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PREFACE 
 
 
Economic forecasting is the process of making predictions about the economy as a whole 

or in part. Such forecasts may be made in great detail or may be very general. In any case, 
they describe the expected future behaviour of all or part of the economy and help form the 
basis of planning. Economic forecasting is of immense importance as any economic system is 
a stochastic entity of great complexity and vital to the national development in the 
information age. Forecasts are required for two basic reasons: the future is uncertain, and the 
full impact of many decisions taken now might deviate later. Consequently, accurate 
predictions of the future would improve the efficiency of the decision-making process. In 
particular, the knowledge of future demand for products and services is imperative to all 
industries since it is a prerequisite for any viable corporate strategy. This new and important 
book gathers the latest research from around the globe in this field and related topics such as: 
the econometric modeling and forecasting of private housing demand, the nonparametric 
time-detrended Fisher effect, and others. 

One of the biggest concerns of an economic analyst is to understand the condition that an 
economy is experiencing at any given time, monitoring it properly in order to anticipate 
possible changes. However, despite social and economic life having quickened and become 
more turbulent, many relevant economic variables are not available at the desired frequency. 
Therefore, great quantities of methods, procedures and algorithms have been specifically 
proposed in the literature to solve the issue of transforming a low-frequency series into a 
high-frequency one. Moreover, a non-negligible number of proposals have been also 
conveniently adapted to deal with the problem of interpolation, distribution and extrapolation 
of time series. Thus, in order to put some order in the subject and to comprehend the current 
state of the art on the topic, Chapter 1 offers a revision of the historical evolution of the 
temporal disaggregation problem, analysing the proposals and classifying them. This permits 
one to decide which method to use under what circumstances, to conclude by identifying the 
topics in need of further development and to make some comments on possible future 
research directions in this field. 

Governments, corporations and institutions all need to prepare various types of forecasts 
before any policies or decisions are made. Particularly, serving as a significant sector of an 
economy, the importance of predicting the movement of the private residential market is 
undeniable. However, it is well recognised that the housing demand is volatile and it may 
fluctuate dramatically according to general economic conditions. As globalisation continues 
to dissolve boundaries across the world, more economies are increasingly subjected to 



Alan T. Molnar viii 

external shocks. Frequently the fluctuations in the level of housing demand can cause 
significant rippling effects in the economy as the housing sector is associated with many other 
economic sectors. The development of econometric models is thus postulated to assist policy-
makers and relevant stakeholders to assess the future housing demand in order to formulate 
suitable policies.  

With the rapid development of econometric approaches, their robustness and 
appropriateness as a modelling technique in the context of examining the dynamic 
relationship between the housing market and its determinants are evident. Chapter 2 applies 
the cointegration analysis as well as Johansen and Juselius’s vector error correction model 
(VEC) model framework to housing demand forecasting in Hong Kong. Volitality of the 
demand to the dynamic changes in relevant macro-economic and socio-economic variables 
are considered. In addition, an impulse response function and a variance decomposition 
analysis are employed to trace the sensitivity of the housing demand over time to the shocks 
in the macro-economic and socio-economic variables. This econometric time-series 
modelling approach surpasses other methodologies by its dynamic nature and sensitivity to a 
variety of factors affecting the output of the economic sector for forecasting purposes, taking 
into account indirect and local inter-sectoral effects. 

Empirical results indicated that that the housing demand and the associated economic 
factors: housing prices, mortgage rate, and GDP per capita are cointegrated in the long-run. 
Other key macro-economic and socio-economic indicators, including income, inflation, stock 
prices, employment, population, etc., are also examined but found to be insignificant in 
influencing the housing demand. A dynamic and robust housing demand forecasting model is 
developed using VEC model. The housing prices and mortgage rate are found to be the most 
important and significant factors determining the quantity demand of housing. Findings from 
the impulse response analyses and variance decomposition under the VEC model further 
confirm that the housing price terms has relatively large and sensitive impact on the housing 
demand, although at different time intervals, on the volume of housing transactions in Hong 
Kong. Addressing these two attributes is critical to the formulation of both short- and long-
term housing policies that could satisfy the expected demand effectively.  

The research contributes knowledge to the academic field as currently the area of housing 
demand forecast using advanced econometric modelling techniques is under-explored. This 
study has developed a theoretical model that traces the cause-and-effect chain between the 
housing demand and its determinants, which is relevant to the current needs of the real estate 
market and is significant to the economy’s development. It is envisaged that the results of this 
study could enhance the understanding of using advanced econometric modelling 
methodologies, factors affecting housing demand and various housing economic issues.  

The decomposition of a time series into components representing trend, cycle, seasonal, 
etc., has a long history. Such decompositions can provide a formal framework in which to 
model an observed time series and hence enable forecasts of both the series and its 
components to be computed along with estimates of precision and uncertainty. Chapter 3 
provides a short historical background to time series decomposition before setting out a 
general framework. It then discusses signal extraction from ARIMA and unobserved 
component models. The former includes the Beveridge-Nelson filter and smoother and 
canonical decompositions. The latter includes general structural models and their associated 
state space formulations and the Kalman filter, the classical trend filters of Henderson and 
Macaulay that form the basis of the X-11 seasonal adjustment procedure, and band-pass and 
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low-pass filters such as the Hodrick-Prescott, Baxter-King and Butterworth filters. An 
important problem for forecasting is to be able to deal with finite samples and to be able to 
adjust filters as the end of the sample (i.e., the current observation) is reached. Trend 
extraction and forecasting under these circumstances for a variety of approaches will be 
discussed and algorithms presented. The variety of techniques will be illustrated by a 
sequence of examples that use typical economic time series. 

In Chapter 4 we study the gains that securitizing companies enjoy. We expressed the 
gains as a spread between two costs of capital, the weighted cost of capital of the asset selling 
firm and the all-in, weighted average cost of the securitization. We calculate the spread for 
1,713 securitizations and regress those gains on asset seller characteristics. We show that they 
are increasing in size in the amount of asset backed securities originated but are decreasing in 
the percent of the balance sheet that the originator has outstanding. Companies that off-lay the 
risk of the sold assets (i.e., those retaining no subordinate interest in the SPV) pick their best 
assets to securitize. Companies that do not off-lay risk gain more from securitization the less 
liquid they are. We find that securitization is a substitute for leverage and that those 
companies that use more conventional leverage benefit less from securitization.  

Chapter 5 uses frontier nonparametric VARs techniques to investigate whether the Fisher 
Effect holds in the U.S. The Fisher Effect is examined taking into account structural breaks 
and nonlinearities between nominal interest rates and inflation, which are trend-stationary in 
the two samples examined. The nonparametric time-detrended test for the Fisher Effect is 
formed from the cumulative orthogonal dynamic multiplier ratios of inflation to nominal 
interest rates. If the Fisher Effect holds, this ratio statistically approaches one as the horizon 
goes to infinity. The nonparametric techniques developed in this paper conclude that the 
Fisher Effect holds for both samples examined.  

Chapter 6 investigates the effect of forecasting ability on forecasting bias among 
Japanese GDP forecasters. Trueman (1994, Review of Financial Studies, 7(1), 97-124) argues 
that an incompetent forecaster tends to discard his private information and release a forecast 
that is close to the prior expectation and the market average forecast. Clarke and Subramanian 
(2006, Journal of Financial Economics, 80, 81-113) find that a financial analyst issues bold 
earning forecasts if and only if his past performance is significantly different from his peers. 
This paper examines a twenty-eight-year panel of annual GDP forecasts, and obtains 
supportive evidence of Clarke and Subramanian (2006). Our result indicates that conventional 
tests of rationality are biased toward rejecting the rational expectations hypothesis. 

As explained in Chapter 7, through Monte Carlo simulations it is possible to isolate the 
measurement error introduced by incorrect assumptions when quantifying survey results. By 
means of a simulation experiment we test whether a variation of the balance statistic 
outperforms the balance statistic in order to track the evolution of agents’ expectations and 
produces more accurate forecasts of the quantitative variable generated used as a benchmark. 

Chapter 8 investigates the relative performance of local, foreign, and expatriate financial 
analysts on Latin American emerging markets. We measure analysts’ relative performance 
with three dimensions: (1) forecast timeliness, (2) forecast accuracy and (3) impact of forecast 
revisions on security prices. Our main findings can be summarized as follows. Firstly, there is 
a strong evidence that foreign analysts supply timelier forecasts than their peers. Secondly, 
analyst working for foreign brokerage houses (i.e. expatriate and foreign ones) produce less 
biased forecasts than local analysts. Finally, after controlling for analysts’ timeliness, we find 
that foreign financial analysts’ upward revisions have a greater impact on stock returns than 
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both followers and local lead analysts forecast revisions. Overall, our results suggest that 
investors should better rely on the research produced by analysts working for foreign 
brokerage houses when they invest in Latin American emerging markets. 

Income tax revenue crucially depends on the wage distribution across and within the 
industries. However, many transition economies present a challenge for a sound econometric 
analysis due to data unavailability. Chapter 9 presents an approach to modeling and 
forecasting income tax revenues in an economy under missing data on individual wages 
within the industries. We consider the situations where only the aggregate industry-level data 
and sample observations for a few industries are available. Using the example of the Uzbek 
economy in 1995-2005, we show how the econometric analysis of wage distributions and the 
implied tax revenues can be conducted in such settings. One of the main conclusions of the 
paper is that the distributions of wages and the implied tax revenues in the economy are well 
approximated by Gamma distributions with semi-heavy tails that decay slower than those of 
Gaussian variables. 

Chapter 10 analyzes the out-of-sample ability of different parametric and semiparametric 
GARCH-type models to forecast the conditional variance and the conditional and 
unconditional kurtosis of three types of financial assets (stock index, exchange rate and 
Treasury Note). For this purpose, we consider the Gaussian and Student-t GARCH models by 
Bollerslev (1986, 1987), and two different time-varying conditional kurtosis GARCH models 
based on the Student-t and a transformed Gram-Charlier density. 

Chapter 11 argues that the transportation model of linear programming can be used to 
administer the Public Personnel Language Exam of Turkey in many different locations 
instead of just one, as is the current practice. It shows the resulting system to be much less 
costly. Furthermore, once the decision about number of locations is made, the resulting 
system can be managed either in a centralized or decentralized manner. A mixed mode of 
management is outlined, some historical perspectives on the genesis of the transportation 
model are offered and some ideas regarding the reasons for the current wasteful practices are 
presented. The possibility of applying the same policy reform in other MENA (Middle East 
and North Africa) countries is discussed in brief.  
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Chapter 1

TEMPORAL DISAGGREGATION
OF TIME SERIES—A REVIEW

Jose M. Pavía*

Department of Applied Economics
University of Valencia, Spain.

Abstract

One of the biggest concerns of an economic analyst is to understand the condition that an
economy is experiencing at any given time, monitoring it properly in order to anticipate
possible changes. However, despite social and economic life having quickened and become
more turbulent, many relevant economic variables are not available at the desired frequency.
Therefore, great quantities of methods, procedures and algorithms have been specifically
proposed in the literature to solve the issue of transforming a low-frequency series into a high-
frequency one. Moreover, a non-negligible number of proposals have been also conveniently
adapted to deal with the problem of interpolation, distribution and extrapolation of time series.
Thus, in order to put some order in the subject and to comprehend the current state of the art
on the topic, this chapter offers a revision of the historical evolution of the temporal
disaggregation problem, analysing the proposals and classifying them. This permits one to
decide which method to use under what circumstances, to conclude by identifying the topics
in need of further development and to make some comments on possible future research
directions in this field.

Keywords: Interpolation, Temporal Distribution, Extrapolation, Benchmarking, Forecasts.

1. Introduction

The problem of increasing the frequency of a time series has concerned economic
analysts for a long time. Nevertheless, the subject did not start to receive the required
attention among economists before the 1970s, despite more frequent information being of
great importance for both modelling and forecasting. Indeed, according to Zellner and
                                                       
* E-mail address: pavia@uv.es
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Montmarquette (1971, p. 355): “When the behavior of individuals, firms or other economic
entities is analyzed with temporally aggregated data, it is quite possible that a distorted view
of parameters’ value, lag structures and other aspects of economic behavior can be obtained.
Since policy decisions usually depend critically on views regarding parameter values, lag
decisions, etc., decisions based on results marred by temporal aggregation effects can
produce poor results”. Unfortunately, it is not unusual that some relevant variables are not
available with the desired timeliness and frequency. Delays in the process of managing and
gathering more frequent data, the extra costs that entails to collect variables more frequently,
and practical limitations to obtain some statistics with a higher regularity deprive analysts of
the valuable help that more frequent records would provide to perform a closer and more
accurate short-term analysis. Certainly, having available statistical series with a higher
frequency would facilitate a smaller delay and a more precise analysis of the economy (and/or
of a company situation) making it easier to anticipate changes and to react to them. It is not
surprising, therefore, that a number of methods, procedures and algorithms have been
proposed from different perspectives in order to increase the frequency of some critical
variables.

Obviously, business and economics are not the sole areas where it would be useful. Fields
as diverse as engineering, oceanography, astronomy and geology also use these techniques
and take advantage of these strategies in order to improve the quality of their analysis.
Nevertheless, this chapter will concentrate on the contributions made and used within the
economic field. There are many examples, in both macro- and microeconomics, where having
available more frequent data could be useful. As examples I cite the following: (i) agents who
deal within a certain region have annual aggregated information about the economic evolution
of the region (e.g., annual regional accounts), although they would prefer the same
information quarterly rather than annually to perform better short-term analysis; (ii) in some
areas, demographic figures are known every ten years, although it would be great to have
them annually making available a better match between population needs and provision of
public services; (iii) a big company counts on quarterly records about its raw material
necessities, although it would be much more useful to have that information monthly, or even
weekly, to better manage its costs; or, (iv) in econometric modelling, where some of the
relevant series are only available at lower frequencies, it could be convenient to previously
disaggregate these series to estimate the model, instead of estimating the complete model at
lower frequency level with the resulting loss of information (Lütkepohl, 1984; Nijman and
Palm, 1985, 1990) and efficiency in the estimation of the parameters of the model (Palm and
Nijman, 1984; Weiss, 1984; or, Nijman and Palm, 1988a, 1988b).

In general, inside this framework and depending on the kind of variable handled (either,
flow or stock) two different main problems can be posed: the distribution problem and the
interpolation problem. The distribution problem appears when the observed values of a flow
low-frequency series of length T must be distributed among kT values, such that the temporal
sum of the estimated high-frequency series fits the values of the low-frequency series. The
interpolation problem consists in generating a high-frequency series with the values of the
new series being the same as the ones of the low-frequency series for those temporal
moments where the latter is observed. In both cases, when estimates are extended out of the
period covered by the low-frequency series, the problem is called extrapolation. Extrapolation
is used, therefore, to forecast values of the high-frequency series when no temporal
constraints from short series are available; although, nevertheless, in some cases (especially in
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multivariate contexts) other different forms of constraints can exist. Furthermore, and related
to distribution problems, they can be found benchmarking and balancing⎯which are mainly
used in management and by official statistical agencies to adjust the values of a high-
frequency series of ballpark figures (usually obtained employing sample techniques) to a
more accurate low-frequency series⎯and other temporal disaggregation problems where the
temporal aggregation function is different from the sum function. Anyway, despite the great
quantity of procedures for temporal disaggregation of time series being proposed in the
literature, the fulfilment of the constraints derived from the observed low-frequency series is
the norm in the subject.

Although temporal disaggregation methods are currently used in a great variety of
business and economic problems, the enlargement and improvement of most of the
procedures have been usually developed connected with short-term analysis. They have been
in fact linked to the need of solving problems related to the production of coherent quarterly
national accounts (see, e.g., OECD, 1996; Eurostat, 1999; or, Bloem et al., 2001) and
quarterly regional accounts (see, e.g., Pavía-Miralles and Cabrer-Borrás, 2007; and, Zaier and
Trabelsi, 2007). Actually, it is quite probable that some of the future fruitful developments
expected in this topic get to solve the new challenges posed in this area. Nevertheless,
additionally to the methods specifically proposed to estimate quarterly and monthly accounts,
another significant number of methods suggested to estimate missing observations have been
also adapted to this issue. Thus, classifying the large variety of methods proposed in the
literature emerges as a necessary requirement in order to perform a systematic and ordered
study of the numerous alternatives suggested. In fact, a classification would be in itself a
proper tool for a suitable selection of the technique in each particular situation due to as
DiFonzo and Filosa (1987, p. 10) pointed out: “It also seemed opportune to stress the crucial
importance of the fact that differing algorithms though derived from the same research field
and using the same basic information, can give rise to series with different cyclical, seasonal
and stochastic properties”.

A first division could arise attending to the plane from which the problem is faced, either
the frequency domain or the temporal plane. This division, however, is not well-balanced,
since the temporal perspective has been by and large more popular. On the one hand, the
procedures that deal with the problem from the temporal plane will be analyzed in Sections 2,
3, and 4. On the other hand, the methods that try to solve the problem from the spectral point
of view will be introduced in Section 5.

Another possible criterion of division attends to the use or not of related series, usually
called indicators. Economic events tend to be made visible in different ways and to affect
many dimensions. The economic series are therefore correlated variables that do not evolve in
an isolated way. Consequently, it is not unusual that some variables available in high-
frequency could display similar fluctuations than those (expected) for the target series. Some
methods try to take advantage of this fact to temporally distribute the target series. Thus, the
use or not of indicators has been considered as another criterion to classify.

The procedures which deal with the series in an isolated way and compute the missing
data of the disaggregated high-frequency series taking into account only the information
given by the objective series have been grouped under the name of methods that do not use
indicators. Different approaches and strategies have been employed to solve the problem
within this group of proposals. The first algorithms proposed were quite mechanical and
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distributed the series imposing some properties considered “interesting”. Step by step,
nevertheless, new methods (theoretically founded on the ARIMA representation of the series
to be disaggregated) were progressively appearing, introducing more flexibility in the
process. Section 2 is devoted to the methods classified in this group.

Complementary to the group of techniques that do not use indicators appears the
procedures based on indicators, which exploit the economic relationships between indicators
and objective series to temporally distribute the target series. This group is composed for an
extent and varied collection of methods that have had enormous success and that have been
widely used. In fact, as Chow and Lin (1976, p. 720) remarked: “...there are likely to be some
related series, including dummy variables, which can usefully serve as regressors. One
should at least use a single dummy variable identically equal to one; its coefficient gives the
mean of the time series.” and moreover as Guerrero and Martínez (1995, p. 360) said: “It is
our belief that, in practice, one can always find some auxiliary data. These data might simply
be an expected trend and seasonal behaviour of the series to be disaggregated”. Hence, it is
not surprising the great success of these procedures and that the utilization of procedures
based on indicators is a rule among the agencies and governmental statistic institutes that
estimate quarterly and monthly national accounts using indirect methods. These procedures
are presented in Section 3.

Finally, and independent of their use or not of indicators, it has been grouped in another
category the methods that use the Kalman filter for the estimation of the non available values.
The great flexibility that offers the representation of temporal processes in the state space and
the enormous possibilities that these representations present to properly deal with log-
transformations and dynamic approximations to the issue justify broadly its own section. The
procedures based on this algorithm can be found in Section 4.

It is clear that alternative classifications could be reached if different criteria had been
followed and that any classification runs the risk of being inadequate and a bit artificial.
Moreover, the categorization chosen does not avoid the problem of deciding where place
some procedures or methods, which could belong to different groups and whose location
turns out as extremely complicated. Nevertheless, the classification of the text has been
chosen because it is the belief of the author that it clarifies and makes easier the exposition.
Furthermore, it is necessary to remark that no mathematical expressions have been included
in the text in order to make the exposition quicker and easier to follow. The chapter makes a
verbal review of the several alternatives. The interested reader can consult specific
mathematical details in the numerous references cited throughout the chapter, or consult
Pavía-Miralles (2000a), who offers a revision of many of the procedures suggested before
1997 unifying the mathematical terms.

In short, the structure of the chapter is as follows. Section 2 introduces the methods that
do not use related information. Section 3 describes the procedures based on indicators. This
section has been divided into subsections in order to handle the great quantity of methods
proposed using the related variable approach. Section 4 deals with the methods that use the
Kalman filter. Section 5 shows the procedures based on spectral developments. And finally,
Section 6 offers some concluding remarks and comments on possible future research
directions in the subject.
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2. Methods that Do not Use Indicators

Despite the use of indicators being the most popular approach in the problem of temporal
disaggregation of time series, a remarkable quantity of methods have been also proposed in
econometric and statistical literature trying to face the problem using exclusively the observed
low-frequency values of the own time series. This approach comprises purely mathematical
methods and more theoretically founded model-based methods relying on the Autoregressive
Integrated Moving Average (ARIMA) representation of the series to be disaggregated.

The first methods proposed in this group were developed as mere instruments, without
any theoretical justification, for the elaboration of quarterly (or monthly) national accounts.
These first procedures were purely ad-hoc mathematical algorithms to derive a smooth path
for the unobserved series. They constructed the high-frequency series (from now on and
without losing generality, they are supposed quarterly in order to lighten the language) from
the low-frequency series (without losing generality, they are assumed annual) according to
the properties that the series to build were supposed to follow, imposing the annual
constrains.

The design of these primary methods, nevertheless, was already in those first days
influenced for the need of solving one issue that appears recurrently in the subject and whose
solution must tackle every method suggested to disaggregate time series: the problem of
spurious steps. To prevent series with undesired discontinuities from one year to the next, the
pioneers proposed to make dependent on several annual data the quarterly estimates values
belonging to a particular year. The disaggregation methods proposed by Lisman and Sandée
(1964), Zani (1970), and Greco (1979) were devised to estimate the quarterly series
corresponding to the year t as a weighted average of the annual values of periods t-1, t and
t+1. They estimate the quarterly series through a fix weight structure. The difference among
these methods lies on their election of the weight matrix. Lisman and Sandée (1964)
calculated the weight matrix by requiring that the estimated series verify some a priori
“interesting” properties. Zani (1970) assumed that the curve of the quarterly estimates is
located upon a second degree polynomial that passes by the origin. And Greco (1979)
extended Zani’s proposal to polynomials with other degrees. Furthermore, Glejser (1966)
expanded Lisman and Sandée (1964) to the case of distributing quarterly or annual series into
monthly ones and later Almon (1988) provided, in an econometric computer package G, a
method to convert annual figures into quarterly series, assuming that a cubic polynomial is
fitted to each successive set of two points of the low-frequency series. All these methods,
however, are univariate and it was necessary to wait two more decades to reach from this
approach a solution for the multivariate problem. Just recently, Zaier and Trabelsi (2007) has
extended, for both stock and flow variables, Almon’s univariate polynomial method to the
multivariate case.

Using also an ad-hoc mathematical approach, although with a different line of thinking,
Boot et al. (1967) proposed building the quarterly series by solving an optimization problem.
Particularly, their method proposes to construct the quarterly series as solution of the
minimization of the sum of squares of either the first or the second differences of the
(unknown) consecutive quarterly values, under the condition that the annual aggregation of
the estimated series adds up the available annual figures. Although Boot’s et al. algorithms
mostly reduced the subjective charge of the preceding methods, their way of solving the
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problem of spurious steps was still a bit subjective and therefore it was not free of criticism.
On the particular, it could be consulted, among others, Ginsburg (1973), Nijman and Palm
(1985), DiFonzo and Filosa (1987), and Pavía-Miralles (2000a).

In the same way that polynomial procedures were generalized, Boot’s et al. approach was
also extended in both flexibility and in the number of series to be handled. Cohen et al.
(1971) extended Boot’s et al. work introducing flexibility in the process in a double way: on
one hand, they dealt with any pair of possible combination of high and low frequencies; and,
on the other hand, they considered the minimization of the sum of the squared of the ith
differences between successive subperiod values (not only first and second differences). The
multivariate extension, nevertheless, was introduced in Pavía et al. (2000).

Additionally to the abovementioned ad-hoc mathematical algorithms, many other
methods could be also classified within the group of techniques that base the estimates
exclusively on the observed data of the target series. Among them, it will be stressed in this
section Doran (1974) and Stram and Wei (1986). On the one hand, Doran (1974) assumed
that there is a part of the sample period where the target series is observed in its higher
frequency (it generally happening towards the end of the sample) and proposed to use this
subsample to estimate the temporal characteristics of the series and to obtain the non-
available values employing this information. This strategy, however, is not optimum, as
Chow and Lin (1976) proved. Chow and Lin (1976) adapted the estimator suggested in Chow
and Lin (1971) to the same situation treated by Doran and showed that Doran’s method
generated estimates with larger mean square errors. On the other hand, Stram and Wei (1986)
proposed to obtain the target series minimizing a squared function defined by the inverse
covariance matrix associated to the quarterly stationary ARMA(p,q) process obtained taking
differences on the non-stationary one. In particular, they suggested adjusting an ARIMA
model to the low-frequency series, selecting an ARIMA(p,d,q) model (an ARIMA process
with autoregressive order p, integrated order d, and moving average order q) for the quarterly
values compatible with the annual model and minimizing the dth differences of the objective
series by the loss function, with the annual series as constraint.

Stram and Wei’s proposal, besides, made possible to reassess Boot et al. (1967). As they
showed Boot et al.’s algorithm is equivalent to use this procedure assuming that the series to
estimate follows either a temporal integrated process of order one or two (i.e., I(1) or I(2)).
According to Rodríguez-Feijoo et al. (2003), however, Stram and Wei method only performs
well when the series are long enough to permit a proper estimation of the ARIMA process. In
this line, in order to know the advantages and disadvantages of these methods and decide
which to use under what circumstances, it could be consulted Rodríguez-Feijoo et al. (2003).
They performed a simulation exercise in which the methods proposed by Lisman and Sandée
(1964), Zani (1970), Boot et al. (1967), Denton (1971) ⎯in its variant without indicators⎯,
Stram and Wei (1986), and Wei and Stram (1990) were analysed.

Finally, it must be noted that although the approach using ARIMA processes has
produced many others fruits, no more proposals has been set up in this section. On the one
hand, those procedures based on ARIMA models which take advantage of the representation
in the space of the states and use the Kalman filter and smoothing techniques to estimate both
the coefficients of the process and the non-observed values of the high-frequency series have
been placed in Section 4. On the other hand, those approaches that try to deduce the ARIMA
process of the high-frequency series from the ARIMA model of the low-frequency as a
strategy to estimate the missing values are presented in Section 3. Notice that this last strategy
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can be seen as a particular case of a dynamic regression model with missing observations in
the dependent variable and without indicators, whose general situation with indicators is
introduced in the next section.

3. Methods Based on Indicators

The methods based on related variables have been the most popular and the most widely
used and successful. Thus, a great number of procedures can be found within this category.
Comparing with the algorithms non-based on indicators, related variable procedures have
been assigned two main principal advantages: (i) they present better foundations in the
construction hypothesis, which can comparatively affect the results validation; and, (ii) they
make use of relevant economic and statistical information, being more efficient. Although, as
Nasse (1973) observed, in return they hide an implicit hypothesis according to which the
annual relationship is accepted to be maintained in the quarterly basis. Nevertheless, as
Friedman (1962, p. 731) pointed out: ‘a particular series Y is of course chosen to use in
interpolation because its intrayearly movements are believed to be highly correlated with the
intrayearly movements of X’. Anyway, additionally to Nasse’s observation, it must be noted
that the resulting estimates depend crucially on the indicators chosen and therefore special
care should be taken in selecting them. To solve this issue, already in 1951, Chang and Liu
(1951) tried to establish some criteria the indicators should fulfil; nevertheless, the debate far
from closed has been opened during decades (see, e.g., Nasse 1970, 1973; Bournay and
Laroque, 1979; INE, 1993; OECD, 1996; or, Pavía et al., 2000). For example, although the
use of indicators to predict the probable evolution of key series throughout the quarters of a
year is the rule among the countries that estimate quarterly accounts by indirect methods (a
summary of the indicators used by the different national statistics agencies can be found in
OECD, 1996, pp. 22-37), there are no apparent universal criteria for selecting them. It,
however, does not mean that any sound criteria have been proposed. In particular, and related
to the elaboration of quarterly accounts, Pavía-Miralles and Cabrer-Borrás (2007, p. 161)
pointed out that “…indicators, available monthly or quarterly, that verified —at least in an
approximate way— the following properties: (a) economic implication, (b) representation or
greatest coverage, (c) maintenance of a ‘constant’ relation with the regional series being
estimated, (d) quick availability and short lag, (f) acceptable series length, and (g) smooth
profile or predominance of the trend-cycle signal” must be chosen, to which it could be added
statistical quality and having an intrayear evolution similar to the objective series. Despite the
great debate about indicators, very few tests about their validity can be found in the literature.
As exception, INE (1993, p.12) offers a statistical test about the accuracy of the selected
indicators to estimate quarterly accounts.

This section has been divided in three subsections to better manage the large quantity of
procedures classified in this category. The first subsection is devoted to those procedures,
called adjusting methods, which given an initial approximation of the target series adjust their
values using some penalty function in order to fulfil the annual constraints. Subsection 2
presents the procedures that take advantage of structural or econometric models⎯including
some techniques using dynamic regression models in the identification of the relationship
linking the series to be estimated and the (set of) related time series⎯to approximate the
incompletely observed variables. According to Jacob (1994), the structural model may take
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the form of a (simple) time series model or a regression model with other variables where the
estimates are obtained as by-product of parameter estimation of the model. Finally, subsection
three shows those methods, named optimal methods, which jointly obtain the estimates of
both parameters and quarterly series combining target annual series and quarterly indicators
and incorporating the annual constraints in the process of estimation, basically Chow and Lin
(1971) and its extensions.

3.1. Adjusting Methods

In general the adjusting methods are composed of two stages. In the first step an initial
approximation of the objective series is obtained. In the second step the first estimates are
adjusted by imposing the constraints derived from the available and more reliable annual
series. The initial estimates are reached using either sample procedures or some kind of
relationship among indicators and target series. When the initial estimates come from surveys,
additionally to adjusting procedures, the so-called benchmarking and balancing techniques
are usually employed (see, e.g., Dagum and Cholette, 2006; and, Särndal, 2007). Although, it
must be noted that the frontier between benchmarking and adjustment algorithms is not clear
and somewhat artificial (see, DiFonzo and Marini, 2005). Among those options that use
related variables to obtain initial approximations both non-correlated and correlated strategies
could be found. The non-correlated proposals, historically the first ones, do not explicitly take
into account the existing correlation between target series and indicators ⎯Friedman (1962)
can be consulted for wide summary of those first algorithms. On the other hand, the
correlation strategies usually assume a lineal relationship between the objective series and the
indicators, from which an initial high-frequency series is obtained.

Once the initial approximation is available, it is adjusted to make it congruent with the
observed annual series. The discrepancies between both annual series (the observed series and
the series obtained by quarterly aggregation of the initial estimates) are then removed. A great
quantity of adjustment procedures can be found in the literature. Bassie (1958, pp. 653-61)
proposed to distribute annual discrepancies by a structure of fixed weights. Such a structure is
calculated taking into account the discrepancies corresponding to two successive years and
assuming that the weights function follows a third degree polynomial. Despite having no
theoretical support and Bassie recognizing that the method spawns series with irregularities
and cyclical components different to the initial approximations when the annual discrepancies
are too big (OCDE, 1966, p. 21), Bassie’s proposal has been historically applied to series of
the Italian economy (ISCO, 1965; ISTAT, 1983) and currently Finland and Denmark use
variants of this method to adjust their quarterly GDP series (OECD, 1996, p. 19).

Vangrevelinghe (1966) planned a different approach. His proposal (primary suggested to
estimate the French quarterly familiar consumption series) consists of (i) applying Lisman
and Sandée (1964) to both objective annual series and indicator annual series to obtain,
respectively, an initial approximation and a control series, to then (ii) modifying the initial
estimate by aggregating the discrepancies between the observed quarterly indicator and the
control series, using as scale factor the Ordinary Least Squares (OLS) estimator of the linear
observed annual model. Later, minimal variations of Vagrevelinghe’s method were proposed
by Ginsburg (1973) and Somermeyer et al. (1976). Ginsburg suggested obtaining the initial
estimates using Boot et al. (1967), instead of Lisman-Sandée, and Somermeyer et al.
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proposed generalizing Lisman and Sandée (1964) by allowing the weight structure to be
different for each quarter and year, with the weight structure obtained, using annual
constraints, from a linear model.

One of the most successful methods in the area (not only among adjusting procedures) is
the approach proposed by Denton in 1971. The fact that, according to DiFonzo (2003a, p. 2),
short-term analysis in general and quarterly accounts in particular need disaggregation
techniques being “…flexible enough to allow for a variety of time series to be treated easily,
rapidly and without too much intervention by the producer;” and that “the statistical
procedures involved should be run in an accessible and well known, possibly user friendly,
and well sounded software program, interfacing with other relevant instruments typically
used by data producers (i.e. seasonal adjustment, forecasting, identification of regression
models,…)” explains the great attractiveness of methods such as Denton (1971) and Chow
and Lin (1971) among analysts and statistical agencies (see, e.g., Bloem et al., 2001; and
Dagum and Cholette, 1994, 2006); despite using more sophisticated procedures generally
yielding better estimates (Pavía-Miralles and Cabrer-Borrás, 2007).

Denton (1971) suggested adjusting the initial estimates minimizing a loss function
defined by a square form. Therefore, the choice of the symmetrical matrix determining the
specific square form of the loss function is the crucial element in Denton’s proposal. Denton
concentrated on the solutions obtained minimizing the hth differences between the to-be-
estimated series and the initial approximation and found Boot et al. (1967) as a particular case
of his algorithm. Later on, Cholette (1984) proposed a slight modification to this function
family to avoid dependence on the initial conditions. Although, nevertheless, the main
extensions of Denton approach were reached by Hillmer and Trabelsi (1987), Trabelsi and
Hillmer (1990), Cholette and Dagum (1994), DiFonzo (2003d) and DiFonzo and Marini
(2005), they made more flexible the algorithm and extended it to the multivariate case.

Hillmer and Trabelsi (1987) and Trabelsi and Hillmer (1990) worked on the problem of
adjusting a univariate high-frequency series using data obtained from different sampling
sources, and found Denton (1971) and Cholette (1984) as particular cases of their proposal. In
particular, they relaxed the requirements about the low-frequency series permitting it to be
observed with error; although, as compensation, they had to suppose known the temporal
structure of the errors caused by sampling the low frequency series (see also Weale, 1992).
When benchmarks are observed without error, the problem transforms into minimizing the
discrepancies between the initial estimates and the annual series according to a loss function
of the square form type (Trabelsi and Hillmer, 1990). In these circumstances, they showed
that the method of minimizing the hth differences proposed by Denton (1971) and Cholette
(1984) implies to implicitly admit: (i) that the rate between the variances of the observation
errors and the ARIMA modelization errors of the initial approximation tends to zero; and, (ii)
that the observation errors follow a I(h) process with either null initial conditions, in Denton’s
approach, or with the initial values of the series of observation errors begin in a remote past,
in Cholette’s method.

In sample survey most time series data come from repeated surveys whose sample
designs usually generate autocorrelated errors and heterocedasticity. Thus, Cholette and
Dagum (1994) introduced a regression model to take into account it explicitly and showed
that the gain in efficiency of using a more complex model varies with the ARMA model
assumed for the survey errors. In this line, Chen and Wu (2006) showed, through a simulation
exercise and assuming that the survey error series follows an AR(1) process, that Cholette and
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Dagum (1994) and Dagum et al. (1998) have great advantages over Denton method and that
they are robust to misspecification of the survey error model. On the other hand, the
multivariate extension of Denton method was proposed in DiFonzo (2003d) and DiFonzo and
Marini (2005) under a general accounting constraint system. They assumed a set of linear
relationships among target variables and indicators from which initial estimates are obtained,
to then, applying the movement preservation principle of Denton approach subject to the
whole set of contemporaneous and temporal aggregation relationships, reach estimates of all
the series verifying all the constraints.

Although Denton (1971) and also DiFonzo and Marini (2005) do not require any
reliability measurement of survey error series, their need in many other proposals led
Guerrero (1990, p. 30) to propose an alternative approach after writing that “These
requirements are reasonable for a statistical agency:…but they might be very restrictive for a
practitioner who occasionally wants to disaggregate a time series”. In particular, to
overcome some arbitrariness in the choice of the stochastic structure of the high frequency
disturbances, Guerrero (1990) and Guerrero and Martínez (1995) developed a new adjustment
procedure assuming that the initial approximation and the objective series share the same
ARIMA model. More specifically, they combined an ARIMA-based approach with the use of
high frequency related series in a regression model to obtain the Best Linear Unbiased
Estimate (BLUE) of the objective series verifying annual constraints. This approach permits
an automatic (which takes a recursive form in Guerrero and Martínez, 1995) ‘revision’ of the
estimates with each new observation. This feature illustrates an important difference with the
other procedures where the estimates obtained for the periods relatively far away from the
sample final period are in practice ‘fixed’. Likewise, the multivariate extension of this
approach was also provided by Guerrero, who, together with Nieto (Guerrero and Nieto,
1999), suggested a procedure for estimating unobserved values of multiple time series whose
temporal and contemporaneous aggregates are known using vector autoregressive models.
Under this approach, moreover, it must be noted that even though the problem can be cast
into a state-space formulation, the usual assumptions underlying Kalman filtering are not
fulfilled in this case and that therefore Kalman filter approach cannot be applied directly.

A very interesting variant in this framework emerges when log-transformations are taken.
Indeed, in many circumstances, it is strongly recommended to use logarithms or other
transformations of original data (for example, most time series become stationary after
applying first differences to their logarithms) to achieve better modelizations of time series
and also, as Aadland (2000) showed through a simulation experiment, to obtain more accurate
disaggregates because of “…the failure to account for data transformations may lead to
serious errors in estimation” (Aadland, 2000, p. 141). However, due to the logarithmic
transformation being not additive, the annual aggregation constraint can not be directly
applied in a distribution problem.

The problem of dealing with log-transformed variables in the distribution framework was
first considered by Pinheiro and Coimbra (1993), and later treated, among others, in Proietti
(1998) and Aadland (2000). Proietti (1998) tackled the problem of adjusting estimated values
to fulfil temporal aggregation constraints. On the one hand, Proietti (1998) proposed to obtain
initial estimates applying the exponential function to the approximations reached using a
linear relationship between the log-transformation of the target series and the indicators, to
then in a second step adopt Denton’s algorithm to get the final values. According to DiFonzo
(2003a), however, this last step could be unnecessary as “the disaggregated estimates present
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only negligible discrepancies with the observed aggregated values.” (DiFonzo 2003a, p. 17).
On the other hand, when the linear relationship is expressed in terms of rate of change of the
target variable (i.e., using the logarithmic difference), initial estimates for the non-
transformed values of the objective variable could be now obtained using Fernandez (1981),
being a further adjustment (using Denton’s formula) for either flow or index variable
eventually performed to exactly fulfil the temporal aggregation constraints (DiFonzo, 2003a,
2003b).

3.2. Structural and Econometrics Model Methods

The economic theory stands for functional relationships among variables. The
econometric models express those relations by means of equations. Models based on annual
data conceal higher frequency information and are not considered sufficiently informative to
policy makers. Building quarterly and monthly macroeconometric models is therefore
imperative and responds for one of its traditional motivations: the demand of high-frequency
forecasts. Sometimes, the frequency of the variables taking part in the model is not
homogeneous and expressing the model in the lower common frequency almost never offers
an acceptable approximation. Indeed, with the aim of forecasting, Jacobs (2004) showed that
is preferable to deal with the quarterly model with missing quarterly observations rather than
generate quarterly predictions disaggregating the annual forecasts from the annual model: the
quarterly estimator based on approximations is revealed as more efficient (even biased) than
the annual estimator. Thus, putting the model in the desired frequency and use the same
model, not only to estimate the unknown parameters but also to estimate the non-observed
values of the target series, represents in general a good alternative to forecast. Furthermore,
according with Vanhonacker (1990), it is also preferable to estimate the missing observations
simultaneously with the econometric model rather than previously interpolated the
unavailable values to directly handle the high-frequency equations, because of “…its effects
on subsequent econometric analysis can be serious: parameter estimates can be severely
(asymptotically) biased…” (Jacobs, 2004, p. 5).

There are a lot of econometric models susceptible of being formulated. And therefore,
many strategies may be adopted to estimate the missing observations. As examples of this
variety of model-based approach could be cited, among others, Drettakis (1973), Sargan and
Drettakis (1974), Dagenais (1973, 1976), Dempster et al. (1977), Hsiao (1979, 1980),
Gourieroux and Monfort (1981), Palm and Nijman (1982, 1984), Conniffe (1983), Wilcox
(1983), Nijman and Palm (1986, 1990), and Dagum et al. (1998).

Drettakis (1973) formulated a multiequational dynamic model about the United Kingdom
economy with one of the endogenous variables observed only annually for a part of the
sample and obtained estimates for the parameters and the unobserved values by Maximum
Likelihood (ML) with complete information. Sargan and Drettakis (1974) extended Drettakis
(1973) to the case in which the number of unobserved series is higher than one and introduced
an improvement to reduce the computational charges of the estimation procedure. The use of
ML was also followed in Hsiao (1979, 1980) and Palm and Nijman (1982). As example, Palm
and Nijman (1982) derived the ML estimator when data are subject to different temporal
aggregations and compared its sample variance with those obtaining after applying the
estimator proposed by Hsiao, Generalized Least Squares (GLS) and Ordinary Least Squares
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(OLS). On the other hand, GLS estimators were be employed by Dagenais (1973),
Gourieroux and Monfort (1981), and Conniffe (1983) for models with missing observations
in the exogenous variables and, therefore, probably with a heteroscedastic and serially
correlated disturbance term.

In the extension to dynamic regression models, the ML approach was again used in Palm
and Nijman’s works. Nijman and Palm (1986) considered a simultaneous equations model,
not completely specified, about the Dutch labour market with some variables only annually
observed and proposed to obtain initial estimates for those variables using the univariate
quarterly ARIMA process that congruent with the multiequational model is derived from the
observed annual series. These initial estimates were used to estimate the model parameters by
ML. Palm and Nijman (1984) studied the problem of parameters identification and Nijman
and Palm (1986, 1990) the estimation one. To estimate the parameters they proposed two
alternatives based on ML. The first one consisted of building the likelihood function from the
forecast errors, using the Kalman filter. The second alternative consisted of applying the EM
algorithm adapted to incompletes samples. This adaptation was developed in a wide and long
paper by Dempster et al. (1977) from Hartley (1958). Dagum et al. (1998), on the other hand,
presented a general dynamic stochastic regression model, which permits to deal with the most
common short-term data treatment (including interpolation, benchmarking, extrapolation and
smoothing), and showed that the GLS estimator is the minimum variance linear unbiased
estimator (see, also Dagum and Cholette, 2006). With respect to other temporal
disaggregation procedures based on dynamic models (e.g., Santos Silva and Cardoso, 2001;
Gregoir, 2003; or, DiFonzo, 2003a), they will be considered in the next subsection, since they
could be observed as dynamic extensions of Chow and Lin (1971). Although, they could be
also placed on the previous subsection due to they follow the classical two-step approach of
adjusting methods.

3.3. Optimal Methods

Optimal methods get their name to the estimation strategy they adopt. Such procedures
directly incorporate the restrictions derived from the observed annual series into the
estimation process to jointly obtain the BLUE of both parameters and quarterly series. To do
that, a linear relationship between target series and indicators is usually assumed. This group
of methods is one of the most widely used and in fact its root proposal (Chow and Lin, 1971)
has served as basis for many statistical agencies (see, e.g., ISTAT, 1985; INE, 1993; Eurostat,
1998; or DiFonzo, 2003a) and analysts (e.g., Abeysinghe and Lee, 1998; Abeysinghe and
Rajaguru, 1999; Pavía and Cabrer, 2003; and, Norman and Walker, 2007) to quarterly
distribute annual accounts and to provide flash estimates of quarterly growth, among other
tasks.

Although many links between adjustment and optimal procedures exist, as DiFonzo and
Filosa (1987, p. 11) indicated “(i) … compared to optimal methods, adjustment methods make
an inefficient (and sometimes, biased) use of the indicators; (ii) the various methods have a
different capability of providing statistically efficient extrapolation…”, which points at
optimal methods as more suitable to perform short-term analysis using forecasts. In
compensation, the solution of this sort of methods crucially depends on the correlations
structure assumed for the errors of the linear relationship. In fact, many proposals are only
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different in that point. All of them, nevertheless, pursue to avoid spurious steps in the
estimated series.

Friedman (1962) was the first one in applying this approach. In particular and for the case
of a stock variable, he obtained (assuming a linear relationship between target series and
indicators) the BLUE of both coefficients and objective series. Nevertheless, Chow and Lin
(1971) were who, extending Friedman’s result, wrote the paper probably most influential and
cited in this subject. They obtained the BLUE of the objective series for interpolation,
distribution and extrapolation problems using a common notation. They focused on the case
of converting a quarterly series into a monthly one and assumed an AR(1) hypothesis for the
errors in order to avoid unjustified discontinuities in the estimated series. Under this
hypothesis, the covariance matrix is governed by the autoregressive coefficient of order one
of the high-frequency disturbance series, which is unknown. Hence, to apply the method it
has to be previously estimated. Chow and Lin (1971) suggested exploiting the functional
relationship between autoregressive coefficients of order one of the low- and the high-
frequency errors to estimate it. Specifically, they proposed an iterative procedure to estimate
the monthly AR(1) coefficient from the rate between elements (1,2) and (1,1) of the quarterly
error covariance matrix.

The Chow-Lin strategy of relating the autoregressive coefficients of order one of the high
and low error series, however, can not be completely generalized to any pair of frequencies
(Acosta et al., 1977) and consequently several other stratagems were followed to solve the
issue. In line with Chow-Lin approach, DiFonzo and Filosa (1987) obtained for the annual-
quarterly case a function between the two autoregressive coefficients. The problem of the
relation reached by DiFonzo and Filosa is that it only has unique solution for non-negative
annual autoregressive coefficient. Despite it, Cavero et al. (1994) and IGE (1997) took
advantage of such a relation to suggest two iterative procedures to handle the Chow-Lin
method in the quarterly-annual case with AR(1) errors. Cavero et al. (1994) even provided a
solution to apply the method when an initial negative estimate of the autoregressive
coefficient is obtained. Although, to handle the problem of the sign, Bourney and Laroque
(1979) had already proposed to estimate the autoregressive coefficient through a two-step
algorithm in which, in the first step, the element (1,3) of the covariance matrix of the annual
errors is used to determinate the sign of the autoregressive coefficient. In addition to the
above possibilities, strategies based on the maximum likelihood (with the hypothesis of
normality for the errors) have been also tried. Examples of this approach can be found in
Barbone et al. (1981), ISTAT (1985), and Quilis (2005).

Although the AR(1) temporal error structure has been the most extensively analyzed,
other structures for the errors has been also proposed. Among the stationary structures
Schmidt (1986) held MA(1), AR(2), AR(4), and a mix between AR(1) and AR(4) processes
as reasonable possibilities to deal with the annual-quarterly case. Although, the Monte Carlo
evidence in Pavía et al. (2003) showed that assuming an AR(1) hypothesis on the disturbance
term does not significantly influence the quality of the estimates, despite disturbances
following other stationary structures. In regard to the extensions towards no stationary
structures, Fernández (1981) and Litterman (1983) can be cited. On the one hand, Fernández
(1981, p. 475) recommended using Denton’s approach proposing “estimate regression
coefficients using annual totals of the dependent variables, and then apply these coefficients
to the high frequency series to obtain preliminary estimates…” to afterwards “they are
'adjusted' following the approach of Denton” and showed that such an approach to the
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problem is equivalent to using the Chow-Lin method with a random walk hypothesis for the
errors—a hypothesis that he defended:“a random walk hypothesis for a series of residuals ...
should not be considered unrealistic” (Fernández, 1981, p. 475), supported by results in
Nelson and Gould (1974) and Fernández (1976). On the other hand, Litterman (1983) studied
the problem of monthly disaggregating a quarterly series and extended the Chow-Lin method
for the case in which the residual series followed a Markov random walk. Litterman did not
solve the problem of estimating the parameter of the Markov process for small samples
though. Fortunately, Silver (1986) found a solution to this problem and extended Litterman’s
proposal to the case of annual series and quarterly indicators.

Despite DiFonzo and Filosa’s abovementioned words about the superiority of optimal
methods over adjustment procedures, all the previous methods can be obtained as solutions of
a quadratic-linear optimization problem (Pinheiro and Coimbra, 1993), where the metric
matrix that defines the loss function is the inverse of the high-frequency covariance error
matrix. Therefore, theoretically other structures for the disturbances could be easily managed.
In particular, in order to improve disaggregated estimates, the high-frequency covariance
error matrix could be estimated, following Wei and Stram (1990), from the data by imposing
an ARIMA structure and using its relationship with the low-frequency covariance matrix.
Despite it, low AR order models are still systematically chosen in practice due to (i) the
covariance matrix of the high-frequency disturbances cannot be, in general, uniquely
identified from the low-frequency one and (ii) the typical sample sizes occurring in
economics usually provide poor low-frequency error matrix estimates (Rossana and Seater,
1995; Proietti 1998; DiFonzo, 2003a). In fact, the Monte Carlo evidence presented in Chan
(1993) showed that this approach would likely perform comparatively badly when the low-
frequency sample size is lower than 40 (a really non infrequent size in economics).

The estimates obtained according to Chow and Lin’s approach, however, are only
completely satisfactory in the case where the temporal aggregation constraint is linear and
there are no lagged dependent variables in the regression. Thus, to improve accuracy of
estimates taking into account dynamics specifications usually encountered in applied
econometrics works, several authors (e.g., Salazar et al., 1997a, 1997b; Santos Silva and
Cardoso, 2001; Gregoir, 2003) have proposed to generalize Chow-Lin approach (including
Fernández and Litterman extensions) by the use of linear dynamic models. It permits to
perform temporal disaggregation providing more robust results in a broad range of
circumstances. In this line, Santos Silva and Cardoso (2001), following the way initiated by
Salazar et al. (1997a, 1997b) and Gregoir (2003), proposed an extension of Chow-Lin⎯by
means of a well-known transformation developed to deal with distributed lag model (e.g.,
Klein, 1958; Harvey, 1990)⎯which is particularly adequate when the series used are
stationary or cointegrated (see also DiFonzo, 2003c). Their extension, furthermore, compared
to Salazar et al. and Gregoir, solves the problems in the estimation of the first low-frequency
period and produces disaggregated estimates and standard errors in a straightforward way
(which was very difficult to implement in a computer program in the initial proposals). Two
empirical applications of this procedure, additionally to a panoramic revision of this
approach, could be found in DiFonzo (2003a, 2003b), while in Quilis (2003) a MATLAB
library to perform it is offered. This library completed the MATLAB libraries that to run Boot
et al. (1967), Denton (1971), Chow and Lin (1971), Fernández (1981), Litterman (1983),
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DiFonzo (1990) and DiFonzo (2003d) is provided by Instituto Nacional de Estadística
(Quilis, 2002).

The Chow-Lin approach and its abovementioned extensions are all univariate, thus to
handle problems with more than J (>1) series to-be-estimated, multivariate extensions are
required. In this situations, apart from the low-frequency temporal constraints, some
additional cross-section, transversal or contemporaneous aggregates among the high-
frequency target series are usually available. To deal with this issue, different procedures
(extending Chow-Lin method) have been proposed in the literature. Rossi (1982) was the first
who faced this problem. Rossi assumed that the contemporaneous quarterly aggregate of the J
series is known and proposed to apply an estimation procedure in two steps. In the first step,
he suggested applying the Chow-Lin method, in an isolated way, to each one of the J series
imposing only the corresponding annual constraint and assuming white noise residuals. In the
second step, he proposed to apply again Chow-Lin procedure, imposing as constraint the
observed contemporaneous aggregated series and under a white noise error vector, to
simultaneously estimate the J series using as indicators the series estimated in the first step.
This strategy, however, as DiFonzo (1990) pointed out, does not guarantee the fulfilment of
the temporal restrictions.

DiFonzo (1990), attending to Rossi’s limitation, generalized the Chow-Lin estimator and
got the BLUE of the J series, fulfilling simultaneously the temporal and the transversal
restrictions. Similar to Chow-Lin, DiFonzo (1990) again obtained that the estimated series
crucially depend on the structure assumed for the disturbances. Nevertheless, he only offered
a practical solution under the hypothesis of errors temporally uncorrelated. That hypothesis
unfortunately is inadequate due to it can produce spurious steps in the estimated series. In
order to solve it, Cabrer and Pavía (1999) and Pavía-Miralles (2000b) introduced a structure
for the disturbances in which each one of the J error series follow either an AR(1) process or
a random walk with shocks only contemporaneously correlated. Pavía-Miralles (2000b),
additionally, extended the estimator obtained in DiFonzo (1990) to situations with more
general contemporaneous aggregations and provided an algorithm to run such so complex
disturbance structure in empirical works. Finally, DiFonzo (2003d) proposed to simplify
Pavía-Miralles (2000b) suggesting a multivariate random walk structure for the error vector
and Pavía-Miralles and Cabrer-Borrás (2007) extended Pavía-Miralles’s (2000b) proposal to
deal with the extrapolation issue.

4. Methods Based on the Representation in the State Space

One of the approaches in the study of time series is to consider the series as a realisation
of a stochastic process with a particular model generator (e.g., an ARIMA process), which
depends on some parameters. In order to predict how the series will behave in a future or to
rebuild the series estimating the missing observation it is necessary to know the model
parameters. The Kalman filter permits to take advantage of the temporal sequence of the
series to implement through a set of mathematical equations a predictor-corrector type
estimator, which is optimal in the sense that it minimizes the estimated error covariance when
some presumed conditions are met. In particular, it is an efficient recursive filter that
estimates the state of a dynamic system from a series of incomplete and noisy measurements.
Within the temporal disaggregation problem, this approach appears very promising due its
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great versatility and presents the additional advantage of making possible that both unadjusted
and seasonally adjusted series can be simultaneously estimated.

Among the different approaches to approximate the population parameters of the data
generating process it stands out ML. The likelihood function of the stochastic process can be
calculated in a relatively simple and very operative way by the Kalman filter. The density of
the process, under a Gaussian distribution assumption for the series, can be easily derived
from the forecast errors. Prediction errors can be computed in a straightforward way by
representing the process in the state space, and the Kalman filter can then be used. In general,
the pioneers methods based on the representation in the state space supposed an ARIMA
process for the objective series and computed the likelihood of the process through the
Kalman filter by employing the smooth point-fixed algorithm (details of this algorithm can be
consulted, among others, in Anderson and Moore, 1979; and, Harvey, 1981; and in the
multivariate extension in Harvey 1989) to estimate the not available values.

Despite the representation of a temporal process in the state space not being unique, the
majority of the proposals to adapt Kalman filter to manage missing observations can be
reduced to the one proposed by Jones (1980). Jones suggested building the likelihood
function excluding the prediction errors associated to those temporal moments where no
observation exist and proposed to use forecasts obtained in the previous instant to go on
running the Kalman filter equations. Among others, this pattern was followed by Harvey and
Pierse (1984), Ansley and Kohn (1985), Kohn and Ansley (1986), Al-Osh (1989), Harvey
(1989), and Gómez and Maravall (1994). Additionally to Jones’s approach, other approaches
can be found. DeJong (1989) developed a new filter and some smooth algorithms which
allow interpolating the non observed values with simpler computational and analytical
expressions. Durbin and Quenneville (1997) used state space models to adjust a monthly
series obtained from a survey to an annual benchmark. And, Gómez et al. (1999) followed the
strategy of estimating missing observations considering them as outliers, while Gudmundsson
(1999) introduced a prescribed multiplicative trend in the problem of quarterly disaggregating
an annual flow series using its state space representation.

Jones (1980), pioneer in the estimation of missing observations from the state space
representation, treated⎯from a representation proposed by Akaike (1974)⎯the case of a
stock variable which is assumed to follow a stationary ARMA process. Later on, Harvey and
Pierse (1984), also dealing with stationary series, extended Jones’s proposal⎯using another
representation due to Akaike (1978)⎯for the case of flow variables. Likewise, they adapted
the algorithm to that case in which the target series follows a regression model with stationary
residuals and dealt with the problem of working with logarithms of the variable. Furthermore,
Harvey and Pierse also extended the procedure to the case of stock variables following non
stationary ARIMA processes; although in this case, they compelled the target variable being
available in a high-frequency for a large enough sample subperiod.

In the non stationary case, however, when Harvey and Pierse’s hypothesis is not verified,
building the likelihood of the process becomes difficult. Problems in converting the process
into stationary and in defining the initial conditions arise. Thus, in order to solve it, on the one
hand, Ansley and Kohn (1985) proposed to consider a diffuse initial distribution in the pre-
sample and, on the other hand, Kohn and Ansley (1986) suggested transforming the
observations in order to define the likelihood of the process. Kohn and Ansley’s
transformation made possible to generalize the previous results (including those reached by
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Harvey and Pierse), although at the cost of destroying the sequentiality of the series, altering
both smoothing and filtering algorithms. Fortunately, Gómez and Maravall (1994) went
beyond this difficulty and solved it making possible to use the classical tools to deal with the
problem of non stationary processes whatever the structure of the missing observations.
However, although Kohn and Ansley (1986) and Gómez and Maravall (1994) proposals
extended the issue to the treatment of regression models with non stationary residuals
(allowing related variables to be included in this framework), they did not deal with the case
of flow variables in an explicit way. Indeed, it was Al-Osh (1989) who handled such a
problem and extended the solution to non stationary flow series. Al-Osh, moreover, suggested
using the Kalman filter for the recursive estimate of the non-observed values as a tool to
overcome the problem of the change of the estimates due to the increasing of the available
sample. In this line, Cuche and Hess (2000) used information contained in related series to
using a general approach based on the Kalman filter estimate the monthly Swiss GDP from
the quarterly series, while Liu and Hall (2001) estimated a monthly US GDP series from
quarterly values after testing several state space representations to, through a MonteCarlo
experiment, identify which variant of the model gives the best estimates. They found the more
simple representations did almost as well as more complex ones.

Most of above proposals, however, consider the temporal structure (the ARIMA process)
of the objective series known. In practice, however, it is unknown and it is required to specify
the orders of the process to deal with it. In order to solve it, some strategies have been
followed. Some attempts have tried to infer the process of a high-frequency series from the
observed process of the low-frequency one (e.g., Nijman and Palm, 1985; Al-Osh, 1989;
Guerrero and Martínez, 1995); while many other studies have concentrated on analyzing the
effect of aggregation over a high frequency process (e.g., among others, Telser, 1967;
Amemiya and Wu, 1972; Tiao, 1972; Wei, 1978; Lütkepohl, 1984; Stram and Wei, 1986;
and, more recently, Rossana and Seater, 1995) and on studying its effect over stock variables
observed in fixed step times (among others, Quenouille, 1958; Werner, 1982; or Weiss,
1984). Fortunately, the necessary and sufficient conditions under which the aggregate and/or
disaggregate series can be expressed by the same class of model was derived by Hotta and
Vasconcellos (1999).

Both multivariate and dynamic extensions have been also tackled from this framework,
although they are just incipient. On the one hand, the multivariate approach started by Harvey
(1989) was continued in Moauro and Savio (2005), who suggested a multivariate seemingly
unrelated time series equations model to using the Kalman filter estimate the high-frequency
series when several constraints exits. The framework they proposed is flexible enough to
allow for almost any kind of temporal disaggregation problems of both raw and seasonally
adjusted time series. On the other hand, Proietti (2006) offered a dynamic extension
providing, among others contributions, a systematic treatment of Litterman (1983), which
permits to explain the difficulties commonly encountered in practice when estimating
Literman’s model.

5. Approaches from the Frequency Domain

From the previous sections it can be deduced that a great amount of energy has been
devoted to deal with the issue from the temporal perspective. Similarly, great efforts have
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been also devoted from the frequential plane, although they have had less successful and have
therefore done less fruits. In particular, the greatest efforts have been invested on estimating
the spectral density function or spectrum of the series, the main tool of a temporal process in
the frequency domain. The estimation of the spectrum of the series has been undertaken from
both angles: the parametric and the non-parametric perspective.

Both Jones (1962) and Parzen (1961, 1963) were pioneers in the study of missing
observations from the frequency domain. They analyzed the problem under a systematic
scheme for the observed (and therefore also for the unobserved) values. Jones (1962), one of
the pioneers in studying the problem of estimating the spectrum, treated the case of estimating
the spectral function of a stock stationary series sampled systematically. This problem was
also faced by Parzen (1963) who introduced the term of amplitude modulation, the key
element in which later spectral developments were based on in their search for solutions. The
amplitude modulation defines itself as a zeros and ones series in the sample period. The value
of the amplitude modulation is one in those periods where the series is observed, whereas it is
zero in case of no being observed.

Different schemes for the amplitude modulation have been considered in the literature.
Scheinok (1965) considered the case in which the amplitude modulation followed a Bernoulli
random scheme. This random scheme was extended to others by Bloomfield (1970, 1973).
More recently, Tolio and Morettin (1993) obtained estimators of the spectral function for
three types of modulation sequences: determinist, random and correlated random. On the
other hand, Dunsmuir and Robinson (Dunsmuir, 1981; and Dunsmuir and Robinson, 1981a,
1981b), followed a different way, they assumed an ARIMA process and estimated its
parameters with the help of the spectral approximation to the likelihood function.

Although the great majority of patterns for the missing observations can apparently be
treated from the frequency domain, not all of them have a solution. This fact is due to the
impossibility of completely estimating the autocovariances of the process in many practical
situations. In this sense, Clinger and Van Ness (1976) studied the situations in which it is
possible to estimate all the autocovariances. On the particular, it must be remembered
Dunsmuir’s (1981, p. 620) words: “… (the estimators) are asymptotically efficient when
compared to the Gaussian maximum likelihood estimate if the proportion of missing data is
asymptotically negligible.” Hence, the problem of disaggregating an annual time series in
quarterly figures is one of those that do not still have a satisfactory solution from this
perspective. Nevertheless, from a related approach, Gudmundsson (2001) have made some
advances proposing a method to estimate (under some restrictive hypothesis and in a
continuous way) a flow variable. Likewise, the efforts made to employ the spectral tools to
estimate the missing values using the information given by a group of related variables have
required so many restrictive hypotheses that its use has not been advisable until now.

6. Conclusion

As can be easily inferred from the references and all the above sections a really huge
quantity of procedures, methods and algorithms have been proposed in the literature to try to
solve the problem of transforming a low-frequency series into a high-frequency one. The first
group of methods that built series through ad-hoc procedures was progressively overcome,
and the methods based on indicators were progressively gaining the preference of researchers.
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Within this group of methods, it highlights the Chow-Lin procedure and all its multiple
extensions. Interesting solutions have been also proposed from the state space and its great
flexibility makes it a proper tool to deal with the future challenges to appear in the subject and
to handle situations of missing observations different from those analysed in the current
document. In compensation, however, within the methods proposed from the frequency
domain the progress made does not seem encouraging. Nevertheless, none of the proposals
should be discarded rapidly, because according to Marcellino (2007) pooling estimates
obtained from different procedures can improve the quality of the disaggregated series.

Broadly speaking, an analysis of the historical evolution of the topic seems to point
towards the techniques using dynamic regression models and the techniques using
formulations in terms of unobserved component models/structural time series and the Kalman
filter as the two research lines that will hold a pre-eminent position in the future. On the one
hand, the extension of the topic to deal with multivariate dynamic models is still waiting to be
tackled; and, on the other hand, the state space methodology offers the generality that is
required to address a variety of inferential issues that have not been dealt with previously. In
this sense, both approaches could be combined in order to solve one of the main open
problems in the area: in particular, to jointly estimate some high-frequency series of rates
when the low-frequency series of rates, some transversal constraints and several related
variables are available. For example, the issue of distributing regionally the quarterly national
growth of a country when the annual regional growth series are known and several high-
frequency regional indicators are available and, moreover, both the regional and the sectoral
structure of weights change quarterly and/or annually.

Furthermore, a new emerging approach⎯which is taking into account the more recent
developments of econometric literature (e.g., data mining, dynamic common component
analyses, or time series models environment) and takes advantage of the continuous advances
in computer hardware and software by making use of a large dataset available⎯will likely
turn up in the future as a main line in the subject. Indeed, as Angelini et al. (2006, p. 2693)
point out: “Existing methods … are either univariate or based on a very limited number of
series, due to data and computing constraints … until the recent past. Nowadays large
datasets are readily available, and models with hundreds of parameters are easily
estimated”. In this line, Proietti and Moauro (2006) dealt with a dynamic factor model using
the Kalman filter to perform an index of coincident US economic indicators; while Angelini
et al. (2006) modelled a large dataset with a factor model and developed an interpolation
procedure that exploits the estimated factors as a summary of all the available information.
This last research also shows this strategy clearly improving univariate approaches.
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ECONOMETRIC MODELLING AND FORECASTING
OF PRIVATE HOUSING DEMAND

James M.W. Wong 1 and S. Thomas Ng 2
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Abstract

Governments, corporations and institutions all need to prepare various types of forecasts
before any policies or decisions are made. Particularly, serving as a significant sector of an
economy, the importance of predicting the movement of the private residential market is
undeniable. However, it is well recognised that the housing demand is volatile and it may
fluctuate dramatically according to general economic conditions. As globalisation continues to
dissolve boundaries across the world, more economies are increasingly subjected to external
shocks. Frequently the fluctuations in the level of housing demand can cause significant
rippling effects in the economy as the housing sector is associated with many other economic
sectors. The development of econometric models is thus postulated to assist policy-makers
and relevant stakeholders to assess the future housing demand in order to formulate suitable
policies.

With the rapid development of econometric approaches, their robustness and
appropriateness as a modelling technique in the context of examining the dynamic relationship
between the housing market and its determinants are evident. This study applies the
cointegration analysis as well as Johansen and Juselius’s vector error correction model (VEC)
model framework to housing demand forecasting in Hong Kong. Volitality of the demand to
the dynamic changes in relevant macro-economic and socio-economic variables are
considered. In addition, an impulse response function and a variance decomposition analysis
are employed to trace the sensitivity of the housing demand over time to the shocks in the
macro-economic and socio-economic variables. This econometric time-series modelling
approach surpasses other methodologies by its dynamic nature and sensitivity to a variety of
factors affecting the output of the economic sector for forecasting purposes, taking into
account indirect and local inter-sectoral effects.
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Empirical results indicated that that the housing demand and the associated economic
factors: housing prices, mortgage rate, and GDP per capita are cointegrated in the long-run.
Other key macro-economic and socio-economic indicators, including income, inflation, stock
prices, employment, population, etc., are also examined but found to be insignificant in
influencing the housing demand. A dynamic and robust housing demand forecasting model is
developed using VEC model. The housing prices and mortgage rate are found to be the most
important and significant factors determining the quantity demand of housing. Findings from
the impulse response analyses and variance decomposition under the VEC model further
confirm that the housing price terms has relatively large and sensitive impact on the housing
demand, although at different time intervals, on the volume of housing transactions in Hong
Kong. Addressing these two attributes is critical to the formulation of both short- and long-
term housing policies that could satisfy the expected demand effectively.

The research contributes knowledge to the academic field as currently the area of housing
demand forecast using advanced econometric modelling techniques is under-explored. This
study has developed a theoretical model that traces the cause-and-effect chain between the
housing demand and its determinants, which is relevant to the current needs of the real estate
market and is significant to the economy’s development. It is envisaged that the results of this
study could enhance the understanding of using advanced econometric modelling
methodologies, factors affecting housing demand and various housing economic issues.

Keywords: Economic forecasting, housing demand, impulse responses analysis,
econometrics, vector error-correction modeling.

Introduction

Economic forecasting is of immense importance as any economic system is a
deterministic-stochastic entity of great complexity and vital to the national development for
the information age (Hoshmand, 2002). Holden et al. (1990) state that forecasts are required
for two basic reasons: the future is uncertain; and the full impact of many decisions taken now
might not be felt until later. Consequently, accurate predictions of the future would improve
the efficiency of the decision-making process. In particular, the knowledge of future demand
for products and services is imperative to all industries since it is a prerequisite for any viable
corporate strategy (Akintoye and Skitmore, 1994).

Among the many aspects of economic forecasting, demand for residential properties has
always been of great interest not only to policy-makers in the government, but also to
business leaders and even the public, especially in a country with land scarcity like Hong
Kong (HK). Private residential properties make up a major constituent of the private-sector
wealth, and play a significant part in the whole economy (Case and Glaester, 2000; Heiss and
Seko, 2001). Its large linkage effect on the economy and its anchoring function for most
household activities also amplify the financial importance. In addition, housing demand has
traditionally been a target for large-scale government interference. Hence, understanding both
the short- and long-term future housing demand is a prerequisite for enlightened housing
policy.

The Asian financial crisis started in July 1997 has indeed revealed that the overbuilding
of housing in HK would cause serious financial distress on the overall economy. Foremost
among those taking the brunt of the shock was the real estate brokerage sector. Others who
might also be seriously impacted include decorators, lawyers, bankers, retailers, contractors,
sellers of construction materials, and inevitably real estate developers (Tse and Webb, 2004).
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Not only would the real estate sector be hampered, but it may also give rise to unemployment,
deteriorating fiscal revenues (partially due to the drop in land sales) and sluggish retail sales.
It is therefore wise and sensible to incorporate the real estate into a full macro-economic
model of an economy.

However, models being developed for analysing the housing demand per se are limited in
reliability because they cannot cater to the full set of interactions with the rest of the economy.
A review of several academic papers (Arnott, 1987; Follain and Jimenez, 1985; Smith et al.,
1988) reveals the narrow focus of the neoclassical economic modelling of housing demand.
These studies have concentrated on the functional forms, one-equation versus simultaneous
equation systems, or measurement issues about a limited range of housing demand
determinants, principally price and income factors. Some other estimations are made
according to a projection of flats required for new households (e.g., population growth, new
marriage, new immigrant, etc.) and existing families (e.g., those affected by redevelopment
programmes). No doubt the demographic change would have certain implications on housing
demand, yet one should not ignore the impacts of economic change on the desire for property
transactions if housing units are significantly viewed as investment assets (Lavender, 1990;
Tse, 1996).

Consequently, the most feasible research strategy to advance our understanding of
housing consumption decisions lies in furthering the modelling of housing demand
determinants to include a more conceptually comprehensive analysis of the impact of
demographic and economic indicators on housing consumption decisions. However, Baffor-
Bonnie (1998) stated that modelling the supply of, or demand for, housing within any period
of time may not be an easy task because the housing market is subject to a dynamic
interaction of both those economic and non-economic variables.

The choice of a suitable forecasting technique is therefore critical to the generation of
accurate forecasts (Bowerman and O’Connell, 1993). Amongst the variety of methodologies,
econometric modelling is one of the dominant methodologies of estimating macro-economic
variables. Econometric modelling is readily comprehensible and has remained popular with
economists and policy-makers because of its structured modelling basis and outstanding
forecasting performance (Lütkepohl, 2004). This methodology is also preferred to others
because of its dynamic nature and sensitivity to a variety of factors affecting the level and
structure of employment, not to mention its ability to take into account the indirect and local
inter-sectoral effects (Pindyck and Rubinfeld, 1998). With the rapid development of
econometric approaches, their robustness and appropriateness as a modelling technique in the
context of examining the dynamic relationship between the housing market and its determinants
are evident.

The aim of this study is, through the application of the econometric modelling techniques,
to capture the past behaviour and historical patterns of the private housing demand in HK by
considering the volatility of the demand to the dynamic changes in macro-economic and socio-
economic variables for forecasting purpose. The structure of the paper is as follows: the
theoretical background regarding the relationship of the private housing sector and the
relevant economic variables is hypothesised in the next section. The research method and data
are then presented. The results of the empirical analyses are subsequently discussed prior to
concluding remarks.
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Housing Demand and Macro-economic Variables

Like any other business sector, the real estate market tends to move in a fluctuating
pattern. Contrasting to a standard sine wave in physical science, the characteristics of real
estate market fluctuations are typically complicated and they exhibit much more stochastic
patterns as shown in Figure 1. Fluctuations in the real estate market do not occur at regular
time intervals and do not last for the same periods of time, and each of their amplitudes also
varies (Chin and Fan, 2005). As the econometric approach is proposed for developing a
housing demand forecasting model, this section first attempts to identify the key determinants
of housing demand.

Figure 1. Number of Registrations of Sale and Purchase Agreements of Private Residential Units in HK
(1995Q3-2008Q2).

The neoclassical economic theory of the consumer was previously applied to housing
(Muth, 1960; Olsen, 1969) which relates to the role of consumer preferences in housing
decisions to the income and price constraints faced by the household. The theory postulates
that rational consumers attempt to maximise their utility with respect to different goods and
services including housing in which they can purchase within the constraints imposed by
market prices and their income (Megbolugbe et al., 1991). The general form of the housing
demand equation is:

Q = ƒ(Y, Ph, Po) (1)

where Q is housing consumption, Y is household income, Ph is the price of housing, and Po is
a vector of prices of other goods and services.
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The link between income and housing decision is indisputable for most households.
Income is fundamental to explaining housing demand because it is the source of funds for
homeowners’ payments of mortgage principal and interest, property taxes and other relevant
expenses (Megbolugbe et al., 1991). Hendershott and Weicher (2002) stressed that the
demand for housing is strongly related to real income. Green and Hendershott (1996) also
estimated the household housing demand equations relating the demand to the income and
education of the household. Hui and Wong (2007) confirmed that household income Granger
causes the demand for private residential real estate, irrespective of the level of the housing
stock. Kenny (1999), on the other hand, found that the estimated vector exhibits a positive
sensitivity of housing demand to income based on a vector error correction model (VECM).
A number of economists agree that permanent income is the conceptually correct measure of
income in modelling housing decisions and housing demand. Yet, most economists often use
current income in their housing demand equations because of difficulties in measuring
permanent income (see Chambers and Schwartz, 1988; Muth, 1960; Gillingham and
Hagemann, 1983)

Demand for housing may decline when the housing price increases (Tse et al., 1999).
Mankiw and Weil (1989) formulated a simple model which indicates a negative relationship
between the US real house price and housing demand. However, in a broader view, trend of
property price may also incorporate inexplicable waves of optimism, such as expected income
and economic changes, changes in taxation policy, foreign investment flows, etc. (Tse et al.,
1999). For example, an expected rise in income will increase the aspiration of home owning
as well as the incentive of investing in property, resulting in positive relationship between
housing demand and the price.

The principal feature of housing as a commodity that distinguishes it from most other
goods traded in the economy are its relatively high cost of supply, its durability, its
heterogeneity, and its spatial immobility (Megbolugbe et al., 1991). Initially, neoclassical
economic modelling of housing market as shown in Eq. [1] ignored many of these unique
characteristics of housing. Indeed, these characteristics make housing a complex market to
analyse. Some research considered user costs, especially on how to model the effects of taxes,
inflation, and alternative mortgage designs on housing demand decisions.

If interest rate in the economy falls while everything else being equal, the real user cost
of a unit of housing services shall fall and the quantity of housing services demanded may
rise. Follain (1981) demonstrated that at high interest rates, the household’s liquidity
constraints tend to dampen housing demand. Kenny (1999) also found that the estimated
vector exhibits a negative sensitivity of housing demand to interest rates. Harris (1989) and
Tse (1996), however, demonstrated that a declining real interest rate tends to stimulate house
prices and thereby lead to decreases in rent-to-value ratio and housing demand.

Housing demand also depends on the inflation rate in a fundamental way (Hendershott
and Hu 1981, 1983). As inflation rises, more investors are drawn into the property market,
expecting continued appreciation to hedge against inflation (Kenny, 1999). Tse et al. (1999)
stressed that the housing demand should therefore include those with adequate purchasing
power to occupy available housing units as well as those desires to buy a house for renting or
price appreciation. For instance, the inflation experienced by HK in the early 1990s was a
period of rising speculative activities in the housing market. In addition, owner-occupied
housing is largely a non-taxed asset and mortgage interest is partially deductible (Hendershott
and White, 2000). As a result, when inflation and thus nominal interest rates rise, the tax
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subsidy reduces the real after-tax cost of housing capital and increases aggregate housing
demand (Summers, 1981; Dougherty and Van Order, 1982). Harris (1989) suggested that
housing consumers tend to respond to declining real costs rather than rising nominal costs. In
this context, consumers’ expectations about price appreciation and inflation are supposed to
be an important factor in determining the demand for housing.

The findings of previous research studies (e.g. Killingsworth, 1990; Akintoye and
Skitmore, 1994) realised that the building and business cycles are closely related. Bon (1989)
related building cycles to business or economic cycles and postulated how economic
fluctuations affect fluctuations in building activity. Swings in the general economy and stock
market may thereby be treated as indicators of the prospective movement in the housing
market and vice versa (Ng et al., 2008). Maclennan and Pryce (1996) also suggested that
economic change shapes the housing system and that recursive links run back from housing to
the economy. Housing investment is a sufficiently large fraction of total investment activity in
the economy (about a third of total gross investment) to have important consequences for the
economy as a whole and vice versa (Pozdena, 1988, p. 159).

One of the crucial foundations for residential development is employment, which serves
not only as a lead indicator of future housing activity but also as an up-to-date general
economic indicator (Baffor-Bonnie, 1998). The decrease in the employment that results from
this process tends to reduce the demand for new housing. The macro implications for real
estate activity and employment have been explored at some length in the literature, and the
general consensus is that the level of employment growth tends to produce real estate cycles
(Smith and Tesarek, 1991; Sternlieb and Hughes, 1977). Baffor-Bonnie (1998) applied a
nonstructural vector autoregressive (VAR) model to support earlier studies that employment
changes explain real estate cycles of housing demand.

In addition, a number of studies consistently have shown that housing demand is also
driven mainly by demographic factors in a longer term (Rosen, 1979; Krumm, 1987;
Goodman, 1988; Weicher and Thibodeau, 1988; Mankiw and Weil, 1989; Liu et al., 1996).
Population growth captures an increase in potential housing demand, especially if the growth
stems mainly from the home buying age group with significant income (Reichert, 1990). In a
separate study, Muellbauer and Murphy (1996) also showed that demographic changes
together with the interest rate are the two important factors causing the UK house price boom
of the late 1980s. They found that demographic trends were favourable, with stronger
population growth in the key house buying age group. Tse (1997), on the other hand, argued
that in the steady state, rate of construction depends mainly upon the rate of household
formation. Growth of population and number of households are proposed to be included as
independent variables in the econometric study.

As discussed above based on a comprehensive literature of modelling specifications, the
demand for housing services can be derived by assuming utility maximisation on the part of
homeowners and wealth maximisation on the part of investors. The specific factors that
determine the demand for housing have been previously identified and are summarised in Eq.
[2].

Q = ƒ(Y, Ph, MR, CPI, GDP, Ps, U, POP) (2)

where
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Q represents the quantity of housing sold;
Y is real household income;
Ph is the real price of housing;
MR measures the real mortgage interest rates;
CPI is the consumer price index to proxy inflation;
GDP is the real gross domestic product;
Ps is the stock prices proxied by the Hang Seng Index;
U is the unemployment rate; and
POP is the total resident population.

Methodology

The Econometric Model

In light of the above predictions that there will be a sluggish adjustment on the housing
demand, any empirical attempt to model the housing market must clearly distinguish the long-
run from the short-run information in the data. Recent advances in econometrics, in particular
the development of cointegration analysis and vector error correction (VEC) model, have
proven useful in help distinguishing an equilibrium as opposed to a disequilibrium
relationships among economic variables (Kenny, 1999). Adopting simple statistical methods
such as regression or univariate time series analysis like auto-regressive integrated moving
average (ARIMA) models may be only reliable for the short-term forecast of economic time
series (Tse, 1997) and may give rise to large predictive errors as they are very sensitive to
‘noise’ (Quevedo et al., 1988; Tang et al., 1991).

This study employs the Johansen cointegration technique in order to assess the extent to
which the HK housing market possesses the self-equilibrating mechanisms discussed above,
i.e. a well behaved long-run housing demand relationships. The HK market provides a
particularly interesting case study because there have been large-scale fluctuations in the price
of owner occupied dwellings over recent years. The econometric analysis takes an aggregate
or macro-economic perspective and attempt to identify equilibrium relationships using key
macro variables. In particular, the analysis will examine: (i) the impact of monetary policy,
i.e. interest rates, on developments in the housing market; (ii) the effects of rising real
incomes on house prices; (iii) the nature and speed of price adjustment in the housing market;
(iv) effect of demographical change to the demand for housing; and (v) the nature and speed
of stock adjustment in the housing market.

The Johansen multivariate approach to cointegration analysis and VEC modelling
technique seems particularly suitable for the analysis of the above relationship as shown in
Eq. [2] because it is a multivariate technique which allows for the potential endogeneity of all
variables considered (Kenny, 1999). In common with other cointegration techniques, the
objective of this procedure is to uncover the stationary relationships among a set of non-
stationary data. Such relationships have a natural interpretation as long-run equilibrium
relationships in economic sense. VEC is a restricted vector autoregressive (VAR) that has
cointegration restrictions built into specification (Lütkepohl, 2004). The VEC framework
developed by Johansen (1988) and extended by Johansen and Juselius (1990) provides a
multivariate maximum likelihood approach that permits the determination of the number of
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cointegration vectors and does not depend on arbitrary normalisation rules, contrary to the
earlier error correction mechanism proposed by Engle and Granger (1987).

The Johansen and Juselius’s VEC modelling framework is adopted to the housing
demand forecasting because of its dynamic nature and sensitivity to a variety of factors
affecting the demand, and its taking into account indirect and local inter-sectoral effects.
Applying conventional VAR techniques may lead to spurious results if the variables in the
system are nonstationary (Crane and Nourzad, 1998). The mean and variance of a
nonstationary or integrated time series, which has a stochastic trend, depend on time. Any
shocks to the variable will have permanent effects on it. A common procedure to render the
series stationary is to transform it into the first differences. Nevertheless, the model in its first
difference level will be misspecified if the series are cointegrated and converged to stationary
long-term equilibrium relationships (Engle and Granger, 1987). The VEC specification allows
investigating the dynamic co-movement among variables and the simultaneous estimation of
the speed with which the variables adjust in order to re-establish the cointegrated long-term
equilibrium, a feature unavailable in other forecasting models (Masih, 1995). Such estimates
should prove particularly useful for analysis of the effect of alternative monetary and housing
market policies. Empirical studies (e.g. Anderson et al., 2002; Darrat et al., 1999; Kenny,
1999; Wong et al., 2007) have also shown that the VEC model achieved a high level of
forecasting accuracy in the field of macro-economics.

The starting point for deriving an econometric model of housing demand is to establish
the properties of the time series measuring the demand and its key determinants. Testing for
cointegration among variables was preceded by tests for the integrated order of the individual
series set, as only variables integrated of the same order may be cointegrated. Augmented
Dickey-Fuller (ADF) unit root tests were employed which was developed by Dickey and
Fuller (1979) and extended by Said and Dickey (1984) based on the following auxiliary
regression:
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The variable ∆yt-i expresses the lagged first differences, μt adjusts the serial correlation
errors, and α, β and γ are the parameters to be estimated. This augmented specification was
used to test for 0:0 =γH  vs. 0: <γaH  in the autoregressive (AR) process.

The specification in the ADF tests was determined by a ‘general to specific’ procedure by
initially estimating a regression with constant and trend, thus testing their significance.
Additionally, a sufficient number of lagged first differences were included to remove any
serial correlation in the residuals. In order to determine the number of lags in the regression,
an initial lag length of eight quarters was selected, and the eighth lag was tested for
significance using the standard asymptotic t-ratio. If the lag is insignificant, the lag length is
reduced successively until a significant lag length is obtained. Critical values simulated by
MacKinnon (1991) were used for the unit root tests.

Cointegration analysis and VEC model were then applied to derive housing demand
specification. The econometric model attempts to link housing demand to variables in
equilibrium identified with economic theory. Although many economic time series may have
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stochastic or deterministic trend, the groups of variables may drift together. Cointegration
analysis allows the derivation of long-run equilibrium relationships among the variables. If
the economic theory is relevant, it is expected that the specific set of suggested variables are
interrelated in the long run. Hence, there should be no tendency for the variables to drift apart
increasingly as time progresses, i.e. the variables in the model form a unique cointegrating
vector.

To test for the cointegration, the maximum likelihood procedures of Johansen and
Juselius were employed. Suppose that the variables in the housing demand function are in the
same integrated order, these variables may cointegrate if there exists one or more linear
combinations among them. A VAR specification was used to model each variable as a
function of all the lagged endogenous variables in the system. Johansen (1988) suggests that
the process yt is defined by an unrestricted VAR system of order (p):

yt = δ + Γ1 yt-1 + Γ2 yt-2 + …+ Γp yt-p + ut t = 1, 2, 3, …, T (4)

where yt are I(1) independent variables, Γ’s are estimable parameters, and ut ~ niid(0, Σ) is
vector of impulses which represent the unanticipated movements in yt. However, such a
model is only appropriate if each of the series in yt is integrated to order zero, I(0), meaning
that each series is stationary (Price, 1998). Using ∆ = (I – L), where L is the lags operator, the
above system can be reparameterised in the VEC model as:
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tyΔ is an I(0) vector, δ is the intercept, the matrix Γ reflects the short-run aspects of the
relationship among the elements of yt, and the matrix П captures the long-run information.
The number of linear combinations of yt that are stationary can be determined by the rank of
П, which is denoted as r. If there are k endogenous variables, Granger’s representation
theorem asserts that if the coefficient matrix П has reduced rank r < k, then there exists k × r
matrices, α and β, each with rank r such that П = α β' and β'yt is stationary.

The order of r is determined by trace statistics and the maximum eigenvalue statistics.
The trace statistic tests the null hypothesis of cointegrating relations r against the alternative
of k cointegrating relations, where k is the number of endogenous variables, for r = 0, 1, …,
k–1. The alternative of k cointegrating relations corresponds to the case where none of the
series has a unit root and a stationary VAR may be specified in terms of the levels of all of the
series. The trace statistic for the null hypothesis of r cointegrating relations is computed as:
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for r = 0, 1, …, k-1 where T is the number of observation used for estimation, and iλ  is the i-
th largest estimated eigenvalue of the П matrix in Eq. [6] and is the test of H0(r) against H1(k).

The maximum eigenvalue statistic tests the null hypothesis of r cointegrating relations
against the alternative of r+1 cointegrating relation. This test statistic is computed as:

)1log()1( 1+−−=+ rtr TrrLR λ  (8)

)1()( krLRkrLR trtr +−=

for r = 0, 1, …, k-1.
The models will be rejected where П has a full rank, i.e. r = k–1 since in such a situation

yt is stationary and has no unit root, thus no error-correction can be derived. If the rank of П is
zero, this implies that the elements of yt are not cointegrated, and thus no stationary long-run
relationship exists. As a result, the conventional VAR model in first-differenced form shown
in Eq. [4] is an alternative specification.

The choice of lag lengths in cointegration analysis was decided by multivariate forms of
the Akaike information criterion (AIC) and Schwartz Bayesian criterion (SBC). The AIC and
SBC values3 are model selection criteria developed for maximum likelihood techniques. In
minimising the AIC and SBC, the natural logarithm of the residual sum of squares adjusted
for sample size and the number of parameters included are minimised. Based on the
assumption that П does not have a full rank, the estimated long-run housing demand in HK
can be computed by normalising the cointegration vector as a demand function.

While the cointegrating vectors determine the steady-state behaviour of the variables in
the vector error correction model, the dynamic representation of the housing demand to the
underlying permanent and transitory shocks were then completely determined by the sample
data without restriction. One motivation for the VEC model(p) form is to consider the relation
β'yt

 = c as defining the underlying economic relations and assume that the agents react to the
disequilibrium error β'yt – c through the adjustment coefficient α to restore equilibrium; that
is, they satisfy the economic relations. The cointegrating vector, β are the long-run parameters
(Lütkepohl, 2004).

Estimation of a VEC model proceeded by first determining one or more cointegrating
relations using the aforementioned Johansen procedures. The first difference of each
endogenous variable was then regressed on a one period lag of the cointegrating equation(s)
and lagged first differences of all of the endogenous variables in the system. The VEC model
can be written as the following specification:
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where yt are I(1) independent variables, d is the quantity of housing sold, α is the adjustment
coefficient, β are the long-run parameters of the VEC function, and γj,i reflects the short-run
aspects of the relationship between the independent variables and the target variable.

                                                       
3 AIC = T ln (residual sum of squares) + 2k; SBC = T ln (residual sum of squares) + kln(T)
  where T is sample size and k is the number of parameters included
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A well known problem with VARs, and particularly important in the identification of a
VEC model, is the prohibitively large number of parameters. Each equation involves
estimating k × r lag coefficients plus one or more parameters for the deterministic
components, and would quickly exhaust typical samples for macro-econometric research.
With limited observations, the VEC approach quickly runs into the problem of severe lack of
degrees of freedom. One way to address the over-parameterisation problem is to test and
impose weak exogeneity assumptions. Monte Carlo results in Hall et al. (2002) also reveal
that imposing valid weak exogeneity restrictions before testing for the cointegrating rank
generally improves the power of Johansen rank tests. When the parameters of interest are the
cointegrating vector β', yt

 is weakly exogenous if and only if the i-th row of the α matrix is all
zero with respect to the β parameters αy = 0 (Johansen, 1991, see also Johansen (1995) for the
definition and implications of weak exogeneity). Following Hall et al. (2002), once weak
exogeneity restrictions are tested and imposed, Johansen rank tests are conducted.

Hendry and Juselius (2000), on the other hand, emphasise the importance of correct
specification. If the future housing demand is not driven by the past values of the independent
variables, it is more appropriate to model the demand separately from non-causal variables.
The existence of a cointegrating relationship among the variables suggests that there must be
unidirectional or bidirectional Granger causality. In this case, a VEC model should be
estimated rather than a VAR as in a standard Granger causality test (Granger, 1988). Sources
of causation can be identified by testing for significance of the coefficients on the
independent variables in Eq. [7] individually.

On one hand, for instance by testing H0: γ2,i = 0 for all i, y2 Granger weak causes housing
demand can be evaluated in the short run (Asafu-Adjaye, 2000). This can be implemented by
using a standard Wald test. On the other hand, long-run causality can be found by testing the
significance of the estimated coefficient of α by a simple t-test. The strong Granger-causality
for each independent variable can be exposed by testing the joint hypotheses H0: γ2,i = 0 and α
= 0 for all i in Eq. [6] by a joint F-test. Similar reasoning is possible for examining whether
other variables Granger-cause the housing demand. In addition, in estimating the VEC model,
as explained in Hendry (1995), we first use five lags of the explanatory variables, i.e.
estimated unrestricted ECM. The final parsimonious causality structure of the VEC model is
then established by eliminating cointegrating vectors with insignificant loading parameters.

Various diagnostic tests were applied to assess the robustness and reliability of the
developed models. These included the Lagrange multiplier tests (LM) for up to respectively
one and forth order serial correlation in the residuals, White’s test (White, 1980) for
heteroscedasticity (H) in the residuals and for model misspecification, the Jarque-Bera test for
normality (NORM) of the residuals (Jarque and Bera, 1980). The forecasts were also verified
by comparing the projections generated from the ARIMA model which served as a
benchmark. EViews (version 6.0) was used as the statistical tool for modelling the housing
demand.

Impulse Response Analysis

Traditionally, researchers have used structural models to analyse the impact of the
unanticipated policy shocks, i.e. the policy and other macro-economic variables. Such
models, however, impose a priori restrictions on the coefficients. These restrictions may
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inhibit researchers from revising the macro model, even when the data or historical evidence
points to such a need. Hence, once the Granger causality relationship has been established,
the impulse response function (IRF) is used to trace the effects of a one standard deviation
shock to one of the innovations on current and future values of the endogenous variables,
through the dynamic structure of the VEC specification.

The IRF is able to detect the sensitivity of the housing demand over time to the shocks in
the macro-economic and socio-economic variables (QMS, 2000). It allows the data, rather
than the researcher, to specify the dynamic structure of the model (Pindyck and Rubenfeld,
1998). Through normalisation, the IRF produces a fluctuating graph that has a zero line in the
centre representing the equilibrium condition of the response variable. Additionally, variance
decomposition (VDC) is also applied to trace the response of the endogenous variable to such
shock. It provides a different method of depicting the system dynamics. While IRF traces the
effects of a shock to one endogenous variable on the other variables in the VAR, VDC
separates the variation in an endogenous variable into the component shocks to the VAR. In
other words, the variance decomposition gives information about the relative importance of
each random innovation in affecting the variables in the VAR.

Sources of Data

This section presents the time series variables used to examine the stipulated relations.
Data related to the real estate market were obtained from Hong Kong Property Review
(various issues). Other data were extracted from relevant publications issued by the Census
and Statistics Department (C&SD) of the HKSAR Government and other official sources.
Table 1 shows the definitions and data sources used for variables in econometric modelling.
These series of data cover from the third quarter of 1995 to the second quarter of 2008, giving
a total of 52 quarterly observations. Where the indicators recorded in the official data source
were not exactly in quarterly form, it was necessary to estimate the quarterly figures by either
aggregation or interpolation of the figures involved.

The financial variables are measured in real terms so as to measure the differences in real
consumption and investment behaviour. The model is estimated in log-linear form. The major
advantage of the log-linear transformation is the effect in regression computation of
decreasing the relative size of observations with large variances, especially when a regression
includes variables in both level and difference forms.

Table 1. Definitions and Data Sources Used for Variables in Empirical Work

Variable Definition Data Source
Housing Demand (Q) Number of registrations of sale and

purchase agreements of private
residential units (both primary &
secondary markets)

Property Review, Rating and
Valuation Department

Income (Y) Real indices of payroll per person
engaged (1st Qtr 1999 = 100)

General Household Survey,
Census and Statistics
Department

Housing Prices (Ph) Private domestic price index, all
classes (1999=100)

Property Review, Rating and
Valuation Department
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Table 1. Continued

Variable Definition Data Source
Mortgage Rates
(MR)

Best lending rate, inflation adjusted
(% per annum)

Hong Kong Monetary
Authority

Inflation (CPI) Year-on-year % change of Consumer
Price Index (A), based on the
expenditure pattern of around 50
percent of households in HK

Monthly Digest of Statistics,
Census and Statistics
Department

GDP per Capita
(GDP)

Real GDP per capita. Real per capita
GDP is employed as the relevant
economic development variable and
not real GDP, since it discounts the
effects of population growth.

Monthly Digest of Statistics,
Census and Statistics
Department

Stock Prices (Ps) Heng Sang index Hong Kong Monetary
Authority

Unemployment (U) Unemployment rate in HK General Household Survey,
Census and Statistics
Department

Population (POP) /
Number of
Households (HH)

Total population in HK / Total number
of domestic households

General Household Survey,
Census and Statistics
Department

Model Specification and Implications

Unit Root Tests

ADF tests were initially conducted to determine the integrated order of the relevant data
series. Table 2 reports the results of the unit root tests. These statistics indicate that a unit root
can be rejected for the first difference but not the levels for all variables at the 5%
significance level, except real income and population. Thus, the housing demand, housing
prices, mortgage interest rate, inflation, GDP, stock prices, and the unemployment rate are
integrated of order one i.e. I(1) series. It is thus justified to test the long-term relationship
among these I(1) variables using cointegration analysis for modelling and forecasting
purposes.

Table 2. ADF Unit Root Tests

Variable Test statistics Critical
values Variable Test statistics Critical

values
q -2.6836 [C,1] -2.9200 ∆ q -8.4532 [1]** -1.9475
y -2.2695 [C,4] -2.9266 ∆ y -3.4951 [C,T,3] -3.5107

∆2 y -73.1525 [3] ** -1.9481
ph 0.1567 [1] -1.9475 ∆ ph -3.1082 [1] * -1.9475

MR -1.0190 [C,T,1] -3.5005 ∆ MR -6.0226 [C,T,1] ** -3.5024
CPI -0.7762 [C,T,1] -3.5005 ∆ CPI -6.5707 [C,T,1] ** -3.5024
gdp -2.2330 [C,T,7] -3.5155 ∆ gdp -5.0362 [C,T,6] ** -3.5155



James M.W. Wong and S. Thomas Ng42

Table 2. Continued

Variable Test statistics Critical
values Variable Test statistics Critical

values
ps -1.1022 [1] -1.9474 ∆ ps -6.9480 [1] ** -3.5155
U -2.3309 [C,3] -2.9238 ∆ U -2.5217 [2] * -1.9478

pop -5.1357 [C,T,1]
**

-3.5024

hh -5.7881 [C,T,2]
**

-3.5043

Note: q, loge of housing demand; y, loge of real income; ph, loge of housing prices; MR, mortgage interest
rate; CPI, year-on-year % change of inflation; gdp, loge of gross domestic product; ps, loge of stock
prices; U, unemployment rate; pop, loge of population; hh loge of number of domestic households. ∆ is
the first difference operator. The content of the brackets [·] denotes constant, trend and the order of
augmentation of the ADF test equation, respectively; * Rejection of the null at the 5% significance level;
** Rejection of the null at the 1% significance level.

Weak Exogeneity

The existence of long-run weak exogeneity among the vector of seven variables,
yt = (q, ph, MR, CPI, gdp, ps, U) as identified previously was examined by performing the LR
tests (Johansen and Juselious, 1992). We hypothesise that the three macro-economic
variables, yt = (q, ph, MR), are endogenous, and the remaining external factors, yt = (CPI, gdp,
ps, U), are exogenous. Following the strategy outlined in the methodology section, we test the
null hypothesis, H0: αy = 0 for each candidate exogenous variable.

Table 3 shows the results of the weak exogeneity tests. We cannot reject the weak
exogeneity of unemployment rate (U) and inflation (CPI) in the system: tests for both
variables have p-values in excess of 10%. In contrast, weak exogeneity of stock prices (ps) is
strongly rejected at the 10% level. However, ps was eliminated subsequently from the VEC
model as the adjustment coefficient to the long-run equilibrium (α) included in the VEC
model is statistically insignificant at the 10% level. These restrictions can be imposed in the
restricted VEC.

Table 3. Weak ExogeneityT

Variable χ2 p-value
CPI 0.0725 0.7878
gdp 2.7775 0.0956
ps 7.7712 0.0053
U 0.9208 0.3373

Note: gdp, loge of gross domestic product; ps, loge of stock prices; U, unemployment rate
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Cointegration Tests

Given the results of unit roots and weak exogeneity tests, Johansen’s techniques were
applied to test for cointegration between the y variables (q, ph, MR, gdp) within a VEC model
as specified in Eq. [5]. In implementing the Johansen procedure, it was assumed that series y
have stochastic linear trends but the cointegrating equations have an intercept. This option is
based on the proposition that long-run equilibrium in housing demand probably has no
significant trend. The omission of the trend term is also justified by the result of testing the
significance of this term in the cointegrating relation. In addition, based on the smallest AIC
and SBC values, the lag-length was selected as five and the results of the cointegration tests
based on the trace statistics and the max-eigen statistics are reported in Table 4. The results
indicate that there is not more than one cointegrating relation, while the test rejects r = 0 for
the alternative that r = 1 at the 5% significance level. It is, therefore, concluded that one
cointegration relation exists among the selected variables, i.e. r = 1.

Table 4. Johansen Cointegration Rank Test

H0 Ha λTrace Prob.** λMax Prob. **

r = 0 r = 1 65.5568 0.0005* 34.6904 0.0052*

r ≤ 1 r ≥ 2 17.8665 0.2375 15.4687 0.2574
r ≤ 2 r ≥ 3 15.3978 0.0617 14.2646 0.0639
r ≤ 3 r ≥ 4 0.7773 0.3780 0.777329 0.3780

Note: Variables q, ph, MR, gdp, Maximum lag in VAR = 5
* denotes rejection of the hypothesis at the 0.05 level
**Mackinnon-Haug-Michelis (1999) p-values.

By normalising the cointegration vector of housing demand as a demand function, the
estimated long-run housing demand in HK implied by the Johansen estimation is given by Eq.
10, with absolute asymptotic t-ratios in parentheses.

q = 16.9075 + 2.3472 ph – 0.1998 MR + 1.5139 gdp (10)
                       (5.0543)      (4.9294)        (2.9475)

where q is loge of housing demand; ph is loge of housing prices; MR is mortgage interest rate;
gdp is loge of gross domestic product.

The results show that the long-run equilibrium equation is valid given that the
independent variables contribute significantly to the cointegrating relationship at the 5%
significance level. The coefficient estimates in the equilibrium relation indicate the estimated
long-run elasticity with respect to local housing demand, showing the presence of an elastic
and positive link with housing prices and gross domestic product, and negative but inelastic
relationship with the interest rate. Ong and Teck (1996) and Ho and Cuervo (1999) suggested
that the gross domestic product (GDP) indicating the economic development, as well as
income of the general public and the prime lending rate are the key determinants of private
residential real estate demand. Introducing strong measures and effective strategy focusing on
these aspects, land supply and monetary policies for instance, may be regarded as the
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mechanism for inducing changes in housing demand and thereby contributing to the
development of the economy.

Interestingly, the strong relationship between the housing price and demand reflects that
upsurge of the real price has a positive impact on the induction of demand in the private
residential sector which contradicts the neoclassical economic theory. However, evidence
suggests that private house prices drive sales of houses and not the other way around. As clearly
illustrated in Salo (1994), the theoretical sign of the effect of various variables on housing
demand is contingent on whether or not there are any restrictions facing borrowers in the
capital market. In a market where credit is not restricted, it can be shown that housing is an
‘ordinary’ good in the sense that housing demand is negatively related to real house prices.
However, current and future income and expected capital gains from investment tend to have
an unambiguously positive effect on housing demand when credit is available. Tse et al.
(1999) also argued that an increasing trend of property price may induce optimism for end-
users and investors, i.e. a rising price is often a positive indicator of an assets’ attraction in the
market, anticipating continued appreciation (Harris, 1989). Under such conditions, housing is
not necessarily a decreasing function of the price of housing. The results indeed support the
notion that used housing consumers’ expectations about appreciation are a significant factor in
home-buying. House prices should, therefore, have a positive effect on transactions.
Conversely, the demand for housing is a negative function of the interest rate because a
higher interest rate increases the cost of consuming housing services mortgage interest costs
rise.

Vector Error-Correction Model

As a cointegrating relationship has been found among the variables, the cointegration
series can be represented by a VEC model according to the Granger representation theorem
(Engle and Granger, 1987). In the VEC model, deviation of housing demand from its long-
run equilibrium path will, in the short-term, feed on its future changes in order to force its
movements towards the equilibrium state.

According to the VEC specification shown in Eq. [9], the proposed VEC model for the
private residential demand in HK can be written as:
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where α is the adjustment coefficient, β represent the long-run parameters of the VEC
function, and γj,i reflects the short-run aspects of the relationship between the independent
variables and the target variable.

Table 5 reports the error correction model’s estimates for the housing demand. Further to
the long-term relationships among the variables, the coefficients capturing the short-run
dynamics are shown in the table, together with a test statistic for the significance of each
estimated parameter. It is worth noticing that, the lagged variables have a significant role to
play to explain the dynamic changes of housing demand, indicating a lag effect due to the
changes of the independent variables in the housing market. The VEC model specification has
the capability to explain 73% of the housing demand variations over the study period.
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The VEC specification was used to test the Granger causality of the explanatory
variables. Table 6 shows the results of the Granger-causality tests. Applying Wald tests and
the joint F-tests, the null hypotheses that the independent variables do not Granger-cause the
housing demand can be rejected at the 1% significance level. In addition, the significance of
the coefficient of α also suggests that the independent variables Granger-cause a deviation of
the housing demand from the long-run equilibrium in the previous quarter. Therefore, it is
concluded that all the variables Granger-cause the housing demand, implying that the past
values of these variables are useful to forecast the demand in both short-run and long-run.

Table 5. Estimation Results: Vector Error Correction (VEC)
Model of the Housing Demand in Hong Kong

Variables tqΔ
δ 0.0420 (0.5074)
α 0.1395 (1.0031)

qt-1 1
ph,t-1 -2.3472 (-5.0543) ***

MRt-1 0.1998 (4.9294) ***

gdpt-1 -1.5139 (-2.9475) ***

ρ0 -16.9075

t-1 t-2 t-3 t-4 t-5

Δq -0.3558
(-1.1569)

-0.6201
 (-1.9323)*

-0.0415
(-0.1538)

-0.0979
(-0.3514)

-0.1076
(-0.4657)

Δph
3.0532

(1.9987)*
1.8561

(1.2138)
-5.3658

(-3.6620)***
2.8612

(1.7290)
0.5350

(0.4403)

ΔMR -0.01663
(-0.4460)

0.01602
(0.5827)

-0.0879
(-2.4095)**

-0.0052
(-0.1238)

0.0758
(1.7316)*

Δgdp -3.9437
(-1.5828)

0.4457
(0.1622)

-4.5839
(-1.7630)*

0.8120
(0.3160)

1.8212
(0.8681)

R-squared 0.7353 *** t-statistic significant at .01 level
Sum sq. resids 0.7689 ** t-statistic significant at .05 level
S.E. equation 0.1790 * t-statistic significant at .1 level
Log likelihood 28.8316

Note: q, is loge of housing demand; ph, is loge of housing prices; MR, is mortgage interest rate; gdp, is loge of
gross domestic product; t-statistics in parentheses.

Table 6. Results of Granger-causality Tests based on the VEC Model

Weak Granger-causality Strong Granger-causality
Null hypotheses Chi-square Probability F-statistics Probability

Housing price does not Granger-
cause housing demand

196.9479 0.0000 33.9637 0.0000

Mortgage interest rate does not
Granger-cause housing demand

42.6609 0.0000 10.7348 0.0002

GDP does not Granger-cause
housing demand

108.7172 0.0000 20.1440 0.0000
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The respective error correction term (α) reveals how the independent variables respond to
the housing demand pressure in precisely the way anticipated for achieving long-term demand
equilibrium. The adjustment coefficient is found to be positive but not statistically significant
at the 5% level which implies that the adjustment process in the housing market is somewhat
precarious and insensitive. Since the error correction term measures the deviation from the
empirical long-run relationship, this result reveals that the cointegrated variables are not
adjusting to the long-run equilibrium state i.e. inflows are weakly exogenous to the system.
There are, however, several reasons to expect that the housing market will often be
characterised by significant deviations from this long-run market demand. Principally, in light
of the large transactions costs which are typically involved in buying a home, there will be
significant adjustment lags on the demand side of the market (Kenny, 1999). As a result,
economic agents will only adjust slowly toward their desired stock of housing following a
change in exogenous demand-side variables.

Model Verification

Various diagnostic tests on the residuals of the VEC model were applied to detect any
significant departure from the standard assumptions. These included the Lagrange multiplier
tests (LM) for up to respectively one and forth order serial correlation in the residuals,
White’s test (White, 1980) for heteroscedasticity (H) in the residuals and for model
misspecification, the Jarque-Bera test for normality (NORM) of the residuals (Jarque and
Bera, 1980). The results of the diagnostic tests reported in Table 7 indicate that the residuals
from the estimated VEC model pass the tests at 95% significance levels, and hence, there is
no significant departure from the standard assumptions. The model’s predictive ability was
also verified using Chow’s second test. Therefore, there is no evidence of problems related to
serial correlation, heteroscedasticity, non-normal errors, instable parameters, or predictive
failure.

Table 7. Diagnostic Tests of the Estimated VEC Model

Diagnostics Statistics
LM(1) 18.5478 (0.2928)
LM(4) 12.3448 (0.6991)
H 433.7705 (0.3110)
CHOW 1.4409 (0.1905)
NORM 0.66128 (0.7183)

Note: LM(p) is the Lagrange multiplier test for residual serial correlation with p lag length; H is White’s test
for heteroscedasticity; NORM is Jarque-Bera test for normality of the residuals; CHOW is Chow’s
second test for predictive failure by splitting the data at 1st quarter 2004; and figures in parentheses
denote probability values.

Further to the diagnostic tests, Figure 2 shows graphically the demand (Δqt) estimation
generated from the forecasting model and the actual housing demand over the ex post
simulation period i.e. 1995Q3–2008Q2, indicating adequate goodness of fit of the developed
VEC model. Hence, the results of the diagnostic tests and the evaluation of forecasts verify
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that the developed VEC model is adequately efficient and robust to forecast the housing
demand, both short-term and long-term, in HK.

Figure 2. Goodness-of-fit of the VEC Model (variable: Δqt).

Impulse Responses and Variance Decomposition

The results in Table 5 may not give us a clear understanding of the dynamic structure of
the model. The impulse response coefficients provide information to analyse the dynamic
behaviour of a variable due to a random shock in other variables. The impulse response traces
the effect on current and future values of the endogenous variables of one standard deviation
shock to the variables4. Sims (1980) suggested that the graphs of the impulse response
coefficients provided an appropriate devise to analyse the shocks. Figure 2 depicts the
impulse response functions for the housing demand in response to changes in (i) housing
prices; (ii) mortgage rate; and (iii) GDP per capita of HK. In order to capture the short-run
dynamic effects, we consider the twelve-quarter responses to one standard deviation shock in
each of the endogenous variables. The impulse responses are particularly important in tracing
the pattern of the demand for private housing from one period to another as a result of a shock
in a policy / macro-economic variable.

As revealed in Figure 3, a shock to the macro-economic variables generates different
dynamic responses in the housing market. A one standard deviation shock given to housing
prices produces an immediate response in the demand for housing units. This confirms the
previous results that housing demand are significantly influenced by the prices. The demand
increases immediately after the shock, possibly due to the speculative transactions and the

                                                       
4 The residuals were orthogonalised by the Cholesky decomposition. Cholesky uses the inverse of the Cholesky

factor of the residual covariance matrix to orthogonalise the impulses. It is important to note that the Cholesky
decomposition depends on the ordering of the variables, and changing the order of variable might change the
impulse responses (Sims, 1980).  Various orderings were therefore examined and found that changing the
order did not vary the results.
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optimistic expectation of investing in the residential market. Expected appreciation improves
the expected rate of return on housing investment, thereby justifying a higher demand for
housing assets. However, results indicated that the demand is expected to decrease to the
ordinary level just after three to four quarters. The continual cyclical effect within the twelve-
quarter timeframe indicates the slow adjustment process of the system.

Note: ph is loge of housing prices; MR is mortgage interest rate; gdp is loge of gross domestic product.

Figure 3. Impulse Responses of Housing Demand from a One Standard Deviation Shock to the
Endogenous Variables.

Similar pattern can be observed for the shock stemmed from the interest rate, except
negative but insignificant effect is anticipated in the first six quarters. A plausible explanation
of this relationship of this relationship may be that as the cost of financing a house (mortgage
rate) is likely to dampen the demand for housing. However, the shock in mortgage rate might
only discourage individuals to purchase houses in the short-run. Increase of interest rates,
reflecting favourable economic condition, may therefore drive the demand for housing. The
profound dynamic changes indicate that the number of houses sold is sensitive to the housing
price and the mortgage market. The results also concurred with the findings of Baffoe-Bonnie
(1998). In addition, inspection of Figure 2 reveals that a shock to the GDP tends to produce
dynamic but relatively insignificant responses to the demand for housing. In other words, a
growth of GDP has relatively less impact to the private residential market nationally.

To indicate the relative importance of the shocks requires variance decomposition of the
forecast errors for each variable at horizons up to twelve quarters. The variance
decompositions show the portion of variance in the prediction for each variable in the system
that is attributable to its own shocks as well as shocks to other variables in the system. From
the causal chain as implied by the analysis of variance decompositions (Table 8), while the
forecast error variances of housing demand are mainly explained by its own shocks in the
two-quarter time horizon, shocks to the housing price and mortgage rate respectively has
explained 20% and 13% of the variability in housing demand beyond the ten-quarter time



Econometric Modelling and Forecastin of Private Housing Demand 49

horizon. This provides a clear indication that the changes of housing price terms produce the
largest variations in the number of houses sold.

Table 8. Variance Decompositions of Housing Demand (q)

Period S.E. q ph MR gdp
2 0.27575 89.2649 6.9018 0.0307 3.8026
4 0.39952 75.7134 19.3410 2.5687 2.3770
6 0.47383 78.0757 16.4834 2.9479 2.4920
8 0.55198 69.7585 16.1708 11.7345 2.3362
10 0.57968 63.8747 20.6811 13.0469 2.3973
12 0.59359 63.8681 20.0241 13.4297 2.6780

Note: q, is loge of housing demand; ph, is loge of housing prices; MR, is mortgage interest rate; gdp, is loge of
gross domestic product.

Limitations of the Forecasting Model

The housing demand forecasting model developed in this study has several limitations:

i. The research was confined to the HK housing market. However, a similar
methodology can be replicated to develop models for more complex and diverse
markets. The results of this study may also serve as a basis for international studies in
Asia, Europe and North America. Such a development encourages information
exchange related to the mechanism of housing market and in particular markets of the
Asia-Pacific regions as well as on the housing policies.

ii. Sample size might affect the efficiency and reliability of forecasting models. The
developed housing demand forecasting model could be further verified and even
enhanced to derive superior equations by introducing a larger sample size with a
wider time horizon.

iii. In making predictions using the leading characteristics of the chosen economic
indicators it is assumed that these indicators will follow a similar pattern or trend in
the whole period under consideration. If there is any abrupt change in the predictors,
the forecast might fail. Abrupt changes to the indicators could happen due to change
in policy, housing habits and economic structure (Ng et al., 2008).

iv. Extensive experimentation with the macro factors is needed to assess the impact of
the key external variables on the housing demand forecast. The projection of housing
transaction volume is the central component of the forecasting model. The values of
each of the key determinants of housing demand are indeed dependent upon the
changes in exogenous factors in the macro economy. However, both the global
economy and HK government policy are subject to continuous change, the link
between the macro-economic forecasts and the industry-based model should,
therefore, be further studied in order to generate more realistic demand forecasts.
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Conclusion

The main objective of this study is to apply econometric modelling techniques to build an
economic forecasting model for the estimation of future housing demand. The forecasting
model also attempts to analyse the dynamic effects of macro-economic and socio-economic
variables on housing demand. Applying Johansen’s methodology for multivariate
cointegration analysis, it is found that the housing demand and the associated economic
factors, i.e., housing prices, mortgage rate, and GDP per capita are cointegrated in the long-
run. Other macro-economic and socio-economic indicators, including income, inflation, stock
prices, employment, population, etc., have also been examined but found to be insignificant in
influencing the housing demand.

A dynamic forecasting model has been developed using the vector error correction (VEC)
modelling technique to estimate the housing demand. Various diagnostic tests have been
undertaken to validate the reliability and robustness of the developed forecasting models. The
methods applied and the results presented in this research provide insights into the
determinants of housing demand. The housing prices and mortgage rate are found to be the
most important and significant factors determining the quantity demand of housing.
Addressing these two attributes is critical to formulating both short and long-term housing
policies tailored to deal effectively with the expected demand.

This study has also reported the effects of housing demand due to the shocks on the key
factors. Empirical results from the impulse response analyses and variance decomposition
under the VEC model show that housing price and mortgage rate has relatively large impact,
although at different time intervals, on the volume of housing transactions in HK. This
finding has important policy implication, because any fluctuations in the housing prices and
mortgage rate will affect the housing demand sensitively and thereby the overall investment
environment. The adjustment process to achieve the long-run equilibrium is also found to be
slow, indicating the impact could be profound.

This research has made a considerable contribution to fill and update the knowledge gap
in the field of housing demand forecasting using advanced econometrics techniques—an area
which is currently rather underexplored. This study has developed a theoretical model that
traces the cause-and-effect chain between housing demand and the its determinants, which is
relevant to the current needs of the real estate market and significant to the economy’s
development. It is envisaged that the results of this study could enhance the understanding of
using advanced econometric modelling methodologies, factors affecting housing demand, and
various housing economic issues.
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Chapter 3

SIGNAL AND NOISE DECOMPOSITION
OF NONSTATIONARY TIME SERIES

Terence C. Mills
Department of Economics, Loughborough University

Abstract

The decomposition of a time series into components representing trend, cycle, seasonal, etc.,
has a long history. Such decompositions can provide a formal framework in which to model
an observed time series and hence enable forecasts of both the series and its components to be
computed along with estimates of precision and uncertainty. This chapter provides a short
historical background to time series decomposition before setting out a general framework. It
then discusses signal extraction from ARIMA and unobserved component models. The former
includes the Beveridge-Nelson filter and smoother and canonical decompositions. The latter
includes general structural models and their associated state space formulations and the
Kalman filter, the classical trend filters of Henderson and Macaulay that form the basis of the
X-11 seasonal adjustment procedure, and band-pass and low-pass filters such as the Hodrick-
Prescott, Baxter-King and Butterworth filters. An important problem for forecasting is to be
able to deal with finite samples and to be able to adjust filters as the end of the sample (i.e.,
the current observation) is reached. Trend extraction and forecasting under these
circumstances for a variety of approaches will be discussed and algorithms presented. The
variety of techniques will be illustrated by a sequence of examples that use typical economic
time series.

1. Introduction

The decomposition of an observed time series into unobserved components representing,
for example, trend, cyclical and seasonal movements, has a long history dating from the latter
part of the 19th century. Before that time, few economists recognised the existence of regular
cycles in economic activity or the presence of longer term, secular movements. Rather than
the former, they tended to think in terms of ‘crises’, a word used to mean either a financial
panic or a period of deep depression. The early studies of business cycles, which began in the
1870s, are discussed in detail in Morgan (1990), who focuses on the sunspot and Venus
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theories of Jevons and Moore and the rather more conventional credit cycle theory of Jugler.
Secular movements now tend to be referred to as trend, a term that seems to have been coined
by Hooker (1901) when analysing British import and export data. The early attempts to take
into account trend movements, typically by detrending using simple moving averages or
graphical interpolation, are analysed by Klein (1997).

The first quarter of the 20th century saw great progress in business cycle research, most
notably by Mitchell (1913, 1927) and in the periodogram studies of weather and harvest
cycles by Beveridge (1920, 1921). Trends, on the other hand, were usually only isolated so
that they could be eliminated. This was typically achieved by modelling the trend as a moving
average spanning the period of the cycle, or by fitting a trend line or some other simple
deterministic function of time. A notable example is Kitchin (1923), in which both cyclical
and trend movements in data taken from the United States and Great Britain over the period
from 1800 were analysed. Kitchin concluded that business cycles averaged 40 months in
length (the eponymous Kitchin cycle) and that trade cycles were aggregates of typically two,
and sometimes three, of these business cycles. Of equal interest is his conclusion that there
had been several trend breaks - the final one, marking the commencement of a downward
trend, occurring in 1920. Frickey (1934) gives a taste of the variety of methods then available
for fitting trends, with twenty-three different methods used to fit a trend to pig-iron
production from 1854 to 1926. Cycles were then constructed by residual, producing average
cycles ranging in length from 3.3 to 45 years, thus showing how the observed properties of
cyclical fluctuations could be totally dependent on the type of function used to detrend the
observed data, a phenomenon that still causes great debate today.

Further difficulties with analysing economic data that appeared to exhibit cyclical
behaviour were emphasised by the time series research of Yule (1926, 1927) and Slutsky
(1927, 1937). Yule showed that uncritical use of correlation and harmonic analysis, both very
popular at the time, was rather dangerous, as ignoring serial correlation in, and random
disturbances to, time series could easily lead to erroneous claims of significance and mistaken
evidence of harmonic motion. Slutsky’s papers (the later one being an English translation and
update of the earlier, which was written in Russian) investigated a more fundamental problem
- that observed cycles in a time series could be caused entirely by the cumulation of random
events. Slutsky’s research was not aimed primarily at analysing business cycles, but Kuznets
(1929) took up this issue and used simulation and graphical techniques to explore which
shapes of distributions of random causes, which periods of moving averages, and which
weighting systems produced the most cyclical effects. Indeed, Kuznets pointed out that this
analysis not only removed the necessity for having a periodic cause for economic cycles, but
could also make further discussion of the causes of business cycles superfluous.

These studies paved the way for the first detailed macrodynamic models of the business
cycle to be developed. Frisch’s (1933) ‘rocking horse theory’ of the business cycle, which
became very influential, was built on the ideas of Yule and Slutsky (see also Frisch, 1939)
and this led to the first multi-equation econometric models of the business cycle being
developed (see, for example, Tinbergen, 1937). While extremely influential, such models lie
outside the scope of this chapter and we therefore move on to 1946, which saw the
publication of Burns and Mitchell’s magnum opus for the National Bureau of Economic
Research (NBER), in which they produced a new set of statistical measures of the business
cycle, known as specific cycles and reference cycles, and used these to test a number of
hypotheses about the long-term behaviour of economic cycles (Burns and Mitchell, 1946).
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This volume created a great deal of interest and provoked the review of Koopmans (1947),
which initiated the famous ‘measurement without theory’ debate in which he accused Burns
and Mitchell of trying to measure economic cycles without having any economic theory about
how the cycle worked. This review in turn produced Vining’s (1949) spirited defence of the
Burns and Mitchell NBER position, in which he charged Koopmans with arguing from a
narrow perspective, that associated with the ‘Cowles group’, which had yet to demonstrate
any success in actual empirical research.

Although the ‘measurement without theory’ debate obviously focused on the
measurement and theoretical modelling of business cycles, it also revealed some disquiet
about the role of secular trends and the methods by which they had been removed before
cyclical fluctuations could come to the forefront of the analysis. A not too distorted caricature
is that data needs only to be detrended by a simple and readily available method so that
attention can quickly focus on the much more interesting aspects of cyclical fluctuations.
Such an approach is only justifiable if there is indeed little interaction between the trend
growth of an economy and its short-run fluctuations but, even then, instability in the trend
component and/or the use of an incorrect procedure for detrending will complicate the
separation of trend from cycle. It took another decade for techniques to begin to be developed
that would, in due course, lead to a revolution in the way trends and cycles were modelled
and extracted. The groundwork was prepared by a number of papers appearing in the early
1960s, notably Box and Jenkins (1962), Cox (1961), Kalman (1960), Kalman and Bucy
(1961), Leser (1961), Muth (1960) and Winters (1961), which led, after a further decade or
so, to the framework for time series decomposition that we now outline.

2. A General Framework for Decomposing Time Series

The general framework that has been developed for considering issues of time series
decomposition is to suppose that an observed discrete time series tZ  may be decomposed as

ttt NSZ += (1)

with the objective being to use the data on tZ  to estimate the unobserved component series

tS  and tN . These component series might represent ‘signal plus noise’, or ‘seasonal plus
nonseasonal’, as suggested by the choice of letters by which they are denoted, but alternative
representations, such as ‘trend plus error’, are equally valid. Models admitting
decompositions of this type are often referred to as unobserved component (UC) models. Here
only two unobserved components are considered for conceptual ease but (1) will be extended
to include several components in later sections.

Signal extraction results for optimal linear estimators of the components when they are
assumed to be stationary and mutually uncorrelated and when an infinite realisation of tZ  (or
at least a very long time series) is available may be found in Whittle (1984): optimal being
used here in the minimum mean square error, MMSE, sense. This monograph also
summarises, and provides references to, earlier results of Wold, Kolmogorov and Wiener.
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The core result is the following. Suppose that the autocovariance generating function (ACGF)
of tZ  is defined as

( ) ∑∞

−∞=
=

j
j

jZZ BB ,γγ (2)

where ( )( )ZjtZtjZ ZZE μμγ −−= −,  is the lag j autocovariance of tZ , ( )tZ ZE=μ  is

the mean of tZ , and B is the lag operator such that jtt
j ZZB −≡ . Note that, since

jZjZ −= ,, γγ , ( )BZγ  is symmetric in B. Similarly, define the ACGF of tS  to be ( )BSγ .

The MMSE estimator of tS , based on the ‘infinite’ sample …… ,,,, 11 +− ttt ZZZ , is then

( )∑∞

−∞= −∞ ==
j tjtjt ZBZS ϖϖ , ( ) ( )

( )B
B

B
Z

S

γ
γ

ϖ = (3)

( )Bϖ  is often referred to as the Wiener-Kolmogorov (W-K) filter and the result (3) has been

extended to incorporate non-stationary tZ  and tS , and indeed tN : see, for example, Bell

(1984) and Burridge and Wallis (1988). If tZ  has the Wold decomposition ( ) tt eBZ ψ= ,

where te  is serially uncorrelated (white noise) with zero mean and variance 2
eσ , then its

ACGF is

( ) ( ) ( ) ( ) 2212 BBBB eeZ ψσψψσγ ≡= − (4)

and expressions of the form of (4) will be used freely throughout this chapter.

3. Signal Extraction from ARIMA Models

3.1. The Beveridge-Nelson Signal Extraction Filter

We now consider the case when tZ  is integrated of order one, so that tZΔ  admits the
Wold decomposition

( ) ∑∞

= −+=+=Δ
0j jtjtt eeBZ ψμψμ (5)

Since ( ) ∑= jψψ 1  is a constant, we may write

( ) ( ) ( )BCB += 1ψψ
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so that

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )( )…

…
……

−++−+−−−=

−−−−−−−=

++++−++++=

−=

2
321

3
3

2
21

321
3

3
2

21

111

111

11
1

BBBB

BBB

BBB
BBC

ψψψ

ψψψ

ψψψψψψ

ψψ

i.e.

( ) ( ) ( ) ( ) ( )( ) ( )BBBBBC
j jj jj j ψψψψ ~Δ=−−−−−= ∑∑∑ ∞

=

∞

=

∞

=
…2

321
1

Thus

( ) ( ) ( )BB ψψψ ~1 Δ+=

implying that

( ) ( ) ttt eBeZ ψψμ ~1 ΔΔ ++= (6)

This gives the decomposition due to Beveridge and Nelson (BN, 1981), with components

( ) tt
j

jt eeS 1
0

BN ψμψμ +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∞

=

Δ (7)

and

( ) tt
j

jt
j

jt
j

jt eBeeeN ψψψψ ~
2

3
1

21

BN =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −

∞

=
−

∞

=

∞

=
∑∑∑ … (8)

Since te  is white noise, the BN signal is therefore a random walk with rate of drift equal to μ

and an innovation equal to ( ) te1ψ , which is thus proportional to that of the original series.
The BN noise component is clearly stationary, and is driven by the same innovation as the

trend component. The BN trend will have an innovation variance of ( ) 221 eσψ , which may be

larger or smaller than 2
eσ  depending on the signs and patterns of the jψ s.

A simple way of estimating the BN components is to approximate the Wold
decomposition (5) by an ARIMA ( )qp ,1,  process (see, for example, Newbold, 1990)

( )
( )

( )
( ) ttp

p

q
q

t e
B
Be

BB
BB

Z
φ
θμ

φφ
θθ

μ +=
−−−

+++
+=

…
…

1

1

1
1

Δ (9)
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so that

( ) ( )
( )

( )
( ) t

p

q
ttt eeeS

φφ
θθ

μ
φ
θμψμ

−−−

+++
+=+=+=

…
…

1

1BN

1
1

1
11Δ (10)

where ( ) ( ) ( )111 φθψ = , often referred to as the ‘persistence’ of the process. Equation (9)
can also be written as

( )
( ) ( ) ( ) tt eZ
B
B 11 ψμψ

θ
φ

+=Δ (11)

and comparing (10) and (11) shows that an estimate of the signal is given by

( )
( ) ( ) ( ) tttt ZBZ
B
BS BNBN 1 ωψ

θ
φ

== (12)

The notation BN
ttS  signifies that the filter uses the set of observations jtZ − , 0≥j . The

signal is thus a weighted average of current and past values of the observed series, with the
weights summing to unity since ( ) 11 =ω . The noise component is then given by

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) tttttt Z

B
BBZBZBZBZN

θφ
φθθφωωω

1
11~1 BNBNBNBN −

==−=−=

Since ( ) ( ) 0111~ BNBN =−= ωω , the weights for the noise component sum to zero. Using
(9), this component can also be expressed as

( ) ( ) ( ) ( )
( ) ( ) tt e

B
BBN

Δφφ
φθθφ

1
11BN −

= (13)

Since BN
tN  is stationary, the numerator of (13) can be written as

( ) ( ) ( ) ( ) ( )BBB ϕφθθφ Δ=− 11 , since it must contain a unit root to cancel out the one in the

denominator. As the order of the numerator is ( )qp,max , ( )Bϕ  must be of order

( ) 1,max −= qpr , implying that the noise has the ARMA ( )rp,  representation

( ) ( ) ( )( ) tt eBNB 1BN φϕφ =

As an example of the Beveridge-Nelson decomposition, consider the ARIMA(0,1,1) process
for tZ
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1−++= ttt eeZ θβΔ

The BN decomposition of this process is

( ) tt eS θμ ++= 1BNΔ

tt eN θ−=BN

The BN signal filter is

( ) ( ) ( )( ) ( ) ( )
( ) BN

11

0
221BN

1

11111

−−

∞

= −
−

−+=

−+=+−+−=++= ∑
ttt

j jt
j

tttt

SZ

ZZBBZBS

θθ

θθθθθθθ …

while the noise filter is

( ) ( )
( )

( )
( ) ( ) ( )

BN
11

0
1BN 1

1
1

1
11

−−

∞

= −
−

−−=

−−=+−=
+
−−

=
+

+−+
= ∑

ttt

j jt
j

ttttt

NZ

ZZBZ
B
BZ

B
BN

θθ

θθθθ
θ

θ
θ

θθ

Δ

ΔΔ

which can be seen to be exponentially weighted moving averages of past values of tZ  and

tZΔ , respectively, with weights given by the MA parameter.
Such a model fitted to the logarithms of seasonally adjusted U.S. GNP from 1947.1 to

2007.4 (shown in figure 1) obtained

( ) ( ) 1062.0001.0
250.0008.0 −++= ttt eeZΔ 0094.0ˆ =eσ

where standard errors are shown in parentheses. The BN decomposition is thus

tt eS 25.1008.0BN +=Δ

tt eN 25.0BN −=

while the signal and noise filters are

( )∑∞

= −−− −=−=
0

BN
11

BN 25.025.125.025.1
j tttjt

j
tt SZZS

( )∑∞

= −−− −−=−−=
0

BN
11

BN 25.025.025.025.0
j tttjt

j
tt NZZN ΔΔ
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Since 25.0ˆ =θ , the changes in tZ  are positively autocorrelated and the innovations to the

trend component have a larger variance, by a factor of 5625.125.1 2 = , than the innovations
to the series itself. The noise component, on the other hand, will have a variance just 0.0625

the size of the series innovation variance. The reasonably small value of θ̂  ensures that BN
ttS

and tZ  are very close to each other, while the noise component BN
ttN  is shown in figure 2.

Figure 1. Logarithms of U.S. GNP: 1947.1 – 2007.4.

Figure 2. Beveridge-Nelson noise component obtained by fitting an ARIMA ( )1,1,0  process to the
logarithms of U.S. GNP.
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Forecasts from this model are derived directly from the ARIMA ( )1,1,0  representation and
thus increase by 0.008 each period, i.e., h-step ahead forecasts made at time T are given by

( ) heZhZ TTT 008.025.0ˆ ++= , with accompanying forecast standard errors given by

( )( ) 2
1

15625.110094.0 −+ h  (see, for example, Mills and Markellos, 2008, pages 57-64).
These forecasts and 68% (one standard error) forecast intervals up to end-2012 are shown in
figure 3.

Figure 3. BN forecasts of the logarithms of U.S. GNP until 2012.4.

3.2. A Beveridge-Nelson Smoother

The signal estimator (12) is ‘one-sided’ in the sense that only current and past values of
the observed series are used in its construction. Future values of tZ  may be incorporated to
define a ‘two-sided’ estimator based on the filter

( ) ( ) ( )[ ] ( )
( ) 2

2
22BNBNS 1

B

B
BB

θ

φ
ψωω == (14)

i.e.
( ) tt ZBS BNSBNS ω=∞

What is the rationale for this estimator, termed the Beveridge-Nelson smoother by Proietti
and Harvey (2000)? Suppose the ARIMA ( )qp ,1,  model (9) can be decomposed into a
random walk signal and a stationary noise component that are mutually uncorrelated, i.e.
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tt vS += βΔ ( ) tt uBN λ= (15)

where
( ) ( ) 0== tt uEvE ; ( ) 22

vtvE σ= ( ) 22
utuE σ=

( ) ( ) 0== −− jttjtt uuEvvE  for all 0≠j ; ( ) 0=− jttuvE  for all j.

Thus the innovations tv  and tu  are mutually uncorrelated white noise processes and the
decomposition is said to be orthogonal.

The ACGF of tZ  and its components are

( )
( ) 22

2
2

1 BB

B
eZ

φ

θ
σγ

−
=

2
2

1
1
B

vS
−

= σγ

( ) 22 BuN λσγ =

Thus the decomposition (1), along with the above assumptions, imply that

( )
( )

( ) 2222
2

2
2 1 BB

B

B
uve λσσ

φ

θ
σ −+= (16)

Setting 1=B , which is equivalent to equating the spectra of tZ  and tt SN + , and
evaluating at the zero frequency, yields

( )
( )

2
2

2

1
1

ev σ
φ
θσ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (17)

so that the W-K estimate of the signal is easily seen to be given by the Beveridge-Nelson
smoother (14). Substituting this expression for 2

vσ  into (16) gives

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) 22

2222
2

2

2

2
2222

1

11
1
11

B

BB

B

B
BB eeu

φφ

φθθφ
σ

φ
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φ

θ
σλσ

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−  (18)
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Equation (17) implies that the trend can be written as

( )
( ) ( ) ttt vvS ~1~
1
1 ψβ

φ
θβ +=+=Δ (19)

where tv~  is white noise with variance 2
eσ . Although (19) is also a random walk driven by an

innovation with the same variance as te , the innovation to the BN trend in (10), the two

components differ. The latter is a function of current and past observations of tZ , while the

former is an unobserved component whose estimate will depend upon future values of tZ  as
well.

Similarly, (18) shows that the noise component has the ARMA ( )rp,  representation

( ) ( )
( ) tt uBNB ~
1φ

αφ =

where ( )Bα  is an MA polynomial of order r such that

( ) ( ) ( ) ( ) ( ) 222222 111 BBBB φθθφα −=− (20)

and tu~  is a white noise component, again with variance 2
eσ . Although ( )Bα  and ( )Bϕ  are

of the same order, their coefficients will differ since the requirement that the signal and noise
components are uncorrelated results in parameter restrictions being embedded in (17). This
may be seen by considering the orthogonal decomposition for the ARIMA ( )1,1,0  process.

Since 0=r , ( ) 0αα =B  and so

( ) tt vS ~1 θβ ++=Δ tt uN ~
0α=

From (20), θα −=0 . However, the decomposition implies that

( ) 1
~~~1 −+−++= tttt uuvZ θθθβΔ

from which it is straightforward to show that the first order autocorrelation of tZΔ  is given
by

( ) 22

2

1 21 θθ
θρ
++

−=
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Clearly this is always negative, so that this model is unable to account for positive
autocorrelation in tZΔ . Moreover, given that the lower bound of 1ρ  for a first order moving

average process is 5.0− , this also implies that 01 ≤<− θ . This is known as the
admissability condition, which alternatively can be expressed as ( ) 1110 ≤+=< θψ , i.e.,

that persistence must be no greater than unity. Lippi and Reichlin (1992) prove that ( ) 11 ≤ψ
is required for any orthogonal decomposition into uncorrelated random walk signal and
stationary noise components.

The BN smoother for the ARIMA ( )1,1,0  model is

( ) ( )( ) ( )∑
∞

−∞=
−−∞ −

−
+

=
++

+=
j

jt
j

tt ZZ
BB

S θ
θ
θ

θθ
θ

1
1

11
11 1

2BNS

which clearly differs from the BN filter BN
ttS . Note that the BN smoother would not be

admissible for the logarithms of U.S. GNP, as the ARIMA ( )1,1,0  model fitted to this series

has 25.0ˆ =θ , implying ( ) 25.11 =ψ .

3.3. A Canonical Decomposition

Consider now the more general model for tZ

( ) ( ) tt eBZB θζ = (21)

where ( )Bζ  is of order P and has its zeros on or outside the unit circle. It is also now

assumed explicitly that ( )Bθ  has all its zeros outside the unit circle and that ( )Bζ  and

( )Bθ  have no common zero. Thus (9) has ( ) ( ) ( )BBB φζ −= 1  (the mean μ  is ignored

here for simplicity). If it is assumed that the noise component tN  is white, i.e., that tt uN = ,

then the signal tS  follows the process (see Tiao and Hillmer, 1978)

( ) ( ) tt vBSB ηζ =

where ( )Bη  is of order ),max( qPR ≤  and has all its zeros on or outside the unit circle.

Since ( ) ( ) ( ) ttt uBvBeB ζηθ += ,

( ) ( ) ( ) 222222
uve BBB σζσησθ += (22)

Thus, MMSE estimators of the components are
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However, given the model for tZ , the models for the components are not unique. Any choice

of ( )Bη , 02 ≥vσ  and 02 ≥uσ  that satisfies (22) will be an admissable decomposition.
Further, from (22) we have

( ) ( ) ( ) 222222

u
i

v
i

e
i eee σζσησθ λλλ −−− += (23)

so that

( )
( ) K
e
e

ei

i

u −= −

−
2

2
2 σ

ζ
θσ λ

λ ( )
( ) 02

2

≥= −

−

vi
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e
eK σ

ζ
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λ

λ

and the maximum possible value of 2
uσ  is thus

( )
( )

2
2

0

2 min λ

λ

πλ ζ
θσσ i

i

eu e
e
−

−

≤≤
=

Since the actual value of 2
uσ  is unknown, Tiao and Hillmer (1978) argue that it thus makes

sense to make this variance as large as possible subject to (22) since, intuitively, this extracts
the most white noise and thus extracts the strongest signal that can be recovered from the
original series. Hence they refer to the decomposition corresponding to 22

uu σσ =  as the
canonical decomposition. Tiao and Hillmer show that this canonical decomposition has the
following properties.

i. It produces the strongest possible autocorrelation structure for the signal, in the sense
that the absolute values of each autocorrelation coefficient of tS  is maximised when

22
uu σσ = .

ii. The moving average process ( )Bη  has at least one zero on the unit circle.

iii. The variance of the signal innovation, 2
vσ , is minimised when 22

uu σσ = , thus

making tS  as nearly deterministic as possible, so that it is the strongest signal

process which could lead to the known model (21) for tZ .
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The minimum variance properties of the signal carry over directly to the estimate

( ) tt ZBS ϖ=∞
ˆ . The filter ( )Bϖ  has the properties that ( ) 10 ≤≤ − λϖ ie  and, if and only if

22
uu σσ = ,

( ) 0min
0

=
≤≤

λ

πλ
ϖ ie

These follow from noting that
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and using the properties of (23).
Consider again the ARIMA ( )1,1,0  process

1−+= ttt eeZ θΔ (24)

Since 1=== qPR , the signal will also follow an ARIMA ( )1,1,0  process:

1−+= ttt vvS ηΔ (25)

with tt uN = , (24) and (25) imply that

111 −−− −++=+ tttttt uuvvee ηθ (26)

Multiplying both sides of (26) by ktkt ee −−− + 1θ , for 0=k  and 1, and taking expectations
yields the following equations

( ) ( ) 22222 211 uve σσησθ ++=+

222
uve σησθσ −=

These may be solved to yield

( )
( )

2
2

2
2

1
1

ev σ
η
θσ

+
+

=

and
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⎛
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The restriction 02 ≥uσ  requires

( ) ( ) ( )( ) 0111 22 ≥−−=+−+ ηθθηηθθη

which will be satisfied if 1≤≤ηθ . Moreover, differentiating (27) with respect to η  shows

that 2
uσ  reaches a maximum at 1=η . This value will be given by

( ) 2
2

2

4
1

eu σθσ −
=

with ( ) BB += 1η , the MMSE estimator is

( ) ( )
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Setting 1−=B  is equivalent to πλ = , so that ( ) 0=πϖ ie ; otherwise ( ) 10 ≤≤ − λϖ ie , as
required.

3.4. ARIMA Components

The previous section has considered the case where a known ARIMA model for the
observed series tZ  can be decomposed into an ARIMA signal and a white noise. Consider
now the more general case in which both the signal and noise components follow ARIMA
models

( ) ( ) tStS vBSB ηζ = (28)

( ) ( ) tNtN uBNB ηζ = (29)

where the pairs of polynomials ( ) ( ){ }BB SS ηζ ,  and ( ) ( ){ }BB NN ηζ ,  have their zeros lying

on or outside the unit circle and have no common zeros, and tv  and tu  are uncorrelated.

Then ttt NSZ +=  will follow the ARIMA model given by (21), but where ( )Bζ  is the
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highest common factor of ( )BSζ  and ( )BNζ , and ( )Bθ  and 2
eσ  can be obtained from the

relationship
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η
σ

ζ

θ
σ += (30)

The MMSE estimators of the components are then

( ) tSt ZBS ω=∞
ˆ ( ) tNt ZBN ω=∞

ˆ

where
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v
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ηζ
σ
σ

ω = ( ) ( )BB SN ωω −= 1

As an example, suppose that the signal is a random walk

tt vS =Δ

and tt uN = . Thus

11 −− +=−+= tttttt eeuuvZ θΔ (31)

and (30) becomes
22222 11 BB uve −+=+ σσθσ

Thus

( ) 22

2

1
1

B
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e

v
S

θσ
σ

ω
+

=

and, on defining the signal-to-noise ratio 22
uv σσκ = , the relationship between the

parameters of (31) and the component models can be shown to be

( )( )422
1 +−+−= κκκθ ( ) θθκ 21+−=

θσσ 22
ue −=
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Thus, for 0≥κ , 01 ≤≤− θ  and positive first order autocorrelation in tZΔ  (as found in

the logarithms of U.S. GNP) is ruled out. When 0=κ , 1−=θ  and the unit roots in (31)
cancel out and the overdifferenced tZ  is stationary, while ∞=κ  corresponds to 0=θ , in

which case tZ  is a pure random walk.

Typically, of course, tS  and tN  are unobserved, so that it is unrealistic to assume that
the more general component models (28) and (29) are known. Furthermore, without further
restrictions of the type considered above, equation (30) cannot be used to identify all the
parameters of the component models. As a result, the filters ( )BSω  and ( )BNω  cannot be
determined and the MMSE estimates cannot be calculated. Several alternative models have
therefore been assumed for the components that will allow the estimates of tS  and tN  to be
calculated, and these are now discussed.

4. Structural Models and State Space Forms

4.1. A General Class of Structural Models

To introduce the class of structural time series models, the decomposition (1) is
generalised to include a wider set of unobserved components representing different features
of the evolution of tZ :

ttttttZ ενψγμ ++++= , Tt ,,1…= (32)

In (32) tμ  is the trend, tγ  is the seasonal, tψ  is the cycle, tυ  is a stationary autoregressive

component, and tε  is the irregular, taken to be normal and independently distributed with

zero mean and variance 2
εσ , which we denote as ~tε NID ( )2,0 εσ .

Following Harvey and Trimbur (2003), the trend component is defined as

( )
t

k
ttt ηβμμ ++= −− 11 ( )2,0~ ηση NIDt (33)

( ) ( ) ( )1
1

−
− += j

t
j

t
j

t βββ kj ,,1…=

where ( ) ( )20 ,0~ ζσζβ NIDtt = . The kth-order stochastic trend tμ  is thus integrated of order

1+k , i.e., it is ( )1+kI  and becomes smoother as k increases. When 022 == ζη σσ  tμ

reduces to a polynomial trend of order k: k
kt tctcc +++= …10μ . For example, if 1=k ,

( ) ( ) βββ == −
1
1

1
tt  and βμμ += −1tt , so that tcctt 100 +=+= βμμ . If, further, 0=β ,

0ct =μ  and the trend is constant.
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The seasonal component takes an evolving trigonometric form. Assuming the number of
seasonal frequencies in a period (e.g., a year) is given by the even integer s, then

∑ =
=

2

1 ,
s

j tjt γγ

where each tj ,γ , 2,,1 sj …= , is generated by
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γ ( ) 22,,1 −= sj … (34)

tstssts ,21,22,2 cos ωγλγ += −

Here sjj πλ 2=  is the frequency (in radians) and ( )2
, ,0~ ωσω NIDtj  and

( )2*
, ,0~ ωσω NIDtj  are mutually uncorrelated disturbances having a common variance. The

component *
,tjγ  appears as a matter of construction to allow the seasonal to be modelled as a

stochastic combination of sine and cosine waves and its interpretation is not particularly
important. The seasonal component is deterministic if 02 =ωσ  and thus will evolve as a
regular cycle with an annual period s.

The cyclical component is defined by incorporating features of both (33) and (34):
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(35)
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ni ,,2 …= (36)

This is known as an nth-order stochastic cycle, with tn,ψ  appearing as tψ  in (32): such a

cycle is thus driven by shocks that are themselves periodic. ( )2,0~ κσκ NIDt  and

( )2* ,0~ κσκ NIDt  are mutually uncorrelated disturbances with common variance, 10 ≤< ρ
is the damping factor of the cycle and πλ ≤≤ c0  is the frequency in radians, so that the

period of the cycle is cλπ2 . Equation (35) has a pair of complex conjugate roots

( )cλρ iexp ±  with modulus ρ , and is therefore stationary for 1<ρ . Since the addition of

each term in (36) introduces another pair of such roots into the model, the overall condition
for stationarity remains the same, so that the relevant range for the damping factor is

10 << ρ .
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The variance of the nth-order stochastic cycle is, from Trimbur (2006, equation (16)),
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The τ th autocorrelation of the nth-order stochastic cycle is given by (Trimbur, 2006, equation
(26))
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Thus, for any n, the autocorrelation function is a damped cosine function with the damping
pattern depending on both ρ  and n.

The autoregressive component can be specified generally as an AR(2) process

( ) tttt ξνθθνθθν +−+= −− 221121 ( )2,0~ ξσξ NIDt

with stationarity being ensured if 1,1 21 <<− θθ . If 02 =θ  tν  will be AR(1), and will

then be the limiting case of a first-order stochastic cycle when 0=cλ  or π . Finally, it is
assumed that the disturbances driving each of the components are mutually uncorrelated.

A simple example of a structural model decomposes tZ  into a first order trend,

tttZ εμ +=

tttt ηβμμ ++= −− 11

ttt ζββ += −1
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and mutually uncorrelated irregular component tε . This can be written as

1
22

−+Δ+Δ=Δ ttttZ ζηε

thus implying an ARIMA ( )2,2,0  model for tZ

2211
2

−− ++= tttt eeeZ θθΔ ~te NID ( )2,0 eσ (37)

However, the structure of the component models places some quite severe restrictions on the
values that can be taken by 1θ  and 2θ  and, consequently, on the two non-zero

autocorrelations of tZ2Δ . For example, the first-order autocorrelation is restricted to the

interval [ ]0,3
2−  and the second-order autocorrelation to [ ]6

1,0 , while the restrictions placed
on the parameters that are needed to ensure that all innovation variances are non-negative can
be shown to be ( )221 14 θθθ +≤ , as well as the usual invertibility restrictions associated

with an MA(2) process: 10 2 <≤θ , 02 1 ≤<− θ , 01 21 >++ θθ  and 01 21 >+− θθ
(see, for example, Harvey, 1989, page 69, and Proietti, 2005).

4.2. State Space Formulation and the Kalman Filter

The complicated set of restrictions place upon ‘reduced form’ equations such as (37)
precludes the use of the W-K filter to estimate the unobserved structural components. Instead,
the structural model can be estimated by casting it into state space form (SSF), employing the
Kalman (1960) filter, and using various filtering and smoothing algorithms and nonlinear
optimising routines to estimate the parameters and components and to provide standard errors
and confidence intervals for them (see Koopman, Shephard and Doornik, 1999). These
routines are available in the commercial software package STAMP: see Koopman et al. (2006)
for details of the estimation procedures, filtering and smoothing routines, and discussion of
the supplementary diagnostic tests and graphical representations of the components and
related statistics.

The SSF can be constructed by defining the state vector as

( ) ( )
( ) ( )( )

( )TTTT

T

tttt

tttttntntsssttt
k

ttt

υψγβ ;;;

,,,,,,,,,,,,,,, 1
*
,1,1

*
,,,2

*
2222

*
,1,1

1

=

= −−− ννψψψψγγγγγββμ ………A

where T  denotes the transpose of a matrix or vector and

( ) ( )( )1,,, t
k

ttt ββμ …=Tβ

( ) ( )( )tsssttt γγγγγ ,,,,, *
2222

*
,11 −−= …Tγ
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( )*
,1,1

*
,, ,, tttntnt ψψψψ …=Tψ

( )1, −= ttt ννTυ

Defining the vector tx  as
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the measurement equation (i.e., equation (32)) can be written as

ttttZ ε+= Ax (38)

The transition equation for the trend is defined as

( ) ttkt ηββ += −+ 11T
where
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with [ ]0011 …=t  and kT  a kk ×  upper triangular matrix of ones, and where
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kι  being a k-vector of ones.

The transition equation for the seasonal component is

( ) ttst ωγγ += −1S
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( ) 22,,1 −= sj …

( ) ( )( )tstststtt ,2
*

,22,22
*
,1,1 ,,,,, ωωωωω −−= …Tω

The transition equation for the cycle is

( ) ttnt κψψ += −1C

where, on denoting ⊗  as the Kroneker product,

( ) 2ICCIC ⊗+⊗= nnn
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The transition equation for the autoregressive component is

ttt ξθυυ += −1

where
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The various components may be consolidated into the system transition equation
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i.e.,

ttt Ω+= −1RAA (39)

where the error system covariance matrix is given by
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�	� …Ω

The smoothed estimates of each of the components can generically be expressed as two-sided
weighted moving averages of the form, taking the trend as an example,

∑ −=

−= −=
Ttj

tj jttjTt Zw
1 ,μ̂

The patterns taken by the weights tjw ,  provide useful information and help the user to

understand what a particular model actually does and how it compares with other models. The
weights may be calculated by the technique developed in Koopman and Harvey (2003) and
automatically adjust as the estimator moves through the sample: again the algorithms for
computing these weights are provided in STAMP.

For the simple example of the first order trend plus irregular
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The transition equation provides insight into why this particular model is also known as the
local linear trend model. Define the expectation of the state at time ht + , conditional on
information available at time t, as

( )thttht Z++ = AA Eˆ (40)
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This will therefore be given by

tt
h

tht

h
AATA ⎥
⎦

⎤
⎢
⎣

⎡
==+ 10

1ˆ

so that the estimate of the level at time ht +  is

httht βμμ +=+ˆ

i.e, a linear trend in which the intercept and slope are time varying and hence are local
parameters.

Estimation of the state can be carried out via the Kalman filter. Using (40), the estimate
of the state tA , given information up to 1−t , is

( )11
ˆ

−− = tttt ZAA E

The MSE of this estimate is given by

( )( ){ }1111
ˆˆ

−−−− −−= ttttttttt Z
T

E AAAAP

To compute these, we use the recursive equations of the Kalman filter, given by

1ˆˆ
−−= tttt Z axε

2
1 εσ+= −

TxxP tttf

1
1

−
−= tttt fTxTPk

tttttt ε̂ˆˆ
11 kaAA += −+

QkkTTPP +−= −+ ttttttt fTT
11

and starting with 0A =01
ˆ  and QP =01 . Here tk  is known as the Kalman gain, while tû

and tf  are the one-step ahead prediction error (or innovation) and its MSE respectively. For
further technical details and extensions to the general class of models introduced above, see,
for example, Harvey (1989), Harvey and Shephard (1992) and Koopman et al (2006).

The estimate of the current state 1
ˆ

−ttA  may be thought of as a one-sided filter. Koopman

and Harvey (2003) show that this estimate can be expressed as
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( ) jt
t

j ttjtt Z −
−

= −− ∑= 1

1 11
ˆ AwA

where the weight vectors are computed by backward recursion as

( ) tjtttj kBAw ,1 =− ,  ( )xAwBB 1,1, −− −= ttjjtjt , ` 1,,2,1 "−−= ttj

with IB =−1tt . A two-sided filter estimate of the state, known as the smoothed estimate, is

obtained by running the backwards recursion

xkTL tt −=

ttttt f rLxr TT += −
− ε̂11 ,

ttttt f LNLxxN T1
1 += −
−

T 1,,1, "−= TTt

with initialisation 0Nr == TT  for a suitable choice of T. The smoothed state and
associated MSE matrix are then calculated as

111
ˆˆ

−−− += tttttTt rPAA

1111 −−−− −= tttttttTt PNPPP

Again, the smoothed estimate can be expressed in the form

( ) jT
T

j TtjTt Z −
−

=∑= 1

1
ˆˆ AwA

A structural model was fitted to the logarithms of U.S. GNP. As this series is already
seasonally adjusted, the seasonal component tγ  is absent, and the autoregressive component

tν  was also found to be unnecessary. The best fit was obtained with a first order trend (but

with 02 =ησ : this is known as the smooth trend model) and a second order cycle:

ttttZ εψμ ++= ,2

11 −− += ttt βμμ

ttt ζββ += −1
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The estimated parameters (along with 68% (one standard error) bounds, which are
asymmetric when the parameter is bounded) are

00082.0ˆ =ζσ 00179.000037.0 ≤≤ ζσ

00521.0ˆ =κσ 00679.000400.0 ≤≤ κσ

( ) 00758.02ˆ =ψσ ( ) 00988.0200582.0 ≤≤ ψσ

726.0ˆ =ρ 759.0692.0 ≤≤ ρ

280.0ˆ =cλ 438.0175.0 ≤≤ cλ

47.22ˆ2 =cλπ 92.35235.14 ≤≤ cλπ

( ) ( )ττρ τ
τ 31.0128.0cos73.02 +=

The estimated trend component is plotted superimposed on tZ  in figure 4: with 02 =ησ  the

trend is indeed seen to be smooth. The cyclical and irregular components are shown in figure
5. The stochastic cycle has an average period of 22 quarters, consistent with most views of a
business cycle (e.g., Baxter and King, 1999), although the amplitude of the cycles has
decreased since the mid-1980s, again consistent with other models of U.S. output. Similarly,
the irregular component displays decreased volatility since this time, consistent with the
findings, obtained using rather different approaches, of Kim and Nelson (1999) and
McConnell and Quiros (2000) concerning what has become known as the ‘Great
Moderation’.

Figure 6 plots the weight functions for the trend and cycle computed at the middle and at
the end of the sample, and shows how the filters are modified throughout the sample.
Forecasts of tZ  out to end-2012 are shown in figure 6, along with 68% forecast intervals. In
comparison with the BN forecasts, the structural forecasts are slightly lower but have larger
standard errors, being 30% larger by the end of the forecast period.
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Figure 4. Structural trend component superimposed on the logarithms of U.S. GNP.

Figure 5. Structural cycle and irregular components for the logarithms of U.S. GNP.
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Figure 6. Trend and cycle weights.  Top panel: weights at middle of sample (1977.2); bottom panel:
weights at end of sample (2007.4).
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5. Trend Filters

5.1. Henderson and Macaulay Trend Filters

An alternative to the structural model for representing local trend behaviour is to allow
the signal to be a polynomial in time,

∑ =
=

p

j
j

jt tS
0
β

but to allow the jβ  coefficients to vary across moving windows of size 12 +r  observations.

If the central time point of this window is t, tS  may then be estimated by the finite moving
average

( ) ∑ −= +=
r

rj jtj
r

t ZwŜ

The jw  weights will be particular to the choice of polynomial p and window 12 +r . As a

simple example (see Kendall, 1976, section 3.3, and Mills, 2007), suppose 3== rp .
Without loss of generality, we can take the time points in the window to be centred on 0=t ,
i.e., 3,2,1,0,1,2,3 −−−=t . As well as simplifying subsequent calculations, this

normalises the central point of the window to 00 β=S . Fitting the jβ  to the data tZ  by

least squares requires minimising
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t tt ttt t tttZSZN ββββ

Differentiating with respect to the jβ s gives the set of four equations

03
3

2
2

1
10 =−−−− ∑∑∑ ∑∑ +++ jjjjj

t tttttZ ββββ  3,2,1,0=j

Given the standardising of the window, 03 == ∑∑ tt , 70 =∑ t , 282 =∑ t  and

1964 =∑ t , so that the equations for 0=j  and 2=j  are

∑
∑

+=

+=
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2
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19628

28    7

ββ

ββ

tZ

Z

t

t
(41)

Solving for 0β  yields
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( )∑∑ −= 2
21
1
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0 β=Ŝ  and, in general,
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+++−−− −+++++−= tttttttt ZZZZZZZŜ

It is seen that the weights are symmetric and sum to unity. It can also be checked that

∑ ∑ ∑ === 032
jjj wjwjjw

These results are perfectly general, so that for a pth order polynomial trend

1=∑ jw 0=∑ j
k wj pk ≤<0 (42)

However, the weights will depend upon both r and p and many formulae are provided in
Kendall (1976, section 3.4). Note, however, that the equations in (41) show that 0β  does not

depend on 3β , so that the same expression for 0β , and hence ( )3ˆ
tS , would have resulted if a

quadratic, rather than a cubic, had been fitted. This result is perfectly general: the moving
average (filter) formula for an odd value of p also holds for the next lowest (even) p value.

The least squares criterion used above is equivalent to minimising

( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −=

2

t
r

t SŜEF

subject to the restrictions (42). These are sometimes referred to as Macaulay (1931) filters
and F is said to measure the fidelity of the filter. An alternative criteria is that of smoothness,
given by

( )( ) ⎟
⎠
⎞⎜

⎝
⎛= + 21 r

t
p ŜES Δ

Taking 3=p  as an example and recalling that 2
uσ  is the variance of the white noise

component tt uN = , Kenny and Durbin (1982) show that S can be expressed as
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( )232 ~S ∑ −=
=

r

rj ju wΔσ ΔΔ 11 )1(~ −− =−= BB

Minimising S subject to (42), along with the ‘boundary’ conditions 0=jw , rj > , using

Lagrange multipliers, yields

2
3

6~ bjawj +=−Δ rj ≤

The solution to this equation will be a polynomial of order 8 with roots ( )1+± r ,

( )2+± r , ( )3+± r , so that

( )( )( )( )( )( )( )2222222 321 bjajrjrjrw j +−+−+−+=

The coefficients a and b are determined from the constraints (42), so that Kenny and Durbin
(1982) report that

( )( )( )( ) ( )( ) ( )( )jrjrjrjrw j 111623321 2222222 −−+−+−+−+=

The so defined moving average ( )r
tS~  is known as a Henderson (1924) filter and is used in the

X-11 seasonal adjustment procedure, with typical choices of r being 9, 13 or 23. The weights
for the three filters are reported in, for example, Kenny and Durbin (1982).

Gray and Thompson (1996) extend this approach in several ways. The Henderson filters
used in X-11 also result if a quadratic local model is used and the filters are allowed to be
asymmetric. Gray and Thompson also consider the filters that result when a linear
combination of F and S is considered and when the model for tS  also includes a random
walk component. They suggest that such models may be estimated by fitting local polynomial
trends by generalised least squares.

5.2. Hodrick-Prescott, Butterworth and Low-Pass Filters

A filter that uses the concepts of fidelity and smoothness but in a somewhat different way
is that typically associated with Hodrick and Prescott (1997), although it had been proposed
earlier by Leser (1961). This filter, commonly known as the HP (trend) filter, was originally
developed as the solution to the problem of minimising the variation in the noise component
subject to a smoothness condition on the signal, an approach that has a long history of use in,
for example, actuarial science: see Whittaker (1923). This smoothness condition penalises
acceleration in the trend, so that the function being minimised is

( ) ( )( )∑∑ −+ −−−+ 2
11

2
ttttt SSSSN ξ
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with respect to tS , and where ξ  is a Lagrangean multiplier that has the interpretation of a

smoothness parameter. The higher the value of ξ , the smoother the trend, so that in the limit,

as ∞→ξ , tS  becomes a linear trend. The first-order conditions are

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )tttt

tttt

tttttt

SSSS
SSSS

SSSSSZ

−−−+
−−−−
−−−+−−=

+++

−+

−−−

112

11

211

2
4
220

ξ
ξ
ξ

which may be written as

( ) ( ) ( ) ( )( ) tttttt SBBSSSBSZ 212
21

2 11121 −
=+ −−+=+−−+= ξξ

or, in terms of the signal, as

( ) ( ) ttt Z
B

Z
BB

S 4212 11
1

111
1

−+
=

−−+
=

− ξξ
(43)

When written in this form, the expression may be compared with the model of section 3.4.
Recall equations (28) and (29), now with ( ) BBS −= 1ζ  and ( ) 1=BNζ . The ARIMA

model for tZ  will then have the AR polynomial ( ) BB −= 1ζ  and, from (30), a moving
average polynomial satisfying

( ) ( ) ( ) 2222222 1 BBBB NuSve ησησθσ −+=

The MMSE estimator of the signal is then

( )
( )

( )
( ) ( ) ( )

( ) tHPt
NvuS

S
t

e

SvHP
t ZBwZ

BBB

B
Z

B

B
S =

−+
==∞ 22222

2

22

22

1
ˆ

ησση

η

θσ

ησ

Comparing this with (43) shows that they will be identical if

( ) ( ) 11 −−= BBSη ( ) 1=BNη
22
vu σσξ =

In other words, the underlying unobserved component model must have a signal given by

tt vS =2Δ
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so that it is, in effect, a ‘smooth structural trend’ with a white noise irregular component. In

terms of the ARIMA ( )2,2,0  model (37), ( ) ( )2
22

4
2 11 θθθξ +−= . Setting 1600=ξ ,

i.e., 2 21600u vσ σ= , produces the HP filter proposed by Hodrick and Prescott (1997) for
quarterly observations, in which the innovations to the trend slope are extremely small
compared to the noise. Figure 8 shows this HP filter superimposed on the logarithms of U.S.
GNP. Compared to the structural decomposition, the HP trend is smoother and the HP cycle
has correspondingly more variation.

Figure 7. Forecasts of the trend component of the logarithms of U.S. GNP until 2012.4 with 68%
prediction intervals.

Figure 8. Continued on next page.
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Figure 8. HP trend and cycle computed with 16001=ξ  for the logarithms of U.S. GNP.

Consider now an alternative UC model taking the form

( ) t
n

t
d vBS += 1Δ

and

( ) t
dn

t uBN −−= 1

The MMSE estimate of the signal is then

( ) tBtn

B

B
tnn
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B
t ZBwZZ
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S =

⎟
⎠
⎞⎜

⎝
⎛+

=
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1

1
11

1ˆ

ξξ
(44)

The filter in (44) is known as the Butterworth (square-wave) filter and has a long history of
use in electrical engineering (see Pollock, 1999, 2000, and the references therein).

The HP and Butterworth filters are closely related to the idea of a low-pass filter.
Consider again the moving average filter

( ) ( ) t
r

rj jtj
r

t ZBwZwS == ∑ −= +
ˆ

It can be useful to consider the frequency domain properties of this filter. For a frequency λ ,
the frequency response function of the filter is defined as

( ) ∑ −=
−=

r

rj
ji

j eww λλ
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The gain of the filter is defined as ( )λw  and, if the filter weights are symmetric,

( ) ( )λλ ww =  since ( ) ( )λλ −= ww .

A basic building block in the design of filters is the low-pass filter, ( )λLw  say, which

passes only frequencies in the interval Lλλ < , where Lλ  is the cut-off frequency. It
therefore has the frequency response function

( )
⎩
⎨
⎧

>
<

=
L

L
Lw

λλ
λλ

λ
  if   0
  if   1

Since the filter passes low-frequency components but retains the high frequency ones, it
should have trend-extraction properties, which requires that ( ) 10 =w , which is ensured if
the weights sum to unity. The complement of the low-pass filter is thus the high-pass filter
having weights summing to zero.

In general, the frequency response function of the low-pass filter is given by

( ) ∑∞

−∞=
−=

j
ji

jLL eww λλ ,

so that the filter weights are given by the ‘inverse’

( ) ∫∫ −−
== L

L

dedeww jiji
LjL
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π

λ λ
π
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π 2

1
2
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,

Thus, using standard trigonometric results
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=

−

0≠j

The smoothing parameter ξ  in the Butterworth filter is typically chosen to correspond to a

frequency cut-off of Lλ . As the frequency response function of the filter is

( )
( )( ) n

i
B ew 22tan1

1
λξ

λ

+
=−

and since the gain should equal 0.5 at Lλ , solving this equation for this value gives
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( )( ) n
LL

2tan1 λξ =

In this way the Butterworth filter can be made to closely approximate the ideal low-pass filter
by choosing Lλ  and n appropriately. In a similar fashion, the HP filter can also approximate
the ideal low-pass filter by optimally choosing its smoothing parameter (see, for example,
Pedersen, 2001, and Harvey and Trimbur, 2008). In this case the smoothing parameter and

cut-ff frequency are related by ( )( )2cos141 LL λξ −= . For 1600=Lξ , 1583.0=Lλ ,
which corresponds to a period of 39.7 quarters, so that the cyclical filter contains components
with periodicity less than approximately 40 quarters.

A related idea is that of a band pass filter, which passes only those components having
frequencies lying in the interval ul λλλ ≤≤ . A variety of band pass filters have been
proposed that take their cue from the idea that the typical business cycle has a period of
between 6 and 32 quarters, i.e., 05.120.0 ≤≤ λ  (see Baxter and King, 1999, and Christiano
and Fitzgerald, 2003). Thus, in comparison, the HP cyclical filter will contain more high
frequency noise (components with periods less than six quarters) and some lower frequency
components than would be considered part of the trend by the bandpass filters.

6. Nonlinear and Nonparametric Trends

A general specification for the signal is to allow it to be some function of time, i.e.,
( )tfSt = . Most of the specifications so far considered can be put into this form, although

with the addition of an innovation to enable them to be local and/or stochastic. We consider
here specifications that are nonlinear but deterministic, in the sense that no innovations appear
in the model for the signal. Although local polynomials of t have been considered, ‘global’
polynomials would seem to be unattractive. Low values of the polynomial order would force
too restrictive a shape onto the signal function, while setting the order too high runs the risk
of overfitting, so that short-run movements become part of the signal, which then ceases to be
a smooth, only slowly changing, function of time.

One possibility is to consider the class of segmented or breaking trend models: see, for
example, Bacon and Watts (1971) and the discussion and references contained in Mills (2003,
chapter 2). Suppose, as is typical with this class of models, that we consider a linear function
with two regimes, having a change point at time τ . This may be modelled as

ttt tddtS δγβα +++= (45)

where td  is a dummy variable defined as

⎩
⎨
⎧

≤
>=
τ
τ

t
tdt 0

1
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The problem with this formulation is that the signal will shift abruptly at τ  from βτα +  to

( )τδβγα +++ . Continuity can be imposed through the restriction

βτα + ( )τδβγα +++=

This implies that 0=+ δτγ  and imposing this restriction on (45) yields

( ) ttt ttdtS δϕβατδβα ++=−++=

on defining

( )
⎩
⎨
⎧

≤
>−=−=
τ
τττϕ

t
tttdtt 0

Extensions to more than one break, to higher order polynomials and, indeed, combinations of
polynomials of different orders, are straightforward. Estimation of the model is also
straightforward. If the noise component is white, OLS estimation of the regression

ttt utZ +++= δϕβα (46)

provides a MMSE estimate of tS , while if the noise is an ARMA process, some form of
feasible GLS will be required.

Although the segmented trend imposes continuity, it does not impose a continuous first
derivative at the break point, so that the shift to a new regime is not smooth. The related
smooth transition model allows the signal to change gradually and smoothly between the two
regimes. A logistic smooth transition takes the form

( ) ( )τθβαβα ,2211 tt RttS +++=

where

( ) ( )( )( ) 1exp1, −−−+= τθτθ tRt

is the logistic smooth transition function controlling the transition between the two regimes.
τ  now has the interpretation of the transition mid-point since, for 0>θ , ( ) 0, =∞− τθR ,

( ) 1, =∞ τθR  and ( ) 5.0, =τθτR . The speed of the transition is determined by θ . If θ  is

small then ( )τθ ,tR  takes a long time to traverse the interval ( )1,0  and, in the limiting case

when 0=θ , ( ) 5.0, =τθtR  for all t. In this case

( )tSt 2121 5.05.0 ββαα +++=
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and there is just a single regime. For large values of θ , ( )τθ ,tR  traverses the interval ( )1,0
very rapidly, and as θ  approaches ∞+  it changes from 0 to 1 instantaneously at τ . In this
case the smooth transition is tantamount to the discontinuous segmented trend model (45). If

0<θ  then the initial and final regimes are reversed but the interpretation of the parameters
remains the same. The smooth transition has the appealing property that the midpoint of the
transition can be estimated, unlike the segmented trend model where the break times have to
be determined exogenously or through a time consuming iterative process. Although only two
regimes are allowed, this may not be a problem if the transition is slow.

A more general approach is to fit an unknown signal function ( )tf  nonparametrically.
This may be done by, for example, the nearest neighbours technique or by kernel local
polynomial regression. Detailed discussion of nonparametric curve fitting techniques may be
found in Simonoff (1996) and Wand and Jones (1995), for example, while Mills (2003,
chapter 5) discusses the application of such techniques to the fitting of trends in time series.

A segmented trend with a break imposed at 4.1972≡τ  (similar to the break imposed by
Perron , 1989) was fitted to the logarithms of U.S. GNP with the noise component modelled
as an AR(2) process, producing

( ) ( ) ( ) ttt NtZ +−+= ϕ
00037.000026.0020.0

00198.000944.0364.7

( ) ( ) tttt uNNN +−= −− 2060.01060.0
362.0267.1 00901.0ˆ =uσ

Figure 9. Segmented trend fitted to the logarithms of U.S. GNP.
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Trend growth is thus 0.94% per quarter (3.8% per annum) between 1947 and 1972 and
%75.0198.0944.0 =−  per quarter (3% per annum) from 1973 onwards. The parameters

of the fitted AR(2) noise component imply a pair of real roots of magnitude 0.83 and 0.43, so
that this does not exhibit (pseudo-)cyclical behaviour. The segmented trend break and
forecasts out to 2012.4 are shown in figure 9.

7. Signal Extraction from Finite Samples

7.1. ARIMA Components

The use of ARIMA processes for estimating the signal and noise components in section 3
has assumed that an infinite sample is available: hence the summation range and notation used
for the W-K MMSE estimator shown in equation (3). In this section issues arising when only
a finite sample is available, i.e., Tttt ZZZZZ ,,,,,, 111 …… +− , are considered. The focus here
is on the ‘end-point’ problem: that all two-sided estimators of components will fail to provide
estimates near to the start and end of the finite sample.

We begin by considering estimating TS , so that (3) becomes the concurrent, or one-
sided, filter

( ) ( ) TSj jTjT ZBZS 0
00 ϖϖ == ∑∞

= −

Given the ARIMA components for tS  and tN  shown in (28) and (29), then from Bell and
Martin (2004), for example,
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The notation [ ]+⋅  indicates that only terms with non-negative powers of B are retained. If it is

assumed that ( )BSζ  and ( )BNζ  have no common factors, so that ( ) ( ) ( )BBB NS ζζζ = ,
then (47) becomes
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0 (48)

It can be shown that the expression inside [ ]+⋅  in (48) can be written as (Bell and Martin,
2004)

( ) ( ) ( )
( ) ( )

( )
( )

( )
( )B
Bd

B
Bc

BB
BBB
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SSN

ζθζθ
ηηζ

+= −
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1

1

11

(49)

where
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( ) h
h BcBcBc −−− ++= "1

1
1

and
( ) k

k BdBddBd +++= "10

satisfy the relationship

( ) ( ) ( ) ( ) ( ) ( ) ( )BBBBBdBBc SSNS ηηζθζ 1111 −−−− =+

and
( )SN qpqh += ,max ( )SS qpk ,1max −=

Here Np  and Sq  are the orders of Nζ  and Sη . Two algorithms for computing ( )1−Bc  and

( )Bd  are given in the Appendix of Bell and Martin (2004) and in Bell and Martin (2002),
respectively.

With the partial fraction expansion (49), the filter (48) can be rewritten as
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which, because the expansion of ( ) ( )11 −− BBc θ  involves only negative powers of B,
reduces to

( ) ( ) ( ) ( )
( )B

BdB
B N

e

v
S θ

ζ
σ
σ

ϖ 2

2
0 = (50)

As an example of this approach, consider again the random walk signal plus white noise
model (31). In this case, the filter (48) is
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and, since 1=h  and 0=k , the partial fraction expansion (49) is
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Solving
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yields

θ
θ
+

−=
11c
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0d

so that (50) becomes
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on using ( ) 222 1 ev σθσ += .

Consider now estimating mTS − , 0>m . The MMSE estimator is

( ) ( ) mT
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where the asymmetric filter ( ) ( )Bm
Sϖ  is now given by
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It then follows that (50) extends to
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where ( )m
Sd  is a polynomial in B of order ( ) ( )mqpk SS

m
S +−= ,1max . A parallel

derivation establishes that the MMSE estimator of tN  is
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where ( )m
Nd  is of order ( ) ( )mqpk NN

m
N +−= ,1max  and where ( ) ( ) ( ) ( )BB m

S
m

N ϖϖ −= 1 .

For 0<m , ( tZ  in the future), this relationship does not hold, although a generalised result
does (see Bell and Martin, 2004, equation (25)).

For the random walk signal plus white noise model, it can be shown (Pierce, 1979) that,
for 0≥m ,
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while for 0<m
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Thus, when estimating tS  for the current period ( 0=m ) or recent periods ( 0>m ), an

exponentially weighted moving average is applied to tZ , beginning with the most recent data

available, but not otherwise depending on m. For 0<m , when tS  is being estimated using

some, but not all, of the relevant future observations on tZ , the filter consists of two parts:

the same filter as in the 0≥m  case, but applied to the furthest forward observation and with

a declining weight ( )m−−θ  placed upon it, and a second term capturing the additional
influence of the observed future observations.

7.2. Moving Average Filters

As noted above, the filters constructed in section 5.1 cannot be used to estimate the trend
at the beginning or end of the sample. Concentrating on the latter, which is usually of much
greater interest, consider again fitting a cubic using a window of width 7 centered on 0=t ,
but where we now want to estimate tS  at 321 ,,=t  as well. Supplementing (41) with the

equations for 1=j  and 3 gives
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These equations may be solved to yield
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Hence, if the sample available is Tttt ZZZZZ ,,,,,, 111 …… +− , then
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Note that the weights continue to sum to unity but they become more and more unequal as we
move closer to the end of the sample. Obviously, a similar procedure can be used for other
values of p and r, but the algebra becomes lengthy. Weights for 5≤p  and 10≤r  are given
as Appendix A of Kendall (1976). Asymmetric extensions to Musgrave filters are provided in
Quenneville, Ladiray, and Lefrançois, (2003); see also Gray and Thomson (2002).

To deal with the finite sample problem for the HP filter, note that (43) can be written as

( ) 2112 4614 ++−− +−++−= tttttt SSSSSZ ξξξξξ
so that

( )2112 464 ++−− +−+−= tttttt SSSSSN ξ

This expression cannot be used when 1=t , 2, 1−T  or T, when it is modified to

( )3211 2 SSSN +−= ξ

( )43212 452 SSSSN +−+−= ξ

( )TTTTT SSSSN 254 1231 −+−= −−−− ξ

( )TTTT SSSN +−= −− 12 2ξ

respectively. Define ( )T
TZZ ,,1 …=Z , ( )T

TSS ,,1 …=S  , SZN −=  and
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The ‘system’ can then be written as ( ) ZISN ΓΓΓ ξξξ 1−+== , from which the signal can

be recovered as ( )( )ZIINZS ΓΓ ξξ 1−+−=−= . This system has been used to generate
the HP estimates at the ends of the sample shown in figure 8, but it should be realised that
such end of sample estimates are much less reliable than those obtained in the central block of
observations.

The HP and Butterworth filters can both be written in the structural form

( )
( )

( ) t
n

td

m

ttt uBv
B
BNSZ −+

−

+
=+= 1

1
1

The HP filter sets 2=d  and 0== nm , while the Butterworth filter has dmn −= . The
procedure proposed by Pollock (2000, 2001, 2006) deals with a finite sample in the following

way. The operators ( )kB+1  and ( )kB−1  can be expressed as

( ) k
k

k BBB δδ +++=+ …111 ( )!!! ikiki −=δ ki ,,1…=
and

( ) k
k

k BBB γγ +++=− …111 ( ) i
i

i δγ 1−= ki ,,1…=

so that the following transformation matrices can be defined
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and
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Defining ( )T
Tuu ,,1 "=u  then, since ( ) t

n
t uBN −= 1 , uQN n= , with ( ) 0N =E  and

( ) ( ) nunnunn Σ22 σσ === TTTTE QQQuuQNN

where T
nnn QQ=Σ . The decomposition SNZ += can then be written as

znsuQvR
NQSQZQ

=+=+=

+=

−dnm

ddd

where ( )T
Tvv ,,1 "=v  and

( )Tddm ss ,,1 "+=== SQvRs

and similarly for n and z, so that the first d observations are lost through differencing. Thus

( ) 0s =E ( ) ( ) RRRRvvRss Ω22
vmmvmm σσ === TTTT EE

( ) 0n =E ( ) ( ) QQQQNNQnn ΩΣ 22
udndudd σσ === TTTT EE

and

( ) 0z =E ( ) ( )( ) ( ) ( ) QRnnssnsnszz ΩΩ 22
uv σσ +=+=++= TTTT EEEE

The optimal estimate of s given n is then given by the conditional expectation

( ) ( ) ( )
( ) ( )( )zz
zz
szszss E

E
E

EEˆ T

T

−+==
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Using ( ) ( )( ) ( ) Rssnsssz Ω2
vσ==+= TTT EEE , since ( ) 0sn =TE ,

zzs
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+
=

+
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Similarly,

zszn
QR

Q

ΩΩ
Ω
λ

ξ
+

=−= ˆˆ

Computationally, these estimates are obtained by solving the equation

( ) zbQR =+ ΩΩ ξ

for the value of b and then computing

bs RΩ=ˆ bn QΩξ=ˆ (51)

However, the primary aim is to obtain the trend estimate Ŝ . Using sQ ˆ1−d  will only provide

estimates for the last 1+d  observations, though. The problem of finding the d initial
conditions can be circumvented by noting that the trend estimation problem is equivalent to

minimising ( ) ( )SZSZ ˆˆ T
−− −1Σ  subject to sSQ ˆˆ =d . This requires evaluating the

Lagrangean function

L ( ) ( ) ( ) ( )sSQaSZSZS ˆˆˆˆ,ˆ T
−+−−= −

d21Σα

where a is the vector of Lagrange multipliers, for which a first order condition for a minimum
is

( ) 0aQSZ =−−− TTˆ
d

1Σ

Premultiplying by ΣdQ  yields

( ) TTˆ aQQSZQ ddd Σ=− (52)

But, from (49)

( ) bQQbnszSZQ Q
Tˆˆˆ
ddd ΣΩ ξξ ===−=−

Hence

( ) ( ) bSZQQQa ξ=−=
− ˆTT

ddd
1

Σ
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Substituting into (52) thus obtains

bQZS Tˆ
dΣξ−=

so that

bQN Tˆ
dΣξ=

and hence both the signal and noise components can be estimated using matrix operations.

7.3. Structural, Nonlinear and Nonparametric Trends

These techniques do not, on the face of it, run into problems of missing values at the ends
of a finite sample. Indeed, the restriction to a finite sample of size T has been explicitly made
in the development of structural models, which employ the recursive estimation techniques of
the Kalman filter, and for the nonlinear and nonparametric trend specifications, which are
also explicitly designed for finite samples. However, modelling a smooth transition when the
regime shifts near to the beginning or end of the sample may be computationally difficult.
With nonparametric trends, it has been found that odd-order local polynomials have clear
advantages of even-order ones for trend-fitting in these ‘boundary’ regions. See Wand and
Jones (1995) and Simonoff (1996) for details on this. Links between non-parametric trends
and UC models are developed in Harvey and Koopman (2000), who argue for a clear
preference for the latter.

8. Conclusion

This chapter has considered a variety of techniques for modelling and extracting
components of nonstationary time series. Rather than listing these and reiterating their
properties, table 1 reports the forecasts of the logarithms of U.S. GNP out to 2012.4, along
with forecast standard errors, for the three techniques that allow such quantities to be readily
computed. The BN forecasts (essentially the forecasts from a drifting ARIMA ( )1,1,0
process) produce forecasts of GNP that, by end-2012, are 2.4% larger than those from the
structural model and 0.4% larger than those from the segmented trend. On the other hand, the
segmented trend forecasts are accompanied by the smallest standard errors, essentially
because these are forecasts from a trend stationary process for which uncertainty is bounded.
Although the structural trend forecasts are accompanied by the largest standard errors, it may
be argued that these best reflect the natural variability of the data and hence the uncertainty
likely to be found in forecasts of GNP. In any event, what this table shows, along with the
earlier figures, is that alternative models will produce different component decompositions
and forecasts with different accompanying measures of imprecision. It is therefore important
to understand the properties of the decomposition technique that is chosen for analysing an
economic time series.



Terence C. Mills102

Table 1. Forecasts of the logarithms of U.S. GNP from three
decomposition techniques with accompanying forecast standard errors

BN BN
std err

Structural
trend

Structural
trend

Std err

Segmented
trend

Segmented
trend

std err
2008.1 9.3826 0.0094 9.3833 0.0093 9.3884 0.0168
2008.4 9.4066 0.0224 9.4022 0.0267 9.4108 0.0171
2009.4 9.4386 0.0325 9.4284 0.0405 9.4407 0.0176
2010.4 9.4706 0.0401 9.4559 0.0500 9.4705 0.0181
2011.4 9.5026 0.0465 9.4834 0.0612 9.5004 0.0186
2012.4 9.5356 0.0521 9.5107 0.0746 9.5303 0.0190
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Abstract

In this paper we study the gains that securitizing companies enjoy. We expressed the gains as
a spread between two costs of capital, the weighted cost of capital of the asset selling firm and
the all-in, weighted average cost of the securitization. We calculate the spread for 1,713
securitizations and regress those gains on asset seller characteristics. We show that they are
increasing in size in the amount of asset backed securities originated but are decreasing in the
percent of the balance sheet that the originator has outstanding. Companies that off-lay the
risk of the sold assets (i.e., those retaining no subordinate interest in the SPV) pick their best
assets to securitize. Companies that do not off-lay risk gain more from securitization the less
liquid they are. We find that securitization is a substitute for leverage and that those
companies that use more conventional leverage benefit less from securitization.

Introduction

Securitization, the sale of fixed income assets into bankruptcy-remote, special purpose
vehicles (SPVs) funded by the issuance of new asset backed securities (ABS)1, has achieved
                                                       
1 We use the term asset backed securities (ABS) to include all debt securities issued by bankruptcy remote special

purpose entities backed primarily by fixed income assets.  The term includes both pass-through securities
including traditional mortgage backed securities (MBS) as well as pay-through securities.  The SPV is a shell
with no assets but the fixed income financial assets.  It can be a limited liability company, a limited partnership
or a trust account We use the term “fixed income” in a loose sense, encompassing not only traditional debt
securities, but also near fixed income cash flows such as toll road revenues, lease payments.  These flows must
be sufficiently predictable to allow the largely debt-financed SPV’s debt to attract sufficiently high debt
ratings to allow the transaction to proceed economically.
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tremendous popularity. From 1985 through 2003, ABS issues enjoyed an 18 percent per
annum compound growth rate and rose to become the dominant fixed income security in the
world. Today global outstanding ABS issues total approximately US$9 trillion. In the US,
which accounts for about $7 trillion, half of all ABS are agency-based mortgaged backed
securities. This article concerns the other, faster growing half, including securitizations of
corporate receivables, credit card debt, auto loans and leases, home equity loans, non-agency
guaranteed mortgages, etc., is approximately the same size as the treasury markets and
exceeds the size of the corporate bond markets.

Source: U.S. Federal Research Board.

Figure 1. US Debt by Category. (in billions of dollars).

Securitization, is a fundamental device changing the relationships between banks (and
other financial institutions), non-financial corporations and financial markets. In this paper,
we investigate how securitization adds value to the asset sellers through a direct measurement
of cost of capital. We do this to lend light to the banking literature that has several divergent
views of securitization. In their banking text, Greenbuam and Thakor (1995) observe that
securitization permits banks to unbundle the traditional lending function, allowing them to
specialize in the more basic activities in which they enjoy comparative advantages. In their
signaling model Greenbaum and Thakor (1987) show that grains are available to borrowers
with private knowledge of their individual credit quality who can signal that quality by
purchasing credit enhancements from banks in securitization. Pennacchi (1988) models a
securitization like contract of a bank that sells loans but, to alleviate the moral hazard of
selling fully the loans, retain the risk of the loan in a credit enhancement, or “equity position”
in the sold loan. Securitization alters the capital structure of the originator. Perry (1995) states
that for banks in general and for thinly capitalized banks in particular being both originator
and credit enhancer increases the risk of the bank. Securitizations circumvent the bankruptcy
process, possibly to the detriment of unsecured creditors [see Lupica (2000)]. Leland and
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Skarabot (2003) provide a simulation model for how securitization can improve an
originator’s capital structure as long as the volatility of securitized assets is substantially
different from the volatility of the assets that remain on the balance sheet.

Within this literature, there are several concerns voiced about securitization. If it is used
as a crutch for the weak banks, or to appropriate wealth from debt-holders, or for capital
arbitrage, or to deceive equity holders about the true risk of a corporation, then it should be
curtailed if not abolished. Bank regulators are especially concerned with the credit, liquidity
and operational risk retention and risk off-lay effects of bank securitizations on the
originating bank. The disclosures prescribed by FAS 140 [Financial Accounting Standards
Board (2000)], determine whether or not a securitized asset should be shown on-balance sheet
by applying the test of whether effective control is retained. This attempt to show the true
assets of the firm takes on even more importance in the post-Enron environment, because
Enron management used securitization to hide the risks it purported to sell but in fact
retained. See Burroughs et al. (2002) and Skipworth (2001).

Our tests in this paper follow in the tradition of Lockwood et al. (1996) and Thomas
(2001), who measure gains to securitization to the asset originator using event studies. The
former finds increases to shareholder wealth in well-capitalized banks, but finds no effect in
thinly capitalized banks while the latter finds positive to securitizations in years when banks
were not under pressure to increase capital levels. A recent paper by Ambrose, LaCour-Little
and Sanders (2004) asks the question “does regulatory capital arbitrage, reputation or
asymmetric information drive securitization?” and comes to the conclusion that capital
arbitrage or reputation is driving it.

Investment bankers promoting securitization, however, answer the question of what
drives securitization without hesitation. Securitization has grown rapidly because it provides
companies with cheap financing.2 In this paper, we estimate the gains in corporate wealth
from this cheap financing by estimating the percentage differential costs of capital. We
analyze these gains and show that they are increasing in size in the amount of ABS originated
but are decreasing in the percent of the balance sheet that the originator has outstanding.
Companies that off-lay the risk of the sold assets (i.e., those retaining no subordinate interest
in the SPV) pick their best assets to securitize. Companies that do not off-lay risk (i.e., those
who retain the concentrated first loss tranches that make up substantially all of the asset risk)
gain more from securitization the less liquid they are. Securitization is a substitute for
leverage; hence, those companies that use more conventional leverage benefit less from
securitization.

The gains to securitization can be expressed as a spread between two costs of capital, the
weighted cost of capital (WACC) of the asset selling firm and the all-in, weighted average
cost of the securitization ks.

skWACCSpread −=  (1)

                                                       
2  For example, Raynes and Rutledge (2003) who decry the inefficiencies of the ABS market, explained to the

author the persistence of these efficiencies by their observation that corporate treasures make so much money
for their firms by securitization that they are not concerned by the money left on the table by inefficient
structures of the SPVs.
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This paper has a very limited purpose. We calculate the spread to demonstrate its importance,
run a series of linear regressions to determine the factors that influence the spread, and
discuss the implications of our simple tests on further studies of securitization.

Calculating Costs of Capital

We use costs of capital to estimate gains to securitization because corporate treasurers
securitize to lower their costs of capital3. In most securitizations with single asset sellers, the
value left in the SPV after payment of all fees and principal and interest claims of the ABS
purchasers reverts back to the asset seller. This entitlement to residual cash-flows is
analogous to the residual rights of the equity holder if the assets remain under the ownership
of the asset seller; hence, securitization can be viewed as off-balance-sheet asset financing.

We calculate the weighted average cost of capital of the asset seller as follows

ESTDLTD k
A
Ek

A
STDk

A
LTDWACC •+•+•= (2)

Where WACC is the weighted average cost of capital of the asset seller; LTD  is the value
of the firm’s long-term debts; STD is the value of the firm’s short-term financial debts (i.e.,
excluding trade and other payables); E  is the value of the firm’s equity
and ESTDLTDA ++= . The terms STDLTD kk ,  and Ek  denote the costs of long-term
debt, short-term debt and equity respectively.

SPVs issue several classes of debt securities: A-Class (typically structured to be awarded
a triple A bond rating), M-Class (high rated subordinate debt), B-Class (lower rated
subordinate) and R-Class (unrated reserve trances)4. Each securitization is structured to
maximize the amount of funding in the senior, rated class, whose yields are the lowest. The
SPV is like a very simple, single purpose financial institution where management has
extremely limited discretion in managing the fixed income assets. Although SPVs tend to be
far more highly levered than regular financial institutions, SPVs do have an equity
component. This equity component is credit support, made up of two components, a funded,
un-rated reserve class, often retained by the asset seller and an “un-funded” portion. The

                                                       
3 Some securitizations are justified solely on the basis of increasing liquidity at the cost of increasing the cost of

capital, reducing concentrations in certain risks to rebalance the credit risk of the portfolio, freeing up
regulatory capital, meeting regulatory concentration limits, or improving the accounting appearance of the
company, regardless of costs of capital considerations.  Others are tax-motivated.  But the vast majority of
securitizations are justified on the basis of cost.

4 Our terms are consistent with those of ABSNet (www.absnet.net).  ABSNet is a partnership between Lewtan
Technolgies and Standard and Poor’s, that provides the most comprehensive database of ABS deal
performance data currently available.  It was set up to meet the needs of institutional investors who wish to
have up-to-date information on the quality of their investments.   The website gives the current performance
data and structure of outstanding ABS issues.

4 GMAC is a wholly owned subsidiary of General Motors set up to finance dealer inventories of automobiles.  It has
since expanded into consumer auto finance, insurance and mortgage financing to become one of the leading
finance companies in the world with assets of $250 billion.  Reflecting its lack  bank deposit bases and
relatively poor credit rating, it fund itself partly in the ABS markets with securitizations reported as $98 billion
with $5 billion in continuing interests in securitizations (i.e., first loss tranches).  See GMAC’s 2003 10K
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unfunded portion usually includes over-collateralization, injected either when the SPV was
formed or built up from the excess spread between the realized yield of the assets and the
funds paid out in fees and payments to the ABS holders and can also include partial
guarantees.

We compute the cost of securitization as follows:
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Where Sk  is the SPV’s all-in cost of capital, ik  is the interest rate of the i-th class and Ek  is

the cost of equity of the asset seller as calculated above; iD  is the dollar amount of the i-th

class of the securitization, RE  and CE  denote the amount in dollars of reserve and over-

collateralization, respectively; fr  is risk-free rate and fees denotes the out of pocket front-end

and annual fees to run the securitization expressed as an annuity in terms of percentage of the
securitization.

In this equation, the first term calculates the weighted cost of debt; the second term (in
square brackets) calculates the weighted cost of equity of the SPV and the third term adds the
floatation costs. We use the term equity somewhat loosely. RE  is legally subordinate debt,

constituting the bottom of the waterfall of subordination. CE  is the portion of the credit
support, made up of partial guarantees, paid in surplus and/or accumulated surpluses. Since it

is not included in the ABS claims on the SPV (i.e., in the denominator ⎟
⎠
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), we

cost it as an unfunded in cost of capital equation by subtracting off the risk-free rate. If
both RE  and CE  are owned by the asset seller who also is the residual claimant, then, clearly
the asset seller retains the concentrated risk of the securitization.

We assume that the cost of equity is the same for the SPV and the seller. This is likely to
be an overestimation of the cost of equity of the SPV for the following reason. The costs of
debt ik of the ABS are typically less than the costs of debt of the asset seller; therefore, the

equity cushion made up of RE  and CE  provides no less of a cushion to debt holders than the
equity of the asset seller provides to the debt-holders of the asset seller. Therefore, the equity
of the SPV should be no more expensive than the equity of the asset seller. Unfortunately,
since the equity of the SPV is not traded in public markets, we do not have information on its
pricing.

An investment banker giving indicative pricing to a potential asset seller would typically
quote the weighted average coupon plus the cost of fees to quote an all-in-cost of
securitization. In our equation, this corresponds to the first and third terms and would ignore
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the second term (i.e., the cost of equity5). Since the costs of debt of the securitization are
given by the coupons, but the cost of the equity is implicit, ignoring the second term is a
convenient simplification. But can be a useful simplification: if the transaction involves no
appreciable risk off-lay – i.e., if the first loss classes ( RE  + CE ) are retained by the asset
seller and if the capital at risk of the securitized assets is less than or equal to the first loss
classes, then one can calculate the gains to securitization simply by comparing the weighted
average coupon plus floatation costs with the cost of on-balance-sheet debt.

Potential Sources of Gains from Securitization

Using a no-arbitrage Modigiani and Miller (1959) argument, one can show that there
should be no increase in value to a firm simply by altering its capital structure—through
securitization or through any other device. If one separated the assets of a firm into two pools
and financed those two pools separately, the costs of capital would differ as long as the risk
characteristics of those two pools differed. Unless there are tax differences, bankruptcy cost
differences, or differences in the performance of the firm induced by the separation of assets
into the two pools, however, the weighted average cost of capital of the combined pools
should be the same as that of the company prior to separation.

The largest violation of Modiglianni and Miller invariance is the interest rate tax shield of
debt. Viewing securitization as an off-balance-sheet substitute for debt, a greater use of
leverage to gain the benefits of tax shields will reduce the scope for using securitization to use
the same tax shields in an off-balance sheet financing.

Leyland and Skarabot (2003), following Leyland (1993) look at the case where
securitization involves full sale of assets (without residual risk kept by the asset seller) where
tax differences and bankruptcy costs impact on optimal capital structure achieved through
securitization. Using a Merton (1974) framework and specifying that the corporation has two
portfolios with different but stable asset volatilities, recovery rates in default, and correlation
of returns, they show that optimal securitization conditions are those under which the merged
firm has a less efficient capital structure than the separate capital structures of the two
different firms. This explains the phenomenon that securitization favors sale of a firm’s
lowest volatility assets6. The sale leads to an increase in risk in the asset seller by the act of
securitization that increase the seller’s cost of capital and appropriates wealth from the asset
seller’s creditors. The differential in asset volatility within the portfolio gives rise to the gains
from securitization flowing from savings of bankruptcy costs. The bankruptcy costs are
calculated as a constant fraction of the bankrupt regardless of the portfolio.

Saving bankruptcy costs are probably a richer source of securitization’s gains than
modeled by Leyland and Skarabot. Not only are SPVs are structured to be bankruptcy
remote7, they are structured so that they will not go bankrupt themselves. In the event that the

                                                       
5 If the reserve tranche were purchased by an external party, its cost would also be included in the weighted average

coupon.  In our formula, we consider it in the cost of equity under the assumption that it is retained by the
asset seller.  The stated coupon, then, is irrelevant because residual cash-flow reverts to the seller.

6 Greenbaum and Thakor (1987)’s signaling model came to a similar conclusion.
7 See Cohn (1998) for a discussion of bankruptcy remoteness.  The degree to which a bankruptcy court can reach

into SPVs to recover value for the bankruptcy trustee of the asset seller was illustrated in Conseco in 2002-3.
After purchasing the sub-prme securitiztion asset originator Green Tree, Conseco went bankrupt partly
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SPV is unable to make payment on its obligations, there is no incentive for claimholders to
put the SPV itself into bankruptcy (assuming it is a corporate entity). By enforcing strict
priority of payout without recourse to the courts, SPV’s financial claimants gain from this
structure.

If securitization were a pure value transfer play from bondholders to stockholders,
information of a securitization should be greeted as bad news to bondholders.

Empirical support for the proposition that securitization expropriates creditors, however
is mixed. In his event study of shareholder and bondholder reactions to securitizations,
Thomas (2001) finds appropriation occurs among non-investment rated asset sellers but no
such effect is evident among investment grade asset sellers. Most asset sellers are investment
grade.

Gains to securitization might accrue from changes in managerial incentives accompanied
by creation of the SPV. SPVs are very simple business entities where management of the
assets of the entity is almost entirely devoid of discretion. Unlike the managers of a
corporation, who must decide marketing, personnel, logistics, manufacturing, financing and
strategic policies, the administrators of an SPV need only administer the assets to realize the
intrinsic value of their expected cash flows. If business management activities can be broadly
divided into entrepreneurship and stewardship, then management of an SPV is largely
stewardship. The separation of non-discretionary stewardship from discretionary
entrepreneurship may reduce agency costs in the former achieving a more optimal capital
structure in the separated (securitized) structure.

Some perceive securitization to be the realm of rascals. Lupica (2000) describes it as a
scheme to rob the uninformed unsecured investor. The collapse of Enron (Timmons (2002)
and Conseco has forced regulators pay increasing interest to securitization. Were this the
case, the worst performing firms to gain most from securitization.

With this discussion in mind, we look at five potential sources of the gains from
securitization: size, liquidity, risk, leverage and performance of the asset originator. The
effect of size is obvious. Securitization is expensive in terms of front end fees. Moreover,
buyers of ABS are interested in homogeneity and liquidity; hence, one would expect
economies of scale to be reflected in greater gains to larger asset sellers. These gains to size,
however, may be a function of the amount of securitization that the asset seller does
(assuming that purchasers look to the SPV alone) or of the size of the asset seller itself.

If an asset seller is illiquid, one would expect that liquidity constraint to be evident in its
higher on-balance sheet costs of capital. Hence, lower liquidity of the asset seller should be
associated with greater gains to securitization. Mindful of the fact that most of our sample are
financial institutions, we avoid the commonly used current ratio in place of a liquidity ratio
(liquid assets to total assets) which can be used for both financial and non-financial
companies.

Following the Leyland and Skarabot, the higher the risk of the asset seller, given that
securitized assets are of constant risk, the higher the gains that should be available to
securitization. We use the CAPM beta as our risk measure. The sign on leverage is

                                                                                                                                                
because of the decline in creditworhthiness of sub-prime lending and the fall in value of the residual first loss
tranches.  The bankruptcy court ruled that the service fees paid to Conseco by the SPVs were inadequate and
raised the fees, imparing the creditworthiness of a large number of ABS issues, causing the some of the
greatest losses in the recent history of ABS  and calling into question bankruptcy-remoteness.Donovan (2003)
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expected to be negative if one views securitization as an off-balance sheet substitute for
debt.

If securitization is a tool used by astute managers to maximize shareholder wealth, we
would expect to see a positive correlation between performance and gains to securitization. If
it is the preserve of rascals, however, we would expect the reverse. We use two performance
measures: growth and return on equity.

Finally, since there are three distinct industries – banking, non-banking financial
intermediation and non-financial industries – in which securitization operates, we control for
industry effects.

Data

We downloaded securitization data from ABSNet 8 in March 2004. There were 6,470
issues outstanding, with a then-current principal amount of $5,226 billions. The largest
number of issues, however, was issued by a smaller number of SPVs who were originated by
a still smaller number of corporate asset sellers. Table 1 shows, that the largest single issuer,
with 297 issues outstanding, comprising a total original principal of $100 billion, was
Residential Funding Mortgage Securities I, Inc. a corporate SPV set up by GMAC9 to fund
residential mortgages. Within the largest 15 issuers shown in Table 1, two other GMAC-
sponsored SPVs are featured – Residential Asset Securities Corporation and Capital Auto
Receivables Asset Trust. Each debt series is separately followed and rated by bond ratings
agencies10. These large SPVs are conduits that issue ABS series from time to time to meet
funding needs of newly purchased assets.

From the original sample, we excluded issues that were entirely retired as of March 2004
as well as those with no listed asset seller and those with incomplete or clearly incorrect
data11 and matched them with corporate, publicly listed sellers whose data was available in
the WRDS/Compustat database. This left us with 1713 issues having an aggregate principal
                                                       
8 ABSNetTM (www.absnet.net) is a partnership between Lewtan Technolgies and Standard and Poor’s, that

provides the most comprehensive database of ABS deal performance data currently available.  It was set up to
meet the needs of institutional investors who wish to have up-to-date information on the quality of their
investments.   The website gives the current performance data and structure of outstanding ABS issues.

9 GMAC is a wholly owned subsidiary of General Motors set up to finance dealer inventories of automobiles.  It has
since expanded into consumer auto finance, insurance and mortgage financing to become one of the leading
finance companies in the world with assets of $250 billion.  Reflecting its lack  bank deposit bases and
relatively poor credit rating, it fund itself partly in the ABS markets with securitizations reported as $98 billion
with $5 billion in continuing interests in securitizations (i.e., first loss tranches).  See GMAC’s 2003 10K.

10 Neither GNMA nor FNMA issues would feature among the largest 15 issuers because GNMA and FNMA - pools
are individually much smaller than the ones listed in Table 1.  Note that we did not include agency issues in
this analysis and that ABSNet does not list the issue characteristics of the limited GNMA and FNMA issues
given in their database.  This may be because the database is constructed largely to assist in portfolio credit
risk management for investors; however, the risk of agency issues is considered quasi-sovereign.

11 For example, we excluded transactions where the cost of securitization was less than 1 percent. The deal
summary contains information on the closing date, the original amount, remittance frequency, placement type,
lead managers and trustee.  For each class in each deal, information includes the class name, currency, original
balance of outstanding securities, current balance of outstanding securities and original subordination (in terms
of classes below the class in question that can be viewed as a cushion), current subordination, collateral type,
original weighted average maturity, asset seller and asset servicer.  Data are also given on initial and current
credit support, broken down into over-collateralization, excess spread, etc., and the classes to which the credit
support applies.  The database gives information on delinquencies, loss rate, prepayment rate and the collateral
pool balances.
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outstanding of $810 billion originated by 120 asset sellers composed of 61 banks, 35 non-
bank financial institutions and 24 non-financial companies. From these companies, we
obtained information about their securitization activity, liquidity, profitability, risk and
performance. We considered the 1,713 issues in aggregate as if they were a single
securitization for each of the 120 asset sellers by weighting them by outstanding principal
amount as of March 2004.

Table 1. Top 15 Issuers of ABS:  March 2004 Outstanding Series

Issuer
Number of
debt series

outstanding

Total
Principal

($ millions)

Residential Funding Mortgage Securities I, Inc (GMAC) 297 100,805.5
Ford Credit Auto Owner Trust 33 90,075.6
SLM Funding Corporation (Sallie Mae) 44 77,446.1
Conseco Finance Corp. 142 71,456.1
Countrywide Home Loans, Inc. 128 63,910.8
Citibank Credit Card Master Trust I 43 57,266.5
MBNA Master Credit Card Trust II 106 56,104.3
Prudential Home Mortgage Company 153 47,435.7
Residential Asset Securities Corporation (GMAC) 55 45,072.0
Capital Auto Receivables Asset Trust (GMAC) 21 44,236.0
CS First Boston Mortgage Securities Corp. 46 43,079.1
Discover Card Master Trust I 52 42,941.6

Chase Credit Card Master Trust 44 41,518.0
Wells Fargo Mortgage Backed Securities 81 41,400.2
Washington Mutual Mortgage Securities Corp. 24 38,650.5

The above table summarizes the top issuers listed by ABSNet within the total 6,470 outstanding issues before
reduction of sample size for matching with originators. The name in brackets gives main asset originator
in instances where it is not obvious from the title.

Source: ABSNet March 2004.

Costs of capital are calculated for each of the asset sellers by using the bond rating for the
asset seller’s long term debt and short term debt respectively and the average yield of such
rated securities in March 2004 as provided by Datastream. Costs of capital of the
securitization are given by the coupons on each of the classes in each of the securitizations as
reported by ABSNet. The cost of equity for both the asset seller and the securitization is
calculated by using the capital asset pricing model and betas given by WRDS/Compustat. We
use a risk premium of eight percent12 and the risk free rate of the 10-year bond rate in March
2004.

Table 2 shows the summary statistics.

                                                       
12 Varying the equity market premium from five percent to eight percent did not substantially alter the results.



Hugh Thomas and Zhiqiang Wang116

Table 2. Summary Statistics

Panel A: Total Sample of 120 Asset Sellers

Variable Mean Std Dev Skewness Kurtosis Minimum Maximum

Cost of Securitization 5.39 2.60 0.75 0.02 1.43 12.70

WACC 6.63 2.47 3.28 17.64 2.77 23.27

Spread 1.24 3.41 1.37 7.08 -5.64 20.33

Total Securitization 6.34 14.64 4.07 17.77 0.003 91.41

Securitize Ratio 0.46 1.35 4.43 21.23 0.00 9.25

Beta 0.82 0.52 0.86 1.31 -0.28 2.88

Size 10.20 2.10 -0.30 -0.84 5.15 13.59

Leverage 87.43 13.01 -2.47 6.16 32.98 98.17

Liquid Asset Ratio 47.87 33.42 -0.35 -1.30 0.00 98.86

Assets Growth Rate 11.33 18.39 -0.52 9.38 -89.99 86.63

ROE 11.14 14.66 -1.68 9.86 -63.75 63.77

I1 0.51 0.50 -0.03 -2.03 0.00 1.00

I2 0.29 0.46 0.93 -1.16 0.00 1.00

I3 0.20 0.40 1.52 0.31 0.00 1.00

Panel B: Sub-Sample of 63 Assets Sellers without Retention of Equity Risk

Variable Mean Std Dev Skewness Kurtosis Minimum Maximum

Cost of Securitization 5.64 2.62 0.57 -0.34 1.70 11.89

WACC 6.53 2.81 3.80 20.48 2.77 23.27

Spread 0.90 3.84 2.01 9.44 -5.45 20.33

Total Securitization 2.37 3.23 1.94 3.93 0.003 15.37

Securitize Ratio 0.53 1.61 4.14 17.66 0.00 9.25

Beta 0.73 0.51 1.28 3.80 -0.28 2.88

Size 9.86 2.24 -0.19 -1.09 5.15 13.49

Leverage 88.17 12.31 -2.50 6.08 37.08 97.61

Liquid Asset Ratio 44.17 35.31 -0.13 -1.54 0.00 98.86

Assets Growth Rate 10.44 18.67 -1.41 4.34 -28.06 86.63

ROE 8.77 17.03 -1.75 8.87 -63.75 63.77

I1 0.48 0.50 0.10 -2.06 0.00 1.00

I2 0.37 0.49 0.57 -1.73 0.00 1.00

I3 0.16 0.37 1.91 1.72 0.00 1.00



A Cost of Capital Analysis of the Gains from Securitization 117

Table 2. Continued

Panel C: Sub-Sample of 57 Asset Sellers with Retention of Equity Risk

Variable Mean Std Dev Skewness Kurtosis Minimum Maximum
Cost of Securitization 5.12 2.58 0.99 0.73 1.43 12.70
WACC 6.73 2.07 1.74 4.32 3.94 14.87
Spread 1.61 2.85 -0.05 -0.24 -5.64 8.34
Total Securitization 10.74 20.16 2.70 7.02 0.044 91.41
Securitize Ratio 0.39 1.00 4.09 17.84 0.00 5.62
Beta 0.92 0.52 0.52 -0.32 0.04 2.11
Size 10.59 1.87 -0.27 -0.66 6.79 13.59
Leverage 86.62 13.80 -2.47 6.47 32.98 98.17
Liquid Asset Ratio 51.95 30.99 -0.62 -0.82 0.00 98.32
Assets Growth Rate 12.31 18.19 -2.85 17.77 -89.99 54.22
ROE 13.77 11.05 -0.37 3.69 -21.53 46.37
I1 0.54 0.50 -0.18 -2.04 0.00 1.00
I2 0.21 0.41 1.46 0.13 0.00 1.00
I3 0.25 0.43 1.21 -0.55 0.00 1.00

Panel D: Test of Difference Between Means of Sub-Samples

Variable Without
Equity Risk

Without
Equity Risk Difference t Value Pr >|t|

Cost of Securitization 5.64 5.12 0.52 1.09 0.28
WACC 6.53 6.73 -0.20 -0.44 0.66
Spread 0.90 1.61 -0.71 -1.17 0.25
Total Securitization 2.37 10.74 -7.37 -3.10*** 0.00
Securitize Ratio 0.53 0.39 0.14 0.61 0.54
Beta 0.73 0.92 -0.19 -2.03** 0.04
Size 9.86 10.59 -0.73 -1.95* 0.05
Leverage 88.17 86.62 1.55 0.65 0.52
Liquid Asset Ratio 44.17 51.95 -7.78 -1.28 0.20
Assets Growth Rate 10.44 12.31 -1.87 -0.55 0.58
ROE 8.77 13.77 -5.00 -1.93* 0.06
I1 0.48 0.54 -0.06 -0.74 0.46
I2 0.37 0.21 0.16 1.89* 0.06
I3 0.16 0.25 -0.09 -1.18 0.24

Note: Sample statistics of 1,713 series with a total outstanding principal of $810 billions sponsored by 120
asset sellers. Panel B sub-sample shows sellers who did not retain equity risk being the first-loss reserve
tranche and/or other guarantees. Panel C subsample shows sellers who did retain equity risk being the
first loss reserve tranche and/or other guarantees. Spread is WACC – cost of securitization; Total
securitization is the total principal of outstanding securitized assets of the asset seller expressed in
billions of dollars; Securitize Ratio is the outstanding amount of securitized assets expressed as a percent
of total seller assets; Beta is the CAPM Beta of the seller as provided by Compustat; Size is the natural
logarithm of total assets of the seller in millions of dollars; Leverage is Total Liabilities / Total Assets of
the seller; Current Ratio is current assets / current liabilities of the seller; Liquid Asset Ratio is Liquid
Assets /Total Assets of the seller; Assets Growth Rate is the one year growth rate of the sellers assets for
the previous year; ROE is the return on equity of the seller in the last year.
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Results

Summary Statistics

Gains from securitization can be read directly from Table 2. The average cost of
securitization is 5.39 percent. The average cost of capital is 6.63 percent. The 1.24 percent
difference is the gain. If one multiplies the average spread by total sample securitized
principal of $810 billion, the annual savings are a not inconsiderable $10 billion.

Although GMAC described above is one of the most active originators of securitizations,
it is by no means an outliner among the 120. The average principal of ABS outstanding for
each asset seller is $6.3 billion, being 46 percent of on-balance sheet assets of the asset
sellers. The most active asset sellers (in terms of outstanding ABS as a proportion of assets)
raise more than nine times their on-balance sheet funding with securitization. On average, the
asset sellers exhibit lower than one betas. Their high leverage (87 percent debt) reflects the
fact that most members of the sample are banks or non-bank financial institutions. Liquidity
varies widely. On average the firms are profitable (11.33 percent return on equity) and
enjoying a moderately rapid growth of 11.14 percent per annum.

It is instructive to compare two sub-samples based on risk retention versus risk off-lay.
Just over half of the asset sellers (52.5 percent) sell off their risk exposure to their assets when
they securitize them. Their summary statistics are reported in Panel B as “Asset Sellers
without Retention of Equity Risk”. The other 57 asset originators, reported in Panel C, retain
equity risk, i.e., the first loss classes that contribute credit support in securitizations. Although
the risk retention group contains only 47.5 percent of the asset sellers by number, it accounts
for 80.4 percent of the ABS by dollar amount of principal outstanding. In this important
aspect, the vast majority of securitizations involve no substantial off-lay of risk of the
securitized assets: for them securitization is simply an off-balance sheet, debt-financing
technique. As Table 2 Panel D shows, the asset sellers without retention of equity risk are
significantly smaller, securitize less assets, are less risky (in terms of beta) and are less
profitable than those that retain the equity risk of the assets securitized. The asset sellers that
do not retain equity risk have substantially lower gains from securitization measured by the
spread between the asset seller WACC and the SPV cost of securitization, (90 basis points
versus 161 basis points), but this substantial difference is not statistically significant. The
asset sellers that do not retain equity risk are more likely to be non-bank financial institutions
(non-bank financial institutions make up about one third of the sup-sample compared with
about one fifth of the equity risk retention sub-sample). In other respects, however, the sub-
samples are not much different.

Sources of Gains in Total Sample

Table 3 presents the regression where the dependent variable is the spread between the
WACC of the asset seller and the cost of securitization and a set of independent variables.
Since the spread is the difference between two costs of capital which themselves are
combinations of similar independent variables, we present the regression equations for the
WACC and the cost of securitization as well as the spread. We only discuss the regressions
for the spread.



Table 3. Sources of Gains from Securitization

Panel A: Total Sample of 120 Asset Sellers

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage Liquid
Asset Ratio

Assets
Growth

Rate
ROE

Dummy
Variable

I1

Dummy
Variable

I2
Cost of
Securitization 10.17*** -0.24 0.52*** 0.73*** 1.81*** 0.04 0.01 0.00 0.01 -0.42 -1.44**

4.57 -1.49 3.58 2.67 3.75 1.56 1.64 0.17 0.56 -0.62 -2.03
WACC 12.03*** -0.36*** 0.07 -0.21 2.81*** -0.05*** -0.00 -0.00 -0.02 0.06 0.00

6.63 -2.79 0.60 -0.95 7.14 -2.69 -0.83 -0.37 -1.42 0.10 0.01
Spread 1.86 -0.13 0.59*** -0.94** 1.00 -0.09*** -0.02* -0.01 -0.03 0.48 1.44

0.62 -0.58 3.00 -2.54 1.53 -2.77 -1.71 -0.35 -1.27 0.52 1.50

Panel B: Sub-Sample of 63 Assets Sellers without Retention of equity Risk

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage Liquid
Asset Ratio

Assets
Growth

Rate
ROE

Dummy
Variable

I1

Dummy
Variable

I2
Cost of
Securitization 10.95*** -0.53** -0.37* 0.56 2.32*** 0.05 -0.01 0.01 0.04 -2.00* -2.51*

2.84 -2.38 -1.73 1.38 3.05 1.41 -0.64 0.69 1.67 -1.71 -2.01
WACC 10.98*** -0.46** 0.20 -0.81** 2.85*** -0.05 -0.01 -0.01 -0.04* 0.64 1.65

3.09 -2.23 1.01 -2.18 4.09 -1.43 -0.97 -0.33 -1.77 0.60 1.44
Spread 0.03 0.07 0.58* -1.38** 0.53 -0.11* -0.00 -0.02 -0.07** 2.64 4.16**

0.01 0.22 1.78 -2.28 0.47 -1.83 -0.16 -0.67 -2.21 1.51 2.24



Table 3. Continued

Panel C: Subsample of 57 Asset Sellers with Retention of equity Risk

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage Liquid
Asset Ratio

Assets
Growth

Rate
ROE

Dummy
Variable

I1

Dummy
Variable

I2
10.26*** -0.29 0.49** 0.79* 2.25*** 0.01 0.03*** -0.02 -0.04 1.08 -0.66Cost of

Securitization 3.89 -1.08 2.27 1.88 3.33 0.50 3.31 -0.87 -1.33 1.25 -0.72
13.15*** -0.16 0.01 0.46* 2.03*** -0.07*** -0.01 -0.00 -0.00 -0.10 -1.45***WACC

8.79 -1.07 0.06 1.96 5.30 -4.18 -1.26 -0.20 -0.16 -0.21 -2.79
2.88 0.13 0.49** -0.32 -0.22 -0.08** -0.04*** 0.01 0.04 -1.18 -0.79Spread
1.00 0.43 2.10 -0.70 -0.29 -2.62 -3.67 0.69 1.13 -1.25 -0.78

Notes:
The bold-faced number in each line is the coefficient estimates below which T statistics are given. *, **, *** significant in a 2-tailed test at the 10 percent, 5 percent and

1 percent levels of confidence.
Spread is WACC – cost of securitization; Total securitization is the total principal of outstanding securitized assets by the asset seller expressed in billions of dollars;

Securitize Ratio is the outstanding amount of securitized assets expressed as a percent of total seller assets; Beta is the CAPM Beta of the seller as provided by
Compustat; Size is the natural logarithm of total assets of the seller in millions of dollars; Leverage is Total Liabilities / Total Assets of the seller; Current Ratio is
current assets / current liabilities of the seller; Liquid Asset Ratio is Liquid Assets /Total Assets of the seller; Assets Growth Rate is the one year growth rate of the
sellers assets for the previous year; ROE is the return on equity of the seller in the last year; Bank is a dummy variable that equals 1 when the asset seller is a bank
and zero otherwise; Non-Bank FI is a dummy variable that equals 1 when the asset seller is a non-bank financial institution and zero otherwise

The R-squared for the three regressions are: for Panel A 0.29, 0.47 and 0.24; for Panel B 0.30, 0.48 and 0.28l and for Panel C 0.47,0.74 and 0.48, respectively.
The Chow Test’s that F value (Pr>F) are 1.65(0.0956), 1.69(0.0858) and 1.39(0.1919).
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Size Counts

The higher the dollar amount of ABS outstanding originated by the asset seller, the
greater the spread enjoyed by the asset seller. An increase from $6 billion ABS to $16 billion
in ABS outstanding is associated with a very significant and economically substantial rise of
59 basis points1. The market appears to be rewarding the liquidity of aggregate ABS issued,
not the size of the asset seller (which is measured by the log of the asset seller’s assets, an
independent variable that remains insignificant). But a rise in the proportion of assets that an
asset seller securitizes leads to a significant fall in the spread. Remembering that the average
asset seller has ABS outstanding of about 46 percent of on-balance-sheet assets, raising that
one standard deviation to 180 percent would lower the spread by over 100 basis points,
wiping out the positive spread to securitization. Too much securitization – i.e., securitization
out of proportion to the asset seller – is penalized by the market.

The higher the leverage of the asset seller the lower the gains from securitization, lending
support to the view that gains from on-balance sheet leverage of debt and the off-balance
securitization are substitutes for each other.

We hypothesized that the riskier the company, the higher the gains to securitization. The
sign of the beta coefficient is correct, but insignificant.

Finally, asset sellers that are less liquidity-constrained have less to gain from
securitization. An increase in the liquid asset ratio from the average 48 percent to 58 percent
will decrease spreads by 20 basis points.

There is no significant effect for either performance or industry.

With or without Equity Risk Retention

We gain greater insight by dividing our sample into two sub-samples: those asset sellers
who do not retain equity risk of the assets sold and those who do retain equity risk. Turn first
to liquidity. Among those asset sellers who retain equity risk (Table 3 Panel C), liquidity
becomes the most significant determinant of gains to securitization. This group has a high 52
percent average liquidity. Decreasing that liquidity to 42 percent leads to a 40 basis point
improvement in spread gains. For this sub-sample, too, the on-balance sheet – off-balance-
sheet substitution of leverage is strongly evident. A company that retains the risk of assets
whether or not it securitizes them can take the interest rate tax shield of debt with either on or
off the balance sheet financing.

Turn now to Table 3 Panel B, the larger sub-sample in terms of number of asset sellers,
but the much smaller sub-sample in terms of total ABS dollar volume, where the asset sellers
off-lay the equity risk when the sell assets. Here liquidity is an insignificant explainer of gains
to securitization and leverage drops substantially in terms of significance. Return on equity,
however, takes on a significant negative sign, and the securitization ratio’s sign is large and
negative. Both of these signs lend support to the hypothesis that securitization that truly
isolates two parts of the formerly integrated portfolio of the asset seller is a method by which
poorly performing companies can gain by selling their best assets into SPVs. Their gains,
                                                       
1 The size factors are in natural logs of the ABE outstanding expressed in thousands of dollars .  The average

principal of ABS outstanding for each asset seller is $6.3 billion or 15.6 expressed in natural logs.  Increasing
the coefficient to 16.6 to is an increase to $16.2 billion dollars.
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measured in the lower cost of capital of the securitization, comes possibly at the expense of
existing asset seller creditors. These companies correspond more to the theoretical models of
securitization of Leyland and Skarabot which model SPVs and post securitization asset sellers
as truly separated. The highly negative and significant sign on the securitization ratio (not
evident in Panel C) may be interpreted as the market’s increasing doubt in the quality of the
assets sold as the ratio of securitized assets increases.

Industry Sub-Samples

In the above analysis, we have treated the 61 asset-selling banks identically to the 35 non-
bank financial institutions and the 24 non-financial institutions. We used no more than a
dummy variable to separate their average spread effects. Although we cannot reject the null
hypothesis that jointly these three types of corporations gains from securitization are the same
(See Table 5). The strong tradition of academic banking literature that views banks as special
leads us to examine industry sub-samples. Table 4 presents the industry sub-samples’
regressions. Panel A suggests that liquidity and liquidity alone explains the gains to
securitizations that banks enjoy. The less liquid the bank, the more it gains from
securitization.

The 35 non-bank financial institutions drive the sample results that show gains to
securitization decreasing in the securitization ratio. If the reduced benefits for increased
proportion of the balance sheet in securitized assets is a market penalty for suspected lower
quality assets being securitized (and, from Table 3 Panel B, securitized without retention of
equity risk by the asset seller), then suspicions are falling on the non-bank financial
institutions. Turning to the smallest sub-sample, the 24 non-financial institutions, gains to
securitization are strongly and significantly decreasing in leverage. Given the higher leverage
that banks and other financial institutions display, and the greater differential between typical
fixed income securitized assets and the typical on-balance-sheet assets of non-financial
corporations, it is not surprising that we observe the tradeoff between on balance sheet and off
balance sheet leverage to be greatest among the non-financial institutions.

These industry conclusions, however, are tentative because we have insufficiently large
samples to allow division of our sub-samples by the criteria of both Table 3 and Table 4.

Finally, our sample contains both US and foreign asset sellers. We ran separate
regressions of gains from securitization of the 74 US asset sellers and the 46 non-US asset
sellers in Table 6. As one would expect from the reduced sample size, the non US sample
shows reduced significance of all coefficients, with only the size variables retaining
significance: as with the overall sample, gains to securitization are increasing in the amount
of ABS issued by an issuer but decreasing in the securitization outstanding as a percentage of
assets. An interesting change occurs with the (larger) US sample, however. Throughout the
sample, the previous tests, the risk of the asset seller measured by beta had no significant
effect on the gains to securitization. For US securitizes, when isolated in their own sample,
however the riskier the asset seller, the greater the gains to securitization.



Table 4. Sources of Gains from Securitization: Industry Subsamples

Panel A: Banks

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage
Liquid
Asset
Ratio

Assets
Growth

Rate
ROE

16.01 -0.39 -0.40 -1.32 3.12*** -0.04 0.02 -0.01 -0.04Cost of
Securitization 1.18 -1.58 -1.50 -0.65 3.44 -0.24 1.57 -0.34 -1.05

13.54*** 0.06 -0.14 1.33* 2.05*** -0.08 -0.01** -0.00 0.00WACC
3.05 0.68 -1.66 2.00 6.94 -1.66 -2.56 -0.36 0.23
-2.46 0.45* 0.25 2.64 -1.07 -0.04 -0.03** 0.01 0.04

Spread
-0.18 1.80 0.96 1.30 -1.18 -0.30 -2.41 0.22 1.12

Panel B: Non-Bank Financial Institutions

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage
Liquid
Asset
Ratio

Assets
Growth

Rate
ROE

6.82 -0.29 -0.45 0.60* 1.07 0.07* 0.00 0.00 -0.02Cost of
Securitization 1.59 -0.89 -1.46 1.74 1.44 1.75 0.11 0.23 -0.71

12.93** -1.27** 0.22 -0.83* 3.60*** 0.03 -0.02 -0.00 -0.04
WACC

2.15 -2.73 0.51 -1.71 3.45 0.48 -0.79 -0.09 -1.06
6.10 -0.98 0.68 -1.43** 2.54 -0.05 -0.02 -0.01 -0.02

Spread
0.71 -1.47 1.09 -2.06 1.70 -0.54 -0.61 -0.18 -0.39



Table 4. Continued

Panel C: Non-FI Company

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage
Liquid
Asset
Ratio

Assets
Growth

Rate
ROE

9.85* -0.93 -0.25 1.31* 1.64 0.09 -0.02 0.02 0.03Cost of
Securitization 1.94 -1.44 -0.49 1.82 1.00 1.55 -0.33 0.62 0.93

9.87*** -0.02 0.13 0.43 3.66*** -0.08*** -0.03 -0.00 -0.02WACC
4.72 -0.06 0.64 1.46 5.40 -3.31 -1.33 -0.32 -1.56
0.02 0.92 0.38 -0.87 2.02 -0.17** -0.01 -0.02 -0.06Spread
0.00 1.21 0.65 -1.05 1.05 -2.50 -0.19 -0.64 -1.35

The R-squared for the three regressions are: for Panel A 0.33,0.61 and 0.35; for Panel B 0.32,0.51 and 0.32; and for Panel 0.52,0.86 and 0.33, respectively.

Table 5. Tests of Structural Change: Chow Test

Difference between Dependent Variable F Value Pr> F
Cost of Securitization 0.85 0.5693
WACC 2.07 0.0425Banks and Non-Bank Financial Institutions
Spread 1.44 0.1863
Cost of Securitization 1.16 0.3448
WACC 0.96 0.4894Non-Bank Financial Institutions and Non-FI

Companies
Spread 0.52 0.8490
Cost of Securitization 0.48 0.8819
WACC 1.31 0.2469Banks and Non-FI Companies
Spread 0.95 0.4888

Note: These tests measure the joint hypothesis that all coefficients except the intercept are the same.



Table 6. Sources of Gains from Securitization

Panel A:  Sub-Sample of 74 Assets Sellers from the US

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage
Liquid
Asset
Ratio

Assets
Growth

Rate
ROE

Dummy
Variable

I1

Dummy
Variable

I2
12.74*** -0.12 -0.54*** 0.48** 1.02* 0.01 0.02 0.01 0.00 -1.55 -2.43***Cost of

Securitization 5.00 -0.59 -3.00 2.04 1.73 0.40 1.31 0.87 0.01 -1.66 -2.68
13.82*** -0.54** 0.13 -0.31 3.03*** -0.08*** 0.01 -0.01 -0.01 0.50 0.35WACC
5.53 -2.62 0.72 -1.35 5.26 -2.81 0.70 -0.38 -0.26 0.55 0.39
1.08 -0.41 0.66** -0.78** 2.01** -0.09** -0.01 -0.02 -0.01 2.06 2.78**Spread
0.28 -1.32 2.47 -2.23 2.28 -2.11 -0.42 -0.83 -0.17 1.46 2.04

Note: The R-squared for the three regressions are 0.32,0.53 and 0.29, respectively.

Panel B: Subsample of 46 Asset Sellers from non-US

Independent Variables
Dependent
Variable Intercept Log

(Assets)
Log

(Securitization)
Securitize

Ratio Beta Leverage
Liquid
Asset
Ratio

Assets
Growth

Rate
ROE

Dummy
Variable

I1

Dummy
Variable

I2
7.81 -0.08 -0.56 1.05 3.09*** 0.03 -0.00 -0.02 0.01 0.09 -0.51Cost of

Securitization 1.27 -0.22 -1.53 0.41 3.03 0.70 -0.06 -0.76 0.31 0.08 -0.34
6.42*** -0.18 0.14 -0.74 2.20*** -0.01 -0.00 -0.01 -0.01 -0.46 1.09*WACC
2.92 -1.40 1.04 -0.81 6.04 -0.63 -0.50 -0.68 -0.89 -1.11 2.01
-1.39 -0.10 0.69* -1.79 -0.89 -0.05 -0.00 0.01 -0.02 -0.55 1.60

Spread
-0.21 -0.26 1.76 -0.65 -0.80 -0.86 -0.11 0.48 -0.57 -0.43 0.98

Note: The R-squared for the three regressions are 0.27,0.66 and 0.21, respectively.
The Chow Test’s F value (Pr>F) are 1.06(0.4010), 1.33(0.2208) and 1.02(0.4322).
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Conclusion

Our paper has contributed to the literature in several respects. We have shown that gains
from securitization are considerable. This is not surprising, given securitization’s rapid rise to
become the largest fixed income asset class in the world. Gains to the asset seller are
increasing in the size (and hence liquidity) of the amount of an asset seller’s ABS
outstanding. Further analysis of the gains, however, take into consideration differences
between securitization where the asset seller retains (versus off-lays) equity risk.

The vast majority of securitizations by dollar volume (80 percent) are in the former
category where the asset originator enjoys no off-lay of the equity risk of the sold assets.
Because the sellers retain the equity of the SPV, these securitizations are really off-balance
sheet debt financing. These asset sellers primarily source their gains from liquidity. These
asset sellers can use substitution of on-balance leverage with off-balance sheet leverage. This
phenomenon is especially evident among non-financial institutions.

Some 20 percent of securitizations by dollar volume, but slightly over half by asset seller
number, involve asset sellers off-laying equity risk of the sold assets. These securitizations
resemble more closely non-recourse securitization modeled in the optimal capital structure
literature. Here the declining returns to performance and the securitization ratio suggest that
investor concerns of asset quality and the potential for wealth transfers from creditors to
equity holders are substantial.

We undertook this research to publish and analyze the magnitude of the gains from
securitization. Our metric for calculating those gains, suggested by the investment banking
method of reporting securitizations costs as a cost of capital, has, we believe, provided some
insights. But our conclusions are limited by our lack of theoretical development. Theories of
optimal capital structure can and should be expanded to include structured finance. The
special purpose entities of structured finance—securitizations, real estate investment trusts,
project finance, mutual funds, hedge funds etc.—give academics rich empirical testing
grounds on which we can increase our understanding of the determinants of optimal capital
structure.
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Appendix: 120 Securitizing Companies with Average Sizes of Securitization Tranches

Company Name Industry Country Total
Securitiztion

Senior
Class
(%)

Subordinate
Class
(%)

Other
Class
(%)

Credit
Support

(%)
AAMES FINANCIAL CORP. 2 United States 410,871 0.6733 0.3016 0.0252 0.0000
ABBEY NATIONAL PLC -ADR 1 England 884,820 0.7909 0.1045 0.1045 0.0300
ABN AMRO HLDG N V -SPON ADR 1 Netherlands 2,265,361 0.8217 0.0656 0.1128 0.0272
ACE LIMITED 2 Cayman Islands 1,073,690 0.7895 0.2105 0.0000 0.0000
ADVANTA CORP -CL B 2 United States 229,275 1.0000 0.0000 0.0000 0.0000
AEGON NV 2 Netherlands 2,848,772 0.9341 0.0319 0.0340 0.0000
AMERICAN EXPRESS 2 United States 15,372,188 0.8576 0.0753 0.0671 0.0000
AMSOUTH BANCORPORATION 1 United States 94,362 0.5467 0.3021 0.1511 0.0823
ANGLO IRISH BANK 1 Ireland 575,367 0.6737 0.1328 0.1935 0.0301
AUTONATION INC 3 United States 177,071 1.0000 0.0000 0.0000 0.0000
BANCA ANTONVENETA POPOLARE 1 Italy 717,890 0.8976 0.0334 0.0689 0.0000
BANCA INTESA SPA 1 Italy 2,239,635 0.8728 0.0421 0.0851 0.0120
BANCA POPOLARE DI BERGAMO 1 Italy 738,686 0.9222 0.0778 0.0000 0.0306
BANCA POPOLARE DI MILANO 1 Italy 851,958 0.9105 0.0596 0.0299 0.0157
BANCA POPOLARE DI VERONA 1 Italy 373,227 0.9237 0.0697 0.0067 0.0204
BANCO COMERCIAL PORTGE -ADR 1 Portugal 2,436,089 0.9151 0.0448 0.0400 0.0189
BANCO GUIPUZCOANO 1 Spain 889,898 0.9490 0.0510 0.0000 0.0000
BANCO PASTOR 1 Spain 803,642 0.9468 0.0453 0.0079 0.0000
BANCO POPULAR ESPANOL 1 Spain 432,566 0.9458 0.0542 0.0000 0.0000
BANCO SANTANDER CENT -ADR 1 Spain 1,080,000 0.9000 0.0350 0.0650 0.0170
BANK OF AMERICA CORP 1 United States 10,679,721 0.3690 0.0974 0.5335 0.0000
BANK OF NOVA SCOTIA 3 Canada 294,750 0.9500 0.0195 0.0305 0.0000
BANK ONE CORP 1 United States 752,667 0.9756 0.0244 0.0000 0.0030
BANKINTER 1 Spain 5,099,273 0.9099 0.0303 0.0599 0.0136
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Company Name Industry Country Total
Securitiztion

Senior
Class
(%)

Subordinate
Class
(%)

Other
Class
(%)

Credit
Support

(%)
BARCLAYS PLC/ENGLAND -ADR 1 England 2,631,993 0.9692 0.0308 0.0000 0.0147
BEAR STEARNS COMPANIES INC 2 United States 6,094,611 0.5511 0.0292 0.4197 0.0000
BMW-BAYER MOTOREN WERKE AG 3 Germany 2,344,520 0.9522 0.0478 0.0000 0.0184
BNL-BANCA NAZIONALE LAVORO 1 Italy 3,040,507 0.8068 0.0425 0.1507 0.0000
BOMBARDIER INC 3 Canada 1,571,868 0.7968 0.2032 0.0000 0.0013
CANADIAN IMPERIAL BANK 1 Canada 3,075,000 1.0000 0.0000 0.0000 0.0000
CANADIAN TIRE CORP 3 Canada 2,362,500 0.0000 0.0000 1.0000 0.0000
CAPITAL ONE FINL CORP 2 United States 91,414,812 0.7996 0.1019 0.0985 0.0025
CAPITALIA SPA 1 Italy 3,495,758 0.2619 0.1445 0.5937 0.0000
CAPSTEAD MORTGAGE CORP 2 United States 10,436 0.0000 0.7127 0.2873 0.0000
CARMAX INC 3 United States 5,157,735 0.9115 0.0273 0.0611 0.0174
CATERPILLAR INC 3 United States 2,356,311 0.8976 0.0615 0.0409 0.0474
CENDANT CORP 2 United States 1,691,280 0.8016 0.1958 0.0026 0.0002
CENTEX CORP 3 United States 10,553,295 0.6452 0.1409 0.2139 0.0000
CENTRO PROPERTIES GROUP 2 Australia 1,031,300 0.9280 0.0720 0.0000 0.0126
CHARMING SHOPPES 3 United States 500,000 0.6470 0.1740 0.1790 0.0000
CITICORP 1 United States 14,253,706 0.8983 0.0974 0.0044 0.0504
CITY NATIONAL CORP 1 United States 448,107 0.9280 0.0532 0.0188 0.0248
CNH GLOBAL NV 3 Netherlands 3,092,736 0.8898 0.0330 0.0772 0.0000
COLONIAL BANCGROUP 1 United States 472,815 0.9603 0.0397 0.0000 0.0000
COLONIAL PROPERTIES TRUST 2 United States 251,000 0.7100 0.2050 0.0850 0.0464
COUNTRYWIDE FINANCIAL CORP 2 United States 31,518,423 0.3072 0.0713 0.6215 0.0000
CREDIT AGRICOLE INDOSUEZ 1 France 43,705 0.8645 0.1355 0.0000 0.0000
CREDIT LYONNAIS SA 1 France 400,442 0.7967 0.2033 0.0000 0.0000
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Company Name Industry Country Total
Securitiztion

Senior
Class
(%)

Subordinate
Class
(%)

Other
Class
(%)

Credit
Support

(%)
CREDIT SUISSE FIRST BOS USA 2 United States 9,653,397 0.9327 0.0466 0.0207 0.0000
DAIMLERCHRYSLER AG 3 Germany 27,393,340 0.6426 0.0000 0.3574 0.0012
DEUTSCHE BANK AG 1 Germany 6,469,731 0.8785 0.1019 0.0196 0.0189
DVI INC 2 United States 1,853,869 0.8709 0.0162 0.1129 0.0053
EGG PLC 1 United Kingdom 500,000 0.8700 0.0500 0.0800 0.0000
EMC INSURANCE GROUP INC 2 United States 6,242,178 0.4901 0.1895 0.3204 0.0000
ENI S P A -SPON ADR 3 Italy 6,637,000 0.7900 0.1293 0.0808 0.0000
EUROHYPO AG 1 Germany 674,826 0.1843 0.2464 0.5693 0.0000
FEDERAL HOME LOAN MORTG CORP 2 United States 40,685 1.0000 0.0000 0.0000 0.0000
FIAT SPA -ADR 3 Italy 850,005 0.9000 0.1000 0.0000 0.0000
FIRST ACTIVE PLC 1 Ireland 6,843,393 0.9276 0.0724 0.0000 0.0220
FIRST KEYSTONE FINL INC 1 United States 195,312 0.2567 0.7433 0.0000 0.0000
FIRST UNION RE EQ & MTG INV 2 United States 1,011,799 0.6336 0.0765 0.2899 0.0000
FLEETBOSTON FINANCIAL CORP 1 United States 7,680,100 0.8394 0.0606 0.1000 0.0035
FLEETWOOD ENTERPRISES 3 United States 34,822 0.9650 0.0350 0.0000 0.0000
FORD MOTOR CO 3 United States 22,084,746 0.8404 0.0675 0.0921 0.0109
FREMONT GENERAL CORP 2 United States 712,356 0.1404 0.1650 0.6946 0.0000
GENERAL ELECTRIC CAPITAL SVC 2 United States 242,550 0.5517 0.2988 0.1494 0.0000
GENERAL MOTORS CORP 3 United States 65,643,254 0.8552 0.0324 0.1124 0.0127
GREENPOINT FINANCIAL CORP 1 United States 1,846,205 0.3742 0.1438 0.4820 0.0015
HARLEY-DAVIDSON INC 3 United States 2,384,351 0.9387 0.0483 0.0129 0.0098
HONDA MOTOR LTD -AM SHARES 3 Japan 9,036,282 0.9673 0.0000 0.0327 0.0114
HOUSEHOLD FINANCE CORP 2 United States 13,799,854 0.8921 0.0670 0.0409 0.0154
HUNTINGTON BANCSHARES 1 United States 3,185 0.0000 0.0603 0.9397 0.0000
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Company Name Industry Country Total
Securitiztion

Senior
Class
(%)

Subordinate
Class
(%)

Other
Class
(%)

Credit
Support

(%)
HYUNDAI MOTOR CO LTD 3 Korea 640,737 0.8568 0.0609 0.0822 0.0082
IKON OFFICE SOLUTIONS 3 United States 1,273,363 1.0000 0.0000 0.0000 0.0245
IMPAC MORTGAGE HLDGS INC 2 United States 4,503,112 0.4164 0.1131 0.4704 0.0000
INDEPENDENT BANK CORP/MA 1 United States 149,178 0.0740 0.2627 0.6633 0.0000
INDYMAC BANCORP INC 2 United States 1,244,053 0.4024 0.2309 0.3666 0.0000
IRWIN FINL CORP 1 United States 468,645 0.4515 0.2347 0.3138 0.0000
J P MORGAN CHASE & CO 1 United States 80,341,023 0.8015 0.0671 0.1314 0.0044
KEYCORP 1 United States 774,177 0.6922 0.0388 0.2690 0.0127
KREDITANSTALT FUER WIEDERAUF 1 Germany 164,725 0.4688 0.2793 0.2519 0.0000
LEHMAN BROTHERS HOLDINGS INC 2 United States 17,380,347 0.7006 0.2113 0.0881 0.0009
MACQUARIE BANK LTD 1 Australia 700,000 0.9750 0.0250 0.0000 0.0000
MARSHALL & ILSLEY CORP 1 United States 298,670 0.9256 0.0744 0.0000 0.0175
MBIA INC 2 United States 60,040 0.0000 0.0000 1.0000 0.0201
MBNA CORP 1 United States 63,877,006 0.8365 0.0768 0.0867 0.0014
MELLON FINANCIAL CORP 1 United States 1,270,113 0.7365 0.0345 0.2290 0.0000
MERRILL LYNCH & CO 2 United States 7,144,618 0.4563 0.0922 0.4515 0.0000
METRIS COMPANIES INC 2 United States 5,984,789 0.7844 0.1038 0.1118 0.0000
MID-STATE BANCSHARES 1 United States 605,991 0.6544 0.3456 0.0000 0.0033
MORGAN STANLEY 2 United States 11,537,741 0.6629 0.2231 0.1139 0.0002
NATIONAL BANK CANADA 3 Canada 5,115,192 0.5961 0.0273 0.3766 0.0025
NEW CENTURY FINANCIAL CORP 2 United States 10,638,675 0.8102 0.1882 0.0016 0.0008
NORTHERN ROCK PLC 1 United Kingdom 24,788,765 0.8986 0.0522 0.0492 0.0045
NOVASTAR FINANCIAL INC 2 United States 4,237,120 0.8901 0.0765 0.0334 0.0000
ONYX ACCEPTANCE CORP 2 United States 2,362,054 1.0000 0.0000 0.0000 0.0000



Appendix. Continued

Company Name Industry Country Total
Securitiztion

Senior
Class
(%)

Subordinate
Class
(%)

Other
Class
(%)

Credit
Support

(%)
POPULAR INC 1 United States 4,699,374 0.4044 0.1032 0.4925 0.0000
PROVIDENT FINL HLDGS INC 1 United States 380,420 1.0000 0.0000 0.0000 0.0000
PRUDENTIAL PLC -ADR 2 England 163,118 0.7736 0.2264 0.0000 0.0000
PSB BANCORP INC 1 United States 36,832 0.1915 0.8085 0.0000 0.0000
REGIONS FINL CORP 1 United States 1,333,060 0.9283 0.0404 0.0313 0.0194
ROYAL BANK OF CANADA 3 Canada 2,675,000 0.0000 0.0000 1.0000 0.0000
SAXON CAPITAL INC 2 United States 989,288 0.6984 0.3011 0.0005 0.0000
SKY FINANCIAL GROUP INC 1 United States 344,574 1.0000 0.0000 0.0000 0.0443
SLM CORP 2 United States 42,443,938 0.9376 0.0315 0.0308 0.0022
ST GEORGE BANK LTD 1 Australia 4,803,282 0.8946 0.0401 0.0653 0.0000
STERLING BANCORP/NY 1 United States 44,355 0.9422 0.0578 0.0000 0.0062
SUPERIOR FINANCIAL CORP DE 1 United States 100,714 0.5736 0.4264 0.0000 0.0000
SYNOVUS FINANCIAL CP 1 United States 65,519 0.0750 0.1919 0.7331 0.0000
TEXTRON FINANCIAL CORP 2 United States 212,875 0.8866 0.1134 0.0000 0.0000
UNIPOL 2 Italy 149,552 0.7939 0.0843 0.1219 0.0000
UNITED COMMUNITY FINL CORP 1 United States 185,284 0.6292 0.3708 0.0000 0.0233
WACHOVIA CORP 1 United States 4,447,901 0.9137 0.0434 0.0429 0.0000
WASHINGTON MUTUAL INC 1 United States 7,539,417 0.4295 0.0432 0.5273 0.0000
WELLS FARGO & CO 1 United States 12,639,919 0.4494 0.0450 0.5056 0.0005
WESTCORP 1 United States 300,781 1.0000 0.0000 0.0000 0.0879
WILSHIRE FINL SVCS GROUP INC 1 United States 302,805 0.9270 0.0565 0.0164 0.0000
XEROX CORP 3 United States 57,010 0.0000 0.0000 1.0000 0.1312
YAMAHA MOTOR CO LTD 3 Japan 200,000 0.8550 0.0600 0.0850 0.0306
ZIONS BANCORPORATION 1 United States 579,381 0.9025 0.0975 0.0000 0.0000

Note: For Industry, 1,2,3 denote bank, non-bank financial institution, and other industry (non-financial institution), respectively.
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Chapter 5

THE NONPARAMETRIC TIME-DETRENDED
FISHER EFFECT

Heather L.R. Tierney
Department of Economics and Finance, College of Charleston, Charleston, SC

Abstract

This paper uses frontier nonparametric VARs techniques to investigate whether the Fisher
Effect holds in the U.S. The Fisher Effect is examined taking into account structural breaks
and nonlinearities between nominal interest rates and inflation, which are trend-stationary in
the two samples examined. The nonparametric time-detrended test for the Fisher Effect is
formed from the cumulative orthogonal dynamic multiplier ratios of inflation to nominal
interest rates. If the Fisher Effect holds, this ratio statistically approaches one as the horizon
goes to infinity. The nonparametric techniques developed in this paper conclude that the
Fisher Effect holds for both samples examined.

Keywords: Fisher Effect, nonparametrics, dynamic multipliers, monetary policy, trend-
stationarity.

JEL Classification Code: E40, E52, E58.

1. Introduction

The dynamics of nominal interest rates and inflation are fundamental forces at the core of
economic and financial decisions. The Fisher Effect, which relates these two variables, has
several consequences on market rationality and efficiency, option pricing, portfolio
allocation, monetary policy, and international trade just to name a few illustrations.1

                                                       
1 The Fisher Effect is a theoretical proposition based on the Fisher Equation, which defines nominal interest rates as

being equal to the ex ante real interest rate plus expected inflation.  According to the Fisher Effect in the long
run, the real interest rate is constant, which means that there should be a long run one-to-one relationship
between inflation and nominal interest rates.
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Some economic and financial models implicitly assume constancy of the real interest rate
(e.g. the capital asset pricing model, CAPM). Thus, the legitimacy of the decisions based on
these models is tied to the assumption that the Fisher Effect holds. Monetary policy is also
closely related to the Fisher Effect. For instance, if the Fisher Effect holds, short-term
changes to nominal interest rates can be made to adjust for changes in inflation and
unemployment without impacting the long-term real interest rate.

This paper investigates whether the Fisher Effect holds in the U.S. for two sample
periods: for the first quarter of 1960 to the third quarter of 1995, and for the first quarter of
1960 to the second quarter of 2004. These long samples are necessary to investigate the long
run relationship between nominal interest rates and inflation. The latter sample encompasses a
period in which there is a substantial decrease in the volatility of nominal interest rates. This
has allowed markets to have a more perceptible signal of likely future monetary policy action
by the Federal Reserve, especially since 1995.

Frontier nonparametric techniques are used to investigate whether the Fisher Effect holds.
In particular, the local linear least squares nonparametric method (LLLS) is applied to
investigate the effect. This method is better equipped to deal with outliers, since each
nonparametric estimator is locally estimated with more weight given to observations closer to
the data point. This methodology is applied to study the dynamics of nominal interest rates
and inflation in bivariate VARs, and the results are compared with the ones obtained from
parametric techniques.

The advantage of using nonparametric over parametric VARs is that the nonparametric
version yields cumulative dynamic multipliers obtained from nominal interest rates and
inflation that capture the nonlinearities present in these series. The consideration of
nonlinearities in the system generally generates on average larger estimated coefficients than
the parametric counterpart, which are stationary and close enough to unity to produce the
Fisher Effect. In addition, it also yields on average larger estimated variance-covariance
matrices, which are necessary for the orthogonalization of the dynamic multipliers.

The related literature examining the time series properties of nominal interest rates and
inflation do not present a consensus on whether or not the Fisher Effect holds. In addition, the
literature is also divided into two broad groups: those who find a cointegration relationship
between nominal interest and inflation, and those who find that the series are not integrated.

There are several possible explanations for the divergence of these conclusions. The
possible econometric reasons could be related to not taking into consideration the potential
non-stationarity and/or nonlinearities in the individual series or breaks in the relationship
between nominal interest rates and inflation. These statistical features may arise from changes
in the structure of the economy, such as different monetary policy regimes over time, or
breaks in the level of inflation and in inflation expectations, among other things.

Along the lines of the cointegration examination of the Fisher Effect, Mishkin (1992)
finds a cointegration relationship through the use of the Engle and Granger (1987) model,
which indicates that the long run Fisher Effect exists. Wallace and Warner (1993) have some
reservations that inflation is integrated of order one, I(1), but nonetheless proceed with the
cointegration model as proposed by Johansen (1988) and Johansen and Juselius (1990). Upon
establishing cointegration between the nominal interest rate and inflation, they conclude that
the long run Fisher Effect holds. Crowder and Hoffman (1996) and Daniels, Nourzad, and
Toutkoushian (1996) report similar findings for nominal interest rates and inflation. In
particular, Crowder and Hoffman find that inflation is an I(1) moving average process, and
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Daniels et al. find that inflation is I(1), based on the Dickey and Pantula (1987) test for unit
roots. These two papers report that inflation Granger-causes nominal interest rates, and since
cointegration exists between the series, the conclusion is that the long run Fisher Effect holds.
On the other hand, King and Watson (1997) use a bivariate model projecting the nominal
interest rate onto inflation and vice-versa. The model produces an estimated coefficient less
than one, which indicates that the long run Fisher Effect does not hold.

In regards to the non-cointegration literature, the seminal work of Fama (1975) examines
the Fisher Effect with the purpose of determining market efficiency. Fama finds that the
Fisher Effect does hold. Garcia and Perron (1996) study the constancy of the ex ante real
interest rate under the assumption of rational expectations in order to investigate the Fisher
Effect. Non-stationarity is accounted for by allowing changes in the mean and variance
through the use of Hamilton’s (1989) Markov Switching model. The conclusion is that the
Fisher Effect sporadically holds if infrequent breaks in the mean are permitted. Another non-
cointegration technique to study the Fisher Effect is proposed by Malliaropulos (2000), which
uses dynamic multipliers from a bivariate VAR with the assumption that inflation and
nominal interest rates are trend-stationary once structural breaks and deterministic trends have
been taken into account.

The main difficulty in determining the Fisher Effect in a cointegration framework is the
low power of unit root and cointegration tests, which tend to erroneously fail to reject the null
of non-stationarity too frequently. The power of these tests is further weaken if structural
breaks are not taken into account or if the model is also misspecified due to erroneous number
of lags lengths, etc.

In this paper, the Fisher Effect is further studied, taking into account possible
misspecifications, the presence of potential structural breaks, and nonlinearities. The results
of parametric and nonparametric techniques are compared, and the nonparametric time-
detrended relationship between nominal interest rates and inflation is presented as an
alternative tool to examine the ‘traditional’ Fisher Effect.

The key to investigating the Fisher Effect lies in the time series properties of nominal
interest rates and inflation. This paper attempts to resolve the economic and econometric
issues of testing for the Fisher Effect by first undertaking a careful investigation of the
univariate properties of inflation and nominal interest rates. The findings are that these series
present structural changes in the early 1980s. When these breaks are taken into account,
nonstationarity tests indicate that they are trend-stationary.

In the second stage, the residuals from the detrending regressions of nominal interest
rates and inflation are used to form a stationary, nonparametric, time-detrended VAR with
median or averaged coefficients. This framework allows for the investigation of nonlinearities
in the relationship between nominal interest rates and inflation through the study of the
estimated coefficients and the dynamic multipliers of the impulse response functions. The
nonparametric time-detrended test for the Fisher Effect is formed from the cumulative
dynamic multiplier ratios of inflation to nominal interest rates inflation, under a shock to
nominal interest rates. If this ratio statistically approaches one as the horizon goes to infinity,
this signifies that, even with the removal of the time component, the changes in nominal
interest rate are being matched by the changes in inflation in the long run, and hence, the
Fisher Effect holds.

Two variations of the relationship between nominal interest rates and inflation are
investigated in this paper: a nonparametric time-detrended Fisher effect using standardized
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data for the first sample period, and a nonparametric time-detrended Fisher effect using level
data for the second sample period. Both techniques conclude that the Fisher effect holds. In
particular, using a median, nonparametric, time-detrended VAR(3), the nonparametric time-
detrended Fisher Effect statistically holds at approximately the twelfth quarter for the first
sample period (1960:Q1-1995:Q3) using standardized detrended nominal interest rates and
inflation. Using level detrended inflation and nominal interest rates in a nonparametric
VAR(4) with averaged coefficients for the second period (1960:Q1-2004:Q2), the
nonparametric time-detrended Fisher Effect is statistically achieved at approximately the
fifteenth quarter.

The recent widespread use of inflation targeting rules by different countries has spurred
some debate as to whether the Federal Reserve should follow a monetary policy rule or
discretionary monetary policy. The question of the validity of the Fisher Effect can be applied
to assess inflation targeting rules. For example, a proposed rule would be to implement tight
or loose monetary policy depending on whether inflation is above or below the long run
equilibrium given by the Fisher Effect. That is, the monetary policy rule could be
implemented based on investigating whether or not the movements in inflation exceed the
movements in nominal interest rates in the long run – changes in policy would be warranted
in order to maintain the long run equilibrium between these series, as reflected in the Fisher
Effect. The findings that the Fisher Effect holds, especially for the more recent period,
suggest that current monetary policy can be implemented based on minor discrete changes
vis-à-vis discrete changes in nominal interest rates in order to maintain the long run
equilibrium between nominal interest rates and inflation.

The structure of this paper is as follows: Section 2 investigates the univariate dynamic
properties of inflation and nominal interest rates. Section 3 presents the parametric and
nonparametric techniques and the VAR models used to test for the Fisher Effect. The
empirical results are presented in Section 4, and Section 5 concludes.

2. Univariate Analysis – Modeling Inflation
and Nominal Interest Rates

A first important step before composing the VAR(p) models is to study the individual
dynamics of each time series to be used in the system. This section investigates univariate
model specifications of inflation and nominal interest rates, including nonstationarity tests in
the presence of structural breaks.

The data are analyzed in annualized quarterly frequency. The three-month Treasury bill
rate is used as the nominal interest rate, whereas the log of the first difference of the
seasonally adjusted Consumer Price Index (CPI) is used as a measure of inflation.2 The
analysis is carried out for two sample periods: from the second quarter of 1960 to the third
quarter of 1995 (142 observations), and from the second quarter of 1960 to the second quarter
of 2004 (177 observations).3

                                                       
2 The data are obtained from the St. Louis F.R.E.D. For CPI (CPIAUCSL) and the 3-month T-Bill rates (TB3MS),

monthly data are converted to quarterly data.
3 The first quarter of 1960 is used to construct inflation.
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Each series, inflation and nominal interest rates, is first tested in order to identify
potential time intervals containing structural breaks. The recursive residuals test, CUSUM
test, CUSUMQ test, and the recursive coefficients test are applied to an AR(1) model of the
series.4 Once an interval containing a potential structural break is identified by at least one of
the previously mentioned tests, the log likelihood ratio of the Chow breakpoint test and the
Chow forecast test is then applied to specific times within the indicated periods. Based upon
agreement of the two Chow tests for both sample periods, a structural break is found in
1981:Q3 for inflation and in 1980:Q2 for nominal interest rates.

The optimal univariate model for each time series is chosen taking into consideration the
parsimony of lag length, using the Akaike Information Criteria (AIC) and the Schwartz’s
Bayesian Criteria (SBC), the statistical significance of each regressor as well as the whiteness
of the residuals.

The Augmented Dickey-Fuller (ADF) test is used to test for stationarity of inflation and
nominal interest rates. The test indicates that inflation and nominal interest rates do not have
unit roots for the first sample period (1960:Q2-1995:Q3); it fails to reject the hypothesis of
nonstationarity in these series for the second sample period (1960:Q2 and 2004:Q2). A
summary of the results is reported in tables 1A and 2B.

The conflicting results in the unit root tests across samples point to a possible model
misspecification, which could lead the ADF test to erroneously fail to reject the null of
nonstationarity. Hence, the dynamics of the series are further investigated by including an
appropriate deterministic trend. Based on the findings of breakpoints in these series, Perron’s
test (1989) for nonstationarity against the alternative of a deterministic trend in the presence
of sudden structural changes is used in the next step.

The inclusion of a time trend is just as important in Perron’s test, since otherwise it could
also mistakenly lead to failing to reject the null of nonstationarity. The test is estimated under
the alternate hypothesis of trend stationarity in the residuals of the detrended series. For this
reason, three specific types of deterministic time trends are considered as alternate
hypotheses: Model A – taking into account a break in the mean (intercept); Model B – taking
into account a break in the drift (slope); and Model C – taking into account a break in the
mean and in the drift. Model C, which encompasses Models A and B, is:

0 2 2 3
a

t L T tx a a t D D xμ μ= + + + + (1)

where xt is either nominal interest rates or inflation, t refers to the time trend, and a
tx  are the

residuals of the detrended series. DL is a dummy variable that takes a value of 0 for t < TB and
a value of 1 for t ≥ TB, where TB is the time of the structural break. DT is a dummy variable
multiplied by the time trend, which takes a value of 0 for t < TB, and a value of the time trend,
t, for any t ≥ TB.5

                                                       
4 All hypotheses are tested at the 5% significance level.
5 A more complete report of the results for Perron’s test can be found in Tables 2A and 2B.



Table 1A. Inflation (πt)—Results of the ADF Test

Sample
Period Model

Estimated
Coefficient of φ

Estimated t-statistic

of φ̂
ADF Critical

Value

Result Unit Root
Process

(Yes or No)

1960:Q2 - 1995:Q3
Intercept Only
(3 lags Δπt)
Removing Δπt-1

-0.137 -3.2733 -2.882 No

1960:Q2 - 2004:Q2 Intercept Only
(3 lags Δπt)

-0.111 -2.758 -2.878 Yes

1960:Q2 - 1979:Q1

Trend & Intercept;
Eliminating
Δπt-1 and Δπt-2,
(4 lags Δπt)

-0.338 -4.117 -3.473 No

1984:Q4 - 1995:Q3 Intercept Only
(0 lags Δπt)

-0.596 -4.167 -2.929 No

1984:Q4 - 2004:Q2 Intercept Only
(0 lags Δπt)

-0.538 -5.277 -2.898 No

Table 1B. Nominal Interest Rates (it)—Results of the ADF Test

Sample
Period Model

Estimated
Coefficient of φ

Estimated t-statistic

of φ̂
ADF Critical

Value

Result Unit Root
Process

(Yes or No)

1960:Q2 - 1995:Q3
Intercept Only
(5 lags Δit)
Removing Δit-4

-0.083 -3.241 -2.882 No

1960:Q2 - 2004:Q2
Intercept Only
(5 lags Δit)
Removing Δit-4

-0.111 -2.815 -2.878 Yes



Table 1B. Continued

Sample
Period Model

Estimated
Coefficient of φ

Estimated t-statistic

of φ̂
ADF Critical

Value

Result Unit Root
Process

(Yes or No)

1960:Q2 - 1979:Q1
Trend & Intercept
(3 lags Δit)
Removing Δit-2

-0.237 -3.952 -3.471 No

1984:Q4 - 1995:Q3

Trend & Intercept
(6 lags Δit)
Removing
Δit-2, Δit-3, Δit-4, Δit-5

-0.227 -4.746 -3.514 No

1984:Q4 - 2004:Q2

Trend & Intercept
(6 lags Δit)
Removing
Δit-2, Δit-3, Δit-4, Δit-5

-0.159 -4.691 -3.467 No

Table 2A. Detrended Inflation ( a
tπ )

Results of the Perron Test for Structural Change

Sample
Period Time Series Model

Break
Fraction1

λ

Estimated
Coefficient

of a1

Estimated
t-statistic of 1â

Perron Critical
Value

Result:
Unit Root

(Yes or No)

1960:Q2
to
1995:Q3

a
tπ

Model A;
Eliminating

1
a
tπ −Δ

(3 lags a
tπΔ )

0.60 0.715 -4.775 -3.76 No

                                                       
1 The break fraction, λ, is rounded off to the tenths since only these critical values are provided in Perron (1989).  For the sample period of 1960:Q2 to 1995:Q3 for inflation, λ =

85/142 =0.598, and for nominal interest rates, λ = 80/142 =0.563.  For the sample period of 1960:Q2 to 1995:Q3 for inflation, λ = 85/177 =0.480, and for nominal interest
rates, λ = 80/177 =0.452.



Table 2A. Continued

Sample
Period Time Series Model

Break
Fraction2

λ

Estimated
Coefficient

of a1

Estimated
t-statistic of 1â

Perron Critical
Value

Result:
Unit Root

(Yes or No)

1960:Q2
to
1995:Q3

a
tπ

Model B;
Eliminating

1
a
tπ −Δ , & 2

a
tπ −Δ

(3 lags a
tπΔ )

0.60 0.572 -6.381 -3.95 No

1960:Q2
to
1995:Q3

a
tπ

Model C;
Eliminating

1
a
tπ −Δ , & 2

a
tπ −Δ

(3 lags a
tπΔ )

0.60 0.550 -6.622 -4.24 No

1960:Q2
to
2004:Q2

a
tπ

Model A

(3 lags a
tπΔ ) 0.50 0.853 -3.015 -3.76 Yes

1960:Q2
to 2004:Q2

a
tπ

Model B;
Eliminating

1
a
tπ −Δ , & 2

a
tπ −Δ

(3 lags a
tπΔ )

0.50 0.609 -6.755 -3.96 No

1960:Q2
to 2004:Q2

a
tπ

Model C
Eliminating

1
a
tπ −Δ , 2

a
tπ −Δ

(3 lags a
tπΔ )

0.50 0.529 -7.525 -4.24 No

                                                       
2 The break fraction, λ, is rounded off to the tenths since only these critical values are provided in Perron (1989).  For the sample period of 1960:Q2 to 1995:Q3 for inflation, λ =

85/142 =0.598, and for nominal interest rates, λ = 80/142 =0.563.  For the sample period of 1960:Q2 to 1995:Q3 for inflation, λ = 85/177 =0.480, and for nominal interest
rates, λ = 80/177 =0.452.



Table 2B. Detrended Nominal Interest Rates ( a
ti )

Results of the Perron Test for Structural Change

Sample
Period Time Series Model

Break
Fraction

λ

Estimated
Coefficient

of a1

Estimated
t-statistic of 1â

Perron Critical
Value

Result:
Unit Root

(Yes or No)

1960:Q2
to
1995:Q3

a
ti

Model A;
Eliminating

4
a
ti −Δ

(5 lags a
tiΔ )

0.50 0.908 -3.090 -3.76 Yes

1960:Q2
to 1995:Q3

a
ti

Model B;
Eliminating

4
a
ti −Δ

 (5 lags a
tiΔ )

0.50 0.906 -3.487 -3.95 Yes

1960:Q2
to 1995:Q3

a
ti

Model C;
Eliminating

4
a
ti −Δ

(5 lags a
tiΔ )

0.50 0.691 -5.005 -4.24 No



Table 2B. Continued

Sample
Period Time Series Model

Break
Fraction

λ

Estimated
Coefficient

of a1

Estimated
t-statistic of 1â

Perron Critical
Value

Result:
Unit Root

(Yes or No)

1960:Q2
to 2004:Q2

a
ti

Model A;
Eliminating

4
a
ti −Δ

5 lags a
tiΔ )

0.50 0.917 -2.987 -3.76 Yes

1960:Q2
to 2004:Q2

a
ti

Model B;
Eliminating

4
a
ti −Δ , 5

a
ti −Δ ,

& 6
a
ti −Δ

(7 lags a
tiΔ )

0.50 0.953 -2.139 -3.96 Yes

1960:Q2
to 2004:Q2

a
ti

Model C
Eliminating

4
a
ti −Δ

(5 lags a
tiΔ )

0.50 0.775 -5.237 -4.24 No
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The results of Perron’s test are reported in tables 2A and 2B. The test selects Model C as
the best specification for both series and for both sample periods. This result is illustrated in
Graphs 1A and 1B. Since the residuals of the detrended regressions of inflation and nominal
interest rates, a

tx , are found to be trend stationary, these detrended residuals – which take into
account the structural breaks found in the individual series – will be used in the VAR in the
next section.

Graph 1A. Inflation. 1960:Q2 to 2004:Q2.

Graph 1B. Nominal Interest Rates. 1960:Q2 to 2004:Q2.
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3. Parametric and Nonparametric VAR Models

The methodology followed in this paper to test for the Fisher Effect consists of first
determining the best model specification for the univariate series. Since trend stationarity has
been determined for both series, the next step is to set up a bivariate VAR of inflation and
nominal interest rates. The residuals from the detrending regression, a

tx , which include a
break in the mean and in the drift as specified in Equation (1), are used in the VAR, and the
analysis of the Fisher Effect is carried out using parametric and nonparametric techniques.

The cumulative sums of the orthogonalized dynamic multipliers are used to study the
long run behavior of the VAR. These sums capture the long run effect of a shock in the
variable of the system. The time-detrended Fisher Effect can be investigated using the ratio of
the sum of the orthogonalized dynamic multipliers of the responses of inflation to the sum of
the responses of nominal interest rates due to a shock in nominal interest rates. If this ratio
converges to unity, the Fisher Effect holds, which indicates that the changes in detrended
nominal interest rates and detrended inflation are in synchronization in the long run. This
section presents the theoretical VAR models used to examine the Fisher Effect.

3.1. The Parametric Model

The Fisher Effect essentially relates the long run movement of nominal interest rates and
inflation. A linear, stationary, bivariate VAR(p) framework can be used to study the
interaction between the variables in the system, without the complications that arise from
estimating and testing a non-stationary system.

The impulse response functions use the history of the system in order to capture the
average behavior of a variable to an isolated shock in the system. Orthogonalizing the
impulse response functions results in dynamic multipliers that are not history or shock-
dependent when the size of the shock is standardized to one standard deviation.

Hence, a one-standard-deviation shock has no direct impact on the dynamic multipliers.
Furthermore, the orthogonalization of the impulse response functions removes the
composition effect by not including the impact of the shock on the other variables in the
VAR, when the covariances are different from zero.

In forming the VAR(p) to be used to test the Fisher Effect, the lag p and the order of
causality are determined based on statistical tests and economic theory. Inflation is found to
follow nominal interest rates, based on the persistence of inflation and on the Granger
causality test. This test finds that nominal interest rates uni-directionally causes inflation for
both sample periods. The optimal lag length of the VAR(p) is determined using the AIC,
SBC, and the stationarity of the VAR(p). The structural breaks of inflation and nominal
interest rates are taken into account indirectly in the VAR(p) through the residuals of the
detrending regressions obtained from Equation (1), which are stationary.

Concerning the variables in the system, the regressand matrix is denoted as Y, which is
an ( )( )n T 1× ×  matrix, and with each iteration of the VAR being denoted

as ( )t 1t rt n 1t nty y y y y−
′= where T equals the total number of observations,

n is the total number of equations in each iteration of the VAR with r representing the rth
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regressand of the VAR with r = 1,…, n. For this paper, yrt represents the regressand, which is

either detrended nominal interest rates ( )a
ti  or detrended inflation ( )a

tπ . The set of

regressors is denoted as ( )1 m k 1 kX Z X X X X−=    which is an

( )( )n T q× ×
 
matrix with q = (k +1).1 Z is a scalar column matrix with the dimensions of

( )( )n T 1× × , and Xm is a column matrix with the dimensions of ( )( )n T 1× × with m =

1,…, k.2 In regards to the stability of the system, this can be verified by converting the
VAR(p) to a VAR(1), which is weakly-stationary, if the modulus of each eigenvalue of the

system is less than one, i.e., 1jλ < .

The parametric VAR(p) model is represented by:

Φ(L) yt = ut (2)

where yt is a vector ( )a a
t t ty i π

′
= containing the detrended series of nominal interest rates

and inflation, Φ(L) is a (n × p) matrix of the pth order polynomials in the lag operator, and

( )t it tu u uπ ′= is the residual vector which are ut ~ N(0, Σ).

In order to test for the existence of the time-detrended Fisher Effect, the coefficients of
the VAR(p) are used to form its MA(∞) representation, which are orthogonalized through the
application of the Choleski’s decomposition. Specifically,

yt = M(L)wt (3)

where M (L) ≡ Ψ (L)P ≡ Φ (L) –1P, P is the lower triangular Choleski matrix that satisfies Σ =
PP' and wt = (wπt wit)′ = P-1ut , with E(wt) = 0, Var(wt) = I. The orthogonalized MA(∞)
coefficients are used to form the dynamic multiplier ratios, which will be discussed in more
detail in Section 3.3. Concerning the implementation of the theoretical model, if a parametric
VAR(p) has the same regressors in each equation and the error terms, ut, are uncorrelated
with the set of regressors, then the VAR can be consistently estimated by n ordinary least
squares (OLS) equations.

3.2. The Nonparametric Model

The nonparametric model is an empirical kernel density, which is a weighted smoothing
function of the data. The nonparametric model presented in this paper is estimated using the
local linear least squares nonparametric method (LLLS). LLLS is a kernel weighted least
squares regression model, which locally fits a straight line for each data point, with more
weight given to observations close to the data point and less weight to observations farther
away.
                                                       
1 The set of regressors can either be lag operators of yt or exogenous variables.
2 When using standardized data, the scalar matrix is not included.
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As opposed to other nonparametric methodologies, such as using the Nadaraya-Watson
estimator, the LLLS is better able to utilize the information in the tail regions. Hence, we
have a more efficient use of information, particularly when compared to a linear parametric
model. In this instance, LLLS is able to generally produce on average larger coefficients than
the parametric VAR(p). Since the nonparametric model does not specify a functional form of
the model, the LLLS is capable of exploiting the non-linearity present in the model to produce
large stationary coefficients, which are important in testing for the Fisher Effect. Another
benefit of using LLLS is that the coefficients can be analyzed using standard regression
methods such as ordinary least squares by using the average or median coefficients.

As in the parametric VAR(p), the nonparametric VAR can be estimated equation-by-
equation provided that each equation has the same set of regressors, and the error terms of
each equation are not correlated with the set of regressors.

The implementation of the nonparametric VAR(p) requires an equation-by-equation
methodology. The Gaussian kernel measures the distance between each observation in each
regressor to the jth element of each regressor with a weight assigned to each observation with
the intent that more weight is given to observations closer to the jth element and progressively
less weight to observations farther away. The form of the Gaussian kernel is as follows:

( )
T

j
j 1

K K ψ
=

= ∑ , (4)

where

( )
( )

2 2 2
1 1 j m mj k kj

j k
1 m k2

x x x x x x1 1K exp
2 h h h2

ψ
π

⎛ ⎞⎛ ⎞− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

with 1 1 j m mj k kj
j

1 m p

x x x x x x
h h h

ψ
⎛ ⎞− − −

= ⎜ ⎟⎜ ⎟
⎝ ⎠ .

In order to prevent over-smoothing, which results in a loss of information, or under-
smoothing, which causes too much ‘noise’ in the empirical density, the standard window
width, hm, for m = 1 …,k, is used:

( ) ( )k 1 4
m mh C Tσ − + +⎡ ⎤⎣ ⎦= (5)

where k equals the number of regressors with the exclusion of the constant term in the model,
C is a constant term that depends of the type of data, and mσ  is the standard deviation of Xm.
It should be noted that the optimal window width used in Equation (5) is obtained from the
mean integrated squared approach (MISE). Pertaining to this paper, the method of cross
validation is used to obtain the optimal window width, which is further discussed in the
empirical portion of this paper, which is Section 4 (Pagan and Ullah, 1999).



The Nonparametric Time-Detrended Fisher Effect 149

In matrix notation, the (k x 1) vector of nonparametric coefficients for the rth regressand
and tth iteration of the VAR(p) is denoted as

( ) 1
rt rtX KX X Kyβ −′ ′= (6)

Using Equation (6) to calculate all T iterations for each rth regressand, the compilation of the
VAR(p) results in a ( )T k× matrix of nonparametric coefficients.

Once the nonparametric coefficients for the rth regressand is obtained, the VAR(p) can be
re-written as a linear combination of the coefficients and regressors since the LLLS
nonparametric method fits a line within the window width:

rt rt rty X uβ= + , (7)

where the regressand yrt and the residual urt are scalars, with ( )2~ 0,rt rtu σ .

The median or average of each column is used to form the aggregated nonparametric
version of vector Φ(L), an (n × p) matrix of the pth order polynomials in the lag operator. The
aggregate nonparametric coefficients could consist of either the mean or median measures.
The nonparametric orthogonalized MA(∞) representation of the VAR(p) is best described by
Equation (3) is used to form the dynamic multipliers used to test for the Fisher Effect. This is
presented in the next section.

3.3. Testing for the Fisher Effect

The time-detrended Fisher Effect holds statistically if the cumulative orthogonalized
dynamic multiplier ratios converge to one as g – the lag length of the impulse response
function – goes to infinity. The orthogonalized MA(∞) coefficients are used to form the
nonparametric conditional orthogonalized impulse response functions. For instance, the form
of the orthogonalized dynamic multiplier of the ( )t s+  response of the (r')th regressand

caused by a shock to the rth regressand at time t, are of the form:

( )
( )

r t s
r r

t r

d y
M

dw x
′ +

′= . (8)

The gth cumulative dynamic multiplier ratio is referred to as Γg where Γg is the sum of the
responses of detrended inflation caused by a shock to detrended nominal interest rates

( )iMπ to the sum of the responses of detrended nominal interest rates caused by a shock to

detrended nominal interest rates ( )iiM . Specifically for this paper, for each sample period,

the gth ratio of nonparametric orthogonalized cumulative dynamic multipliers of the (r')th

regressand, which is denoted as gΓ , is of the general form of
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,0

,0

g
i ss

g g
ii ss

M

M
πΓ =

=

∑
=
∑

 , (9)

where g = 1, 2, . . . ,∞.
For both the parametric and nonparametric models, up to one hundred lag lengths of the

impulse response functions are calculated in order to determine whether the dynamic
multiplier ratios converge to unity. This is needed since potential non-stationarity can
mistakenly indicate an early appearance of the Fisher Effect in the medium run, which may
break down in the very long run. The convergence to unity signifies that the changes in
detrended nominal interest rate are being matched by the changes in detrended inflation,
which indicates that the Fisher Effect holds.

Three different methodologies to compute the orthogonal dynamic multipliers are
presented in order to test for the Fisher Effect. One is based on the parametric VAR and the
orthogonal dynamic multiplier ratios described in Equation (9). The other two methods are
based on the nonparametric VAR. Methods 2 and 3 can be computed using the median
nonparametric and the average nonparametric coefficients. The three techniques are as
follows:

METHOD 1: The parametric VAR of detrended nominal interest rates and inflation is
estimated equation-by-equation, in order to obtain the sum of the orthogonalized dynamic
multipliers of the responses of inflation divided by the responses of nominal interest rates to a
shock in nominal interest rates.

METHOD 2: The orthogonal dynamic multiplier ratios of the Fisher Effect are obtained
from the nonparametric estimation of the VAR using the median of the T′ estimated
coefficients for each regressor as a measure of central tendency where T′ denotes the total
number of observations once the lags of the VAR are taken into account. The median
coefficients are used to form the MA(∞) coefficients, which are then used to form the
dynamic multipliers. The error terms from the T′ nonparametric equation estimation of the
VAR are used to obtain the ( )2 2×  unconditional variance-covariance matrix of the error

terms, which is calculated by using the residual sum of squares. The Choleski decomposition
can then be calculated in order to form the orthogonalized impulse responses – the orthogonal
dynamic multipliers.

METHOD 3: The orthogonal dynamic multiplier ratios of the Fisher Effect are obtained
from the nonparametric estimation of the VAR. The median of T′ estimated coefficients for
each regressor is obtained. The median nonparametric coefficients are used to form the
MA(∞) coefficients that comprises the dynamic multiplier ratios of the Fisher Effect. The
error terms of each equation in the VAR are then obtained from the regression:

_np medY Xε β= − , (10)
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which is then used to obtain the ( )2 2×  variance-covariance matrix of the error terms. Once

the variance-covariance matrix of the error terms is obtained the Choleski decomposition can
then be calculated to form orthogonal dynamic multipliers.

The average, orthogonal, nonparametric dynamic multiplier ratios of the time-detrended
Fisher Effect are obtained by replacing the median nonparametric coefficients in the
formation of the MA(∞) version of the VAR(p) with the average nonparametric coefficients.
If the orthogonal dynamic multiplier ratios of the Fisher Effect converge to unity and are
within the 95% bootstrapped confidence band, the Fisher Effect statistically holds. For each
test of the Fisher Effect, the bootstrapped confidence band is constructed from the empirical
density based on five thousand iterations of re-sampling with replacement. For each run, the
VAR is estimated and the test for the Fisher Effect is formed using the bootstrapped data with
the average used to construct the confidence band.

By definition, the Fisher Effect means that the real interest rate is constant in the long run
and is not impacted by either the short-term movements of nominal interest rates or inflation.
Hence, if the Fisher Effect holds, the long run dynamics as represented by the impulse
response functions, the convergence movement of nominal interest rates should match the
convergent movement of inflation. Intuitively, that is:

(11)

(12)

(13)

where δ is some constant. For monetary policy purposes, examining Equation (13) can be an
informative tool for inflation-targeting regimes, since an inequality indicates that inflation and
nominal interest rates are in disequilibria. If the orthogonal dynamic multiplier ratios are
greater than unity, the cumulative responses of inflation are greater than the cumulative
responses of nominal interest rates, which would act as a signal to the monetary authorities
that anti-inflationary measures in the form of tight monetary policies might be needed. This is
particularly the case if the ratio exceeds unity by a preset amount. On the other hand, if the
orthogonal dynamic multiplier ratios are less than unity, then the monetary authorities might
consider implementing loose monetary policies that could bring inflation and nominal interest
rates back into synchronization, given that the Fisher Effect holds in the long run.
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4. Empirical Results

4.1. First Sample Period

The first sample period is from the second quarter of 1960 to the third quarter of 1995. In
order to show the advantages of the nonparametric model, the parametric model is used as a
benchmark. The data used in the estimated parametric and nonparametric VAR(p) models are
the standardized detrended residuals of nominal interest rates and inflation generated from the
estimation of Equation (1).

In choosing the lag length of the VAR(p), the estimated parametric VAR(3) has a higher
AIC but a lower SBC, when compared to the parametric VAR(4). Due to the conflicting
results of the AIC and SBC, various lag lengths of the VAR(p) were tested in an attempt to
obtain a more parsimonious model. The optimal estimated model is selected based upon the
stationarity of the VAR, as indicated by the moduli of the eigenvalues (whether they are less
than unity). Even though the detrended series of inflation and nominal interest rates are
stationary, the VAR(p) is not necessarily stationary as indicated by the moduli of the
eigenvalues of the VAR. This is due to the dynamic interaction of the two series in the
VAR(p) (tables 6A and 6B).

Table 3A. Sample Period—1960:Q2 to 1995:Q3

Parametric and Median Nonparametric Estimated Coefficients of a VAR(3)3

Estimated
Coefficients

Parametric
Method 1

Nonparametric
Method 2

Nonparametric
Method 3

EQ 1 of
VAR

EQ 2 of
VAR

EQ 1 of
VAR

EQ 2 of
VAR

EQ 1 of
VAR

EQ 2 of
VAR

1
a
ti −

1.1377
(0.0847)

0.6940
(0.1123)

1.3139
(0.0029)

0.7644
(0.0034)

1.3139
(0.0067)

0.7644
(0.0101)

2
a
ti −

-0.6132
(0.1196)

-0.4627
(0.1587)

-0.3561
(0.0057)

-0.3146
(0.0069)

-0.3561
(0.0133)

-0.3146
(0.0202)

3
a
ti −

0.2834
(0.0951)

0.0785
(0.1262)

-0.1661
(0.0036)

-0.0625
(0.0043)

-0.1661
(0.0084)

-0.0625
(0.0127)

1
a
tπ −

-0.0956
(0.0651)

0.2972
(0.0864)

0.0796
(0.0017)

0.3209
(0.0020)

0.0796
(0.0039)

0.3209
(0.0060)

2
a
tπ −

0.2609
(0.0675)

0.0085
(0.0896)

0.07523
(0.0018)

0.0558
(0.0022)

0.07523
(0.0042)

0.0558
(0.0064)

3
a
tπ −

-0.1617
(0.0657)

0.1494
(0.0871)

-0.0505
(0.0017)

0.1779
(0.0021)

-0.0505
(0.0040)

0.1779
(0.0061)

                                                       
3 For both sample periods, the nonparametric estimated coefficients of the VAR(p) using Method 2 and Method 3

are the same, but the methods of obtaining the estimated standard deviations are different and are discussed in
Section 3.3.
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Table 3B. Sample Period—1960:Q2 to 2004:Q3

Parametric and Average Nonparametric, Estimated Coefficients of a VAR(4)

Estimated
Coefficients

Parametric
Method 1

Nonparametric
Method 2

Nonparametric
Method 3

EQ 1 of
VAR

EQ 2 of
VAR

EQ 1 of
VAR

EQ 2 of
VAR

EQ 1 of
VAR

EQ 2 of
VAR

1
a
ti −

1.2377
(0.0771)

0.8517
(0.1357)

1.3051
(0.0108)

0.8192
(0.0014)

1.3051
(0.0043)

0.8192
(0.0108)

2
a
ti −

-0.6849
(0.1179)

-0.7110
(0.2073)

-0.4290
(0.0252)

-0.5161
(0.0033)

-0.4290
(0.0101)

-0.5161
(0.0251)

3
a
ti −

0.5050
(0.1201)

0.4318
(0.2113)

0.2711
(0.0262)

0.1981
(0.0035)

0.2711
(0.0105)

0.1981
(0.0261)

4
a
ti −

-0.1990
(0.0838)

-0.4247
(0.1474)

-0.1605
(0.0127)

-0.0895
(0.0017)

-0.1605
(0.0051)

-0.0895
(0.0127)

1
a
tπ −

-0.0701
(0.0429)

0.3814
(0.0754)

0.1179
(0.0033)

0.4008
(0.0004)

0.1179
(0.0013)

0.4008
(0.0033)

2
a
tπ −

0.1461
(0.0446)

-0.0554
(0.0784)

0.0199
(0.0036)

-0.0661
(0.0005)

0.0199
(0.0015)

-0.0661
(0.0036)

3
a
tπ −

-0.0994
(0.0455)

0.2864
(0.0801)

-0.0446
(0.0038)

0.3062
(0.0005)

-0.0446
(0.0015)

0.3062
(0.0037)

4
a
tπ −

-0.0169
(0.0437)

-0.1041
(0.0770)

-0.1047
(0.0035)

-0.0902
(0.0005)

-0.1047
(0.0014)

-0.0902
(0.0035)

Concerning the estimation of the nonparametric models, the choice of window width is
critical since too large of a window width over-smoothes the data, and too small of a window
width causes the data to become very erratic. For this paper, the choice of window width is
based upon cross validation of the error terms. More specifically, the window width, which
produces the smallest sum of squared errors, as calculated by Methods 2 and 3, is chosen as
the optimal window width as opposed to using the standard window width as provided by
Equation (5). The optimal window with for the VAR(3) with median nonparametric
coefficients is 0.40 while the optimal window with for the VAR(4) with median
nonparametric coefficients is 0.48.

The nonparametric VAR(3) and VAR(4) models, which are able to produce the dynamic
multiplier ratios of the Fisher Effect, have the characteristics that the sum of the AR
coefficients and the modulus of the eigenvalue of each variable of the system are not very
close to unity ( i.e., not equal to 0.99 or exceed unity). As shown in table 3A, the majority of
the estimated nonparametric coefficients is larger than their parametric counterparts and the
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non-linearity can be seen in Graph 2A.4 The moduli of the eigenvalues are, on average, larger
than their analogous parametric versions (table 4A).

Graph 2A. Graphs of Estimated Nonparametric Coefficients with Detrended Infaltion as the Regressand
Sample Period: 1960:Q2 to 1995:Q3.

                                                       
4 The intent of Graphs 2A and 2B are to demonstrate the non-linearity present in both sample periods. Hence for

demonstration purposes, four nonparametric coefficients greater than |9| were removed in order to make the
scaling of the graphs more homogeneous in Graphs 2A and 2B.



The Nonparametric Time-Detrended Fisher Effect 155

Graph 2B. Graphs of Estimated Nonparametric Coefficients with Detrended Nominal Interest Rates as
the Regressand Sample Period: 1960:Q2 to 1995:Q3.

As illustrated in Graph 3A, the Fisher Effect holds in the case of the nonparametric VAR
models, since they are able to exploit the non-linearity in the system, which produces larger
estimated coefficients while maintaining stationarity (i.e., they do not exceed unity).
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Graph 3A. Graph of the Fisher Effect for the First Sample Period.

Graph 3B. Graph of the Fisher Effect for the Second Sample Period.

In addition, the estimated nonparametric VAR(3) models generally produce larger
unconditional variance-covariance matrices than the parametric versions, which are important
for the estimation of the Choleski decompositions. The Choleski decomposition and its
corresponding variance-covariance matrix of the optimal nonparametric VAR(3) model used
to orthogonalize the dynamic multipliers are larger than the parametric counterpart using
either Method 2 or Method 3 (table 5A).
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Table 4A. Sample Period—1960:Q2 to 1995:Q3

Eigenvalues of
Parametric VAR(3) Modulus

Eigenvalues of Median
Nonparametric

VAR(3)
Modulus

-0.1974+0.6373i 0.6671 -0.2331+0.4848i 0.5379
-0.1974-0.6373i 0.6671 -0.2331-0.4848i 0.5379
0.1727+0.4422i 0.4747 0.7583+0.2575i 0.6237
0.1727-0.4422i 0.4747 0.7583-0.2575i 0.6237

0.7925 0.7925 0.8038 0.8038
0.6918 0.6918 -0.2193 0.2193

Table 4B. Sample Period—1960:Q2 to 2004:Q2

Eigenvalues of
Parametric VAR(4) Modulus

Eigenvalues of Median
Nonparametric

VAR(4)
Modulus

-0.3428+0.6761i 0.7580 -0.2820+0.6519i 0.7103
-0.3428-0.6761i 0.7580 -0.2820-0.6519i 0.7103
-0.0330+0.6432i 0.6440 -0.1363+0.4234i 0.4448
-0.0330-0.6432i 0.6440 -0.1363-0.4234i 0.4448
0.7117+0.2555i 0.7562 0.9393+0.0727i 0.9421
0.7117-0.2555i 0.7562 0.9393-0.0727i 0.9421

0.8275 0.8275 0.5609 0.5609
0.1199 0.1199 0.1029 0.1029

Table 5A. Sample Period—1960:Q2 to 1995:Q3

Parametric
Method 1

Nonparametric
Method 2

Nonparametric
Method 3

Variance-
Covariance
Matrix

0.2992
0.1007

0.1007
0.5263

0.5554
-0.0701

-0.0701
0.8448

0.4785
0.1507

0.1507
0.5731

Choleski
Decomposition
Matrix

0.5468
0.1841

0.0000
0.7017

0.7452
-0.0941

0.0000
0.9143

0.6917
0.2179

0.0000
0.7250

Table 5B. Sample Period—1960:Q2 to 2004:Q2

Parametric
Method 1

Nonparametric
Method 2

Nonparametric
Method 3

Variance-
Covariance
Matrix

0.5482
0.1613

0.1613
1.6956

1.9859
0.0054

0.0054
0.2621

0.8007
0.2416

0.2416
1.9826

Choleski
Decomposition
Matrix

0.7405
0.2177

0.0000
1.2838

1.4092
0.0038

0.0000
0.5119

0.8948
0.2700

0.0000
1.3819
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In the case on nonparametrics, using both Methods 2 and 3, the VAR(3) model
statistically produce the Fisher Effect when using standardized data with median
nonparametric coefficients while the counterpart parametric model is unable to produce the
Fisher Effect.5 As shown in table 6A, the dynamic multiplier ratios of the nonparametric
VAR(3) using standardized data and median nonparametric coefficients statistically converge
to 0.97 at approximately the ninth quarter using Method 2. Using Method 3, the dynamic
multiplier ratios statistically converge to 1.02 using Method 3 at approximately the sixth
quarter, and the dynamic multiplier ratios converge to 1.0 at approximately the twelfth quarter
as demonstrated in Graph 3A and table 6A.

Table 6A. Sample Period—1960:Q2 to 1995:Q3

Parametric/
Nonparametric

Coefficients

No. of
Lags

Window
Width

Stationary
(Yes/No)

Convergence of
Γk

Existence of
Fisher Effect

(Yes/No)
Parametric
--Level Data 3 N/A Yes 0.83 No

Parametric
--Standardized
Data

3 N/A Yes 0.77 No

Parametric
--Level Data 4 N/A Yes 1.57 No

Parametric
--Standardized
Data

4 N/A Yes 0.57 No

Nonparametric
--Level Data
(Median)

3 0.78 Yes Method 2 → -3.64
Method 3 → -0.36 No

Nonparametric
--Level Data
(Mean)

3 0.73 Yes Method 2 → 0.33
Method 3 → 0.48 No

Nonparametric --
Standardized Data
(Median)

3 0.40 Yes Method 2 → 0.97
Method 3 → 1.02 Yes

Nonparametric --
Standardized Data
(Mean)

3 0.43 Yes Method 2 → 0.71
Method 3 → 0.74 No

Nonparametric
--Level Data
(Median)

4 0.90 Yes Method 2 → 0.69
Method 3 → 0.69 No

Nonparametric
--Level Data
(Mean)

4 0.92 Yes Method 2 → 0.40
Method 3 →0.40 No

                                                       
5 For the first sample period, using Methods 2 and 3 and a nonparametric VAR(4) using standardized data with

either mean or median nonparametric coefficients, the test for the Fisher Effect converges to 1.05.  Regarding
the parametric counterpart model, the test for the Fisher Effect converges 0.57.  Hence the Fisher Effect is
statistically achieved in the nonparametric VAR(4) models and not in the parametric VAR(4) model.
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Table 6A. Continued

Parametric/
Nonparametric

Coefficients

No. of
Lags

Window
Width

Stationary
(Yes/No)

Convergence of
Γk

Existence of
Fisher Effect

(Yes/No)
Nonparametric --
Standardized Data
(Median)

4 0.48 Yes Method 2 → 1.01
Method 3 →0.93 Yes

Nonparametric --
Standardized Data
(Mean)

4 0.52 Yes Method 2 → 1.05
Method 3 → 1.05 Yes

Table 6B. Sample Period—1960:Q2 to 2004:Q2

Parametric/
Nonparametric

Coefficients

No. of
Lags

Window
Width

Stationary
(Yes/No)

Convergence of
Γk

Existence of
Fisher Effect

(Yes/No)
Parametric
--Level Data 3 N/A Yes 0.58 No

Parametric
--Standardized Data 3 N/A Yes 0.51 No

Parametric
--Level Data 4 N/A Yes 1.35 No

Parametric
--Standardized Data 4 N/A Yes 0.48 No

Nonparametric
--Level Data
(Median)

3 0.95 Yes Method 2 →0.54
Method 3 → 0.56 No

Nonparametric
--Level Data
(Mean)

3 0.90 Yes Method 2 → 0.17
Method 3 → 0.21 No

Nonparametric --
Standardized Data
(Median)

3 0.46 Yes Method 2 → 0.07
Method 3 → 0.10 No

Nonparametric --
Standardized Data
(Mean)

3 0.53 Yes Method 2 →0.34
Method 3 → 0.33 No

Nonparametric
--Level Data
(Median)

4 0.87 Yes Method 2 → 0.94
Method 3 → 0.95 Yes

Nonparametric
--Level Data
(Mean)

4 0.99 Yes Method 2 → 0.83
Method 3 → 0.67 No

Nonparametric --
Standardized Data
(Median)

4 0.45 Yes Method 2 → 1.09
Method 3 → 1.08 Yes

Nonparametric --
Standardized Data
(Mean)

4 0.54 Yes Method 2 → 0.52
Method 3 → 0.51 No
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While the Fisher Effect statistically holds for Methods 2 and 3, Method 3 is better
representative of the Fisher Effect due to the smaller variances. The smaller variances
produce a smaller bootstrap confidence band, which leads to more reliable results of the test
for the Fisher Effect. Thus, the nonparametric VAR(3), using standardized detrended data and
median coefficients, from this point forward will be referred to as the optimal nonparametric
VAR(3).

The optimal nonparametric VAR(3) produces orthogonalized dynamic multiplier ratios
that statistically converge to 1.02 at approximately the twelfth quarter, while the parametric
VAR(3) using standardized data produces orthogonalized dynamic multiplier ratios that
converge to 0.77. Hence, the time-detrended Fisher Effect holds in the very long run, which
can be explained by the sluggish nature of inflation as well as by the long lag monetary policy
takes to affect inflation.

4.2. Second Sample Period

As in the case of the first sample period, the results of the nonparametric model are
compared to the corresponding parametric model. The data used in the parametric and
nonparametric VAR(p) models for the second time period (from the second quarter of 1960 to
the second quarter of 2004) are the level detrended residuals of nominal interest rates and
inflation as generated by the estimated detrending regression of Equation (1).

Various lag lengths are tested which produced conflicting AIC and SBC results in the
second sample period as is the case in the first sample period. Even with the inclusion of
trend-stationary data in the VAR(p) and changing the lag length, the dynamics of the VAR(p)
cause the system to become non-stationary or very close to non-stationary in the second
sample. Thus, the VAR(p) produces non-convergent equilibria for detrended nominal interest
rates and inflation.

The level nonparametric VAR(4) model, in which the Fisher Effect statistically holds, is
able to exploit the non-linearity in the system to generate larger estimated coefficients whose
sum does not exceed unity (Graph 2B and table 3B). Furthermore, the VAR(4) produces
moduli of the eigenvalues that are large but do not exceed unity (table 4B). Concerning, the
window width, which produces the smallest sum of squared errors, as calculated by Methods
2 and 3 for the VAR(4) with median nonparametric coefficients is 0.45 while the optimal
window with for the VAR(4) with mean nonparametric coefficients is 0.54.

In regards to the variance-covariance matrices, the estimated nonparametric VAR(4)
produces larger variance-covariance matrices than the estimated parametric counterpart,
which also enables the system to achieve the Fisher Effect through the use of Methods 2 or 3.
By using Method 2, the dynamic multiplier ratios statistically converges to 0.94 at
approximately the fifteenth quarter. Method 2 also produces a smaller estimated variance-
covariance matrix, which produces a smaller bootstrap confidence band thereby making the
results of the test for the Fisher Effect more reliable when compared to the results obtained by
using Method (Graph 3B and table 5B). Alternatively, Method 3 produces dynamic multiplier
ratios that statistically converge to 0.95 at approximately the twenty-fifth quarter (table 6B).
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Hence the nonparametric VAR(4) using level data and median nonparametric coefficients is
the optimal model that produces the Fisher Effect.6

The difference in results between the first and second samples indicates that some
changes have taken place in the dynamics of nominal interest rates and inflation. In particular,
the use of level detrended data is necessary to create a stable VAR(p) with large enough
coefficients and variance-covariance matrix in the second sample, which permits
investigation of the Fisher Effect in a stationary setting. Furthermore, the Fisher Effect
statistically takes a longer time to go into effect in the second sample period when compared
to the first sample period. These changes are partially related to the decreased volatility in
nominal interest rates. In regards to the inflation-targeting rule, the results of the second
sample period indicate that there is a one-to-one movement between nominal interest rates
and inflation. Consequently, the Fisher Effect still holds, which indicates that monetary policy
should only follow discrete movements in inflation.

In summary, the results are that the Fisher Effect statistically holds, regardless of the use
of standardized detrended data or level detrended data, even with the noticeable decrease in
the volatility of nominal interest rates during the second period.

5. Conclusion

This paper investigates the Fisher Effect for two sample periods: for the first quarter of
1960 to the third quarter of 1995, and for the first quarter of 1960 to the second quarter of
2004. Nonparametric techniques are used to investigate whether the Fisher Effect holds. The
methodology is applied to study the dynamics of nominal interest rates and inflation in
bivariate VARs, and the results are compared with the ones obtained from parametric
techniques. The advantages of using nonparametric over parametric techniques are that the
nonparametric version is better equipped to deal with outliers, and is able to capture
nonlinearities in the underlying system. The empirical investigation of the Fisher Effect
pursued in this paper also takes into account possible misspecifications and the presence of
potential structural breaks.

The first findings are that nominal interest rates and inflation present structural changes
in the early 1980s. When these breaks are taken into account, nonstationarity tests indicate
that they are trend-stationary. Thus, a time-detrended Fisher Effect is warranted to measure
the long run relationship of nominal interest rates to inflation. Notice that if these breaks are
not taken into account, this could lead to the erroneous conclusion that the respective time
series contain a stochastic trend due to the low power of unit root and cointegration tests.

In the second stage, the residuals from the detrending regressions of inflation and
nominal interest rates are used to form a stationary, nonparametric, time-detrended VAR with
median or mean coefficients. This framework permits the investigation of nonlinearities in the
relationship between nominal interest rates and inflation through the study of the estimated
coefficients and the dynamic multipliers of the orthogonalized impulse response functions.
The nonparametric time-detrended test for the Fisher Effect is formed from the cumulative
                                                       
6 For the second sample period, a VAR(4) using standardized data and median nonparametric estimated coefficients

is able to produce the Fisher Effect while the parametric VAR(4) with standardized data is unable to produce
the Fisher Effect.  For the nonparametric model converges to 1.09 using Method 2 and 1.08 using Method 3.
The parametric model converges to 0.48.
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orthogonalized dynamic multiplier ratios of inflation to nominal interest rates pursuant to a
shock to nominal interest rates. If the Fisher Effect holds, this ratio statistically approaches
one as the horizon goes to infinity, which means that the changes in detrended nominal
interest rates are matched by the changes in detrended inflation in the long run.

Two variations of the relationship between inflation and nominal interest rates are
investigated in this paper: a nonparametric time-detrended Fisher Effect using standardized
data for the first sample period, and a nonparametric time-detrended Fisher Effect using level
data for the second sample period. Thus, both nonparametric techniques conclude that the
Fisher Effect holds.

A monetary policy rule could be implemented based on investigating whether or not
movements in inflation exceed movements in nominal interest rates in the long run – changes
in policy would be warranted in order to maintain the long run equilibrium between these
series, as reflected in the Fisher Effect. The findings that the Fisher Effect holds, especially
for the more recent period, suggest that current monetary policy can be implemented based on
minor discrete changes vis-à-vis discrete changes in nominal interest rates, in order to
maintain the long run equilibrium between nominal interest rates and inflation.
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Abstract

This paper investigates the effect of forecasting ability on forecasting bias among Japanese
GDP forecasters. Trueman (1994, Review of Financial Studies, 7(1), 97-124) argues that an
incompetent forecaster tends to discard his private information and release a forecast that is
close to the prior expectation and the market average forecast. Clarke and Subramanian (2006,
Journal of Financial Economics, 80, 81-113) find that a financial analyst issues bold earning
forecasts if and only if his past performance is significantly different from his peers. This
paper examines a twenty-eight-year panel of annual GDP forecasts, and obtains supportive
evidence of Clarke and Subramanian (2006). Our result indicates that conventional tests of
rationality are biased toward rejecting the rational expectations hypothesis.

Keywords: Forecast evaluation; Rational expectations hypothesis; Reputation; Herd
behavior; Economic forecasts.

JEL Classification Codes: E37; C53; D84.

1. Introduction

A central premise of economic analysis is that people seek to maximize their utility.
Various factors influence their utility and hence their behavior. The recent development of
information economics has shown that those with private information signal what they know
through their actions. For example, a forecaster with private information based on his own
ability will intentionally release biased forecasts. Numerous empirical studies have
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investigated this kind of forecasting bias, but the vast majority of them are on financial
analysts1 and few are on macroeconomic forecasters.2 The purpose of this paper is to fill this
gap: we examine the relation between forecasting ability and forecasting bias among Japanese
GDP forecasters.

More specifically, we consider the signaling hypotheses of Trueman (1994) and Clarke
and Subramanian (2006). Trueman (1994) argues that a forecaster of poor ability has little
confidence in his private information, and that he prefers to release a forecast that is close to
the prior expectation and the market average forecast. Clarke and Subramanian (2006)
suggest that the forecaster’s payoff is convex in her reputation and that, with the presence of
employment risk, there is a U-shaped relation between the forecast boldness and prior
performance. They confirm their prediction using earnings forecast data from I/B/E/S over
the period 1988 to 2000.

We test these hypotheses using a twenty-eight-year panel of annual GDP forecasts.
Although the result is not consistent with the hypothesis of Trueman (1994), it is consistent
with the hypothesis of Clarke and Subramanian (2006). To the best of our knowledge, this is
the first study to find a supportive evidence of Clarke and Subramanian (2006) among
macroeconomic forecasters. Our result indicates that rational forecasters sometimes issue
biased forecasts and hence biased forecasts do not necessarily contradict the rational
expectations hypothesis.

There are several existing studies on the strategic behavior of Japanese GDP forecasters.
Ashiya and Doi (2001) investigate the relation between forecasters’ age and degree of
herding, and find that Japanese forecasters herd to the same degree regardless of their
forecasting experience. Ashiya (2002, 2003) demonstrates that reputation models cannot
explain the biases he found in the forecast revisions of Japanese GDP forecasters. Ashiya
(2009) found that forecasters in industries that emphasize publicity most tend to issue the
most extreme and least accurate predictions. Our results complement these previous works.

The plan of the paper is as follows. Section 2 explains the data. Section 3 introduces the
variables. Section 4 tests the hypothesis of Trueman (1994), and Section 5 tests the
hypothesis of Clarke and Subramanian (2006). Section 6 concludes.

2. Data

Toyo Keizai Inc. has published the forecasts of about 70 Japanese institutions (banks,
securities firms, trading companies, insurance companies, and research institutions) in the
February or March issue of “Monthly Statistics (Tokei Geppo)” since the 1970s. In every
December, institution i releases forecasts of the Japanese real GDP growth rate for the
ongoing fiscal year and for the next fiscal year. We call the former i

ttf ,  and the latter i
ttf 1, + .

For example, the February 2008 issue contains forecasts for fiscal year 2007 (from April 2007
to March 2008) and for fiscal year 2008 (from April 2008 to March 2009). We treat the
former as if 2007,2007  and the latter as if 2008,2007 .

                                                       
1 Ramnath et al. (2008) survey the literature exhaustively.
2 Fildes and Stekler (2002, p.461) review the literature. See also Pons-Novell (2003) and Elliott et al. (2008).
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Since the participation rate was very low throughout the 1970s (on average 13.8
institutions per year), we use the forecasts published from February 1981 on. That is, we use

i
ttf ,  for the fiscal years 1980 through 2007 and i

ttf 1, +  for the fiscal years 1981 through 2008.

We exclude institutions that participated in less than eleven surveys, leaving 53 institutions.
The average number of observations per institution is 20.28 for the current-year forecasts
( i

ttf , ) and 20.55 for the year-ahead forecasts ( i
ttf 1, + ).

As for the actual growth rate tg , Keane and Runkle (1990) argue that the revised data
introduces a systematic bias because the extent of revision is unpredictable for the forecasters
[see also Stark and Croushore (2002)]. For this reason, we use the initial announcement of the
Japanese government, which was released in June through 2004 and was released in May
from 2005 on. We obtain the same results by using the revised data of tg  released in June of

year 2+t .
Figure 1 shows the forecast distributions and the actual growth rates. The vertical line

shows the support of the forecast distribution of the 53 institutions. The horizontal line shows
the mean forecast. The closed diamond shows the actual growth rate. Table 1 shows the
descriptive statistics of the absolute forecast errors (AFE) for each year. For example, 19
institutions released the current-year forecasts ( i

ttf , ) in 1980, and the average of the AFE is

0.974. The difference between the worst forecast and the realization is 1.3 percentage points,
and the difference between the best forecast and the realization is 0.7 percentage points.3 The
standard deviation of the AFE in 1980 is 0.152. Table 2 shows the descriptive statistics of the
mean absolute forecast error (MAFE) of each institution. As for the current-year forecast, the
MAFE of the best institution is 0.373%, and that of the worst institution is 0.692%. The
average MAFE is 0.503% and the standard deviation is 0.066. As for the year-ahead forecast,
the best is 1.100% and the worst is 1.616%.

Table 1. Absolute forecast errors

(a) Current-year forecasts

Avg. Max. Min. S.D. Obs.
1980 0.974 1.3 0.7 0.152 19
1981 0.815 1.4 0.5 0.222 26
1982 0.497 0.9 0.0 0.219 34
1983 0.185 0.4 0.0 0.116 34
1984 0.213 0.5 0.0 0.136 38
1985 0.241 0.7 0.0 0.163 39
1986 0.418 0.8 0.1 0.176 44
1987 1.221 1.8 0.6 0.251 33
1988 0.133 0.6 0.0 0.123 48
1989 0.181 0.7 0.0 0.173 48
1990 0.518 1.1 0.1 0.227 50
1991 0.117 0.4 0.0 0.099 53

                                                       
3 Although the value of the realization is between the highest forecast and the lowest one in 1980 [as Figure 1 (a)

shows], there is no forecast that coincides with the realization.
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Table 1. Continued

Avg. Max. Min. S.D. Obs.
1992 0.948 2.0 0.4 0.294 50
1993 0.294 0.9 0.0 0.240 51
1994 0.438 0.8 0.0 0.208 50
1995 1.355 1.9 0.6 0.202 51
1996 0.562 1.3 0.0 0.275 50
1997 0.763 1.7 0.2 0.268 49
1998 0.391 1.8 0.0 0.296 47
1999 0.226 0.8 0.0 0.184 43
2000 1.025 1.6 0.2 0.261 40
2001 0.246 0.7 0.0 0.172 35
2002 0.668 1.4 0.2 0.285 19
2003 0.844 1.4 0.3 0.328 25
2004 0.193 0.7 0.0 0.166 27
2005 0.346 0.8 0.1 0.173 26
2006 0.170 0.5 0.0 0.174 23
2007 0.174 0.5 0.0 0.136 23

(b) Year-ahead forecasts

Avg. Max. Min. S.D. Obs.
1981 1.668 3.0 0.4 0.551 19
1982 0.496 1.2 0.0 0.324 26
1983 0.965 1.9 0.2 0.409 34
1984 1.432 2.1 0.8 0.361 34
1985 0.437 1.8 0.0 0.374 38
1986 0.446 1.3 0.0 0.319 39
1987 2.423 3.3 1.4 0.420 44
1988 1.472 2.5 0.7 0.324 47
1989 0.669 1.6 0.0 0.377 48
1990 1.260 2.1 0.5 0.309 48
1991 0.242 0.7 0.0 0.184 50
1992 2.172 3.2 1.5 0.310 53
1993 2.608 3.5 1.7 0.331 50
1994 0.376 1.0 0.0 0.245 51
1995 0.422 1.6 0.0 0.338 50
1996 1.092 2.1 0.4 0.345 51
1997 2.082 2.9 1.2 0.395 50
1998 2.859 4.0 1.5 0.493 49
1999 1.028 2.7 0.0 0.571 47
2000 0.309 1.2 0.0 0.252 43
2001 3.083 4.0 2.1 0.353 40
2002 2.263 3.6 1.2 0.473 35
2003 3.068 4.1 2.2 0.452 19
2004 0.356 0.9 0.0 0.235 25
2005 1.919 2.8 1.3 0.378 27
2006 0.281 1.0 0.0 0.283 26
2007 0.365 0.8 0.0 0.233 23
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Table 2. Mean absolute forecast error of 53 institutions

Current-year Year-ahead
Average 0.503 1.339
Maximum 0.692 1.616
Minimum 0.373 1.100
S.D. 0.066 0.118

3. Definition of Variables

As table 1 has shown, some years are more difficult to forecast than others. The variance
of the absolute forecast errors (AFE) tends to be larger in these difficult-to-forecast years. It
follows that the level of the MAFE is mainly determined by the performance in the difficult-
to-forecast years. Therefore the MAFE is not an appropriate measure of forecast accuracy.
We deal with this issue by considering the accuracy ranking of the institutions. Following
Kolb and Stekler (1996) and Skillings and Mack (1981), we employ the adjusted ranking that
is robust to changes in the variance of the forecast variables.

Suppose the panel data consists of N institutions and M periods. Let tN ( N≤ ) be the

number of institutions that release forecasts in year t. t
i
tt

i
tt gfAFE −≡ ,,  denotes the absolute

forecast error of institution i in year t. Let { }ti
t Nr ,,1∈  be the relative rank of i

ttAFE , . If

ties occur, we use average ranks. If institution i does not participate in year t, we assume
( )t

i
t Nr += 15.0 . We define the adjusted rank of institution i in year t, ( )i

tt
i
t AFER , , as

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≡
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1
1

12
5.0

,
ti

t
t

i
tt

i
t

Nr
N

AFER . (1)

The first term of ( )i
tt

i
t AFER ,  compensates for the difference in observations. The second

term measures relative performance. A negative (positive) ( )i
tt

i
t AFER ,  indicates that the rank

of institution i in year t is above (below) the median and i
ttf ,  is relatively accurate

(inaccurate). ( ) ( )∑ =
≡

M

t
i

tt
i
t

i
tt

i AFERAFER
1 ,,  denotes the sum of the adjusted ranks. If

( )i
tt

i AFER ,  is close to zero, forecast accuracy of institution i is on average similar to other

institutions. If ( )i
tt

i AFER ,  is significantly smaller (larger) than zero, the forecast accuracy of

institution i is on average better (worse) than that of other institutions.
We also define the relative boldness of forecasts. Let i

ttf
−
,  be the forecast average

excluding institution i in year t. Then i
tt

i
tt

i
tt ffBold −−≡ ,,, , the forecast boldness, indicates
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the extremeness of i’s forecast in year t.4 Let ( )i
tt

i
t BoldR ,  be the adjusted rank of i

ttBold ,

defined in equation (1). Institution i issues a forecast similar to others in year t if ( )i
tt

i
t BoldR ,

is significantly smaller than zero. Institution i issues a forecast different from others in year t

if ( )i
tt

i
t BoldR ,  is significantly larger than zero. ( ) ( )∑ =

≡
M

t
i

tt
i
t

i
tt

i BoldRBoldR
1 ,,  denotes the

sum of the adjusted ranks of boldness.

4. Trueman’s Hypothesis

4.1. Overview of Trueman’s Theory

Trueman (1994) examines the optimal earning forecasts for security analysts given their
private information. This section reviews his argument in the context of macroeconomic
forecasts.

Consider a group of economists who are paid by clients to prepare GDP forecasts. The
growth rate takes one of four possible values compared with the prior expectations: “very
high”, “high”, “low”, and “very low”. The prior distribution is symmetric, and the prior
probability that the growth rate is “high”, t, satisfies 5.025.0 << t . Each economist obtains
private information and releases his forecast at the beginning of the year. There are two types
of economists: weak and strong. The economists know their own types with certainty, but the
clients do not know the economists’ abilities.

The private information is correct with probability 5.0>Sp  when the economist is

strong, and is correct with probability ( )SW pp ,5.0∈  when the economist is weak. If the
economist’s private information is either “very high” or “high” (“low” or “very low”), then
the probability that the actual growth rate is either “low” or “very low” (“very high” or
“high”) is zero. For example, if a strong economist obtains the signal of “high”, then “high”
growth rate is realized with probability Sp , “very high” growth rate with Sp−1 , “low” with
probability zero, and “very low” with probability zero. Similarly, if a weak economist obtains
the signal of “very low”, then “very low” growth rate is realized with probability Wp , and

“low” with Wp−1 .
While an economist’s compensation is usually based on several factors, it is natural to

assume that his compensation is increasing in the clients’ perception of his forecasting
ability, which is inferred from his past forecast record. If this is the case, then the weak
economists have a strong incentive to discard his (relatively inaccurate) private
information. More specifically, Trueman (1994, Proposition 2) demonstrates that, given

tpW 2< , a weak economist releases moderate forecasts with positive probability even if

his information suggests extreme growth rates. The inequality tpW 2<  indicates that the

accuracy rate of the signal the weak economist obtains ( Wp ) is lower than the prior

                                                       
4 Clarke and Subramanian [2006, p.93, equation (12)] employ the same definition of forecast boldness.
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probability of moderate growth rate ( t2 ). When this inequality is satisfied, the weak
economist avoids extreme forecasts because his signal is uninformative and moreover the
prior probability of extreme outcomes ( t21− ) is very small. Hence there is a downward
(upward) bias in the forecasts of weak economists that are larger (smaller) than the prior
expectations.

Trueman also analyzes the case in which economists can observe others’ forecasts. The
strong economist always releases a forecast that is consistent with his private information
because his private signal is accurate. The weak economist, on the other hand, mimics others
because he is not confident in his private information (Proposition 4). Therefore, on average,
the forecasts of the weak economists are more similar to the mean forecast of the market than
those of the strong economists.

To summarize, Trueman argues that

(H1) a weak economist avoids forecasts different from the prior expectations, and that
(H2) a weak economist releases forecasts similar to the market average.

Using the variables defined in Section 3, we can restate these hypotheses as follows:

(H1) a forecaster whose ( )i
tt

i
t AFER ,  (the adjusted rank of the absolute forecast error) is

large will avoid forecasts different from the prior expectations.
(H2) a forecaster with large ( )i

tt
i
t AFER ,  tends to choose smaller ( )i

tt
i
t BoldR ,  (i.e., a

forecast similar to others).

We will test these hypotheses in the next section.

4.2. Empirical Results

To test the hypothesis (H1) described in the last section, we consider the following
regression:

( ) i
tttt

i
tt

i
tt

i
tt uggAFERgf ,1,11, +−⋅+⋅+=− −−− γβα . (2)

If the growth rate follows a random walk process, the optimal forecast for year t is the latest
realization. Hence we use 1−tg  as the prior expectation for the current-year forecast. We use

2−tg  as the prior expectation for the year-ahead forecast because forecasters do not know the

value of 1−tg  when they release i
ttf ,1− . The dependent variable, 1, −− t

i
tt gf , shows the

degree of deviation from the prior expectation. To investigate the effect of the forecasting
ability, we use ( )i

tt
i
t AFER ,1−  (the adjusted rank of the absolute forecast error for the latest

realization) as an independent variable. We use ( )i
tt

i
t AFER ,12 −−  for the year-ahead forecast
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because forecasters do not know the value of ( )i
tt

i
t AFER ,11 −−  when they release i

ttf ,1− . If a

weak economist tends to release a forecast closer to the prior, then β  should be significantly

negative. We add 1−− tt gg  as an independent variable to control on specific factors in each

year (we add 2−− tt gg  for the year-ahead forecast). If ( )i
tt

i
t AFER ,1−  is irrelevant and i

ttf ,  is

accurate, 0== βα  and 1=γ  will hold.
Table 3 shows the result of regression (2). Standard errors of estimated coefficients are in

parentheses. As for the current-year forecasts, β  is negative but insignificant. As for the
year-ahead forecasts, β  is significant but positive. These results are not consistent with the

hypothesis (H1). We obtain the same results when we use ( ) ( )∑ =
≡

M

t
i

tt
i
t

i
tt

i AFERAFER
1 ,,

instead of ( )i
tt

i
t AFER ,1−  as an independent variable (See table 4).

Table 3. Forecast deviation from the prior expectation

Notes: Standard errors of estimated coefficients are in parentheses.
a: The null hypothesis is 1=γ .
***: Significant at the 0.01 level.
**: Significant at the 0.05 level.
*: Significant at the 0.10 level.
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Table 4. Forecast deviation from the prior expectation (robustness check)

(a) Current-year forecasts

Notes: Standard errors of estimated coefficients are in parentheses.
a: The null hypothesis is 1=γ .
***: Significant at the 0.01 level.
**: Significant at the 0.05 level.
*: Significant at the 0.10 level.

Next we test the hypothesis (H2) by the following regression:

( ) ( ) i
tt

i
tt

i
t

i
tt

i
t uAFERBoldR ,,1, +⋅+= −βα . (3)

( )i
tt

i
t BoldR ,  is the adjusted rank of the forecast deviation from the market mean. Negative

( )i
tt

i
t BoldR ,  indicates that forecaster i makes a forecast similar to the market consensus in

year t. Positive ( )i
tt

i
t AFER ,1−  indicates that i

ttf 1,1 −−  was inaccurate. Therefore β  should be

significantly negative for (H2) to be true. Table 5 shows the result of (3). The coefficients of
( )i

tt
i
t AFER ,1−  are insignificant for both the current-year and year-ahead forecasts.
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Table 5. Forecast deviation from the market consensus

(a) Current-year forecasts

Notes: Standard errors of estimated coefficients are in parentheses.
***: Significant at the 0.01 level. **: Significant at the 0.05 level.*: Significant at the 0.10 level.

Table 6. Forecast deviation from the market consensus [robustness check (a)]

(a) Current-year forecasts

Notes: Standard errors of estimated coefficients are in parentheses.
***: Significant at the 0.01 level. **: Significant at the 0.05 level.*: Significant at the 0.10 level.
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We check the robustness of the above results by substituting iR  for i
tR 1− :

( ) ( ) i
tt

i
tt

ii
tt

i
t uAFERBoldR ,,, +⋅+= βα , and (3’)

( ) ( ) ii
tt

ii
tt

i uAFERBoldR +⋅+= ,, βα . (3’’)

Tables 6 and 7 show the results: no coefficient is significantly negative.
Since (H1) and (H2) both are not supported, our empirical results are inconsistent with

Trueman’s hypothesis.

Table 7. Forecast deviation from the market consensus [robustness check (b)]

Notes: Standard errors of estimated coefficients are in parentheses.
***: Significant at the 0.01 level.
**: Significant at the 0.05 level.
*: Significant at the 0.10 level.

5. Clarke and Subramanian’s Hypothesis

5.1. Overview of Clarke and Subramanian’s Theory

Clarke and Subramanian (2006) (CS hereafter) analyze a multi-period Bayesian learning
model in which a forecaster issues her forecast based on her noisy private information and the
consensus forecast. Her ability when she first enters the market is common knowledge, but it
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can change over time as she gains experience. All agents dynamically update their
assessments of the forecaster’s ability based on her observed performance.

Then, with some additional conditions, CS show that the forecaster’s compensation is
convex in her average perceived ability and that the forecaster could be fired only if her
average perceived ability falls below a certain level. The presence of employment risk
induces underperformers (i.e. those whose perceived abilities are below the termination
threshold) to issue extreme forecasts because they have little to lose. On the other hand, the
employment risk keeps intermediate performers from gambling behavior. Superior
forecasters, however, do not face the employment risk because their perceived abilities are far
above the termination threshold. Consequently the payoff functions of superior forecasters are
convex in the ability, which lead them to risk-taking behavior. To sum up, the forecaster in
CS model issues bold (i.e. extreme) forecasts if and only if she outperforms or underperforms
her peers significantly.

Let us restate this hypothesis using the variables defined in Section 3:

(H3) a forecaster with significantly positive or negative ( )i
tt

i
t AFER ,1−  chooses positive

( )i
tt

i
t BoldR , , and a forecaster with near-zero ( )i

tt
i
t AFER ,1−  chooses negative ( )i

tt
i
t BoldR , .

The next section tests this hypothesis.

5.2. Empirical Results

Clarke and Subramanian (2006) argue that forecasters with superior or inferior track
records tend to release extreme forecasts. Namely, those with significantly positive or
negative ( )i

tt
i
t AFER ,1−  choose positive ( )i

tt
i
t BoldR , , and those with near-zero ( )i

tt
i
t AFER ,1−

choose negative ( )i
tt

i
t BoldR , . We test this hypothesis, (H3), by the following regression:

( ) ( ) ( )[ ] i
tt

i
tt

i
t

i
tt

i
t

i
tt

i
t uAFERAFERBoldR ,

2
,1,1, +⋅+⋅+= −− γβα . (4)

(H3) predicts a U-shaped relation between ( )i
tt

i
t AFER ,1−  (prior performances) and

( )i
tt

i
t BoldR ,  (the forecast boldness). Since ( ) 0,1 =−

i
tt

i
t AFER  corresponds to the medium

performance, the bottom of the quadratic curve should be on the vertical axis. Therefore we
expect 0<α , 0=β , and 0>γ .

Table 8 shows the result of regression (4). We have 0<α , 0=β , and 0>γ  for both
the current-year and the year-ahead forecasts. Although α  for the current-year forecasts is
insignificant, α  for the year-ahead forecasts and γ  for both the current-year and the year-
ahead forecasts are statistically significant. Furthermore, we have positive ( )i

tt
i
t BoldR ,  for both
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sufficiently positive ( )i
tt

i
t AFER ,1−  and sufficiently negative ( )i

tt
i
t AFER ,1− .5 All in all, the results

are consistent with (H3).
We check the robustness of the above results by substituting i

ttBold ,  for ( )i
tt

i
t BoldR , :

( ) ( )[ ] i
tt

i
tt

i
t

i
tt

i
t

i
tt uAFERAFERBold ,

2
,1,1, +⋅+⋅+= −− γβα . (4’)

Since i
ttBold ,  is always positive by definition, we expect 0>α , 0=β , and 0>γ . The

results of regression (4’) are summarized in table 9: we have 0=β  and significantly positive
α  and γ  for both the current-year and the year-ahead forecasts. Namely, (H3) is supported
again with this specification.

Table 8. Forecast boldness and prior performance

Notes: Standard errors of estimated coefficients are in parentheses.
***: Significant at the 0.01 level.
**: Significant at the 0.05 level.
*: Significant at the 0.10 level.

                                                       
5 The estimation result of Table 8(a) indicates that ( ) 601.0, =i

tt
i
t BoldR  when ( ) 5.11,1 −=−

i
tt

i
t AFER  [which

corresponds to ( ) ( )1,47, 11 =−−
i

tt rN ]. The estimation result of Table 8(b) indicates that

( ) 0815.2,1 =−
i

tt
i
t BoldR  when ( ) 5.11,12 =−−

i
tt

i
t AFER  [which corresponds to ( ) ( )47,47, 22 =−−

i
tt rN ].
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Table 9. Forecast boldness and prior performance (robustness check)

Notes: Standard errors of estimated coefficients are in parentheses.
***: Significant at the 0.01 level.
**: Significant at the 0.05 level.
*: Significant at the 0.10 level.

6. Conclusions

This paper has analyzed whether forecasters’ abilities affect the extent of their forecasting
bias using a twenty-eight-year panel of Japanese GDP forecasts. The empirical evidence is
inconsistent with the hypothesis of Trueman (1994), but is consistent with the hypothesis of
Clarke and Subramanian (2006). Namely, a forecaster issues bold forecasts if and only if his
past performance is significantly better or worse than his peers. This result indicates that
rational forecasters sometimes issue biased forecasts. Since conventional tests of rationality
do not consider this kind of strategic behavior, they are biased toward rejecting the rational
expectations hypothesis.6

                                                       
6 Ashiya (2005, pp.80-81) finds that about 80% of the current-year forecasts and the year-ahead forecasts made by

38 Japanese GDP forecasters pass various conventional tests for rationality.



(a) Current-year forecasts

Figure 1. Continued on next page.



(b) Year-ahead forecasts
Notes:
Black diamond: the realization. Horizontal line: the mean forecast.
The vertical line shows the support of the forecast distribution of 53 forecasters.

Figure 1. Forecast distributions and the actual growth rates. (a) Current-year forecasts.
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Chapter 7

QUALITATIVE SURVEY DATA ON EXPECTATIONS.
IS THERE AN ALTERNATIVE

TO THE BALANCE STATISTIC?

Oscar Claveria*
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Abstract

Through Monte Carlo simulations it is possible to isolate the measurement error introduced by
incorrect assumptions when quantifying survey results. By means of a simulation experiment
we test whether a variation of the balance statistic outperforms the balance statistic in order to
track the evolution of agents’ expectations and produces more accurate forecasts of the
quantitative variable generated used as a benchmark.

Keywords: Quantification; Expectations; Forecasting.

JEL: classification: C42, C51.

1. Introduction

Survey results are presented as weighted percentages of respondents expecting a
particular variable to rise, fall or remain unchanged. Survey results have often been quantified
making use of official data. The differences between the actual values of a variable and
quantified expectations may arise from three different sources (Lee, 1994): measurement or
conversion error due to the use of quantification methods, expectational error due to the
agents’ limited ability to predict the movements of the actual variable, and sampling errors.
Since survey data are approximations of unobservable expectations, they inevitably entail a
measurement error.
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Monte Carlo simulations can distinguish between these three sources of error, but there
have been few attempts in the literature to compare quantification methods in a simulation
context. Common (1985) and Nardo (2004) analyse different quantification methods focusing
on rational expectation testing rather than on their forecasting ability. Löffler (1999) estimates
the measurement error introduced by the probabilistic method, and proposes a linear
correction.

In this paper we design a simulation experiment in order to test whether a variation of the
balance statistic outperforms the balance statistic in order to track the evolution of agents’
expectations and produces more accurate forecasts of the quantitative variable generated used
as a benchmark.

The paper is organised as follows. The second section describes the purposed variation of
the balance statistic. Section three presents the simulation experiment. Section four analyses
the relative forecasting performance of the estimated series of expectations generated by the
two different quantification methods applied. Section five concludes.

2. The Weighted Balance Statistic

Unlike other statistical series, survey results are weighted percentages of respondents
expecting an economic variable to increase, decrease or remain constant. As a result,
tendency surveys contain two pieces of independent information at time t , tR  and tF ,

denoting the percentage of respondents at time 1−t  expecting an economic variable to rise
or fall at time t . The information therefore refers to the direction of change but not to its
magnitude.

A variety of quantification methods have been proposed in the literature in order to
convert qualitative data on the direction of change into a quantitative measure of agents’
expectations. The output of these quantification procedures (estimated expectations) can be
regarded as one period ahead forecasts of the quantitative variable under consideration. In this
paper we apply the following quantification methods using agents’ expectations about the
future (prospective information).

The first attempt to quantify survey results is due to Anderson (1951). Assuming that the
expected percentage change in a variable remains constant over time for agents reporting an
increase and for those reporting a decrease, Anderson (1951) defined the balance statistic
( tt FR − ) as a measure of the average changes expected in the variable.

The balance statistic ( tB ) does not take into account the percentage of respondents
expecting a variable to remain constant ( tC ). As tC  usually shows the highest proportions
and high levels of dispersion, we purpose a non-linear variation of the balance statistic ( tWB ,
weighted balance) that accounts for this percentage of respondents:

t

t

tt

tt
t C

B
FR
FR

WB
−

=
+
−

=
1

(1)

                                                                                                                                                      
* E-mail address: oclaveria@ub.edu Tel.: +34-934-021-825; fax.: +34-934-021-821 (Corresponding author)
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Weighting the balance statistic by the proportion of respondents expecting a variable to rise or
fall allows discriminating between two equal values of the balance statistic depending on the
percentage of respondents expecting a variable to remain constant.

3. The Simulation Experiment

By Monte Carlo simulations we compare the forecasting performance of the two
quantification methods: the balance and the weighted balance. The experiment is designed in
five consecutive steps:

(i)The simulation begins by generating a series of actual changes of a variable. We
consider 1000 agents and 300 time periods. Let ity  indicate the percentage change of

variable itY  for agent i  from time 1−t  to time t . Additionally we suppose that the true

process behind the movement of ity  is given by:

ititit εdy += (2)

1000,,1…=i , 300,,1…=t  and 1, −+= tiit yφμd , where itd  is the deterministic component.

The initial value, 9.00 =iy , is assumed to be equal for all agents1. itε  is an identical and

independent normally distributed random variable with mean zero and variance 2
εσ =1, 10,

20. The average rate of change, ty , is given by ∑=
i iti yy 1000

1 . The same weight is given

to all agents. We assume different values of μ  and φ .

(ii)Secondly, we generate a series of agents’ expectations about ty  under the assumption
that individuals are rational in Muth’s sense2:

itit
e
it ζdy += ( )2,0~ ζσζ Nit (3)

where e
ity  has the same deterministic part as ity  but a different stochastic term itζ . We

derive ∑=
i

e
it

e
i yy 10001 . Additionally, we assume that 122 == ζζ σσ i . All the values

given to 2
εσ  and 2

ζσ , and to the indifference interval are set to simulate actual business

survey series.

                                                       
1 To check the robustness of the results, we chose different values for the autoregressive parameter, ranging from 0

to 1 with an increase of 0.1 each time. As the final results did not vary significantly from one specification to
the other we presented the results for 0, 0.1, 0.5 and 0.9.

2 Muth (1961) assumed that rationality implied that expectations had to be generated by the same stochastic process
that generates the variable to be predicted.
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(iii)The third step consists of constructing the answers to the business surveys. The
answers are given in terms of the direction of change, i.e., if the variable is expected to
increase, decrease or remain equal. We assume that agents’ answers deal with the next period
and that all agents have the same constant indifference interval ( )ba,−  with 5== ba . If

5≥e
ity , agent i  answers that itY  will increase; if 5−≤e

ity , i  expects itY  to decrease; while

the agent will report no change if 55 <<− e
ity . With these answers, qualitative variables itR

and itF  can be constructed. itR  ( itF ) takes the value 1 (0) whenever the agent expects an

increase (decrease) in itY . tR  and tF  are then constructed by aggregation.

(iv)The fourth step of the simulation experiment consists of using the two different
quantification methods to trace back the series of actual changes of the generated quantitative
variable, ty , from the qualitative variables. We will refer to these expectations as estimated
expectations in order to distinguish them from the unobservable ones. With the aim of
analysing the performance of the different proxy series, we use the last 200 generated
observations. Keeping the series of actual changes fixed, the experiment of generating the
rational expectations series as well as the proxy series is replicated 1000 times3.

(v)To test the robustness of the results, we repeat the simulation experiment for different
values of μ , therefore assuming ity  is generated by a random walk and by an autoregressive
process with different drifts.

4. Evaluation of the Estimated Expectations

In order to evaluate the relative performance and the forecasting accuracy of the different
quantification procedures, we keep the series of actual changes fixed and we replicate the
experiment of generating the rational expectations series as well as the qualitative variables

tR  and tF  1000 times. The specification of the quantification procedures is based on
information up to the first 100 periods; models are then re-estimated each period and forecasts
are computed in a recursive way. In each simulation, forecast errors for all methods are
obtained for the last 200 periods.

To summarize this information, we calculate the Root Mean Squared Error (RMSE), the
Mean Error (ME), the Theil Coefficient (TC) and the three components of the Mean Square
Error (MSE): the bias proportion of the MSE (U1), the variance proportion (U2) and the
covariance proportion (U3). With the aim of testing whether the reduction in RMSE when
comparing both methods is statistically significant, we calculate the measure of predictive
accuracy proposed by Diebold-Mariano (1995). Given these two competing forecasts and the
series of actual changes of the generated quantitative variable, we have calculated the DM
measure which compares the mean difference between a loss criteria (in this case, the root of
the mean squared error) for the two predictions using a long-run estimate of the variance of

                                                       
3 All simulations are performed with Gauss for Windows 6.0.



Qualitative Survey Data on Expectations 185

the difference series. Table 1 shows the results of an off-sample evaluation for the last 200
periods when 0=μ .

Table 1. Forecasts evaluation ( 0=μ )

0=μ 12 =εσ 102 =εσ 202 =εσ
0=φ B WB B WB B WB

RMSE a 2.48 1.53 2.47 1.74 2.42 1.92
ME b -0.01 -0.01 -0.11 -0.08 0.01 0.01
% U1 c 0.5 0.5 0.5 0.5 0.2 0.2
% U2 c 98.9 98.1 96.3 93.4 95.2 92.6
% U3 c 0.5 1.4 3.1 6.1 4.6 7.2
TC d 6.23 2.41 6.26 3.20 6.00 3.83
DM e 0.81 1.10 0.03

1.0=φ B WB B WB B WB
RMSE a 2.49 1.54 2.47 1.75 2.51 1.98
ME b 0.01 0.01 -0.06 -0.04 0.00 0.01
% U1 c 0.6 0.5 0.4 0.4 0.2 0.3
% U2 c 98.9 98.0 96.6 93.7 96.0 93.8
% U3 c 0.5 1.4 3.0 5.9 3.8 6.0
TC d 6.26 2.42 6.28 3.21 6.41 4.05
DM e 0.72 0.53 0.28

5.0=φ B WB B WB B WB
RMSE a 2.49 1.54 2.50 1.81 2.41 1.97
ME b 0.00 0.00 -0.03 -0.02 0.00 -0.01
% U1 c 0.5 0.5 0.3 0.3 0.2 0.2
% U2 c 99.0 98.1 96.6 93.8 95.3 93.1
% U3 c 0.5 1.4 3.1 5.9 4.5 6.7
TC d 6.26 2.42 6.42 3.42 5.96 3.99
DM e 0.34 0.31 0.02

9.0=φ B WB B WB B WB
RMSE a 2.51 1.56 2.28 1.84 2.37 2.08
ME b 0.11 0.06 0.15 0.12 0.04 0.01
% U1 c 0.6 0.6 0.7 0.6 0.2 0.1
% U2 c 98.0 96.0 93.7 90.8 91.5 88.8
% U3 c 1.4 3.4 5.7 8.6 8.3 11.0
TC d 6.42 2.54 5.30 3.51 5.29 3.99
DM e 1.44 0.73 0.71

Notes: a RMSE = root mean square error; b ME = mean error; c Decomposition of the mean square error: (i)
%U1 = percentage of mean error (bias proportion of the MSE), (ii) %U2 = percentage of regression
error (variance proportion of the MSE), (iii) %U3 = percentage of disturbance error (covariance
proportion of the MSE); d TC = Theil coefficient;e DM = results of the Diebold-Mariano test (the
statistic uses a NW estimator. Null hypothesis: the difference between the two competing series is non-
significant. A positive sign of the statistic implies that the Balance has bigger errors, and is worse. When
the t-stat is significant, the second model is statistically better.

* Significant at the 5% level.
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Table 2 and Table 3 show the results of an off-sample evaluation for the last 200 periods
when 1=μ  and 1−=μ  respectively.

Table 2. Forecasts evaluation ( 1=μ )

1=μ 12 =εσ 102 =εσ 202 =εσ
0=φ B WB B WB B WB

RMSE a 6.51 3.70 5.06 3.40 3.49 2.70
ME b -6.02 -3.36 -4.36 -2.88 -2.54 -1.91
% U1 c 85.4 82.2 73.9 70.9 52.5 49.6
% U2 c 14.5 17.6 25.3 27.4 45.3 46.8
% U3 c 0.1 0.2 0.8 1.7 2.2 3.6
TC d 42.46 13.72 25.74 11.73 12.30 7.40
DM e 397.93* 42.01* 20.09*

1.0=φ B WB B WB B WB
RMSE a 7.12 4.03 5.46 3.67 3.54 2.73
ME b -6.67 -3.72 -4.82 -3.19 -2.66 -2.00
% U1 c 87.8 85.0 77.4 74.6 56.0 52.9

1=μ 12 =εσ 102 =εσ 202 =εσ
% U2 c 12.1 14.8 21.9 23.9 41.8 43.5
% U3 c 0.1 0.2 0.7 1.4 2.2 3.6
TC d 50.75 16.33 30.03 13.64 12.68 7.59
DM e 467.73* 41.53* 22.03*

5.0=φ B WB B WB B WB
RMSE a 12.18 6.91 8.30 5.69 4.97 3.88
ME b -11.93 -6.73 -7.92 -5.39 -4.36 -3.35
% U1 c 95.9 94.7 90.8 89.4 76.4 74.3
% U2 c 4.1 5.3 8.9 9.9 22.5 23.9
% U3 c 0.0 0.1 0.3 0.6 1.1 1.8
TC d 148.48 47.80 69.09 32.55 24.86 15.15
DM e 587.85* 57.10* 25.50*

9.0=φ B WB B WB B WB
RMSE a 51.59 36.80 20.79 16.31 6.93 5.57
ME b -51.56 -36.75 -20.62 -16.15 -6.61 -5.26
% U1 c 99.9 99.7 98.3 98.1 91.6 89.8
% U2 c 0.1 0.3 1.6 1.8 7.3 8.5
% U3 c 0.0 0.0 0.1 0.1 1.1 1.7
TC d 2661.95 1354.63 432.36 266.04 47.77 30.86
DM e 6287.05* 79.01* 43.20*

Notes: a RMSE = root mean square error; b ME = mean error; c Decomposition of the mean square error: (i)
%U1 = percentage of mean error (bias proportion of the MSE), (ii) %U2 = percentage of regression
error (variance proportion of the MSE), (iii) %U3 = percentage of disturbance error (covariance
proportion of the MSE); d TC = Theil coefficient;e DM = results of the Diebold-Mariano test.

* Significant at the 5% level.
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Table 3. Forecasts evaluation ( 1−=μ )

1−=μ 12 =εσ 102 =εσ 202 =εσ
0=φ B WB B WB B WB

RMSE a 6.49 3.68 4.90 3.30 3.33 2.58
ME b 6.00 3.34 4.24 2.80 2.25 1.69
% U1 c 85.3 82.1 74.1 70.9 45.1 42.2
% U2 c 14.6 17.6 25.1 27.3 52.7 54.1
% U3 c 0.1 0.2 0.8 1.8 2.2 3.7

1−=μ 12 =εσ 102 =εσ 202 =εσ
TC d 42.17 13.63 24.24 11.05 11.20 6.77
DM e 451.90* 50.23* 17.85*

1.0=φ B WB B WB B WB
RMSE a 7.11 4.03 5.48 3.68 3.48 2.69
ME b 6.66 3.72 4.86 3.21 2.56 1.92
% U1 c 87.8 85.0 78.3 75.5 53.5 50.4
% U2 c 12.2 14.8 21.1 23.1 44.2 45.9
% U3 c 0.1 0.2 0.6 1.4 2.2 3.7
TC d 50.61 16.29 30.16 13.69 12.28 7.35
DM e 416.73* 48.41* 22.91*

5.0=φ B WB B WB B WB
RMSE a 12.14 6.89 8.43 5.79 4.78 3.73
ME b 11.89 6.70 8.05 5.49 4.23 3.25
% U1 c 95.9 94.7 90.9 89.5 77.9 75.7
% U2 c 4.1 5.3 8.9 9.9 20.7 22.2
% U3 c 0.0 0.1 0.3 0.6 1.3 2.2
TC d 147.42 47.46 71.28 33.68 22.98 14.00
DM e 622.52* 53.87* 29.03*

9.0=φ B WB B WB B WB
RMSE a 51.50 36.70 20.82 16.34 6.86 5.49
ME b 51.46 36.64 20.69 16.22 6.55 5.18
% U1 c 99.9 99.7 98.8 98.5 91.7 90.0
% U2 c 0.1 0.3 1.2 1.4 7.5 8.6
% U3 c 0.0 0.0 0.1 0.1 0.9 1.4
TC d 2651.99 1347.12 433.54 267.06 46.81 29.80
DM e 6782.75* 114.47* 40.03*

Notes: a RMSE = root mean square error; b ME = mean error; c Decomposition of the mean square error: (i)
%U1 = percentage of mean error (bias proportion of the MSE), (ii) %U2 = percentage of regression
error (variance proportion of the MSE), (iii) %U3 = percentage of disturbance error (covariance
proportion of the MSE); d TC = Theil coefficient;e DM = results of the Diebold-Mariano test.

* Significant at the 5% level.

Table 1 shows that the weighted balance (WB) obtains lower RMSE, ME and TC in all
cases. Although the proportion of systematic error (U1) is not very different, the balance
shows higher proportions of regression error (U2). As 2

εσ  increases, forecasting results tend
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to worsen for both methods. Nevertheless if we look at the results of the DM test, we can see
that there is no significant difference between both methods.

However, in Table 2 and Table 3, when 0≠μ , the difference is significant and is always
in favor of the weighted balance. Comparison of the results in Table 1 with those in Table 2
and Table 3 highlights several differences, in particular regarding the forecasting results as
the value of φ  increases from 0 to 0.9: while they worsen when 0≠μ , this effect is not clear

when 0=μ . Another difference is that when 0≠μ , as 2
εσ  increases the forecasting results

improve for both methods.
These results suggest that taking into account the percentage of respondents expecting a

variable to remain constant may improve the use of the balance statistic with forecasting
purposes. Though it is impossible to completely eliminate the measurement error introduced
when converting qualitative data on the direction of change into quantitative estimations of
agents’ expectations, the weighted balance shows lower measurement errors and better
forecasts.

5. Conclusion

We purpose a variation of the balance statistic (weighted balance) in order to take into
account the percentage of respondents expecting no change in the evolution of an economic
variable. By means of a simulation experiment we test whether this variation of the balance
statistic outperforms the balance statistic in order to track the evolution of agents’
expectations and produces more accurate forecasts of the quantitative variable generated used
as a benchmark. In all cases, the weighted balance outperforms the balance statistic and
provides more accurate forecasts of the quantitative variable generated as a benchmark.
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Abstract

This paper investigates the relative performance of local, foreign, and expatriate financial
analysts on Latin American emerging markets. We measure analysts’ relative performance
with three dimensions: (1) forecast timeliness, (2) forecast accuracy and (3) impact of forecast
revisions on security prices. Our main findings can be summarized as follows. Firstly, there is
a strong evidence that foreign analysts supply timelier forecasts than their peers. Secondly,
analyst working for foreign brokerage houses (i.e. expatriate and foreign ones) produce less
biased forecasts than local analysts. Finally, after controlling for analysts’ timeliness, we find
that foreign financial analysts’ upward revisions have a greater impact on stock returns than
both followers and local lead analysts forecast revisions. Overall, our results suggest that
investors should better rely on the research produced by analysts working for foreign
brokerage houses when they invest in Latin American emerging markets.
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1. Introduction

Past research suggests that geographic proximity is related to information flow. However,
the empirical evidence on the impact of geographic proximity on the quality of investors’
information is mixed. Brennan and Cao (1997) report that US investors are less informed
about foreign markets conditions than are local investors. Kang and Stulz (1997) find no
evidence that foreign investors outperform in Japan. Using US mutual fund holdings, Coval
and Moskowitz (2001) show that investors located near potential investments have significant
informational advantages relative to the rest of the market. According to Choe et al. (2000),
foreign investors on the Korean market are disadvantaged relative to domestic individual
investors. Inversely, Seasholes (2000) reports that foreigners act like informed traders in
emerging markets. He finds that foreign investors profits come from trading stocks of large
firms with low leverage and liquid shares. Similarly, Grinblatt and Keloharju (2000) exihibit
evidence that foreign investors on the Finnish stock market generate superior performance
than local investors. It is likely that the previous mixed findings are driven by the information
available to the investors. This is why our research does not focus on the relative performance
of investors but on the relative performance of analysts located at the upstream side of them.

Research devoted to financial analyst forecast accuracy documents that some groups of
analysts display a better forecasting ability than others. Stickel (1992) finds that Institutional
Investor All-American analysts provide more accurate earnings forecasts and tend to revise
their forecasts more frequently than other analysts. Clement (1999) investigates the origin of
financial analysts differential accuracy. He documents a negative relationship between
financial analysts relative accuracy and the complexity of their stock portfolio. On the other
hand, he shows that analysts’ performance improves with their age and that analysts working
for big research houses with more resources available, outperform their peers. Agency
problems such as corporate financing business conflicts, have also an impact on financial
analysts’ performance. Lin and McNichols (1999) and Michaely and Womack (1999) show
that analysts whose employer is affiliated with a company through an underwriting
relationship issue more optimistic forecasts than unaffiliated analysts.

The present paper is directly related to these two streams of research. The objective is to
investigate the relative performance of local, expatriate, and foreign analysts on Latin
American emerging markets. Local analysts are those who work for local research firms.
Expatriate analysts work for foreign brokerage houses but are located in the country. Finally,
foreign analysts work for foreign research firms with no local presence. Ex-ante, three main
reasons may be at the origin of differential performance across the three groups of analysts:
geographical distance, agency problems, and available resources.

Residence may give local and expatriate analysts several advantages compared to foreign
ones. First, they may have a better knowledge of the local economy. Local economy has been
shown to have a significant impact on emerging stock markets ;see Harvey (1995). Second,
they may be more familiar with the institutional context in which the companies evolve.
Institutional factors have a significant influence on the properties of financial analyst
forecasts ; see Hope (2003). Third, they may have a better knowledge of the local culture.
Finally, they may have a better human network in the country. This network may give them
access to relevant private information. On the other hand, being closer from the analyzed
firms, they may be more subject to agency problems such as conflict of interests. Foreign and
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expatriate analysts usually work for important international research firms. These big research
firms have more resources available, they have the financial capacity to attract the best
analysts, and their international expertise may help them to better anticipate international
macro-economic fluctuations. Overall, if geographic proximity improves the quality of the
information available to analysts, local and expatriate analysts should outperform their
foreign counterparts. On the other hand, if the quantity of resources available to the analysts,
their reputations as well as their expertise are the key determinant of their performance,
foreign and expatriate analysts should outperform local ones. Finally, if conflict of interests,
caused by tighter investment banking relationships between firms and banks having a local
representation, have an important influence on the quality of financial analysts’ output in
these markets, foreign analysts should outperform both local and expatriate ones.

We conduct our investigation on Latin American markets for two reasons. First, due to
geographical considerations, Latin American markets have always presented a great interest
for US institutional investors. As a consequence, they create an important demand for
financial analysts services on these markets. Second, as underlined by Choe et al. (2002),
private information is likely to be more important on emerging stock markets than on
developed ones.

We measure analysts’ relative performance with three dimensions: (1) forecast
timeliness, (2) forecast accuracy and (3) impact of forecast revisions on security prices. Our
main findings can be summarized as follows. Firstly, there is a strong evidence that foreign
analysts supply timelier forecasts than their peers. In particular, we detect a greater number of
leaders among foreign analysts than among analysts with local residence. This finding
suggests that both local and expatriate analysts have a tendency to revise their earnings
forecasts in order to accommodate the opinions of foreign analysts. Secondly, analyst
working for foreign brokerage houses (i.e. expatriate and foreign ones) produce less biased
forecasts than local analysts. Lead foreign and expatriate analysts produce much more
accurate forecasts than other analysts suggesting that leaders have an important informational
advantage over other analysts. Finally, after controlling for analysts’ timeliness, we find that
foreign financial analysts’ upward revisions have a greater impact on stock returns than both
followers and local lead analysts forecast revisions. This suggests that the market considers
forecast revisions provided by foreign leader analysts as being more informative than the
revisions provided by their local counterparts.

Our research has important practical implication: investors should better rely on the
research produced by analysts working for foreign brokerage houses when they invest in
Latin American emerging markets. Moreover, our paper complements previous research in
three ways. Firstly, we contribute to the literature on the importance of geography in
economics by showing that location has an impact on the quality of the information provided
by analysts. If foreign (local) investors rely mostly on foreign and expatriate (local) analysts’
research in order to take their investment decisions, our results may explain the superior
performance of foreign investors on some markets; see Seasholes (2000) and Grinblatt and
Keloharju (2000). Secondly, by showing that analysts’ location/affiliation has a significant
impact on their forecast accuracy, we contribute to the large amount of literature which
investigates the origins of financial analysts forecasts’ bias. Thirdly, we complement, and
somehow contradict, the recent research which also investigate the impact of analysts’
location on forecast accuracy. Malloy (2003), Chang (2003), and Orpurt (2002) document
that analysts located closer to the companies they follow make more accurate forecasts than
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their more distant counterparts. As underlined by Kini et al. (2003), the almost opposite
conclusion drawn from our investigation may be due to differences in the industrial structure
of the countries examined in these different papers. If, in Latin America, a good
understanding of the sectors is a major determinant of forecast accuracy, a foreign (and to
some extent an expatriate) analyst who focuses on a sector in multiple countries may have an
advantage over a local analyst who focuses on multiple local firms across multiple sectors. Of
course, the reverse may be true for other markets. This shows that the conclusions drawn
from these studies may not be generalized to all countries.

The paper proceeds as follows. Section 2 presents the data used in this study. Section 3
investigates the relative timeliness of financial analysts. Section 4 tests for differences in
forecast accuracy. Section 5 examines the impact of forecast revisions on security prices; and
Section 6 concludes.

2. Data and Overview Statistics

The analysts’ forecasts1 are provided by Institutional Broker Estimate System (I/B/E/S)
for 7 Latin American emerging markets: Argentina, Brazil, Chile, Colombia, Mexico, Peru
and Venezuela. One year earning per share (EPS) forecasts are used from 1993 to 1999. We
use the Nelson Directory of Investment Research to classify financial analysts. The Nelson
Directory of Investment Research provides the name and the coordinates of each analyst that
follows a particular company. Financial analysts who work for local brokerage houses are
classified as local, those who work for foreign brokerage houses with residence in the country
as classified as expatriate, and those who work for foreign brokerage houses without
residence in the country are classified as foreign. Stock prices are extracted from Datastream.
To be included in the sample, a forecast should meet the following conditions:

1. Realized EPS has to figure in the I/B/E/S Actual File.
2. The forecast must be issued between the end of previous fiscal year and current year

earning reporting date.
3. The forecast must be issued by an analyst listed in the Nelson Directory of

Investment Research.
4. The company for which the forecast is issued must be followed by at least 3 analysts

of each group during a given year.

The last condition restricts the sample to big and medium-sized companies. The final
sample includes 61'209 EPS forecasts. Table 1 shows that local analysts have produced 59%
more forecasts than their foreign counterparts and more than twice much forecasts than
expatriate analysts. The number of analysts and brokerage houses active on Latin American
markets has sensibly increased between 1993 and 1999. This is due to the increasing coverage
of the I/B/E/S database but also to the increasing attractiveness of these markets for foreign
investors.

                                                       
1 Note that we make no distinction between individual analysts and team of analysts.
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Table 1. Summary statistics by year

No. Forecasts No. Analysts No. Brokers
Year

Local Foreign Expatriate Local Foreign Expatriate Local Foreign Expatriate
No.

Stocks
1993 1670 783 432 74 56 41 35 18 10 84
1994 4937 2345 2263 114 84 87 49 36 16 208
1995 4999 2526 1989 236 123 122 51 32 20 200
1996 4764 2864 1899 257 163 147 57 37 17 180
1997 5229 3888 2056 245 238 170 56 33 16 212
1998 4508 3694 2141 244 232 175 50 24 15 205
1999 3674 2624 1924 182 176 148 41 19 11 170
Total 29781 18724 12704 719 584 365 93 61 27 351

This table reports yearly statistics for the data. No. Forecasts represents the number of annual earnings
forecasts made each year. No. Analyst represents the number of analysts who produced a forecast during
the fiscal year t. The total number of analysts who produced an earning forecast during the entire period
is indicated in the last row. No.  Brokers represents the number of banks (or brokerage companies) for
which analysts work each year. The total number of brokers identified during the entire period is
indicated in the last row. No. Stocks is the number of firms in the sample. The total number of firms for
which forecasts were produced during the period is indicated in the last row.

Table 2. Summary statistics by country

Country No. Forecasts No. Analysts No. Brokers
Local Foreign Expatriate Local Foreign Expatriate Local Foreign Expatriate

No.
Stocks

Argentina 5114 2685 1835 135 215 86 22 36 9 45
Brazil 11897 7238 6349 293 244 191 30 31 19 160
Chile 2224 1530 697 67 150 39 11 25 4 29
Colombia 160 364 174 6 43 15 2 17 2 11
Mexico 12905 7700 3753 242 286 128 21 35 12 82
Peru 651 927 226 27 111 27 7 32 3 17
Venezuela 110 279 97 1 66 15 1 18 2 7
This table reports statistics by country and by industry. No. Forecasts represents the number of annual

earnings forecasts made each year. No. Analyst represents the number of analysts who produced a
forecast during the fiscal year t. No. Brokers represents the number of banks (or brokerage companies)
for which analysts work in each country. No. Stocks is the number of firms in the sample.

Table 2 shows that most of the forecasts (81%) are concentrated on Brazil and Mexico. In
addition, in each country excepting Brazil, foreign analysts tend to be more numerous than
local and expatriate ones. However, from Table 1, we see that this finding is reversed at the
aggregated level: local analysts are more numerous than foreign ones and the difference
between foreign and expatriate is smaller. Thus, foreign analysts tend to follow several
different markets while local and expatriate analysts are more focused on specific markets.

Non-tabulated results indicate that the average number of analysts employed by foreign
brokerage houses amounts to 7.9 while it amounts to 5.5 for local ones suggesting that, on
average, foreign brokerage houses are bigger than local ones. Our sample contains 91
companies out of 351 that have quoted American Depositary Receipts (ADR). Lang et al.
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(2002) show that non-U.S. companies listed on U.S. exchanges have richer informational
environment than other non-U.S. firms. Therefore, we will control for ADR listing in the
subsequent analysis.

Table 3 shows that expatriate analysts are the less active ones. On average, they produce
a forecast every 77 day while their foreign and local peers do it every 73, respectively 71 day.
Similarly, expatriate analysts revise less frequently than their counterparts: on average 1.33
times per firm each year against 1.92 times for foreigners and 2.45 for locals. Although the
frequency of forecast revisions gives an insight on the activity of financial analysts, this does
not indicate that more active analysts have advantages in collecting and processing
information. They may simply change their mind several times to accommodate the opinions
of others. Therefore, in the subsequent section, we propose to measure analysts’ relative
activity with their timeliness.

Table 3. Frequency of forecast issuance and revision

Panel A: number of calendar days elapsed between forecasts
Mean Min Median Max

Local analysts 70.63 1.00 59.00 344.00
Foreign analysts 73.00 1.00 59.75 372.00
Expatriate analysts 77.29 1.00 65.75 362.00

Panel B: number of revisions per analyst
Mean Min Median Max

Local analysts 2.45 0.00 1.00 50.00
Foreign analysts 1.92 0.00 1.00 19.00
Expatriate analysts 1.33 0.00 1.00 11.00
This table reports summary statistics on financial analysts’ activity. Panel A presents statistics about the

number of calendar days that separate two consecutive forecasts by analyst for a particular company in a
given year. Panel B reports statistics on the number of revisions by analyst for a particular company in a
given year.

3. Analysts’ Timeliness

3.1. Empirical Design

Cooper, Day and Lewis (2001, thereafter CDL) show that timely analysts’ (leaders)
forecast revisions provide greater value to investors than other analysts’ (followers) forecasts.
They argue that timeliness is an important and necessary indicator of financial analysts’
relative performance. Using forecast accuracy alone to assess the relative performance of
financial analysts can lead to misclassification errors because less informed analysts can
improve the accuracy of their forecasts by simply mimicking timely skilled analysts.

The leader to follower ratio (LFR) developed by CDL is used to distinguish leaders from
followers.2 This ratio is computed for each analyst/firm/year unit. It is distributed as

                                                       
2 A precise description of the LFR computation methodology is given in the Appendix.
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(2 ,2 )KH KHF ,3 where H is the number of other analysts following a particular firm in a given

year and K is the total number of forecasts provided by the analyst during the year for that
firm. Similar to CDL, analysts having LFR  significantly greater than 1 at the 10% level are
considered as leaders. Moreover, each analyst is required to produce at least 3 forecasts per
year for the firm under consideration. As mentioned CDL, this restriction minimizes the
possibility for an analyst to be classified as leader thanks to a single lucky forecast.

In order to test whether a group (local or foreign) tends to lead the other one, we compare
the number of local leaders to the foreign ones. However, since the total number of analysts is
different between the 2 groups, such a comparison is not directly possible. Thus, the
proportion of leaders in a given group g , gL , is compared to the proportion of analysts in

group g  in the sample, gP . In order to determine whether a group of analysts has

significantly more (less) leaders than its proportion in the population suggests, we test the
following hypothesis:

0 1: :g g g gH L P vs H L P= ≠ .

Consequently, the following normally distributed statistic is computed:

( )
( )1

g g
g

g g

L P
Time N

P P

−
= ⋅

⋅ −
,

where:

g
Number of leaders in group gL

Total number of leaders
= ,

g
Number of analysts from group gP

N
= ,

N Total number of analysts= .

Table 4. Financial analysts’ timeliness

Panel A: LFR for Latin America
Analysts'

origin
No.

observations No. leaders % leaders %
observations Difference

N gL gP

Latin America Local 5599 621 47.7 49.6 -1.9***
Foreign 3457 444 34.1 30.6 3.5***
Expatriate 2226 236 18.1 19.7 -1.6***

                                                       
3 CDL derive the distribution of the LFR by assuming that the time elapsed between the arrival of two subsequent

revisions follows an exponential distribution.
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Table 4. Continued

Panel B: LFR by country

Country Analysts'
origin

No.
observations No. leaders % leaders % observations Difference

N gL gP

Argentina Local 938 90 45.9 53.6 -7.7***
Foreign 476 62 31.6 27.2 4.4***
Expatriate 337 44 22.4 19.2 3.2***

Brazil Local 1948 231 44.6 46.5 -1.9***
Foreign 1247 176 34.0 29.7 4.2***
Expatriate 998 111 21.4 23.8 -2.4***

Chile Local 315 26 43.3 48.1 -4.8***
Foreign 246 29 48.3 37.6 10.8***
Expatriate 94 5 8.3 14.4 -6.0***

Colombia Local 4 0 0.0 20.0 -20.0***
Foreign 12 3 100.0 60.0 40.0***
Expatriate 4 0 0.0 20.0 -20.0***

Mexico Local 2323 264 52.6 52.0 0.6
Foreign 1388 163 32.5 31.0 1.4***
Expatriate 760 75 14.9 17.0 -2.1***

Peru Local 65 10 58.8 44.8 14.0***
Foreign 58 6 35.3 40.0 -4.7
Expatriate 22 1 5.9 15.2 -9.3***

Venezuela Local 6 0 0.0 12.8 -12.8***
Foreign 30 5 100.0 63.8 36.2***
Expatriate 11 0 0.0 23.4 -23.4***

This table reports the number of analysts identified as leaders as well as the test of the null hypothesis, which
is stating that the proportion of leaders in a given group equals the proportion of analysts from the given
group in the total sample. The last column represents the difference between the percentage of leaders in
a given group, gL , and the percentage of analysts from the given group, gP . The significance of this

difference is determined by the following normally distributed statistic: 
( )

( )1
g g

g

g g

L P
Time N

P P

−
= ⋅

⋅ −
.

Panel A reports results for all Latin American markets. Panel B reports results by country
***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.

3.2. Results for Analysts’ Timeliness

According to the LFR statistic, 1301 leaders out of 11282 observations are detected.
Table 4 shows the breakdown of the leaders according to their origin. The proportions of local
and expatriate analysts within the leaders are significantly smaller than their proportions
within the full sample.4 On the other hand, there are more leaders among foreign analysts than
their proportion in the sample would suggest. These results indicate that, on average, foreign
analysts lead while local and expatriate analysts herd. Analysts with local residence have a
tendency to issue their forecasts shortly after foreign analysts and their revisions do not
induce other analysts to revise their own forecasts.

                                                       
4 The inverse is automatically true for foreign leaders.
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Panel B of Table 4 shows the breakdown of the leaders across the different countries. The
individual country results are consistent with those obtained for Latin America. The
exceptions are Brazil and Peru. In Brazil, the proportion of expatriate analysts identified as
leaders is significantly more important than their proportion in the population. The same is
true for local analysts in Peru.

In summary, the above results indicate that foreign analysts have a greater tendency to
lead than analysts with local residence. This holds at the aggregated level as well as for most
of the individual stock markets. The implications of these findings in terms of forecast
accuracy and earnings forecasts’ informativeness are investigated in the following two
sections.

4. Forecast Accuracy

4.1. Empirical Design

Forecast accuracy is the most widely used measure of the quality of an analyst’s research.
Indeed, the more accurate earnings forecast is, the more accurate the price extracted from any
valuation model will be. Forecast accuracy is measured using the average percentage forecast
error adjusted for the horizon bias.5 Analyst i ’s percentage forecast error at date t  is,

it
ijt

FEPS EPSFE
EPS

−
= ,

where:

itFEPS = analyst i ’s EPS forecast for company j at date t ,

EPS = reported earning per share at the end of the forecast horizon.

In order to correct for the horizon bias, CDL forecast accuracy regression is used.
Compared to the matching forecasts methodology used by Stickel (1992), this operation is
much less data-consuming and better suited for our study. Each ijtFE  is regressed on the

length of time from forecast release to earning announcement date. The residuals from this
regression are used to measure forecast accuracy. Formally,

ijt ijtFE Tα β ε= + ⋅ + , (1)

where:
T = number of days until the earnings announcement date,

ijtε = residual forecast error for analyst i  on firm j  at date t .

                                                       
5 Prior studies such as Kang, O’Brien and Sivaramkarishnan (1994) show that forecast bias increases with forecast

horizon.
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The relative accuracy of each group of analysts is computed in three successive steps.
First, for a given firm, the average residual forecast error is computed for each analyst,

1

K

ij ijt
t

MFE Kε
=

=∑ ,

where:

ijMFE = mean forecast error by analyst i  for firm j ,

K = number of forecasts issued by analyst i  for firm j  during a given year.

Second, for each firm/year, individual analysts’ mean forecast errors are averaged over
all analysts of a given group g ,

g
gj ij j

i g
MGFE MFE N

∈

=∑ ,

where:

gjMGFE = mean group forecast error for firm j ,

N = number of analysts from group g  following firm j  during a given year.

Finally, the mean difference forecast error between 2 groups is computed as

1

J

Aj Bj
j

MDFE MGFE MGFE J
=

⎡ ⎤= −⎣ ⎦∑

where J  is the number of company/year units. In order to assess whether one group of
analysts produces more (less) accurate forecasts than the other, the following hypothesis is
tested:

0 1: 0 : 0H MDFE vs H MDFE= ≠ .

A parametric mean test, a Wilcoxon sign rank test of equality of medians as well as a
non-parametric binomial sign test are performed to test the hypothesis.

4.2. Results for Forecast Accuracy

The slope coefficient of equation (1) equals 0.01 and is significantly different from zero.6

Emerging market analysts’ bias decreases significantly with the distance between forecast
release date and earnings announcement date. The intercept is not statistically different from
zero.

                                                       
6 Results are not shown. They are available on request by the authors.



Analyst Origin and their Forecasting Quality… 201

Hypothesis tests and descriptive statistics for the mean difference forecast errors
( MDFE ) are reported in Table 5. Panels A through C report the difference across each
category of analysts for all Latin American countries, for individual countries as well as for
different security categories. The distribution of the MDFEs appears to be highly skewed by
the presence of some extreme observations. As this may bias the results of the parametric
tests, we will only consider the non-parametric results of column 7 and 8 for our analysis and
conclusions.

Panel A shows that the median MDFE is positive for the whole sample and each
individual countries indicating that local analysts’ average forecast error is greater than
foreign analysts’ one. The Wilcoxon sign rank test and the binomial test reject the null
hypothesis of equal forecasting skills at the aggregate level as well as for five of the
individual countries. The superior ability of foreign analysts to predict firms earnings does not
depend on size. Surprisingly, this superior ability disappears for American Depositary
Receipts, which have a richer information environment and are the least distant firms for
foreign analysts. Conflicts of interest due to increased investment and commercial banking
relationship with foreign banks following U.S. exchange listing may explain this finding.

Table 5. Financial analysts relative forecast accuracy

Distribution of the Mean Difference Forecast Errors (MDFE) Sign of MDFE
Panel A: Difference in forecast accuracy between local and foreign analysts

Sample N Mean Stdev Min Median Max % Local > Foreign
Latin America 1263 -0.16 7.98 -238.88 0.02 *** 62.10 54.95 ***

Argentina 191 -0.01 0.88 -9.22 0.02 ** 4.59 58.64 ***

Brazil 557 -0.55 11.68 -238.88 0.02 47.11 53.68 **

Mexico 332 0.22 3.52 -4.97 0.02 62.10 53.31
Chili 112 0.11 ** 0.50 -1.96 0.03 ** 3.31 55.36
Peru 38 0.23 0.98 -0.42 0.05 5.46 60.53 *

Colombia 21 0.32 * 0.83 -0.38 0.10 ** 3.54 71.43 **

Venezuela 12 -0.06 0.43 -1.13 0.02 0.36 50.00
High Market Value 493 -0.01 6.54 -121.27 0.02 ** 62.10 54.56 **

Small Market Value 323 0.16 2.25 -9.22 0.02 * 35.44 53.25
ADR 277 0.04 0.88 -5.35 0.02 10.51 53.07

Panel B: Difference in forecast accuracy between local and expatriate analysts
Sample N Mean Stdev Min Median Max % Local > Expatriate

Latin America 1263 0.61 * 12.89 -20.69 0.01 ** 402.14 52.26 *

Argentina 191 0.05 0.89 -4.24 0.02 10.27 53.40
Brazil 557 1.04 18.48 -20.69 0.01 402.14 51.35
Mexico 332 0.45 7.65 -13.31 0.01 136.34 52.41
Chili 112 0.08 * 0.46 -0.76 0.00 3.03 50.89
Peru 38 0.29 * 1.03 -0.65 0.08 * 5.59 60.53 *

Colombia 21 0.24 0.80 -0.36 0.02 3.20 61.90 *

Venezuela 12 -0.09 0.33 -0.75 -0.07 0.55 41.67
High Market Value 493 0.63 9.60 -3.35 0.00 163.62 49.49
Small Market Value 323 0.00 2.65 -20.69 0.02 35.23 52.94
ADR 277 0.05 0.67 -3.61 0.01 6.81 52.71
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Table 5. Continued

Panel C: Difference in forecast accuracy between expatriate and foreign analysts
Sample N Mean Stdev Min Median Max % Expatriate > Foreign

Latin America 1263 -0.77 18.81 -641.02 0.00 19.46 50.75
Argentina 191 -0.06 1.35 -12.48 0.01 4.41 52.88
Brazil 557 -1.59 28.10 -641.02 -0.01 19.46 48.29
Mexico 332 -0.23 4.45 -74.23 0.01 18.11 52.41
Chili 112 0.03 0.38 -2.58 0.05 ** 0.91 58.04 **

Peru 38 -0.06 0.22 -0.45 -0.08 ** 0.53 34.21 **

Colombia 21 0.08 0.22 -0.25 0.04 0.50 52.38
Venezuela 12 0.03 0.47 -1.28 0.10 0.52 66.67 *

High Market Value 493 -0.65 * 8.29 -120.94 0.01 3.71 52.54
Small Market Value 323 0.16 1.97 -11.16 0.01 19.46 51.39
ADR 277 -0.02 0.67 -4.70 0.01 3.71 52.71

Panel D: Difference in forecast accuracy between leaders and followers
Sample N Mean Stdev Min Median Max % Leaders > Followers

Local Leaders 426 -0.04 1.31 -11.04 -0.05 *** 17.08 39.20 ***

Foreign Leaders 350 -3.74 70.33 -1315.50 -0.58 *** 12.09 40.57 ***

Expatriate Leaders 198 0.07 6.13 -40.74 -0.02 73.38 44.95 *

This table presents descriptive statistics as well as hypothesis tests for the Mean Difference in Forecast Errors
(MDFE). In Panel A, the third column reports the average difference between local analysts’ forecast
errors and foreign analysts’ forecast errors. Column 6 reports the median difference between local
analysts’ forecast errors and foreign analysts’ forecast errors. Column 8 reports the percentage of
firm/year units for which the average forecast error of local analysts was greater than the average
forecast error of foreign ones. In Panel B, the third column reports the average difference between local
analysts’ forecast errors and expatriate analysts’ forecast errors. Column 6 reports the median difference
between local analysts’ forecast errors and expatriate analysts’ forecast errors. Column 8 reports the
percentage of firm/year units for which the average forecast error of local analysts was greater than the
average forecast error of expatriate ones. In Panel C, the third column reports the average difference
between expatriate analysts’ forecast errors and foreign analysts’ forecast errors. Column 6 reports the
median difference between expatriate analysts’ forecast errors and foreign analysts’ forecast errors.
Column 8 reports the percentage of firm/year units for which the average forecast error of expatriate
analysts was greater than the average forecast error of foreign ones. In Panel D, the third column reports
the average difference between lead analysts’ forecast errors and follower analysts’ forecast errors.
Column 6 reports the median difference between lead analysts’ forecast errors and follower analysts’
forecast errors. Column 8 reports the percentage of firm/year units for which the average forecast error
of lead analysts was greater than the average forecast error of follower ones. A parametric mean test is
performed on column 3 numbers, a Wilcoxon signed rank test of equality of medians is performed on
column 6 numbers, and a non-parametric sign test is performed on column 8 numbers.  Note that in
Panel D, the total number of firm/year units for each group of leader is lower than the number of leaders
that has been identified. This is explained by the fact that there can be several leaders for a particular
company in a given year.

***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.

The results in panel B indicate that, excepting for Venezuela, the average error is greater
for local analysts forecasts than for expatriate ones. The difference between both groups of
analysts is statistically significant at the Latin American level but only weakly or not
significant at the country and security category levels.

As indicated by the results in panel C, no difference between the forecasting skills of
expatriate and foreign analysts can be found. As reported, in panel D, there is a strong
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evidence that leaders produce more accurate forecasts than follower analysts. Their mean
forecast error appears to be much smaller than that of follower analysts. This is particularly
true for local and foreign leaders for which the null hypothesis is rejected at the 1% level. The
leader-follower criterion appears more important than the geographical one. However, no
comparison is performed across leaders from each analyst group as the number of firm/year
units for which leaders of both types are simultaneously identified is very low. Two important
conclusions can be drawn about the behavior of financial analysts on Latin American
markets. First, contrary to what has been documented by CDL, leader analysts do not “trade
accuracy for timeliness”. Indeed, foreign analysts are able to release timelier and more
accurate forecasts. Second, follower analysts do not exactly reproduce the earnings per share
forecasts issued by leader analysts. Even if their forecast releases closely follow leader
analysts’ ones, they avoid to reproduce exactly the information released by leader analysts.

Overall, this section shows that foreign analysts foreign analysts have a better ability to
analyze Latin American firms’ earnings potential than their local peers. There is no
significant difference between the performance of foreign and expatriate analysts and only a
weak difference between expatriate and local analysts in the favor of expatriate ones. These
finding indicate that analysts who work for foreign institutions may have greater resources,
expertise and/or talent than their local peers. Finally, timely analysts are the most accurate
ones. Consequently, lead analysts do not give up forecast accuracy when releasing more
timely forecasts.

5. Impact of Forecast Revisions on Security Prices

5.1. Empirical Design

This section investigates whether one group of analysts’ revisions provides more
information to investors. The objective is to determine whether the stock price reaction
following forecast revisions differs between the different groups of analysts. The reaction
around forecast revisions for a given firm is proxied by the cumulative excess return during
the forecast release period (days 0 and +1). This cumulative excess return is computed as the
difference between the buy-and-hold returns for the firm’s common stock and the value-
weighted Datastream country index.

The incremental information content of each revision is measured by the scaled distance
relative to the consensus forecast.7 More precisely:

1

1( )
ijt jt

ijt
jt

FEPS CF
FSUR

CFσ
−

−

−
=

where:

ijtFSUR = forecast surprise following analyst i ’s revision for firm j  at date t ,

1jtCF − = consensus EPS forecast for firm j  at date 1t − ,

1( )jtCFσ − = standard deviation of the consensus forecast8 at date 1t − .

                                                       
7 Our results are not sensitive to the choice of the scaling factor.
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The consensus forecast is based on the average of the forecasts issued by analysts
(excluding analyst i ) during the 2 months preceding date t . Each analyst is required to
provide at least 3 forecasts per year for the firm and each consensus forecast is required to
contain at least 2 individual forecasts.

The impact of forecast revisions on security prices is measured by the following cross-
sectional regression equations:

0 1 2 3 4jt ijt i i jt jtCAR FSUR LOC FOR LNSIZEβ β β β β ε= + + + + + (2)

0 1 2 3

4

jt i ijt i ijt i ijt

jt jt
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β β β β
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+ × + × + +

(5)

where:

jtCAR = cumulative excess return for firm j  during the forecast release

period (days 0 and +1),

iLOC = dummy variable set to 1 if analyst i  is a local one and 0 otherwise,

iFOR = dummy variable set to 1 if analyst i  is foreign and 0 otherwise,

jLNSIZE = logarithm of the market value (in USD) of common stock at fiscal

year end,

iEXPAT = dummy variable set to 1 if analyst i  is an expatriate and 0 otherwise,

ijLOCLEAD = dummy variable set to 1 if analyst i  is a local analyst that has been

identified as leader for company j and 0 otherwise,

ijFORLEAD = dummy variable set to 1 if analyst i  is a foreign analyst that has been

identified as leader for company j and 0 otherwise,

ijEXPATLEAD = dummy variable set to 1 if analyst i  is an expatriate analyst that has

been identified as leader for company j and 0 otherwise,

ijFOL = dummy variable set to 1 if analyst i  has been identified as follower

for company j and 0 otherwise,

                                                                                                                                                      
8 Similar to Stickel (1992), a standard deviation less than 0.25 is arbitrarily set to 0.25 to mitigate small

denominators. Our results are not affected by this operation.
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Equations (2) and (4) measure the abnormal return associated with the different groups of
analysts’ forecast revisions. Equation (3) and (5) measures the proportion of abnormal return
explained by each group of analysts’ forecast revisions. The size variable is a proxy for the
differences in firms’ information environment9 but also for foreign investors’ ownership since
they tend to concentrate their investments on high-capitalization liquid firms.

5.2. Results for the Impact of Forecast Revisions on Security Prices

Table 6 reports the mean cumulative abnormal return during the forecast release period.
The price reaction depends on the size of the revision. The cumulative abnormal returns
display important standard deviations and consequently only the stock returns associated with
the bottom 50% sub-sample display statistically significant price reactions. Conversely, other
revisions do not impact on prices. This is consistent with Stickel (1992, 1995) who
documents a non-linear relation between forecast revisions and price reactions. Therefore, the
regressions are restricted to revisions of a given magnitude.

Results for the cross-sectional regressions (2) and (3) are reported in table 7. First, panel
A results indicate that, following downward revisions, there is no difference in the average
size of the stock price reaction across groups. On the other hand, following large upward
revisions (top 10%), the average cumulative abnormal return is significantly smaller for local
analysts than for expatriate ones. The same is true for foreign analysts but the regression
coefficient is only marginally significant. Second, results reported in panel B indicate that the
stock price reaction following analysts forecast revisions is only significant for expatriate
analysts large upward revisions. Unfortunately, the null hypothesis of equality across
coefficients cannot be rejected by the F-tests presented in columns 7 through 9.

Table 6. Stock price reactions following forecast surprises

All FSUR Bottom 10% Bottom 50% Top 50% Top 10%

Mean (%) -0.07 ** -0.16 -0.12 ** -0.02 -0.17
Standard deviation (%) 4.39 4.73 4.52 4.27 4.42
N 16699 1670 8352 8347 1670
This table reports some descriptive statistics about the cumulative abnormal returns (CARs) following

forecasts’ revisions. Cumulative abnormal returns are computed as the difference between the buy-and-
hold return for the firm’s common stock and the value-weighted Datastream country index during the
forecast release period (days 0 and 1). The column All FSUR reports statistics on CARs for all forecast
surprise level. Bottom 10% reports CARs for forecast surprises located in the top 10% of the
distribution. Bottom 50% reports statistics for CAR’s located in the bottom 50% of the distribution. In
the column Top 50%, statistics are reported for CAR’s located in the top 50% of the distribution. Top
10% reports statistics for CAR’s located in the top 10% of the distribution.

***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.

                                                       
9 Stickel (1995), among others, reports that buy and sell recommendations induces a greater price reaction for

smaller companies than for larger ones.
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Table 7. Stock price reactions following analyst forecast revisions

Panel A: 0 1 2 3 4jt ijt i i jt jtCAR FSUR LOC FOR LNSIZEβ β β β β ε= + + + + +

FSUR Cutoff 0β 1β 2β 3β 4β N

Bottom 10% -0.46 0.09 -0.24 0.02 0.08 1670
(-0.60) (0.63) (-0.77) (0.05) (0.88)

Bottom 50% -0.59 * 0.07 0.07 0.17 0.06 8352
(-1.91) (1.03) (0.51) (1.17) (1.55)

Top 50% 0.03 -0.04 -0.20 -0.27 ** 0.02 8347
(0.09) (-0.56) (-1.57) (-1.97) 0.58

Top 10% 1.07 0.20 -0.60 ** -0.52 * -0.16 * 1670
(1.35) (1.42) (-2.13) (-1.68) (-1.73)

Panel B: 0 1 2 3 4jt i ijt i ijt i ijt jt jtCAR LOC FSUR FOR FSUR EXPAT FSUR LNSIZEβ β β β β ε= + × + × + × + +

FSUR Cutoff 0β 1β 2β 3β 4β 1 2β β= 1 3β β= 2 3β β= N

Bottom 10% -0.56 0.13 0.05 0.06 0.08 0.40 0.25 0.01 1670
(-0.76) (0.86) (0.30) (0.35) (0.87)

Bottom 50% -0.50 * 0.13 0.13 0.03 0.06 0.99 0.56 0.02 8352
(-1.73) (1.52) (1.52) (0.25) (1.55)

Top 50% -0.14 -0.11 -0.03 0.12 0.02 0.42 2.89 * 1.04 8347
(-0.51) (-1.25) (-0.29) (0.98) (0.53)

Top 10% 0.64 0.13 0.22 0.35 ** -0.16 0.46 2.24 0.65 1670
(0.84) (0.81) (1.36) (1.99) (-1.74)

This table presents the coefficients obtained by regressing the cumulative abnormal returns following forecast
revisions on the magnitude of the revision, firm size, and dummy variables indicating analysts’ status.
Revisions are dated within the firm’s current fiscal year over the 1993-1999 period. jtCAR  is the

cumulative abnormal return to security i  during the release period (days 0 and +1). ijtFSUR  is the

forecast surprise following analyst i ’s revision at date t . jtLNSIZE  is the natural logarithm of the

market value (in USD) of common stock at fiscal year end. iLOC  is a dummy variable that takes a value

of 1 if analyst i  is employed by a local brokerage house and 0 otherwise. iFOR  is a dummy variable
that takes a value of 1 if analyst i  is employed by a foreign brokerage house without local residence and
0 otherwise. iEXPAT  is a dummy variable that takes a value of 1 if analyst i  is employed by a foreign
brokerage house with local residence and 0 otherwise. All coefficients are multiplied by 100. T-statistics
are based on White (1980). For each regression the adjusted 2R  are less than 0.01.

***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.

Table 8 reports the results for the cross-sectional regressions (4) and (5). First, as reported
in panel A, the average cumulative return does not differ between leader and follower
analysts. Second, as indicated by panel B results, there is a significant market reaction
following foreign and expatriate leaders large upward revisions (top 10%). The F-tests
indicate that the regression coefficients associated to foreign leaders’ revisions are
significantly higher than those associated to local leaders and followers’ revisions.



Table 8. Stock price reactions following leaders and followers forecast revisions

Panel A:  0 1 2 3 4 5jt ijt ij ij ij jt jtCAR FSUR LOCLEAD FORLEAD EXPATLEAD LNSIZEβ β β β β β ε= + + + + + +

FSUR Cutoff 0β 1β 2β 3β 4β 5β N
Bottom 10% -0.56 0.09 -0.63 0.52 -0.61 0.09 1670

(-0.76) (0.64) (-1.19) (0.86) (-0.59) (0.92)
Bottom 50% -0.48 0.07 -0.24 -0.03 -0.30 0.06 8352

(-1.66) (1.05) (-1.15) (-0.10) (-0.72) (1.57)
Top 50% -0.17 -0.03 0.17 -0.33 0.22 0.02 8347

(-0.62) (-0.52) (0.78) (-1.17) (0.64) (0.64)
Top 10% 0.60 0.20 -0.18 0.78 0.97 -0.16 * 1670

(0.79) (1.38) (-0.40) (1.24) (1.23) (-1.72)
Panel B: 0 1 2 3 4 5jt ij ijt ij ijt ij ijt ij ijt jt jtCAR LOCLEAD FSUR FORLEAD FSUR EXPATLEAD FSUR FOL FSUR LNSIZEβ β β β β β ε= + × + × + × + × + +

FSUR Cutoff 0β 1β 2β 3β 4β 5β 1 2β β= 1 3β β= 1 4β β= 2 3β β= 2 4β β= 3 4β β= N
Bottom 10% -0.55 0.24 0.04 0.46 0.07 0.08 0.26 0.23 0.43 0.77 0.01 1.04 1670

(-0.75) (0.76) (0.14) (1.05) (0.51) (0.86)
Bottom 50% -0.50 * 0.26 0.12 0.42 0.05 0.06 0.19 0.14 0.93 0.50 0.07 1.19 8352

(-1.73) (1.03) (0.46) (1.04) (0.68) (1.56)
Top 50% -0.14 -0.11 0.33 0.34 -0.05 0.02 1.41 1.32 0.05 0.00 1.64 1.48 8347

(-0.53) (-0.45) (1.11) (1.26) (-0.78) (0.55)
Top 10% 0.64 0.10 0.88 *** 0.60 ** 0.17 -0.16 * 3.60 * 1.35 0.08 0.35 4.41 ** 1.44 1670

(0.85) (0.37) (2.80) (1.96) (1.18) (-1.73)
This table presents the coefficients obtained by regressing the cumulative abnormal returns following forecast revisions on the magnitude of the revision, firm size, and

dummy variables indicating analysts’ status. Revisions are dated within the firm’s current fiscal year over the 1993-1999 period. jtCAR  is the cumulative abnormal

return to security i  during the release period (days 0 and +1). ijtFSUR  is the forecast surprise following analyst i ’s revision at date t . jtLNSIZE  is the natural

logarithm of the market value (in USD) of common stock at fiscal year end. ijLOCLEAD  is a dummy variable that takes a value of 1 if analyst i  is a local leader

and 0 otherwise. ijFORLEAD  is a dummy variable that takes a value of 1 if analyst i  is a foreign leader and 0 otherwise. ijEXPATLEAD  is a dummy variable that

takes a value of 1 if analyst i  is an expatriate leader and 0 otherwise. ijFOL  is a dummy variable that takes a value of 1 if analyst i  is a follower and 0 otherwise.

All coefficients are multiplied by 100. T-statistics are based on White (1980). For each regression the adjusted 2R  are less than 0.01.
***, **, * denote significance at the 1%, 5%, and 10% levels, respectively.
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Overall, this section shows that there are almost no significant differences in the
incremental information contained in financial analysts forecasts revisions. However, the
market seems to consider the forecasts issued by local and, to some extent, by expatriate
leaders as being more informative than those issued by other analysts. This is consistent with
the view that foreign leaders’ revisions have a greater information content than other analysts’
revisions.

6. Conclusions

Foreign financial analysts’ EPS forecasts are more timely than expatriate and local
analysts’ forecasts. Building on CDL methodology, 1301 leader analysts are identified. Out of
these leaders, 444 are foreign. This is significantly greater than the proportion of foreign
analysts’ forecasts in the sample. Conversely, analysts with local residence display a
significant tendency to follow the “crowd”.

In terms of forecast accuracy, analysts working for foreign brokerage houses are better at
predicting firms’ EPS than local analysts. Surprisingly, we detect no significant differences in
forecast accuracy for companies with quoted ADRs. This may indicate that foreign and
expatriate analysts’ superior performance vanishes for companies with richer information
environment.

Finally, stock prices react positively to upward forecast revisions released by foreign and
expatriate leader analysts. The coefficient associated to foreign leaders forecast surprises is
significantly greater than that associated to follower forecast surprises. It is also marginally
greater than the coefficient associated to local leaders forecast surprises.

We see that foreign analysts outperform their local peers across all our performance
measures. This suggests that residence does not give local financial analysts an advantage
relative to their foreign counterparts. The difference between foreign and expatriate analysts’
performance is less evident. Foreign analysts outperform their expatriate peers for one out of
three performance measures. This suggests that agency problems, due to tighter investment
banking relationships between resident analysts’ firms and local companies, are not
influencing financial analysts’ objectivity on Latin American markets. Overall, our results are
consistent with better information and greater sophistication on the part of analysts employed
by foreign brokerage houses. This superiority may be linked to the superior resources
available to analysts who work for important international brokerage houses, to the better
international expertise of these analysts, or to their greater talent.

The present results are consistent with a better information on the part of foreign
investors. Foreigners’ portfolio profits on emerging markets, such as those documented by
Seasholes (2000), may be driven by the better ability of foreign analysts at analyzing firms’
situation for their clients. However, further research is needed to understand which category
of investors (foreign or domestic) trade around foreign and local analysts’ revisions. Finally,
the practical implication of this investigation is that investors should rely more heavily on
foreign financial analysts’ forecasts than on local ones when they invest in Latin American
markets.
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Appendix

Leader-to-Follower Ratio

The Leader-to-Follower Ratio (LFR) for a particular analyst a who provides forecasts for
firm j is expressed a follows:

0,

1,

j
aj

a j
a

T
LFR

T
= , (6)

where 0T  and 1T  are respectively the cumulative lead- and follow time for the K forecasts
made by analyst a on firm j during a particular fiscal year. They are defined as follows:
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t ) denotes the number of days by which forecast h precedes (follows) the k-th

forecast may by analyst a for firm j. H  is the number of forecasts made by other analysts that
precede and follow the release of the k-th forecast of analyst a.  The above figure provides an
illustration of the idea underlying the LFR ratio. The forecast issued by analyst a for firm j at
date t is denoted as ,

j
a tF .

From this example, we see that analyst 2 issues a forecast on day 25. The preceding
forecast was issued 20 days before on day 5. The following forecast is released soon
afterward, on day 27. Taking into account only these one preceding and one following

forecasts, analyst 2’s LFR ratio is 
20 10
2
= . Analyst 2 would therefore classified as a leader.

To the same extent, analyst 3 is a follower analyst. He issues a forecast right after analysts 2
and no one free-rides on its forecast since the next to issue a forecast is analyst 4, only 23

days later. Its LFR would then be 
1 0.04
23

≅ .

.

1,5
jF 2,25

jF 3,27
jF 5,50

jF
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Chapter 9

MODELING AND FORECASTING INCOME TAX
REVENUE: THE CASE OF UZBEKISTAN
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Abstract

Income tax revenue crucially depends on the wage distribution across and within the
industries. However, many transition economies present a challenge for a sound econometric
analysis due to data unavailability. The paper presents an approach to modeling and
forecasting income tax revenues in an economy under missing data on individual wages
within the industries. We consider the situations where only the aggregate industry-level data
and sample observations for a few industries are available. Using the example of the Uzbek
economy in 1995-2005, we show how the econometric analysis of wage distributions and the
implied tax revenues can be conducted in such settings. One of the main conclusions of the
paper is that the distributions of wages and the implied tax revenues in the economy are well
approximated by Gamma distributions with semi-heavy tails that decay slower than those of
Gaussian variables.
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1. Objectives of the Paper

This paper discusses an approach to econometric analysis and forecasting for income tax
revenue in situations where the data on wages and income are largely unavailable. Naturally,
income tax revenue crucially depends on the wage distribution in the economy. However,
many transition economies present a challenge for a sound econometric analysis due to data
unavailability. This is typically the case for employee-level data, including wages and
income.

We show that, in certain cases, one can make inference on wage distribution and the
implied distribution of income tax revenues even in absence of microeconomic level data for
individual households. We discuss an approach that allows one to estimate the form and
parameters of the wage distribution in the economy using the official data on average wages
across the industries. We then use these results to obtain estimates for the distribution of tax
revenues. One of the main conclusions of the paper is that Gamma densities provide
appropriate models for wage distributions. These approximations imply that the distributions
of wages and the implied tax revenues have semi-heavy tails that decay slower than those of
Gaussian variables.

The analysis presented in the paper is based on the official data on average wages across
the industries and a sample of data for employees’ wages in one of the industries,
construction. The analysis thus uses the existing minimum of the available information. The
estimates presented are, therefore, some of the only results that are possible to obtain in such
settings.

2. Inference on Wage Distribution under Missing Household
Income Data

Tables A1 and A2 in the appendix provide government data on the number of employees
and the average wages across the industries of the Uzbek economy. Table 1 below provides a
summary of the implied inequality measures for the wage distribution in the Uzbek economy.
The inequality measures summarized in the table and their properties are discussed in detail,
among others, in Ch. 13 in Marshall and Olkin (1979).

Table 1. Statistical characteristics of wage distribution in the Uzbek economy in 1995,
2000 and 2005

1995 2000 2005
Minimal wage, soum 250 1320 9400

Average wage, w , soum 1057 11225.1 85865.0

Gini coefficient1 0.235 0.233 0.252

The number of employees with wages less than w 60% 43% 42%

Minimal majority2 68% 67,4% 67,5%
                                                       
1 The Gini coefficient is computed under the assumption that each industry of the economy is considered as an

individual unit regardless of the number of employees in the industry. In other words, here, the Gini
coefficient characterizes the inequality in distribution of the average wage across the industries.
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Table 2 presents Gini coefficients for the wage distribution in the Uzbek economy
computed under the assumption that wages are uniformly distributed within each industry.

Table 2. Gini coefficients for wages in Uzbekistan under the assumption of uniform
wage distribution within the industries

1995 2000 2005
Gini coefficient 0.161 0.253 0.262

The Gini coefficient values reported in Tables 1 and 2 are considerably small comparing
to other Newly Independent States. These values do not reflect the true inequality in wage
distribution in the total economy.

The inequality in the total economy reflects both the disparities among the industries and
inequalities in distributions within them. Thus, taking into account the wage inequality within
the industries would lead to an increase in the calculated Gini coefficients and other
inequality measures considered in Table 1.

As an example, we estimate the wage distribution within the construction industry. This
wage distribution is estimated using a sample of wages in 1995 for 256 employees in the
industry available to us (see Table A3 and Figure A1 in the appendix). The Gini coefficient
for the construction industry estimated using the sample is 0.29.

Consider a random variable (r.v.) X with truncated normal density
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If a is known, one may use the relations for the mean E[X] and the variance Var[X] of X
given by
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2 In the context of political science, the minimal majority is the smallest number of individuals controlling a

majority of legislature. This index can also be used as an inequality measure and has a simple expression in
terms of the Lorenz curve characterizing the inequality among subjects: if wages nww ...,,1  determine the

Lorenz curve h, then the minimal majority is )5.0(1−h  (see Ch. 13 in Marshall and Olkin, 1979). Thus, in
Table 1, minimal majority equals to the proportion of the employees who have 50% of the total income (wage
fund).



Marat Ibragimov, Rustam Ibragimov and Nishanbay Sirajiddinov216

where 
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, to estimate μ and σ by the method of moments (see Section 19.3-4 in

Korn and Korn, 1968, and Section 10.1 in Johnson, Kotz and Balakrishnan, 1994).
The p-value for the Kolmogorov-Smirnov test of the null hypothesis that wage in the

construction industry follows the above distribution equals to α=0.21. Thus, the null
hypothesis is not rejected at the α≤0.21 significance level (see Figure A2 in the appendix).

The coefficient of variation for the fitted truncated normal distribution is

51.0
][

][
==
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CV .

To estimate the wage distribution in the whole economy we assume that, in each industry,
wage has a truncated normal distribution with the same coefficient of variation CV=0.51 as in

construction, that is, the parameters E[X] and Var[X] satisfy ][51.0][ XEXVar = . The
wage distribution for the whole economy is a mixture of wage distributions within the
industries. The cdf of wage in the whole economy is determined as

)(...)()( 1
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N
NxF m

m++= , (3)

where N=N1+...+Nm is the total number of employees in the economy, Nj is the number of
employees in the ith industry, and  Fj (x) is the cdf of wage in the jth industry, j=1, ..., m.

Figures A3-A5 in the appendix provide the cdf’s for wages in the Uzbek economy in
1995, 2000 and 2005. The calculations are based on the above assumption of equal
coefficients of variation for wage distributions within the industries. Evidently, this
assumption may be lifted if, in addition to the data on the average wages in each of the
industries, one also has the data on the wage variances within the industries.

Table 3 provides the means, variances and Gini coefficients for the fitted wage
distribution in the Uzbek economy in 1995, 2000 and 2005. Columns 5 and 6 of Table A1 and
columns 5, 6, 10 and 11 of Table A2 in the appendix provide the parameters μ and σ for
truncated normal distributions (1) and the distributions’ means E[X] and variances Var[X]
calculated using (2) for each of the industries  in 1995, 2000 and 2005.

Table 3. Statistical characteristics of wage distribution in the Uzbek economy in 1995,
2000 and 2005

1995 2000 2005

Mean 1307 19973 136667

Standard deviation 808 12968 89396

Gini coefficient 0.321 0.356 0.359
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The interpretation of Gini coefficients presented in Tables 1-3 can be described as
follows.

1. The coefficients in Table 1 correspond to the case where one measures the inequality
among the industries using known values of average wages in them. This equals to
the true inequality index for the whole economy if wage is equally distributed within
each of the industries and, in addition, the number of employees in the industries is
the same.

2. The estimates in Table 2 correspond to the case where the average wages and the
number of employees in the industries are known. Wage distributions within the
industries are assumed to be uniform.

3. Table 3 provides the estimates of the wage inequality in the whole economy where
the inequality in wage distributions within the industries is taken into account.

One should note that the Gini coefficient values in Table 1 provide lower bounds for the
true Gini coefficients for the whole economy. The inequality indices in Table 3 may be
regarded as the most appropriate ones. In addition, they are the closest to the true inequality
measures under some natural general assumptions (see the discussion and related results in
Ibragimov and Walden, 2007).

According to the results in this section, the inequality in wage distribution over the whole
economy is relatively small, even when the inequalities within the industries are taken into
account. The situation is similar to that in Russia in the first half of 90’s where one observed
“the power of institutional features in the wage settings that tended to dominate the
redistributive effects transmitted through high inflation and decentralization in wage settings”
(Commander, McHale and Yemtsov, 1995, p. 165) and relative stability of the low inequality
among the industries.

3. Income Tax Revenue Distribution and Forecasting

We follow the following two criteria in approximating the wage distribution in the
economy:

1. The distribution law should be widely known and parsimonious with a relatively
small number of parameters;

2. The measure of approximation should have a clear interpretation.

Among two parameter distributions, the best fit appeared to be provided by gamma
distribution with cdf

∫=
x

gamma dukufkxF
0

,);;();;( θθ
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gamma cdf );;( θkxFgamma  has tails that asymptotically decay as )exp( xx βα −  as

∞→x . Thus, the tails of the distribution belong to the class of semi-heavy tails that decay
slower than those of Gaussian distribution but faster than any power law tails.3

The shape and scale parameters k and θ are estimated by the method of moments using
the relations
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for the mean E[X] and variance Var[X] of a gamma r.v. X with the pdf );;( θkxf .
Table 4 provides a summary of the implied approximation for the wage cdf F estimated

in (3) in the case where the measure );;()(max θkxFxF gammagamma −=Δ  is used as a

measure of approximation. For comparison, Table 4 also presents the values
);;()(max θkxFxF normalnormal −=Δ  for the normal distribution with the parameters

m=E[X] and ][XVar=σ  (see also Figures A3-A5 in the appendix).

Table 4. Gamma distribution approximation results.

1995 2000 2005

E[X] 1307.43 19973.28 136666.91

Var[X] 653450.74 168164070.26 7991717405.72

k 2.615916 2.372278605 2.337150

θ 499.798148 8419.450581 58475.876093

Δgamma 0.0496 0.0237 0.02533

Δnormal 0.0977 0.0808 0.0792

As is seen from the table, the gamma distribution provides better approximation to F(x)
than does the normal distribution.

                                                       
3 Such tails were considered among others, by Barndorff-Nielsen (1997) and Barndorff-Nielsen and Shephard

(2001) in the context of applications of Normal Inverse Gaussian distributions and their extensions and by
Malevergne, Pisarenko and Sornette (2005) who consider the fitting by stretched exponential and related
distributions. Together with widely used power law distributions applied in many works (see, for instance, the
discussion in Loretan and Phillips, 1994, Gabaix, Gopikrishnan, Plerou and Stanley, 2003, Ibragimov, 2005,
Rachev, Menn and Fabozzi, 2005, and references therein), semi-heavy tailed distributions were reported to
provide good fit for a number of economic and financial time series.
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The results obtained can be applied to forecast the income tax revenue using the tax rate
and wage data. We describe the approach to forecasting using the parameters E[X] and Var[X]
for 2005.

Denote by Ttotal the yearly income tax revenue in the economy, in million soum, and by
wmin the minimal monthly wage, in soum. Let T(x) denote the monthly income tax revenue
from one employee with wage x.

The tax rates in Uzbekistan in 2005 are provided in Table A`4 in the appendix.
The function relating the income tax T(x) to the wage x has the following form:
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where x is the wage, ti are the tax rates for different wage levels, i=1, ..., n; ],;[ 1min ww
];[ 21 ww , ...,

);[ 1 ∞−nw  is the partition of the set of possible wage values  [wmin;∞) into strata that
correspond to the different tax rates (see Table A4 in the appendix). Thus function (4) has the
following form for the Uzbek economy in 2005:
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where wmin=9400 soum.
As before, we assume that the wage level X has the gamma distribution with the cdf

Fgamma(x; k; θ) and the pdf f(x; k; θ). Therefore, the cdf of the r.v. t=T(x) is given by
Fgamma(Т -1(t); k; θ) and the pdf of t=T(x) is f(Т -1(t); k; θ) (see Figure A6 in the appendix).

According to the official site of the Ministry of Finance of the Republic of Uzbekistan4,
the income tax revenue in the Uzbek economy in 2005 was equal to Tactual=465641.1 million
soum.

To compare income tax revenues predicted by the above results with the actual values,
we make the following assumptions:

1. The monthly income tax revenue equals to 12/1  of yearly tax revenue;
2. The income tax revenue from each employee equals to N/1  of the income tax

revenue over the whole economy, where N is the number of employees included in
calculation of the tax base. The monthly income tax revenue from each employee is
the r.v. Т(х) with the cdf Fgamma(Т -1(t);k;θ).

                                                       
4 http://www.mf.uz/
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Table 5 presents the estimates for the tail probabilities of yearly income tax revenues over
the whole economy that hold under these assumptions.

Starting with 2000, the average wage for agriculture has not been calculated or reported
by the State Committee for Statistics (Goskomstat) of the Republic of Uzbekistan due to the
absence of data for the private sector (see Tables A1 and A2 in the appendix). Therefore, the
income tax revenues from agriculture seem to be negligible in 2000 and 2005. Nevertheless,
we present the estimates for the tail probabilities of the income tax revenue for both the cases
where N equals to the total number of employees in the economy and where N does not
include the employees in agriculture.

Table 5. Tail probabilities of the total income tax revenues in 2005

N, тыс.чел. P(Ttotal> Tactual)=P(Ttotal>465641.1 million soum)
10196.3: Total number of employees
in all the industries of the economy

0.9496

7110.6: Total number of employees
in all industries except agriculture

0.8988

The results in Table 5 suggest very high probability of the total tax revenue in the model
being not less than the actual value of 465641.1 million soum in 2005. This probability is
estimated to be about 0.9 if agriculture is excluded in calculation of the tax base, and to be
about 0.95 if the estimate is calculated using the total number of employees in the economy.

4. Conclusion

The approach discussed in the paper allows one to obtain estimates of the income tax
revenues via gamma distribution approximations using data on average wages in the economy
and wage variances. At the same time, the calculations are based on several strict
assumptions, in particular, those listed below

1. Within each industry, wage distribution is truncated normal;
2. Wage variances in all the industries are the same;
3. Wage in the whole economy follows a gamma distribution.

Each of these assumptions is very strong. The assumptions are motivated only by the
absence of sample data across all the industries. Even if such studies are conducted in
transition economies, their results are often inaccessible. On the other hand, the approach to
wage distribution modeling and forecasting the implied income tax revenues discussed in
the paper is based on the existing minimum of the available data. The estimates presented
are, therefore, some of the only results that are possible to obtain in such circumstances.
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Appendix

Table A1. Wage distribution in the industries of Uzbek economy in 1995

Industries
Number of

employees, N,
thousands

Average
wage, E[X],

soum

Variance,
Var[X] μ σ

1 2 3 4 5 6

1.Heavy industry 854.9 1529 608072.4 1264 973.14

2. Horticulture 378.1 808 169809.9 342.32 655.49

3. Animal husbandry 84.3 620 99982.44 -522.74 723.05

4. Forestry 5.3 694 125273.5 -3.9443 659.67

5.Transportation 259.5 1427 529649.2 1158 919.95

6.Communications 43.4 1521 601726 1255.8 968.94

7.Construction 320.5 1655 712420.4 1392.4 1039.9

8. Construction-related services 13.9 1915 953845.2 1651.4 1180.1

9. Trade 194.4 556 80406.27 -1726.4 888.4

10. Public catering 46.9 528 72511.72 -1733.8 860.71

11.Computer services 2.7 1716 765905 1453.7 1072.6

12. Housing and utilities 116.9 1064 294458.2 747.27 743.15

13. Health 469.6 665 115022.7 -153.27 674.25

14.Education 858.5 577 86594.83 -1317.8 840.35

15.Arts and culture 62.4 770 154213.3 251.76 650.92

16.Science 41.6 1209 380183.2 920.57 810.42

17.Insurance and pensions 38 1789 832455.5 1526.7 1111.8

18.Administration 87 1041 281865.4 717.77 733.17

19.Other industries 252.1 949 234246.3 590.78 696.16
The values μ and σ are the parameters of the truncated normal distribution (1) fitted to the industry data, and

Var[X] is the variance of the distribution calculated using (2).
Source: The State Committee for Statistics (Goskomstat) of the Republic of Uzbekistan (Columns 1-3) and

the authors’ calculations (Columns 4-6).



Table A2. Wage distribution in the industries of Uzbek economy in 2000 and 2005

Industries 2000 2005

1 2 3 4 5 6 7 8 9 10 11

N E[X] Var[X] μ σ N E[X] Var[X] μ σ

1.Heavy industry 1145 21861.5 124308074 19970 12774 1145 145364.2 5496104461 132430.0 85171.0

2. Construction 676 18796.6 91896342 17064 11054 676 140114.8 5106320438 127460.0 82226.0

3. Transportation 313.7 18569.3 89687023 16848 10926 367.97 134430.6 4700419575 122060.0 79038.0

4. Communications 68.3 25081.1 163619392 23016 14584 80.1 135686.9 4788680620 123250.0 79742.0

5. Trade and public catering 754 9815.6 25059452 8427.6 6070.5 754 70209.0 1282111887 60321.0 43398.0

6. Health 587 8177.2 17392138 6780.9 5193 587 48411.0 609576842 37913.0 31924.0

7. Education 1054 9317.3 22579624 7932.6 5801.2 1274 55454.2 799851274 45420.0 35524.0

8. Arts and culture 61.02 9591.9 23930226 8205.8 5949.4 73.75 57977.2 874287115 48027.0 36846.0

9. Science 30.98 16053.3 67029991 14453 9518.6 37.445 90070.1 2110090877 83956.0 53187.0

10. Housing and utilities 251 13265.4 45769964 11784 7966.4 251 84703.9 1866150447 74494.0 51332.0

11. Credits and insurance 52 24834.8 160420567 22783 14446 52 198770.0 1.0276E+10 182950.0 115210.0

12. Other industries 904.3 30779.5 246412885 28397 17793 1812.4 200156.0 1.042E+10 184260.0 115990.0
The notations used are the same as in Table A1.
Source: The State Committee for Statistics (Goskomstat) of the Republic of Uzbekistan (Columns 1-3, 7, 8) and the authors’ calculations (Columns 4-6, 9-11).
Note: Starting with 2000, the average wage for agriculture has not been calculated by the Goskomstat due to the absence of data for the private sector.
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Table A3. Wage distribution in the construction industry

W, % n, % W, % n, % W, % n, %

0-4 1,56 74-79 3,13 148-153 1,56

4-9 1,17 79-83 2,73 153-157 0,39

9-13 3,13 83-87 1,95 157-161 1,17

13-17 1,56 87-92 2,73 161-166 0,78

17-22 1,56 92-96 3,52 166-170 1,56

22-26 1,17 96-100 4,69 170175 0,78

26-31 1,17 100-105 3,13 175-179 0,78

31-35 1,56 105-109 4,30 179-183 1,56

35-39 2,34 109-113 2,34 183-188 1,17

39-44 3,13 113-118 3,52 188-192 1,17

44-48 0,39 118-122 5,08 192-196 0,39

48-52 1,56 122-127 3,13 196-205 0,39

52-57 3,52 127-131 3,13 205-218 0,78

57-61 1,95 131-135 2,73 218-236 0,39

61-65 2,34 135-140 3,52 236-246 0,39

65-70 1,95 140-144 1,95 >246 0,39

70-74 1,95 144-148 2,73

Based on a sample of 256 employees. W,% denotes the average wage in percent to
the average wage in the sample; n,% is the percentage of employees in the sample who
receive the wage within the indicated ranges.

Table A4. Income tax rates in Uzbekistan in 2005

Range of the income, I Corresponding tax amount, T(I)

min5wI ≤ IIT 13.0)( =

minmin 105 wIw ≤< )5(21.0)5( minmin wIwT −+

min10wI > )10(3.0)10( minmin wIwT −+

The value I denotes the income to date from the beginning of 2005; minw  denotes the minimal wage in 2005.
Source: State Tax Committee of the Republic of Uzbekistan
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Figure A1. Wage frequency distribution in the construction industry.

Based on a sample of 256 employees. Wage,% denotes the average wage in percent
to the average wage in the sample. Number of workers,% is the percentage of employees
in the sample who receive the wage within the indicated ranges.
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Figure A2. The cdf of wage in the construction industry and the cdf of the fitted truncated normal
distribution.
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Figure A3. The cdf F(x) for the wage distribution in the Uzbek economy in 1995 and the cdf’s of the
fitted gamma and normal distributions.
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Figure A4. The cdf F(x) for the wage distribution in the Uzbek economy in 2000 and the cdf’s of the
fitted gamma and truncated normal distributions.
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Figure A5. The cdf F(x) for the wage distribution in the Uzbek economy in 2005 and the cdf’s of the
fitted gamma and truncated normal distributions.
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Chapter 10
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Abstract

This paper analyzes the out-of-sample ability of different parametric and semi-
parametric GARCH-type models to forecast the conditional variance and the condi-
tional and unconditional kurtosis of three types of financial assets (stock index, ex-
change rate and Treasury Note). For this purpose, we consider the Gaussian and
Student-t GARCH models by Bollerslev (1986, 1987), and two different time-varying
conditional kurtosis GARCH models based on the Student-t and a transformed Gram-
Charlier density.

Key words: Gram-Charlier densities; Financial data; High-order moments; Out-of-sample
forecasting.
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1. Introduction

The literature related to financial econometrics and asset pricing has shown that the con-
ditional distribution of high-frequency returns exhibits stylized features that include excess
of kurtosis, negative skewness, and temporal persistence in conditional moments. Remark-
ably, time dependency may be a characteristic that not only is present in the dynamics of the
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expected return and the conditional variance, but also in higher-order momentsEt

(
rs
t+1

)
,

s ≥ 3; see, Nelson(1996). Among these, the conditional skewness and kurtosis (related to
the third- and fourth-order conditional central moments, respectively) are particularly rele-
vant for their implications in risk management, asset pricing, and optimal portfolio selec-
tion, as pointed out by Chunhachinda, Dandapani, Hamid and Prakash (1997), Harvey and
Siddique (2000), Christie-David and Chaudhry (2001) and Schmidt (2002). For instance,
rational investors concerned with the non-Gaussian properties of returns would be averse to
negative skewness and high kurtosis. As a result, the composition of their optimal portfolio
would change (everything else being equal) whenever they expect changes in any of those
characteristics. In this regard, Fang and Lai (1997) have reported empirical evidence of
positive risk premiums for conditional skewness and conditional kurtosis in the US market.
All this has given rise to a string of recent articles which have gone beyond the traditional
modelling and forecasting of the conditional volatility to also focus on the time-varying
properties of higher-order moments. The models proposed in this literature include both
parametric (see, among others, Hansen 1994, Dueker 1997, Harvey and Siddique 1999, and
Brooks, Burke, Heravi and Persand 2005) and semi-parametric approaches, such as entropy
distributions (Rockinger and Jondeau 2002), and Gram-Charlier densities (León, Rubio and
Serna 2005).

The econometric modelling of high-order moments attempts to exploit time dependency
to improve the forecasts which are typically needed in financial applications. In this paper,
we analyze the out-of-sample ability of different parametric and semi-parametric GARCH-
type models to forecast the conditional variance as well as the conditional and unconditional
kurtosis of several classes of financial assets. We do not focus on asymmetric distributions
(i.e., we do not consider skewness in this paper) so that we can specifically isolate the
gains from modelling kurtosis, which is widely considered as the most representative non-
Gaussian stylized feature of financial data. We compare four different approaches in our
study with increasing degree of complexity, going from the standard GARCH model to
more sophisticated specifications. The starting point in our analysis is the simple Gaussian
GARCH model by Bollerslev (1986), which implies the same degree of constant conditional
kurtosis as the Normal distribution. Second, we consider the straightforward generalization
of this model suggested by Bollerslev (1987) which, on the basis of the conditional Student-
t distribution, is able to capture the underlying conditional kurtosis in the data, still assum-
ing constant kurtosis. Next, we consider a further generalization, the so-called Student-t
GARCHK model, suggested in Brookset al. (2005). This is intended to fit the time-varying
dynamics of the conditional variance and the kurtosis separately via a Student-tdistribution
with a degrees of freedom parameter that is allowed to vary over time. Finally, we consider a
restricted version of the semi-parametric GARCH model with time-varying conditional kur-
tosis proposed in Léon et al. (2005) as an alternative to the Student-tGARCHK model. The
semi-parametric approach relies upon a Gram-Charlier type polynomial expansion so that
the resulting probability density function is flexible enough to approximate any unknown
density, without imposing any assumption on the underlying conditional distribution.

The main questions we try to solve refer toi) whether conditional kurtosis models are
able to yield better out-of-sample forecasts, andii) which conditional kurtosis approach
(parametric or semi-parametric) is more appropriate for applied purposes. These are ul-
timately empirical questions that we shall address statistically in this paper by means of
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an out-of-sample forecasting analysis. In particular, we compute one-day aheadforecasts
of the conditional variances and the conditional and unconditional kurtosis implied by the
different models, and compare their forecasting ability in terms of the Mean Square Error
(MSE) loss-function. Patton (2006) has recently argued that only few of the volatility loss
functions are not affected by the choice of the proxy used, showing that the MSE loss-
function is robust. The same arguments may hold when analyzing higher-order conditional
moments for which the true values are not directly observable and must be proxied with
sampling error. We use the procedure in Diebold and Mariano (1995) to test statistically
whether the differences observed across the different GARCH models are truly significant.

The remainder of this paper is organized as follows. Section 2 describes the conditional
models that we use to fit and forecast conditional variance and kurtosis. Section 3 discusses
the main features of the empirical analysis. Finally, Section 4 summarizes and concludes.

2. Modelling Forecasting Conditional Variance
and Higher-Order Moments

Let us first introduce the basic data generating process and the general notation used
throughout the paper. We observe a sample of (daily) asset prices from which we compute
the series of returnsrt = 100 log (Pt/Pt−1) , t = 1, ...., T. We assume that the returns
follow the dynamics,

rt = Et−1(rt) + εt, (1)

εt = h
1/2
t ηt;

where the conditional expectationEt−1(·) = E (·|It−1) is taken on the observable set of
information available up to timet − 1, denoted asIt−1. The set of random innovationsηt

are conditionally distributed according to certain density functionf (ηt|It−1) that satisfies
Et−1 (ηt) = 0 andEt−1

(
η2

t

)
= 1, withE (ηs

t ) <∞ for somes > 2.

The expected return in the model is given byEt−1(rt). We shall use a simple AR(1)
model,Et−1(rt) = c + ρrt−1, to filter out any predictable component in the conditional
mean of the series. The conditional variance of the process is given byht = Et−1(ε

2
t ),

which is the main object of interest in many papers that specifically focus on volatility
modelling. In this regard, one of the most widely used models is the GARCH(1,1) process
of Bollerslev (1986), which assumes a linear functional form,

ht = ω + αε2t−1 + βht−1 (2)

with the parameter restrictionsω > 0, α, β ≥ 0 ensuring almost sure positiveness in the
conditional variance process. The additional restrictionα+β < 1 is sufficient and necessary
for E

(
ε2t

)
< ∞, whereas the existence of higher-order moments imply further restrictions

on the driving parameters(α, β) as well as the existence of suitable moments ofηt (e.g.,
the unconditional fourth-order moment is well defined whenκηα

2 + β2 + 2αβ < 1, with
κη denoting the kurtosis ofηt).
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The enormous success of the GARCH(1,1) model strives in its appealing interpretation,
largedegree of statistical parsimony, and computational tractability. The main GARCH
equation describes the conditional variance forecastht as a weighted average of a constant
term (long-run variance),ω, the previous variance forecast,ht−1, and a proxy for the con-
ditional variance given the information which was not available when the previous forecast
was made (related to new information arrivals),ε2t−1. As a result, the model is able to
capture the main stylized feature in the conditional variance (namely, clustering and persis-
tence) by resorting to a small number of parameters in a fairly simple representation, from
which one-step and multi-step forecasts can easily be obtained.1 Further generalizations
that conform the broad GARCH family arise by readily extending this basic structure (for
instance, towards including leverage and other non-linear effects), and/or by considering
different assumptions on the conditional distributionf (ηt|It−1) . We shall discuss in more
detail the basic model and several of its extensions intended to capture excess of kurtosis
and time dependence in higher-order moments in the following subsections.

2.1. GARCH Modelling

2.1.1. Gaussian GARCH

The simplest approach in GARCH-type modelling is the Gaussian GARCH(1,1) model
of Bollerslev (1986). In addition, to the basic data generating process(1)-(2) , it is assumed
that the conditional shocks{ηt} are independent and identically normally distributed with
mean0 and variance1, i.e., it is imposed the particularly strong restriction

ηt ∼ iidN (0, 1) , (3)

or f (ηt|It−1) = f (ηt) = (2π)−1/2 exp
(
−η2

t /2
)
. The model is fully specified with this

assumption, and the relevant parametersξ0 := (c, ρ, ω, α, β)′ can then be estimated from
the sample by Maximum Likelihood [ML henceforth]. Under conventional assumptions on
the pre-sample observations which do not play any relevant role when the sample is large
enough, the log-likelihood function of thet-th observation, after dropping a constant term,
can be written as:

lt (ξ0) = −1

2
log ht −

ε2t
2ht

; t = 1, ..., T, (4)

Since the information matrix related to the two sets of parameters involved (conditional
mean and conditional variance) is block-diagonal, the respective parameter vectors, say
ξ0m := (c, ρ)′ andξ0v := (ω, α, β)′ , can be estimated separately. We shall proceed in this
way, computing first the demeaned seriesε̂t = rt − ĉT − ρ̂T rt−1, and then estimating the
remaining parameters given{ε̂t}.2

1The empiricalanalysis in Hansen and Lunde (2005) makes an out-of-sample comparison of over 300
different volatility models using daily exchange rate data. They find that none of these models is able to
provide a significantly better forecast than the GARCH(1,1) model.

2The orthogonality conditionE (∂lt (ξ0) /∂ξ0m
ξ0v

) = 0 holds for all the models considered in this paper.
It is usual to estimate the parameters in the AR(1) model by Least Squares, whereas the parameters related to
the conditional variance (and higher-order moments) must be estimated by ML.
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Conditional normality is a fairly restrictive assumption which is widely accepted not
to hold in the majority of applications involving real financial data. This fact is observed
even when the data are sampled on a relatively low frequency basis which implies a high
degree of aggregation. Fortunately, it is also widely accepted that the Normal assumption
does not play a critical role when the main purpose is model fitting and/or volatility fore-
casting and, in fact, there are both computational and statistical reasons that have supported
the wide use of the Gaussian GARCH in applied settings. First, the Gaussian log-likelihood
function,L (ξ0) =

∑T
t=1 lt (ξ0) , is very tractable and typically does not pose any computa-

tional problems in order to be optimized numerically – hence, the GARCH model is directly
implemented in most statistical packages, and can be estimated even with a spreadsheet.
Second, and more importantly, the resultant estimation, namelyξ̂T = arg maxξ0

L (ξ0) ,

is known to be
√
T−consistent andasymptotically normally distributed under certain reg-

ularity conditions even ifηt are not really Gaussian distributed (in this caseξ̂T is referred
to as the quasi maximum likelihood estimator [QML]); see Weiss (1986), Bollerslev and
Wooldridge (1992), Lee and Hansen (1994), and Newey and Steigerwald (1997). These
properties ensure tractability and accuracy for many applications in which the main aim
is to obtain consistent estimates ofξ0, and/or forecasts of the conditional variance pro-
cess, which are simply determined asĥT+s = ω̂T + α̂T ε̂

2
T + β̂T ĥT−1 for s = 1, and

ĥT+s = ω̂T +
(
α̂T + β̂T

)
ĥT+s−1 for s > 1.

2.1.2. Student-t GARCH

The Normal assumption may be convenient, but it turns out to be too restrictive for
applications on risk management and asset pricing, because these require the conditional
density ofηt, and not just volatility estimations.3 The failure of the Normal assumption is
mainly due to the large degree of kurtosis that is typically observable in real data, which
in turn is related to the magnitude and the frequency of extreme values that characterize
almost any financial time series. Although the unconditional distribution implied by the
Gaussian GARCH(1,1) model is leptokurtic (Bollerslev, 1986), often this model cannot
generate large enough values to match the range which is observed in practice owing to
limitations in its statistical properties; see Carnero, Peña and Ruiz (2004) for a discussion
on this topic. Furthermore, the empirical distribution of the estimatesη̂t, given the ML
estimateŝξT , also suggest an excess of conditional kurtosis over the theoretical level which
is implied by the Normal distribution.4 Overall, the empirical evidence largely supports the
existence of strong leptokurtosis in both the unconditional and conditional distributions of
returns, thereby suggesting model misspecification in the Gaussian GARCH approach.

This observation motivated further extensions aiming to capture extreme movements
through heavy-tailed distributions. A very simple, yet useful extension, was early suggested
by Bollerslev (1987), who proposed a transformed Studentt-distribution withv degrees of

3A leadingexample is the Value at Risk methodology. The percentiles ofη
t
, together with the forecasts of

the future conditional variance, jointly determine the maximum expected loss of an asset at a certain significance
level.

4For instance, the standardized residuals of the Gaussian GARCH model studied in Section 3 below have a
kurtosis of nearly 6 in the in-sample period considered for the S&P index. The Jarque-Bera test for normality
(JB=444.56) rejects the hypothesis of normality. Similar results are obtained for the remaining time-series.
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freedom to accommodate the excess of kurtosis,i.e.,

ηt ∼ iidtv (0, 1) , (5)

where the degrees of freedom parameter,v, is directly characterized by the shape of the
underlying distribution, and can be estimated by ML from the available data (subject to the
restrictionv > 2 so that the variance process is well defined). Apart from a constant term,
the relevant log-likelihood function is given by,

lt (ξ1) = log

(
Γ ((ν + 1)/2)]

Γ(ν/2)

)
− 1

2
log ((v − 2)ht) −

v + 1

2
log

[
1 +

ε2t
(v − 2)ht

]
, (6)

with ξ1 =
(
v, ξ′0

)′
, andΓ (·) denoting the Gamma function. When1/v̂T → 0, the con-

ditional distribution approaches a Normal distribution and the Gaussian restriction may be
acceptable. However, for small values such that1/v̂T > 0, the empirical distribution has
fatter tails than the corresponding Normal distribution. For many empirical applications
related to risk-management, such as Value at Risk, the Student-t GARCH model tends
to provide a superior performance over the Gaussian GARCH model; see, for instance,
Alexander (1998).

2.2. Further Approaches: Modelling Higher-Order Conditional Moments

2.2.1. The Student-tGARCHK Model

The Student-t GARCH model provides further flexibility to capture constant uncondi-
tional leptokurtosis. Obviously, there is no prior reason to believe that higher-order con-
ditional moments should remain unchanged, other than for model simplicity and computa-
tional tractability. Consequently, Brooks et al., (2005) proposed a further extension of this
model, the so-called Student-t GARCHK, by allowing the possibility of heterogeneity in
the conditional distributionf (ηt|It−1) due to time-varying kurtosis.

Considering the basic GARCH model, the key assumption now is that{ηt} are con-
ditionally distributed according to a Student-t distribution with a time-varying number of
degrees of freedom, sayvt, which evolves independently of the dynamics followed by the
conditional variance. In particular, the characteristic restriction is given by

f (ηt|It−1) ∼ tvt
(0, 1) ; νt =

2 (2kt − 3)

kt − 3
, (7)

wherekt is the conditional kurtosis of the process at timet. In the same spirit of the
structural GARCH modelling, an autoregressive moving average process is used to capture
the dynamics of the conditional kurtosis:

kt = κ+ δ

(
ε4t−1

h2
t−1

)
+ θkt−1. (8)
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As in equation(2), theparameter restrictionsκ > 0, δ, θ ≥ 0, are sufficient for ensur-
ing positiveness in the resultant process. Note thatkt arises as a weighted combination of a
long-run constant value, the previous kurtosis forecast, and a term with updated information
of the conditional kurtosis as proxied by

(
ε2t−1/ht−1

)2
. Under the restrictionδ = θ = 0,

the model reduces to the constant kurtosis model studied in the previous subsection, which
suggests an easy way to statistically test for the suitability of the time-varying specifica-
tion. It is important to remark that the conditional variance process,ht, and the conditional
kurtosis process,kt, are not contemporaneously functionally related, so they may be pa-
rameterized individually as desired by using different specifications than those discussed
above, for instance, introducing nonlinearities or dependence upon other variables. The
log-likelihood of the model, apart from a constant term, is given by,

lt (ξ2) = log

(
Γ[(νt + 1)/2]

Γ(νt/2)

)
− 1

2
log ((νt − 2)ht) −

νt + 1

2
log

[
1 +

ε2t
ht(νt − 2)

]
,

(9)
with ξ2 =

(
κ, δ, θ, ξ′0

)′
, andvt > 4 to ensure the existence of the first fourth-order mo-

ments. The similitudes between(9) are (6) are obvious, since the time-varying kurtosis
generalizes the constant kurtosis model by simply allowing time variability in the degrees
of freedom parameter.

The empirical in-sample evidence discussed in Brooks et al., (2005, Section 3) for sev-
eral US and UK equities and bonds supports the hypothesis of heterogeneity in the condi-
tional kurtosis, largely outperforming the specification with constant kurtosis.

2.2.2. The Gram-Charlier GARCHK Model

Let us start this section by recalling the dynamics of the conditional variance-kurtosis
models which have been discussed thus far:

rt = Et−1(rt) + εt; εt = h
1/2
t ηt,

ht = ω + αε2t−1 + βht−1, (10)

kt = κ+ δ

(
ε4t−1

h2
t−1

)
+ θkt−1,

given the set of unknown parameterξ2 =
(
κ, δ, θ, ξ′0

)′
. Instead of imposing a particular

assumption on the conditional distribution ofηt as we did in the previous sections (Normal,
Student-t, or Student-twith time-varying degrees of freedom), we may use a Gram-Charlier
type of expansion to fit semi-parametrically the unknown density functionf (ηt|It−1). This
is the central point discussed in the model proposed in León et al. (2005), which we sum-
marize below.

Under certain regularity conditions, any probability density function (pdf henceforth)
can be expanded in an infinite series of derivatives of the standard Normal density,φ(ηt),
as follows,

f (ηt|It−1) = φ(ηt)
∞∑

s=0

dstHs(ηt), (11)
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whereHs(ηt) is thesth orderHermite polynomial defined in terms of thesth order deriva-
tive of the Gaussian pdf:

dsφ(ηt)

dηs
t

= (−1)sφ(ηt)Hs(ηt). (12)

For applied purposes, the infinite expansion is not operative and has to be truncated. Thus,
considering the finite expansion (approximation) off (ηt|It−1) in (11) with a truncation
factor up to the fourth-order moment, we obtain:

f (ηt|It−1) ≃ φ(ηt)

[
1 +

st

3!
(η3

t − 3ηt) +
kt − 3

4!
(η4

t − 6η2
t + 3)

]
= φ(ηt)ψ (ηt) , (13)

where the polynomialψ (ηt) is defined implicitly, and the termsst andkt correspond to
the conditional skewness and kurtosis, respectively. Note that the resulting approximation,
φ(ηt)ψ (ηt) , is characterized by the underlying dynamics of the conditional moments up
to the fourth-order moment and the set of unknown parametersξ2. We do not overload
unnecessarily the notation by remarking the latter feature as this is completely clear at this
point.

Since the approximation based on a finite polynomial expansion off (ηt|It−1) implies
certain amount of truncation error, the right-hand side of(13) cannot be seen as a proper
density function. The main reason is thatφ(ηt)ψ (ηt) is not ensured to be almost surely
positive uniformly on the parameter space ofξ2. This unappealing feature does not only
suppose a major shortcoming from a theoretical viewpoint, but also may cause the failure
of the ML estimation in empirical settings. León et al. (2005) propose a solution building
on the same methodology as Gallant and Nychka (1987), Gallant and Tauchen (1989) and
Gallant Nychka and Fenton (1996). In essence, they achieved a well-defined pdf by first
using a simple positive transformation ofψ (ηt) that ensures almost-surely positiveness
(namely, squaringψ (ηt) , although other transformation in similar spirit are possible as
well), and then re-normalizing the resulting function by a suitable scaling factor such that
the resulting function intregates up to one. More specifically, given the normalizing factor,

∆t =

∫ ∞

−∞

φ(ηt)ψ
2 (ηt) dηt = 1 +

s2t
3!

+
(kt − 3)2

4!
(14)

the transformedGram-Charlier probability density function, denotedf∗ (ηt|It−1) , can
readily be written as

f∗ (ηt|It−1) =

(
1

∆t

)
φ(ηt)ψ

2 (ηt) . (15)

Note thatthe Hermite polynomial that characterizeψ (ηt) convey information about the
empirical degree of conditional moments, and so doesf∗ (ηt|It−1) , from which ξ2 can
be identified from the observable data. However, the termsst andkt no longer admit the
interpretation of conditional moments, and further adjustments to forecast the conditional
moments givenf∗ (ηt|It−1) are necessary; see Section 3.2.2 for further details. Since we
are restricting ourselves to symmetric conditional distributions, we setst = 0 in (13) for
all t, and denote as̄ψ (ηt) the restricted version of the model. Hence, the normalizing
factor reduces accordingly tō∆t = 1 + (kt − 3)2/4!, and the corresponding log-likelihood
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function, apart from a constant term, is given by

lt (ξ2) = −1

2
lnht −

ε2t
2ht

− ln ∆̄t + ln
[
ψ̄

2
(ηt)

]
. (16)

It is worth remarking at this point the similitudes between this function and the Gaus-
sian log-likelihood function(4) used in the basic GARCH model: The Gram-Charlier
log-likelihood function simply adds two adjustment terms to the latter in order to cap-
ture the non-Gaussian features of the data, in our case, conditional kurtosis dynamics. In
fact, the Gaussian likelihood(4) is nested as a particular case by setting constant kurtosis
(δ = θ = 0), equal to that of the Normal distribution (i.e., kt = κ = 3). As in Brooks
et al. (2005), the empirical results in León et al. (2005) indicate a significant presence of
time-variability in the higher-order moments which support the suitability of conditional
kurtosis.

3. Empirical Analysis

3.1. The Data

The data used in this study are daily returns (scaled by a factor of 100) of the S&P500
index (SP), the GBP(£)/US Dollar($) exchange rate (FX), and the 10 years Treasury Notes
(TN). The series are sampled over the period June 9, 1993 to June 8, 2008 for a total of
T = 3, 912 observations obtained from Datastream. Table 1 displays some descriptive
information for the total sample. As expected, stock returns are much more volatile (as
measured by the unconditional volatility) than the other series. The unconditional distribu-
tion of any of these series shows clearly non-Gaussian features, such as a (mild) skewness
in the case of the SP and FX series, and a remarked excess of kurtosis over the Normal
distribution due to outliers in the three time series considered. The Jarque-Bera tests for
normality are easily rejected, particularly in the case of the stock index time-series.5 The
analysis of dependence through the Ljung-Box portmanteau test statists shows some form
of weak dependence in the level of the returns, and a strong, persistent correlation in higher-
order moments.

3.2. Modelling and Out-of-Sample Forecasting

We split the total sample into an in-sample period to estimate the models, and an out-
the-sample window to make a total ofN = 500 one-step predictions of the conditional
variance and kurtosis by means of a rolling-window procedure. To assess the ability of the
different GARCH models involved, we need a time-varying measure of the actual condi-
tional moments. In both cases, the main problem for addressing forecasting ability is that
the true conditional variance and kurtosis are not observable and have to be approached by
means of statistical proxies which often can only provide a crude measure.

5The Jarque-Beratest for normality uses the test statisticJB = T
[

s
2

3!
+ (k−3)2

4!

]
, wheres andk are the

sampleskewness and kurtosis, respectively. The test is asymptotically distributed asχ2 (2) , and is rejected for
non-zero values of the sampled skewness and/or excess of kurtosis.
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Table 1. Descriptive statistics for daily returns

Statistic SP FX TN

Sample 9/06/1993 - 8/06/2008
Observations 3913
Mean 0.0561 -0.0067 -0.0093
Median 0.1186 0.0000 0.0000
Maximum 16.107 3.4233 6.1278
Minimum -15.419 -4.2211 -5.1238
St. Dev. 1.8624 0.5112 1.1807
Skewness -0.1033 -0.0131 0.3568
Kurtosis 11.01 5.8469 5.4564
Jarque-Bera 10470 (0.00) 1324 (0.00) 1066.8 (0.00)
Ljung-Box Q(1)-rt 17.29 (0.00) 16.65 (0.00) 4.0521 (0.04)
Ljung-Box Q(20)-r2t 1047.1 (0.00) 229.4 (0.00) 1322.2 (0.00)
Ljung-Box Q(20)-r3t 93.50 (0.00) 399.7 (0.00) 73.28 (0.00)
Ljung-Box Q(20)-r4t 120.7 (0.00) 459.7 (0.00) 297.1 (0.00)
LR: (κ, δ, θ) = 0 146.9 (0.00) 154.4 (0.00) 153.2 (0.00)
LR: (δ, θ) = 0 77.70 (0.00) 9.43 (0.00) 14.1 (0.00)

The Jarque-Bera normality test is asymptotically distributed asaχ2(2) under the null of normality,
the Ljung-Box is asymptotically distributed as aχ2(ς), ς being the autocorrelation order, the Like-
lihood Ratio test (LR) is asymptotically distributed as aχ2(q) beingq the number of restrictions
under the null, (asymptotic p-values in parenthesis).The critical values ofχ2(1), χ2(2), χ2(3) and
χ2(20) are 3.84, 5.99, 7.81, 31.41, at 5% level, respectively.

In the context of volatility forecasting, the empirical proxies considered in most pa-
pers are based on measurable transformations of the absolute-valued unexpected returns
|εt|, most frequentlyε2t . Following this literature, we shall considerε2T+1 as a proxy for
variance in this paper.6 Although there exists an agreement (at least empirically) on how
conditional variance could be proxied, to the best of our knowledge there is no obvious
guidance on how to approach conditional kurtosis. Given that the estimation bias may be
more significant when considering higher-order moments, and that the choice of the proxy
necessarily conditions the results, we consider different proxies for the conditional kurto-
sis. In particular, we take the sample kurtosis in them days immediately following the last
in-sample observation, namely

k̄T+1,m =




1
m

∑m
j=1 (εT+j − ε̄m)4

[
1
m

∑m
j=1 (εT+j − ε̄m)2

]2



 ; ε̄m =
m∑

j=1

εT+j/m, (17)

6The availability of intraday data has motivated the use of a new strand of proxies for volatility which
provide a more accurate measure based on realized volatility.
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with m = {5, 50, 500} .7 The choiceof m here seeks a compromise between the tauto-
logical notion ofconditional and the statistical problems related to measurement errors in
the relevant statistic when using a few number of observations. Asm → 1, the proxy is
more erratic and extremely noisy, and can severely be influenced by a few large observa-
tions, whereas the largest window in our analysis (m= 500 observations) is related to the
out-of-sample unconditional kurtosis.

We consider the MSE as a loss function for any of the conditional variance and kurtosis
forecasts series,i.e., we compute the statisticN−1

∑N
i=1 (π̂T+1,i − π̄T+1,i)

2 for each model
and time-series, wherêπT+1,i is thei-th prediction (either conditional variance or kurtosis)
andπ̄T+1,i the proxy for the actual value. The forecasting performance is compared in sta-
tistical terms by means of the test proposed by Diebold and Mariano (1995). This test as-
sumes no differences between the loss functions of two alternative models under the null hy-
pothesis. The null is rejected for large values of the statisticDM = x̄/

√
2πfx (w = 0) /N,

wherex̄ denotes the sample mean of the differences in the forecasting errors of the two
alternative models,fx (w = 0) is the spectral density function of the forecasting error dif-
ferences evaluated at the zero frequency (long-run variance), andN is the total number of
forecasts. The statistic is asymptotically distributed as a standard Normal random variable
under the null.

3.2.1. In-sample Analysis

The slight (positive) autocorrelation pattern in the conditional mean of the returns is
filtered out by fitting an AR(1) process estimated by Least-Squares. Given the demeaned
series,̂εt, all the conditional variance-kurtosis models are then estimated by optimizing the
corresponding log-likelihood functions using the Newton-Raphson method, and initializing
the conditional variance and kurtosis dynamics with values equal to the corresponding un-
conditional moments. Convergence in the optimization process to the global extremes is
easily obtained in the case of the simplest Gaussian and Student-t GARCH models. Sim-
ilarly, the estimation of the Student-tand Gram-Charlier GARCHK models is not compu-
tationally troublesome providing that the starting values are chosen properly.8 The main
results from the estimation in the in-sample period are displayed in Table 2 below.

The estimates of the conditional variance for the three series show the usual degree of
high persistence and low sensitivity to shocks which is commonly observed in daily asset
returns. Persistence is related to the magnitude of the coefficientα̂T + β̂T , which tends
to be slightly smaller than unity, while sensitivity to new information arrivals is measured
throughα̂T , which takes small values empirically. Owing to the large degree of uncondi-
tional kurtosis in the data, the Student-tGARCH model determines a degrees of freedom
parameter around 6 for all the series. This result confirms that extreme observations in real
data are much more likely to occur in relation to the Normal distribution. Assuming that
the true distribution is a Student-t, higher-order moments larger than 6 would not be well-
defined. The models that allow for time-varying kurtosis reject the hypothesis of constant
kurtosis, since the restrictionδ = θ = 0 is easily rejected by a standard Likelihood Ratio

7Wealso used othe values form, noting no qualitative difference with the results reported in the main text.
8Also, in order to avoid convergence to local extremes, the optimization routine is monitored using a grid

of different starting values. Normal convergence is obtained in all the cases.
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Table 2. GARCH in-sample estimation results

GARCH-n GARCH-t GARCHK-t GARCHK-GC

Panel 1: SP
Mean equation µ 0.056(1.73)

φ 0.083 (5.26)
Variance equation ω 0.118 (3.05) 0.107 (2.76) 0.107 (2.96) 0.113 (3.49)

α 0.159 (5.36) 0.139 (4.94) 0.155 (5.66) 0.155 (6.01)
β 0.809 (22.7) 0.832 (23.3) 0.819 (24.2) 0.807 (25.9)

Kurtosis equation κ 0.801 (1.49) 1.887 (4.12)
δ 0.024 (1.07) 0.008 (0.64)
θ 0.842 (8.87) 0.448 (3.39)

DoF ν 6.202 (9.60) [5.977]
AIC 3.731 3.704 3.681 3.687

Panel 2: FX
Mean equation µ -0.007(-0.89)

φ -0.065 (-4.08)
Variance equation ω 0.007 (1.96) 0.003 (1.89) 0.004 (1.83) 0.003 (2.22)

α 0.036 (3.30) 0.031 (3.96) 0.032 (3.59) 0.038 (5.83)
β 0.937 (44.1) 0.967 (80.4) 0.955 (69.6) 0.944 (93.9)

Kurtosis equation κ 2.883 (1.63) 2.684 (2.66)
δ 0.049 (0.28) 0.008 (5.82)
θ 0.599 (2.61) 0.223 (0.77)*

DoF ν 5.319 (10.7) [5.344]
AIC 1.478 1.424 1.422 1.432

Panel 3: TN
Mean equation µ -0.0091 (-0.46)

φ 0.0322 (2.01)
Variance equation ω 0.012 (2.45) 0.007 (2.11) 0.007 (2.13) 0.009 (2.49)

α 0.039 (5.16) 0.038 (5.71) 0.041 (4.87) 0.037 (5.73)
β 0.951 (96.8) 0.958 (126) 0.954 (104) 0.953 (117)

Kurtosis equation κ 4.197 (2.11) 0.671 (3.73)
δ 0.665 (1.38) 0.001 (0.28)
θ 0.216 (0.72) 0.806 (15.8)

DoF ν 5.685 (10.3) [4.695]
AIC 3.009 2.969 2.956 2.963

Estimation results (robust QMLt-statistics inbrackets) for the Gaussian GARCH (GARCH-n),
the Student-t GARCH (GARCH-t), the Student-t GARCHK (GARCHK-t) and the Gram-Charlier
GARCHK models (GARCHK-GC). AIC denotes the Akaike Information Criterion statistic. The
row DoF shows the estimated degrees of freedom parameter in the Student-t distribution under
the GARCH-t model,̂νT , and the unconditional kurtosis implied by the estimated parameters,
κ/ (1 − δ − θ) , in case of the GARCHK-t model.
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test in the three time series considered. Overall, the empirical evidence we observeper-
fectly agrees with the results in Brooks et al. (2005) and León et al. (2005), showing that
extending GARCH models toward accounting for time-varying kurtosis leads to a better
in-sample fitting.

There are two further interesting features that arise when comparing the results observed
across the different types of estimation techniques involving time-varying kurtosis, and the
different classes of financial assets considered. First, whereas the estimates of the GARCH
equation remain virtually unaltered given the different models, the estimates of the driving
parameters of the conditional kurtosis, sayξ2k = (κ, δ, θ)′ , reveal very different dynamics
depending on whether a Student-t or a transformed Gram-Charlier densities is used. In
particular, the dynamics of the conditional kurtosis tend to be much more persistent under
the assumption of the Student-t distribution, whereas the parameter related to the arrivals
of new information,δ, tend to be not significant under the Gram-Charlier fitting. This
feature shows that the driving parameters of the kurtosis are particularly sensitive to the
model assumptions that must capture the actual tail-behavior of the underlying distribution.
Second, the estimated dynamics of the conditional kurtosis of the Treasure Notes time series
differ remarkably from those estimated for the SP and the FX series. This evidence is in
sharp contrast to the dynamics followed by the variance, which tend to show the same type
of pattern across fairly different classes of financial assets.

Both features seem to suggest that, whereas the dynamics of the conditional variance
can always be characterized by ‘stylized features’ (a small estimatedα coefficient, and
high persistence as measured by the estimated termα+β), the dynamics of the conditional
kurtosis may exhibit a much more idiosyncratic behavior and vary across the class of fi-
nancial asset and sample period considered. This empirical observation should not be very
surprising, since the dynamics of the conditional kurtosis are strongly related to the likeli-
hood and the magnitude of extreme observations (i.e., outliers), which in turn are known to
show a large degree of heterogeneity and irregular behavior. The main implication is that,
whereas GARCH models tend to yield similar estimation outcomes regardless the finan-
cial time-series and the market considered, conditional-kurtosis modelling may yield quite
different results depending on the asset considered, and the relevant assumption about the
tail-behaviour of the conditional distribution.

3.2.2. Out-of-sample Analysis

One-step forecasts of conditional variance from the Gaussian GARCH, Student-t
GARCH, and Student-t GARCHK models are easily obtained as

ĥT+1 = ÊT (hT+1) = ω̂T + α̂T ε̂
2
T + β̂T ĥT . (18)

For the Gram-Charlier GARCHK model, the forecastĥT+1 is obtained as

ĥT+1 =
(
ω̂T + α̂T ε̂

2
T + β̂T ĥT

) [
1 + 216d̂2

4

1 + 24d̂2
4

]
; d̂2

4 =
k̂T+1 − 3

4!
. (19)

For the Gaussian GARCH model, the kurtosis is constant and equals 3, whilst for the
Student-tGARCH model the kurtosis forecast is given byk̂T+1 = 3(ν̂T − 2)/(ν̂T − 4),
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beingν̂T the degrees of freedom parameter estimated in the in-sample period. The forecasts
of the conditional kurtosis of the Student-tGARCH models are simply given by

k̂T+1 = ÊT (kT+1) = τ̂T + δ̂T

(
ε̂2T

ĥT

)2

+ θ̂T k̂T (20)

while theGram-Charlier GARCHK determines a conditional forecast given by:

k̂T+1 =
(3 + 2952d̂2

4 + 12d̂2
4)(1 + 24d̂2

4)

(1 + 216d̂2
4)

2
(21)

The MSEsfor the GARCH models used to forecast conditional variance and kurtosis
are presented in Table 3, while Table 4 shows thep-values related to the Diebold-Mariano
test (a value smaller than 0.05 implies that the model with smallest MSE in the comparison
yields a significant improvement at the 95% confidence level). Some comments follow. We
note that the differences in the MSE loss functions for volatility forecasting are not gener-
ally significant across the different GARCH models considered in all the series analyzed.
This is not surprising, since Gaussian GARCH forecasts are known to be accurate in mean
from the property of consistency (discussed in Section 2), and because the dynamics of
the conditional kurtosis are modelled independently of the dynamics followed by the con-
ditional variance, we should expect no interaction between them. Therefore, considering
further dynamics in the higher-order moments, or allowing for excess of kurtosis in the
conditional distribution, would hardly improve empirically the on-average accuracy of the
variance forecasts made by a simple Gaussian GARCH model.

In relation to (un)conditional kurtosis, the main results of our analysis are the follow-
ing. First, the model that yields better out-of-sample forecast of the unconditional kurtosis
given the proxȳk(500)

T+1 , consistently across the three series considered, is the Gram-Charlier
GARCHK model. Owing to its semi-parametric nature, the Gram-Charlier type modelling
does not rely upon a specific assumption on the underlying distribution of the data, which
provides robustness against potential departures over the parametric models (which, on the
other hand, would be consistent and more efficient under correct specification). As we
have seen from the empirical results for the conditional variance, robustness turns out to
be a precious property when making predictions, and of course this property also applies
when considering higher-order moments. Second, and related to the previous consideration,
we observe that the Gram-Charlier GARCHK model largely overperforms the Student-t
GARCHK model in forecasting conditional kurtosis, as proxied for small values ofm in
k̄

(m)
T+1. Overall, these findings suggest that the assumption of a Student-tdistribution with

time-varying degrees of freedom may not be appropriate for applied purposes related to
conditional-kurtosis forecasting.

Finally, we can only observe mixed and somewhat inconclusive evidence regarding the
empirical importance of modelling time-varying kurtosis, since only in the case of the TN
time series there seems to be statistical improvements over the simplest Gaussian GARCH
model, and only when using the Gram-Charlier GARCHK specification. There are several
reasons that may explain, at least partially, the seeming failure of the conditional-kurtosis
GARCH models in the SP and FX time series. First, the presence of measurement errors in
the proxy considered̄k(m)

T+1 may end up playing a significant role in the MSE loss-function
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(particularly asm→ 1) given the particularities of the time-series involved, and leading to
distorted empirical conclusions. Second, although the conditional-kurtosis GARCH models
may provide a better fit in the in-sample period, this does not necessarily imply that these
models have to improve the out-of-sample forecast performance. There are two different
reasons supporting this statement, both of them being rooted in the high degree of hetero-
geneity and idiosyncratic behavior of the (conditional) kurtosis. On the one hand, Korkie,
Sivakumar and Turtle (2006) have argued that the persistence in the higher-order moments
of financial returns may be a statistical artifact related to variance spillovers, so there would
not be any gain from forecasting these dynamics. If this pervasive effect exists, it may be
more important for some variables than for others, as we have documented statistical gains
from modelling kurtosis in the case of the TN time series. On the other hand, even if the
conditional kurtosis does really change over time, its dynamics are necessarily linked to
the particularities of the data generating process that drives extreme observations and irreg-
ular outliers. This feature brings up further statistical concerns, because the time-varying
kurtosis process has to be characterized empirically by finite-sample ML estimates that are
strongly conditioned by the assumption on the underlying distribution (as we have seen
in the previous section) and which, furthermore, may suffer from important biases related
to the occurrence and magnitude of outliers in the in-sample period. A few irregular, large
enough outliers are perfectly able to strongly bias the ML estimates of the conditional kurto-
sis in the attempt to provide the best possible in-sample fit, given the underlying assumption
that determines the theoretical likelihood and magnitude of extreme observations, but at the
logical cost of poorly forecasting on-average the out-of-sample dynamics in which such
extreme observations do not occur.

Table 3. Out-of-sample volatility and kurtosis MSE forecasting performance

A: Gaussian GARCH C: Student-t GARCHK

k̄
(m)
T+1

hT+1 5 50 500
SP 37.88 5.627 0.221 2.177
FX 0.133 22.17 1.266 0.771
TN 0.719 5.321 0.717 5.847

k̄
(m)
T+1

hT+1 5 50 500
37.81 14.08 7.662 1.698
0.133 34.74 19.31 10.75
0.717 31.06 24.46 13.19

B: Student-t GARCH D: Gram-CharlierGARCHK

k̄
(m)
T+1

hT+1 5 50 500
SP 37.53 14.60 8.201 1.937
FX 0.133 34.64 19.07 10.56
TN 0.715 17.97 10.52 1.653

k̄
(m)
T+1

hT+1 5 50 500
37.97 6.305 0.149 0.643
0.133 21.90 1.229 0.011
0.717 6.184 0.552 3.017

This table shows the Mean Square Error (MSE) for the one-step ahead conditionalvariance and
kurtosis forecasts from the different GARCH models used in the analysis. The proxies considered
for the kurtosis,̄kT+1,m, are estimated from the sample kurtosis of the firstm = 5, 50 and500
days immediately following the last day in the in-sample window.



Table 4. Diebold and Mariano statistics

GARCH-t GARCHK-t GARCHK-GC

k̄
(m)
T+1

hT+1 5 50 500
k̄

(m)
T+1

hT+1 5 50 500
k̄

(m)
T+1

hT+1 5 50 500
SP

GARCH-n 0.05 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.22 0.00 0.00 0.00
GARCH-t 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
GARCHK-t 0.07 0.00 0.00 0.00

FX
GARCH-n 0.28 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.06 0.29 0.00 0.00
GARCH-t 0.34 0.13 0.09 0.08 0.49 0.00 0.00 0.00
GARCHK-t 0.44 0.00 0.00 0.00

TN
GARCH-n 0.03 0.00 0.00 0.00 0.09 0.00 0.00 0.07 0.01 0.00 0.00 0.00
GARCH-t 0.13 0.02 0.01 0.01 0.09 0.00 0.00 0.00
GARCHK-t 0.35 0.00 0.00 0.02

This table reports the results of the DM test for the difference of the MSE loss function from the GARCH models under analysis (see notation in Table 2).
The entries are DM testp-values for the predictive ability of the model in the row versus the model in the column.
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4. Concluding Remarks

Several papers have argued that the kurtosis of returns may exhibit clusters and time
dependency similar to the characteristic patterns which are observable in the proxies of
conditional variance. The modelling of the conditional third- and fourth-order moments
tend to improve the in-sample goodness of fit over the simplest GARCH models that assume
constant higher-order moments. The main aim of this paper is to provide better insight on
whether accounting for time-varying kurtosis is valuable for out-of-sample forecasting of
both conditional variance and conditional kurtosis, and which procedure (among several of
the parametric and semi-parametric alternatives that have been suggested in the literature)
is better suited for empirical purposes.

As in the previous literature, our empirical results on three different classes of financial
assets confirm that the semi-parametric Gram-Charlier and the Student-t GARCHK mod-
els that allow for time-varying kurtosis provide a better in-sample goodness-of-fit over the
constant-kurtosis GARCH models, with the parametric Student-t distribution slightly over-
performing the Gram-Charlier type distribution. For forecasting purposes, the best proce-
dure to forecast the unconditional kurtosis seems to be the Gram-Charlier GARCHK model,
as the semi-parametric nature of this approach provides robust properties against model
misspecification which may ruin the out-of-sample forecasting ability of the model. Sim-
ilarly, this methodology largely overperforms the Student-t distribution with time-varying
degrees of freedom parameter in forecasting conditional kurtosis, which overall suggests
that the semi-parametric approximation may be better indicated in practice. Unfortunately,
the Gram-Charlier GARCHK model does not always achieve a significant success in beat-
ing the forecasts made by the simplest Gaussian GARCH model, at least given the proxies
for conditional kurtosis considered in this paper. The lack of conclusive results for some of
the time series analyzed may be, at least partially, a statistical artifact due to the sizeable
measurement errors in the proxies used in the analysis. However, it is also possible that
the empirical success of forecasting higher-order moments strongly depends on the class
of asset and the sample period considered, given that the data generating process of the
conditional kurtosis does not seem to exhibit the same degree of parameter uniformity as,
for instance, the conditional variance does: whereas we always observe the same sort of
stylized features in the GARCH-type estimates of the conditional variance, the conditional
kurtosis exhibits a large degree of idiosyncratic behavior. Hence, the econometric modelling
allowing for time-varying kurtosis may not generally necessarily enhance the out-of-sample
forecasting performance of the models, even if in-sample results seem to suggest the oppo-
site. More research on the empirical role of the dynamics of the conditional kurtosis seems
deserved.
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Chapter 11

TRANSPORTING TURKISH EXAM TAKERS:
A NEW USE FOR AN OLD MODEL

Nurhan Davutyana and Mert C. Demirb

Marmara University-Goztepe Campus,
Istanbul, Turkey

Abstract

This paper argues that the transportation model of linear programming can be used to
administer the Public Personnel Language Exam of Turkey in many different locations instead
of just one, as is the current practice. It shows the resulting system to be much less costly.
Furthermore, once the decision about number of locations is made, the resulting system can be
managed either in a centralized or decentralized manner. A mixed mode of management is
outlined, some historical perspectives on the genesis of the transportation model are offered
and some ideas regarding the reasons for the current wasteful practices are presented. The
possibility of applying the same policy reform in other MENA (Middle East and North Africa)
countries is discussed in brief.

1. Introduction

Most optimization textbooks, without going into their history and evolution, present the
transportation model as a well-known technique and link it to early work by the 1975 Nobel
laureate Tjalling Koopmans prior to and during WWII. See for instance Denardo1. However,
its roots go much deeper. Thompson and Thore2 explain that mathematician Gaspard Mongé
first formulated the model in the 1790s. While working on the construction of military
fortifications for Napoleon, he had encountered a “cut and fill” problem, that of moving piles
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of dirt from locations where it was not needed to locations where it was needed. He stated that
problem – without solving it – in mathematical form as a kind of transportation problem.

For our purposes, it is important to stress the following point: Such a formulation requires
recognizing the “work/effort” of the soldiers, who would presumably do the moving, as
something valuable and worth optimizing. In our modern world – at least in the Western
Hemisphere – where almost everything is explicitly priced, this point may appear self-evident
but it is worth emphasizing. Moreover we should recall that unpaid labor of all sorts – known
as corvée – was quite common prior to 1789, in Ancient Regime, France. In fact, we may
conjecture that ideas regarding civil liberties ushered in at that time, the abolition of corvée
and Mongé’s formulation of the problem were interrelated. The life and career of Gaspard
Mongé, an ardent libertarian, support this view, Ball3. Schumpeter4 gives numerous examples
of these kinds of related phenomena whereby the emergence of their “necessary conditions”
spurs discoveries and innovations. In anticipation of making a point in our next section, we
hope Turkey’s accession talks with the European Union will play a triggering role, leading to
developments comparable to the 18th century abolition of corvée in France.

2. Setting

Twice a year, in May and November, the Student Selection and Placement Center
(SSPC), a governmental agency in Turkey, administers a language exam known as the Public
Personnel Language Exam or PPLE by its acronym. The exam takes place in Ankara, the
capital. Anyone in Turkey who wants to prove her/his proficiency officially, in a language
other than Turkish has to take this exam once every five years. The career paths and salaries
of the individuals involved are linked to their exam scores.

Figure 1. Current Situation: All Examinees Must Travel to the Capital.

                                                       
3 Ball, R. W. W. 1908. A Short Account of the History of Mathematics, 4th ed., www.maths.tcd.ie/pub/HistMath/

People/Monge, transcribed by D.R. Wilkins.
4 Schumpeter, J A 1951, 1986. History of Economic Analysis, Oxford University Press, (Schumpeter Elizabeth B

ed.)
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Not surprisingly, thousands of people converge to Ankara to take it (see Figure 1). After
a three-hour exam, they return to their hometowns, which in most cases are
hundreds/thousands of kilometers away. With only a change of dates, a similar exam is
administered again in the spring and fall, this time exclusively for university personnel. As
further discussed in our last section, a cautious guess of the yearly magnitude involved is one
hundred thousand individuals. The people involved are essentially white collar workers from
both the private and public sector: administrators, teachers, engineers, doctors and other
health personnel etc.

The purpose of this centralized and illiberal examination policy, like so many others, is to
accelerate modernization; in this particular case, by encouraging white collar workers to learn
European languages. However, the means chosen – involving quasi-compulsory travel– is
distinctly “unmodern” and discussed in numerous works on political history. For example,
Atabaki and Zurcher5:

‘ . . The rights of the individual and his relationship with the state were of marginal rather than
central significance in the eyes of Middle Eastern modernizers, and critical reason and
individual autonomy seemed to have little relevance. The main reason for such discrepancy
lay in the fact that the development of modern European societies was synchronized with and
benefited from the age of European colonialism and imperialism and wars against the Orient.
Modernization in the Middle East was a defensive reaction.’
(Italics added).

In short, what strikes us today as “unmodern” and, as we will demonstrate, “wasteful”,
was and is part of an “authoritarian modernization” drive. For example, there is a practice that
consists of requiring people about once every five years, to stay at home, on the last Sunday
of November for the purpose of being physically counted. This way of conducting the
population census -instead of using statistical sampling- is clearly wasteful. According to
Kish6, a number of countries in Africa follow a similar practice, on the grounds that it
enhances social/national cohesion.

In this particular instance, at least at its inception, the centralized exam fulfilled a twofold
purpose: reinforcement of the nation building effort by having people, many of them
provincial decision-makers, go to Ankara periodically and thereby strengthening the view that
everything of importance is done at the capital city and the prevention of fraud especially in
areas where sentiments of local patriotism is strong. We think that a country like Turkey,
which is beginning accession talks with the European Union, should have enough self-
confidence to put aside the first rationale and to recognize the counter productive potential of
the second. Lejour and de Mooij7

 
provide an overall assessment of Turkey’s accession to the

EU. Interestingly, they conclude, “if Turkey would succeed in reforming its domestic
institutions in response to the EU-membership, consumption per capita in Turkey could rise
by an additional 9%” (Italics added). The two examples of waste (the exam and the census
practice) we provide – there are others – support this view.

                                                       
5 Atabaki, T. and Zurcher, E. J. 2004). Men of Order: Authoritarian Modernization Under Ataturk and Reza Shah,

IB Tauris, London and New York. pp 1-12.
6 Kish, L. 2003. Selected Papers (Kalton G and Heeringa S, Eds.), John Wiley, New York.
7 Lejour, A. M. and De Mooij, R. A. 2005. “Turkish Delight: Does Turkey’s Accession to the EU Bring Economic

Benefits,” Kyklos, Vol. 58: pp. 87-120.
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Moreover as discussed in the next and last sections, the choice of exam locations can
easily exclude regions where incidence of malfeasance is deemed likely to occur. Thus, we
hope accession talks with the EU will provide the necessary impetus to rationalize every
aspect of public life, thereby eliminating sundry wasteful practices, including the one we are
discussing. In addition, given the similarities of the modernization experience in numerous
MENA countries, similar considerations may apply as well, even in the absence of a formal
EU integration process.

3. Costs Involved

We now turn to the more narrow “economic” aspects of our problem. Let CPS stand for
the “cost of the present situation” which can be represented as follows:

CPS = CT + CW + CA (3.1)

In (3.1), CT represents total travel and lodging expenses, CW, total opportunity cost of
wasted time, and CA, total cost of deaths and various injuries caused directly and indirectly
by PPLE induced travel. These include traffic accidents resulting from extra travel as well as
various untreated injuries due to the relevant health personnel being on the roads rather than
on duty. This last point can be important for rural areas suffering from an acute shortage of
health care personnel.

Admittedly, to estimate the second and third items requires some ingenuity. As matters
stand, CPS is the sum of private costs born by all PPLE goers plus untreated injury costs.
Abstracting from the latter and using the terminology of Section 4, note that CPS equals
“Number of examgoers times ci,6”, where ci,6 stands for the per person cost of going from
various provinces to Ankara. Thus, no collective entity bears that cost and that is one reason
for its existence. Hence, CPS is a good example of the distinction between private versus
social cost notions. For future reference let CPSactual stand for the particular current
magnitude of CPS.

4. Centralized Solution

It may be argued that the Bergson-Samuelson-Stiglitz approach that ‘assumes a single
social-welfare-maximizing principal’ (i.e.Hegel’s philosopher-king) who acts like ‘an
omnipotent, omniscient and benevolent dictator’ might apply in our case, Dixit8. Thus,
suppose the SSPC decides to play the role of Hegel’s philosopher-king. The obvious solution
would be to administer the exam in each of the 81 provinces of Turkey. This would drive
CPS down to zero. However, partly legitimate fears of fraud prevent this solution. This paper
proposes to administer the exam in suitably chosen provinces where the exam’s integrity can
be safeguarded. (In Turkey, each province carries the name of its capital city. Thus, we will
use the terms city and province interchangeably.)

                                                       
8 Dixit, A. 1996. The Making of Economic Policy, Munich Lectures in Economics, MIT Press, Cambridge, MA.

p68.
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In our last section, we use the LP dual values to outline a method of choosing such
locations. The rest of this section will argue that the problem at hand is a variant of the well-
known transportation problem of linear programming.

Figure 2. Illustrative Solution: More Than One Exam Location.

Let i index over the m provinces of Turkey (currently m=81), and j index over exam
locations, j = 1. . . n. Figure 2 illustrates this situation for seven arbitrarily chosen exam sites.
Let ai be the number of exam takers from province i, and cij denote the per person cost of
going from province i to exam location j (Consistent with Equation (3.1), each such cij is
composed of three parts: travel and lodging, wasted time, and accident cost. Difficulties of
measurement, especially for the last one, not withstanding, they clearly exist both at
individual and social levels). Note that when a province also serves as an exam site the
relevant cost is zero, i.e. cii = 0. Let xij represent the number of people from province i going
to exam location j.

The optimization problem faced by the SSPC can be formulated as in 4.1 – 4.3.

Min Zcent = 
 
∑(i, j) cij xij (4.1)

s.t. 
1

n

ij i
j

x a
=

≥∑ , i = 1…m (4.2)

xij  ≥ 0 (4.3)

Verbally, (4.2) states the following: the total number of exam takers sent from each
province to all exam sites is at least the number of exam takers from that province. The above
problem can be easily solved using standard procedures. For further reference, let z*cent
refers to the cost magnitude generated by the optimal program.

Now we state our assumption, which operationalizes the solution procedure.

Assumption 4.1. Let j* be an exam site and I(j*) be the subset of the provinces such that
c*ij = minj {cij}, then ∑i∈I(j*) ai ≤ bj* , where bj* is the number of slots at exam site j*.
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This assumption states that a center has enough examination slots for all examinees that
would find it closest to them. Since it is known that bi ≥ ai for all i, and there is considerable
freedom in choosing exam sites, we believe this assumption is quite reasonable.

Suppose the closest exam location to a certain province I is J. Also let x*I1… x*Ij… x*In
refer to that portion of the optimal solution pertaining to province I. If Assumption 4.1 holds
for all exam sites, then all magnitudes except x*IJ will be zero and x*IJ will be equal to aI.
The intuitive reason should be obvious: the least costly way of handling the exam takers from
province I is to send all of them to J. Since each exam site is capable of handling all
examinees in its vicinity, the choices of examinees can be thought of as independent
decisions. This is achieved via Dantzig-Wolfe decomposition theorem, Dantzig9. Total
decomposition is possible since the binding constraint (in this case the capacity limitation) is
vacuous. This is also seen by the dual problem given in Equations 5.1-5.3.

Max Wcent  = Σ i  ai yi (5.1)

s.t. yi ≤ cij , j = 1…n,i = 1…m (5.2)

 yi ≥ 0 (5.3)

Equation (5.2) states that the dual variables, yi , for a non-exam site i are set to the
minimum travel cost among all exam sites j. For exam sites (i=j) however, yi , reduces to 0
since cii =0.

5. Kaldorian Improvement

Since the Pareto improvement notion is too restrictive (if one single person loses, change
is excluded even when the whole rest of society benefits) Kaldor proposed an alternative
criterion, Baumol10. The criterion used is, if the overall gains of those who prefer the status
quo post exceed the overall losses of those who prefer the status quo ante, then go ahead and
implement the change.

In our case, the change in question is to rationalize the PPLE, which means to administer
the exam in many different locations instead of just one. Note that once the decision to switch
is taken, the new situation can be managed either in a centralized or decentralized fashion.
Thus, the terms centralized/decentralized are used in their economic design or mathematical
programming sense, and not in their political science sense. In addition, a decentralized mode
of management does not mean the “disappearance” of the center. Under such a mode, the
center merely cedes the right to choose among exam locations to the examinees. The center
still prepares the exam questions, keeps records and provides general supervision.

We note the multi-location exam can be administered using the Internet as the medium
through which the questions are delivered and the answers are collected and graded. This will
drastically reduce the number of individuals who physically handle the questions and

                                                       
9 Dantzig, G. B. 1963. Linear Programming and Extensions, Princeton University Press, New Jersey.
10 Baumol, W. 1977. Economic Theory and Operations Analysis, 4th ed., Prentice Hall, New Jersey, pp 527-9.
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answers. As a result, the likelihood of fraud will decrease considerably. This is the method
used in several EU countries to administer various proficiency exams. Geoffrion and
Krishnan11

 
provide an overview of the complementarities between operations research and the

Internet.

Proposition I. CPSactual > z*cent > 0 for n ≠ m
This states that so long as m (# of provinces) > n (# of exam sites), z*cent > 0, and

obviously when m = n = 81, z*cent = 0.
Proof. CPSactual is the cost with only one exam site, namely Ankara. Also z*cent

decreases with each additional exam site. Note that each such decreasing total cost has 3
components: CT +CW +CA. CT, namely the cost of travelling and lodging for examgoers, is
a benefit item for hoteliers and bus operators; hence, the gain to examgoers is cancelled by
the loss of hotel and bus operators. Note that this does not require any particular assumption,
apart from the natural one of the analyst’s neutrality between these two groups. On the other
hand, the other two are deadweight losses since nobody in society gains from their presence.
Thus, when each one of these latter cost items diminishes with each additional exam site, the
reductions represent a net social gain. This establishes the validity of our conjecture regarding
Kaldorian improvement.

As for the second part, if the exam takes place in all provinces, there will be neither
congestion and wasted time, nor any transportation cost; hence all three components of z*cent
will be 0.

6. Decentralized Solution

Let us now assume that the examinees in each province i act independently. We further

assume that x
k
ij denotes the action of the k

th
 individual from province i. It can be argued,

when given the option of choosing among n exam locations, the k
th

 individual will face the
following general linear programming problem (there are ai of these problems, one for each
examinee, in province i):

Min Zi
k = Σ(i,j)  cijxij

k (6.1)

s.t. 
1

n
k

ij
j

x
=
∑  = 1, i=1....m (6.2)

xij
k >= 0 (6.3)

Let x
k
*I1… x

k
*IJ…. x

k
*In refer to the optimal values for an arbitrary person k in region I.

Intuitively it should be clear that all values except x
k
*IJ will be zero and x

k
*IJ will be 1,

                                                       
11 Geoffrion, A. and Krishnan, R. 2001. “Prospects for Operations Research in the E-Business Era,” Interfaces, Vol.

31, No. 2: pp. 6-36.
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because the least costly way for an examgoer in province I to take the exam is in the nearest
exam location J.

Proposition II. *

1

ia
k

ij
k

x
=
∑  = x*ij = ai for all i and j.

Proof. Note that (6.2), when summed up over k gives (4.2). The groups in each region are
non-overlapping. Hence, the equivalence follows. Since this holds for any solution satisfying
(6.2) and (4.2), it also holds for the optimum one.

Each examinee (irrespective of province) will have to solve the linear problem (6.1)-
(6.3). Let

Z*decent = *

1 1

iam
k
i

i k
Z

= =
∑∑

be the optimum magnitude obtained when all individuals’ optimum costs are totalled for all
provinces.

Proposition III. Z*cent = Z*decent

Proof. Noting that the costs in (4.1) and (6.1) are the same and using Proposition 2, the
result follows.

Finally, a mixed mode of management is also possible. It can be achieved as follows: the
examinees have the right to select their exam site and actually do so. Thus each one of them
solves her/his linear problem. Let the resulting outcome be called the decentralized actual
solution. The exam goers are required to inform the center of their province of origin – and of
nothing else! Based on this knowledge, that is the ai’s and the costs (the cij’s) that it
estimates, the center solves the LP problem of (4.1)-(4.3). Let the result be called the
centralized notional solution. Propositions 2 and 3 show these two solutions would essentially
coincide. Occasionally, the center may use this procedure to verify the overall integrity of the
system.

7. Numerical Illustration

7.1. Parameters

This section calculates the savings –in the form of reduced costs– to be achieved by
implementing the ideas outlined in our paper. Throughout this exercise, we strive for realism.

Firstly, we do not include the costs of administering the exam itself. The reason is
straightforward: we are comparing scenarios where the number of exam locations is gradually
increased from one (only Ankara) to eighty-one, namely in every province. However, in each
case, the language examination takes place and thus the administrative costs are incurred.

Secondly, we assume the number of examtakers to be the same irrespective of the
number of exam locations. In reality, we can expect that number to increase somewhat as
candidates have more places to choose from. The situation bears some similarity to the
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“discouraged worker effect” phenomenon. This involves unemployed people not looking for
work when they reckon their chances are slim. To that extent measured unemployment falls
short of true unemployment. By a similar logic if the cost of traveling to Ankara is prohibitive
for some would be examtakers, then the actual number of examtakers that we estimate and
use in our scenarios has a downward bias. As a result, the benefit figures we come up with
need to be revised upward.

Third, we take one hundred thousand individuals to be a realistic estimate for the number
of examinees. We arrived at this figure via the following logic. According to SSPC’s website,
during May 2005, 40,000 individuals took the PPLE exam. The corresponding figures for the
equivalent language examinations of university and medical personnel are 23,000 and 5,800
respectively. Since these are for the first half of that year, this sum (roughly) of 69,000 should
be multiplied by two. Choosing to err on the side of caution, we ended up with 100,000 as our
yearly estimate.

We allocated this total among our 81 provinces in accordance with the population share
of the province in the 2000 census. For example, Adana whose population was 1.85 millions
according to that census –the total being 67.8 million– has a share of 0.0273. Thus, under the
status quo, 2730 people from Adana must travel to Ankara for exam purposes on a yearly
basis.

Fourth, we take the yearly income of an examinee to grow at 3% per year starting with
$8,600. The justifications for these figures are as follows: a) according to SSI (State
Statistical Institute) the Turkish per capita, GDP is around $6,800. We posit the typical
examinee to be an above average earner and come up with a round starting salary of $8,600.
b) We believe a real 3% growth rate to be plausible, especially in view of our time horizon of
30 years. That is we assume each examinee to have a working life of 30 years. We take 5% as
the time discount factor. These parameters yield roughly $188,000 as the present value of the
typical person’s future income stream. For lack of any better alternative, we use that figure as
the “measure of a life’s worth” or “cost of one’s death”. Consistent with these income figures
we use an hourly wage of $ 4.5. Multiplying this number with the relevant travel duration
yields an estimate for the cost of wasted time.

Finally, we use $1,000 as the cost of one non-fatal injury. Since we could not find an
acceptable shortcut to estimate the number of lives saved due to “less/no travel” by medical
personnel, we had to exclude them from our analysis.

We take the likelihood of fatality to be:

3941 persons / 175,236,000,000 person-kms. = 2.252 E–08.

According to information provided on the Highways Directorate website, the numerator
represents the number of fatalities during 2000, and the denominator measures total traffic
flow during that same year. A similar analysis, using information from the same source,
yields 6.622 E –07 as the likelihood of a non-fatal injury. Multiplying the first number with
the distances involved and our “value of life” measure, we estimate the per person cost of
fatalities. For non-fatal injuries, we repeat the procedure using the second number.
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7.2. Choosing Exam Sites

As demonstrated by Proposition 1, it is possible to drive the costs, caused by the current
“only Ankara” policy, down to zero. This requires holding the exam in every one of the 81
Turkish provinces. Here we outline a dual price based method of choosing the most beneficial
exam sites sequentially: starting with the current situation (Ankara is the sole exam location)
we solve the dual (5.1-5.3). The dual price for each city is the cost (consisting of cost of
wasted time, cost of fatalities and cost of non-fatal injuries) which is directly proportional to
its distance to the nearest exam site. (These shadow prices are listed as Col. 2 of Appendix 1).
Hence, among the non-exam cities, the one with the highest product of “number of exam
takers and shadow price” is the next one to be included in the set of exam sites. (See Col. 3 of
Appendix 1). Recalling that the product in question represents the best lower bound we have
for the amount of savings to be achieved by including the city among exam locations, it
follows this is a reasonable approximation for identifying the next best candidate. Iterating in
this manner, we add another city to the set of exam locations at each stage. The resulting total
costs are depicted in Figure 3 as a function of the number of exam locations. As shown in that
figure, starting from roughly $3.5 million, yearly waste decreases drastically with the first 15
cities. This cuts annual waste by around $3 million or about 86% of the total.

Figure 3. Total Waste as a Function of Exam Locations Number of cities.

With the exception of Diyarbakir, Sanliurfa and Van, these 15 cities providing the bulk of
the gains happen to be situated in the most developed parts of the country, where
individualism prevails and thus chances of fraud are negligible. For illustrative purposes, we
give the first 7 cities and the resulting costs in Table 1. Appendix 1 contains the marginal
(Col. 4) and total savings (Col. 5) involved for each of the 81 provinces as well as an index
linking its license plate number –used as numerical identifier in Table 1– to its name.

A few remarks regarding the actual as distinct from the computational process of
choosing exam sites are in order. As discussed previously, in the tradition bound parts of the
country where local allegiances and tribal loyalties abound, fraud is possible.

For instance,during a presentation of this paper at Middle East Technical University, a
faculty member who is a scion of a prominent Diyarbakır family openly stated that in his
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hometown “the exam’s integrity could not be guaranteed”. We hasten to add in 2000 –the
year of the presentation– the possibilities of the Internet were not fully understood. Thus our
colleague envisioned a theft prone process whereby printed material would be transported by
minor functionaries back and forth between Ankara and Diyarbakır.

Table 1. Travel Related Waste as a Function of the Number of Exam Locations

Number of Exam Cities
(license plate numbers
are used as identifier)

Cost of
Wasted Time

(Mill $)

Cost of traffic
accident related

non-fatal injuries ($)

Cost of traffic
accident related

fatalities ($)
Total (Mill $)

1 (6) 3.312 34,123 2.089e5 3.556
2 (6,34) 2.702 27,834 1.704e5 2.900
3 (6,34,35) 2.330 23,998 1.469e5 2.501
4 (6,34,35,21) 1.529 15,746 96,387 1.641
5 (6,34,35,21,63) 1.316 13,553 82,961 1.412
6 (6,34,35,21,63,7) 1.217 12,536 76,741 1.306
7 (6,34,35,21,63,7,33) 1.081 11,130 68,131 1.160

Therefore, the choice of exam sites has to be the result of balancing the savings to be
achieved against that possibility. Thus, it has to be a political decision, but hopefully not a
difficult one since the most beneficial potential exam sites are also the ones with the least
likelihood of malfeasance. Moreover, if the Internet is chosen as the medium through which
the exam is administered, the possibility of fraud and theft will be minimized for the reasons
given previously. Thus, we can easily visualize a gradual process of increasing the number of
exam sites by stages. One can start with provinces where the current Internet infrastructure is
capable of handling the extra traffic. In the developed parts of the country where the bulk of
the savings occur, the existing infrastructure is robust and reliable. Over time, the system can
be extended to the whole country.

As for actual implementation, we believe the ideas outlined in the special issue of
Interfaces (March April 2001), devoted to web applications of operational research, are
relevant. In particular, Keskinocak and Sridhar12

 
discuss the quantitative aspects of using the

Internet for logistics management; whereas Cohen et al13 give numerous real life examples of
web based information processing and decision making support systems.

8. Conclusions

We have demonstrated that by administering the language exam in many locations
instead of just one, the current policy, nonnegligible savings will be achieved. We have also
indicated how the proposed multicenter policy can actually be implemented. Finally, we
presented some numerical estimates for the gains involved.

Finally yet importantly, we feel the necessity to stress the following point. Some policy
makers may consider the yearly savings involved (around $ 3.5 million) as too small to
warrant interest. We beg to disagree. The promotion and nurturing of a culture of
                                                       
12 Keskinocak, P. and Sridhar, T. 2001. “Quantitative Analysis for Internet Enabled Supply Chains,” Interfaces,

Vol. 31, No. 2: pp. 70-89.
13 Cohen, M. D., Kelly, and Medaglia, A 2001. “Decision Support with Web-Enabled Software,” Interfaces, Vol.

31, No. 2: pp.109-129.
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optimization is paramount for accelerating modernization and growth. Waste avoidance by
governmental authorities, whatever the monetary magnitude involved, is an integral part of
that process. In addition, the overall benefits of such a cultural transformation exceed the
purely pecuniary ones; in this particular instance even a belated recognition of the examinees’
value of time will impact their morale positively.

Appendix 1

Rank Shadow
Price($)

Shadow
Price*ai ($)

Marginal
Saving ($)

Total Saving
($)

License Plate
Number Province Name

1 - 6 Ankara
2 31.33 462,880 655,200 655,200 34 Istanbul
3 38.99 193,800 399,800 1,055,000 35 Izmir
4 63.55 127,740 859,900 1,914,900 21 Diyarbakir
5 56.58 120,460 228,500 2,143,400 63 Sanliurfa
6 32.36 82,069 105,900 2,249,300 7 Antalya
7 28.57 69,588 146,600 2,395,900 33 Icel
8 43.06 61,916 186,540 2,582,440 61 Trabzon
9 17.80 57,555 68,190 2,650,630 42 Konya
10 16.77 52,549 80,610 2,731,240 16 Bursa
11 23.88 42,568 79,300 2,810,540 55 Samsun
12 21.80 34,102 54,360 2,864,900 38 Kayseri
13 26.15 33,840 63,340 2,928,240 65 Van
14 17.87 33,044 38,740 2,966,980 31 Hatay
15 20.70 28,608 42,320 3,009,300 25 Erzurum
16 17.39 21,892 24,910 3,034,210 44 Malatya
17 15.94 19,988 27,660 3,061,870 20 Denizli
18 15.94 19,462 26,750 3,088,620 60 Tokat
19 15.11 18,103 24,760 3,113,380 3 Afyon
20 9.52 18,054 28,020 3,141,400 27 Gaziantep
21 18.49 16,791 23,470 3,164,870 67 Zonguldak
22 10.35 16,426 19,310 3,184,180 10 Baliskesir
23 11.39 14,903 19,870 3,204,050 52 Ordu
24 7.66 13,626 22,730 3,226,780 41 Kocaeli
25 13.39 13,480 18,240 3,245,020 66 Yozgat
26 4.76 12,988 14,630 3,259,650 1 Adana
27 8.63 12,093 15,950 3,275,600 9 Aydin
28 10.21 10,631 12,180 3,287,780 26 Eskisehir
29 15.66 10,479 15,210 3,302,990 49 Mus
30 19.18 9,994 12,300 3,315,290 73 Sirnak
31 12.77 9,957 11,320 3,326,610 4 Agri
32 14.42 9,893 10,060 3,336,670 17 Canakkale
33 16.70 9,251 9,800 3,346,470 37 Kastamonu
34 15.39 9,140 14,010 3,360,480 22 Edirne
35 9.04 8,316 8,320 3,368,800 59 Tekirdag
36 7.38 8,225 8,220 3,377,020 58 Sivas
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Appendix 1. Continued

Rank Shadow
Price($)

Shadow
Price*ai ($)

Marginal
Saving ($)

Total Saving
($)

License Plate
Number Province Name

37 5.52 8,159 8,160 3,385,180 46 Kahramanmaras
38 10.14 7,689 9,570 3,394,750 32 Isparta
39 6.90 7,280 7,280 3,402,030 48 Mugla
40 7.52 6,920 6,920 3,408,950 2 Adiyaman
41 6.62 6,889 6,890 3,415,840 47 Mardin
42 14.21 6,809 9,660 3,425,500 36 Kars
43 7.25 6,383 7,200 3,432,700 19 Corum
44 13.25 6,187 7,180 3,439,880 24 Erzincan
45 9.18 6,185 6,370 3,446,250 72 Batman
46 10.07 5,883 6,970 3,453,220 68 Aksaray
47 6.97 5,854 5,852 3,459,072 23 Elazig
48 5.38 5,215 5,215 3,464,287 43 Kutahya
49 14.01 4,889 4,889 3,469,176 30 Hakkari
50 2.48 4,618 4,618 3,473,794 45 Manisa
51 8.35 4,283 4,283 3,478,077 51 Nigde
52 10.42 4,157 7,000 3,485,077 14 Bolu
53 6.00 4,064 4,064 3,489,141 80 Osmaniye
54 14.28 4,042 4,042 3,493,183 8 Artvin
55 11.59 3,860 3,860 3,497,043 57 Sinop
56 7.87 3,736 3,736 3,500,779 64 Usak
57 6.35 3,422 3,422 3,504,201 5 Amasya
58 5.87 3,361 3,361 3,507,562 13 Bitlis
59 9.25 3,070 3,163 3,510,725 78 Karabuk
60 7.66 3,056 3,056 3,513,781 18 Cankiri
61 5.24 2,968 2,969 3,516,750 71 Kirikkale
62 7.94 2,968 2,967 3,519,717 12 Bingol
63 2.55 2,847 2,847 3,522,564 54 Sakarya
64 5.24 2,832 2,832 3,525,396 53 Rize
65 7.87 2,824 2,824 3,528,220 70 Karaman
66 7.52 2,805 2,805 3,531,025 40 Kirsehir
67 6.14 2,389 2,389 3,533,414 56 Siirt
68 9.59 2,388 2,388 3,535,802 76 Igdir
69 5.18 2,365 2,365 3,538,167 50 Nevsehir
70 3.04 2,347 2,347 3,540,514 28 Giresun
71 4.28 2,071 2,071 3,542,585 39 Kirklareli
72 6.90 1,904 2,381 3,544,966 29 Gumushane
73 5.52 1,584 1,585 3,546,551 11 Bilecik
74 5.80 1,577 1,577 3,548,127 74 Bartin
75 3.11 1,438 1,438 3,549,565 81 Duzce
76 3.45 1,308 1,308 3,550,872 15 Burdur
77 8.97 1,238 1,238 3,552,110 62 Tunceli
78 6.14 1,210 1,210 3,553,320 75 Ardahan
79 4.49 1,117 1,117 3,554,437 77 Yalova
80 5.24 755 755 3,555,192 69 Bayburt
81 2.42 408 408 3,555,600 79 Kilis
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