1

> g′#ū0$ and g′#u0$ >
)0
)1
.
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agent. This case is more likely to take place when the IC constraint defines a
very convex curve, i.e., when g#·$ is very concave. This occurs when the agent is
much more risk averse when he exerts a positive effort than when he does not.
In this case, offering a risky lottery to induce effort and keep the agent’s expected
utility relatively low is costly for the principal. The principal prefers to raise the
agent’s expected utility to move toward areas where a risky lottery is much less
costly.

Remark: Before closing this section, let us notice that we have already
presented in chapter 4 a simple example of a contracting environment
where the agent’s participation constraint is slack at the optimum, that
is when the risk-neutral agent is protected by limited liability.

5.3.2 A Specific Model with No Wealth Effect

Sometimes, even without any separability between transfer and effort in the agent’s
utility function, the agent receives zero ex ante rent. For example, suppose that the
agent’s cost of effort is counted in monetary terms. The agent’s utility function is
no longer separable between income and effort, and it is written as u#t − "#e$$,
where u#·$ is again increasing and concave. With our usual notations, the moral
hazard incentive constraint is now written as

)1u#t̄ − "$+ #1− )1$u#t − "$ ≥ )0u#t̄$+ #1− )0$u#t$' (5.80)

The participation constraint is now

)1u#t̄ − "$+ #1− )1$u#t − "$ ≥ u#0$& (5.81)

where u#0$ is the agent’s reservation utility that he obtains when he refuses the
contract.

Let us also assume that the agent has a constant risk aversion, namely the
constant absolute risk aversion (CARA) utility function u#x$ = − exp#−rx$. When
facing a binary lottery yielding wealths a and b with respective probabilities ) and
1− ) , this agent obtains a certainty equivalent of income, which is defined as

we = )a+ #1− )$b− c#)& a− b$& (5.82)

where c#)& x$ = 1
r
ln#) exp##−r#1−)$x$$+ #1−)$ exp#r)x$$ is a risk premium.28

One can check that c#)& x$ is increasing with x for all x ≥ 0.

28For a risky income x̃ and a Von Neumann Morgenstern utility function u#·$, the risk premium
4 is defined as: E#u#x̃$$ = u#E#x̃$− 4$.
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Using this formulation based on certainty equivalents, we can now rewrite
(5.80) and (5.81) as

)1t̄ + #1− )1$t − " − c#)1& t̄ − t$ ≥ )0t̄ + #1− )0$t − c#)0& t̄ − t$ (5.83)

and

)1t̄ + #1− )1$t − " − c#)1& t̄ − t$ ≥ 0' (5.84)

The principal’s problem becomes:

#P $/ max
%#t̄&t$(

)1#'S− t̄$+ #1− )1$#S− t$

subject to (5.83) and (5.84).

It is important to note that these constraints depend in a separable way on,
first, the average transfer #)1t̄+ #1− )1$t$ received by the agent and, second, the
risk created by these transfers #t̄ − t$. More precisely, the principal can ensure
that the participation constraint (5.84) is binding by reducing the agent’s average
transfer without perturbing the power of the incentive contract, i.e., still keeping
the incentive constraint (5.83) satisfied. Indeed, this latter constraint can also be
written as

0)0t ≥ " + c#)1& 0t$− c#)0& 0t$& (5.85)

where 0t = t̄− t is the incentive power of the contract. We leave it to the reader
to check that this incentive constraint must be binding. The second-best power of
incentives 0tSB is thus the unique positive solution to

0)0tSB = " + c#)1& 0t
SB$− c#)0& 0t

SB$' (5.86)

Given that the participation constraint (5.84) is also binding, the optimal
second-best transfers are defined by:

t̄SB = " + c#)1& 0t
SB$+ #1− )1$0t

SB (5.87)

and

tSB = " + c#)1& 0t
SB$− )10t

SB' (5.88)

By inducing effort, the principal therefore gets

V SB
1 = )1

'S+ #1− )1$S− " − c#)1& 0t
SB$' (5.89)
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If he does not induce effort, the principal can offer t̄ = t = 0. The principal
thereby gets an expected payoff V0 = )0

'S+ #1−)0$S. Hence, the principal prefers
to induce effort when 0)0S ≥ " + c#)1& 0t

SB$' Under complete information, the
principal induces a first-best effort by offering a constant wage t̄ = t = ", and the
optimal effort is positive when 0)0S ≥ ".

Therefore, as in a model with separability between consumption and effort,
the principal induces a positive effort less often than in the first-best world, because
c#)1& 0t

SB$ is strictly positive when 0tSB > 0.

Remark 1: The fact that the principal can play independently both
on the agent’s expected transfer to ensure his participation and on
the power of incentives to induce him to exert effort is, of course, a
direct consequence of the agent having CARA preferences that do not
exhibit wealth effects. The agent’s average wealth level does not affect
incentives.

Remark 2: The second direct consequence of this model is that the
power of incentives and the decision to induce effort would be the
same if the agent’s certainty equivalent from not working with the prin-
cipal was w instead of zero as we have assumed above. The solution
to this new problem is directly translated from the solution in the case
where w = 0, and we obtain t̄SB#w$ = t̄SB + w, and tSB#w$ = tSB + w.
This translation result will be particularly useful in section 9.5.2.

Remark 3: When r is small enough, we have c#)& x$ ≈ r)#1−)$x2

2 . The
model is then akin to assuming that the agent has mean-variance pref-
erences E#t̃$ − " − r

2 var #t̃$ over the monetary payoff t̃ − ". In this
more general case, we can solve (5.86) explicitly for 0tSB, and we find
that (provided that 1 − )1 − )0 > 0 and that " is small enough to
ensure existence of the solution)

0tSB =
1−

√
1− 2r"

0)
#1− )1 − )0$

r#1− )1 − )0$
> 0& (5.90)

which is approximately equal to "
0)

when r is small.

5.4 Redistribution and Moral Hazard

In chapter 3, we have already seen how the conflict between incentive compat-
ibility and budget balance leads to the under-provision of output in an adverse
selection model. The same qualitative result still holds in a moral hazard environ-
ment. Expected volume of trade may be reduced by moral hazard. To illustrate
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this point, we consider a simple model of redistribution and moral hazard. There
is a unit mass population of agents who are all ex ante identical and have a utility
function U = u#t$ − "#e$, where u#·$ #u′ > 0&u′′ < 0$ is defined over monetary
gains and "#e$ is the disutility of effort. Each of those agents exerts an effort e in
%0& 1(, and may be successful or not in producing output. When successful (resp.
unsuccessful), i.e., with probability )#e$ (resp. 1−)#e$), the return of this effort is
q̄ (resp. q < q̄). The agents are all ex ante identical, so the government maximizes
an objective function V = U , which corresponds to the utility of a representative
agent.29

A redistributive scheme is a pair of transfers %#t̄& t$( that depend on whether
the agent is successful or not. To be incentive feasible, such a scheme must satisfy
the following budget constraint:

)1#q̄ − t̄$+ #1− )1$#q − t$ ≥ 0& (5.91)

as well as the usual incentive compatibility constraint,

)1u#t̄$+ #1− )1$u#t$− "1 ≥ )0u#t̄$+ #1− )0$u#t$' (5.92)

Note that (5.91) means that the budget is balanced in expectation over the
whole population of agents. Indeed, by the Law of Large Numbers, )1 can also
be viewed as the fraction of successful agents in society.

When effort is verifiable, the government solves the following problem if it
wants to implement a high level of effort:

max
%#t̄&t$(

)1u#t̄$+ #1− )1$u#t$− "1&

subject to (5.91).

Let us denote the multiplier of the budget constraint (5.91) by +. The nec-
essary and sufficient Kuhn and Tucker optimality conditions with respect to t̄ and
t then lead to

+ = u′#t̄FB$ = u′#tFB$ > 0' (5.93)

The complete information optimal redistributive scheme calls for complete
insurance and the constant transfer received by each agent in both states of
nature is

tFB = t̄FB = tFB = )1q̄ + #1− )1$q& (5.94)

29Contrary to the model of section 3.8, agents differ now ex post by the realization of the income
shock and not ex ante by their productivity.



234 • Chapter 5

i.e., it is equal to the average output. The optimal redistributive scheme amounts
to a perfect insurance system. Taxation provides social insurance by transferring
income from those agents who have been lucky to those who have been unlucky.

Let us now consider the case where effort is nonobservable by the govern-
ment. If the government wants to induce zero effort, it still relies on the complete
insurance scheme above, and the representative agent gets an expected utility
u#)0q̄ + #1− )0$q$.

If the government wants to induce a high effort, it instead solves the following
problem:

#P $/ max
%#t̄&t$(

)1u#t̄$+ #1− )1$u#t$− "&

subject to (5.91) and (5.92).

Denoting the respective multipliers of those two constraints by + and *, the
first-order conditions for optimality with respect to t̄ and t can be written respec-
tively as

u′#t̄SB$#)1 + *0)$ = )1+& (5.95)

and

u′#tSB$#1− )1 − *0)$ = #1− )1$+' (5.96)

Dividing (5.95) by u′#t̄SB$ and (5.96) by u′#tSB$ and summing, we obtain
that + is strictly positive since + = u′#t̄SB$u′#tSB$

)1u′#tSB$+#1−)1$u′#t̄SB$
> 0' Therefore, the budget

constraint is binding. Similarly, we also find that * = )1#1−)1$
0)

#u′#tSB$− u′#t̄SB$$ >
0& because t̄SB > tSB is necessary to satisfy the incentive compatibility constraint
(5.92) and u#·$ is concave. Hence, this latter constraint is also binding and both
t̄SB and tSB are obtained as solutions to the following nonlinear system:

)1t̄
SB + #1− )1$t

SB = )1q̄ + #1− )1$q (5.97)

and

u#t̄SB$− u#tSB$ = "

0)
' (5.98)

Under moral hazard complete redistribution is not achieved. Furthermore, it
is socially optimal to induce a high effort when

)1u#t̄
SB$+ #1− )1$u#t

SB$− " ≥ u#)0q̄ + #1− )0$q$' (5.99)
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Because u#·$ is strictly concave and t̄SB > tSB, Jensen’s inequality implies that
the left-hand side of (5.99) is strictly lower than

u
(
)1t̄

SB + #1− )1$t
SB
)
− " = u

(
)1q̄ + #1− )1$q

)
− "1' (5.100)

Hence, the second-best rule (5.99) is more stringent than the first-best rule,
which calls for a positive effort if and only if

u
(
)1q̄ + #1− )1$q

)
− " ≥ u

(
)0q̄ + #1− )0$q

)
' (5.101)

A high effort is implemented less often under moral hazard because the ben-
efit of doing so is lower. The reader will have recognized the similarity of this
section with section 4.8.5. Indeed, the redistributive scheme analyzed above is akin
to the insurance contract that would be offered by a competitive sector.

Appendix 5.1: Proof of Proposition 5.5

We first write the Lagrangian of problem #P $:

L#ū& û&u$ = #)1$
2#2'S− h#ū$$+ 2)1#1− )1$#'S+ S− h#û$$

+#1− )1$
2#2S− h#u$$

+*l

(
)2

1 ū+ 2)1#1− )1$û+ #1− )1$
2u− "2

)

− #)1)0ū+ #)1#1− )0$+ )0#1− )1$$û+ #1− )1$#1− )0$u− "1$

+*g

(
)2

1 ū+ 2)1#1− )1$û+ #1− )1$
2u− "2

−
(
)2

0 ū+ 2)0#1− )0$û+ #1− )0$
2u
))

++
(
)2

1 ū+ 2)1#1− )1$û+ #1− )1$
2u− "2

)
& (5.102)

where *l, *g, and + denote, respectively, the multipliers of (5.40), (5.41), and
(5.42).

Optimizing the Lagrangian with respect to ū& û, and u yields, respectively,

)2
1h

′#ū$ = *l0))1 + *g0)#)1 + )0$+ +)2
1 & (5.103)

2)1#1− )1$h
′#û$ = *l0)#1− 2)1$+ 2*g0)#1− )1 − )0$

++2)1#1− )1$& (5.104)

#1− )1$
2h′#u$ = −*l0)#1− )1$− *g0)#2− )1 − )0$

++#1− )1$
2' (5.105)
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Taking into account that h′#u$ = 1 + ru and summing equations (5.103) to
(5.105) yields

1+ rE#ũ$ = +& (5.106)

where E#·$ denotes the expectation operator with respect to the distribution of q̃1

and q̃2 induced by high efforts. Because (5.42) must hold, we have + ≥ 1+ r"2 >
0, and thus (5.42) is binding. Inserting the value of expected utility Eũ = "2 into
(5.106), we obtain that + = 1+ r"2.

We now investigate three classes of solutions to #P $ depending on the param-
eter values "1 and "2.

Case 1: Only the Local Incentive Constraint Is Binding
Let us first assume that *l > 0 and *g = 0. Using (5.103) to (5.105) allows us to
express all utility levels as functions of *l:

ū = "2 +
*l0)

r)1
& (5.107)

û = "2 +
*l0)#1− 2)1$

2r)1#1− )1$
& (5.108)

u = "2 −
*l0)

r#1− )1$
' (5.109)

Inserting those values of ū& û, and u into the binding local incentive constraint
yields the value of *l, namely *l = 2r#"2−"1$)1#1−)1$

#0)$2
' Inserting this value into (5.107)

through (5.109), we obtain

ū = "2 +
2#"2 − "1$#1− )1$

0)
& (5.110)

û = "2 +
#"2 − "1$#1− 2)1$

0)
& (5.111)

u = "2 −
2#"2 − "1$)1

0)
' (5.112)

We will assume that parameter values are such that these values of ū, û, and
u are all greater than − 1

r
. It holds if "2 is much greater than − 1

r
.

The global incentive constraint (5.41) is strictly satisfied when

)2
0 ū+ 2)0#1− )0$û+ #1− )0$

2u < 0' (5.113)

Inserting the corresponding values of ū& û, and u, given by (5.110) to (5.112)
into (5.113) yields (after some computations) the condition "2 > 2"1, i.e., tasks
are substitutes.
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Case 2: Only the Global Incentive Constraint Is Binding
Let us now assume that *l = 0 and *g > 0. Using (5.103) to (5.105) allows us
again to express all utility levels as functions of *g:

ū = "2 +
*g0)#)1 + )0$

r)2
1

& (5.114)

û = "2 +
*g0)#1− )1 − )0$

r)1#1− )1$
& (5.115)

u = "2 −
*g0)#2− )1 − )0$

r#1− )1$2
' (5.116)

Inserting those latter values of ū& û, and u into the binding global incentive
constraint yields *g =

r"2)
2
1 #1−)1$

2

#0)$2##0)$2+2)1#1−)1$$
' Inserting this value into (5.114) through

(5.116) yields

ū = "2 +
"2#)1 + )0$#1− )1$

2

0)##0)$2 + 2)1#1− )1$$
& (5.117)

û = "2 +
"2#1− )1 − )0$)1#1− )1$

0)##0)$2 + 2)1#1− )1$$
& (5.118)

u = "2 −
"2#2− )1 − )0$)

2
1

0)##0)$2 + 2)1#1− )1$$
' (5.119)

The local incentive constraint (5.40) is strictly satisfied when

)1ū+ #1− 2)1$û− #1− )1$u >
"2 − "1

0)
' (5.120)

Inserting the values of ū& û, and u, which were obtained in (5.117) to (5.119),
into (5.120) yields the condition "2#

)1#1−)1$+#0)$2

2)1#1−)1$+#0)$2
$ < "1'

Note that )1 > )0 implies that )1#1−)1$+#0)$2

2)1#1−)1$+#0)$2
> 1

2 ' Hence, the global incen-
tive constraint is the only binding one in the case of a strong complementarity
between both tasks.

Case 3: Both Incentive Constraints Are Binding
For the intermediate case, i.e., # 2)1#1−)1$+0)2

)1#1−)1$+0)2 $"1 < "2 < 2"1& both the local and
the global incentive constraints are simultaneously binding. This case is somewhat
less interesting. Using (5.103) to (5.105) and the binding constraints (5.40) and
(5.41) yields a system of five equations with five unknowns, the solutions of which
can be easily computed.
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Appendix 5.2: Second-Best Cost of Implementation

We compute the second-best cost CSB
2 of implementing two high levels of effort in

the case of substitutes:

CSB
2 = )2

1h#ū
SB$+ 2)1#1− )1$h#û

SB$+ #1− )1$
2h#uSB$& (5.121)

where ūSB& ûSB, and uSB are given by equations (5.110) to (5.112). Using the
quadratic specification of h#·$, we can rewrite

CSB
2 = E#h#ũSB$$ = E#ũSB$+ r

2
#E#ũSB$$2 + r

2
var #ũSB$& (5.122)

where E#·$ and var#·$ respectively denote the expectation and the variance opera-
tors with respect to the joint distribution of output #q̃1& q̃2$ induced by high effort.
We finally find CSB

2 = "2 +
r"2

2
2 + r

2var#ũ
SB$& where var#ũSB$ = 2#"2−"1$

2)1#1−)1$
0)2 '

Simplifying, we obtain

CSB
2 = "2 +

r"2
2

2
+ r#"2 − "1$

2)1#1− )1$

#0)$2
' (5.123)

In the case of strong complements, again we have

CSB
2 = E#uSB$+ r

2
#E#uSB$$2 + r

2
var#uSB$& (5.124)

where still E#uSB$ = "2, and now using (5.117) to (5.119) we get that var#ũSB$ =
"2
2)

2
1 #1−)1$

2
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' Finally, using (5.123) we get:
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Appendix 5.3: Optimal Contracts with Asymmetric Tasks

Proof of Proposition 5.7
We first denote by *1, *2, and + the respective multipliers of (5.55), (5.56), and
(5.58). Forming the Lagrangian corresponding to problem #P $, where (5.57) has
been omitted, and optimizing with respect to ū& û1& û2, and u yields, respectively,

)1
1)

2
1h

′#ū$ = *10)1)2
1 + *20)2)1

1 + +)1
1)

2
1 & (5.126)

)1
1 #1− )2

1 $h
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1 $− *20)2)1
1 + +)1

1 #1− )2
1 $& (5.127)
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#1− )1
1 $)

2
1h
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1 $+ +#1− )1
1 $)

2
1 & (5.128)
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++#1− )1
1 $#1− )2
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Summing equations (5.126) to (5.129) and taking into account that h′#u$ =
1+ ru, we obtain + = 1+ rE#ũ$ = 1+ r"2, where E#·$ is the expectation operator
with respect to the joint distribution of outputs #q̃1& q̃2$ induced by a positive effort
on each task.

We leave it to the reader to check that the linear system (5.126) to (5.129),
plus the binding constraints (5.55) and (5.56), admit the following solutions:
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1 $

#0)1$2
> 0& (5.130)
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and
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where 0" = "2 − "1, 0)1 = )1
1 − )1

0 and 0)2 = )2
1 − )2

0 . We check that (5.57)
is slack at the optimum. For this to be true, we must have
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or using equations (5.132) to (5.135) and simplifying, we obtain "2 > 2"1.



6 Nonverifiability

When two parties engage in a relationship, it is often the case that they are uncer-
tain about the value of some parameter that will affect their future gains from
trade. This uncertainty is represented by assuming that the parameter can take
several values, each value corresponding to different states of nature whose prob-
ability distribution is common knowledge. In this chapter the parameter will take
two values. Even though they will both learn the value of the parameter in the
future, the trading partners cannot write ex ante contracts contingent on the state
of nature, because this state of nature is not verifiable by a third party, a benev-
olent court of law, that could enforce their contract. As the following quote from
Williamson (1975) suggests, such situations might entail transaction costs:

Both buyer and seller have identical information and assume, further-
more, that this information is entirely sufficient for the transaction to be
completed. Such exchanges might nevertheless experience difficulty if,
despite identical information, one agent makes representations that the
true state of the world is different than both parties know it to be and if



Nonverifiability • 241

in addition it is costly for an outside arbiter to determine what the true
state of the world is (p. 32).

The goal of this chapter is to assess whether the nonverifiability of the state
of nature significantly affects the ability of the contractual partners to realize the
full gains from trade. More precisely, we ask whether this nonverifiability has any
bite in the realm of complete contract theory, i.e., when the principal has the full
ability to commit to a mechanism at the ex ante stage and a benevolent court of
law is available, as we assume throughout this whole volume. Actually, we show
that the nonverifiability of the state of nature alone does not create transaction
costs under those assumptions.

Section 6.1 starts with a useful benchmark and considers the case where the
principal and the agent do not write any contract ex ante. Bargaining over the
gains from trade takes place ex post, i.e., once the state of nature is commonly
known. If the principal has all the bargaining power ex post, the first-best allocation
is implemented, with the agent being maintained at his status quo utility level.1

If we had considered a more even distribution of the bargaining power ex post,
allocative efficiency would still be preserved, but the distribution of the gains from
trade would be more egalitarian: the principal (resp. the agent) would obtain
a lower (resp. higher) utility level. Hence, if the principal does not expect to
have all the bargaining power at the ex post stage, he strictly prefers to design
a mechanism at the ex ante stage when he still has all the bargaining power.
Similarly, ex ante contracting may also be preferred when the principal is risk
averse and thus has an ex ante demand for insurance. In section 6.2, we argue that
the simple incentive contracts already analyzed in an adverse selection context with
ex ante contracting in chapter 2 perform quite well in the case of nonverifiability
and risk neutrality of the agent. Efficiency is always achieved when the Spence-
Mirrlees property is satisfied for the agent’s objective function. However, in the
case of nonresponsiveness, or when the agent is risk averse, the optimal ex ante
contract entails inefficiencies.

To circumvent this weakness of ex ante contracting, in section 6.3 we elab-
orate a more complex mechanism that always achieves the first-best with Nash
implementation.2 The principal offers a mechanism that is designed to ensure that
the noncooperative play of the game by both the principal and the agent yields
the desired first-best allocation. In this context, we extend our methodology of

1In chapter 2, we have assumed that the principal has all the bargaining power both at the ex ante
stage (before the state of nature realizes) and at the interim stage (after the agent has learned the
state of nature).

2Furthermore, we will show in section 7.3 that such mechanisms are always needed to achieve
first-best efficiency in mixed models with both moral hazard and nonverifiability.
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chapter 2 and prove a revelation principle when both the principal and the agent
simultaneously report messages over the state of the world to a benevolent court
of law. In playing such a two-agent mechanism, the principal and the agent adopt
a Nash behavior. An allocation rule is implementable in Nash equilibrium if there
exists a mechanism and a Nash equilibrium of this mechanism where the agents
follow strategies that induce the desired allocation in each state of the world. Then,
we show that the standard principal-agent models are such that the first-best is
implementable in Nash equilibrium with rather simple mechanisms.

However, Nash implementation may not be sufficient to always ensure that
a unique equilibrium yielding the desired allocation exists in each state of nature.
Multiple equilibria may arise, with some being nontruthful. In other words, an
allocation rule may fail to be uniquely implementable. We then define the notion
of monotonicity of an allocation rule and show that unique Nash implementation
implies monotonicity. For allocation rules that fail to be monotonic and thus do
not allow unique Nash implementation, the important question is whether one
can build more complex mechanisms, possibly with sequential instead of simulta-
neous moves, that still allow unique implementation. In other words, is it possible
to design an extensive form game whose subgame-perfect equilibrium uniquely
implements a given allocation rule? In section 6.4 instead of providing a full the-
ory of subgame-perfect implementation, we construct a simple extensive form that
solves the problem in a specific example. Finally, section 6.5 presents some exten-
sions for the case of risk aversion, and section 6.6 offers some concluding remarks
about the nonverifiability paradigm.

6.1 No Contract at Date 0 and Ex Post Bargaining

With the same model as in chapter 2, we now assume that the parameter ! is
unknown at the contracting date (date t = 0) but becomes common knowledge
between the two parties, the principal and the agent, later on (at date t = 1). First
we examine the case where no initial contract has been signed at date t = 0.

At date t = 1, the principal is informed about ! and can make a take-it-or-
leave-it offer to the agent at date t = 2 under complete information. See figure 6.1
for the timing of the game.

These take-it-or-leave-it offers implement the first-best volumes of trade and
obviously leave no rent to the agent since the principal has all the bargaining
power at date t = 2. For instance, when the agent is efficient, his output q∗ satisfies
S′"q∗# = !, and the transfer t∗ he receives from the principal is t∗ = !q∗. Similarly,
the inefficient agent produces q̄∗ such that S′"q̄∗# = !̄, and the transfer t̄∗ he
receives just covers his cost: t̄∗ = !̄q̄∗.
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Figure 6.1: Timing with No Ex Ante Contract

So far we have assumed that the principal was endowed with all the bargain-
ing power both at the ex ante and at the interim stages, i.e., before the agent has
learned the piece of information ! or just after. In the nonverifiability paradigm,
it is frequent to analyze a more even distribution of the bargaining power at date
t = 2. For example, the principal may have performed an (unmodeled) invest-
ment specific to the relationship, so that he finds himself in a position of bilateral
monopoly vis-à-vis the agent, thereby justifying a nonzero bargaining power ex post
for the agent.

Obviously, changing the principal and the agent’s bargaining powers at date
t = 2 does not affect allocative efficiency. To see that, let us assume that the
principal and the agent bargain ex post, i.e., at date t = 2, over the entire gains
from trade. See figure 6.2.

To model this bargaining, we use the cooperative Nash bargaining solution
with the principal and the agent having now equal weights in the negotiation. In
state !, they agree on a transfer t and production q, which are solutions to the
following problem:

(P ): max
$"q% t#&

"S"q#− t#"t − !q#'

We easily find that the Nash bargaining solution consists of the first-best out-
put q∗"!# and a transfer tNB"!#, which satisfy

tNB"!# = S"q∗"!##+ !q∗"!#

2
(6.1)

Figure 6.2: Timing with No Ex Ante Contract and with Ex Post Bargaining
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and

S′"q∗"!## = !' (6.2)

As a result, both the principal and the agent receive an equal share of the
first-best gains from trade. Denoting the principal and the agent’s shares of the
surplus respectively by V NB"!# and UNB"!#, we have thus

V NB"!# = UNB"!# = 1
2
"S"q∗"!##− !q∗"!## = 1

2
W ∗"!#% (6.3)

where W ∗"!# is the first-best surplus in state !.

Remark: Similar results would also hold with any kind of cooperative
or noncooperative bargaining solution, for instance, the Rubinstein
(1982) alternative offers bargaining game. The particular way of split-
ting the ex post surplus has no allocative impact. The volume of trade
remains always at its first-best value.

More generally, the higher the agent’s bargaining power in the negotiation
over the surplus at date t = 2, the lower (resp. the higher) the principal’s (resp.
the agent’s) gains from trade. As a corollary, if the principal expects to be stuck
in a bilateral relationship at date t = 2 with a lower bargaining power than
at the ex ante stage, he will prefer to contract with the agent at the ex ante
stage (date t = 0). Next, we study what can then be achieved with such ex ante
contracting.

6.2 Incentive Compatible Contract

Instead of waiting for the realization of the state of nature, the principal can offer
to the agent, at the ex ante stage (date t = 0), a contract that ensures ex post
efficiency under some rather weak conditions, as we see in the following.

This contract can only be written in terms of the verifiable variables available
to the trading partners, namely the transfer t and the production level q just as
in chapter 2. For instance, a contract saying, “If state ! realizes, the agent must
produce q∗"!# and be paid t∗"!# by the principal” cannot be enforced because the
state of nature ! is not verifiable at the ex post contracting stage and consequently
cannot be written into a contract. However, a nonlinear price t"q# or a menu
$"t% q#( "t̄% q̄#& is a feasible instrument at the ex ante stage.
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When he accepts such a contract, the agent anticipates that his choice of
outputs q"!# in state ! will satisfy the following interim constraints:

t"q"!##− !q"!# ≥ t"q̃#− !q̃ (6.4)

for all q̃ in the domain of t"·# and all ! in ).
These constraints are the same as the standard incentive compatibility con-

straints highlighted in chapter 2 as the reader will have recognized. Hence, there
is a formal correspondence between the case where contracting takes place under
asymmetric information between the principal and the agent, and the case of
ex ante contracting when the state of nature is not verifiable. The revelation prin-
ciple still applies in this context and the class of truthful direct revelation mech-
anisms of the form $"t% q#( "t̄% q̄#& is enough to describe all feasible contracts that
command trade at date t = 2 and that can be signed at date t = 0 between the
principal and the agent. Pushing this analogy, from now on we call these mecha-
nisms incentive compatible contracts.

The fact that the principal knows ! ex post is not used in such a mechanism.
The benefit of incentive compatible contracts is that there is no need for the
principal to act ex post (i.e., at date t = 2), as shown in figure 6.3. Only the agent
reports the state of nature. The mechanism is thus not very demanding on the
communication side and could be attractive if those communication costs were
explicitly modeled.

We already know from section 2.11.1 that the first-best outcome can still be
achieved with ex ante contracting, provided that the agent is risk neutral in a two-
type environment. Nevertheless, note that the transfers with ex ante contracting
are different from those obtained with no contract at date t = 0, as we can easily
observe by comparing the results of sections 2.11.1 and 6.1. The reason for this
difference is simple. With no contract at all, the transfers t∗ = !q∗ and t̄∗ =
!̄q̄∗, which are offered by the principal at date t = 2, are no longer incentive
compatible,3 as is requested with ex ante contracting.

However, this first-best implementation generalizes to several types and more
general utility functions V = S"q% !# − t for the principal and U = t − C"q% !#
for the agent if the Spence-Mirrlees properties Sq! < 0 and Cq! > 0 are both satis-
fied. Otherwise, the second-order conditions for incentive compatibility may create
some inefficiencies and may require some bunching, as in the case of nonrespon-
siveness in section 2.10.2. When second-order conditions impose some pooling
over several types, there may exist a real trade-off between an ex ante inefficient
contract and an ex post negotiation leaving only a partial bargaining power to the
principal.

3Indeed, we have 0 = t∗ − !q∗ < t̄∗ − !q̄∗ = *!q̄∗.
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Figure 6.3: Timing with Ex Ante Contracting and Nonverifiability

An incentive compatible contract may also be useful if the principal is risk-
averse and wants to obtain some insurance from the agent. Making the agent
residual claimant for the gains from trade and reaping all of his profit with an
up-front payment helps the principal to achieve the first-best outcome.4 However,
as is also shown in section 2.11, ex ante contracting fails to achieve efficiency
when the agent is risk-averse. The nonverifiability of the state of nature may then
conflict with the insurance concern of the agent if the principal offers an incentive
compatible contract. Therefore, section 2.11.2 also provides an analysis of the
efficiency loss incurred when ex ante contracting limited to incentive compatible
contracts takes place in a world of nonverifiability and risk aversion.

Green and Laffont (1992) characterized the incentive compatible
contracts that optimize the principal’s expected welfare when ex post

renegotiation led by the principal takes the utility levels achieved by those
contracts as status quo utility payoffs.

6.3 Nash Implementation

In section 6.2, we have just seen how the principal and the agent can achieve
ex post efficiency through an ex ante contract when they are both risk neutral.
This contract uses only the agent’s message but fails to achieve efficiency when the
agent is risk-averse or when nonresponsiveness occurs. We now propose a slightly
more complicated implementation of the ex post efficient allocation that also works
in these cases. The new feature of this implementation comes from the fact that
both the principal and the agent must now send a report on the state of nature
at date t = 2. Requesting both the principal and the agent to report the state of
nature moves us somewhat beyond the technics that have been the focus of this
volume. This extension is only a small detour into a multiagent setting. It is needed

4See section 2.11.1 for the case of adverse selection and section 6.5.2 for more on this particular
scenario.
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to assess the true importance of the nonverifiability constraint in principal-agent
models.5

The principal now offers to play a game with the agent, the outcome of which
is enforced by the uniformed court of law. In this game, the principal is, like
the agent, an active player, so that the mechanism to be played is a two-player
game. However, as this game is played ex post under complete information, the
characterization of the optimal two-player mechanism is relatively straightforward.

In this context, a general mechanism should involve two message spaces, one
for the principal, say !p, and one for the agent, !a. Still denoting by " the set of
feasible allocations, we have the following definition:

Definition 6.1: A mechanism is a pair of message spaces !a and !p and
a mapping g̃"·# from ! = !a ×!p into ", which writes as g̃"ma%mp# =
"q̃"ma%mp#% t̃"ma%mp## for all pairs "ma%mp# belonging to !.

To fix ideas, let us assume that the principal and the agent have respective
utility functions V = S"q% !#− t and U = t−C"q% !#. In this context, the first-best
allocation rule a∗"!# = "t∗"!#% q∗"!## is such that

Sq"q
∗"!#% !# = Cq"q

∗"!#% !# (6.5)

and

t∗"!# = C"q∗"!#% !#' (6.6)

We consider that those traders play a Nash equilibrium6 of the mechanism
"!% g̃"·##.

A Nash equilibrium of the mechanism "!% g̃"·## is a pair of message functions
"m∗

a"·#%m∗
p"·##, which satisfy the following incentive conditions: for the principal,

S"q̃"m∗
a"!#%m

∗
p"!##% !#− t̃"m∗

a"!#%m
∗
p"!## ≥ S"q̃"m∗

a"!#% m̃p#% !#− t̃"m∗
a"!#% m̃p#%

for all ! in ) and m̃p in !p; (6.7)

and for the agent,

t̃"m∗
a"!#%m

∗
p"!##−C"q̃"m∗

a"!#%m
∗
p"!##% !# ≥ t̃"m̃a%m

∗
p"!##−C"q̃"m̃a%m

∗
p"!##% !#%

for all ! in ) and m̃a in !a. (6.8)

5In other words, restricting the analysis of this chapter to incentive compatible contracts could leave
the reader with the feeling that some inefficiencies may emerge with nonverifiability. However, the
room for those inefficiencies is much more restricted when more general mechanisms are allowed.

6We focus on pure-strategy equilibria for the sake of simplicity but without loss of generality.
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According to (6.7), when the principal conjectures that the agent’s strategy is given
by m∗

a"!# in state !, his best response is m∗
p"!#. Similarly, (6.8) states that the agent’s

strategy m∗
a"!# is a best response to the principal’s behavior.

We can now state the definition that follows:

Definition 6.2: An allocation rule a"!# from ) to " is implementable in
Nash equilibrium by a mechanism "!% g̃"·## if there exists a Nash equilib-
rium "m∗

a"·#%m∗
p"·## such that a"!# = "q̃"m∗

a"!#%m
∗
p"!##% t̃"m

∗
a"!#, m∗

p"!###
for all ! in ).

When the message spaces !a and !p are reduced to the set of possible
types ), we have the following definitions:

Definition 6.3: A direct revelation mechanism is a mapping g"·# from )2

to ", which writes as g"!̃a% !̃p# = "q"!̃a% !̃p#% t"!̃a% !̃p## where !̃a (resp. !̃p)
is the agent’s (resp. principal’s) report in ).

Definition 6.4: A direct revelation mechanism g"·# is truthful if it is a
Nash equilibrium for the agent and the principal to report truthfully the
state of nature.

Denoting the set of Nash equilibria of the direct revelation mechanism g"·#
in state ! by Ng"!#, we have the following definition:

Definition 6.5: The allocation a"!# is implementable in Nash equilib-
rium by the direct revelation mechanism g"·# if the pair of truthful report-
ing strategies of the principal and the agent forms a Nash equilibrium
of g"·# ("!% !# in Ng"!# for all ! in )) such that a"!# = g"!% !# for all
! in ).

Truthful direct revelation mechanisms must thus satisfy the following Nash
incentive constraints:

S"q"!% !#% !#− t"!% !# ≥ S"q"!% !̃p#% !#− t"!% !̃p#

for all "!% !̃p# in )2% (6.9)

and

t"!% !#−C"q"!% !#% !# ≥ t"!̃a% !#−C"q"!̃a% !#% !#

for all "!̃a% !# in )2' (6.10)

We can now prove a new version of the revelation principle in this complete
information environment.
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Proposition 6.1: Any allocation rule a"!# that is implemented in Nash
equilibrium by a mechanism "!% g̃"·## can also be implemented in Nash
equilibrium by a truthful direct revelation mechanism.

Proof: The mechanism "!% g̃"·## induces an allocation rule a"!# = "q̃"m∗
a"!#,

m∗
p"!##, t̃"m∗

a"!#%m
∗
p"!###, where "m∗

a"!#%m
∗
p"!## are the messages of the agent and

the principal in state ! at the Nash equilibrium of "!% g̃"·## that we consider. Let
us define a direct revelation mechanism g"·# from )2 into ", such that g"!% !# =
g̃ &m∗"!# where m∗"!# = "m∗

a"!#%m
∗
p"!##. For all states of nature !, we have thus

g"!% !# = "q"!% !#% t"!% !## ≡ g̃"m∗"!## = "q̃"m∗
a"!#%m

∗
p"!##% t̃"m

∗
a"!#%m

∗
p"!###. We

check that it is a Nash equilibrium for the players to report the truth when they
face the direct revelation mechanism g"·#. For the principal, we have

S"q"!% !#% !#− t"!% !# = S"q̃"m∗
a"!#%m

∗
p"!##% !#− t̃"m∗

a"!#%m
∗
p"!##

≥ S"q̃"m∗
a"!#% m̃p% !#− t̃"m∗

a"!#% m̃p#

for all m̃p in !p and for all ! in ).

Taking m̃p = m∗
p"!

′# for any !′ in ), we obtain

S"q"!% !#% !#− t"!% !# ≥ S"q̃"m∗
a"!#%m

∗
p"!

′##% !#− t̃"m∗
a"!#%m

∗
p"!

′##

for all "!% !′# in )2.

Finally, we get

S"q"!% !#% !#− t"!% !# ≥ S"q"!% !′#% !#− t"!% !′#%

for all "!% !′# in )2.

Hence, the principal’s best response to a truthful reporting strategy by the
agent is also to report truthfully.

Proceeding similarly for the agent, we prove that the agent’s best response is
also to report his type truthfully. Hence, truthful reporting is a Nash equilibrium.

The important question at this point is to determine which restrictions are
really put on allocations by the incentive compatibility constraints (6.9) and (6.10).
In particular, we would like to know under which conditions the first-best allo-
cation rule a∗"!# = "t∗"!#% q∗"!## is implementable as a Nash equilibrium of the
direct revelation mechanism played by the principal and the agent. It turns out that
incentive compatibility in this multiagent framework imposes very few restrictions
on the set of implementable allocations.

To see that, let us first consider the simple case where the principal’s utility
function does not depend directly on !, i.e., his utility is given by V = S"q#− t.
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Figure 6.4: Nash Implementation of the First-Best with the No-Trade Option as Punishment

The agent also has the standard linear cost function of chapter 2, U = t − !q.
We know that the first-best allocation entails producing outputs q∗"!#, such that
S′"q∗"!## = !. Using transfers t∗"!# = !q∗"!# allows then the principal to extract
all of the agent’s rent.

A truthful direct revelation mechanism g"·# that implements in Nash equilib-
rium the first-best allocation rule a∗"!# = "t∗"!#% q∗"!## can be summarized by a
matrix (Figure 6.4), where the lines (resp. columns) represent the agent’s (resp.
principal’s) possible reports in ) = $!% !̄&. In each box of the matrix, we have rep-
resented the transfer-output pair corresponding to the reports made by the principal
and the agent.

For instance, when both the principal and the agent report to the court that
! has realized, the contract "t∗% q∗# is enforced. The principal gets a net surplus
S"q∗# − t∗ = S"q∗# − !q∗, and the agent gets t∗ − !q∗ = 0 if the true state of
nature is !. If they disagree, the no-trade option is enforced, with no output being
produced and no transfer being made.

The important point to note is that the same game form must be played by
the agent and the principal, whatever the true state of nature !. Indeed, the state
of nature being nonverifiable, the transfers and outputs in each box of the matrix
cannot be made contingent upon it. The goal of this mechanism is to ensure
that there exists a truthful Nash equilibrium in each state ! that implements the
first-best allocation a∗"!# = "t∗"!#% q∗"!##.

Proposition 6.2: Assume that preferences are given by V = S"q#− t and
U = t − !q, then the first-best allocation rule is Nash-implementable.

Proof: Let us check that truthtelling is a Nash equilibrium of the direct revelation
mechanism g"·# in each state of nature. Consider first state !. Given that the agent
reports !, the principal gets S"q∗# − t∗ = S"q∗# − !q∗ by reporting the truth and
zero otherwise. By assumption, trade is valuable when ! realizes "S"q∗#− !q∗ > 0#,
and telling the truth is a best response for the principal. The agent is indifferent
between telling the truth or not when the principal reports !, because t∗ − !q∗ =
0. Hence, he weakly prefers to tell the truth as a best response. Consider now
state !̄. Given that the agent reports !̄, the principal gets S"q̄∗#− t̄∗ = S"q̄∗#− !̄q̄∗
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by reporting the truth and zero otherwise. By assumption, trade is also valuable
when !̄ realizes "S"q̄∗# − !̄q̄∗ > 0#. Telling the truth is a best response for the
principal. Similarly, the agent is indifferent between telling the truth or not when
the principal reports truthfully, because t̄∗ − !̄q̄∗ = 0. He weakly prefers to tell the
truth. This ends the proof that truthtelling is a Nash equilibrium of g"·#.

It is important to note that, when ! realizes, the pair of truthful strategies
is not the unique Nash equilibrium of the direct mechanism g"·#. Indeed, "!̄% !̄#
is another Nash equilibrium in this state of nature. The agent strictly gains from
misreporting if the principal does so, because t̄∗ − !q̄∗ = *!q̄∗ > 0. Also, the
principal prefers to report !̄ if the agent does so, because he obtains S"q̄∗#− t̄∗ > 0.

There are two possible attitudes vis-à vis this multiplicity problem. First, one
may forget about it and argue that truth-telling should be a focal equilibrium. This
attitude rests on a relatively shaky argument in the absence of a definitive theory of
equilibrium selection. Moreover, some authors have shown in related models that
the nontruthful equilibrium may sometimes Pareto dominate the truthful one from
the players’ point of view.7 In this case, the focus on the truthful equilibrium is less
attractive. This argument is less compelling in our context since the two equilibria
cannot be Pareto-ranked: the agent does better in the nontruthful equilibrium,
than in the truthful one, but the principal does worse.

The second possible attitude towards the multiplicity of equilibria is to take
it seriously and to look for mechanisms that ensure that the first-best allocation is
uniquely implementable. This second attitude is the route we are going to take now.

Definition 6.6: The first-best allocation rule a∗"!# is uniquely imple-
mentable in Nash equilibrium by the mechanism "!% g̃"·## if the mecha-
nism has a unique Nash equilibrium for each ! in ) and it induces the
allocation a∗"!#.

In the definition above, we do not restrict a priori the mechanism g̃"·# to
be a direct revelation mechanism. It could well be that the cost of obtaining
unique implementation is the expansion of the space of messages that the agent
and the principal use to communicate with the court. Such extensions are often
used in multiagent (three or more) frameworks. In our principal-agent model,
those extensions are not needed, provided that one conveniently defines the out-
of-equilibrium-path punishments.

For the time being, let us consider a truthful direct revelation mechanism like
that shown in figure 6.5.

7See Demski and Sappington (1984) for such a model.
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Figure 6.5: Nash Implementation of the First-Best with General Punishments

The outcomes "t̂1% q̂1# and "t̂2% q̂2# may be different from the no-trade option
used above, in order to give more flexibility to the court in designing off-the-
equilibrium punishments, ensuring both the truthful revelation and the uniqueness
of the equilibrium. Let us now see how it is possible to do so.

The conditions for having a truthful Nash equilibrium in state ! are, for the
principal,

S"q∗#− t∗ > S"q̂2#− t̂2% (6.11)

and for the agent

0 = t∗ − !q∗ > t̂1 − !q̂1' (6.12)

Similarly, the conditions for having a truthful Nash equilibrium in state !̄ are,
for the principal,

S"q̄∗#− t̄∗ > S"q̂1#− t̂1% (6.13)

and for the agent,

0 = t̄∗ − !̄q̄∗ > t̂2 − !̄q̂2' (6.14)

Let us now turn to the conditions ensuring that there is no nontruthful, pure-
strategy Nash equilibrium in either state of nature. Consider a possible nontruthful
equilibrium "!̄% !̄# when state ! realizes. Given that (6.13) is needed to satisfy
the principal’s incentive constraint in state !̄, the only way to break the possible
equilibrium is to induce a deviation by the agent. Therefore, we must have

t̄∗ − !q̄∗ < t̂2 − !q̂2' (6.15)

Now consider a possible nontruthful pure-strategy Nash equilibrium "!% !#
when state !̄ realizes. Given that (6.11) is needed to ensure the principal’s incen-
tive constraint in state !, the only way to break the possible equilibrium is again
to induce a deviation by the agent:

t∗ − !̄q∗ < t̂1 − !̄q̂1' (6.16)
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Figure 6.6: Off-the-Equilibrium Path Punishments

A truthful direct revelation mechanism g"·#, which uniquely implements the
first-best as a Nash equilibrium, exists when the conditions (6.11) through (6.16)
are all satisfied by a pair of punishment contracts "t̂1% q̂1# and "t̂2% q̂2#. We now have
the following proposition:

Proposition 6.3: Assume preferences are given by V = S"q#− t and U =
t − !q. A truthful direct revelation mechanism g"·# exists that uniquely
implements in Nash equilibrium the first-best allocation rule a∗"!#.

Proof: The clearest way of doing this proof is to draw a picture. In Figure 6.6,
we have represented the first-best allocation a∗"!# and the possible punishments
"t̂1% q̂1# and "t̂2% q̂2#.

Because the first-best allocation requires that the agent produce efficiently and
gets zero rent, the indifference curves of the principal are tangent to the zero-profit
lines of the agent in each state of nature at points A∗ and B∗. First, the !-agent
incentive compatibility constraint (6.12) and the condition (6.16) define a subset C
where "t̂1% q̂1# may lie (crossed area in figure 6.6). Within this subset, the principal’s
incentive constraint (6.13) further reduces the set of possible punishments "t̂1% q̂1#
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to the area E close to the origin (shaded area in figure 6.6). This set is nonempty,
because the principal’s indifference curve (W ∗ = S"q#− t does not go through the
origin when trade is valuable in state !̄ (namely when S"q̄∗#− !̄q̄∗ > 0).

Similarly, the agent’s incentive constraints (6.14) and (6.15) define a subset
D of possible values for the punishment "t̂2% q̂2# (crossed area in figure 6.6). In
figure 6.6, this full set satisfies the principal’s incentive compatibility constraint
(6.11). More generally, by strict concavity of the principal’s indifference curve
(W ∗ = S"q# − t going through B∗, there exists a nonempty subset of D that lies
strictly above this indifference curve. All those points obviously lie above the prin-
cipal’s indifference curve W ∗ = S"q#− t going through A∗.

Proposition 6.3 yields a very striking result. It says that direct revelation mech-
anisms are enough to ensure efficiency always if the court can design punishments
in a clever way. There is no need to use more complex mechanisms in this simple
and rather structured principal-agent model.

More generally, one may wonder if the requirement of unique Nash imple-
mentation imposes some structure on the set of allocation rules a"!# = "t"!#% q"!##
that can be implemented this way. Indeed, this structure exists. Before describing
it, we need another definition, which we cast in the general case where the prin-
cipal’s and the agent’s preferences are respectively given by V = S"q% !# − t and
U = t −C"q% !#.

Definition 6.7: An allocation rule a"!# = "t"!#% q"!## is monotonic if and
only if for any ! in ), such that a"!# )= a"!′# for some !′ in ), there exists
an allocation "t̂% q̂# such that one of the two conditions below is true:

"P #






S"q"!#% !#− t"!# ≥ S"q̂% !#− t̂
and

S"q̂% !′#− t̂ > S"q"!#% !′#− t"!#

or

"A#






t"!#−C"q"!#% !# ≥ t̂ −C"q̂% !#
and

t̂ −C"q̂% !′# > t"!#−C"q"!#% !′#'

These inequalities have a simple meaning.8 The allocation rule a"·# selects
the pair a"!# = "t"!#% q"!## in state ! and not in state !′, if there exists another
allocation "t̂% q̂# such that either the principal or the agent prefers this allocation
to a"!# when the state of nature is !′.

8An alternative definition that may better explain the expression “monotonicity” goes intuitively
as follows. If a"!# is selected in state !, and if the allocation a"!# “progresses” in the preferences of
both players in another state of nature !′% a"!# must also be chosen in state !′.
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Under the assumptions of proposition 6.3, the first-best allocation rule a∗"·# is
monotonic. Indeed, first we note that a∗"!# )= a∗"!̄#. Second, the principal’s utility
function being independent of !, there does not exist any allocation "t̂% q̂# such
that condition "P # holds. Lastly, there exists "t̂% q̂# such that condition "A# holds.
In state !, the set of such pairs is the set C in figure 6.6. In state !̄, it is the set D.

The monotonicity of allocation rules is an important property that follows
immediately from unique implementation in Nash equilibrium, as is shown in
proposition 6.4.

Proposition 6.4: Consider an allocation rule a"·#, which is uniquely
implemented in Nash equilibrium by a mechanism "!% g̃"·##; then the
allocation rule a"·# is monotonic.

Proof: The mechanism "!% g̃"·## uses the message spaces !a and !p. If the
allocation rule a"·# is uniquely implementable in Nash equilibrium by g̃"·#, we
know that, in state !, there exists a pair of strategies "m∗

a"!#%m
∗
p"!## such that

"q"!#% t"!## = "q̃"m∗
a"!#%m

∗
p"!##% t̃"m

∗
a"!#%m

∗
p"!###, and these strategies form a Nash

equilibrium

S"q̃"m∗
a"!#%m

∗
p"!##% !#− t̃"m∗

a"!#%m
∗
p"!## ≥ S"q̃"m∗

a"!#% m̃p#% !#− t̃"m∗
a"!#% m̃p#

for all m̃p in !p( (6.17)

t̃"m∗
a"!#%m

∗
p"!##−C"q̃"m∗

a"!#%m
∗
p"!##% !# ≥ t̃"m̃a%m

∗
a"!##−C"q̃"m̃a%m

∗
p"!##% !#

for all m̃a in !a' (6.18)

Moreover, a"!# being different from a"!′# for a !′ different from !, a"!# is not
a Nash equilibrium in state !′. This means that either the principal (or the agent)
finds it strictly better to send a message m̃p rather than m∗

p"!# (or m̃a rather than
m∗

a"!# in the case of the agent). For the principal, this means that

S"q"!#% !′#− t"!# < S"q̃"m∗
a"!#% m̃p#% !

′#− t̃"m∗
p"!#% m̃p#' (6.19)

For the agent, this means that

t"!#−C"q"!#% !′# < t̃"m̃a%m
∗
p"!##−C"q̃"m̃a%m

∗
p"!##% !

′#' (6.20)

In each case, it is easy to show that the allocation rule a"·# is monotonic.
Take "t̂% q̂# = "t̃"m∗

a"!#% m̃p#% q̃"m
∗
a"!#% m̃p### in the first case (the principal’s devi-
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ation) and "t̂% q̂# = "t̃"m̃a%m
∗
p"!##% q̃"m̃a%m

∗
p"!### in the second case (the agent’s

deviation).

The intuitive meaning of proposition 6.4 is rather clear. In order to prevent
an allocation implemented in one state of nature ! to be also chosen in another
state !′, either the principal or the agent must deviate and choose another message
in state !′. Hence, the mechanism g̃"·# that uniquely implements the allocation
rule a"·# must include an allocation "t̂% q̂#, which is worse than "t"!#% q"!## for both
agents in state ! but better for at least one in state !′. In this case, the latter player’s
preferences are reversed between states ! and !′, breaking a possible equilibrium
that would also implement a"!# in state !′.

The monotonicity property is a necessary condition satisfied by an
allocation rule that is uniquely implementable in Nash equilibrium.

The remaining question is to know how far away this property is from suf-
ficiency. With more than two agents "n ≥ 3#, Maskin (1999)9 shows that
monotonicity plus another property, no veto power,10 is also sufficient for
unique Nash implementation. With two agents only, Dutta and Sen (1991)
and Moore and Repullo (1990) have provided necessary and sufficient con-
ditions for unique Nash implementation in more general environments than
the principal-agent relationship analyzed in this chapter.

6.4 Subgame-Perfect Implementation +

From proposition 6.4, a necessary condition for unique Nash implementation is
that an allocation rule a"·# be monotonic. Any allocation rule that fails to be
monotonic will also fail to guarantee unique Nash implementation. Then, one
may wonder if refinements of the Nash equilibrium concept can still be used
to ensure unique implementation. The natural refinement of subgame perfection
will appear when one moves to a game with sequential moves, where the principal
and the agent take turns sending messages to the court. An allocation rule a"!#
is uniquely implementable in subgame-perfect equilibrium by a mechanism ḡ"·#

9The first version of this fundamental paper appeared in 1977.
10This property says that whenever n − 1 agents prefer an allocation to all others in one state of

nature the nth agent cannot veto it, and this allocation belongs to the domain of the allocation rule.
The no veto power property is a rather innocuous property to fulfill in economic contexts with more
than two agents.
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provided that its unique subgame-perfect equilibrium yields allocation a"!# in any
state !.

Instead of presenting the general theory of subgame-perfect implementation,
which is quite complex, we propose a simple example showing the mechanics
of the procedure. Let us first single out a principal-agent setting where the first-
best allocation rule is nonmonotonic. As we know from the last section, this calls
for a more complex modelling of information than what we have used so far if
we remain in the context of principal-agent models with quasi-linear objective
functions. Consider a principal with utility function V = S"q# − t independent
of the state of nature !. For simplicity, we assume that S"q# = ,q − -q2

2 , where
, and - are common knowledge. The agent instead has a utility function U =
t − !1q − !2

q2

2 , where ! = "!1% !2# is now a bidimensional state of nature.
The first-best outputs q∗"!1% !2# are given by the first-order conditions

S′"q∗"!1% !2## = !1 + !2q
∗"!1% !2#. We immediately find that q∗"!1% !2# = ,−!1

-+!2
.

We assume that each parameter !i belongs to ) = $!% !̄&. A priori, there are
four possible states of nature and four first-best outputs. Assuming that ,−!̄

-+! = ,−!
-+! ,

i.e., ,− - = ! + !̄, we are left with three first-best outputs q∗ = ,−!
-+! % q̂

∗ = ,−!̄
-+! =

1, and q̄∗ = ,−!̄
-+!̄ that we assume to be all positive.

Of course, even if the production level is the same in states "!% !̄# and "!̄% !#,
the agent has different costs and should receive different transfers t̂∗1 and t̂∗2 from
the principal in those two states of nature. We denote by t∗ and t̄∗ the transfers in
the other states of nature.

In figure 6.7, we have represented the first-best allocations corresponding to
the different states of nature.

Importantly, the indifference curve of a "!% !̄#-agent going through the first-
best allocation C∗ of a "!% !̄#-agent (dotted curve in figure 6.7) is tangent to and
always above that of a "!̄% !#-agent.11 This means that one cannot find any allo-
cation "t̂% q̂# such that condition "A# of definition 6.6 holds. In other words, the
first-best allocation rule a∗"!# is nonmonotonic in this bidimensional example. To
see more precisely why it is so, note that any mechanism g̃"·# implementing the
first-best allocation a∗"!̄% !# must be such that

t̃"m∗
a"!̄%!#%m

∗
p"!̄%!##− !̄q̃"m∗

a"!̄%!#%m
∗
p"!̄%!##−

!q̃2"m∗
a"!̄%!#%m

∗
p"!̄%!##

2

≥ t̃"m̃a%m
∗
p"!̄%!##− !̄q̃"m̃a%m

∗
p"!̄%!##−

!q̃2"m̃a%m
∗
p"!̄%!##

2
% for all m̃a in !a'

11Since !̄ > !, the second derivative of the "!% !̄#-indifference curve at C∗ is greater in absolute
value than the second derivative of the "!̄% !#-indifference curve at C∗.
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Figure 6.7: First-Best Allocations

But, since the indifference curve of a "!% !̄#-agent through C∗ is above the
one of a "!̄% !#-agent, this inequality also implies that

t̃"m∗
a"!̄% !#%m

∗
p"!̄% !##− !q̃"m∗

a"!̄% !#%m
∗
p"!̄% !##−

!̄q̃2"m∗
a"!̄% !#%m

∗
p"!̄% !##

2

≥ t̃"m̃a%m
∗
p"!̄% !##− !q̃"m̃a%m

∗
p"!̄% !##−

!̄q̃2"m̃a%m
∗
p"!̄% !##

2
%

for all m̃a in !a'

Since the principal’s utility function does not depend directly on !, the pair
of strategies "m∗

a"!̄% !#( "m
∗
p"!̄% !## that implements the allocation a∗"!̄% !# = "t̂2% q̂

∗#
remains an equilibrium in state "!% !̄#. Hence, there is no hope of finding a unique
Nash implementation of the first-best outcome.

Let us now turn to a possible unique implementation using a three-stage
extensive form mechanism and the more stringent concept of subgame-perfection.

The reader should be convinced that there is not too much problem in elicit-
ing the preferences of the agent in states "!% !# and "!̄% !̄#.12 Hence, we will focus

12For instance, the states "!% !# and "!̄% !̄# can be revealed by an earlier stage with Nash imple-
mentation.
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Figure 6.8: Subgame-Perfect Implementation

on a “reduced” extensive form that is enough to highlight the logic of subgame-
perfect implementation. The objective of this extensive form is to have the agent
truthfully reveal the state of nature when either "!̄% !# or "!% !̄# occurs.

In figure 6.8 we have represented such an extensive form.
The mechanism to be played in both states "!% !̄# and "!̄% !# is a three-stage

game with the agent moving first and announcing whether "!% !̄# or "!̄% !# has
been realized. If "!% !̄# is announced, the game ends with the allocation "t̂∗1% q̂

∗#.
If "!̄% !# is announced, the principal may agree and then the game ends with
the allocation "t̂∗2% q̂

∗# or challenge. In the latter case, the agent has to choose
between two possible out-of-equilibrium allocations "t̂1% q̂1# and "t̂2% q̂2#. We have
a greater flexibility with respect to Nash implementation, since now the agent
has sometimes to choose between two allocations that are nonequilibrium ones
instead of between an out-of-equilibrium one and an equilibrium one, as under
Nash implementation. We want to use this flexibility to obtain "t̂∗1% q̂

∗# in the state
of nature "!% !̄# and "t̂∗2% q̂∗# in the state of nature "!̄% !#. To do so, we are going to
choose the allocations "t̂1% q̂1# and "t̂2% q̂2# in such a way that the agent prefers a
different allocation in different states of the world.13 Specifically, we choose them
to have

t̂1 − !̄q̂1 −
!q̂2

1

2
> t̂2 − !̄q̂2 − !

q̂2
2

2
(6.21)

13This pair of allocations is often called a test-pair.
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and

t̂2 − !q̂2 −
!̄q̂2

2

2
> t̂1 − !q̂1 −

!̄q̂2
1

2
' (6.22)

Then, since at stage 3 the agent chooses "t̂1% q̂1# in state "!̄% !#, to obtain
"t∗2% q̂

∗# the principal should not be willing to challenge the agent’s report at stage 2
of the game. This means that one should have

S"q̂∗#− t̂∗2 > S"q̂1#− t̂1' (6.23)

Finally, the agent with type "!̄% !# should prefer to report truthfully that "!̄% !#
has realized, i.e.:

t̂∗2 − !̄q̂∗ − !q̂∗2

2
> t̂∗1 − !̄q̂∗

1 −
!q̂∗2

1

2
' (6.24)

Now let us see how we can obtain "t̂∗1% q̂
∗# in the state of nature "!% !̄#. Since

the agent chooses "t̂2% q̂2# in state "!% !̄#, the principal should be willing to chal-
lenge, i.e.,

S"q̂2#− t̂2 > S"q̂∗#− t̂∗2' (6.25)

Expecting this behavior by the principal, the agent should not be willing to
announce "!̄% !# when the state of nature is "!% !̄#. This means that the following
inequality must also hold:

t̂∗1 − !q̂∗ − !̄q̂∗2

2
> t̂2 − !q̂2 −

!̄q̂2
2

2
' (6.26)

The remaining question is whether there exists a pair of contracts "t̂1% q̂1#
and "t̂2% q̂2# that satisfy constraints (6.21) to (6.26). The response can be given
graphically (figure 6.9). By definition, "t̂1% q̂1# (resp. "t̂2% q̂2#) should be above (resp.
below) the principal’s indifference curve going through C∗. Note that for q > q̂∗,
the indifference curves of an agent with "!% !̄# have a greater slope than those of
an agent with type "!̄% !#. This helps to construct very easily the out-of-equilibrium
allocations "t̂1% q̂1# and "t̂2% q̂2#, as in figure 6.9.

Remark: Subgame-perfect implementation is beautiful and attractive,
but it should be noted that it has been sometimes criticized because it
relies excessively on rationality. The kind of problem at hand can be
illustrated with our example of figure 6.8. Indeed, when state "!% !̄#
realizes and the principal has to decide to move at the second stage,
he knows that the agent has already made a suboptimal move. Why
should he still believe that the agent will behave optimally at stage 3,
as needed by subgame-perfect implementation?
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Figure 6.9: Subgame-Perfect Implementation

Moore and Repullo (1988) present a set of conditions ensuring
subgame-perfect implementation in general environments, notice-

ably those with more than two agents. The construction is rather complex but
close in spirit to our example. Abreu and Matsushima (1992) have developed
the concept of virtual-implementation of an allocation rule. The idea is that
the allocation rule may not be implemented with probability one but instead
with very high probability. With this implementation concept, any allocation
rule can be virtually implemented as a subgame-perfect equilibrium.

6.5 Risk Aversion +

The previous sections have discussed how various sorts of mechanisms may help
to implement the first-best allocation rule when both the principal and the agent
are risk neutral. The objective of this section is to discuss the potential of those
mechanisms when either the principal or the agent is risk averse.
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6.5.1 Risk-Averse Agent

When the agent is risk averse, signing no contract ex ante remains optimal if all
the bargaining power is still left to the principal ex post. Indeed, ex post take-it-or-
leave-it offers impose no risk on the agent, who is always maintained at the zero
utility level.

An incentive contract performs badly, because there is now a trade-off between
insurance and incentive compatibility. However, the Nash (and subgame-perfect)
implementation performs rather well. It is straightforward to extend sections 6.3
and 6.4 to the case of a risk-averse agent to show that Nash implementation allows
one to implement the first-best outcome with full insurance for the agent.14

6.5.2 Risk-Averse Principal

Clearly, signing no contract at the ex ante stage can no longer be optimal even
if the principal has all of the bargaining power ex post. Indeed, ex post take-it-or-
leave-it offers impose some risk on the principal from an ex ante point of view.
However, an incentive contract $"t% q#( "t̄% q̄#& can still implement the first-best,
as we have seen in section 2.11.2. Making the agent residual claimant for the
hierarchy’s profit is again optimal in the case of nonverifiability. Of course, we still
have to be sure that nonresponsiveness does not occur.

Finally, unique Nash implementation of the first-best outcome can also be
obtained using a game form similar to that in figure 6.5. In our standard example,
efficiency still requires that q∗ and q̄∗ are produced, such that S′"q∗# = ! and
S′"q̄∗# = !̄. Providing insurance to the principal also requests that the principal
gets the same payoff in each state of nature:

V = S"q∗#− t∗ = S"q̄∗#− t̄∗' (6.27)

Finally, the agent’s ex ante participation constraint should also be binding:

."t∗ − !q∗#+ "1− .#"t̄∗ − !̄q̄∗# = 0' (6.28)

Since trade is more valuable in state ! than in state !̄, we have W ∗ = S"q∗#−
!q∗ > S"q̄∗# − !̄q̄∗ = (W ∗. Solving (6.27) and (6.28) therefore yields U ∗ = t∗ −
!q∗ = "1− .#"W ∗ − (W ∗# > 0 and (U ∗ = t̄∗ − !̄q̄∗ = −."W ∗ − (W ∗# < 0.

14Indeed, in figure 6.6, we see that the agent makes zero profit in both states of nature and thus
receives full insurance.
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Figure 6.10: Unique Nash Implementation with Risk Aversion

In figure 6.10, we have represented the out of equilibrium contracts "t̂1% q̂1#
and "t̂2% q̂2#, which uniquely implement the first-best allocation rule. Proceeding
as in Section 6.3, these contracts must again satisfy the following constraints:

t̂1 − !q̂1 < t∗ − !q∗% (6.29)

t̂1 − !̄q̂1 > t∗ − !̄q∗% (6.30)

S"q̄∗#− t̄∗ > S"q̂1#− t̂1( (6.31)

and

t̂2 − !̄q̂2 < t̄∗ − !̄q̄∗% (6.32)

t̂2 − !q̂2 > t̄∗ − !q̄∗% (6.33)

S"q∗#− t∗ > S"q̂2#− t̂2' (6.34)

We let the reader check that the set E (crossed area) (resp. F (dotted area))
of possible values of "t̂1% q̂1# (resp. (t̂2% q̂2)) satisfying the constraints (6.29) to (6.31)
(resp. (6.32) to (6.34)) can be represented as in figure 6.10. In particular, since
the areas E and F now have a nonempty intersection, "t̂1% q̂1# can be chosen equal
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to "t̂2% q̂2#. Risk aversion on the principal’s side tends to simplify the mechanisms
that can be used to implement the first-best.

The above construction may appear somewhat pointless, because simple
incentive contracts $t"q#& also achieve the first-best. However, it can be easily
extended to common value environments where S"·# is also a function of !%S"q% !#,
and when incentive contracts may run into the difficulties of nonresponsiveness
(see sections 2.10.2 and 2.11.1).

6.6 Concluding Remarks

The overall conclusion of this chapter is that the nonverifiability of the state of
nature is not enough to create any transaction cost in contracting if a benevolent
court of law is available and the trading partners are fully rational. Indeed, the
principal can design games whose unique equilibria implement the first-best allo-
cation despite the inability to directly condition contracts on the value of the state
of nature.

Bounded rationality and/or limits in the commitment power or the benevo-
lence of the court of law restrict the practical validity of the conclusions reached
in this chapter even more than those obtained with adverse selection and moral
hazard. This is because of the complexity of the mechanisms needed, which opens
more opportunities for mistakes and manipulations.

However, assuming that only nonconditional contracts signed ex ante and fol-
lowed by renegotiations are feasible is not satisfactory either, as the example of
simple incentive contracts clearly shows. Finding a middle way with a fundamen-
talist approach requires proper modelling of bounded rationality and/or the court
of law’s behavior, which is not yet available. Various shortcuts have been proposed
in the literature, such as considering only property rights on the use of the assets
owned or imposing on contracting the inability to commit not to renegotiate. The
analysis of these approaches,15 although briefly sketched in chapter 9, is outside
the scope of this volume.

15See the special issue of the Review of Economics Studies (January 1999)



7 Mixed Models !

The pure models of chapter 2 for adverse selection, chapter 4 for moral hazard
and chapter 6 for nonverifiability were highly stylized contracting settings. Each
of those models aimed at capturing a single dimension of the incentive problems
that may be faced by a principal at the time of designing the contract for his
agent. In those chapters, the analysis of each of these respective paradigms has
already provided a number of important insights that concern, on the one hand,
the conflict (if any) between allocative efficiency and the distribution of the gains
from trade and, on the other hand, the form of the optimal compensation schedule.
Moreover, our investigation of more complex models than those of chapters 2 and
4 has also shown how the insights gleaned from these simple models carry over in
more complex economic environments.1

In real world settings, contracts are rarely designed with the sole objective
of solving one incentive problem. Most often, the principal’s control of the agent
requires that they deal simultaneously with both adverse selection and moral haz-
ard, or with both the nonverifiability of the state of nature and moral hazard. In

1See chapter 3 for adverse selection and chapter 5 for moral hazard.
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those complex environments, the most important question is, how do the agency
costs due to the different paradigms interact? More precisely, we would like to
assess whether the lessons from the pure models continue to hold in those more
complex environments and, if they do not hold anymore, we would like to under-
stand in which directions those lessons should be modified.

The aim of this chapter is not to give a complete overview of the huge and
extremely heterogeneous literature that analyzes settings where several paradigms
are useful to understand the economic problem at hand. Instead, we have tried
to isolate three important lessons from those models. More specifically, we assess
whether blending together more incentive problems increases or decreases alloca-
tive distortions. This simple criterion allows us indeed to clarify somewhat the
rather noisy messages of these mixed models.2

Lesson 1: Adding the agency costs of the different paradigms may decrease
allocative efficiency. First consider a model where the agent knows his type per-
fectly before contracting with the principal and performing a task on his behalf.
For instance, as in chapter 2, an agent who is privately informed of his marginal
cost of production may be supplying a good for the principal but may also exert
some costly and nonobservable effort affecting the probability that an efficient trade
takes place. Thus adverse selection occurs before moral hazard. With a risk-neutral
agent protected by limited liability, we know from chapter 4 that the principal
cannot costlessly structure the payments given to the agent for providing the moral
hazard incentive. A limited liability rent must be given to the agent to induce
effort provision. This rent plays the role of an added fixed cost from the principal’s
point of view. Inducing participation by the agent now becomes more difficult.
The conflict between the participation and the adverse selection incentive con-
straints is thus exacerbated by moral hazard. This leads to possibly more shutdowns
of types and to greater allocative distortions than in the absence of any moral
hazard.

Insurance contracts are archetypical examples of contracts designed to solve
simultaneously an adverse selection problem and a moral hazard problem. A risk-
averse driver often has private information on how good a driver he is and also
how safely he drives. To induce the high-risk agent to reveal his probability of
accident, we saw in chapter 3 that the low-risk agent must receive less than full

2Of course, as we have seen in chapter 2, allocative efficiency is not the principal’s criterion for
evaluating different contracting environments. However, taking the principal’s objective as a criterion
would lead to a straightforward conclusion, because adding incentive problems always leads to a
more (at least weakly) constrained problem from the principal’s point of view.
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insurance. Under pure moral hazard, both types of agents should instead receive
incomplete insurance in order to induce them to exert safety care. When adverse
selection takes place before moral hazard, the mere fact that the high-risk agent
should now bear some risk to solve the moral hazard problem makes that agent’s
adverse selection rent more costly for the principal. This leads to more distortion
for the low-risk agent, who now bears an even greater amount of risk than under
pure adverse selection.

The general insight gleaned from these latter two models is that solving the
moral hazard problem ex post leads the principal to introduce distortions in the
agent’s payoff that increase the cost of his adverse selection information rent. This
leads to further allocative distortions and to a reduction in the expected gains from
trade with respect to the case of pure adverse selection.

Lesson 2: Adding the agency costs of the different paradigms may improve
allocative efficiency. Let us now consider the case where moral hazard takes place
before adverse selection. For instance, an agent may carry out, on behalf of the
principal, an effort that is privately known by the agent and stochastically affects the
value of trade. The simplest way to do so is to merge the basic models of chapters
2 and 4. By choosing a nonobservable and costly effort, the agent increases the
probability that a low marginal cost is realized. Contrary to chapter 4, we now
assume that the random state of nature, i.e., how large the gains are from trade,
is a piece of information that is privately learned by the agent. In such a context,
the principal must offer a contract with a double objective in mind. On the one
hand, the contract must provide the agent with enough incentives to exert effort
at the ex ante stage. On the other hand, the contract must also induce the agent
to reveal his private information ex post.

Of course, ex ante contracting has no cost for the principal if he deals with
a risk-neutral agent. Both adverse selection and moral hazard can be solved cost-
lessly by making the agent residual claimant for the value of trading with the
principal, as we have seen in chapters 2 and 4. Hence, a second-best analysis
arises only with risk aversion or limited liability. To fix ideas, we consider the
case of a risk-neutral agent who is protected by limited liability. One of the main
lessons of chapter 2 is that the agent should receive a higher rent when he is
efficient in order to satisfy his adverse selection incentive compatibility constraint.
It is precisely this rent differential that also helps the principal to incentivize
the agent to exert effort. The rent necessary to solve the adverse selection prob-
lem may be either below or above the limited liability rent necessary to solve
the moral hazard problem. Different regimes of optimal contracts can be found,
depending on the parameters of the model. To solve the moral hazard problem,
the principal might have to raise the agent’s rent, and the principal does so by



268 • Chapter 7

increasing the volume of trade. Then, the interplay between adverse selection and
moral hazard improves allocative efficiency with respect to the case of pure adverse
selection.

Lesson 3: Adding the agency costs of the different paradigms may have no new
impact on allocative efficiency. We already know from the analysis in chapter 6 that
the nonverifiability of the state of nature does not put any real constraint on the
ability of the contractual partners to achieve the first-best by agreeing to contract,
before the state of nature is realized, on a game form to be played ex post, i.e.,
once they both know which state of nature has been realized. In addition, we
suppose that the agent can perform a nonobservable effort affecting the probability
that an efficient trade takes place. If the state of nature were verifiable, this setting
would be akin to a pure moral hazard model similar to chapter 4, and the principal
and the agent would sign the pure moral hazard contract, which leads to an
allocative distortion that is now well known. Once the nonverifiability of the state
of nature is taken into account, the principal and the agent can agree, on top of
this moral hazard contract, on a game form solving the nonverifiability constraint
ex post, just as was done in chapter 6. We are then back to a standard pure moral
hazard problem. The main point to stress here is that not all of the solutions
to the nonverifiability problem perform equally well now. Indeed, we will show
that Nash implementation strictly dominates both incentive contracts and ex post
negotiations.

In section 7.1, we first analyze the case of adverse selection taking place
before moral hazard. By means of an example, we show that solving the moral
hazard problem exacerbates the allocative distortions due to adverse selection. This
section also provides a version of the revelation principle, generalizing its applica-
bility to models with both adverse selection and moral hazard. Lastly, we analyze
false moral hazard problems, where the moral hazard and the adverse selection
unknowns are blended together, in a deterministic way, into a single observa-
tion available for contracting. These models, which have been used extensively in
the regulation and optimal taxation literatures, end up being pure adverse selec-
tion models. However, the interplay between moral hazard and adverse selection
enriches considerably the interpretation of the models. In section 7.2, we change
the timing above and focus on models where moral hazard takes place before
adverse selection. We show that these models tend to reduce allocative ineffi-
ciency with respect to the case of pure adverse selection. Finally, in section 7.3
we analyze the case of moral hazard followed by the nonverifiabilty of the state
of nature. Here we show that nonverifiability does not put a real constraint on
contracting.
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7.1 Adverse Selection Followed by Moral Hazard

In the standard moral hazard framework of chapter 4, it was first assumed that
the agent had no private information of his own. In insurance markets, insurees
often have some prior information about how risky they are before exerting any
effort to prevent this risk. Similarly, in credit markets, a borrower may know the
average return of his project before exerting any effort and sharing the resulting
profits with a lender. Those examples illustrate how frequent adverse selection
and moral hazard are intertwined. A general formulation of these mixed models,
where adverse selection takes place before moral hazard, would be cumbersome
to present. However, a few dimensions of the analysis can already be singled out
by studying some examples.

7.1.1 Random Surplus and Screening

In the pure adverse selection framework of chapter 2, the principal was able to
verify and contract on all the agent’s actions. Of course, when moral hazard also
occurs, this complete contractibility is no longer possible: some actions of the
agent remain, by definition, under the agent’s sole control.

Consider a situation where moral hazard affects the random benefit that the
principal draws from his relationship with the agent. In the mixed model we ana-
lyze below, the principal already has a screening device at his disposal to start with.
The random benefit S̃"q# he gets from dealing with the agent depends indeed on
an observable, the agent’s production q, which can be used to screen the agent’s
type.

Let us thus assume that, with probability $"e# (resp. 1 − $"e#) the benefit
of production obtained by the principal is Sh"q# (resp. Sl"q#) with Sh"q# > Sl"q#,
where the moral hazard variable e belongs to %0& 1'. Of course, we assume that
Si"·#, for i = h& l, is increasing and strictly concave (S′

i > 0 and S′′
i < 0) and satis-

fies the Inada condition S′
i"0# = #. To motivate this random surplus model, one

can think of effort as improving the quality of the product sold by the agent so that
it generates a higher surplus. Of course, exerting effort will cost the agent a non-
monetary disutility ("e# with the usual normalizations ("0# = 0 and ("1# = (.
Moreover, the agent produces at a constant marginal cost ). As always, we assume
that ) belongs to * = %)& )̄' with respective probabilities + and 1− +. For simplic-
ity, we also assume that the agent is risk neutral and protected by limited liability.

In this framework, the principal has two observables with which he can screen
the agent’s efficiency parameter; in fact, this is a special case of the multi-output
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Figure 7.1: Timing of Contracting with Adverse Selection Followed by Moral Hazard

framework studied in section 2.10. These two observables are first, whether the
good sold has a high or a low quality and second, the amount of this good that is
actually produced. Hence, the contract offered to the agent is a priori stochastic;
the transfer received by the agent depends on the realized quality of the good.

The timing of contracting with adverse selection being followed by moral
hazard is illustrated in figure 7.1.

Typically, a direct revelation mechanism is thus a menu of triplets %"th")̃#,
tl")̃#& q")̃##')̃∈* stipulating the transfers th and tl made to the agent depending on
the quality of the good and an output q as functions of the agent’s report on his
type, )̃.3 Moreover, we assume that contracting takes place at the interim stage
(date t = 1), i.e., after the agent has learned his private information, but before
the agent exerts effort.4 In what follows, we also assume that the principal finds it
valuable to always induce a high level of effort from both types of agent.5 Using
our usual notations, the efficient agent’s adverse selection incentive constraint is
written as:

U = $1th + "1− $1#tl − )q − (

≥ max
e∈%0&1'

{
$"e#t̄h + "1− $"e##t̄l − )q̄ − ("e#

}
& (7.1)

with, in addition, the moral hazard incentive constraint

th − tl ≥
(

,$
& (7.2)

so that the efficient agent exerts a positive effort.

3For the time being, we leave the question of whether the revelation principle applies in our
framework unanswered and refer to section 7.1.2 below for a formal proof that shows that it does.

4Note that the agent must decide how much to produce before he knows what will be the quality
of the good. Transfers are instead delayed until the quality of the good is learned. Thus, only transfers
are stochastic.

5Hence, contrary to chapter 4, our focus is not on determining the conditions that ensure that the
high effort level is second-best optimal.
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Similarly, the inefficient agent’s adverse selection incentive constraint
becomes

&U = $1t̄h + "1− $1#t̄l − )̄q̄ − (

≥ max
e∈%0& 1'

$"e#th + "1− $"e##tl − )̄q − ("e#& (7.3)

and his moral hazard incentive constraint is

t̄h − t̄l ≥
(

,$
- (7.4)

Since contracting takes place at the interim stage, the agent’s participation
constraints are written as:

U ≥ 0 (7.5)

&U ≥ 0- (7.6)

Finally, the following limited liability constraints must be satisfied. For the
efficient type [(7.7), (7.8)] and for the inefficient type [(7.9), (7.10)]:

uh = th − )q ≥ 0& (7.7)

ul = tl − )q ≥ 0& (7.8)

ūh = t̄h − )̄q̄ ≥ 0& (7.9)

ūl = t̄l − )̄q̄ ≥ 0- (7.10)

The number of constraints that we are facing to solve this problem is already
huge, and our first goal should be to get rid of some of them. A preliminary remark
is useful to simplify the analysis significantly. Indeed, focusing on cases where the
limited liability constraints are binding for both types, note that both types must
be given the same transfer differential th − tl to exert effort at a minimal cost for
the principal, namely t̄h − t̄l = th − tl = (

,$
- Hence, at the optimum the incentive

constraints (7.1) and (7.3) can be simplified to yield, respectively,

U = ul +
$0(

,$
≥ ūl + ,)q̄ + $0(

,$
= &U + ,)q̄ (7.11)

and

&U = ūl +
$0(

,$
≥ ul − ,)q + $0(

,$
= U − ,)q- (7.12)

We let the reader check that the only relevant constraints are the adverse
selection incentive compatibility constraint of an efficient type (7.11) and the lim-
ited liability constraint of the inefficient type (7.10). When the expected payments
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to the agent $1th + "1 − $1#tl and $1t̄h + "1 − $1#t̄l in both states of nature are
replaced by, respectively, U + )q + ( and &U + )̄q̄ + (, the principal’s problem is
then written as:

max
%"q&ul#."q̄&ūl#'

+

(
$1Sh"q#+ "1− $1#Sl"q#− )q − ul −

$0(

,$
− (

)
(P ):

+ "1− +#

(
$1Sh"q̄#+ "1− $1#Sl"q̄#− )̄q̄ − ūl −

$0(

,$
− (

)

subject to (7.10) and (7.11).

This optimization leads immediately to ul = ,)q̄ + ūl and ūl = 0. Hence,
we can compute the rent of each type of agent as, respectively,

U = ,)q̄ + $0(

,$
& (7.13)

and

&U = $0(

,$
- (7.14)

The reader will have recognized that these rents are precisely the informa-
tion rents obtained under pure adverse selection (,)q̄ and 0 respectively, as in
chapter 2), added up with the limited liability rent obtained under pure moral haz-
ard ($0(

,$
, as in chapter 4). In this simple model with a risk-neutral agent protected

by limited liability constraints, the agent’s rent coming from the mixed model is
simply obtained by adding up the respective rents due to adverse selection and
moral hazard.

Solving for the optimal contract is now straightforward. The optimal outputs
are obtained by equating expected marginal benefits and marginal virtual costs.
For the efficient type, we find no output distortion as in a pure adverse selection
model. Indeed, we have qSB = q∗, where the first-best production now takes into
account the random nature of quality and is defined by

$1S
′
h"q

∗#+ "1− $1#S
′
l"q

∗# = )- (7.15)

For the inefficient type, we have instead

$1S
′
h"q̄

SB#+ "1− $1#S
′
l"q̄

SB# = )̄ + +

1− +
,)- (7.16)

The production of the inefficient type is distorted downward below the first-
best output q̄∗ given by $1S

′
h"q̄

∗# + "1 − $1#S
′
l"q̄

∗# = )̄. As under pure adverse
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selection, this downward distortion helps to reduce the agent’s information rent
coming from his private information on ).6

The reader might think that adding moral hazard in this model has no alloca-
tive impact on the distortion due to adverse selection, which is exactly the same
as if effort was observable. This is not completely true. Indeed, the output q̄SB is
only the solution as long as shutdown of the least efficient type is not optimal. The
no-shutdown condition is now written as

+

(
$1Sh"q

∗#+ "1− $1#Sl"q
∗#− )q∗ − ( − ,)q̄SB − $0(

,$

)

+ "1− +#

(
$1Sh"q̄

SB#+ "1− $1#Sl"q̄
SB#− )̄q̄SB − ( − $0(

,$

)

> +

(
$1Sh"q

∗#+ "1− $1#Sl"q
∗#− )q∗ − ( − $0(

,$

)
- (7.17)

Simplifying, we find that the inefficient agent produces as long as the expected
surplus he generates is greater than the sum of the adverse selection rent left to
an efficient type and the limited liability rent left to the inefficient type. This
condition is written as

"1− +#
(
$1Sh"q̄

SB#+ "1− $1#Sl"q̄
SB#− )̄q̄SB − (

)
︸ ︷︷ ︸

Expected surplus with a )̄-type

−+ ,)q̄SB

︸ ︷︷ ︸
Adverse
selection
rent of the
)-type

−"1− +#
$0(

,$︸︷︷︸
Limited
liability
rent of

the )̄-type

> 0-

With this condition, we see the role played by moral hazard in hardening
the adverse selection problem. Inducing effort requires giving up a limited liability
rent to the inefficient type. This rent plays exactly the same role as a fixed cost in
a pure adverse selection framework (see section 2.6.3). It hardens the )̄-agent’s par-
ticipation constraint and makes shutdown of the least efficient type more valuable
for the principal. From this example, we can thus conclude that moral hazard
hardens the adverse selection incentive problem. We state this as a general (but
rather imprecise) proposition.

Proposition 7.1: In mixed models with adverse selection before moral haz-
ard, preventing moral hazard hardens the adverse selection problem, and
allocative distortions are greater than under pure adverse selection.

6Note that the Inada condition ensures that q̄SB always remains positive.
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Laffont (1995) analyzes a related model of environmental regulation
where Sl"q# = Sh"q# − d"q# and d"q# is an environmental damage.

The added complexity of his model comes from the fact that the disutility of
effort depends directly on the level of production.

7.1.2 The Extended Revelation Principle

In section 7.1.1, we have studied a simple example, assuming a priori that the
revelation principle holds in this context with both adverse selection and moral
hazard. Now we will prove this principle, still using the basic structure of the
model of section 7.1.1 for pedagogical purposes. The framework is nevertheless
slightly more general, because we now allow the probability of having a high
quality good to be a function of both the agent’s effort e and his type ). This added
complexity turns out to be a useful intermediate step before analyzing the more
complex model of the insurance market covered in section 7.1.3.

Just as in section 2.9, let us first consider a general mechanism in this con-
text. As usual, a mechanism stipulates a message space ! and an outcome func-
tion. Because the quality of the good is observed, that mechanism is a triplet
%t̃h"m#& t̃l"m#& q̃"m#' stipulating a transfer for each quality and an output level as
functions of the agent’s message m, which belongs to !.

Our goal is to show a revelation principle in such a context. In order to do
so, we must first describe the agent’s behavior in front of any such mechanism.
This description is more complex than in chapter 2. Indeed, given his type, the
agent must now choose not only a message to be sent to the principal but also,
given this message, what is the best effort that he should exert. Denoting by m∗")#
and e∗")# the optimal message and effort,7 we have

"m∗")#& e∗")## ∈ argmax
"m̃& ẽ#

$")& ẽ#t̃h"m̃#+ "1− $")& ẽ##t̃l"m̃#− )q̃"m̃#− ("ẽ#

for all ) in *& ẽ in %0& 1'& and m̃ in !- (7.18)

Rewriting (7.18), we find

$")& e∗")##t̃h"m
∗")##+ "1− $")& e∗")###t̃l"m

∗")##− )q̃"m∗")##− ("e∗")##

≥ $")& ẽ#t̃h"m̃#+ "1− $")& ẽ##t̃l"m̃#− )q̃"m̃#− ("ẽ#

for all ) in *& ẽ in %0& 1' and m̃ in !- (7.19)

7The optimal message and effort may not be unique. The revelation principle we outline in propo-
sition 7.2 holds for any possible selection within these optimal choices. As the agent is indifferent
between any of these selections, the one that maximizes the principal’s payoff is selected.
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Just as in section 2.9, let us construct a direct revelation mechanism
%th")̃#& tl")̃#& q")̃#', as follows th")̃# = t̃h"m

∗")̃##, tl")̃# = t̃l"m
∗")̃##, and q")̃# =

q̃"m∗")̃## for all )̃ in *. We can now state our version of the revelation principle.

Proposition 7.2: There is no loss of generality in restricting the principal
to offer a truthful direct revelation mechanism %th")̃#& tl")̃#& q")̃#')̃∈* and
to recommend a choice of effort e∗")̃#. With such a mechanism, the agent
truthfully reveals his type to the principal and obeys the recommendation
on the choice of effort.

Proof: The proof is straightforward and follows almost the same path as that of
proposition 2.2. Using (7.19) and the definition of the direct revelation mechanism
%th")̃#& tl")̃#& q")̃#' associated with any mechanism %t̃h"m̃#& t̃l"m̃#& q̃"m̃#', we have

$")& e∗")##th")#+ "1− $")& e∗")###tl")#− )q")#− ("e∗")##

= $")& e∗")##t̃h"m
∗")##+ "1− $")& e∗")###t̃l"m

∗")##− )q̃"m∗")##− ("e∗")##

≥ $")& ẽ#t̃h"m̃#+ "1− $")& ẽ##t̃l"m̃#− )q̃"m̃#− ("ẽ#

for all ) in *& ẽ in %0& 1' and m̃ in !- (7.20)

This latter inequality being true for all m̃, it is in particular true for m̃ = m∗")̃#
for all )̃ in *. Hence, we have

$")& e∗")##th")#+ "1− $")& e∗")###tl")#− )q")#− ("e∗")##

≥ $")& ẽ#th")̃#+ "1− $")& ẽ##tl")̃#− )q")̃#− ("ẽ#&

for all pairs ")& )̃# in *2 and ẽ in %0& 1'- (7.21)

This latter constraint means that the agent with type ) prefers to reveal his
type to the principal and obey his recommendation on what should be the level
of effort.

The revelation principle that we proved above has the same flavor as in a
pure adverse selection framework. The logic is similar: the principal can always
replicate the agent’s choices by incorporating the agent’s optimal message strategy
into the initial contract he offers. However, on top of requesting that the agent
sends a truthful message on his type, the principal also recommends now that the
agent choose a particular level of effort.

Remark: Instead of insisting on the principal recommending a choice
of effort to the agent, one could view this choice as being completely
delegated and incorporated into the adverse selection problem in a
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way that affects the different parties’ utility functions. To see this point
more precisely, let us define the agent’s indirect utility function UI"·#
as

UI")& q& th& tl# = max
e∈%0& 1'

$")& e#th + "1− $")& e##tl − )q − ("e#-

(7.22)

The revelation principle can be directly applied at this stage to
get the following pure adverse selection incentive compatibility con-
straints:

UI")& q")#& th")#& tl")## ≥ UI")& q")̃#& th")̃#& tl")̃##&

for all ")& )̃# in *2- (7.23)

The difficulty for the modeller comes from the fact that these
incentive compatibility constraints may not be as easily ordered as
those of the pure adverse selection models in chapters 2 and 3. The
indirect utility function UI"·# can fail to satisfy the Spence-Mirrlees
property even in highly structured settings.

Myerson (1982) developed the extended revelation principal above
in a more abstract setting. He used the expression obedience to char-

acterize the fact that the agent must follow the principal’s instructions on his
choice of effort.

7.1.3 Insurance Contracts with Adverse Selection and
Moral Hazard

Insurance contracts are good examples of contracts designed to solve simultane-
ously an adverse selection problem (how risky the agent is), and a moral hazard
problem (how to induce enough safety care from the agent). We have already
touched on the analysis of each of those two problems separately in chapters 3
and 4. This section is aimed at explaining how those two problems interact.

Remark In view of the analysis of section 7.1.1, with an insurance
contract the principal now has only two instruments, namely different
transfers depending on whether an accident occurs or not, to perform
two tasks: incentivizing the agent to exert effort and inducing infor-
mation revelation. This creates much of the complexity of this kind of
model.
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Let us assume that a monopoly insurer, the principal, offers an insurance
contract to agents having an initial wealth w. By having an accident, an agent
incurs a monetary loss of d. There is a continuum of mass one of agents who differ
ex ante according to their risk type ). To make things simpler, we assume that, for
each agent, ) belongs to * = %)& )̄' and that these types are independently drawn
with respective probabilities8 1− + and +- Thus )̄ (resp. )) corresponds to a high
(resp. low) risk for all levels of the moral hazard variable e. By exerting an effort
e, an agent with type ) increases his probability $")& e# of not having an accident.
We have thus $)")& e# < 0 and $e")& e# > 0 for all pairs ")& e#. Moreover, for
technical reasons, we will assume that $")& 0# > $")̄& 1#.9 Of course, the agent
suffers from a disutility ("e# when exerting an effort. As usual, we assume that
effort belongs to %0& 1', with ("1# = ( and ("0# = 0.

The insurance company requests a payment tn from the agent when no acci-
dent occurs and gives a transfer ta in the case of an accident. Its objective function
is thus V = $")& e#tn − "1 − $")& e##ta. With these specifications, an agent with
type ) who exerts effort e gets an expected utility U = $")& e#u"w − tn# + "1 −
$")& e##u"w − d + ta#− ("e#, where u"·# is the agent’s Von Neuman-Morgenstern
utility function defined on monetary gains (u′ > 0 and u′′ < 0).

With our usual notations, a direct revelation mechanism writes as a pair
%"t̄n& t̄a#. "tn& ta#'.

Let us also assume that the damage d is large enough. The benefits of avoiding
a damage are then so large that inducing the high level of effort is always optimal
for the insurance company. When he exerts a high effort and truthfully reports his
type to the principal, the high-risk agent gets an expected utility

&U = $")̄& 1#u"w − t̄n#+ "1− $")̄& 1##u"w − d + t̄a#− (- (7.24)

Similarly, the low-risk agent gets

U = $")& 1#u"w − tn#+ "1− $")& 1##u"w − d + ta#− (- (7.25)

Inducing both types to participate in this contract requires that the following
participation constraints are satisfied:

&U ≥ &U0 = max
e∈%0& 1'

$")̄& e#u"w#+ "1− $")̄& e##u"w − d#− ("e# (7.26)

and

U ≥ U 0 = max
e∈%0&1'

$")& e#u"w#+ "1− $")& e##u"w − d#− ("e#- (7.27)

8Note that )̄ now refers to the “good” type, i.e., that which will receive full insurance under pure
adverse selection.

9This assumption simply means that the ranking between agents is strong.
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To simplify the analysis, we also assume that

u"w#− u"w − d# ≥ max
)∈%)& )̄'

(
(

,$")#

)
& (7.28)

where ,$")# = $")& 1#− $")& 0#. This assumption simply means that both types
are willing to exert a positive effort in the absence of any insurance contract.
In this case, the right-hand sides of (7.26) and (7.27) are respectively given by
&U0 = $")̄& 1#u"w# + "1 − $")̄& 1##u"w − d# − ( and U 0 = $")& 1#u"w# + "1 −
$")& 1##u"w − d# − (. Note that we have U 0 > &U0, because $")& 1# > $")̄& 1#
and u"w# > u"w − d#.

Because of moral hazard, inducing effort by both types calls for having the
following moral hazard incentive constraints satisfied when agents report their types
truthfully to the principal. For a high-risk agent, we get

u"w − t̄n#− u"w − d + t̄a# ≥
(

,$")̄#
- (7.29)

For a low-risk agent, we have

u"w − tn#− u"w − d + ta# ≥
(

,$")#
- (7.30)

Truthful revelation is obtained when the following adverse selection incentive
constraints are satisfied: for the high-risk agent,

&U ≥ max
e∈%0& 1'

$")̄& e#u"w − tn#+ "1− $")̄& e##u"w − d + ta#− ("e#. (7.31)

and for the low-risk agent,

U ≥ max
e∈%0& 1'

$")& e#u"w − t̄n#+ "1− $")& e##u"w − d + t̄a#− ("e#- (7.32)

Remark: As for (7.1) and (7.3), the complexity of the latter two incen-
tive constraints already shows some of the technical difficulties faced
by the economist in modelling mixed environments. Indeed, when
he considers deviating along the adverse selection dimension and not
telling the truth to the principal anymore, the agent may also choose
to change his supply of effort. Even if inducing a high effort is optimal
for the principal when both types tell the truth, it is not necessary for
the mechanism to require an agent to continue to exert this high effort
if the agent lies about his type. Even in this simple environment, the
right-hand sides of (7.31) and (7.32) are hard to describe, because the
values of these maximands depend on how an agent with a given risk
type changes his effort supply when he chooses different insurance
contracts.
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To simplify this problem, let us assume that effort increases the probability
that no accident occurs more when the agent is high risk than when he is low
risk. This means that the following condition must be satisfied:

,$")# < ,$")̄#- (7.33)

This condition ensures that the moral hazard incentive constraint for a high-
risk type (7.29) is easier to satisfy than the one associated with a low-risk type (7.30).
In this case, inducing effort from the low-risk agent requires a wedge between
u"w − tn# and u"w − d + ta# that is large enough to ensure that a high-risk agent
also prefers to exert a high effort, even when he lies and mimics a low-risk agent.
Indeed, we have u"w − tn#− u"w − d + ta# ≥ (

,$")#
> (

,$")̄#
. This condition greatly

simplifies the writing of the adverse selection incentive constraint for the high-risk
agent, which now becomes

&U ≥ $")̄& 1#u"w − tn#+ "1− $")̄& 1##u"w − d + ta#− (-10 (7.34)

Let us now introduce a new set of variables: ūa = u"w − d + t̄a#, ūn = u"w −
t̄n#, ua = u"w − d + ta#, and un = u"w − tn#. These new variables will help us
describe the set of relevant constraints in a simpler way. As usual, we denote the
inverse function of u"·# by h = u−1. Using these new variables, the expected profit
of the insurance company is written as

+"$")̄& 1#t̄n − "1− $")̄& 1##t̄a#+ "1− +#"$")& 1#tn − "1− $")& 1##ta#- (7.35)

Using that t̄n = w − h"ūn# (resp. tn = w − h"un#) and −t̄a = w − d − h"ūa#
(resp. −ta = w − d − h"ua#), we obtain

+/$")̄& 1#"w − h"ūn##+ "1− $")̄& 1##"w − d − h"ūa##0

+ "1− +#/$")& 1#"w − h"un##+ "1− $")& 1##"w − d − h"ua##0

= w − +/d"1− $")̄& 1##+ $")̄& 1#h"ūn#+ "1− $")̄& 1##h"ūa#0

− "1− +#/d"1− $")& 1##+ $")& 1#h"un#+ "1− $")& 1##h"ua#0- (7.36)

The high-risk agent’s adverse selection incentive constraint (7.34) now becomes

$")̄& 1#ūn + "1− $")̄& 1##ūa ≥ $")̄& 1#un + "1− $")̄& 1##ua- (7.37)

10We focus as usual on the high-risk agent’s incentive constraint.
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The high-risk agent’s moral hazard incentive constraint is

ūn − ūa ≥
(

,$")̄#
- (7.38)

The low-risk agent’s moral hazard incentive constraint is written as

un − ua ≥
(

,$")#
- (7.39)

Finally, the low-risk agent’s participation constraint can be expressed as

$")& 1#un + "1− $")& 1##ua − ( ≥ U 0- (7.40)

Neglecting the other constraints, which will be checked only ex post, the
insurance company’s problem is written as

"P #1 max
%"ūa&ūn#."ua&un#'

w − +"d"1− $")̄& 1##+ $")̄& 1#h"ūn#+ "1− $")̄& 1##h"ūa##

− "1− +#"d"1− $")& 1##+ $")& 1#h"un#+ "1− $")& 1##h"ua##

subject to (7.37) to (7.40)-

Before solving this problem it is useful to recall the main features of the
optimal contracts found in the case of pure adverse selection and pure moral
hazard.

In figure 7.2, we have represented the indifference curves of the high- and
low-risk agents when they are forced to exert a positive effort, and this effort can
be verified by a court of law. The indifference curve of the agent with a low
probability of accident has a smaller slope than the indifference curve of an agent
with a high probability of accident.

As we have shown in section 3.3.2, if ) were perfectly known by the principal
the agent would receive the full insurance contracts A∗ and B∗. Under pure adverse
selection, however, the high-risk agent still receives full insurance at point BAS, but
the low-risk agent receives contract AAS and is now imperfectly insured. Moving
slightly away from A∗ to AAS entails only a second-order loss on the profit made
by the principal with the low-risk agent, because the latter is then subject only to
a small amount of risk. However, moving from A∗ to AAS also allows the principal
to reduce the information rent of the high-risk agent to the first order.11

11See section 2.6.2 for a similar argument in the case of a rent-extraction efficiency trade-off.
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Figure 7.2: Insurance Contracts: The Case of Pure Adverse Selection

Let us now turn to the case of pure moral hazard where effort is nonobservable
but the agent’s type is perfectly known to the insurance company. The indifference
curves of the different types now have a kink where the agent is indifferent between
exerting effort or not. Note that the assumption $")& 1# > $")& 0# for each type )
implies that the indifference curve of each type has a smaller slope (in absolute
value) when the agent exerts a positive effort than when he does not. Moreover,
since we have assumed that $")& 0# > $")̄& 1#, the indifference curves of the
two different types can only cross each other once.12&13 The analysis of chapter 4
has shown us that the insurance company would like to offer contracts AMH or
BMH to the agent, depending on his observable type, if the only issue was moral
hazard. Each of these contracts is lying on an indifference curve where a given

12Remember that the agent’s indifference curves have a kink with two portions that are straight
lines with respective slopes − "1−$")&1##

$")&1# above the incentive constraint un = ua + (
,$")# , and − "1−$")&0##

$")&0#
below this incentive constraint. The assumption $")& 0# > $")̄& 1# implies that the part of the low-
risk agent’s indifference curve below his incentive constraint has a smaller slope (in absolute terms)
than the part of the high-risk agent’s indifference curve above his incentive constraint.

13This single-crossing property plays the same role as the Spence-Mirrlees property in pure adverse
selection problems. It will help to classify the agent’s type by determining which type should attract
the other one when there is asymmetric information on ).
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Figure 7.3: Insurance Contracts: The Case of Pure Moral Hazard

type of agent is exactly indifferent between exerting effort or not. Of course, these
contracts are above the 45° line to induce effort. Therefore, they provide only
partial insurance to the agent, whatever his type (figure 7.3).

Under pure moral hazard, we could replicate the analysis of chapter 4, taking
into account that an agent with type ) has a nonzero reservation utility given
by U 0, to show that point AMH corresponds to the ex post utility levels uMH

n =
U 0 + ( + "1−$")&1##(

,$")#
and uMH

a = U 0 + ( − $")&1#(
,$")#

. Similarly, taking into account
that a )̄-agent has a nonzero reservation utility given by &U0, point BMH corresponds
to the ex post utility levels ūMH

n = &U0 + ( + "1−$")̄&1##(
,$")̄#

and ūMH
a = &U0 + ( − $")̄&1#(

,$")̄#
.

Let us finally consider the more complex case entailing both moral hazard
and adverse selection. Graphically, we see that the menu of contracts "AMH&BMH#
is no longer incentive compatible. Following the logic of the case with pure adverse
selection, the high-risk agent also would like to choose contract AMH in order to
increase his expected utility. The new level of utility that can be achieved by doing
so is obtained by moving up the indifference curve of a )̄-agent in a northeast
direction until it reaches point AMH .
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More formally, the high-risk agent wants to mimic the low-risk one and exert
a positive effort when

$")̄& 1#uMH
n + "1− $")̄& 1##uMH

a − ( = U 0 −
"$")& 1#− $")̄& 1##(

,$")#

> $")̄& 1#ūMH
n + "1− $")̄& 1##ūMH

a − (

= &U0-

This latter inequality is satisfied when

U 0 − &U0 = "$")& 1#− $")̄& 1##"u"w#− u"w − d##

>
"$")& 1#− $")̄& 1##(

,$")#
& (7.41)

which is true when assumption (7.28) holds.
To prevent the high-risk agent from lying, the principal offers the pair of con-

tracts "ASB&BSB# described in figure 7.4. Following the logic of the model with pure
adverse selection, the contract ASB offered to the low-risk agent entails more risk
than under pure moral hazard to reduce the costly information rent of the high-
risk type. Graphically, the indifference curve of a )̄-agent crosses the indifference
curve of a )-agent at a point ASB on the northwest of point AMH . The high-risk
agent is indifferent between contracts ASB and BMH , and the low-risk agent strictly
prefers ASB to BMH . Contract ASB entails imperfect insurance to induce this type
to exert an effort. It corresponds to an expected utility greater than &U0, to reward
the high-risk agent for having revealed his information. Importantly, and contrary
to the case of pure adverse selection, by moving from BMH to BSB the principal no
longer suffers from a second-order loss in profit but instead suffers from a first-order
loss. In order to solve the moral hazard, the low-risk agent must bear a strictly
positive amount of risk. Hence, AMH is no longer on the full insurance line but is
now strictly above it. Starting from such a point, and increasing the risk to move
towards ASB, will thus create a first-order loss of profit for the insurance company.

Although ASB lies strictly above the low-risk agent’s moral hazard incentive
constraint, it is nevertheless affected by moral hazard. Because of moral hazard,
the high-risk agent must bear some risk. This risk affects the cost of his informa-
tion rent from the principal’s point of view and makes it more costly. This cost
increase in turn has an impact on the risk borne by the low-risk agent to reduce
this rent.

To see more precisely how the low-risk agent’s risk is affected by the cost
increase, note first that the participation constraint (7.26) is slack. Second, the
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Figure 7.4: Insurance Contracts: Adverse Selection and Moral Hazard

adverse selection incentive compatibility constraint (7.37), the moral hazard incen-
tive constraint in (7.38), and the participation constraint of the low-risk agent (7.40)
are all binding at the solution to "P #. This yields the following expressions of the
second-best utilities of each type of agent in each state of nature:

un",u# = U 0 + ( + "1− $")& 1##,u (7.42)

ua",u# = U 0 + ( − $")& 1#,u (7.43)

ūn",u# = U 0 + ( + "1− $")̄& 1##
(

,$")̄#
− "$")& 1#− $")̄& 1##,u (7.44)

ūa",u# = U 0 + ( − $")& 1#
(

,$")̄#
− "$")& 1#− $")̄& 1##,u& (7.45)

where the dependence of those variables on ,u = un − ua, the risk borne by the
low-risk agent, is explicit.
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Inserting these expressions into the principal’s objective function yields a new
problem, which depends only on ,u:

"P ′#1 max
%,u'

w − +"d"1− $")̄& 1##+ $")̄& 1#h"ūn",u##+ "1− $")̄& 1##h"ūa",u###

−"1− +#"d"1− $")& 1##+ $")& 1#h"un",u##+ "1− $")& 1##h"ua",u###

subject to

,u ≥ (

,$")#
& (7.46)

where (7.46) is the low-risk agent’s moral hazard incentive constraint.
We assume that the latter constraint is slack at the optimum, so that optimiz-

ing with respect to ,u yields the following first-order condition, which implicitly
defines ,uSB as

h′"uSB
n #− h′"uSB

a # =
( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

×
[
$")̄& 1#h′"ūSB

n #+ "1− $")̄& 1##h′"ūSB
a #

]
- (7.47)

Because $")& 1# > $")̄& 1#, the right-hand side above is positive, and we
conclude that uSB

n − uSB
a = ,uSB > 0. Hence, the low-risk agent must bear some

risk, as in the case of pure adverse selection.
We leave it to the reader to check that, to ensure that the moral hazard

incentive constraint (7.46) is slack, a sufficient condition is that un"
(

,$")#
#&ua"

(
,$")#

#&

ūn"
(

,$")#
#, and ūa"

(
,$")#

# satisfy

h′
(
un

(
(

,$")#

))
− h′

(
ua

(
(

,$")#

))

<
( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

×
[
$")̄& 1#h′

(
ūn

(
(

,$")#

))
+ "1− $")̄& 1##h′

(
ūa

(
(

,$")#

))]
& (7.48)

where we note that un"
(

,$")#
# = uMH

n and ua"
(

,$")#
# = uMH

a .14

14If h"u# = u+ ru2

2 for u ≥ − 1
r and r > 0, the condition (7.48) rewrites as

r(

,$")#
<

( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

(
1+ r

(
U 0 + ( − "$")& 1#− $")̄& 1##

,$")#
(

))
&

and it holds if ( is small enough.
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Note that, when h′"·# is convex,15 Jensen’s inequality implies that the brack-
eted term on the right-hand side of (7.47) is greater than h′($")̄& 1#ūSB

n + "1 −
$")̄& 1##ūSB

a

)
= h′(U 0 + ( − "$")& 1#− $")̄& 1##,uSB

)
. Hence, we have

h′"uSB
n #− h′"uSB

a # >
( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

× h′(U 0 + ( − "$")& 1#− $")̄& 1##,uSB
)
- (7.49)

Using the same techniques as in section 3.3.2, one can check that, with pure
adverse selection, the insurance company would choose to let the low-risk agent
bear a positive risk ,uAS = uAS

n − uAS
a , such that

h′"uAS
n #− h′"uAS

a # =
( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

× h′"U 0 + ( − "$")& 1#− $")̄& 1##,uAS#& (7.50)

where uAS
n = un",u

AS# = U 0 + ( + "1 − $")& 1##,uAS and uAS
a = ua",u

AS# =
U 0 + ( − $")& 1#,uAS.

Under pure adverse selection, the principal’s objective function is concave
with respect to ,u. Hence, the derivative of this objective function, which is
proportional to

( +

1− +

) "$")& 1#− $")̄& 1##
$")& 1#"1− $")& 1##

h′"U 0 + ( − "$")& 1#− $")̄& 1##,u#

− h′"un",u##+ h′"ua",u##&

is decreasing in ,u. Using (7.49) and (7.50), it can immediately be concluded
that ,uSB > ,uAS.

With adverse selection and moral hazard, the risk borne by the low-risk agent
is greater than with pure adverse selection. The intuition behind this result is
straightforward. The high-risk agent must bear some risk to exert an effort, as
can easily be seen by comparing ūSB

n and ūSB
a . From the insurance company’s

point of view, dealing with a high-risk agent now costs $")̄& 1#h"ūn",u## + "1 −
$")̄& 1##h"ūa",u##. The marginal cost of decreasing the risk ,u borne by the
low-risk agent is thus −ū′

n",u#$")̄& 1#h′"ūn",u##− ū′
a",u#"1−$")̄& 1##h′"ūa",u##.

Taking into account the fact that −ū′
n",u# = −ū′

a",u# = $")& 1# − $")̄& 1#,
this marginal cost is equal to "$")& 1# − $")̄& 1##"$")̄& 1#h′"ūn",u## + "1 −
$")̄& 1##h′"ūa",u##, which is greater than "$")& 1# − $")̄& 1##h′"$")̄& 1#ūn",u# +

15This convexity is ensured when pu"x# < 3ru"x#, where pu"·# and ru"·# are respectively the coef-
ficients of absolute prudence and absolute risk aversion of the agent. This latter condition is, for
instance, satisfied when u"·# has constant absolute risk aversion.
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"1 − $")̄& 1##ūa",u## when h′"·# is convex. Note that "$")& 1# − $")̄& 1##h′"U 0 +
( − "$")& 1#− $")̄& 1##,u# represents exactly the marginal cost of decreasing the
risk borne by the low-risk agent under pure adverse selection. Hence, the random-
ness in the high-risk agent’s payoff, which is implied by moral hazard, makes the
insurance company less eager to decrease the risk borne by the low-risk agent even
more than under pure adverse selection. Point ASB lies on the north-west of AAS

on the indifference curve of the low-risk agent that corresponds to his expected
utility without any insurance U 0.

Putting together our findings here with those of section 7.1.1, we can finally
conclude that the agency costs of adverse selection and moral hazard are not
simply added together as in proposition 7.1 but may sometimes strongly reinforce
each other.

7.1.4 Models with “False Moral Hazard”

Another important class of mixed models that has received much attention in
the literature actually entails no randomness at all in the benefit obtained by the
principal when dealing with the agent. The link between effort, types, and the
contractual variable available to the principal is thus completely deterministic.
The difficulty of such models comes only from the fact that the observation of this
variable does not allow the principal to perfectly disentangle the type of the agent
and his level of effort. Typically, q is the observable and Q"·# is a deterministic
mapping between type and effort pairs into the set of feasible observables, so that
we have q = Q")& e#. Hence, given a target value of q, which can be imposed
by the principal, and given the agent’s type, effort is completely determined by
the condition e = E")& q#, where E"·# is implicitly defined by the identity q =
Q")&E")& q## for all ) in * and all q.

Those models can be classified under the name of false moral hazard, because
the agent has no real freedom in choosing his effort level when he has decided
how much to produce. This lack of freedom makes the analysis of these models
closely related to the analysis of models with pure adverse selection that were seen
in chapter 2. In order to illustrate false moral hazard, we present two models of
procurement and optimal taxation that have been extensively used in the literature.

Example 1: The Procurement Model
Let us assume that the principal requests only one unit of good "q in %0& 1'# from
the agent, yielding a gross surplus S. The cost of producing this unit is assumed to
be observable. Had we kept the usual specification C")& q# = )q, with ) being dis-
tributed in * = %)& )̄' according to the common knowledge distribution "+& 1− +#,
the knowledge of C = C")& 1# would give to the principal complete information
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on ).16 To avoid this indirect finding of the efficiency parameter ), let us assume
that the cost of producing one unit of the good is not only related to the efficiency
parameter ) but also to the agent’s effort e in an additive manner: C")& e# = )− e.
By exerting effort e, the agent reduces the cost of producing the good. The point
is that the observation of the cost C = ) − e is not enough to infer perfectly the
agent’s productivity parameter. Intuitively, an efficient agent ) can exert an effort
e − ,) and still produce at the same cost as a less efficient agent )̄ exerting also
effort e.

Let us denote by t the transfer received by the agent. Since cost is observable,
it is an accounting convention to have this transfer being net of cost. The princi-
pal’s profit is written as V = S− t−C. The agent’s utility becomes U = t− ("e#,
where ("·# is the disutility of effort, such that (′ > 0& (′′ > 0 and (′′′ > 0.17

Expressed only in terms of observables, the agent’s utility can finally be written as
U = t − (") −C#.

The reader will have recognized a pure adverse selection model with the
observable being the cost C. In this context, the revelation principle tells us that
there is no loss of generality in restricting the principal to offer direct revelation
mechanisms %"t")̃#&C")̃##')̃∈*, which are truth-telling.

With our usual notations, the following incentive constraints have to be sat-
isfied:

U = t − (") −C# ≥ t̄ − (") − &C# = &U +2"&C#& (7.51)

&U = t̄ − (")̄ − &C# ≥ t − (")̄ −C# = U −2"C#& (7.52)

where, from the assumptions made on (, 2"C# = (")̄−C#−(")−C# is decreas-
ing and convex in C. Also, the participation constraints are

U ≥ 0 (7.53)

&U ≥ 0- (7.54)

Note that the indifference curves of both types in the space "t&C# satisfy the
single-crossing property with those of the efficient type having a smaller slope.
The reader will have recognized the Spence-Mirrlees property, which allows us to

16See section 9.6.2 for the case where C can also be contracted upon.
17The condition on the third-derivative of ("·# ensures that 2"·#, defined below, is strictly convex

and that stochastic mechanisms are never optimal. See section 2.13.



Mixed Models • 289

conclude that, at the optimal contract, the relevant binding constraints are (7.51)
and (7.54). The principal’s problem is thus written as

"P #1 max
%"U&C#."&U&&C#'

S−+"C+(")−C#+U #−"1−+#"&C+(")̄− &C#+&U #&

subject to (7.51) and (7.54).

Both constraints above are binding at the optimum, and we have thus USB =
2"&CSB# and &USB = 0.

Optimizing with respect to the cost targets C and &C amounts to optimizing
with respect to the effort levels e and ē, which are indirectly requested from,
respectively, an efficient type and an inefficient type once one has recognized
that those cost targets and efforts are linked by the relationships C = ) − e and
&C = )̄ − ē. Expressing the principal’s objective function in terms of efforts and
taking into account that (7.51) and (7.54) are both binding at the optimum, the
principal’s problem becomes

"P ′#1 max
%e&ē'

S− +") − e + ("e#+ 3"ē##− "1− +#")̄ − ē + ("ē##&

where 3"e# = ("e#− ("e − ,)# is increasing and convex in e.
Optimizing with respect to e and ē yields, respectively,

(′"eSB# = 1 (7.55)

and

(′"ēSB# = 1− +

1− +
3′"ēSB#- (7.56)

Note that under complete information, both types would be asked to exert the
same first-best level of effort e∗ such that the marginal disutility of effort equals
the marginal cost reduction, i.e., (′"e∗# = 1. Under asymmetric information, only
the most efficient type continues to exert this first-best level of effort. In order to
reduce the costly information rent of this efficient type, the effort of the less effi-
cient type is reduced below the first-best, and ēSB < e∗.

These results are not surprising in light of the analysis presented in chapter 2.
However, here the novelty comes from the interpretation of the model. Because
the efficient agent is residual claimant for his effort, we will say that he is put on a
high-powered incentive scheme, which is akin to a fixed-fee contract. The inefficient
agent under-supplies effort because he is only partially residual claimant for his
effort. We will say that he is instead put on a low-powered incentive scheme, which
is closer to a cost-plus contract.

To better understand these denominations, let us assume that the princi-
pal offers a nonlinear contract T "C#, which is defined over all C in /0&+##.
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This mechanism should implement precisely the second-best allocation computed
above, when the agent finds it optimal to exert effort eSB and ēSB. Assuming dif-
ferentiability of the schedule T "C# at the points CSB and &CSB, we must have
T ′"CSB# = (′") − CSB# = (′"eSB# and T ′"&CSB# = (′")̄ − &CSB# = (′"ēSB#.18 Iden-
tifying with (7.55) and (7.56), we find that T ′"CSB# = 1 and T ′"&CSB# < 1. This
shows that only the efficient agent is given full incentives in cost reduction. The
inefficient agent gets only a function of his marginal effort in cost reduction and
thus under-provides effort.

Let us now turn to the shape of the nonlinear schedule T "C#. To get some
ideas on this shape, it is useful to look at figure 7.5.

To ensure that the agent, whatever his type, chooses the second-best cost
target computed by the principal, it is enough that the nonlinear transfer T "C# be
tangent to each indifference curve at points A and B. We may thus define T "C#
as

T "C# =






tSB − (′"e∗#"C −C∗# for C ≤ C∗ = ) − e∗&

(") −C#+2"&CSB# for C in /C∗& &CSB0&

t̄SB − (′"ēSB#"C − &CSB# for C ≥ &CSB = )̄ − ēSB-

Remark: In the case of a continuum of types, we will see in sec-
tion 9.5.1 that the optimal contract can sometimes be implemented
through a menu of linear contracts under rather weak assump-
tions.

This procurement model is due to Laffont and Tirole (1986, 1993),
who have built a whole theory of regulation and procurement with

elements of both moral hazard and adverse selection. Interesting issues arise
in the case where output is no longer zero or one, as in this model. Indeed, on
top of cost, output can then also be used as a screening variable. Depending
on the exact mapping between cost, output, effort, and types, the pricing
rule may or may not be distorted under asymmetric information. When it
is not, Laffont and Tirole (1993) argue that there is a dichotomy between
the pricing rule and the provision of incentives. Lazear (2000) uses a model
with false moral hazard to analyze the relation between performance pay and
productivity empirically. Lazear (2000) concludes: “workers respond to prices
just as economic theory predicts.”

18We will see in figure 7.5 that this differentiability is not exactly satisfied. In this case, the first-
order condition above is only true for the right-hand side derivative of T "C# at &CSB.



Mixed Models • 291

Figure 7.5: Implementation with a Nonlinear Schedule T "C#

Example 2: The Income Taxation Model
Let us now return to the optimal redistribution model studied in section 3.7.
One weakness of that model was the fact that the government was assumed to
be unable to observe the actual income of each agent. Standard taxation models
relax this somewhat unrealistic assumption. In order to still have a meaningful
informational problem, we must now assume that each agent produces an amount
q = )e when his productivity parameter is ) () belongs to * = %)& )̄') with
respective probabilities 1− + and +, and his effort e belongs to /0& ē0. Effort costs
the agent a disutility ("e# with (′ > 0& (′′ > 0 and (′′′ > 0 as before.

Normalizing the price of the production good at one, q also represents the
agent’s income, which is now assumed to be observable by the government. Note
the similarity of this model with the procurement model above. Instead of being
blended additively, type and effort are now blended multiplicatively into the observ-
able that is available to the principal. When exerting effort e and paying a tax 4 ,
the agent with productivity ) gets a utility U = q − 4 −("e#, or, replacing effort as
a function of the agent’s type and his income, U = q − 4 −(" q

)
#. Again, the reader

will have recognized that we are now back to a pure adverse selection model. In
this context, a taxation mechanism can be viewed as a menu %"4̄& q̄#. "4& q#', where
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q is the agent’s revenue and 4 is the corresponding tax payment. The incentive
compatibility constraints for this model are written as

&U = q̄ − 4̄ − (

(
q̄

)̄

)
≥ q − 4 − (

(q

)

)
= U +2"q# (7.57)

and

U = q − 4 − (

(q

)

)
≥ q̄ − 4̄ − (

(
q̄

)

)
= &U −2"q̄#& (7.58)

where 2"q# = (" q
)
#− (" q

)̄
# is increasing and convex in q from the assumptions

made on ("·#, "2′ > 0&2′′ > 0#.
On top of these incentive constraints, a taxation scheme is feasible if it satis-

fies the government budget constraint +4̄ + "1− +#4 ≥ 0.19 Expressing taxes as a
function of the rents &U and U and efforts ē and e, this budget constraint becomes

+")̄ē − ("ē##+ "1− +#")e − ("e## ≥ +&U + "1− +#U - (7.59)

The government wants to maximize the social welfare function +G"&U # +
"1 − +#G"U #, where G"·# is increasing and concave, "G′ > 0 and G′′ < 0#. The
principal’s problem is thus

"P #1 max
%"U&e#."&U&ē#'

+G"&U #+ "1− +#G"U #&

subject to (7.57) to (7.59)-

We let the reader check that the relevant incentive constraint is, as usual, that
of the most productive type )̄. Denoting the multiplier of the budget constraint
(7.59) by 5 and the multiplier of the incentive constraint (7.57) by 6, we can write
the Lagrangian of the problem as

L"&U&U& ē& e# = +G"&U #+ "1− +#G"U #+ 5"+")̄ē − ("ē#− &U #

+ "1− +#")e − ("e#− U ##+ 6"&U − U − 3"e## (7.60)

where 3"e# = ("e#−("e )
)̄
# is increasing and convex in e. Optimizing with respect

to &U and U yields, respectively,

+G′"&USB# = 5+ − 6& (7.61)

"1− +#G′"USB# = 5"1− +#+ 6- (7.62)

19As in section 3.7, we normalize public expenditure to zero without a loss of generality.
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Summing (7.61) and (7.62), we obtain

5 = +G′"&USB#+ "1− +#G′"USB# > 0& (7.63)

and thus the budget constraint (7.59) is binding. Inserting this value of 5 into
(7.61), we get:

6 = +"1− +#
(
G′"USB#−G′"&USB#

)
- (7.64)

Because &USB > USB is necessary to satisfy the incentive constraint (7.57), and
because G"·# is concave, we have 6 > 0. Hence, the incentive constraint (7.57) is
also binding.

Optimizing with respect to efforts, we immediately find that

(′"ēSB# = )̄ (7.65)

and

(′"eSB# = ) − +"G′"USB#−G′"&USB##

+G′"&USB#+ "1− +#G′"USB#
3′"eSB#- (7.66)

In the complete information framework, the government could perfectly redis-
tribute wealth between both groups of agents to equalize their utilities. Moreover,
the government could recommend to exert first-best efforts ē∗ and e∗ such that
the marginal disutility of effort of each type would equal his productivity, i.e.,
(′"ē∗# = )̄ and (′"e∗# = ).

Under asymmetric information, only the most productive agent still exerts
the first-best level of effort. Inducing information revelation calls for creating a
positive wedge between the utilities of the high- and the low-productivity agents.
Because the principal is adverse to inequality in the distribution of utilities, this
risk is socially costly. To reduce this cost, the principal reduces the low-productivity
agent’s effort below its first-best value and eSB < e∗.

Interestingly, it is worthwhile to recast these results in terms of the progressive-
ness or lack of progressiveness of the tax schedule. Indeed, as in the procurement
model above, let us think of this optimal allocation as being implemented by a
nonlinear income tax %4"q#'. When he faces this nonlinear tax, the high- (resp.
low-) productivity agent will choose to exert the second best level of efforts ēSB

and eSB, such that )̄"1− 4 ′")̄ēSB## = (′"ēSB# and )"1− 4 ′")eSB## = (′"eSB#. Using
(7.65) and (7.66), the marginal tax rates that concern each type are thus 4 ′"q̄# = 0
and 4 ′"q# > 0. Hence, the high-productivity agent is not taxed at the margin.
The marginal tax rate at the top of the distribution is zero. The low-productivity
agent instead has a positive marginal tax rate. The optimal taxation scheme is thus
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regressive at the margin, a surprising feature that has generated much debate in
the optimal taxation literature.

The basic model above is based on Diamond (1998a), who simplifies
the initial framework of Mirrlees (1971) by restricting the analysis to

quasi-linear utility functions.

7.2 Moral Hazard Followed by Adverse Selection

Sometimes an agent undertakes an initial nonverifiable investment or performs
an effort before producing any output for the principal. For instance, the agent
can choose a costly technology that affects the distribution of his marginal cost of
production. At the time of choosing whether to incur the nonverifiable investment
or not, the agent is still uninformed on what will be the realization of his efficiency
parameter ex post. If this efficiency parameter is privately known, we are now in a
framework where moral hazard takes place before adverse selection.

7.2.1 The Model

We assume that the risk-neutral agent can change the stochastic nature of the
production process by exerting a costly effort e, which belongs to %0& 1'. The
disutility of effort is, as usual, normalized so that ("0# = 0 and ("1# = (. When
exerting effort e, the agent induces a distribution of the productivity parameter )
on * = %)& )̄'. With probability +"e# (resp. 1 − +"e#), the agent will be efficient
(resp. inefficient); for the sake of simplicity, we denote +"1# = +1, +"0# = +0, and
,+ = +1 − +0. To express the fact that exerting effort is valuable, we assume that
effort increases the probability that the agent is efficient, i.e., ,+ > 0.

If the efficiency parameter is ), the agent who produces an output q and
receives a transfer t from the principal gets a utility U = t − )q − ("e#. The
principal has the usual utility function V = S"q#− t.

Through the contract he offers to the agent, the principal wants to control
both the agent’s effort and the agent’s incentives to tell the truth on the state of
nature that is realized ex post. The timing of contracting is described in figure 7.6.

In this mixed environment, the contract %t"q#' must not only induce effort if
the principal finds it sufficiently valuable, but it must also induce information reve-
lation. Applying the revelation principle, there is no loss of generality in restricting
the principal to offer a direct revelation mechanism %"t̄& q̄#. "t& q#'. Through this
contract, the agent will be induced to reveal his private information on the state
of nature ).
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Figure 7.6: Timing of Contracting with Moral Hazard Followed by Adverse Selection

Of course, this contract is signed before the realization of the state of nature.
Therefore, we are in a case of ex ante contracting similar to, albeit more complex
than, those analyzed in section 2.11 and chapter 4.

7.2.2 No Limited Liability

To explain the new issues that arise with this type of mixed model, we start by
analyzing the case of risk neutrality. We already know that the agent’s risk neutrality
calls for no allocative distortion either under pure moral hazard or under pure
adverse selection. With pure adverse selection, as well as with pure moral hazard,
the first-best outcome can be implemented by letting the agent be a residual
claimant for the hierarchy’s profit. One may wonder whether adding those two
informational problems leads to any significant new problem.

Let us start by describing the first-best outcome. The first-best outputs equalize
the marginal benefit and the marginal cost of production, so that S′"q∗# = ) and
S′"q̄∗# = )̄. Denoting the first-best productive surplus in each state of nature by,
respectively, W ∗ = S"q∗# − )q∗ and &W ∗ = S"q̄∗# − )̄q̄∗, we find that inducing
effort is socially optimal whenever:

,+"W ∗ − &W ∗# > (- (7.67)

We will assume that this last condition holds in what follows.
Let us now look at the case of moral hazard and adverse selection. Making

the agent residual claimant still helps in this framework. Consider the following
transfers t∗ = S"q∗#− T ∗ and t̄∗ = S"q̄∗#− T ∗, where the constant T ∗ will be fixed
in the following.

First, we claim that the contract %"t∗& q∗#. "t̄∗& q̄∗#' induces information reve-
lation by both types. Indeed, t∗ − )q∗ = S"q∗# − )q∗ − T ∗ > t̄∗ − )q̄∗ = S"q̄∗# −
)q̄∗ − T ∗ by the definition of q∗, and t̄∗ − )̄q̄∗ = S"q̄∗#− )̄q̄∗ − T ∗ > t∗ − )̄q∗ =
S"q∗# − )̄q∗ − T ∗ by the definition of q̄∗. Second, the contract %"t∗& q∗#. "t̄∗& q̄∗#'
also induces effort. The agent’s expected payoff from exerting effort is +1W

∗ +
"1 − +1#&W ∗ − "( + T ∗#. It is greater than his expected payoff from not exerting
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effort, which is +0W
∗ + "1− +0#&W ∗ − T ∗ when (7.67) holds. Finally, the principal

fixes the lump-sum payment T ∗ to reap all ex ante gains from trade with the agent,
namely T ∗ = +1W

∗ + "1− +1#&W ∗ − (. Hence, we can state proposition 7.3.

Proposition 7.3: When moral hazard takes place before adverse selection
and the agent is risk neutral, the first-best outcome can still be achieved
by making the agent residual claimant for the hierarchy’s profit.

Note also that the contract, that makes the agent residual claimant for the
hierarchy’s profit also ensures the principal against any risk, because S"q∗#− t∗ =
S"q̄∗# − t̄∗ = T ∗. This contract also works perfectly well if the principal is risk
averse.

7.2.3 Limited Liability and Output Inefficiency

Introducing the agent’s risk aversion or protecting the risk-neutral agent with lim-
ited liability makes the implementation of the first-best outcome obtained above
no longer possible. For clarification, let us assume that the agent is still risk neutral
but is now protected by limited liability. Assuming that he has no asset to start
with, the limited liability constraints in both states of nature are written as

U = t − )q ≥ 0 (7.68)

and

&U = t̄ − )̄q̄ ≥ 0- (7.69)

Moreover, inducing information revelation at date t = 4 through a direct rev-
elation mechanism requires that we satisfy the following adverse selection incentive
compatibility constraints:

U ≥ &U + ,)q̄ (7.70)

and

&U ≥ U − ,)q- (7.71)

In our mixed environment, the rents U and &U must also serve to induce
effort. To induce effort as under complete information, the following moral hazard
incentive constraint must now be satisfied:

U − &U ≥ (

,+
- (7.72)
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Finally, the agent accepts the contract at the ex ante stage when his ex ante
participation constraint is satisfied

+1U + "1− +1#&U − ( ≥ 0- (7.73)

Still focusing on the case where it is always worth inducing the agent’s effort,
the principal’s problem is

"P #1 max
%"U&q#."&U&q̄#'

+1"S"q#− )q − U #+ "1− +1#"S"q̄#− )̄q̄ − &U #&

subject to (7.68) to (7.73).

Depending on the respective importance of the moral hazard and adverse
selection problems, the optimal contract may exhibit different properties. Some
of the possible regimes of this optimal contract are summarized in the next
proposition.20

Proposition 7.4: With moral hazard followed by adverse selection, and
with a risk-neutral agent protected by limited liability, the optimal contract
has the following features:

• For (
,+

≤ ,)q̄SB"+1#& "7-69# and "7-70# are both binding. Outputs are
given by qSB = q∗ when ) realizes and q̄SB = q̄SB"+1# < q̄∗ when )̄
realizes with

S′"q̄SB"+1## = )̄ + +1
1− +1

,)- (7.74)

• For ,)q̄SB"+1# ≤ (
,+

≤ ,)q̄∗, (7.69), (7.70), and (7.72) are all binding.
The first-best output q∗ is still requested when ) realizes. Instead, pro-
duction is distorted downward below the first-best when )̄ realizes. We
have q̄SB < q̄∗ with

q̄SB = (

,),+
- (7.75)

• For ,)q̄∗ < (
,+

< ,)q∗, (7.69) and (7.72) are both binding. In both
states of nature, the first-best outputs are implemented.

To understand how those different regimes emerge, first note that solving the
pure adverse selection problem requires the creation of a differential between
the rents U and &U . This rent differential may be enough to induce effort when
the corresponding disutility is small. In this case, moral hazard has no impact

20Working out the proof of this proposition is left to the reader.



298 • Chapter 7

and second-best distortions are completely driven by adverse selection. As effort
becomes more costly, the pure adverse selection rent may no longer be enough to
induce effort. When )̄ realizes, the output must be distorted upward, with respect
to the pure adverse selection distortion, to provide enough rent so that, ex ante,
the agent wants to perform an effort. Finally, still increasing the disutility of effort,
it is no longer worthwhile to make an output distortion. The principal prefers to
maintain allocative efficiency in both states of nature and to sufficiently reward
the agent in order to induce his effort. The design of the contract is then driven
purely by moral hazard.

Remark: The reader will have recognized the similarity of the analysis
above with that made in section 3.3 when we analyzed type-dependent
reservation values in pure adverse selection models. Indeed, one can
view the design of incentives in this mixed model as a two-step pro-
cedure. The first step consists of the principal offering a reward when
) is realized, that is large enough to induce effort provision at the
ex ante stage. By doing so, the principal is committed to solving the
moral hazard problem. Then, the second step consists of solving the
adverse selection problem, that takes place ex post, and inducing infor-
mation revelation. At this ex post stage, the principal may or may not
be constrained by his previous commitment when he wants to extract
the agent’s private information on the state of nature which has been
realized.

To conclude, we stress that the main impact of the initial stage of moral
hazard may be that it reduces allocative distortions and calls for greater information
rents with respect to the case of pure adverse selection.

Proposition 7.5: Mixed models with moral hazard followed by adverse
selection tend to be characterized by less allocative distortions and
greater information rents than those arising in models with pure adverse
selection.

7.3 Moral Hazard Followed by Nonverifiability

The last stage of our travel in the world of mixed models brings us to the analysis
of models with both moral hazard and nonverifiability. We now assume that the
agent first exerts a nonobservable effort that affects the realization of the state of
nature, but this state of nature remains nonverifiable, even though its realization
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is common knowledge between the principal and the agent. The timing of con-
tracting is thus exactly the same as in figure 7.6, except that, at date t = 3, the
state of nature ) is now observed by both the principal and the agent.

If effort were observable, we would be in the case of models with pure non-
verifiability of the state of nature ). The analysis that we made in chapter 6 shows
how the principal and the agent can then agree ex ante, i.e., at date t = 0, on a
mechanism, possibly an extensive form game, which ensures that the first-best out-
come is uniquely implemented ex post once the state of nature becomes known.
How much of this result still holds when effort is not observable by the princi-
pal? The answer is quite unsurprising: the first-best can generally no longer be
implemented, but the nonverifiability of the state of nature does not bring more
distortion than what we find in a model with pure moral hazard and verifiability
of the state of nature. In other words, an upper bound of what can be achieved by
the principal in a mixed model with moral hazard and nonverifiability is obtained
in the model with pure moral hazard, where the state of nature could be described
ex ante and used to write the contract. Moreover, this upper bound is actually
achieved.

To prove this result, let us consider the pure moral hazard model of sec-
tion 4.4. Only the agent’s effort cannot be verified. Assuming that the principal
wants to induce a high effort from a risk-averse agent, we know that he must let
the latter bear some risk. Still denoting the rents obtained by the agent in each
state of nature by U = t− )q and &U = t̄− )̄q̄, the agent’s moral hazard incentive
compatibility constraint is written as

u"U #− u"&U # ≥ (

,+
- (7.76)

The agent’s participation constraint is

+1u"U #+ "1− +1#u"&U #− ( ≥ 0- (7.77)

Under pure moral hazard, the principal’s problem becomes

max
%"U&q#."&U&q̄#'

+1"S"q#− )q − U #+ "1− +1#"S"q̄#− )̄q̄ − &U #&(P ):

subject to (7.76) and (7.77).

Repeating the analysis of section 4.4, we could easily prove that (7.76) and
(7.77) are both binding. This yields the following expressions of the moral hazard
ex post rents in each state of nature:

UMH = h

(
( + "1− +1#

(

,+

)
> 0 (7.78)
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and

&UMH = h

(
( − +1

(

,+

)
< 0- (7.79)

Moreover, the optimal outputs chosen by the principal in each state of nature
are equal to their first-best values: q∗ such that S′"q∗# = ) when ) realizes, and q̄∗

such that S′"q̄∗# = )̄ when )̄ instead realizes. Transfers in each state of nature are
thus given by tMH = )q∗ + UMH and t̄MH = )̄q̄∗ + &UMH .

Figure 7.7 describes these contracts by points AMH and BMH .
We now turn to the case where the state of nature ) is nonverifiable. Let us

first consider how ex post negotiations perform in this environment. Assuming that
the principal keeps all bargaining power at the ex post bargaining stage, the agent
gets zero rent in each state of nature. Anticipating this, the agent has no incentive
to exert effort at the ex ante stage. This is an instance of the hold-up problem that
we will discuss more extensively in section 9.4.2. Signing an incentive compatible
contract with a risk-averse agent at the ex ante stage implies some allocative inef-
ficiency, even in the absence of moral hazard, as we know from section 2.11.2.
Those inefficiencies can nevertheless be avoided if the agent and the principal

Figure 7.7: Moral Hazard and Nonverifiability
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Figure 7.8: Nash Implementation in a Mixed Model

agree ex ante to play a mechanism ex post, where both report messages over the
state of nature. To implement the pure moral hazard outcome "AMH&BMH#, we
will thus have to rely on Nash implementation, which now gets all of its strength.

Adopting the same notations as in chapter 6, the game form to be played in
each state of nature is illustrated in figure 7.8.

The conditions for Nash implementation of the outcome with pure moral
hazard are now easy to obtain.

To have a truthful Nash equilibrium in state ), we should have

tMH − )q∗ > t̂1 − )q̂1& (7.80)

S"q∗#− tMH > S"q̂2#− t̂2- (7.81)

Similarly, to have a truthful Nash equilibrium in state )̄, we should have

t̄MH − )̄q̄∗ > t̂2 − )̄q̂2& (7.82)

S"q̄∗#− t̄MH > S"q̂1#− t̂1- (7.83)

Finally, unique Nash implementation in both states of nature is obtained
when

t̄MH − )q̄∗ < t̂2 − )q̂2 (7.84)

and

tMH − )̄q∗ < t̂1 − )̄q̂1- (7.85)

The possible values of "t̂1& q̂1# (resp. /t̂2& q̂20) satisfying the constraints (7.80),
(7.83), and (7.85) (resp. (7.81), (7.82), and (7.84)) belong to set E (resp. F ) in
figure 7.7.

We leave it to the reader to check that those sets are nonempty and thus
the moral hazard contract "tMH& q∗# and "t̄MH& q̄∗#, appended with the out-of-
equilibrium punishments "t̂1& q̂1# and "t̂2& q̂2#, allows one to get rid of the nonveri-
fiability constraint. Our conclusion is summarized in proposition 7.6.
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Proposition 7.6: Mixed models with moral hazard followed by nonverifi-
ability of the state of nature do not entail more allocative distortions than
those arising in models with pure moral hazard.

The result above relies heavily on the ability of the agents to play a Nash
mechanism ex post. Other forms of contracting or not contracting at all will entail
significant losses of welfare, contrary to what happened in chapter 6.21

21See for instance section 9.4.



8 Dynamics under Full
Commitment

Contracts are often repeated over time. Examples of such long-term relationships
abound and span all areas of contract theory. Let us describe a few. The insurance
contract of an agent entails bonuses and maluses that link his current coverage
and risk premium to his past history of accidents. Labor contracts often continue to
reward the past performances of an agent in the future, either in monetary terms
or by means of promotions. Lastly, in many regulated sectors, regulatory contracts
often stipulate the current price caps that apply to a given firm as a function of
the past realizations of its costs.

In view of the analysis of the previous chapters, the general framework
to understand those repeated contractual relationships must be one where the
principal controls several activities performed by the agent at different points
in time. In an adverse selection setting, the reader will probably have rec-
ognized the multi-output framework of section 2.10.3. Under moral hazard,
the setting is akin to a multitask model along the lines of section 5.2. With
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respect to those general frameworks, the repeated contracting setting nevertheless
has its own peculiarities that are worth studying. A few of these peculiari-
ties are that the principal and the agent’s utility functions are separable over
time, that the information structures may change as time passes, and that the
arrow of time introduces a natural asymmetry between today’s and tomorrow’s
relationships.

Indeed, the analysis of long-term contractual relationships raises a number of
new questions. How do the repeated contractual relationships compare with the
one-shot relationships studied in previous chapters? How does the repetition of
the relationship change the terms of the static trade-offs? How should we model
changes in information structures? What are the benefits, if any, of long lasting
relationships? Does the past history of the agent’s performance play any role in
current compensation, and if so, why? Are the implicit incentives provided by the
desire of the agent to build a reputation vis-à-vis the labor market good disciplining
devices?

To answer these questions, we remain in the general framework of this vol-
ume1 and assume that the principal has the complete ability to commit to the
contract he proposes to the agent. The principal designs the mechanism that is
going to be played by the agent over time and sticks to its rules, no matter what
happens during their relationship.2

Even though the information structures associated with moral hazard and
adverse selection dynamic models may look somewhat different, they can neverthe-
less be classified within three broad categories that give rise to similar conclusions
in both paradigms.

• Permanent Shocks: In an adverse selection setting, the agent’s private
information on the value of the trades that can be performed at different points
of time may be constant over time. For instance, a regulated firm has a constant
technology over the whole length of the regulated contract. A worker has a
constant ability over the length of the labor contract. An insuree has a driving
ability, i.e., a probability of having an accident, that does not change over his

1See chapters 2 and 4.
2In particular, commitment implies that the principal and the agent still continue to play the same

mechanism no matter what information the principal may have learned during the first rounds of
contracting. This assumption is an important one, because the endogenous changes in the informa-
tion structures that may arise in a repeated relationship might open the door to valuable renegotiations
as time passes. Even though these issues are particularly important for the understanding of enduring
relationships, they are by and large beyond the scope of this volume and are relegated, by means of
an example, to the beginning of chapter 9. Nevertheless, note that for some contractual settings that
we analyze in this chapter, the assumption of commitment does not represent a restriction since the
optimal long-term contract turns out to be sequentially optimal, i.e., recontracting from a given date
on would not improve upon what is specified by the full commitment optimal contract.
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entire life. In such a setting, the optimal long-term contract is obtained in a
straightforward manner as the replica of the one-shot optimal contract described
in chapter 2. Indeed, under the assumptions of separability of the principal’s
and the agent’s utility functions between today’s trades and tomorrow’s trades,
the intertemporal benefit of a given profile of trades and its intertemporal cost,
including the informational cost, is obtained as the discounted sum of the
per-period benefits and costs of the volumes of trade chosen in the different
periods. Within each period, the optimal trade-off between rent extraction and
allocative efficiency is similar to that in a one-shot static relationship. Thus,
the optimal long-term contract is obtained as the replica of the optimal static
contract.

Importantly, one way of implementing this long-term optimal contract is given
by the dynamic version of the revelation principle under full commitment. With a
direct mechanism, the principal requests that the agent reveals his type once and
for all, before any trade takes place. The principal then commits to replicating the
one-shot optimal contract in each period of their relationship.3

Because of these analogies between the optimal dynamic contract and a static
optimal contract, these models have sometimes been grouped under the general
terminology of false dynamics.

• Correlated Shocks: Still in an adverse selection setting, let us now turn to
the more general case where the agent has private information on the values of
trade with the principal in all periods and those values are correlated over time.
For instance, the cost of producing a good for a seller may be the sum of two
components, a permanent component linked to the production technology and a
transient component linked to short-term shocks on the price of inputs. Similarly,
because of learning by doing, a worker’s ability may change over time but still with
some correlation across periods. Those contractual settings are interesting because
the mere realizations of the first-period volumes of trade convey some information
about the future values of trade. The revelation principle still applies to these
contractual relationships if one requests the agent to report any information he
learns during the course of actions. In a direct revelation mechanism, the agent
decides to report his type truthfully to the principal in any given period, knowing
that the principal uses this information possibly to update his beliefs on the agent’s

3Even if we do not develop the corresponding analysis in the present chapter, it is worth men-
tioning what would be the moral hazard counterpart to this model. Let us assume that the agent is
performing a single effort in an initial period, and then the random stochastic production process
associated with this effort is replicated over several periods. It becomes apparent that all that matters
for the principal and the agent is the overall performance over the whole relationship. Hence, the
optimal contract is again akin to an optimal static contract, where the stochastic returns of the agent’s
effort are simply the discounted sum of the per-period profits.
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future types and may therefore specify different continuations of the long-term
contract, depending on this latter report. This effect allows us to derive dynamic
incentive constraints in a simple model with two periods and a risk-neutral agent.
We then show how the principal should design the intertemporal contract by
using earlier revelations of information in order to improve the terms of the rent
extraction-efficiency trade-off in this dynamic setting.

It is interesting to observe the link between these latter models and the
model of informative signals that improve contracting, which we already studied
in section 2.14. In section 2.14, we analyzed how the principal may benefit from
exogenous signals that are correlated with the agent’s information to improve the
terms of the rent extraction-efficiency trade-off in a static model. In dynamic rela-
tionships with correlated shocks, the past history of performances offers an endoge-
nous signal that is correlated with the agent’s current type. History-dependent con-
tracts are useful to take into account the informativeness of earlier performances.
As a corollary, the optimal long-term contract is no longer obtained as the replica
of the one-shot optimal contract.

Again, it is worth pointing out the moral hazard counterpart to this model.
Let us assume that the agent is performing a different effort at each date of his
relationship with the principal but that the random stochastic productions at the
different dates are correlated. In such a framework, it is a simple corollary of the
Sufficient Statistic Theorem of section 4.6.1 that past performances should be used
to compute current compensations.

The correlation of shocks also plays an important role in the emergence of
implicit incentives in moral hazard environments. We analyze a model of career
concerns, where the agent’s current performance and ability affect the future
rewards he may receive from the market. The agent’s desire to build a reputation
for being efficient provides incentives to exert effort but, of course, this disciplin-
ing device is only an imperfect substitute for explicit incentives contingent on
performance.

• Independent Shocks: Let us now envision a case where there is no cor-
relation across periods among the values of trade. For instance, an agent may be
looking for insurance against independently distributed income shocks, or a seller
may be subject to one-period independent shocks on his costs. In such a model,
the past history of the agent’s performances loses any informative role on the cur-
rent values of trade. It does not mean that history plays no longer any role. Indeed,
history may allow the principal to smooth the cost of incentive compatibility over
time.

To stress this new effect, we develop a two-period simple moral hazard
model in the context of an efficiency-insurance trade-off. The model is basically a
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twice-replica of that in chapter 4.4 We derive the dynamic incentive compatibility
constraint and optimize the principal’s intertemporal objective function. We show
that the optimal contract exhibits a martingale property, linking current compen-
sations with future rewards and punishments. The source of this property comes
from the desire of the principal to smooth the cost of incentive compatibility over
time. We discuss how this smoothing can be somewhat perturbed if the agent can
save part of his wealth or can end the relationship in any given period. Then, we
develop an infinitely repeated version of the model to explore the intertemporal
distribution of utilities achieved in the long run or the behavior of the contract as
the discount factor goes to one. We show that agency problems disappear in the
limit by means of a complete diversification of the risk borne by the agent in any
given period.

Section 8.1 presents the dynamics of repeated adverse selection relation-
ships for a two-period example. In this section we make various assumptions on
the information structure and derive some of the conclusions stressed above. In
section 8.1.4, we briefly discuss the full commitment assumption. section 8.2 deals
with the case of repeated moral hazard, both in a two-period model with vari-
ous contractual limits but also in an infinitely repeated setting. Here we provide
the basic dynamic programming methods necessary to analyze such a setting. In
section 8.3, we analyze implicit incentives in a moral hazard framework.

8.1 Repeated Adverse Selection

Consider the twice repetition of the model in chapter 2, where we can make
various assumptions on the information structure and, in particular, on how it
evolves over time. The goal of this section is to compare the optimal long-term
contract with its static counterpart.

8.1.1 Perfect Correlation of Types and Risk Neutrality

Let us first start with the simplest case, where the adverse selection parameter !
in "!# !̄$ is the same in both periods. The principal’s objective function writes
now as V = S%q1&− t1 + '%S%q2&− t2&, where qi (resp. ti) is output (resp. transfer)
at date t = i. The discount factor is ' ≥ 0, and we can allow it to be greater
than one to represent cases where period 2 lasts much longer than period 1. The

4Similarly, the desire of the principal to smooth the cost of the incentive compatibility constraint
would also be present in an adverse selection framework with ex ante contracting and risk aversion
on the agent’s side.
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Figure 8.1: Timing of Contracting with Adverse Selection and Perfect Correlation

risk-neutral agent has the same discount factor as the principal and, because of
perfect correlation of types between both periods, his objective function is written
as U = t1 − !q1 + '%t2 − !q2&.

Note that the principal controls a pair of actions performed by the agent: the
agent’s productions at each date. Thus we are in a special case of the multi-output
regulation studied in section 2.10, with the agent and the principal’s objective
functions being additively separable over the two periods.

The timing of contracting is described in figure 8.1.
With full generality, a long-term contract stipulates transfers and quantities in

each period as a function of the whole past history of the game up to that period.
In the case of two periods, this means that a typical long-term contract writes as
a pair of nonlinear transfers "t1%q1&( t2%q1# q2&$ dependent, at each period, on the
current as well as the past output realizations.

Since the principal can commit intertemporally, the revelation principle
remains valid in this intertemporal framework, and the pair of nonlinear transfers
described above can be replaced by a truthful direct revelation mechanism. With
such a mechanism, the agent reports his type to the principal at a date t = 0)75,
just before outputs and transfers for the first period are implemented. Moreover,
because of risk neutrality, only the aggregate transfer t = t1 + 't2 matters when
describing both the agent and the principal’s utility functions. In this framework,
a direct revelation mechanism is thus a pair of triplets "%t̄# q̄1# q̄2&( %t# q1

# q
2
&$,

stipulating an aggregate transfer and an output target for each date according to
the firm’s report on the agent’s type.

Denoting the efficient and the inefficient agents’ information rents over both
periods by, respectively, U = t− !q

1
− '!q

2
and #U = t̄− !̄q̄1 − '!̄q̄2 the following

incentive constraints must be satisfied:

U ≥ #U + *!%q̄1 + 'q̄2& (8.1)

and

#U ≥ U − *!%q
1
+ 'q

2
&) (8.2)
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The intertemporal participation constraints of both types are, respectively,

U ≥ 0 (8.3)

and

#U ≥ 0) (8.4)

Remark: Note that these participation constraints stipulate that only
the agent’s intertemporal rent must be positive. So, we assume momen-
tarily that the agent commits to stay in the relationship once he has
accepted the contract at date t = 0)5. In period 1, the agent can make
a loss if it is covered by a gain in period 2, and vice versa.

The principal’s problem becomes

max
"%U# q1# q2&( %

#U# q̄1# q̄2&$
+%S%q

1
&− !q

1
+ '%S%q

2
&− !q

2
&− U &(P ):

+ %1− +&%S%q̄1&− !̄q̄1 + '%S%q̄2&− !̄q̄2&− #U &#
subject to %8)1& to %8)4&.

Of course, the relevant constraints are, again, the efficient type’s incentive
constraint in (8.1) and the inefficient type’s participation constraint in (8.4). For
the optimal dynamic contract, only the efficient type gets a positive intertemporal
rent, which is worth U = *!%q̄1 + 'q̄2&, and the inefficient type’s participation
constraint is binding so that #U = 0. Inserting these expressions of the intertemporal
rents into the principal’s objective function and optimizing with respect to outputs,
we immediately get the following proposition where we index this solution with a
superscript D, meaning dynamics.

Proposition 8.1: With perfectly correlated types and a risk-neutral
agent, the optimal long-term contract with full commitment for two
periods is twice the repetition of the optimal static contract.

• The constraints in (8.1) and (8.4) are the only binding ones.
• The efficient agent produces efficiently in both periods qD

1
= qD

2
=

qD = q∗, such that S′%q∗& = !.
• The inefficient agent produces less than the first-best output in both
periods q̄D

1 = q̄D
2 = q̄D ≤ q̄∗, such that:

S′%q̄D& = !̄ + +

1− +
*!) (8.5)

It is the same output as in the optimal static contract q̄D = q̄SB.
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• Only the efficient agent gets a positive intertemporal rent UD =
*!%1+ '&q̄D.

Remark 1: Even if the optimal long-term contract implements the
same outputs levels and the same intertemporal rents as the opti-
mal static contract of chapter 2 repeated twice, some indeterminacy
remains concerning the intertemporal distribution of these rents,
because only the intertemporal transfers are pinned down by the
binding constraints in (8.1) and (8.4).

Remark 2: Let us instead assume that the principal offers the agent
a contract covering both periods at the ex ante stage, i.e., before the
agent learns his private information. Moreover, let us consider the
case where the agent has an infinite degree of risk aversion below zero
wealth and a positive degree above. In that case, the agent’s intertem-
poral participation constraints in (8.3) and (8.4) should be replaced
by a pair of participation constraints for each period, namely U 1 =
t1 − !q

1
≥ 0#U 2 = t2 − !q

2
≥ 0 and #U1 = t̄1 − !̄q̄1 ≥ 0# #U2 =

t̄2 − !̄q̄2 ≥ 0, respectively. Under these assumptions, the same result
as in proposition 8.1 still holds. Moreover, because the agent has a
positive rent in any given period, there is no need for him to commit
to stay in the relationship. The agent never has the incentive to renege
on the long-term contract offered by the principal. The main differ-
ence between the case of risk neutrality and interim contracting is
that the intertemporal distribution of rents is now completely defined.
The efficient type gets a positive rent in both periods UD

i = *!q̄D, for
i = 1# 2. The inefficient type instead gets zero in both periods.

Remark 3: Of course, the optimal long-term contract would not be
the twice replica of the one-shot optimal contract if either the agent’s
cost function or the principal’s value functions were not separable over
the two periods.

Remark 4: Importantly, proposition 8.1 shows the importance of the
principal’s ability to commit. If the firm is inefficient, this fact is now
common knowledge at the beginning of period 2. Still, the principal
implements an inefficient contract with under-production. We come
back to this commitment issue in section 8.1.4 below.

The dynamics of the optimal contract with full commitment was first
analyzed in different settings by Roberts (1983) and Baron and Besanko
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(1984b). At a more abstract level, the applicability of the revelation principle
to a dynamic context (with possibly more complex information structures than
those with perfect correlation) was demonstrated by Myerson (1986) and
Forges (1986) (seeMyerson 1991 for a review of the argument).

8.1.2 Independent Types and Risk Neutrality

Let us now turn to the case where the agent’s marginal cost in periods 1 and
2 are independently drawn from the same support , = "!# !̄$, with identical
probabilities + and 1 − +. The risk-neutral agent’s utility is written as U = t1 −
!1q1 + '%t2 − !2q2&, where !i is his marginal cost in period i.

We first assume that the principal offers a contract to the agent at the iṅterim
stage as described in figure 8.2.

Following the same logic as in section 8.1.1, it is intuitively clear that the
optimal long-term contract with full commitment is obtained by putting together
the optimal contract with interim contracting (see section 2.1) for the first period
and the optimal contract with ex ante contracting (see section 2.11) for the second
period. Indeed, at the time of signing the long-term contract with the principal,
the risk-neutral agent does not know his second period type, and consequently
adverse selection on this piece of information should be costless for the principal.

To see that, let us briefly describe the incentive compatibility and participation
constraints for this case. At date t = 2, the following incentive constraints have to
be specified:

U 2%!̃1& = t2%!̃1&− !q
2
%!̃1& ≥ t̄2%!̃1&− !q̄2%!̃1& = #U2%!̃1&+ *!q̄2%!̃1&# (8.6)

#U2%!̃1& = t̄2%!̃1&− !̄q̄2%!̃1& ≥ t2%!̃1&− !̄q
2
%!̃1& = U 2%!̃1&− *!q

2
%!̃1&# (8.7)

where !̃1 is the agent’s first-period announcement on his type.

Figure 8.2: Timing with a Twice-Repeated Adverse Selection Problem and Independent Types
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Let us also denote the first-period rents by U 1 = t1 − !q
1
and #U1 = t̄1 − !̄q̄1.

At date t = 1, given that the expected continuation rent for period 2 is +U 2%!̃1&+
%1− +&#U2%!̃1&, the incentive compatibility constraints are written as

U 1 + '%+U 2%!&+ %1− +&#U2%!&&

≥ #U1 + *!q̄1 + '%+U 2%!̄&+ %1− +&#U2%!̄&&# (8.8)
#U1 + '%+U 2%!̄&+ %1− +&#U2%!̄&&

≥ U 1 − *!q
1
+ '%+U 2%!&+ %1− +&#U2%!&&) (8.9)

The agent’s intertemporal participation constraints are finally written as

U 1 + '%+U 2%!&+ %1− +&#U2%!&& ≥ 0# (8.10)
#U1 + '%+U 2%!̄&+ %1− +&#U2%!̄&& ≥ 0) (8.11)

Clearly (8.8) and (8.11) are both binding at the optimum of the principal’s
problem.5 Using (8.11), the expected rents for period 2 are written, depending on
the first report period, as

'%+U 2%!̄&+ %1− +&#U2%!̄&& = −#U1 (8.12)

and

'%+U 2%!&+ %1− +&#U2%!&& = *!q̄1 − U 1) (8.13)

Then, following the logic of section 2.11, the following second period rents satisfy
(8.6) and (8.7) without justifying any allocative distortion at date t = 2, i.e., q̄2%!̄& =
q̄2%!& = q̄∗ and q

2
%!& = q

2
%!̄& = q∗:

U 2%!̄& = −
#U1

'
+ %1− +&*!q̄∗# (8.14)

#U2%!̄& = −
#U1

'
− +*!q̄∗# (8.15)

and

U 2%!& =
1
'
%*!q̄1 − U 1&+ %1− +&*!q̄∗# (8.16)

#U2%!& =
1
'
%*!q̄1 − U 1&− +*!q̄∗) (8.17)

Hence, the optimal outputs corresponding to the inefficient draws of types in
both periods are such that q̄D

1 = q̄SB and q̄D
2 = q̄∗, respectively. The agent gets a

positive rent only when he is efficient at date t = 1, and his expected intertemporal
rent over both periods is UD = +*!q̄D

1 . In summary, we get proposition 8.2.

5We leave it to the reader to check that (8.9) and (8.10) are both strictly satisfied.
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Proposition 8.2: With independent types and a risk-neutral agent, the
optimal long-term contract for two periods with full commitment com-
bines the optimal static contract written interim for period 1 and the
optimal static contract written ex ante for period 2. In particular, the
expected rent of the agent only equals the expectation of the agent’s rent
when he is efficient in period one and is worth UD = +*!q̄D

1 .

Remark: The same result would also be obtained if the risk-neutral
agent could leave the relationship in period 2 if he does not get a
positive expected rent in this period. In this case, the second period
participation constraint

+U 2%!̃1&+ %1− +&#U2%!̃1& ≥ 0# (8.18)

for all !̃1 ∈ ,, must be satisfied. It is then enough to fix #U1 = 0 and
U 1 = *!q̄SB so that the right-hand sides of (8.12) and (8.13) are both
equal to zero.

8.1.3 Correlated Types and Infinite Risk Aversion -

Let us generalize the previous information structure and turn now to the more
general case where the agent’s types are imperfectly correlated over time. We
denote by +1 (resp. 1 − +1) the probability that the first period cost is ! (resp.
!̄). Similarly, we denote the second period probabilities that the agent is efficient
(resp. inefficient) by +2%!1& (resp. 1− +2%!1&), following a cost realization !1 in the
first period. A positive correlation between costs in both periods is obtained when
+2%!& > +2%!̄&.

Let us assume that the contract is offered ex ante and that the agent is
infinitely risk averse below zero wealth in both periods or, alternatively, that the
agent is risk-neutral and protected by limited liability. This imposes that the agent’s
payoff in any period must remain positive, whatever his type.6

The timing of the game is the same as in figure 8.2. In this framework, a direct
revelation mechanism requires that the agent reports the new information in each
period he has learned on his current type. Typically, a direct revelation mechanism
is a four-uple "%t1%!̃1&# q1%!̃1&&( %t2%!̃1# !̃2&# q2%!̃1# !̃2&&$ for all pairs %!̃1# !̃2& belonging
to ,2, where !̃1 (resp. !̃2) is the date t = 1 (resp. date t = 2) announcement on
his first-period (resp. second-period) type.

6The same constraints would be obtained if the contract were offered after the agent discovers !1
and if there were no commitment for a risk-neutral agent to stay in the relationship, i.e., if the agent
could renege on the contract.
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The important point to note here is that the first-period report can now be
used by the principal to update his beliefs on the agent’s second period type. This
report can be viewed as an informative signal that is useful for improving second-
period contracting. This idea is quite similar to that seen in section 2.14.1. The
difference is that now the signal used by the principal to improve second-period
contracting is not exogenously given by nature but comes from the first-period
report !̃1 of the agent on his type !1. Hence, this signal can be strategically manip-
ulated by the agent in the first period in order to improve his second-period rent.
This effect will thus affect the way we write intertemporal incentive constraints.

At date t = 2, following a first-period report !̃1 made by the agent, the prin-
cipal will choose outputs q

2
%!̃1& for the efficient type and q̄2%!̃1& for the inefficient

type. The agent will also be proposed second-period rents #U2%!̃1& and U 2%!̃1&. Of
course, we have #U2%!̃1& = t̄2%!̃1&− !̄q̄2%!̃1& and U 2%!̃1& = t2%!̃1&− !q

2
%!̃1&.

Because the agent is infinitely risk averse below zero wealth, his ex post par-
ticipation constraint in period 2 is written as

#U2%!̃1& ≥ 0 (8.19)

and

U 2%!̃1& ≥ 0# for all !̃1 in ,) (8.20)

Moreover, inducing information revelation by the agent in period 2 requires
to satisfy the following incentive constraints:

U 2%!̃1& ≥ #U2%!̃1&+ *!q̄2%!̃1&# (8.21)

#U2%!̃1& ≥ U 2%!̃1&− *!q
2
%!̃1&# for all !̃1 in ,) (8.22)

Summing those two incentive constraints yields the usual monotonicity con-
ditions q̄2%!̃1& ≤ q

2
%!̃1& for all !̃1 in ,)7

Because of full commitment, the second-period outputs q2%!̃1& are decided
at the time of the offering of the long term contract. Given these outputs, the
continuation of the optimal contract for the second period calls for second-period
rents that must solve, for any first-period announcement !̃1, the following problem:

%P %!̃1&&. max
"%U2%!̃1&##U2%!̃1&&$

+2%!̃1&
(
S%q

2
%!̃1&&− !q

2
%!̃1&− U 2%!̃1&

)

+ %1− +2%!̃1&&
(
S%q̄2%!̃1&&− !̄q̄2%!̃1&− #U2%!̃1&

)
#

subject to (8.19) to (8.22).

7We will check ex post that these constraints are satisfied by the optimal second-period outputs.
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(8.19) and (8.21) are both binding,8 and the principal’s second-period profit,
denoted thereafter by V2%!̃1# q2

%!̃1&# q̄2%!̃1&&, is written as a function of second-
period outputs:

V2

(
!̃1# q2

%!̃1&# q̄2%!̃1&
)
= +2%!̃1&

(
S%q

2
%!̃1&&− !q

2
%!̃1&

)

+%1− +2%!̃1&&
(
S%q̄2%!̃1&&− !̄q̄2%!̃1&

)

−+2%!̃1&*!q̄2%!̃1&) (8.23)

Let us now go back to period 1. Knowing what will be the consequences of
his first-period report !̃1 on the principal’s updated beliefs, the agent with a low
first-period cost will truthfully reveal his type whenever the following intertemporal
incentive constraint is satisfied:

U 1 + '+2%!&*!q̄2%!& ≥ #U1 + *!q̄1 + '+2%!&*!q̄2%!̄&# (8.24)

where U 1 = t1 − !q
1
and #U1 = t̄1 − !̄q̄1 are the first-period rents. The terms

'+2%!&*!q̄2%!& and '+2%!&*!q̄2%!̄& instead represent the discounted expected infor-
mation rents that the agent can get in the second-period continuation of the con-
tract if he reports, respectively, !̃1 = ! or !̃1 = !̄ to the principal at date t = 1,
knowing that the probability that his second-period type is ! is +2%!&.

Similarly, the agent with a high first-period cost reveals truthfully when

#U1 + '+2%!̄&*!q̄2%!̄& ≥ U 1 − *!q
1
+ '+2%!̄&*!q̄2%!&) (8.25)

Summing (8.24) and (8.25) yields the following implementability condition:

q
1
− q̄1 + '%+2%!̄&− +2%!&&%q̄2%!̄&− q̄2%!&& ≥ 0)

Note that a positive correlation of types across periods implies that +2%!̄& <
+2%!&, and thus the implementability condition above is automatically satisfied
when q

1
≥ q̄1 in the first period and q̄2%!̄& ≤ q̄2%!& in the second period. As usual,

we will not address this condition but instead let the reader check ex post that it
is indeed satisfied.

Again, infinite risk aversion below zero wealth requires that the ex post par-
ticipation constraints for the first period

U 1 ≥ 0 (8.26)

#U1 ≥ 0 (8.27)

are both satisfied.

8The constraints (8.20) and (8.22) are slack at the optimum, as it can be checked ex post.
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Taking into account the continuation payoffs V2%!̃1( q2
%!̃1&# q̄2%!̃1&& that the

principal gets following a first-period announcement !̃1, the principal’s optimal
long-term contract with full commitment is thus the solution to:

max{
%q

1
# q

2
%!&# q̄2%!&#U1&( %q̄1# q2%!̄&# q̄2%!̄&#

#U1&
} +1

(
S%q

1
&− !q

1
− U 1

)
(P ):

+ %1− +1&
(
S%q̄1&− !̄q̄1 − #U1

)

+ '
(
+1V2%!# q2

%!&# q̄2%!&&+ %1− +1&V2%!̄# q2
%!̄&# q̄2%!̄&&

)

subject to (8.24) to (8.27).

The two relevant constraints are the incentive constraint (8.24) and the par-
ticipation constraint in (8.27). Proposition 8.3 summarizes the dynamics of the
optimal long-term contract.

Proposition 8.3: With a positive correlation of types and infinite risk
aversion at zero wealth, the optimal long-term contract with full com-
mitment entails, for ' small enough:

• Constraints in (8.24) and (8.27) are the only binding constraints for
' small enough.

• The agent always produces the first-best output qD

1
= qD

2
%!& =

qD

2
%!̄& = q∗ when he is efficient.

• The agent generally produces below the first-best output when he is
inefficient.
In period 1, the inefficient agent produces:

S′%q̄D
1 & = !̄ + +1

1− +1
*!) (8.28)

In period 2, following !1 = !̄, the inefficient agent produces:

S′%q̄D
2 %!̄&& = !̄ +

(
+2%!̄&

1− +2%!̄&
+ +1+2%!&

%1− +1&%1− +2%!̄&&

)
*!# (8.29)

In period 2, following !1 = !, the inefficient agent produces the first-
best output q̄D

2 %!& = q̄∗. Hence, q̄D
2 %!̄& < q̄D

2 %!&.
• The agent’s expected information rent over both periods is

UD = *!%+1q̄
D
1 + '%+1+2%!&+ %1− +1&+2%!̄&&q̄

D
2 %!̄&&) (8.30)

To derive proposition 8.3 we have assumed that the first period participation con-
straint of the efficient type, i.e., UD

1 ≥ 0, was always strictly satisfied. Indeed, when,
(8.24) and (8.27) are both binding, we have UD

1 = *!q̄D
1 − '+2%!&*!%q̄

D
2 %!& −
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q̄D
2 %!̄&&, and UD

1 is positive as long as the first-period rent *!q̄D
1 is larger than the

second-period expected rent differential '+2%!&*!%q̄D
2 %!& − q̄D

2 %!̄&&, which is posi-
tive because q̄D

2 %!& = q̄∗ > q̄D
2 %!̄&. This condition always holds for small enough '.

Then, for an agent who is efficient in the first period, the second-period expected
rent can be recaptured in period 1, and the principal can afford an efficient
production level q̄D

2 %!& = q̄∗ for the inefficient type in period 2, following an
announcement of ! in period 1. However, for an inefficient agent who has no rent
in period 1, this process is not possible. Hence, the principal requires some output
distortion for an inefficient type in period 2 following the announcement of !̄ in
period 1.

Intuitively, distorting q̄D
2 %!̄& downward not only helps to reduce the second-

period rent of the agent when he is efficient in period 2 following !1 = !̄, but it also
helps to reduce the cost of the first-period incentive constraint (8.24). There are
thus two reasons to distort this output downward, and the corresponding distortion
is greater than for the optimal static contract that the principal would offer if
his beliefs put a probability +2%!̄& on the agent being efficient. On the contrary,
reducing q̄D

2 %!& helps to reduce the second-period rent of the agent when he is
efficient in period 2 following !1 = !, but increasing q̄D

2 %!& also helps to reduce the
cost of the first-period incentive constraint (8.24). These two effects compensate
each other exactly so that there is no allocative distortion and q̄D

2 %!& = q̄∗.
The main lesson of this section is that the past history of reports plays a role

in determining the continuation of the optimal long term contract. Indeed, the
principal can use these continuations to relax the cost of the first-period incentive
compatibility constraint. In this section, the link between the past history of the
agent’s performances and the current production he is asked to produce comes
from the intertemporal correlation of types and the informativeness of those past
performances on future realizations of the efficiency parameter. We will see in
section 8.2.4 how the past history of performances can also be useful to smooth the
cost of a risk-averse agent’s incentive compatibility constraint, even when shocks
are identically distributed over time.9

Remark 1: Note that the results of proposition 8.3 encompass both
the case of independent draws and the case of perfectly correlated
draws when the agent is infinitely risk averse below zero wealth in
both periods. For independent draws, we have +2%!̄& = +2%!& = +1,
and we find that the second-period average marginal surplus with an
inefficient type is equal to its first-period value: E!̃1

%S′%q̄D
2 %!̃1&&& = !̄ +

9We will then work in a moral hazard framework, but it should be clear that the lessons of the
model carry over to the case of adverse selection analyzed in this section.
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+1
1−+1

*!, where E!̃1
%·& denotes the expectation operator with respect to

!̃1. In the case of perfectly correlated types, we have instead +2%!̄& = 0
and +2%!& = 1. Hence, as in section 8.1.1, the only second-period
inefficient output produced with a positive probability is such that
S′%q̄D

2 %!̄&& = !̄ + +1
1−+1

*!, and thus q̄D
2 %!̄& = q̄D

1 . Note that q̄2%!& = q̄∗ is
now produced with zero probability.

Remark 2: It is worth stressing again that the optimal contract found
in proposition 8.3 uses the assumption of full commitment. Indeed,
the production q̄D

2 %!̄& has been excessively distorted downwards
to induce easier information revelation in period 1 and relax the
intertemporal incentive constraint (8.25). When the second period
comes, the first-period type has been revealed, and the principal does
not have to distort as much the second-period output to induce a less
costly revelation of types at this date.

Baron and Besanko (1984b) derived optimal contracts with types cor-
related over time and full commitment of the principal. Laffont and

Tirole (1996) provided an application of dynamic contracting models with
adverse selection to characterize the optimal regulation of pollution rights.
They also gave an interpretation of the optimal mechanisms in terms of mar-
kets with options. The case of types independently distributed has also been
used in models of infinitely repeated relationships, starting with Townsend
(1982), Green (1987), Phelan and Townsend (1991), Green and Oh (1991),
Atkeson and Lucas (1992), Thomas and Worrall (1990), and Wang (1995).
These authors are interested in deriving the properties of the long run dis-
tribution of the agent’s utility and consumption, and sometimes draw some
macroeconomic implications from the analysis of these distributions. Gener-
ally, the focus of this line of research is on the role of a long-term contract as a
substitute to self- or co-insurance. These papers start with the assumption that
the agent has a finite (and positive) degree of absolute risk aversion. They also
assume that screening in a one-shot relationship is not feasible, because the
principal has only one instrument to control the agent, namely the transfers
(or the consumption) of the agent in a given period. In a long-term relation-
ship, the specification of the continuation payoffs of the contracts is then the
second crucial instrument needed to screen the agent. In section 8.2.6 below,
we will analyze, for the case of infinitely repeated moral hazard, some of the
recursive techniques used in this latter literature to characterize the optimal
long-term contract.
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8.1.4 A Digression on Noncommitment -

From the analysis above, it appears that the generalization of incentive theory to
a dynamic context is straightforward, provided that the principal has the ability to
commit. However, in the case where there is some correlation of types between
both periods, the principal could use the information learned in the first period
to propose a renegotiation of the initial long-term contract he has initially offered
to improve the terms of the rent extraction-efficiency trade-off over the course of
the contract. In other words, the optimal long-term contract with full commitment
may fail to be renegotiation-proof. In section 2.12 we have already touched on
this commitment issue in one-shot relationships, arguing that a simple, indirect
mechanism can be a way around this commitment problem and that the possibil-
ity for renegotiating the contract comes partly as an artifact of the use of a direct
revelation mechanism between the principal and the agent. In an intertemporal
context, the commitment problem is much more of a concern. This concern arises
because the course of actions leaves open dates for recontracting, and the infor-
mation revelation is not an artifact of the modelling but corresponds to physical
decisions. It is beyond the scope of this volume to solve for the optimal dynamic
renegotiation-proof long-term contract. However, in section 9.4 we provide some
preliminary formal analysis of the important trade-off between ex post efficiency
and ex ante incentives, which arises when renegotiation is allowed.

8.2 Repeated Moral Hazard

Let us now move to repeated moral hazard relationship. The main goal of this
section is to show how the past history of performances may help the princi-
pal to relax incentive compatibility constraints, even when there is no correlation
between shocks in different periods.

8.2.1 The Model

We will come back to the moral hazard framework of chapter 4. For now, we
assume that the relationship between the principal and the agent is repeated for
two periods. The risk-averse agent has an intertemporal utility given by U = u%t1&−
/%e1& + '%u%t2& − /%e2&&, where ti (resp. ei) is the agent’s transfer (resp. effort) at
date i. Again, we assume that ei belongs to "0# 1$, with disutilities normalized as
usual because /%1& = / and /%0& = 0. In each period, the agent’s effort yields a
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Figure 8.3: Timing with a Twice-Repeated Moral Hazard Problem

stochastic return q̃i = q̄ (resp. q) with probability 0%ei& (resp. 1−0%ei&). We denote
00 = 0%0&, 01 = 0%1&, and *0 = 01 − 00. Stochastic returns are independently
distributed over time, so that the past history of realizations does not yield any
information on the current likelihood of a success or a failure of the production
process. As usual, the principal is risk-neutral and has a separable utility function
V = S%q1&− t1 + '%S%q2&− t2&.

In this two-period environment, the principal offers a long-term contract to
the agent. In full generality, this contract involves transfers at each date that are
contingent on the whole past history of outcomes. Typically, a long-term contract
writes as "t1%q̃1&( t2%q̃1# q̃2&$, where q̃1 and q̃2 are output realizations in periods 1
and 2, respectively. Such a contract thus stipulates 2 + 2 × 2 = 6 possible trans-
fers, depending on the realizations of outcomes. For simplicity of notation, we use
t1%q̄& = t̄1 and t1%q& = t1 to denote the first-period transfers. Similarly, t̄2%q1& and
t2%q1& denote transfers in the second period. As usual, the description of partici-
pation and incentive constraints is easier when one introduces the new variables
ū1 = u%t̄1&#u1 = u%t1&# ū2%q1& = u%t̄2%q1&& and u2%q1& = u%t2%q1&&.

For further references, the timing of contracting is shown in figure 8.3.

Remark: The reader will have recognized the framework of a mul-
titask moral hazard problem along the lines of that presented in
chapter 5. There are two main differences. First, the sequentiality of
actions that are now taken at two different dates implies that payments
also take place at two different dates. Second, the separability of the
agent’s disutility of efforts over time will allow a somewhat simpler
characterization of the optimal contract, as we will see below.

8.2.2 The Optimal Long-Term Contract

We focus on the case where effort is extremely valuable for the principal, who
always wants to implement a high level of effort in both periods. We can thus
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describe the second-period incentive constraints as

ū2%q1&− u2%q1& ≥
/

*0
for all q1 in "q# q̄$) (8.31)

In full generality, these constraints obviously depend on the first-period level
of output q1, i.e., on the history of past performances.

Let us move backward. In period 1, the agent anticipates his future stream of
random payoffs to evaluate the current benefit of exerting a first-period effort or
not. The first-period incentive constraint is written as

ū1 + '%01ū2%q̄&+ %1− 01&u2%q̄&&−
(
u1 + '%01ū2%q&+ %1− 01&u2%q&&

)
≥ /

*0
)

(8.32)

The terms ū1 and u1 represent the current utility gains associated with the transfers
received by the agent in period 1 depending on the realized production. The
terms '%01ū2%q̄& + %1 − 01&u2%q̄&& and '%01ū2%q& + %1 − 01&u2%q&& represent the
discounted expected utility gains associated with the transfers received by the agent
in period 2 following each possible first-period output. Clearly, these continuation
payoffs affect the first-period incentives to exert effort.

Finally, the agent accepts the long-term contract before q̃1 and q̃2 realize. His
intertemporal participation constraint is written as

01

(
ū1 + '%01ū2%q̄&+ %1− 01&u2%q̄&&

)

+ %1− 01&
(
u1 + '%01ū2%q&+ %1− 01&u2%q&&

)
− %1+ '&/ ≥ 0) (8.33)

Denoting the inverse function of the agent’s utility function, again by h = u−1,
the problem that the principal must solve is

max
"%ū1#u1&(%ū2%q̄&#u2%q̄&# ū2%q&#u2%q&&$

01

(
#S− h%ū1&+ '

(
01%#S− h%ū2%q̄&&&(P ):

+ %1− 01&%S− h%u2%q̄&&&
))

+ %1− 01&
(
S− h%u1&+ '

(
01%#S− h%ū2%q&&&+ %1− 01&%S− h%u2%q&&&

))

subject to %8)31& to %8)34&.

Solving this problem highlights the particular role played by the agent’s con-
tinuation payoffs for the second period following the first-period realization q1,
namely 01ū2%q1&+ %1−01&u2%q1&−/. If the agent has been promised an expected
second-period utility u2%q1&, the levels of utility ū2%q1& and u2%q1& must satisfy the
second-period participation constraints

01ū2%q1&+ %1− 01&u2%q1&− / ≥ u2%q1&# for any q1) (8.34)
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It is important to look at (8.32) and (8.33) to observe that the first-period
incentives to exert effort, and the decision whether to accept the long-term con-
tract, depend on what occurs in the second period only through the values of the
continuation payoffs u2%q1&. They do not depend on how the principal chooses
ū2%q1& and u2%q1&. This flexibility only matters to provide the second-period incen-
tives to exert effort.

Given the promise made by the principal (which is credible because of our
assumption of full commitment) of a future utility u2%q1& for the agent following
a first-period output q1, the continuation contract for the second period solves the
problem below:

%P2%q1&&. max
"ū2%q1&#u2%q1&$

01

(#S− h%ū2%q1&&
)
+ %1− 01&

(
S− h%u2%q1&&

)

subject to (8.31) and (8.34).

We denote the value of problem %P2%q1&& by V2%u2%q1&&. This is the principal’s
second-period payoff, when he has promised a level of utility u2%q1& to the agent.

This problem is almost the same as the static problem of chapter 4
(section 4.4), and its solution can be derived similarly. The only difference is
that the agent receives the promise of a second-period utility u2%q1& when the
first-period output is q1 instead of zero, as in the static model of chapter 4.
Applying the same techniques as in chapter 4, it is straightforward to show that
both constraints (8.31) and (8.34) are binding at the optimum. Hence, we can
compute the second-period agent’s payoffs in both states of nature as

ūD
2 %q1& = / + u2%q1&+ %1− 01&

/

*0
(8.35)

and
uD
2 %q1& = / + u2%q1&− 01

/

*0
# for all q1 in "q# q̄$# (8.36)

where the superscript D means dynamics.
This yields the following expression of the second-best cost CSB

2 %u2%q1&& of
implementing a high effort in period 2 following the promise of a second-period
utility u2%q1&:

CSB
2 %u2%q1&& = 01h

(
/ + u2%q1&+ %1− 01&

/

*0

)

+ %1− 01&h
(
/ + u2%q1&−

01/

*0

)
)10 (8.37)

10We keep the superscript SB to be consistent with our notations of chapter 4.
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Finally, the continuation value of the contract for the principal can be defined
as

V2%u2%q1&& = 01
#S+ %1− 01&S−CSB

2 %u2%q1&&) (8.38)

For further references, note also that V ′
2%u2%q1&& = −CSB′

2 %u2%q1&&.
These optimal continuations of the contract for the second period being

defined, we can now move backward to solve for the optimal long-term contract.
Taking into account the expressions above, the principal’s problem %P & can be
rewritten as

%P ′&. max
"%ū1#u1&(%u2%q̄&#u2%q&&$

01%#S− h%ū1&&+ %1− 01&%S− h%u1&&

+ '
(
01V2%u2%q̄&&+ %1− 01&V2%u2%q&&

)
#

subject to

ū1 + 'u2%q̄&− %u1 + 'u2%q&& ≥
/

*0
# (8.39)

01%ū1 + 'u2%q̄&&+ %1− 01&%u1 + 'u2%q&& ≥ /# (8.40)

where (8.39) is the first-period incentive constraint and (8.40) the agent’s intertem-
poral participation constraint. Both constraints are rewritten as functions of the
expected continuation payoffs u2%q̄& and u2%q& that the agent will get in period 2
following each possible first-period output. Let us introduce the respective multi-
pliers 1 and 2. Note that %P ′& is a concave problem with linear constraints defining
a nonempty constrained set for which the Kuhn and Tucker first-order conditions
are necessary and sufficient to characterize optimality. Optimizing with respect to
ū1 and u1 yields, respectively,

01h
′%ūD

1 & = 1+ 201# (8.41)

%1− 01&h
′%uD

1 & = −1+ 2%1− 01&) (8.42)

Summing those two equations, we obtain

2 = 01h
′%ūD

1 &+ %1− 01&h
′%uD

1 & > 0# (8.43)

and thus the agent’s intertemporal participation constraint (8.40) is necessarily
binding.

Also, from (8.41) and (8.42) we immediately get

1 = 01%1− 01&%h
′%ūD

1 &− h′%uD
1 &&) (8.44)
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Optimizing with respect to u2%q̄& and u2%q& yields

01C
SB′
2 %uD

2 %q̄&& = 1+ 201# (8.45)

%1− 01&C
SB′
2 %uD

2 %q&& = −1+ 2%1− 01&) (8.46)

Hence, we have another way of writing the multiplier 1:

1 = 01%1− 01&
(
CSB′

2 %uD
2 %q̄&&−CSB′

2 %uD
2 %q&&

)
) (8.47)

Direct identifications of (8.41) with (8.45) and of (8.42) with (8.46) yield,
respectively,

h′%ūD
1 & = CSB′

2 %uD
2 %q̄&& = 01h

′%ūD
2 %q̄&&+ %1− 01&h

′%uD
2 %q̄&& (8.48)

and
h′%uD

1 & = CSB′
2 %uD

2 %q&& = 01h
′%ūD

2 %q&&+ %1− 01&h
′%uD

2 %q&&) (8.49)

Those two equations show that the following martingale property must be
satisfied at the optimum:

h′%uD
1 %q1&& = E

q̄2
%h′%ũD

2 %q1&&# for all q1 in "q# q̄$# (8.50)

where Eq̃2
%·& denotes the expectation operator with respect to the distribution of

second-period output q̃2 induced by a high effort at this date, and ũD
2 is the random

value of second-period utilities.
This martingale property shows that the marginal cost of giving up some

rewards to the agent in period 1 following any output q1 must be equal to the
marginal cost of giving up these rewards in the corresponding continuation of the
contract. This property is rather important. It says that, because of the agent’s risk
aversion, the principal spreads the agent’s rewards and punishments intertemporally
to minimize the cost of implementing a high effort in period 1. To give all rewards
and punishments necessary to induce effort in period 1 in this period only is clearly
suboptimal. The principal prefers to smooth the burden of the incentive constraint
between today and tomorrow.

Moreover, because 1 ≥ 0 and CSB′
2 %·& is increasing,11 (8.47) implies that

uD
2 %q̄& ≥ uD

2 %q&. But the equality is impossible, because from (8.48) and (8.49) it
would be implied that ūD

1 ≤ uD
1 , and (8.39) would be violated. Since uD

2 %q̄& >
uD
2 %q&, we have necessarily 1 > 0 from (8.47) and the agent intertemporal incen-

tive constraint (8.39) is binding. Since we have uD
2 %q̄& > uD

2 %q& and ūD
1 > uD

1 , the

11This monotonicity is obtained because h%·& is convex.
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high first-period output is not only rewarded in period 1 but also in period 2. The
optimal long-term contract with full commitment exhibits memory. Note that this
memory property implies more generally that the first period payments and their
expected continuations covary positively.

The main features of the optimal contract are summarized in proposition 8.4,
which provides a useful benchmark with which we can assess the impact of various
limitations that the principal may face in contracting with the agent in a long-term
relationship.

Proposition 8.4: With a twice-repeated moral hazard problem, the opti-
mal long-term contract with full commitment exhibits memory, and the
martingale property h′%uD

1 %q1&& = Eq̄2
%h′%ũD

2 %q1&&& is satisfied.

To get further insights on the structure of the agent’s payments in a long-
term relationship, let us come back to our usual quadratic example and assume
that h%u& = u + ru2

2 for some r > 0 and u ≥ −1
r
. The martingale property (8.50)

immediately yields uD
1 %q1& = 01ū

D
2 %q1&+ %1− 01&u

D
2 %q1& = u2%q1&+ /, for all q1 in

"q# q̄$. Inserting those equalities into (8.39) and (8.40), which are binding yields,
respectively, ūD

1 − uD
1 = /

*0%1+'& and 01ū
D
1 + %1− 01&u

D
1 = /.

Finally, the structure of the payments at each date can be fully derived as

ūD
1 = / + %1− 01&/

*0%1+ '&
# (8.51)

uD
1 = / − 01/

*0%1+ '&
# (8.52)

ūD
2 %q̄& = / + %1− 01&/

*0%1+ '&
+ %1− 01&/

*0
# (8.53)

uD
2 %q̄& = / + %1− 01&/

*0%1+ '&
− 01/

*0
# (8.54)

ūD
2 %q& = / − 01/

*0%1+ '&
+ %1− 01&/

*0
# (8.55)

uD
2 %q& = / − 01/

*0%1+ '&
− 01/

*0
) (8.56)

The values of these transfers immediately highlight two phenomena. First,
compared with a static one-shot relationship, the first-period power of incentives
needed to induce a first-period effort is lower. A factor 1

1+' strictly less than 1
reduces the risk borne by the agent during this first period in order to induce effort
at this date. These formula are also useful for highlighting the fact that as the
future matters more (' large) the risk borne during the first period diminishes and
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more risk is shifted to the second period. Second, an early success (resp. failure)
is translated into future compensations that are shifted upward (resp. downward).
This captures the effect of the past history of performances on future compensa-
tions.

Lambert (1983), Malcomson and Spinnewyn (1988), and Rogerson
(1985b) all showed that the optimal long-term contract exhibits

memory. Rey and Salanié (1990) showed how long-term contracts can gen-
erally be replaced by two-period short-term contracts in a framework with T
periods. Chiappori et al. (1994) offered an interesting survey of the literature.

8.2.3 Renegotiation-Proofness -

Importantly, the recursive procedure that we have used in section 8.2.2 to compute
the optimal long-term contract shows that it is in fact sequentially optimal. Given
the promise u2%q1& made by the principal following a first-period outcome q1, there
is no point in the principal offering a contract other than the continuation for the
second period of the optimal long-term contract above. By definition, the optimal
long-term contract is thus renegotiation-proof.

8.2.4 Reneging on the Contract -

In the previous analysis, we have assumed that the agent commits himself to stay
always in the relationship with the principal once he has accepted the long-term
contract. The optimal contract with full commitment has only a single participa-
tion constraint. This contract forces the agent to stay in the relationship in period
2, even if his expected payoff for this period is negative. This is a rather strong
assumption on the enforcement of a contract. Suppose now that the agent cannot
commit himiself to staying in a relationship if he gets less than his reservation
value normalized at zero. To avoid any breach of contract, the continuation pay-
offs u2%q1& following a first-period output q1 must now satisfy the second-period
participation, or renegation-proofness, constraints

u2%q1& ≥ 0# for all q1 in "q# q̄$) (8.57)

Considering the possibility of a breach of contract therefore puts more
constraints on the principal’s problem %P ′&. If the principal was unconstrained,
he would like to decrease u2%q& and increase u2%q̄&, because playing on future
promises also helps to provide first-period incentives, as (8.40) has already shown
us. However, diminishing u2%q& to its optimal value with no renegation on the
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contract conflicts with the second-period participation constraints (8.57). Indeed,
using (8.55) and (8.56), we observe that the optimal long-term contract always
violates the constraint (8.57), because uD

2 %q& = 01ū
D
2 %q& + %1 − 01&u

D
2 %q& − / =

− 01/
*0%1+'& < 0. Hence, when the agent can walk away from the relationship in the

second period, the constraint (8.57) must be binding following a low first-period
output. The principal is then strongly limited in the second-period punishment
he can inflict on the agent following this history of the game.

The optimal renegation-proof contract entails that (8.57) is binding for q1 = q.
Following such a low first-period output, it should be clear that the continuation
contract is the replica of the static contract found in chapter 4. Let us now derive
the other components of the long-term contract, i.e., the levels of utilities in the
first-period contract and in the second period following a high first-period con-
tinuation output q1 = q̄. The intertemporal incentive constraint is now written
as

ū1 + 'u2%q̄&− u1 ≥
/

*0
) (8.58)

Similarly, the intertemporal participation constraint is obtained as

01%ū1 + 'u2%q̄&&+ %1− 01&u1 ≥ /) (8.59)

Taking into account the binding renegation-proofness constraint u2%q& = 0,
the principal’s problem can be rewritten as

%P &. max
"%ū1#u1&(u2%q̄&$

01

(#S− h%ū1&+ 'V2%u2%q̄&&
)
+ %1− 01&

(
S− h%u1&+ 'V2%0&

)
#

subject to (8.58) and (8.59).

We index the solution to this problem with a superscript R meaning
renegation-proof. Now we denote the respective multipliers of the two constraints
(8.58) and (8.59) by 1 and 2. The corresponding first-order conditions obtained
by optimizing with respect to ū1, u1, and u2%q̄& are written as

−01h
′%ūR

1 &+ 1+ 201 = 0# (8.60)

−%1− 01&h
′%uR

1 &− 1+ 2%1− 01& = 0# (8.61)

−01C
SB′
2 %uR

2 %q̄&&+ 1+ 201 = 0# (8.62)

where ūR
1 and uR

2 are the optimal payoffs in the first period, and uR
2 %q̄& is the

optimal continuation payoff following a high output in the first period.
Summing (8.60) and (8.61), we obtain 2 = 01h

′%ūR
1 & + %1 − 01&h

′%uR
1 & > 0,

and the participation constraint (8.59) is again binding. Inserting this value of
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2 into (8.60), we finally get 1 = 01%1 − 01&%h
′%ūR

1 & − h′%uR
1 &&. Using (8.60) and

(8.62), we also obtain

h′%ūR
1 & = CSB′

2 %uR
2 %q̄&& = 01h

′
(
/ + uR

2 %q̄&+
%1− 01&/

*0

)

+ %1− 01&h
′
(
/ + uR

2 %q̄&−
01/

*0

)
) (8.63)

This equation is again a martingale property, which now applies only follow-
ing a first-period success. Smoothing the rewards for a first-period success between
the two periods calls for equalizing the marginal cost of rewarding the agent in
period 1 with its future expected value in period 2. Using the quadratic specifica-
tion of h%·&, the martingale property (8.63) is rewritten as

ūR
1 = uR

2 %q̄&+ / = 01ū
R
2 %q̄&+ %1− 01&u

R
2 %q̄&) (8.64)

As an exercise, we leave it to the reader to check that 1 > 0.
Using (8.64) with the binding constraints (8.58) and (8.59) yields a linear

system with three unknowns and three equations. Solving this system, we first
obtain the following expressions of the agent’s payoff in each state of nature:

ūR
1 = / + %1− 01&/

*0%1+ '&
# (8.65)

uR
1 = / − 01/

*0
# (8.66)

ūR
2 %q̄& = / + %1− 01&/

*0%1+ '&
+ %1− 01&/

*0
# (8.67)

uR
2 %q̄& = / + %1− 01&/

*0%1+ '&
− 01/

*0
) (8.68)

Taking into account that uR
2 %q& = 0, we also get

ūR
2 %q& = / + %1− 01&/

*0
(8.69)

and

uR
2 %q& = / − 01/

*0
) (8.70)

Comparing these expressions of the payoffs with those obtained when the
agent cannot leave the relationship in period 2, we can state proposition 8.5.
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Proposition 8.5: Assuming that h%·& is quadratic with a twice-repeated
moral hazard problem and a renegation-proofness constraint, the opti-
mal long-term contract is the same as with full commitment, except
for the payoffs corresponding to a low first-period output: uR

1 < uD
1 ,

ūR
2 %q& > ūD

2 %q&, and uR
2 %q& > uD

2 %q&.

The renegation-proofness constraint (8.57) quite significantly affects the struc-
ture of the agent’s payoffs following a low first-period output. However, the optimal
long-term contract still exhibits memory and tracks the agent’s performances over
time, as with full commitment. An early success implies some greater rewards later
on. Because the principal can no longer spread a punishment following a low
first-period output q1 = q between periods 1 and 2, all this punishment must be
inflicted on the agent in the first-period.12 Following such a low first-period output,
the agent receives the optimal static contract in period 2, which corresponds to a
zero participation constraint.

One-sided lack of commitment was studied initially by Lambert
(1983), who showed that the memory result still holds in this frame-

work. Atkeson (1991) analyzed the infinitely repeated contractual model with
one-sided commitment. Thomas and Worrall (1988) provided an analysis of
the optimal long-term contract with two-sided lack of commitment in an
infinitely repeated relationship without moral hazard.

8.2.5 Saving

In the framework of section 8.2.2, we have assumed that the principal has the full
ability to restrict the agent’s access to the capital market. We have not allowed
the agent either to save or to borrow. All the transfers received were immediately
consumed. This seems a rather strong assumption, in particular, given the fact
that the agent would like to save a positive amount in the first period, when
he receives the second-best optimal long-term contract that we have described
in proposition 8.4. To see this point, consider the impact of saving an amount s
in the first period. The agent’s expected utility is thus written as u%tD1 %q1& − s& +
'Eq̃2

%u%tD2 %q1# q̃2&+ %1+ R&s&&, where Eq̃2
%·& denotes the expectation operator with

respect to the second-period production induced by a high effort. In a perfect

12With other utility functions, the principal may also be willing to increase the rewards offered
to the agent in case of a success in order to restore efficient incentives. The renegation-proofness
constraint along a path where the agent has performed poorly may also have an impact on a path
where the agent has performed better.
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credit market, the interest rate is 1 + R = 1
'
. Marginally increasing s above zero

improves the agent’s intertemporal utility whenever

−u′%tD1 %q1&&+ E
q̃2

(
u′%tD2 %q1# q̃2&&

)
> 0) (8.71)

Because the optimal contract satisfies the martingale property (8.50), we also
have 1

h′%uD1 %q1&&
= 1

Eq̃2 %h
′%ũD2 %q1&&&

< Eq̃2
% 1
h′%ũD2 %q1&&

&, where the last inequality is obtained

by applying Jensen’s inequality to the strictly convex function 1
x
. Finally, using

1
h′%uD1 %q1&&

= u′%tD1 %q1&& and 1
h′%ũD2 %q1&&

= u′%tD2 %q1# q̃2&&, the strict inequality (8.71)
holds, and a positive saving is thus optimal.

This positive saving perturbs the agent’s incentives to exert effort in the second
period. Indeed, because the second period transfers tD2 %q1# q̃2& are such that the
second-period incentive constraints are binding, a positive saving that decreases
the marginal utility of income makes the agent prefer a low effort. This calls for a
careful reoptimization of the principal’s problem.

More generally, when the saving made by the agent is nonobservable by
the principal, it plays the role of another moral hazard variable that can only be
indirectly controlled by the principal through the long-term contract they offer.

Let us now characterize some features of the optimal contract with sav-
ing. First, note that, given a first-period output q1 and any long-term contract
"t̂1%q1&( t̂2%q1# q2&$, the agent chooses to save an amount s∗%q1&, such that it equal-
izes his marginal utilities of income in both periods:

u′%t̂1%q1&−s∗%q1&&=E
q̃2

(
u′
(
t̂2%q1#q̃2&+

1
'
s∗%q1&

))
# for all q1 in "q#q̄$)13 (8.72)

In computing the expectation above, we have assumed that the agent antic-
ipates that he will exert a high effort in period 2 so that the probability that q̃2
is equal to q̄ is 01. Of course the choice of effort in the continuation is in fact
endogenous and depends on how much the agent would like to save. We will
come back to this issue below.

By shifting income from one period to the other, the agent is able to play on
the incentive power of the long-term contract he receives from the principal. Now
let us imagine that the principal replaces this initial contract by a new long-term
contract "t1%q̄1&( t2%q̃1# q̃2&$, which is designed to replicate the agent’s choice and
the final allocation of utilities that the latter gets in each state of nature. This
new contract should thus satisfy t1%q1& = t̂1%q1& − s∗1%q1& for all q1 in "q# q̄$ and

13When s∗%q1& < 0, the agent is in fact borrowing from the capital market. Note that because the
agent’s objective function is strictly concave in s, saving is always deterministic.
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t2%q1# q2& = t̂2%q1# q2& + 1
'
s∗1%q1& for all %q1# q2& in "q# q̄$2. With this new contract,

the marginal utilities of income are the same in both periods, because by definition

u′%t1%q1&& = E
q̃2
%u′%t2%q1# q̃2&&&# for all q1 in "q# q̄$) (8.73)

The agent chooses neither to save nor to borrow. Moreover, the intertemporal costs
of both contracts are the same for the principal, since

t̂1%q1&+ 'E
q̃2
%t̂2%q1# q̃2&& = t1%q1&+ s∗1%q1&+ 'E

q̃2

(
t2%q1# q̃2&−

1
'
s∗1%q1&

)

= t1%q1&+ 'E
q̃2
%t2%q1# q̃2&&# for all q1 in "q# q̄$) (8.74)

Hence, there is no loss of generality in restricting the principal to offer saving-
proof long-term contracts.

The saving-proofness constraint, however, requires that the following martin-
gale property, obtained from (8.73), be satisfied:

1
h′%u1%q1&&

= E
q̄2

( 1
h′%u2%q1# q̃2&&

)
# for all q1 in "q# q̄$) (8.75)

(8.75) significantly constrains the set of implementable allocations and raises
the agency cost of implementing a high effort. The principal can no longer spread
the future expected payoffs u2%q̄& and u2%q& as he would like in order to facili-
tate the first-period provision of incentives without inducing saving.

However, the martingale property (8.75) is not the only constraint on the
principal’s problem. Indeed, it would be the case if the stochastic production pro-
cess in period 2 were completely exogenous. However, under moral hazard, the
choice of effort and the stochastic production process in this second period are
also endogenous—it depends, in a rather complex way, on how much the agent
has saved in the first period and on the current contract. This means that, if
the principal can be restricted to saving-proof long-term contracts on the equilib-
rium path, this restriction is no longer valid when the agent decides to change
his first-period saving so that he prefers exerting a low effort in the second-period
continuation. Given a long-term contract "t1%q1&( t2%q1# q2&$, which is saving-proof
on the equilibrium path, the agent, by saving s0 and exerting no effort in period
2, gets u%t1%q1&− s0&+ '%00u%t2%q1# q̄&+ s0

'
&+ %1− 00&u%t2%q1# q&+ s0

'
&&.

To induce the agent to exert effort in period 2, the following incentive con-
straint must be satisfied by a saving-proof long-term contract:

u%t1%q1&&+'%01u%t2%q1#q̄&&+%1−01&u%t2%q1#q&&&−'/

≥max
"s0$

u%t1%q1&−s0&+'
(
00u

(
t2%q1#q̄&+

s0
'

)
+%1−00&u

(
t2%q1#q&+

s0
'

))
)

(8.76)
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Let us consider a second-period contract, such that t2%q1# q̄& > t2%q1# q& for any
q1 in "q# q̄$. It should be noted that s∗0, defined as the maximizer of the right-hand
side above, is such that

u′%t1%q1&− s∗0& = 00u
′
(
t2%q1# q̄&+

s∗0
'

)
+ %1− 00&u

′
(
t2%q1# q&+

s∗0
'

)

> 01u
′
(
t2%q1# q̄&+

s∗0
'

)
+ %1− 01&u

′
(
t2%q1# q&+

s∗0
'

)
# (8.77)

since u′%·& is decreasing and 01 > 00. Using the fact that the agent’s objective
function is concave in s and maximized at zero saving when a positive effort is
exerted in the second period, we can conclude that s∗0 > 0.

Remark: It should be also noted that this double deviation along both
the saving and the effort dimension introduces a positive slack into
the second-period incentive constraint. Indeed, the right-hand side of
(8.76) is strictly greater than what the agent can get by not saving at
all and exerting no effort, namely u%t1%q1&&+ ' %00u%t2%q1# q̄2&&+ %1−
00&u%t2%q1# q2

&&&. Simplifying, we finally get

u%t2%q1# q̄2&&− u%t2%q1# q2
&& >

/

*0
# for any q1in "q# q̄$) (8.78)

This strict inequality implies that the optimal contract with full com-
mitment is not sequentially optimal when saving is allowed. Indeed,
the full commitment optimal contract requests that the second-period
incentive constraint is slack, as shown on (8.78). However, once the
decision of not saving has been made by the agent, and once the sec-
ond period comes, the principal no longer has any reason to leave
such a slack. The principal would like to renegotiate and offer a new
contract such that second-period incentive constraints are binding.

The general lesson of this section is that allowing saving and borrowing may
significantly constrain what can be achieved by a long-term contract. Moreover, it
introduces much complexity into the analysis.

The design of the optimal contract with saving and noncommitment
is rather complex. Chiappori et al. (1994) provided some insights into

the structure of the solution. Things are simpler with full commitment. Mal-
comson and Spinnewyn (1988) showed that the optimal long-term contract
can be replicated by a sequence of optimal static contracts when the agent’s
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saving decision can be controlled by the principal. Fudenberg, Holmström,
and Milgrom (1990) obtained a similar result in the case where the agent
has additively separable CARA preferences, where effort is counted in mon-
etary terms, and where the production technology is common knowledge.
They showed that the associated one-period contract corresponds to the opti-
mal static contract offered to an agent with a lower degree of absolute risk
aversion.

8.2.6 Infinitely Repeated Relationship

The two-period model is a highly stylized view of a long-term principal-agent
relationship. Financial contracts, labor contracts, and tenancy contracts are most
often enduring relationships lasting for a long period of time. Let us move now
to an infinite horizon model extending the basic framework of section 8.2.2.14 As
we will see, the design of the optimal long-term contract still exhibits many of the
features of our two-period example. The novelty is that the second period is no
longer the end of the relationship. All periods are alike, and the principal faces a
similar problem of control in each period. It is rather intuitive to see that the whole
structure of the contract is now solved recursively. Given an initial promise of utility
from any period on, the principal computes an optimal contract that stipulates
not only the agent’s current payments but also determines what are the utility
levels that are promised from that period on, following each current realization
of the production process. Then, the continuation of the optimal contract for the
next period on is similar to the contract itself. Hence, the whole contract can be
computed recursively.

The recursive structure of the optimal contract also implies that, at any given
date, the contract depends on the whole history of past outcomes only through
the utility level promised following such a history. This utility level can be viewed
as a stochastic state variable that summarizes the past history of the agent’s perfor-
mances. Therefore, the optimal contract exhibits a Markov property.15

To describe better the optimal contract, let us denote the value function
associated with the following dynamic programming problem by V %·&:

V %U & = max
"u#ū##U#U$

01%#S− h%ū&&+ %1− 01&%S− h%u&&(P ):

+ '%01V %#U &+ %1− 01&V %U &&

14Hence, the principal can perfectly control the agent’s access to the capital market.
15This feature of the optimal contract could be derived more rigorously; however, for the purpose

of this volume, we content ourselves with the heuristic argument above.
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subject to

ū+ '#U − %u+ 'U & ≥ /

*0
# (8.79)

01%ū+ '#U &+ %1− 01&%u+ 'U &− / ≥ U ) (8.80)

V %U & is the value of the principal’s problem %P & in an infinitely repeated
relationship with moral hazard, assuming that the principal wants to induce a high
effort in each period and promise an expected utility level U to the agent over the
whole relationship.16 Note that the principal must not only stipulate the current
payments of the agent but also the levels of future utilities #U and U , which are
promised in the continuation of the contract following the respective realizations
of q̄ and q. The constraints (8.79) and (8.80) are, respectively, the incentive and
participation constraints when an expected payoff U has been promised to the
agent. These constraints make the role of these continuation payoffs explicit. Given
that the principal has promised an expected level of utility U to the agent at a
given period, he can get the expected payoff V %U & from that period on. By offering
the continuation payoffs U and #U the principal knows, by the mere definition of
the value function V %·&, that he will get himself the continuation payoffs V %U &
and V %#U &.

Let us denote the respective multipliers of the constraints (8.79) and (8.80) by
1 and 2. Assuming the concavity of the value function V %·&,17 the optimizations
with respect to #U and U yield respectively

01V
′%#U %U &&+ 1+ 012 = 0# (8.81)

%1− 01&V
′%U %U &&− 1+ %1− 01&2 = 0# (8.82)

where we make explicit the dependence of the solution on the level of promised
utility U .

Summing these two equations, we obtain also

2 = −E%V ′%Ũ %U &&&# (8.83)

where E%·& is the expectation operator with respect to the distribution of current
output induced by a high effort and Ũ %U & is the random continuation utility
promised to the agent.

16Inducing a high effort may not be always second-best optimal under moral hazard. Indeed, it
may be that, for some promised value U , the principal finds it optimal to induce zero effort in a
given period. Implementing a high effort can always be viewed as an approximation of what is really
optimal. However, the analysis of this section shows that this approximation already performs very
well to come close to the first-best as the relationship is repeated often enough.

17See Stockey and Lucas (1989) for general conditions that ensure that a value function exists and
is concave for a dynamic problem like %P &.
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Optimizing with respect to ū and u also yields

01h
′%ū%U && = 1+ 012# (8.84)

%1− 01&h
′%u%U && = −1+ %1− 01&2) (8.85)

Summing these two equations, we finally get

2 = E%h′%ũ%U &&& > 0# (8.86)

where ũ%U & is the random current utility level. Hence, the participation constraint
(8.80) is necessarily binding.

From (8.84) and (8.85), we also derive the following definition of 1:

1 = 01%1− 01&
(
h′%ū%U &&− h′%u%U &&

)

= 01%1− 01&
(
V ′%U %U &&− V ′%#U %U &&

)
) (8.87)

Because h%·& is convex and V %·& is concave, (8.87) implies that #U %U & ≥ U %U &
if and only if ū%U & ≥ u%U &. To satisfy (8.79), it cannot be that ū%U & ≤ u%U & and
#U %U & ≤ U %U & hold simultaneously. Hence, we necessarily have ū%U & > u%U & and
#U %U & > U %U &.

The economic interpretation of this condition is clear. In an infinitely
repeated relationship, the optimal long-term contract again exhibits the memory
property. A good performance today is not only rewarded today but also gives
the agent a greater continuation payoff. The explanation is the same as in the
two-period model of section 8.3.2. To smooth the agency costs of the relationship
with the agent, the principal spreads the agent’s rewards and punishments between
the current period and its continuation, which now involves the whole future of
their relationship.

Moreover, using the Envelope Theorem, we also have V ′%U & = −2. Hence,
the marginal value function satisfies the martingale property:

V ′%U & = E%V ′%Ũ %U &&&) (8.88)

This property characterizes how the principal intertemporally smoothes the
agent’s reward over time in such a way that one more unit of utility promised today
costs him exactly what the principal gains from having less to promise tomorrow,
following any realization of the output. This property generalizes what we have
seen in section 8.2.2 to the case of an infinitely repeated relationship.
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To make further progress toward the characterization of the optimal contract,
we will assume that h%u& = exp%ru&−1

r
for all u in !.18 This corresponds to a utility

function u%·& that is given by u%t& = 1
r
ln%1 + rt&, which is defined for all t ≥

tmin = − 1
r
.19

This specification of the inverse utility function suggests that we should look
for a value function of the kind V %U & = 3 − 1

4
exp%4U + 5&, where %3# 4# 5&

belongs to !3 with 4 ≥ 0. Note that V %·& is then decreasing %V ′%U & = − exp%4U +
5& ≤ 0& and concave %V ′′%U & = −4 exp%4U + 5& ≤ 0&.

Using (8.81) and (8.84), we immediately find that

−V ′%#U %U && = h′%ū%U &&# (8.89)

or to put it differently,

exp%4#U %U &+ 5& = exp%rū%U &&) (8.90)

Similarly, using (8.82) and (8.85), we obtain

−V ′%U %U && = h′%u%U &&# (8.91)

or

exp%4U %U &+ 5& = exp%ru%U &&) (8.92)

The general discussion above has shown that the constraints (8.79) and (8.80)
are both binding. This yields the following expressions of ū%U & and u%U &:

ū%U & = U + / + %1− 01&
/

*0
− '#U %U & (8.93)

and

u%U & = U + / − 01
/

*0
− 'U %U &) (8.94)

Inserting those expressions into (8.90) and (8.92) yields, respectively,

#U %U & = r

r'+ 4

(
U + / + %1− 01&

/

*0

)
− 5

r'+ 4
(8.95)

18Note that h%u& ≈ u+ ru2

2 when r is small enough. Hence, the quadratic model we have repeat-
edly used all over the book can be seen as a reasonable approximation of the exponential inverse
utility function that we use here.

19Note that r is the agent’s absolute risk aversion at zero: − u′′
u′ %t&

∣∣∣
t=0

= r .
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and

U %U & = r

r'+ 4

(
U + / − 01

/

*0

)
− 5

r'+ 4
) (8.96)

With our specification for h%·&, the martingale property (8.88) is rewritten as:

exp%4U & = 01exp%4#U %U &&+ %1− 01& exp%4U %U && for all U ) (8.97)

Inserting (8.95) and (8.96) into (8.97) and identifying the right-hand and left-
hand sides for all values of U yields

1 = r

r'+ 4
# (8.98)

and

exp
(

45

r'+ 4

)
= 01 exp

(
4r

r'+ 4

(
/ + %1− 01&

/

*0

))

+ %1− 01& exp
(

4r

r'+ 4

(
/ − 01

/

*0

))
) (8.99)

Finally, we get the following expressions of 4 and 5:

4 = r%1− '&# (8.100)

5 = r/ + 1
1− '

ln
(
01 exp

(
r%1− '&%1− 01&

/

*0

)

+ %1− 01& exp
(
−r%1− '&01

/

*0

))
) (8.101)

These expressions yield the following laws of motion for the expected utility
from any period on:

#U %U & = U + %1− 01&
/

*0
− 1

r%1− '&
ln

(
01 exp

(
r%1− '&%1− 01&

/

*0

)

+ %1− 01& exp
(
−r%1− '&01

/

*0

))
(8.102)

and

U %U & = U − 01
/

*0
− 1

r%1− '&
ln

(
01 exp

(
r%1− '&%1− 01&

/

*0

)

+ %1− 01& exp
(
−r%1− '&01

/

*0

))
) (8.103)
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Moreover, the current payoffs are then obtained from (8.93), (8.94), (8.102),
and (8.103) as

ū%U & = %1− '&

(
U + / + %1− 01&

/

*0

)
+ '5

r
# (8.104)

u%U & = %1− '&

(
U + / − 01/

*0

)
+ '5

r
) (8.105)

The laws of motion (8.102) and (8.103) are interesting, because they show that
the optimal contract still exhibits the memory property in an infinitely repeated
relationship. A success in any period moves up the agent’s expected utility from
this period on and #U %U & > U . A failure moves it down, U %U & < U . However,
the upward shift is smaller than the downward shift, which creates a tendency for
expected utility to move downward, as we will discuss below.

Note that as ' goes to one, the following Taylor approximation holds:

#U %U & = U + %1− 01&
/

*0
− r%1− '&01%1− 01&

/2

2%*0&2
(8.106)

and

U %U & = U − 01
/

*0
− r%1− '&01%1− 01&

/2

2%*0&2
) (8.107)

As ' goes to one, whatever his degree of risk aversion, the agent behaves
almost as a risk-neutral agent being incentivized by a reward (in utility terms)%1−
01&

/
*0

following a success and a punishment −01
/
*0

following a failure. This
already suggests that the agency cost may not be too important when the future is
not discounted too much.

To find the behavior of the value function as ' goes to one, let us now
determine the last parameter 3. Using the definition of V %·&, we have

V %U & = 01
#S+ %1− 01&S+ 1

r
− 01 exp%rū%U &&+ %1− 01& exp%ru%U &&

r

+ '%01V %#U %U &&+ %1− 01&V %U %U &&&# (8.108)

where %ū%U &#u%U && are given by (8.104) and (8.105) and %Ū %U &#U %U && are given
by (8.102) and (8.103). Inserting these latter expressions in (8.108) and simplifying
yields, after some tedious computations,

3 = 1
1− '

(
01

#S+ %1− 01&S+ 1
r

)
) (8.109)



Dynamics under Full Commitment • 339

Finally, the value function is written as

V %U & = 1
1− '

(
01

#S+ %1− 01&S+ 1
r

)
− 1

r%1− '&
exp%r%1− '&U + 5&)

(8.110)

Normalizing the length of the period by 1− ', the per-period value function
is written as

#V %U & = %1− '&V %U & = 01
#S+ %1− 01&S− %exp%r%1− '&U + 5&− 1&

r
)

(8.111)

When ' converges to one, 5 converges towards r/ and the per-period value
function uniformly converges on all compact intervals of U toward

W ∗
1 = 01

#S+ %1− 01&S− h%/&# (8.112)

which is the first-best profit of the principal inducing a positive effort.

Proposition 8.6: As ' goes to one, the principal’s per-period expected
profit in an infinitely repeated relationship with moral hazard converges
towards its first-best value.

The intuition for this result is straightforward. Recall from chapter 4 that the
source of inefficiency in a static moral hazard problem is the fact that the principal
must let the risk-averse agent bear some risk. The principal benefits from the
repetition of the game, because he can spread the agent’s rewards and punishments
over time and let the agent only bear a small fraction of the risk associated with
his current effort in any given period. This risk is proportional to the length of
the period 1 − '. When ' is close to one, the risk borne by the agent in each
period is thus made arbitrarily close to zero, as can be seen easily by computing
the difference ū%U & − u%U & = 4

r
%#U %U & − U %U && = %1 − '& /

*0
, which converges

towards 0 as ' goes to 1. Therefore, the cost of moral hazard in a given period
almost disappears, and the first-best level of profit is achieved when ' is close
enough to one.

Another interpretation of this result should be stressed. As the contractual
relationship is repeated, the risk-averse agent is subject to many independent risks
that arise at different points in time. The principal structures the intertemporal
contract of the agent to let him become perfectly diversified. As a result of this
complete diversification, the agent is almost risk-neutral, and the first-best outcome
can be obtained just as in a static model with risk neutrality. In this sense, one can
say that the infinitely repeated relationship is a good substitute to self-insurance if
the relationship is repeated often enough.
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Finally, it is interesting to characterize how the distribution of utilities that
the agent gets after i periods evolves. Given that (8.102) and (8.103) both hold, the
utility Ũi, which is promised to the agent from any date t = i on, is such that Ũi =
Eq̃i+1

%Ũi+1&+ 6, where Eq̃i+1
denotes the expectations of the output at date t = i+ 1

when the agent exerts a positive effort in this period and 6 = 1
r%1−'& ln%01 exp%r%1−

'&%1−01&
/
*0
&+ %1−01& exp%−r%1− '&01

/
*0
&& is strictly positive. Using the Law of

Iterated Expectations, we get Eq̃i
%Ũi& = Eq̃i

%Eq̃i+1
%Ũi+1&& + 6 = E%q̃i#q̃i+1&

%Ũi+1& +
6. Proceeding recursively, we finally obtain U0 = Eq̃1

%Ũ1& + 6 = Ehi
%Ũi& + i6,

where U0 = 0 is the agent’s reservation utility at the start of the relationship and
hi = %q̃i# q̃i−1# ) ) ) # q̃1& is the whole history of past outcomes up to date t = i. In
particular, we have

E
hi

%Ũi& = −i6# (8.113)

which converges towards minus infinity as i goes to infinity. The expected utility of
the agent from any period on decreases linearly over time, pushing the agent into
regions where continuation payoffs are very likely to be negative. The assumption
that the agent cannot leave the relationship is thus crucial for the result where the
first-best outcome can be approximatively implemented as ' goes to one.

This property is also useful when computing the whole distribution of
expected utilities Ũi from any period i on. The laws of motion are given by (8.102)
and (8.103). Figure 8.4 below explains how this distribution evolves over time.

It is straightforward to observe that the future expected utility U %hi& following
any history hi depends only on the number of high outcomes q̄ that have been
realized up to date t = i. Assuming n realizations of q̄ in a given history hi, we
have U %hi& = Ui%n& = n% %1−01&/

*0
&+ %i− n&%−01/

*0
&− i6, where %1−01&/

*0
is the agent’s

reward when a high output realizes and −01/
*0

is his punishment following a low
output. Note that the probability that such a history with n high outcomes up to
period i takes place is

(
i
n

)
0n

1 %1− 01&
i−n, i.e., the probability of n successes in an

i-Bernoulli trial.
It is also interesting to note that the distribution of Ũi + i6 converges in

law toward a normal distribution. From a direct application of the Central Limit
Theorem we have indeed

Ũi + i6
/
*0

√
01%1− 01&

−→
Law

N %0# 1&#

where N %0# 1& is a normal distribution with zero mean and unit variance. This
convergence suggests that the utility levels promised to the agent from any date on
are unlikely to diverge too much away from the downward drift as the relationship
becomes infinitely long.
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Figure 8.4: Distribution of Future Expected Utilities up to Period 3

The structure of the incentive scheme is also easily obtained from the struc-
ture of the utilities. If there have been n successes up to date t = i, the incentive
scheme is such that

t̄i%n& = h

(
/ + %1− '&

(
%1− 01&/

*0
+ Ui%n&

)
+ '6

)
(8.114)

and

ti%n& = h

(
/ + %1− '&

(−01/

*0
+ Ui%n&

)
+ '6

)
) (8.115)

As the number of periods increases, the downward drift of utility toward minus
infinity implies that transfers get closer and closer to their lowest possible bound
tmin = − 1

r
.

Spear and Srivastava (1987) were the first to state the infinitely
repeated moral hazard problem as a recursive problem. Using the

first-order approach, they focused on the case of a continuum of possible
levels of effort and found many difficulties in the characterization of the
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optimal contract. They also proved the Markov property of the optimal
contract. At a more abstract level, repeated principal-agent relationships are
examples of repeated games with strategies based on public information,
namely the history of past performances. The earlier contributions to the
repeated principal-agent literature were precisely cast in a theoretic game
setting. Rubinstein (1979) showed that the first-best effort can also be imple-
mented when agents do not discount the future by the use of so-called
review strategies. Such a strategy punishes the agent’s deviations when he no
longer exerts the first-best level of effort if those deviations are statistically
detectable. Radner (1985) also used review strategies in the case of dis-
counting. These latter papers were not interested in computing the optimal
dynamic contract, but they already showed that a repeated relationship could
alleviate much of the agency problem. Radner, Maskin, and Myerson (1986)
provided an example (involving team production, not a single agent) such
that efficiency is lost even when the common discount factor ' goes to one.
The general theory of repeated games with public information is due to
Fudenberg, Levine, and Maskin (1994). They derived sufficient conditions
on the information structure to ensure first-best implementation when ' goes
to one. They devoted a whole section to the case of principal-agent models
and compared their approach, which was based on dynamic programming,
with that used by Radner (1985), Rubinstein (1979), and Rubinstein and
Yaari (1983). In the context of insurance against income shocks, i.e., in an
adverse selection context, Green (1987), Thomas and Worrall (1990), Atkeson
and Lucas (1992), and Phelan (1994) have computed explicit expressions for
the value function for some specifications of preferences.

8.3 Constraints on Transfers: The Role of
Implicit Incentives

In section 4.7, we reported the Fama (1980) argument according to which the labor
market acts as an incentive instrument and provides managers with incentives to
exert optimal effort levels. Indeed, managers want to influence the perception that
the market has on their productivity. According to this argument, this desire for
good reputation should induce them to perform efficiently and therefore explicit
monetary incentives might not be needed. Of course, this argument requires a
dynamic model with both a moral hazard ingredient and a signaling ingredient,
because the labor market tries to infer the managers’ abilities from their past per-
formances.
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Figure 8.5: Timing with Implicit Incentives

Let us sketch such a model. The risk-neutral agent may be of two possible
types (or abilities) ! in , = "!# !̄$, with respective probabilities 1− + and +. For
simplicity, we assume that !̄ = 1 and thus 1 > !.

There are two periods t = 1 and t = 2 and no discounting. The agent’s output
in each period qi may take two possible values q and q̄ with respective probabilities
!0%ei& and 1 − !0%ei&, where ei is the agent’s effort in period i. These outputs
yield, respectively, the benefits #S and S to the principal employing the agent in
any period. As usual, we denote *S = #S − S. The agent’s effort ei may be either
0 or 1 with the usual normalization /%1& = / and /%0& = 0.

We assume that there is perfect competition between alternative principals
to attract the agent in period 2. Moreover, a first important assumption of the
model is that neither the manager nor the principals are informed of the ability
of the manager. A second important assumption is that the principals cannot write
contracts conditional on the production level. The idea here is that the production
level is observable but not contractible. Accordingly, the first-period wage is a fixed
wage t1 while the second-period (fixed) wage can depend on past observation
t2%q1&.

The timing of the model is the one shown in figure 8.5.
Let us start with a benchmark—the case where the agent’s effort in each

period is observable but his ability remains unknown for both the market and the
agent. In this case, the agent exerts a high effort in the first period when

%+ + !%1− +&&*0*S ≥ /) (8.116)

This formula is the traditional first-best comparison between the benefit of
exerting effort and its cost.20 However, the information on the agent’s productivity
is still incomplete, and this criterion must be applied to the average productivity
of the agent.

20See the condition (4.9), for instance.
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Remark: Note that the first-best outcome can still be achieved if
the principal cannot observe effort but can use explicit incentives
with a wage linked to the agent’s performance. Indeed, making the
risk-neutral agent residual claimant for the profit of the organization
achieves the first-best outcome.21

Suppose now that effort is nonobservable. We solve the game backward. At
date t = 1)5, the agent does not exert any effort, e2 = 0, because the labor market
offers only a fixed wage independent of the realization of q2.

Because of perfect competition among principals, in period 2 the fixed-wage
t2%q1& is such that

t2%q1& = %+ê%q1&+ !%1− +ê%q1&&&00
#S

+%1− %+ê%q1&+ !%1− +ê%q1&&&00&S# (8.117)

where +ê%q1& is the posterior belief held by the market on the agent’s ability after
the first-period output has been observed. We make these posterior beliefs explicitly
dependent on ê, the market’s conjecture about the first-period effort.

It is easy to compute this posterior belief by using Bayes’ rule. If the labor
market expects that the agent exerts a high effort ê = 1 in the first period, these
posterior beliefs are written respectively, as

+1%q̄& =
+01

+01 + %1− +&!01
(8.118)

and

+1%q& =
+%1− 01&

+%1− 01&+ %1− +&%1− !01&
)22 (8.119)

The agent’s incentive constraint that needs to be satisfied in order to induce
a high effort in the first period is finally written as

%+ + %1− +&!&*0%t2%q̄&− t2%q&& ≥ /) (8.120)

Using (8.117) to (8.119), this condition is rewritten as

%+ + %1− +&!&%+1%q̄&− +1%q&&%1− !&00*0*S ≥ /) (8.121)

21See section 4.3.
22 It is easy to check that +%q̄& > +%q& when ! < 1.
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The comparison of (8.116) and (8.121) is straightforward. The term %+%q̄&−
+%q&&%1 − !&00 is strictly lower than one, and thus (8.121) is a more stringent
condition than (8.116). It is thus harder to incentivize the agent through his desire
to build a reputation vis-à-vis the labor market than if he can receive explicit
monetary incentives.

Proposition 8.7: Implicit incentives can only be imperfect substitutes
for the explicit monetary incentives obtained with a wage linked to per-
formance.

Remark: When (8.121) holds, the rational expectation equilibrium
we have isolated induces the agent to exert effort, because the mar-
ket expects this effort and rewards the agent accordingly. It is easy
to see that there may exist another rational expectation equilibrium
where the market anticipates the fact that the agent exerts no effort
and offers second-period wages that fail to incentivize the agent in the
first period.

To ensure that such an equilibrium with a low effort exists, it
must be that

%+ + %1− +&!&%+0%q̄&− +0%q&&%1− !&00*0*S < /# (8.122)

where +0%q̄& and +0%q& are respectively given by

+0%q̄& =
+00

+00 + %1− +&!00
= +1%q̄& (8.123)

and

+0%q& =
+%1− 00&

+%1− 00&+ %1− +&%1− !00&
> +1%q&) (8.124)

Hence, +0%q̄& − +0%q& < +1%q̄& − +1%q&, and one can find param-
eter values of *S and /, such that (8.121) and (8.122) both hold
simultaneously.

This multiplicity of equilibria points to another reason why
implicit incentives fail to replace efficiently explicit incentives.

Holmström (1999a) was the first paper to formalize career concerns.
Contrary to our model, he assumes a continuum of effort levels,

a continuum of performances, a continuum of abilities both normally dis-
tributed, and an infinitely repeated relationship. The agent’s observable output
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writes as y = ! + e + 7, where ! is ability, e is effort, and 7 is some noise.23

He first shows that the agent’s effort in the unique rational expectation equi-
librium is declining over time. As time passes, the agent’s ability gets better
known by the market and the agent can no longer affect the perception of
the market on his ability by exerting effort. To avoid this phenomenon, Holm-
ström assumes that ability varies over time but with some positive correlation.
Dewatripont, Jewitt, and Tirole (1999a) compare various information struc-
tures with implicit incentive schemes. Dewatripont, Jewitt, and Tirole (1999b)
also propose applications of this framework to incentives in the public sector
and stress the existence of multiple equilibria. Gibbons and Murphy (1992)
analyze the interplay between explicit and implicit incentives and provide
some empirical background on the career concern model. Other nice applica-
tions of the implicit incentives paradigm are McLeod and Malcomson (1988b)
and Meyer and Vickers (1997) for multiagent organizations. Gibbons (1997)
provides an overview of the literature.

23Note that effort is a perfect substitute for ability.



9 Limits and Extensions

The goal of this concluding chapter is to point out a number of possible extensions
of the basic paradigms developed in the preceding chapters. All of these chapters,
even though they deal with different kinds of agency costs, have a number of key
assumptions in common. These assumptions are

• the absence of private information for the principal,
• the existence of a costless and benevolent court of law that enforces
contracts,

• the ability of players to commit to the contract they have signed,
• the signing of the contract taking place before the partners perform
any specific investment that is valuable for their relationship,

• the availability of a whole range of verifiable observables that can be
used in a contract as screening devices,

• the complete rationality of all players, and
• the exogeneity of the information structures.
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We devote one full section to each of those assumptions. Each section is
aimed at showing how the standard analysis can be extended in order to relax that
assumption. Often these extensions are not the only ones possible. Our purpose
is not to be exhaustive and definitive in our treatment of each of the possible
perturbations of the basic paradigms. Instead, we view these extensions as indica-
tive of the possible routes that can be pursued beyond the sometimes stringent
assumptions made in the previous chapters.

• Informed principal: Throughout this book, we have assumed that the prin-
cipal was never more informed than his agent. In some instances, this assumption
is unrealistic. The government may want to elicit the consumer’s preferences for
a public good, but the government certainly has a better knowledge of the cost of
producing this good than taxpayers. In general, mechanism design by an informed
principal raises issues difficult to take into account, such as the informational leak-
age that takes place when the principal already knows his information at the time
that he offers a contract to the agent. Those issues are largely outside the scope
of the present chapter. However, in section 9.1, we illustrate, using a very simple
model of ex ante contracting, the role played by the principal’s incentive constraint
to justify a new allocative inefficiency.

• Imperfection of the judicial system and limited enforcement: Implicit in
our whole analysis throughout this volume is the fact that a benevolent court of
law can costlessly enforce the contract signed by the principal and his agent. The
lack of perfect ability to enforce contracts would be without any consequence if
none of the contractual partners was actually willing to renege on the contractual
agreement. However, that cannot be the case if the optimal contract calls for
punishing the agent in some states of nature.1 To ensure the contract enforceability,
the court must first be able to verify that an agent has disobeyed the agreed clauses
of the contract. Second, the court must also be able to impose punishments on
the agent in order to ensure his compliance. Of course, this enforcement system
itself is not perfect. Using the judicial system to enforce the contract is obviously
costly, and the punishments that can be imposed on the agent are most often
limited by the agent’s own liabilities. In section 9.2 we present a simple model
with adverse selection and ex ante contracting that shows that the contractual
partners can, without loss of generality, be restricted to offer enforcement-proof
mechanisms. Under ex ante contracting and with a risk-neutral agent, we show
how the distortions imposed by an imperfect enforcement can be parameterized
by the enforcement technology of the judicial system and the agent’s liabilities.

1Remember that under ex ante contracting with either adverse selection (section 2.11.2) or moral
hazard (section 4.4) it is optimal to use such punishments.
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• Limits on commitment and renegotiation: A related point concerns the
lack of commitment of the agents to the contract. If the judicial system was perfect,
it could certainly ensure that the validity of any long-term contract extends over its
whole length of duration. However, the judicial system is not perfect. Partners to
the contract often renegotiate the terms of the contract if some Pareto-improving
new agreement becomes feasible during the course of action. The analysis of
chapters 2, 4, and 8 has already shown us how the optimal contract under full com-
mitment requires that the parties to the contract commit themselves to some ex post
inefficiency in order to ensure ex ante optimality.2 Ex post, a Pareto-improving
renegotiation may be valuable for the contractual partners. Anticipating this rene-
gotiation, agents take actions in the earlier periods of the relationship that reduce
ex ante optimality. There is a trade-off between ex post efficiency and ex ante incen-
tives. Therefore, renegotiation puts constraints on any long-term contract. Without
loss of generality, the principal can restrict himself to renegotiation-proof contracts.
Taking into account a renegotiation-proofness constraint, in section 9.3 we analyze
the optimal two-period renegotiation-proof contract, restricting ourselves to deter-
ministic mechanisms. We show that the common discount factor of the agent and
the principal plays an important role in determining whether the full separation
of types takes place in the initial round of the relationship or a pooling allocation
is preferred by the principal.

• Limits on commitment and the hold-up problem: In the standard moral
hazard paradigm of chapter 4 and in some of the mixed models of chapter 7,
the agent’s effort is fully anticipated by the principal at the time of contracting.
The principal can commit to a set of rewards and punishments that are both
necessary to incentivize the agent and to compensate him for his effort. We can
instead envision a less perfect contractual setting where the principal and the agent
cannot write any contract before the agent performs some specific investment that
improves the value of trade. In this mixed model, the principal has no ability to
promise any reward to the agent for inducing his costly investment. This lack of
commitment may reduce the agent’s incentives to invest with respect to the case of
full commitment: an instance of contractual opportunism. This hold-up problem
is analyzed in section 9.4.

• Limits on the complexity of contracts: When deriving optimal contracts in
various environments, we have put no actual limit on the complexity of the feasi-
ble contracts. In most real world settings, contracts take the form of simple linear
arrangements. In the absence of any significant and manageable breakthrough in
modelling the cost of writing various contingencies in a contract, theorists have

2See sections 2.12, 4.9, and 8.1.4 for discussions of these trade-offs between ex ante and ex post
optimality.



350 • Chapter 9

derived those simple contracts from optimality in highly structured environments.
We review two results of the literature that derive optimal linear contracts in sec-
tion 9.5. First, under adverse selection and with a continuum of possible types,
the optimal contract can sometimes be implemented through a menu of linear
contracts. Second, under moral hazard, some assumptions on the agent’s utility
function and the observability of his performances may also lead to the optimality
of a single linear contract.

• Limits on the verifiability of actions: In an adverse selection framework, the
principal may sometimes be limited in his ability to screen the agent. For instance,
the principal might only be interested in buying one unit of goods produced by
the agent. Using quantity as a screening variable is not possible. Following the
insight of Spence (1973, 1974), the principal and the agent may look for other
screening devices to avoid the allocative inefficiency associated with such a pooling
mechanism. One such signaling device can be for the agent to exert an observable
and verifiable effort, the cost of which is correlated with the agent’s type. In this
chapter we develop a simple model showing how useful these screening devices
can be.

A related question concerns the choice among alternative screening instru-
ments when using any of these instruments is costly for the principal. To illustrate
this issue in a simple model, we explore when the agent’s contract should be
based on his input and when it should be based on his output. Section 9.6 deals
with these two topics related to the endogenous determination of the principal’s
screening ability.

• Limits on rational behavior: The whole principal-agent relationship has
been developed in a framework where agents are fully rational maximizers. There
is no doubt that consumers facing the complex nonlinear prices offered by a seller
may find difficulties in signing for one or the other of the proposed options. In
this case, the agent may fail to optimize within those options and exhibit some
irrational behavior. There are lots of possible ways to model a boundedly rational
behavior. In section 9.7, we describe two particular ways of modelling bounded
rationality that are amenable to slight modifications of the complete contracting
framework used throughout the book. In the first way the agent may make some
small errors in deciding which contract he should choose within the menu that he
receives from the principal. In the second way the agent is not a global optimizer
and only compares nearby contracts before making his choice in a menu. Finally,
we also touch upon the consequence of introducing communication costs in the
realm of incentive theory.

• Endogenous information structures: Very recently, a new class of models
has been developed to relax the somewhat strong assumption made by incentive
theory that information structures are exogenously given to the agents. We present
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such a model in section 9.8 and show that the standard lessons from incentive
theory may require some revisions when information structures are endogenous.

9.1 Informed Principal !

In the basic framework of chapter 2, we have assumed that the uninformed party
has all the bargaining power and makes a contractual offer to the privately informed
agent. In the case of common value, i.e., where the principal’s utility function
depends on the state of nature "V = S"q# $%− t%, let us now flip the roles of these
two players and assume that the privately informed player makes the contractual
offer. To avoid the difficult issues of signaling,3 we assume that the informed prin-
cipal makes his contractual offer before he learns the state of nature $. The timing
of this ex ante contracting is shown in figure 9.1.

Figure 9.1: Timing of Ex Ante Contracting with an Informed Principal

The principal now has a utility function V = S"q# $%− t for which we assume
that the Spence-Mirrlees property Sq$"q# $% < 0 is satisfied. The agent gets a payoff
U = u"t− $q%, where u"·% is some increasing and strictly concave utility function
"u′ > 0#u′′ < 0 with u"0% = 0%. As usual, $ belongs to & = '$# $̄( with respective
probabilities ) and 1− ).

According to the revelation principle, there is no loss of generality in restrict-
ing the principal to offer direct revelation mechanisms of the kind '"t̄# q̄%* "t# q%(.
For further references, we denote the principal’s information rents in both states
of nature by V = S"q# $% − t and #V = S"q̄# $̄% − t̄. As usual, we can replace the
menu of contracts '"t̄# q̄%* "t# q%( by the menu of rent-output pairs '"#V # q̄%* "V # q%(
to perform the optimization of the principal’s problem.

3In doing so we bypass a major difficulty of the informed principal models. However, the analysis
of signaling is clearly outside the scope of this volume, because it requires that we manipulate the
notion of perfect Bayesian equilibrium. Nevertheless, in remark 1 of this chapter we will touch upon
the link between our results that follow and those obtained with signaling models.
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The principal being informed of his type ex post, any contract that he offers
at the ex ante stage must satisfy the following incentive constraints of the principal:

V ≥ #V ++"q̄%# (9.1)

#V ≥ V −+"q%# (9.2)

where +"q% = S"q# $%− S"q# $̄%. Because of the assumptions made on S"·%, +"·% is
an increasing function of q. Summing these two incentive constraints and using
that +′"·% > 0, we obtain the monotonicity condition

q ≥ q̄, (9.3)

Moreover, because the contract is offered at the ex ante stage, the risk-averse
agent’s ex ante participation constraint is written as

)u"t − $q%+ "1− )%u"t̄ − $̄q̄% ≥ 0, (9.4)

Expressing transfers as functions of the principal’s information rents V and
#V , we obtain

)u"S"q# $%− $q − V %+ "1− )%u"S"q̄# $̄%− $̄q̄ − #V % ≥ 0, (9.5)

In what follows, we can neglect the principal’s ex ante participation constraint,
because the principal has all the bargaining power at the ex ante stage when the
contract is offered. The principal’s problem can be written as

"P %- max
'"V #q%*"#V #q̄%(

)V + "1− )%#V

subject to (9.1), (9.2), and (9.5).

Indeed, the principal must maximize his ex ante payoff subject to the agent’s
participation constraint and to his own incentive constraints, ensuring that ex post,
i.e., once he has learned the state of nature, he will truthfully reveal this state of
nature.

Symmetric Information
As a benchmark, let us ignore for a while the incentive constraints (9.1) and (9.2)
and solve for the optimal contract under symmetric information. This contract
requests efficient production for both types, i.e., q∗ and q̄∗, such that Sq"q

∗# $% = $

and Sq"q̄
∗# $̄% = $̄. Moreover, this contract provides full insurance to the risk-averse

agent. Formally, we must have

0 = S"q∗# $%− $q∗ − V ∗ = S"q̄∗# $̄%− $̄q̄∗ − #V ∗, (9.6)
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Figure 9.2: First-Best Contracts with an Informed Principal

The Spence-Mirrlees property Sq$ < 0 ensures that the monotonicity con-
dition always holds for the first-best outputs, i.e., q∗ > q̄∗. In order to make the
problem interesting, we assume that the incentive constraint (9.2) is not satisfied
by the first-best allocation. Using (9.6), this occurs if #V ∗ − V ∗ = S"q̄∗# $̄%− $̄q̄∗ −
"S"q∗# $%− $q∗% < −S"q∗# $%+ S"q∗# $̄% = −+"q∗%, which holds if

S"q̄∗# $̄%− $̄q̄∗ < S"q∗# $̄%− $q∗, (9.7)

We have represented the optimal first-best contracts A∗ and B∗, offered in
the states of nature $ and $̄, respectively, in figure 9.2. Note that the Spence-
Mirrlees property Sq$ < 0 ensures that the indifference curve of the $̄-type crosses
the indifference curve of the $-type only once and then has a lower slope, as in
figure 9.2. A higher level of utility is obtained when the isoutility curve moves in
the southeast direction.

Asymmetric Information
Let us move now to the case of asymmetric information, where only P knows
the value of $. By moving from B∗ to A∗ when state $̄ realizes, the principal can
increase his expected profit. On the contrary, the principal never wants to offer B∗

when he should offer A∗ in state $.
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The previous analysis suggests that (9.2) is the relevant incentive constraint
in problem "P % when (9.7) holds. Denoting the multipliers of (9.2) and (9.5), by
. and /, respectively, and optimizing with respect to V and #V yields

) − .− /)u′(S"qIP # $%− $qIP − V IP
)
= 0# (9.8)

1− ) + .− /"1− )%u′(S"q̄IP # $̄%− $̄q̄IP − #V IP
)
= 0# (9.9)

where the index IP means informed principal.
Summing these two equations, we obtain

/ = 1
)u′"UIP %+ "1− )%u′"#UIP %

> 0# (9.10)

where UIP = S"qIP # $% − $qIP − V IP and #UIP = S"q̄IP # $̄% − $̄q̄IP − #V IP are the
agent’s payoffs in the different states of nature. Hence (9.5) is necessarily binding
at the optimum.

Lastly, we have

. = )"1− )%"u′"#UIP %− u′"UIP %%

)u′"UIP %+ "1− )%u′"#UIP %
, (9.11)

Because u"·% is concave, . is positive if and only if #UIP < UIP .4

Optimizing "P % with respect to outputs yields the second-best outputs, which
are such that q̄IP = q̄∗, and

Sq"q
IP # $% = $ −

.+′"qIP %

)/u′"UIP %
, (9.12)

We can summarize our findings in proposition 9.1.

Proposition 9.1: Assume that the agent is strictly risk averse and that the
informed principal makes the contractual offer at the ex ante stage. Then,
the optimal contract entails the following:

• Both the principal’s incentive constraint in state $̄ (9.2) and the agent’s
ex ante participation constraint (9.5) are binding.

• No output distortion for the production that is obtained when $̄ realizes
q̄∗ = q̄IP .

4To ensure that . > 0, we must check that #UIP < 0 < UIP , or equivalently that S"qIP # $%− $qIP−
V IP > S"q̄∗# $̄%− $̄q̄∗ − #V IP . This yields the condition S"qIP # $̄%− $qIP > S"q̄∗# $̄%− $̄q̄∗. This con-
dition means that the indifference curve of the principal in state $̄, which is going through B∗, is
above that of the principal going through point C, as can be seen in figure 9.3b. Since C is below
AIP , which yields the same utility as BIP , which is itself below B∗, we get the result.
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• An upward distortion for the production that is obtained when $ realizes
qIP > q∗, where

Sq"q
IP # $% = $ −

"1− )%"u′"#UIP %− u′"UIP %%+′"qIP %

u′"UIP %
, (9.13)

To understand the results of proposition 9.1, note that the principal’s incentive
constraint (9.2) in state $̄ is more easily satisfied when #V increases, V decreases
and q increases with respect to the symmetric information optimal contract. Since
only the incentive constraint (9.2) is binding, there is no need to distort the pro-
duction when state $̄ realizes. Under complete information, full insurance of the
risk-averse agent requires zero profit for the agent in each state of nature. Under
asymmetric information, the agent now receives a negative (resp. positive) payoff
when $̄ (resp. $) is realized. Doing so increases (resp. decreases) the informed
principal’s payoff #V (resp. V ).

These results are represented graphically in figures 9.3a and 9.3b. Keeping the
same outputs as under symmetric information but decreasing (resp. increasing) the

Figure 9.3a: Incentive Compatible Contracts with an Informed Principal
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Figure 9.3b: Second-Best Contracts with an Informed Principal

principal’s payoff when $ (resp. $̄) realizes, the principal could offer the incentive
compatible menu of contracts "A#B%.

This menu is incentive compatible because the principal is indifferent
between contracts A and B in state $̄ and strictly prefers A to B in state $. How-
ever, this menu imposes too much risk on the agent, who gets a negative payoff
when $ occurs and a positive payoff when $̄ realizes instead. Slightly increasing
t̄, i.e., moving from B to BIP , while moving from A to AIP on the indifference
curve of the principal in state $̄, which goes through BIP , decreases this risk to
the first-order and still preserves incentive compatibility (see figure 9.3b). Doing
so only creates a second-order efficiency loss, because q∗ is maximizing allocative
efficiency. This distortion is finally optimal for the pair of contracts "AIP #BIP %.

Starting from the analysis above, it is useful to stress two important limiting
cases.

Risk Neutrality
Let us assume that the agent is risk neutral and has utility function u"x% = x for all
n. Then u′"x% = 1 for all x, and (9.11) suggests that . = 0. Indeed, with risk neu-
trality, the first-best outcome can still be implemented by the informed principal.
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To see that, consider the following information rents of the principal:

V ∗ = )"S"q∗# $%− $q∗%+ "1− )%"S"q̄∗# $̄%− $̄q̄∗%+ "1− )%+"q∗%# (9.14)

#V ∗ = )"S"q∗# $%− $q∗%+ "1− )%"S"q̄∗# $̄%− $̄q̄∗%− )+"q∗%, (9.15)

It is easy to check that (9.1), (9.2), and (9.5) are all satisfied by these infor-
mation rents of the principal. As a result, the principal’s incentive constraints do
not conflict with the agent’s participation constraint when contracting takes place
ex ante and the agent is risk neutral. Juxtaposing this insight with the result of
section 2.11.1, we can conclude that ex ante contracting never entails any alloca-
tive inefficiency when both agents are risk neutral, whatever the allocation of
bargaining power at the ex ante contracting stage.

Infinite Risk Aversion
Let us now assume that the agent is infinitely risk averse below zero wealth and
risk neutral above. The ex ante participation constraint (9.5) is now replaced by a
pair of ex post participation constraints, one for each state of nature:

U = S"q# $%− $q − V ≥ 0# (9.16)

#U = S"q̄# $̄%− $̄q̄ − #V ≥ 0, (9.17)

Obviously those two constraints are binding at the optimum of the principal’s
problem. Inserting the expressions V and #V , which are obtained when (9.16) and
(9.17) are binding, into the principal’s objective leads to the reduced form of the
principal’s problem:

max
'"q#q̄%(

)"S"q# $%− $q%+ "1− )%"S"q̄# $̄%− $̄q̄%#(P ′):

subject to

S"q̄# $̄%− $̄q̄ ≥ S"q# $̄%− $q, (9.18)

(9.18) is the principal’s incentive constraint when $̄ is realized, i.e., (9.2) when V
and #V have been replaced by their expressions obtained when (9.16) and (9.17)
are binding.5

The solution to this problem is easy to obtain. There is no output distortion
when $̄ is realized, and again q̄IP = q̄∗. Alternatively, there is an output distortion
when $ is realized. Since (9.7) holds, and since S"q# $̄% − $q is decreasing over

5We will let the reader check that (9.1) is written as S"q# $%− $q > S"q̄# $%− $̄q̄ and that it holds
strictly for the second-best outputs "qIP # q̄∗%.
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Figure 9.4: First-Best and Second-Best Contracts with an Informed Principal and an Infinitely
Risk-Averse Agent

the interval 0q∗#+&%,6 the incentive constraint is satisfied for a whole interval of
outputs q in 0qIP #+&%, where qIP is defined as

S"q̄∗# $̄%− $̄q̄∗ = S"qIP # $̄%− $qIP , (9.19)

We can easily check that qIP > q∗. Because qIP > q∗, allocative efficiency is maxi-
mized over the interval of incentive compatible outputs by picking qIP .

This distortion is represented graphically in figure 9.4, where we see that the
full information contracts A∗ and B∗ lie on the zero-profit lines of the agent for
each possible realization of the state of nature. For these contracts, the zero-profit
lines are tangent to the principal’s indifference curves in each state of nature.
Under asymmetric information, the inefficient principal still receives the alloca-
tion B∗. The efficient principal instead over-consumes the good and chooses con-
tract AIP . The corresponding output lies at the intersection between the principal’s
first-best indifference curve in state $̄ and the agent’s zero-profit line when $ real-
izes. This allocation ensures incentive compatibility, because the principal strictly

6Indeed, Sq"q# $̄% − $ < Sq"q# $% − $ < 0 for q ≥ q∗, where the first inequality comes from
Sq$ < 0 and the second inequality comes from the fact that S"q# $%− $q is strictly concave in q and
maximized for q = q∗.
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prefers AIP to B∗ in state $ and is indifferent between those two allocations in state
$̄. Moreover, qIP is the output closest to q∗ on the zero-profit line of the agent
in state $, such that the principal’s incentive compatibility constraint in state $̄
remains satisfied.

Remark 1: The reader who is knowledgeable in the theory of signal-
ing will probably have recognized the similarity between the second-
best outcome obtained above with the so-called least-costly separating
equilibrium of signaling games. Indeed, let us consider the follow-
ing game. First, the principal learns the state of nature $, second,
he chooses a “capacity of consumption” q, and third, a competitive
market of sellers, the “agent," offers the good to the principal up to
his consumption capacity. One can show that this game has differ-
ent classes of perfect Bayesian equilibria: pooling equilibria where the
principal chooses the same capacity in each state of nature and sepa-
rating equilibria where those capacities are different. Separating equi-
libria thus reveals the private information learned by the principal to
the competitive market. We leave it to the reader to check that those
latter equilibria entail over-investment in capacity by the efficient type
in order to credibly commit to signal his type to the market.7 More-
over, the Cho-Kreps intuitive criterion selects the least-costly separating
allocation from among these equilibria, which is precisely the alloca-
tion that is obtained when the principal chooses q̄IP in state $̄, exactly
as under ex ante contracting (Cho and Kreps, 1987). In our model,
the inefficiency of some equilibria of the signaling game can be over-
come by writing an ex ante contract. However, not all inefficiency
disappears even in this case, because incentive compatibility must be
preserved.

Remark 2: The allocative inefficiency obtained above is strongly
linked to the assumption of common values. Suppose instead that $
does not enter into the agent’s utility function, which is thus written
as U = t − q for t − q ≥ 0, −& otherwise. Then, it is easy to check
that t∗ = q∗ and t̄ = q̄∗ implement the first-best productions. To have
inefficiency, we must be in a common value environment.

7The analogy with a Spencian model of the labor market is straightforward, and the method of
resolution used in standard textbooks such as Mas-Colell, Whinston, and Green (1995, chap. 13)
can be used to derive these signaling equilibria.
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The literature on informed principals is relatively thin but complex.
Myerson (1983) and Maskin and Tirole (1990, 1992) are interested

in models with ex post contracting, i.e., models where the principal offers the
contract to the agent once he already knows the state of nature. These mod-
els belong to the realm of signaling theory. Maskin and Tirole (1990) offer a
noncooperative analysis of the game with private values. They show that the
principal’s private information had no value in the case of quasi-linear utility
functions. With risk aversion, they also show that the perfect Bayesian equilib-
ria of the game are obtained as Walrasian equilibria in an exchange economy
among the different types of principal. Maskin and Tirole (1992) analyze
a game with common values and show that the perfect Bayesian equilibria
of this game could be easily obtained as contracts giving higher payoffs to
each type of principal than what they get in the least costly separating alloca-
tion.8 Taking a cooperative perspective, Myerson (1983) shows an inscrutabil-
ity principle, arguing that the principal could always build the revelation of
the agent’s type into the mechanism itself. He goes on, presenting various
concepts of solution, some of them being rather cooperative. Stoughton and
Talmor (1990) compare the signaling and the screening distortions in a model
of transfer pricing. Finally, Beaudry (1994) analyzes a mixed model where the
principal privately knows the distribution of outcomes that the agent may gen-
erate by exerting a nonobservable effort. He shows that an informed principal
may be willing to leave a rent to his agent, even if the latter is risk neutral,
just to signal his information on the technology. Interesting applications of
the informed principal framework also arise in the industrial organization lit-
erature. In Aghion and Bolton (1987), for instance, a supplier/principal wants
to signal a low probability of entry to his buyer/agent by specifying inefficient
damages for breach of the exclusive contract. See also Aghion and Hermalin
(1990) and Spier (1992) for related arguments.

9.2 Limits to Enforcement

In this volume, we have assumed that the judicial system is perfect and benevo-
lent, and consequently can enforce any contract without cost. Implicit behind this

8This allocation is often called the Rothschild-Stiglitz-Wilson allocation (see Rothschild and
Stiglitz 1976, and Wilson 1977).
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enforcement is the use of penalties that prevent both partners from breaching the
contract. We now briefly discuss a model of imperfect contractual enforcement.

Consider the model in section 2.11.1 with adverse selection, risk neutrality,
and ex ante contracting, i.e., the principal offers a contract before the risk-neutral
agent discovers its private information. We know that the first-best is then imple-
mentable. However, the ex post utility level of the agent is negative when $̄ realizes.
For example, for the contract that makes the efficient agent’s incentive constraint
binding,9 the inefficient agent’s payoff is #U ∗ = t̄∗ − $̄q̄∗ = −)1$q̄∗ < 0. The inef-
ficient agent may be tempted to renege on the contract proposed by the principal
to avoid this negative payoff.

Let us first assume that the judicial system is so inefficient that the principal
can never enforce a contract with such a negative payoff. Anticipating this fact,
the principal reverts to self-enforcing contracts, which are such that both ex post
participation constraints U = t− $q ≥ 0 and #U = t̄− $̄q̄ ≥ 0 are satisfied. In this
case, we are in exactly the same situation as if the agent knew his private infor-
mation at the time of signing the contract. The optimal self-enforcing contract is
thus identical to the contract characterized in section 2.6.

The expected loss LSB incurred by the principal because of the complete
absence of enforcement can be easily computed as

LSB =
(
)"S"q∗%− $q∗%+ "1− )%"S"q̄∗%− $̄q̄∗%

)

−
(
)"S"q∗%− $q∗ − 1$q̄SB%+ "1− )%"S"q̄SB%− $̄q̄SB%

)

= )1$q̄SB

︸ ︷︷ ︸
Rent Loss

+"1− )%
(
"S"q̄∗%− $̄q̄∗%− "S"q̄SB%− $̄q̄SB%

)
︸ ︷︷ ︸

Efficiency Loss

, (9.20)

The expected loss associated with the complete absence of a judicial system
that is enforcing contracts is thus composed of two terms: first, the information
rent needed to elicit information when the agent’s ex post participation constraints
must be satisfied; and second, the corresponding allocative inefficiency when $̄
realizes.

Let us now analyze the case where the judicial system can enforce any con-
tract stipulating a negative payoff with some probability p and at a cost c"p%. We
assume that the cost of enforcement is increasing and convex: c"0% = 0# c′ ≥ 0
(with the Inada conditions c′"0% = 0 and c′"1% = +&), and c′′ > 0.

A mechanism is enforcement-proof if the inefficient agent always finds it opti-
mal to comply and prefers taking the promised rent #U rather than refusing to
produce. If he refuses to comply, the court nevertheless enforces the contract with

9This contract is the one which maximizes the payoff in the state of nature $̄.
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probability p and imposes a penalty P on the agent.10 The enforcement-proofness
constraint is thus written as

#U ≥ p"#U − P % (9.21)

or, putting it differently, as

#U ≥ − pP

1− p
, (9.22)

As in our analysis of auditing models made in section 3.6, the monetary
punishment P can be either endogenous or exogenous. In the first case, P is
bounded above by the value of the agent’s assets l plus the latter’s information rent

P ≤ #U + l, (9.23)

In the case of exogenous punishments, P is only bounded by the value of the
agent’s assets,

P ≤ l, (9.24)

We will focus on exogenous punishments in what follows. When the principal
chooses to implement an enforcement-proof mechanism, he solves the following
program:

"P %- max
'"#U# q̄%*"U# q%*p(

)
(
S"q%− $q − U

)
+ "1− )%

(
S"q̄%− $̄q̄ − #U − c"p%

)
#

subject to (9.22), (9.24), and11

U ≥ #U + 1$q̄# (9.25)

)U + "1− )%#U ≥ 0, (9.26)

First, note that the principal incurs the cost of the judicial system. Specifically,
we assume that the principal pays an amount "1 − )%c"p% to maintain a judicial
system of quality p. Second, the principal’s objective function takes into account
the fact that the contract is always enforced on the equilibrium path when it is
enforcement-proof. Hence, the punishment P is only used as an out-of-equilibrium

10In fact, only the inefficient agent is willing to renege on the contract, because the efficient agent
always gets a positive payoff. Hence, the court and the principal know the agent’s type when the
latter refuses to enforce the contract.

11We neglect the inefficient agent’s incentive constraint, which is satisfied, as it can be easily
checked ex post.
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threat to force the inefficient agent’s compliance. Of course, the maximal pun-
ishment principle already seen in section 3.6 still applies in this context, and the
constraint (9.24) is binding at the optimum.

Remark 3: The reader will have noticed that the previous model is
somewhat similar to the models of audit discussed in section 3.6.
The only difference comes from the role played by the probability of
enforcement p. Instead of being used to relax an incentive constraint
as the probability of audit does, a greater probability of enforcement
relaxes a participation constraint.

It is beyond the scope of this section to analyze all possible regimes that may
arise at the optimum. However, note that (9.22) is binding when

)1$q̄ >
p

1− p
l, (9.27)

In this case, the agent’s information rents in the states of nature $ and $̄ are
respectively given by U = 1$q̄ − p

1−p
l and #U = − p

1−p
l. Inserting those expressions

into the principal’s objective function and optimizing with respect to q and q̄ leads
to the following expressions of the optimal outputs: qEP = q∗ and q̄EP = q̄SB, where
the superscript EP means enforcement-proof. These outputs are thus exactly the
same as in the case of self-enforcing contracts seen above.

Omitting terms that do not depend on p, the principal finds the optimal
probability of enforcement as a solution to the following problem:

"P ′%- max
'p(

pl

1− p
− "1− )%c"p%,

This objective function is strictly concave with respect to p when c"·% is suf-
ficiently convex. Hence, its maximum is obtained for pEP such that 0 < pEP < 1,
and the value of the maximand is strictly positive, i.e., pEP l

1−pEP
− "1− )%c"pEP % > 0.

The judicial system therefore commits to an optimal probability of enforce-
ment pEP , which is the unique solution to

l

"1− )%"1− pEP %2
= c′"pEP %, (9.28)

Note also that the probability of enforcement pEP increases with the liability
of the agent l when c"·% is sufficiently convex.

Of course, the pair "q̄EP # pEP % is really the solution we are looking for when
the condition (9.27) holds for pEP , as defined in (9.28). In particular, this condition
holds when the marginal cost of enforcing contracts is large enough so that pEP is
close enough to zero.
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With the optimal enforcement-proof mechanism, the principal obtains an
expected payoff:

V EP = )"S"q∗%− $q∗%+ "1− )%"S"q̄SB%− $̄q̄SB%− )1$q̄SB

− "1− )%c"pEP %+ pEP l

1− pEP
, (9.29)

Compared with the full enforcement outcome, the expected loss LEP incurred
by the principal when the judicial system ensures a random enforcement of the
contract is written as

LEP = LSB −
{

pEP l

1− pEP
− "1− )%c"pEP %

}
, (9.30)

The bracketed term is always strictly positive, and therefore LEP < LSB.
Hence, the principal always finds it optimal to use an enforcement-proof mecha-
nism involving the threat of some random intervention by the judge. Because pSB is
strictly positive, the principal does strictly better with an enforcement-proof mech-
anism than what he can get by writing a self-enforcing contract. Note in particular
that the information rent obtained by the inefficient type remains negative, just as
in the case of full enforcement.

We summarize this section in proposition 9.2.

Proposition 9.2: There is no loss of generality in using enforcement-proof
contracts. The judicial system is not used on the equilibrium path, but the
mere possibility that it could be used improves ex ante contracting.

Laffont and Meleu (2000) analyzed a model similar to the one that
we have just presented, but they allowed for endogenous punish-

ments and possibly fixed costs of enforcement. In particular, they observed
that self-enforcing contracts may be optimal because of the fixed cost of using
the judicial system. Fafchamps and Minten (1999) showed empirically that
contracts used in less developed countries (LDC) are designed for low expo-
sure to the breach of contracts. Indeed, low liabilities call for a reduction in
the probability of using the judicial system. Krasa and Villamil (2000) ana-
lyzed the issue of costly enforcement in the case of financial contracts.

9.3 Dynamics and Limited Commitment

In an intertemporal framework, what is needed for the optimal dynamic contract
to be credible is not only the ability of the contractual partners to commit to a
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contract, but the stronger assumption that those two contractual partners also have
the ability to commit not to renegotiate their initial agreement. The assumption
that economic agents have the ability to commit not to renegotiate is an extreme
assumption about the perfection of the judicial system. Clearly, weakening the
assumption that the court of law is perfect implies that, as we know in practice, it
is very difficult and often impossible to commit not to renegotiate.

Starting with Dewatripont (1986), the literature has explored the implications
of this institutional “imperfection” that corresponds to the agents’ inability to com-
mit not to renegotiate. Moving away from the framework of full commitment raises
numerous issues, such as how should we model the renegotiation game,12 how
do agents update their beliefs dynamically, and finally how can we characterize
implementable allocations.

Below we sketch the nature of the difficulty due to an imperfect commitment
in repeated adverse selection models. Take the two-period model of section 8.1.1
and assume now that the principal cannot commit not to renegotiate the long-term
agreement he has signed with the agent. The agent knows that any information
he might reveal in the first period of the relationship will be fully used by the
principal in the second period if a renegotiation is feasible. We assume that the
principal still has all the bargaining power at the renegotiation stage, which takes
place before the second period output is realized. Let us thus envision two possible
classes of renegotiation-proof contracts13 that give rise to two different classes of
implementable allocations.

Separating Contracts
Suppose that, in period 1, the agent behaves differently when $ = $ then when
$ = $̄, as is requested by the full commitment optimal contract. The first-period
action signals the agent’s type perfectly to the principal. The principal is therefore
informed of the agent’s type when period 2 comes. In particular, if the agent
is a $̄-type, the principal would like to raise allocative efficiency in period 2 by
increasing the second-period output while still maintaining the second-period rent,
which was promised in the optimal long-term contract with full commitment to
the $-type. However, raising allocative efficiency ex post has a drawback on the
first-period incentives. Indeed, the efficient agent is no longer indifferent between
telling the truth or not in the first period. Instead, he would like to lie in order
to benefit from the higher rent promised in period 2. Raising ex post efficiency

12In chapter 6 the reader has seen instances of contracting environments where the allocation of
bargaining power may change during the relationship. The same issue arises when one allows for
renegotiation.

13There is, in the same spirit as in the revelation principle, no loss for the principal to restrict
himself to renegotiation-proof contracts. A renegotiation-proofness principle holds in this context.
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through the renegotiation procedure hardens first-period incentives. Offering a
first-period contract that fully separates both types facilitates information learning
in the organization and improves the value of recontracting in period 2. However,
this information learning may be quite costly for the principal from a first-period
point of view, because he must further compensate the efficient agent for an early
revelation of his type. Such a fully separating allocation is robust to the possibility
of renegotiation, i.e., is renegotiation-proof, if, conditional upon the information
learned after the choice of output made in period 1, the principal cannot propose
a Pareto-improving second-period contract to the agent.

Let us denote with a subscript i the contract offered at date t = i. If the first-
period contract fully separates both types, the second-period outputs are efficient
in both states of nature14 and are thus (with our usual notations) given by q∗ and
q̄∗, depending on the agent’s type. The efficient agent’s intertemporal incentive
constraint, which must be satisfied to induce information revelation in period 1,
is finally written as

U ≥ #U + 1$"q̄1 + 2q̄∗%# (9.31)

where 1$q̄1 (resp. 21$q̄∗) is the first- (resp. second-) period benefit of a $-agent
mimicking the $̄-agent.

The inefficient agent’s intertemporal participation constraint is written as

#U ≥ 0, (9.32)

With such a separating contract, the principal promises to the efficient (resp.
inefficient) agent that he will get a rent 1$q̄∗ (resp. 0) in period 2. Given this
initial commitment, coupled with the fact that the principal is fully informed of
the agent’s type at the renegotiation stage, the principal cannot further raise the
second-period ex post efficiency, because it is already maximized with outputs q∗

and q̄∗. Hence, this type of long-term separating contract is clearly renegotiation-
proof.

Within the class of contracts that are fully separating and renegotiation-proof,
the principal finds the optimal one as a solution to the following problem:

(PS): max
'"q1#U %*"q̄1#

#U %(
)
(
S"q

1
%− $q

1
+ 2"S"q∗%− $q∗%− U

)

+ "1− )%
(
S"q̄1%− $̄q̄1 + 2"S"q̄∗%− $̄q̄∗%− #U

)
#

subject to (9.31) and (9.32).

14Indeed, renegotiation takes place under complete information and leads to an efficient outcome.
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We index the solution to this problem with a superscript RPS, which means
renegotiation-proof and separating.

We leave it to the reader to check that (9.31) and (9.32) are the only two
binding constraints of the problem above. Optimizing with respect to outputs, we
find that the optimal fully separating contract entails no allocative distortion for
the efficient type in both periods qRPS

1
= q∗. On the contrary, it entails a downward

distortion in the first period only for the inefficient type, i.e., q̄RPS
1 = q̄SB < q̄∗ =

q̄RPS
2 , where as usual S′"q̄SB% = $̄ + )

1−)1$.
Let us denote by V "q# q̄% the principal’s profit when he implements a pair of

outputs "q# q̄% in a one-period static relationship at minimal cost. We know from
chapter 2 that the following equality holds:

V "q# q̄% = )"S"q%− $q%+ "1− )%

(
S"q̄%− $̄q̄ − )

1− )
1$q̄

)
, (9.33)

It is easy to check that the intertemporal profit achieved with the optimal
fully separating contract can be written as

V S = V "q∗# q̄SB%+ 2V "q∗# q̄∗%, (9.34)

Pooling Contracts
Suppose instead that, in period 1, the agent chooses the same behavior, whatever
his type $. In this case, the principal learns nothing from the first-period action.
The continuation contract for period 2 should thus be equal to the optimal static
contract, conditional on the prior beliefs ")# 1 − )% since beliefs are unchanged.
This contract is well known from chapter 2. Now we index the optimal contract
with a superscript RPP , which means renegotiation-proof and pooling.

First, note that the second-period outputs qRPP

2
and q̄RPP

2 are defined by qRPP

2
=

q∗ and q̄RPP
2 = q̄SB. With a first-period single contract "t# q%, which induces full

pooling between both types in the first period, the intertemporal incentive con-
straint of the efficient agent is written as

U ≥ #U + 1$"q + 2q̄SB%# (9.35)

where 1$q (resp. 21$q̄SB) is the first- (resp. second-) period benefit of a $-agent
from mimicking a $̄-agent.

The principal’s problem, which consists of finding the best long-term contract
that induces full pooling in the first period, is then

"PP %- max
'"q#U##U %(

)
(
S"q%− $q + 2"S"q∗%− $q∗%− U

)

+ "1− )%
(
S"q%− $̄q + 2"S"q̄SB%− $̄q̄SB%− #U

)
#

subject to (9.35) and (9.32).



368 • Chapter 9

Again, those latter two constraints are binding at the optimum, and we find
that qRPP

1 = q̄∗. The second-period contract is the optimal static contract com-
puted with prior beliefs, therefore it is obviously renegotiation-proof, i.e., optimal
in period 2 given the common knowledge information structure at that date.

The principal’s intertemporal profit with a pooling contract now becomes

V P = V "q̄∗# q̄∗%+ 2V "q∗# q̄SB%, (9.36)

By definition of the optimal static contract, we have

max"V "q̄∗# q̄∗%#V "q∗# q̄∗%% ≤ V "q∗# q̄SB%, (9.37)

The comparison of V P and V S is now immediate.

Proposition 9.3: There exists 20 > 0 such that the principal prefers
to offer a separating and renegotiation-proof contract rather than a
renegotiation-proof pooling contract if and only if 0 ≤ 2 ≤ 20. We have

20 =
V "q∗# q̄SB%− V "q̄∗# q̄∗%

V "q∗# q̄SB%− V "q∗# q̄∗%
, (9.38)

This proposition illustrates the basic trade-off faced by the principal under
renegotiation. When the future does not count much (2 small), the principal can
afford full revelation in the first period without having too much (in discounted
terms) to offer for the second period. The separating long-term contract domi-
nates. When the future matters much more (2 large15), the principal would like
to commit in a renegotiation-proof way so that he can offer the full commitment
static solution in the second period. The principal can do so at almost no cost
(again in discounted terms) by offering a pooling contract in the first period,
because this first period does not count too much. The pooling long-term contract
dominates.

Remark 1: The last proposition also provides some insights about the
optimal speed of information revelation in the hierarchy, namely the
fraction of efficient types who reveal themselves in the first period.
This speed is a decreasing function of the discount factor.

15We consider that 2 can be larger than one in order to capture the idea that the second period
is much longer than the first period.
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Remark 2: The previous analysis has focused on two simple classes
of renegotiation-proof mechanisms: fully separating and fully pooling
contracts. More generally, it is optimal for the principal to offer a
menu of contracts in period 1, which induces the efficient agent to
randomize between the long-term contract intended for the efficient
agent and the long-term contract intended for the inefficient one. The
$̄-agent chooses the latter contract with probability one. Therefore,
when the principal observes the agent choosing the contract intended
for the efficient agent, he knows that it is the efficient agent who made
this choice for sure. When he observes the agent choosing the con-
tract intended for the inefficient agent, the principal is still unsure of
the agent’s type. Both types of agents may have taken this contract.
The principal must update his beliefs about the agent’s type from the
equilibrium strategies of the agent, and he offers the optimal menu of
contracts in period 2 conditional on his new beliefs. For an equilib-
rium to hold, mixing is crucial. The efficient agent must be indifferent
between the first-period rent he gets if he reveals his type in period 1,
and the sum of the rent he gets in period 1 by mimicking the $̄-type
and of the rent he gets in period 2 by choosing its best element within
the menu offered. Inducing randomization by the $-agent is the only
way available to “indirectly commit” to leave a rent to the $-agent in
period 2. Indeed, leaving a rent in period 2 is ex post optimal for a
principal who suffers from asymmetric information about the agent’s
type. As the reader may have guessed from the discussion above, a
careful analysis of the optimal contract with renegotiation requires a
complex notion of equilibrium involving both dynamic considerations
and asymmetric information: the perfect Bayesian equilibrium.16

Dewatripont (1989) analyzed long-term renegotiation-proof labor
contracts in a T -period environment. The focus was on the choice

between separating and pooling mechanisms. Dewatripont (1986) and Hart
and Tirole (1988) provided proofs of the Renegotiation-Proofness Principle,
which allowed the modeller to restrict the principal to offer renegotiation-proof
long-term contracts. Hart and Tirole (1988) also studied a T -period environ-
ment with the quantities traded restricted to '0# 1(. The main achievement
of the paper was to provide an analysis of the process by which informa-
tion is gradually revealed over time. Laffont and Tirole (1990b) offered

16The same holds for short-term contracts (one-period commitment).
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a complete analysis of the two-period model with randomized strategies
and unrestricted quantities. Rey and Salanié (1996) discussed the conditions
under which the optimal long-term contract over T periods can be repli-
cated by a sequence of two-period short-term contracts. Bester and Strausz
(2001) extended the revelation principle in this context and showed that
there is no loss of generality in looking at first-period mechanisms stipu-
lating as many transfers and outputs as the cardinality of the type space
even if the agent’s first-period strategies are not fully revealing. Crémer
(1995) and Dewatripont and Maskin (1995) all analyzed the role of the
information structure as a commitment to harden the renegotiation-proofness
constraint.

9.4 The Hold-Up Problem

Let us now consider a setting where the agent has to make some initial investment
before dealing with the principal. The motivation for this contractual setting is that
the agent and the principal can only meet each other after the agent’s investment
has been made. Such situations are likely to occur in market environments where
the trading relationships are only short term.

9.4.1 Nonverifiability and Contracting

Let us return to the mixed model of section 7.3 with the only difference being
that effort is chosen by the agent before contracting, as described by the timing of
figure 9.5.

The risk-neutral agent may exert his binary effort e at date t = 1 to improve
the probability that the good state of nature $ realizes. We denote those prob-
abilities by )"1% = )1 and )"0% = )0. 1) = )1 − )0 > 0 is the increase in the
probability of having an efficient type when the agent makes a high effort.

In the hold-up problem, the principal cannot commit to reward the agent
ex ante for his nonobservable effort. Ex post (i.e., at date t = 1), when the principal

Figure 9.5: Timing of the Hold-Up Problem
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offers the contract, the agent’s effort has already been sunk. The principal has now
lost his role as Stackelberg leader in the design of incentives for effort, and so
we must look for a Nash equilibrium between the principal and the agent. The
principal offers a contract anticipating a particular choice of effort made by the
agent. The agent chooses an effort level anticipating the contract he will receive
from the principal.

Suppose first that the principal can offer to play a game as in chapter 6. For
each value of the effort level ê chosen by the agent at date t = 0, the principal
can implement the first-best (conditional on ê) in Nash (or subgame perfect, if
needed) equilibrium. From section 7.3, we know that the agent always obtains a
zero utility level. Anticipating this, the agent exert no effort at date 0.

We will now describe two modelling options that enable the principal to
mitigate the hold-up problem. The first option, which has been the focus of most
of the literature, is to assume that contracts cannot be signed17 at date t = 1
and that bargaining between the traders occurs after date t = 3, when they have
both learned the state of nature $. The second option is to assume that only the
agent is informed about the state of nature before date t = 1, so that asymmetric
information exists at date t = 1, and to maintain the assumption that incentive
contracts can be offered at date t = 1. In both cases, the principal is obliged to give
up a rent to the agent, which indirectly provides the agent with some incentives
for effort at date t = 0 and mitigates the hold-up problem.

9.4.2 Nonverifiability and Bargaining

Taking the Nash bargaining solution with equal weights to compute their final
payoffs, we find that the agent’s ex ante expected utility writes as 1

2 ")"e%W
∗+

"1− )"e%%#W ∗%− 3"e%, where, as usual, W ∗ = S"q∗%− $q∗ and #W ∗ = S"q̄∗%− $̄q̄∗

denote the first-best gains from trade in each state of nature. Hence, the agent
invests if and only if

1)

2
"W ∗ − #W ∗% ≥ 3, (9.39)

17The lack of contract is justified by the assumption that the state of nature is hard to describe
in advance, i.e., at the time where the specific investment of the agent should be made (see Hart
1995, pp. 25–26 for an extensive discussion of the hold-up problem). Contracts can only be written
once the trading partners have a better idea of the distribution of the states of nature that the agent’s
investment induces. Note, however, that the agent must anticipate his expected payoff as a function
of his effort level in order to choose this effort level.
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The first-best condition that ensures that exerting an effort is optimal is
1)"W ∗ − #W ∗% > 3. The condition (9.39) may no longer hold when 1)

2 "W
∗ −

#W ∗% < 3 < 1)"W ∗ − #W ∗%. In this case there is underinvestment, and the hold-up
problem prevents efficiency.

Of course, this result can be generalized to other allocations of the bargaining
power as long as the agent does not have all the bargaining power ex post.

Proposition 9.4: Assume that the state of nature is nonverifiable and that
the agent has only a limited bargaining power in the negotiation over the
ex post gains from trade; then an under-investment may occur.

The intuition behind this proposition is straightforward. Since the agent only
receives half of the ex post gains from trade, he has only half of the social incentives
to exert effort at the ex ante stage. Underprovision of effort follows.18

Remark: Simple solutions to this hold-up problem can be found by
the contractual partners. First, the ex post bargaining power could be
fully allocated to the agent, making him residual claimant for the
social return to investment. Of course, this solution may not be opti-
mal if the principal also has to invest in the relationship19 or if the
agent is risk-averse, because he would then bear too much risk. Sec-
ond, let us assume that the principal and the agent can agree ex ante
on an ex post allocation "t0# q0%, which stipulates the status quo pay-
offs of both the agent and the principal in the ex post bargaining
taking place when $ has realized. This contract is relatively simple
to write since it stipulates only one transfer and an output. More-
over, we assume that the principal keeps all the bargaining power in
the ex post bargaining stage. Therefore, he must solve the following
problem:

max
'"q# t%(

S"q%− t(P ):

subject to

t − $q ≥ t0 − $q0# (9.40)

18On this point, see also Grout (1984).
19This kind of model requires that both the principal and the agent exert a nonverifiable investment

at the ex ante stage. They fall in the realm of double moral hazard incentive problems, which are
outside the scope of this volume.
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where (9.40) is the agent’s participation constraint, which is obviously
binding at the optimum because the principal wants to reduce the
agent’s transfer as much as possible.

Since there is complete information ex post, the efficient pro-
duction levels q∗ and q̄∗ are chosen by the principal depending upon
which state of nature is realized. The agent’s expected payoff is written
as t0 − ")"e%$ + "1 − )"e%%$̄%q0 − 3"e% when he exerts effort e. The
agent exerts a positive effort when q0 is fixed, so that 1)1$q0 = 3. The
status quo output q0 therefore defines the agent’s marginal incentives
to invest. Then, t0 can be adjusted so that the agent’s expected utility is
zero, i.e., t0 = ")1$+ "1− )1%$̄%q0 +3. The principal’s expected payoff
becomes )1W

∗ + "1 − )1%#W ∗ − 3, exactly as in a world of complete
contracts.20

This very nice solution to the hold-up problem is due to Chung
(1991). Various other solutions have been found in the incomplete

contracts literature. See Tirole (1999) for an exhaustive survey of this litera-
ture. Another way to solve the hold-up problem, at least partially, that is well
developed in the literature is to allocate property rights. The analysis of this
literature is beyond the scope of the present volume, but a few general ideas
are worth stressing here. The general framework to analyze the role of prop-
erty rights on the assets is due to Grossman and Hart (1986) and Hart and
Moore (1990) (see also Hart 1995). Property rights are usually incomplete
contracts. Indeed, property rights define what can be obtained by the agents
in the status quo of the ex post Nash bargaining over the gains from trade. In
general, the literature envisions double moral-hazard problems, where both
the buyer and the seller must perform a specific investment in the relation-
ship and compares the performances of various ownership structures. A major
result of this literature is that complementary assets should be owned by the
same person (see Hart 1995). Maskin and Tirole (1999) provide conditions
such that allocating property rights implements the optimal contract.

9.4.3 Adverse Selection

Let us assume now that the agent is informed about $ before date t = 1, when
the principal offers him an incentive contract.

20Since the principal is residual claimant for the social surplus, this procedure would also induce
him to invest efficiently if he could affect the probability )1"ep% by some costly effort ep. Hence, this
procedure works better than simply allocating all the bargaining power to the agent.
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Let us denote by )e the conjecture of the principal over the probability that
type $ realizes. Using the results of chapter 2, the best-response of the principal
is thus characterized by an output distortion (for the inefficient type only) q̄")e%,
which is defined by

S′"q̄")e%% = $̄ + )e
1− )e

1$# (9.41)

and a positive information rent (for the efficient type only) given by U ")e% =
1$q̄")e%. Note that q̄")e% and U ")e% are both decreasing with )e.

Anticipating such a contract, and more specifically the rent 1$q̄e he will get
when he turns out to be efficient, the agent invests in increasing this probability
according to the following best response e = 1 if 1)1$q̄e > 3, e = 0 if 1)1$q̄e <
3, and e in '0# 1( if 1)1$q̄e = 3.

Putting together the principal and the agent’s best responses yields the follow-
ing characterization of the Nash equilibrium contract and effort in this framework
without any commitment.

Proposition 9.5: Assume that the principal cannot commit to a contract
before the agent exerts effort. Then, the equilibrium allocation is charac-
terized as follows:

• If 1$q̄")1% >
3
1)
, the agent exerts a positive effort and q̄")1% is chosen

by the principal.
• If 1$q̄")0% <

3
1)
, the agent does not exert any effort and q̄")0% is chosen

by the principal.
• If 1$q̄")1% ≤ 3

1)
≤ 1$q̄")0%, the agent randomizes between exerting

effort or not with respective probabilities 4 and 1 − 4. We have )e =
4)1 + "1− 4%)0 and 1$q̄")e% = 3

1)
.

When 3
1)

≥ 1$q̄")1%, underinvestment occurs with respect to the case with
full commitment that we have already discussed in section 7.2.3.21 Again, the logic
underlying this result is simple. The agent only receives a share (his information
rent) of the overall surplus of production which occurs in period 4; hence he may
not have enough incentives to exert effort.

Riordan (1990) used the hold-up model under adverse selection as
an ingredient of a theory of vertical integration. Laffont and Tirole

(1993, chap. 1) analyzed how cost-reimbursement rules must be adapted to

21Recall that in this section we made the assumption that the principal’s benefit from inducing a
high effort was large enough.
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protect the specific investment of regulated firms. Schmidt (1996) used the
underinvestment model presented in this section to build a theory of privati-
zation. In this theory, the cost of public ownership is the inability of the state
to reward a specific investment made at the ex ante stage by the public utility.

9.5 Limits to the Complexity of Contracts !

In most of this book, we have deliberately chosen to emphasize simple models,
where shocks are discretely distributed both in the case of adverse selection and
moral hazard. However, the analysis in appendices 3.1 and 4.2 also suggests that
optimal contracts may have very complex shapes in the richer case where those
shocks are continuously distributed. This complexity has often been viewed as a
failure of contract theory to capture the simplicity of real world contracting envi-
ronments. We now illustrate in this section how incentive theory can be reconciled
with this observed simplicity, provided that the contractual environment is suffi-
ciently structured.

9.5.1 Menu of Linear Contracts under Adverse Selection

Let us reconsider the optimal contract obtained in appendix 3.1, in the case of a
continuum of types distributed according to the cumulative distribution F "·% with
density f "·% on the interval 0$# $̄5. Let us slightly generalize the framework of that
appendix and also assume that the agent has a cost function $c"q% where c′ > 0
and c′′ > 0 with the Inada condition c′"0% = 0. This extension is straightforward
and we leave it unsolved as an exercise for the reader. The optimal second-best
production levels qSB"$% under asymmetric information are characterized by

S′"qSB"$%% =
(
$ + F "$%

f "$%

)
c′"qSB"$%%,22 (9.42)

When the monotone hazard rate property is satisfied, namely d
d$
" F "$%
f "$%
% ≥ 0,

the schedule of output qSB"$% is invertible. Let $SB"q% be its inverse function. The
transfer tSB"$% paid to the agent is such that

tSB"$%− $c"qSB"$%% =
∫ $̄

$
c"qSB"x%% dx# (9.43)

where the right-hand side above is $-type’s information rent U "$%.

22The Inada condition on c"·% ensures that qSB"$% is always positive, even when we assume that
S′′ = 0 as we do later in this section.
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Instead of using the truthful direct revelation mechanism '"tSB"$%# qSB"$%%(,
the principal could give up any communication with the agent and let him choose
an output directly, within a nonlinear schedule T SB"q%. This procedure is basically
the reverse of the revelation principle; it is sometimes called the taxation princi-
ple.23 To reconstruct the indirect mechanism T SB"q% from the direct mechanism
'"tSB"$%# qSB"$%%( is rather easy. Indeed, we must have T SB"q% = tSB"$SB"q%%.

When he faces the nonlinear payment T SB"q%, the agent replicates the same
choice of output as with the direct revelation mechanism '"tSB"$%# qSB"$%%(. Indeed,
we have Ṫ SB"q% = ṫSB"$SB"q%%$̇SB"q%, and thus

Ṫ SB"qSB"$%% = ṫSB"$%

q̇SB"$%
# for any $ in 0$# $̄5, (9.44)

Differentiating (9.43) with respect to $ immediately yields ṫSB"$% =
$c′"qSB"$%%q̇SB"$%.24 Inserting it into (9.44), we obtain

Ṫ SB"qSB"$%% = $c′"qSB"$%%# (9.45)

which is precisely the first-order condition of the agent’s problem when he chooses
an output within the nonlinear schedule T SB"·%.

It is important that the agent’s choice can be implemented with a nonlinear
payment T SB"·%. However, in practice, one often observes menus of linear con-
tracts to choose from. This is the case, for instance, in the relationship between
regulatory agencies and regulated firms or the relationship between a buyer and a
seller.25

To obtain an implementation of the second-best outcome with a menu of
linear contracts, we need to be able to replace the nonlinear schedule T SB"q% by
the menu of its tangents. The slope of the tangent at a given point qSB"$% is the
same as that of T SB"q% at this point. Hence, the type $ agent’s marginal incentives
to deviate away from qSB"$% are the same with both mechanisms. Moreover, the
tangent also has the same value as T SB"q% at qSB"$%. Hence, the nonlinear schedule
T SB"·% and its menu of tangents provide the agent with the same information
rent. This equivalence is nevertheless only possible when T SB"q% is in fact convex.
Figure 9.6 represents this case.

23See Guesnerie (1995) and Rochet (1985).
24The reader will have recognized the first-order condition associated with the fact that truth-

telling is an optimal strategy for the agent with type $ when he faces the truthful direct revelation
mechanism '"tSB"$%# qSB"$%%(.

25Wilson (1993) argues that a menu with very few linear contracts can almost replicate the perfor-
mances of a more complex nonlinear price.
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Figure 9.6: Convexity of the Nonlinear Schedule T SB"q%

Let us thus derive the conditions ensuring this convexity. Differentiating
(9.45), we obtain

T̈ SB"qSB"$%% = c′"qSB"$%%

q̇SB"$%
+ $c′′"qSB"$%%# (9.46)

where q̇SB"$% is obtained by differentiating (9.42) with respect to $. Now we find
that

q̇SB"$%

c′"qSB"$%%
=

1+ d
d$

(
F "$%
f "$%

)

S′′"qSB"$%%− c′′"qSB"$%%S′"qSB"$%%
c′"qSB"$%%

, (9.47)

Inserting this latter expression into (9.46), we get

T̈ SB"qSB"$%% = c′′"qSB"$%%



$ +
S′′"qSB"$%%
c′′"qSB"$%% −

(
$ + F "$%

f "$%

)

1+ d
d$

(
F "$%
f "$%

)





= c′′"qSB"$%%(
1+ d

d$

(
F "$%
f "$%

))
(
$
d

d$

(
F "$%

f "$%

)
− F "$%

f "$%
+ S′′"qSB"$%%

c′′"qSB"$%%

)
, (9.48)

Now we obtain proposition 9.6.
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Proposition 9.6: Assume that F "$%
$f "$%

is increasing with $ and that S′′"q% =
0 for all q. Then, T SB"·% is convex and can be implemented with the menu
of its tangents.

Indeed, let us now consider the menu of tangents to T SB"·%. The equation of
the tangent T "·# q0% to T SB"·% at a point q0 can be obtained as

T "q# q0% = T SB"q0%+ Ṫ SB"q0%"q − q0%, (9.49)

Facing the family of linear contracts 'T "·# q0%(, the agent has now to choose
which tangent is its most preferred one and what output to produce according to
that contract. Therefore, the agent solves

"P%- max
'"q#q0%(

T "q# q0%− $c"q%,

Substituting T "q# q0% with its expression coming from (9.49), the first-order
conditions for this problem are, respectively,

Ṫ SB"q0% = $c′"q% (9.50)

and

T̈ SB"q0%"q − q0% = 0, (9.51)

If these necessary conditions are also sufficient, the agent with type $
chooses q = q0 = qSB"$%. The sufficiency of (9.50) and (9.51) is guaranteed when
T "q# q0% − $c"q% is concave in "q# q0%. Computing the corresponding Hessian H
of second-order derivatives at the point "qSB"$%# qSB"$%% yields

H =
(
−$c′′"qSB"$%% T̈ SB"qSB"$%%
T̈ SB"qSB"$% −T̈ SB"qSB"$%%

)

, (9.52)

This Hessian is strictly definite-negative when T̈ SB"qSB"$%% > 0 (i.e., if T SB"·%
is convex as already assumed) and T̈ SB"qSB"$%%"$c′′"qSB"$%%− T̈ SB"qSB"$%%% > 0# but
the latter condition is satisfied, as can easily be seen by using (9.46).

Remark: Note that if the principal observes only a random signal of q,
say q+ 4̃, where 4̃ is a random variable with zero mean (E"4̃% = 0), the
menu of linear contracts still implements the same allocation. Indeed,
the random variable 4̃ disappears in the incentive problem of the risk-
neutral agent by the linearity of the expectation operator. Hence, the
menu of linear contracts is robust to the addition of some noise.
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The implementation of the optimal contract with the menu of its
tangents has been extensively used in the field of regulation by Laf-

font and Tirole (1986, 1993) and Rogerson (1987). Caillaud, Guesnerie, and
Rey (1992) survey various extensions of these results and in particular its
robustness when the observation of production is noisy. On this latter point,
see also Melumad and Reichelstein (1989).

9.5.2 Linear Sharing Rules and Moral Hazard

Moral hazard environments can also have enough structure to let the linearity of
contracts emerge at the optimum. To see that, we now consider a twice-repeated
version of the model of section 5.3.2 without discounting. Thus the agent has
a utility function U = u"t − 3"e%%, which is defined over monetary gains, and
the disutility of effort is counted in monetary terms. We assume constant risk
aversion, so that u"x% = − exp"−rx% for some r > 0. Note that u"0% = −1. We
denote the outcome of the stochastic production function in period i by qi. These
realizations are independently distributed over time. In each period, the agent can
exert a binary effort e in '0# 1( with a monetary cost normalized so that 3"1% = 3
and 3"0% = 0. We assume that only the whole history of outputs can be used by
the principal to remunerate the agent. Given a history "q1# q2%, the agent receives
a transfer t"q1# q2% only at date t = 3 (see figure 9.7 for a timing of the game after
the offer of the contract by the principal and its acceptance by the agent). Because
there are two possible outputs in each period, the number of possible histories,
and thus the number of final transfers t"q1# q2%, is 2× 2 = 4.

Figure 9.7: Timing of the Contractual Game.

The logic underlying this model is that the principal can only incentivize the
agent at the end of the working period (date t = 3), but the agent has to choose
an effort at dates t = 0,5 and t = 1,5.26

26Note the difference with the repeated moral hazard problem of section 8.3, where a monetary
transfer is also given at the end of date 1, once the first-period output has already been observed.
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Let us denote the agent’s value function from date t = 0,5 on by U1, i.e., his
expected payoff if he exerts a positive effort in each period. We have

U1 = E
"q̄1#q̄2%

"u"t"q̃1# q̃2%− 23%%# (9.53)

where E"q̄1#q̄2%
"·% denotes the expectation operator with respect to the distribution of

histories induced by the agent exerting a high effort in both periods. Note that with
the agent’s disutility of effort being counted as a monetary term, one must subtract
the total cost of efforts along the whole history to evaluate the net monetary gain
of the agent.

Using that u"x% = − exp"−rx% and the Law of Iterated Expectations, we obtain

U1 = exp"r3%E
q̃1
"U2"q̃1%%# (9.54)

where U2"q1% = Eq̄2
"u"t"q1# q̃2% − 3%% is actually the agent’s value function from

exerting a positive effort in period 2 following an output q1 at date t = 1.
Using the certainty equivalents (denoted by w2"q1%) of the random contin-

uation monetary gains t"q1# q̃2% − 3, we can in fact rewrite U2"q1% = u"w2"q1%%.
Hence, inserting this into (9.54), we obtain U1 = Eq̃1

"u"w2"q̃1%− 3%%.
Inducing effort at date t = 0,5 requires that the following incentive constraint

be satisfied:

U1 = −61 exp"−r"w2"q̄%− 3%%− "1− 61% exp"−r"w2"q%− 3%%

≥ −60 exp"−rw2"q̄%%− "1− 60% exp"−rw2"q%%, (9.55)

Similarly, inducing participation from date t = 0,5 on requires that the agent
gets more utility than by refusing to work and obtaining a zero wealth certainty
equivalent. Hence, the agent’s participation constraint is written as

U1 ≥ −1, (9.56)

From the analysis of section 5.3.2, the pair of certainty equivalents
'"w2"q̄%#w2"q%%( belongs to the set of incentive feasible transfer pairs '"t̄# t%( that
induce effort and participation, with the agent being given a zero wealth outside
opportunity in the static model of section 5.3.2. Let us denote by F "0% the set
of incentive feasible transfers defined by the constraints in (5.83) and (5.84). We
have thus w2"q̄% = t̄1 and w2"q% = t1 for some pair "t̄1# t1%# which belongs to F "0%.

Let us now move to date t = 1,5. Following a first-period output q1, the
agent knows then that he will receive the certainty equivalent w2"q1%. Hence, the
following participation constraint is satisfied: U2"q1% = − exp"−rw2"q1%%. To induce
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effort at date t = 1,5 following a first-period output q1, it must be that the following
incentive constraints (which are dependent on q1) are also satisfied:

U2"q1% = −61 exp"−r"t"q1# q̄%− 3%%− "1− 61% exp"−r"t"q1# q%− 3%%

≥ −60 exp"−rt"q1# q̄%%− "1− 60% exp"−rt"q1# q%%, (9.57)

Immediate observation shows that the pair of transfers '"t"q1# q̄%# t"q1# q%%(
must belong to the set of incentive feasible transfers inducing effort and participa-
tion in the static model of section 5.3.2 when the agent has an outside opportunity
leaving him a wealth certainty equivalent w2"q1%.

From remark 2 in section 5.3.2, we know that we can write those transfers as
t"q1# q̄% = w2"q1%+ t̄2, and t"q1# q% = w2"q1%+ t2, where the pair '"t̄2# t2%( belongs,
as '"w2"q̄%#w2"q%%(, to F "0%. Hence, the overall transfers t"q̃1# q̃2% are the sum of
two contracts belonging to F "0%. This property constitutes a significant reduction
of the space of useful contracts.

Using the fact that shocks in each period are independently distributed, the
principal’s problem now becomes:

"P %- max
'"t̄1#t1%*"t̄2#t2%(

62
1 "2#S− t̄1 − t̄2%+ 61"1− 61%"2#S+ 2S− t̄1 − t1 − t̄2 − t2%

+ "1− 61%
2"2S− t1 − t2%

subject to '"t̄i# t i%( in F "0% for i = 1# 2,

It is apparent that the optimal solution to this problem is the twice replica of
the solution "t̄SB# tSB% to the static problem discussed in section 5.3.2. We imme-
diately obtain the linearity of the optimal schedule.

Proposition 9.7: The optimal sharing rule tSB"q̃1# q̃2% is linear in the num-
ber of successes or failures of the production process. We have: tSB"q̄# q̄% =
2t̄SB, tSB"q̄# q% = tSB"q# q̄% = t̄SB + tSB, and tSB"q# q% = 2tSB.

This result obviously generalizes to T ≥ 2 periods and more than two out-
comes. Understanding this linearity result requires us to return to the main features
of the solution to the static problem of section 5.3.2. The CARA specification for
the agent’s utility function implies the absence of any wealth effect. The wage as
well as the cost of effort in period 1 (which is counted in monetary terms) are sunk
from the point of view of period 2 and have no impact on the incentive pressure
that is then needed to induce effort. This incentive pressure is exactly the same as
in a static one-shot moral hazard problem. Therefore, the principal views periods
1 and 2 as equivalent, in terms of both the stochastic processes generating output
in each period and the incentive pressure needed to induce effort. The principal
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offers the same contract in each period, and the overall sharing rule, based only on
the whole history of outputs up to date t = 2, is linear in the number of successes
and failures.

Assume now that there are T ≥ 2 periods. Then, following the same logic
as above, the transfer associated with n successes and T − n failures only depends
on the total production and not on the dates at which these successes and failures
take place. More precisely, when we denote the common value of these transfers
by tSB"·% we get tSB"nq̄ + "T − n%q% = nt̄SB + "T − n%tSB, where n is the number
of successes. When we denote by X the aggregate output in the T -Bernoulli tri-
als, where at each date q̄ is obtained with probability 61 and q is obtained with
probability 1− 61, we have X = nq̄ + "T − n%q and

tSB"X% = T

(
tSB − q

(
t̄SB − tSB

q̄ − q

))

︸ ︷︷ ︸
Fixed-Fee

+
(
t̄SB − tSB

q̄ − q

)

︸ ︷︷ ︸
Marginal Incentives

X, (9.58)

This relationship shows that the sharing rule between the principal and the
agent is linear in X. However, in the analysis above, the fixed-fee in (9.58) becomes
infinitely large as T goes to infinity. Holmström and Milgrom (1987) solved this
difficulty by using a continuous time model where in each period the agent con-
trols the drift of a Brownian process. Typically, on an infinitesimal interval of time
0t# t + dt5, the aggregate output q"t% up to date t jumps up only by a term pro-
portional to the effort performed during the interval of length dt plus some noise.
More precisely, q"t + dt%− q"t%− edt is the sum of dt independently and identi-
cally distributed random variables with a mean of zero. The aggregate output is a
unidimensional Brownian motion that follows the stochastic differential equation

dq = edt + 7 2dB# (9.59)

where B is a unidimensional Brownian motion with unit variance, and e is the
agent’s effort on the interval 0t# t + dt5.27

In the continuous time model presented here, the principal can only use
the overall aggregate output q"1% = q at the end of a 00# 15 interval of time to
incentivize the agent. Note that (9.59) holds on all intervals 0t# t+ dt5 and that the
principal offers the same incentive pressure on each of those infinitesimal intervals
so that effort is constant over time. Hence, the aggregate output q"1% is a normal
variable with mean e and variance 7 2. Holmström and Milgrom (1987, 321) show
that the optimal contract is a linear contract t"q% = a+ bq. Then, the agent’s final

27Dixit and Pyndick (1994) provide a nice introduction to Brownian motions and stochastic cal-
culus for economists.
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wealth is also a normal variable with mean a + be and variance b27 2. Because
the agent has constant absolute risk aversion, his certainty equivalent income we

is such that

exp"−rwe% =
∫ +&

−&
exp"−r"a+ bq − 3"e%%%

exp
(
− "q−e%2

272

)

√
267 2

dq#

where exp"− "q−e%2

272 %/
√
267 2 is the density of the normal distribution with mean e

and variance 7 2. We easily find that28

we = a+ be − 3"e%− rb27 2

2
, (9.60)

When the agent’s disutility of effort is quadratic, i.e., 3"e% = e2

2 , the sufficient
and necessary condition for the optimal choice of effort is e = b. The fixed-fee
a can be set so that the agent’s certainty equivalent income is zero and thus
a = "r7 2 − 1% e22 .

The risk-neutral principal’s expected payoff can be computed as

∫ +&

−&
"q − t"q%%

exp
(
− "q−e%2

272

)

√
267 2

dq = "1− b%e − a, (9.61)

The principal’s problem is thus written in a reduced form as follows:

"P %- max
'b#a#e(

"1− b%e − a#

subject to

b = e and a = "r7 2 − 1% e22 ,

Replacing b and a with their values as functions of e, the principal’s problem
can be reduced to

"P ′%- max
'e(

e − e2

2
"1+ r7 2%,

28To compute this certainty equivalent, we use the identity

∫ +&

−&
exp

(
−8x − x2

272

)
dx√
2672

= exp
(
7282

2

)
#

for any 8.
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Optimizing, we easily find the second-best effort eSB:

eSB = 1
1+ r7 2

< 1 = eFB# (9.62)

where eFB is the first-best level of effort.
It is interesting to note that, as the index of absolute risk aversion increases, the

second-best effort is further distorted downward. Similarly, as the output becomes a
less informative measure of the agent’s effort, i.e., as 7 2 increases, this effort is also
reduced. These insights were already highlighted by our basic model in chapter
4.29

The Holmström and Milgrom (1987) model can be extended to the
case of a multidimensional Brownian process that corresponds to the

case where the agent’s output is multidimensional and to the case of a mul-
tidimensional effort as we show below. Schättler and Sung (1993) showed that
a time-dependent technology calls for the optimal contract to be nonlinear.
Sung (1995) showed that the optimal contract can still be linear when the
agent controls the variance of the stochastic process. Hellwig and Schmidt
(1997) proposed further links between the discrete and the continuous time
model. Lastly, Bolton and Harris (1997) generalized the Brownian motion.
Diamond (1998b) proposed a static model with limited liability, risk neutrality
and three possible outcomes; linearity emerges because the agent has a rich
set of choices in the distribution of these outcomes. More generally, it is
also worth stressing that the linearity of contracts may be imposed when the
principal must prevent arbitrage or resale among his agents.

Once the Holmström-Milgrom framework is accepted, i.e., the CARA utility
function, the Brownian motion of output whose drift is affected by effort, trans-
fers depending only on the final aggregate output, the analysis is made very easy
because contracts can be taken to be linear, and these linear contracts can be
developed in many directions. Below we give an example of an interesting use of
the model.

A Multitask Illustration
The model above with a CARA utility function and a normal distribution of the
performance is also useful when analyzing multitask agency models. To see that,

let us assume that the agent exerts a vector of effort e =
( e1
e2

)
for the principal. The

disutility of effort is written as 3"e%, where 3"·% is convex. To make things simpler
we will assume that 3"·% is a quadratic form, and we will write 3"e% = 1

2e
′3e for

29See section 4.4.
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some semidefinite positive and symmetric matrix

3 =
(
311 312

312 322

)

,

We denote + = 3−1 as the inverse matrix that is also symmetric. Contrary to the
model of section 5.2.3, the disutility of effort is counted in monetary terms. Each
of these efforts affects the mean of a random variable q̃i in the following manner:

q̃i = ei + 4̃i# (9.63)

where 4̃i is a random variable. We will denote the vector of performances by

q =
(q1
q2

)
. The vector of random variable 4̃ =

( 4̃1
4̃2

)
is normally distributed with a

zero mean and a covariance matrix given by

9 =
(
7 2
1 712

712 7 2
2

)

,

Let us thus write the optimal linear contract offered by the principal as
t"q1# q2% = a+ b1q1 + b2q2 or, using the inner product,

t"q% = a+ b′q, (9.64)

With this type of linear contract, the agent gets a certainty equivalent income we

such that

exp"−rwe% =
∫ +&

−&
exp

(
−r

(
a+ b′q − 1

2
e′3e

)
− 1

2
"q − e%′9−1"q − e%

)

× dq

"26 det9%1/2
, (9.65)

Using the moment generating function,30 we find that

we = a+ b′e − 1
2
e′3e − r

2
b′9b, (9.66)

Optimizing (9.66) with respect to e yields the agent’s response to any linear
contract. We obtain the following incentive constraints:

b = 3e, (9.67)

30The moment generating function of a random variable x̃ is Mx̃"s% =
∫ +&
−& exp"sx%dF "x%, where

F "·% is the distribution of x. Standard results in statistics show that, for a multivariate, normally dis-
tributed random variable such that x ∼ N "/#9%, the moment generating function writes as Mx̃"s% =
exp

(
s′/+ 1

2 s
′9s

)
. We apply this formula to get (9.66).
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This yields the following expression of the certainty equivalent income of the
agent:

we = a− r

2
b′9b+ 1

2
b′+b, (9.68)

Of course, this certainty equivalent income must be positive in order to pro-
vide the agent with at least his outside opportunity.

The risk-neutral principal benefits from the sum of the performances on each
particular task. The principal’s expected payoff is written as

∫ +&

−&
"q1 + q2 − t"q1# q2%% exp

(
−1
2
"q − e%19−1"q − e%

)
dq

26"det9%1/2
, (9.69)

Expressing this term, we find an expected payoff for the principal of "!′ −
b′%e− a, where !′ = "1# 1% is the line vector having all of its components equal to
one.

We can finally write the principal’s problem as:

"P %- max
'b#a#e(

"!′ − b′%e − a

subject to (9.67) and (9.68).

Of course, these two constraints are binding at the optimum, and we can
rewrite the principal’s problem in reduced form as

"P ′%- max
'b(

!′+b− r

2
b′9b− 1

2
b′+b,

This problem is concave in b, and the second-best vector of optimal marginal
incentives is obtained as a solution to

bSB = "Id + r93%−1 !# (9.70)

where

Id =
(
1 0
0 1

)

is the identity matrix.
The matrix 93, which is computed from the technology and the informative-

ness of the different signals, plays a significant role in determining the second-best
marginal incentives and the optimal effort.31 This matrix measures the discrepancy
between second-best and first-best incentives.

31See Holmström and Milgrom (1991) for further details.
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As an example, let us assume that efforts are imperfect substitutes, with 311 =
322 = 1 > 312, and off-diagonal terms of 9 are all equal to zero. Then, the values
of the marginal incentives are given by

bSB1 = 1+ r7 2
2 "1− 312%

1+ r"7 2
1 + 7 2

2 %+ r27 2
17

2
2 "1− 32

12%
# (9.71)

bSB2 = 1+ r7 2
1 "1− 312%

1+ r"7 2
1 + 7 2

2 %+ r27 2
17

2
2 "1− 32

12%
, (9.72)

Assume for instance that 72 = & to capture the fact that the performance q̃2
may not be observable at all by the principal. Then we have

bSB1 = 1− 312

1+ r7 2
1 "1− 32

12%
# (9.73)

bSB2 = 0, (9.74)

It becomes impossible to reward the hardly observable task q̃2, and so all
incentive pressure is put on the first task.32 This points to the complementarity
between rewarding different substitute tasks in a second-best environment that
we already stressed in the bare-bones model of section 5.2.5. On this, see also
Holmström and Milgrom (1994).

9.6 Limits in the Action Space !

Let us now come back to an adverse selection context. Our goal in this section is
to understand how one can possibly endogenize the action space used to contract
with the agent.

9.6.1 Extending the Action Space

We start with a highly stylized model of procurement between a principal (the
buyer) and an agent (the seller). We assume that the agent’s marginal cost $
belongs to & = '$# $̄( with respective probabilities ) and 1− ). Let us also suppose
that the principal desires only one unit of the good and has a valuation S for this
unit. In this setting, the only screening variable available is the set of types with
whom the principal wants to contract. If the price of the unit is $, only the efficient
agent produces and the principal gets )"S− $%. If the price is instead $̄, both types

32In the extreme case where tasks are perfect substitutes, i.e., where 312 = 1, bSB1 = 0, and the first
task also becomes impossible to incentivize.
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of agent produce and the principal gets instead )"S− $%+ "1− )%"S− $̄%− )1$.
Having both types producing is thus optimal when )"S − $% < )"S − $% + "1 −
)%"S− $̄%− )1$, i.e., when

S− $̄ > )"S− $%, (9.75)

When (9.75) holds, there is no screening between both types.33

Let us now consider the case where the seller can signal his type $ through
the choice of a positive quality s. One can think of this quality as some after-sales
services offered by the seller to the buyer.34 To produce a signal with quality s, the
seller must incur a cost c"s# $% = s2

2$ for s ≥ 0. For the sake of the proof, we will
also assume that there exists an upper bound, smax, on s.

Note that the technologically inefficient agent produces a high-quality sig-
nal more easily than the efficient one, because cs$"s# $% = − s

$2
< 0.35 This

Spence-Mirrlees property has the opposite sign of that obtained by taking cross-
derivatives with respect to type and production.36

In this context, the signaling stage can be incorporated into the contract.
A direct revelation mechanism stipulates a transfer t"$̃% and a quality s"$̃% as a
function of the agent’s announcement of their type. A truthful direct revelation
mechanism is thus a pair '"t# s%* "t̄# s̄%(, which satisfies the incentive constraints

U = t − $ − s2

2$
≥ #U + 1$ + s̄2

2$̄
− s̄2

2$
# (9.76)

#U = t̄ − $̄ − s̄2

2$̄
≥ U − 1$ + s2

2$
− s2

2$̄
# (9.77)

and the standard participation constraints

U ≥ 0# (9.78)

#U ≥ 0, (9.79)

By adding the incentive constraints (9.76) and (9.77), we obtain the imple-
mentability condition

s̄ ≥ s, (9.80)

33The reader will have recognized a condition similar to the one obtained in section 2.6.3, when
we analyzed the issue of shutdown.

34To simplify the analysis, we assume that quality is not valued by the consumer.
35Implicit here is the idea that agents who produce efficiently have more difficulty providing

after-sales services.
36This new feature of the agent’s preferences may introduce the possibility of countervailing incen-

tives. However, we will choose parameter values below so that this case does not arise.
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We will focus on the case where (9.76) and (9.79) remain the two binding
constraints, despite the fact that cs$ < 0. This will be the case as long as 1$ >
s̄2

2 "
1
$
− 1

$̄
% or s̄ ≤ "2$$̄%

1
2 .37 In this case, the principal’s problem becomes

"P %- max
'"s#U %*"s̄##U %(

)

(
S− $ − s2

2$
− U

)
+ "1− )%

(
S− $̄ − s̄2

2$̄
− #U

)
#

subject to (9.76) and (9.79).

These two constraints are binding at the optimum, and the principal’s problem
is rewritten as

"P ′%- max
's#s̄(

)

(
S− $ − 1$ − s2

2$
+ s̄21$

2$$̄

)
+ "1− )%

(
S− $̄ − s̄2

2$̄

)
,

The objective function is strictly concave in s and maximized at sSB = 0.
Things are rather different for s̄. Two cases must be distinguished. For )$̄ < $,
the objective function is also concave in s̄ and maximized at s̄SB = 0. The signal
is not used, and the decision to have both types producing is taken with the
criterion (9.75).

For )$̄ > $, the objective function is now convex and increasing in s̄. It is
thus maximized for

s̄SB = smax, (9.81)

In this case, the benefit of inducing a positive signal by the inefficient agent
to relax the efficient agent’s incentive constraint in (9.76) exceeds the physical cost
of the signal.

The condition for having both types producing the good now becomes

S− $̄ + s2max

2$̄$
")$̄ − $% > )"S− $%# (9.82)

which is easier to satisfy than (9.75), because )$̄ − $ > 0.
To conclude, the costly signal reduces the informational gap between the

principal and his agent; it may be used to induce more production than in its
absence, and therefore it increases efficiency.

Spence (1974) was the first to use this idea to elicit agents’ produc-
tivities from their education level in his Signaling Theory. Maggi

and Rodriguez-Clare (1995b) presented a model that is closely related to the
one shown here. In their model, the principal can observe, on top of output,

37We will assume that smax ≤ "2$̄$%1/2 to avoid countervailing incentives.
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a noisy signal $ + s on the agent’s marginal cost. This signal is provided to
improve incentives. However, the agent manipulates this observable by play-
ing on the noise s at a cost. Countervailing incentives may arise from the fact
that the Spence-Mirrlees property may no longer be satisfied.

9.6.2 Costly Action Space

When a principal-agent problem is defined, some variables are assumed to be
verifiable, and contracts can be conditioned on those variables. For example, in
our canonical models of chapters 2 and 4 it is assumed that the production level
is contractible because it is observable and verifiable by a court of law. However,
observability and verifiability are generally costly, and one may have the choice
of observing and verifying more or less variables. In our basic adverse selection
model, we have potentially two observables, the production level q and the ex post
cost C = C"q# $%. Suppose that there is a fixed cost of observing either q or C.
If both C and q are observed by the principal, he can perfectly infer the value of
$ and achieve the first-best. This outcome is assumed to be too costly because of
these fixed costs. In our canonical model, we have assumed that q is observed but
that C is not observed. In this case, an information rent must be given up to the
agent, and this calls for a distortion in the inefficient type’s production level.

On the contrary, if C is observed and not q, let q = Q"$#C% be the solution
in q of the equation C = C"$# q%. Then the principal’s problem is written as:

"P %- max
'"C#t%*"C̄#t̄%(

)"S"Q"$#C%%− t%+ "1− )%"S"Q"$̄# C̄%%− t̄%#

subject to

t −C ≥ t̄ − #C# (9.83)

t̄ − #C ≥ t −C# (9.84)

t −C ≥ 0# (9.85)

t̄ − #C ≥ 0, (9.86)

The incentive constraints (9.83) and (9.84) imply t − C = t̄ − #C. Both par-
ticipation constraints are also binding, and the problem reduces to

"P ′%- max
'C# #C(

)"S"Q"$#C%%−C%+ "1− )%"S"Q"$̄# #C%%− #C%,

The corresponding first-order conditions of this problem are

S′"q% ·QC"$#C% = 1# (9.87)
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S′"q̄% ·QC"$̄# #C% = 1, (9.88)

Taking into account that QC"$#C% = 1
Cq "q#$%

, we find that the optimal outputs
q∗ and q̄∗ are efficient

S′"q∗% = Cq"q
∗# $%# (9.89)

S′"q̄∗% = Cq"q̄
∗# $̄%, (9.90)

The principal can thus implement the first-best outputs without giving up any
rent. Indeed, observing costs makes it possible to adjust the transfers in order to
leave no rent. However, in this case the agent is indifferent between telling the
truth and not telling the truth and, as usual, we break this indifference by assuming
that he reveals the truth to the principal.

This is a spectacular example, where the choice of the right observable
enables the principal to achieve the first-best outcome. However, note that the
costs of observing q or C have a priori no reason to be identical.

The literature has studied the comparison of regulation by the out-
put or regulation by the input more generally (see Maskin and Riley

1985, Crampes 1986, Khalil and Lawarrée 1995, and Bontemps and Bour-
geon 2000). The levels of information rent are affected by the choice of the
contractible variables.

9.7 Limits to Rational Behavior

Even though incentive theory has been developed under the standard assumption
that all players are rational, it can take into account whatever bounded rationality
assumption one may wish to choose.38 However, there is an infinity of possible
theories of bounded rationality and, in each case, the modeller must derive spe-
cific optimal contracts. Let us consider a few examples that allow us to introduce
bounded rationality without perturbing the basic lessons of incentive theory too
much.

9.7.1 Trembling-Hand Behavior

Let us come back to the canonical model of chapter 2. We will assume that the
agent is ex ante rational when he accepts the contract but makes a mistake with

38In what follows, we restrict the principal to offer a menu of contracts having the same dimen-
sionality as the number of types.
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some probability when he chooses the contract ex post. Ex ante rationality implies
that the agent anticipates the impact of these future errors on his expected utility
at the time of acceptance.

This possibility of an ex post irrational behavior only matters for the efficient
type when the size of the mistakes is small enough. Recall that, in the standard
solution to chapter 2, only the efficient type is indifferent between taking his
contract and taking the contract of the inefficient type. The inefficient agent strictly
prefers his contract and will continue to do so as long as mistakes are small enough.

Let us denote by 4 the error term in the efficient agent’s choice. The latter
agent chooses the contract "t# q% when

U ≥ #U + 1$q̄ + 4# (9.91)

i.e., with probability G"U − #U − 1$q̄%, where G"·% is the cumulative distribution
of 4 on some centered interval 0−4̄# 4̄5. The density of this random variable is
denoted by g"·% with g"0% > 0. Moreover, we will assume that the monotone hazard
rate property d

d4
"G"4%
g"4%
% > 0 is satisfied. When 4̄ is less than 1$q, the inefficient

agent does not make any error and chooses the right contract with probability one.
His acceptance is thus ensured when

#U ≥ 0,39 (9.92)

The principal’s problem then becomes

"P %- max
'"#U# q̄%*"U#q%(

)G"U − #U − 1$q̄%"S"q%− $q − U %

+
(
1− )G"U − #U − 1$q̄%

)
"S"q̄%− $̄q̄ − #U %#

subject to (9.92).

Introducing 4̂ as the greatest value of 4 such that the efficient type’s incentive
constraint (9.91) is binding, this problem is rewritten

"P ′%- max
'"4̂# q̄#q%(

)G"4̂%"S"q%− $q − 1$q̄ − 4̂%+ "1− )G"4̂%%"S"q̄%− $̄q̄%#

since (9.92) is necessarily binding at the optimum.

39The efficient agent’s participation constraint is instead

G"U − #U − 1$q̄%U + "1−G"U − #U − 1$q̄%%"#U + 1$q̄% ≥ 0,

Again, when 4̄ is small enough this participation constraint is strictly satisfied and can be omitted in
the analysis.
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We index the optimal contract by a superscript BR, meaning bounded ratio-
nality.

Proposition 9.8: With a trembling-hand behavior, the optimal contract
entails no output distortion for the efficient type, qBR = q∗, and a down-
ward distortion for the inefficient type, q̄BR < q̄∗, such that

S′"q̄BR% = $̄ + )G"4̂BR%

1− )G"4̂BR%
1$# (9.93)

where 4̂BR is given by

S"q∗%− $q∗ − "S"q̄BR%− $q̄BR% = 4̂BR + G"4̂BR%

g"4̂BR%
, (9.94)

Because q̄BR < q∗, the left-hand side of (9.94) is strictly positive. This left-hand
side is the difference between the first-best surplus and what would be obtained if
the efficient agent had made a mistake and taken the contract of an inefficient one.
Since G"·% satisfies the monotone hazard rate property, 4+ G

g
"4% is increasing and

4̂BR is uniquely defined. For an interior solution such that G"4̂BR% < 1, everything
happens as if the efficient type was less likely. The rent differential 1$q̄ given
up to the efficient agent is less costly than in a model with no mistake. Hence,
q̄BR > q̄SB, and the output distortion is less important than without the mistake.

Remark: The reader will have recognized the similarity of this section
with the model of section 3.4. There, random decisions did not affect
the efficient type’s incentive constraint, but instead they affected the
inefficient type’s participation constraint.

9.7.2 Satisficing Behavior

Consider a three-type example along the lines of section 3.1 with a general cost
function C"q# $%. The incentive constraints of the three types are written respec-
tively as

t −C"q# $% ≥ t̂ −C"q̂# $% (9.95)

≥ t̄ −C"q̄# $% (9.96)

t̂ −C"q̂# $̂% ≥ t −C"q# $̂% (9.97)

≥ t̄ −C"q̄# $̂% (9.98)
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t̄ −C"q̄# $̄% ≥ t̂ −C"q̂# $̄% (9.99)

≥ t −C"q# $̄%, (9.100)

Suppose that the agent has a satisficing behavior and only looks at the nearby
contracts, which are ordered as '"t# q%* "t̂# q̂%* "t̄# q̄%(. Starting from an initial con-
tract choice that may be suboptimal, the agent moves to another contract choice
if the nearby contract yields a higher payoff.

Then it is immediately apparent that, if the Spence-Mirrlees property is sat-
isfied, the agent will discover the optimal contract for him, and, neglecting tem-
porary misallocations, the theory can proceed as if the agent was fully rational.40

Indeed, whatever his initial choice in the menu, he will move in the right direction
in this set.

For example, let us take the case where C"q# $% = $q. If the agent has type
$̄ and starts from the contract "t# q%, he moves to "t̂# q̂% if and only if t̂ − $̄q̂ ≥
t− $̄q, which can be rewritten as t̂− $̂q̂ ≥ t− $̂q +1$"q̂ − q%. This last inequality
holds, because both q̂ ≤ q and the $̂-incentive compatibility constraint t̂ − $̂q̂ ≥
t − $̂q are satisfied. In a second step of the tâtonnement process, the $̄-agent will
move to contract "t̄# q̄%, because by the incentive compatibility of the contract the
following inequality t̄ − $̄q̄ ≥ t̂ − $̄q̂ holds.

However, if the Spence-Mirrlees property is not satisfied, the agent may get
stuck at a nonoptimal contract at some point in the tâtonnement process. The
principal might then want to take those potential inefficiencies into account (which
depend on the starting choices) when structuring a menu. In an extreme case, he
might choose a single bunching contract that gives up screening but avoids these
temporary inefficiencies.

There are many examples where an approach that takes the agent’s bounded
rationality into account could be fruitful. An obvious case is when the choice is
made by a group of agents (a family, a firm, or an organization) that does not
reach an efficient collective decision mechanism.

9.7.3 Costly Communication and Complexity

The complexity of information places some limits on the possibility of its full
communication and utilization. Costs of transmission, storage, and information
processing are among the factors that could cause a principal to limit the potential
for information flows between the agent and himself.

40We assume here for simplicity that the principal cannot change the menu of contracts he has
offered during the discrete-time “tâtonnement” of the agent.
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An earlier trend in the mechanism design literature dealt with the
size of communication spaces needed to implement a particular allo-

cation while ignoring incentive constraints (see Mount and Reiter 1974, and
Hurwicz 1977, among others). The analysis of the interaction of incentive
and communication constraints is a difficult topic. Green and Laffont (1986a;
1987) introduced data compression technics and dimensionality restrictions
in adverse selection environments. See also Reichelstein and Reiter (1988).
Green and Laffont (1986b) analyzed how exogenous constraints on commu-
nication may invalidate the revelation principle. Legros and Newman (1999)
analyzed incentive problems where agents have to secure their communi-
cation channels with the principal. For multiagent settings, see the work of
Melumad, Mookherjee, and Reichelstein (1997) and the references therein.
Various papers also explicitly introduced the cost of including multiple con-
tingencies in contracts (see Dye 1985, Allen and Gale 1992, and Anderlini
and Felli 2000 for a recent synthesis).

9.8 Endogenous Information Structures !

One often heard criticism of incentive theory is that it takes information structures
as given. A more complete view of organizational design should account for the
endogeneity of these information structures. To investigate these new issues, we
now assume that the agent does not know his type a priori but can decide or not
to acquire information about his type at a cost c. Results depend on the precise,
extensive form of the game representing the sequence of events and, in particular,
on when information is acquired. We outline the timing in figure 9.8.

Note that, at date t = 6, the agent reveals the information he has learned,
if any. The principal can decide to offer contracts that induce or do not induce
information gathering by the agent, at a strictly positive cost c.

Figure 9.8: Timing of the Contractual Game with Endogenous Information Structures
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If the principal was not delegating the tasks of production and information
gathering, he would choose to invest in information gathering when

)"S"q∗%− $q∗%+ "1− )%"S"q̄∗%− $̄q̄∗%− c ≥ max
q
'S"q%− E"$%q(# (9.101)

where E"$% = )$ + "1− )%$̄.
To implement this outcome with delegation, the principal can offer a non-

linear schedule t"q% = S"q% − T ∗. With such a schedule, the risk-neutral agent
is made residual claimant for the hierarchy’s profit. When choosing to become
informed, the agent produces q∗ and q̄∗ in the different states of nature. Informa-
tion gathering thus occurs whenever

)"S"q∗%−$q∗%+"1−)%"S"q̄∗%− $̄q̄∗%−T ∗−c≥max
q
'S"q%−E"$%q(−T ∗# (9.102)

which is equivalent to (9.101).
Finally, when (9.101) holds, the principal fixes T ∗ to reap all ex ante gains

from trade and T ∗ = )"S"q∗%− $q∗%+ "1− )%"S"q̄∗%− $̄q̄∗%− c.
Let us now envision the case where the risk-neutral agent has limited liability

so that making him residual claimant for the firm’s profit is impossible.
We denote a direct revelation mechanism by '"t̄# q̄%* "t# q%(. The usual incen-

tive constraints,

U ≥ #U + 1$q̄ (9.103)

and

#U ≥ U − 1$q# (9.104)

should hold when the agent decides to learn information.
The following ex post participation constraints must also be satisfied:

U ≥ 0# (9.105)

#U ≥ 0, (9.106)

Moreover, the agent must choose to participate at the ex ante stage, i.e., the
following participation constraint must be satisfied:

)U + "1− )%#U − c ≥ 0, (9.107)
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The agent decides to acquire information when

)U + "1− )%#U − c ≥ max't − E"$%q# t̄ − E"$%q̄(# (9.108)

or, expressing the right-hand side as a function of U and #U ,

)U + "1− )%#U − c ≥ max'U − "1− )%1$q# #U + )1$q̄(, (9.109)

One can rewrite this latter inequality as a pair of inequalities,

U − #U ≥ 1$q̄ + c

)
(9.110)

and

#U − U ≥ −1$q + c

1− )
, (9.111)

The set of possible values of U and #U satisfying (9.110) and (9.111) is
nonempty when

)"1− )%1$"q − q̄% ≥ c, (9.112)

When he wants to induce information gathering, the principal’s problem is
thus:
"P % max

'"U#q%*"#U#q̄%(
)"S"q%− $q − U %+ "1− )%"S"q̄%− $̄q̄ − #U %,

subject to (9.103) to (9.106) and (9.110) to (9.112).

First neglecting the implementability condition (9.112) and the ex ante par-
ticipation constraint (9.107), which turns out to be satisfied at the optimum, the
binding constraints are (9.106) and (9.110), which is more costly than (9.103). The
optimal outputs are thus qIG = q∗ and q̄IG = q̄SB, where the superscript IG means
information gathering. Outputs are thus equal to their second-best levels as long as
the implementability condition in (9.112) holds, i.e.,

)"1− )%1$"q∗ − q̄SB% > c, (9.113)

As c increases, the latter constraint becomes binding in order to induce infor-
mation gathering, and both outputs are distorted away from their second-best values
without information gathering.

If the principal does not induce information gathering, satisfying the
ex post participation constraint of the agent requires t = $̄q, and the optimal
output chosen by the principal is q̄∗. This yields an expected payoff V 0 =
S"q̄∗%− $̄q̄∗.
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In the first regime, where (9.113) holds, the principal wants to induce infor-
mation gathering when

V IG = )"S"q∗%− $q∗%+ "1− )%"S"q̄SB%− $̄q̄SB%− )1$qSB − c > V 0, (9.114)

Of course, this inequality holds when c is small enough.

Crémer, Khalil, and Rochet (1998) offered a similar analysis when
the agent accepts or rejects the contract after the information gather-

ing stage and there is a continuum of possible types. They also reviewed the
recent literature. Kessler (1998) analyzed a similar model with only two types.
Lewis and Sappington (1991, 1993, 1997), Crémer and Khalil (1992), and
Mezzetti and Tsoulouhas (2000) also presented models where information
gathering takes place before the signing of the contract.
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