

SYSTEMS ENGINEERING

PRINCIPLES AND

PRACTICE

SECOND EDITION

Alexander Kossiakoff
William N. Sweet

Samuel J. Seymour
Steven M. Biemer

A JOHN WILEY & SONS, INC. PUBLICATION

SYSTEMS

ENGINEERING

PRINCIPLES AND

PRACTICE

WILEY SERIES IN SYSTEMS ENGINEERING
AND MANAGEMENT

Andrew P. Sage, Editor

A complete list of the titles in this series appears at the end of this volume.

SYSTEMS ENGINEERING

PRINCIPLES AND

PRACTICE

SECOND EDITION

Alexander Kossiakoff
William N. Sweet

Samuel J. Seymour
Steven M. Biemer

A JOHN WILEY & SONS, INC. PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifi cally disclaim any implied warranties of

merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profi t or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Systems engineering : principles and practice/Alexander Kossiakoff ... [et al.].—2nd ed.

 p. cm.—(Wiley series in systems engineering and management; 67)

 Rev. ed. of: Systems engineering: principles and practices/Alexander

Kossiakoff, William N. Sweet. 2003.

 ISBN 978-0-470-40548-2 (hardback)

 1. Systems engineering. I. Kossiakoff, Alexander, 1945– II. Title.

 TA168.K68 2010

 620.001′171–dc22

 2010036856

Printed in the United States of America

oBook ISBN: 9781118001028

ePDF ISBN: 9781118001011

ePub ISBN: 9781118009031

10 9 8 7 6 5 4 3 2 1

 To Alexander Kossiakoff,

 who never took “ no ” for an answer and refused to believe that anything was

impossible. He was an extraordinary problem solver, instructor, mentor, and

friend.

 Samuel J. Seymour

 Steven M. Biemer

LIST OF ILLUSTRATIONS xiii

LIST OF TABLES xvii

PREFACE TO THE SECOND EDITION xix

PREFACE TO THE FIRST EDITION xxiii

PART I FOUNDATIONS OF SYSTEMS ENGINEERING 1

 1 SYSTEMS ENGINEERING AND THE WORLD OF MODERN
 SYSTEMS 3

1.1 What Is Systems Engineering? 3

1.2 Origins of Systems Engineering 5

1.3 Examples of Systems Requiring Systems Engineering 10

1.4 Systems Engineering as a Profession 12

1.5 Systems Engineer Career Development Model 18

1.6 The Power of Systems Engineering 21

1.7 Summary 23

Problems 25

Further Reading 26

 2 SYSTEMS ENGINEERING LANDSCAPE 27

2.1 Systems Engineering Viewpoint 27

2.2 Perspectives of Systems Engineering 32

2.3 Systems Domains 34

2.4 Systems Engineering Fields 35

2.5 Systems Engineerng Approaches 36

2.6 Systems Engineering Activities and Products 37

2.7 Summary 38

Problems 39

Further Reading 40

CONTENTS

vii

viii CONTENTS

 3 STRUCTURE OF COMPLEX SYSTEMS 41

3.1 System Building Blocks and Interfaces 41

3.2 Hierarchy of Complex Systems 42

3.3 System Building Blocks 45

3.4 The System Environment 51

3.5 Interfaces and Interactions 58

3.6 Complexity in Modern Systems 60

3.7 Summary 64

Problems 66

Further Reading 67

 4 THE SYSTEM DEVELOPMENT PROCESS 69

4.1 Systems Engineering through the System Life Cycle 69

4.2 System Life Cycle 70

4.3 Evolutionary Characteristics of the Development Process 82

4.4 The Systems Engineering Method 87

4.5 Testing throughout System Development 103

4.6 Summary 106

Problems 108

Further Reading 109

 5 SYSTEMS ENGINEERING MANAGEMENT 111

5.1 Managing System Development and Risks 111

5.2 WBS 113

5.3 SEMP 117

5.4 Risk Management 120

5.5 Organization of Systems Engineering 128

5.6 Summary 132

Problems 133

Further Reading 134

PART II CONCEPT DEVELOPMENT STAGE 137

 6 NEEDS ANALYSIS 139

6.1 Originating a New System 139

6.2 Operations Analysis 146

6.3 Functional Analysis 151

6.4 Feasibility Defi nition 153

CONTENTS ix

6.5 Needs Validation 155

6.6 System Operational Requirements 158

6.7 Summary 162

Problems 163

Further Reading 164

 7 CONCEPT EXPLORATION 165

7.1 Developing the System Requirements 165

7.2 Operational Requirements Analysis 170

7.3 Performance Requirements Formulation 178

7.4 Implementation of Concept Exploration 185

7.5 Performance Requirements Validation 189

7.6 Summary 191

Problems 193

Further Reading 194

 8 CONCEPT DEFINITION 197

8.1 Selecting the System Concept 197

8.2 Performance Requirements Analysis 201

8.3 Functional Analysis and Formulation 206

8.4 Functional Allocation 212

8.5 Concept Selection 214

8.6 Concept Validation 217

8.7 System Development Planning 219

8.8 Systems Architecting 222

8.9 System Modeling Languages: Unifi ed Modeling Language

 (UML) and Systems Modeling Language (SysML) 228

8.10 Model-Based Systems Engineering (MBSE) 243

8.11 System Functional Specifi cations 246

8.12 Summary 247

Problems 250

Further Reading 252

 9 DECISION ANALYSIS AND SUPPORT 255

9.1 Decision Making 256

9.2 Modeling throughout System Development 262

9.3 Modeling for Decisions 263

9.4 Simulation 272

x CONTENTS

9.5 Trade-Off Analysis 282

9.6 Review of Probability 295

9.7 Evaluation Methods 299

9.8 Summary 308

Problems 311

Further Reading 312

PART III ENGINEERING DEVELOPMENT STAGE 315

10 ADVANCED DEVELOPMENT 317

10.1 Reducing Program Risks 317

10.2 Requirements Analysis 322

10.3 Functional Analysis and Design 327

10.4 Prototype Development as a Risk Mitigation Technique 333

10.5 Development Testing 340

10.6 Risk Reduction 349

10.7 Summary 350

Problems 352

Further Reading 354

11 SOFTWARE SYSTEMS ENGINEERING 355

11.1 Coping with Complexity and Abstraction 356

11.2 Nature of Software Development 360

11.3 Software Development Life Cycle Models 365

11.4 Software Concept Development: Analysis and Design 373

11.5 Software Engineering Development: Coding and Unit Test 385

11.6 Software Integration and Test 393

11.7 Software Engineering Management 396

11.8 Summary 402

Problems 405

Further Reading 406

12 ENGINEERING DESIGN 409

12.1 Implementing the System Building Blocks 409

12.2 Requirements Analysis 414

12.3 Functional Analysis and Design 416

12.4 Component Design 419

12.5 Design Validation 432

CONTENTS xi

12.6 CM 436

12.7 Summary 439

 Problems 441

 Further Reading 442

13 INTEGRATION AND EVALUATION 443

13.1 Integrating, Testing, and Evaluating the Total System 443

13.2 Test Planning and Preparation 450

13.3 System Integration 455

13.4 Developmental System Testing 462

13.5 Operational Test and Evaluation 467

13.6 Summary 475

Problems 478

Further Reading 478

PART IV POSTDEVELOPMENT STAGE 481

14 PRODUCTION 483

14.1 Systems Engineering in the Factory 483

14.2 Engineering for Production 485

14.3 Transition from Development to Production 489

14.4 Production Operations 492

14.5 Acquiring a Production Knowledge Base 497

14.6 Summary 500

Problems 502

Further Reading 503

15 OPERATIONS AND SUPPORT 505

15.1 Installing, Maintaining, and Upgrading the System 505

15.2 Installation and Test 507

15.3 In-Service Support 512

15.4 Major System Upgrades: Modernization 516

15.5 Operational Factors in System Development 520

15.6 Summary 522

Problems 523

Further Reading 524

INDEX 525

xiii

 1.1 Career opportunities and growth 14

 1.2a Technical orientation phase diagram 16

 1.2b Technical orientation population density distribution 16

 1.3a Systems engineering (SE) career elements derived from quality work

experiences 19

 1.3b Components of employer development of systems engineers 19

 1.4 “ T ” model for systems engineer career development 20

 2.1a Performance versus cost 29

 2.1b Performance/cost versus cost 29

 2.2 The ideal missile design from the viewpoint of various specialists 31

 2.3 The dimensions of design, systems engineering, and project planning

and control 32

 2.4 Systems engineering domains 34

 2.5 Examples of systems engineering fi elds 35

 2.6 Examples of systems engineering approaches 36

 2.7 Life cycle systems engineering view 37

 3.1 Knowledge domains of systems engineer and design specialist 45

 3.2 Context diagram 53

 3.3 Context diagram for an automobile 54

 3.4 Environments of a passenger airliner 56

 3.5 Functional interactions and physical interfaces 59

 3.6 Pyramid of system hierarchy 63

 4.1 DoD system life cycle model 71

 4.2 System life cycle model 72

 4.3 Principal stages in system life cycle 75

 4.4 Concept development phases of system life cycle 76

 4.5 Engineering development phases in system life cycle 78

 4.6 Principal participants in a typical aerospace system development 86

 4.7 DoD MIL - STD499B 90

 4.8 IEEE - 1220 systems engineering process 90

 4.9 EIA - 632 systems engineering process 91

 LIST OF ILLUSTRATIONS

xiv LIST OF ILLUSTRATIONS

 4.10 ISO - 15288 Systems engineering process 92

 4.11 Systems engineering method top - level fl ow diagram 92

 4.12 Systems engineering method fl ow diagram 94

 4.13 Spiral model of the defense system life cycle 104

 5.1 Systems engineering as a part of project management 112

 5.2 Place of SEMP in program management plans 118

 5.3 Variation of program risk and effort throughout system development 121

 5.4 Example of a risk mitigation waterfall chart 122

 5.5 An example of a risk cube display 124

 6.1 Needs analysis phase in the system life cycle 140

 6.2 Needs analysis phase fl ow diagram 147

 6.3 Objectives tree structure 150

 6.4 Example objectives tree for an automobile 151

 6.5 Analysis pyramid 156

 7.1 Concept exploration phase in system life cycle 166

 7.2 Concept exploration phase fl ow diagram 170

 7.3 Simple requirements development process 171

 7.4 Triumvirate of conceptual design 175

 7.5 Hierarchy of scenarios 177

 7.6 Function category versus functional media 181

 8.1 Concept defi nition phase in system life cycle 198

 8.2 Concept defi nition phase fl ow diagram 202

 8.3 IDEF0 functional model structure 208

 8.4 Functional block diagram of a standard coffeemaker 210

 8.5 Traditional view of architecture 223

 8.6 DODAF version 2.0 viewpoints 227

 8.7 UML models 229

 8.8 Use case diagram 231

 8.9 UML activity diagram 233

 8.10 UML sequence diagram 234

 8.11 Example of a class association 235

 8.12 Example of a class generalization association 236

 8.13 Class diagram of the library check - out system 237

 8.14 SysML models 237

 8.15 SysML requirements diagram 238

 8.16 SysML block defi nition 240

 8.17 SysML block associations 241

 8.18a SysML functional hierarchy tree 242

 8.18b SysML activity diagram 242

 8.19 Baker ’ s MDSD subprocesses 244

 8.20 Baker ’ s information model for MDSD 244

 9.1 Basic decision - making process 256

 9.2 Traditional hierarchical block diagram 265

 9.3 Context diagram of a passenger aircraft 266

 9.4 Air defense functional fl ow block diagram 267

LIST OF ILLUSTRATIONS xv

 9.5 System effectiveness simulation 275

 9.6 Hardware - in - the - loop simulation 277

 9.7 Virtual reality simulation 280

 9.8 Candidate utility functions 289

 9.9 Criteria profi le 290

 9.10 Union of two events 297

 9.11 Conditional events 297

 9.12 AHP example 300

 9.13 AHP results 301

 9.14 Decision tree example 302

 9.15 Decision path 302

 9.16 Decision tree solved 303

 9.17 Utility function 304

 9.18 Decision tree solved with a utility function 304

 9.19 Example of cost - effectiveness integration 305

 9.20 QFD house of quality 307

 10.1 Advanced development phase in system life cycle 318

 10.2 Advanced development phase fl ow diagram 321

 10.3 Test and evaluation process of a system element 345

 11.1 IEEE software systems engineering process 357

 11.2 Software hierarchy 359

 11.3 Notional 3 - tier architecture 359

 11.4 Classical waterfall software development cycle 367

 11.5 Software incremental model 369

 11.6 Spiral model 370

 11.7 State transition diagram in concurrent development model 371

 11.8 User needs, software requirements and specifi cations 376

 11.9 Software generation process 376

 11.10 Principles of modular partitioning 379

 11.11 Functional fl ow block diagram example 381

 11.12 Data fl ow diagram: library checkout 381

 11.13 Robustness diagram: library checkout 384

 12.1 Engineering design phase in system life cycle 410

 12.2 Engineering design phase in relation to integration and evaluation 411

 12.3 Engineering design phase fl ow diagram 413

 13.1 Integration and evaluation phase in system life cycle 445

 13.2 Integration and evaluation phase in relation to engineering design 445

 13.3 System test and evaluation team 446

 13.4 System element test confi guration 456

 13.5 Subsystems test confi guration 459

 13.6a Operation of a passenger airliner 469

 13.6b Operational testing of an airliner 469

 13.7 Test realism versus cost 471

 14.1 Production phase in system life cycle 484

 14.2 Production phase overlap with adjacent phases 485

xvi LIST OF ILLUSTRATIONS

 14.3 Production operation system 494

 15.1 Operations and support phase in system life cycle 506

 15.2 System operations history 507

 15.3 Non - disruptive installation via simulation 510

 15.4 Non - disruptive installation via a duplicate system 511

xvii

 1.1 Examples of Engineered Complex Systems: Signal and Data Systems 11

 1.2 Examples of Engineered Complex Systems: Material and Energy

Systems 11

 2.1 Comparison of Systems Perspectives 33

 2.2 Systems Engineering Activities and Documents 38

 3.1 System Design Hierarchy 43

 3.2 System Functional Elements 47

 3.3 Component Design Elements 49

 3.4 Examples of Interface Elements 60

 4.1 Evolution of System Materialization through the System Life Cycle 84

 4.2 Evolution of System Representation 88

 4.3 Systems Engineering Method over Life Cycle 102

 5.1 System Product WBS Partial Breakdown Structure 114

 5.2 Risk Likelihood 125

 5.3 Risk Criticality 125

 5.4 Sample Risk Plan Worksheet 128

 6.1 Status of System Materialization at the Needs Analysis Phase 143

 7.1 Status of System Materialization of the Concept Exploration Phase 168

 8.1 Status of System Materialization of Concept Defi nition Phase 200

 8.2 Use Case Example — “ Check - out Book ” 232

 9.1 Decision Framework 259

 9.2 Simon’s Decision Process 261

 9.3 Weighted Sum Integration of Selection Criteria 288

 9.4 Weighted Sum of Actual Measurement 289

 9.5 Weighted Sum of Utility Scores 290

 9.6 Trade-Off Matrix Example 293

 10.1 Status of System Materialization at the Advanced Development Phase 320

 10.2 Development of New Components 326

 10.3 Selected Critical Characteristics of System Functional Elements 329

 10.4 Some Examples of Special Materials 335

 11.1 Software Types 361

 LIST OF TABLES

xviii LIST OF TABLES

 11.2 Categories of Software - Dominated Systems 362

 11.3 Differences between Hardware and Software 364

 11.4 Systems Engineering Life Cycle and the Waterfall Model 368

 11.5 Commonly Used Computer Languages 387

 11.6 Some Special - Purpose Computer Languages 388

 11.7 Characteristics of Prototypes 390

 11.8 Comparison of Computer Interface Modes 391

 11.9 Capability Levels 398

 11.10 Maturity Levels 399

 12.1 Status of System Materialization at the Engineering Design Phase 412

 12.2 Confi guration Baselines 437

 13.1 Status of System Materialization at the Integration and Evaluation

 Phase 448

 13.2 System Integration and Evaluation Process 449

 13.3 Parallels between System Development and Test and Evaluation

(T & E) Planning 451

xix

 It is an incredible honor and privilege to follow in the footsteps of an individual who

had a profound infl uence on the course of history and the fi eld of systems engineering.

Since publication of the fi rst edition of this book, the fi eld of systems engineering has

seen signifi cant advances, including a signifi cant increase in recognition of the disci-

pline, as measured by the number of conferences, symposia, journals, articles, and

books available on this crucial subject. Clearly, the fi eld has reached a high level of

maturity and is destined for continued growth. Unfortunately, the fi eld has also seen

some sorrowful losses, including one of the original authors, Alexander Kossiakoff,

who passed away just 2 years after the publication of the book. His vision, innovation,

excitement, and perseverance were contagious to all who worked with him and he is

missed by the community. Fortunately, his vision remains and continues to be the

driving force behind this book. It is with great pride that we dedicate this second edition

to the enduring legacy of Alexander Ivanovitch Kossiakoff.

 ALEXANDER KOSSIAKOFF, 1914 – 2005

 Alexander Kossiakoff, known to so many as “ Kossy, ” gave shape and direction to the

Johns Hopkins University Applied Physics Laboratory as its director from 1969 to

1980. His work helped defend our nation, enhance the capabilities of our military,

pushed technology in new and exciting directions, and bring successive new genera-

tions to an understanding of the unique challenges and opportunities of systems engi-

neering. In 1980, recognizing the need to improve the training and education of technical

professionals, he started the master of science degree program at Johns Hopkins

University in Technical Management and later expanded it to Systems Engineering,

one of the fi rst programs of its kind.

 Today, the systems engineering program he founded is the largest part - time gradu-

ate program in the United States, with students enrolled from around the world in

classroom, distance, and organizational partnership venues; it continues to evolve as

the fi eld expands and teaching venues embrace new technologies, setting the standard

for graduate programs in systems engineering. The fi rst edition of the book is the foun-

dational systems engineering textbook for colleges and universities worldwide.

 PREFACE TO THE SECOND

EDITION

xx PREFACE TO THE SECOND EDITION

 OBJECTIVES OF THE SECOND EDITION

 Traditional engineering disciplines do not provide the training, education, and experi-

ence necessary to ensure the successful development of a large, complex system

program from inception to operational use. The advocacy of the systems engineering

viewpoint and the goal for the practitioners to think like a systems engineer are still

the major premises of this book.

 This second edition of Systems Engineering Principles and Practice continues to

be intended as a graduate - level textbook for courses introducing the fi eld and practice

of systems engineering. We continue the tradition of utilizing models to assist students

in grasping abstract concepts presented in the book. The fi ve basic models of the fi rst

edition are retained, with only minor refi nements to refl ect current thinking. Additionally,

the emphasis on application and practice is retained throughout and focuses on students

pursuing their educational careers in parallel with their professional careers. Detailed

mathematics and other technical fi elds are not explored in depth, providing the greatest

range of students who may benefi t, nor are traditional engineering disciplines provided

in detail, which would violate the book ’ s intended scope.

 The updates and additions to the fi rst edition revolve around the changes occurring

in the fi eld of systems engineering since the original publication. Special attention was

made in the following areas :

 • The Systems Engineer ’ s Career. An expanded discussion is presented on

the career of the systems engineer. In recent years, systems engineering

has been recognized by many companies and organizations as a separate fi eld,

and the position of “ systems engineer ” has been formalized. Therefore, we

present a model of the systems engineer ’ s career to help guide prospective

professionals.

 • The Systems Engineering Landscape. The only new chapter introduced in the

second edition is titled by the same name and reinforces the concept of the

systems engineering viewpoint. Expanded discussions of the implications of this

viewpoint have been offered.

 • System Boundaries. Supplemental material has been introduced defi ning and

expanding our discussion on the concept of the system boundary. Through the

use of the book in graduate - level education, the authors recognized an inherent

misunderstanding of this concept — students in general have been unable to rec-

ognize the boundary between the system and its environment. This area has been

strengthened throughout the book.

 • System Complexity. Signifi cant research in the area of system complexity is now

available and has been addressed. Concepts such as system of systems engineer-

ing, complex systems management, and enterprise systems engineering are intro-

duced to the student as a hierarchy of complexity, of which systems engineering

forms the foundation.

 • Systems Architecting. Since the original publication, the fi eld of systems archi-

tecting has expanded signifi cantly, and the tools, techniques, and practices of this

PREFACE TO THE SECOND EDITION xxi

fi eld have been incorporated into the concept exploration and defi nition chapters.

New models and frameworks for both traditional structured analysis and object -

 oriented analysis techniques are described and examples are provided, including

an expanded description of the Unifi ed Modeling Language and the Systems

Modeling Language. Finally, the extension of these new methodologies, model -

 based systems engineering, is introduced.

 • Decision Making and Support. The chapter on systems engineering decision

tools has been updated and expanded to introduce the systems engineering

student to the variety of decisions required in this fi eld, and the modern pro-

cesses, tools, and techniques that are available for use. The chapter has also been

moved from the original special topics part of the book.

 • Software Systems Engineering. The chapter on software systems engineering has

been extensively revised to incorporate modern software engineering techniques,

principles, and concepts. Descriptions of modern software development life

cycle models, such as the agile development model, have been expanded to

refl ect current practices. Moreover, the section on capability maturity models has

been updated to refl ect the current integrated model. This chapter has also been

moved out of the special topics part and introduced as a full partner of advanced

development and engineering design.

 In addition to the topics mentioned above, the chapter summaries have been refor-

matted for easier understanding, and the lists of problems and references have been

updated and expanded. Lastly, feedback, opinions, and recommendations from graduate

students have been incorporated where the wording or presentation was awkward or

unclear.

 CONTENT DESCRIPTION

 This book continues to be used to support the core courses of the Johns Hopkins

University Master of Science in Systems Engineering program and is now a primary

textbook used throughout the United States and in several other countries. Many pro-

grams have transitioned to online or distance instruction; the second edition was written

with distance teaching in mind, and offers additional examples.

 The length of the book has grown, with the updates and new material refl ecting

the expansion of the fi eld itself.

 The second edition now has four parts:

 • Part I . The Foundation of Systems Engineering, consisting of Chapters 1 – 5 ,

describes the origins and structure of modern systems, the current fi eld of systems

engineering, the structured development process of complex systems, and the

organization of system development projects.

 • Part II . Concept Development, consisting of Chapters 6 – 9 , describes the early

stages of the system life cycle in which a need for a new system is demonstrated,

xxii PREFACE TO THE SECOND EDITION

its requirements identifi ed, alternative implementations developed, and key

program and technical decisions made.

 • Part III . Engineering Development, consisting of Chapters 10 – 13 , describes the

later stages of the system life cycle, in which the system building blocks are

engineered (to include both software and hardware subsystems) and the total

system is integrated and evaluated in an operational environment.

 • Part IV . Postdevelopment, consisting of Chapters 14 and 15 , describes the roles

of systems in the production, operation, and support phases of the system life

cycle and what domain knowledge of these phases a systems engineer should

acquire.

 Each chapter contains a summary, homework problems, and bibliography.

 ACKNOWLEDGMENTS

 The authors of the second edition gratefully acknowledge the family of Dr. Kossiakoff

and Mr. William Sweet for their encouragement and support of a second edition to the

original book. As with the fi rst edition, the authors gratefully acknowledge the many

contributions made by the present and past faculties of the Johns Hopkins University

Systems Engineering graduate program. Their sharp insight and recommendations on

improvements to the fi rst edition have been invaluable in framing this publication.

Particular thanks are due to E. A. Smyth for his insightful review of the manuscript.

 Finally, we are exceedingly grateful to our families — Judy Seymour and Michele

and August Biemer — for their encouragement, patience, and unfailing support, even

when they were continually asked to sacrifi ce, and the end never seemed to be

within reach.

 Much of the work in preparing this book was supported as part of the educational

mission of the Johns Hopkins University Applied Physics Laboratory.

 Samuel J. Seymour

 Steven M. Biemer

 2010

xxiii

 Learning how to be a successful systems engineer is entirely different from learning

how to excel at a traditional engineering discipline. It requires developing the ability

to think in a special way, to acquire the “ systems engineering viewpoint, ” and to make

the central objective the system as a whole and the success of its mission. The systems

engineer faces three directions: the system user ’ s needs and concerns, the project man-

ager ’ s fi nancial and schedule constraints, and the capabilities and ambitions of the

engineering specialists who have to develop and build the elements of the system. This

requires learning enough of the language and basic principles of each of the three

constituencies to understand their requirements and to negotiate balanced solutions

acceptable to all. The role of interdisciplinary leadership is the key contribution and

principal challenge of systems engineering and it is absolutely indispensable to the

successful development of modern complex systems.

 1.1 OBJECTIVES

 Systems Engineering Principles and Practice is a textbook designed to help students

learn to think like systems engineers. Students seeking to learn systems engineering

after mastering a traditional engineering discipline often fi nd the subject highly abstract

and ambiguous. To help make systems engineering more tangible and easier to grasp,

the book provides several models: (1) a hierarchical model of complex systems, showing

them to be composed of a set of commonly occurring building blocks or components;

(2) a system life cycle model derived from existing models but more explicitly related

to evolving engineering activities and participants; (3) a model of the steps in the

systems engineering method and their iterative application to each phase of the life

cycle; (4) a concept of “ materialization ” that represents the stepwise evolution of an

abstract concept to an engineered, integrated, and validated system; and (5) repeated

references to the specifi c responsibilities of systems engineers as they evolve during

the system life cycle and to the scope of what a systems engineer must know to perform

these effectively. The book ’ s signifi cantly different approach is intended to complement

the several excellent existing textbooks that concentrate on the quantitative and analyti-

cal aspects of systems engineering.

 PREFACE TO THE FIRST EDITION

xxiv PREFACE TO THE FIRST EDITION

 Particular attention is devoted to systems engineers as professionals, their respon-

sibilities as part of a major system development project, and the knowledge, skills, and

mind - set they must acquire to be successful. The book stresses that they must be inno-

vative and resourceful, as well as systematic and disciplined. It describes the special

functions and responsibilities of systems engineers in comparison with those of system

analysts, design specialists, test engineers, project managers, and other members of the

system development team. While the book describes the necessary processes that

systems engineers must know and execute, it stresses the leadership, problem - solving,

and innovative skills necessary for success.

 The function of systems engineering as defi ned here is to “ guide the engineering

of complex systems. ” To learn how to be a good guide requires years of practice and

the help and advice of a more experienced guide who knows “ the way. ” The purpose

of this book is to provide a signifi cant measure of such help and advice through the

organized collective experience of the authors and other contributors.

 This book is intended for graduate engineers or scientists who aspire to or are

already engaged in careers in systems engineering, project management, or engineering

management. Its main audience is expected to be engineers educated in a single disci-

pline, either hardware or software, who wish to broaden their knowledge so as to deal

with systems problems. It is written with a minimum of mathematics and specialized

jargon so that it should also be useful to managers of technical projects or organizations,

as well as to senior undergraduates.

 1.2 ORIGIN AND CONTENTS

 The main portion of the book has been used for the past 5 years to support the fi ve core

courses of the Johns Hopkins University Master of Science in Systems Engineering

program and is thoroughly class tested. It has also been used successfully as a text for

distance course offerings. In addition, the book is well suited to support short courses

and in - house training.

 The book consists of 14 chapters grouped into fi ve parts :

 • Part I . The Foundations of Systems Engineering, consisting of Chapters 1 – 4 ,

describes the origin and structure of modern systems, the stepwise development

process of complex systems, and the organization of system development

projects.

 • Part II . Concept Development, consisting of Chapters 5 – 7 , describes the fi rst

stage of the system life cycle in which a need for a new system is demonstrated,

its requirements are developed, and a specifi c preferred implementation concept

is selected.

 • Part III . Engineering Development, consisting of Chapters 8 – 10 , describes the

second stage of the system life cycle, in which the system building blocks are

engineered and the total system is integrated and evaluated in an operational

environment.

PREFACE TO THE FIRST EDITION xxv

 • Part IV . Postdevelopment, consisting of Chapters 11 and 12 , describes the role

of systems engineering in the production, operation, and support phases of the

system life cycle, and what domain knowledge of these phases in the system life

cycle a systems engineer should acquire.

 • Part V . Special Topics consists of Chapters 13 and 14 . Chapter 13 describes the

pervasive role of software throughout system development, and Chapter 14

addresses the application of modeling, simulation, and trade - off analysis as

systems engineering decision tools.

 Each chapter also contains a summary, homework problems, and a bibliography.

A glossary of important terms is also included. The chapter summaries are formatted

to facilitate their use in lecture viewgraphs.

 ACKNOWLEDGMENTS

 The authors gratefully acknowledge the many contributions made by the present and

past faculties of the Johns Hopkins University Systems Engineering Masters program.

Particular thanks are due to S. M. Biemer, J. B. Chism, R. S. Grossman, D. C. Mitchell,

J. W. Schneider, R. M. Schulmeyer, T. P. Sleight, G. D. Smith, R. J. Thompson, and S.

P. Yanek, for their astute criticism of passages that may have been dear to our hearts

but are in need of repairs.

 An even larger debt is owed to Ben E. Amster, who was one of the originators and

the initial faculty of the Johns Hopkins University Systems Engineering program.

Though not directly involved in the original writing, he enhanced the text and diagrams

by adding many of his own insights and fi ne - tuned the entire text for meaning and

clarity, applying his 30 years ’ experience as a systems engineer to great advantage.

 We especially want to thank H. J. Gravagna for her outstanding expertise and

inexhaustible patience in typing and editing the innumerable rewrites of the drafts of

the manuscript. These were issued to successive classes of systems engineering students

as the book evolved over the past 3 years. It was she who kept the focus on the fi nal

product and provided invaluable assistance with the production of this work.

 Finally, we are eternally grateful to our wives, Arabelle and Kathleen, for their

encouragement, patience, and unfailing support, especially when the written words

came hard and the end seemed beyond our reach.

 Much of the work in preparing this book was supported as part of the educational

mission of the Johns Hopkins Applied Physics Laboratory.

 Alexander Kossiakoff

 William N. Sweet

 2002

1

 Part I provides a multidimensional framework that interrelates the basic principles of

systems engineering, and helps to organize the areas of knowledge that are required to

master this subject. The dimensions of this framework include

 1. a hierarchical model of the structure of complex systems;

 2. a set of commonly occurring functional and physical system building blocks;

 3. a systems engineering life cycle, integrating the features of the U.S Department

of Defense, ISO/IEC, IEEE, and NSPE models;

 4. four basic steps of the systems engineering method that are iterated during each

phase of the life cycle;

 5. three capabilities differentiating project management, design specialization, and

systems engineering;

 6. three different technical orientations of a scientist, a mathematician, and an

engineer and how they combine in the orientation of a systems engineer; and

 7. a concept of “ materialization ” that measures the degree of transformation of a

system element from a requirement to a fully implemented part of a real system.

 PART I

FOUNDATIONS OF SYSTEMS

ENGINEERING

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

2 FOUNDATIONS OF SYSTEMS ENGINEERING

 Chapter 1 describes the origins and characteristics of modern complex systems and

systems engineering as a profession.

 Chapter 2 defi nes the “ systems engineering viewpoint ” and how it differs from the

viewpoints of technical specialists and project managers. This concept of a systems

viewpoint is expanded to describe the domain, fi elds, and approaches of the systems

engineering discipline.

 Chapter 3 develops the hierarchical model of a complex system and the key build-

ing blocks from which it is constituted. This framework is used to defi ne the breadth

and depth of the knowledge domain of systems engineers in terms of the system

hierarchy.

 Chapter 4 derives the concept of the systems engineering life cycle, which sets the

framework for the evolution of a complex system from a perceived need to operation

and disposal. This framework is systematically applied throughout Parts II – IV of the

book, each part addressing the key responsibilities of systems engineering in the cor-

responding phase of the life cycle.

 Finally, Chapter 5 describes the key parts that systems engineering plays in the

management of system development projects. It defi nes the basic organization and

the planning documents of a system development project, with a major emphasis on

the management of program risks.

3

 1.1 WHAT IS SYSTEMS ENGINEERING?

 There are many ways in which to defi ne systems engineering. For the purposes of this

book, we will use the following defi nition:

 The function of systems engineering is to guide the engineering of complex systems .

 The words in this defi nition are used in their conventional meanings, as described

further below.

 To guide is defi ned as “ to lead, manage, or direct, usually based on the superior

experience in pursuing a given course ” and “ to show the way. ” This characterization

emphasizes the process of selecting the path for others to follow from among many

possible courses — a primary function of systems engineering. A dictionary defi nition

of engineering is “ the application of scientifi c principles to practical ends; as the design,

construction and operation of effi cient and economical structures, equipment, and

systems. ” In this defi nition, the terms “ effi cient ” and “ economical ” are particular con-

tributions of good systems engineering.

 The word “ system, ” as is the case with most common English words, has a

very broad meaning. A frequently used defi nition of a system is “ a set of interrelated

 1

SYSTEMS ENGINEERING

AND THE WORLD OF

MODERN SYSTEMS

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

4 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

components working together toward some common objective. ” This defi nition implies

a multiplicity of interacting parts that collectively perform a signifi cant function. The

term complex restricts this defi nition to systems in which the elements are diverse and

have intricate relationships with one another. Thus, a home appliance such as a washing

machine would not be considered suffi ciently diverse and complex to require systems

engineering, even though it may have some modern automated attachments. On the

other hand, the context of an engineered system excludes such complex systems as

living organisms and ecosystems. The restriction of the term “ system ” to one that is

complex and engineered makes it more clearly applicable to the function of systems

engineering as it is commonly understood. Examples of systems requiring systems

engineering for their development are listed in a subsequent section.

 The above defi nitions of “ systems engineering ” and “ system ” are not represented

as being unique or superior to those used in other textbooks, each of which defi nes

them somewhat differently. In order to avoid any potential misunderstanding, the

meaning of these terms as used in this book is defi ned at the very outset, before going

on to the more important subjects of the responsibilities, problems, activities, and tools

of systems engineering.

 Systems Engineering and Traditional Engineering Disciplines

 From the above defi nition, it can be seen that systems engineering differs from mechani-

cal, electrical, and other engineering disciplines in several important ways:

 1. Systems engineering is focused on the system as a whole; it emphasizes its total

operation. It looks at the system from the outside, that is, at its interactions with

other systems and the environment, as well as from the inside. It is concerned

not only with the engineering design of the system but also with external factors,

which can signifi cantly constrain the design. These include the identifi cation of

customer needs, the system operational environment, interfacing systems, logis-

tics support requirements, the capabilities of operating personnel, and such other

factors as must be correctly refl ected in system requirements documents and

accommodated in the system design.

 2. While the primary purpose of systems engineering is to guide, this does not

mean that systems engineers do not themselves play a key role in system design.

On the contrary, they are responsible for leading the formative (concept devel-

opment) stage of a new system development, which culminates in the functional

design of the system refl ecting the needs of the user. Important design decisions

at this stage cannot be based entirely on quantitative knowledge, as they are for

the traditional engineering disciplines, but rather must often rely on qualitative

judgments balancing a variety of incommensurate quantities and utilizing expe-

rience in a variety of disciplines, especially when dealing with new

technology.

 3. Systems engineering bridges the traditional engineering disciplines. The diver-

sity of the elements in a complex system requires different engineering disci-

ORIGINS OF SYSTEMS ENGINEERING 5

plines to be involved in their design and development. For the system to perform

correctly, each system element must function properly in combination with one

or more other system elements. Implementation of these interrelated functions

is dependent on a complex set of physical and functional interactions between

separately designed elements. Thus, the various elements cannot be engineered

independently of one another and then simply assembled to produce a working

system. Rather, systems engineers must guide and coordinate the design of each

individual element as necessary to assure that the interactions and interfaces

between system elements are compatible and mutually supporting. Such coor-

dination is especially important when individual system elements are designed,

tested, and supplied by different organizations.

 Systems Engineering and Project Management

 The engineering of a new complex system usually begins with an exploratory stage in

which a new system concept is evolved to meet a recognized need or to exploit a tech-

nological opportunity. When the decision is made to engineer the new concept into an

operational system, the resulting effort is inherently a major enterprise, which typically

requires many people, with diverse skills, to devote years of effort to bring the system

from concept to operational use.

 The magnitude and complexity of the effort to engineer a new system requires

a dedicated team to lead and coordinate its execution. Such an enterprise is called

a “ project ” and is directed by a project manager aided by a staff. Systems engineering

is an inherent part of project management — the part that is concerned with guiding

the engineering effort itself — setting its objectives, guiding its execution, evaluating

its results, and prescribing necessary corrective actions to keep it on course. The man-

agement of the planning and control aspects of the project fi scal, contractual, and

customer relations is supported by systems engineering but is usually not considered

to be part of the systems engineering function. This subject is described in more detail

in Chapter 5 .

 Recognition of the importance of systems engineering by every participant in a

system development project is essential for its effective implementation. To accomplish

this, it is often useful to formally assign the leader of the systems engineering team to

a recognized position of technical responsibility and authority within the project.

 1.2 ORIGINS OF SYSTEMS ENGINEERING

 No particular date can be associated with the origins of systems engineering. Systems

engineering principles have been practiced at some level since the building of the pyra-

mids and probably before. (The Bible records that Noah ’ s Ark was built to a system

specifi cation.)

 The recognition of systems engineering as a distinct activity is often associated

with the effects of World War II, and especially the 1950s and 1960s when a number

of textbooks were published that fi rst identifi ed systems engineering as a distinct

6 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

discipline and defi ned its place in the engineering of systems. More generally, the

recognition of systems engineering as a unique activity evolved as a necessary corollary

to the rapid growth of technology, and its application to major military and commercial

operations during the second half of the twentieth century.

 The global confl agration of World War II provided a tremendous spur to the

advancement of technology in order to gain a military advantage for one side or the

other. The development of high - performance aircraft, military radar, the proximity fuse,

the German VI and V2 missiles, and especially the atomic bomb required revolutionary

advances in the application of energy, materials, and information. These systems were

complex, combining multiple technical disciplines, and their development posed engi-

neering challenges signifi cantly beyond those that had been presented by their more

conventional predecessors. Moreover, the compressed development time schedules

imposed by wartime imperatives necessitated a level of organization and effi ciency that

required new approaches in program planning, technical coordination, and engineering

management. Systems engineering, as we know it today, developed to meet these

challenges.

 During the Cold War of the 1950s, 1960s, and 1970s, military requirements con-

tinued to drive the growth of technology in jet propulsion, control systems, and materi-

als. However, another development, that of solid - state electronics, has had perhaps a

more profound effect on technological growth. This, to a large extent, made possible

the still evolving “ information age, ” in which computing, networks, and communica-

tions are extending the power and reach of systems far beyond their previous limits.

Particularly signifi cant in this connection is the development of the digital computer

and the associated software technology driving it, which increasingly is leading to the

replacement of human control of systems by automation. Computer control is qualita-

tively increasing the complexity of systems and is a particularly important concern of

systems engineering.

 The relation of modern systems engineering to its origins can be best understood

in terms of three basic factors:

 1. Advancing Technology, which provide opportunities for increasing system

capabilities, but introduces development risks that require systems engineering

management; nowhere is this more evident than in the world of automation.

Technology advances in human – system interfaces, robotics, and software make

this particular area one of the fastest growing technologies affecting system

design.

 2. Competition, whose various forms require seeking superior (and more

advanced) system solutions through the use of system - level trade - offs among

alternative approaches.

 3. Specialization, which requires the partitioning of the system into building

blocks corresponding to specifi c product types that can be designed and built

by specialists, and strict management of their interfaces and interactions.

 These factors are discussed in the following paragraphs.

ORIGINS OF SYSTEMS ENGINEERING 7

 Advancing Technology: Risks

 The explosive growth of technology in the latter half of the twentieth century and

into this century has been the single largest factor in the emergence of systems engi-

neering as an essential ingredient in the engineering of complex systems. Advancing

technology has not only greatly extended the capabilities of earlier systems, such as

aircraft, telecommunications, and power plants, but has also created entirely new

systems such as those based on jet propulsion, satellite communications and navigation,

and a host of computer - based systems for manufacturing, fi nance, transportation,

entertainment, health care, and other products and services. Advances in technology

have not only affected the nature of products but have also fundamentally changed

the way they are engineered, produced, and operated. These are particularly important

in early phases of system development, as described in Conceptual Exploration, in

Chapter 7 .

 Modern technology has had a profound effect on the very approach to engineering.

Traditionally, engineering applies known principles to practical ends. Innovation,

however, produces new materials, devices, and processes, whose characteristics are not

yet fully measured or understood. The application of these to the engineering of new

systems thus increases the risk of encountering unexpected properties and effects that

might impact system performance and might require costly changes and program

delays.

 However, failure to apply the latest technology to system development also carries

risks. These are the risks of producing an inferior system, one that could become pre-

maturely obsolete. If a competitor succeeds in overcoming such problems as may be

encountered in using advanced technology, the competing approach is likely to be

superior. The successful entrepreneurial organization will thus assume carefully selected

technological risks and surmount them by skillful design, systems engineering, and

program management.

 The systems engineering approach to the early application of new technology is

embodied in the practice of “ risk management. ” Risk management is a process of

dealing with calculated risks through a process of analysis, development, test, and

engineering oversight. It is described more fully in Chapters 5 and 9 .

 Dealing with risks is one of the essential tasks of systems engineering, requiring

a broad knowledge of the total system and its critical elements. In particular, systems

engineering is central to the decision of how to achieve the best balance of risks, that

is, which system elements should best take advantage of new technology and which

should be based on proven components, and how the risks incurred should be reduced

by development and testing.

 The development of the digital computer and software technology noted earlier

deserves special mention. This development has led to an enormous increase in the

automation of a wide array of control functions for use in factories, offi ces, hospitals,

and throughout society. Automation, most of it being concerned with information pro-

cessing hardware and software, and its sister technology, autonomy, which adds in

capability of command and control, is the fastest growing and most powerful single

infl uence on the engineering of modern systems.

8 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 The increase in automation has had an enormous impact on people who operate

systems, decreasing their number but often requiring higher skills and therefore special

training. Human – machine interfaces and other people – system interactions are particu-

lar concerns of systems engineering.

 Software continues to be a growing engineering medium whose power and versatil-

ity has resulted in its use in preference to hardware for the implementation of a growing

fraction of system functions. Thus, the performance of modern systems increasingly

depends on the proper design and maintenance of software components. As a result,

more and more of the systems engineering effort has had to be directed to the control

of software design and its application.

 Competition: Trade - offs

 Competitive pressures on the system development process occur at several different

levels. In the case of defense systems, a primary drive comes from the increasing mili-

tary capabilities of potential adversaries, which correspondingly decrease the effective-

ness of systems designed to defeat them. Such pressures eventually force a development

program to redress the military balance with a new and more capable system or a major

upgrade of an existing one.

 Another source of competition comes with the use of competitive contracting for

the development of new system capabilities. Throughout the competitive period, which

may last through the initial engineering of a new system, each contractor seeks to devise

the most cost - effective program to provide a superior product.

 In developing a commercial product, there are nearly always other companies that

compete in the same market. In this case, the objective is to develop a new market or

to obtain an increased market share by producing a superior product ahead of the com-

petition, with an edge that will maintain a lead for a number of years. The above

approaches nearly always apply the most recent technology in an effort to gain a com-

petitive advantage.

 Securing the large sums of money needed to fund the development of a new

complex system also involves competition on quite a different level. In particular, both

government agencies and industrial companies have many more calls on their resources

than they can accommodate and hence must carefully weigh the relative payoff of

proposed programs. This is a primary reason for requiring a phased approach in new

system development efforts, through the requirement for justifi cation and formal

approval to proceed with the increasingly expensive later phases. The results of each

phase of a major development must convince decision makers that the end objectives

are highly likely to be attained within the projected cost and schedule.

 On a still different basis, the competition among the essential characteristics of

the system is always a major consideration in its development. For example, there is

always competition between performance, cost, and schedule, and it is impossible to

optimize all three at once. Many programs have failed by striving to achieve levels

of performance that proved unaffordable. Similarly, the various performance parame-

ters of a vehicle, such as speed and range, are not independent of one another; the

effi ciency of most vehicles, and hence their operating range, decreases at higher speeds.

ORIGINS OF SYSTEMS ENGINEERING 9

Thus, it is necessary to examine alternatives in which these characteristics are allowed

to vary and to select the combination that best balances their values for the benefi t of

the user.

 All of the forms of competition exert pressure on the system development process

to produce the best performing, most affordable system, in the least possible time. The

process of selecting the most desirable approach requires the examination of numerous

potential alternatives and the exercise of a breadth of technical knowledge and judgment

that only experienced systems engineers possess. This is often referred to as “ trade - off

analysis ” and forms one of the basic practices of systems engineering.

 Specialization: Interfaces

 A complex system that performs a number of different functions must of necessity be

confi gured in such a way that each major function is embodied in a separate component

capable of being specifi ed, developed, built, and tested as an individual entity. Such a

subdivision takes advantage of the expertise of organizations specializing in particular

types of products, and hence is capable of engineering and producing components of

the highest quality at the lowest cost. Chapter 3 describes the kind of functional and

physical building blocks that make up most modern systems.

 The immensity and diversity of engineering knowledge, which is still growing, has

made it necessary to divide the education and practice of engineering into a number of

specialties, such as mechanical, electrical, aeronautical, and so on. To acquire the neces-

sary depth of knowledge in any one of these fi elds, further specialization is needed,

into such subfi elds as robotics, digital design, and fl uid dynamics. Thus, engineering

specialization is a predominant condition in the fi eld of engineering and manufacturing

and must be recognized as a basic condition in the system development process.

 Each engineering specialty has developed a set of specialized tools and facilities

to aid in the design and manufacture of its associated products. Large and small com-

panies have organized around one or several engineering groups to develop and manu-

facture devices to meet the needs of the commercial market or of the system - oriented

industry. The development of interchangeable parts and automated assembly has been

one of the triumphs of the U.S. industry.

 The convenience of subdividing complex systems into individual building blocks

has a price: that of integrating these disparate parts into an effi cient, smoothly operating

system. Integration means that each building block fi ts perfectly with its neighbors and

with the external environment with which it comes into contact. The “ fi t ” must be not

only physical but also functional; that is, its design will both affect the design charac-

teristics and behavior of other elements, and will be affected by them, to produce the

exact response that the overall system is required to make to inputs from its environ-

ment. The physical fi t is accomplished at intercomponent boundaries called interfaces .

The functional relationships are called interactions .

 The task of analyzing, specifying, and validating the component interfaces with

each other and with the external environment is beyond the expertise of the individual

design specialists and is the province of the systems engineer. Chapter 3 discusses

further the importance and nature of this responsibility.

10 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 A direct consequence of the subdivision of systems into their building blocks is

the concept of modularity. Modularity is a measure of the degree of mutual indepen-

dence of the individual system components. An essential goal of systems engineering

is to achieve a high degree of modularity to make interfaces and interactions as simple

as possible for effi cient manufacture, system integration, test, operational maintenance,

reliability, and ease of in - service upgrading. The process of subdividing a system into

modular building blocks is called “ functional allocation ” and is another basic tool of

systems engineering.

 1.3 EXAMPLES OF SYSTEMS REQUIRING SYSTEMS ENGINEERING

 As noted at the beginning of this chapter, the generic defi nition of a system as a set of

 interrelated components working together as an integrated whole to achieve some

common objective would fi t most familiar home appliances. A washing machine con-

sists of a main clothes tub, an electric motor, an agitator, a pump, a timer, an inner

spinning tub, and various valves, sensors, and controls. It performs a sequence of timed

operations and auxiliary functions based on a schedule and operation mode set by the

operator. A refrigerator, microwave oven, dishwasher, vacuum cleaner, and radio all

perform a number of useful operations in a systematic manner. However, these appli-

ances involve only one or two engineering disciplines, and their design is based on

well - established technology. Thus, they fail the criterion of being complex , and we

would not consider the development of a new washer or refrigerator to involve much

systems engineering as we understand the term, although it would certainly require a

high order of reliability and cost engineering. Of course, home appliances increasingly

include clever automatic devices that use newly available microchips, but these are

usually self - contained add - ons and are not necessary to the main function of the

appliance.

 Since the development of new modern systems is strongly driven by technological

change, we shall add one more characteristic to a system requiring systems engineering,

namely, that some of its key elements use advanced technology. The characteristics of

a system whose development, test, and application require the practice of systems

engineering are that the system

 • is an engineered product and hence satisfi es a specifi ed need,

 • consists of diverse components that have intricate relationships with one another

and hence is multidisciplinary and relatively complex, and

 • uses advanced technology in ways that are central to the performance of its

primary functions and hence involves development risk and often a relatively

high cost.

 Henceforth, references in this text to an engineered or complex system (or in the

proper context, just system) will mean the type that has the three attributes noted above,

that is, is an engineered product, contains diverse components, and uses advanced

technology. These attributes are, of course, in addition to the generic defi nition stated

EXAMPLES OF SYSTEMS REQUIRING SYSTEMS ENGINEERING 11

earlier and serve to identify the systems of concern to the systems engineer as those

that require system design, development, integration, test, and evaluation. In Chapter

 2 , we explore the full spectrum of systems complexity and why the systems engineering

landscape presents a challenge for systems engineers.

 Examples of Complex Engineered Systems

 To illustrate the types of systems that fi t within the above defi nition, Tables 1.1 and 1.2

list 10 modern systems and their principal inputs, processes, and outputs.

 TABLE 1.1. Examples of Engineered Complex Systems: Signal and Data Systems

 System Inputs Process Outputs

 Weather satellite Images • Data storage

 • Transmission

 Encoded images

 Terminal air traffi c

control system

 Aircraft beacon

responses

 • Identifi cation

 • Tracking

 • Identity

 • Air tracks

 • Communications

 Track location system Cargo routing

requests

 • Map tracing

 • Communication

 • Routing information

 • Delivered cargo

 Airline reservation

system

 Travel requests Data management • Reservations

 • Tickets

 Clinical information

system

 • Patient ID

 • Test records

 • Diagnosis

 Information

management

 • Patient status

 • History

 • Treatment

 TABLE 1.2. Examples of Engineered Complex Systems: Material and Energy Systems

 System Inputs Process Outputs

 Passenger aircraft • Passengers

 • Fuel

 • Combustion

 • Thrust

 • Lift

 Transported

passengers

 Modern harvester

combine

 • Grain fi eld

 • Fuel

 • Cutting

 • Threshing

 Harvested grain

 Oil refi nery • Crude oil

 • Catalysts

 • Energy

 • Cracking

 • Separation

 • Blending

 • Gasoline

 • Oil products

 • Chemicals

 Auto assembly plant • Auto parts

 • Energy

 • Manipulation

 • Joining

 • Finishing

 Assembled auto

 Electric power plant • Fuel

 • Air

 • Power generation

 • Regulation

 • Electric AC power

 • Waste products

12 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 It has been noted that a system consists of a multiplicity of elements, some of

which may well themselves be complex and deserve to be considered a system in their

own right. For example, a telephone - switching substation can well be considered as a

system, with the telephone network considered as a “ system of systems. ” Such issues

will be discussed more fully in Chapters 2 and 4 , to the extent necessary for the under-

standing of systems engineering.

 Example: A Modern Automobile. A more simple and familiar system, which

still meets the criteria for an engineered system, is a fully equipped passenger automo-

bile. It can be considered as a lower limit to more complex vehicular systems. It is

made up of a large number of diverse components requiring the combination of several

different disciplines. To operate properly, the components must work together accu-

rately and effi ciently. Whereas the operating principles of automobiles are well estab-

lished, modern autos must be designed to operate effi ciently while at the same time

maintaining very close control of engine emissions, which requires sophisticated

sensors and computer - controlled mechanisms for injecting fuel and air. Antilock brakes

are another example of a fi nely tuned automatic automobile subsystem. Advanced

materials and computer technology are used to an increasing degree in passenger pro-

tection, cruise control, automated navigation and autonomous driving and parking. The

stringent requirements on cost, reliability, performance, comfort, safety, and a dozen

other parameters present a number of substantive systems engineering problems.

Accordingly, an automobile meets the defi nition established earlier for a system requir-

ing the application of systems engineering, and hence can serve as a useful example.

 An automobile is also an example of a large class of systems that require active

interaction (control) by a human operator. To some degree, all systems require such

interaction, but in this case, continuous control is required. In a very real sense, the

operator (driver) functions as an integral part of the overall automobile system, serving

as the steering feedback element that detects and corrects deviations of the car ’ s path

on the road. The design must therefore address as a critical constraint the inherent

sensing and reaction capabilities of the operator, in addition to a range of associated

human – machine interfaces such as the design and placement of controls and displays,

seat position, and so on. Also, while the passengers may not function as integral ele-

ments of the auto steering system, their associated interfaces (e.g., weight, seating and

viewing comfort, and safety) must be carefully addressed as part of the design process.

Nevertheless, since automobiles are developed and delivered without the human

element, for purposes of systems engineering, they may be addressed as systems in

their own right.

 1.4 SYSTEMS ENGINEERING AS A PROFESSION

 With the increasing prevalence of complex systems in modern society, and the essential

role of systems engineering in the development of systems, systems engineering as a

profession has become widely recognized. Its primary recognition has come in compa-

nies specializing in the development of large systems. A number of these have estab-

SYSTEMS ENGINEERING AS A PROFESSION 13

lished departments of systems engineering and have classifi ed those engaging in the

process as systems engineers. In addition, global challenges in health care, communica-

tions, environment, and many other complex areas require engineering systems methods

to develop viable solutions.

 To date, the slowness of recognition of systems engineering as a career is the fact

that it does not correspond to the traditional academic engineering disciplines.

Engineering disciplines are built on quantitative relationships, obeying established

physical laws, and measured properties of materials, energy, or information. Systems

engineering, on the other hand, deals mainly with problems for which there is incom-

plete knowledge, whose variables do not obey known equations, and where a balance

must be made among confl icting objectives involving incommensurate attributes. The

absence of a quantitative knowledge base previously inhibited the establishment of

systems engineering as a unique discipline.

 Despite those obstacles, the recognized need for systems engineering in industry

and government has spurred the establishment of a number of academic programs

offering master ’ s degrees and doctoral degrees in systems engineering. An increasing

number of universities are offering undergraduate degrees in systems engineering as

well.

 The recognition of systems engineering as a profession has led to the formation of

a professional society, the International Council on Systems Engineering (INCOSE),

one of whose primary objectives is the promotion of systems engineering, and the

recognition of systems engineering as a professional career.

 Career Choices

 Systems engineers are highly sought after because their skills complement those in

other fi elds and often serve as the “ glue ” to bring new ideas to fruition. However, career

choices and the related educational needs for those choices is complex, especially when

the role and responsibilities of a systems engineer is poorly understood.

 Four potential career directions are shown in Figure 1.1 : fi nancial, management,

technical, and systems engineering. There are varying degrees of overlap between them

despite the symmetry shown in the fi gure. The systems engineer focuses on the whole

system product, leading and working with many diverse technical team members, fol-

lowing the systems engineering development cycle, conducting studies of alternatives,

and managing the system interfaces. The systems engineer generally matures in the

fi eld after a technical undergraduate degree with work experience and a master of

science degree in systems engineering, with an increasing responsibility of successively

larger projects, eventually serving as the chief or lead systems engineer for a major

systems, or systems - of - systems development. Note the overlap and need to understand

the content and roles of the technical specialists and to coordinate with the program

manager (PM).

 The project manager or PM, often with a technical or business background, is

responsible for interfacing with the customer and for defi ning the work, developing

the plans, monitoring and controlling the project progress, and delivering the fi nished

output to the customer. The PM often learns from on the job training (OJT) with

14 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

projects of increasing size and importance, enhancing the toolset available with a master

of science degree in technical/program management. While not exclusively true,

the chief executive offi cer (CEO) frequently originates from the ranks of the organiza-

tion ’ s PMs.

 The fi nancial or business career path that ultimately could lead to a chief

fi nancial offi cer (CFO) position usually includes business undergraduate and master of

business administration (MBA) degrees. Individuals progress through their careers with

various horizontal and vertical moves, often with specialization in the fi eld. There is

an overlap in skill and knowledge with the PM in areas of contract and fi nance

management.

 Many early careers start with a technical undergraduate degree in engineering,

science or information technology. The technical specialist makes contributions as part

of a team in the area of their primary knowledge, honing skills and experience to

develop and test individual components or algorithms that are part of a larger system.

Contributions are made project to project over time, and recognition is gained from

innovative, timely, and quality workmanship. Technical specialists need to continue to

learn about their fi eld and to stay current in order to be employable compared to the

next generation of college graduates. Often advanced degrees (MS and PhDs) are

acquired to enhance knowledge, capability, and recognition, and job responsibilities

can lead to positions such as lead engineer, lead scientist, or chief technology offi cer

(CTO) in an organization. The broader minded or experienced specialist often considers

a career in systems engineering.

 Figure 1.1. Career opportunities and growth.

CFO

CFO

MBA

BSOne must keep fresh in the Developing fiscal skills and tools

CTO
BS MS OJT

Financial

technical field to avoid obsolescence through horizontal and lateral transitions

Program

manager

Systems

Technical

management
Technical

specialty

Interfacing with the customer

PhD MS BS Focus on

BS

MS

engineering
and managing WBS, budgets

and schedules

Increasing technical specialty whole systems

product

OJT Increasing

technical and

program

responsibility

Chief or lead systems engineer

Leading multidisciplinary teams

and developing diverse products

Copyright 2008 S.J. Seymour

SYSTEMS ENGINEERING AS A PROFESSION 15

 Orientation of Technical Professionals

 The special relationship of systems engineers with respect to technical disciplines can

be better understood when it is realized that technical people not only engage in widely

different professional specialties, but their intellectual objectives, interests, and atti-

tudes, which represent their technical orientations, can also be widely divergent. The

typical scientist is dedicated to understanding the nature and behavior of the physical

world. The scientist asks the questions “ Why? ” and “ How? ” The mathematician is

usually primarily concerned with deriving the logical consequences of a set of assump-

tions, which may be quite unrelated to the real world. The mathematician develops the

proposition “ If A, then B. ” Usually, the engineer is mainly concerned with creating a

useful product. The engineer exclaims “ Voila! ”

 These orientations are quite different from one another, which accounts for why

technical specialists are focused on their own aspects of science and technology.

However, in most professionals, those orientations are not absolute; in many cases, the

scientist may need some engineering to construct an apparatus, and the engineer may

need some mathematics to solve a control problem. So, in the general case, the orienta-

tion of a technical professional might be modeled by a sum of three orthogonal vectors,

each representing the extent of the individual ’ s orientation being in science, mathemat-

ics, or engineering.

 To represent the above model, it is convenient to use a diagram designed to show

the composition of a mixture of three components. Figure 1.2 a is such a diagram in

which the components are science, mathematics, and engineering. A point at each vertex

represents a mixture with 100% of the corresponding component. The composition of

the mixture marked by the small triangle in the fi gure is obtained by fi nding the per-

centage of each component by projecting a line parallel to the baseline opposite each

vertex to the scale radiating from the vertex. This process gives intercepts of 70%

science, 20% mathematics, and 10% engineering for the orientation marked by the

triangle.

 Because the curricula of technical disciplines tend to be concentrated in specialized

subjects, most students graduate with limited general knowledge. In Figure 1.2 b, the

circles representing the orientation of individual graduates are seen to be concentrated

in the corners, refl ecting their high degree of specialization.

 The tendency of professional people to polarize into diverse specialties and inter-

ests tends to be accentuated after graduation, as they seek to become recognized in their

respective fi elds. Most technical people resist becoming generalists for fear they will

lose or fail to achieve positions of professional leadership and the accompanying rec-

ognition. This specialization of professionals inhibits technical communication between

them; the language barrier is bad enough, but the differences in basic objectives and

methods of thought are even more serious. The solution of complex interdisciplinary

problems has had to depend on the relatively rare individuals who, for one reason or

another, after establishing themselves in their principal profession, have become inter-

ested and involved in solving system problems and have learned to work jointly with

specialists in various other fi elds.

16 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 Figure 1.2. (a) Technical orientation phase diagram. (b) Technical orientation population

density distribution.

(a)

(b)

SYSTEMS ENGINEERING AS A PROFESSION 17

 The occasional evolution of technical specialists into systems engineers is symbol-

ized in Figure 1.2 b by the arrows directed from the vertices toward the center. The

small black triangle corresponds to such an evolved individual whose orientation is

30% science, 50% engineering, and 20% mathematics, a balance that would be effective

in the type of problem solving with which a systems engineer is typically involved. It

is the few individuals who evolve into systems engineers or system architects who

become the technical leaders of system development programs.

 The Challenge of Systems Engineering

 An inhibiting factor in becoming a professional systems engineer is that it represents

a deviation from a chosen established discipline to a more diverse, complicated profes-

sional practice. It requires the investment of time and effort to gain experience and an

extensive broadening of the engineering base, as well as learning communication and

management skills, a much different orientation from the individual ’ s original profes-

sional choice.

 For the above reasons, an engineer considering a career in systems engineering

may come to the conclusion that the road is diffi cult. It is clear that a great deal must

be learned; that the educational experience in a traditional engineering discipline is

necessary; and that there are few tools and few quantitative relationships to help make

decisions. Instead, the issues are ambiguous and abstract, defying defi nitive solutions.

There may appear to be little opportunity for individual accomplishment and even less

for individual recognition. For a systems engineer, success is measured by the accom-

plishment of the development team, not necessarily the system team leader.

 What Then Is the Attraction of Systems Engineering?

 The answer may lie in the challenges of systems engineering rather than its direct

rewards. Systems engineers deal with the most important issues in the system develop-

ment process. They design the overall system architecture and the technical approach

and lead others in designing the components. They prioritize the system requirements

in conjunction with the customer to ensure that the different system attributes are

appropriately weighted when balancing the various technical efforts. They decide which

risks are worth undertaking and which are not, and how the former should be hedged

to ensure program success.

 It is the systems engineers who map out the course of the development program

that prescribes the type and timing of tests and simulations to be performed along the

way. They are the ultimate authorities on how the system performance and system

affordability goals may be achieved at the same time.

 When unanticipated problems arise in the development program, as they always

do, it is the systems engineers who decide how they may be solved. They determine

whether an entirely new approach to the problem is necessary, whether more intense

effort will accomplish the purpose, whether an entirely different part of the system can

18 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

be modifi ed to compensate for the problem, or whether the requirement at issue can

best be scaled back to relieve the problem.

 Systems engineers derive their ability to guide the system development not from

their position in the organization but from their superior knowledge of the system as a

whole, its operational objectives, how all its parts work together, and all the technical

factors that go into its development, as well as from their proven experience in steering

complex programs through a maze of diffi culties to a successful conclusion.

 Attributes and Motivations of Systems Engineers

 In order to identify candidates for systems engineering careers, it is useful to examine

the characteristics that may be useful to distinguish people with a talent for systems

engineering from those who are not likely to be interested or successful in that disci-

pline. Those likely to become talented systems engineers would be expected to have

done well in mathematics and science in college.

 A systems engineer will be required to work in a multidisciplinary environment

and to grasp the essentials of related disciplines. It is here that an aptitude for science

and engineering helps a great deal because it makes it much easier and less threatening

for individuals to learn the essentials of new disciplines. It is not so much that they

require in depth knowledge of higher mathematics, but rather, those who have a limited

mathematical background tend to lack confi dence in their ability to grasp subjects that

inherently contain mathematical concepts.

 A systems engineer should have a creative bent and must like to solve practical

problems. An interest in the job should be greater than an interest in career advance-

ment. Systems engineering is more of a challenge than a quick way to the top.

 The following characteristics are commonly found in successful systems engineers.

They

 1. enjoy learning new things and solving problems,

 2. like challenges,

 3. are skeptical of unproven assertions,

 4. are open - minded to new ideas,

 5. have a solid background in science and engineering,

 6. have demonstrated technical achievement in a specialty area,

 7. are knowledgeable in several engineering areas,

 8. pick up new ideas and information quickly, and

 9. have good interpersonal and communication skills.

 1.5 SYSTEMS ENGINEER CAREER DEVELOPMENT MODEL

 When one has the characteristics noted above and is attracted to become a systems

engineer, there are four more elements that need to be present in the work environment.

As shown in Figure 1.3 a, one should seek assignments to problems and tasks that are

SYSTEMS ENGINEER CAREER DEVELOPMENT MODEL 19

very challenging and are likely to expand technical domain knowledge and creative

juices. Whatever the work assignment, understanding the context of the work and

understanding the big picture is also essential. Systems engineers are expected to

manage many activities at the same time, being able to have broad perspectives but

able to delve deeply into to many subjects at once. This ability to multiplex is one that

takes time to develop. Finally, the systems engineer should not be intimidated by

complex problems since this is the expected work environment. It is clear these ele-

ments are not part of an educational program and must be gained through extended

professional work experience. This becomes the foundation for the systems engineering

career growth model.

 Employers seeking to develop systems engineers to competitively address more

challenging problems should provide key staff with relevant systems engineering

work experience, activities that require mature systems thinking, and opportunities

for systems engineering education and training. In Figure 1.3 b, it can be seen that

the experience can be achieved not only with challenging problems but also with

 Figure 1.3. (a) Systems engineering (SE) career elements derived from quality work experi-

ences. (b) Components of employer development of systems engineers.

(a)

(b)

20 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 Figure 1.4. “ T ” model for systems engineer career development. CE, chemical engineering;

ME, mechanical engineering; EE, electrical engineering; AE, aeronautical engineering; App

Math, applied mathematics.

Domain Breadth

Systems Program Lead

S stems

Program Lead

E
x
p

e
ri
e

n
c
e

M
e

n
to

ri
n

g

y

Engineering

Leader (>20 years)

Large Project Lead

Senior

Systems

Engineer (13–20 years)

Small Project Lead

Systems

Engineer (9–12 years)

DSci

PhD
Team

Participant (5–8 years)

MS

u
c
a
ti
o
n

Technical

Contributor (1–4 years)

O
p
e
ra

ti
o
n
a
l
a
n
d
 F

ie
ld

T
e

c
h

n
ic

a
l

D
e

p
th

CE ME EE AE
App

Math
…BS

Educational Disciplines

E
d
u

experienced mentors and real, practical exercises. While using systems thinking to

explore complex problem domains, staff should be encouraged to think creatively and

out of the box. Often, technically trained people rigidly follow the same processes and

tired ineffective solutions. Using lessons learned from past programs and case studies

creates opportunities for improvements. Formal training and use of systems engineering

tools further enhance employee preparation for tackling complex issues.

 Interests, attributes, and training, along with an appropriate environment, provide

the opportunity for individuals to mature into successful systems engineers. The com-

bination of these factors is captured in the “ T ” model for systems engineer career devel-

opment illustrated in Figure 1.4 . In the vertical, from bottom to top is the time progression

in a professional ’ s career path. After completion of a technical undergraduate degree,

shown along the bottom of the chart, an individual generally enters professional life as

a technical contributor to a larger effort. The effort is part of a project or program that

falls in a particular domain such as aerodynamics, biomedicine, combat systems, infor-

mation systems, or space exploration. Within a domain, there are several technical

competencies that are fundamental for systems to operate or to be developed.

 The T is formed by snapshots during a professional ’ s career that illustrates in the

horizontal part of the T the technical competencies at the time that were learned and

used to meet the responsibilities assigned at that point in their career. After an initial

THE POWER OF SYSTEMS ENGINEERING 21

experience in one or two technical domains as technical contributor, one progresses to

increasing responsibilities in a team setting and eventually to leading small technical

groups. After eight or more years, the professional has acquired both suffi cient technical

depth and technical domain depth to be considered a systems engineer. Additional

assignments lead to project and program systems engineering leadership and eventually

to being the senior systems engineer for a major development program that exercises

the full range of the technical competencies for the domain.

 In parallel with broadening and deepening technical experience and competencies,

the successful career path is augmented by assignments that involve operational fi eld

experiences, advanced education and training, and a strong mentoring program. In order

to obtain a good understanding of the environment where the system under development

will operate and to obtain fi rsthand knowledge of the system requirements, it is essential

for the early systems engineer professional to visit the “ fi eld site ” and operational loca-

tion. This approach is important to continue throughout one ’ s career. A wide variety of

systems engineering educational opportunities are available in both classroom and

online formats. As in most engineering disciplines where the student is not planning

on an academic career, the master of science is the terminal degree. Courses are usually

a combination of systems engineering and domain or concentration centric focused with

a thesis or capstone project for the students to demonstrate their knowledge and skills

on a practical systems problem. Large commercial companies also provide training in

systems engineering and systems architecting with examples and tools that are specifi c

to their organization and products. Finally, the pairing of a young professional with an

experienced systems engineer will enhance the learning process.

 1.6 THE POWER OF SYSTEMS ENGINEERING

 If power is measured by authority over people or money, then systems engineers would

appear to have little power as members of the system development team. However, if

power is measured by the infl uence over the design of the system and its major char-

acteristics, and over the success or failure of the system development, then systems

engineers can be more powerful than project managers. The sources of this power come

from their knowledge, skills, and attitude. Each of these is discussed in the following

paragraphs.

 The Power of Multidisciplinary Knowledge

 A major system development project is a veritable “ Tower of Babel. ” There are literally

dozens of specialists in different disciplines whose collective efforts are necessary to

develop and produce a successful new system. Each group of specialists has its own

language, making up for the imprecision of the English language with a rich set of

acronyms, which convey a very specifi c meaning but are unintelligible to those outside

the specialty. The languages, in turn, are backed up by knowledge bases, which the

specialists use to ply their trade. These knowledge bases contain descriptions of the

different materials peculiar to each discipline, as well as bodies of relationships, many

22 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

of them expressed in mathematical terms, that enable the specialists to compute various

characteristics of their components on the basis of design assumptions. These knowl-

edge bases are also foreign to those outside the discipline.

 Such a collection of multi - tongued participants could never succeed in collectively

developing a new system by themselves, just as the citizens of Babylon could never

build their tower. It is the systems engineers who provide the linkages that enable these

disparate groups to function as a team. The systems engineers accomplish this feat

through the power of multidisciplinary knowledge. This means that they are suffi ciently

literate in the different disciplines involved in their system that they can understand the

languages of the specialists, appreciate their problems, and are able to interpret the

necessary communications for their collective endeavor. Thus, they are in the same

position as a linguist in the midst of a multinational conference, with people speaking

in their native tongues. Through the ability to understand different languages comes

the capability to obtain cooperative effort from people who would otherwise never be

able to achieve a common objective. This capability enables systems engineers to

operate as leaders and troubleshooters, solving problems that no one else is capable of

solving. It truly amounts to a power that gives systems engineers a central and decisive

role to play in the development of a system.

 It is important to note that the depth of interdisciplinary knowledge, which is

required to interact effectively with specialists in a given fi eld, is a very small fraction

of the depth necessary to work effectively in that fi eld. The number of new acronyms

that one has to learn in a given technical area is nearer to a dozen of the more frequently

used ones than to a hundred. It also turns out that once one gets past the differences in

semantics, there are many common principles in different disciplines and many similar

relationships. For instance, the equation used in communications, connecting signal,

noise, antenna gain, receiver sensitivity, and other factors, is directly analogous to a

similar relationship in acoustics.

 These facts mean that a systems engineer does not need to spend a lifetime becom-

ing expert in associated disciplines, but rather can accumulate a working knowledge of

related fi elds through selected readings, and more particularly, discussion with col-

leagues knowledgeable in each fi eld. The important thing is to know which principles,

relationships, acronyms, and the like are important at the system level and which are

details. The power of multidisciplinary knowledge is so great that, to a systems engi-

neer, the effort required to accumulate it is well worth the learning time.

 The Power of Approximate Calculation

 The practice of systems engineering requires another talent besides multidisciplinary

knowledge. The ability to carry out “ back of the envelope ” calculations to obtain a

 “ sanity check ” on the result of a complex calculation or test is of inestimable value to

the systems engineer. In a few cases, this can be done intuitively on the basis of past

experience, but more frequently, it is necessary to make a rough estimate to ensure that

a gross omission or error has not been committed. Most successful systems engineers

have the ability, using fi rst principles, to apply basic relationships, such as the com-

munications equation or other simple calculation, to derive an order of magnitude result

SUMMARY 23

to serve as a check. This is particularly important if the results of the calculation or

experiment turn out very differently from what had been originally expected.

 When the sanity check does not confi rm the results of a simulation or experiment,

it is appropriate to go back to make a careful examination of the assumptions and

conditions on which the latter were based. As a matter of general experience, more

often than not, such examinations reveal an error in the conditions or assumptions under

which the simulation or experiment was conducted.

 The Power of Skeptical Positive Thinking

 The above seemingly contradictory title is meant to capture an important characteristic

of successful systems engineering. The skeptical part is important to temper the tradi-

tional optimism of the design specialist regarding the probability of success of a chosen

design approach. It is the driving force for the insistence of validation of the approach

selected at the earliest possible opportunity.

 The other dimension of skepticism, which is directly related to the characteristic

of positive thinking, refers to the reaction in the face of failure or apparent failure of a

selected technique or design approach. Many design specialists who encounter an

unexpected failure are plunged into despair. The systems engineer, on the other hand,

cannot afford the luxury of hand wringing but must have, fi rst of all, a healthy skepti-

cism of the conditions under which the unexpected failure occurred. Often, it is found

that these conditions did not properly test the system. When the test conditions are

shown to be valid, the systems engineer must set about fi nding ways to circumvent the

cause of failure. The conventional answer that the failure must require a new start along

a different path, which in turn will lead to major delays and increases in program cost,

is simply not acceptable unless heroic efforts to fi nd an alternative solution do not

succeed. This is where the power of multidisciplinary knowledge permits the systems

engineer to look for alternative solutions in other parts of the system, which may take

the stress off the particular component whose design proved to be faulty.

 The characteristic of positive thinking is absolutely necessary in both the systems

engineer and the project manager so that they are able to generate and sustain the

confi dence of the customer and of company management, as well as the members of

the design team. Without the “ can - do ” attitude, the esprit de corps and productivity of

the project organization is bound to suffer.

 1.7 SUMMARY

 What Is Systems Engineering?

 The function of systems engineering is to guide the engineering of complex systems.

And a system is defi ned as a set of interrelated components working together toward

a common objective. Furthermore, a complex engineered system (as defi ned in this

book) is (1) composed of a multiplicity of intricately interrelated diverse elements and

(2) requires systems engineering to lead its development.

24 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 Systems engineering differs from traditional disciplines in that (1) it is focused on

the system as a whole; (2) it is concerned with customer needs and operational environ-

ment; (3) it leads system conceptual design; and (4) it bridges traditional engineering

disciplines and gaps between specialties. Moreover, systems engineering is an integral

part of project management in that it plans and guides the engineering effort.

 Origins of Systems Engineering

 Modern systems engineering originated because advancing technology brought risks

and complexity with the growth of automation; competition required expert risk taking;

and specialization required bridging disciplines and interfaces.

 Examples of Systems Requiring Systems Engineering

 Examples of engineered complex systems include

 • weather satellites,

 • terminal air traffi c control,

 • truck location systems,

 • airline navigation systems,

 • clinical information systems,

 • passenger aircraft,

 • modern harvester combines,

 • oil refi neries,

 • auto assembly plants, and

 • electric power plants.

 Systems Engineering as a Profession

 Systems engineering is now recognized as a profession and has an increasing role in

government and industry. In fact, numerous graduate (and some undergraduate) degree

programs are now available across the country. And a formal, recognized organization

exists for systems engineering professionals: the INCOSE.

 Technical professionals have specifi c technical orientations — technical graduates

tend to be highly specialized. Only a few become interested in interdisciplinary

problems — it is these individuals who often become systems engineers.

 Systems Engineer Career Development Model

 The systems engineering profession is diffi cult but rewarding. A career in systems

engineering typically features technical satisfaction — fi nding the solution of abstract

and ambiguous problems — and recognition in the form of a pivotal program role.

Consequently, a successful systems engineer has the following traits and attributes:

PROBLEMS 25

 • a good problem solver and should welcome challenges;

 • well grounded technically, with broad interests;

 • analytical and systematic, but also creative; and

 • a superior communicator, with leadership skills.

 The “ T ” model represents the proper convergence of experience, education, men-

toring, and technical depth necessary to become a successful and infl uential systems

engineer.

 The Power of Systems Engineering

 Overall, systems engineering is a powerful discipline, requiring a multidisciplinary

knowledge, integrating diverse system elements. Systems engineers need to possess the

ability to perform approximate calculations of complex phenomena, thereby providing

sanity checks. And fi nally, they must have skeptical positive thinking as a prerequisite

to prudent risk taking.

 PROBLEMS

 1.1 Write a paragraph explaining what is meant by the statement “ Systems engi-

neering is focused on the system as a whole. ” State what characteristics of a

system you think this statement implies and how they apply to systems

engineering.

 1.2 Discuss the difference between engineered complex systems and complex

systems that are not engineered. Give three examples of the latter. Can you

think of systems engineering principles that can also be applied to nonengi-

neered complex systems?

 1.3 For each of the following areas, list and explain how at least two major tech-

nological advances/breakthroughs occurring since 1990 have radically changed

them. In each case, explain how the change was effected in

 (a) transportation,

 (b) communication,

 (c) fi nancial management,

 (d) manufacturing,

 (e) distribution and sales,

 (f) entertainment, and

 (g) medical care.

 1.4 What characteristics of an airplane would you attribute to the system as a

whole rather than to a collection of its parts? Explain why.

 1.5 List four pros and cons (two of each) of incorporating some of the latest tech-

nology into the development of a new complex system. Give a specifi c example

of each.

26 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

 1.6 What is meant by the term “ modularity? ” What characteristics does a modular

system possess? Give a specifi c example of a modular system and identify the

modules.

 1.7 The section Orientation of Technical Professionals uses three components to

describe this characteristic: science, mathematics, and engineering. Using this

model, describe what you think your orientation is in terms of x % science, y %

mathematics, and z % engineering. Note that your “ orientation ” does not

measure your knowledge or expertise, but rather your interest and method of

thought. Consider your relative interest in discovering new truths, fi nding new

relationships, or building new things and making them work. Also, try to

remember what your orientation was when you graduated from college, and

explain how and why it has changed.

 1.8 Systems engineers have been described as being an advocate for the whole

system. Given this statement, which stakeholders should the systems engineer

advocate the most? Obviously, there are many stakeholders and the systems

engineer must be concerned with most, if not all, of them. Therefore, rank your

answer in priority order — which stakeholder is the most important to the

systems engineer; which is second; which is third?

 FURTHER READING

 B. Blanchard . Systems Engineering Management , Third Edition . John Wiley & Sons , 2004 .

 B. Blanchard and W. Fabrycky . Systems Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapter 1.

 W. P. Chase . Management of System Engineering . John Wiley , 1974 , Chapter 1.

 H. Chesnut . System Engineering Methods . John Wiley , 1967 .

 H. Eisner . Essentials of Project and Systems Engineering Management , Second Edition . Wiley ,

 2002 , Chapter 1.

 C. D. Flagle , W. H. Huggins , and R. R. Roy . Operations Research and Systems Engineering .

 Johns Hopkins Press , 1960 , Part I.

 A. D. A. Hall . Methodology for Systems Engineering . Van Nostrand , 1962 , Chapters 1 – 3; Systems

Engineering Handbook . International Council on Systems Engineering , A Guide for System

Life Cycle Processes and Activities , Version 3.2, July 2010 .

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapters 1 and 11.

 E. Rechtin and M. W. Maier . The Art of Systems Architecting . CRC Press , 1997 .

 A. P. Sage . Systems Engineering . McGraw Hill , 1992 , Chapter 1.

 A. P. Sage and J. E. Armstrong , Jr. Introduction to Systems Engineering . Wiley , 2000 ,

Chapter 1.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1988 .

27

 2.1 SYSTEMS ENGINEERING VIEWPOINT

 The origins of the systems engineering section in Chapter 1 described how the emer-

gence of complex systems and the prevailing conditions of advancing technology,

competitive pressures, and specialization of engineering disciplines and organizations

required the development of a new profession: systems engineering. This profession

did not, until much later, bring with it a new academic discipline, but rather, it was

initially fi lled by engineers and scientists who acquired through experience the ability

to lead successfully complex system development programs. To do so, they had to

acquire a greater breadth of technical knowledge and, more importantly, to develop a

different way of thinking about engineering, which has been called “ the systems engi-

neering viewpoint. ”

 The essence of the systems engineering viewpoint is exactly what it implies —

 making the central objective the system as a whole and the success of its mission. This,

in turn, means the subordination of individual goals and attributes in favor of those of

the overall system. The systems engineer is always the advocate of the total system in

any contest with a subordinate objective.

 2

SYSTEMS ENGINEERING

LANDSCAPE

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

28 SYSTEMS ENGINEERING LANDSCAPE

 Successful Systems

 The principal focus of systems engineering, from the very start of a system develop-

ment, is the success of the system — in meeting its requirements and development

objectives, its successful operation in the fi eld, and a long, useful operating life. The

systems engineering viewpoint encompasses all of these objectives. It seeks to look

beyond the obvious and the immediate, to understand the user ’ s problems, and the

environmental conditions that the system will be subjected to during its operation. It

aims at the establishment of a technical approach that will both facilitate the system ’ s

operational maintenance and accommodate the eventual upgrading that will likely be

required at some point in the future. It attempts to anticipate developmental problems

and to resolve them as early as possible in the development cycle; where this is not

practicable, it establishes contingency plans for later implementation as required.

 Successful system development requires the use of a consistent, well - understood

systems engineering approach within the organization, which involves the exercise of

systematic and disciplined direction, with extensive planning, analysis, reviews, and

documentation. Just as important, however, is a side of systems engineering that is often

overlooked, namely, innovation. For a new complex system to compete successfully in

a climate of rapid technological change and to retain its edge for many years of useful

life, its key components must use some of the latest technological advances. These will

inevitably introduce risks, some known and others as yet unknown, which in turn will

entail a signifi cant development effort to bring each new design approach to maturity

and later to validate the use of these designs in system components. Selecting the most

promising technological approaches, assessing the associated risks, rejecting those for

which the risks outweigh the potential payoff, planning critical experiments, and decid-

ing on potential fallbacks are all primary responsibilities of systems engineering. Thus,

the systems engineering viewpoint includes a combination of risk taking and risk

mitigation.

 The “ Best ” System

 In characterizing the systems engineering viewpoint, two oft - stated maxims are “ the

best is the enemy of the good enough ” and “ systems engineering is the art of the good

enough. ” These statements may be misleading if they are interpreted to imply that

systems engineering means settling for second best. On the contrary, systems engineer-

ing does seek the best possible system, which, however, is often not the one that pro-

vides the best performance. The seeming inconsistency comes from what is referred to

by best. The popular maxims use the terms “ best ” and “ good enough ” to refer to system

performance, whereas systems engineering views performance as only one of several

critical attributes; equally important ones are affordability, timely availability to the

user, ease of maintenance, and adherence to an agreed - upon development completion

schedule. Thus, the systems engineer seeks the best balance of the critical system

attributes from the standpoint of the success of the development program and of the

value of the system to the user.

 The interdependence of performance and cost can be understood in terms of the

law of diminishing returns. Assuming a particular technical approach to the achieve-

SYSTEMS ENGINEERING VIEWPOINT 29

ment of a given performance attribute of a system under development, Figure 2.1 a is

a plot of a typical variation in the level of performance of a hypothetical system com-

ponent as a function of the cost of the expended development effort. The upper hori-

zontal line represents the theoretical limit in performance inherent in the selected

technical approach. A more sophisticated approach might produce a higher limit, but

at a higher cost. The dashed horizontal lines represent the minimum acceptable and

desirable performance levels.

 The curve of Figure 2.1 a originates at C 0 , which represents the cost of just achiev-

ing any signifi cant performance. The slope is steep at fi rst, becoming less steep as the

performance asymptotically approaches the theoretical limit. This decreasing slope,

 Figure 2.1. (a) Performance versus cost. (b) Performance/cost versus cost.

80

90

100

Desired

60

70
Minimum Acceptable

30

40

50

P
e
rf

o
rm

a
n
c
e

10

20

0

Cost
C0

3

Minimum Acceptable Performance

Desired Performance

2

1

P
e
rf

o
rm

a
n
c
e
 /
 C

o
s
t

0

Cost
C0

(a)

(b)

30 SYSTEMS ENGINEERING LANDSCAPE

which is a measure of the incremental gain in performance with an increment of added

cost, illustrates the law of diminishing returns that applies to virtually all developmental

activities.

 An example of the above general principle is the development of an automobile

with a higher maximum speed. A direct approach to such a change would be to use an

engine that generates greater power. Such an engine would normally be larger, weigh

more, and use gas less effi ciently. Also, an increase in speed will result in greater air

drag, which would require a disproportionately large increase in engine power to over-

come. If it was required to maintain fuel economy and to retain vehicle size and weight

as nearly as possible, it would be necessary to consider using or developing a more

advanced engine, improving body streamlining, using special lightweight materials, and

otherwise seeking to offset the undesirable side effects of increasing vehicle speed. All

of the above factors would escalate the cost of the modifi ed automobile, with the incre-

mental costs increasing as the ultimate limits of the several technical approaches are

approached. It is obvious, therefore, that a balance must be struck well short of the

ultimate limit of any performance attribute.

 An approach to establishing such a balance is illustrated in Figure 2.1 b. This fi gure

plots performance divided by cost against cost (i.e., y / x vs. x from Fig. 2.1 a). This

performance - to - cost ratio is equivalent to the concept of cost - effectiveness. It is seen

that this curve has a maximum, beyond which the gain in effectiveness diminishes. This

shows that the performance of the best overall system is likely to be close to that where

the performance/cost ratio peaks, provided this point is signifi cantly above the minimum

acceptable performance.

 A Balanced System

 One of the dictionary defi nitions of the word “ balance ” that is especially appropriate

to system design is “ a harmonious or satisfying arrangement or proportion of parts or

elements, as in a design or a composition. ” An essential function of systems engineering

is to bring about a balance among the various components of the system, which, it was

noted earlier, are designed by engineering specialists, each intent on optimizing the

characteristics of a particular component. This is often a daunting task, as illustrated in

Figure 2.2 . The fi gure is an artist ’ s conception of what a guided missile might look like

if it were designed by a specialist in one or another guided missile component technol-

ogy. While the cartoons may seem fanciful, they refl ect a basic truth, that is, that design

specialists will seek to optimize the particular aspect of a system that they best under-

stand and appreciate. In general, it is to be expected that, while the design specialist

does understand that the system is a group of components that in combination provide

a specifi c set of capabilities, during system development, the specialist ’ s attention is

necessarily focused on those issues that most directly affect his or her own area of

technical expertise and assigned responsibilities.

 Conversely, the systems engineer must always focus on the system as a whole,

while addressing design specialty issues only in so far as they may affect overall system

performance, developmental risk, cost, or long - term system viability. In short, it is the

responsibility of the systems engineer to guide the development so that each of the

SYSTEMS ENGINEERING VIEWPOINT 31

components receives the proper balance of attention and resources while achieving the

capabilities that are optimal for the best overall system behavior. This often involves

serving as an “ honest technical broker ” who guides the establishment of technical

design compromises in order to achieve a workable interface between key system

elements.

 A Balanced Viewpoint

 A system view thus connotes a focus on balance, ensuring that no system attribute is

allowed to grow at the expense of an equally important or more important attribute, for

example, greater performance at the expense of acceptable cost, high speed at the

expense of adequate range, or high throughput at the expense of excessive errors. Since

virtually all critical attributes are interdependent, a proper balance must be struck in

essentially all system design decisions. These characteristics are typically incommen-

surable, as in the above examples, so that the judgment of how they should be balanced

must come from a deep understanding of how the system works. It is such judgment

that systems engineers have to exercise every day, and they must be able to think at a

level that encompasses all of the system characteristics.

 The viewpoint of the systems engineer calls for a different combination of skills

and areas of knowledge than those of a design specialist or a manager. Figure 2.3 is

 Figure 2.2. The ideal missile design from the viewpoint of various specialists.

FEEL

FEEL

Aerodynamics

Structures

Controls Analysis

Guidance

Production

Propulsion

32 SYSTEMS ENGINEERING LANDSCAPE

intended to illustrate the general nature of these differences. Using the three dimensions

to represent technical depth, technical breadth, and management depth, respectively, it

is seen that the design specialist may have limited managerial skills but has a deep

understanding in one or a few related areas of technology. Similarly, a project manager

needs to have little depth in any particular technical discipline but must have consider-

able breadth and capability to manage people and technical effort. A systems engineer,

on the other hand, requires signifi cant capabilities in all three components, representing

the balance needed to span the needs of a total system effort. In that sense, the systems

engineer operates in more dimensions than do his or her coworkers.

 2.2 PERSPECTIVES OF SYSTEMS ENGINEERING

 While the fi eld of systems engineering has matured rapidly in the past few decades,

there will continue to exist a variety of differing perspectives as more is learned about

the potential and the utility of systems approaches to solve the increasing complex

problems around the world. The growth of systems engineering is evidenced in the

number of academic programs and graduates in the area. Some surveys note that

systems engineering is a favored and potentially excellent career path. Employers in

all sectors, private and government, seek experienced systems engineering candidates.

Experts in workforce development look for ways to encourage more secondary school

 Figure 2.3. The dimensions of design, systems engineering, and project planning and control.

Project planning
and control

Management
expertise

Technical breadth

Technical
depth

Systems engineering

Component design

PERSPECTIVES OF SYSTEMS ENGINEERING 33

and college students to pursue degrees in science, technology, engineering, and math-

ematics (STEM). With experience and additional knowledge, these students would

mature into capable systems engineers.

 Since it often requires professional experience in addition to education to tackle

the most complex and challenging problems, developing a systems mindset — to “ think

like a systems engineer ” — is a high priority at any stage of life. A perspective that

relates a progression in the maturity of thinking includes concepts of systems thinking,

systems engineering, and engineering systems (see Table 2.1) An approach to under-

standing the environment, process, and policies of a systems problem requires one to

use systems thinking. This approach to a problem examines the domain and scope of

the problem and defi nes it in quantitative terms. One looks at the parameters that help

defi ne the problem and then, through research and surveys, develops observations about

the environment the problem exists in and fi nally generates options that could address

the problem. This approach would be appropriate for use in secondary schools to have

young students gain an appreciation of the “ big picture ” as they learn fundamental

science and engineering skills.

 The systems engineering approach discussed in this book and introduced in Chapter

 1 focuses on the products and solutions of a problem, with the intent to develop or

build a system to address the problem. The approach tends to be more technical, seeking

from potential future users and developers of the solution system, what are the top level

needs, requirements, and concepts of operations, before conducting a functional and

physical design, development of design specifi cations, production, and testing of a

system solution for the problem. Attention is given to the subsystem interfaces and the

need for viable and tangible results. The approach and practical end could be applied

to many degrees of complexity, but there is an expectation of a successful fi eld opera-

tion of a product. The proven reliability of the systems engineering approach for product

development is evident in many commercial and military sectors.

 A broader and robust perspective to systems approaches to solve very extensive

complex engineering problems by integrating engineering, management, and social

science approaches using advanced modeling methodologies is termed “ engineering

 TABLE 2.1. Comparison of Systems Perspectives

 Systems thinking Systems engineering Engineering systems

 Focus on process Focus on whole product Focus on both process and

product

 Consideration of issues Solve complex technical

problems

 Solve complex interdisciplinary

technical, social, and

management issues

 Evaluation of multiple

factors and infl uences

 Develop and test tangible

system solutions

 Infl uence policy, processes and

use systems engineering to

develop system solutions

 Inclusion of patterns

relationships, and

common understanding

 Need to meet requirements,

measure outcomes and

solve problems

 Integrate human and technical

domain dynamics and

approaches

34 SYSTEMS ENGINEERING LANDSCAPE

systems. ” The intent is to tackle some of society ’ s grandest challenges with signifi cant

global impact by investigating ways in which engineering systems behave and interact

with one another including social, economic, and environmental factors. This approach

encompasses engineering, social science, and management processes without the

implied rigidity of systems engineering. Hence, applications to critical infrastructure,

health care, energy, environment, information security, and other global issues are likely

areas of attention.

 Much like the proverbial blind men examining the elephant, the fi eld of systems

engineering can be considered in terms of various domains and application areas where

it is applied. Based on the background of the individuals and on the needs of the systems

problems to be solved, the systems environment can be discussed in terms of the fi elds

and technologies that are used in the solution sets. Another perspective can be taken

from the methodologies and approaches taken to solve problems and to develop complex

systems. In any mature discipline, there exist for systems engineering a number of

processes, standards, guidelines, and software tools to organize and enhance the effec-

tiveness of the systems engineering professional. The International Council of Systems

Engineering maintains current information and reviews in these areas. These perspec-

tives will be discussed in the following sections.

 2.3 SYSTEMS DOMAINS

 With a broad view of system development, it can be seen that the traditional approach

to systems now encompasses a growing domain breadth. And much like a Rubik ’ s

Cube, the domain faces are now completely integrated into the systems engineer ’ s

perspective of the “ big (but complex) picture. ” The systems domain faces shown in

Figure 2.4 include not only the engineering, technical, and management domains but

 Figure 2.4. Systems engineering domains.

Management
Engineering

Political/Legal

Sys
te

m
s

Engin
eerin

g

Technical

Social

Human

SYSTEMS ENGINEERING FIELDS 35

also social, political/legal, and human domains. These latter softer dimensions require

additional attention and research to fully understand their impact and utility in system

development, especially as we move to areas at the enterprise and global family of

systems levels of complexity.

 Particularly interesting domains are those that involve scale, such as nano - and

microsystems, or systems that operate (often autonomously) in extreme environments,

such as deep undersea or outer space. Much like physical laws change with scale, does

the systems engineering approach need to change? Should systems engineering prac-

tices evolve to address the needs for submersibles, planetary explorers, or intravascular

robotic systems?

 2.4 SYSTEMS ENGINEERING FIELDS

 Since systems engineering has a strong connection bridging the traditional engineering

disciplines like electrical, mechanical, aerodynamic, and civil engineering among

others, it should be expected that engineering specialists look at systems engineering

with a perspective more strongly from their engineering discipline. Similarly, since

systems engineering is a guide to design of systems often exercised in the context of a

project or program, then functional, project, and senior managers will consider the

management elements of planning and control to be key aspects of system development.

The management support functions that are vital to systems engineering success such

as quality management, human resource management, and fi nancial management can

all claim an integral role and perspective to the system development.

 These perceptions are illustrated in Figure 2.5 , and additional fi elds that represent

a few of the traditional areas associated with systems engineering methods and practices

are also shown. An example is the area of operations research whose view of systems

engineering includes provision of a structure that will lead to a quantitative analysis of

 Figure 2.5. Examples of systems engineering fi elds.

Management

Systems

Engineering

Project Management

Modeling and

Simulation

Control Systems

36 SYSTEMS ENGINEERING LANDSCAPE

alternatives and optimal decisions. The design of systems also has a contingency of

professionals who focus on the structures and architectures. In diverse areas such as

manufacturing to autonomous systems, another interpretation of systems engineering

comes from engineers who develop control systems, who lean heavily on the systems

engineering principles that focus on management of interfaces and feedback systems.

Finally, the overlap of elements of modeling and simulation with systems engineering

provides a perspective that is integral to a cost - effective examination of systems options

to meet the requirements and needs of the users. As systems engineering matures, there

will be an increasing number of perspectives from varying fi elds that adopt it as their

own.

 2.5 SYSTEMS ENGINEERNG APPROACHES

 Systems engineering can also be viewed in terms of the depictions of the sequence of

processes and methodologies used in the execution of the design, development, integra-

tion, and testing of a system (see Figure 2.6 for examples). Early graphics were linear

 Figure 2.6. Examples of systems engineering approaches.

Regional

Architecture(s)

Life Cycle Processes

Feasibility

Study/Concept

Exploration

Operations

and

Maintenance

Changes

and

Upgrades

Retirement/

Replacement

Concept of

Operations

System Validation Plan

System Validation Plan

(System Acceptance)

Unit/Device

Test Plan

Subsustem

Verfication Plan
(Subsystem Acceptance)

D
e
co

m
p
o
sitio

n
 a

n
d
 D

e
fin

itio
n

In
te

g
ra

tio
n
 a

n
d
 R

e
co

m
p
o
si

tio
n

System

Validation

System

Requirements

System

Verification and

Deployment

High-Level

Design

Subsystem

Verification

Detailed

Design

Unit/Device

Testing

Document/Approval

Time Line

Software/Hardware

Development

Field Installation

Implementation

Development Processes

Concept Engineering

Deficiencies Specifications Specifications
Documentation

Development

Development
Postdevelopment

Technological Defined System Production Installed Operational

Opportunities

Concept System

System

Operation and
Operational System Functional Production

Maintenance

Previous

Phase

Objectives

Requirements

Analysis
(Problem Definition) Requirements

Functional

Definition
(Functional Analysis

and Allocation)
Functions

Physical

Definition
(Synthesis, Physical

Analysis and Allocation)

Design

Validation
(Verification,

System

Model

Evaluation)

Next

Phase

Validated

System

Model

Need

SYSTEMS ENGINEERING ACTIVITIES AND PRODUCTS 37

in the process fl ow with sequences of steps that are often iterative to show the logical

means to achieve consistency and viability. Small variations are shown in the waterfall

charts that provide added means to illustrate interfaces and broader interactions. Many

of the steps that are repeated and dependent on each other lead to the spiral or loop

conceptual diagrams. The popular systems engineering “ V ” diagram provides a view

of life cycle development with explicit relationships shown between requirements and

systems defi nition and the developed and validated product.

 A broader perspective shown in Figure 2.7 provides a full life cycle view and

includes the management activities in each phase of development. This perspective

illustrates the close relationship between management planning and control and the

systems engineering process.

 2.6 SYSTEMS ENGINEERING ACTIVITIES AND PRODUCTS

 Sometimes followed as a road map, the life cycle development of a system can be

associated with a number of systems engineering and project management products or

outputs that are listed in Table 2.2 . The variety and breadth of these products refl ect

 Figure 2.7. Life cycle systems engineering view. PERT, Program Evaluation and Review

Technique; PDR, Preliminary Design Review; CDR, Critical Design Review.

Users–Operators

Market Pull
Pricing/Estimating

Contracting

Organizational Structures

Project Manager Attributes

Authorities

Customer

Requirements
Market Assessment

• Proposal

• Statement of Work

• Product Definition

Discussions

Collaboration

Form Project Office

Start Work

Win !

• Concept

• New Product Idea

• Technology Push

Preliminary System/

Product Concept

Definition

Functional/System

Block Diagram

Brainstorming

War Rooms Work

Breakdown

Structure

(WBS)

Risk

Assessment

Plan

Needs Analysis

Budget and Schedules

(PERT and Gantt Charts)Concept and

Program Definition

Planning

Systems

Integration and

Verification

• Task Work Orders

• Work Authorizations
Develop Prototype

Specs

Design
Production Quantities

Verification

System Test and

Evaluation
Evaluate Prototype

(“Beta Tests”)

• Linear Responsibility Charts

• Critical path Analysis

PDR

Subsystem

Fabrication

CDR

Direction, Monitor, Control

Quality
Management

() p y

Design/Technology Validation/Engineering DevelopmentProduction/Manufacturing

Config.

Manage.

Field Test and

Evaluation

Operations and

Maintenance

T/E and Operational Support

Delivery

Install/

Acceptance

• Project Closeout

• Follow-on?

Logistics

Warehousing

Sales

System Use

Concept Exploration

38 SYSTEMS ENGINEERING LANDSCAPE

the challenges early professionals have in understanding the full utility of engaging in

systems engineering. Throughout this book, these products will be introduced and

discussed in some detail to help guide the systems engineer in product development.

 2.7 SUMMARY

 Systems Engineering Viewpoint

 The systems engineering viewpoint is focused on producing a successful system that

meets requirements and development objectives, is successful in its operation in the

fi eld, and achieves its desired operating life. In order to achieve this defi nition of

success, the systems engineer must balance superior performance with affordability and

schedule constraints. In fact, many aspects of systems engineering involve achieving a

balance among confl icting objectives. For example, the systems engineering typically

must apply new technology to the development of a new system while managing the

inherent risks that new technology poses.

 Throughout the development period, the systems engineer focuses his or her per-

spective on the total system, making decisions based on the impacts and capabilities

of the system as a whole. Often, this is accomplished by bridging multiple disciplines

and components to ensure a total solution. Specialized design is one dimensional in

that it has great technical depth, but little technical breadth and little management

expertise. Planning and control is two dimensional: it has great management expertise,

but moderate technical breadth and small technical depth. But systems engineering is

three dimensional: it has great technical breadth, as well as moderate technical depth

and management expertise.

 Perspectives of Systems Engineering

 A spectrum of views exist in understanding systems engineering, from a general

systems thinking approach to problems, to the developmental process approach for

systems engineering, to the broad perspective of engineering systems.

 TABLE 2.2. Systems Engineering Activities and Documents

 Context diagrams Opportunity assessments Prototype integration

 Problem defi nition Candidate concepts Prototype test and evaluation

 User/owner identifi cation Risk analysis/management plan Production/operations plan

 User needs Systems functions Operational tests

 Concept of operations Physical allocation Verifi cation and validation

 Scenarios Component interfaces Field support/maintenance

 Use cases Traceability System/product effectiveness

 Requirements Trade studies Upgrade/revise

 Technology readiness Component development & test Disposal/reuse

PROBLEMS 39

 Systems Domains

 The engineering systems view encompasses not only traditional engineering

disciplines but also technical and management domains and social, political/legal,

and human domains. Scales at the extremes are of particular interest due to their

complexity.

 Systems Engineering Fields

 Systems engineering encompasses or overlaps with many related fi elds including engi-

neering, management, operations analysis, architectures, modeling and simulation, and

many more.

 Systems Engineering Approaches

 As the fi eld of systems engineering matures and is used for many applications, several

process models have been developed including the linear, V, spiral, and waterfall

models.

 Systems Engineering Activities and Products

 A full systems life cycle view illustrated the close relationship with management

process and leads to a large, diverse set of activities and products.

 PROBLEMS

 2.1 Figure 2.1 illustrates the law of diminishing returns in seeking the optimum

system (or component) performance and hence the need to balance the perfor-

mance against the cost. Give examples of two pairs of characteristics other

than performance versus cost where optimizing one frequently competes with

the other, and briefl y explain why they do.

 2.2 Explain the advantages and disadvantages of introducing system concepts to

secondary students in order to encourage them to pursue STEM careers.

 2.3 Select a very large complex system of system example and explain how the

engineering systems approach could provide useful solutions that would have

wide acceptance across many communities.

 2.4 Referring to Figure 2.5 , identify and justify other disciplines that overlap with

systems engineering and give examples how those disciplines contribute to

solving complex systems problems.

 2.5 Discuss the use of different systems engineering process models in terms of

their optimal use for various system developments. Is one model signifi cantly

better than another?

40 SYSTEMS ENGINEERING LANDSCAPE

 FURTHER READING

 B. Blanchard . Systems Engineering Management , Third Edition . John Wiley & Sons , 2004 .

 H. Eisner . Essentials of Project and Systems Engineering Management , Second Edition . John

Wiley & Sons , 2002 .

41

 3.1 SYSTEM BUILDING BLOCKS AND INTERFACES

 The need for a systems engineer to attain a broad knowledge of the several interacting

disciplines involved in the development of a complex system raises the question of how

deep that understanding needs to be. Clearly, it cannot be as deep as the knowledge

possessed by the specialists in these areas. Yet it must be suffi cient to recognize such

factors as program risks, technological performance limits, and interfacing require-

ments, and to make trade - off analyses among design alternatives.

 Obviously, the answers depend on specifi c cases. However, it is possible to provide

an important insight by examining the structural hierarchy of modern systems. Such an

examination reveals the existence of identifi able types of the building blocks that make

up the large majority of systems and represent the lower working level of technical

understanding that the systems engineer must have in order to do the job. This is the

level at which technical trade - offs affecting system capabilities must be worked out and

at which interface confl icts must be resolved in order to achieve a balanced design

across the entire system. The nature of these building blocks in their context as funda-

mental system elements and their interfaces and interactions are discussed in the

ensuing sections.

 3

STRUCTURE OF

COMPLEX SYSTEMS

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

42 STRUCTURE OF COMPLEX SYSTEMS

 3.2 HIERARCHY OF COMPLEX SYSTEMS

 In order to understand the scope of systems engineering and what a systems engineer

must learn to carry out the responsibilities involved in guiding the engineering of a

complex system, it is necessary to defi ne the general scope and structure of that system.

Yet, the defi nition of a “ system ” is inherently applicable to different levels of aggrega-

tion of complex interacting elements. For example, a telephone substation, with its

distributed lines to the area that it serves, can be properly called a system. Hotel and

offi ce building switchboards, with their local lines, may be called “ subsystems, ” and

the telephone instruments may be called “ components ” of the system. At the same time,

the substation may be regarded as a subsystem of the city telephone system and that,

in turn, to be a subsystem of the national telephone system.

 In another example, a commercial airliner certainly qualifi es to be called a system,

with its airframe, engines, controls, and so on, being subsystems. The airliner may also

be called a subsystem of the air transportation system, which consists of the air terminal,

air traffi c control, and other elements of the infrastructure in which the airliner operates.

Thus, it is often said that every system is a subsystem of a higher - level system, and

every subsystem may itself be regarded as a system.

 The above relationships have given rise to terms such as “ supersystems ” to refer

to overarching systems like the wide - area telephone system and the air transportation

system. In networked military systems, the term “ system of systems ” (SoS) has been

coined to describe integrated distributed sensor and weapon systems. This nomenclature

has migrated to the commercial world as well; however, the use and defi nition of the

term varies by area and specialty.

 Model of a Complex System

 While learning the fundamentals of systems engineering, this ambiguity of the scope

of a system may be confusing to some students. Therefore, for the purpose of illustrat-

ing the typical scope of a systems engineer ’ s responsibilities, it is useful to create a

more specifi c model of a typical system. As will be described later, the technique of

modeling is one of the basic tools of systems engineering, especially in circumstances

where unambiguous and quantitative facts are not readily available. In the present

instance, this technique will be used to construct a model of a typical complex system

in terms of its constituent parts. The purpose of this model is to defi ne a relatively

simple and readily understood system architecture, which can serve as a point of refer-

ence for discussing the process of developing a new system and the role of systems

engineering throughout the process. While the scope of this model does not extend to

that of supersystems or an SoS, it is representative of the majority of systems that are

developed by an integrated acquisition process, such as a new aircraft or a terminal air

traffi c control system.

 By their nature, complex systems have a hierarchical structure in that they consist

of a number of major interacting elements, generally called subsystems , which them-

selves are composed of more simple functional entities, and so on down to primitive

elements such as gears, transformers, or light bulbs, usually referred to as parts .

HIERARCHY OF COMPLEX SYSTEMS 43

Commonly used terminology for the various architectural levels in the structure of

systems is confi ned to the generic system and subsystem designation for the uppermost

levels and parts for the lowest.

 For reasons that will become evident later in this section, the system model as

defi ned in this book will utilize two additional intermediate levels, which will be called

 components and subcomponents . While some models use one or two more intermediate

levels in their representation of systems, these fi ve have proven to be suffi cient for the

intended purpose.

 Defi nition of System Levels. Table 3.1 illustrates the above characterization

of the hierarchical structure of the system model. In this table, four representative

system types employing advanced technology are listed horizontally, and successive

levels of subdivisions within each system are arranged vertically.

 In describing the various levels in the system hierarchy depicted in the fi gure, it

was noted previously that the term system as commonly used does not correspond to a

specifi c level of aggregation or complexity, it being understood that systems may serve

as parts of more complex aggregates or supersystems, and subsystems may themselves

be thought of as systems. For the purpose of the ensuing discussion, this ambiguity will

be avoided by limiting the use of the term system to those entities that

 1. possess the properties of an engineered system and

 2. perform a signifi cant useful service with only the aid of human operators

and standard infrastructures (e.g., power grid, highways, fueling stations, and

 TABLE 3.1. System Design Hierarchy

 Systems

 Communications

systems

 Information

systems

 Material processing

systems

 Aerospace systems

 Subsystems

 Signal networks Databases Material preparation Engines

 Components

 Signal

receivers

 Data displays Database

programs

 Power transfer Material

reactors

 Thrust

generators

 Subcomponents

 Signal

amplifi ers

 Cathode ray

tubes

 Library

utilities

 Gear trains Reactive

valves

 Rocket

nozzles

 Parts

 Transformer LED Algorithms Gears Couplings Seals

44 STRUCTURE OF COMPLEX SYSTEMS

communication lines). According to the above conditions, a passenger aircraft

would fi t the defi nition of a system, as would a personal computer with its

normal peripherals of input and output keyboard, display, and so on.

 The fi rst subordinate level in the system hierarchy defi ned in Table 3.1 is appro-

priately called a subsystem and has the conventional connotation of being a major

portion of the system that performs a closely related subset of the overall system func-

tions. Each subsystem may in itself be quite complex, having many of the properties

of a system except the ability to perform a useful function in the absence of its com-

panion subsystems. Each subsystem typically involves several technical disciplines

(e.g., electronic and mechanical).

 The term component is commonly used to refer to a range of mostly lower - level

entities, but in this book, the term component will be reserved to refer to the middle

level of system elements described above. Components will often be found to corre-

spond to confi guration items (CIs) in government system acquisition notation.

 The level below the component building blocks is composed of entities, referred

to as subcomponents, which perform elementary functions and are composed of several

parts. The lowest level, composed of parts, represents elements that perform no signifi -

cant function except in combination with other parts. The great majority of parts come

in standard sizes and types and can usually be obtained commercially.

 Domains of the Systems Engineer and Design Specialist

 From the above discussion, the hierarchical structure of engineered systems can be used

to defi ne the respective knowledge domains of both the systems engineer and the design

specialist. The intermediate system components occupy a central position in the system

development process, representing elements that are, for the most part, products fi tting

within the domain of industrial design specialists, who can adapt them to a particular

application based on a given set of specifi cations. The proper specifi cation of compo-

nents, especially to defi ne performance and to ensure compatible interfaces, is the

particular task of systems engineering. This means that the systems engineer ’ s knowl-

edge must extend to the understanding of the key characteristics of components from

which the system may be constituted, largely through dialogue and interaction with the

design specialists, so that he or she may select the most appropriate types and specify

their performance and interfaces with other components.

 The respective knowledge domains of the systems engineer and the design special-

ist are shown in Figure 3.1 using the system hierarchy defi ned above. It shows that the

systems engineer ’ s knowledge needs to extend from the highest level, the system and

its environment, down through the middle level of primary system building blocks or

components. At the same time, the design specialist ’ s knowledge needs to extend from

the lowest level of parts up through the components level, at which point their two

knowledge domains “ overlap. ” This is the level at which the systems engineer and the

design specialist must communicate effectively, identify and discuss technical prob-

lems, and negotiate workable solutions that will not jeopardize either the system design

process or the capabilities of the system as a whole.

SYSTEM BUILDING BLOCKS 45

 The horizontal boundaries of these domains are deliberately shown as continuity

lines in the fi gure to indicate that they should be extended as necessary to refl ect the

composition of the particular system. When a subcomponent or part happens to be

critical to the system ’ s operation (e.g., the ill - fated seal in the space shuttle Challenger ’ s

booster rocket), the systems engineer should be prepared to learn enough about its

behavior to identify its potential impact on the system as a whole. This is frequently

the case in high - performance mechanical and thermomechanical devices, such as tur-

bines and compressors. Conversely, when the specifi ed function of a particular compo-

nent imposes unusual demands on its design, the design specialist should call on the

systems engineer to reexamine the system - level assumptions underlying this particular

requirement.

 3.3 SYSTEM BUILDING BLOCKS

 Using this system model provides systems engineers with a simple method of partition-

ing a system along a functional and physical dimension: understanding the functional

aspects of the system, then partitioning the system into a physical hierarchy. Each

dimensional description of the system can then be decomposed into elements. Below

is the description of these two categories of building blocks and a recommended set of

elements used in defi ning the components of each.

 Figure 3.1. Knowledge domains of the systems engineer and the design specialist.

Systems
Systems

engineer …

Subsystems

Components

Signals Data Materials Energy …

Electro-

optical

Software Electromechanical Mechanical Thermomechanical

Subcomponents

Electronic …

Parts

Design

specialist …

46 STRUCTURE OF COMPLEX SYSTEMS

 Functional Building Blocks: Functional Elements

 The three basic entities that constitute the media on which systems operate are

 1. Information: the content of all knowledge and communication,

 2. Material: the substance of all physical objects, and

 3. Energy: energizes the operation and movement of all active system

components.

 Because all system functions involve a purposeful alteration in some characteristic

of one or more of these entities, the latter constitutes a natural basis for classifying the

principal system functional units. Since information elements are more than twice as

populous as the material and energy entities among system functions, it is convenient

to subdivide them into two classes: (1) elements dealing with propagating information

(e.g., radio signals), to be referred to as signal elements , and (2) those dealing with

stationary information (e.g., computer programs), to be referred to as data elements .

The former class is primarily associated with sensing and communications and the latter

with analysis and decision processes. This results in a total of four classes of system

functional elements:

 1. Signal Elements, which sense and communicate information;

 2. Data Elements, which interpret, organize, and manipulate information;

 3. Material Elements, which provide structure and transformation of materials;

and

 4. Energy Elements, which provide energy and motive power.

 To provide a context for acquainting the student with signifi cant design knowledge

peculiar to each of the four broad classes of functional elements, a set of generic func-

tional elements has been defi ned that represents the majority of important types for

each class.

 To make the selected elements self - consistent and representative, three criteria may

be used to ensure that each element is neither trivially simple nor inordinately complex

and has wide application:

 1. Signifi cance. Each functional element must perform a distinct and signifi cant

function, typically involving several elementary functions.

 2. Singularity. Each functional element should fall largely within the technical

scope of a single engineering discipline.

 3. Commonality. The function performed by each element can be found in a wide

variety of system types.

 In confi guring the individual functional elements, it is noted that regardless of their

primary function and classifi cation, their physical embodiments are necessarily built of

material usually controlled by external information and powered by electricity or some

SYSTEM BUILDING BLOCKS 47

other source of energy. Thus, a television set, whose main function is to process infor-

mation in the form of a radio frequency signal into information in the form of a TV

picture and sound, is built of materials, powered by electricity, and controlled by user -

 generated information inputs. Accordingly, it should be expected that most elements in

all classes would have information and energy inputs in addition to their principal

processing inputs and outputs.

 The above process converges on a set of 23 functional elements, fi ve or six in each

class. These are listed in the middle column of Table 3.2 . The function of the class as

a whole is shown in the left column, and typical applications that might embody the

individual elements are listed in the right column. It should be noted that the above

classifi cation is not meant to be absolute, but is established solely to provide a system-

atic and logical framework for discussing the properties of systems at the levels of

importance to systems engineers.

 Fundamentally, the functional design of any system may be defi ned by conceptu-

ally combining and interconnecting the identifi ed functional elements along with

perhaps one or two very specialized elements that might perform a unique function in

certain system applications so as to logically derive the desired system capabilities from

 TABLE 3.2. System Functional Elements

 Class function Element function Applications

 Signal — generate, transmit,

distribute, and receive signals used

in passive or active sensing and in

communications

 Input signal

 Transmit signal

 Transduce signal

 Receive signal

 Process signal

 Output signal

 TV camera

 FM radio transmitter

 Radar antenna

 Radio receiver

 Image processor

 Data — analyze, interpret, organize,

query, and/or convert data and

information into forms desired by

the user or other systems

 Input data

 Process data

 Control data

 Control processing

 Store data

 Output data

 Display data

 Keyboard

 Computer CPU

 Operating system

 Word processor

 Printer

 Material — provide system structural

support or enclosure, or transform

the shape, composition, or location

of material substances

 Support material

 Store material

 React material

 Form material

 Join material

 Control position

 Airframe

 Shipping container

 Autoclave

 Milling machine

 Welding machine

 Servo actuator

 Energy — provide and convert energy

or propulsive power to the system

 Generate thrust

 Generate torque

 Generate electricity

 Control temperature

 Control motion

 Turbojet engine

 Reciprocating engine

 Solar cell array

 Refrigerator

 Auto transmission

48 STRUCTURE OF COMPLEX SYSTEMS

the available system inputs. In effect, the system inputs are transformed and processed

through the interconnected functions to provide the desired system outputs.

 Physical Building Blocks: Components

 System physical building blocks are the physical embodiments of the functional ele-

ments consisting of hardware and software. Consequently, they have the same distin-

guishing characteristics of signifi cance, singularity, and commonality and are at the

same level in the system hierarchy, generally one level below a typical subsystem and

two levels above a part. They will be referred to as component elements or simply as

components.

 The classes into which the component building blocks have been categorized are

based on the different design disciplines and technologies that they represent. In total,

31 different component types were identifi ed and grouped into six categories, as shown

in Table 3.3 . The table lists the category, component name, and the functional element(s)

with which it is associated. As in the case of functional elements, the component names

are indicative of their primary function but, in this case, represent things rather than

processes. Many of these represent devices that are in widespread use.

 The systems engineer ’ s concern with the implementation of the functional elements

within components is related to a different set of factors than those associated with the

initial functional design itself. Here, the predominant issues are reliability, form and fi t,

compatibility with the operational environment, maintainability, producibility, testabil-

ity, safety, and cost, along with the requirement that product design does not violate

the integrity of the functional design. The depth of the systems engineer ’ s understanding

of the design of individual components needs to extend to the place where the system -

 level signifi cance of these factors may be understood, and any risks, confl icts, and other

potential problems addressed.

 The required extent and nature of such knowledge varies widely according to the

type of system and its constitution. A systems engineer dealing with an information

system can expect to concentrate largely on the details of the software and user aspects

of the system while considering mainly the external aspects of the hardware compo-

nents, which are usually standard (always paying special attention to component inter-

faces). At another extreme, an aerospace system such as an airplane consists of a

complex and typically nonstandard assemblage of hardware and software operating in

a highly dynamic and often adverse environment. Accordingly, an aerospace systems

engineer needs to be knowledgeable about the design of system components to a con-

siderably more detailed level so as to be aware of the potentially critical design features

before they create reliability, producibility, or other problems during the product engi-

neering, test, and operational stages.

 Common Building Blocks

 An important and generally unrecognized observation resulting from an examination

of the hierarchical structure of a large variety of systems is the existence of an inter-

mediate level of elements of types that recur in a variety of systems. Devices such as

SYSTEM BUILDING BLOCKS 49

signal receivers, data displays, torque generators, containers, and numerous others

perform signifi cant functions used in many systems. Such elements typically constitute

product lines of commercial organizations, which may confi gure them for the open

market or customize them to specifi cations to fi t a complex system. In Table 3.1 , the

above elements are situated at the third or middle level and are referred to by the generic

name component.

 The existence of a distinctive set of middle - level system building blocks can be

seen as a natural result of the conditions discussed in Chapter 1 for the origin of

complex systems, namely, (1) advancing technology, (2) competition, and (3) special-

ization. Technological advances are generally made at basic levels, such as the develop-

ment of semiconductors, composite materials, light - emitting devices, graphic user

 TABLE 3.3. Component Design Elements

 Category Component Functional element(s)

 Electronic Receiver

 Transmitter

 Data processor

 Signal processor

 Communications processors

 Special electronic equipment

 Receive signal

 Transmit signal

 Process data

 Process signal

 Process signal/data

 Various

 Electro - optical Optical sensing device

 Optical storage device

 Display device

 High - energy optics device

 Optical power generator

 Input signal

 Store data

 Output signal/data

 Form material

 Generate electricity

 Electromechanical Inertial instrument

 Electric generator

 Data storage device

 Transducer

 Data input/output device

 Input data

 Generate electricity

 Store data

 Transduce signal

 Input/output data

 Mechanical Framework

 Container

 Material processing machine

 Material reactor

 Power transfer device

 Support material

 Store material

 Form/join material

 React material

 Control motion

 Thermomechanical Rotary engine

 Jet engine

 Heating unit

 Cooling unit

 Special energy source

 Generate torque

 Generate thrust

 Control temperature

 Control temperature

 Generate electricity

 Software Operating system

 Application

 Support software

 Firmware

 Control system

 Control processing

 Control processing

 Control system

50 STRUCTURE OF COMPLEX SYSTEMS

interfaces, and so on. The fact of specialization tends to apply such advances primarily

to devices that can be designed and manufactured by people and organizations special-

ized in certain types of products. Competition, which drives technology advances, also

favors specialization in a variety of specifi c product lines. A predictable result is the

proliferation of advanced and versatile products that can fi nd a large market (and hence

achieve a low cost) in a variety of system applications. The current emphasis in defense

system development on adapting commercial off - the - shelf (COTS) components, wher-

ever practicable, attempts to capitalize on economies of scale found in the commercial

component market.

 Referring back to Table 3.1 , it is noted that as one moves up through the hierarchy

of system element levels, the functions performed by those in the middle or component

level are the fi rst that provide a signifi cant functional capability, as well as being found

in a variety of different systems. For this reason, the types of elements identifi ed as

components in the fi gure were identifi ed as basic system building blocks. Effective

systems engineering therefore requires a fundamental understanding of both the func-

tional and physical attributes of these ubiquitous system constituents. To provide a

framework for gaining an elementary knowledge base of system building blocks, a set

of models has been defi ned to represent commonly occurring system components. This

section is devoted to the derivation, classifi cation, interrelationships, and common

examples of the defi ned system building blocks.

 Applications of System Building Blocks

 The system building block model described above may be useful in several ways:

 1. The categorization of functional elements into the four classes of signal, data,

material, and energy elements can help suggest what kind of actions may be

appropriate to achieve required operational outcomes.

 2. Identifying the classes of functions that need to be performed by the system

may help group the appropriate functional elements into subsystems and thus

may facilitate functional partitioning and defi nition.

 3. Identifying the individual functional building blocks may help defi ne the nature

of the interfaces within and between subsystems.

 4. The interrelation between the functional elements and the corresponding one or

more physical implementations can help visualize the physical architecture of

the system.

 5. The commonly occurring examples of the system building blocks may suggest

the kinds of technology appropriate to their implementation, including possible

alternatives.

 6. For those specialized in software and unfamiliar with hardware technology, the

relatively simple framework of four classes of functional elements and six

classes of physical components should provide an easily understood organiza-

tion of hardware domain knowledge.

THE SYSTEM ENVIRONMENT 51

 3.4 THE SYSTEM ENVIRONMENT

 The system environment may be broadly defi ned as everything outside of the system

that interacts with the system. The interactions of the system with its environment form

the main substance of system requirements. Accordingly, it is important at the outset

of system development to identify and specify in detail all of the ways in which the

system and its environment interact. It is the particular responsibility of the systems

engineer to understand not only what these interactions are but also their physical basis,

to make sure that the system requirements accurately refl ect the full range of operating

conditions.

 System Boundaries

 To identify the environment in which a new system operates, it is necessary to identify

the system ’ s boundaries precisely, that is, to defi ne what is inside the system and what

is outside. Since we are treating systems engineering in the context of a system devel-

opment project, the totality of the system will be taken as that of the product to be

developed.

 Although defi ning the system boundary seems almost trivial at fi rst glance, in

practice, it is very diffi cult to identify what is part of the system and what is part of the

environment. Many systems have failed due to miscalculations and assumptions about

what is internal and what is external. Moreover, different organizations tend to defi ne

boundaries differently, even with similar systems.

 Fortunately, several criteria are available to assist in determining whether an entity

should be defi ned as part of a system:

 • Developmental Control. Does the system developer have control over the enti-

ty ’ s development? Can the developer infl uence the requirements of the entity,

or are requirements defi ned outside of the developer ’ s sphere of infl uence?

Is funding part of the developer ’ s budget, or is it controlled by another

organization?

 • Operational Control. Once fi elded, will the entity be under the operational

control of the organization that controls the system? Will the tasks and missions

performed by the entity be directed by the owner of the system? Will another

organization have operational control at times?

 • Functional Allocation. In the functional defi nition of the system, is the systems

engineer “ allowed ” to allocate functions to the entity?

 • Unity of Purpose. Is the entity dedicated to the system ’ s success? Once fi elded,

can the entity be removed without objection by another entity?

 Systems engineers have made mistakes by defi ning entities as part of the system

when, in fact, the span of control (as understood by the above criteria) was indeed

small. And typically, either during development or operations, the entity was not avail-

able to perform its assigned functions or tasks.

52 STRUCTURE OF COMPLEX SYSTEMS

 One of the basic choices required early is to determine whether human users or

operators of a system are considered part of the system or are external entities. In a

majority of cases, the user or operator should be considered external to the system. The

system developer and owner rarely have suffi cient control over operators to justify their

inclusion in the system. When operators are considered external to the system, the

systems engineer and the developer will focus on the operator interface, which is critical

to complex systems.

 From another perspective, most systems cannot operate without the active partici-

pation of human operators exercising decision and control functions. In a functional

sense, the operators may well be considered to be integral parts of the system. However,

to the systems engineer, the operators constitute elements of the system environment

and impose interface requirements that the system must be engineered to accommodate.

Accordingly, in our defi nition, the operators will be considered to be external to the

system.

 As noted earlier, many, if not most, complex systems can be considered as parts

of larger systems. An automobile operates on a network of roads and is supported by

an infrastructure of service stations. However, these are not changed to suit a new

automobile. A spacecraft must be launched from a complex gantry, which performs the

fueling and fl ight preparation functions. The gantry, however, is usually a part of the

launch complex and not a part of the spacecraft ’ s development. In the same manner,

the electrical power grid is a standard source of electricity, which a data processing

system may utilize. Thus, the supersystems identifi ed in the above examples need not

be considered in the engineering process as part of the system being developed but as

an essential element in its operational environment, and to the extent required to assure

that all interfacing requirements are correctly and adequately defi ned.

 Systems engineers must also become involved in interface decisions affecting

designs both of their own and of an interfacing system. In the example of a spacecraft

launched from a gantry, some changes to the information handling and perhaps other

functions of the gantry may well be required. In such instances, the defi nition of

common interfaces and any associated design issues would need to be worked out with

engineers responsible for the launch complex.

 System Boundaries: The Context Diagram

 An important communications tool available to the systems engineer is the context

diagram. This tool effectively displays the external entities and their interactions with

the system and instantly allows the reader to identify those external entities. Figure 3.2

shows a generic context diagram. This type of diagram is known as a black box diagram

in that the system is represented by a single geographic fi gure in the center, without

any detail. Internal composition or functionality is hidden from the reader. The diagram

consists of three components:

 1. External Entities. These constitute all entities in which the system will interact.

Many of these entities can be considered as sources for inputs into the system

and destinations of outputs from the system.

THE SYSTEM ENVIRONMENT 53

 2. Interactions. These represent the interactions between the external entities and

the system and are represented by arrows. Arrowheads represent the direction

or fl ow of a particular interaction. While double - headed arrows are allowed,

single - headed arrows communicate clearer information to the reader. Thus, the

engineer should be careful when using two - directional interactions — make sure

the meanings of your interactions are clear. Regardless, each interaction (arrow)

is labeled to identify what is being passed across the interface.

 The diagram depicts the common types of interactions that a context diagram typi-

cally contains. In an actual context diagram, these interactions would be labeled with

the specifi c interactions, not the notional words used above. The labels need to be suf-

fi ciently detailed to communicate meaning, but abstract enough to fi t into the diagram.

Thus, words such as “ data ” or “ communications ” are to be avoided in the actual

diagram since they convey little meaning.

 3. The System. This is the single geographic fi gure mentioned already. Typically,

this is an oval, circle, or rectangle in the middle of the fi gure with only the name

of the system within. No other information should be present.

 We can categorize what can be passed across these external interfaces by utilizing

our defi nitions of the four basic elements above. Using these elements and adding one

additional element, we can form fi ve categories:

 • data,

 • signals,

 • materials,

 • energy, and

 • activities.

 Figure 3.2. Context diagram.

External

Entity

External

Entity
Activity

Materials

Data
Data

The System

External

Materials

Entity

Activity Data

External External

Energy Data Signals

Entity Entity

54 STRUCTURE OF COMPLEX SYSTEMS

 Thus, a system interacts with its environment (and specifi cally, the external enti-

ties) by accepting and providing either one of the fi rst four elements or by performing

an activity that infl uences the system or the environment in some manner.

 Constructing a diagram such as the system context diagram can be invaluable in

communicating the boundary of the system. The picture clearly and easily identifi es

the external interfaces needed and provides a short description of what is being passed

into and out of the system — providing a good pictorial of the system ’ s inputs and

outputs.

 Figure 3.3 provides a simple example using a typical automobile as the system.

Although the system is rather simple, it nicely illustrates all fi ve types of interfaces.

Four external entities are identifi ed: users (to include the driver and passengers), the

maintainer (which could be a user, but, because of his specialized interactions with the

system, is listed separately), an energy source, and the environment. Most systems will

interact with these four external entity types. Of course, many other entities may interact

with a system as well.

 The user provides a multitude of inputs to the system, including various commands

and controls as well as actions, such as steering and braking. Materials are also passed

to the system: cargo. In return, several outputs are passed from the automobile back to

the user, including various status indications on the state of the system. Additionally,

an activity is performed: entertainment, representing the various forms of entertainment

available in today ’ s automobile. Finally, cargo is returned to the users when desired.

 Other entities also interact with the system. The maintainer must provide a request

for diagnostics data, typically in the form of signals passed to the auto via an interface.

Diagnostics data are returned along with the exchange of parts.

 Figure 3.3. Context diagram for an automobile.

• Status of Auto. States

Users Maintainer

• Entertainment

• Temperature-Controlled Air

• Cargo

• Steering

• Braking

• Parts

• Request Signals

• Acceleration

• Light Commands

• Window Commands

• Diagnostics Data

• Worn-Out parts

Automobile• Horn Activation

• Security Commands

• Temperature Controls

• Entertainment Controls • Support
• Cargo

•

• Resistance

• Weather

Energy

Source

Environment
Gasoline • Heat

• Siren

• Exhaust•

• Light

THE SYSTEM ENVIRONMENT 55

 The last two external entities represent somewhat specialized entities: an energy

source and the ubiquitous environment. In the automobile case, the energy source

provides gasoline to the automobile. This energy source can be one of many types: a

gasoline pump at a station or a small container with a simple nozzle. The environment

requires some special consideration, if for no other reason than it includes everything

not specifi cally contained in the other external entities. So, in some respects, the envi-

ronment entity represents “ other. ” In our example, the automobile will generate heat

and exhaust in its typical operation. Additionally, a siren and light from various light

bulbs, horns, and signals will also radiate from the auto. The environment is also a

source of many inputs, such as physical support, air resistance, and weather.

 It takes some thought to identify the inputs, outputs, and activities that are part of

the system – environment interaction. The creator of this diagram could have really gone

 “ overboard ” and specifi ed temperature, pressure, light, humidity, and a number of other

factors in this interaction. This brings up an interesting question: what do we include

in listing the interactions between the system and the external entity? For that matter,

how do we know whether an external entity should be included in our diagram?

Fortunately, there is a simple answer to this: if the interaction is important for the design

of the system, then it should be included.

 In our automobile case, physical support is important for our design and will infl u-

ence the type of transmission, steering, and tires. So we include “ support ” in our

diagram. Temperature, humidity, pressure, and so on, will be a factor, but we are not

sure about their importance to design, so we group these characteristics under “ weather. ”

This does not mean that the automobile will be designed for all environmental condi-

tions, only that we are not considering all conditions in our design. We should have an

idea of the environmental conditions from the requirements, and therefore, we can

determine whether they should be in our context diagram.

 Output from the system to the environment also depends on whether it will infl u-

ence the design. The automobile will in fact output many things into the environment:

heat, smells, texture, colors … and especially carbon dioxide as part of the exhaust!

But which of these infl uence our design? Four will be major infl uences: heat, noise

from the siren, exhaust, and light. Therefore, we include only those for now and omit

the others. We can always go back and update the context diagram (in fact, we should,

as we progress through both the systems engineering process and the system develop-

ment life cycle).

 The system context diagram is a very simple yet powerful tool to identify, evaluate,

and communicate the boundaries of our system. Therefore, it becomes the fi rst tool we

introduce in this book. More will follow that will eventually provide the systems engi-

neer with the collection needed to adequately develop his system.

 Types of Environmental Interactions

 To understand the nature of the interactions of a system with its surroundings, it is

convenient to distinguish between primary and secondary interactions. The former

involves elements that interact with the system ’ s primary functions, that is, represent

functional inputs, outputs, and controls; the latter relates to elements that interact with

56 STRUCTURE OF COMPLEX SYSTEMS

the system in an indirect nonfunctional manner, such as physical supports, ambient

temperature, and so on. Thus, the functional interactions of a system with its environ-

ment include its inputs and outputs and human control interfaces. Operational mainte-

nance may be considered a quasi - functional interface. Threats to the system are those

entities that deny or disrupt the system ’ s ability to perform its activities. The physical

environment includes support systems, system housing, and shipping, handling, and

storage. Each of these is briefl y described below.

 Inputs and Outputs. The primary purpose of most systems is to operate on

external stimuli and/or materials in such a manner as to process these inputs in a useful

way. For a passenger aircraft, the materials are the passengers, their luggage, and fuel,

and the aircraft ’ s function is to transport the passengers and their belongings to a distant

destination rapidly, safely, and comfortably. Figure 3.4 illustrates some of the large

 Figure 3.4. Environments of a passenger airliner. ILS, instrument landing system.

Flight Commands

Beacon Interrogation

Flight Environment

Landing Environment

People and Payload

Interface

Maintenance Environment

Support Environment

TurbulenceRain

ILS Beacon

Power
Fuel

Shock and Vibration

Passengers

Luggage

Winds

THE SYSTEM ENVIRONMENT 57

variety of interactions that a complex system has with its operating environment for

the case of a passenger aircraft.

 System Operators. As noted previously, virtually all systems, including auto-

mated systems, do not operate autonomously but are controlled to some degree by

human operators in performing their function. For the purposes of defi ning the systems

engineer ’ s task, the operator is part of the system ’ s environment. The interface between

the operator and the system (human – machine interface) is one of the most critical of all

because of the intimate relationship between the control exercised by the operator and

the performance of the system. It is also one of the most complex to defi ne and test.

 Operational Maintenance. The requirements for system readiness and opera-

tional reliability relate directly to the manner in which it is to be maintained during its

operating life. This requires that the system be designed to provide access for monitor-

ing, testing, and repair requirements that are frequently not obvious at the outset, but

nevertheless must be addressed early in the development process. Thus, it is necessary

to recognize and explicitly provide for the maintenance environment.

 Threats. This class of external entities can be man - made or natural. Clearly,

weather could be considered a threat to a system exposed to the elements. For example,

when engineering naval systems, the salt water environment becomes a corrosive

element that must be taken into consideration. Threats can also be man - made. For

example, a major threat to an automatic teller machine (ATM) would be the thief, whose

goal might be access to the stored cash. System threats need to be identifi ed early to

design countermeasures into the system.

 Support Systems. Support systems are that part of the infrastructure on which

the system depends for carrying out its mission. As illustrated in Figure 3.4 , the airport,

the air traffi c control system, and their associated facilities constitute the infrastructure

in which an individual aircraft operates, but which is also available to other aircraft.

These are parts of the SoS represented by the air transportation system, but for an

airplane, they represent standard available resources with which it rousts interface

harmoniously.

 Two examples of common support systems that have been mentioned previously

are the electric power grids, which distribute usable electric power throughout the civi-

lized world, and the network of automobile fi lling stations and their suppliers. In build-

ing a new airplane, automobile, or other systems, it is necessary to provide interfaces

that are compatible with and capable of utilizing these support facilities.

 System Housing. Most stationary systems are installed in an operating site,

which itself imposes compatibility constraints on the system. In some cases, the instal-

lation site provides protection for the system from the elements, such as variations in

temperature, humidity, and other external factors. In other cases, such as installations

on board ship, these platforms provide the system ’ s mechanical mounting but, other-

wise, may expose the system to the elements, as well as subject it to shock, vibration,

and other rigors.

58 STRUCTURE OF COMPLEX SYSTEMS

 Shipping and Handling Environment. Many systems require transport from

the manufacturing site to the operating site, which imposes special conditions for which

the system must be designed. Typical of these are extreme temperatures, humidity,

shock, and vibration, which are sometimes more stressful than those characteristic of

the operating environment. It may be noted that the impact of the latter categories of

environmental interactions is addressed mainly in the engineering development stage.

 3.5 INTERFACES AND INTERACTIONS

 Interfaces: External and Internal

 The previous section described the different ways in which a system interacts with its

environment, including other systems. These interactions all occur at various boundar-

ies of the system. Such boundaries are called the system ’ s external interfaces . Their

defi nition and control are a particular responsibility of the systems engineer because

they require knowledge of both the system and its environment. Proper interface control

is crucial for successful system operation.

 A major theme of systems engineering is accordingly the management of inter-

faces. This involves

 1. identifi cation and description of interfaces as part of system concept defi nition

and

 2. coordination and control of interfaces to maintain system integrity during engi-

neering development, production, and subsequent system enhancements.

 Inside the system, the boundaries between individual components constitute the

system ’ s internal interfaces . Here, again, the defi nition of internal interfaces is the

concern of the systems engineer because they fall between the responsibility boundaries

of engineers concerned with the individual components. Accordingly, their defi nition

and implementation must often include consideration of design trade - offs that impact

on the design of both components.

 Interactions

 Interactions between two individual elements of the system are effected through the

interface connecting the two. Thus, the interface between a car driver ’ s hands and the

steering wheel enables the driver to guide (interact with) the car by transmitting a force

that turns the steering wheel and thereby the car ’ s wheels. The interfaces between the

tires of the car and the road both propel and steer the car by transmitting driving trac-

tion to the road, and also help cushion the car body from the roughness of the road

surface.

 The above examples illustrate how functional interactions (guiding or propelling

the car) are effected by physical interactions (turning the steering wheel or the drive

wheels) that fl ow across (physical) interfaces. Figure 3.5 illustrates the similar relations

INTERFACES AND INTERACTIONS 59

between physical interfaces involved in steering an air vehicle and the resulting func-

tional interactions.

 An important and sometimes less than adequately addressed external system inter-

action occurs during system maintenance. This activity necessarily requires access to

a number of vital system functions for testing purposes. Such access calls for the provi-

sion of special test points of the system, which can be sampled externally with a

minimum of manipulation. In some complex systems, an extensive set of built - in tests

(BITs) is incorporated, which may be exercised while the system is in its operational

status. The defi nition of such interfaces is also the concern of the systems engineer.

 Interface Elements

 To systematize the identifi cation of external and internal interfaces, it is convenient to

distinguish three different types:

 1. connectors, which facilitate the transmission of electricity, fl uid, force, and so

on, between components;

 2. isolators, which inhibit such interactions; and

 3. converters, which alter the form of the interaction medium. These interfaces are

embodied in component parts or subcomponents, which can be thought of as

interface elements.

 Table 3.4 lists a number of common examples of interface elements of each of the

three types, for each of four interaction media: electrical, mechanical, hydraulic, and

human. The table brings out several points worthy of note:

 Figure 3.5. Functional interactions and physical interfaces.

Aileron

Aileron

Drive motor

Radio-controlled air vehicle

Receiver/decoder

Controller/encoder

Transmitter Antenna

Power
amp

Aileron
deflection

Aileron
deflection
command

Aileron deflection = 3 deg. per deg. of stick motion

Function

Functional interaction

Physicl interfaces

Move
Aileron

60 STRUCTURE OF COMPLEX SYSTEMS

 1. The function of making or breaking a connection between two components (i.e.,

enabling or disabling an interaction between them) must be considered as an

important design feature, often involved in system control.

 2. The function of connecting nonadjacent system components by cables, pipes,

levers, and so on, is often not part of a particular system component. Despite

their inactive nature, such conducting elements must be given special attention

at the system level to ensure that their interfaces are correctly confi gured.

 3. The relative simplicity of interface elements belies their critical role in ensuring

system performance and reliability. Experience has shown that a large fraction

of system failures occurs at interfaces. Assuring interface compatibility and

reliability is a particular responsibility of the systems engineer.

 3.6 COMPLEXITY IN MODERN SYSTEMS

 Earlier in the chapter, we described the system hierarchy — how systems are subdivided

into subsystems, then components, subcomponents, and fi nally, parts (see Table 3.1).

And as modern systems grow in complexity, the number, diversity, and complexity of

these lower - level subsystems, components, and parts increase. Furthermore, the interac-

tions between these entities also increase in complexity. Systems engineering princi-

ples, and their applied practices, are designed to deal with this complexity.

 Increasingly, a single system may be, or become, a part of a larger entity. While

there are many terms currently in use today to describe this supersystem concept, the

term SoS seems to be accepted by a wide variety of organizations. Other terms are

found in the literature — some meaning the same thing, some having different

connotations.

 This section provides a basic introduction to the engineering of entities that are

considered “ above, ” or more complex, than single systems: SoSs and enterprises.

 S o S

 For our purposes, we will use two defi nitions to describe what is meant by an SoS.

Both come from the U.S. Department of Defense (DoD). The fi rst is the simplest:

 TABLE 3.4. Examples of Interface Elements

 Type Electrical Mechanical Hydraulic Human – machine

 Interaction

medium

 Current Force Fluid Information

 Connectors Cable switch Joint coupling Pipe valve Display control panel

 Isolator RF shield

insulator

 Shock mount

bearing

 Seal Cover window

 Converter Antenna A/D

converter

 Gear train

piston

 Reducing

valve pump

 Keyboard

COMPLEXITY IN MODERN SYSTEMS 61

 A set or arrangement of systems that results when independent and useful systems are

integrated into a larger system that delivers unique capabilities

 In essence, anytime a set of independently useful systems is integrated together to

provide an enhanced capability beyond that of the sum of the individual systems ’ capa-

bilities, we have an SoS. Of course, the level of integration could vary signifi cantly. At

one end of the spectrum, an SoS could be completely integrated from the earliest

development phases, where the individual systems, while able to operate independently,

are almost exclusively designed for the SoS. At the other end of the spectrum, multiple

systems could be loosely joined for a limited purpose and time span to perform a needed

mission, with no more than an agreement of the owners of each system. Thus, a method

to capture this range of integration is necessary to fully describe the different nuances

of SoSs.

 The U.S. DoD produced a systems engineering guide in 2008 specifi cally for SoS

environments and captured this spectrum using four categories. The categories are

presented in the order of how tightly coupled the component systems are — from loosely

to tightly.

 • Virtual. Virtual SoSs lack a central management authority and a centrally agreed -

 upon purpose for the SoS. Large - scale behavior emerges — and may be desirable —

 but this type of SoS must rely upon relatively invisible mechanisms to maintain

it.

 • Collaborative. In collaborative SoSs, the component systems interact more or

less voluntarily to fulfi ll agreed - upon central purposes. Standards are adopted,

but there is no central authority to enforce them. The central players collectively

decide how to provide or deny service, thereby providing some means of enforc-

ing and maintaining standards.

 • Acknowledged. Acknowledged SoSs have recognized objectives, a designated

manager, and resources for an SoS; however, the constituent systems retain

their independent ownership, objectives, funding, development and sustainment

approaches. Changes in the systems are based on collaboration between the SoS

and the system.

 • Directed. Directed SoSs are those in which the integrated SoS is built and

managed to fulfi ll specifi c purposes. It is centrally managed during long - term

operation to continue to fulfi ll those purposes as well as any new ones the system

owners might wish to address. The component systems maintain an ability to

operate independently, but their normal operational mode is subordinated to the

central managed purpose.

 Although one could argue that the last category, the directed SoS, is closer to a

single, complex system than an SoS, the defi nitions capture the range of situations that

exist today when systems are integrated together to perform a function, or exhibit a

capability, that is greater than any one system.

 As the reader might surmise, engineering and architecting an SoS can be different

than engineering and architecting a single system, especially for the two middle

62 STRUCTURE OF COMPLEX SYSTEMS

categories. System of systems engineering (SoSE) can be different because of the

unique attributes of an SoS.

 Maier fi rst introduced a formal discussion of SoSs by identifying their character-

istics in 1998. Since then, several publications have refi ned these characteristics;

however, they have remained remarkably stable over time. Sage and Cuppan summa-

rized these characteristics:

 1. Operational Independence of the Individual System. An SoS is composed of

systems that are independent and useful in their own right. If an SoS is disas-

sembled into its associated component systems, these component systems are

capable of independently performing useful operations independently of one

another.

 2. Managerial Independence of the Individual System. The component systems in

an SoS not only can operate independently, but they also generally do operate

independently to achieve an intended purpose. Often, they are individually

acquired and integrated, and they maintain a continuing operational existence

and serve purposes that may be independent of those served by the SoS.

 3. Geographic Distribution. The geographic dispersion of component systems is

often large. Often, these systems can readily exchange only information and

knowledge with one another.

 4. Emergent Behavior. The SoS performs functions and carries out purposes that

are not necessarily associated with any component system. These behaviors are

emergent properties of the entire SoS and not the behavior of any component

system.

 5. Evolutionary Development. The development of an SoS is generally evolution-

ary over time. Components of structure, function, and purpose are added,

removed, and modifi ed as experience with the system grows and evolves over

time. Thus, an SoS is usually never fully formed or complete.

 These characteristics have since been refi ned to include additional characteristics.

Although these refi nements have not changed the basic characteristics, they did add

two important features:

 6. Self - organization. An SoS will have a dynamic organizational structure that is

able to respond to changes in the environment and to changes in goals and

objectives for the SoS.

 7. Adaptation. Similar to a dynamic organization, the very structure of the SoS

will be dynamic and respond to external changes and perceptions of the

environment.

 Engineering an SoS that falls into either the collaborative or acknowledged cate-

gory must deal with the seven core attributes of SoS. Therefore, the basic tools that we

have in systems engineering may not be suffi cient. Additional methods, tools, and

practices have been developed (and are continuing to be developed) to enable the

engineer to develop these complex structures.

COMPLEXITY IN MODERN SYSTEMS 63

 Some of these tools come from other branches of mathematics and engineering, such

as complexity theory. Attributes such as emergent behavior, self - organization, and adap-

tation have been examined within this fi eld, and various tools and methods have been

developed to represent the inherent uncertainty these attributes bring. The challenge is

to keep the mathematics simple enough for application to systems engineering.

 Other areas that are being examined to support SoSE include social engineering,

human behavior dynamics, and chaotic systems (chaos theory). These areas continue

to be appropriate for further research.

 Enterprise Systems Engineering

 SoSE, by its nature, increases the complexity of developing single systems. However,

it does not represent the highest level of complexity. In fact, just as Table 3.1 presented

a hierarchy with the system at the apex, we can expand this hierarchy, and go beyond

SoSs, to an enterprise. Figure 3.6 depicts this hierarchy.

 Above an SoS lies the enterprise, which typically consists of multiple SoSs within

its structure. Furthermore, an enterprise may consist of a varied collection of system

types, not all of which are physical. For instance, an enterprise includes human or social

systems that must be integrated with physical systems.

 Formally, an enterprise is “ anything that consists of people, processes, technology,

systems, and other resources across organizations and locations interacting with each

other and their environment to achieve a common mission or goal. ” The level of inter-

action between these entities varies, just as component systems within an SoS. And

many entities fi t into this defi nition. Almost all midsize to large organizations would

satisfy this defi nition. In fact, suborganizations of some large corporations would them-

selves be defi ned as an enterprise.

 Government agencies and departments would also fi t into this defi nition. And

fi nally, large social and physical structures, such as cities or nations, satisfy the

defi nition.

 Figure 3.6. Pyramid of system hierarchy.

Enterprise

Systems

Systems of Systems

Subsystem

Components

64 STRUCTURE OF COMPLEX SYSTEMS

 The source of complexity in enterprise systems engineering is primarily the inte-

gration of a diversity of systems and processes. The enterprise typically includes the

following components that must be integrated together under the inherent uncertainty

of today ’ s enterprise:

 • business strategy and strategic planning,

 • business processes,

 • enterprise services,

 • governance,

 • technical processes,

 • people management and interactions,

 • knowledge management,

 • information technology infrastructure and investment,

 • facility and equipment management,

 • supplies management, and

 • data and information management.

 Enterprise systems engineering refers to the application of systems engineering

principles and practices to engineering systems that are part of an enterprise. Developing

the individual component systems of the enterprise is known by this term. Another

broader term has also emerged: enterprise engineering. This term, with the “ systems ”

omitted, typically refers to the architecting, development, implementation, and opera-

tion of the enterprise as a whole. Some have used the terms interchangeably; however,

the two terms refer to different levels of abstraction.

 The reason that enterprise systems engineering is deemed more complex than SoSE

is that many of the components of an enterprise involve one or more SoSs. Therefore,

the enterprise could be considered an integration of multiple SoSs.

 Just as new tools and techniques are being developed for SoSE applications,

so too are tools, methods, and techniques being developed for this relatively young

fi eld.

 3.7 SUMMARY

 System Building Blocks and Interfaces

 The need for a systems engineer to attain a broad knowledge of the several interacting

disciplines involved in the development of a complex system raises the question of how

deep that understanding needs to be.

 Hierarchy of Complex Systems

 Complex systems may be represented by a hierarchical structure in that they are com-

posed of subsystems, components, subcomponents, and parts.

SUMMARY 65

 The domain of the systems engineer extends down through the component level

and extends across several categories. In contrast, the domain of the design specialist

extends from the part level up through the component level, but typically within a single

technology area or discipline.

 System Building Blocks

 System building blocks are at the level of components and are the basic building blocks

of all engineered systems characterized by both functional and physical attributes.

These building blocks are characterized by performing a distinct and signifi cant func-

tion and are singular — they are within the scope of a single engineering discipline.

 Functional elements are functional equivalents of components and are categorized

into four classes by operating medium:

 • signal elements, which sense and communicate information;

 • data elements, which interpret, organize, and manipulate information;

 • material elements, which provide structure and process material; and

 • energy elements, which provide energy or power.

 Components are the physical embodiment of functional elements, which are cat-

egorized into six classes by materials of construction:

 • electronic,

 • electro - optical,

 • electromechanical,

 • mechanical,

 • thermomechanical, and

 • software.

 System building block models can be useful in identifying actions capable of

achieving operational outcomes, facilitating functional partitioning and defi nition, iden-

tifying subsystem and component interfaces, and visualizing the physical architecture

of the system.

 The System Environment

 The system environment, that is, everything outside the system that interacts with it,

includes (1) system operators (part of system function but outside the delivered system);

(2) maintenance, housing, and support systems; (3) shipping, storage, and handling; (4)

weather and other physical environments; and (5) threats.

 Interfaces and Interactions

 Interfaces are a critical systems engineering concern, which effect interactions between

components and can be classifi ed into three categories: connect, isolate, or convert

66 STRUCTURE OF COMPLEX SYSTEMS

interactions. They require identifi cation, specifi cation, coordination, and control.

Moreover, test interfaces typically are provided for integration and maintenance.

 Complexity in Modern Systems

 Each system is always part of a larger entity. At times, this larger entity can be classi-

fi ed as a separate system in itself (beyond simply an environment, or “ nature ”). These

situations are referred to as “ SoSs. ” They tend to exhibit seven distinct characteristics:

operational independence of the individual system, managerial independence of the

individual system, geographic distribution, emergent behavior, evolutionary develop-

ment, self - organization, and adaptation.

 Enterprise systems engineering is similar in complexity but focuses on an organi-

zational entity. Since an enterprise involves social systems as well as technical systems,

the complexity tends to become unpredictable.

 PROBLEMS

 3.1 Referring to Table 3.1 , list a similar hierarchy consisting of a typical subsys-

tem, component, subcomponent, and part for (1) a terminal air traffi c control

system, (2) a personal computer system, (3) an automobile, and (4) an electric

power plant. For each system, you need only to name one example at each

level.

 3.2 Give three key activities of a systems engineer that require technical knowl-

edge down to the component level. Under what circumstances should the

systems engineer need to probe into the subcomponent level for a particular

system component?

 3.3 Referring to Figure 3.1 , describe in terms of levels in the system hierarchy

the knowledge domain of a design specialist. In designing or adapting a

component for a new system, what typical characteristics of the overall

system and of other components must the design specialist understand?

Illustrate by an example.

 3.4 The last column of Table 3.2 lists examples of the applications of the 23

functional elements. List one other example of an application than the one

listed for three elements in each of the four classes of elements.

 3.5 Referring to Figure 3.4 , for each of the environments and interfaces illus-

trated, (1) list the principal interactions between the environment and the

aircraft, (2) the nature of each interaction, and (3) describe how each affects

the system design.

 3.6 For a passenger automobile, partition the principal parts into four subsystems

and their components. (Do not include auxiliary functions such as environ-

mental or entertainment.) For the subsystems, group together components

concerned with each primary function. For defi ning the components, use the

principles of signifi cance (performs an important function), singularity

FURTHER READING 67

(largely falls within a simple discipline), and commonality (found in a variety

of system types). Indicate where you may have doubts. Draw a block diagram

relating the subsystems and components to the system and to each other.

 3.7 In the cases selected in answering Problem 3.5, list the specifi c component

interfaces that are involved in the above interactions.

 3.8 Draw a context diagram for a standard coffeemaker. Make sure to identify

all of the external entities and label all of the interactions.

 3.9 Draw a context diagram for a standard washing machine. Make sure to iden-

tify all of the external entities and label all of the interactions.

 3.10 In a context diagram, “ maintainer ” is typically an external entity, providing

both activities (i.e., “ maintenance ”) and materials (e.g., spare parts) to the

system, and the system providing diagnostic data back to the maintainer.

Describe the nature of the maintainer interfaces and what interactions could

be done by the user.

 3.11 List the test interfaces and BIT indicators in your automobile that are avail-

able to the user (do not include those only available to a mechanic).

 FURTHER READING

 D. Buede . The Engineering Design of Systems: Models and Methods , Second Edition , John Wiley

& Sons , 2009 .

 Department of Defense . Systems Engineering Guide for Systems of Systems . DUSD (A & T) and

OSD (AT & L) , 2008 .

 M. Jamshidi , ed. System of Systems Engineering: Innovations for the 21st Century . John Wiley

& Sons , 2008 .

 M. Jamshidi , ed. Systems of Systems Engineering: Principles and Applications . CRC Press , 2008 .

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 .

 A. Sage and S. Biemer . Processes for system family architecting, design and integration . IEEE

Systems Journal , 2007 , 1 (1), 5 – 16 .

 A. Sage and C. Cuppan . On the systems engineering and management of systems of systems and

federations of systems . Information Knowledge Systems Management , 2001 , 2 (4), 325 – 345 .

69

 4.1 SYSTEMS ENGINEERING THROUGH THE SYSTEM LIFE CYCLE

 As was described in Chapter 1 , modern engineered systems come into being in response

to societal needs or because of new opportunities offered by advancing technology, or

both. The evolution of a particular new system from the time when a need for it is

recognized and a feasible technical approach is identifi ed, through its development and

introduction into operational use, is a complex effort, which will be referred to as the

 system development process . This chapter is devoted to describing the basic system

development process and how systems engineering is applied at each step of this

process.

 A typical major system development exhibits the following characteristics:

 • It is a complex effort.

 • It meets an important user need.

 • It usually requires several years to complete.

 • It is made up of many interrelated tasks.

 4

THE SYSTEM

DEVELOPMENT PROCESS

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

70 THE SYSTEM DEVELOPMENT PROCESS

 • It involves several different disciplines.

 • It is usually performed by several organizations.

 • It has a specifi c schedule and budget.

 The development and introduction into the use of a complex system inherently

requires increasingly large commitments of resources as it progresses from concept

through engineering, production, and operational use. Further, the introduction of new

technology inevitably involves risks, which must be identifi ed and resolved as early as

possible. These factors require that the system development be conducted in a step - by -

 step manner, in which the success of each step is demonstrated, and the basis for the

next one validated, before a decision is made to proceed to the next step.

 4.2 SYSTEM LIFE CYCLE

 The term “ system life cycle ” is commonly used to refer to the stepwise evolution of

a new system from concept through development and on to production, operation, and

ultimate disposal. As the type of work evolves from analysis in the early conceptual

phases to engineering development and testing, to production and operational use,

the role of systems engineering changes accordingly. As noted previously, the organiza-

tion of this book is designed to follow the structure of the system life cycle, so as to

more clearly relate systems engineering functions to their roles in specifi c periods

during the life of the system. This chapter presents an overview of the system develop-

ment process to create a context for the more detailed discussion of each step in the

later chapters.

 Development of a Systems Engineering Life Cycle Model
for This Book

 System life cycle models have evolved signifi cantly over the past two decades.

Furthermore, the number of models has grown as additional unique and custom applica-

tions were explored. Additionally, software engineering has spawned a signifi cant

number of development models that have been adopted by the systems community. The

end result is that there is no single life cycle model that (1) is accepted worldwide and

(2) fi ts every possible situation. Various standards organizations, government agencies,

and engineering communities have published their particular models or frameworks

that can be used to construct a model. Therefore, adopting one model to serve as an

appropriate framework for this book was simply not prudent.

 Fortunately, all life cycle models subdivide the system life into a set of basic steps

that separate major decision milestones. Therefore, the derivation of a life cycle model

to serve as an appropriate framework for this book had to meet two primary objectives.

First, the steps in the life cycle had to correspond to the progressive transitions in the

principal systems engineering activities. Second, these steps had to be capable of being

mapped into the principal life cycle models in use by the systems engineering com-

munity. The derived model will be referred to as the “ systems engineering life cycle, ”

SYSTEM LIFE CYCLE 71

and will be based on three different sources: the Department of Defense (DoD)

Acquisition Management model (DoD 5000.2), the International model ISO/IEC 15288,

and the National Society of Professional Engineers (NSPE) model.

 D o D Acquisition Management Model. In the second half of the twentieth

century, the United States was in the forefront of developing large - scale complex mili-

tary systems such as warships, airplanes, tanks, and command and control systems. To

manage the risks in the application of advanced technology, and to minimize costly

technical or management failures, the DoD has evolved comprehensive system acquisi-

tion guidelines, which are contained in the DoD 5000 series of directives. The fall 2008

version of the DoD life cycle model, which refl ects the acquisition guidelines, is dis-

played in Figure 4.1 . It consists of fi ve phases: material solution analysis, technology

development, engineering and manufacturing development, production and deploy-

ment, and operations and support. The two activities of user need determination and

technology opportunities and resources are considered to be part of the process but are

not included in the formal portion of the acquisition cycle.

 The DoD model is tailored toward managing large, complex system development

efforts where reviews and decisions are needed at key events throughout the life cycle.

The major reviews are referred to as milestones and are given letter designations: A,

B, and C. Each of the three major milestones is defi ned with respect to entry and exit

conditions. For example, at milestone A, a requirements document needs to be approved

by a military oversight committee before a program will be allowed to transition to the

next phase. In addition to milestones, the process contains four additional decision

points: material development decision (MDD), preliminary design review (PDR),

 Figure 4.1. DoD system life cycle model.

User needs

Technology opportunities and resources

• The material development decision precedes
 entry into any phase of the acquisition
 management system
• Entrance criteria met before entering phase
• Evolutionary acquisition or single step to
 full capability

A B C

(Program
initiation)

Material
solution
analysis

Technology
development

Presystems acquisition

, decision point , milestone review , decision point if PDR is not conducted before milestone B

PDR, preliminary design review
CDR, critical design review
LRIP, low-rate initial production
FRP, full-rate production
IOT and E, initial operational test and evaluation
IOC, initial operational capability
FOC, full operational capability

Systems acquisition Sustainment

Engineering and
manufacturing
development

Production and
deployment

Operations and
support

Material
development

decision
Post-

PDR A
Post-

CDR A
LRIP/IOT and E

FRP
decision
review

IOC FOC

72 THE SYSTEM DEVELOPMENT PROCESS

critical design review (CDR) and full - rate production (FRP) decision review. Therefore,

DoD management is able to review and decide on the future of the program at up to

seven major points within the life cycle.

 International ISO / IEC 15288 Model. In 2002, the International Organization

for Standardization (ISO) and the International Electrotechnical Commission (IEC)

issued the result of several years of effort: a systems engineering standard designated

ISO/IEC 15288, Systems Engineering — System Life Cycle Processes . The basic model

is divided into six stages and 25 primary processes. The processes are intended to

represent a menu of activities that may need to be accomplished within the basic stages.

The ISO standard purposely does not align the stages and processes. The six basic

stages are concept, development, production, utilization, support, and retirement.

 Professional Engineering Model. The NSPE model is tailored to the develop-

ment of commercial systems. This model is mainly directed to the development of new

products, usually resulting from technological advances (“ technology driven ”). Thus,

the NSPE model provides a useful alternative view to the DoD model of how a typical

system life cycle may be divided into phases. The NSPE life cycle is partitioned into

six stages: conceptual, technical feasibility, development, commercial validation and

production preparation, full - scale production, and product support.

 Systems Engineering Life Cycle Model. In structuring a life cycle model that

corresponded to signifi cant transitions in systems engineering activities throughout the

system ’ s active life, it was found most desirable to subdivide the life cycle into three

broad stages and to partition these into eight distinct phases. This structure is shown in

Figure 4.2 and will be discussed below. The names of these subdivisions were chosen

 Figure 4.2. System life cycle model.

Concept

Development

Engineering

Development
Postdevelopment

Needs

Analysis

Advanced

Development
 Production

Concept

Exploration

Engineering

Design

 Operations and

Support

Concept

Definition

Integration

and Evaluation

SYSTEM LIFE CYCLE 73

to refl ect the primary activities occurring in each part of the process. Inevitably, some

of these names are the same or similar to the names of corresponding parts of one or

more of the existing life cycles.

 Software Life Cycle Models. The system life cycle stages and their constituent

phases represented by the above models apply to the majority of complex systems,

including those containing signifi cant software functionality at the component level.

However, software - intensive systems, in which software performs virtually all the

functionality, as in modern fi nancial systems, airline reservation systems, the World

Wide Web, and other information systems, generally follow life cycles similar in form

but often involving iteration and prototyping. Chapter 11 describes the differences

between software and hardware, discusses the activities involved in the principal

stages of software system development, and contains a section dealing with examples

of software system life cycles representing software - intensive systems. However, with

that exception, the systems engineering life cycle model, as will be discussed in

Chapters 5 through 15 , provides a natural framework for describing the evolution of

systems engineering activity throughout the active life of all engineered complex

systems.

 Systems Engineering Life Cycle Stages

 As described above, and illustrated in Figure 4.2 , the systems life cycle model consists

of three stages, the fi rst two encompassing the developmental part of the life cycle, and

the third the postdevelopment period. These stages mark the more basic transitions in

the system life cycle, as well as the changes in the type and scope of effort involved

in systems engineering. In this book, these stages will be referred to as (1) The concept

development stage, which is the initial stage of the formulation and defi nition of a

system concept perceived to best satisfy a valid need; (2) the engineering development

stage, which covers the translation of the system concept into a validated physical

system design meeting the operational, cost, and schedule requirements; and (3) the

 postdevelopment stage, which includes the production, deployment, operation, and

support of the system throughout its useful life. The names for the individual stages

are intended to correspond generally to the principal type of activity characteristic of

these stages.

 The concept development stage, as the name implies, embodies the analysis and

planning that is necessary to establish the need for a new system, the feasibility of its

realization, and the specifi c system architecture perceived to best satisfy the user needs.

Systems engineering plays the lead role in translating the operational needs into a

technically and economically feasible system concept. Maier and Rechtin (2009) call

this process “ systems architecting, ” using the analogy of the building architect translat-

ing a client ’ s needs into plans and specifi cations that a builder can bid on and build

from. The level of effort during this stage is generally much smaller than in subsequent

stages. This stage corresponds to the DoD activities of material solution analysis and

technology development.

74 THE SYSTEM DEVELOPMENT PROCESS

 The principal objectives of the concept development stage are

 1. to establish that there is a valid need (and market) for a new system that is

technically and economically feasible;

 2. to explore potential system concepts and formulate and validate a set of system

performance requirements;

 3. to select the most attractive system concept, defi ne its functional characteristics,

and develop a detailed plan for the subsequent stages of engineering, produc-

tion, and operational deployment of the system; and

 4. to develop any new technology called for by the selected system concept and

to validate its capability to meet requirements.

 The engineering development stage corresponds to the process of engineering the

system to perform the functions specifi ed in the system concept, in a physical embodi-

ment that can be produced economically and maintained and operated successfully in

its operational environment. Systems engineering is primarily concerned with guiding

the engineering development and design, defi ning and managing interfaces, developing

test plans, and determining how discrepancies in system performance uncovered during

test and evaluation (T & E) should best be rectifi ed. The main bulk of the engineering

effort is carried out during this stage. The engineering development stage corresponds

to the DoD activities of engineering and manufacturing development and is a part of

production and deployment.

 The principal objectives of the engineering development stage are

 1. to perform the engineering development of a prototype system satisfying the

requirements of performance, reliability, maintainability, and safety; and

 2. to engineer the system for economical production and use and to demonstrate

its operational suitability.

 The postdevelopment stage consists of activities beyond the system development

period but still requires signifi cant support from systems engineering, especially when

unanticipated problems requiring urgent resolution are encountered. Also, continuing

advances in technology often require in - service system upgrading, which may be just

as dependent on systems engineering as the concept and engineering development

stages. This stage corresponds to a part of the DoD production and deployment phase

and all of the operations and support phase.

 The postdevelopment stage of a new system begins after the system successfully

undergoes its operational T & E, sometimes referred to as acceptance testing , and is

released for production and subsequent operational use. While the basic development

has been completed, systems engineering continues to play an important supporting

role in this effort.

 The relations among the principal stages in the system life cycle are illustrated in

the form of a fl owchart in Figure 4.3 . The fi gure shows the principal inputs and outputs

of each of the stages. The legends above the blocks relate to the fl ow of information

SYSTEM LIFE CYCLE 75

in the form of requirements, specifi cations, and documentation, beginning with opera-

tional needs. The inputs and outputs below the blocks represent the stepwise evolution

of the design representations of an engineered system from the concept to the opera-

tional system. It is seen that both the documentation and design representations become

increasingly complete and specifi c as the life cycle progresses. The later section entitled

 “ System Materialization ” is devoted to a discussion of the factors involved in this

process.

 Example: Development Stages of a New Commercial Aircraft. To illus-

trate the application of this life cycle model, consider the evolution of a new passenger

aircraft. The concept development stage would include the recognition of a market for

a new aircraft, the exploration of possible confi gurations, such as number, size, and

location of engines, body dimensions, wing platform, and so on, leading to the selection

of the optimum confi guration from the standpoint of production cost, overall effi ciency,

passenger comfort, and other operational objectives. The above decisions would be

based largely on analyses, simulations, and functional designs, which collectively

would constitute justifi cations for selecting the chosen approach.

 The engineering development stage of the aircraft life cycle begins with the accep-

tance of the proposed system concept and a decision by the aircraft company to proceed

with its engineering. The engineering effort would be directed to validating the use of

any unproven technology, implementing the system functional design into hardware

and software components, and demonstrating that the engineered system meets the user

needs. This would involve building prototype components, integrating them into an

operating system and evaluating it in a realistic operational environment. The postde-

velopment stage includes the acquisition of production tooling and test equipment,

production of the new aircraft, customizing it to fi t requirements of different customers,

supporting regular operations, fi xing any faults discovered during use, and periodically

overhauling or replacing engines, landing gear, and other highly stressed components.

Systems engineering plays a limited but vital supporting and problem - solving role

during this stage.

 Figure 4.3. Principal stages in a system life cycle.

Operational

Deficiencies

System Functional

Specifications

System Production

Specifications

Operations and

Maintenance

Documentation

Concept

Development

Engineering

Development
Postdevelopment

Technological

Opportunities

Defined System

Concept(s)

Production

System
Installed

Operational

System

76 THE SYSTEM DEVELOPMENT PROCESS

 Concept Development Phases

 While the three stages described above constitute the dominant subdivisions of the

system life cycle, each of these stages contains recognizable subdivisions with charac-

teristically different objectives and activities. In the case of large programs, formal

decision points also mark most of these subdivisions, similar to those marking the

transition between stages. Furthermore, the roles of systems engineering tend to differ

signifi cantly among these intermediate subdivisions. Hence, to understand how the

evolution of the system life cycle relates to the systems engineering process, it is useful

to develop a model of its structure down to this second level of subdivision.

 The concept development stage of the systems engineering life cycle encompasses

three phases: needs analysis , concept exploration , and concept defi nition . Figure 4.4

shows these phases, their principal activities and inputs and outputs in a format analo-

gous to Figure 4.3 .

 Needs Analysis Phase. The needs analysis phase defi nes the need for a new

system. It addresses the questions “ Is there a valid need for a new system? ” and “ Is

there a practical approach to satisfying such a need? ” These questions require a critical

examination of the degree to which current and perceived future needs cannot be satis-

fi ed by a physical or operational modifi cation of available means, as well as whether

or not available technology is likely to support the increased capability desired. In many

cases, the beginning of the life of a new system evolves from a continuing analysis of

operational needs, or an innovative product development, without a sharply identifi ed

beginning.

 The output of this phase is a description of the capabilities and operational effec-

tiveness needed in the new system. In many ways, this description is the fi rst iteration

of the system itself, albeit a very basic conceptual model of the system. The reader

 Figure 4.4. Concept development phases of a system life cycle.

Operational

Deficiencies

System Operational

Effectiveness

System Performance

Requirements

System Functional

Specifications

Needs Analysis Concept Exploration Concept Definition

System Studies

Technology Assessment

Requirements Analysis

Concept Synthesis

Analysis of Alternatives

Functional Architecture

Operational Analysis Feasibility Experiments Physical Architecture

Technological

Opportunities

System Capabilities Candidate System

Concepts

Defined System

Concept(s)

SYSTEM LIFE CYCLE 77

should take note of how the “ system ” evolves from this very beginning phase through-

out its life cycle. Although we would not yet call this description a set of requirements,

they certainly are the forerunner of what will be defi ned as offi cial requirements.

Some communities refer to this early description as an initial capability description.

 Several classes of tools and practices exist to support the development of the

system capabilities and effectiveness description. Most fall into two categories of

mathematics, known as operational analysis and operations research. However, technol-

ogy assessments and experimentation are an integral part of this phase and will be used

in conjunction with mathematical techniques.

 Concept Exploration Phase. This phase examines potential system concepts

in answering the questions “ What performance is required of the new system to meet

the perceived need? ” and “ Is there at least one feasible approach to achieving such

performance at an affordable cost? ” Positive answers to these questions set a valid and

achievable goal for a new system project prior to expending a major effort on its

development.

 The output of this phase includes our fi rst “ offi cial ” set of requirements, typically

known as system performance requirements. What we mean by offi cial is that a con-

tractor or agency can be measured against this set of required capabilities and perfor-

mance. In addition to an initial set of requirements, this phase produces a set of

candidate system concepts. Note the plural — more than one alternative is important to

explore and understand the range of possibilities in satisfying the need.

 A variety of tools and techniques are available in this phase and range from process

methods (e.g., requirements analysis) to mathematically based (e.g., decision support

methods) to expert judgment (e.g., brainstorming). Initially, the number of concepts

can be quite large from some of these techniques; however, the set quickly reduces to

a manageable set of alternatives. It is important to understand and “ prove ” the feasibility

of the fi nal set of concepts that will become the input of the next phase.

 Concept Defi nition Phase. The concept defi nition phase selects the preferred

concept. It answers the question “ What are the key characteristics of a system concept

that would achieve the most benefi cial balance between capability, operational life, and

cost? ” To answer this question, a number of alternative concepts must be considered,

and their relative performance, operational utility, development risk, and cost must be

compared. Given a satisfactory answer to this question, a decision to commit major

resources to the development of the new system can be made.

 The output is really two perspectives on the same system: a set of functional

specifi cations that describe what the system must do, and how well, and a selected

system concept. The latter can be in two forms. If the complexity of the system is rather

low, a simple concept description is suffi cient to communicate the overall design strat-

egy for the development effort to come. However, if the complexity is high, a simple

concept description is insuffi cient and a more comprehensive system architecture is

needed to communicate the various perspectives of the system. Regardless of the depth

of description, the concept needs to be described in several ways, primarily from a

78 THE SYSTEM DEVELOPMENT PROCESS

functional perspective and from a physical perspective. Further perspectives may very

well be needed if complexity is particularly high.

 The tools and techniques available fall into two categories: analysis of alternatives

(a particular method pioneered by the DoD, but fully part of operations research), and

systems architecting (pioneered by Ebbert Rechtin in the early 1990s).

 As noted previously, in commercial projects (NSPE model), the fi rst two phases

are often considered as a single preproject effort. This is sometimes referred to as a

 “ feasibility study ” and its results constitute a basis for making a decision as to whether

or not to invest in a concept defi nition effort. In the defense acquisition life cycle, the

second and third phases are combined, but the part corresponding to the second phase

is performed by the government, resulting in a set of system performance requirements,

while that corresponding to the third can be conducted by a government – contractor

team or performed by several contractors competing to meet the above requirements.

 In any case, before reaching the engineering development stage, only a fractional

investment has usually been made in the development of a particular system, although

some years and considerable effort may have been spent in developing a fi rm under-

standing of the operational environment and in exploring relevant technology at the

subsystem level. The ensuing stages are where the bulk of the investment will be

required.

 Engineering Development Phases

 Figure 4.5 shows the activities, inputs, and outputs of the constituent phases of the

engineering development stage of the system life cycle in the same format as used in

Figure 4.3 . These are referred to as advanced development , engineering design , and

 integration and evaluation .

 Advanced Development Phase. The success of the engineering development

stage of a system project is critically dependent on the soundness of the foundation laid

 Figure 4.5. Engineering development phases in a system life cycle.

System Design

Specifications

Test and Evaluation

Plan

System Production

Specifications

System Functional

Specifications

Advanced
Engineering Design

Integration and

Development

Risk Management

Subsystem Definition

Component Engineering

Component Test

Evaluation

System Integration

System Test

Component Specs
Specialty Engineering

Operational Evaluation

Validated Development

Model

Engineered

Components

Production

System

Defined System

Concept(s)

SYSTEM LIFE CYCLE 79

during the concept development stage. However, since the conceptual effort is largely

analytical in nature and carried out with limited resources, signifi cant unknowns invari-

ably remain that are yet to be fully defi ned and resolved. It is essential that these

 “ unknown unknowns ” be exposed and addressed early in the engineering stage. In par-

ticular, every effort must be made to minimize the number of as yet undisclosed problems

prior to translating the functional design and associated system requirements into engi-

neering specifi cations for the individual system hardware and software elements.

 The advanced development phase has two primary purposes: (1) the identifi cation

and reduction of development risks and (2) the development of system design specifi ca-

tions. The advanced development phase is especially important when the system

concept involves advanced technology not previously used in a similar application, or

where the required performance stresses the system components beyond proven limits.

It is devoted to designing and demonstrating the undeveloped parts of the system, to

proving the practicality of meeting their requirements, and to laying the basis for con-

verting the functional system requirements into system specifi cations and component

design requirements. Systems engineering is central to the decisions of what needs to

be validated and how, and to the interpretation of the results.

 This phase corresponds to the defense acquisition phase called “ engineering and

manufacturing development, ” once referred to as “ demonstration and validation. ”

When the risks of using unproven technology are large, this phase is often contracted

separately, with contracts for the remaining engineering phase contingent on its

success.

 Matching the purpose of this phase, the two primary outputs are the design speci-

fi cations and a validated development model. The specifi cations are a refi nement and

evolution of the earlier function specifi cations. The development model is the fi nal

outcome of a very comprehensive risk management task — where those unknowns

mentioned above have been identifi ed and resolved. This is what we mean when we

use the adjective “ validated. ” The systems engineer needs to be convinced that this

system can be designed and manufactured before transitioning from this phase.

Therefore, all risks at this phase must be rated as manageable before proceeding.

 Modern risk management tools and techniques are essential to reduce and ulti-

mately to mitigate risks inherent in the program. As these risks are managed, the level

of defi nition continues to migrate down, from the system to the subsystem. Furthermore,

a set of specifi cations for the next level of decomposition, at the component level,

occurs. In all of these cases, both experimental models and simulations are often

employed at this stage to validate component and subsystem design concepts at

minimum cost.

 Engineering Design Phase. The detailed engineering design of the system is

performed during this phase. Because of the scale of this effort, it is usually punctuated

by formal design reviews. An important function of these reviews is to provide an

opportunity for the customer or user to obtain an early view of the product, to monitor

its cost and schedule, and to provide valuable feedback to the system developer.

 While issues of reliability, producibility, maintainability, and other “ ilities ”

have been considered in previous phases, they are of paramount importance in the

80 THE SYSTEM DEVELOPMENT PROCESS

engineering design phase. These types of issues are typically known as “ specialty

engineering. ” Since the product consists of a set of components capable of being inte-

grated and tested as a system, the systems engineer is responsible for ensuring that the

engineering design of the individual components faithfully implements the functional

and compatibility requirements, and for managing the engineering change process to

maintain interface and confi guration control.

 The tasks of this phase deals with converting the component specifi cations into a

set of component designs. Of course, testing these components is essential to occur

immediately after design, or in some cases, concurrently with design. One additional

task is performed during this phase: the refi nement of the system T & E plan. We use

the term refi nement to distinguish between the initiation and continuation. The T & E

plan is initially developed much earlier in the life cycle. At this phase, the T & E plan

is largely fi nished, using the knowledge gained from the previous phases.

 The two primary outputs are the T & E plan and an engineered prototype. The pro-

totype can take many forms and should not be thought of in the same way as we think

of a software prototype. This phase may produce a prototype that is virtual, physical,

or a hybrid, depending on the program. For example, if the system is an ocean - going

cargo vessel, the prototype at this stage may be a hybrid of virtual and physical mock -

 ups. A full - scale prototype of a cargo ship may not be possible or prudent at this phase.

On the other hand, if the system is a washing machine, a full - scale prototype may be

totally appropriate.

 Modern computer - aided design tools are available as design engineers perform

their trade. System models and simulations are also updated as designs are fi nalized

and tested.

 Integration and Evaluation Phase. The process of integrating the engineered

components of a complex system into a functioning whole, and evaluating the system ’ s

operation in a realistic environment, is nominally part of the engineering design process

because there is no formal break in the development program at this point. However,

there is a basic difference between the role and responsibility of systems engineering

during the engineering design of the system elements and that during the integration

and evaluation process. Since this book is focused on the functions of systems engineer-

ing, the system integration and evaluation process is treated as a separate phase in the

system life cycle.

 It is important to realize that the fi rst time a new system can be assembled and

evaluated as an operating unit is after all its components are fully engineered and built.

It is at this stage that all the component interfaces must fi t and component interactions

must be compatible with the functional requirements. While there may have been prior

tests at the subsystem level or at the level of a development prototype, the integrity of

the total design cannot be validated prior to this point.

 It should also be noted that the system integration and evaluation process often

requires the design and construction of complex facilities to closely simulate opera-

tional stimuli and constraints and to measure the system ’ s responses. Some of these

facilities may be adapted from developmental equipment, but the magnitude of the task

should not be underestimated.

SYSTEM LIFE CYCLE 81

 The outputs of this phase are twofold: (1) the specifi cations to guide the manufac-

turing of the system, typically called the system production specifi cations (sometimes

referred to as the production baseline), and (2) the production system itself. The latter

includes everything necessary to manufacture and assemble the system and may include

a prototype system.

 Modern integration techniques and T & E tools, methods, facilities, and principles

are available to assist and enable the engineers in these tasks. Of course, before full -

 scale production can occur, the fi nal production system needs to be verifi ed and vali-

dated through an evaluation within the operational environment or a suffi cient surrogate

for the operational environment.

 Postdevelopment Phases

 Production Phase. The production phase is the fi rst of the two phases compris-

ing the postdevelopment stage, which are exactly parallel to the defense acquisition

phases of “ production and deployment ” and “ operations and support. ”

 No matter how effectively the system design has been engineered for production,

problems inevitably arise during the production process. There are always unexpected

disruptions beyond the control of project management, for example, a strike at a ven-

dor ’ s plant, unanticipated tooling diffi culties, bugs in critical software programs, or an

unexpected failure in a factory integration test. Such situations threaten costly disrup-

tions in the production schedule that require prompt and decisive remedial action.

Systems engineers are often the only persons qualifi ed to diagnose the source of the

problem and to fi nd an effective solution. Often a systems engineer can devise a “ work -

 around ” that solves the problem for a minimal cost. This means that an experienced

cadre of systems engineers intimately familiar with the system design and operation

needs to be available to support the production effort. Where specialty engineering

assistance may be required, the systems engineers are often best qualifi ed to decide

who should be called in and when.

 Operations and Support Phase. In the operations and support phase, there is

an even more critical need for systems engineering support. The system operators and

maintenance personnel are likely to be only partially trained in the fi ner details of

system operation and upkeep. While specially trained fi eld engineers generally provide

support, they must be able to call on experienced systems engineers in case they

encounter problems beyond their own experience.

 Proper planning for the operational phase includes provision of a logistic support

system and training programs for operators and maintenance personnel. This planning

should have major participation from systems engineering. There are always unantici-

pated problems that arise after the system becomes operational that must be recognized

and included in the logistic and training systems. Very often, the instrumentation

required for training and maintenance is itself a major component of the system to be

delivered.

 Most complex systems have lifetimes of many years, during which they undergo

a number of minor and major upgrades. These upgrades are driven by evolution in the

82 THE SYSTEM DEVELOPMENT PROCESS

system mission, as well as by advances in technology that offer opportunities to

improve operation, reliability, or economy. Computer - based systems are especially

subject to periodic upgrades, whose cumulative magnitude may well exceed the initial

system development. While the magnitude of an individual system upgrade is a fraction

of that required to develop a new system, it usually entails a great many complex deci-

sions requiring the application of systems engineering. Such an enterprise can be

extremely complex, especially in the conceptual stage of the upgrade effort. Anyone

that has undergone a signifi cant home alteration, such as the addition of one bedroom

and bath, will appreciate the unexpected diffi culty of deciding just how this can be

accomplished in such a way as to retain the character of the original structure and yet

realize the full benefi ts of the added portion, as well as be performed for an affordable

price.

 4.3 EVOLUTIONARY CHARACTERISTICS OF
THE DEVELOPMENT PROCESS

 The nature of the system development process can be better understood by considering

certain characteristics that evolve during the life cycle. Four of these are described in

the paragraphs below. The section The Predecessor System discusses the contributions

of an existing system on the development of a new system that is to replace it. The

section System Materialization describes a model of how a system evolves from

concept to an engineered product. The section The Participants describes the composi-

tion of the system development team and how it changes during the life cycle. The

section System Requirements and Specifi cations describes how the defi nition of the

system evolves in terms of system requirements and specifi cations as the development

progresses.

 The Predecessor System

 The process of engineering a new system may be described without regard to its resem-

blance to current systems meeting the same or similar needs. The entire concept and

all of its elements are often represented as starting with a blank slate, a situation that

is virtually never encountered in practice.

 In the majority of cases, when new technology is used to achieve radical changes

in such operations as transportation, banking, or armed combat, there exist predecessor

systems. In a new system, the changes are typically confi ned to a few subsystems, while

the existing overall system architecture and other subsystems remain substantially

unchanged. Even the introduction of automation usually changes the mechanics but not

the substance of the process. Thus, with the exception of such breakthroughs as the

fi rst generation of nuclear systems or of spacecraft, a new system development can

expect to have a predecessor system that can serve as a point of departure.

 A predecessor system will impact the development of a new system in three ways:

 1. The defi ciencies of the predecessor system are usually recognized, often being

the driving force for the new development. This focuses attention on the most

EVOLUTIONARY CHARACTERISTICS OF THE DEVELOPMENT PROCESS 83

important performance capabilities and features that must be provided by the

new system.

 2. If the defi ciencies are not so serious as to make the current system worthless,

its overall concept and functional architecture may constitute the best starting

point for exploring alternatives.

 3. To the extent that substantial portions of the current system perform their func-

tion satisfactorily and are not rendered obsolete by recent technology, great cost

savings (and risk reduction) may be achieved by utilizing them with minimum

change.

 Given the above, the average system development will almost always be a hybrid, in

that it will combine new and undemonstrated components and subsystems with previ-

ously engineered and fully proven ones. It is a particular responsibility of systems

engineering to ensure that the decisions as to which predecessor elements to use, which

to reengineer, which to replace by new ones, and how these are to be interfaced are

made through careful weighing of performance, cost, schedule, and other essential

criteria.

 System Materialization

 The steps in the development of a new system can be thought of as an orderly progres-

sive “ materialization ” of the system from an abstract need to an assemblage of actual

components cooperating to perform a set of complex functions to fulfi ll that need. To

illustrate this process, Table 4.1 traces the growth of materialization throughout the

phases of the project life cycle. The rows of the table represent the levels of system

subdivision, from the system itself at the top to the part level at the bottom. The columns

are successive phases of the system life cycle. The entries are the primary activities at

each system level and phase, and their degree of materialization. The shaded areas

indicate the focus of the principal effort in each phase.

 It is seen that each successive phase defi nes (materializes) the next lower level of

system subdivision until every part has been fully defi ned. Examining each row from

left to right, say, at the component level, it is also seen that the process of defi nition

starts with visualization (selecting the general type of system element), then proceeds

to defi ning its functions (functional design, what it must do), and then to its implemen-

tation (detailed design, how it will do it).

 The above progression holds true through the engineering design phase, where the

components of the system are fully “ materialized ” as fi nished system building blocks.

In the integration and evaluation phase, the materialization process takes place in a

distinctly different way, namely, in terms of the materialization of an integrated and

validated operational system from its individual building blocks. These differences are

discussed further in Chapter 13 .

 It is important to note from Table 4.1 that while the detailed design of the system

is not completed until near the end of its development, its general characteristics must

be visualized very early in the process. This can be understood from the fact that the

selection of the specifi c system concept requires a realistic estimate of the cost to

 TABLE 4.1. Evolution of System Materialization through the System Life Cycle

 Level

 Phase

 Concept development Engineering development

 Needs analysis Concept exploration Concept defi nition

 Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore, and

synthesize concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne requirements

and ensure feasibility

 Defi ne functional and

physical architecture

 Validate subsystems Integrate and test

 Component Allocate functions to

components

 Defi ne specifi cations Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

8
4

EVOLUTIONARY CHARACTERISTICS OF THE DEVELOPMENT PROCESS 85

develop and produce it, which in turn requires a visualization of its general physical

implementation as well as its functionality. In fact, it is essential to have at least a

general vision of the physical embodiment of the system functions during even the

earliest investigations of technical feasibility. It is of course true that these early visu-

alizations of the system will differ in many respects from its fi nal materialization, but

not so far as to invalidate conclusions about its practicality.

 The role of systems architecting fulfi lls this visualization requirement by providing

visual perspectives into the system concept early in the life cycle. As a system project

progresses through its life cycle, the products of the architecture are decomposed to

ever - lower levels.

 At any point in the cycle, the current state of system defi nition can be thought of

as the current system model. Thus, during the concept development stage, the system

model includes only the system functional model that is made up entirely of descriptive

material, diagrams, tables of parameters, and so on, in combination with any simula-

tions that are used to examine the relationships between system - level performance and

specifi c features and capabilities of individual system elements. Then, during the engi-

neering development stage, this model is augmented by the gradual addition of hard-

ware and software designs for the individual subsystems and components, leading

fi nally to a completed engineering model. The model is then further extended to a

production model as the engineering design is transformed into producible hardware

designs, detailed software defi nition, production tooling, and so on. At every stage of

the process, the current system model necessarily includes models of all externally

imposed interfaces as well as the internal system interfaces.

 The Participants

 A large project involves not only dozens or hundreds of people but also several different

organizational entities. The ultimate user may or may not be an active participant in

the project but plays a vital part in the system ’ s origin and in its operational life. The

two most common situations are when (1) the government serves as the system acquisi-

tion agent and user, with a commercial prime contractor supported by subcontractors

as the system developer and producer, and (2) a commercial company serves as the

acquisition manager, system developer, and producer. Other commercial companies or

the general public may be the users. The principal participants in each phase of the

project are also different. Therefore, one of the main functions of systems engineering

is to provide the continuity between successive participating levels in the hierarchy and

successive development phases and their participants through both formal documenta-

tion and informal communications.

 A typical distribution of participants in an aerospace system development is shown

in Figure 4.6 . The height of the columns represents the relative number of engineering

personnel involved. The entries are the predominant types of personnel in each phase.

It is seen that, in general, participation varies from phase to phase, with systems engi-

neering providing the main continuity.

 The principal participants in the early phases are analysts and architects (system

and operations/market). The concept defi nition phase is usually carried out by an

86 THE SYSTEM DEVELOPMENT PROCESS

expedited team effort, representing all elements necessary to select and document the

most cost - effective system concept for meeting the stated requirements.

 The advanced development phase usually marks the initial involvement of the

system design team that will carry the project through the engineering stage and on

into production. It is led by systems engineering, with support from the design and test

engineers engaged in the development of components and subsystems requiring

development.

 The engineering design phase further augments the effort with a major contribution

from specialty engineering (reliability, maintainability, etc.), as well as test and produc-

tion engineering. For software, this phase involves designers, as well as coders, to the

extent that prototyping is employed.

 The integration and evaluation phase relies heavily on test engineering with guid-

ance from systems engineering and support from design engineers and engineering

specialists.

 System Requirements and Specifi cations

 Just as the system design gradually materializes during the successive steps of system

development, so the successive forms of system requirements and specifi cations become

more and more specifi c and detailed. These start with a set of operational requirements

and end with a complete set of production specifi cations, operation, maintenance, and

 Figure 4.6. Principal participants in a typical aerospace system development.

Test Eng

100
Sys Anal – System Analysts

Sys Arch – System Architects

Sys Eng – Systems Engineers

Test Eng

Test Eng

75

Integ Eng

Integ Eng

Des Eng – Design Engineers (incl. specialty)

Integ Eng – Integration Engineers

Test Eng – Test Engineers

Des Eng
Des EngDes Eng

50

Integ Eng

Sys Eng

Sys Eng

Sys Eng

Des Eng

25

Sys Arch

S A l S A l

Sys Arch
Sys Arch

S A h Sys Arch

Sys Eng

Sys Eng Sys Eng

Sys Anal Sys nal ys nal Sys rch Sys Arch Sys

Needs

Analysis

Concept

Exploration

Concept

Definition

Advanced

Development

Engineering

Design

Integration

and

Evaluation

0

Concept Development Engineering Development

R
e
la

ti
v
e
 R

e
s
o
u
rc

e
 L

e
v
e
l

THE SYSTEMS ENGINEERING METHOD 87

training manuals and all other information needed to replicate, operate, maintain, and

repair the system. Thus, each phase can be thought of as producing a more detailed

description of the system: what it does, how it works, and how it is built.

 Since the above documents collectively determine both the course of the develop-

ment effort and the form and capabilities of the system as fi nally delivered, oversight

of their defi nition and preparation is a primary responsibility of systems engineering.

This effort must, however, be closely coordinated with the associated design specialists

and other involved organizations.

 The evolution of system requirements and specifi cations is shown in the fi rst row

of Table 4.2 as a function of the phases in the system life cycle. It should be emphasized

that each successive set of documents does not replace the versions defi ned during the

previous phases but rather supplements them. This produces an accumulation rather

than a succession of system requirements and other documents. These are “ living docu-

ments, ” which are periodically revised and updated.

 The necessity for an aggregation of formal requirements and specifi cations devel-

oped during successive phases of the system development can be better understood by

recalling the discussion of “ Participants ” and Figure 4.6 . In particular, not only are there

many different groups engaged in the development process, but many, if not most, of

the key participants change from one phase to the next. This makes it essential that a

complete and up - to - date description exists that defi nes what the system must do and

also, to the extent previously defi ned, how it must do it.

 The system description documents not only lay the basis for the next phase of

system design but they also specify how the results of the effort are to be tested in order

to validate compliance with the requirements. They provide the information base

needed for devising both the production tools and the tools to be used for inspecting

and testing the product of the forthcoming phase.

 The representations of system characteristics also evolve during the development

process, as indicated in the second row of Table 4.2 . Most of these will be recognized

as architecture views and conventional engineering design and software diagrams and

models. Their purpose is to supplement textual descriptions of successive stages of

system materialization by more readily understandable visual forms. This is especially

important in defi ning interfaces and interactions among system elements designed by

different organizations.

 4.4 THE SYSTEMS ENGINEERING METHOD

 In the preceding sections, the engineering of a complex system was seen to be divisible

into a series of steps or phases. Beginning with the identifi cation of an opportunity to

achieve a major extension of an important operational capability by a feasible techno-

logical approach, each succeeding phase adds a further level of detailed defi nition

(materialization) of the system, until a fully engineered model is achieved that proves

to meet all essential operational requirements reliably and at an affordable cost. While

many of the problems addressed in a given phase are peculiar to that state of system

defi nition, the systems engineering principles that are employed, and the relations

 TABLE 4.2. Evolution of System Representation

 Concept development Engineering development

 Needs analysis

 Concept

exploration Concept defi nition

 Advanced

development Engineering design

 Integration

and evaluation

 Documents System capabilities

and effectiveness

 System

performance

requirements

 System functional

requirements

 System design

specifi cations

 Design documents Test plans and

evaluation

reports

 System

models

 Operational

diagrams, mission

simulations

 System diagrams,

high - level system

simulations

 Architecture

products and

views, simulations,

mock - ups

 Architecture

products and

views, detailed

simulations,

breadboards

 Architecture drawings

and schematics,

engineered components,

computer - aided design

(CAD) products

 Test setups,

simulators,

facilities, and

test articles

8
8

THE SYSTEMS ENGINEERING METHOD 89

among them, are fundamentally similar from one phase to the next. This fact, and its

importance in understanding the system development process, has been generally rec-

ognized; the set of activities that tends to repeat from one phase to the next has been

referred to in various publications on systems engineering as the “ systems engineering

process, ” or the “ systems engineering approach, ” and is the subject of the sections

below. In this book, this iterative set of activities will be referred to as the “ systems

engineering method. ”

 The reason for selecting the word “ method ” in place of the more widely used

 “ process ” or “ approach ” is that it is more defi nitive and less ambiguous. The word

method is more specifi c than process, having the connotation of an orderly and logical

process. Furthermore, the term systems engineering process is sometimes used to apply

to the total system development. Method is also more appropriate than approach, which

connotes an attitude rather than a process. With all this said, the use of a more common

terminology is perfectly acceptable.

 Survey of Existing Systems Engineering Methods and Processes

 The fi rst organization to codify a formal systems engineering process was the U.S. DoD,

captured in the military standard, MIL - STD - 498. Although the process evolved through

several iterations, the last formal standard to exist (before being discontinued) was

MIL - STD - 499B. This process is depicted in Figure 4.7 and contains four major activi-

ties: requirements analysis, functional analysis and allocation, synthesis, and systems

analysis and control. The component tasks are presented within each activity.

 While this military standard is no longer in force, it is still used as a guide by many

organizations and is the foundation for understanding the basics of today ’ s systems

engineering processes.

 Three relevant commercial standards describe a systems engineering process:

IEEE - 1220, the EIA - STD - 632, and the ISO - IEC - IEEE - STD - 15288. As these three

processes are presented, notice that each commercial standard blends aspects of a

systems engineering process with the life cycle model describe above. The order that

we present these three methods is important — they are presented in order of the level

of convergence with the life cycle model of system development. And in fact, the mili-

tary standard discussed above could be placed fi rst in the sequence. In other words,

MIL - STD - 499B is the most divergent from the life cycle model. In contrast, ISO - 15288

could easily be thought of as a life cycle model for system development.

 Figure 4.8 presents the IEEE - 1220 process. The main control activity is located in

the middle of the graph. The general fl ow of activities is then clockwise, starting from

the bottom left, beginning with “ process inputs ” and ending with “ process outputs. ”

This process could also be thought of as an expansion of the military standard — the

four basic activities are present, with a verifi cation or validation step in between.

 Figure 4.9 presents the EIA - 632 process. Actually, the EIA - 632 standard presents

a collection of 13 processes that are linked together. One can easily recognize the itera-

tive and circular nature of these linkages. Although the general fl ow is top – down, the

processes are repeated multiple times throughout the system life cycle.

90 THE SYSTEM DEVELOPMENT PROCESS

 Figure 4.7. DoD MIL - STD499B.

Process Input

Systems Analysis

and Control

Process Output

Requirements Analysis

•Analyze Missions and Environments

•Identify Functional Requirements

•Define/Refine Performance and

 Design Constraint Requirements

Functional Analysis/Allocation

•Decompose to Lower-Level Functions

•Allocate Performance and Other Limiting

 Requirements to All Functional Levels

•Define/Refine Functional Interfaces (Internal/External)

•Define/Refine/Integrate Functional Architecture

Synthesis

•Transform Architectures (Functional to Physical)

•Define Alternative System Concepts,

 Configuration Items, and System Elements

•Define/Refine Physical Interfaces (Internal/External)

•Define/Alternative Product and Process Solutions

Verification

 Figure 4.8. IEEE - 1220 systems engineering process.

Requirements
Validation

Requirements
Analysis

Systems Analysis
and Control

Design
Verification

Synthesis

Functional
(Performance)

Verification

Functional
(Performance)

Analysis

Process
Inputs

Process
Outputs

THE SYSTEMS ENGINEERING METHOD 91

 Figure 4.9. EIA - 632 systems engineering process.

Technical Management
Assessment

Process

Planning
Process

Control
Process

Acquisition and Supply
Supply Process

Acquisition Process

Requirements

Outcomes

and

Feedback

Plans,

Directives,

and Status

System Design
Requirements Definition Process

Solution Definition Process

Designs

Acquisition

Request

System

Products

Product Realization
Implementation Process

Transition to Use Process

Products

Technical Evaluation

Systems
Analysis
Process

Requirements
Validation
Process

System
Verification

Process

End Products
Validation
Process

 The 13 processes are further categorized into fi ve sets: technical management,

acquisition and supply, system design, product realization, and technical evaluation.

The fi rst and last process sets occur almost continuously throughout the system devel-

opment life cycle. Planning, assessment, and control do not stop after the initial devel-

opment phases, and systems analysis, requirements validation, system verifi cation, and

end - product validation commence well before a physical product is available. The three

middle sets occur linearly, but with feedback and iterations.

 Figure 4.10 presents the ISO - 15288 process. This standard presents processes for

both the system life cycle and systems engineering activities. In addition, the philoso-

phy behind this standard is based on the systems engineer ’ s and the program manager ’ s

ability to tailor the processes presented into a sequence of activities that is applicable

to the program. Thus, no specifi c method is presented that sequences a subset of

processes.

 Our Systems Engineering Method

 The systems engineering method can be thought of as the systematic application of the

scientifi c method to the engineering of a complex system. It can be considered as con-

sisting of four basic activities applied successively, as illustrated in Figure 4.11 :

 1. requirements analysis,

 2. functional defi nition,

 3. physical defi nition, and

 4. design validation.

92 THE SYSTEM DEVELOPMENT PROCESS

 Figure 4.10. ISO - 15288 Systems engineering process.

System Life Cycle Processes

Agreement Processes
1) Acquisition Process
2) Supply Process

Project Processes
1) Project Planning Process
2) Project Assessment Process
3) Project Control Process
4) Decision-Making Process
5) Risk Management Process
6) Configuration Management Process
7) Information Management Process

Technical Processes
1) Stakeholder Requirements Definition Process
2) Requirements Analysis Process
3) Architectural Design Process
4) Implementation Process
5) Integration Process
6) Verification Process
7) Transition Process
8) Validation Process
9) Operation Process
10) Maintenance Process
11) Disposal Process

Enterprose Processes
1) Enterprise Environment Management Process
2) Investment Management Process
3) System Life Cycle Processes Management Process
4) Resource Management Process
5) Quality Managment Process

 Figure 4.11. Systems engineering method top - level fl ow diagram.

Need

Requirements
Analysis

Requirements

Functional
Definition

Functions

Physical
Definition

Design
Validation

System Model

Solution(s)

THE SYSTEMS ENGINEERING METHOD 93

 These steps will vary in their specifi cs depending on the type of system and the phase

of its development. However, there is enough similarity in their operating principles

that it is useful to describe the typical activities of each step in the method. Such brief

descriptions of the activities in the four steps are listed below.

 Requirements Analysis (Problem Defi nition). Typical activities include

 • assembling and organizing all input conditions, including requirements, plans,

milestones, and models from the previous phase;

 • identifying the “ whys ” of all requirements in terms of operational needs,

constraints, environment, or other higher - level objectives;

 • clarifying the requirements of what the system must do, how well it must do

it, and what constraints it must fi t; and

 • correcting inadequacies and quantifying the requirements wherever

possible.

 Functional Defi nition (Functional Analysis and Allocation). Typical activities

include

 • translating requirements (why) into functions (actions and tasks) that the

system must accomplish (what),

 • partitioning (allocating) requirements into functional building blocks, and

 • defi ning interactions among functional elements to lay a basis for their orga-

nization into a modular confi guration.

 Physical Defi nition (Synthesis, Physical Analysis, and Allocation). Typical activi-

ties include

 • synthesizing a number of alternative system components representing a

variety of design approaches to implementing the required functions, and

having the most simple practicable interactions and interfaces among struc-

tural subdivisions;

 • selecting a preferred approach by trading off a set of predefi ned and prioritized

criteria (measures of effectiveness [MOE]) to obtain the best “ balance ” among

performance, risk, cost, and schedule; and

 • elaborating the design to the necessary level of detail.

 Design Validation (Verifi cation and Evaluation). Typical activities include

 • designing models of the system environment (logical, mathematical, simu-

lated, and physical) refl ecting all signifi cant aspects of the requirements and

constraints;

 • simulating or testing and analyzing system solution(s) against environmental

models; and

 • iterating as necessary to revise the system model or environmental models,

or to revise system requirements if too stringent for a viable solution until the

design and requirements are fully compatible.

 The elements of the systems engineering method as described above are displayed

in the form of a fl ow diagram in Figure 4.12 , which is an expanded view of Figure

94 THE SYSTEM DEVELOPMENT PROCESS

 4.11 . The rectangular blocks are seen to represent the above four basic steps in the

method: requirements analysis, functional defi nition, physical defi nition, and design

validation. At the top are shown inputs from the previous phase, which include require-

ments, constraints, and objectives. At the left of each block are shown external inputs,

such as the predecessor system, system building blocks, and previous analyses. At the

upper right of the top blocks and at the very bottom are inputs from systems engineer-

ing methodology.

 Figure 4.12. Systems engineering method fl ow diagram.

Previous
phase

• System model requirements and constraints
• Development objectives

Requirements

analysisOrganize
and analyze

inputs

Clarify,
correct and

quantify

Predecessor
system

Consistent Partitioning criteria

Translate
into

Define
functional

Predecessor system

Functional building
blocks

documented
requirements

Functional

definition

functions interactions

Trade-off criteriaFunctional
configuration

Synthesize
system

elements

Select
preferred
design

Predecessor system

• Building blocks
• Technology

Physical

definition

Measures of
effectiveness

Design

validation

System
model

Design
deficiencies

Excessive requirements

Design
test

environment

Simulate
or test and

analyze

Previous analysis

Tools and
methodologies

Next phase

THE SYSTEMS ENGINEERING METHOD 95

 The circles inside each block are simplifi ed representations of key processes in that

step of the method. The interfacing arrows represent information fl ow. It is seen that

there are feedbacks throughout the process, iteration within the elements as well as to

prior elements, and indeed all the way back to the requirements.

 Each of the elements of the method is described more fully in the remainder of

this section.

 Requirements Analysis (Problem Defi nition)

 In attempting to solve any problem, it is fi rst necessary to understand exactly what is

given, and to the extent that it appears to be incomplete, inconsistent, or unrealistic, to

make appropriate amplifi cations or corrections. This is particularly essential in the

system development process, where a basic characteristic of systems engineering is that

everything is not necessarily what it seems and that important assumptions must be

verifi ed before they are accepted as being valid.

 Thus, in a system development project, it is the responsibility of systems engineer-

ing to thoroughly analyze all requirements and specifi cations, fi rst in order to under-

stand them vis - à - vis the basic needs that the system is intended to satisfy, and then to

identify and correct any ambiguities or inconsistencies in the defi nition of capabilities

for the system or system element being addressed.

 The specifi c activities of requirements analysis vary as the system development

progresses, as the inputs from the previous phase evolve from operational needs and

technological opportunities (see Fig. 4.3) to increasingly specifi c representations of

requirements and system design. The role of systems engineering is essential through-

out, but perhaps more so in the early phases, where an understanding of the operational

environment and the availability and maturity of applicable technology are most criti-

cal. In later phases, environmental, interface, and other interelement requirements are

the special province of systems engineering.

 Organization and Interpretation. In a well - structured acquisition process, a

new phase of the system life cycle begins with three main inputs, which are defi ned

during or upon completion of the previous phase:

 1. the system model, which identifi es and describes all design choices made and

validated in the preceding phases;

 2. requirements (or specifi cations) that defi ne the design, performance, and inter-

face compatibility features of the system or system elements to be developed

during the next phase; these requirements are derived from previously devel-

oped higher - level requirements, including any refi nements and/or revisions

introduced during the latest phase; and

 3. specifi c progress to be achieved by each component of the engineering organiza-

tion during the next phase, including the identifi cation of all technical design

data, hardware/software products, and associated test data to be provided; this

information is usually presented in the form of a series of interdependent task

statements.

96 THE SYSTEM DEVELOPMENT PROCESS

 Clarifi cation, Correction, and Quantifi cation. It is always diffi cult to express

objectives in unambiguous and quantitative terms, so it is therefore common that stated

requirements are often incomplete, inconsistent, and vague. This is especially true if

the requirements are prepared by those who are unfamiliar with the process of convert-

ing them to system capabilities, or with the origins of the requirements in terms of

operational needs. In practice, the completeness and accuracy of these inputs can be

expected to vary with the nature of the system, its degree of departure from predecessor

systems, the type of acquisition process employed, and the phase itself.

 The above analysis must include interaction with the prospective users of the

system to gain a fi rst - hand understanding of their needs and constraints and to obtain

their inputs where appropriate. The result of the analysis may be modifi cations and

amplifi cations of the requirements documents so as to better represent the objectives

of the program or the availability of proposed technological improvements. The end

objective is to create a fi rm basis from which the nature and location of the design

changes needed to meet the requirements may be defi ned.

 Functional Defi nition (Functional Analysis and Allocation)

 In the systems engineering method, functional design precedes physical or product

design to ensure a disciplined approach to an effective organization (confi guration) of

the functions and to the selection of the implementation that best balances the desired

characteristics of the system (e.g., performance and cost).

 Translation into Functions. The system elements that may serve as functional

building blocks are briefl y discussed in Chapter 3 . The basic building blocks are at the

component level representing elements that perform a single signifi cant function and

deal with a single medium, that is, either signals, data, material, or energy. They, in

turn, consist of subelements performing lower - level functions and aggregate into func-

tional subsystems. Thus, functional design can be thought of as selecting, subdividing,

or aggregating functional elements appropriate to the required tasks and level of system

materialization (see Table 4.1).

 Decomposition and allocation of each iterative set of requirements and functions

for implementation at the next lower level of system defi nition is a prime responsibility

of systems engineering. This fi rst takes place during the concept development stage as

follow - on to the defi nition of the system architecture. It includes identifi cation and

description of all functions to be provided, along with the associated quantitative

requirements to be met by each subsystem, in order that the prescribed system - level

capabilities can in fact be achieved . This information is then refl ected in system func-

tional specifi cations , which serve as the basis for the follow - on engineering develop-

ment stage.

 As part of the advanced development phase, these top - level subsystem functions

and requirements are further allocated to individual system components within each

subsystem. This, as noted earlier, is the lowest level in the design hierarchy that is of

direct concern to systems engineering, except in special cases where lower - level ele-

ments turn out to be critical to the operation of the system.

THE SYSTEMS ENGINEERING METHOD 97

 Trade - Off Analysis. The selection of appropriate functional elements, as all

aspects of design, is an inductive process, in which a set of postulated alternatives is

examined, and the one judged to be best for the intended purpose is selected. The

systems engineering method relies on making design decisions by the use of trade - off

analysis. Trade - off analysis is widely used in all types of decision making, but in

systems engineering, it is applied in a particularly disciplined form, especially in the

step of physical defi nition. As the name implies, trade - offs involve the comparison of

alternatives, which are superior in one or more required characteristics, with those that

are superior in others. To ensure that an especially desirable approach is not overlooked,

it is necessary to explore a suffi cient number of alternative implementations, all defi ned

to a level adequate to enable their characteristics to be evaluated relative to one another.

It is also necessary that the evaluation be made relative to a carefully formulated

set of criteria or “ MOE. ” Chapters 8 and 9 contain more detailed discussions of trade -

 off analysis.

 Functional Interactions. One of the single most important steps in system

design is the defi nition of the functional and physical interconnection and interfacing

of its building blocks. A necessary ingredient in this activity is the early identifi cation

of all signifi cant functional interactions and the ways in which the functional elements

may be aggregated so as to group strongly interacting elements together and to make

the interactions among the groups as simple as possible. Such organizations (architec-

tures) are referred to as “ modular ” and are the key to system designs that are readily

maintainable and capable of being upgraded to extend their useful life. Another essen-

tial ingredient is the identifi cation of all external interactions and the interfaces through

which they affect the system.

 Physical Defi nition (Synthesis or Physical Analysis and
Allocation)

 Physical defi nition is the translation of the functional design into hardware and software

components, and the integration of these components into the total system. In the

concept development stage, where all design is still at the functional level, it is never-

theless necessary to visualize or imagine what the physical embodiment of the concept

would be like in order to help ensure that the solution will be practically realizable.

The process of selecting the embodiment to be visualized is also governed by the

general principles discussed below, applied more qualitatively than in the engineering

development stage.

 Synthesis of Alternative System Elements. The implementation of func-

tional design elements requires decisions regarding the specifi c physical form that the

implementation should take. Such decisions include choice of implementation media,

element form, arrangement, and interface design. In many instances, they also offer a

choice of approaches, ranging from exploiting the latest technology to relying on

proven techniques. As in the case of functional design, such decisions are made by

the use of trade - off analysis. There usually being more choices of different physical

98 THE SYSTEM DEVELOPMENT PROCESS

implementations than functional confi gurations, it is even more important that good

systems engineering practice be used in the physical defi nition process.

 Selection of Preferred Approach. At various milestones in the system life

cycle, the selection of a preferred approach, or approaches, will need to be made. It is

important to understand that this selection process changes depending on the phase

within the life cycle. Early phases may require selecting a several approaches to

explore, while later phases may require a down - select to a single approach. Additionally,

the level of decisions evolves. Early decisions relate to the system as a whole; later

decisions focus on subsystems and components.

 As stated previously, to make a meaningful choice among design alternatives, it is

necessary to defi ne a set of evaluation criteria and to establish their relative priority.

Among the most important variables to be considered in the physical defi nition step is

the relative affordability or cost of the alternatives and their relative risk of successful

accomplishment. In particular, early focus on one particular implementation concept

should be avoided.

 Risk as a component of trade - off analysis is basically an estimate of the probability

that a given design approach will fail to produce a successful result whether because

of defi cient performance, low reliability, excessive cost, or unacceptable schedule. If

the component risk appears substantial, the risk to the overall project must be reduced

(risk abatement) by either initiating an intensive component development effort, by

providing a backup using a proven but somewhat less capable component, by modifying

the overall technical approach to eliminate the need for the particular component that

is in doubt, or, if these fail, by relaxing the related system performance specifi cation.

Identifying signifi cantly high - risk system elements and determining how to deal with

them are an essential systems engineering responsibility. Chapter 5 discusses the risk

management process and its constituent parts.

 Proper use of the systems engineering method thus ensures that

 1. all viable alternatives are considered;

 2. a set of evaluation criteria is established; and

 3. the criteria are prioritized and quantifi ed where practicable.

 Whether or not it is possible to make quantitative comparisons, the fi nal decision

should be tempered by judgment based on experience.

 Interface Defi nition. Implicit in the physical defi nition step is the defi nition and

control of interfaces , both internal and external. Each element added or elaborated in

the design process must be properly connected to its neighboring elements and to any

external inputs or outputs. Further, as the next lower design level is defi ned, adjustments

to the parent elements will inevitably be required, which must in turn be refl ected in

adjustments to their previously defi ned interfaces. All such defi nitions and readjust-

ments must be incorporated into the model design and interface specifi cations to form

a sound basis for the next level of design.

THE SYSTEMS ENGINEERING METHOD 99

 Design Validation (Verifi cation and Evaluation)

 In the development of a complex system, even though the preceding steps of the

design defi nition may have been carried out apparently in full compliance with require-

ments, there still needs to be an explicit validation of the design before the next

phase is undertaken. Experience has shown that there are just too many opportunities

for undetected errors to creep in. The form of such validation varies with the phase

and degree of system materialization, but the general approach is similar from phase

to phase.

 Modeling the System Environment. To validate a model of the system, it is

necessary to create a model of the environment with which the system can interact to

see if it produces the required performance. This task of modeling the system environ-

ment extends throughout the system development cycle. In the concept development

stage, the model is largely functional, although some parts of it may be physical, as

when an experimental version of a critical system component is tested over a range of

ambient conditions.

 In later stages of development, various aspects of the environment may be repro-

duced in the laboratory or in a test facility, such as an aerodynamic wind tunnel or

inertial test platform. In cases where the model is dynamic, it is more properly called

a simulation, in which the system design is subjected to a time - varying input to stimu-

late its dynamic response modes.

 As the development progresses into the engineering development stage, modeling

the environment becomes increasingly realistic, and environmental conditions are

embodied in system and component test equipment, such as environmental chambers,

or shock and vibration facilities. During operational evaluation testing, the environment

is, insofar as is practicable, made identical to that in which the system will eventually

operate. Here, the model has transitioned into greater reality.

 Some environments that are of great signifi cance to system performance and reli-

ability can only be imperfectly understood and are very diffi cult to simulate, for

example, the deep ocean and exoatmospheric space. In such cases, defi ning and simu-

lating the environment may become a major effort in itself. Even environments that

were thought to be relatively well understood can yield surprises, for example, unusual

radar signal refraction over the Arabian Desert.

 At each step, the system development process requires a successively more detailed

defi nition of the requirements that the system must meet. It is against these environ-

mental requirements that the successive models of the system are evaluated and refi ned.

A lesson to be learned is that the effort required to model the environment of a system

for the purpose of system T & E needs to be considered at the same level of priority as

the design of the system itself and may even require a separate design effort comparable

to the associated system design activity.

 Tests and Test Data Analysis. The defi nitive steps in the validation of the

system design are the conduct of tests in which the system model (or a signifi cant

portion of it) is made to interact with a model of its environment in such a way that

100 THE SYSTEM DEVELOPMENT PROCESS

the effects can be measured and analyzed in terms of the system requirements. The

scope of such tests evolves with the degree of materialization of the system, beginning

with paper calculations and ending with operational tests in the fi nal stages. In each

case, the objective is to determine whether or not the results conform to those prescribed

by the requirements, and if not, what changes are required to rectify the situation.

 In carrying out the above process, it is most important to observe the following

key principles:

 1. All critical system characteristics need to be stressed beyond their specifi ed

limits to uncover incipient weak spots.

 2. All key elements need to be instrumented to permit location of the exact sources

of deviations in behavior. The instruments must signifi cantly exceed the test

articles in precision and reliability.

 3. A test plan and an associated test data analysis plan must be prepared to assure

that the requisite data are properly collected and are then analyzed as necessary

to assure a realistic assessment of system compliance.

 4. All limitations in the tests due to unavoidable artifi cialities need to be explicitly

recognized and their effect on the results compensated or corrected for, as far

as possible.

 5. A formal test report must be prepared to document the degree of compliance

by the system and the source of any defi ciencies.

 The test plan should detail each step in the test procedure and identify exactly what

information will be recorded prior to, during, and at the conclusion of each test step,

as well as how and by whom it will be recorded. The test data analysis plan should then

defi ne how the data would be reduced, analyzed, and reported along with specifi c cri-

teria that will be employed to demonstrate system compliance.

 To the extent that the validation tests reveal deviations from required performance,

the following alternatives need to be considered:

 1. Can the deviation be due to a defi ciency in the environmental simulation (i.e.,

test equipment)? This can happen because of the diffi culty of constructing a

realistic model of the environment.

 2. Is the deviation due to a defi ciency in the design? If so, can it be remedied

without extensive modifi cations to other system elements?

 3. Is the requirement at issue overly stringent? If so, a request for a deviation may

be considered. This would constitute a type of feedback that is characteristic of

the system development process.

 Preparation for the Next Phase

 Each phase in the system development process produces a further level of requirements

or specifi cations to serve as a basis for the next phase. This adds to, rather than replaces,

previous levels of requirements and serves two purposes:

THE SYSTEMS ENGINEERING METHOD 101

 1. It documents the design decisions made in the course of the current phase.

 2. It establishes the goals for the succeeding phase.

 Concurrent with the requirements analysis and allocation activity, systems engineering,

acting in concert with project management, is also responsible for the defi nition of

specifi c technical objectives to be met, and for the products (e.g., hardware/software

components, technical documentation, and supporting test data) that will be provided

in response to the stated requirements for inputs to the next phase. These identifi ed end

products of each phase are also often accompanied by a set of intermediate technical

milestones that can be used to judge technical progress during each particular design

activity.

 The task of defi ning these requirements or specifi cations and the efforts to be

undertaken in implementing the related design activities is an essential part of system

development. Together, these constitute the offi cial guide for the execution of each

phase of the development.

 It must be noted, however, that in practice, the realism and effectiveness of this

effort, which is so critical to the ultimate success of the project, depends in large part

on good communication and cooperation between systems engineering and project

management on the one hand, and on the other, the design specialists who are ultimately

the best judges of what can and cannot be reasonably accomplished given the stated

requirements, available resources, and allotted time scale.

 Since the nature of the preparation for the next phase varies widely from phase to

phase, it is not usually accorded the status of a separate step in the systems engineering

method; most often, it is combined with the validation process. However, this does not

diminish its importance because the thoroughness with which it is done directly affects

the requirements analysis process at the initiation of the next phase. In any event, the

defi nition of the requirements and tasks to be performed in the next phase serves an

important interface function between phases.

 Systems Engineering Method over the System Life Cycle

 To illustrate how the systems engineering method is applied in successive phases of

the system life cycle, Table 4.3 lists the primary focus of each of the four steps of the

method for each of the phases of the system life cycle. As indicated earlier in Table

 4.1 , it is seen that as the phases progress, the focus shifts to more specifi c and detailed

(lower - level) elements of the system until the integration and evaluation phase.

 The table also highlights the difference in character of the physical defi nition and

design validation steps in going from the concept development to the engineering

development stage. In the concept development stage (left three columns), the defi ned

concepts are still in functional form (except where elements of the previous or other

systems are applied without basic change). Accordingly, physical implementation has

not yet begun, and design validation is performed by analysis and simulation of the

functional elements. In the engineering stage, implementation into hardware and soft-

ware proceeds to lower and lower levels, and design validation includes tests of experi-

mental, prototype, and fi nally production system elements and the system itself.

 TABLE 4.3. Systems Engineering Method over Life Cycle

 Step

 Phase

 Concept development Engineering development

 Needs analysis

 Concept

exploration Concept defi nition

 Advanced

development

 Engineering

design

 Integration and

evaluation

 Requirements

analysis

 Analyze needs Analyze

operational

requirements

 Analyze

performance

requirements

 Analyze functional

requirements

 Analyze design

requirements

 Analyze tests

and evaluation

requirements

 Functional

defi nition

 Defi ne system

objectives

 Defi ne

subsystem

functions

 Develop functional

architecture

component

functions

 Refi ne functional

architecture

subcomponent

functions140

 Defi ne part

functions

 Defi ne

functional

tests

 Physical

defi nition

 Defi ne system

capabilities;

visualize subsystems,

ID technology

 Defi ne system

concepts,

visualize

components

 Develop physical

architecture

components

 Refi ne physical

architecture;

specify component

construction

 Specify

subcomponent

construction

 Defi ne physical

tests; specify

test equipment

and facilities

 Design

validation

 Validate needs and

feasibility

 Validate

operational

requirements

 Evaluate system

capabilities

 Test and evaluate

critical subsystems

 Validate

component

construction

 Test and

evaluate

system

1
0
2

TESTING THROUGHOUT SYSTEM DEVELOPMENT 103

 In interpreting both Tables 4.3 and 4.1 , it should be borne in mind that in a given

phase of system development, some parts of the system might be prototyped to a more

advanced phase to validate critical features of the design. This is particularly true in

the advanced development phase, where new potentially risky approaches are proto-

typed and tested under realistic conditions. Normally, new software elements are also

prototyped in this phase to validate their basic design.

 While these tables present a somewhat idealized picture, the overall pattern of

the iterative application of the systems engineering method to successively lower

levels of the system is an instructive and valid general view of the process of system

development.

 Spiral Life Cycle Model

 The iterative nature of the system development process, with the successive applica-

tions of the systems engineering method to a stepwise materialization of the system

has been captured in the so - called spiral model of the system life cycle. A version of

this model as applied to life cycle phases is shown in Figure 4.13 . The sectors repre-

senting the four steps in the systems engineering method defi ned in the above section

are shown separated by heavy radial lines. This model emphasizes that each phase of

the development of a complex system necessarily involves an iterative application of

the systems engineering method and the continuing review and updating of the work

performed and conclusions reached in the prior phases of the effort.

 4.5 TESTING THROUGHOUT SYSTEM DEVELOPMENT

 Testing and evaluation are not separate functions from design but rather are inherent

parts of design. In basic types of design, for example, as of a picture, the function of

T & E is performed by the artist as part of the process of transferring a design concept

to canvas. To the extent that the painting does not conform to the artist ’ s intent, he or

she alters the picture by adding a few brushstrokes, which tailor the visual effect (per-

formance) to match the original objective. Thus, design is a closed - loop process in

which T & E constitutes the feedback that adjusts the result to the requirements that it

is intended to meet.

 Unknowns

 In any new system development project, there are a great many unknowns that need to

be resolved in the course of producing a successful product. For each signifi cant depar-

ture from established practice, the result cannot be predicted with assurance. The project

cost depends on a host of factors, none of them known precisely. The resolution of

interface incompatibilities often involves design adjustment on both sides of the

interface, which frequently leads to unexpected and sometimes major technical

diffi culties.

104 THE SYSTEM DEVELOPMENT PROCESS

 Figure 4.13. Spiral model of the system life cycle.

Functional
analysis

Producibility
analysis

Logistics
support
analysis

System test
and evalution

System
integration

Specification
generation

Mission and
requirements

analysis

Concept
formulation

Requirements
allocation

Design
optimization

Design
synthesis

System
effectiveness

analysis

System
development

and demonstration

Production and
deployment

Physical
definition

Functional
definition

Design
validation

Requirements
analysis

Component
advanced

development

Concept
exploration

 An essential task of systems engineering is to guide the development of the system

so that the unknowns are turned into knowns as early in the process as possible. Any

surprises occurring late in the program can prove to be many times more costly than

those encountered in its early phases.

 Many unknowns are evident at the beginning, and may be called “ known

unknowns. ” These are identifi ed early as potential problem areas and are therefore

singled out for examination and resolution. Usually, this can be accomplished through

a series of critical experiments involving simulations and/or experimental hardware and

software. However, many other problem areas are only identifi ed later when they are

discovered during system development. These unanticipated problems are often identi-

fi ed as unknown unknowns or “ unk - unks ” to distinguish them from the group of known

unknowns that were recognized at the outset and dealt with before they could seriously

impact the overall development process.

TESTING THROUGHOUT SYSTEM DEVELOPMENT 105

 Transforming the Unknown into the Known

 The existence of unk - unks makes the task of attempting to remove all the unknowns

far more diffi cult. It forces an active search for hidden traps in the favored places of

technical problems. It is the task of the systems engineer to lead this search based on

experience gathered during previous system developments and supported by a high

degree of technical insight and a “ What if … ? ” attitude.

 Since every unknown poses an uncertainty in the accomplishment of the fi nal

objective, it represents a potential risk. In fact, unknowns present the principal risks in

any development program. Hence, the task of risk assessment and integration is one

and the same as that of identifying unknowns and resolving them.

 The tools for resolving unknowns are analysis, simulation, and test, these being

the means for discovering and quantifying critical system characteristics. This effort

begins during the earliest conceptual stages and continues throughout the entire devel-

opment, only changing in substance and character and not in objective and approach.

 In designing a new system or a new element of a system that requires an approach

never attempted before under the same circumstances (as, e.g., the use of new materials

for making a highly stressed design element), the designer faces a number of unknowns

regarding the exact manner in which the new design when implemented will perform

(e.g., the element made of a new material may not be capable of being formed into the

required shape by conventional tools). In such cases, the process of testing serves to

reveal whether or not the unknown factors create unanticipated diffi culties requiring

signifi cant design changes or even abandonment of the approach.

 When a new design approach is undertaken, it is unwise to wait until the design

is fully implemented before determining whether or not the approach is sound. Instead,

testing should fi rst be done on a theoretical or experimental model of the design

element, which can be created quickly and at a minimum cost. In doing so, a judgment

must be made as to the balance between the potential benefi t of a greater degree of

realism of the model and the time and cost of achieving it. This is very often a system -

 level rather than a component - level decision, especially if the performance of the

element can have a system impact. If the unknowns are largely in the functional behav-

ior of the element, then a computational model or a simulation is indicated. If, on the

other hand, the unknowns are concerned with the material aspects, an experimental

model is required.

 Systems Engineering Approach to Testing

 The systems engineering approach to testing can be illustrated by comparing the respec-

tive views of testing by the design engineer, the test engineer, and the systems engineer.

The design engineer wants to be sure that a component passes the test, wanting to know,

 “ Is it OK? ” The test engineer wants to know that the test is thorough so as to be sure

the component is stressed enough. The systems engineer wants to be sure to fi nd and

identify all defi ciencies present in the component. If the component fails a test, the

systems engineer wants to know why, so that there will be a basis for devising changes

that will eliminate the defi ciency.

106 THE SYSTEM DEVELOPMENT PROCESS

 It is evident from the above that the emphasis of systems engineering is not only

on the test conditions but also on the acquisition of data showing exactly how the

various parts of the system did or did not perform. Furthermore, the acquisition of data

itself is not enough; it is necessary to have in hand procedures for analyzing the data.

These are often complicated and require sophisticated analytical techniques, which

must be planned in advance.

 It also follows that a systems engineer must be an active participant in the formula-

tion of the test procedures and choice of instrumentation. In fact, the prime initiative

for developing the test plan should lie with systems engineering, working in close

cooperation with test engineering. To the systems engineer, a test is like an experiment

is to a scientist, namely, a means of acquiring critical data on the behavior of the system

under controlled circumstances.

 System T & E

 The most intensive use of testing in the system life cycle takes place in the last

phase of system development, integration and evaluation, which is the subject of

Chapter 13 . Chapter 10 also contains a section on T & E during the advanced develop-

ment phase.

 4.6 SUMMARY

 Systems Engineering through the System Life Cycle

 A major system development program is an extended complex effort to satisfy an

important user need. It involves multiple disciplines and applies new technology,

requires progressively increasing commitment of resources, and is conducted in a step-

wise manner to a specifi ed schedule and budget.

 System Life Cycle

 The system life cycle may be divided into three major stages.

 Concept Development. Systems engineering establishes the system need,

explores feasible concepts, and selects a preferred system concept. The concept devel-

opment stage may be further subdivided into three phases:

 1. Needs Analysis: defi nes and validates the need for a new system, demonstrates

its feasibility, and defi nes system operational requirements;

 2. Concept Exploration: explores feasible concepts and defi nes functional perfor-

mance requirements; and

 3. Concept Defi nition: examines alternative concepts, selects the preferred concept

on the basis of performance, cost, schedule, and risk, and defi nes system func-

tional specifi cations (A - Spec).

SUMMARY 107

 Engineering Development. Systems engineering validates new technology,

transforms the selected concept into hardware and software designs, and builds and

tests production models. The engineering development stage may be further subdivided

into three phases:

 1. Advanced Development: identifi es areas of risk, reduces these risks through

analysis, development, and test, and defi nes system development specifi cations

(B - Spec);

 2. Engineering Design: performs preliminary and fi nal design and builds and tests

hardware and software components, for example, confi guration items (CIs); and

 3. Integration and Evaluation: integrates components into a production proto-

type, evaluates the prototype system, and rectifi es deviations.

 Postdevelopment. Systems engineering produces and deploys the system and

supports system operation and maintenance. The postdevelopment stage is further

subdivided into two phases:

 1. Production: develops tooling and manufactures system products, provides the

system to the users, and facilitates initial operations; and

 2. Operations and Support: supports system operation and maintenance, and

develops and supports in - service updates.

 Evolutionary Characteristics of the Development Process

 Most new systems evolve from predecessor systems — their functional architecture and

even some components may be reusable.

 A new system progressively “ materializes ” during its development. System descrip-

tions and designs evolve from concepts to reality. Documents, diagrams, models, and

products all change correspondingly. Moreover, key participants in system development

change during development; however, systems engineering plays a key role throughout

all phases.

 The Systems Engineering Method

 The systems engineering method involves four basic steps:

 1. Requirements Analysis — identifi es why requirements are needed,

 2. Functional Defi nition — translates requirements into functions,

 3. Physical Defi nition — synthesizes alternative physical implementations, and

 4. Design Validation — models the system environment.

 These four steps are applied repetitively in each phase during development. Application

of the systems engineering method evolves over the life cycle — as the system progres-

sively materializes, the focus shifts from system level during needs analysis down to

component and part levels during engineering design.

108 THE SYSTEM DEVELOPMENT PROCESS

 Testing throughout System Development

 Testing is a process to identify unknown design defects in that it verifi es resolution of

known unknowns and uncovers unknown unknowns (unk - unks) and their causes. Late

resolution of unknowns may be extremely costly; therefore, test planning and analysis

is a prime systems engineering responsibility.

 PROBLEMS

 4.1 Identify a recent development (since 2000) of a complex system (commercial

or military) of which you have some knowledge. Describe the need it was

developed to fi ll and the principal ways in which it is superior to its

predecessor(s). Briefl y describe the new conceptual approach and/or techno-

logical advances that were employed.

 4.2 Advances in technology often lead to the development of a new or improved

system by exploiting an advantage not possessed by its predecessor. Name

three different types of advantages that an advanced technology may offer and

cite an example of each.

 4.3 If there is a feasible and attractive concept for satisfying the requirements for

a new system, state why it is important to consider other alternatives before

deciding which to select for development. Describe some of the possible con-

sequences of failing to do so.

 4.4 The space shuttle was an example of an extremely complicated system using

leading edge technology. Give three examples of shuttle components that you

think represented unproven technology at the time of its development, and

which much have required extensive prototyping and testing to reduce opera-

tional risks to an acceptable level.

 4.5 What steps can the systems engineer take to help ensure that system compo-

nents designed by different technical groups or contractors will fi t together and

interact effectively when assembled to make up the total system? Discuss in

terms of mechanical, electrical, and software system elements.

 4.6 For six of the systems listed in Tables 1.1 and 1.2 , list their “ predecessor

systems. ” For each, indicate the main characteristics in which the current

systems are superior to their predecessors.

 4.7 Table 4.2 illustrates the evolution of system models during the system develop-

ment process. Describe how the evolution of requirements documents illus-

trates the materialization process described in Table 4.1 .

 4.8 Look up a defi nition of the “ scientifi c method ” and relate its steps to those

postulated for the systems engineering method. Draw a functional fl ow diagram

of the scientifi c method parallel to that of Figure 4.11 .

 4.9 Select one of the household appliances listed below:

 • automatic dishwasher

 • washing machine

FURTHER READING 109

 • television set

 (a) State the functions that it performs during its operating cycle. Indicate

the primary medium (signals, data, material, or energy) involved in each

step and the basic function that is performed on this medium.

 (b) For the selected appliance, describe the physical elements involved in

the implementation of each of the above functions.

 FURTHER READING

 S. Biemer and A. Sage . Chapter 4: Systems engineering: Basic concepts and life cycle . In Agent -

 Directed Simulation and Systems Engineering , L. Yilmaz and T. Oren , eds. John Wiley &

Sons , 2009 .

 B. Blanchard . System Engineering Management , Third Edition . John Wiley & Sons , 2004 .

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 .

 D. Buede . The Engineering Design of Systems: Models and Methods , Second Edition . John Wiley

& Sons , 2009 .

 H. Chesnut . System Engineering Methods . John Wiley , 1967 .

 P. DeGrace and L. H. Stahl . Wicked Problems, Righteous Solutions . Yourdon Press, Prentice Hall ,

 1990 .

 H. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapter 10.

 H. Eisner . Essentials of Project and Systems Engineering Management , Second Edition . John

Wiley & Sons , 2002 .

 A. D. Hall . A Methodology for Systems Engineering . Van Nostrand , 1962 , Chapter 4.

 M. Maier and E. Rechtin . The Art of Systems Architecting , Third Edition . CRC Press , 2009 .

 J. N. Martin . Systems Engineering Guidebook: A Process for Developing Systems and Products .

 CRC Press , 1997 , Chapters 2 – 5.

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapters 2 and 4.

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapter 3.

 A. P. Sage . Systems Engineering . McGraw Hill , 1992 , Chapter 2.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 , Chapter

2.

 A. Sage and S. Biemer . Processes for system family architecting, design and integration . IEEE

Systems Journal , 2007 , 1 , 5 – 16 .

 S. M. Shinners . A Guide for System Engineering and Management . Lexington Books , 1989 ,

Chapter 1.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Chapters 7 and 8.

111

 5.1 MANAGING SYSTEM DEVELOPMENT AND RISKS

 As noted in the fi rst chapter, systems engineering is an integral part of the management

of a system development project. The part that systems engineering plays in the project

management function is pictured in the Venn diagram of Figure 5.1 . The ovals in the

diagram represent the domain of project management and those of its principal con-

stituents: systems engineering and project planning and control . It is seen that both

constituents are wholly contained within the project management domain, with techni-

cal guidance being the province of systems engineering, while program, fi nancial, and

contract guidance are the province of project planning and control. The allocation of

resources and the defi nition of tasks are necessarily shared functions.

 To better understand the many different functions of systems engineering, this

chapter describes some of the main features of the project management framework,

such as the work breakdown structure (WBS), project organization, and the systems

engineering management plan (SEMP). It also discusses the subject of risk manage-

ment, the organization of systems engineering effort, and the capability maturity model

integrated as it applies to systems engineering.

 5

SYSTEMS ENGINEERING

MANAGEMENT

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

112 SYSTEMS ENGINEERING MANAGEMENT

 The engineering of a complex system requires the performance of a multitude of

interrelated tasks by dozens or hundreds of people and a number of contractors or other

organizational entities. These tasks include not only the entire development process but

also usually everything needed to support system operation, such as maintenance,

documentation, training, and so on, which must be provided for. Test equipment, facili-

ties, and transportation have to be developed and acquired. The tasks involved in project

management and systems engineering, including planning, scheduling, costing, and

confi guration control, need to be explicitly dealt with.

 The sections in this chapter are intended to apply to the management of all systems

engineering activities for all types of complex systems. However, in the management

of software - intensive systems, in which essentially all of the functionality is performed

by software, there are a number of special characteristics that need to be considered.

These are noted in Chapter 11 , in particular, in the section Software Engineering

Management.

 Proposal Development and Statement of Work (SOW)

 System development often starts with someone who has a need, a customer, who

requests support often in the form of a request for proposal (RFP) when in a competi-

tive environment. Following a corporate decision to respond to the RFP, a program

manager or a professional proposal team is assigned to generate the proposal. While a

systems engineer may not be offi cially assigned to the team, it is essential that the

 Figure 5.1. Systems engineering as a part of project management.

Project Management

Systems

Engineering
Project

Planning and

Control

Systems Architecture
Concept Design

Functional Allocation

Project Planning
Work breakdown

Costs and Schedules

Task Definitions
Task Allocation

Program Reviews

Technical Coordination
Technical Disciplines

Subcontractors

Resource Allocation
Manpower
Facilities

Risk Management
Risk Assessment

Risk Mitigation

Systems Integration
Interface Management

Verification and Validation

Financial and Contract

Management

Program Commitment
Subcontracts

Customer

Interaction
Management

Technical

WBS 113

technical concepts and implied design and interfaces are feasible. Hence, even in the

early phases of a project, the integration of systems engineering with project manage-

ment is evident.

 A critical element of the proposal is the SOW. This is a narrative description of

the work that is needed to develop the system to meet the customer needs. The systems

engineer concerns will focus on the product to be developed; ensuring the scope of

work in the SOW includes all the products and services needed to complete the effort.

Specifi cally, the systems engineer focuses on being responsive to the customer needs,

ensures the SOW is based on a credible concept of operations, reviews the implied

design for the use of legacy components and their availability, and examines to see if

the proposed system integrates commercial off - the - shelf (COTS) components and

determines the technology readiness levels for the important subsystems envisioned in

the preliminary system design . This early planning sets the stage for the work the

technical contributors will have “ to live with ” throughout the life of the project.

 5.2 WBS

 The successful management of the system development effort requires special tech-

niques to ensure that all essential tasks are properly defi ned, assigned, scheduled, and

controlled. One of the most important techniques is the systematic organization of

project tasks into a form called the WBS or, less commonly, the project or system

breakdown structure. It defi nes all of the tasks in terms of goods and services to be

accomplished during the project in terms of a hierarchical structure. Its formulation

begins early in the concept defi nition phase to serve as a point of reference for concept

trade - off studies. It is then more fully articulated in the latter stages to serve as a basis

for system life cycle costing. The WBS is often a contractual requirement in competi-

tive system developments.

 The WBS typically defi nes the whole system to be developed, produced, tested,

deployed, and supported, including hardware, software, services, and data. It defi nes a

skeleton or framework on which the project is to be implemented.

 Elements of a Typical WBS

 The WBS format is generally tailored to the specifi c project in hand, but always follows

a hierarchical tree structure designed to ensure a specifi c place for every signifi cant

portion of work under the project. For purposes of illustration, the following paragraphs

describe the main elements of a typical system WBS.

 With the system project at level 1 in the hierarchy (some WBS structures begin at

Level 0), the level 2 categories may be broken down as follows:

 1.1. system product,

 1.2. system support,

 1.3. system testing,

114 SYSTEMS ENGINEERING MANAGEMENT

 1.4. project management, and

 1.5. systems engineering.

 Note that these categories are not parallel in content or scope, but collectively, they are

designed to encompass all the work under the system project.

 1.1. System Product is the total effort required to develop, produce, and integrate

the system itself, together with any auxiliary equipment required for its opera-

tion. Table 5.1 shows an example of the WBS breakdown of the system

product. The level 3 entries are seen to be the several subsystems, as well as

the equipment required for their integration (assembly equipment), and other

auxiliary equipment used by more than one subsystem. The fi gure also shows

an example of the level 4 and 5 breakdown of one of the subsystems into its

 TABLE 5.1. System Product WBS Partial Breakdown Structure

 Level 1 Level 2 Level 3 Level 4 Level 5

 1. System

product

 1.1 System

product

 1.1.1 Subsystem A

 1.1.1.1

Component A 1

 1.1.1.1.1 Functional

design

 1.1.1.1.2 Engineering

design

 1.1.1.1.3 Fabrication

 1.1.1.1.4 Unit text

 1.1.1.1.5 Documentation

 1.1.1.2

Component A 2

 1.1.1.2.1 Functional

design … (etc.)

 1.1.1 Subsystem B

 1.1.2.1

Component B 1

 1.1.2.1.1 Functional

design … (etc.)

 1.1.3 Subsystem C

 1.1.4 Assembly

equipment

 1.1.5 Assembly

equipment

WBS 115

constituent components, which represent defi nable products of development,

engineering, and production effort. It is preferred that integration and test of

hardware and software component is done separately for each subsystem, and

then the tested subsystems are integrated in the fi nal system for testing (1.3

below). Finally, for cost allocation and control purposes, each component is

further broken down at level 5 into work packages that defi ne the several steps

of the component ’ s design, development, and test. From this level and below

the WBS, elements are often expressed with action words, for example, pur-

chase, design, integrate, and test.

 1.2. System Support (or integrated logistic support) provides equipment, facilities,

and services necessary for the development and operation of the system

product. These items can be categorized (level 3 categories) under six

headings:

 1.2.1. Supply support

 1.2.2. Test equipment

 1.2.3. Transport and handling

 1.2.4. Documentation

 1.2.5. Facilities

 1.2.6. Personnel and training

 Each of the system support categories applies to both the development

process and system operation, which may involve quite different activities.

 1.3. System Testing begins after the design of the individual components has been

validated via component tests. A very signifi cant fraction of the total test effort

is usually allocated to system - level testing, which involves four categories of

tests as follows:

 1.3.1. Integration Testing. This category supports the stepwise integration of

components and subsystems to achieve a total system.

 1.3.2. System Testing. This category provides for overall system tests and the

evaluation of test results.

 1.3.3. Acceptance Testing. This category provides for factory and installation

tests of delivered systems.

 1.3.4. Operational Testing and Evaluation. This category tests the effective-

ness of the entire system in a realistic operational environment.

 Individual tests to be performed at each level are prescribed in a series

of separate test plans and procedures. However, an overall description of test

objectives and content and a listing of the individual tests to be performed

should also be set forth in an integrated test planning and management docu-

ment, the “ test and evaluation management plan ” (TEMP) in defense acquisi-

tion terminology. Chapter 13 is devoted to the subject of system integration

and evaluation.

 1.4 Project Management tasks include all activities associated with project plan-

ning and control, including the management of the WBS, costing, scheduling,

116 SYSTEMS ENGINEERING MANAGEMENT

performance measurement, project reviews and reports, and associated

activities.

 1.5 Systems Engineering tasks include the activities of the systems engineering

staff in guiding the engineering of the system through all its conceptual and

engineering phases. This specifi cally includes activities such as requirements

analysis, trade - off studies (analysis of alternatives), technical reviews, test

requirements and evaluations, system design requirements, confi guration man-

agement, and so on, which are identifi ed in the SEMP. Another important

activity is the integration of specialty engineering into the early phases of the

engineering effort, in other words, concurrent engineering.

 The WBS is structured so that every task is identifi ed at the appropriate place

within the WBS hierarchy. Systems engineering plays an important role in helping the

project manager to structure the WBS so as to achieve this objective. The use of the

WBS as a project - organizing framework generally begins in the concept exploration

phase. In the concept defi nition phase, the WBS is defi ned in detail as the basis for

organizing, costing, and scheduling. At this point, the subsystems have been defi ned

and their constituent components identifi ed. Also, decisions have been made, at least

tentatively, regarding outside procurement of elements of the system. Accordingly, the

level down to which the WBS needs to be defi ned in detail should have been

established.

 It is, of course, to be expected that the details of the WBS evolve and change as

the system is further engineered. However, its main outline should remain stable.

 Cost Control and Estimating

 The WBS is the heart of the project cost control and estimating system. Its organization

is arranged so that the lowest indenture work packages correspond to cost allocation

items. Thus, at the beginning of the project, the target cost is distributed among the

identifi ed work packages and is partitioned downward as lower - level packages are

defi ned. Project cost control is then exercised by comparing actual reported costs

against estimated costs, identifying and focusing attention on those work packages that

deviate seriously from initial estimates.

 The collection of project costs down to the component level and their distribution

among the principal phases of project development, engineering, and fabrication is

essential also for contributing to a database, which is used by the organization for

estimating the costs of future projects. For new components, cost estimates must

be developed by adapting the previously experienced costs of items directly comparable

to those in the projected system, at the lowest level of aggregation for which cost

fi gures are available. At higher levels, departures from one system to the next become

too large to reliably use data derived from previous experience without major

correction.

 It should not be expected that the lowest indenture level would be uniform through-

out the various subsystems and their components. For example, if a subsystem is being

obtained on a fi xed price subcontract, it may well be appropriate to terminate the lowest

SEMP 117

indenture in the WBS at that subsystem. In general, program control, including costing,

is exercised at the level at which detailed specifi cations, interface defi nitions, and work

assignments are available, representing in effect a contract between the project and the

organization charged with the responsibility for developing, engineering, or fabricating

given elements of the system.

 Critical Path Method (CPM)

 Network scheduling techniques are often used in project management to aid in the

planning and control of the project. Networks are composed of events and activities

needed to carry out the project. Events are equivalent to a milestone indicating when

an activity starts and fi nishes. Activities represent the element of work or task, usually

derived from the WBS that needs to be accomplished. Critical path analysis is an

essential project management tool that traces each major element of the system back

through the engineering of its constituent parts. Estimates are made of not only the size

but also the duration of effort required for each step. The particular path that is estimated

to require the longest time to complete its constituent activities is called the “ critical

path. ” The differences between this time and the times required for other paths are

called “ slack ” for those paths. The resulting critical path network is a direct application

of the WBS. The systems engineer uses the CPM to understand the dependences of

task activities, to help prioritize the work of the technical teams, and to communicate

graphically the work of the entire program.

 5.3 SEMP

 In the development of a complex system, it is essential that all of the key participants

in the system development process not only know their own responsibilities but also

know how they interface with one another. Just as special documentation is required

to control system interfaces, so the interfacing of responsibilities and authority within

the project must also be defi ned and controlled. This is usually accomplished through

the preparation and dissemination of a SEMP or its equivalent. The primary responsibil-

ity of creating such a plan for guiding the engineering effort is that of the systems

engineering component of project management.

 The importance of having formalized plans for managing the engineering effort

has been recognized in defense acquisition programs by requiring the contractor to

prepare a SEMP as part of the concept defi nition effort. The most important function

of the SEMP is to ensure that all of the many active participants (subsystem managers,

component design engineers, test engineers, systems analysts, specialty engineers,

subcontractors, etc.) know their responsibilities to one another. This is an exact ana-

logue of the component interface function of systems engineering defi ning the interac-

tions among all parts of the system so that they fi t together and operate smoothly. It

also serves as a reference for the procedures that are to be followed in carrying out the

numerous systems engineering tasks. The place of the SEMP in the program manage-

ment planning is shown in Figure 5.2 .

118 SYSTEMS ENGINEERING MANAGEMENT

 The SEMP is intended to be a living document, starting as an outline, and being

elaborated and otherwise updated as the system development process goes on. Having

a formal SEMP also provides a control instrument for comparing the planned tasks with

those accomplished.

 Elements of a Typical SEMP

 The SEMP contains a detailed statement of how the systems engineering functions are

to be carried out in the course of system development. It can be considered to consist

of three types of activity:

 1. Development Program Planning and Control: describes the systems engineer-

ing tasks that must be implemented in managing the development program,

including

 • statements of work;

 • organization;

 • scheduling;

 Figure 5.2. Place of SEMP in program management plans.

Program Requirements

Program Management Plan (PMP)

Systems

Engineering

Management Plan

(SEMP)

Program Technical Requirements Program Management Requirements

Related
Management Plans

Specifications

A

B

Configuration Management

Test and Evaluation

Individual
Program Plans

C

D

E Functional Design

Manufacturing Management

Total Quality

Reliability

Maintainability

Producibility

Safety

Logistics

SEMP 119

 • program, design, and test readiness reviews;

 • technical performance measurement; and

 • risk management.

 2. Systems Engineering Process: describes the systems engineering process as it

applies to the development of the system, including

 • operational requirements,

 • functional analysis,

 • systems analysis and trade - off strategy, and

 • system test and evaluation strategy.

 3. Engineering Specialty Integration: describes how the areas of specialty engi-

neering are to be integrated into the primary system design and development,

including

 • reliability, maintainability, availability (RMA) engineering;

 • producibility engineering;

 • safety engineering; and

 • human factors engineering.

 A typical SEMP outline is tailored to the development system but could include the

following:

 Introduction

 Scope, Purpose, Overview, Applicable Documents

 Program Planning and Control

 Organizational Structure

 Responsibilities, Procedures, Authorities

 WBS, Milestones, Schedules

 Program Events

 Program, Technical, Test Readiness Reviews

 Technical and Schedule Performance Metrics

 Engineering Program Integration, Interface Plans

 Systems Engineering Process

 Mission, System Overview Graphic

 Requirements and Functional Analysis

 Trade Studies (Analysis of Alternatives)

 Technical Interface Analysis/Planning

 Specifi cation Tree/Specifi cations

 Modeling and Simulation

 Test Planning

 Logistic Support Analysis

 Systems Engineering Tools

120 SYSTEMS ENGINEERING MANAGEMENT

 Engineering Integration

 Integration Design/Plans

 Specialty Engineering

 Compatibility/Interference Analysis

 Producibility Studies

 5.4 RISK MANAGEMENT

 The development of a new complex system by its nature requires acquiring knowledge

about advanced but not fully developed devices and processes so as to wisely guide

the system design to a product that performs its intended mission reliably and at an

affordable cost. At every step, however, unpredictable outcomes can be encountered

that pose risks of performance shortfalls, environmental susceptibility, unsuitability for

production, or a host of other unacceptable consequences that may require a change in

course with impacts on program cost and schedule. One of the greatest challenges to

systems engineering is to steer a course that poses minimum risks while still achieving

maximum results.

 At the outset of the development, there are uncertainties and hence risks in every

aspect. Are the perceived operational requirements realistic? Will they remain valid

throughout the new system ’ s operational life? Will the resources required to develop

and produce the system be available when needed? Will the advanced technology nec-

essary to achieve the required operational goals perform as expected? Will the antici-

pated advances in production automation materialize? Will the development organization

be free from work stoppages?

 It is the special task of systems engineering to be aware of such possibilities and

to guide the development so as to minimize (mitigate) their impact if and when they

may occur. The methodology that is employed to identify and minimize risk in system

development is called risk management . It has to begin at the outset of the system

development and progress throughout its duration.

 Risk Reduction through the System Life Cycle

 Reducing program risks is a continual process throughout the life cycle. For example,

the needs analysis phase reduces the risk of embarking on the development of a system

that does not address vital operational needs. The concept exploration phase reduces

the risk of deriving irrelevant or unrealistic system performance requirements. And the

system defi nition phase selects a system concept that utilizes technical approaches that

are neither excessively immature nor unaffordable, but rather one that has the best

chance of meeting all system goals.

 Figure 5.3 is a schematic representation of how the program risk of a hypothetical

system development (in arbitrary units) decreases as the development progresses

through the phases of the life cycle. The abscissa is time, sectioned into the phases of

system development. In the same fi gure is plotted a curve of the typical relative effort

expended during each phase.

RISK MANAGEMENT 121

 Figure 5.3. Variation of program risk and effort throughout system development.

Relative Development Effort

Program Risk

Needs
Analysis

Concept
Exploration

Concept
Definition

Advanced
Development

Engineering
Design

Integration and
Evaluation

Production

 The descending risk curve conveys the fact that as development progresses, uncer-

tainties (unknowns), which constitute risks of unforeseen adverse events, are systemati-

cally eliminated or reduced by analysis, experiment, test, or change in course. A variant

of this curve is referred to as the “ risk mitigation waterfall ” (Figure 5.4). The ascending

effort curve represents the stepwise increases in the costs of succeeding phases of

system development, showing the progression of activity from conceptual to engineer-

ing to integration and evaluation.

 Figure 5.3 is intended to illustrate several key principles:

 1. As the development progresses, the investment in program effort typically rises

steeply. To maintain program support, the risk of failure must be correspond-

ingly reduced so as to maintain the fi nancial risk at reasonable levels.

 2. The initial stages in the program produce major reductions in risk, when the

basic decisions are made regarding the system requirements and the system

concept. This demonstrates the importance of investing adequate effort in the

formative phases.

 3. The two phases that typically produce the greatest risk reduction are concept

exploration and advanced development . Concept exploration provides a solid

conceptual basis for the system approach and architecture. Advanced develop-

ment matures new advanced technologies to insure their meeting performance

goals.

 4. By the time the development is complete and the system is ready for production

and distribution, the residual level of risk must be extremely low if the system

is to be successful.

122 SYSTEMS ENGINEERING MANAGEMENT

 Components of Risk Management

 Risk management is formally recognized in systems engineering standards, and espe-

cially in government acquisition programs. Each program is expected to prepare a risk

management plan. Risk management for a major system is expected to have its own

organization, staffi ng, database, reporting, and independent review, and to extend to all

phase of program development, production, operation, and support. A detailed descrip-

tion of risk management as defi ned by the DoD is contained in the Risk Management

Guide for DoD Acquisition published by the Defense Acquisition University.

 The Risk Management Guide divides the subject of risk management into risk

planning, risk assessment, risk prioritization, risk handling, and risk monitoring. The

discussion to follow will combine these into two categories: risk assessment , which

will include risk planning and prioritization, and risk mitigation , which will include

risk handling and monitoring. The subject of risk planning is addressed by the risk

management plan, which is part of the SEMP.

 Risk Assessment

 The general process of risk assessment is inherent in all decisions involving prospective

uncertainty. As will be described in Chapter 10 , risk assessment is used to eliminate

alternative concepts that are overly dependent on immature technologies, unproven

technical approaches, or other ambitious advances that do not appear to be warranted

by their projected benefi ts compared to the uncertainty of their realization. Some of the

more common sources of program risk are listed in Chapter 12 .

 In the advanced development phase, risk assessment will be seen to be a useful

approach to the identifi cation and characterization of proposed design features that

represent a suffi cient development risk (i.e., likelihood of failing to meet requirements)

 Figure 5.4. Example of a risk mitigation waterfall chart. PDR, Preliminary Design Review;

CDR, Critical Design Review.

H
ig

h

Analyze immature components, pin down unknowns

M
e

d
iu

m

R
is

k
 r

a
ti

n
g

Perform critical experiments and component tests

Perform trade-offs

Advanced
development

Engineering
design

Integration and
evaluation

Production

L
o

w

System testing
PDR CDR

RISK MANAGEMENT 123

and a signifi cant program impact to warrant analysis and, if necessary, development

and test. Thus, risk assessment identifi es the weakest and most uncertain features of

the design and focuses attention on means for eliminating the possibility that these

features will present complications and will require design changes during the subse-

quent phases of development.

 Once the system components possessing questionable design features have been

identifi ed, the task of systems engineering is to defi ne a program of analysis, develop-

ment, and test to eliminate these weaknesses or to take other actions to reduce their

potential danger to the program to an acceptable level. In this process, the method of

risk assessment can be of further value by providing a means for determining how to

best allocate available time and effort among the identifi ed areas of risk. For this

purpose, risk assessment can be applied to judge the relative risks posed by the design

features in question.

 To compare the potential importance of different sources of program risk, it is

necessary to consider two risk components: the likelihood that a given component will

fail to meet its goals and the impact or criticality of such a failure to the success of the

program. Thus, if the impact of a given failure would be catastrophic, even a low likeli-

hood of its occurring cannot be tolerated. Alternatively, if the likelihood of failure of

a given approach is high, it is usually prudent to take a different approach even if its

impact may be low but signifi cant.

 These risk components are often displayed in the form of a “ risk cube ” typically

of three or fi ve dimensions. The fi ve - dimension cube is shown in Figure 5.5 , and

the three - dimension cube is discussed below. Since the probabilities are usually qualita-

tive in nature, experienced judgment is needed to develop an informed assignment of

risk. The relative nature is also important to understand since work in foundational

research areas is naturally more risky than work that is developing a system to well -

 defi ned specifi cations. The risk tolerance of customers will also vary by domain and

experience.

 Risk Likelihood: Probability of Failure. There are too many uncertainties to

be able to compute a numerical value for the likelihood that a specifi c program goal

will be achieved, and hence it is not useful to attempt to quantify risks beyond a rela-

tively rough measure to assist in their relative prioritization.

 In the case of unproven technology, it is possible to estimate very roughly the rela-

tive degree of maturity from the engineering status of the technology. This may be

carried out by identifying one or more cases where the technology is used in connection

with a similar functional application and by determining its level of development (e.g.,

in the range from a laboratory design to an experimental prototype to a qualifi ed pro-

duction component). High, medium, and low risk is about as fi ne a scale as is normally

useful. Beyond that, it is good practice to rank order the parts of the system that appear

to be risky and to concentrate on the few that are judged to be most immature and

complex. If the candidates are numerous, it may be a sign that the entire system design

approach is too ambitious and should be reconsidered.

 Risks associated with highly complex components and interfaces are even more

diffi cult to quantify than those using advanced technology. Interfaces always require

124 SYSTEMS ENGINEERING MANAGEMENT

special attention, especially in human – machine interactions. The latter always warrant

early prototyping and testing. Here again, rank ordering of the relative complexity is

an effective way of prioritizing the effort required for risk management.

 The prioritization of software risks is again a matter of judgment. Real - time pro-

grams with numerous external interrupts always require special attention, as do concur-

rent processes. New or signifi cantly altered operating systems can be particularly

complicated. Programs with high logic content tend to be more likely to malfunction

as a consequence of undetected faults than those that are largely computational.

 Table 5.2 lists some of the considerations discussed above in arriving at a general

prioritization of risk probabilities.

 Risk Criticality: Impact of Failure. It was stated earlier that the seriousness of

the risk of a particular failure might be considered in terms of two factors — the likeli-

hood that a failure will occur and the criticality of its impact on the success of the

program. In a semiquantitative sense, the seriousness of the risk can be thought of as

a combination of those two factors.

 As in the case of risk likelihood, there is no accepted numerical scale for risk criti-

cality, and one may consider the same relative levels as those for likelihood: high,

medium, or low. Some agreed - upon defi nitions need to be assigned to these levels, such

as those listed in Table 5.3 .

 Figure 5.5. An example of a risk cube display.

Medium

High
5

4

3

What is the likelihood the risk will happen?

Your approach and processes …Level

Derived from
Risk Management—A Process Overview by Bob Skalamera

Low
2

1

1 2 3 4 5

L
ik

e
li

h
o

o
d

Consequences
3

2

1

Likely

Low likelihood

Not likely

… May mitigate this risk, but work-arounds

… Have usually mitigated this type of risk
 with minimal oversight in similar cases

… Will effectively avoid or mitigate this risk
 based on standard practices

L
ik

e
li

h
o

o
d

5

4

Near certainty

Highly likely

… Cannot mitigate this type of risk; no known
 processes or work-arounds are available

… Cannot mitigate this risk, but a different
 approach might

 will be required

Technical

Given the risk is realized, what would be the magnitude of the impact?

Level

1 Minimal or no impact

Schedule Cost

Minimal or no impact Minimal or no impact

4

3

2

Unacceptable, but work-arounds

 available

Moderate performance shortfall,
 but work-arounds available

Minor performance shortfall,
 same approach retained

Project critical path affected

Minor schedule slip, will miss
 needed dates

Additional activities required,
 able to meet key dates

Budget increase or unit

Budget increase or unit
 production cost increase <5%

Budget increase or unit
 production cost increase <1%

C
o

n
s

e
q

u
e

n
c

e
s

5

4

Unacceptable; no alternatives

 exist

Cannot achieve key project
 milestones

Budget increase or unit
 production cost increase >10%

 production cost increase <10%

RISK MANAGEMENT 125

 The middle column of the table lists expected impacts on system operation if the

system component at risk failed to perform its function. The right column lists the types

of impacts on the overall program that could be expected if the system component was

discovered to be faulty late in development and indicates the likely effects on the

program.

 While some systems engineering textbooks advocate the derivation of an overall

risk factor by assigning numerical values to the estimates of risk likelihood and risk

criticality and taking their product, the disadvantages of this practice are believed to

outweigh the presumed advantage of a seemingly simple single risk factor. In the fi rst

place, assignment of numerical estimates creates the illusion of quantitative knowledge,

which has no real basis. In the second place, combining the two indices into one has

the effect of diminishing the net information content, as was noted in connection with

combining fi gures of merit of individual parts of the system into a single score.

Accordingly, it is recommended that the individual ratings be retained as abstractions,

 TABLE 5.2. Risk Likelihood

 Risk likelihood Design status

 High • Signifi cant extension from past designs

 • Multiple new and untried components

 • Complex components and/or interfaces

 • Marginal analytical tools and data

 Medium • Moderate extension from past designs

 • Components complex but not highly stressed

 • Analytical tools available

 Low • Application of qualifi ed components

 • Components of medium complexity

 • Mature technologies and tools

 TABLE 5.3. Risk Criticality

 Criticality System impact Program impact

 High • Major degradation in

performance (50 – 90%)

 • Serious safety problem

 • Major increase in cost and/or

schedule (30 – 70%)

 • Production cutbacks

 Medium • Signifi cant degradation in

performance (10 – 50%)

 • Short losses of operability

 • Costly operational support

 • Signifi cant increases in cost

and/or schedule (10 – 30%)

 • Intense reviews and oversight

 • Production delays

 Low • Minor degradation in

performance (> 10%)

 • Occasional brief delays

 • Increased maintenance

 • Minor increase in cost and/or

schedule (< 10%)

 • Vigorous reviews and oversight

126 SYSTEMS ENGINEERING MANAGEMENT

such as high, medium, and low, and the two components retain their identity, such as

medium – low, and so on.

 In connection with the criticality scale, the highest level of criticality listed in Table

 5.3 stops short of including the case of near total loss in system performance resulting

in mission failure. Such an eventuality would likely risk program cancellation, and as

such would be considered unacceptable. This implies that design risks of this degree

of criticality would not be considered as feasible options.

 Role of Systems Engineering. The task of risk assessment (and the subsequent

task of risk management) is clearly the responsibility of systems engineering. This is

because the judgments that are involved require a breadth of knowledge of system

characteristics and the constituent technologies beyond that possessed by design spe-

cialists, and also because judgments of risk criticality are at the system and program

levels. The process of risk assessment thus helps the systems engineer to identify the

system features that need to be most thoroughly understood and raised to a level of

design maturity suitable for full - scale engineering.

 Risk Mitigation

 The most common methods of dealing with identifi ed program risks are the following,

listed in order of increasing seriousness of the perceived risk:

 1. intensifi ed technical and management reviews of the engineering process,

 2. special oversight of designated component engineering,

 3. special analysis and testing of critical design items,

 4. rapid prototyping and test feedback,

 5. consideration of relieving critical design requirements, and

 6. initiation of fallback parallel developments.

 Each of the above methods is briefl y described below.

 Technical and Management Reviews. Formal design reviews may address

entire subsystems, but the depth of coverage is mainly on design aspects considered of

greatest importance. It is the responsibility of systems engineering to ensure that the

signifi cant risk items are fully presented and discussed so that special management

attention and resources may be directed to issues warranting additional effort. The aim

should be to resolve problems at the earliest possible time, so full disclosure of expe-

rienced or anticipated diffi culties is essential. The process of design reviews is further

described in the Component Design section of Chapter 12 (Section 12.4).

 Oversight of Designated Component Engineering. Regularly scheduled

design reviews are neither frequent enough nor detailed enough to provide adequate

oversight of known design problem areas. Each designated problem area should be

assigned a special status, subjected to appropriately frequent reviews, and overseen by

RISK MANAGEMENT 127

designated senior design and systems engineers. Where appropriate, outside consultants

should be engaged in the process. A risk mitigation plan should be prepared and tracked

until the problem areas are resolved.

 Special Analysis and Testing. For components whose design involves issues

not resolved in the advanced technology phase, additional analysis and, if necessary,

fabrication and test should be carried out to obtain suffi cient design data to validate the

technical approach. This will require assigning additional resources and modifying the

engineering schedule to accommodate the results of such analysis and testing.

 Rapid Prototyping. For unproven components for which analysis and limited

testing cannot adequately validate the design, it may be necessary to construct and test

prototypes to ensure their validity. Such action would normally be taken in the advanced

technology phase, but sometimes, the problem is not recognized at that time, and in

other cases, the action fails to resolve the problem.

 Relief of Excessive Requirements. Experience has shown that attempting to

meet all initially posed requirements often fails to achieve a practical overall solution

and requires an adjustment of some performance or compatibility requirement. This

possibility should be explored whenever efforts to meet fully a requirement result in a

solution that is inordinately complex, costly, unreliable, or otherwise undesirable from

a practical standpoint. This problem is uniquely a task for systems engineering since

all factors of performance, cost, and schedule need to be considered together. It is an

option that should be invoked only in exceptional cases, but neither should it be put

off until excessive resources and time have been committed to vain efforts to fulfi ll the

requirement.

 Fallback Alternatives. The development of alternative design approaches is

most appropriate for components using new technology whose successful development

cannot be fully assured. In such cases, adequate alternative approaches should be estab-

lished during the advanced development phase to serve as fallbacks in the event that

the new designs do not fulfi ll expectations. Such fallback alternatives almost always

result in reduced performance, greater cost, or some other perceived defi ciency com-

pared to the selected approach, but are more conservative in their design and hence are

more certain to succeed.

 It happens not infrequently that the engineering design phase begins before a clear

resolution is reached as to the ultimate success of a given technical approach, and hence

before a fi nal decision as to whether or not to fall back to a more conservative alterna-

tive. In such cases, an expedited program to reach such a decision by further develop-

ment, analysis, and test must be invoked. Again the decision is one for systems

engineering. Often the choice also involves reexamination of the initial requirements,

as discussed in the previous paragraphs.

 The above methods may be applied singly, but most often work best in combina-

tion. Their oversight is a program manager ’ s responsibility, and their planning and

direction are a systems engineering function.

128 SYSTEMS ENGINEERING MANAGEMENT

 Risk Management Plan

 The importance of the actions described above to the overall success of a system devel-

opment requires that it be part of the overall program management process. To this end,

a formal risk management plan should be developed and progressively updated, in

which mitigation is a major part.

 For every signifi cant risk, there should be a plan that minimizes its potential impact

through specifi c actions to be taken, either concurrently with the engineering or to be

invoked should the anticipated risk materialize. The formulation of such a plan must

be predicated on the objective of minimizing the total expected program cost, which

means that the planned activities to contain program risks must not be more costly than

the expected impact of the risks, should they eventuate. For items for which a fallback

approach is to be developed, the plan should defi ne the conditions under which the

backup will be activated, or if activated at the outset, how far it is to be carried in the

absence of evidence that the main approach will prove unsatisfactory. A diagram of a

risk mitigation plan known as a “ risk mitigation waterfall chart ” is shown in Figure

 5.4 . An example of a risk plan worksheet is pictured in Table 5.4 .

 5.5 ORGANIZATION OF SYSTEMS ENGINEERING

 Despite decades of study, there are many opinions, but no general agreement, on which

the organizational form is most effective for a given type of enterprise. For this reason,

 TABLE 5.4. Sample Risk Plan Worksheet

Risk title: Project name:

Risk owner: Last updated:

Team:

Date submitted:

Description of risk: Risk type:

 Technical

Statement of basic cause: Schedule

 Cost

Consequence if risk is realized: Other

Risk reduction plan

Action/milestone event. Date Success criteria

Risk level

if successful

CommentsL C

1.

2.

3.

4.

Place X, 1, 2, … in the

appropriate cells.

5

5

4

4

3

3

2

2

1

1

L
ik

el
ih

o
o
d

Consequences

ORGANIZATION OF SYSTEMS ENGINEERING 129

the organizations participating in a system development project are likely to employ a

variety of different organizational styles. Each individual style has evolved as a result

of history, experience, and the personal preferences of upper management. Accordingly,

despite its central importance to the success of a given system development project,

the systems engineering function will usually need to adapt to preexisting organiza-

tional structures.

 Virtually all system development projects are managed by a single industrial

company. Hence, it is the organizational form of this company that drives the organiza-

tion of systems engineering. In most cases, this company will develop some subsystems

in - house, and contract for other subsystems with subcontractors. We will refer to the

fi rst company as the prime contractor or system contractor, and to the collection of

participating contractors as the “ contractor team. ” This means that the systems engi-

neering activity must span not only a number of different disciplines but also several

independent companies.

 The organizational structure of the prime contractor is usually some form of a

 “ matrix ” organization. In a matrix organization, most of the engineering staff is orga-

nized in discipline - or technology - oriented groups. Major projects are managed by

project management teams reporting to a “ vice president for project management ” or

an equivalent. At times, these teams are called integrated product teams (IPTs) (see

Chapter 7). A technical staff is assigned to individual projects as required, but employ-

ees retain affi liation with their engineering groups.

 The main variations in matrix - type organizations relates to whether the bulk of the

technical staff assigned to a project are physically relocated to an area dedicated to the

project and remain as full - time participants throughout much of the development or

whether they remain in their home group areas. A related difference is the degree to

which authority for the direction of the technical work assignments is retained by their

home group supervisors.

 As stated earlier, the organization of the systems engineering function is necessarily

dependent on the system contractor ’ s organizational structure. There should be some

common practices, however. Referring to Figure 5.1 , a major system project should

have a single focus of responsibility for the systems engineering function (a project

systems engineer), as apart from the project planning and control function. As an inte-

gral part of project management, an appropriate title might be “ associate (or deputy)

project manager for systems engineering ” or, more simply, “ systems engineering

manager. ” Since the systems engineering function is that of guidance, authority is

exercised by establishing goals (requirements and specifi cations), formulating task

assignments, conducting evaluations (design reviews, analyses, and tests), and control-

ling the confi guration.

 Effective technical communications are diffi cult to maintain in any organization

for a variety of reasons, many of them inherent in human behavior. They are, neverthe-

less, absolutely vital to the ultimate success of the development project. Perhaps the

single most important task of the project systems engineer is to establish and maintain

effective communication among the many individuals and groups, inside and outside

the company, whose work needs to interact with others. This is a human interface func-

tion corresponding to the system physical interface functions that make the system

130 SYSTEMS ENGINEERING MANAGEMENT

elements fi t together and operate as one. Since the systems engineer usually works in

parallel with rather than through established lines of authority, he or she must exercise

extraordinary leadership to bring together those individuals who need to interact.

 There are several different means of communication, all of which need to be exer-

cised as appropriate:

 1. All key participants need to know what they are expected to do, when, and why:

the “ what ” is expressed in task assignments and WBS; the “ when ” is contained

in schedules, milestones, and critical path networks; and the “ why ” should be

answered in the requirements and specifi cations. A clear and complete statement

of the “ why ” is essential to ensure that the designers, analysts, and testers

understand the objectives and constraints of the task assignments.

 2. Participants must be aware of how their portions of the system interact with

other key elements and of the nature of their mutual interdependence. Such

interactions, and particularly their underlying causes, can never be suffi ciently

covered in specifi cation documents. This awareness can only be provided by

periodic personal communication among the responsible participants and the

documentation of any resulting agreements, interface defi nitions, and so on,

however small or tentative. Systems engineering must provide the glue that

binds these items of system design through the formation of interface working

groups and the development of interface control documents , and such less

formal communications as may be needed in special cases.

 3. Subcontractors and other key participants at remote sites must be integrated into

the project communication framework. At the management level, this is the task

of the system project manager, but at the engineering level, it is the responsibil-

ity of the project systems engineering staff. It is essential that the same two

coordinating functions described above be provided for the entire contractor

team. For this purpose, conventional formal contractual mechanisms never

suffi ce and sometimes hinder. Accordingly, special efforts should be made to

integrate the team members effectively into the total system development effort.

This needs to be carried out at two levels: (1) periodic program management

reviews attended by top - level representatives of the contractor team and (2)

frequent technical coordination meetings concerned with specifi c ongoing

aspects of the program.

 4. The principal leaders of the system design effort must have a regular and fre-

quent means of communication with one another to keep the program closely

coordinated and to react quickly to problems. This is discussed in the following

paragraphs.

 Systems Analysis Staff

 An essential part of any systems engineering organization is a highly competent and

experienced analytical staff. Such a staff need not be a single entity, nor does it need

to be organizationally colocated with the project staff itself, but it must be part of the

ORGANIZATION OF SYSTEMS ENGINEERING 131

systems engineering organization, at least during the conceptual and early engineering

phases of the project. The systems analysis staff must have a deep understanding of the

system environment, with respect to both its operational and physical characteristics.

In both instances, it must be able to model the system environment, by use of mathe-

matical and computer models, to provide a basis for analyzing the effectiveness of

system models. In the concept exploration phase, the systems analysis staff is the source

of much of the quantitative data involved in defi ning the system performance required

to meet its operational requirements. In the concept defi nition phase, the analysis staff

is responsible for constructing the system simulations used in the trade - off studies and

in the selection of the best system concept. Throughout the engineering development

stage of the program, the analysis staff is involved in numerous component trade - off

studies. It conducts test analyses to derive quantitative measures of the performance of

system prototypes and contributes to defi ning the quantitative aspects of system design

specifi cations.

 While the systems analysis staff must be skilled in mathematical modeling, soft-

ware design, and other specialized techniques, its members are also required to have a

system perspective and a thorough knowledge of the operational requirements of the

system under development.

 System Design Team

 The exercise of leadership and coordination in any large program requires one or more

teams of key individuals working closely together, maintaining a general consensus on

the conduct of the engineering program. A system design team for a complex system

development project may have the following membership:

 • systems engineer,

 • lead subsystems engineers,

 • software systems engineers,

 • support engineers,

 • test engineers,

 • customer representative, and

 • specialty and concurrent engineers.

 The customer representative is an advocate for the system requirements. The

advantage of the team approach is that it generally increases the esprit de corps and

motivation of the participants and broadens their understanding of the status and prob-

lems of other related aspects of the system development. This develops a sense of

ownership of the team members in the overall system rather than the limitation of

responsibility that is the rule in many organizations. It makes the response to unex-

pected problems and other program changes more effective.

 In a particular application, the leadership of the system development needs to be

tailored to the prime contractor ’ s organization and to the customer ’ s level of involve-

ment in the process. The most important common denominators are

132 SYSTEMS ENGINEERING MANAGEMENT

 1. quality of leadership of the team leader,

 2. representation of those with key responsibilities, and

 3. participation of key technical contributors.

 Without energetic leadership, the members of the system design team will fl ounder

or go their separate ways. If for some reason the person designated as the project

systems engineer does not have the required personal leadership qualities, either the

project engineer or a deputy systems engineer should assume the team leadership role.

 The presence of the leaders of the major portion of the development effort is neces-

sary to bring them into the design decision process, as well as to have them available

to use their resources to resolve problems. There are usually several senior systems

engineers whose experience and knowledge are of great value to the project. Their

presence adds a necessary ingredient of wisdom to the design process.

 Involvement of the customer in the design process is essential but, in many cases,

may be an inhibiting infl uence on free discussion in team meetings. Frequent but more

formal meetings with the customer may be preferred to team membership.

 5.6 SUMMARY

 Managing System Development and Risks

 Systems engineering is a part of project management that provides technical guidelines,

system integration, and technical coordination.

 WBS

 The systems engineer ’ s role also involves contributing to resource allocation, task defi -

nition, and customer interaction, with the initial focus on the development of the WBS,

a hierarchical task organization that subdivides total effort into successively smaller

work elements. This provides the basis for scheduling, costing, and monitoring, and

enables cost control and estimating.

 One key tool used for program scheduling is the CPM. CPM is based on WBS

work elements and creates a network of sequential activities. Analyzing this network

enables the systems engineer and program manager to identify paths that take the

longest to complete.

 SEMP

 The SEMP plans the implementation of all systems engineering tasks. In the process,

it defi nes the roles and responsibilities of all participants.

 Risk Management

 Risk management is a major challenge to systems engineering since all new system

developments present uncertainties and risks. Reducing program risks is a continual

PROBLEMS 133

process throughout the life cycle; moreover, risk must be reduced as program invest-

ment rises.

 A risk management plan is important to support risk management. Risk assessment

identifi es the importance of risk in terms of risk likelihood (probability of occurrence)

and risk criticality (impact and consequences of risk realization).

 Risk mitigation of a critical area may include one or more of the following: man-

agement reviews, special engineering oversight, special analysis and tests, rapid proto-

typing, retry of rigorous requirements, and/or fallback developments.

 Organization of Systems Engineering

 The systems engineering organization spans disciplines and participating organizations,

but also adapts to the company organizational structure. Therefore, systems engineering

must communicate effectively “ what, when, and why ” to the proper stakeholders and

must provide technical reviews for all participants. In large programs, systems engineer-

ing is supported by a systems analysis staff.

 Large programs will require formal system design teams, which integrate major

subsystems and subcontractors, and the products of software systems engineering.

These teams contain members from support engineering and the test organization, and

typically contain specialty (concurrent engineering) members as appropriate. They may

also include user representation when appropriate. A key role for systems engineering

involvement in these design teams is to keep their focus on the success of the entire

enterprise.

 PROBLEMS

 5.1 Developing a detailed WBS for a system development project is a basic func-

tion of project management. What part should be played by systems engineer-

ing in the defi nition of the WBS in addition to detailing the section named

 “ Systems Engineering ” ?

 5.2 The preparation of a formal SEMP is usually a required portion of a contrac-

tor ’ s proposal for a competitive system development program. Since at this

time the system design is still in a conceptual state, explain where you would

get the information to address the elements of a typical SEMP as listed in

this chapter.

 5.3 Defi ne the two main components of risk management discussed in this

chapter and give two examples of each. Show by an example how you would

apply risk management processes to a system development project that pro-

poses to use one or more components that utilize unproven technology.

 5.4 One of the methods for estimating the risk likelihood (probability of failure)

of a system development is to compare the current design status with com-

parable situations in existing systems. Table 5.2 shows some basic character-

istics that are useful in making these estimates. For each of the fi rst three

134 SYSTEMS ENGINEERING MANAGEMENT

conditions associated with high - risk projects, briefl y describe an example of

such a condition in a real system, or describe a hypothetical example having

such characteristics.

 5.5 Suppose you are a new systems engineer for a major new system develop-

ment effort that involves new technology. Obviously, this represents a major

technical (if not programmatic) risk area. What activities would you recom-

mend early in the system development effort to mitigate these technical risks?

For each mitigation activity, describe whether the activity will lower the

likelihood of the risk, or the consequences of the risk, or both.

 5.6 There are a number of risk mitigation methods for dealing with program risks.

Referring to the description of high and low program impact in Table 5.3 ,

discuss how you would best use risk mitigation methods to reduce their risk

criticality.

 5.7 Suppose you are a systems engineer on a new system development project

in which your design engineers have never developed the subsystems and

components required for this new system. Obviously, this represents a major

risk area. What activities would you recommend early in the system develop-

ment effort to mitigate these technical risks? For each mitigation activity,

describe whether the activity will lower the likelihood of the risk or the

consequences of the risk, or both.

 5.8 This chapter presents a method for quantifying risk in two elements, likeli-

hood and criticality, and for plotting these two metrics on a risk matrix.

Suppose you wanted to combine these two metrics into a single, combined

metric for risk. Suggest three methods for combining likelihood and critical-

ity into a single metric. List the advantages and disadvantages for each.

 5.9 Research the building of the tunnel under the English Channel in the late

twentieth century.

 (a) What risks were present with this project?

 (b) What successful activities were undertaken to mitigate these risks that

led to the tunnel ’ s completion?

 5.10 Describe the general type of the organizational structure in which you work.

Discuss instances where this structure has been benefi cial and those where it

has not been so benefi cial to programs you have been involved in or have

some knowledge of.

 5.11 Discuss the advantages of using the system design team approach for a large

development project. List and discuss six requirements that are needed to

make this approach successful.

 FURTHER READING

 B. Blanchard . System Engineering Management , Third Edition . John Wiley & Sons , 2004 .

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapters 18 and 19.

FURTHER READING 135

 W. P. Chase . Management of Systems Engineering . John Wiley , 1974 , Chapters 2 and 8.

 D. Cooper , S. Grey , G. Raymon , and P. Walker . Managing Risk in Large Projects and Complex

Procurements . John Wiley & Sons , 2005 .

 H. Eisner . Essentials of Project and Systems Engineering Management , Second Edition . John

Wiley & Sons , 2002 , Chapters 1 – 6.

 A. D. Hall . A Methodology for Systems Engineering . Van Nostrand , 1962 .

 International Council on Systems Engineering . Systems Engineering Handbook . A Guide for

System Life Cycle Processes and Activities . Version 3.2, July 2010 .

 T. Kendrick . Indentifying and Managing Project Risk: Essential Tools for Failure - Proofi ng Your

Project . American Management Association , 2003 .

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach , Sixth Edition . McGraw – Hill ,

 2005 , Chapters 3, 5, and 6.

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapter 4.

 A. P. Sage . Systems Engineering . McGraw – Hill , 1992 , Chapter 3.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 ,

Chapter 6.

 P. Smith and G. Merritt . Proactive Risk Management: Controlling Uncertainty in Product

Development . Productivity Press , 2002 .

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Chapter 6.

137

 Part II begins the systematic account of the key roles played by systems engineering

throughout the three stages of the systems engineering life cycle. This initial stage of

the life cycle is where systems engineering makes its greatest contribution to the success

of the system development project by performing the function of “ systems architect-

ing. ” The system decisions made during this stage in most cases determine the success

or failure of the project.

 Chapter 6 introduces the origins of a new system, whether driven by new needs or

by technological opportunities. The chapter focuses on the role of systems engineering

in the validation of an operational need for a new system and the development of a

defi nitive set of operational requirements.

 Chapter 7 presents the concept exploration phase, which explains how system

concepts are developed from the requirements, and how several alternative concepts

are examined for the purpose of deriving a set of necessary and suffi cient performance

requirements suitable for defi ning a system meeting the operational needs.

 The fi nal phase in the concept development stage is selecting a preferred system

architecture that meets the performance requirements established previously. Chapter

 8 describes how systems engineering uses modeling, visualization, and analysis to

 PART II

CONCEPT DEVELOPMENT

STAGE

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

138 CONCEPT DEVELOPMENT STAGE

accomplish this result. In the acquisition of major systems, the satisfactory completion

of this process leads to a commitment to proceed with engineering development and a

possible ultimate production of the new system.

 The fi nal chapter in this part describes the process and activities involved in

engineering - level decision making. A detailed description of the trade - off analysis is

provided to provide formality to a systems engineer ’ s thinking about decisions.

139

 6.1 ORIGINATING A NEW SYSTEM

 The primary objective of the needs analysis phase of the system life cycle is to show

clearly and convincingly that a valid operational need (or potential market) exists for

a new system or a major upgrade to an existing system, and that there is a feasible

approach to fulfi lling the need at an affordable cost and within an acceptable level of

risk. It answers the question of why a new system is needed and shows that such a

system offers a suffi cient improvement in capability to warrant the effort to bring it

into being. This is achieved, in part, by devising at least one conceptual system that

can be shown to be functionally capable of fulfi lling the perceived need, and by describ-

ing it in suffi cient detail to persuade decision makers that it is technically feasible and

can be developed and produced at an acceptable cost. In short, this whole process must

produce persuasive and defensible arguments that support the stated needs and create

a “ vision of success ” in the minds of those responsible for authorizing the start of a

new system development.

 6

NEEDS ANALYSIS

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

140 NEEDS ANALYSIS

 Place of the Needs Analysis Phase in the System Life Cycle

 The exact beginning of the active development of a new system is often diffi cult to

identify. This is because the earliest activities in the origin of a new system are usually

exploratory and informal in nature, without a designated organizational structure, speci-

fi ed objectives, or established timetable. Rather, the activities seek to determine whether

or not a dedicated effort would be warranted, based on an assessment of a valid need

for a new system and a feasible technological approach to its implementation.

 The existence of a discrete phase corresponding to that defi ned as needs analysis

in Chapter 4 is more characteristic of need - driven system developments than of those

that are technology driven. In defense systems, for example, “ material solution analy-

sis ” (see Department of Defense [DoD] life cycle of Fig. 4.1) is a required prerequisite

activity for the offi cial creation of a specifi c item in the budget for the forthcoming

fi scal year, thereby allocating funds for the initiation of a new system project. Within

this activity, a need determination task produces an initial capability description (ICD),

which attests to the validity of the system objective or need, and gives evidence that

meeting the stated objective will yield signifi cant operational gains and is feasible of

realization. Its completion culminates in the fi rst offi cial milestone of the defense

acquisition life cycle.

 In a technology - driven system development, typical of new commercial systems,

the needs analysis phase is considered to be part of the conceptual development stage

(Fig. 4.2). However, in this case too, there must be similar activities, such as market

analysis, assessment of competitive products, and assessment of defi ciencies of the

current system relative to the proposed new system, that establish a bona fi de need

(potential market) for a product that will be the object of the development. Accordingly,

the discussion to follow will not distinguish between needs - driven and technology -

 driven system developments except where specifi cally noted.

 The place of the needs analysis phase in the system life cycle is illustrated in Figure

 6.1 . Its inputs are seen to be operational defi ciencies and/or technological opportunities .

 Figure 6.1. Needs analysis phase in the system life cycle.

System Operational
Effectiveness

Operational
Deficiencies

Needs Analysis

System Studies
Technology Assessment

Operational Analysis

Concept Exploration

Technological
Opportunities

System Capabilities

ORIGINATING A NEW SYSTEM 141

Its outputs to the following phase, concept exploration , are an estimate of system

operational effectiveness that specify what results a new system should achieve to meet

the identifi ed need, together with system capabilities , the output of various operational

analyses and system studies, which provide evidence that an affordable system capable

of meeting the effectiveness target is feasible.

 As discussed above and depicted in the fi gure, the impetus for the initiation of a

new system development generally comes from one of two sources: (1) the perception

of a serious defi ciency in a current system designed to meet an important operational

need (need driven) or (2) an idea triggered by a technological development whose

application promises a major advance over available systems in satisfying a need (tech-

nology driven). Either of these may then lead to investigations and analyses that eventu-

ally culminate in a program to develop a new system. Quite often, both factors contribute

to the fi nal decision.

 Examples of New System Needs

 The automobile industry is a prime example where changing conditions have forced

the need for system improvements. Government laws require manufacturers to make

substantial improvements in fuel economy, safety, and pollution control. Almost over-

night, existing automobile designs were rendered obsolete. These regulations posed a

major challenge to the automobile industry because they required technically diffi cult

trade - offs and the development of many new components and materials. While the

government gave manufacturers a number of years to phase in these improvements, the

need for innovative design approaches and new components was urgent. In this case,

the need for change was triggered by legislative action based on the needs of society

as a whole.

 Examples of technology - driven new systems are applications of space technology

to meet important public and military needs. Here, the development of a range of

advanced devices, such as powerful propulsion systems, lightweight materials, and

compact electronics, made the engineering of reliable and affordable spacecraft a practi-

cal reality. In recent years, satellites have become competitive and often superior

platforms for communication relays, navigation (GPS), weather surveillance, and a host

of surveying and scientifi c instruments.

 A more pervasive example of technology - driven system developments is the appli-

cation of computer technology to the automation of a wide range of commercial and

military systems. Information systems, in particular (e.g., banking, ticketing, routing,

and inventory), have been drastically altered by computerization. System obsolescence

in these cases has come not from recognized defi ciencies but rather from opportunities

to apply rapidly advancing technology to enhance system capabilities, to reduce cost,

and to improve competitive position.

 External Events. As will be seen later in this section, analysis of needs goes on more

or less continuously in most major mission or product areas. However, external events

often precipitate intensifi cation and focusing of the process; this results in the formula-

tion of a new operational requirement. In the defense area, this may be an intelligence

142 NEEDS ANALYSIS

fi nding of a new potential enemy threat, a local confl ict that exposes the defi ciency in

a system, a major technological opportunity uncovered in a continuing program of

concept exploration, or a major defi ciency uncovered in periodic operational testing.

In the civil products area, a triggering event might be a sudden shift in customer demand

or a major technological change, such as the discovery of a radically new product, or

an opportunity to automate a labor - intensive process. The drastic increase in the price

of petroleum has triggered an intensive and successful effort to develop more fuel -

 effi cient commercial aircraft: the wide - bodied jets.

 Competitive Issues

 Going from a perceived need to the initiation of a development program requires more

than a statement of that need. Regardless of the source of funding (government or

private), there is likely to be competition for the resources necessary to demonstrate a

bona fi de need. In the case of the military, it is not unusual for competition to come

from another department or service. For example, should maritime superiority be pri-

marily a domain of the surface or air navy, or a combination of the two? Should cleaner

air be achieved by more restrictions on the automobile engine combustion process or

on the chemical composition of the fuel? The answers to these types of questions can

have a major impact on the direction of any resulting development. For these reasons,

strong competition can be expected from many sectors when it is publicly known that

a new system development is under consideration. The task of sorting out these pos-

sibilities for further consideration is a major systems engineering responsibility.

 Design Materialization Status

 As described in Chapter 4 , the phases of the system development process can be con-

sidered as steps in which the system gradually materializes, that is, progresses from a

general concept to a complex assembly of hardware and software that performs an

operational function. In this initial phase of the system life cycle, this process of mate-

rialization has only just started. Its status is depicted in Table 6.1 , an overlay of Table

 4.1 in Chapter 4 .

 The focus of attention in this phase is on the system operational objectives and

goes no deeper than the subsystem level. Even at that level, the activity is listed as

 “ visualize ” rather than defi nition or design. The term visualize is used here and else-

where in the book in its normal sense of “ forming a mental image or vision, ” implying

a conceptual rather than a material view of the subject. It is at this level of generality

that most designs fi rst originate, drawing on analogies from existing system

elements.

 Table 6.1 (and Table 4.1) oversimplifi es the representation of the evolving state of

a system by implying that all of its elements begin as wholly conceptual and evolve at

a uniform rate throughout the development. This is very seldom, if ever, the case in

practice. To take an extreme example, a new system based on rectifying a major defi -

ciency in one of the subsystems of its predecessor may well retain the majority of the

other subsystems with little change, except perhaps in the selection of production parts.

 TABLE 6.1. Status of System Materialization at the Needs Analysis Phase

 Level

 Phase

 Concept development Engineering development

 Needs analysis Concept exploration Concept defi nition

 Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore, and

synthesize concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne requirements

and ensure feasibility

 Defi ne functional

and physical

architecture

 Validate

subsystems

 Integrate and test

 Component Allocate functions

to components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

1
4

3

144 NEEDS ANALYSIS

Such a new system would start out with many of its subsystems well advanced in

materialization status, and with very few, if any, in a conceptual status.

 Similarly, if a new system is technology driven, as when an innovative technical

approach promises a major operational advance, it is likely that parts of the system not

directly involved in the new technology will be based on existing system components.

Thus, the materialization status of the system in both examples will not be uniform

across its parts but will differ for each part as a function of its derivation. However,

the general principle illustrated in the table is nevertheless valuable for the insight it

provides into the system development process.

 Applying the Systems Engineering Method in Needs and
Requirements Analysis

 Being the initial phase in the system development cycle, the needs analysis phase is

inherently different from most of the succeeding phases. There being no preceding

phase, the inputs come from different sources, especially depending on whether the

development is needs driven or technology driven, and on whether the auspices are the

government or a commercial company.

 Nevertheless, the activities during the needs analysis phase can be usefully dis-

cussed in terms of the four basic steps of the systems engineering method described in

Chapter 4 , with appropriate adaptations. These activities are summarized below: the

generic names of the individual steps as used in Figure 4.12 are listed in parentheses.

 Operations Analysis (Requirements Analysis). Typical activities include

 • analyzing projected needs for a new system, either in terms of serious defi cien-

cies of current systems or the potential of greatly superior performance or

lower cost by the application of new technology;

 • understanding the value of fulfi lling projected needs by extrapolating over the

useful life of a new system; and

 • defi ning quantitative operational objectives and the concept of operation.

 The general products of this activity are a list of operational objectives and system

capabilities .

 Functional Analysis (Functional Defi nition). Typical activities include

 • translating operational objectives into functions that must be performed and

 • allocating functions to subsystems by defi ning functional interactions and

organizing them into a modular confi guration.

 The general product of this activity is a list of initial functional requirements .

 Feasibility Defi nition (Physical Defi nition). Typical activities include

 • visualizing the physical nature of subsystems conceived to perform the needed

system functions and

ORIGINATING A NEW SYSTEM 145

 • defi ning a feasible concept in terms of capability and estimated cost by

varying (trading off) the implementation approach as necessary.

 The general product of this activity is a list of initial physical requirements .

 Needs Validation (Design Validation). Typical activities include

 • designing or adapting an effectiveness model (analytical or simulation) with

operational scenarios, including economic (cost, market, etc.) factors;

 • defi ning validation criteria;

 • demonstrating the cost - effectiveness of the postulated system concept, after

suitable adjustment and iteration; and

 • formulating the case for investing in the development of a new system to meet

the projected need.

 The general product of this activity are a list of operational validation criteria .

 Given a successful outcome of the needs analysis process, it is necessary to trans-

late the operational objectives into a formal and quantitative set of operational require-

ments . Thus, this phase produces four primary products. And since three of these have

the name “ requirements ” as part of their description, it can be confusing to separate the

three. The primary output of the needs analysis phase is the set of operational require-

ments. But let us introduce four types of requirements so as not to confuse the reader.

 Operational Requirements. These refer largely to the mission and purpose of

the system. The set of operational requirements will describe and communicate the end

state of the world after the system is deployed and operated. Thus, these types of

requirements are broad and describe the overall objectives of the system. All references

relate to the system as a whole. Some organizations refer to these requirements as

capability requirements, or simply required capabilities.

 Functional Requirements. These refer largely to what the system should do.

These requirements should be action oriented and should describe the tasks or activities

that the system performs during its operation. Within this phase, they refer to the system

as a whole, but they should be largely quantitative. These will be signifi cantly refi ned

in the next two phases.

 Performance Requirements. These refer largely to how well the system should

perform its requirements and affect its environment. In many cases, these requirements

correspond to the two types above and provide minimal numerical thresholds. These

requirements are almost always objective and quantitative, though exceptions occur.

These will be signifi cantly refi ned in the next two phases.

 Physical Requirements. These refer to the characteristics and attributes of the

physical system and the physical constraints placed upon the system design. These may

include appearance, general characteristics, as well as volume, weight, power, and

146 NEEDS ANALYSIS

material and external interface constraints to which the system must adhere. Many

organizations do not have a special name for these and refer to them simply as con-

straints , or even system requirements . These will be signifi cantly refi ned in the next

two phases.

 For new start systems, the fi rst iteration through the needs and requirements analy-

sis phase results in a set of operational requirements that are rather broad and are not

completely defi ned. In the military, for example, the requirements - like document that

emerges from the needs analysis is formally known as the ICD. This term is also used

in the non - DoD community as a generic description of capabilities desired. In either

case, the ICD document contains a broad description of the system concept needed and

focuses on operational, or capability, requirements. Only top - level functional, perfor-

mance, and physical requirements are included. Later documents will provide detail to

this initial list.

 The elements of the systems engineering method as applied to the needs analysis

phase described above are displayed in the fl ow diagram of Figure 6.2 . It is a direct

adaptation of Figure 4.12 , with appropriate modifi cations for the activities in this phase.

Rectangular blocks represent the four basic steps, and the principal activities are shown

as circles, with the arrows denoting information fl ow.

 The inputs at the top of the diagram are operational defi ciencies and technological

opportunities. Defi ciencies in current systems due to obsolescence or other causes are

need drivers. Technological opportunities resulting from an advance in technology that

offers a potential major increase in performance or a decrease in cost of a marketable

system are technology drivers. In the latter case, there must also be a projected concept

of operation for the application of the new technology.

 The two middle steps are concerned with determining if there is at least one pos-

sible concept that is likely to be feasible at an affordable cost and at an acceptable risk.

The validation step completes the above analysis and also seeks to validate the signifi -

cance of the need being addressed in terms of whether or not it is likely to be worth

the investment in developing a new system. Each of these four steps is further detailed

in succeeding sections of this chapter.

 6.2 OPERATIONS ANALYSIS

 Whether the projected system development is need driven or technology driven, the

fi rst issue that must be addressed is the existence of a valid need (potential market) for

a new system. The development of a new system or a major upgrade is likely to be

very costly and will usually extend over several years. Accordingly, a decision to initiate

such a development requires careful and deliberate study.

 Analysis of Projected Needs

 In the commercial sector, market studies are continuously carried out to assess the

performance of existing products and the potential demand for new products. Customer

reactions to product characteristics are solicited. The reason for lagging sales is sys-

OPERATIONS ANALYSIS 147

 Figure 6.2. Needs analysis phase fl ow diagram.

Operational
deficiencies

Technology opportunities

Operations

Analyze
projected

needs

Define
operational
approach

Predecessor
system

Operational Partitioning criteria

analysis

Translate
into

Allocate
functions to

Predecessor system

Related systems

objectives

Functional

analysis

functions subsystems

Feasibility criteria

Subsystem
functions

Visualize
subsystem
technology

Define
feasible
concept

Predecessor system

• Building blocks
• New concepts

Feasibility

definition

Feasible
system
concept

Measures of
effectiveness

Needs

Concept
deficienciesUnrealistic objectives

Design
effectiveness

model

Validate
needs and
feasibility

Previous analytical models

Operational
requirements

validation

Concept

exploration

phase

tematically probed. The strengths and weaknesses of competing systems and their likely

future growth are analyzed.

 For military systems, each service has one or more systems analysis organizations

whose responsibility is to maintain a current assessment of their operational capability

and readiness. These organizations have access to intelligence assessments of changes

148 NEEDS ANALYSIS

in the military capability of potential adversaries that serve as inputs to effectiveness

studies. In addition, periodic operational tests, such as simulated combat at sea, landing

operations, and so on, serve to provide evidence of potential defi ciencies that may signal

the need for developing a more capable system. A particularly important consideration

is whether or not modifi cation of doctrine, strategy, or tactics can better meet the need

with existing assets, thus reducing the urgency of acquiring expensive new assets.

 Defi ciencies in Current Systems. In virtually all cases, the need addressed by

a projected new system is already being fulfi lled, at least in part, by an existing system.

Accordingly, one of the fi rst steps in the needs analysis process is the detailed identi-

fi cation of the perceived defi ciencies in the current system. If the impetus for the new

system is technology driven, the current system is examined relative to the predicted

characteristics achieved with the prospective technology.

 Since the development of a successor system or even a major upgrade of an exist-

ing system is likely to be technically complex and require years of challenging work,

operational studies must focus on conditions as much as 10 years in the future. This

means that the system owner/user must continually extrapolate the conditions in which

the system operates and reevaluate system operational effectiveness. In this sense, some

form of needs analysis is being conducted throughout the life of the system.

 The above process is most effective when it combines accumulated test data with

analysis, often using existing system simulations. This approach provides two major

benefi ts: a consistent and accurate evaluation of system operational performance and a

documented history of results, which can be used to support the formal process of needs

analysis if a new development program becomes necessary.

 Obsolescence. The most prevalent single driving force for new systems is obso-

lescence of existing systems. System obsolescence can occur for a number of reasons;

for example, the operating environment may change; the current system may become

too expensive to maintain; the parts necessary for repair may be no longer available;

competition may offer a much superior product; or technology may have advanced to

the point where substantial improvements are available for the same or lower cost.

These examples are not necessarily independent; combined elements of each can

greatly accelerate system obsolescence. Belated recognition of obsolescence can be

painful for all concerned. It can signifi cantly delay the onset of the needs analysis phase

until time becomes critical. Vigilant self - evaluation should be a standard procedure

during the operational life of a system.

 An essential factor in maintaining a viable system is keeping aware of advances

in technology. Varied research and development (R & D) activities are carried out by

many agencies and industry. They receive support from government or private funding

or combinations of both. In the defense sector, contractors are authorized to use a per-

centage of their revenues on relevant research as allowable overhead. Such activity is

called independent research and development (IRAD). There are also a number of

wholly or partially government - funded exploratory development efforts. Most large

producers of commercial products support extensive applied R & D organizations. In

any case, the wise system sponsor, owner, or operator should continually keep abreast

OPERATIONS ANALYSIS 149

of these activities and should be ready to capitalize on them when the opportunity

presents itself. Competition at all levels is a potent driver of these activities.

 Operational Objectives

 The principal outcome of operational studies is the defi nition of the objectives, in

operational terms, that a new system must meet in order to justify its development. In

a needs - driven development, these objectives must overcome such changes in the

environment or defi ciencies in the current system as have generated the pressure for an

improved system. In a technology - driven development, the objectives must embody a

concept of operations that can be related to an important need.

 The term “ objectives ” is used in place of “ requirements ” because at this early stage

of system defi nition, the latter term is inappropriate; it should be anticipated that many

iterations (see Fig. 6.2) would take place before the balance between operational per-

formance and technical risk, cost, and other developmental factors will be fi nally

established.

 To those inexperienced in needs analysis, the development of objectives can be a

strange process. After all, engineers typically think in terms of requirements and speci-

fi cations, not high - level objectives. Although objectives should be quantifi able and

objective, the reality is that most are qualitative and subjective at this early stage. Some

rules of thumb can be helpful:

 • Objectives should address the end state of the operational environment or

scenario — it focuses on what the system will accomplish in the large sense.

 • Objectives should address the purpose of the system and what constitutes the

satisfaction of the need.

 • Taken together, objectives answer the “ why ” question — why is the system

needed?

 • Most objectives start with the infi nitive word “ provide, ” but this is not

mandatory.

 Objectives Analysis. The term objectives analysis is the process of developing

and refi ning a set of objectives for a system. Typically, the product of this effort is an

objectives tree, where a single or small set of top - level objectives are decomposed into

a set of primary and secondary objectives. Figure 6.3 illustrates this tree. Decomposition

is appropriate until an objective becomes verifi able, or you begin to defi ne functions

of the system. When that occurs, stop at the objective. The fi gure illustrates functions

by graying the boxes — they would not be part of your objectives tree. In our experience,

most objectives trees span one or two levels deep; there is no need to identify extensive

depth.

 As an example of an objectives analysis, think about a new automobile. Suppose

an auto company wants to design a new passenger vehicle, which it can market as

 “ green ” or environmentally friendly. Understanding the objectives of this new car

establishes priorities for the eventual design. Thus, company management begins an

objectives exercise. Objectives analysis forces the company, both management and the

150 NEEDS ANALYSIS

technical staff, to evaluate and decide what is important when developing a new system.

Therefore, it is worth investing some time, energy, and capital in determining what the

overall objectives of the system are. Moreover, agreeing to a concise single statement

helps focus the development team to the job at hand.

 In the automobile example, the company might soon realize that the overall objec-

tive of this new vehicle is to provide users with clean transportation. The top - level

objective does not include performance, cargo capacity, off - road capability, and so on.

In the overall objective are two key words: clean and transportation. Both imply various

aspects or attributes of this new car. Since both words are not yet well defi ned, we need

to decompose them further. But the overall goal is clear: this vehicle is going to be

environmentally “ clean ” and will provide suffi cient transportation.

 The fi rst decomposition focuses the thinking of the development team. Clearly, the

two key words need to be “ fl eshed out. ” In this case, “ clean ” may mean “ good gas

mileage ” as well as “ comfortable. ” Transportation also implies a safe and enjoyable

experience in the vehicle as it travels from one point to the next. There may also be

another objective that is loosely tied to clean and transportation — cost.

 Thus, in our example, the development team focuses on four primary objectives

that fl ow from our overarching objective: comfort, mileage, safety, and cost. These four

words need to be worded as an objective of course. Figure 6.4 presents one possibility

of an objectives tree.

 In determining whether an objective needs further decomposition, one should ask

a couple of questions:

 • Does the objective stand on its own in terms of clarity of understanding?

 • Is the objective verifi able?

 Figure 6.3. Objectives tree structure.

Overarching Objective

Primary
Objective

Primary
Objective

Primary
Objective

SecondarySecondary Secondary Secondary Secondary
Objective Objective Objective Objective Objective

Function

Function Function

Function

Function

Function

Function

FUNCTIONAL ANALYSIS 151

 • Would decomposition lead to better understanding?

 • Are requirements and functions readily implied by the objective?

 In our example, one could argue that three of the primary objectives are suffi cient

as stated, and all three are verifi able. Only the subjective objective relating to comfort

needs further decomposition. In this case, comfort can be divided into three compo-

nents: a sound system, noise levels that allow conversation, and physical space. As

worded in the fi gure, these three could all be verifi ed by various methods (a satisfaction

survey in the fi rst, a defi nition of noise levels for normal conversation, and volume

requirements). Having an objectives tree focuses the development effort on the priori-

ties. In our example, the four primary objectives communicate what is important with

this new automobile.

 In many cases where objectives trees are used, an initial tree will be similar to our

example, listing only those objectives that are the highest priorities. These trees would

then be expanded to include other areas that will need to be addressed. For our auto-

mobile, these “ other ” areas would include maintenance considerations, human – system

interaction expectations, and cargo space, to name a few. An objective of having an

objectives tree is ultimately to identify the functions and their performance require-

ments. Therefore, the logical next step after objectives analysis is functional analysis.

 6.3 FUNCTIONAL ANALYSIS

 At this initial phase of the system development process, functional analysis is an exten-

sion of operational studies, directed to establishing whether there is a feasible technical

approach to a system that could meet the operational objectives. At this stage, the term

 “ feasible ” is synonymous with “ possible ” and implies making a case that there is a

good likelihood that such a system could be developed within the existing state of the

art, without having to prove it beyond reasonable doubt.

 Figure 6.4. Example objectives tree for an automobile.

Provide clean transportation

Provide a
comfortable
ride for four
passengers.

Achieve
≥35 mpg.

Meet all federal
safety standards.

Achieve a base
retail price of

$15K.

Provide a sound
system that

satisfies
customer base.

Allow for
normal

 conversation.

Provide sufficient
head, shoulder,
and leg room.

152 NEEDS ANALYSIS

 Translation of Operational Objectives into System Functions

 To make such a case, it is necessary to visualize the type of system that could carry

out certain actions in response to its environment that would meet the projected opera-

tional objectives. This requires an analysis of the types of functional capabilities that

the system would have to possess in order to perform the desired operational actions.

In needs - driven systems, this analysis is focused on those functional characteristics

needed to satisfy those operational objectives that are not adequately handled by current

systems. In technology - driven systems, the advances in functional performances would

presumably be associated with the technology in question. In any case, both the feasi-

bility of these approaches and their capability to realize the desired operational gains

must be adequately demonstrated.

 The visualization of a feasible system concept is inherently an abstract process that

relies on reasoning on the basis of analogy. This means that all the elements of the

concept should be functionally related to elements of real systems. A helpful approach

to the translation of operational objectives to functions is to consider the type of primary

media (signals, data, material, or energy) that are most likely to be involved in accom-

plishing the various operational objectives. This association usually points to the class

of subsystems that operate on the medium, as, for example, sensor or communication

subsystems in the case of signals, computing subsystems for data, and so on. In the

above process, it must be shown that all of the principal system functions, especially

those that represent advances over previous systems, are similar to those already dem-

onstrated in some practical context. An exception to this process of reasoning by

analogy is when an entirely new type of technology or application is a principal part

of a proposed system; in this case, it may be necessary to go beyond analysis and to

demonstrate its feasibility by modeling and, ultimately, experimentation.

 In identifying the top - level functions that the system needs to perform, it is impor-

tant even at this early stage to visualize the entire system life cycle, including its

nonoperational phases.

 The above discussion is not meant to imply that all considerations at this stage are

qualitative. On the contrary, when primarily quantitative issues are involved, as in the

example of automobile pollution, it is necessary to perform as much quantitative analy-

sis as available resources and existing knowledge permit.

 Allocation of Functions to Subsystems

 In cases where all operational objectives can be directly associated with system - level

functions that are analogous to those presently exhibited by various real systems, it is

still essential to visualize just how these might be allocated, combined, and imple-

mented in the new system. For this purpose, it is not necessary to visualize some best

system confi guration. Rather, it need only be shown that the development and produc-

tion of an appropriate system is, in fact, feasible. Toward this end, a top - level system

concept that implements all the prescribed functions should be visualized in order to

demonstrate that the desired capabilities can be obtained by a plausible combination of

the prescribed functions and technical features. Here it is particularly important that all

FEASIBILITY DEFINITION 153

interactions and interfaces, both external and internal to the system, be identifi ed and

associated with the system functions, and that a trade - off process be employed to ensure

that the consideration of the various system attributes is thorough and properly bal-

anced. This is typically done in terms of an initial concept of operation.

 6.4 FEASIBILITY DEFINITION

 The feasibility of a system concept (and therefore of meeting the projected need) cannot

be established solely on the basis of its functional design. The issue of feasibility must

also address the physical implementation. In particular, system cost is always a domi-

nant consideration, especially as it may compare to that of other alternatives, and this

cannot be judged at the functional level. Accordingly, even at this initial phase of system

development, it is necessary to visualize the physical makeup of the system as it is

intended to be produced. It is also necessary to visualize all external constraints and

interactions, including compatibility with other systems.

 While it is necessary to consider the physical implementation of the projected

system in the needs analysis phase, this does not imply that any design decisions are

made at this time. In particular, no attempt should be made to seek optimum designs;

those issues are dealt with much later in the development process. The focus at this

point is to establish feasibility to meet a given set of operational objectives. It is the

validation of these objectives that is the primary purpose of the needs analysis phase.

The paragraphs that follow discuss some of the issues that need to be considered, but

only in an exploratory way.

 Visualization of Subsystem Implementation

 Given the allocation of functions to subsystems, it is necessary to envision how these

might be implemented. At this stage, it is only necessary to fi nd examples of similar

functional units in existing systems so that the feasibility of applying the same type of

technology to the new system may be assessed. The identifi cation of the principal media

involved in each major function (signal, data, material, and energy), as discussed in the

previous section, is also helpful in fi nding systems with similar functional elements

and, hence, with physical implementations representative of those required in the new

system.

 Relation to the Current System. Where there exists a system that has been

meeting the same general need for which the new system is intended, there are usually

a number of subsystems that may be candidates for incorporation in modifi ed form in

the new system. Whether or not they will be utilized as such, they are useful in building

a case for system feasibility and for estimating part of the development and production

cost of the new system.

 Existing models and simulations of the current system are especially useful tools

in this type of analysis since they will usually have been verifi ed against data gathered

over the life of the system. They may be used to answer “ What if? ” questions and to

154 NEEDS ANALYSIS

fi nd the driving parameters, which helps to focus the analysis process. Another impor-

tant tool, used in conjunction with the system simulation, is an effectiveness model and

the analytic techniques of effectiveness analysis, as described in the next section.

 Other less tangible factors can also come into play, such as the existence of a

support infrastructure. In the case of the automobile engine, many years of successful

operation have established a very wide base of support for conventional reciprocating

engines in terms of repair sites, parts suppliers, and public familiarity. Because of the

prospective cost for changing this base, innovative changes, such as the Wankel rotary

engine and designs based on the Stirling cycle , have been resisted. The point here is

that benefi cial technological innovations are often overridden by economic or psycho-

logical resistance to change.

 Application of Advanced Technology. In technology - driven systems, it is

more diffi cult to establish feasibility by reference to existing applications. Instead, it

may be necessary to build the case on the basis of theoretical and experimental data

available from such research and development work as has been done on the candidate

technology. In case this proves to be insuffi cient, limited prototyping may be required

to demonstrate the basic feasibility of the application. Consultation with outside experts

may be helpful in adding credibility to the feasibility investigation.

 Unfortunately, highly touted technical advances may also come with unproven

claims and from unreliable sources. Sometimes, a particular technology may offer a

very substantial gain but lacks maturity and an established knowledge base. In such

situations, the case for incorporating the technology should be coupled with a compa-

rably capable backup alternative. Systems engineers must be intimately involved in the

above process to keep the overall system priorities foremost.

 Cost. The assessment of cost is always an important concern in needs analysis.

This task is particularly complicated when there is a mix of old, new, and modifi ed

subsystems, components, and parts. Here again, cost models and maintenance records

of the current system, combined with infl ation factors, can be helpful. By comparing

similar components and development activities, cost estimation will at least have

a credible base from which to work. In the case of new technology, cost estimates

should contain provisions for substantial development and testing prior to commitment

for its use.

 Defi nition of a Feasible Concept

 To satisfy the objectives of the needs analysis phase, the above considerations should

culminate in the defi nition and description of a plausible system concept, and a well -

 documented substantiation of its technical feasibility and affordability. The system

description should include a discussion of the development process, anticipated risks,

general development strategy, design approach, evaluation methods, production issues,

and concept of operations. It should also describe how the cost of system development

and production had been assessed. It need not be highly detailed but should show that

all major aspects of system feasibility have been addressed.

NEEDS VALIDATION 155

 6.5 NEEDS VALIDATION

 The fi nal and most critical step in the application of the systems engineering method

is the systematic examination of the validity of the results of the previous steps. In the

case of the needs analysis phase, the validation step consists of determining the basic

soundness of the case that has been made regarding the existence of a need for a new

system and for the feasibility of meeting this need at an affordable cost and at an accept-

able risk.

 Operational Effectiveness Model

 In the concept development stage the analyses that are designed to estimate the degree

to which a given system concept may be expected to meet a postulated set of operational

requirements is called operational effectiveness analysis . It is based on a mathematical

model of the operational environment and of the candidate system concept being

analyzed.

 In effectiveness analysis, the operational environment is modeled in terms of a set

of scenarios — postulated actions that represent a range of possible encounters to which

the system must react. Usually, initial scenarios are selected to present the more likely

situations, followed by more advanced cases for testing the limits of the operational

requirements. For each scenario, the acceptable responses of the system in terms of

operational outcomes are used as evaluation criteria. To animate the engagements

between the system model and the scenarios, an effectiveness model is designed with

the capability of accepting variable system performance parameters from the system

model. A more extensive treatment of operational scenarios is contained in the next

section.

 Effectiveness analysis must include not only the operational modes of the system

but also must represent its nonoperating modes, such as transport, storage, installation,

maintenance, and logistics support. Collectively, all the signifi cant operational require-

ments and constraints need to be embodied in operational scenarios and in the accom-

panying documentation of the system environment.

 System Performance Parameters. The inputs from the system model to the

effectiveness analysis are values of performance characteristics that defi ne the system ’ s

response to its environment. For example, if a radar device needs to sense the presence

of an object (e.g., an aircraft), its predicted sensing parameters are entered to determine

the distance at which the object will be detected. If it needs to react to the presence of

the object, its response processing time will be entered. The effectiveness model ensures

that all of the signifi cant operational functions are addressed in constructing the system

model.

 Measures of Effectiveness (MOE). To evaluate the results of effectiveness

simulations, a set of criteria is established that identifi es those characteristics of

the system response to its environment that are critical to its operational utility. These

are called “ MOE. ” They should be directly associated with specifi c objectives and

156 NEEDS ANALYSIS

prioritized according to their relative operational importance. MOE and measures of

performance (MOP) are described in more detail below.

 While the effort required to develop an adequate effectiveness model for a major

system is extensive, once developed, it will be valuable throughout the life of the

system, including potential future updates. In the majority of cases where there is a

current system, much of the new effectiveness model may be derived from its

predecessor.

 The Analysis Pyramid. When estimating or measuring the effectiveness of a

system, the analyst needs to determine the perspective within which the system ’ s effec-

tiveness will be described. For example, the system effectiveness may be described

within a larger context, or mission, where the system is one of many working loosely

or tightly together to accomplish a result. On the other hand, effectiveness can be

described in terms of an individual system ’ s performance in a given situation in

response to selected stimuli, where interaction with other systems is minimal.

 Figure 6.5 depicts a common representation of what is known as the analysis

pyramid. At the base of the pyramid is the foundational physics and physical phenom-

enology knowledge. Analysis at this end of the spectrum involves a detailed evaluation

of environmental interactions, sometimes down to the molecular level.

 As the analyst travels up the pyramid, details are abstracted and the perspective of

the analyst broadens, until he reaches the apex. At this level, technical details have been

completely abstracted and the analysis focuses on strategy and policy alternatives and

implications.

 The systems engineer will fi nd that typically, analysis perspectives during the needs

analysis phase tend to be near the top of the pyramid. Although strategy may not be in

the domain of the system development effort, certainly the system ’ s effectiveness within

a multiple - mission or a single - mission context would need to be explored. The lower

 Figure 6.5. Analysis pyramid.

Strategy

Multiple
Missions

Multiple Systems/
Single Mission

Physics/Phenomenology

System/Subsystem

NEEDS VALIDATION 157

part of the pyramid is usually not analyzed due to lack of system defi nition. As the

system becomes more defi ned, the analysis performed will tend to migrate down the

pyramid. We will explore the analysis pyramid more as we continue our look at systems

engineering within the development phases.

 MOE and MOP

 With the introduction of operational effectiveness analysis, we need to explore the

concept and meaning of certain metrics. Metrics are key to ultimately defi ning the

system, establishing meaningful and verifi able requirements, and testing the system.

Therefore, defi ning these metrics appropriately and consistently through the develop-

ment life cycle is essential.

 Many terms exist to describe these effectiveness and performance metrics. Two

commonly used terms (and ones we will use throughout this book) are MOEs and

MOPs. Unfortunately, no universal defi nitions exist for these terms. But the basic

concept behind them is crucial to understanding and communicating a system concept.

 We propose the following defi nitions for this book:

 MOE: a qualitative or quantitative metric of a system ’ s overall performance that

indicates the degree to which it achieves it objectives under specifi ed conditions.

An MOE always refers to the system as a whole.

 MOP: a quantitative metric of a system ’ s characteristics or performance of a par-

ticular attribute or subsystem. An MOP typically measures a level of physical

performance below that of the system as a whole.

 Regardless of the defi nition you use, it is a universal axiom that an MOE is superior

to MOP. In other words, if the two are placed in a hierarchy, MOEs will always be

above MOPs.

 Typically, an MOE or MOP will have three parts: the metric, its units, and the

conditions or context under which the metric applies. For example, an MOE of a new

recreational aircraft (such as a new version of Piper Cub) would be maximum range,

in nautical miles at sea level on a standard atmospheric day. The metric is “ maximum

range ” ; the units are “ nautical miles ” ; and the conditions are “ a standard atmospheric

day (which is well defi ned) at sea level. ” This MOE relates to the aircraft as a whole

and describes one aspect of its performance in achieving the objective of aerial fl ight.

 MOEs can be of many forms, but we can defi ne three general categories: measure-

ment, likelihood, or binary. Measurement is an MOE that can be directly measured

(either from an actual system, subsystem, or mathematical or physical model). It may

be deterministic or random. Likelihood MOEs correspond to a probability of an event

occurring and may include other MOEs. For example, a likelihood MOE could be the

probability of an aircraft achieving a maximum altitude of 20,000 ft. In this case, the

likelihood is defi ned in terms of another measurement MOE. Finally, a binary MOE is

a logical variable of the occurrence of an event. Either the event occurs or not.

 When an MOE is measured or determined, we call the resultant measurement

the value of the MOE. Thus, in our aircraft example, if we measure the maximum

158 NEEDS ANALYSIS

range of a new aircraft as 1675 nm, then “ 1675 ” is the value. Of course, MOEs, as any

metrics, can have multiple values under different conditions or they could be random

values.

 Finally, engineers use binary MOEs to determine whether a particular characteristic

of a system exceeds a threshold. For example, we could defi ne a threshold for the

maximum range of an aircraft as 1500 nm at sea level on a standard day. A binary MOE

could then be defi ned to determine whether a measured value of the MOE exceeds our

threshold. For example, the binary MOE would be “ yes ” ; our measured value of

1675 nm exceeds our threshold of 1500 nm.

 MOEs and MOPs are diffi cult concepts to grasp! Unless one has worked with

metrics before, they tend to be confusing. Many students of systems engineering will

provide a requirement when asked for an MOE. Others provide values. Still others

simply cannot identify MOEs for a new system. However, the concept of measures is

utilized throughout the systems engineering discipline. We will revisit these concepts

in the subsequent chapters.

 Validation of Feasibility and Need

 Finally, the effectiveness analysis described above is mainly directed to determining

whether or not a system concept, derived in the functional and physical defi nition

process, is (1) feasible and (2) satisfi es the operational objectives required to meet a

projected need. It assumes that the legitimacy of the need has been established previ-

ously. This assumption is not always a reliable one, especially in the case of technology -

 driven system developments, where the potential application is new and its acceptance

depends on many intangible factors. A case in point, of which there are hundreds of

examples, is the application of automation to a system previously operated mainly by

people. (The airplane reservation and ticketing system is one of the larger successful

ones.) The validation of the need for such a system requires technical, operational, and

market analyses that seek to take into account the many complex factors likely to affect

the acceptability of an automated system and its probable profi tability.

 In complex cases such as the above example, only a very preliminary validation

can be expected before considerable exploratory development and experimentation

should take place. However, even a preliminary validation analysis will bring out most

of the critical issues and may occasionally reveal that the likelihood of meeting some

postulated needs may be too problematical to warrant a major investment at the current

state of the technology.

 6.6 SYSTEM OPERATIONAL REQUIREMENTS

 The primary product of needs analysis is a set of operational objectives, which are then

translated into a set of operational requirements. The system operational requirements

that result from the needs analysis phase will establish the reference against which the

subsequent development of a system to meet the projected needs will be judged.

Accordingly, it is essential that these requirements be clear, complete, consistent, and

SYSTEM OPERATIONAL REQUIREMENTS 159

feasible of accomplishment. The feasibility has presumably been established by the

identifi cation of at least one system approach that is judged to be both feasible and

capable of meeting the need. It remains to make certain that the operational require-

ments are adequate and consistent.

 Operational Scenarios

 A logical method of developing operational requirements is to postulate a range of

scenarios that together are representative of the full gamut of expected operational situ-

ations. These scenarios must be based on an extensive study of the operational environ-

ment, discussions with experienced users of the predecessor and similar systems, and

a detailed understanding of past experience and demonstrated defi ciencies of current

systems. It is especially important to establish the user priorities for the required

improvements, in particular, those that appear most diffi cult to achieve.

 While scenarios range widely in their content depending on their application, we

are able to defi ne fi ve basic components of almost all scenarios.

 1. Mission Objectives. The scenario should identify the overall objectives of the

mission represented, and the purpose and role of the system(s) in focus in

accomplishing those objectives. In some cases, this component is system inde-

pendent, meaning that the role of any one system is not presented — only a

general description of the mission at stake and the objectives sought. In a com-

mercial example, the mission could be to capture market share. In a government

example, the mission might be to provide a set of services to constituents. In a

military example, the mission might be to take control of a particular physical

installation.

 2. Architecture. The scenario should identify the basic system architecture

involved. This includes a list of systems, organizations, and basic structural

information. If governance information is available, this would be included.

This component could also include basic information on system interfaces or a

description of the information technology infrastructure. In essence, a descrip-

tion of the resources available is provided. In a commercial scenario, the

resources of the organization are described. If this is a government scenario,

the organizations and agencies involved in the mission are described. If this is

a military scenario, these resources could include the units involved, with their

equipment.

 3. Physical Environment. The scenario should identify the environment in which

the scenario takes place. This would include the physical environment (e.g.,

terrain, weather, transportation grid, and energy grid) as well as the business

environment (e.g., recession and growth period). “ Neutral ” entities are described

in this section. For example, customers and their attributes would be defi ned,

or neutral nations and their resources.

 4. Competition. The scenario should identify competition to your efforts. This

may be elements that are directly opposed to your mission success, such as a

160 NEEDS ANALYSIS

software hacker or other type of “ enemy. ” This may be your competition in the

market or outside forces that infl uence your customers. This could also include

natural disasters, such as a tsunami or hurricane.

 5. General Sequence of Events. The scenario should describe a general sequence

of events within the mission context. We are careful to use the term general

though. The scenario should allow for freedom of action on the part of the

players. Since we use scenarios to generate operational requirements and to

estimate system effectiveness, we need the ability to alter various parameters

and events within the overall scenario description. Scenarios should not “ script ”

the system; they are analysis tools, not shackles to restrain the system develop-

ment. Thus, scenarios typically provide a general sequence of events and leave

the details to an analyst using the scenario. At times, a scenario may provide a

detailed sequence of events leading up to a point in time, whereby the analysis

starts and actions may be altered from that time forward.

 A scenario could include much more, depending on its application and intended

purpose. They come in all sizes, from a short, graphic description of a few pictures to

hundreds of pages of text and data.

 Even though the operational scenarios developed during this phase are frequently

not considered a part of the formal operational requirements document, in complex

systems, they should be an essential input to the concept exploration phase. Experience

has shown that it is seldom possible to encompass all of the operational parameters into

a requirements document. Further, the effectiveness analysis process requires opera-

tional inputs in scenario form. Accordingly, a set of operational scenarios should be

appended to the requirements document, clearly stating that they are representative and

not a comprehensive statement of requirements.

 As noted above, the scenarios should include not only the active operational inter-

actions of the system with its environment but also the requirements involved in its

transport, storage, installation, maintenance, and logistics support. These phases often

impose physical and environmental constraints and conditions that are more severe than

normal operations. The only means for judging whether or not requirements are com-

plete is to be sure that all situations are considered. For example, the range of tempera-

ture or humidity of the storage site may drastically affect system life.

 Operational Requirements Statements

 Operational requirements must initially be described in terms of operational outcomes

rather than system performance. They must not be stated in terms of implementation

nor biased toward a particular conceptual approach. All requirements should be

expressed in measurable (testable) terms. In cases where the new system is required to

use substantial portions of an existing system, this should be specifi cally stated.

 The rationale for all requirements must be stated or referenced. It is essential for

the systems engineers leading the system development to understand the requirements

in terms of user needs so that inadvertent ambiguities do not result in undue risks or

costs.

SYSTEM OPERATIONAL REQUIREMENTS 161

 The time at which a new system needs to be available is not readily derived

from purely operational factors but may be critical in certain instances due to

fi nancial factors, obsolescence of current systems, schedules of system platforms

(e.g., airplanes and airports), and other considerations. This may place constraints on

system development time and hence on the degree of departure from the existing

system.

 Since the initially stated operational requirements for a new system are seldom

based on an exhaustive analysis, it should be understood by both the customer and

potential developer that these requirements will be refi ned during the development

process, as further knowledge is gained concerning the system needs and operating

environment.

 From the above considerations, it is seen that work carried out during the needs

analysis phase must be regarded as preliminary. Subsequent phases will treat all system

aspects in more detail. However, experience has shown that the basic conceptual

approach identifi ed during needs analysis often survives into subsequent phases. This

is to be expected because considerable time and effort is usually devoted to this process,

which may last for 2 or 3 years. Even though only limited funds are expended, many

organizations are often involved.

 Feasibility Validation

 Effectiveness analysis is intrinsically concerned with the functional performance of a

system and therefore cannot in itself validate the feasibility of its physical implementa-

tion. This is especially true in the case where unproven technology is invoked to achieve

certain performance attributes.

 An indirect approach to feasibility validation is to build a convincing case by

analogy with already demonstrated applications of the projected technique. Such an

approach may be adequate, provided that the application cited is truly representative

of that proposed in a new system. It is important, however, that the comparison be

quantitative rather than only qualitative so as to support the assumed performance

resulting from the technology application.

 A direct approach to validating the feasibility of a new physical implementation is

to conduct experimental investigations of the techniques to be applied to demonstrate

that the predicted performance characteristics can be achieved in practice. This approach

is often referred to as “ critical experiments, ” which are conducted early in the program

to explore new implementation concepts.

 The resources available for carrying out the validation process in the needs analysis

phase are likely to be quite limited, since the commitment to initiate the actual develop-

ment of the system has not yet been made. Accordingly, the quality of the validation

process will depend critically on the experience and ingenuity of the systems engineer-

ing staff. The experience factor is especially important here because of the dependence

of the work on knowledge of the operational environment, of the predecessor system,

of analyses and studies previously performed, of the technological base, and of the

methods of systems analysis and systems engineering.

162 NEEDS ANALYSIS

 Importance of Feasibility Demonstration. In defi ning a basis for developing

a new system, the needs analysis phase not only demonstrates the existence of an

important unfulfi lled operational need but also provides evidence that satisfying the

need is feasible. Such evidence is obtained by visualizing a realistic system concept

that has the characteristics required to meet the operational objectives. This process

illustrates a basic systems engineering principle that establishing realistic system

requirements must include the simultaneous consideration of a system concept that

could meet those requirements. This principle contradicts the widely held notion that

requirements, derived from needs, should be established prior to consideration of any

system concept that can fulfi ll those requirements.

 6.7 SUMMARY

 Originating a New System

 Objectives of the needs analysis phase are to identify a valid operational need for a

new system and to develop a feasible approach to meeting that need. This needs - driven

system development approach is characteristic of most defense and other government

programs and typically stems from a defi ciency in current system capabilities. This type

of development requires a feasible and affordable technical approach.

 The other major type of approach is the technology - driven system development

approach. This approach is characteristic of most commercial system development and

stems from a major technological opportunity to better meet a need. This type of devel-

opment requires demonstration of practicality and marketability.

 Activities comprising the needs analysis phase are the following:

 • Operations Analysis — understanding the needs for a new system;

 • Functional Analysis — deriving functions required to accomplish operations;

 • Feasibility Defi nition — visualizing a feasible implementation approach; and

 • Needs Validation — demonstrating cost - effectiveness.

 Operations Analysis

 Studies and analyses are conducted to generate and understand the operational needs

of the system. These studies feed the development of an objectives tree — describing

the hierarchy of system expectations and outcomes.

 Functional Analysis

 Initial system functions are identifi ed and organized that will achieve operational

objectives. These functions are vetted through analysis and presentation to users and

stakeholders.

PROBLEMS 163

 Feasibility Defi nition

 The system development approach is decided upon, articulated to stakeholders, and

approximately costed. Moreover, an early feasible concept is articulated. Finally, devel-

oping operational requirements commences.

 Needs Validation

 The vetted set of operational needs is now validated by operational effectiveness analy-

sis, usually at multiple levels within the analysis pyramid. System concepts that satisfy

the operational needs are evaluated with agreed - upon MOE and refl ect the entire system

life cycle.

 PROBLEMS

 6.1 Describe and defi ne the principal outputs (products) of the needs analysis

phase. List and defi ne the primary systems engineering activities that contrib-

ute to these products.

 6.2 Identify the relationships between operational objectives and functional

requirements for the case of a new commuter aircraft. Cite three operational

objectives and the functional requirements that are needed to realize these

objectives. (Use qualitative measures only.)

 6.3 Referring to Figure 6.2 , which illustrates the application of the systems engi-

neering method to the needs analysis phase, select one of the four sections of

the diagram and write a description of the processes pictured in the diagram.

Explain the nature and signifi cance of the two processes represented by circles

and of each internal and external interaction depicted by arrows. The descrip-

tion should be several times more detailed than the defi nition of the step in

the subsection describing the systems engineering method in needs analysis.

 6.4 What is meant by “ MOE ” ? For the effectiveness analysis of a sport utility

vehicle (SUV), list what you think would be the 10 most important character-

istics that should be exercised and measured in the analysis.

 6.5 For six of the MOE of the SUV (see Problem 6.4), describe an operational

scenario for obtaining a measure of its effectiveness.

 6.6 Assume that you have a business in garden care equipment and are planning

to develop one or two models of lawn tractors to serve suburban homeowners.

Consider the needs of the majority of such potential customers and write at

least six operational requirements that express these needs. Remember the

qualities of good requirements as you do so. Draw a context diagram for a

lawn tractor.

 6.7 Given the results of Problem 6.6, describe how you would perform an analysis

of alternatives to gain an understanding of the functional requirements and

optional features that could fi t the tractor to individual needs. Describe the

164 NEEDS ANALYSIS

MOE you would use and the alternative architectures you would analyze.

Describe the pros and cons for a single model as opposed to two models of

different sizes and powers.

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapter 3.

 A. D. Hall . A Methodology for Systems Engineering . Van Nostrand , 1962 , Chapter 6.

 International Council on Systems Engineering . Systems Engineering Handbook . A Guide for

System Life Cycle Process and Activities , Version 3.2, July 2010 .

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapter 4.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 ,

Chapter 3.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering: Coping with Complexity .

 Prentice Hall , 1998 , Chapter 2.

165

 7.1 DEVELOPING THE SYSTEM REQUIREMENTS

 Chapter 6 discussed the process of needs analysis, which is intended to provide a well -

 documented justifi cation for initiating the development of a new system. The process

also produces a set of operational requirements (or objectives) that describe what the

new system must be designed to do. Assuming that those responsible for authorizing

the initiation of a system development have been persuaded that these preliminary

requirements are reasonable and attainable within the constraints imposed by time,

money, and other external constraints, the conditions have been achieved for taking the

next step in the development of a new system.

 The principal objective of the concept exploration phase, as defi ned here, is to

convert the operationally oriented view of the system derived in the needs analysis

phase into an engineering - oriented view required in the concept defi nition and subse-

quent phases of development. This conversion is necessary to provide an explicit and

quantifi able basis for selecting an acceptable functional and physical system concept,

and then for guiding its evolution into a physical model of the system. It must be

 7

CONCEPT EXPLORATION

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

166 CONCEPT EXPLORATION

remembered, however, that the performance requirements are an interpretation, not a

replacement of operational requirements.

 As in the case of operational requirements, the derivation of system performance

requirements must also simultaneously consider system concepts that could meet them.

However, to ensure that the performance requirements are suffi ciently broad to avoid

unintentionally restricting the range of possible system confi gurations, it is necessary

to conceive not one, but to explore a variety of candidate concepts.

 New systems that strive for a major advance in capability over their predecessors,

or depend on the realization of a technological advance, require a considerable amount

of exploratory research and development (R & D) before a well - founded set of perfor-

mance requirements can be established. The same is true for systems that operate in

highly complex environments and whose characteristics are not fully understood. For

these cases, an objective of the concept exploration phase is to acquire the needed

knowledge through applied R & D. This objective may sometimes take several years

to accomplish, and occasionally, these efforts prove that some of the initial operational

objectives are impracticable to achieve and require major revision.

 For the above reasons it, is appropriate that this chapter, which deals with the

development of system requirements, is entitled “ Concept Exploration. ” Its intent is to

describe the typical activities that take place in this phase of system development and

to explain their whys and hows.

 The discussion that follows is generally applicable to all types of complex systems.

For information systems, in which software performs virtually all the functionality, the

section on software concept development in Chapter 11 discusses software system

architecture and its design and should also be consulted.

 Place of Concept Exploration Phase in the System Life Cycle

 The place of the concept exploration phase in the overall system development process

is shown in Figure 7.1 . It is seen that the top - level system operational requirements

 Figure 7.1. Concept exploration phase in a system life cycle.

System Operational
Effectiveness

System Performance
Requirements

Needs Analysis Concept Exploration

Requirements Analysis

Concept Definition

Concept Synthesis
Feasibility Experiments

System Capabilities Candidate System
Concepts

DEVELOPING THE SYSTEM REQUIREMENTS 167

come from needs analysis, which establishes that the needs are justifi ed and that a

development program is feasible within prescribed bounds. The outputs of the concept

exploration phase are a set of system performance requirements down to the subsystem

level and a number of potential system design concepts that analysis indicates to be

capable of fulfi lling those requirements.

 While the formally defi ned concept exploration phase has a well - defi ned beginning

and end, many of the supporting activities do not. For example, the exploratory devel-

opment of advanced technological approaches or the quantitative characterization of

complex system environments often begins before and extends beyond the formal terms

of this phase, being supported by independent research and development (IRAD) or

other nonproject funds. Additionally, considerable preliminary concept defi nition activ-

ity usually takes place well before the formal beginning of this phase.

 The specifi c content of the concept exploration phase depends on many factors,

particularly the relationship between the customer and the supplier or developer, and

whether the development is needs driven or technology driven. If the system developer

and supplier are different from the customer, as is frequently the case in needs - driven

system developments, the concept exploration phase is conducted in part by the cus-

tomer ’ s own organization or with the assistance of a systems engineering agent engaged

by the customer. The focus is on the development of performance requirements that

accurately state the customer ’ s needs in terms that one or more suppliers could respond

to with specifi c product concepts. In the case of a technology - driven system develop-

ment, the concept exploration phase is often conducted by the system developer and is

focused on ensuring that all viable alternative courses of action are considered before

deciding whether or not to pursue the development of a new system. In both cases, a

primary objective is to derive a set of performance requirements that can serve as the

basis of the projected system development and that have been demonstrated to ensure

that the system product will meet a valid operational need.

 For many acquisition programs, the period between the approval of a new

system start and the availability of budgeted funds is often used to sponsor explora-

tory contractor efforts to advance technologies related to the anticipated system

development.

 System Materialization Status

 The needs analysis phase was devoted to defi ning a valid set of operational objectives

to be achieved by a new system, while a feasible system concept was visualized only

as necessary to demonstrate that there was at least one possible way to meet the pro-

jected need. The term “ visualize ” is meant to connote the conceptualization of the

general functions and physical embodiment of the subject in the case of needs analysis

at the subsystem level.

 Thus, in the concept exploration phase, one starts with a vision based generally on

the above feasible concept. The degree of system materialization addressed in this phase

has progressed to the next level, namely, the defi nition of the functions that the system

and its subsystems must perform to achieve the operational objectives, and to the

 TABLE 7.1. Status of System Materialization of the Concept Exploration Phase

 Level

 Phase

 Concept development Engineering development

 Needs analysis

 Concept

exploration Concept defi nition

 Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore,

and synthesize

concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne

requirements and

ensure feasibility

 Defi ne functional

and physical

architecture

 Validate

subsystems

 Integrate and test

 Component Allocate functions

to components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

1
6
8

DEVELOPING THE SYSTEM REQUIREMENTS 169

visualization of the system ’ s component confi guration, as illustrated in Table 7.1 (an

overlay of Table 4.1).

 Systems Engineering Method in Concept Exploration

 The activities in the concept exploration phase and their interrelationships are the result

of the application of the systems engineering method (see Chapter 4). A brief summary

of these activities is listed below; the names of the four generic steps in the method are

shown in parentheses.

 Operational Requirements Analysis (Requirements Analysis). Typical activities

include

 • analyzing the stated operational requirements in terms of their objectives;

and

 • restating or amplifying, as required, to provide specifi city, independence,

and consistency among different objectives, to assure compatibility with

other related systems, and to provide such other information as may be

needed for completeness.

 Performance Requirements Formulation (Functional Defi nition). Typical activi-

ties include

 • translating operational requirements into system and subsystem functions

and

 • formulating the performance parameters required to meet the stated opera-

tional requirements.

 Implementation Concept Exploration (Physical Defi nition). Typical activities

include

 • exploring a range of feasible implementation technologies and concepts

offering a variety of potentially advantageous options,

 • developing functional descriptions and identifying the associated system

components for the most promising cases, and

 • defi ning a necessary and suffi cient set of performance characteristics

refl ecting the functions essential to meeting the system ’ s operational

requirements.

 Performance Requirements Validation (Design Validation). Typical activities

include

 • conducting effectiveness analyses to defi ne a set of performance

requirements that accommodate the full range of desirable system

concepts; and

 • validating the conformity of these requirements with the stated operational

objectives and refi ning the requirements if necessary.

 The interrelationships among the activities in the above steps in the systems engineering

method are depicted in the fl ow diagram of Figure 7.2 .

170 CONCEPT EXPLORATION

 7.2 OPERATIONAL REQUIREMENTS ANALYSIS

 As in all phases of the system development process, the fi rst task is to understand

thoroughly, and, if necessary, to clarify and extend, the system requirements defi ned in

the previous phase (in this case the operational requirements). In so doing, it is impor-

tant to be alert for and to avoid shortcomings that are often present in the operational

requirements as initially stated. We use a general process, known as requirements

 Figure 7.2. Concept exploration phase fl ow diagram.

Needs analysis

phase
Operational requirements

Operational

requirementsAnalyze
operational
objectives

Refine
operational

requirements

Predecessor
system

Operational
requirements

Partitioning criteria

analysis

Derive
subsystem
functions

Formulate
performance
parameters

Predecessor system

Functional elements

Performance

requirements

formulation

Incompatibilities

Feasibility criteria
Performance
parameters

Subsystem
functions

Explore
implementation

concepts

Define
performance

characteristics

Predecessor system

• Building blocks
• Technology

Implementation

concept

exploration

Performance
characteristics

Measures of
effectiveness

Performance

Concept

definition

phase

Incompatible
characteristics

Incomplete objectives

Integrate
performance

characteristics

Validate
performance
requirements

Previous analysis

Performance
requirements

requirements

validation

OPERATIONAL REQUIREMENTS ANALYSIS 171

analysis , to identify and discover performance requirements, to synthesize and mini-

mize initial sets of requirements, and fi nally, to validate the fi nal set of requirements.

This requirements analysis process, as mentioned in Chapter 4 , occurs at each phase.

However, the majority of effort occurs in the concept exploration phase where opera-

tional requirements are transformed into system performance requirements with mea-

surable thresholds of performance. These system performance requirements tend to be

the basis for contractual agreements between the customer and the developer and there-

fore need to be accurate and concise.

 Figure 7.3 depicts the general process for developing requirements. Of course, this

would be tailored to a specifi c application. The fi rst activity involves the creation of a

set of requirements. It is rare this occurs out of whole cloth — typically, a source of

needs exists. In the concept exploration phase, a set of operational needs and require-

ments have been established. However, those needs and requirements are typically

expressed in the language and context of an operator or user. These must be translated

into a set of system - specifi c requirements describing its performance.

 Requirements Elicitation

 When analysts are developing operational requirements, they rely heavily on input from

users and operators, typically through market surveys and interviews. When analysts

are developing performance requirements, they rely on both people and studies. Initially,

the customer (or buying agent within an organization) is able to provide thresholds of

affordability and levels of performance that are desirable. But subject matter experts

(SMEs) can also provide performance parameters as a function of technology levels,

cost, and manufacturability. Previous studies and system development efforts can also

assist in determining performance requirements. And fi nally, a requirements analyst

performs a system effectiveness analysis to provide insight into the level of perfor-

mance needed. All of these sources provide the analyst with an initial set of performance

requirements.

 Figure 7.3. Simple requirements development process.

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Documentation

172 CONCEPT EXPLORATION

 Many times, however, this set of requirements contains inconsistencies, or even

dichotomies. Further, many requirements are redundant, especially when they come

from different sources. So the analyst must conduct a synthesis to transform an initial

set of requirements into a concise, consistent set. More information is provided in

Section 7.3 on formulating requirements.

 A useful approach to developing requirements of any type is to ask the six inter-

rogatives: who, what, where, why, when, and how. Of course, different types of require-

ments focus on different interrogatives, as described in Chapter 6 . Operational

requirements focus on the “ why, ” defi ning the objectives and purpose of the system.

Performance requirements focus on the “ what, ” defi ning what the system should do

(and how well).

 Requirements Analysis

 This activity starts with an initial set of requirements from the elicitation stage.

Individual requirements as well as the set as a whole are analyzed for various attributes

and characteristics. Some characteristics are desirable, such as “ feasible ” and “ verifi -

able. ” Other characteristics are not, such as “ vague ” or “ inconsistent. ”

 For each requirement, a set of tests (or questions) is applied to determine whether

the requirement is valid. And while many tests have been developed by numerous

organizations, we present a set of tests that at least form a baseline. These tests are

specifi c to the development of system performance requirements.

 1. Is the requirement traceable to a user need or operational requirement?

 2. Is the requirement redundant with any other requirement?

 3. Is the requirement consistent with other requirements? (Requirements should

not contradict each other or force the engineer to an infeasible solution.)

 4. Is the requirement unambiguous and not subject to interpretation?

 5. Is the requirement technologically feasible?

 6. Is the requirement affordable?

 7. Is the requirement verifi able?

 If the answer to any of the questions above is “ no, ” then the requirement needs to

be revised, or possibly omitted. In addition, other requirements may need to be revised

after performing this test.

 In addition to individual requirements tests, a collective set of tests is also per-

formed (usually after the individual tests have been performed on each requirement).

 1. Does the set of requirements cover all of the user needs and operational

requirements?

 2. Is the set of requirements feasible in terms of cost, schedule, and technology?

 3. Can the set of requirements be verifi ed as a whole?

 Both types of tests may need to be iterated before a fi nal set of performance require-

ments exists.

OPERATIONAL REQUIREMENTS ANALYSIS 173

 Requirements Validation

 Once a set of performance requirements is available, the set needs to be validated. This

may be accomplished formally or informally. Formal validation means using an inde-

pendent organization to apply various validation methods to validate the set of require-

ments against operational situations (i.e., scenarios and use cases) and to determine

whether the requirements embodied within a system concept could achieve the user

needs and objectives. Informal validation at this point means reviewing the set of

requirements with the customer and/or users to determine the extent and comprehen-

siveness of the requirements. Section 7.5 provides further detail on the requirements

validation process.

 Requirements Documentation

 A fi nal, important activity is the documentation of the performance requirements. This

is typically accomplished through the use of an automated tool, such as DOORS. Many

tools exist that manage requirements, especially large, complex requirements hierar-

chies. As system complexity increases, the number and types of requirements tends to

grow, and using simple spreadsheet software may not be suffi cient to manage require-

ments databases.

 Characteristics of Well - Stated Requirements

 As mentioned above, the requirements analysis process leads to a concise set of per-

formance requirements. This section examines the challenges associated specifi cally

with translating operational requirements to performance requirements.

 Since operational requirements are fi rst formulated as a result of studies and analy-

ses performed outside a formal project structure, they tend to be less complete and

rigorously structured than requirements prepared in the subsequent managed phases of

the development and are mainly oriented to justifying the initiation of a system devel-

opment. Accordingly, in order to provide a valid basis for the defi nition of system

performance requirements, their analysis must be particularly exacting and mindful of

frequently encountered defi ciencies, such as lack of specifi city, dependence on a single

assumed technical approach, incomplete operational constraints, lack of traceability to

fundamental needs, and requirements not adequately prioritized. Each of these is briefl y

discussed in the succeeding paragraphs.

 In an effort to cover all expected operating conditions (and to “ sell ” the project),

operational requirements are often overly broad and vague where they should be spe-

cifi c. In the case of most complex systems, it is necessary to supplement the basic

requirements with a set of well - defi ned operational scenarios that represent the range

of conditions that the system is required to meet.

 The opposite problem occurs if operational requirements are stated so as to be

dependent on a specifi c assumed system confi guration. To enable consideration of

alternative system approaches, such requirements need to be restated to be independent

of specifi c or “ point ” designs.

 Often, operational requirements are complete only in regard to the active

operational functions of the system and do not cover all the constraints and external

174 CONCEPT EXPLORATION

interactions that the system must comply with during its production, transportation,

installation, and operational maintenance. To ensure that these interactions are treated

as fully as possible at this stage of development, it is necessary to perform a life cycle

analysis and to provide scenarios that represent these interactions.

 All requirements must be associated with and traceable to fulfi lling the operational

objectives of the user. This includes understanding who will be using the system and

how it will be operated. Compliance with this guideline helps to minimize unnecessary

or extraneous requirements. It also serves as a good communication link between the

customer and developer when particular requirements subsequently lead to complex

design problems or diffi cult technical trade - offs.

 The essential needs of the customer must be given top priority. If the needs analysis

phase has been done correctly, requirements stemming from these needs will be clearly

understood by all concerned. When design confl icts occur later in development, a review

of these primary objectives can often provide useful guidance for making a decision.

 Beyond the above primary or essential requirements, there are always those capa-

bilities that are desirable if they prove to be readily achievable and affordable.

Requirements that are essential should be separately distinguished from those that are

desirable but not truly necessary for the success of the primary mission. Often, prefer-

ences of the customer come through as hard and fast requirements, when they are meant

to be desirable features. Examples of desirable requirements are those that provide an

additional performance capability or design margin. There should be some indication

of cost and risk associated with each desirable requirement so that an informed priori-

tization can be made. The discrimination between essential and desirable requirements

and their prioritization is a key systems engineering function.

 The Triumvirate of Conceptual Design

 Above, we mentioned the use of the six primitive interrogatives in developing require-

ments. We also discussed that operational requirements ’ focus on “ why ” and functional

requirements ’ focus on the “ what ” (along with performance requirements ’ focus on its

associated interrogative, “ how much ”). So, if the two sets of requirements focus on

why and what, then where does the analyst go to understand the other four primitive

interrogatives? The answer lies with what we call the triumvirate of conceptual design,

illustrated in Figure 7.4 .

 Three products are needed to describe the six interrogatives that collectively could

be considered a system concept. The requirements (all three types we have addressed

in detail up to this point) address why and what. A new product, the operational concept,

sometimes referred to as a concept of operations (CONOPS), addresses how and who.

And a description of the operational context, sometimes referred to as scenarios,

addresses where and when. Of course, there is a signifi cant overlap between the three,

and often two or more of these products are combined into a single document.

 Operational Concept (CONOPS)

 Although the two terms are often used synonymously, in truth, an operational concept

is a broader description of a capability that encompasses multiple systems. It tends to

OPERATIONAL REQUIREMENTS ANALYSIS 175

describe how a large collection of systems will operate. Examples would include an

operational concept for the U.S. Transportation System (or even a subsystem of the

whole system). In this case, “ system ” does not refer to a single system but a collection

of systems. Another example would be an operational concept for an oil refi nery — again

referring to how a collection of systems would operate together. When referring to a

single system, the term CONOPS is generally used. A further distinction relates to

scenarios. An operational concept is suffi ciently broad to be scenario independent. A

CONOPS tends to relate to a single scenario or a set of related scenarios.

 Operational concepts are useful since requirements should avoid prescribing how

they should be fulfi lled. Requirements documents risk inadvertently barring an espe-

cially favorable solution. However, a set of operational requirements alone is often

insuffi cient to constrain the system solutions to the types desired. For example, the

operational requirements for defending an airplane against terrorist attack could con-

ceivably be met by counterweapons, passenger surveillance, or sensor technology. In

a particular program initiative, the requirements would be constrained by adding a

CONOPS, which would describe the general type of counterweapons that are to be

considered. This extension of the operational requirement adds constraints, which

express the customer ’ s expectation for the anticipated system development.

 The term CONOPS is quite general. The components of a CONOPS usually

include

 1. mission descriptions, with success criteria;

 2. relationships with other systems or entities;

 3. information sources and destinations; and

 4. other relationships or constraints.

 Figure 7.4. Triumvirate of conceptual design.

Operational
Why

Functional and Performance
Requirements

Requirements

What
How Much

System
Concept

Operational Concept
(Concept of Operations)

 Operational Context

(Scenarios)

Who When

WhereHow

176 CONCEPT EXPLORATION

 The CONOPS should be considered as an addition to the operational requirements.

It defi nes the general approach, though not a specifi c implementation, to the desired

system, thereby eliminating undesired approaches. In this way, the CONOPS clarifi es

the intended goal of the system.

 The CONOPS should be prepared by the customer organization or by an agent of

the customer and should be available prior to the beginning of the concept defi nition

phase. Thereafter, it should be a “ living ” document, together with the operational

requirements document.

 Operational Context Description (Scenarios)

 A description of an operational context is the last piece of the triumvirate in defi ning

the system concept. This description (as depicted in Fig. 7.4) focuses on the where and

when. Specifi cally, an operational context description describes the environment within

which the system is expected to operate. A specifi c instantiation of this context is known

as a scenario.

 A scenario can be defi ned as “ a sequence of events involving detailed plans of one

or more participants and a description of the physical, social, economic, military, and

political environment in which these events occur. ” With respect to system develop-

ment, scenarios are typically projected into the future to provide designers and engi-

neers a context for the system description and design.

 Most scenarios include at least fi ve elements:

 1. Mission Objectives: a description of the overall mission with success criteria.

The reader should notice this is the same as one of the components of a

CONOPS. The mission can be of any type, for example, military, economic,

social, or political.

 2. Friendly Parties: a description of friendly parties and systems, and the relation-

ships among those parties and systems.

 3. Threat Actions (and Plans): a description of actions and objectives of threat

forces. These threats need not be human; they could be natural (e.g., volcano

eruption).

 4. Environment: a description of the physical environment germane to the mission

and system.

 5. Sequence of Events: a description of individual events along a timeline.

These event descriptions should not specify detailed system implementation

details .

 Scenarios come in all sizes and fl avors. The type of scenario is determined by the system

in questions and the problem being examined. Figure 7.5 shows different levels of

scenarios that might be needed in a system development effort. During the early phases

(needs analysis and concept exploration), the scenarios tend to be higher levels, near

the top of the pyramid. As the development effort transitions to later phases, more detail

is available as the design improves, and lower - level scenarios are used in engineering

OPERATIONAL REQUIREMENTS ANALYSIS 177

analyses. High - level scenarios continue to be used throughout to estimate the overall

system effectiveness as the design matures.

 Analysis of Alternatives

 The needs analysis phase is usually conducted without the benefi t of a well - organized

and funded effort. In such cases, the operational requirements that are formulated during

this phase are necessarily a preliminary and incomplete defi nition of the full mission

objectives. Therefore, an essential part of the concept exploration phase is to develop

the operational requirements into a complete and self - consistent framework as a basis

for developing an effective operational system.

 For the above reason, before initiating a major program, one or more studies are

generally carried out to refi ne the operational requirements by modeling the interaction

of operational scenarios. One of the common designations for such studies is “ analysis

of alternatives ” because they involve the defi nition of a range of alternative system

approaches to the general operational mission, and a comparative evaluation of their

operational effectiveness. Such analyses defi ne the realistic limits of expected opera-

tional effectiveness for the postulated operational situation and provide the framework

for a set of complete, consistent, and realistic operational requirements.

 Guidelines for Defi ning Alternative Concepts. As noted in the next section,

conceiving new candidate approaches to satisfying a set of requirements is an inductive

process and hence requires a leap of the imagination. For such a process, it is helpful

to postulate some guidelines for selecting alternatives:

 1. Start with the existing (predecessor) system as a baseline.

 2. Partition the system into its major subsystems.

 Figure 7.5. Hierarchy of scenarios.

Global

Estimate total system architecture effectiveness

over an extended period of time (beyond one cycle).

Environment

Estimate total system effectiveness within

an architecture over one business cycle.

System

Estimate system effectiveness in

its local environment.

Subsystem

Estimate performance of individual

components of the system.

178 CONCEPT EXPLORATION

 3. Postulate alternatives that replace one or more of the subsystems essential to

the mission with an advanced, less costly, or otherwise superior version.

 4. Vary the chosen subsystems (or superior version) singly or in combination.

 5. Consider modifi ed architectures, if appropriate.

 6. Continue until you have a total of four to six meaningful alternatives.

 Effectiveness Simulation. Where the analysis of alternatives involves complex

systems, the analysis often requires the use of a computer simulation that measures the

effectiveness of a model of a system concept in dealing with a model scenario of the

system environment. Chapter 9 contains a brief description of the character and applica-

tion of system effectiveness simulation.

 The advantage of computer simulation is that it is possible to provide controls that

vary the behavior of a selected system and environmental parameters in order to study

their effect on the overall system behavior. This feature is especially valuable in char-

acterizing the effect of operational and performance requirements on the system archi-

tecture necessary to satisfy them, and in turn, establishing practical bounds on the

requirements. A range of solutions of varying capability and cost can be considered.

Every particular application has its own key variables that can be called into play.

 7.3 PERFORMANCE REQUIREMENTS FORMULATION

 As noted previously, in the course of developing a new system, it is necessary to trans-

form the system operational requirements, which are stated as required outcomes of

system action, into a set of system performance requirements, which are stated in terms

of engineering characteristics. This step is essential to permit subsequent stages of

system development to be based on and evaluated in engineering rather than operational

terms. Thus, system functional performance requirements represent the transition from

operational to engineering terms of reference.

 Derivation of Subsystem Functions

 In deriving performance requirements from operational objectives, it is fi rst necessary

to identify the major functions that the system must perform to carry out the prescribed

operational actions. That means, for example, that if a system is needed to transport

passengers to such destinations as they may wish along existing roadways, its functional

elements must include, among others, a source of power, a structure to house the pas-

sengers, a power - transmitting interface with the roadway, and operator - activated con-

trols of locomotion and direction. Expressed in functional terms (verb – object), these

elements might be called “ power vehicle, ” “ house passengers, ” “ transmit power to

roadway, ” “ control locomotion, ” and “ control direction. ”

 As described in Chapter 6 , a beginning in this process has already been made in

the preceding phase. However, a more defi nitive process is needed to establish specifi c

performance parameters. Correspondingly, as seen in Table 4.1 , during this phase, the

functional defi nition needs to be carried a step further, that is, to a defi nition of sub-

PERFORMANCE REQUIREMENTS FORMULATION 179

system functions, and to the visualization of the functional and associated physical

components, which collectively can provide these subsystem functions.

 The Nondeterministic Nature of System Development

 The derivation of performance requirements from desired operational outcomes is far

from straightforward. This is because, like other steps in the system materialization

process, the design approach is inductive rather than deductive, and hence not directly

reversible. In going from the more general operational requirements to the more specifi -

cally defi ning system performance requirements, it is necessary to fi ll in many details

that were not explicitly called out in the operational requirements. This can obviously

be done in a variety of ways, meaning that more than one system confi guration can, in

principle, satisfy a given set of system requirements. This is also why in the system

development process the selection of the “ best ” system design at a given level of mate-

rialization is accomplished by trade - off analysis, using a predefi ned set of evaluation

criteria.

 The above process is exactly the same as that used in inductive reasoning. For

example, in designing a new automobile to achieve an operational goal of 600 mi on a

tank of gasoline, one could presumably make its engine extremely effi cient, or give it

a very large gasoline tank, or make the body very light, or some combination of these

characteristics. Which combination of these design approaches is selected would depend

on the introduction of other factors, such as relative cost, development risk, passenger

capacity, safety, and many others.

 This process can also be understood by considering a deductive operation, as, for

example, performance analysis. Given a specifi c system design, the system ’ s perfor-

mance may be deduced unambiguously from the characteristics of its components by

fi rst breaking down component functions, then by calculating their individual perfor-

mance parameters, and fi nally by aggregating these into measures of the performance

of the system as a whole. The reverse of this deductive process is, therefore, inductive

and consequently nondeterministic.

 One can see from the preceding discussion that, given a set of operational require-

ments, there is no direct (deductive) method of inferring a corresponding unique set of

system performance characteristics that are necessary and suffi cient to specify the

requirements for a system to satisfy the operational needs. Instead, one must rely on

experience - based heuristics, and to a large extent, on a trial and error approach. This

is accomplished through a process in which a variety of different system confi gurations

are tentatively defi ned, their performance characteristics are deduced by analysis or

data collection, and these are subjected to effectiveness analysis to establish those

characteristics required to meet the operational requirements. The above process is

described in greater detail in the next section.

 Functional Exploration and Allocation

 The exploration of potential system confi gurations is performed at both the functional

and physical levels. The range of different functional approaches that produce

180 CONCEPT EXPLORATION

behavior suitable to meet the system operational requirements is generally much

more limited than the possibilities for different physical implementations. However,

there are often several signifi cantly different ways of obtaining the called for opera-

tional actions. It is important that the performance characteristics of these different

functional approaches be considered in setting the bounds on system performance

requirements.

 As noted earlier in Figure 7.2 , one of the outputs of this step is the allocation of

operational functions to individual subsystems. This is important in order to set the

stage for the next step, in which the basic physical building block components may be

visualized as part of the exploration of implementation concepts. These two steps are

very tightly bound through iterative loops, as shown in the fi gure. Two important inputs

to the functional allocation process are the predecessor system and functional building

blocks. In most cases, the functions performed by the subsystems of the predecessor

system will largely carry over to the new system. Accordingly, the predecessor system

is especially useful as a point of departure in defi ning a functional architecture for the

new system. And since each functional building block is associated with both a set of

performance characteristics and a particular type of physical component, the building

blocks can be used to establish the selection and interconnection of elementary func-

tions and the associated components needed to provide the prescribed subsystem

functions.

 To aid in the process of identifying those system functions responsible for its

operational characteristics, recall from Chapter 3 that functional media can be classed

into four basic types: signals, data, material, and energy. The process addresses the

following series of questions:

 1. Are there operational objectives that require sensing or communications? If so,

this means that signal input, processing, and output functions must be involved.

 2. Does the system require information to control its operation? If so, how are data

generated, processed, stored, or otherwise used?

 3. Does system operation involve structures or machinery to house, support, or

process materials? If so, what operations contain, support, process, or manipu-

late material elements?

 4. Does the system require energy to activate, move, power, or otherwise provide

necessary motion or heat?

 Furthermore, functions can be divided again into three categories: input, transformative,

and output. Input functions relate to the processes of sensing and inputting signals, data,

material, and energy into the system. Output functions relate to the processes of inter-

preting, displaying, synthesizing, and outputting signals, data, material, and energy out

of the system. Transformative functions relate to the processes of transforming the

inputs to the outputs of the four types of functional media. Of course, for complex

systems, the number of transformative functions may be quite large, and has successive

 “ sequences ” of transformations. Figure 7.6 depicts the concept of this two - dimensional

construct, function category versus functional media.

PERFORMANCE REQUIREMENTS FORMULATION 181

 In constructing an initial function list, it helps to identify inputs and outputs (as

described in Chapter 3). This list directly leads the engineer to a list of input and output

functions. The transformative functions may be easier to identify when examining them

in the light of a system ’ s inputs and outputs.

 As an example, while acknowledging it is not a complex system, consider a

common coffeemaker (without any frills). By observation, an analyst can identify the

necessary inputs:

 • Signals: user commands (which we will simply identify as “ on ” and “ off ”)

 • Data: none

 • Materials: fresh coffee grinds, fi lter, and water

 • Energy: electricity

 • Forces: mechanical support

 Outputs can also be easily identifi ed:

 • Signals: status (which we will simply identify as on and off)

 • Data: none

 • Materials: brewed coffee, used fi lter, used coffee grinds

 • Energy: heat

 • Forces: none

 Identifying inputs and outputs assists the analyst in identifying functions. Input

functions will directly proceed from the input list (deductive reasoning). Output func-

tions will directly proceed from the output list (deductive as well). The transformative

functions will be more diffi cult to identify since doing so relies on inductive reasoning.

 Figure 7.6. Function category versus functional media.

T
ra

n
s
fo

rm
a

tiv
e

 F
u

n
c
tio

n
s

Signals

Data

S

D

S

D

In
p

u
t F

u
n

c
tio

n
s

O
u

tp
u

t F
u

n
c
tio

n
s

Material

D

M M

Energy

M

E E

182 CONCEPT EXPLORATION

However, we now have a guide to this inductive process: we know that we must trans-

form the six inputs into the fi ve outputs.

 This line of inquiry normally reveals all operationally signifi cant functions and

permits them to be grouped in relation to specifi c operational objectives. Further, this

grouping naturally tends to bring together the elements of different subsystems, which

are the fi rst - level building blocks of the system itself. The above strategy is also appro-

priate even if the basic confi guration is derived from a predecessor system because its

generic and systematic approach tends to reveal elements that might otherwise be

overlooked. In the coffeemaker case, we can focus on transforming the input materials

and signals into output materials and signals. In other words, we can identify functions

by answering the question “ How do we transform fresh coffee grinds, a fi lter, water,

and an on/off command into brewed coffee, a used fi lter, used coffee grinds, and a

status? ”

 Keeping the list of functions minimal and high level, and using the verb – object

syntax, an example list pertaining to the coffeemaker could be

 Input Functions

 1. Accept user command (on/off)

 2. Receive coffee materials

 3. Distribute electricity

 4. Distribute weight

 Transformative Functions

 5. Heat water

 6. Mix hot water with coffee grinds

 7. Filter out coffee grinds

 8. Warm brewed coffee

 Output Functions

 9. Provide status

 10. Facilitate removal of materials

 11. Dissipate heat

 Can you map the inputs and outputs to one or more functions? Can you identify how

the inputs are transformed into the outputs? Since a coffeemaker is a very simple

system, the number of transformative functions was low. But keep in mind that regard-

less of a system ’ s complexity, a top - level function list with about 5 – 12 functions can

always be identifi ed. So a complex system may have a large hierarchy of functions, but

any system can be aggregated into an appropriate set of top - level functions.

 Formulation of Performance Characteristics. As noted above, the objective

of the concept exploration phase is to derive a set of system performance characteristics

that are both necessary and suffi cient. This means that a system possessing them will

satisfy the following criteria:

PERFORMANCE REQUIREMENTS FORMULATION 183

 1. A system that meets the system operational requirements and is technically

feasible and affordable will comply with the performance characteristics.

 2. A system that possesses these characteristics will meet the system operational

requirements and can be designed to be technically feasible and affordable.

 The condition that the set of performance requirements must be necessary as well

as suffi cient is essential to ensure that they do not inadvertently exclude a system

concept that may be especially advantageous compared to others just because it may

take an unusual approach to a particular system function. This often happens when the

performance requirements are derived in part from a predecessor system and carry over

features that are not essential to its operational behavior. It also happens when there is

a preconceived notion of how a particular operational action should be translated into

a system function.

 For the above reasons, the defi nition of performance characteristics needs to be an

exploratory and iterative process, as shown in Figure 7.2 . In particular, if there are

alternative functional approaches to an operational action, they should all be refl ected

in the performance characteristics, at least until some may be eliminated in the imple-

mentation and validation steps in the process.

 Incompatible Operational Requirements. It should be noted that a given set

of operational requirements does not always lead to feasible performance characteris-

tics. In Chapter 6 , the automobile was mentioned as a system that was required to

undergo signifi cant changes because of government - imposed regulations concerning

safety, fuel economy, and pollution control. Initially, these areas of regulation were

independently developed. Each set of requirements was imposed solely on the basis of

a particular need, with little regard for either the associated engineering problems or

other competing needs. When these regulations were subjected to engineering analysis,

it was shown that they were not collectively feasible within the practical technology

available at that time. Also, the investment in development and production would result

in a per - unit cost far in excess of the then current automobile prices. The basic reason

for these problems was that the available pollution controls necessary to meet emission

requirements resulted in lowered fuel economy, while the weight reduction necessary

to meet the required fuel economy defeated the safety requirements. In other words,

the three independent sets of operational requirements turned out to be incompatible

because no one had initially considered their combined impact on the design. Note that

in this instance, an analysis of the requirements did not depend on a detailed design

study since simply examining the design concepts readily revealed the confl icts.

 Example: Concepts for a New Aircraft. An instructive example of concept

exploration is illustrated by the acquisition of a new commercial aircraft. Assume for

this discussion that an airline company serves short to medium domestic routes using

two - engine propeller - driven aircraft. Many of the airports it serves have relatively short

runways. This arrangement has worked well for a number of years. The problem that

has become more and more apparent is that because of increasing maintenance and fuel

184 CONCEPT EXPLORATION

expenses, the cost per passenger mile has increased to the point where the business is

marginally profi table. The company is therefore considering a major change in its

aircraft. In essence, the airline ’ s need is to lower the cost per passenger mile to some

acceptable value and to maintain its competitive edge in short - route service.

 The company approaches several aircraft manufacturers for a preliminary discus-

sion of a new or modifi ed airplane to meet its needs. The discussions indicate that there

are several options available. Three such options are the following:

 1. A stretched aircraft body and increased power. Engines of the appropriate form

and fi t exist for such a confi guration. This option permits a quick, relatively

low - cost upgrade, which increases the number of passengers per aircraft, thereby

lowering the overall cost per passenger mile.

 2. A new, larger, four - engine propeller aircraft, using state - of - the - art technology.

This option offers a good profi t return in the near term. It is reasonably low

risk, but the total useful life of the aircraft is not well - known, and growth

potential is limited.

 3. A jet - powered aircraft that is capable of takeoff and landing at most, but not

necessarily all, of the current airports being served. This option permits a sig-

nifi cant increase in passengers per airplane and opens up the possibility of

competing for new, longer routes. This is also the most expensive option.

Because of the inherent lower maintenance and fuel costs of jet engines relative

to propeller engines, operating costs for this aircraft are attractive, but some

existing routes will be lost.

 It is evident that the fi nal choice will require considerable expertise and should be

based on a competition among interested manufacturers. The airline engages the ser-

vices of an engineering consulting company to help its staff prepare a set of aircraft

performance requirements that can serve as a basis for competitive bids and to assist

in the selection process.

 In exploring the above and related options, the alternative functional approaches

are considered fi rst. These appear to center on the choice between staying with propeller

engines, an option that retains the basic features of the present aircraft, or moving to

jet engines, which offer considerable operating economies. However, the latter is a

major departure from the current system and will also affect its operational capabilities.

To permit this choice to be left open to the bidders, the performance requirements such

as runway length, cruising speed, and cruising altitude will need to be suffi ciently broad

to accommodate these two quite different functional approaches.

 Requirements Formulation by Integrated Product Teams (IPTs)

 As noted earlier, the responsibility for defi ning the performance requirements of a new

product is that of the customer, or in the case of government programs, that of the

acquisition agency. However, the organization of the process and its primary partici-

pants varies greatly with the nature of the product, the magnitude of the development,

and the customer auspices.

IMPLEMENTATION OF CONCEPT EXPLORATION 185

 As in the case of all acquisition practices, the Department of Defense (DoD) has

had the most experience with various methods for organizing the acquisition process.

A recent practice introduced by DoD is the use of IPTs throughout the acquisition

process. IPTs are intended to bring a number of benefi ts to the process:

 1. They bring senior industry participants into the system conceptual design

process at the earliest opportunity, thereby educating them in the operational

needs and injecting their ideas during the formative stages of the

development.

 2. They bring together the different disciplines and specialty engineering view-

points throughout the development.

 3. They capitalize on the motivational advantages of team collaboration and con-

sensus building.

 4. They bring advanced technology and COTS knowledge to bear on system

design approaches.

 As in the case of any organization, the success of this approach is highly dependent on

the experience and interpersonal skills of the participants, as well as on the leadership

qualities of the persons responsible for team organization. And perhaps even more

important is the systems engineering experience of the team leaders and members.

Without this, the majority of the team members, who tend to be specialists, will not be

able to communicate effectively and hence the IPT will not achieve its objectives.

 7.4 IMPLEMENTATION OF CONCEPT EXPLORATION

 The previous section discussed the exploration of alternative functional approaches —

 concepts in which the nature of the activities involved differs from one case to the

next. The physical implementation of such concepts involves the examination of dif-

ferent technological approaches, generally offering a more diverse source of alterna-

tives. As in the case of examining alternative functional concepts, the objective of

exploring implementation concepts is to consider a suffi cient variety of approaches

to support the defi nition of a set of system performance requirements that are feasible

of realization in practice and do not inadvertently preclude the application of an other-

wise desirable concept. To that end, the exploration of system concepts needs to be

broadly based.

 Alternative Implementation Concepts

 The predecessor system, where one exists, forms one end of the spectrum to be

explored. Given the operational defi ciencies of the predecessor system to meet pro-

jected needs, modifi cations to the current system concept should fi rst be explored with

a view to eliminating these defi ciencies. Such concepts have the advantage of being

relatively easier to assess from the standpoint of performance, development risk, and

186 CONCEPT EXPLORATION

cost than are radically different approaches. They can also generally be implemented

faster, more cheaply, and with less risk than innovative concepts. On the other hand,

they are likely to have severely limited growth potential.

 The other end of the spectrum is represented by innovative technical approaches

featuring advanced technology. For example, the application of powerful, modern

microprocessors might permit extensive automation of presently employed manual

operations. These concepts are generally riskier and more expensive to implement

but offer large incremental improvements or cost reduction and greater growth poten-

tial. In between are intermediate or hybrid concepts, including those defi ned in

the needs analysis phase for demonstrating the feasibility of meeting the proposed

system needs.

 Many techniques exist for developing new and innovative concepts. Perhaps the

oldest is brainstorming, individually and within a group. Within the concept of brain-

storming, several modern methods, or variations, to the old fashioned, largely unstruc-

tured brainstorming process have risen. One of our favorite techniques, which engineers

may not be familiar with (but nonengineering practitioners may be), is Mind Maps.

This particular technique uses visual images to assist in the brainstorming of new

ideas. A simple Web search will point the reader to multiple Web sites describing the

technique.

 The natural temptation to focus quickly on a single concept or “ point design ”

approach can easily preclude the identifi cation of other potentially advantageous

approaches based on fundamentally different concepts. Accordingly, several concepts

spanning a range of possible design approaches should be defi ned and investigated. At

this stage, it is important to encourage creative thinking. It is permissible, even some-

times desirable, to include some concepts that do not meet all of the requirements;

otherwise, a superior alternative may be passed by because it fails to meet what may

turn out to be a relatively arbitrary requirement. Just as in the needs analysis phase,

negotiations with the customer regarding which requirements are really necessary and

which are not can often make a signifi cant difference in cost and risk factors while

having minimal impact on performance.

 Example: Concept Exploration for a New Aircraft. Returning to the

example introduced in the previous section, it will be recalled that two principal func-

tional options were explored to meet the need of the airline company: a propeller - driven

and a jet - driven aircraft. It remains to explore alternative physical implementations of

each of these options. As is usually the case, these are more numerous than the basic

functional alternatives.

 In the period since the airline ’ s present fl eet was acquired, a host of technological

advances have occurred. For example, automation has become more widespread, espe-

cially in autopilots and navigation systems. Changes in safety requirements, such as

for deicing provisions, must also be examined to identify those performance character-

istics that should be called out. In exploring alternative implementations, the main

features of each candidate system must fi rst be analyzed to see if they are conceptually

achievable. At this stage of development, a detailed design analysis is usually not pos-

sible because the concept is not yet suffi ciently formulated. However, based on previous

IMPLEMENTATION OF CONCEPT EXPLORATION 187

experience and engineering judgment, someone, usually the systems engineer, must

decide whether or not the concept as proposed is likely to be achievable within the

given bounds of time, cost, and risk.

 There are numerous other options and variations of the above examples. It is noted

that all the cited options have pros and cons, which typically leave the customer with

no obvious choice. Note also that the option to use jet aircraft may partially violate the

operational requirement that short - route capability be maintained. However, as noted

earlier, it is not at all unusual at this stage to consider options that do not meet all the

initial requirements to ensure that no desirable option is overlooked. The airline may

decide that the loss of some routes is more than compensated for by the advantages to

the overall system of using jet aircraft.

 It is also important to note that the entire system life cycle must be considered in

exploring alternatives. For example, while the jet option offers a number of perfor-

mance advantages, it will require a substantial investment in training and logistic

support facilities. Thus, assessment of these supporting functions must be included in

formulating system requirements. In order to be a “ smart buyer, ” the airline needs to

have a staff well versed in aircraft characteristics, as well as in the business of running

an airline, and access to consultants or engineering services organizations capable of

carrying out the analyses involved in developing the requisite set of performance

requirements.

 Preferred System. Although in most cases it is best to refrain from picking a

superior system concept prematurely, there are instances where it is permissible for the

requirements defi nition effort to identify a so - called preferred system, in addition to

considering a number of other viable system alternatives. Preference for a system or

subsystem may be set forth when signifi cant advanced development work has taken

place and has produced very promising results in anticipation of future upgrades to the

current system. Such work is often conducted or sponsored by the customer. Another

justifying factor may be when there has been a recent major technological break-

through, which promises high gains in performance at an acceptable risk. The idea of

a preferred system approach is that subsystem analysis can start building on this

concept, thereby saving time and cost. Of course, further analysis may show the favored

approach not to be as desirable as predicted.

 Technology Development

 Whether the origin of a new system is needs driven or technology driven, the great

majority of new systems have been brought into being, directly or indirectly, as a result

of technological growth. In the process of exploring potential concepts for the satisfac-

tion of a newly established need, a primary input is derived from what is called the

technology base, which means the sum total of the then existing technology. It is,

therefore, important for systems engineers to understand the nature and sources of

technological advances that may be pertinent to a proposed system development.

 System - oriented exploratory R & D can be distinguished according to whether it

relates to new needs - driven or technology - driven systems. The former is mainly directed

188 CONCEPT EXPLORATION

to gaining a fi rm understanding of the operational environment and the factors underly-

ing the increased need for the new system.

 The latter is usually focused on extending and quantifying the knowledge base for

the new technology and its application to the new system objectives. In both instances,

the objective is to generate a fi rm technical base for the projected system development,

thus clarifying the criteria for selecting specifi c implementation concepts and trans-

forming unknown characteristics and relationships into knowns.

 Both industry and government support numerous programs of R & D on compo-

nents, devices, materials, and fabrication techniques, which offer signifi cant gains in

performance or cost. For instance, most large automobile manufacturers have ongoing

programs to develop more effi cient engines, electrically powered vehicles, automated

fuel controls, lighter and stronger bodies, and a host of other improvements that are

calculated to enhance their future competitive position. In recent years, the greatest

amount of technology growth has been in the electronics industry, especially computers

and communication equipment, which in turn has driven the explosive growth of infor-

mation systems and automation generally.

 In government - sponsored R & D, there is also a continuing large - scale effort,

mainly among government contractors, laboratories, and universities, directed toward

the development of technologies of direct interest to the government. These cover many

diverse applications, and their scope is almost as broad as that of commercial R & D.

As has been noted previously, defense contractors are permitted to charge a percentage

of their revenues from government contracts to IRAD as allowable overhead. A large

fraction of such funds is devoted to activities that relate to potential new system devel-

opments. In addition, there is a specifi c category in the Congressional Research,

Development, Test and Evaluation (RDT & E) appropriation, designated Research and

Exploratory Development, which funds specifi c R & D proposals to the military ser-

vices. Such projects are not intended to directly support specifi c new system develop-

ments but do have to be justifi ed as contributing to existing mission areas.

 Performance Characteristics

 The derivation of performance characteristics by the exploration of implementation

concepts can be thought of as consisting of a combination of two analytical processes:

performance analysis and effectiveness analysis. Performance analysis derives a set of

performance parameters that characterize each candidate concept. Effectiveness analy-

sis determines whether or not a candidate concept meets the operational requirements

and, if not, how the concept needs to be changed to do so. It employs an effectiveness

model that is used to evaluate the performance of a conceptual system design in terms

of a selected set of criteria or measures of effectiveness. This is a similar model to that

used in the previous phase and to the one employed in the next step, the validation of

performance requirements. The main difference in its use in the above applications is

the level of detail and rigor.

 Performance Analysis. The performance analysis part of the process is used to

derive a set of relevant performance characteristics for each candidate system concept

PERFORMANCE REQUIREMENTS VALIDATION 189

that has been found to satisfy the effectiveness criteria. The issue of relevancy arises

because a full description of any complex system will involve many parameters, some

of which may not be directly related to its primary mission. For example, some features,

such as the ability of an aircraft search radar device to track some particular coded

beacon transponder, might be included only to facilitate system test or calibration.

Therefore, the performance analysis process must extract from the identifi ed system

characteristics only those that directly affect the system ’ s operational effectiveness. At

the same time, care must be taken to include all characteristics that can impact effec-

tiveness under one or another particular operating condition.

 The problem of irrelevant characteristics is especially likely to occur when the

concept for a particular subsystem has been derived from the design of an existing

subsystem employed in a different application. For example, a relatively high value of

the maximum rate of train or elevation for a radar antenna assembly might not be

relevant to the application now being examined. Thus, the derived model should not

refl ect this requirement unless it is a determining factor in the overall subsystem design

concept. In short, as stated previously, the defi ned set of characteristics must be both

necessary and suffi cient to facilitate a valid determination of effectiveness for each

candidate system concept.

 Constraints. At this phase of the project, the emphasis will naturally be focused

on active system performance characteristics and functions to achieve them. However,

it is essential that other relevant performance characteristics not be overlooked, espe-

cially the interfaces and interactions with other systems or parts of systems, which will

invariably place constraints on the new system. These constraints may affect physical

form and fi t, weight and power, schedules (e.g., a launch date), mandated software tools,

operating frequencies, operator training, and so on. While constraints of this type will

be dealt with in great detail later in the development process, it is not too soon to rec-

ognize their impact during the process of requirements defi nition. The immediate

benefi t of early attention to such problems is that confl icting concepts can be fi ltered

out, leaving more time for analysis of the more promising approaches.

 To accomplish the above objectives, it is necessary to consider the complete system

life cycle. To a large extent, the constraints on the system will not depend on the specifi c

system architecture. For example, environmental conditions of temperature, humidity,

shock vibration, and so forth, for a great part of the system life cycle are often the same

for any candidate system concept. Omission of any constraints such as these may result

in serious defi ciencies in the system design, which would adversely impact performance

and operability.

 7.5 PERFORMANCE REQUIREMENTS VALIDATION

 Having derived the operationally signifi cant performance characteristics for several

feasible alternative concepts, all of which appear to be capable of meeting the system

operational requirements, the next step is to refi ne and integrate them into a singular

set to serve as a basis for the preparation of formal system performance requirements.

190 CONCEPT EXPLORATION

As stated earlier, these performance requirements, stated in engineering units, provide

an unambiguous basis for the ensuing phases of system development, up to the stage

where the actual system can be tested in a realistic environment.

 The operations involved in the refi nement and validation of system performance

requirements can be thought of as two tightly coupled processes — an integration

process, which compares and combines the performance characteristics of the feasible

alternative concepts, and an effectiveness analysis process, which evaluates the validity

of the integrated characteristics in terms of the operational requirements.

 Performance Characteristics Integration

 The integration process serves to select and refi ne those characteristics of the different

system concepts examined in the exploration process that are necessary and suffi cient

to defi ne a system that will possess the essential operational characteristics. Regardless

of the analytical tools that may be available, this process requires the highest level of

systems engineering judgment.

 This and other processes in this phase can benefi t greatly by the participation of

systems engineers with experience with the predecessor system, which has been men-

tioned a number of times previously. The knowledge and database that comes with that

system is an invaluable source of information for developing new requirements and

concepts. In many cases, some of the key engineers and managers who directed its

development may still be available to contribute to the development of new require-

ments and concepts. They may not only be aware of the current defi ciencies but are

likely to have considered various improvements. Additionally, they are probably aware

of what the customer really wants, based on their knowledge of operational factors over

a number of years. Just one key systems engineer with this background can provide

signifi cant help. Experienced people of this type will also have an educated “ gut feel ”

about the viability of the requirements and concepts that are being considered. Their

help, at least as consultants, will not alleviate the need for requirements analysis, but

it may quickly point the effort in the right direction and avoid blind alleys that might

otherwise be pursued.

 Performance Characteristics Validation

 The fi nal steps in the process are to validate the derived performance characteristics

against the operational requirements and constraints and to convert them into the form

of a requirements document. Ideally, the performance characteristics derived from the

refi nement step will have been obtained from concepts validated in the implementation

concept exploration process. However, it is likely that the effort to remove irrelevant

or redundant characteristics in the integration step, and to add external constraints not

present in the effectiveness model, will have signifi cantly altered the resultant set of

characteristics. Hence, it is essential to subject them once more to an effectiveness

analysis to verify their compliance with the operational requirements. The effectiveness

model in the above step should generally be more rigorous and detailed than models

SUMMARY 191

used in previous steps so as to ensure that the fi nal product does not contain defi ciencies

due to omission of important evaluation criteria.

 The above processes operate in closed - loop fashion until a self - consistent set of

 system performance characteristics that meets the following objectives is obtained:

 1. They defi ne what the system must do, and how well, but not how the system

should do it.

 2. They defi ne characteristics in engineering terms that can be verifi ed by analyti-

cal means or experimental tests, so as to constitute a basis for ensuing engineer-

ing phases of system development.

 3. They completely and accurately refl ect the system operational requirements and

constraints, including external interfaces and interactions, so that if a system

possesses the stated characteristics, it will satisfy the operational

requirements.

 Requirements Documentation

 To convert the system performance characteristics into a requirements document

involves skillful organization and editing. Since the system performance requirements

will be used as the primary basis for the ensuing concept defi nition phase and its suc-

cessors, it is most important that this document be clear, consistent, and complete.

However, it is equally important to recognize that it is not carved in stone but is a living

document, which will continue to evolve and improve as the system is developed and

tested.

 In a need - driven system development in which it is intended to compete the concept

defi nition phase among a number of bidders, the system performance requirements are

a primary component of the competitive solicitation, along with a complete statement

of all other conditions and constraints. Such a solicitation is often circulated in draft

form among potential bidders to help ensure its completeness and clarity.

 In a technology - driven system development in which the same commercial

company that will carry out the defi nition and subsequent phases conducts the explor-

atory phase, the end product typically serves as a basis for deciding whether or not to

authorize and fund a concept defi nition phase preliminary to engineering development.

For this purpose, the requirements document typically includes a thorough description

of the most attractive alternative concepts investigated, evidence of their feasibility,

market studies validating the need for a new system, and estimates of development,

production, and market introduction costs.

 7.6 SUMMARY

 Developing the System Requirements

 The objectives of the concept exploration phase (as defi ned here) are to explore alterna-

tive concepts to derive common characteristics and to convert the operationally oriented

192 CONCEPT EXPLORATION

system view into an engineering - oriented view. Outputs of concept exploration are (1)

system performance requirements, (2) a system architecture down to the subsystem

level, and (3) alternative system concepts.

 Activities that comprise concept exploration are the following:

 • Operational Requirements Analysis — ensuring completeness and consistency;

 • Implementation Concept Exploration — refi ning functional characteristics;

 • Performance Requirements Formulation — deriving functions and parameters;

and

 • Performance Requirements Validation — ensuring operational validity.

 Operational Requirements Analysis

 Requirements development involves four basic steps: elicitation, analysis, validation,

and documentation. These steps will, done correctly, lead to a robust set of well -

 articulated requirements.

 Generating operational - level requirements usually involves analyses of alternative

concepts, typically involving effectiveness models and simulations. In order to conduct

these important analyses, three components are necessary: an initial set of operational

requirements, an operational concept for the system in question, and the operational

context — a set of operational scenarios depicting the environment.

 Performance Requirements Formulation

 System development is a nondeterministic process in that it requires an iterative induc-

tive reasoning process, and many possible solutions can satisfy a set of operational

requirements. The predecessor system can be of great assistance as it will help defi ne

the system functional architecture and the performance of functional building blocks.

 Implementation Concept Exploration

 Exploration of alternative implementation concepts should

 • avoid the “ point design syndrome ” ;

 • address a broad spectrum of alternatives;

 • consider the adaptation of a predecessor system technology;

 • consider innovative approaches using advanced technology; and

 • assess the performance, risk, cost, and growth potential of each alternative.

 Technology development is also an important component of system development.

Industry and government support major R & D programs that lead to new technologies.

This foundation of technology is typically referred to as the “ technical base ” and is the

source of many innovative concepts.

PROBLEMS 193

 System performance requirements are developed through analyses to establish the

performance parameters of each concept. These requirements are then assessed for

conformance with operational requirements and constraints. Sources of these con-

straints include (1) system operator, maintenance, and test considerations; (2) require-

ments for interfacing with other systems; (3) externally determined operational

environments; and (4) fabrication, transportation, and storage environments.

 When completed, system performance requirements defi ne what the system

should do, but not how it should do it. They present system characteristics in engineer-

ing terms — a necessary and suffi cient set refl ecting operational requirements and

constraints.

 Performance Requirements Validation

 Performance requirements validation involves two interrelated activities: (1) integration

of requirements derived from alternative system concepts and (2) effectiveness analyses

to demonstrate satisfaction of the operational requirements. Performance requirements

are defi ned in a living document; requirements are reviewed and updated throughout

the system life cycle.

 PROBLEMS

 7.1 Explain why it is necessary to examine a number of alternative system con-

cepts prior to defi ning a set of system performance requirements for the

purpose of competitive system acquisition. What are the likely results of failing

to examine a suffi cient range of such concepts?

 7.2 To meet future pollution standards, several automobile manufacturers are

developing cars powered by electricity. Which major components of gasoline -

 powered automobiles would you expect to be retained with minor changes?

Which ones would probably be substantially changed? Which would be new?

(Do not consider components not directly associated with the automobile ’ s

primary functions, such as entertainment, automatic cruise control, power seats

and windows, and air bags.)

 7.3 List the characteristics of a set of well - stated operational requirements, that is,

the qualities that you would look for in analyzing their adequacy. For each,

state what could be the result if a requirement did not have these

characteristics.

 7.4 In the section of performance requirements formulation, the process of system

development is stated to be “ nondeterministic. ” Explain in your own words

what is meant by this term. Describe an example of another common process

that is nondeterministic.

 7.5 Derive the principal functions of a DVD player by following the checklist

shown in the subsection Functional Exploration and Allocation. How does

each function relate to the operational requirements of the DVD player?

194 CONCEPT EXPLORATION

 7.6 IPTs are stated to have four main benefi ts. What specifi c activities

would you expect systems engineers to perform in realizing each of these

benefi ts?

 7.7 What role does exploratory R & D conducted prior to the establishment

of a formal system acquisition program play in advancing the objective of a

system acquisition program? What are the main differences between the orga-

nization and funding of R & D programs and system development

programs?

 7.8 In considering potential system concepts to meet the operational requirements

for a new system, there is frequently a particular concept that appears to be an

obvious solution to the system requirements. Knowing that premature focusing

on a “ point solution ” is a poor systems engineering practice, describe two

approaches for identifying a range of alternative system concepts for

consideration.

 7.9 (a) Develop a set of operational requirements for a simple lawn tractor. Limit

yourself to no more than 15 operational requirements.

 (b) Develop a set of performance requirements for the same lawn tractor.

Limit yourself to no more than 30 performance requirements.

 (c) Based on your experience, write a short paper defi ning the process of

transforming operational requirements to performance requirements.

 (d) How would you go about validating the requirements in (b)?

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapter 3.

 W. P. Chase . Management of Systems Engineering . John Wiley , 1974 , Chapters 4 and 5.

 H. Eisner . Essentials of Project and Systems Engineering Management . Wiley , 1997 ,

Chapter 8.

 D. K. Hitchins . Systems Engineering: A 21st Century Systems Methodology . John Wiley & Sons ,

 2007 , Chapters 5 and 8.

 International Council on Systems Engineering . Systems Engineering Handbook . A Guide for

System Life Cycle Processes and Activities . Version 3.2, July 2010 .

 K. Kendall and J. Kendall . Systems Analysis and Design , Sixth Edition . Prentice Hall , 2003 ,

Chapters 4 and 5.

 A. M. Law . Simulation, Modeling & Analysis , Fourth Edition . McGraw - Hill , 2007 , Chapters 1,

2, and 5.

 H. Lykins , S. Friedenthal , and A. Meilich . Adapting UML for an object - oriented systems engi-

neering method (OOSEM) . Proceedings of 10th International Symposium INCOSE , July

 2000 .

 A. Meilich and M. Rickels . An application of object - oriented systems engineering to an army

command and control system: A new approach to integration of systems and software require-

ments and design . Proceedings of Ninth International Symposium INCOSE , June 1999 .

FURTHER READING 195

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapter 1.

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapters 4 and 6.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 .Chapter 4.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Section 8.

197

 8.1 SELECTING THE SYSTEM CONCEPT

 The concept defi nition phase of the system life cycle marks the beginning of a serious,

dedicated effort to defi ne the functional and physical characteristics of a new system

(or major upgrade of an existing system) that is proposed to meet an operational need

defi ned in the preceding conceptual phases. It marks a commitment to characterize the

system in suffi cient detail to enable its operational performance, time of development,

and life cycle cost to be predicted in quantitative terms. As illustrated in Chapter 4

(Figure 4.6), the level of effort in the concept defi nition phase is sharply greater than

in previous phases, as system designers and engineering specialists are added to the

systems engineers and analysts who largely staffed the preceding phases. In most needs -

 driven system developments, this phase is conducted by several competing developers,

based on performance requirements developed in the preceding phases by or for the

customer. The output of this phase is the selection, from a number of alternative system

concepts, of a specifi c confi guration that will constitute the baseline for development

and engineering. From this phase on, the system development consists of implementing

 8

CONCEPT DEFINITION

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

198 CONCEPT DEFINITION

the selected system concept (with modifi cations as necessary) in hardware and software,

and engineering it for production and operational use.

 With the advent and formal defi nition of systems architecting, this phase has been

known in some sources as the system architecture phase. While this may not be entirely

appropriate, systems architecting, as it is now defi ned and understood, is a major activ-

ity within this phase. The specifi cs of systems architecting are discussed in Section 8.8 .

 Place of the Concept Defi nition Phase in the System Life Cycle

 The place of the concept defi nition phase in the overall system development is shown

in Figure 8.1 . It constitutes the last phase of the concept development stage and leads

to the initiation of the engineering development stage, beginning with the advanced

development phase. Its inputs are system performance requirements, the technology

base that includes a number of feasible system concepts, and the contractual and orga-

nizational framework in which the system development is to be cast. Its outputs are

system functional specifi cations, a defi ned system concept, and a detailed plan for the

ensuing engineering program. The planning outputs of this phase are usually specifi ed

to include the systems engineering management plan (SEMP), which defi nes in detail

the systems engineering approach to be followed, the project work breakdown structure

(WBS), cost estimates for development and production, test plans, and such other sup-

porting material as may be directed (see Chapter 5).

 When the customer is the government, laws specify that all acquisition programs

be conducted competitively, except in unusual circumstances. The competition fre-

quently occurs during the concept defi nition phase. It customarily begins with a formal

solicitation, which contains the system requirements, usually at the level of total system

functionality, performance, and compatibility. Based on this solicitation, competing

contractors carry out a proposal preparation effort, which embodies the concept defi ni-

tion phase of the program. The system concept and approach proposed by the successful

 Figure 8.1. Concept defi nition phase in system life cycle.

System Performance
Requirements

System Functional
Specifications

Concept Exploration Concept Definition

Analysis of Alternatives
Functional Architecture
Physical Architecture

Advanced
Development

Candidate System
Concepts

Defined System
Concepts

SELECTING THE SYSTEM CONCEPT 199

bidder (or in some cases more than one) then becomes the baseline for the ensuing

system development.

 In the development of a commercial product, the concept defi nition phase generally

begins after the conclusion of a feasibility study, which established a valid need for

the product and the feasibility of meeting this need by one or more technical approaches.

It is the point at which the company has decided to commit signifi cant resources

to defi ne the product to a degree where a further decision can be made whether or

not to proceed to full - scale development. Except for the formality and requirements

for detailed documentation, the general technical activities during this phase for

commercial and government programs are similar. One or several design concepts

may be pursued, depending on the perceived importance of the objective and available

funds.

 Design Materialization Status

 The previous phase was concerned with system design only to the level necessary to

defi ne a set of performance requirements that could be realized with a feasible system

design, and that would not rule out other advantageous design concepts. For that

purpose, it was suffi cient to defi ne functions at the subsystem level and only visualize

the type of components that would be needed to implement the concept.

 In order to defi ne a system to the level where its operational performance, develop-

ment effort, and production cost can be estimated with any degree of confi dence (by

analogy with previously developed systems), the conceptual design must be carried one

level further. Thus, in the concept defi nition phase, the design focus is on components,

the fundamental building blocks of systems. As indicated in Table 8.1 , which is an

overlay of Table 4.1 , the focus in this phase is on the selection and functional defi nition

of the system components and the defi nition of their confi guration into subsystems.

 Performance of the above tasks is primarily a systems engineering responsibility

since they address technical issues that often cut across both technical disciplines and

organizational boundaries. However, the functional defi nition task can be effectively

carried out only if the component implementation used to achieve each prescribed

function is reasonably well understood and is suffi ciently visualized to serve as the

basis for risk assessment and costing, which cannot be carried out solely at the func-

tional level. Accordingly, as with many systems engineering tasks, consultation with

and advice from experienced design specialists are almost always required, especially

in cases where advanced techniques may be used to extend subsystem performance

beyond previously achieved levels.

 Systems Engineering Method in Concept Defi nition

 The activities in the concept defi nition phase are discussed in the following sections in

terms of the four steps of the systems engineering method (see Chapter 4), followed

by a description of the planning of the ensuing system development effort and the

formulation of system functional requirements. The four steps, as applied to this phase,

are summarized below (generic names in parentheses):

 TABLE 8.1. Status of System Materialization of Concept Defi nition Phase

 Level

 Phase

 Concept development Engineering development

 Needs analysis

 Concept

exploration

 Concept

defi nition

 Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore,

and synthesize

concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne

requirements and

ensure feasibility

 Defi ne functional

and physical

architecture

 Validate

subsystems

 Integrate and test

 Component Allocate

functions to

components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

2
0
0

PERFORMANCE REQUIREMENTS ANALYSIS 201

 Performance Requirements Analysis (Requirement Analysis). Typical activities

include

 • analyzing the system performance requirements and relating them to opera-

tional objectives and to the entire life cycle scenario, and

 • refi ning the requirements as necessary to include unstated constraints and

quantifying qualitative requirements where possible.

 Functional Analysis and Formulation (Functional Defi nition). Typical activities

include

 • allocating subsystem functions to the component level in terms of system

functional elements and defi ning element interactions,

 • developing functional architectural products, and

 • formulating preliminary functional requirements corresponding to the assigned

functions.

 Concept Selection (Physical Defi nition). Typical activities include

 • synthesizing alternative technological approaches and component confi gura-

tions designed to performance requirements;

 • developing physical architectural products; and

 • conducting trade - off studies among performance, risk, cost, and schedule to

select the preferred system concept, defi ned in terms of components and

architectures.

 Concept Validation (Design Validation). Typical activities include

 • conducting system analyses and simulations to confi rm that the selected

concept meets requirements and is superior to its competitors, and

 • refi ning the concept as may be necessary.

 The application of the systems engineering method to the concept defi nition

phase is illustrated in Figure 8.2 , which is an elaboration of the generic diagram of

Figure 4.12 . Inputs are shown to come from the previous (requirements defi nition)

phase in the form of system performance requirements and competitive design con-

cepts. In addition, there are important external inputs in the form of technology, system

building blocks (components), tools, models, and an experience knowledge base.

Outputs include system functional requirements, a defi ned system concept, and (not

shown in the diagram) detailed plans for the ensuing engineering stage of system

development.

 8.2 PERFORMANCE REQUIREMENTS ANALYSIS

 As noted in Chapter 4 , each phase of development must begin with a detailed analysis

of all of the requirements and other terms of reference on which the ensuing program

is to be predicated. In terms of problem solving, this is equivalent to fi rst achieving a

complete understanding of the problem to be solved.

202 CONCEPT DEFINITION

 Analysis of Stated Performance Requirements

 Requirements analysis in the concept defi nition phase is especially important because

system performance requirements as initially stated often represent an imperfect inter-

pretation of the user ’ s actual needs. Even though the previous phases may have been

thoroughly carried out, the derivation of a set of performance requirements for a

complex system is necessarily an imprecise and often subjective process, not to mention

 Figure 8.2. Concept defi nition phase fl ow diagram.

Concept exploration

phase

Performance requirements

Performance
Analyze

performance
requirements

Refine
performance
requirements

Predecessor
system

Performance

requirements

analysis

Define
component

Formulate
Predecessor system

requirements

Functional

analysis and

formulation

Incompatibilities

functions

functional
requirementsFunctional elements

Trade‐off criteriaPreliminary
functional

design

Functional
elecments

Trade‐offs

Synthesize
alternative
concepts

Select
preferred
concept

Predecessor system

• Building blocks
• Technology

Concept

selection

Concept
effectiveness

Measures of
effectiveness

Concept

Advanced

development

phase

Concept
deficienciesExcessive requirements

Concept
effectiveness

Trade‐offs

Conduct
system

simulation

Validate
selected
concept

Selected concept

Previous simulations
validation

PERFORMANCE REQUIREMENTS ANALYSIS 203

iterative. In particular, the stated requirements tend to be infl uenced by personal and

often not well - founded presumptions of what will turn out to be hard or easy to achieve.

This may result in some performance requirements being unnecessarily stringent

because they are believed to be readily achievable (a presumption that may turn out to

be invalid). It is therefore essential that both the basis for the requirements and their

underlying assumptions be clearly understood. Following this, steps can be taken to

refi ne the requirements as necessary to support the defi nition of a truly viable system

concept. The estimated relative diffi culty of achieving the requirements will help to

guide resource allocation during development.

 The task of understanding the source of the given performance requirements in

terms of user needs is the particular province of systems engineering. This task requires

as intimate an acquaintance with the operational environment and with system users as

circumstances may permit. In the case of complex operational systems, such an under-

standing can best be derived through years of work in the fi eld.

 Categories of System Requirements. In discussing the subject of require-

ments analysis, attention is usually focused on what functions the system must perform

and how well. We have named these types of requirements, functional and performance .

Such requirements are generally well defi ned. There are, however, other types of

requirements that may be equally important but may be much more poorly defi ned, or

even omitted up to this point. These include the following:

 1. Compatibility Requirements: how the system is to interface with its operating

site, its logistics support, and with other systems.

 2. Reliability, Maintainability, Availability (RMA) Requirements: how reliable the

system must be to fulfi ll its purpose, how it will be maintained, and what support

facilities will be required.

 3. Environmental Requirements: what extremes of the physical environment must

the system be built to withstand throughout its lifetime.

 RMA requirements, when explicitly stated, tend to be arbitrary and often not well

defi ned. For the other two categories, requirements are often largely confi ned to the

system ’ s operational mode and leave out the conditions of shipping, storage, transit,

assembling, and supporting the system. In these circumstances, it is necessary to inves-

tigate in detail the entire life of the system, from product delivery to the end of its

operating life and its disposition.

 System Life Cycle Scenario. To understand all of the situations that the system will

encounter during its lifetime, it is necessary to develop a model or scenario that identi-

fi es all of the different circumstances to which the system will be exposed. These will

include at least

 1. storage of the system and/or its components,

 2. transportation of the system to its operational site,

204 CONCEPT DEFINITION

 3. assembly and readying the system for operation,

 4. extended deployment in the fi eld,

 5. operation of the system,

 6. routine and emergency maintenance,

 7. system modifi cation and upgrading, and

 8. system disposition.

 The model of these phases of the system ’ s use must be suffi ciently detailed to

reveal any interactions between the system and its environment that will affect its

design. For example, the maintenance of the system will require a supply of spare parts,

special test equipment, special test points, and other provisions that need to be

recognized.

 The model also needs to contain information for life cycle costing. Only by visual-

izing the complete life of the projected system can valid requirements and associated

costs be developed.

 Completion and Refi nement of System Requirements

 The development of a system life cycle model will almost always reveal that

many important system requirements were not explicitly stated. This is likely to be

true not only for the nonoperating phases of the system but also for its interaction

with the physical environment. These environmental specifi cations are often derived

from “ boiler plate, ” especially in many military systems, rather than from a realistic

model of the operating environment. In contrast, the desire to make use of standard

commercial components may cause such specifi cations to be unduly relaxed or omitted

entirely.

 Probably the most important requirement that is often not stated is that of afford-

ability. In competitive system developments, the projected system cost is one of the

factors considered in selecting the winning proposal. Therefore, affordability must be

considered as equivalent to other stated requirements, even though it may not be rep-

resented as such. It is, therefore, necessary to gain as much insight as practicable into

what level of projected system cost development, production, and support will consti-

tute an acceptable (or competitive) value.

 Useful life is another system characteristic that is seldom stated as a requirement.

To prevent early obsolescence, a system that uses high technology must be capable of

periodic upgrading or modernization. To make such a process economically viable, the

system must be designed with this objective in mind, making those subsystems or

components that are susceptible to early obsolescence easy to modify or replace with

newer technology.

 In some programs, such upgrading or growth capability is explicitly provided

for. This process is sometimes called “ preplanned product improvement ” (P 3 I). In the

majority of cases, however, especially when initial cost is a major concern, there is

not a stated requirement for such capability. Nevertheless, it must be kept in mind

as an important criterion for comparing alternative system concepts, since in

PERFORMANCE REQUIREMENTS ANALYSIS 205

practice, future changes in operating conditions and/or system environment (or

product competition) will more often than not lead to increasing pressures for a system

upgrade.

 Unquantifi ed Requirements. In order to be useful, a system requirement must

be verifi able. This typically means measurable. Where the requirement is stated in

nonquantifi able terms, the task of requirements analysis includes endowing it with as

much quantifi cation as possible. The following two examples are typical of such

requirements.

 A commonly unquantifi ed area is that of user requirements, and especially the

user – system interface. The overworked term “ user friendly ” does not translate readily

into measurable form. Accordingly, it is important to gain a fi rsthand understanding of

the user ’ s needs and limitations. This, in turn, is complicated by the fact that there may

be several users with different interfacing constraints and levels of training. There is

also the maintenance interface, which has totally different requirements.

 The interfaces between the system and other equipment at its operating site and

with related systems are also often not stated in measurable terms. This may require a

fi rsthand examination of the projected system environment, and even measurements of

these interfaces, if necessary. For example, are there specifi cations for such parameters

as available power or input signals that must be provided at the site?

 Requirements and the Predecessor System. As noted previously, if there is

a predecessor (current) system that performs the same or similar function as the pro-

jected system, as is usually the case, it is the single richest source of information on

the requirements for the new system. It deserves detailed study by systems engineering

at all stages of development, especially in the formative phases.

 The predecessor system offers an excellent basis for understanding the exact nature

of the defi ciencies that led to the call for a new system. Since all its attributes are

measurable, they can serve as a point of departure for quantifying the requirements for

the new system. There is frequently documentation available that can provide a direct

comparison to requirements for the new system.

 The users of the predecessor system are usually the best source of information of

what is needed in a new system. Thus, systems engineering should make the effort to

gain a detailed fi rsthand understanding of system operation.

 Operational Availability. There may or may not be a stated requirement for

the date at which the system is to be ready for operational use. When there is, it is

important to try to understand the priority of meeting this date relative to the importance

of development cost, performance, and other system characteristics. This knowledge is

needed because these factors are mutually interdependent, and their proper balance is

essential to the success of the system development.

 In any event, the time of availability is always important to the ultimate value of

the system. This is because the growth of technology and competitive pressures operate

continuously to shorten the new system ’ s effective operational life. Thus, the time of

operational availability must be considered a prime factor in the planning of a system

206 CONCEPT DEFINITION

development. In commercial developments, the fi rst product to exploit a new technol-

ogy often gains a lion ’ s share of the market.

 Determining Customer/User Needs. As noted previously, it is always neces-

sary to clarify, extend, and verify the stated system requirements through contacts not

only with the customer but also with present users of existing or similar systems.

 In a competitive acquisition program, access to the customer may often be formally

controlled. However, it should be used, insofar as possible, to clarify ambiguities and

inconsistencies in the requirements as originally stated. This may be done directly,

through correspondence, or at a bidders ’ conference, as appropriate.

 A better opportunity to clarify system requirements is in the preproposal stage. In

many large acquisition programs, a draft request for proposal (RFP) is circulated to

prospective bidders for comment. During this period, it is usually possible to obtain a

better understanding of the customer requirements than will be possible after the issu-

ance of the RFP. This emphasizes the fact that the effort to respond to a system acquisi-

tion RFP must begin well before (months or years) its formal issuance.

 In developing commercial systems, there is always an active and often an extended

market survey to establish customer/user needs. In these cases, explicit system require-

ments may often not yet exist. As a prerequisite to the defi nition of a system concept

and its associated performance requirements, it is therefore essential that systems engi-

neering interact as directly as possible with potential customers and users of current

systems to observe at fi rst hand the system strengths, limitations, and associated operat-

ing procedures.

 8.3 FUNCTIONAL ANALYSIS AND FORMULATION

 It has been seen that in keeping with the inherent magnitude of designing a complex

system, the systems engineering method divides the design task into two closely

coupled steps: (1) analyzing and formulating the functional design of the system (what

actions it needs to perform) and (2) selecting the most advantageous implementation

of the system functions (how the actions can best be physically generated). The close

coupling between these steps results from their mutual interdependence, which requires

both visualization of the implementation step in formulating the functional design and

iteration of the implementation step when alternative approaches are considered. Those

familiar with software engineering will recognize these two steps as design and imple-

mentation, respectively.

 Defi nition of Component Functions

 The system materialization process in the concept defi nition phase is mainly concerned

with the functional defi nition of system components (see Table 7.1). If the details of

the concept exploration phase are available, the functional confi guration at the system

level has already been explored (recall the coffeemaker example in Chapter 7). If not,

FUNCTIONAL ANALYSIS AND FORMULATION 207

there will have almost always been exploratory studies preceding the formal start of

concept defi nition that have laid out one or more candidate top - level concepts that can

serve as a starting point for component functional design.

 Functional Building Blocks. The general nature of the task of translating per-

formance requirements into system functions can be illustrated by using the concept of

system functional building blocks as summarized in Chapter 3 . Extending the discus-

sion in Chapter 7 , the following steps are involved:

 1. Identifi cation of Functional Media. The type of medium (signals, data, materi-

als, energy, and force) involved in each of the primary system functions can

usually be readily associated with one of these fi ve classes, using the criteria

suggested in Chapter 7 .

 2. Identifi cation of Functional Elements. Operations on each of the fi ve classes of

media are represented by fi ve or six basic functional elements, listed in Chapter

 3 , each performing a signifi cant function and found in a wide variety of system

types. The system actions (functions) can be constructed from a selection of

those functional building blocks.

 3. Relation of Performance Requirements to Element Attributes. Each functional

element possesses several key performance attributes (e.g., speed, accuracy, and

capacity). If these can be related to the relevant system performance

requirement(s), it confi rms the correct selection of the functional element.

 4. Confi guration of Functional Elements. The functional elements selected to

achieve the required performance characteristics must be interconnected and

grouped into integrated subsystems. This may require adding interfacing (input/

output) elements to achieve connectivity.

 5. Analysis and Integration of All External Interactions. The given performance

requirements often leave out important interactions of the system with its opera-

tional (or other) environment (e.g., external controls or energy source). These

interactions need to be integrated into the total functional confi guration.

 It is not advisable to attempt to optimize at this stage. The initial formulation of

the system functional design will need to be modifi ed after the subsequent step of

physical defi nition and the ensuing iteration.

 Functional Interactions. The functional elements are inherently constituted

to require a minimum of interconnections to other elements besides primary inputs

and outputs. However, most of them depend on external controls and sources of

energy, as well as being housed or supported by a material structure. Their grouping

into subsystems should be such as to make each subsystem as self - suffi cient as

possible.

 Minimizing critical functional interactions among different subsystems has

two purposes. One is to aid the system development, engineering, integration, test,

208 CONCEPT DEFINITION

maintenance, and logistics support. The other is to facilitate making future changes in

the system during its operational life to upgrade its effectiveness.

 When several different ways to group functions (functional confi gurations)

are comparably effective, these alternatives should be carried forward to the next

step of the design process where a choice of the superior confi guration may be more

obvious.

 Functional Block Diagramming Tools

 Several formal tools and methods exist (and continue to be developed) for representing

a system ’ s functionality and their interactions. Commercial industry has used the func-

tional fl ow diagram, formally referred to as the functional fl ow block diagram (FFBD),

to represent not only functionality but also the fl ow of control (or any of the fi ve basic

elements). This diagramming technique can be used at multiple levels to form a hier-

archy of functionality.

 Recently developed is a method known as the integrated defi nition (IDEF) method.

In fact, IDEF extends beyond functionality and now encompasses a range of capability

descriptions for a system. Integrated defi nition zero (IDEF0) is the primary technique

for representing system functionality. The basic construct is the functional entity, rep-

resented by a rectangle, as shown in Figure 8.3 . Strict rules exist for identifying inter-

faces to and from a function. Sometimes, detail is included within the box, such as the

listing of multiple functions performed by the entity; other times, the inside of the

rectangle is left blank. Inputs always enter from the left; outputs exit to the right.

Controls (separated from inputs) enter the function from the top, and mechanisms (or

implementation) enter from the bottom.

 One of the simplest diagramming techniques is the functional block diagram

(FBD). This technique is similar to FFBDs, but without the fl ow structure, and IDEF0,

 Figure 8.3. IDEF0 functional model structure.

Controls

Title

Functions

• F1

• F2

• F3

Inputs Outputs

• F3

Mechanisms

FUNCTIONAL ANALYSIS AND FORMULATION 209

but without the diagramming rules. Basically, each function is represented by a rect-

angle. Interfaces between functions are identifi ed by directional arrows and are labeled

to represent what is being passed between the functions. When a function interfaces

with an external entity, the entity is represented in some fashion (e.g., rectangle and

circle) and an interface arrow is provided.

 Recall from Chapter 7 the example of the coffeemaker. Eleven functions were

identifi ed; they are relisted here:

 Input Functions

 • Accept user command (on/off)

 • Receive coffee materials

 • Distribute electricity

 • Distribute weight

 Transformative Functions

 • Heat water

 • Mix hot water with coffee grinds

 • Filter out coffee grinds

 • Warm brewed coffee

 Output Functions

 • Provide status

 • Facilitate removal of materials

 • Dissipate heat

 Figure 8.4 represents an FBD using the 11 functions. Three external entities were

also identifi ed: the user, a power source (assumed to be an electrical outlet), and the

environment. Notice that within the functions list, and the diagram, maintenance is not

considered. This is due to the nature of household appliances in general, and coffeemak-

ers in particular. They are not designed to be maintained. They are “ expendable ” or

 “ throwaway. ”

 Since it is diffi cult to avoid crossing lines, several mechanisms exist to distinguish

between separate interface arrows. Color is probably the most prevalent. But other

methods, such as dashed lines, are used as well. In the case of power, we have simply

listed the functions that require power (e.g., “ F5 ”). We have tried to be rather thorough

in this example to help the reader think through the process of identifying functions

and developing a functional structure for the system. Simplifying this diagram would

not be diffi cult since we could omit several functions at this stage, as long as we did

not forget about them later on. For example, function 10, “ facilitate removal of materi-

als , ” could be omitted at this stage, as long as the ultimate design does indeed allow

the user to easily remove materials. Notice as well that we can categorize the functions

into those handling the fi ve basic elements:

210 CONCEPT DEFINITION

 Figure 8.4. Functional block diagram of a standard coffeemaker.

1. Receive
Coffee

Materials

User

5. Heat Water

Coffee Grinds
Filter

Water

Water

Hot Water

Heat

2. Accept User
Command

6. Mix Hot
Water with

Coffee Grinds 11. Dissipate
Heat

On/Off
Command

C
o

ff
e

e
 G

ri
n

d
s

On/Off
Signal

On/Off

7. Filter Out
Coffee Grinds

9. Provide
Status

Heat

F
ilt

e
r

On/Off
Signal

Coffee Sludge

Heat
On/Off
Status

Environment
8. Warm

Brewed Coffee

10. Facilitate
Removal of

Brewed Coffee

Heat

Power 3 Distribute 4 Di t ib t

Brewed Coffee
Materials

F5
F6 All

Used Filter
Used Coffee Grinds

Used Filter
Used Coffee Grinds

Warm
Brewed
Coffee

Weight

Weight

Source
3. Distribute
Electricity

4. Distribute
Weight

User

F6
F8
F9

Functions

E
le

c
tr

ic
it
y

E
le

c
tr

ic
it
y

 Materials Receive coffee materials

 Mix hot water with coffee grinds

 Filter out coffee grinds

 Facilitate removal of materials

 Data Provide status

 Signals Accept user commands

 Energy Distribute electricity

 Heat water

 Warm brewed coffee

 Dissipate heat

 Force Distribute weight

 This is not a “ clean ” categorization, since some functions input one type of element

and convert it into another type. For example, function 2, “ accept user commands, ”

inputs a datum and converts it to signals. Subjective judgment is necessary.

 Hardware – Software Allocation. The issue of whether a given function should

be performed by hardware or software may seem like a question of implementation

rather than function. However, system - level issues are almost always involved in such

FUNCTIONAL ANALYSIS AND FORMULATION 211

decisions, such as the effect on operator interfaces, test equipment, and widespread

interaction with other system elements. Accordingly, the defi nition of functional build-

ing blocks makes a clear distinction between software elements (e.g., control system

and control processing) and hardware elements (e.g., process signal and process data).

For these reasons, the functional defi nition at the component level should include the

allocation of all signifi cant processing functions to either hardware or software. An

important consideration in such decisions is provision for future growth potential to

keep up with the rapidly advancing data processing technology.

 In software - embedded systems, as defi ned in Chapter 11 , software tends to be

assigned most of the critical functions, especially those related to controls, because of

its versatility. In software - intensive systems, in which virtually all the functionality is

performed by software, functional allocation is not as straightforward because of the

absence of commonly occurring functional elements. Chapter 11 describes the inherent

differences between hardware and software and their effect on system design, and

addresses the methods used in designing software system architectures.

 To the extent that decisions may be involved in selecting functional elements,

confi guring them, or quantifying their functional characteristics, trade - offs should be

made among the candidates using a set of predefi ned criteria. The principles and

methods of trade - off analysis are described in Chapter 9 .

 Simulation

 The analysis of the behavior of systems that have dynamic modes of response to events

occurring in their environment often requires the construction of computer - driven

models that simulate such behavior. The analysis of the motion of an aircraft, or for

that matter of any vehicle, requires the use of a simulation that embodies its kinematic

characteristics.

 Simulations can be thought of as a form of experimental testing. They are used to

obtain information critical to the design process in a much shorter time and at lesser

cost than building and testing system components. In effect, simulations permit design-

ers and analysts to gain an understanding of how a system will behave before the system

exists in physical form. Simulations also permit designers to conduct “ what - if ” experi-

ments by making selected changes in key parameters. Simulations are dynamic; that

is, they represent time - dependent behavior. They are driven by a programmed set of

inputs or scenarios, whose parameters may be varied to produce the particular responses

to be studied, and may include input – output functional models of selected system ele-

ments. These characteristics are especially useful for conducting system trade - off

studies.

 In the concept defi nition phase, system simulation is particularly useful in the

concept selection process, especially in cases where the dynamic behavior of the system

is important. Simulation of the several alternative concepts permits the conduct of

 “ experiments ” that present the candidates with a range of critical potential challenges.

The use of simulation results in scoring the candidates is generally more meaningful

and persuasive than using judgment alone. Chapter 9 describes in greater detail some

of the different types of simulation used in system development.

212 CONCEPT DEFINITION

 Formulation of Functional Specifi cations

 One of the outputs of the concept defi nition phase is a set of system functional speci-

fi cations to serve as an input to the advanced development phase. It is appropriate to

formulate a preliminary set of functional specifi cations at this step in the process to lay

the groundwork for more formal documents. This also serves as a check on the com-

pleteness and consistency of the functional analysis.

 In stating functional specifi cations, it is essential to quantify them insofar as may

be inferred from the performance and compatibility requirements. The quantifi cation

should be considered provisional at this time, to be iterated during the physical defi ni-

tion step and incorporated into the formal system functional specifi cation document at

the end of the concept defi nition phase. It is at this level in the system hierarchy that

the physical confi guration becomes clearly evident.

 8.4 FUNCTIONAL ALLOCATION

 The decisions in the process of concept defi nition center on the selection of a particular

system confi guration or concept and the defi nition of the functions it is to perform.

These decisions do more to determine the ultimate performance, cost, and utility of the

new system than those in any subsequent phase of the development. Further, in a com-

petitive acquisition process, selection of who will develop the system is largely based

on the evaluation of the proposed concept and the supporting documentation. For those

reasons, the functional allocation process is of crucial importance.

 The systems engineering method calls for such decisions to be made by a structured

process that considers the relative merit of a number of alternatives before any one is

selected. This process is called “ trade - off studies ” or “ trade - off analysis ” and is used

in decision - making processes throughout system development. Trade - off analysis is

most conspicuously employed during the concept defi nition phase, largely in the selec-

tion of the physical implementation of system components. As stated previously,

Chapter 9 contains a description of the principles and methods of trade - off analysis.

 Formulation of Alternative Concepts

 The fi rst step in selecting a preferred system concept is to formulate a set of alternative

solutions, or in this case, system concepts. In the early development phases, the alterna-

tive construction begins by allocating the functions identifi ed above to physical

components of the system. In other words, we must determine how we will implement

the functions above. Of course, this might entail decomposing the top - level functions

in an FBD (or other functional representation) into lower - level functions. Many

times, this activity provides insight into alternative methods of implementing each

function.

 As we identify system components, beginning with subsystems, we are constantly

faced with the question of whether multiple functions can and should be implemented

by a single physical component. The converse is also an issue: should a single function

FUNCTIONAL ALLOCATION 213

be implemented by multiple subsystems? Ideally, a one - to - one mapping is our goal.

However, other factors may lead one to map multiple functions to a single component,

or vice versa.

 A specifi c allocation of functions to physical components, and the functional and

physical interfaces that result from that allocation, is considered a single alternative.

Other allocation schemes will result in different alternatives. The trade - offs mentioned

above can occur at multiple levels, from the entire system to individual components.

Many times, these trade - offs are part of the functional allocation process.

 An important objective is to ensure that no potentially valuable opportunities are

omitted. The following paragraphs discuss issues with developing alternatives.

 The Predecessor System as a Baseline. As noted earlier, most system devel-

opments are aimed at extending the capabilities or increasing the effi ciency of some

function that is presently being inadequately performed by an existing system. In cases

where the functions of the current system are the same or similar to those of the new

system, the current system provides a natural point of departure for system concept

defi nition. Where the main driving force comes from serious defi ciencies of limited

portions of the current system, an obvious (partial) set of alternative approaches would

begin with a minimum modifi cation of the system, restricted to those subsystems or

major components that are clearly defi cient. Other alternatives would progressively

modify or replace other subsystems that may be made obsolescent by modern technol-

ogy. The general confi guration of the system would be retained.

 In cases where there are new and improved technological advances at the compo-

nent level, or when there are standard commercial off - the - shelf components that could

be applied to the new system, the impetus for change to a new system would be

technology - driven. In this case, a commonly used approach is to introduce improve-

ments sequentially over time as modifi cations to the current system confi guration.

 Even when there are reasons against retaining any parts of the current system, as,

for example, when moving from a conventional, manually controlled process to an

automated and higher - speed operation, the current system ’ s general functional confi gu-

ration, component selection, materials of construction, special features, and other char-

acteristics usually provide a useful point of departure for alternative concepts.

 Technological Advances. As noted in Chapter 6 , some new system develop-

ments are driven more by advances in technology than by operational defi ciencies in

the previous system. These advances may arise either in exploratory research and

development programs aimed at particular application areas, such as development of

advanced jet engines, or may come from broadly applicable technology such as high -

 speed computing and communication devices.

 Such advances are often incorporated into an existing system to achieve specifi c

performance improvements. However, if their impact is major, the possibility of a

radical departure from the previous confi guration should be included among the alterna-

tives. Beyond a certain point, the existing framework may overly constrain the achiev-

able benefi ts and should therefore be abandoned. Thus, when advanced technology is

involved, a wide range of choices for change should be examined.

214 CONCEPT DEFINITION

 Original Concepts. In relatively rare instances, a really different concept is advanced

to meet an operational need, especially when the need had not been previously met. In

such instances, there is not likely to be a previous system to use for comparison, so

that different types of alternatives would need to be examined. Often, various versions

of the new concept can be considered, differing in the degree of reliance on new and

unproven technology in exchange for projected performance and cost.

 Modeling of Alternatives

 For comparing alternative concepts, each must be represented by a model that possesses

the key attributes on which the relative values of the alternatives will be judged. As a

minimum, an FFBD of each should be constructed, and a pictorial or other physical

description produced for providing a more realistic view of the system candidate.

 Both the above modeling and the simulation of alternative concepts will contribute

important context to the selection process and associated trade - offs.

 8.5 CONCEPT SELECTION

 The objective of trade - off studies in the concept defi nition phase is to assess the relative

 “ goodness ” of alternative system concepts with respect to

 • operational performance and compatibility,

 • program cost,

 • program schedule, and

 • risk in achieving each of the above.

 The results are judged not only by the degree to which each characteristic is expected

to be achieved but also by the balance among them. Such a judgment is of necessity

highly program dependent because of the differing priorities that may be placed on the

above characteristics.

 Design Margins. In a competitive program, there is always a tendency to maxi-

mize system performance so as to gain an edge over competing system proposals. This

often results in pushing the system design to a point where various design margins are

reduced to a bare minimum. The term “ design margin ” refers to the amount that a given

system parameter can deviate from its nominal value without producing unacceptable

behavior of the system as a whole. A reduction in design margins is inevitably refl ected

in tighter restrictions on the environmentally induced changes in component character-

istics during system operation and/or on the fabrication tolerances imposed in the

production process. Either can lead to higher program risk, cost, or both. Accordingly,

the issue of design margins should be explicitly addressed as an important criterion

when selecting a preferred system concept.

CONCEPT SELECTION 215

 System Performance, Cost, and Schedule. To the extent that stated perfor-

mance requirements are quantifi ed, are found to be an accurate expression of opera-

tional needs, and are within current system capabilities, they may be considered a

minimum baseline for the system. However, where they are found to stress the state of

the art, or to be desirable rather than truly essential, they need to be considered elastic

and capable of being traded off against cost, schedule, risk, or other factors. Unstated

requirements found to be signifi cant should always be included among the variables.

 Program cost must be derived from the system life cycle cost, which in turn must

be derived from a model of the complete system life cycle. The appropriate relative

weighting of the near - term versus long - term costs depends on the fi nancial constraints

of the acquisition strategy. Specifi c cost drivers should be identifi ed wherever

possible.

 The appropriate weighting of schedule requirements is very program dependent

and may be diffi cult to establish. There is an inherent tendency, especially in govern-

ment and other programs where competition among contractors is especially strong, to

estimate both cost and schedule of a new acquisition on the optimistic side, making no

provision for the unforeseen delays that always occur in new system developments and

are often caused by “ unk - unks, ” as discussed in Chapter 4 . This optimism factor also

applies to the estimation of system performance and technical risk. Overall, it tends to

slant the trade - off process toward the selection of advanced concepts and optimistic

schedules over more conservative ones.

 Program Risks. The assessment of risk is another primary systems engineering

task. It involves estimating the probability that a given technical approach will not

succeed in achieving the intended objective at an affordable cost. Such risk is

present in every previously untried approach. In the development of new complex

systems, there are many areas in which risk of failure must be explicitly considered

and measures taken to avoid such risks or to reduce their potential impact to manage-

able levels.

 Chapter 5 , which devotes a section to the subject of risk management, shows that

program risk can be considered to consist of two factors: (1) probability of failure — the

probability that the system will fail to achieve an essential program objective, and (2)

criticality of failure — the impact of the failure on the success of the program. Thus, the

seriousness of each risk can be qualitatively considered as a combination of the prob-

ability of the failure weighted by its criticality to the system. For the purposes of this

chapter, the following are examples of conditions that may result in a signifi cant prob-

ability of program failure:

 • A leading - edge unproven technology is to be applied.

 • A major increase in performance is required.

 • A major decrease in cost is required for the same performance.

 • A signifi cantly more severe operating environment is postulated.

 • An unduly short development schedule is imposed.

216 CONCEPT DEFINITION

 Selection Strategy. The preceding discussion shows that the principal criteria

involved in selecting a preferred system concept are complex, semiquantitative at best,

and involve comparisons of incommensurables. This means that the evaluation of the

relative merits of alternatives must be such as to expose and illuminate their most criti-

cal characteristics and to allow the maximum exercise of judgment throughout the

evaluation process.

 Two additional guidelines for conducting complex trade - off analyses may be

useful: (1) to conserve analytical effort, use a staged approach to the selection process,

in which only the most likely winners are subjected to the full system evaluation; and

(2) to retain the visibility of the complete evaluation profi le of each concept (against

each critical measure of effectiveness) until the fi nal selection, rather than combining

the components into a single fi gure of merit, a practice that is often employed but that

tends to submerge signifi cant differences.

 In pursuing a staged approach, the following suggestions can serve as a checklist,

to be applied where appropriate:

 1. For the fi rst stage of evaluation, make sure that a suffi cient number of alterna-

tive approaches are considered to address all needs and to explore all relevant

technical opportunities.

 2. If the number of alternatives is larger than can be individually evaluated in

detail, perform a preliminary comparison to winnow out the “ outliers. ” This is

equivalent to qualifying the candidates. But be careful not to discard prema-

turely any candidates that present a new and unique technological opportunity,

unless they are inherently incapable of qualifying.

 3. For the next stage of evaluation, examine the list of performance and compat-

ibility requirements and select a subset of the most critical ones that are also

the most likely to reject unsuitable system concepts. Include consideration of

growth capability and design margins as appropriate.

 4. For each candidate concept, evaluate its expected compliance with each selected

criterion. In the case of partial noncompliance, attempt to adjust the concept

where possible to satisfy the criteria. Estimate the resultant performance, cost,

risk, and schedule. In the event of conspicuous imbalance in the above, attempt

to modify further the concept to achieve an acceptable balance for all

requirements.

 5. Assign weighting factors or priorities to the evaluation criteria, including cost,

risk, and schedule, and apply to the ranking of each concept. Avoid concepts

that do not have a sound balance of the above factors.

 6. For each evaluation criterion, rank order the several candidate concepts.

 7. Look for and eliminate clear losers.

 8. Unless there is a single clear winner, perform a signifi cantly more detailed

comparison among the two or three potential winners. To this end, develop

a life cycle model for each concept, along with a WBS, and a risk abatement

plan.

CONCEPT VALIDATION 217

 In making the fi nal system concept selection, review the evaluation profi le of the

merit of each candidate concept against each critical measure of effectiveness to ensure

that the choice has no major weaknesses. Check for the sensitivity of the result to a

reasonable variation of the weighting of individual criteria.

 As stated previously, use each of the above suggestions only where it may be

appropriate to the particular selection process. Chapter 9 devotes a section to the fun-

damentals of trade - off analysis, with an example of their application.

 8.6 CONCEPT VALIDATION

 The task of designing a model of the system environment to serve as the basis for

concept validation builds on the set of parameters initially established for use in the

trade - off studies of the selection process.

 Modeling the System and Its Environment

 Since the degree of system defi nition at this stage is largely functional, its validation

must rely primarily on analysis rather than on testing. The rapid growth of computer

modeling and simulation in recent years is providing powerful tools for the validation

of complex system concepts.

 System Effectiveness Models. In complex operational systems, system effec-

tiveness models are developed in the needs analysis and concept exploration phases to

provide a fuller understanding of the effectiveness of existing systems in performing

their missions and in identifying defi ciencies that need to be remedied. These are most

often computer simulations that include provisions for varying key parameters to estab-

lish the sensitivity of overall performance to environmental and system parameter

variations and to determine the nature and extent of system changes needed to offset

any identifi ed defi ciencies (see also Chapter 9).

 In the concept defi nition phase, the construction of system effectiveness models

by the system developer depends on whether or not the models used in the previous

phases are available, as in the case where the developer is also the customer. In that

case, the models can be readily extended to conform to the selected system concept

for the validation process. If not, the construction of the model becomes part of the

concept defi nition task. For this and other reasons, the preparation for the competitive

effort often begins months (and sometimes years) before the start of the formal

competition.

 Computer models are also capable of validating a host of subsystem or component -

 level technical design features. Areas such as aerodynamic design, microwave antennae,

hydrodynamics, heat transfer, and many others can be modeled for analysis through the

use of special computer codes. Advances in computer capabilities have made such

modeling more and more accurate in predicting system behavior for purposes of design

and evaluation.

218 CONCEPT DEFINITION

 Critical Experiments. When a proposed system concept relies on technical

approaches that have not been previously proven in similar applications, its feasibility

must be demonstrated. Often this cannot be done credibly through analysis alone and

must be subjected to experimental verifi cation. This is diffi cult to accommodate in the

limited time and constrained resources of a competitive acquisition, but must neverthe-

less be undertaken to support the proposed system concept.

 The term “ critical experiment ” is appropriate in such instances because it is related

to the specifi c purpose of substantiating a critical feature of the design. It purposely

stresses the proposed design feature to its extreme limits to ensure that it is not just

marginally satisfactory. The term “ experiment ” rather than “ test ” is appropriate because

it is performed for the purpose of obtaining suffi cient data to understand thoroughly

the behavior of the system element, rather than merely to measure whether or not the

element operates within certain limits. By the same token, extensive data analyses are

also performed to illuminate the system behavior.

 Analysis of Validation Results

 The analysis of the results of system validation simulations can produce three different

types of unsatisfactory fi ndings that require remedial action: (1) defi ciencies in

the assumed characteristics of the system being modeled, (2) defi ciencies in the

test model, or (3) excessively stringent system requirements. It is the purpose of

the analysis process to attribute the results of the simulation to one or more of the

above causes. Beyond these fi ndings, the analysis should also indicate what kind

and degree of changes would eliminate the discrepancies. This latter fi nding usually

requires a series of simulations or analyses that test the effect of alternative remedial

actions.

 The feedback resulting from the validation analysis results in an iterative process

in which the system model design and environmental model are refi ned as necessary

to bring the system model in compliance with the requirements.

 Iteration of System Concepts and Requirements

 The above description of the validation process implies that only one concept was found

to be superior in the concept trade - off evaluation, and that this concept was then vali-

dated against the full system requirements. Not infrequently, two and sometimes more

concepts turn out to be nearly equal in preliminary rankings. In that case, each should

be evaluated against the full requirements to see if the more rigorous comparison pro-

duces a clear discriminator for selecting the preferred concept.

 The system requirements should always be regarded as fl exible up to a point. If

the validation or trade - off results show that one or more stated requirements appear to

be responsible for unduly driving up system complexity, cost, or risk, they should be

subjected to critical analysis, and if appropriate, highlighted for discussions with the

customer by program management.

SYSTEM DEVELOPMENT PLANNING 219

 8.7 SYSTEM DEVELOPMENT PLANNING

 A major product of the concept defi nition phase is a set of plans that defi ne how the

engineering program is to be managed. Among these are the WBS, the life cycle model,

the SEMP or its equivalent, system development schedules, the operational (or inte-

grated logistic) support plan, and such others as may be specifi ed by the contracting

agency to provide all participants with clear objectives and timescales for accomplish-

ing their respective tasks.

 Of the above plans, systems engineering has prime responsibility only for

the SEMP. However, it is also deeply involved in all the others by having to provide

a detailed description and ongoing assessment of the development process to those

who are directly responsible for the other technical management documents. For

example, systems engineers are often asked to review initial estimates of the time

and effort required to perform a particular engineering task, and based on their

appraisal of the associated technical risks, to recommend approval or modifi cation as

appropriate.

 WBS

 The WBS, which was described in Chapter 5 , is one of the essential development plan-

ning vehicles. The WBS provides a hierarchical framework designed to accommodate

all the tasks that need to be accomplished during the entire life of the project. The

topmost level represents the project as a whole; the next contains the system product

itself, and the principal supporting and management categories. Succeeding levels

subdivide the total effort into successively smaller work elements. This subdivision is

continued until the complexity and cost of each work element or task are reduced to

the point that the task can be directly planned, costed, scheduled, and controlled. The

process must ensure that no necessary task is overlooked and that realistic cost and

schedule estimates can be made.

 The specifi c form of the WBS is dependent on the nature of the project and is often

stipulated in the contract for the system development, especially if the government is

the customer. Government programs have had to comply with standards, which defi ne

a specifi c hierarchical structure that provides a logical framework and a place for every

aspect of a system product, often with a high degree of detail.

 As an example of a typical WBS structure, the system project is at level 1, and the

next level (level 2) is broken down into fi ve types of activities, abbreviated from the

more detailed descriptions in Chapter 5 :

 1. System Product , including the total effort of developing, producing, and inte-

grating the system itself, together with any auxiliary equipment required for its

operation. It includes all of the design, engineering, and fabrication of the

system, as well as the testing of its components (unit test).

 2. System Support (also referred to as “ integrated logistics support ”), involving

provision of equipment, facilities, and services necessary for the development

220 CONCEPT DEFINITION

and operation of the system product. It includes all equipment, facilities, and

training for both development and system operations.

 3. System Test , beginning at the integration test level, unit tests of individual com-

ponents being part of the effort of developing the system product. It includes

integration and testing of subsystems and of the total system.

 4. Project Management , covering the project planning and control effort through-

out the program.

 5. Systems Engineering , covering all aspects of systems engineering support.

 The WBS is by its nature an evolving document. As noted previously, it begins in the

concept exploration phase, when only the topmost level can be identifi ed. It is in the

concept defi nition phase, when the system components and architecture have been

defi ned, that serious costing and scheduling may be undertaken. Thereafter, the WBS

must evolve along with the development and engineering of the system components

and progressive discovery and resolution of problems. Thus, at any time, the WBS

should refl ect the latest knowledge of the program tasks and their status, and should

constitute a reliable basis for program planning.

 As noted in Chapter 5 , the WBS is structured so that every task is identifi ed at the

appropriate place within the WBS hierarchy. Systems engineering plays an important

role in helping the project manager to structure the WBS so as to achieve this

objective.

 SEMP

 Chapter 5 described the nature and purpose of the planning of the systems engineering

tasks that are to be performed in the course of developing a system. In many system

acquisition programs, such a plan is referred to as the SEMP and is a required deliver-

able as part of a proposal for a system development program.

 The SEMP is a detailed plan showing how the key systems engineering activities

are to be conducted. It typically covers three main activities:

 1. Development Program Management — including organization, scheduling, and

risk management;

 2. Systems Engineering Process — including requirements, functional analysis, and

trade - offs; and

 3. Engineering Specialty Integration — including reliability, maintainability, pro-

ducibility, safety, and human factors.

 Life Cycle Cost Estimating

 The provision of a credible cost estimate for development, production, and (usually)

operational support of the proposed new system is a required product of the concept

defi nition phase. While systems engineering is not primarily responsible for this task,

it has an essential role in providing key items of information to those who are.

SYSTEM DEVELOPMENT PLANNING 221

 The only basis for deriving costs for a new task is through the identifi cation of a

similar and successfully completed task whose costs are known. To this end, the system

concept must be decomposed into elements analogous to existing components. Since

the concept at this stage is still mainly functional, the systems engineer must visualize

the likely physical embodiment of these functions. Once this is done, and any unusual

features are identifi ed, those experienced in cost estimating can usually make a reason-

able estimate of the prospective costs.

 The main guides for deriving system costs are the WBS, the life cycle model, and

costing models. The WBS, which spells out all the tasks to be performed during system

development, is the chief reference for deriving development costs.

 The costs of developing new or modifi ed components are usually derived from

estimates provided by those who expect to do the development — whether subcontrac-

tors or in - house. Special care must be taken to assure that these estimates refl ect an

assessment of the associated development risk that is neither unduly optimistic nor

overly cautious. These estimates should be reviewed critically by systems engineering

to provide a check on the above factors.

 The costs for component production, assembly, and testing are usually derived

using a cost model developed for this purpose. The cost model is based on the accu-

mulated experience of the developing organization and is updated after each new

program. The actual costing is usually done by cost estimating specialists. However,

these specialists must rely heavily on the vision of the system elements as provided by

systems engineers and the design engineers responsible for component development.

 The preparation of cost estimates must not only be as expertly performed as pos-

sible, but it must also be documented so as to be credible to management and to the

customer. In a competitive acquisition program, the magnitude and credibility of the

cost estimates, especially development costs that are the most immediate, weigh heavily

in the evaluation.

 The “ Selling ” of the System Development Proposal

 The selection of a feasible and affordable concept in the concept defi nition phase is a

necessary but not suffi cient step to assure that the engineering of that concept into an

operational system will be undertaken. Progression to the engineering development

stage requires a management decision to devote much larger resources to the project

than have as yet been expended in the conceptual phases. Whether the concept is to be

part of a competitive proposal for a formal acquisition program or is to be presented

informally to in - house management, there are always other ways to spend the money

required to develop the proposed system. Accordingly, such a decision requires compel-

ling evidence that the result will be well worth the cost and time to be expended.

 To accomplish its purpose, the concept defi nition phase must produce persuasive

evidence in favor of proceeding with the development of the proposed system. This

requires that the reasons for selecting the proposed concept are clear and compelling,

that the feasibility of the approach is persuasively demonstrated, and that the plan for

carrying out the system development is thoroughly thought out and documented. The

end result must be to instill a high degree of confi dence that the new system will achieve

222 CONCEPT DEFINITION

the required performance within the estimated cost and time and be superior to other

potential system approaches.

 In developing such a case, it must be remembered that those making the decision

to proceed are not likely to be technical experts, so that the evidence will have to be

couched in terms that intelligent laymen can understand. This is a very diffi cult con-

straint, which must nevertheless be observed. Translating and condensing design spe-

cialist jargon and test data into a form that is readily understood, and is clearly relevant

to the issues of concept feasibility, risk, and cost, is a very important responsibility that

is commonly also assigned to systems engineering.

 In this task of selling the system concept and development plan, the following

general approach is recommended:

 1. Show the shortfalls in existing systems and the need to be fi lled by the proposed

system.

 2. Demonstrate that the proposed concept was selected after a thorough examina-

tion of alternatives. Illustrate the alternatives and indicate which main features

of the selected system drove the decision.

 3. Fully discuss program risks and the proposed means for their management.

Describe results of critical experiments designed to reveal problems and identify

solutions, especially in the application of new technology.

 4. Display evidence of careful planning of the development and production

program. Documents such as the WBS, SEMP, TEMP, and other formal plans

give evidence of such planning.

 5. Present evidence of the organization ’ s experience and previous successes in

system developments of a similar nature, and the carryover of key staff to the

proposed system.

 6. Present the derivation of the life cycle costing for the project and the level of

confi dence in the conservatism of the estimates.

 7. Provide further justifi cation as indicated by the specifi c evaluation criteria listed

in the system requirements. Discuss environmental impact analysis if that is an

issue.

 8.8 SYSTEMS ARCHITECTING

 When we think of the word “ architecture, ” something like Figure 8.5 comes to mind.

For many people, architecture refers to buildings, and an architect is someone who

designs buildings. Over two decades ago, though, a professor at the University of

Southern California challenged that notion. He reasoned that as systems grew in com-

plexity, the top - level design, or more accurately the conceptual design of a system, as

defi ned at the time, was insuffi cient to guide engineers and designers to accurate and

effi cient designs. He looked to the fi eld of architecture to understand how complex

systems (i.e., buildings) could be created and developed, and (as far as we understand)

coined the term “ systems architecting. ” That man was Eberhardt Rechtin.

SYSTEMS ARCHITECTING 223

 The Institute of Electrical and Electronics Engineers (IEEE) Std 610.12 defi nes an

architecture as “ the structure of components, their relationships, and the principles and

guidelines governing their design and evolution over time. ” This applies to complex

systems, such as aircraft, power plants, and spacecraft, as much as buildings. Therefore,

Rechtin ’ s premise was to apply the principles from the fi eld of architecture to systems

engineering, not as a replacement, but as part of developing a system.

 Dr. Rechtin defi ned the term systems architecting in this way:

 The essence of architecting is structuring. Structuring can mean bringing form to func-

tion, bringing order out of chaos, or converting the partially formed ideas of a client

 Figure 8.5. Traditional view of architecture.

Boss

Longitudinal ridge

Transverse rib

High vault

Lateral ridge

Lateral web

Longitudinal
webCrocket

Finial

Pinnacle

Buttress pier

Buttress

Cusp

Oculus

Gargoyle

Diagonal rib

Springing
Clear storey

Mullion

Light

String course

Tritorium

Main arcade

Aisle
Central or main vessel

Respond

Set off

Wall arcade

Diaz

Respond

Spandrel

Arcode arch

Abalus

Capital

Shaft

Pier

Base

Flying
buttress

224 CONCEPT DEFINITION

into a workable conceptual model. The key techniques are balancing the needs, fi tting

the interfaces, and compromising among the extremes.

 Read closely, the principles of concept development and defi nition are within his defi ni-

tion. Twenty years ago, conceptual design and components of architecting were lumped

into the phrase “ preliminary design. ” Fortunately, that term has been replaced by the

more extensive “ architecting. ”

 Architectural Views

 While this section is not intended to present the reader with a full description of systems

architecting (see Further Reading for more detail on architecting), we do want to present

the basic concepts behind the development of a system architecture. In this vein, most

commercial and government work on architectures has followed the notion of archi-

tectural views. The idea is this. Develop representations of a system from multiple

perspectives, or views, to assist the stakeholders in understanding a system concept

(and in making those valuable trade - off decisions) before extensive development has

occurred.

 While many different architecture development methods and guidelines exist

today, all have a very common set of these perspectives. In general, a system architec-

ture will present three common views of a system.

 Operational View. This representation is from the users ’ or operators ’ perspec-

tive. This view would include products that address operational system phases, scenarios,

and task fl ows. Information fl ow from the users ’ perspectives might also be addressed.

User interfaces would also be described. Example products that might be included in

this view would be operational fi gures or graphics, scenario descriptions (including use

cases), task fl ow diagrams, organization charts, and information fl ow diagrams.

 Logical View. This representation is from the manager ’ s or customer ’ s perspec-

tive. The logical view would include products that defi ne the system ’ s boundary with

its environment and the functional interfaces with external systems, major system func-

tions and behaviors, data fl ow, internal and external data sets, internal and external

users, and internal functional interfaces. Example products for this view would be

FFBDs, context diagrams, N2 diagrams, IDEF0 diagrams, data fl ow diagrams, and

various stakeholder - specifi c products (including business - related products).

 Physical View. This representation is from the designers ’ perspective. This view

would include products that defi ne the physical system boundary, the system ’ s physical

components and how they interface and interact together, the internal databases and

data structures, the information technology (IT) infrastructure of the system and the

external IT infrastructure with which the system interfaces, and the standards in force

in its development. Example products include physical block diagrams down to a fairly

high level of detail, database topologies, interface control documents (ICDs) , and

standards.

SYSTEMS ARCHITECTING 225

 Different architectural guidelines and standards may use different names, but all

three of these perspectives are included in every architectural description.

 A common question from someone just introduced to the concept of systems

architecting is “ What is the difference between architecting and designing? ” A conve-

nient method of answering that question is to delineate the uses of an architecture versus

a design.

 A system architecture is used

 • to discover and refi ne operational and functional requirements,

 • to drive the system to a specifi c use or purpose,

 • to discriminate between options, and

 • to resolve make/buy decisions.

 A system design is used

 • to develop system components,

 • to build and integrate system components, and

 • to understand confi guration changes as the system is modifi ed.

 The nature of these uses means there is a difference between architecting and

engineering. Systems architecting is largely an inductive process that focuses on

functionality and behavior. Consequently, architecting deals with unmeasurable

parameters and characteristics as much if not more than measureable ones. The toolset

is largely unquantitative and imprecise — diagramming is a large component of

the architect ’ s toolset. Heuristics typically guide an architect ’ s decisions rather than

algorithms.

 Design engineering can be contrasted with architecting since it relies on deductive

processes. Engineering focuses on form and physical decomposition and integration.

Consequently, design engineering deals with measurable quantities, characteristics,

and attributes. Thus, analytical tools derived from physics are the engineer ’ s primary

tools.

 Given these characteristics of the two fi elds (which should certainly not be con-

sidered loosely coupled), the architect tends to be active in the early phases of the

system development life cycle. The architect tends to be rather dormant during the

detailed design, fabrication, and unit testing phases. Integration and system testing will

see the architect emerge again to ensure requirements and top - level architectures are

being followed. In contrast, the design engineer ’ s activity peaks during the architect ’ s

dormant phases, though he is by no means completely inactive during the early and

late phases of system development.

 Architecting in the Engineering Hierarchy. With the differences between

architecting and engineering, it is obvious the two activities are separate. An obvious

question then arises: who works for whom? Although there are exceptions, our role of

systems architecting leads to the management structure where the architect works for

226 CONCEPT DEFINITION

the systems engineer. Systems architecting is a subset of systems engineering. This is

different from the role and place of the traditional architect — which is typically at the

top. When a new building is designed, developed, and constructed, the architect plays

the primary role in the building ’ s design and continues with that prominent role through-

out development and construction. In system development, the systems engineer holds

the prominent technical position and the architect works for the systems engineer.

 Architecture Frameworks

 As mentioned, architectures are used extensively now in large, complex system devel-

opment programs. The architect and his team have a large latitude in developing and

integrating products. This initially led to architectures that were technically accurate

but diverse in their structure. In order to standardize the architecture development effort

and the products associated with architectures, many organizations developed and

mandated the use of architecture frameworks.

 An architecture framework is a set of standards that prescribes a structured

approach, products, and principles for developing a system architecture. Two early

frameworks that emerged were the Command, Control, Communications, Computers,

Intelligence, Surveillance and Reconnaissance (C4ISR) Architecture Framework man-

dated by the U.S. Department of Defense (DoD) and The Open Group Architecture

Framework (TOGAF) developed for commercial organizations.

 Other frameworks have emerged recently as well, and some that have been around

for decades are being recognized as architecture frameworks, though that particular title

was not applied until recently (e.g., the Zachman Framework). The early frameworks

were focused on individual systems and their architectures. Newer versions, however,

have expanded into the fi eld of enterprise architecture, a subset of enterprise engineer-

ing or enterprise systems engineering (see Chapter 3 for a discussion of enterprise

systems engineering). All of the current versions, including the Department of Defense

Architecture Framework (DODAF) and TOGAF, have enterprise editions of their

frameworks.

 Many architecture frameworks that can be applied to system development exist,

even if the primary purpose is enterprise architecting. Below is a selected list of archi-

tecture frameworks:

 • DODAF

 • TOGAF

 • The Zachman Framework

 • Ministry of Defense Architecture Framework (MODAF)

 • Federal Enterprise Architecture Framework (FEAF)

 • NATO Architecture Framework (NAF)

 • Treasury Enterprise Architecture Framework (TEAF)

 • Integrated Architecture Framework (IAF)

 • Purdue Enterprise Reference Architecture Framework (PERAF)

SYSTEMS ARCHITECTING 227

 DODAF. Although by no means more important or “ better ” than any other frame-

work, we discuss the basic products of the DODAF to illustrate the basic components

of a framework.

 The DOD framework, like all frameworks mentioned, is divided into a series of

perspectives, or viewpoints. Figure 8.6 depicts these viewpoints using a fi gure from the

DODAF description. The viewpoints can be observed in three bundles. The fi rst con-

sists of four viewpoints that describe the overall system and its environment: capability,

operational, services, and systems. The second bundle consists of the underlying prin-

ciples, infrastructure, and standards: all data and information and standards. The fi nal

bundle is a single viewpoint focusing on the system development project.

 Version 2 of this framework is easily scalable from the system level to the enter-

prise level, where multiple systems are under development and would be integrated

into a legacy system architecture. In fact, each of the three major system - level archi-

tecture frameworks, DODAF, MODAF, and TOGAF, are now compatible with enter-

prise development efforts. Furthermore, with the addition a services viewpoint,

service - oriented architectures are now possible within the DODAF framework.

 Within each viewpoint, a set of views is defi ned. A total of 52 views are defi ned

by DODAF, organized within the eight viewpoints. For each view, a variety of methods

and techniques are available to represent the view. For example, one view within the

operational viewpoint is the operational activity model. This view can be represented

by a variety of models, such as the FFBD. Other models can be used to represent the

 Figure 8.6. DODAF version 2.0 viewpoints.

Articulates the capability requirement, delivery
timing, and depolyed capability

A
rticu

la
te

s a
p
p
lica

b
le

 o
p
e
ra

tio
n
a
l, b

u
sin

e
ss, te

ch
n
ica

l, a
n
d

in
d
u
stry p

o
licy, sta

n
d
a
rd

s, g
u
id

a
n
ce

, co
n
stra

in
ts, a

n
d
 fo

re
ca

sts

D
e
scrib

e
s th

e
 re

la
tio

n
sh

ip
s b

e
tw

e
e
n
 o

p
e
ra

tio
n
a
l a

n
d

ca
p
a
b
ility re

q
u
ire

m
e
n
ts a

n
d
 th

e
 va

rio
u
s p

ro
je

cts b
e
in

g
im

p
le

m
e
n
te

d
, d

e
ta

ils d
e
p
e
n
d
e
n
cie

s b
e
tw

e
e
n
 ca

p
a
b
ility

m
a
n
a
g
e
m

e
n
t a

n
d
 th

e
 d

e
fe

n
se

 a
cq

u
isitio

n
 syste

m
 p

ro
ce

ss

A
rticu

la
te

s th
e
 d

a
ta

 re
la

tio
n
sh

ip
s a

n
d
 a

lig
n
m

e
n
t stru

ctu
re

s in
th

e
 a

rch
ite

ctu
re

 co
n
te

n
t

O
ve

ra
rch

in
g
 a

sp
e
cts o

f a
rch

ite
ctu

re
 co

n
te

xt th
a
t re

la
te

 to
 a

ll vie
w

s

Articulates operational scenarios, processes,
activities, and requirements

Articulates the performers, activities, services,
and their exchanges providing for, or

supporting, DoD functions

Articulates the legacy systems or independent
systems, their compsition, interconnectivity, and

context providing for, or supporting, DoD functions

Capability viewpoint

Operational viewpoint

Services viewpoint

S
ta

n
d

a
rd

s
 v

ie
w

p
o
in

t

P
ro

je
c
t v

ie
w

p
o
in

t

A
ll v

ie
w

p
o
in

ts

D
a

ta
 a

n
d

 in
fo

rm
a
tio

n
 v

ie
w

p
o
in

t

Systems viewpoint

228 CONCEPT DEFINITION

operational activity model, such as an IDEF0 diagram, or a combination of diagrams.

Thus, an architecture framework will typically have three layers of entities: a set of

 viewpoints that compose the framework , a set of views that defi ne each viewpoint, and

a set of models that can represent the view.

 Every large system development effort must have a minimum set of architecture

views. Rarely will a system architecture contain all 52 architecture views. Pertinent

views are decided beforehand by the systems engineer and system architect, depending

on the intended communication and the appropriate stakeholders.

 The key to developing successful system architectures is to understand the purpose

of the architecture. Although each system development effort is different, depending

on the magnitude and complexity of the system, all architectures have at least one

common purpose: to communicate information. Choosing which framework to use,

which viewpoints within the framework, which views within the viewpoint, and which

models within the view all depends on the purpose the architect is trying to achieve.

 The existing frameworks defi ne the superset of viewpoints and views that may be

included within the architecture. Within each view, the framework typically suggests

candidate models, which can be used to represent the view. A hallmark of the current

frameworks, however, is the fl exibility inherent within each view. If the architect desires

to use a model not included in the candidate list, he can — as long as he does not violate

the overall framework constraints.

 For example, many of the current frameworks were initially defi ned using tradi-

tional, structured analysis models (e.g., IDEF0, FFBD, data fl ow diagrams) to defi ne

their views. However, engineers familiar with object - oriented (OO) models began to

use a combination of OO and structured analysis models to represent views. As the

trend increased, the organizations responsible for the common architecture frameworks

revised the available models to include OO models that can represent the views. Section

 8.9 discusses two languages that implement OO models.

 8.9 SYSTEM MODELING LANGUAGES: UNIFIED MODELING
LANGUAGE (UML) AND SYSTEMS MODELING LANGUAGE (SysML)

 All architecture frameworks use models to represent aspects, perspectives, and views

of the system. Traditional models, like standard block diagramming techniques, are

based on the top - down decomposition of a system. These methods are typically func-

tionally based and are formed into a hierarchy of models representing attributes of the

system in increasing levels of detail. In the 1970s, when software engineering was

expanding at a signifi cant rate, a formal modeling construct emerged and was called

 “ structured analysis and design ” (SAAD). The term has been applied to systems in

general and is not restricted to software systems only.

 Models that have been in use for decades resemble many of the SAAD constructs,

and they have been grouped into what we call traditional hierarchical methods , or

simply traditional systems modeling . This book uses many of the traditional models to

represent aspects of systems. This informal modeling language has evolved into an

excellent educational language for communicating principles and techniques.

SYSTEM MODELING LANGUAGES 229

 After the advent of SAAD, a new set of modeling languages has emerged, based

on object - oriented analysis and design (OOAD) principles. This analysis and design

method is primarily bottoms - up in approach and focuses on entities, as opposed to

functions, though the two are closely related. In the 1990s, a new modeling language

that incorporated OOAD principles and techniques was formalized: the UML.

 UML

 It was noted that in developing a complex system, it is essential to create high - level

models of its structure and behavior to gain an understanding of how it may be con-

fi gured to meet its requirements. In the development of OOAD methodology, several

of the principal practitioners separately developed such models. In the mid - 1990s, three

of them (Booch, Rumbaugh, and Jacobson), developed a common modeling terminol-

ogy they called the “ UML. ” This language has been adopted as a standard by the

software community and is widely used throughout industry and government. It is sup-

ported by sophisticated tools produced by several major software tool developers.

 Whereas structured methodology employs three complementary views of a system,

UML provides OO analysts and designers with 13 different ways to diagram different

system characteristics. They may be divided into six static or structural diagrams and

seven dynamic or behavioral diagrams. Figure 8.7 also lists the two sets of diagrams.

 Structural diagrams represent different views of system entity relationships:

 • Class Diagrams show a set of classes, their relationships, and their interfaces.

 • Object Diagrams show a set of instances of classes and their relationships.

 • Component Diagrams are typically used to illustrate the structure of, and rela-

tionships among, physical objects.

 • Deployment Diagrams show a static view of the physical components of the

system.

 • Composite Structure Diagrams provide a runtime decomposition of classes.

 • Package Diagrams present a hierarchy of components.

 Figure 8.7. UML models.

Structural Diagrams Behavioral Diagrams

Class
Activity

Use Case
Component

Object

Composite Structure

Deployment

State Machine

Sequence

Communication
Deployment

Package
Timing

Interaction Overview

230 CONCEPT DEFINITION

 Behavioral diagrams represent different views of system dynamic

characteristics.

 • Use Case Diagrams show interrelations among a set of use cases representing

system functions that respond to interactions with external entities (“ actors ”).

 • Sequence Diagrams show the interactions among a set of objects in executing a

system scenario, arranged in chronological order.

 • State Machine Diagrams model the transition events and activities that change

the state of the system.

 • Activity Diagrams are fl owcharts of activities within a portion of the system

showing control fl ows between activities.

 • Communication Diagrams defi ne links between objects, focusing on their

interactions.

 • Interaction Overview Diagrams are a mix of sequence and activity diagrams.

 • Timing Diagrams present interactions between objects with timing

information.

 UML class diagrams correspond approximately to entity relationship diagrams in

structural analysis, while state chart diagrams correspond to state transition diagrams.

Others, especially activity diagrams, are different views of functional fl ow diagrams.

 The new language was quickly adopted by the software engineering community

as the de facto standard for representing software concepts and software - intensive

systems. Although the origins of the language are in the software world, recently, the

language has been used successfully in developing systems that include both hardware

and software.

 UML is governed by the Object Management Group (OMG), a worldwide consor-

tium. UML will continue to evolve with new releases and added complexity.

 Rather than providing examples and explanations to all of the diagrams, we present

some examples — several behavioral diagrams: the use case diagram, the activity

diagram, and the sequence diagram; and one structural diagram: the class diagram.

 Use Case Diagram. We present the use case diagram fi rst due to its utility in

defi ning a system ’ s operation. In software, and in some hardware applications, use cases

have been used to assist the identifi cation and analysis of operational and functional

requirements.

 The form of a use case diagram is shown in Figure 8.8 , modeling the interaction

of an “ actor ” on the left side (represented by the stick fi gures) with a single use case

(represented by an oval), which leads to a subordinate activity (a separate use case),

while the other three interact with a second (external) actor. The arrows indicate the

initiation of the use case, not the fl ow of information. For example, the librarian actor

can initiate the “ manage loans ” use case. The “ check - in book ” use case may also initiate

the same use case.

 Each use case in the diagram represents a separate sequence of activities and

events. UML defi nes a standard set of components for a use case, including

SYSTEM MODELING LANGUAGES 231

 • title;

 • short description;

 • list of actors;

 • initial (or pre -) conditions describing the state of the environment before the use

case occurs (or is executed);

 • end (or post -) conditions describing the state of the environment after the use

case occurs (or has been executed); and

 • sequence of events, a list of actions or events that occur in a defi ned sequence.

 Table 8.2 displays an example use case description for “ check - out book. ” The

sequence of events lists the actions and activities that both actors and subsystems

execute. In this case, the use case involves one actor and two subsystems — the check -

 out station and the loan management subsystem. This use case represents an automated

check - out system at a library using the Universal Product Code (UPC) symbology.

 Although not required, it can be benefi cial to use columns to separate actions of

each actor and subsystem, such as was done in Table 8.2 . This allows the reader to

easily determine who is performing the action and in what order (sometimes simultane-

ously). Use cases can, of course, be stylized or tailored to specifi c situations and may

demonstrate the preferences of their authors. In other words, two engineers may come

up with different use case sequences of events for the same use case. This may not

represent a fl aw or problem. In fact, a use case may have several different variants,

known in UML as “ scenarios. ” Unfortunately, the use of the term scenarios differs from

our traditional defi nition provided earlier.

 Activity Diagram. As another example of a behavior diagram, we turn to the

activity diagram. Activity diagrams can represent any type of fl ow inherent in a system,

including processes, operations, or control. The diagram accomplishes this through a

 Figure 8.8. Use case diagram.

Check-Out
Book

Check-In
Book

Manage
Loans

Send
Overdue
Notice

Maintain
Loan

Record

Librarian Library

Member

232 CONCEPT DEFINITION

 TABLE 8.2. Use Case Example — “ Check - Out Book ”

 Title Check book

 Short description This use case describes a typical process of a library member

checking out a library book.

 List of actors Library member

 Initial conditions Library member has no books assigned to him on loan.

 End conditions Library member has a single book assigned to him on loan.

 Sequence

of events Library member Check - out station

 Loan management

subsystem

 1 Displays “ Please swipe card ”

 2 Swipes library car

 3 Reads member data from card

 4 Sends request to confi rm

member is in good standing

 5 Checks database for

member information

 6 Confi rms good standing

 7 Receives confi rmation Sends confi rmation

 8 Displays “ Place book UPC

under scanner ”

 9 Places book UPC

symbol under

scanner

 10 Scans book UPC

 11 Sends request to confi rm

book is available

 12 Checks database for

book information

 13 Confi rms availability

 14 Receives confi rmation Sends confi rmation

 15 Displays “ Thank you! Book

is due in two weeks. ”

 Indicates book as “ out ”

sequence of activities and events. The sequence of activities and events is regulated via

various control nodes. The basic components of the activity diagram are described

below:

 • Action: an elementary executable step within an activity (rectangle with rounded

corners);

 • Activity Edge: a connecting link between actions, and between actions and nodes

(an arrow); activity edges are further divided into two types: object fl ows and

control fl ows;

 • Object Flow: an activity edge that transports objects (or object tokens);

SYSTEM MODELING LANGUAGES 233

 • Control Flow: an activity edge that represents direction of control (also trans-

ports control tokens);

 • Pin: a connecting link between action parameters and a fl ow (a box connected

to an action and a fl ow); a pin accepts explicit inputs or produces explicit outputs

from an action;

 • Initial Node: the starting point for a control fl ow (solid circle);

 • Final Node: the termination point for a control fl ow (solid circle within an open

circle);

 • Decision Node: a branch point for a fl ow in which each branch fl ow contains a

condition that must be satisfi ed (diamond);

 • Merge Node: a combination point in which multiple fl ows are merged into a

single fl ow (diamond);

 • Fork Node: a point at which a single fl ow is split into multiple concurrent fl ows

(a solid line segment); and

 • Join Node: a point in which multiple fl ows are synchronized and joined into a

single fl ow (a solid line segment).

 Figure 8.9 represents a simple activity diagram, which is analogous to a functional

fl ow diagram, for our library book system. The diagram shows the activity path to split

into two concurrent activities, one of which follows one of two logical paths, of return-

ing or borrowing a library book.

 Figure 8.9. UML activity diagram.

BorrowReturn

Record

Return
Overlimit

Underlimit

Cancel

Loan

Issue

Loan

Record

LoanLoan Loan Loan

234 CONCEPT DEFINITION

 Figure 8.10. UML sequence diagram.

Check-out station
Loan management

subsystem
Book database

Displays “Please swipe card”

Swipes library card

Reads member
data from card

Sends request to
confirm member is in
good standing

Checks database for
member information

Confirms good
standing

Sends confirmation
Receives

confirmation

Displays “Place book
UPC under scanner”

Places book UPC
symbol under

scanner Scans book UPC

Displays “Thank you!
Book is due in two
weeks”

Sends request to
confirm book is
available Checks database for

book information

Confirms
availability

Sends confirmation
Receives

confirmation

Indicates book as “out”

Library

member

 Sequence Diagram. Our last behavior diagram is the sequence diagram. These

diagrams are usually linked to a use case where actions or events are listed in sequential

formats. The sequence diagram takes advantage of this sequence and provides a visual

depiction of the sequence of events, tied to the actor or subsystem performing the action.

 Figure 8.10 depicts an example sequence diagram of the check - out operation. The

diagram is tied to the use case presented above but provides additional information

over what was presented in the use case description.

 Class Diagram. At the heart of the UML is the concept of the class and is

depicted in the class diagram. A class is simply a set of objects (which can be real or

virtual) that have the same characteristics and semantics. In this case, an object can be

SYSTEM MODELING LANGUAGES 235

almost anything and, within the UML, can be represented in software. The class typi-

cally describes the structure and behavior of its objects.

 Within a class defi nition, three primary components exist (among others):

 • Attributes: the structural properties of the class;

 • Operations: the behavior properties of the class; and

 • Responsibilities: the obligations of the class.

 Classes typically have relationships with other classes. The basic structural relationship

is known as an association . Figure 8.11 depicts a simple association between the two

classes, “ employee ” and “ company. ” The line linking the two classes can have an arrow;

however, if no arrow is present, then a bidirectional relationship is assumed. The nature

of the association can also be provided by using a triangle. The association is then read

like a sentence, “ Employee works for company, ” and “ Company employs employee. ”

Finally, if the author wants to designate the association as a numerical relationship, he

can use multiplicity . Multiplicity designates the numerical aspects of the association

and can be expressed with specifi c numbers or a series of shorthand notations. For

example, 0..2 means that any value between 0 and 2 can exist as part of the association.

The star symbol, * , is used as a wildcard symbol, and can be thought of as “ many. ”

Thus, in our example, both the star and the number “ 1 ” are used to represent the fact

that an employee works for only one company, and the company employs many

employees.

 Two other relationship types between classes are generalization and dependency .

Generalization refers to a taxonomic relationship between a special, or specifi c, class

and a general class. Figure 8.12 depicts a generalization relationship between the three

classes, customer, corporate customer, and personal customer. In this case, both the

corporate and the personal customers are specifi c class types belonging to the general

class, customer. This relationship is depicted as an arrow with a large arrowhead. In

this diagram, the class attributes and operations are provided for each.

 When a generalization relationship is defi ned, the specifi c classes inherit the attri-

butes and operations of the parent. Thus, the corporate customer class not only has its

own specifi c attributes and operation but would also contain the attributes Name and

Address, in addition to the operation, getCreditRating(). The same is true for the per-

sonal customer class.

 Dependency is the third type of relationship and denotes the situation where one

class requires the other for its specifi cation or implementation. We should note that

dependency is a relationship type that can be used among other elements within the

UML, not just classes.

 Figure 8.11. Example of a class association.

Employee Company
Works for 1

* Employs

236 CONCEPT DEFINITION

 Figure 8.12. Example of a class generalization association.

Customer

Name [1]
Address [0..1]

getCreditRating(): String

Corporate Customer

contactName

Personal Customer

contactName
creditRating
creditLimit

billforMonth(integer)

creditCardNumber

 Figure 8.13 includes the dependency association with our library example. The

class diagram depicts several association types as presents a number of classes that

would be defi ned as part of the library check - out system.

 Systems Modeling Language (SysML)

 Although UML has been applied to systems that include both hardware and software,

it became evident that a variant form of UML, developed specifi cally for systems that

combine software and hardware, could be used more effectively. Additionally, with the

evolution of systems engineering, and specifi cally systems architecting, during the

1990s, a formal modeling language was recognized as benefi cial to establish a consis-

tent standard. The International Council on Systems Engineering (INCOSE) commis-

sioned an effort in 2001 to develop a standard modeling language. Due to its popularity

and fl exibility, the new language was based on UML, specifi cally version 2.0. The OMG

collaborated with this effort and established the Systems Engineering Domain Special

Interest Group in 2001. Together, the two organizations developed and published the

systems engineering extension to UML, called the SysML for short.

 Perhaps the most important difference between UML and SysML is that a user of

SysML need not be an expert in OOAD principles and techniques. SysML supports

many traditional systems engineering principles, features, and models. Figure 8.14

presents the diagrams that serve as the basis for the language.

SYSTEM MODELING LANGUAGES 237

 Figure 8.13. Class diagram of the library check - out system.

Library
System

Do Check-In ()
Do Check-Out ()
Display menu ()

Work station
Bar Code
Reader

Member
Record Record Record

Book Loan

Display Prompt ()
Print Loan ()

Scan Bar Code ()

Name
Address
Status

Name
Subject
Status

Member ID
Book ID

()

Add Loan ()
Remove Loan ()

Change Status ()
Create Loan ()
Remove Loan ()

Check-Out
Controller

Loan

Book ID
Member ID

Prompt ID ()
Validate ()
Create Loan () Get Data ()

Get ID ()

 Figure 8.14. SysML models.

Structural Diagrams Behavioral DiagramsRequirement Diagram

Block Definition

Internal Block

Parametric

Package

Activity

Use Case

State Machine

Sequence

Requirement

Package Sequence

238 CONCEPT DEFINITION

 A new category, consisting of a single diagram of the same name, has been intro-

duced: the requirements diagram. Only four of the 13 UML diagrams are included

without changes: package, use case, state machine, and sequence. Diagrams that rely

heavily on OO methodologies and approaches are omitted.

 As with UML above, we present an example diagram from each category — in this

case three — the requirements diagram, the internal block diagram, and the activity

diagram. The latter two correspond closely to the UML class and activity diagrams;

however, we will highlight the differences in our discussion.

 Requirements Diagram. In UML, software requirements are primarily cap-

tured in the use case descriptions. However, these are primarily functional require-

ments; nonfunctional requirements are not explicitly presented in UML. Stereotypes

were developed in response to this gap; however, SysML introduces a new model that

specifi cally addresses any form of requirements.

 Figure 8.15 presents a simple example of a requirements diagram. The primary

requirement is the maximum aircraft velocity. This is a system - level requirement that

has three attributes: an identifi cation tag, text, and the units of the requirements metric.

The text is the “ classical ” description of the specifi c requirement. As described in the

previous chapters, the system - level requirement has a verifi cation method — in this case

a test, indicated by “ TestCase. ” The details of the AircraftVelocityTest would be found

elsewhere.

 Figure 8.15. SysML requirements diagram.

«Verify»«requirement»

Maximum Aircraft Velocity
«TestCase»

AircraftVelocityTest

«Verify»

“requirement”
Id=“R12.6”
Text=“The aircraft shall have a
maximum velocity of no less than
400 kts, at 5000 ft altitude under
standard day conditions”
Units=“kts”

«DeriveReqt» «DeriveReqt» «DeriveReqt»

«requirement»

Engine Thrust
«requirement»

Aircraft Weight

«requirement»

Aircraft Lift

«block»

«Satisfy»

«block»

«Satisfy»

Engine Airframe

SYSTEM MODELING LANGUAGES 239

 This system - level requirement may lead to a set of derived requirements, typically

associated with subsystems of the system. In the fi gure, three derived requirements are

included: engine thrust, aircraft weight, and aircraft lift. These requirements would also

have attributes and characteristics, although they are not shown in this particular

diagram.

 Finally, the satisfy relationship is depicted in the fi gure. This indicates a mecha-

nism, or entity, that will satisfy the derived requirement. In the case of engine thrust,

the engine subsystem is responsible for satisfying the derived requirement.

 The requirements diagram is typically a series of rectangles that identify and asso-

ciate many system - level requirements with subsystem - level requirements, their verifi -

cation methods, derived requirements, and their satisfaction concepts. The latter allows

the concept of mapping or tracing requirements to functional and physical entities.

 As with operational, performance, and functional requirements, these diagrams are

updated throughout the systems engineering method and the system development

process. Linkages between components of the requirements model represented in this

diagram, and the functional and physical models represented in other SysML diagrams,

are crucial to successful systems engineering. Modern tools have been, and are being,

developed to facilitate these linkages between model components.

 Allocation. In SysML, a formal mechanism has been developed to enable the

user to connect, or bind, elements of different models together. This mechanism is

called allocation. SysML provides three types of allocations, although users can defi ne

others: behavior, structure, and object fl ow. The behavior allocation links, or allocates,

behavior (represented in one or more of the behavioral diagrams) to a block that real-

izes this behavior. Recall that behavior is typically an activity or action. The structure

allocation links, or allocates, logical structures with physical structures (and vice versa).

This mechanism enables the engineer to link components of a logical defi nition of the

system (typically represented by logical blocks) with components of a physical defi ni-

tion of the system (typically represented by physical blocks and packages). Finally, the

object fl ow allocation connects an item fl ow (found in the structure diagram) with an

object fl ow edge (found in the activity diagram). Allocation can be signifi ed by a dashed

arrow in many of the SysML diagrams.

 Block Defi nition Diagram. In UML, the basic element is the class , with the

 object representing its instantiation. Because these terms are so closely identifi ed with

software development, SysML uses a different name to represent its basic element — the

 block . The structure and meaning of the block is almost identical to the class. A block

contains attributes, may be associated with other blocks, and may also describe a set

of activities that it conducts or behaviors it exhibits.

 Blocks are used to represent the static structure of a system. They may represent

either logical (or functional) elements or physical elements. The latter can also be

divided into many types of physical manifestations — hardware, software, documenta-

tion, and so on. Figure 8.16 depicts an example block defi nition. The various compo-

nents of a block defi nition are also depicted. This defi nition would be part of the block

defi nition diagram (or sets of diagrams).

240 CONCEPT DEFINITION

 The block name is at the top. Values are the attributes or characteristics of the radar

that are pertinent; the fi gure displays a sample set of attributes for this radar block. The

next section down is the operations or the actions and behaviors of the block. In this

example, the radar conducts only two types of operations, DetectTarget and StatusCheck.

In reality, of course, common radars would perform many other operations. There may

be constraints put on the operations or attributes of the block, so the next section lists

any constraints. The block may also be defi ned with its subsystems or components,

typically referred to as “ parts. ” The example lists six basic subsystems of the radar.

Finally, references (to other blocks) are provided.

 Figure 8.17 depicts several types of block associations. Associations, similar to

their counterparts in UML, represent relationships between blocks. Simple associations

are depicted as lines connecting blocks. If direction is needed, then an arrow is placed

 Figure 8.16. SysML block defi nition.

«block»
{encapsulated}

Radar

Values

Frequency: MHz
Bandwidth: MHz
Power: MW
Antenna Gain: dB
Polarization: (V, H, C}

Operations

DetectTarget (f:S/N, PD)
StatusCheck

Constraints

{Power < 5 MW}

Parts

AntennaAntenna
Power Generator
Transmitter
Receiver
Signal Processor
Scope

References

Waveform: RadarSignal

SYSTEM MODELING LANGUAGES 241

on one end — this type of association is called a navigable association . Special catego-

ries are also available: aggregation associations represent blocks that are part of a

whole; composition associations represent blocks that are part of a composite; depen-

dency associations represent blocks that are dependent on other blocks; and generaliza-

tion associations represent specialized blocks that are incorporated into a general block.

 Activity Diagram. Of UML ’ s behavioral diagrams, only one has been signifi -

cantly expanded within SysML: the activity diagram. Four major extensions have been

incorporated:

 • Control fl ow has been extended with control operators.

 • Modeling of continuous systems is now enabled using continuous object fl ows.

 • Flows can have associated probabilities.

 • Modeling rules for activities have been extended.

 With these extensions, some existing functional modeling techniques can be imple-

mented, such as the extended functional fl ow block diagram (EFFBD). Additionally,

with the new extensions, a function tree can be represented quite easily, as shown in

Figure 8.18 a. This example uses the coffeemaker functions provided in Figure 8.4 .

 These functions can be arranged into a more traditional activity diagram, shown

in Figure 8.18 b. For clarity, the diagram does not include all 11 functions. The general

control fl ow is indicated by the fl ow arrows and follows the general fl ow of Figure 8.4

(the FBD). Inputs and outputs are depicted by separate connectors — arrows with pins

(or rectangles connected to the activity). These connectors are labeled with the entities

 Figure 8.17. SysML block associations.

«block»
Fusion

workstation

«block»
«block»

Radar data fusion
* 1

Aggregation

Is a member of

Radar
workstation

1

associations

Is a part of

Provides data to

Is dependent on

1

«block» «block» «block» «block»

111
*

Antenna Transmitter Receiver Fusion technique

«activity»
(a)

Make Coffee

«activity»
Receive Coffee Materials

«activity»

«activity»
Distribute Electricity

«activity»

0..1

0..1 0..1

0..1

Accept User Command Distribute Weight

«activity»
Heat Water

«activity»
Provide Status

0..1 0..1

«activity»
Mix Hot Water with Coffee

Grinds

«activity»
Facilitate Removal of

Materials

0..1 0..1

«activity»
Filter Out Coffee Grinds

«activity»

«activity»
Dissipate Heat

0..1

0..1

0..1

Warm Brewed Coffee

 Figure 8.18. (a) SysML functional hierarchy tree. (b) SysML activity diagram.

Accept User Command Provide StatusReceive Coffee Materials

Heat Water
Water

(b)

State

On/O
ff C

ommand

Mix Hot Water with
Coffee Grinds

Coffee Grinds «ControlOperator»
Enable Status Indicator

Filter Out Coffee Grinds
Filter Done IndicationFilter

Warm Brewed Coffee
Warmer Status

Facilitate Removal of
Materials

242

MODEL-BASED SYSTEMS ENGINEERING (MBSE) 243

passed across the interfaces. A control operator is also included to illustrate this type

of special control mechanism. In this case, a control operator regulates what is passed

to the Display Status activity, depending on the combination of its three inputs.

 We have presented three SysML diagrams to illustrate some of the basic techniques

of the language — one from each diagram category. Like UML, SysML offers the

systems engineer and the systems architect with a fl exible modeling kit with which to

represent many aspects and perspectives of a system concept. Furthermore, it over-

comes some of the inherent challenges within the UML when representing the more

traditional methods of systems engineering, the requirements diagram being perhaps

the most relevant example. With the advent of SysML, numerous commercial applica-

tions have risen to assist the engineer in developing, analyzing, and refi ning system

concepts.

 8.10 MODEL - BASED SYSTEMS ENGINEERING (MBSE)

 With the advent of formal modeling languages, such as UML and SysML, and system

architecture frameworks, such as DODAF and TOGAF, the ability of systems engineers

to represent system requirements, behaviors, and structures has never been greater.

Thus, exploring and defi ning system concepts have now been formalized and a new

subset of systems engineering, systems architecting, has risen from obscurity to signifi -

cance. In broad terms, the system architecture can be thought of as a model of the

system, or at least the system concept. This is not to be confused with the fact that

the term “ model ” is also used to denote the basic building blocks of a system

architecture.

 Soon after the fi rst formal version of UML was released, OMG released the fi rst

version of their new model - driven architecture (MDA). This architecture was the fi rst

formal architecture framework that recognized the shift from a code - centric software

development paradigm to an object - centric paradigm, enabled by the then de facto

standard for software engineering model languages, UML. The MDA presented a set

of standard principles, concepts, and model defi nitions that allowed for consistency in

defi ning object models across the software community.

 MDA delineated between the real system and its representation by a set of models.

These models, in turn, would conform to a metamodel defi nition, which would in turn,

conform to a meta - meta model defi nition. Several concepts, processes and techniques

were presented in the literature using this concept, although the names differed: model -

 driven development, model - driven system design (MDSD), and model - driven engineer-

ing. They were all based on the basic concepts of focusing on a model and its metamodel

to represent the system from the early stages of development through deployment and

operations.

 With the attempt to merge software and systems engineering processes and prin-

ciples, model - driven development was applied several times to system development in

various forms. In 2007, these attempts (along with their techniques and concepts) were

grouped by INCOSE under the banner of MBSE. And with the release of the current

versions of SysML, this approach has continued to increase in popularity.

244 CONCEPT DEFINITION

 The basic notion behind MBSE is that a model of the system is developed early

in the process and evolves over the system development life cycle until the model

becomes, in essence, the build - to baseline. Early in the life cycle, the models have low

levels of fi delity and are used primarily for decision making (not unlike the system

architecture in Section 8.8 above). As the system is developed, the level of fi delity

increases until the models can be used for design. Finally, the models are transformed

yet again into the build - to baseline. At each stage, similar to the standard systems

engineering method introduced in Chapter 4 , a subprocess is performed to evolve the

set of system models. Baker introduced this subprocess for his approach (which he

called MDSD). This subprocess is shown in Figure 8.19 .

 Additionally, Baker defi ned an early information model, or view, for an MDSD.

This is provided in Figure 8.20 and is read similarly to a UML class diagram. The

arrows represent the direction of the relationship, not the fl ow of information.

 Figure 8.19. Baker ’ s MDSD subprocesses.

Develop
requirements

Make technology.
design decisions and
identify alternatives

Build test

Formulate

articles

Test articles

Validate
models

models

Analyze test
and existing

against data
and analysis

data

Assess
compliance
with
requirements

 Figure 8.20. Baker ’ s information model for MDSD.

Design Case
Executes

Represents

Validates

Specifies

Exercises

ComponentRequirement Model

MODEL-BASED SYSTEMS ENGINEERING (MBSE) 245

 Although this approach may sound familiar to the traditional systems engineering

approach, several signifi cant differences exist between the two. The foremost difference

is the products of each. In traditional systems engineering (including either of the

structured analysis or OO approaches), the primary products early in the system devel-

opment life cycle are documents. Regardless of whether these documents are electronic

or paper, they tend to be static representations of the system. With MBSE, the primary

products are models, which can be executed to some extent. Thus, reviewing an MDSD

(regardless of where one is along the life cycle) involves interrogating a set of models,

which is an automated process. Reviewing traditional systems engineering products

involves largely reading text and diagrams (although modern representations and dis-

plays greatly assist in this).

 Of course, there is a price for this ability. Additional computing resources (applica-

tions, databases, hardware, visualization, and networking) are required to facilitate the

MDSD effort. Currently, few of these resources are available, although more are in

development and should be available to engineers soon. Furthermore, until projects

are implemented using this approach, we do not yet have a rich lessons learned

database.

 With this inexperience in mind, INCOSE set about to identify and document the

products which implemented this approach in part or whole. The INCOSE MBSE Focus

Group published its fi nding in May 2007 and they identifi ed fi ve methodologies:

 1. Telelogic ’ s Harmony ® – SE. This proprietary methodology is modeled after the

products classical systems engineering “ Vee ” process, except that a require-

ments and model repository is established and updated during each step in the

process. Additionally, a test data repository is also established and updated to

track test cases and data. Several tools and applications have been developed

or revised to facilitate the harmony methodology. Telelogic produces several of

these (e.g., Rhapsody, Popkin, DOORS), although the methodology itself is

application - neutral.

 2. INCOSE ’ s Object - Oriented Systems Engineering Method (OOSEM). This

approach implements the model - based approach using SysML to support the

specifi cation, analysis, design, and verifi cation of a system. The basic set of

activities produces artifacts that can be refi ned and used in other applications.

These activities and artifacts are listed below:

 a. Analyze stakeholder needs.

 b. Defi ne system requirements.

 c. Defi ne logical architecture.

 d. Synthesize candidate allocated architectures.

 e. Optimize and evaluate alternatives.

 f. Validate and verify the system.

 3. IBM ’ s Rational Unifi ed Process for Systems Engineering (RUP – SE). The goal

of the RUP – SE process was to apply the discipline and best practices found in

the RUP and to apply them to the challenges of system specifi cation, analysis,

design, and development. Moreover, RUP – SE was developed specifi cally to

246 CONCEPT DEFINITION

implement model - driven system development. This adaptation of the existing

unifi ed process focuses on four modeling levels: context, analysis, design, and

implementation, each incorporating higher levels of fi delity than the previous.

These fi rst three model levels are then cross - indexed with six viewpoints:

worker, logical, information, distribution, process, and geometric, to produce

17 architecture artifacts (the context/process pair does not produce an artifact,

and the implementation model produces actual physical artifacts). These arti-

facts become the basis of the RUP – SE architecture framework.

 4. Vitech ’ s MBSE Methodology. This approach is based on four primary activities

that are integrated through a common design repository:

 a. source requirements analysis,

 b. functional/behavior analysis,

 c. architecture/synthesis, and

 d. design validation and verifi cation.

 This methodology requires a common information model to manage

the syntax and semantics of artifacts. Vitech has defi ned a system defi nition

language (SDL) for use with their process (which also can be used with their

tool, CORE), although the process itself can use any information model

language.

 5. Jet Propulsion Laboratory ’ s (JPL) State Analysis (SA). This last methodology

leverages a model - and state - based control architecture to capture system

requirements and design. This process distinguishes between a system ’ s state

and one ’ s knowledge of that state. Generally, the knowledge of the system state

is represented by more abstract concepts than the actual states themselves. How

the system evolves from state to state is represented within a set of models.

Finally, system control is also represented by models, although complete control

is considered impossible due to system complexity.

 The establishment and maturation of OO methods, systems modeling languages, and

the proliferation of tools and applications implementing those methods and languages

have led to an increased awareness of the benefi ts of using a model - driven approach

in systems engineering. And although the approach does come with a price in increased

resources, the benefi ts may indeed provide for an adequate return on investment. Case

studies are slowly being offered as “ proof ” that this approach can indeed work. More

time and experience is necessary before the community as a whole embraces MBSE;

however, its basic principles are sound. And this methodology and approach is one

more step in the convergence of software and systems engineering practices.

 8.11 SYSTEM FUNCTIONAL SPECIFICATIONS

 The concept defi nition phase is not complete until a formal basis is created to

guide the follow - on engineering design stage. A linchpin of such a basis is a statement

SUMMARY 247

describing completely and concisely all the functions that the system must be

designed to perform in order to fulfi ll its operational requirements. In major govern-

ment acquisitions, such a statement is usually called the “ system specifi cation ” or

 “ A - Spec. ”

 The system specifi cation can be thought of as a textual and diagrammatic repre-

sentation of the system concept. It does not, however, address specifi cally how the

system is implemented to perform its functions but stipulates what functions are to be

performed, with what precision, and under what conditions. In so doing, it is essential

that the defi nitions be stated in measurable terms because the engineering implementa-

tion of those functions will rely on these defi nitions.

 While the preparation of system specifi cations is logically a part of the concept

defi nition phase, in a competitive acquisition process, it is usually prepared immediately

after the selection process by the successful contractor team. In commercial product

development, the process is not as formal but is similar in purpose.

 The system specifi cation document should address at least the following

subjects:

 System Defi nition

 Mission and concept of operation system functions

 Confi guration and organization of system interfaces

 Required Characteristics

 Performance characteristics (hardware and software) and compatibility

requirements

 RMA requirements

 Support Requirements

 Shipping, handling, and storage training

 Special facilities

 Special Requirements

 Security and safety human engineering

 The leadership and much of the actual work involved in formulating the system

specifi cation document is the responsibility of systems engineering.

 8.12 SUMMARY

 Selecting the System Concept

 Objectives of the concept defi nition phase are to select a preferred system confi guration

and to defi ne system functional specifi cations, as well as a development schedule and

cost.

 Concept defi nition concludes the concept development stage, which lays the basis

for the engineering development stage of the system life cycle. Defi ning a preferred

concept also provides a baseline for development and engineering.

248 CONCEPT DEFINITION

 Activities that comprise concept defi nition are

 • Performance Requirements Analysis — relating to operational objectives,

 • Functional Analysis and Formulation — allocating functions to components,

 • Concept Selection — choosing the preferred concept by trade - off analysis, and

 • Concept Validation — confi rming the validity and superiority of the chosen

concept.

 Performance Requirements Analysis

 Performance requirements analysis must include ensuring compatibility with the system

operating site and its logistics support. The analysis must also address reliability, main-

tainability, and support facilities, as well as environmental compatibility. A specifi c

focus on the entire life cycle, from production to system disposition, must be kept.

Finally, the analysis must resolve the defi nition of unquantifi ed requirements.

 Functional Analysis and Formulation

 Functional system building blocks (Chapter 3) are useful for functional defi nition. The

selection of a preferred concept is a systems engineering function, which formulates

and compares evaluation of a range of alternative concepts.

 Functional Allocation

 Developing alternative concepts requires part art and part science. Certainly, the pre-

decessor system can act as a baseline for further concepts (assuming a predecessor is

available). Brainstorming and other team innovation techniques can assist in developing

alternatives.

 Concept Selection

 System concepts are evaluated in terms of (1) operational performance and compatibil-

ity, (2) program cost and schedule, and (3) risks in achieving each of the above. Program

risk can be considered to consist of a combination of two factors: likelihood that the

system will fail to achieve its objectives and impact of the failure on the success of the

program.

 Program risks can result from a number of sources:

 • unproven technology,

 • diffi cult performance requirements,

 • severe environments,

 • inadequate funding or staffi ng, and

 • an unduly short schedule.

 Trade - off analysis is fundamental in all systematic decision making.

SUMMARY 249

 Concept Validation

 In concept selection, trade - off analysis should be

 • Organized — set up as a distinct process,

 • Exhaustive — consider the full range of alternatives,

 • Semiquantitative — use relative weightings of criteria,

 • Comprehensive — consider all major characteristics, and

 • Documented — describe the results fully.

 Justifi cation for the development of the selected concept should

 • show the validity of the need to be met;

 • state reasons for selecting the concept over the alternatives;

 • describe program risks and means for containment;

 • give evidence of detailed plans, such as WBS, SEMP, and so on;

 • give evidence of previous experience and successes;

 • present life cycle costing; and

 • cover other relevant issues, such as environmental impact.

 System Development Planning

 The WBS is essential in a system development program and is organized in a hierarchi-

cal structure. It defi nes all of the constituent tasks in the program.

 The SEMP (or equivalent) defi nes all systems engineering activities through the

system life cycle.

 Systems Architecting

 Systems architecting is primarily the development and articulation of different perspec-

tives, or viewpoints, of a system. Almost all system architectures have at least three

perspectives:

 • Operational View — a system representation from the user ’ s or operator ’ s

perspective,

 • Logical View — a system representation from the customer ’ s or manager ’ s per-

spective, and

 • Physical View — a system representation from the designer ’ s perspective.

 Architecture frameworks defi ne the structure and models used to develop and

present a system architecture. These frameworks are meant to ensure consistency across

programs in articulating the various perspectives.

250 CONCEPT DEFINITION

 System Modeling Languages: UML and SysML

 The UML provides 13 system models to represent both structural and behavioral

aspects of the system. Although UML was developed for software development applica-

tions, it has been successfully applied to software - intensive systems. The language

differs from the traditional structured analysis approach by focusing on entities (repre-

sented by classes and objects) instead of functions and activities.

 The SysML is an extension of UML that enables a more complete modeling of

software/hardware systems and facilitates the top - down approach of traditional systems

engineering. An emphasis on requirements to drive the development effort is inherent

in SysML. To distinguish the two languages, SysML uses the block as its primary entity,

in place of the class.

 MBSE

 The basic notion behind MBSE is that a model of the system is developed early in the

process and evolves over the system development life cycle until the model becomes,

in essence, the build - to baseline. Early in the life cycle, the models have low levels of

fi delity and are used primarily for decision making (not unlike the system architecture

in Section 8.8 above). As the system is developed, the level of fi delity increases until

the models can be used for design. Finally, the models are transformed yet again into

the build - to baseline.

 System Functional Specifi cations

 System functional specifi cations address the system functional description, its required

characteristics, and the support requirements.

 PROBLEMS

 8.1 Describe three principal differences between system performance require-

ments, which are an input to the concept defi nition phase, and system func-

tional specifi cations, which are an output (see Fig. 8.1).

 8.2 Both the concept exploration and concept defi nition phases analyze several

alternative system concepts. Explain the principal differences in the objec-

tives of this process in the two phases and in the manner in which the analysis

is performed.

 8.3 Describe what is meant by the term “ functional allocation ” and illustrate its

application to a personal computer. Draw a functional diagram of a personal

computer using the functional elements described in Chapter 3 as building

blocks. For each building block, describe what functions it performs, how it

interacts with other building blocks, and how it relates to the external inputs

and outputs of the computer system.

PROBLEMS 251

 8.4 Under the subsection Program Risks, fi ve examples are listed of conditions

that may result in a signifi cant probability of program failure. For each

example, explain briefl y what consequences of the condition may lead to a

program failure.

 8.5 In the subsection Selection Strategy, it is recommended that in comparing

different concepts, the weighted evaluations of the individual criteria for each

concept should not be collapsed into a single fi gure of merit for each concept

(as is commonly done) but should be retained in the form of an evaluation

 “ profi le. ” Explain the rationale for this recommendation and illustrate it with

a hypothetical example.

 8.6 Discuss how you would use trade - off analysis to prioritize the efforts to be

allocated to the mitigation of identifi ed high and medium program risks.

 8.7 The section The “ Selling ” of the System Development Proposal lists seven

elements in a recommended approach to the authorities responsible for

making the decision. Illustrate the utility of each element by explaining in

each case what the authorities might conclude in the absence of a suitable

discussion of the subject.

 8.8 (a) Develop a top - level function list for an ATM system. Limit yourself to

no more than 12 functions.

 (b) Draw an FBD of the ATM using the functions in (a).

 8.9 (a) Identify the functions of a common desktop computer.

 (b) Identify the components of a common desktop computer.

 (c) Allocate the functions in (a) to the components in (b).

 8.10 Suppose you have completed the functional analysis and allocation activities

within the concept defi nition phase of a system ’ s development.

 (a) Suppose that you have some functions that are allocated to multiple

components (as opposed to a single component). What does that mean

regarding your conceptual design? Is this a problem?

 (b) Suppose that you have many functions that are allocated to a single

component. What does that mean regarding your conceptual design? Is

this a problem?

 8.11 Convert the coffeemaker FBD in Figure 8.4 to an IDEF0 diagram.

 8.12 Draw a physical block diagram of the coffeemaker represented in Figure 8.4 .

Within the diagram, use rectangles to represent physical components and

label the interfaces between the components.

 8.13 Draw a diagram that presents the associations and relationships between the

following:

 • the system,

 • system architecture,

 • architecture framework,

 • viewpoint,

252 CONCEPT DEFINITION

 • view,

 • modeling language, and

 • model.

 The diagram should include seven rectangles (one for each entity above) and

labeled arrows that describe the relationships between the entities.

 8.14 Convert the coffeemaker FBD in Figure 8.4 to a UML activity diagram.

 8.15 Write a two - page essay comparing and contrasting the latest versions of

DODAF and TOGAF.

 8.16 Suppose you are the system architect for a new private business jet aircraft

that is intended to seat eight executives. Suppose also that you have been

asked to use DODAF as your architecture framework. Decide and explain

which views you would include in your architecture. Of course, all of the

views within DODAF will not be necessary for this type of system.

 8.17 Build a matrix that maps UML models to DODAF views. In other words,

which UML model(s) would be appropriate for each DODAF view? Hint:

many DODAF views will be not applicable while others will have more than

a single UML view. Please use a matrix or table.

 8.18 Repeat Problem 8.17, but map SysML models to DODAF.

 8.19 Repeat Problem 8.17, but map UML to TOGAF.

 8.20 Research MBSE and write an essay comparing and contrasting MBSE with

traditional systems engineering, as described in Chapters 1 – 8 of this book.

What are the principles of MBSE? What is different? Can traditional systems

engineering implement the basic principles without signifi cant upgrades?

 FURTHER READING

 L. Baker , P. Clemente , B. Cohen , L. Permenter , B. Purves , and P. Salmon . Foundational Concepts

for Model Driven System Design . INCOSE Model Driven Design Interest Group , INCOSE ,

 July 2000 .

 L. Balmelli , D. Brown , M. Cantor , and M. Mott . Model - driven systems development . IBM

Systems Journal , 2006 , 45 (3), 569 – 585 .

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapter 3.

 F. P. Brooks , Jr . The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,

 1995 .

 W. P. Chase . Management of Systems Engineering . John Wiley , 1974 , Chapters 3 and 4.

 H. Chesnut . Systems Engineering Methods . John Wiley , 1967 .

 S. Dam . DOD Architecture Framework: A Guide to Applying System Engineering to Develop

Integrated, Executable Architectures . SPEC , 2006 .

 Defense Acquisition University . Systems Engineering Fundamentals . DAU Press , 2001 , Chapters

5 and 6.

FURTHER READING 253

 Defense Acquisition University . Risk Management Guide for DoD Acquisition , Sixth Edition .

 DAU Press , 2006 .

 Department of Defense Web site . DoD Architecture Framework Version 2.02. http://cio - nii.

defense.gov/sites/dodaf20 .

 H. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapter 12.

 J. A. Estefan . Survey of model - based systems engineering (MBSE) methodologies , INCOSE

Technical Document INCOSE - TD - 2007 - 003 - 02, Revision B, June 10, 2008 .

 M. Fowler . UML Distilled: A Brief Guide to the Standard Object Modeling Language , Third

Edition . Addison - Wesley , 2004 .

 H. Hoffmann . SysML - based systems engineering using a model - driven development approach .

Telelogic White Paper, Version 1, January 2008 .

 International Council on Systems Engineering . Systems Engineering Handbook . A Guide for

System Life Cycle Processes and Activities . Version 3.2, July 2010 .

 J. Kasser . A Framework for Understanding Systems Engineering . The Right Requirement , 2007 .

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 .

 The Open Group . TOGAF Version 9 Enterprise Edition , Document Number G091. The Open

Group , 2009 . http://www.opengroup.org/togaf/ .

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach . McGraw Hill , 2001 .

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapter 12.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . Wiley , 2000 ,

Chapter 3.

 D. Schmidt . Model - driven engineering . IEEE Computer , 2006 , 39 (2), 25 – 31 .

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Chapter 4.

255

 The preceding chapters have described the multitude of decisions that systems engi-

neers must make during the life cycle of a complex new system. It was seen that many

of these involve highly complex technical factors and uncertain consequences, such as

incomplete requirements, immature technology, funding limitations, and other technical

and programmatic issues. Two of the strategies that have been devised to aid in the

decision process are the application of the systems engineering method and the structur-

ing of the system life cycle into a series of defi ned phases.

 Decision making comes in a variety of forms and within numerous contexts.

Moreover, everyone engages in decision making almost continuously from the time

they wake up to the time they fall asleep. Put simply, not every decision is the same.

Nor is there a one - size - fi ts - all process for making decisions. Certainly, the decision

regarding what you will eat for breakfast is not on par with deciding where to locate a

new nuclear power plant.

 Decision making is not independent of its context. In this chapter, we will explore

decisions typically made by systems engineers in the development of complex systems.

Thus, our decisions will tend to contain complexity in their own right. They are the

hard decisions that must be made. Typically, these decisions will be made under levels

 9

DECISION ANALYSIS

AND SUPPORT

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

256 DECISION ANALYSIS AND SUPPORT

of uncertainty — the systems engineer will not have all of the information needed to

make an optimal decision. Even with large quantities of information, the decision maker

may not be able to process and integrate the information before a decision is required.

 9.1 DECISION MAKING

 Simple decision making typically requires nothing more than some basic information

and intuition. For example, deciding what one will have for breakfast requires some

information — what food is available, what cooking skill level is available, and how

much time one has. The output of this simple decision is the food that is to be prepared.

But complex decisions require more inputs, more outputs, and much more planning.

Furthermore, information that is collected needs to be organized, integrated (or fused),

and presented to decision makers in such a way as to provide adequate support to make

 “ good ” decisions.

 Figure 9.1 depicts a simplifi ed decision - making process for complex decisions. A

more detailed process will be presented later in the chapter.

 Figure 9.1. Basic decision - making process.

Goals and Objectives
Decision Context

Decision Type
Stakeholders

History

Planning the

Decision-making

Process

Gathering

Data

Organizing

and

Processing

Information

Making the

Decision

Data Sources

Implementing

the Decision

DECISION MAKING 257

 Obviously, this appears to be rather cumbersome. However, how much time,

energy, and the level of resource commitment devoted to each stage will be dependent

on the type, complexity, and scope of the decision required. Formal decisions, typical

in large government acquisition programs, may take years, while component decisions

for a relatively simple system may require only hours or less.

 Each stage requires a fi nite amount of time. Even “ making the decision ” is not

necessarily instantaneous. For example, if more than a single person must make and

approve the decision, this stage may be quite lengthy. If consensus is required, then

this stage may become quite involved, and would include political as well as technical

and programmatic considerations. Government legislatures are good examples in

understanding the resources required in each step. Planning, gathering, and organizing

are usually completed by staffs and through public and private hearings. The stage,

making the decision, is actually an involved process that includes political maneuver-

ing, deal making, marketing, campaigning, and posturing. This stage has lasted months

in many cases.

 Regardless of the type of decision, or the forum within which the decision will be

made, there are many factors that must be considered to initiate and complete the plan-

ning stage.

 Factors in the Decision - Making Process

 Complex decisions require an understanding of the multidimensionality of the process

before an appropriate and useful decision can be made. The following factors need to

be considered as part of the planning stage.

 Goals and Objectives. Before making decisions, one needs to ask: what are the

goals and objectives of the stakeholders? These will probably be different at different

levels of the organization. The goals of a line supervisor will be different than a program

manager. Which holds the higher priority? And what are the goals of management above

the decision maker? The decision should be made to satisfy (as far as possible) the

goals and objectives of the important stakeholders.

 Decision Type. The decision maker needs to understand the type of decision

required. Many bad decisions stem from a misunderstanding about the type required.

Is the decision binary? Maybe the decision is concerned with a permission of some

sort. In these cases, a simple yes/no decision is required. Other binary decisions may

not be yes or no, but a choice between two alternatives, make or buy being a classic

example. More complex decisions typically involve one or more choices among a set

of alternatives. Lastly, the decision maker needs to understand who and what will be

affected. Is the decision purely technical, or is there a personal element? Providing the

wrong type of decision will certainly lead to signifi cantly negative consequences.

 In the same vein, understanding who needs to be included in the decision is vital.

Is this decision to be made by an individual? Or is a consensus among a group required?

Who needs to approve the decision before it is implemented? The answers to these

questions infl uences when, and how, decisions will be made.

258 DECISION ANALYSIS AND SUPPORT

 Decision Context. Understanding the scope of the decision is also essential to

making a proper decision. A global (or enterprise - wide) decision will be much different

than a system component decision. The consequences of a wrong decision will be far -

 reaching if the decision affects the enterprise, for example. Context involves under-

standing the problem or issue that led to a decision point. This will be diffi cult since

context has many dimensions, leading to different goals and objectives for your decision

maker:

 • technical, involving physical entities, such as subsystem decisions;

 • fi nancial, involving investment instruments and quantities;

 • personnel, involving people;

 • process, involving business and technical procedures, methods, and

techniques;

 • programmatic, involving resource allocations (including time, space, and

funding);

 • temporal, meaning the time frame in which a decision is needed (this may be

dynamic); and

 • legacy, involving past decisions.

 Stakeholders. Stakeholders can be defi ned as anyone (people or organizations)

who will be affected by the results of the decision. Understanding who the stakeholders

are with respect to a decision needs to be established before a decision is made. Many

times, this does not occur — stakeholders are not recognized before a decision is made.

Yet, once the decision is announced or implemented, we can be sure that all who are

affected will make their opinion heard.

 Legacy Decisions. Understanding what relevant decisions have been made in

the past helps with both the context (described above) and the environment in which

the current decision must be made. Consequences and stakeholders can be identifi ed

more readily if the decision maker has knowledge of the past.

 Supporting Data. Finally, necessary supporting data for the decision need to be

provided in a timely fashion. A coherent and timely data collection plan is needed to

ensure proper information can be gathered to support the decision. Accuracy in data

collected is dependent on the decision type and context. Many times, decisions are

delayed unnecessarily because greater accuracy than needed was demanded before the

decision maker would act.

 Decision Framework

 As mentioned above, understanding the type of decision needed is critical in planning

for and executing any process. Several decision frameworks are available in the litera-

ture to assist in understanding the decision type. In Table 9.1 , we present a framework

that is a combination of several.

DECISION MAKING 259

 There are many ways to categorize decisions. Our categorization focuses on three

types of decisions: structured, semistructured, and unstructured.

 Structured. These types of decisions tend to be routine, in that the context is

well understood and the decision scope is known. Supporting information is usually

available, and minimal organization or processing is necessary to make a good decision.

In many cases, standards are available, either globally or within an organization, to

provide solution methods. Structured decisions have typically been made in the past;

thus, a decision maker has a historical record of similar or exact decisions made like

the one he is facing.

 Semistructured. These types of decisions fall outside of “ routine. ” Although

similar decisions may have been made, circumstances are different enough that past

decisions are not a clear indicator of the right decision choice. Typically, guidance is

available though, even when specifi c methods are not. Many systems engineering deci-

sions fall within the category.

 Unstructured. Unstructured decisions represent complex problems that are

unique and typically one - time. Decisions regarding new technologies tend to fall into

this category due to the lack of experience or knowledge of the situation. First - time

decisions fall into this category. As experience grows and decisions are tested, they

may transition from an unstructured decision to the semistructured category.

 In addition to the type, the scope of control is important to recognize. Decisions

within each scope are structured differently, have different stakeholders, and require

different technologies to support.

 TABLE 9.1. Decision Framework

 Type of

Decision

 Scope of Control

 Technology

needed Operational Managerial

 Strategic

planning

 Structured Known

procedures

algorithms

 Policies Laws

Trade - off

analysis

Logic

 Historical

analysis

Goal - oriented

task analysis

 Information

systems

 Semistructured Tailored

procedures

Heuristics

 Tailored

policies

Heuristics

Logic

 Causality ROI

analysis

Probabilities

 Decision

support

systems

 Unstructured Intuition

Experimental

 Intuition

Experimental

 Intuition

Creativity

Theory

 Expert

systems

260 DECISION ANALYSIS AND SUPPORT

 Operational. This is the lowest scope of control that systems engineering is

concerned about. Operational control is at the practitioner level — the engineers, ana-

lysts, architects, testers, and so on, who are performing the work. Many decisions at

this scope of control involve structured or semistructured decisions. Heuristics, proce-

dures, and algorithms are typically available to either describe in detail when and how

decisions should be made or at least to provide guidelines to decision making. In rare

cases, when new technologies are implemented, or a new fi eld is explored, unstructured

decisions may rise.

 Managerial. This scope of control defi nes the primary level of systems engineer-

ing decision making — that of the chief engineer, the program manager, and of course,

the systems engineer. This scope of control defi nes the management, mentoring, or coach-

ing level of decisions. Typically, for semistructured decisions, policies, heuristics, and

logical relationships are available to guide the systems engineer in these decisions.

 Strategic Planning. This level of control represents an executive - or enterprise -

 level control. Semistructured decisions usually rely on causality concepts to guide

decisions making. Additionally, investment decisions and decisions under uncertainty

are typically made at this scope of control level.

 Supporting Decisions

 The level of technologies needed to support the three different decision types varies.

For structured decisions, uncertainty is minimal. Databases and information systems

are able to organize and present information clearly, enabling informed decisions. For

semistructured decisions, however, simply organizing information is not suffi cient.

Decision support systems (DSS) are needed to analyze information, to fuse information

from multiple sources, and to process information to discover trends and patterns.

 Unstructured decisions require the most sophisticated level of technology, expert

systems, sometimes called knowledge - based systems. Due to the high level of uncer-

tainty and a lack of historical precedence and knowledge, sophisticated inference is

required from these systems to provide knowledge to decision makers.

 Formal Decision - Making Process

 In 1976, Herbert Simon, in his landmark work on management decision science, pro-

vided a structured decision process for managers consisting of four phases. Table 9.2

is a depiction of this process.

 This process is similar to the one in Figure 9.1 but provides a new perspective — the

concept of modeling the decision. This concept refers to the activities of developing a

model of the issue or problem at hand and predicting the outcome of each possible

alternative choice available to the decision maker.

 Developing a model of the decision means creating a model that represents the

decision context and environment. If the decision refers to an engineering subsystem

trade - off, then the model would be of the subsystem in question. Alternative confi gura-

DECISION MAKING 261

tions, representing the different choices available, would be implemented in the model

and various outcomes would be captured. These are then compared to enable the deci-

sion maker to make an informed choice.

 Of course, models can be quite complex in scope and fi delity. Available resources

typically provide the constraints on these two attributes. Engineers tend to desire a large

scope and high fi delity, while the available resources constrain the feasibility of attain-

ing these two desires. The balance needed is one responsibility of the systems engineer.

Determining the balance between what is desired from a technical perspective with

what is available from a programmatic perspective is a balance that few people beyond

the systems engineer are able to strike.

 Although we have used the term “ model ” in the previous chapters, it is important

to realize that models come in all shapes and sizes. A spreadsheet can be a model of a

decision. A complex digital simulation can also be an appropriate model. What type of

model to develop to support decision making depends on many factors.

 1. Decision Time Frame. How much time does the decision maker have to make

the decision? If the answer is “ not much, ” then simple models are the only

available resource, unless more sophisticated models are already developed and

ready for use.

 2. Resources. Funding, personnel, skill level, and facilities/equipment are all con-

straints on one ’ s ability to develop and exercise a model to support decisions.

 3. Problem Scope. Clearly, simple decisions do not need complicated models.

Complex decisions generally do. The scope of the problem will, in some

respects, dictate the scope and fi delity of the model required. Problem scope

itself has many factors as well: range of infl uence of the decision, number and

type of stakeholders, number and complexity of entities involved in the decision

space, and political constraints.

 4. Uncertainty. The level of uncertainty in the information needed will also affect

the model type. If large uncertainty exists, some representation of probabilistic

reasoning must be included in the model.

 TABLE 9.2. Simon ’ s Decision Process

 Phase I: Intelligence Defi ne problem

 Collect and synthesize data

 Phase II: Design Develop model

 Identify alternatives

 Evaluate alternatives

 Phase III: Choice Search choices

 Understand sensitivities

 Make decision(s)

 Phase IV: Implementation Implement change

 Resolve problem

262 DECISION ANALYSIS AND SUPPORT

 5. Stakeholder Objectives and Values. Decisions are subjective by nature, even

with objective data to support them. Stakeholders have values that will affect

the decision and, in turn, will be affected by the decision. The systems engineer

must determine how values will be represented. Some may, and should, be

represented within the model. Others can, and should, be represented outside

of the model. Keep in mind that a large part of stakeholder values involves their

risk tolerance. Individuals and organizations have different tolerances for risk.

The engineer will need to determine whether risk tolerance is embedded within

the model or handled separately.

 In summary, modeling is a powerful strategy for dealing with decisions in the face

of complexity and uncertainty. In broad terms, modeling is used to focus on particular

key attributes of a complex system and to illuminate their behavior and relationships

apart from less important system characteristics. The objective is to reveal critical

system issues by stripping away properties that are not immediately concerned with the

issue under consideration.

 9.2 MODELING THROUGHOUT SYSTEM DEVELOPMENT

 Models have been referred to and illustrated throughout this book. The purpose of the

next three sections is to provide a more organized and expanded picture of the use of

modeling tools in support of systems engineering decision making and related activities.

This discussion is intended to be a broad overview, with the goal of providing an aware-

ness of the importance of modeling to the successful practice of systems engineering.

The material is necessarily limited to a few selected examples to illustrate the most

common forms of modeling. Further study of relevant modeling techniques is strongly

recommended.

 Specifi cally, the next three sections will describe three concepts:

 • Modeling: describes a number of the most commonly used static representations

employed in system development. Many of these can be of direct use to systems

engineers, especially during the conceptual stage of development, and are worth

the effort of becoming familiar with their usage.

 • Simulation: discusses several types of dynamic system representations used in

various stages of system development. Systems engineers should be knowledge-

able with the uses, value, and limitations of simulations relevant to the system

functional behavior, and should actively participate in the planning and manage-

ment of the development of such simulations.

 • Trade - Off Analysis: describes the modeling approach to the analysis of alterna-

tives (AoA). Systems engineers should be expert in the use of trade - off analysis

and should know how to critically evaluate analyses performed by others. This

section also emphasizes the care that must be taken in interpreting the results of

analyses based on various models of reality.

MODELING FOR DECISIONS 263

 9.3 MODELING FOR DECISIONS

 As stated above, we use models as a prime means of coping with complexity, to help in

managing the large cost of developing, building, and testing complex systems. In this

vein, a model has been defi ned as “ a physical, mathematical, or otherwise logical rep-

resentation of a system entity, phenomenon, or process. ” We use models to represent

systems, or parts thereof, so we can examine their behavior under certain conditions.

After observing the model ’ s behavior within a range of conditions, and using those results

as an estimate of the system ’ s behavior, we can make intelligent decisions on a system

development, production, and deployment. Furthermore, we can represent processes,

both technical and business, via models to understand the potential impacts of imple-

menting those processes within various environments and conditions. Again, we gain

insight from the model ’ s behavior to enable us to make a more informed decision.

 Modeling only provides us with a representation of a system, its environment, and

the business and technical processes surrounding that system ’ s usage. The results of

modeling provide only estimates of a system ’ s behavior. Therefore, modeling is just

one of the four principal decision aids, along with simulation, analysis, and experimen-

tation. In many cases, no one technique is suffi cient to reduce the uncertainty necessary

to make good decisions.

 Types of Models

 A model of a system can be thought of as a simplifi ed representation or abstraction of

reality used to mimic the appearance or behavior of a system or system element. There

is no universal standard classifi cation of models. The one we shall use here was coined

by Blanchard and Fabrycky, who defi ne the following categories:

 • Schematic Models are diagrams or charts representing a system element or

process. An example is an organization chart or data fl ow diagram (DFD). This

category is also referred to as “ descriptive models. ”

 • Mathematical Models use mathematical notation to represent a relationship or

function. Examples are Newton ’ s laws of motion, statistical distributions, and

the differential equations modeling a system ’ s dynamics.

 • Physical Models directly refl ect some or most of the physical characteristics of

the actual system or system element under study. They may be scale models of

vehicles such as airplanes or boats, or full - scale mock - ups, such as the front

section of an automobile undergoing crash tests. In some cases, the physical

model may be an actual part of a real system, as in the previous example, or an

aircraft landing gear assembly undergoing drop tests. A globe of the earth

showing the location of continents and oceans is another example, as is a ball

and stick model of the structure of a molecule. Prototypes are also classifi ed as

physical models.

 The above three categories of models are listed in the general order of increasing reality

and decreasing abstraction, beginning with a system context diagram and ending with

264 DECISION ANALYSIS AND SUPPORT

a production prototype. Blanchard and Fabrycky also defi ne a category of “ analog

models, ” which are usually physical but not geometrical equivalents. For the purpose

of this section, they will be included in the physical model category.

 Schematic Models

 Schematic models are an essential means of communication in systems engineering, as

in all engineering disciplines. They are used to convey relationships in diagrammatic

form using commonly understood symbology. Mechanical drawings or sketches model

the component being designed; circuit diagrams and schematics model the design of

the electronic product.

 Schematic models are indispensable as a means for communication because they

are easily and quickly drawn and changed when necessary. However, they are also the

most abstract, containing a very limited view of the system or one of its elements.

Hence, there is a risk of misinterpretation that must be reduced by specifying the

meaning of any nonstandard and nonobvious terminology. Several types of schematic

models are briefl y described in the paragraphs below.

 Cartoons. While not typically a systems engineering tool, cartoons are a form of

pictorial model that illustrates some of the modeled object ’ s distinguishing character-

istics. First, it is a simplifi ed depiction of the subject, often to an extreme degree.

Second, it emphasizes and accentuates selected features, usually by exaggeration, to

convey a particular idea. Figure 2.2 , “ The ideal missile design from the viewpoint of

various specialists, ” makes a visual statement concerning the need for systems engi-

neering better than words alone can convey. An illustration of a system concept of

operations may well contain a cartoon of an operational scenario.

 Architectural Models. A familiar example of the use of modeling in the design

of a complex product is that employed by an architect for the construction of a home.

Given a customer who intends to build a house to his or her own requirements, an

architect is usually hired to translate the customer ’ s desires into plans and specifi cations

that will instruct the builder exactly what to build and, to a large extent, how. In this

instance, the architect serves as the “ home systems engineer, ” with the responsibility

to design a home that balances the desires of the homeowner for utility and aesthetics

with the constraints of affordability, schedule, and local building codes.

 The architect begins with several sketches based on conversations with the cus-

tomer, during which the architect seeks to explore and solidify the latter ’ s general

expectations of size and shape. These are pictorial models focused mainly on exterior

appearance and orientation on the site. At the same time, the architect sketches a number

of alternative fl oor plans to help the customer decide on the total size and approximate

room arrangements. If the customer desires to visualize what the house would more

nearly look like, the architect may have a scale model made from wood or cardboard.

This would be classifi ed as a physical model, resembling the shape of the proposed

house. For homes with complex roofl ines or unusual shapes, such a model may be a

good investment.

MODELING FOR DECISIONS 265

 The above models are used to communicate design information between the cus-

tomer and the architect, using the form (pictorial) most understandable to the customer.

The actual construction of the house is done by a number of specialists, as is the build-

ing of any complex system. There are carpenters, plumbers, electricians, masons, and

so on, who must work from a much more specifi c and detailed information that they

can understand and implement with appropriate building materials. This information is

contained in drawings and specifi cations, such as wiring layouts, air conditioning

routing, plumbing fi xtures, and the like. The drawings are models, drawn to scale and

dimensioned, using special industrial standard symbols for electrical, plumbing, and

other fi xtures. This type of model represents physical features, as do the pictorials of

the house, but is more abstract in the use of symbols in place of pictures of components.

The models serve to communicate detailed design information to the builders.

 System Block Diagrams. Systems are, of course, far more complex than con-

ventional structures. They also typically perform a number of functions in reacting to

changes in their environment. Consequently, a variety of different types of models are

required to describe and communicate their structure and behavior.

 One of the most simple models is the “ block diagram. ” Hierarchical block diagrams

have the form of a tree, with its branch structure representing the relationship between

components at successive layers of the system. The top level consists of a single block

representing the system; the second level consists of blocks representing the subsys-

tems; the third decomposes each subsystem into the components, and so on. At each

level, lines connect the blocks to their parent block. Figure 9.2 shows a generic system

block diagram of a system composed of three subsystems and eight components.

 The block diagram is seen to be a very abstract model, focusing solely on the units

of the system structure and their physical relationships. The simple rectangular blocks

are strictly symbolic, with no attempt to depict the physical form of the system ele-

ments. However, the diagram does communicate very clearly an important type of

relationship among the system elements, as well as identify the system ’ s organizing

 Figure 9.2. Traditional hierarchical block diagram.

System

Subsystem 2Subsystem 1 Subsystem 3

C t C t C t C t C tComponent Component Component
1.1 1.2 1.3

Component
2.1

Component
2.2

Component
3.1

Component
3.2

Component
3.3

266 DECISION ANALYSIS AND SUPPORT

principle. More complex interactions across the subsystems and components are left to

more detailed diagrams and descriptions. The interactions among blocks may be rep-

resented by labeling the connecting lines.

 System Context Diagrams. Another useful model in system design is the

context diagram, which represents all external entities that may interact with a system,

either directly or indirectly. We have already seen the context diagram in Figure 3.2 .

Such a diagram pictures the system at the center, with no details of its interior structure,

surrounded by all its interacting systems, environments, and activities. The objective

of a system context diagram is to focus attention on external factors and events that

should be considered in developing a complete set of system requirements and con-

straints. In so doing, it is necessary to visualize not only the operational environment

but also the stages leading up to operations, such as installation, integration, and opera-

tional evaluation.

 Figure 9.3 shows a context diagram for the case of a passenger airliner. The model

represents the external relationships between the airliner and various external entities.

The system context diagram is a useful starting point for describing and defi ning the

system ’ s mission and operational environment, showing the interaction of a system with

all external entities that may be relevant to its operation. It also provides a basis for

formulating system operational scenarios that represent the different conditions under

which it must be designed to operate. In commercial systems, the “ enterprise diagram ”

also shows all the system ’ s external inputs and outputs but also usually includes a

representation of the related external entities.

 Figure 9.3. Context diagram of a passenger aircraft.

NavigationalAircraft Status

Flight Crew

Aids

Commands and Controls

Location
Environment Info
Voice Comms

Flight
Attendants

Location

Controls Status

Voice Comms
Instructions

Luggage
Entertainment
Lighting/Air Flow

Status
Provisions

Supplies
Voice C

Controls
Waste
Voice Communications

Weather
Flight medium

Passenger

Aircraft
Passengers Environment

Luggage
Entertainment Controls
Comfort Controls

Communication Other Aircraft

Exhaust
Noise

Fuel

Provisions
Supplies

Elec. Power
Voice Comms

Waste
Aircraft Status
Voice Comms

Parts

Diagnostics

Fuel Source Airport Services
Maintenance

Services

MODELING FOR DECISIONS 267

 Functional Flow Block Diagrams (FFBD s). The models discussed previously

deal primarily with static relationships within the system ’ s physical structure. The more

signifi cant characteristics of systems and their components are related to how they

behave in response to changes in the environment. Such behavior results from the func-

tions that a system performs in response to certain environmental inputs and constraints.

Hence, to model system behavior, it is necessary to model its principal functions, how

they are derived, and how they are related to one another. The most common form of

functional model is called the FFBD.

 An example of an FFBD is shown in Figure 9.4 . The fi gure shows the functional

fl ow through an air defense system at the top - level functions of detect, control, and

engage, and at the second - level functions that make up each of the above. Note the

numbering system of the functional blocks that ties them together. Note also that the

names in the blocks represent functions, not physical entities, and thus, all begin with

a verb instead of a noun. The arrowheads on the lines between blocks in an FFBD

indicate the fl ow of control and, in this case, also the fl ow of information. Keep in mind

that fl ow of control does not necessarily equate with fl ow of information in all

cases. The identity of the functions fl owing between the blocks may be denoted on the

FFBD as an optional feature but is not expected to be complete as it would be in a

software DFD.

 In the above example, the physical implementation of the functional blocks is

not represented and may be subject to considerable variation. From the nature of the

 Figure 9.4. Air defense functional fl ow block diagram.

Air Defense Systems

Detect Control Engage
0.30.20.1

Enemy
Threat

Destroyed
Threat

Detect

Control

Search
Targets

Detect
Target

Track
Target

Transmit
Track Data

Enemy
Threat

To Control

4.13.12.11.1

Identify
Threat

Evaluate
Threat

Plan
Engagement

Assign
Weapon

To Engage

2.42.32.22.1

Engage

3.1 3.2 3.3 3.4
Program
Missile

Load
Missile

Launch
Missile

Guide
Missile

Destroyed
Threat

268 DECISION ANALYSIS AND SUPPORT

functions, however, it may be inferred that a radar installation may be involved in the

detection function, along with very considerable software; that the control function is

mostly software with operator displays; and that the engage function is largely hard-

ware, such as guns, missiles, or aircraft.

 A valuable application of functional fl ow diagrams was developed by the then

Radio Corporation of America, Moorestown Division. Named the functional fl ow dia-

grams and descriptions (F 2 D 2), the method is used to diagram several functional levels

of the system hierarchy, from the system level down to subcomponents. The diagrams

use distinctive symbols to identify hardware, software, and people functions, and show

the data that fl ow between system elements. An important use of F 2 D 2 diagrams is in

a “ war room ” or storyboard arrangement, where diagrams for all subsystems are

arranged on the walls of a conference room and linked to create a diagram of the entire

system. Such a display makes an excellent communication and management tool during

the system design process.

 DFD s . DFDs are used in the software structural analysis methodology to model

the interactions among the functional elements of a computer program. DFDs have also

been used to represent the data fl ow among physical entities in systems consisting of

both hardware and software components. In either case, the labels represent data fl ow

and are labeled with a description of the data traversing the interface.

 Integrated Defi nition Language 0 (IDEF 0) Diagrams. IDEF0 is a standard

representation of system activity models, similar to software DFDs, and was described

in Chapter 8 . Figure 8.3 depicts the rules for depicting an activity. IDEF0 is widely

used in the modeling of complex information systems. As in FFBD and F 2 D 2 diagrams,

the functional blocks are rectangular and the sides of the activity boxes have a unique

function. Processing inputs always enter from the left, controls from the top, and

mechanisms or resources from the bottom; outputs exit on the right. The name of each

block starts with a vowel and carries a label identifying its hierarchical location.

 Functional Flow Process Diagrams (FFPD). The functional fl ow diagrams

described earlier model the functional behavior of a system or a system product.

Such diagrams are equally useful in modeling processes, including those involved

in systems engineering. Examples of FFPDs are found in every chapter. The system

life cycle model is a prime example of a process FFPD. In Chapter 4 , Figures 4.1 , 4.3 ,

and 4.4 defi ne the fl ow of system development through the defi ned stages and phases

of the system life cycle. In Chapters 5 – 8 , the fi rst fi gures show the functional inputs

and outputs between the corresponding life cycle phase and those immediately

adjoining.

 The systems engineering method is modeled in Chapter 4 , Figure 4.10 , and in

greater detail in Figure 4.11 . The functional blocks in this case are the principal pro-

cesses that constitute the systems engineering method. Inside each block is a functional

fl ow diagram that represents the functions performed by the block. The inputs coming

from outside the blocks represent the external factors that contribute to the respective

MODELING FOR DECISIONS 269

processes. Chapters 5 – 8 contain similar functional fl ow diagrams to illustrate the pro-

cesses that take place during each phase of system development.

 FFPDs are especially useful as training aids for production workers by resolving

complex processes into their elementary components in terms readily understandable

by the trainees. All process diagrams have a common basic structure, which consists

of three elements: input → processing → output.

 Trigonal System Models. In attempting to understand the functioning of

complex systems, it is useful to resolve them into subsystems and components that

individually are more simple to understand. A general method that works well in most

cases is to resolve the system and each of its subsystems into three basic components:

 1. sensing or inputting signals, data, or other media that the system element oper-

ates on;

 2. processing the inputs to deduce an appropriate reaction to the inputs; and

 3. acting on the basis of the instructions from the processing element to implement

the system element ’ s response to the input.

 In an example of a system simulation described in the previous subsection, an air

defense system was shown to be composed of three functions, namely, detect, control,

and engage (see Fig. 9.4). The detect function is seen to correspond to the input portion,

control (or analyze and control response) to the processing portion, and engage to the

response action portion.

 The input – processing – output segmentation can then be applied to each of the

subsystems themselves. Thus, in the air defense system example, the detect function

can be further resolved into the radar, which senses the refl ection from the enemy

airplane or missile, the radar signal processor, which resolves the target refl ection from

interfering clutter and jamming, and the automatic detection and track software, which

correlates the signal with previous scans to form a track and calculate its coordinates

and velocity vector for transmission to the control subsystem. The other two subsystems

may be similarly resolved.

 In many systems, there is more than a single input. For example, the automobile

is powered by fuel but is steered by the driver. The input – processing – output analysis

will produce two or more functional fl ows: tracing the fuel input will involve the fuel

tank and fuel pump, which deliver the fuel, the engine, which converts (processes) the

fuel into torque, and the wheels, which produce traction on the road surface to propel

the car. A second set of components are associated with steering the car, in which the

sensing and decision is accomplished by the driver, with the automobile executing the

actual turn in response to steering wheel rotation.

 Modeling Languages. The schematic models described above together were

developed relatively independently. Thus, although they have been in use for several

decades, they are used according to the experience of the engineer. However, these

models do have certain attributes in common. They are, by and large, activity focused.

270 DECISION ANALYSIS AND SUPPORT

They communicate functionality of systems, whether that is of the form of activities,

control, or data. Even block diagrams representing physical entities include interfaces

among the entities showing fl ow of materials, energy, or data. Because of their age

(basic block diagrams have been around for over 100 years), we tend to categorize

these models as “ functional ” or “ traditional. ”

 When software engineering emerged as a signifi cant discipline within system

development, a new perspective was presented to the engineering community: object -

 oriented analysis (OOA). Rather than activity based, OOA presented concepts and

models that were object based, where object is defi ned in very broad terms. Theoretically,

anything can be an object. As described in Chapter 8 , Unifi ed Modeling Language

(UML) is now a widely used modeling language for support of systems engineering

and architecting.

 Mathematical Models

 Mathematical models are used to express system functionality and dependencies in the

language of mathematics. They are most useful where system elements can be isolated

for purposes of analysis and where their primary behavior can be represented by well -

 understood mathematical constructs. If the process being modeled contains random

variables, simulation is likely to be a preferable approach. An important advantage of

mathematical models is that they are widely understood. Their results have inherent

credibility, provided that the approximations made can be shown to be of secondary

importance. Mathematical models include a variety of forms that represent determin-

istic (not random) functions or processes. Equations, graphs, and spreadsheets, when

applied to a specifi c system element or process, are common examples.

 Approximate Calculations. Chapter 1 contains a section entitled The Power of

Systems Engineering, which cites the critical importance of the use of approximate

(“ back of the envelope ”) calculations to the practice of systems engineering. The ability

to perform “ sanity checks ” on the results of complex calculations or experiments is of

inestimable value in avoiding costly mistakes in system development.

 Approximate calculations represent the use of mathematical models, which are

abstract representations of selected functional characteristics of the system element

being studied. Such models capture the dominant variables that determine the main

features of the outcome, omitting higher - order effects that would unduly complicate

the mathematics. Thus, they facilitate the understanding of the primary functionality of

the system element.

 As with any model, the results of approximate calculations must be interpreted

with full knowledge of their limitations due to the omission of variables that may be

signifi cant. If the sanity check deviates signifi cantly from the result being checked, the

approximations and other assumptions should be examined before questioning the

original result.

 In developing the skill to use approximate calculations, the systems engineer must

make the judgment as to how far to go into the technical fundamentals in each specifi c

case. One alternative is to be satisfi ed with an interrogation of the designers who made

MODELING FOR DECISIONS 271

the original analysis. Another is to ask an expert in the discipline to make an indepen-

dent check. A third is to apply the systems engineer ’ s own knowledge, to augment it

by reference to a handbook or text, and to carry out the approximate calculation

personally.

 The appropriate choice among these alternatives is, of course, situation dependent.

However, it is advisable that in selected critical technical areas, the systems engineer

becomes suffi ciently familiar with the fundamentals to feel comfortable in making

independent judgments. Developing such skills is part of the systems engineer ’ s special

role of integrating multidisciplinary efforts, assessing system risks, and deciding the

areas that require analysis, development, or experimentation.

 Elementary Relationships. In every fi eld of engineering and physics, there are

some elementary relationships with which the systems engineer should be aware, or

familiar. Newton ’ s laws are applicable in all vehicular systems. In the case of structural

elements under stress, it is often useful to refer to relationships involving strength and

elastic properties of beams, cylinders, and other simple structures. With electronic

components, the systems engineer should be familiar with the elementary properties of

electronic circuits. There are “ rules of thumb ” in most technical fi elds, which are usually

based on elementary mathematical relationships.

 Statistical Distributions. Every engineer is familiar with the Gaussian (normal)

distribution function characteristic of random noise and other simple natural effects.

Some other distribution functions that are of interest include the Rayleigh distribution,

which is valuable in analyzing signals returned from radar clutter, the Poisson distribu-

tion, the exponential distribution, and the binomial distribution; all of these obey simple

mathematical equations.

 Graphs. Models representing empirical relationships that do not correspond to

explicit mathematical equations are usually depicted by graphs. Figure 2.1 a in Chapter

 2 is a graph illustrating the typical relationship between performance and the cost to

develop it. Such models are mainly used to communicate qualitative concepts, although

test data plotted in the form of a graph can show a quantitative relationship. Bar charts,

such as one showing the variations in production by month, or the cost of alternative

products, are also models that serve to communicate relationships in a more effective

manner than by a list of numbers.

 Physical Models

 Physical models directly refl ect some or most of the physical characteristics of an actual

system or system element under study. In that sense, they are the least abstract and

therefore the most easily understood type of modeling. Physical models, however, are

by defi nition simplifi cations of the modeled articles. They may embody only a part of

the total product; they may be scaled - down versions or developmental prototypes. Such

models have multiple uses throughout the development cycle, as illustrated by the

examples described next.

272 DECISION ANALYSIS AND SUPPORT

 Scale Models. These are (usually) small - scale versions of a building, vehicle, or

other system, often used to represent the external appearance of a product. An example

of the engineering use of scale models is the testing of a model of an air vehicle in a

wind tunnel or of a submersible in a water tunnel or tow tank.

 Mock - Ups. Full - scale versions of vehicles, parts of a building, or other structures

are used in later stages of development of systems containing accommodation for

operators and other personnel. These provide realistic representations of human – system

interfaces to validate or possibly to modify their design prior to a detailed design of

the interfaces.

 Prototypes. Previous chapters have discussed the construction and testing of

development, engineering, and product prototypes, as appropriate to the system in

hand. These also represent physical models of the system, although they possess most

of the properties of the operational system. However, strictly speaking, they are still

models.

 Computer - based tools are being increasingly used in place of physical models such

as mock - ups and even prototypes. Such tools can detect physical interferences and

permit many engineering tasks formerly done with physical models to be accomplished

with computer models.

 9.4 SIMULATION

 System simulation is a general type of modeling that deals with the dynamic behavior

of a system or its components. It uses a numerical computation technique for conduct-

ing experiments with a software model of a physical system, function, or process.

Because simulation can embody the physical features of the system, it is inherently less

abstract than many forms of modeling discussed in the previous section. On the other

hand, the development of a simulation can be a task of considerable magnitude.

 In the development of a new complex system, simulations are used at nearly every

step of the way. In the early phases, the characteristics of the system have not yet been

determined and can only be explored by modeling and simulation. In the later phases,

estimates of their dynamic behavior can usually be obtained earlier and more economi-

cally by using simulations than by conducting tests with hardware and prototypes. Even

when engineering prototypes are available, fi eld tests can be augmented by using simu-

lations to explore system behavior under a greater variety of conditions. Simulations

are also used extensively to generate synthetic system environmental inputs for test

purposes. Thus, in every phase of system development, simulations must be considered

as potential development tools.

 There are many different types of simulations and one must differentiate static from

dynamic simulations, deterministic from stochastic (containing random variables), and

discrete from continuous. For the purposes of relating simulations to their application

to systems engineering, this section groups simulations into four categories: opera-

tional, physical, environmental, and virtual reality simulation. All of these are either

SIMULATION 273

wholly or partly software based because of the versatility of software to perform an

almost infi nite variety of functions.

 Computer - based tools also perform simulations at a component or subcomponent

level, which will be referred to as engineering simulation.

 Operational Simulation

 In system development, operational simulations are primarily used in the conceptual

development stage to help defi ne operational and performance requirements, explore

alternative system concepts, and help select a preferred concept. They are dynamic,

stochastic, and discrete event simulations. This category includes simulations of opera-

tional systems capable of exploring a wide range of scenarios, as well as system

variants.

 Games

 The domain of analyzing operational mission areas is known as operations analysis.

This fi eld seeks to study operational situations characteristic of a type of commerce,

warfare, or other broad activity and to develop strategies that are most suitable to

achieving successful results. An important tool of operations analysis is the use of

games to evaluate experimentally the utility of different operational approaches. The

military is one of the organizations that relies on games, called war games, to explore

operational considerations.

 Computer - aided games are examples of operational simulations involving people

who control a simulated system (blue team) in its engagement with the simulated

adversary (red team), with referees observing both sides of the action and evaluating

the results (white team). In business games, the two sides represent competitors. In

other games, the two teams can represent adversaries.

 The behavior of the system(s) involved in a game is usually based on that of exist-

ing operational systems, with such extensions as may be expected to be possible in the

next generation of the system. These may be implemented by variable parameters to

explore the effect of different system features on their operational capabilities.

 Gaming has several benefi ts. First, it enables the participants to gain a clearer

understanding of the operational factors involved in various missions, as well as of

their interaction with different features of the system, which translates into experience

in operational decision making. Second, by varying key system features, the partici-

pants can explore system improvements that may be expected to enhance their

effectiveness. Third, through variation in operational strategy, it may be possible to

develop improved operational processes, procedures, and methods. Fourth, analysis of

the game results may provide a basis for developing a more clearly stated and prioritized

set of operational requirements for an improved system than could be derived

otherwise.

 Commercial games are utilized by large corporations to identify and assess

business strategies over a single and multiple business cycles within a set of plausible

economic scenarios. Although these games do not typically predict technological

274 DECISION ANALYSIS AND SUPPORT

breakthroughs, they can identify “ breakthrough ” technologies that could lead to para-

digm shifts in an industry.

 Military organizations conduct a variety of games for multiple purposes such as

assessing new systems within a combat situation, analyzing a new concept for transport-

ing people and material, or evaluating a new technology to detect stealthy targets.

The games are facilitated by large screen displays and a bank of computers. The geo-

graphic displays are realistic, derived from detailed maps of the globe available on the

Internet and from military sources. A complex game may last from a day to several

weeks. The experience is highly enlightening to all participants. Short of actual opera-

tional experience, such games are the best means for acquiring an appreciation of the

operational environment and mission needs, which are important ingredients in systems

engineering.

 Lastly, government organizations and alliances conduct geopolitical games to

assess international engagement strategies. These types of games tend to be complex

as the dimensions of interactions can become quite large. For example, understanding

national reactions to a country ’ s policy actions involves diplomatic, intelligence, mili-

tary, and economic (DIME) ramifi cations. Also, because interactions are complex,

standard simulation types may not be adequate to capture the realm of actions that a

nation might take. Therefore, sophisticated simulations are developed specifi cally to

model various components of a national entity. These components are known as agents .

 System Effectiveness Simulation

 During the concept exploration and concept defi nition phases of system development,

the effort is focused on the comparative evaluation of different system capabilities and

architectures. The objective is fi rst to defi ne the appropriate system performance

requirements and then to select the preferred system concept to serve as the basis for

development. A principal vehicle for making these decisions is the use of computer

system effectiveness simulations, especially in the critical activity of selecting a pre-

ferred system concept during concept defi nition. At this early point in the system life

cycle, there is neither time nor resources to build and test all elements of the system.

Further, a well - designed simulation can be used to support the claimed superiority of

the system concept recommended to the customer. Modern computer display techniques

can present system operation in realistic scenarios.

 The design of a simulation of a complex system that is capable of providing a basis

for comparing the effectiveness of candidate concepts is a prime systems engineering

task. The simulation itself is likely to be complex in order to refl ect all the critical

performance factors. The evaluation of system performance also requires the design

and construction of a simulation of the operational environment that realistically chal-

lenges the operational system ’ s capabilities. Both need to be variable to explore differ-

ent operational scenarios, as well as different system features.

 A functional block diagram of a typical system effectiveness simulation is illus-

trated in Figure 9.5 . The subject of the simulation is an air defense system, which is

represented by the large rectangle in the center containing the principal subsystems

detect, control, and engage. At the left is the simulation of the enemy force, which

SIMULATION 275

contains a scenario generator and an attack generator. At the right is the analysis sub-

system, which assesses the results of the engagement against an expected outcome or

against results from other engagements. The operator interface, shown at the bottom,

is equipped to modify the attacking numbers and tactics and also to modify the perfor-

mance of these system elements to determine the effects on system effectiveness.

 The size and direction of system effectiveness variations resulting from changes

in the system model should be subjected to sanity checks before acceptance. Such

checks involve greatly simplifi ed calculations of the system performance and are

best carried out by analysts not directly responsible for either the design or the

simulation.

 Mission Simulation

 The objective of the simulations referred to as mission simulations is focused on the

development of the operational modes of systems rather than on the development of

the systems themselves. Examples of such simulations include the conduct of air traffi c

control, the optimum trajectories of space missions, automobile traffi c management,

and other complex operations.

 Figure 9.5. System effectiveness simulation.

Attack Data

Analyze
Attacks

Defense System Simulation

Generate
Attack

Control
System

Analyze
Engagement

Generate
Attack

Detect
Attacks

Engage
Attacks

Compute

Scenario Effectiveness

Control
Simulations

Effectiveness
Analysis

Analysis
Results

Controll
ScenarioAttack

Simulation

Analyst

276 DECISION ANALYSIS AND SUPPORT

 For example, space missions to explore planets, asteroids, and comets are preceded

by exhaustive simulations of the launch, orbital mechanics, terminal maneuvers, instru-

ment operations, and other vital functions that must be designed into the spacecraft and

mission control procedures. Before design begins, an analytical foundation using simu-

lation techniques is developed.

 Such simulations model the vehicles and their static and dynamic characteristics,

the information available from various sensors, and signifi cant features of the environ-

ment and, if appropriate, present these items to the system operator ’ s situation displays

mimicking what they would see in real operations. The simulations can be varied to

present a variety of possible scenarios, covering the range of expected operational situ-

ations. Operators may conduct “ what if ” experiments to determine the best solution,

such as a set of rules, a safe route, an optimum strategy, or whatever the operational

requirements call for.

 Physical Simulation

 Physical simulations model the physical behavior of system elements. They are primar-

ily used in system development during the engineering development stage to support

systems engineering design. They permit the conduct of simulated experiments that can

answer many questions regarding the fabrication and testing of critical components.

They are dynamic, deterministic, and continuous.

 The design of all high - performance vehicles — land, sea, air, or space — depends

critically on the use of physical simulations. Simulations enable the analyst and designer

to represent the equations of motion of the vehicle, the action of external forces, such

as lift and drag, and the action of controls, whether manual or automated. As many

experiments as may be necessary to study the effects of varying conditions or design

parameters may be conducted. Without such tools, the development of modern aircraft

and spacecraft would not have been practicable. Physical simulations do not eliminate

the need for exhaustive testing, but they are capable of studying a great variety of situ-

ations and of eliminating all but a few alternative designs. The savings in development

time can be enormous.

 Examples: Aircraft, Automobiles, and Space Vehicles. Few technical prob-

lems are as complicated as the design of high - speed aircraft. The aerodynamic forces

are quite nonlinear and change drastically in going between subsonic and supersonic

regimes. The stresses on airplane structures can be extremely high, resulting in fl exure

of wings and control surfaces. There are fl ow interference effects between the wings

and tail structure that depend sharply on altitude, speed, and fl ight attitude. Simulation

permits all of these forces and effects to be realistically represented in six - degree - of -

 freedom models (three position and three rotation coordinates).

 The basic motions of an automobile are, of course, far simpler than those of an

aircraft. However, modern automobiles possess features that call on very sophisticated

dynamic analysis. The control dynamics of antilock brakes are complex and critical, as

are those of traction control devices. The action of airbag deployment devices is even

more critical and sensitive. Being intimately associated with passenger safety, these

SIMULATION 277

devices must be reliable under all expected conditions. Here again, simulation is an

essential tool.

 Without modern simulation, there would be no space program as we know it. The

task of building a spacecraft and booster assembly that can execute several burns to

put the spacecraft into orbit, that can survive launch, deploy solar panels, and antennae,

control its attitude for reasons of illumination, observation, or communication, and

perform a series of experiments in space would simply be impossible without a variety

of simulations. The international space station program achieved remarkable sustain-

ability as each mission was simulated and rehearsed to near perfection.

 Hardware - in - the - Loop Simulation

 This is a form of physical simulation in which actual system hardware is coupled with

a computer - driven simulation. An example of such a simulation is a missile homing

guidance facility. For realistic experiments of homing dynamics, such a facility is

equipped with microwave absorbing materials, movable radiation sources, and actual

seeker hardware. This constitutes a dynamic “ hardware - in - the - loop ” simulation, which

realistically represents a complex environment.

 Another example of a hardware - in - the - loop simulation is a computer - driven motion

table used in the development testing of inertial components and platforms. The table

is caused to subject the components to movement and vibration representing the motion

of its intended platform, and is instrumented to measure the accuracy of the resulting

instrument output. Figure 9.6 shows a developmental inertial platform mounted on a

 Figure 9.6. Hardware - in - the - loop simulation.

Inertial
Components

Inertial Data

Table Drive
Control

Motion

Table
Drive

Power

Motion Data

Comparator

Control Results

Motion

Simulation

Operator

278 DECISION ANALYSIS AND SUPPORT

motion table, with a motor drive controlled by an operator and the feedback from the

platform. A motion analyzer compares the table motion with the inertial platform

outputs.

 Engineering Simulation

 At the component and subcomponent level, there are engineering tools that are exten-

sions of mathematical models, described in the previous section. These are primarily

used by design specialists, but their capabilities and limitations need to be understood

by systems engineers in order to understand their proper applications.

 Electronic circuit design is no longer done by cut - and - try methods using bread-

boards. Simulators can be used to design the required functionality, test it, and modify

it until the desired performance is obtained. Tools exist that can automatically document

and produce a hardware version of the circuit.

 Similarly, the structural analysis of complex structures such as buildings and

bridges can be done with the aid of simulation tools. This type of simulation can

accommodate the great number of complicated interactions among the mechanical

elements that make up the structure, which are impractical to accomplish by analysis

and testing.

 Development of the Boeing 777 Aircraft

 As noted previously, virtually all of the structural design of the Boeing 777 was done

using computer - based modeling and simulation. One of the aircraft ’ s chief reasons for

success was the great accuracy of interface data that allowed the various portions of

the aircraft to be designed and built separately and then to be easily integrated. This

technology set the stage for the Boeing 797, the Dreamliner.

 The above techniques have literally revolutionized many aspects of hardware

design, development, testing, and manufacture. It is essential for systems engineers

working in these areas to obtain a fi rsthand appreciation of the application and capabil-

ity of engineering simulation to be able to lead effectively the engineering effort.

 Environmental Simulation

 Environmental simulations are primarily used in system development during engineer-

ing test and evaluation. They are a form of physical simulation in which the simulation

is not of the system but of elements of the system ’ s environment. The majority of such

simulations are dynamic, deterministic, and discrete events.

 This category is intended to include simulation of (usually hazardous) operating

environments that are diffi cult or unduly expensive to provide for validating the design

of systems or system elements, or that are needed to support system operation. Some

examples follow.

 Mechanical Stress Testing. System or system elements that are designed to

survive harsh environments during their operating life, such as missiles, aircraft systems,

SIMULATION 279

spacecraft, and so on, need to be subjected to stresses simulating such conditions. This

is customarily done with mechanical shake tables, vibrators, and shock testing.

 Crash Testing. To meet safety standards, automobile manufacturers subject their

products to crash tests, where the automobile body is sacrifi ced to obtain data on the

extent to which its structural features lessen the injury suffered by the occupant. This

is done by use of simulated human occupants, equipped with extensive instrumentation

that measures the severity of the blow resulting from the impact. The entire test and

test analysis are usually computer driven.

 Wind Tunnel Testing. In the development of air vehicles, an indispensable tool

is an aerodynamic wind tunnel. Even though modern computer programs can model

the forces of fl uid fl ow on fl ying bodies, the complexity of the behavior, especially near

the velocity of sound, and interactions between different body surfaces often require

extensive testing in facilities that produce controlled airfl ow conditions impinging on

models of aerodynamic bodies or components. In such facilities, the aerodynamic

model is mounted on a fi xture that measures forces along all components and is com-

puter controlled to vary the model angle of attack, control surface defl ection, and other

parameters, and to record all data for subsequent analysis.

 As noted in the discussion of scale models, analogous simulations are used in the

development of the hulls and steering controls of surface vessels and submersibles,

using water tunnels and tow tanks.

 Virtual Reality Simulation

 The power of modern computers has made it practical to generate a three - dimensional

visual environment of a viewer that can respond to the observer ’ s actual or simulated

position and viewing direction in real time. This is accomplished by having all the

coordinates of the environment in the database, recomputing the way it would appear

to the viewer from his or her instantaneous position and angle of sight, and projecting

it on a screen or other display device usually mounted in the viewer ’ s headset. Some

examples of the applications of virtual reality simulations are briefl y described next.

 Spatial Simulations. A spatial virtual reality simulation is often useful when it

is important to visualize the interior of enclosed spaces and the connecting exits and

entries of those spaces. Computer programs exist that permit the rapid design of these

spaces and the interior furnishings. A virtual reality feature makes it possible for an

observer to “ walk ” through the spaces in any direction. This type of model can be useful

for the preliminary designs of houses, buildings, control centers, storage spaces, parts

of ships, and even factory layouts. An auxiliary feature of this type of computer model

is the ability to print out depictions in either two - or three - dimensional forms, including

labels and dimensions.

 Spatial virtual simulations require the input to the computer of a detailed three -

 dimensional description of the space and its contents. Also, the viewing position is input

into the simulation either from sensors in the observer ’ s headset or directed with a

280 DECISION ANALYSIS AND SUPPORT

joystick, mouse, or other input device. The virtual image is computed in real time and

projected either to the observer ’ s headset or on a display screen. Figure 9.7 illustrates

the relationship between the coordinates of two sides of a room with a bookcase on

one wall, a window on the other, and a chair in the corner, and a computer - generated

image of how an observer facing the corner would see it.

 Video Games. Commercial video games present the player with a dynamic

scenario with moving fi gures and scenery that responds to the player ’ s commands. In

many games, the display is fashioned in such a way that the player has the feeling of

being inside the scene of the action rather than of being a spectator.

 Battlefi eld Simulation. A soldier on a battlefi eld usually has an extremely

restricted vision of the surroundings, enemy positions, other forces, and so on. Military

departments are actively seeking ways to extend the soldier ’ s view and knowledge by

integrating the local picture with situation information received from other sources

through communication links. Virtual reality techniques are expected to be one of the

key methods of achieving these objectives of situational awareness.

 Development of System Simulations

 As may be inferred from this section, the several major simulations that must be con-

structed to support the development of a complex system are complex in their own

 Figure 9.7. Virtual reality simulation.

Plan View Observer’s View

WindowChair

Book
Case

Field
of View

Observer

3-D Room
Coordinates

Position,
Direction of

View
Projected

Image

Stored
Coordinates

Computed
Observer

Image

Virtual Reality Software

SIMULATION 281

right. System effectiveness simulations have to not only simulate the system functional-

ity but also to simulate realistically the system environment. Furthermore, they have to

be designed so that their critical components may be varied to explore the performance

of alternative confi gurations.

 In Chapter 5 , modeling and simulation were stated to be an element of the systems

engineering management plan. In major new programs, the use of various simulations

may well account for a substantial portion of the total cost of the system development.

Further, the decisions on the proper balance between simulation fi delity and complexity

require a thorough understanding of the critical issues in system design, technical and

program risks, and the necessary timing for key decisions. In the absence of careful

analysis and planning, the fi delity of simulations is likely to be overspecifi ed, in an

effort to prevent omissions of key parameters. The result of overambitious fi delity is

the extension of project schedules and exceedance of cost goals. For these reasons, the

planning and management of the system simulation effort should be an integral part of

systems engineering and should be refl ected in management planning.

 Often the most effective way to keep a large simulation software development

within bounds is to use iterative prototyping, as described in Chapter 11 . In this

instance, the simulated system architecture is organized as a central structure that per-

forms the basic functions, which is coupled to a set of separable software modules

representing the principal system operational modes. This permits the simulation to be

brought to limited operation quickly, with the secondary functions added, as time and

effort are available.

 Simulation Verifi cation and Validation

 Because simulations serve an essential and critical function in the decision making

during system development, it is necessary that their results represent valid conclusions

regarding the predicted behavior of the system and its key elements. To meet this cri-

terion, it must be determined that they accurately represent the developer ’ s conceptual

description and specifi cation (verifi cation) and are accurate representations of the real

world, to the extent required for their intended use (validation).

 The verifi cation and validation of key simulations must, therefore, be an integral

part of the total system development effort, again under the direction of systems engi-

neering. In the case of new system effectiveness simulations, which are usually complex,

it is advisable to examine their results for an existing (predecessor) system whose

effectiveness has been previously analyzed. Another useful comparison is with the

operation of an older version of the simulation, if one exists.

 Every simulation that signifi cantly contributes to a system development should also

be documented to the extent necessary to describe its objectives, performance specifi ca-

tions, architecture, concept of operation, and user modes. A maintenance manual and

user guide should also be provided.

 The above actions are sometimes neglected to meet schedules and in competition

with other activities. However, while simulations are not usually project deliverables,

they should be treated with equal management attention because of their critical role

in the success of the development.

282 DECISION ANALYSIS AND SUPPORT

 Even though a simulation has been verifi ed and validated, it is important to

remember that it is necessarily only a model, that is, a simplifi cation and approximation

to reality. Thus, there is no such thing as an absolutely validated simulation. In particu-

lar, it should only be used for the prescribed application for which it has been tested.

It is the responsibility of systems engineering to circumscribe the range of valid

applicability of a given simulation and to avoid unwarranted reliance on the accuracy

of its results.

 Despite these cautions, simulations are absolutely indispensable tools in the devel-

opment of complex systems.

 9.5 TRADE - OFF ANALYSIS

 Performing a trade - off is what we do whenever we make a decision, large or small.

When we speak, we subconsciously select words that fi t together to express what we

mean, instinctively rejecting alternative combinations of words that might have served

the purpose, but not as well. At a more purposeful level, we use trade - offs to decide

what to wear to a picnic or what fl ight to take on a business trip. Thus, all decision

processes involve choices among alternative courses of action. We make a decision by

comparing the alternatives against one another and by choosing the one that provides

the most desirable outcome.

 In the process of developing a system, hundreds of important systems engineering

decisions have to be made, many of them with serious impacts on the potential success

of the development. Those cases in which decisions have to be approved by manage-

ment or by the customer must be formally presented, supported by evidence attesting

to the thoroughness and objectivity of the recommended course of action. In other cases,

the decision only has to be convincing to the systems engineering team. Thus, the

trade - off process needs to be tailored to its ultimate use. To differentiate a formal trade -

 off study intended to result in a recommendation to higher management from an infor-

mal decision aid, the former will be referred to as a “ trade - off analysis ” or a “ trade

study, ” while the latter will be referred to as simply a “ trade - off. ” The general principles

are similar in both cases, but the implementation is likely to be considerably different,

especially with regard to documentation.

 Basic Trade - Off Principles

 The steps in a trade - off process can be compared to those characterizing the systems

engineering methodology, as used in the systems concept defi nition phase for selecting

the preferred system concept to meet an operational objective. The basic steps in the

trade - off process at any level of formality are the following (corresponding steps in the

systems engineering methodology are shown in parentheses).

 Defi ning the Objective (Requirements Analysis). The trade - off process

must start by defi ning the objectives for the trade study itself. This is carried out by

identifying the requirements that the solution (i.e., the result of the decision) must fulfi ll.

TRADE-OFF ANALYSIS 283

The requirements are best expressed in terms of measures of effectiveness (MOE), as

quantitatively as practicable, to characterize the merits of a candidate solution.

 Identifi cation of Alternatives (Concept Exploration). To provide a set of

alternative candidates, an effort must be made to identify as many potential courses of

action as will include all promising candidate alternatives. Any that fail to comply with

an essential requirement should be rejected.

 Comparing the Alternatives (Concept Defi nition). To determine the rela-

tive merits of the alternatives, the candidate solutions should be compared with one

another with respect to each of their MOEs. The relative order of merit is judged by

the cumulative rating of all the MOEs, including a satisfactory balance among the dif-

ferent MOEs.

 Sensitivity Analysis (Concept Validation). The results of the process should

be validated by examining their sensitivity to the assumptions. MOE prioritization and

candidate ratings are varied within limits refl ecting the accuracy of the data. Candidates

rated low in only one or two MOEs should be reexamined to determine whether this

result could be changed by a relatively straightforward modifi cation. Unless a single

candidate is clearly superior, and the result is stable to such variations, further study

should be conducted.

 Formal Trade - Off Analysis and Trade Studies

 As noted above, when trade - offs are conducted to derive and support a recommendation

to management, they must be performed and presented in a formal and thoroughly

documented manner. As distinguished from informal decision processes, trade - off

studies in systems engineering should have the following characteristics:

 1. They are organized as defi ned processes. They are carefully planned in advance,

and their objective, scope, and method of approach are established before they

are begun.

 2. They consider all key system requirements. System cost, reliability, maintain-

ability, logistics support, growth potential, and so on, should be included. Cost

is frequently handled separately from other criteria. The result should demon-

strate thoroughness.

 3. They are exhaustive. Instead of considering only the obvious alternatives in

making a systems engineering decision, a search is made to identify all options

deserving consideration to ensure that a promising one is not inadvertently

overlooked. The result should demonstrate objectivity.

 4. They are semiquantitative. While many factors in the comparison of alternatives

may be only approximately quantifi able, systems engineering trade - offs seek to

quantify all possible factors to the extent practicable. In particular, the various

MOEs are prioritized relative to one another in order that the weighting of the

284 DECISION ANALYSIS AND SUPPORT

various factors achieves the best balance from the standpoint of the system

objectives. All assumptions must be clearly stated.

 5. They are thoroughly documented. The results of systems engineering trade - off

analyses must be well documented to allow review and to provide an audit trail

should an issue need reconsideration. The rationale behind all weighting and

scoring should be clearly stated. The results should demonstrate logical

reasoning.

 A formal trade study leading to an important decision should include the steps

described in the following paragraphs. Although presented linearly, many overlap and

several can be, and should be, coupled together in an iterative subprocess.

 Step 1: Defi nition of the Objectives. To introduce the trade study, the objec-

tives must be clearly defi ned. These should include the principal requirements and

should identify the mandatory ones that all candidates must meet. The issues that will

be involved in selecting the preferred solution should also be included. The objectives

should be commensurate with the phase of system development. The operational

context and the relationships to other trade studies should be identifi ed at this time.

Trade studies conducted early in the system development cycle are typically conducted

at the system level and higher. Detailed component - level trade studies are conducted

later, during engineering and implementation phases.

 Step 2: Identifi cation of Viable Alternatives. As stated previously, before

embarking on a comparative evaluation, an effort should be made to defi ne several

candidates to ensure that a potentially valuable one is not overlooked. A useful strategy

for fi nding candidate alternatives is to consider those that maximize a particularly

important characteristic. Such a strategy is illustrated in the section on concept selection

in Chapter 8 , in which it is suggested to consider candidates based on the following:

 • the predecessor system as a baseline,

 • technological advances,

 • innovative concepts, and

 • candidates suggested by interested parties.

 In selecting alternatives, no candidate should be included that does not meet the

mandatory requirements, unless it can be modifi ed to qualify. However, keep the set of

mandatory requirements small. Sometimes, an alternative concept that does not quite

meet a mandatory requirement but is superior in other categories, or results in signifi cant

cost savings, is rejected because it does not reach a certain threshold. Ensure that all

mandatory requirements truly are mandatory — and not simply someone ’ s guess or wish.

 The factors to consider in developing the set of alternatives are the following:

 • There is never a single possible solution. Complex problems can be solved in a

variety of ways and by a variety of implementations. In our experience, we have

never encountered a problem with one and only one solution.

TRADE-OFF ANALYSIS 285

 • Finding the optimal solution is rarely worth the effort. In simple terms, systems

engineering can be thought of as the art and science of fi nding the “ good enough ”

solution. Finding the mathematical optimum is expensive and many times near

impossible.

 • Understand the discriminators among alternatives. Although the selection criteria

are not chosen at this step (this is the subject of the next step), the systems

engineer should have an understanding of what discriminates alternatives. Some

discriminators are obvious and exist regardless of the type of system you are

developing: cost, technical risk, reliability, safety, and quality. Even of some of

these cannot be quantifi ed, yet a basic notion of how alternatives discriminate

within these basic categories will enable the culling of alternatives to a reason-

able quantity.

 • Remain open to additional solutions surfacing during the trade study. This step

is not forgotten once an initial set of alternatives has been identifi ed. Many times,

even near the end of the formal trade study, additional options may emerge that

hold promise. Typically, a new option arises that combines the best features of

two or more original alternatives. Many times, identifying these alternatives is

not possible, or at least diffi cult, early in the process.

 Staged Process. This step tends to occur in discrete stages. Initially, a large

number and variety of alternatives should be considered. Brainstorming is one effective

method of capturing a variety of alternatives, without evaluating their merits. Challenge

participants to think “ out of the box ” to ensure that no option is overlooked. And while

some ridiculous ideas are offered, this tends to stimulate thinking on other, plausible

options. In our experience, 40 – 50 alternatives can be identifi ed initially. This set is not

our fi nal set of alternatives, of course. It needs to be reduced.

 As long as there are more than three to fi ve potential alternatives, it is suggested

that the staged approach be continued, culling the set down to a manageable set. The

process of reducing alternatives generally follows a rank - ordering process, rather than

quantitative weighing and scoring, to weed out less desirable candidates. Options can

be dismissed due to a variety of reasons: cost, technological feasibility, safety, manu-

facturability, operational risk, and so on. This process may also uncover criteria that

are not useful differentiators. Follow - on stages would focus on a few candidates that

include likely candidates. These would be subjected to a much more thorough analysis

as described below.

 Remember to document the choices and reasoning behind the decision. Include the

specifi cations for the alternatives to make the trade - off as quantitative as possible. The

result of this multistage process is a reasonable set of alternatives that can be evaluated

formally and comprehensively.

 Step 3: Defi nition of Selection Criteria. The basis of differentiating between

alternative solutions is a set of selection criteria to be chosen from and referenced to

the requirements that defi ne the solution. Each criterion must be an essential attribute

of the product, expressed as a MOE, related to one or more of its requirements. It is

desirable that it be quantifi able so that its value for each alternative may be derived

286 DECISION ANALYSIS AND SUPPORT

objectively. Cost is almost always a key criterion. Reliability and maintainability are

also usually important characteristics, but they must be quantifi ed. In the case of large

systems, size, weight, and power requirements can be important criteria. In software

products, ease of use and supportability are usually important differentiators.

 Characteristics that are possessed by all candidates to a comparable degree do not

serve to distinguish among them and hence should not be used, because their inclusion

only tends to obscure the signifi cant discriminators. Also, two closely interdependent

characteristics do not contribute more discrimination than can be obtained by one of

them with appropriate weighting. The number of criteria used in a particular formal

trade study can vary widely but usually ranges between 6 and 10. Fewer criteria may

not appear convincing of a thorough study. More criteria tend to make the process

unwieldy without adding value.

 Step 4: Assignment of Weighting Factors to Selection Criteria. In a given

set of criteria, not all of them are equally important in determining the overall value of

an alternative. Such differences in importance are taken into account by assigning each

criterion a “ weighting factor ” that magnifi es the contribution of the most critical crite-

ria, that is, those to which the total value is the most sensitive, in comparison to the

less critical. This procedure often turns out to be troublesome to carry out because

many, if not most, of the criteria are incommensurable, such as cost versus risk, or

accuracy versus weight. Also, judgments of relative criticality tend to be subjective and

often depend on the particular scenario used for the comparison.

 Several alternative weighting schemes are available. All of them should engage

domain experts to help with the decisions. Perhaps the simplest is to assign weights

from 1 to n (with n having the greatest contribution). Although subjective, the criteria

are measured relative to each other (as opposed to an absolute measure). A disadvantage

with using the typical 1 to n scheme is that people tend to group around the median,

in this case, (1 + n)/2. For example, using a 1 – 5 scale may really be using a 1 – 3 scale

since many will simply not use 1 and 5 often. Other times, people tend to rate all criteria

high, either a 4 or 5 — resulting in the equivalent of using 1 – 2.

 Adding some objectivity requires a trade - off decision in and of itself when

assigning weights. For instance, we could still use the 1 – 5 scale, but use a maximum

number of weighting points; that is, the sum of all of the weights must not exceed a

maximum value. A good starting maximum sum might be to take the sum of all average

weights,

 MaxSum
MaxWeight MinWeight

=
−()

,
2

n

where

 MaxSum is the total number of weighting points to be allocated;

 MaxWeight is the greatest weight allowed;

 MinWeight is the least weight allowed; and

 n is the number of criteria.

TRADE-OFF ANALYSIS 287

 Thus, this scheme holds the average weight as a constant. If the engineer (or

stakeholders, depending on who is weighting the criteria) wants to weight a criterion

higher, then she must reduce the weight of another criterion. Keep in mind, however,

with any subjective weighting scheme (any scheme that uses “ 1 to n ”), you are making

assumptions about the relative importance. A “ 5 ” is fi ve times as relevant as a “ 1. ”

These numbers are used in the calculations to compare alternatives. Make sure the

scheme is appropriate.

 If more mathematical accuracy is desired, the weights could be constrained to

sum to 1.0. Thus, each weighting would be a number between 0 and 1.0. This scheme

has some mathematical advantages that will be described later in this chapter.

One logical advantage is that weightings are not constrained to integers. If one

alternative is 50% more important than another, this scheme can represent that relation-

ship; integers cannot. When using spreadsheets for the calculations, be sure not to allow

too many signifi cant fi gures! The credibility of the engineering judgment would

fall quickly.

 To summarize, deciding on a weighting scheme is important. Careful thinking

about the types of relative importance of alternatives is required. Otherwise, the engi-

neer can inadvertently bias the results without knowing.

 Step 5: Assignment of Value Ratings for Alternatives. This step can be

confusing to many people. You may ask, why can we not simply measure the criteria

values for each alternative at this point and use those values in our comparison? Of

course, we could, but it becomes hard to compare the alternatives without integrating

the criteria in some manner. Each criterion may use different units; so how does the

systems engineer integrate multiple criteria together to gain an understanding of an

overall value assessment for each alternative? We cannot combine measures of area

(square foot) with velocity (foot per second), for example. And what if a criterion is

impossible to measure? Does that mean subjective criteria are simply not used? In fact,

subjective criteria are used in system development frequently (though usually in com-

bination with objective criteria). Thus, we need a method to combine criterion together

without trying to integrate units that are different. Basically, we need an additional

step beyond measuring criterion values for each alternative. We need to assign an

effectiveness value.

 There are several methods of assigning a value for each criterion to each alterna-

tive. Each has its own set of advantages and attributes. And the method ultimately used

may not be a choice for the systems engineer, depending on what data can be collected.

Three basic options are available: (1) the subjective value method, (2) the step function

method, and (3) the utility function method.

 The fi rst method relies on the systems engineer ’ s subjective assessment of the

alternative relative to each criterion. The latter two methods use actual measurements

and translate the measurement to a value. For example, if volume is a criterion with

cubic feet as the unit, then each alternative would be measured directly — what is the

volume that each alternative fi lls, in cubic feet? Combinations of the three methods are

also frequently used.

288 DECISION ANALYSIS AND SUPPORT

 Subjective Value Method. When this method is chosen, the procedure begins

with a judgment of the relative utility of each criterion on a scale analogous to student

grading, say 1 – 5. Thus, 1 = poor, 2 = fair, 3 = satisfactory, 4 = good, and 5 = superior.

(A candidate that fails a criterion may be given a zero, or even a negative score if the

scores are to be summed, to ensure that the candidate will be rejected despite high

scores on other criteria.) This is the effectiveness value for each criterion/alternative

pair. The score assigned to the contribution of a given criterion to a specifi c candidate

is the product of the weight assigned to the criterion and the assigned effectiveness

value of the candidate in meeting the criterion.

 Table 9.3 depicts a generic example that could be constructed for each alter-

native, for four selection criteria (they are not described, just numbered one through

four).

 In this method, the value v i would be an integer between 1 and 5 (using our subjec-

tive effectiveness rating above), and would be assigned by the systems engineer.

 Actual Measurement Method. If a more objective effectiveness rating is

desired (more than “ poor/fair/satisfactory/good/superior ”), and alternatives could be

measured for each criterion, then a simple mathematical step function could be con-

structed that translates an actual measurement into an effectiveness value. The systems

engineer still needs to defi ne this function and what value will be assigned to what

range of measurements. Using our example of volume as a criterion, we could defi ne

a step function that assigns an effectiveness value to certain levels of volume. Assuming

lesser volume is better effectiveness,

 TABLE 9.3. Weighted Sum Integration of Selection Criteria

 For each alternative …

 Selection criteria Weights Value Score = weight × value

 1 w 1 v 1 w 1 v 1

 2 w 2 v 2 w 2 v 2

 3 w 3 v 3 w 3 v 3

 4 w 4 v 4 w 4 v 4

 Volume (ft 3) Value

 0 – 2.0 5

 2.01 – 3.0 4

 3.01 – 4.0 3

 4.01 – 5.0 2

 > 5.0 1

TRADE-OFF ANALYSIS 289

 If an alternative fi lls 3.47 ft 3 of volume, it would be given an effectiveness value

of 3. Keep this concept in mind as we will use something similar with our next method.

 Table 9.4 illustrates this method. In this case, the alternative is actually measured

for each criterion; the result is m i . The step function is then used to translate the mea-

surement to an effectiveness value, v i . The fi nal score for that criterion is the product

of the measurement and value, m i v i . Once the measurements are converted to values,

the actual measurements, m i , are no longer used.

 Utility Function Method. A refi nement of the second approach is to develop a

utility function for each criterion, which relates its measurable performance to a number

between zero and one. Each criterion is measured, just as in the second method. But

instead of allocating subjective values, a utility function is used to map each measure-

ment to a value between zero and one.

 Advantages to this method over the second are mathematical. As in using a utility

function for weights (i.e., summing the weights to one), using utility functions places

all criteria on an equal basis — the effectiveness of each criterion is constrained to a

number between zero and one. Furthermore, if utility functions are used, mathematical

properties of utility functions can be utilized. These are described in the next section.

 Figure 9.8 illustrates some examples of utility functions. A utility function can be

either continuous or discrete, linear or nonlinear.

 If utility functions are used, calculating a total score for each criterion is similar

to the second method. The score is simply the product of the weight and the utility.

Table 9.5 depicts these relationships.

 TABLE 9.4. Weighted Sum of Actual Measurement

 For each alternative …

 Selection criteria Weights Measurement Value Score = weight × value

 1 w 1 m 1 v 1 w 1 v 1

 2 w 2 m 2 v 2 w 2 v 2

 3 w 3 m 3 v 3 w 3 v 3

 4 w 4 m 4 v 4 w 4 v 4

 Figure 9.8. Candidate utility functions.

1 1 1

0

u1

0

u2

0

u3

Criteria 1 Score Criteria 2 Score Criteria 3 Score

290 DECISION ANALYSIS AND SUPPORT

 Step 6: Calculating Comparative Scores. The conventional method for com-

bining the scores for the several alternatives is to calculate the sum of the weighted

scores for each criterion to produce a total score. The candidate with the greatest

summed value is judged to be the best candidate given the selection criteria and weight-

ings, provided the score of the next highest alternative is statistically lower:

 Alternative total score = + + +w v w v w v w v1 1 2 2 3 3 4 4.

 This process is simple to implement, but lumping together the scores of the indi-

vidual criteria tends to obscure factors that may be more important than initially sup-

posed. For example, a candidate may receive a very low score on an essential MOE

and high scores on several others. This lack of balance should not be obscured. It is

strongly recommended that in addition to presenting the total scores, a graph of the

criteria profi le for each candidate be also included. Figure 9.9 presents a notional

example of a criteria profi le for three alternatives.

 Deciding which alternative among the three is best is diffi cult since Alt - 1 scores

very low on criterion D but very high on criteria A, B, and C. Is this signifi cant? If

only the weighted sums are used, then Alt - 1 would be the best candidate (with a sum

of 5 + 5 + 4 + 1 = 15). In its purest form, Alt - 1 is selected due to its greatest weighted

sum, but as always, numbers do not tell the whole story; we need analysis.

 TABLE 9.5. Weighted Sum of Utility Scores

 For each alternative …

 Selection criteria Weights Measurement Utility Score = weight × utility

 1 w 1 m 1 u 1 w 1 u 1

 2 w 2 m 2 u 2 w 2 u 2

 3 w 3 m 3 u 3 w 3 u 3

 4 w 4 m 4 u 4 w 4 u 4

 Figure 9.9. Criteria profi le.

5
Alt‐1

Alt-1 Σ = 15

Alt-2 Σ = 13

4

3

S
co

re
 =

 w
e

ig
h
t
×

 v
a
lu

e

Alt‐2
Alt-3 Σ = 9

2

1

Alt‐3

Criteria

A B C D

TRADE-OFF ANALYSIS 291

 Step 7: Analyzing the Results. Because of the necessary reliance on qualita-

tive judgments and the incommensurable nature of many of the criteria, the results of

a trade study should be subjected to critical scrutiny. This process is especially impor-

tant when the two or three top scores are close together and do not produce a decisive

winner.

 An essential step in analyzing the results is to examine the individual candidate

profi les (scores for each criterion). Candidates that score poorly on one or more criteria

may be less desirable than those with satisfactory scores in all categories. Cost is

another factor that needs to be considered separately.

 The conventional method of summing the individual scores is simple to use but

has the unfortunate characteristic of underemphasizing low scores. A technique that

does not suffer from this defect is to derive the composite score for a candidate by

calculating the product (or geometric mean), rather than the sum, of the individual

scores for the several criteria. If a candidate scores a zero on any criterion, the product

function will also be zero, rejecting the alternative. An equivalent variant with the same

property is to sum the logarithms of the individual scores.

 A conventional approach to testing the robustness of trade study results is called

 “ sensitivity analysis. ” Sensitivity analysis tests the invariance of the results to small

changes in the individual weighting factors and scores. Because of uncertainties in the

assignment of weighting and scores, substantial variations (20 – 30%) should be consid-

ered. A preferred approach is to sequentially set each criterion equal to zero and to

recalculate the study. When such variations do not change the initial top choice, the

procedure builds confi dence in the result of the analysis.

 An additional sensitivity test is to consider if there are important criteria that have

not been included in the evaluation. Examples may be risk, growth potential, avail-

ability of support services, maturity of the product or of its supplier, ease of use, and

so on. One of the alternatives may be considerably more attractive in regard to several

of such additional issues.

 Trade - Off Analysis Report. The results of a formal trade study represent an

important milestone in the development of a system or other important operation and

will contribute to decisions that will determine the future course. As such, they have

to be communicated to all principal participants, who may include customers, manag-

ers, technical leaders, and others closely associated with the subject at issue. Such

communication takes two forms: presentations and written reports.

 Both oral and written reports must contain suffi cient material to fully explain the

method used and the rationale leading to the conclusions. They should include

 • a statement of the issue and requirements on the solution;

 • a discussion of assumptions and relationships to other components and

subsystems;

 • a setting of mission or operational considerations;

 • a listing of relevant and critical system or subsystem requirements;

292 DECISION ANALYSIS AND SUPPORT

 • a description of each alternative selected and the key features that led to its

selection;

 • an explanation of how the evaluation criteria were selected and the rationale for

their prioritization (weighting);

 • a rationale for assigning specifi c scores to each alternative for each criterion;

 • a summary of the resulting comparison;

 • a description of the sensitivity analysis and its results;

 • the fi nal conclusion of the analysis and an evaluation of its validity;

 • recommendation for adoption of the study results or further analysis; and

 • references to technical, quantitative material.

 The presentation has the objective of presenting valuable information to program

decision makers in order to make informed decisions. It requires a careful balance

between suffi cient substance to be clear and too much detail to be confusing. To this

end, it should consist mainly of graphical displays, for which the subject is well suited,

with a minimum of word charts. On the other hand, it is essential that the rationale for

selection weighting and scoring is clear, logical, and persuasive. A copy of the com-

parison spreadsheet may be useful as a handout.

 The purpose of the written trade study report is not only to provide a historical

record of the basis for program decisions but also, more importantly, to provide a refer-

ence for reviewing the subject if problems arise later in the program. It represents the

documented record of the analysis and its results. Its scope affords the opportunity for

a detailed account of the steps of the study. For example, it may contain drawings,

functional diagrams, performance analysis results, experimental data, and other materi-

als that support the trade - off study.

 Trade - Off Analysis Example

 An example of a trade - off matrix is illustrated in Table 9.6 , for the case of selecting a

software code analysis tool. The table compares the ratings of fi ve candidate commer-

cial software tools with respect to six evaluation criteria:

 • speed of operation, measured in minutes per run;

 • accuracy in terms of errors per 10 runs;

 • versatility in terms of number of applications addressed;

 • reliability, measured by program crashes per 100 runs;

 • user interface, in terms of ease of operation and clarity of display; and

 • user support, measured by response time for help and repair.

 Scoring. On a scale of 0 – 5, the maximum weight of 5 was assigned to accuracy —

 for obvious reasons. The next highest, 4, was assigned to speed, versatility, and reli-

ability, all of which have a direct impact on the utility of the tool. User interface and

 TABLE 9.6. Trade - Off Matrix Example

 Criteria Weight

 Videx PeopleSoft CodeView HPA Zenco

 Score

 Weighted

score Score

 Weighted

score Score

 Weighted

score Score

 Weighted

score Score

 Weighted

score

 Speed 4 5 20 5 20 3 12 3 12 5 20

 Accuracy 5 2 10 4 20 3 15 4 20 2 10

 Versatility 4 5 20 5 20 3 12 5 20 5 20

 Reliability 4 3 12 2 8 3 12 5 20 4 16

 User interface 3 5 15 5 15 3 9 5 15 5 15

 User support 3 2 6 1 3 3 9 4 12 5 15

 Weighted sum 83 86 69 99 96

 Cost 750 520 420 600 910

 Weighted sum/cost 0.11 0.17 0.16 0.17 0.11

2
9

3

294 DECISION ANALYSIS AND SUPPORT

support were assigned a medium weight of 3 because, while they are important, they

are not quite as critical as the others to the successful use of the tool.

 Cost was considered separately to enable the consideration of cost/effectiveness as

a separate evaluation factor.

 The subjective value method was used to determine raw scores. The raw scores for

each of the candidates were assigned on a scale of 5 = superior, 4 = good, 3 = satisfac-

tory, 2 = weak, 1 = poor, and 0 = unacceptable. The row below the criteria lists the

summed total of the weighted scores. The cost for each candidate tool and the ratio of

the total score to the cost are listed in the last two rows.

 Analysis. Comparing the summed scores in Table 9.6 shows that HPA and Zenco

score signifi cantly higher than the others. It is worth noting, however, that CodeView

scored “ satisfactory ” on all criteria and is the least expensive by a substantial margin.

Videx, CodeView, and HPA are essentially equal in cost/effectiveness.

 Sensitivity analysis by varying criteria weightings does not resolve the difference

between HPA and Zenco. However, examining the profi les of the candidates ’ raw scores

highlights the weak performance of Zenco with respect to accuracy. This, coupled with

its very high price, would disqualify this candidate. The profi le test also highlights the

weak reliability and poor user support of PeopleSoft, and the weak accuracy and high

price of Videx. In contrast, HPA scores satisfactory or above in all categories and

superior in half of them.

 The above detailed analysis should result in a recommendation to select HPA as

the best tool, with an option of accepting CodeView if cost is a determining factor.

 Limitations of Numeric Comparisons

 Any decision support method provides information to decision makers; it does not make

the decision for them. Stated another way, trade - off analysis is a valuable aid to deci-

sion making rather than an infallible formula for success. It serves to organize a set of

inputs in a systematical and logical manner, but is wholly dependent on the quality and

suffi ciency of the inputs.

 The above trade - off example illustrates the need for a careful examination of all

of the signifi cant characteristics of a trade - off before making a fi nal decision. It is clear

that the total candidate scores in themselves mask important information (e.g., the

serious weaknesses in some of the candidates). It is also clear that conventional sensi-

tivity analysis does not necessarily suffi ce to resolve ties or to test the validity of the

highest - scoring candidate. The example shows that the decision among alternatives

should not be reduced to merely a mathematical exercise.

 Furthermore, when, as is very often the case, the relative weightings of MOE are

based on qualitative judgments rather than on objective measurements, there are serious

implications produced by the automated algorithms that compute the results. One

problem is that such methods tend to produce the impression of credibility well beyond

the reliability of the inputs. Another is that the results are usually presented to more

signifi cant fi gures than are warranted by the input data. Only in the case of existing

products whose characteristics are accurately known are the inputs truly quantitative.

REVIEW OF PROBABILITY 295

For these reasons, it is absolutely necessary to avoid blindly trusting the numbers. A

third limitation is that the trade - off studies often fail to include the assumptions that

went into the calculations. To alleviate the above problems, it is important to accompany

the analysis with a written rationale for the assignment of weighting factors, rounding

off the answer to the relevant number of signifi cant fi gures, and performing a sanity

check on the results.

 Decision Making

 As was stated in the introduction to this section, all important systems engineering

decisions should follow the basic principles of the decision - making process. When a

decision does not require a report to management, the basic data gathering and reason-

ing should still be thorough. Thus, all decisions, formal and informal, should be con-

ducted in a systematic manner, use the key requirements to derive the decision criteria,

defi ne relevant alternatives, and attempt to compare the candidates ’ utility as objectively

as practicable. In all important decisions, the opinions of colleagues should be sought

to obtain the advantage of collective judgment to resolve complex issues.

 9.6 REVIEW OF PROBABILITY

 The next section discusses the various evaluation methods that are available to the

systems engineer when making decisions among a set of alternatives. All of the evalu-

ation methods involve some level of mathematics, especially probability. Therefore, it

is necessary to present a quick review of basic probability theory before describing the

methods.

 Even in the classical period of history, people noticed that some events could not

be predicted with certainty. Initial attempts at representing uncertainty were subjective

and nonquantitative. It was not until the late Middle Ages before some quantitative

methods were developed. Once mathematics had matured, probability theory could be

grounded in mathematical principles. It was not long before probability was applied

beyond games of chance and equipossible outcomes (where it started). Before long,

probability was applied to the physical sciences (e.g., thermodynamics and quantum

mechanics), social sciences (e.g., actuarial tables and surveying), and industrial applica-

tions (e.g., equipment failures).

 Although modern probability theory is grounded in mathematics, there still exists

different perspectives on what probability is and how best it should be used:

 • Classical. Probability is the ratio of favorable cases to the total equipossible

cases.

 • Frequentist. Probability is the limiting value as the number of trials becomes

infi nite of the frequency of occurrence of a random event that is well - defi ned.

 • Subjectivist. Probability is an ideal rational agent ’ s degree of belief about an

uncertain event. This perspective is also known as Bayesian.

296 DECISION ANALYSIS AND SUPPORT

 Probability Basics. At its core, probability is a method of expressing someone ’ s

belief or direct knowledge about the likelihood of an event occurring, or having

occurred. It is expressed as a number between zero and one, inclusive. We use the

term probability to always refer to uncertainty — that is, information about events

that either have yet to occur or have occurred, but our knowledge of their occurrence

is incomplete. In other words, probability refers only to situations that contain

uncertainty.

 As a common example, we can estimate the probability of rain for a certain area

within a specifi ed time frame. Typically referred to as “ chance, ” we commonly hear,

 “ The chance of rain today for your area is 70%. ” What does that mean? It actually may

have different meanings than is commonly interpreted, unless a precise description is

given. However, after the day is over, and it indeed rained for a period of time that day,

we cannot say that the probability of rain yesterday was 100%. We do not use probabil-

ity to refer to known events.

 Probability has been described by certain axioms and properties. Some basic prop-

erties are provided below:

 1. The probability of an event, A , occurring is given as a real number between

zero and one.

 P A() [,]∈ 0 1

 2. The probability of an event, A , NOT occurring is represented by several symbols

including ∼ A, ¬A, and A ′ (among others), and is expressed as

 P A P A(~) ().= −1

 3. The probability of the domain of events occurring (i.e., all possible events) is

always

 P D() . .= 1 0

 4. The probability of the union of two events, A and B , is given by the equation

 P A B P A P B P A B() () () ()∪ ∩= + −

 P A B P A P B A B() () (), .∪ = + if and are independent

 This concept is depicted in Figure 9.10 .

 5. The probability of an event, A , occurring given that another event, B , has

occurred is expressed as P (A | B) and is given by the equation

 P A B
P A B

P B
(|)

()

()
.=

∩

REVIEW OF PROBABILITY 297

 This concept is depicted in Figure 9.11 . In essence, the domain is reduced to

the event B , and the probability of the event A is only relevant to the domain

of B .

 6. The probability of the intersection of two events, A and B , is given by the

equation

 P A B P A B P B() (|) ()∩ =

 P A B P A P B A B() () (), .∩ = if and are independent

 Figure 9.10. Union of two events.

Domain, D

Event Event
A B

 Figure 9.11. Conditional events.

Domain, D

Event B

Event

A

Event B

Event
A B

298 DECISION ANALYSIS AND SUPPORT

 Bayes ’ Rule. Using the above properties and equalities, an important rule was

derived by Thomas Bayes (1702 – 1761). Offi cially known as Bayes ’ theorem, the rule

is commonly expressed as the equality

 P A B
P B A P A

P B
(|)

(|) ()

()
.=

 Apart from the mathematical advantages of this rule, a very practical usage of this

equality stems from situations that require the conditional relationship among events

to reverse. For example, suppose we desire to calculate the probability that a system

will fail given that preventative maintenance is performed over a period of time.

Unfortunately, we may not have measured data to directly calculate this probability.

Suppose that we only have the following probabilities:

 • the probability that any system will fail (0.2),

 • the probability that a system has had preventative maintenance performed on it

over its life cycle (0.4), and

 • the probability that a system had preventative maintenance, given it failed

(0.02).

 How might we calculate the probability that a system will fail, given we perform

preventative maintenance over its life cycle? Let us call P (F) as the probability that a

system will fail over its life cycle, P (M) as the probability that a system had preventa-

tive maintenance over its life cycle, and P (M | F) as the probability that a system had

preventative maintenance over its life cycle, given that it failed at some point. This is

represented as

 P F() . ;= 0 2

 P M() . ;= 0 3 and

 P M F(|) . .= 0 02

 We can use Bayes ’ rule to calculate the probability we seek:

 P F M
P M F P F

P M
(|)

(|) ()

()
;=

 P F M(|)
(.)(.)

.
;=

0 02 0 2

0 3
and

 P F M(|) . .= 0 013

 The probability that our system will fail, given we perform preventative mainte-

nance throughout its life cycle, is very low, 0.013, or almost 20 times lower than the

probability of any system failing.

EVALUATION METHODS 299

 Bayes ’ rule is a powerful tool for calculating conditional probabilities. But it does

have its limitations. Bayes ’ rule assumes that we have a priori knowledge in order to

apply it. In most cases, in engineering and science, we either do have a priori knowledge

of the domain or can collect data to estimate it. In our example, the a priori knowledge

was the probability that any system would fail, P (F). If we did not have this knowledge,

then we could not apply Bayes ’ rule.

 We could collect statistical data on historical system failures to obtain an estimate

of P (F). We could also test systems to collect these data. But if the system is new, with

new technologies, or new procedures, we may not have suffi cient historical data. And

applying Bayes ’ rule would not be possible.

 Now that we have reviewed the basics of probability, we are able to survey and

discuss a sample of evaluation methods used in systems engineering today.

 9.7 EVALUATION METHODS

 In the section above, we described a systematic method for performing trade - off analy-

ses. We used a rather simple scheme for evaluating a set of alternatives against a set

of weighted selection criteria. In fact, we used a method that is part of a larger math-

ematical method, known as multiattribute utility theory (MAUT). Other methods exist

that allow systems engineers to evaluate a set of alternatives. Some use a form of

MAUT incorporating more complex mathematics to increase accuracy or objectivity,

while others take an entirely different approach. This section introduces the reader to

fi ve types of methods, commonly used in decision support, starting with a discussion

of MAUT. Others exist as well, to include linear programming, integer programming,

design of experiments, infl uence diagrams, and Bayesian networks, to name just a few.

 This section is simply an introduction of several, selected mathematical methods.

References at the end of this chapter provide sources of more detail on any of these

methods.

 MAUT

 This form of mathematics (which falls under operations research) is used quite exten-

sively in all types of engineering, due to its simplicity. It can easily be implemented

via a spreadsheet.

 As described above, the basic concept involves identifying a set of evaluation

criteria with which to select among a set of alternative candidates. We would like to

combine the effectiveness values for these criteria into a single metric. However, these

criteria do not have similar meanings that allow their integration. For example, suppose

we had three selection criteria: reliability, volume, and weight. How do we evaluate

the three together? Moreover, we typically need to trade off one attribute for another.

So, how much reliability is worth x volume and y weight? In addition, criteria typically

have different units. Reliability has no units as it is a probability; volume may use cubic

meter and weight may use kilogram. How do we combine these three criteria into a

single measure?

300 DECISION ANALYSIS AND SUPPORT

 Figure 9.12. AHP example.

Select a New Car

Style Reliability Fuel Economy
0.3196 0.5584

0.1220

 MAUT ’ s answer to this dilemma is to use the concept of utility and utility func-

tions. A utility function, U (m i), translates the selection criterion, m i , to a unitless

measure of utility. This function may be subjective or objective, depending on the data

that are available. Typically, utility is measured using a scalar between zero and one,

but any range of values will do.

 Combining weighted utilities can be accomplished in a number of ways. Three

were mentioned above: weighted sum, weighted product, and sum of the logarithms of

the weighted utility. Typically, the weighted sum is used, at least as a start. During

sensitivity analysis, other methods of combining terms are attempted.

 Analytical Hierarchy Process (AHP)

 A widely used tool to support decisions in general, and trade studies in particular, is

based on the AHP. AHP may be applied using an Excel spreadsheet, or a commercial

tool, such as Expert Choice. The latter produces a variety of analyses as well as graphs

and charts that can be used to illustrate the fi ndings in the trade study report.

 The AHP is based on pairwise comparisons to derive both weighting factors and

comparative scores. In deriving criterion - weighting factors, each criterion is compared

with every other, and the results are entered into a computation that derives the relative

factors. For informal trade - offs, the values obtained by simple prioritization are usually

within 10% of those derived by AHP, so the use of the tool is hardly warranted in such

cases. On the other hand, for a formal trade study, graphs and charts produced through

the use of AHP may lend an appearance of credibility to the presentation.

 Weighting factors are calculated using eigenvectors and matrix algebra. Thus, the

method has a mathematical basis to it, although the pairwise comparisons are usually

subjective, adding uncertainty to the process. The result is a weighting factor distribu-

tion among the criteria, summing to one. Figure 9.12 shows the results using the AHP

of an example decision to select a new car. Three criteria were used: style, reliability,

and fuel economy. After a pairwise comparison among these three criteria, AHP calcu-

lated the weights, which sum to one.

 Once weighting factors are calculated, a second set of pairwise comparisons is

performed. These comparisons are among the alternatives, for each criterion. Two

results are provided during this stage of the method. First, the alternatives are evaluated

within each criterion individually. Each alternative is provided with a criterion score

EVALUATION METHODS 301

between zero and one, with the sum equal to one. Second, the method produces a fi nal

score for each alternative across all criteria, between zero and one, with the sum equal

to one. Figure 9.13 displays both sets of results — each alternative car (lettered A through

 D) is given a score for each criterion, and then the scores are combined into a single,

fi nal score.

 Sensitivity analysis is still needed to check results and to make any changes neces-

sary to arrive at a preferred alternative.

 Decision Trees

 Decisions were developed to assist decision makers in identifying alternative decision

paths and in evaluating and comparing different courses of action. The concept utilizes

probability theory to determine the value or utility of alternative decision paths.

 As the name suggests, a tree is used to formulate a problem. Typically, two symbols

are used — one for decisions and one for events that could occur and are out of the

decision maker ’ s control. Figure 9.14 depicts a simple decision tree in which two deci-

sions and two events are included. The decisions are depicted by rectangles and are

lettered A and B ; the events are depicted by circles and are designated E 1 and E 2 . In

this example, each decision has two possible choices. Events also have more than one

outcome, with probabilities associated with each. Finally, the value of each decision

path is shown to the right. A value can be anything that represents the quantitative

outcome of a decision path. This includes money, production, sales, profi t, wildlife

saved, and so on.

 Figure 9.13. AHP results .

0.2854

0.3581

A

D

Final Score

Select a
New Car

0.2699

0.0862

B

C

Style Reliability Fuel Economy

A 0.116

B 0.247

A 0.301

B 0.239

C 0.212

A 0.379

B 0.290

C 0.074C 0.060

D 0.577 D 0.248D 0.257

302 DECISION ANALYSIS AND SUPPORT

 In this example, an engineer is faced with an initial decision, A . She has two

choices, A 1 and A 2 . If she chooses A 2 , then an event will occur that provides a value to

her of either 100 or 30, with a probability of 0.1 or 0.9, respectively. If she chooses A 2 ,

she is immediately faced with a second decision, B , which also has two choices, B 1 or

 B 2 . Choosing B 2 will result in a value of 40. Choosing B 1 will result in an event, E 2 ,

with two possible outcomes. These outcomes result in values of 70 and 30, with prob-

abilities of 0.3 and 0.7, respectively. Which decision path is the “ best? ”

 The answer to the last question is dependent on the objective(s) of the trade - off

study. If the study objective is to maximize the expected value of the decision path,

then we can solve the tree using a defi ned method (which we will not go through in

detail here). Basically, an analyst or engineer would start at the values (to the right)

and work left. First, calculate the expected value for each event. Then at each decision

point, choose the greatest expected value. In our example, calculating the events yield

an expected value of 37 for E 1 and 42 for E 2 . Thus, decision B is between choosing B 1

and gaining a value of 42, over B 2 , with a value of 40. Decision A is now between two

expected values: A 1 yields a value of 37, while A 2 yields an expected value of 42. Thus,

choosing A 2 yields the greatest expected value.

 The decision tree solution is depicted in Figure 9.15 .

 Figure 9.14. Decision tree example.

100

A1

0.1

0.9
30

E1

A2

B1

0.3

0.7

70

30

A

E2

B2 40

B

 Figure 9.15. Decision path.

100

A1

0.1

0.9
30

37

E1

A2

B1

0.3
70

30
42

42 E2

B2

0.7

40

42

EVALUATION METHODS 303

 Of course, the objective may not be to maximize expected value. It may be to

minimize expected loss, or to minimize the maximum loss, or even to maximize value.

If the objective was the last of these three, maximum value, then choosing A 1 would

be preferred, since only A 1 yields a possibility of achieving a value of 100. Choosing

 A 2 yields a maximum possible value of only 70. Thus, the objective of the trade - off

study determines how to solve the tree.

 An alternative method of using decision trees is to add a utility assessment.

Basically, instead of using values, we use utilities. The reason we may want to substitute

utilities for actual values is to incorporate risk into the equation. Suppose, for example,

that we have the decision tree shown in Figure 9.16 , already solved to maximize the

expected value. However, the customer is extremely risk adverse. In other words,

the customer would forego larger profi ts than lose large amounts of value (in this case,

the value could be profi ts).

 We can develop a utility curve that provides a mathematical representation of the

customer ’ s risk tolerance. Figure 9.17 provides such a curve. The utility curve reveals

the customer is conservative — large profi ts are great, but large losses are catastrophic.

Small gains are good, and small losses are acceptable.

 By substituting utilities for value (in this case, profi t), we get a new decision tree

and a new solution. The conservative nature of the customer, refl ected by the utility

curve, reveals a conservative decision path: A 2 – B 2 , which yield a utility of 5, which is

a profi t of 20. Figure 9.18 provides the new decision tree.

 Decision trees are powerful tools for decision makers to make trade - off decisions.

They have the advantage of combining decisions that are interdependent. Although the

methods we have discussed can also represent this case, the mathematics becomes more

complicated. Their disadvantage includes the fact that a priori knowledge of the event

probabilities is required. Methods can be combined — each decision in a decision tree

can be represented as a formal trade - off study in itself.

 Cost – Benefi t Analysis (CBA)

 If time and resources permit, a more detailed type of trade - off study can be performed

than what is described above. These types of studies are often mandated by policy and

 Figure 9.16. Decision tree solved.

100
E

A1

0.2

0.8
–10

12

1

A2

B1

0.5
150

–100
25

25 E2

B2

0.5

20

25

304 DECISION ANALYSIS AND SUPPORT

are known as an AoA. In many of these situations, the straightforward trade - off study

methodology of the last section is not suffi cient. Detailed analysis using models, and

high - fi delity simulations, are typically required to measure the alternative systems ’

effectiveness. In these cases, a CBA is warranted.

 The basic concept of the CBA is to measure the effectiveness and estimate the cost

of each alternative. These two metrics are then combined in such a way as to shed light

on their cost - effectiveness, or put another way, their effectiveness per unit cost. More

often than not, the effectiveness of an alternative is a multidimensional metric, and cost

is typically divided into its major components: development, procurement, and opera-

tions (which include maintenance). In some cases (such as with nuclear reactors),

retirement and disposal costs are included.

 Figure 9.18. Decision tree solved with a utility function.

8
E

A1

0.2

0.8

8

–2
0

1

A2

B1

0.5
9

–10

5 E2

–0.5

B2

0.5

5

5

 Figure 9.17. Utility function.

Utility

8

6

10

–80–120

4

2

Profit
40 80 120 160–40

4

6

2

8

–10

EVALUATION METHODS 305

 Combining cost and effectiveness results is crucial in offering decision makers the

information they need to make informed decisions. Three basic types of cost -

 effectiveness analyses exist, each offering advantages. Figure 9.19 illustrates the three

types for a single - dimensional analysis.

 Equal Cost – Variable Effectiveness. This type constrains the alternatives to a

single cost level or a maximum cost threshold. If all of the alternatives are constrained

to similar or the same costs, then the results offer an observable difference in

effectiveness — enabling a simple ranking of alternatives. In essence, cost is taken out

of the equation in comparing alternative systems.

 The disadvantages of this CBA include the diffi culty in constraining the alterna-

tives to the same, or a maximum cost. Examples include selecting a system within a

cost range, such as selecting a new car or purchasing equipment. Of course, one could

argue that decisions such as these do not need detailed analysis — a straightforward

trade - off study would be suffi cient! More detailed examples include a new strike

weapon system for the military. A maximum cost level is typically included in a new

system ’ s requirements, including its key performance parameter (KPP). All alternatives

are required to be less than the cost threshold. Only effectiveness of these system

alternatives varies.

 Variable Cost – Equal Effectiveness. This type constrains the alternatives to a

single effectiveness level or a minimum effectiveness threshold. If all of the alternatives

are constrained to similar or the same effectiveness levels, then the results offer an

observable difference in cost, enabling a simple ranking of alternatives. In essence,

effectiveness is taken out of the equation in comparing alternative systems.

 The disadvantages of this CBA include the diffi culty in constraining the alterna-

tives to the same or minimum effectiveness level. Examples include selecting a power

plant to provide a selected amount of energy. In this case, the energy level, or amount

of electricity, would be the minimum effectiveness threshold. Options would then be

judged largely on cost.

 Figure 9.19. Example of cost - effectiveness integration.

Equal Cost
Variable Effectiveness

Variable Cost
Equal Effectiveness

Variable Cost
Variable Effectiveness

Cost Cost Cost

Effectiveness Effectiveness Effectiveness

306 DECISION ANALYSIS AND SUPPORT

 Variable Cost – Variable Effectiveness. This type constrains the alternatives to

both a maximum cost level and a minimum effectiveness level. However, beyond the

limits, the alternatives can be any combination of cost and effectiveness. In some cases,

no limits are established, and the alternatives are “ free ” to be at any cost and effective-

ness levels. This is rare for government CBAs, but there can be advantages to this form

of analysis. Out - of - the - box alternatives can be explored when cost and effectiveness

constraints are removed. In some cases, a possible alternative that provides effective-

ness that is just under the minimum (say, 5% under the threshold) may cost 50% less

than any other alternative. Would not a decision maker at least want to be informed of

that possibility? By and large, however, minimum and maximum levels are established

to keep the number of alternatives manageable, with the exceptional case being handled

separately.

 The disadvantages of this CBA type include the risk that no alternative is clearly

 “ better ” than the rest. Each alternative offers effectiveness that is commensurate with

its cost. Of course, this is not necessarily bad; the decision maker then must decide

which alternative he wants. In these cases, calculating the effectiveness per unit cost is

an additional measure that can shed light on the decision.

 Most systems fall into this category: a new vehicle design, a new spaceship or

satellite, a new software system, a new energy system, and so on.

 Of course, the examples and notional Figure 9.19 all address single - dimensional

applications. Multidimensional costs and effectiveness increase the complexity but still

fall into one of the three types of CBA. Two general methods for handling multidimen-

sional CBA are (1) combining effectiveness and cost into a single metric, typically by

employing MAUT, then applying one of the three methods described; or (2) using an

effectiveness and cost profi le vector, with mathematical constraints on the vector as

opposed to a single scalar threshold.

 Quality Function Deployment (QFD)

 QFD originated in Japan during the 1960s as a quality improvement program. Dr. Yoji

Akao pioneered the modern version of QFD in 1972 with his article in the journal

 Standardization and Quality Control , followed by a book describing the process in

1978. Ford Motor Company brought the process to America by adopting it in the 1980s.

By the 1990s, some agencies within the U.S. government had adopted the process

as well.

 At the heart of the process is the QFD matrix, known as the house of quality. Figure

 9.20 depicts the general form of this tool, which consists of six elements. More complex

forms of the QFD house of quality are also available but are not presented here. The

basic use of QFD is in the design process — keeping design engineers, manufacturers,

and marketers focused on customer requirements and priorities. It has also been used

in decision making.

 QFD is an excellent tool for developing design objectives that satisfy key customer

priorities. It has also been used in trade studies as a method for developing

selection criteria and weightings. The output of the house of quality process and analy-

EVALUATION METHODS 307

sis is a technical evaluation of alternative subsystems and the relative importance and

technical diffi culty of developing and manufacturing each component in the technical

description. This output is at the bottom of the fi gure. This evaluation is accomplished

by comparing prioritized customer requirements with technical component options and

by determining the characteristics of their relationships. Generally, a subset of relation-

ship types, or strengths, is determined. In the fi gure, four distinct relationships are

given: strong, medium, weak, and negative. Additionally, each technical component is

compared against other components using the same relationship scale (represented by

the triangle at the top or roof of the house). The mathematics (which are not described

here but are based on matrix algebra) are then used to determine the technical

evaluation.

 QFD is typically used in conjunction with trade studies — either to generate inputs

to a formal trade study or to conduct the trade studies as part of a design development

effort.

 Figure 9.20. QFD house of quality.

Relationship
between
Technical

Descriptions Strong Positive

Medium Positive

Weak Positive

9

3

1

Technical Description

C
o
m

p
e
titiv

e
 E

v
a
lu

a
tio

n

Negative–3

Relationship between

Customer Requirements

C
u
s
to

m
e
r

R
e
q
u
ire

m
e
n
ts

P
rio

ritie
s and Technical Description

Technical Evaluation

Prioritized Technical

Description

308 DECISION ANALYSIS AND SUPPORT

 9.8 SUMMARY

 Decision Making

 Decision making is a process that contains several steps. How formal each step is

undertaken depends on the type and complexity of the decision. We defi ne a decision

framework that examines three types of decisions: structured, semistructured, and

unstructured. This categorization is not discrete as the three distinct types suggest but

represents a continuum of decisions from the typical/common/understood structured

decisions to the atypical/intuitive/subjective unstructured decisions.

 The decision - making process has been defi ned and understood for a long time with

little revision. The process contains four phases: preparation and research, model design

and evaluation, choosing among alternatives, and implementation.

 Modeling throughout System Development

 Modeling guides decisions in the face of complexity and uncertainty; modeling illumi-

nates the behavior and relationships of key issues. One modeling tool, simulation, is

the modeling of dynamic behavior. Other tools, such as trade - off analysis techniques,

model the decision process among alternative choices.

 Modeling for Decisions

 Models may be divided into three categories.

 1. Schematic Models use diagrams to represent system elements or processes. An

architect ’ s sketches, such as fl oor layouts, are examples of schematic models.

System block diagrams model system organizations. They are often arranged

in a treelike structure to represent hierarchical organizations, or they use simple

rectangular boxes to represent physical or other elements.

 System context diagrams show all external entities that interact with

the system, where the system is represented as a “ black box ” (not showing

internal structure). The diagram describes the system ’ s interactions with its

environment.

 FFBDs model functional interactions, where functional elements are rep-

resented by rectangles, and arrows represent interactions and fl ow of informa-

tion, material, or energy between elements. The names of the elements begin

with a verb, denoting action. Examples and extensions of FFBDs include system

life cycle models, IDEF0 diagrams, and F 2 D 2 .

 FFPDs are similar — they form a hierarchical description of a complex

process. They also interrelate process design with requirements and

specifi cations.

 The diagrams defi ned by UML and Systems Modeling Language (SysML)

are examples of schematic models (see Chapter 8).

SUMMARY 309

 2. Mathematical Models use mathematical notation to represent relationships.

They are important aids to system development and can be useful both for

design and systems engineering. They also perform sanity checks on results of

complex analyses and simulations.

 3. Physical Models are physical representations of systems or system elements.

They are extensively used in system design and testing, and include test models,

mock - ups, and prototypes.

 Simulation

 System simulations deal with the dynamic behavior of systems and system elements

and are used in every phase of system development. Management of simulation effort

is a systems engineering responsibility.

 Computer “ war games ” are an example of operational simulations, which involve

a simulated adversarial system operated by two teams of players. They are used to

assess the operational effectiveness of tactics and system variants.

 System effectiveness simulations assess alternative system architectures and are

used during conceptual development to make comparative evaluations. The design of

effectiveness simulations is itself a complex systems engineering task. Developing

complex simulations such as these must seek a balance between fi delity and cost since

such simulations can be systems in their own right. Scope must be controlled to obtain

effective and timely results.

 Physical or physics - based simulations are used in the design of high - performance

vehicles and other dynamic systems, and they can save enormous amounts of develop-

ment time and cost.

 Hardware - in - the - loop simulations include hardware components coupled to

computer - driven mechanisms. They are a form of physical simulation, modeling

dynamic operational environments.

 Environmental simulations subject systems and system elements to stressful condi-

tions . They generate synthetic system environments that test systems ’ conformance to

operational requirements.

 Finally, computer - based engineering tools greatly facilitate circuit design, struc-

tural analysis, and other engineering functions.

 Trade - Off Analysis

 Trade - off processes are involved consciously or subconsciously in every decision we

make (personally as well as professionally). An important issue with respect to trade

studies is the stimulation of alternatives. Trades ultimately select the “ best ” course of

action from two or more alternatives. Major decisions (which are typical within systems

engineering) require formal trade - off analysis.

 A trade - off, formal or informal, consists of the following steps:

 1. Defi ne the objective.

 2. Identify qualifi ed alternative candidates.

310 DECISION ANALYSIS AND SUPPORT

 3. Defi ne selection criteria in the form of MOE.

 4. Assign weights to selection criteria in terms of their importance to the

decision.

 5. Identify or develop a value rating for each criterion.

 6. Calculate or collect comparative scores for each alternative ’ s criterion; combine

the evaluations for each alternative.

 7. Analyze the basis and robustness of the results.

 Revise fi ndings if necessary and reject any alternatives that fail to meet an essential

requirement. For example, delete MOEs that do not discriminate signifi cantly among

alternatives. Limit the value of assignments to the least accurate quantity and examine

the total “ profi le ” of scores of the individual candidates.

 Trade - off studies and analyses are aids to decision making — they are not infallible

formulae for success. Numerical results produce an exaggerated impression of accuracy

and credibility. Finally, if the apparent winner is not decisively superior, further analysis

is necessary.

 Review of Probability

 At its core, probability is a method of expressing someone ’ s belief or direct knowledge

about the likelihood of an event occurring or having occurred. It is expressed as a

number between zero and one, inclusive. We use the term probability to always refer

to uncertainty — that is, information about events that either have yet to occur or have

occurred, but our knowledge of their occurrence is incomplete.

 Evaluation Methods

 As systems engineering is confronted with complex decisions about uncertain out-

comes, it has a collection of tools and techniques that can be useful support aids. We

present fi ve such tools:

 1. MAUT uses a utility function to translate a selection criterion to a unitless utility

value, which can then be combined with other utility functions to derive a total

value score for each alternative.

 2. AHP is a mathematically based technique that uses pairwise comparisons of

criteria and alternatives to general weightings and combines utility scores for

alternatives.

 3. Decision Trees are graphical networks that represent decision choices. Each

choice can be assigned a value and an uncertainty measure (in terms of prob-

abilities) to determine expected values of alternative decision paths.

 4. CBA is a method typically used with modeling and simulation to calculate the

effectiveness or a system alternative per unit cost.

PROBLEMS 311

 5. QFD defi nes a matrix (the house of quality) that incorporates relationships

between customers ’ needs, system specifi cations, system components, and com-

ponent importance to overall design. The matrix can be solved to generate

quantitative evaluations of system alternatives.

 PROBLEMS

 9.1 Suppose you needed to make a decision regarding which engine type to use

in a new automobile. Using the process in Figure 9.1 , describe the fi ve steps

in deciding on a new engine type for an advanced automobile.

 9.2 Identify the stakeholders for the following decisions:

 (a) the design of a traffi c light at a new intersection,

 (b) the design of a new weather satellite,

 (c) the choice of a communications subsystem on a new mid - ocean buoy

designed to measure ocean temperature at various depths,

 (d) the choice of a security subsystem for a new power plant, and

 (e) the design of a new enterprise management system for a major

company.

 9.3 Give two examples of each decision type: structured, semistructured, and

unstructured.

 9.4 Write an essay describing the purpose of each type of model: schematic,

mathematical, and physical. What are their advantages?

 9.5 Develop a context diagram for a new border security system. This system

would be intended to protect the land border between two countries.

 9.6 In an essay, compare and contrast the three types of functional diagrams:

functional block diagram, functional fl ow diagram, and IDEF0. A table that

lists the characteristics of each of the three would be a good start to this

problem.

 9.7 Describe three examples of problems or systems where gaming would be

useful in their development and ultimate design.

 9.8 Perform a trade study on choosing a new car. Identify four alternatives,

between three and fi ve criteria, and collect the necessary information

required.

 9.9 To illustrate some important issues in conducting trade studies, consider the

following simplifi ed example. The trade study involved six alternative system

concepts. Five MOEs were used, each weighted equally. For simplicity ’ s sake,

I have titled the MOEs A , B , C , D , and E . After assigning values to each MOE

of the six alternatives, the results were the following:

 Note that two stood out well above the rest, both receiving the same total

number of points:

312 DECISION ANALYSIS AND SUPPORT

 On the basis of the above rating profi les,

 (a) Would you conclude that concept III to be superior, equal, or inferior to

concept V?

 Explain your answer.

 (b) If you were not entirely satisfi ed with this result, what further information

would you try to obtain?

 (c) Discuss potential opportunities for further study that might lead to a

clearer recommendation between concepts III and V.

 9.10 Supposed that you are looking to purchase a new vacuum cleaner, and you

have decided to conduct a trade study to assist you in your decision. Conduct

product research and narrow down your choices to fi ve products.

 Please conduct the following steps:

 (a) Identify exactly four selection criteria, not including purchase price or

operating cost.

 (b) Assign weights to each criterion, explaining in one sentence your

rationale.

 (c) Construct a utility function for each criterion — describe it verbally or

graphically.

 (d) Research the actual values for your criteria for each alternative.

 (e) Perform the analysis, calculating a weighted sum for each alternative.

 (f) Calculate the effectiveness/unit cost for each alternative using purchase

price for cost.

 (g) Describe your choice for purchase, along with any rationale.

 FURTHER READING

 R. Clemen and T. Reilly . Making Hard Decisions with DecisionTools Suite . Duxbury Press ,

2010 .

 Defense Acquisition University . Systems Engineering Fundamentals . DAU Press , 2001 ,

Chapter 12.

 Weighted MOE A B C D E Total

 Concept I 1 1 5 4 2 13

 Concept II 3 3 2 5 4 17

 Concept III 4 1 5 5 5 20

 Concept IV 2 2 3 5 1 13

 Concept V 4 4 4 4 4 20

 Concept VI 1 1 1 3 3 9

FURTHER READING 313

 G. M. Marakas . Decision Support Systems . Prentice Hall , 2001 .

 C. Ragsdale . Spreadsheet Modeling and Decision Analysis: A Practical Introduction to

Management Science . South - Western College Publishing , 2007 .

 A. P. Sage . Decision Support Systems Engineering . John Wiley & Sons, Inc. , 1991 .

 H. Simon . Administrative Behavior , Third Edition . New York : The Free Press , 1976 .

 R. H. Sprague and H. J. Watson . Decision Support Systems: Putting Theory into Practice .

 Prentice Hall , 1993 .

 E. Turban , R. Sharda , and D. Delan . Decision Support Systems and Intelligence Systems , Ninth

Edition. Prentice Hall , 2010 .

315

 Part III is concerned with the implementation of the system concept into hardware and

software components, their integration into a total system, and the validation of the

systems operational capability through a process of developmental and operational

testing. Systems engineering plays a decisive part in these activities in the form of

analysis, oversight, and problem solving.

 A critical application of systems engineering is to identify and reduce potential

diffi culties inherent in the use of unproven components based on new technology,

highly stressed system elements, and other sources of risk. This subject is discussed in

detail in Chapter 10 , which describes typical sources of potential risk, the use of pro-

totype development, and the process of validation testing and analysis. The identifi ca-

tion, prioritization, and reduction of program risks is a vital contribution of systems

engineering.

 Chapter 11 introduces the special and unique features of software systems engi-

neering and highlights differences between hardware and software development.

Common life cycle models are introduced for software - intensive systems, and the

primary steps for developing software functionality are discussed.

 PART III

ENGINEERING

DEVELOPMENT STAGE

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

316 ENGINEERING DEVELOPMENT STAGE

 The engineering design phase is concerned with the implementation of the system

architectural units into engineered components that are producible, reliable, maintain-

able, and can be integrated into a system meeting performance requirements. The

systems engineering responsibilities are to oversee and guide this process, to supervise

the confi guration management function, and to resolve problems that inevitably arise

in this process. Chapter 12 , Engineering Design, deals with these issues.

 The engineered system components are integrated into a fully operational system

and are evaluated in the integration and evaluation phase of the life cycle. Thorough

systems engineering planning is necessary to organize and execute this process effi -

ciently, with the best practical combination of realism and economy of time and

resources. Chapter 13 describes the elements of the successful accomplishment of the

integration and evaluation processes, which qualifi es the system for production and

operational use.

317

 10.1 REDUCING PROGRAM RISKS

 The advanced development phase is that part of the system development cycle in which

the great majority of the uncertainties inherent in the selected system concept are

resolved through analysis, simulation, development, and prototyping. The principal

purpose of the advanced development phase is to reduce the potential risks in the

development of a new complex system to a level where the functional design of all

previously unproven subsystems and components has been validated. At its conclusion,

the risks of discovering serious problems must be suffi ciently low that full - scale engi-

neering may be begun with confi dence. This phase ’ s primary objectives are to develop,

where necessary, and validate a sound technical approach to the system design and to

demonstrate it to those who must authorize the full - scale development of the system.

 The general methodology of accomplishing risk reduction is discussed in Chapter

 5 in the section on risk management. The components of risk management are described

as risk assessment, in which risks are identifi ed and their magnitude assessed, and risk

mitigation, in which the potential damage to the development is eliminated or reduced.

 10

ADVANCED DEVELOPMENT

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

318 ADVANCED DEVELOPMENT

This chapter is concerned with typical sources of risks encountered in the early phases

of developments of complex systems and the methods for their mitigation.

 To accomplish the above objectives, the degree of defi nition of the system design

and its description must be advanced from a system functional design to a physical

system confi guration consisting of proven components coupled with a design specifi ca-

tion, to serve as the basis for the full - scale engineering of the system. In most new

complex systems, this calls for mature designs of the subsystems and components. All

ambiguities in the initial system requirements must be eliminated, and often, some of

the more optimistic design goals of the original concept of the system must be signifi -

cantly curtailed.

 It should be noted that all new system developments do not have to go through a

formal advanced development phase. If all major subsystems are directly derivable

from proven predecessor or otherwise mature subsystems, and their characteristics can

be reliably predicted, then the system development can proceed on to the engineering

design phase. Such is the case with most new model automobiles, in which the great

majority of components are directly related to those of previous models. In that case,

such critical items as the airbag system or pollution control may be individually built

and tested in parallel with the engineering of the new model.

 Place of the Advanced Development Phase in the System
Life Cycle

 The advanced development phase marks the transition of the system development from

the concept development to the engineering development stage. As seen in Figure 10.1 ,

it follows the concept defi nition phase, from which it derives the inputs of system

functional specifi cations and a defi ned system concept. Its outputs to the engineering

design phase are system design specifi cations and a validated development model. It

thus converts the requirements of what the system is to do and a conceptual approach

of its confi guration into a specifi cation of generally how the required functions are to

 Figure 10.1. Advanced development phase in system life cycle.

System Functional
Specifications

System Design
Specifications

Concept Definition Advanced
Development

 Engineering Design

Risk Management
Subsystem Definition

Component Specs

Defined System
Concept(s)

Validated Development
Model

REDUCING PROGRAM RISKS 319

be implemented in hardware and software. Other required outputs, not shown in the

fi gure, include an updated work breakdown structure (WBS), a revised systems engi-

neering management plan (SEMP) or its equivalent, and related planning documents.

Additionally, the system architecture is updated to refl ect changes to date.

 As noted above, this phase is especially critical in the development of complex

systems that involve extensive use of advanced technology and/or novel unproven

concepts. It may require several years of intensive development effort before the new

features are suffi ciently mature and well demonstrated to warrant initiating full - scale

engineering. In addition, it may also be necessary to develop new manufacturing pro-

cesses to support the proposed new technology. In such cases, the advanced develop-

ment phase is frequently contracted separately from the follow - on engineering.

 At the other end of the spectrum, those systems that do not involve major techno-

logical advances over similar previous systems, and hence require only a minor amount

of development, may not have a separately defi ned and managed advanced development

phase. Instead, the corresponding work may be included in the front end of the engi-

neering design phase. However, the tasks embodied in the translation of the system

functional requirements into a system implementation concept and system - level design

specifi cations must still be accomplished prior to undertaking detailed engineering.

 Design Materialization Status

 Table 10.1 depicts the system materialization status during the advanced development

phase. It is seen that the principal change in the system status is designated as

 “ validation ” — validation of the soundness of the selected concept, validation of its

partitioning into components, and validation of the functional allocation to the compo-

nent and subcomponent levels. The focus of development in this phase is thus the defi -

nition of how the components will be built to implement their assigned functions. The

manner in which these tasks are accomplished is the subject of this chapter.

 Systems Engineering Method in Advanced Development

 The organization of this chapter is arranged according to the four steps of the systems

engineering method (see Chapter 4) followed by a brief section that discusses risk

reduction, a methodology used throughout system development, but is especially

important in this phase. The principal activities during this phase in each of the four

steps in the systems engineering method, as applied to those subsystems and compo-

nents requiring development, are briefl y summarized below and are illustrated in

Figure 10.2 .

 Requirements Analysis. Typical activities include

 • analyzing the system functional specifi cations with regard to both their deriva-

tion from operational and performance requirements and the validity of their

translation into subsystem and component functional requirements and

 • identifying components requiring development.

 TABLE 10.1. Status of System Materialization at the Advanced Development Phase

 Phase Concept development Engineering development

 Level Needs analysis Concept

exploration

 Concept defi nition Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore,

and synthesize

concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne

requirements and

ensure feasibility

 Defi ne functional

and physical

architecture

 Validate

subsystems

 Integrate and test

 Component Allocate functions

to components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

3
2
0

REDUCING PROGRAM RISKS 321

 Functional Analysis and Design. Typical activities include

 • analyzing the allocation of functions to components and subcomponents, and

identifying analogous functional elements in other systems; and

 • performing analyses and simulations to resolve outstanding performance issues.

 Figure 10.2. Advanced development phase fl ow diagram.

Analyze
System

Functional
Specs

Concept Definition
Phase

Requirements

Identify
Immature

Components

Candidate Components

Analysis

Identify
Functional

Performance
Issues

Resolve
Issues
Design

Software

for Development

Functional

Analysis and

Design

Incompatibilities

Functional
Designs

Design
Issues

Identify
Unproven

Technology

Design and
Build Critical
Components

Prototype

Development

Excessive

Test Issues

Development

Engineering
Design
Phase

Requirements

Build
Test Setup

Conduct
Tests

Evaluate
Test

Results

Previous Test Models

Validated Design

Testing

System
Requirements

Design
Deficiencies

Critical
Components

322 ADVANCED DEVELOPMENT

 Prototype Development. Typical activities include

 • identifying issues of physical implementation involving unproven technology

and determining the level of analysis, development, and test required to reduce

risks to acceptable values;

 • designing critical software programs;

 • designing, developing, and building prototypes of critical components and sub-

systems; and

 • correcting defi ciencies fed back from test and evaluation.

 Development Testing. Typical activities include

 • creating test plans and criteria for evaluating critical elements, and developing,

purchasing, and reserving special test equipment and facilities; and

 • conducting tests of critical components, evaluating results, and feeding back

design defi ciencies or excessively stringent requirements as necessary for cor-

rection, leading to a mature, validated system design.

 10.2 REQUIREMENTS ANALYSIS

 As stated above, the initial effort in the advanced development phase is mainly devoted

to two areas:

 1. reexamining the validity of the system functional specifi cations developed in

or following the concept defi nition phase and

 2. identifying those components of the selected system concept that are not suf-

fi ciently mature for full - scale engineering (i.e., have not been proven in existing

systems), and which therefore should be further developed during the advanced

development phase.

 System Functional Specifi cations

 In defi ning the preferred system concept in the concept defi nition phase, the system

functions were allocated to the principal subsystems, and these were further broken

down into functional elements. These functional design concepts were then embodied

in the system specifi cations document prepared as an input to the advanced develop-

ment phase.

 The analysis of these specifi cations should take into account the circumstances

under which the concept defi nition phase took place. If, as is frequently the case, it was

performed in the space of a few months and with limited funding, and especially if it

was done in a competitive environment, then the results should be viewed as prelimi-

nary and subject to modifi cation, and must be analyzed very thoroughly. Prior design

decisions must be viewed with some skepticism until they are examined and demon-

REQUIREMENTS ANALYSIS 323

strated to be well founded. This does not mean that the selected technical approaches

should necessarily be changed, only that they should not be accepted without under-

standing their derivation.

 Requirements Derivation

 The key to understanding the signifi cance and sensitivity of system functional specifi ca-

tions is to trace them back to their derivation from the system performance require-

ments. Such an understanding is essential to making the design decisions required for

the physical implementation of the functions in hardware and software.

 The system life cycle support scenario should be revisited to identify functions

necessary to sustain the different circumstances to which the system will be exposed

during its preoperational as well as its operational life. In addition, the requirements

for compatibility; reliability, maintainability, availability (RMA); and environmental

susceptibility should be examined, as well as those for operational performance. At this

time, specifi cations concerning human – system interface issues and safety are incorpo-

rated into subsystem and component specifi cations.

 As stated previously, some requirements are frequently unstated, and others are

immeasurable. For example, affordability and system growth potential are frequently

not explicitly addressed. User interface requirements are often qualitative and are not

susceptible to measurement. The relation of each of the above issues to the functional

design needs to be understood and documented.

 Relation to Operational Requirements

 If some system specifi cations cannot be readily met, it is necessary to gain an even

deeper understanding of their validity by tracing them back one step further, namely,

to their relationship to the execution of the system ’ s mission, that is, to the system

operational requirements. This relationship is often lost in the early phases of system

defi nition and needs to be recaptured to provide the systems engineer with an informed

rationale for dealing with problems that invariably arise during development.

 One of the means for gaining such understanding, as well as for obtaining an

appreciation of operational factors beyond those formally stated, is to develop contacts

with prospective system users. Such contacts are not always available, but when they

are, they can prove to be extremely valuable. Organizations that specialize in opera-

tional analyses and those that conduct system fi eld evaluations are also valuable sources

in many system areas. Involving the user as a team member during development should

be considered where appropriate.

 Relation to Predecessor Systems

 If the new system has a predecessor that fulfi lls a similar function, as is usually the

case, it is important to fully understand the areas of similarity and difference, and how

and why the new requirements differ from the old. This includes the understanding of

324 ADVANCED DEVELOPMENT

the perceived defi ciencies of the predecessor system and how the new system is

intended to eliminate them.

 The degree of benefi t to be gained from this comparison, of course, depends on

the accessibility of key persons and records from the predecessor system development.

However, at a minimum, the comparison should provide added confi dence in the chosen

approach or suggest alternatives to be explored. Where key participants in the develop-

ment are accessible, their advice with regard to potential problems and lessons learned

can be invaluable.

 Identifi cation of Components Requiring Development

 The principal purpose of the advanced development phase has been stated as ensuring

that all components of the system have been demonstrated to be ready for full - scale

engineering. This means that component design is sound and capable of being imple-

mented without signifi cant risk of functional or physical defi ciencies that would require

different approaches to satisfy the requirements.

 The above statement implies that all system components must be brought up to a

level of maturity where all signifi cant design issues have been resolved. The process

that raises the level of maturity is called “ development, ” and therefore the advanced

development phase consists largely of development effort focused on those system

components that have not previously been brought to the necessary level of proven

performance. This, in turn, means that all components that are determined to be insuf-

fi ciently mature for full - scale engineering would be further developed and their design

validated. Those components that are deemed to be suffi ciently mature that they do not

require development still need to be validated through analysis or test prior to their

acceptance for engineering.

 Assessment of Component Maturity. The determination of whether or not a

given component is suffi ciently proven for full - scale engineering can only be made by

comparing the component with analogous components that have been successfully

engineered and produced. If no proven analogous component is similar to the new one,

the comparison may often be made in two parts, functional and physical, by asking the

following questions:

 1. Are there proven components that have very similar functionality and perfor-

mance characteristics? Where signifi cant differences exist, are they within the

demonstrated performance boundaries of this type of component?

 2. Are there existing components whose physical construction uses similar materi-

als and architectures? Are the projected stresses, tolerances, safety, and lifetime

characteristics within the demonstrated limits of similar existing components?

 If both of these questions are answered in the affi rmative, a case may be made that

development is not necessary. However, an additional critical question is whether or

not the functional interactions and physical interfaces of the components with their

operational environment are understood well enough not to require development and

REQUIREMENTS ANALYSIS 325

experimentation. The answer to this question depends on whether the differences

between the proposed component design and those previously proven are reliably pre-

dictable from known engineering relationships, or whether the relationship is too

remote or complicated to be predicted with assurance. A common example of the latter

case has to do with human – machine interfaces, which are seldom well enough under-

stood to obviate the need for experimental verifi cation.

 Risk Analysis. After identifying those system elements that require further devel-

opment, the next step is to determine the appropriate nature and extent of such develop-

ment. This is where systems engineering knowledge and judgment are especially

important because these decisions involve a careful balance between the cost of a

thorough development effort on one hand and the risks inherent in insuffi cient develop-

ment and consequent residual uncertainties on the other. Reference to the application

of risk assessment to system development is contained in the paragraphs below, and

this methodology is enlarged upon in a separate section at the end of this chapter.

 Development Planning. It is clear from the above discussion that the planning

of the advanced development phase should be based on a component - by - component

assessment of the maturity of the proposed system design to defi ne (1) the specifi c

character of the unproven design features and (2) the type of analysis, development,

and test activities required to resolve the residual issues. In most new systems, the

uncertainties are concentrated in a limited number of critical areas, so that the develop-

ment effort can be focused on those components defi cient in design maturity.

 Risk Reduction Budget. The result of the above analysis of risks and defi nition

of appropriate risk reduction efforts should be incorporated into a detailed development

plan to guide the analysis, development, and testing effort of the advanced development

phase. In doing so, an essential step is to revise carefully the relative allocation of effort

to the individual components or subsystems that are planned for development. Do the

relative allocations correspond to an appropriate balance from the standpoint of a

potential gain to investment ratio? Is each allocation adequate to acquire the needed

data? If, as is often the case, the available resources do not cover all the proposed effort,

it is usually better to replace some of the most risky components with more conserva-

tive choices than to fail to validate their use in the system. Thus, the risk reduction/

development plan should contain a risk mitigation budget broken down into the signifi -

cant individual development efforts.

 Example: Unproven Components. Table 10.2 illustrates the above consider-

ations by listing several representative examples of hypothetical unproven components

that use new functional or physical design approaches or new production methods. The

fi rst column indicates the relative maturity of the functional, physical, and production

characteristics of the design approach. The second column is a bar graph representing

the maturity of these three characteristics (names abbreviated) by the relative heights

of the three vertical bars. The third column shows the type of development that is

usually appropriate to resolving the resulting issues of each of the new designs. The

326 ADVANCED DEVELOPMENT

fourth column lists the particular characteristic to be validated. These examples are, of

course, very much simplifi ed compared to the factors that must be considered for an

actual complex system, but they indicate the component - by - component analysis and

planning that is associated with the advanced development process. The table illustrates

that components in a new system may have a variety of different types of unproven

features, each requiring a development approach tailored to its specifi c character. The

decisions as to the choice of development strategy are the primary responsibility of

systems engineering. The subsequent three sections describe the application of each of

the remaining steps of the systems engineering method to the resolution of the above

design issues.

 Example: Natural Gas - Powered Automobile. The development of an auto-

mobile that uses natural gas as a fuel in place of gasoline offers an example of some

of the principles discussed above. This development has the dual objective of conform-

ing to future strict auto pollution standards while at the same time preserving all the

desirable characteristics of conventional modern automobiles, including affordability.

Thus, it seeks to minimize the required changes in standard auto design by limiting

them to the fuel system and its immediate interfaces. Other changes to the body, engine,

and other components are kept to a minimum.

 TABLE 10.2. Development of New Components

 Design approach Maturity Development Validation

 New function

 Proven physical medium

and production method

1

0
Func Phys Prod

1

0
Func Phys Prod

1

0
Func Phys Prod

1

0
Func Phys Prod

 Design, build, and test

rapid prototype

 Functional

performance

 New implementation

 Proven function and

production method

 Design, build, and test

rapid development

model

 Engineering

design

 New production method

 Proven function and

implementation

 Perform critical

experiments on the

production method

 Production

method

 Extended function

 Proven component

 Design and run

functional simulation

 Functional

performance

FUNCTIONAL ANALYSIS AND DESIGN 327

 The changes to the fuel subsystem, however, are considerable and also impact the

design of the rear section of the body. Storing a suffi cient amount of natural gas to

obtain the desired travel distance between refueling, and also keeping the volume small

enough to have adequate trunk space, requires gas storage pressures higher than those

used in conventional storage cylinders. To minimize weight, fi ber - wrapped composites

are used in place of steel. To maximize safety, the container design consists of a cluster

of cylinders, anchored to the frame so as to withstand severe rear - end impacts.

 This example falls in the third category in Table 10.2 . The physical construction

of the fuel container is a major departure from conventional containers in its physical

design and materials. Furthermore, the determination of its safety from explosion in

case of a collision is not derivable from engineering data but must be established by

experiment. The fuel control and refi ll provisions will also be new designs. Thus, a

substantial development effort will have to be undertaken to validate the design and

probably will involve comparative tests of several design variations.

 The components that interface directly with the fuel subsystem, such as the engine

and the rear body structure, especially the trunk and suspension, will also need to be

tested in conjunction with the fuel container. Components not associated with this

system element will not require development but must be examined to ensure that

signifi cant interactions are not overlooked.

 The above example illustrates a common case of a new system that differs from

its predecessor in a major way, but one that is restricted to a few components.

 10.3 FUNCTIONAL ANALYSIS AND DESIGN

 Because of the rapid advance of modern technology, a new system that is to be devel-

oped to replace an obsolescent current system will inevitably have performance require-

ments well beyond those of its predecessor. Moreover, in order for the new system to

have a long, useful operational life in the face of further projected increases in the

capability of competitive or opposing systems, the requirements will specify that its

performance more than meets current needs. While the concept defi nition phase should

have eliminated excessively risky approaches, these requirements will necessitate the

application of advanced development and therefore development of some advanced

system elements.

 The increase in system performance frequently requires a signifi cant increase in

component complexity, as in many of today ’ s automated computer - based systems. The

means for achieving such projected extensions are often not reliably predictable by

analytical or simulation methods and have to be determined experimentally. System

elements involving dynamic behavior with feedback may be analyzed through simula-

tion but usually require the construction and testing of experimental models to establish

a fi rm basis for engineering.

 A common instance where system functions may require development is where the

user needs and the environment are not well understood, as is often the case with deci-

sion support and other complex automated systems. In such instances, the only sound

approach (especially if user interfaces are concerned) is to build prototype components

328 ADVANCED DEVELOPMENT

corresponding to the critical system elements and to test their suitability by

experimentation.

 In summary, three types of components that frequently require development are

 1. components required to have extended functional performance beyond previ-

ously demonstrated limits,

 2. components required to perform highly complex functions, and

 3. components whose interactions with their environment are imperfectly

understood.

 Each of these is described in greater detail in the succeeding paragraphs.

 Extended Functional Performance

 The identifi cation of system elements (components or subsystems) whose required

performance may exceed demonstrated limits can be illustrated by reference to the set

of functional system building blocks discussed in Chapter 3 . Table 3.2 lists 23 basic

functional elements grouped into four classes: signal, data, material, and energy. Each

functional element has a number of key characteristics that defi ne its functional capabil-

ity. Most of these characteristics have limits established by the physical properties of

their implementing technologies and often by the basic interdependence between func-

tions (e.g., accuracy vs. speed). A functional requirement for a new system that poses

demands on a system element beyond its previously demonstrated limits signals the

potential need for either a component development effort or a reallocation of the

requirement.

 To illustrate this type of comparison, Table 10.3 lists the functional elements along

with some of the characteristics that most often turn out to be critical in new systems.

The table represents the application of the systems engineering approach to the analysis

of system functional requirements and the identifi cation of development objectives.

 In using system building blocks to identify functional elements requiring develop-

ment, the fi rst step is to relate each system element to its functionally equivalent generic

element and then to compare the required performance with that of corresponding

physical components whose capabilities have been demonstrated as a part of existing

systems.

 Given an approximate correspondence, the next step is to see whether the differ-

ences between the required and existing elements can be compared quantitatively by

established engineering relations so as to make a convincing case that the new element

can be engineered with confi dence, on the basis of proven performance and straight-

forward engineering practice. When such a case cannot be made, it is necessary either

to reduce the specifi ed performance requirement to a level where it can be so adapted

or to plan a development and test program to obtain the necessary engineering data.

 The process of identifying elements requiring development is often part of the

process of “ risk identifi cation ” or “ risk assessment. ” Risk assessment considers the

likely effect of a given decision, in this case, the choice of a particular technical

FUNCTIONAL ANALYSIS AND DESIGN 329

 TABLE 10.3. Selected Critical Characteristics of System Functional Elements

 Functional elements Critical characteristics

 Input signal Fidelity and speed

 Transmit signal High - power, complex waveform

 Transduce signal Gain, beam pattern, and multielement

 Receive signal Sensitivity and dynamic range

 Process signal Capacity, accuracy, and speed

 Output signal Resolution and versatility

 Input data Fidelity and speed

 Process data Versatility and speed

 Control data User adaptability and versatility

 Control processing Architecture, logic, and complexity

 Store data Capacity and access speed

 Output data Versatility

 Display data Resolution

 Support material Strength and versatility

 Store material Capacity and input/output capability

 React material Capacity and controls

 Form material Capacity, accuracy, and speed

 Join material Capacity, accuracy, and speed

 Control position Capacity, accuracy, and speed

 Generate thrust Power, effi ciency, and safety

 Generate torque Power, effi ciency, and control

 Generate electricity Power, effi ciency, and control

 Control temperature Capacity and range

 Control motion Capacity, accuracy, and response time

approach, on the success or failure of the overall objective. Thus, the utilization of

unproven system components involves a degree of risk depending on the likelihood

that the system will fail to meet its design goals. If the risk is considerable, as when

the element is both unproven and critical to the overall system operation, then the

element must be developed to a point where its performance may be demonstrated and

validated (i.e., low risk). The subject of risk management is discussed in Chapter 5 and

is encountered in all phases of the system life cycle.

 Highly Complex Components

 Consideration of the functional building blocks as system architectural components is

also useful in identifying highly complex functions. Equally important is to identify

complex interfaces and interactions because elements of even moderate complexity

may interact with one another in complicated ways. Interfaces are especially important

because complexities internal to elements are likely to be detected and resolved during

design, while problems resulting from interface complexities may not reveal themselves

until integration testing, at which time changes required to make them operate properly

330 ADVANCED DEVELOPMENT

are likely to be very costly in time and effort. The existence of excessively complicated

interfaces is a sign of inappropriate system partitioning and is the particular responsibil-

ity of the systems engineer to discover and to resolve. This concern is particularly

important when several organizations are involved in the system development.

 Specialized Software. Certain customized software components are inherently

complex and hence are sources of program risk, and should be treated accordingly.

Three types of software in particular are especially diffi cult to analyze without proto-

typing. These are (1) real - time software, (2) distributed processing, and (3) graphical

user interface software. In real - time systems, the control of timing can be especially

complicated, as when system interrupts occur at unpredictable times and with different

priorities for servicing. In distributed software systems, the designer gives up a large

degree of control over the location of system data and processing among networked

data processors and memories. This makes the course of system operation exceedingly

diffi cult to analyze. In graphical user interfaces, the requirements are often incomplete

and subject to change. Further, the very fl exibility that makes such systems useful is

itself an invitation to complexity. Thus, the above special software modes, which have

made computer systems so powerful and ubiquitous in today ’ s information systems,

inherently create complexities that must be resolved by highly disciplined design,

extensive experimentation, and rigorous verifi cation, including formal design reviews,

code “ walk - throughs, ” and integration tests. Chapter 11 is devoted to the subject of

software engineering and its special challenges.

 Dynamic System Elements. Another form of complexity that usually requires

development and testing is inherent in closed - loop dynamic systems such as those that

are used for automated controls (e.g., autopilots). While these lend themselves to digital

or analog simulation, they often involve coupling and secondary effects (e.g., fl exure

of the mounting of an inertial component) that cannot be readily separated from their

physical implementation. Thus, the great majority of such system elements must be

built and tested to ensure that problems of overall system stability are well in hand.

 Ill - Defi ned System Environments

 Poorly defi ned system environments and imprecise external interface requirements are

also design issues that must be carefully examined and clarifi ed. For example, a radar

system designed to detect targets in the presence of clutter due to weather or surface

returns is impossible to characterize in a well - defi ned fashion due to the great diversity

of possible operational and environmental conditions and the limited understanding of

the physics of radar scattering by clutter and of anomalous radar propagation. Similarly,

space environments are diffi cult to understand and characterize due to the limited data

available from past missions. The expense of placing systems into the space environ-

ment means testing and operational data are not as prevalent as atmospheric data.

 The operation of user - interactive systems involves the human – machine interface,

which is also inherently diffi cult to defi ne. The parts of the system that display informa-

tion to the user and that accept and respond to user inputs are often relatively uncom-

FUNCTIONAL ANALYSIS AND DESIGN 331

plicated physically but are very intricate logically. This complexity operates at several

levels, sometimes beginning with the top - level objective of the system, as in the con-

ceptual design of a medical information system where the needs of the physicians,

nurses, clerical staff, and others that interact with the system tend to be not only ill -

 defi ned but also highly variable and subject to argument. At lower levels, the form of

the display, the format of information access (menu, commands, speech, etc.), portabil-

ity, and means of data entry may all constitute system design issues that are not likely

to be settled without an extensive testing of alternatives.

 The design of automobile air bags represents another type of component with a

complex environmental interface that has required extensive development. In this case,

the conditions for actuating the air bag had to be explored very thoroughly to establish

a range between excessively frequent (and traumatic) false alarms and assured response

to real collisions. The shape, size, and speed of infl ation and subsequent defl ation of

the air bag had to provide maximum safety for the individual with minimum chance

for injury by the force of infl ation of the bag. This example is representative of system –

 environment interactions that can only be accurately defi ned experimentally. It also

illustrates a system component whose operational and functional performance cannot

be separated from its physical implementation.

 Functional Design

 Beyond identifying system elements requiring further development, the functional

design and integration of the total system and all its functional elements must be com-

pleted during this phase. This is a necessary step to developing the system design

specifi cations, which are a prerequisite to the start of the engineering design phase.

 Functional and Physical Interfaces. Prior to initiating full - scale engineering,

it is especially important to ensure that the overall system functional partitioning is

sound and will not require signifi cant alteration in the engineering design phase. Before

a major commitment is made to the detailed design of individual components, the

proposed functional allocations to subsystems and components and their interactions

must be carefully examined to ensure that a maximum degree of functional indepen-

dence and minimum interface complexity has been achieved. This is necessary so that

each component can be designed, built, tested, and assembled with other components

without signifi cant fi tting or adjustment, not to mention adaptation. This examination

must take into account the availability of test points at the interfaces for fault isolation

and maintenance, environmental provisions, opportunity for future growth with

minimum change to associated components, and all the other systems engineering

characteristics of a good product. The system functional and physical architectures are

emphasized in this phase because the design should be suffi ciently advanced to make

such judgments meaningful but is not as yet so committed as to make modifi cations

unduly time - consuming and expensive.

 Software Interfaces. It was noted above that many new software components

are too complex to be validated only through analysis and need therefore to be designed

332 ADVANCED DEVELOPMENT

and tested in this phase. Further, many hardware elements are controlled by or interface

with software. Hence, as a general rule, it can be assumed that many, if not most,

software system elements will have to be fi rst designed and subsequently implemented

in this phase of the system development.

 Use of Simulations

 While many of the above problem areas require resolution by prototyping actual hard-

ware and software, a number of others can be effectively explored by simulation. Some

examples are the following:

 • Dynamic Elements. Except for very high frequency dynamic effects, most

system dynamics can be simulated with adequate fi delity. The six - degree - of -

 freedom dynamics of an aircraft or missile can be explored in great detail.

 • Human – Machine Interfaces. User interfaces are control elements of most

complex systems. Their proper design requires the active participation of poten-

tial users in the design of this system element. Such participation can best be

obtained by providing a simulation of the interface early in the development and

by enhancing it as experience accumulates.

 • Operational Scenarios. Operational systems are usually exposed to a variety of

scenarios that impact the system in different ways. A simulation with variable

input conditions is valuable in modeling these different effects well before

system prototypes or fi eld tests can be conducted.

 Example: Aircraft Design. Illustrating a use of simulation, assume, as in the

example in Chapter 7 , that an aircraft company is considering the development of a

new medium - range commercial airplane. The two basic options being considered are

to power it with either turbo - prop or jet engines. While the gross characteristics of these

options are known, the overall performance of the aircraft with various types and

numbers of engines is not suffi ciently well - known to make a choice. It is clearly not

practical to build a prototype aircraft to obtain the necessary data. However, in this

case, simulation is a practical and appropriate method for this purpose because exten-

sive engineering data on aircraft performance under various conditions are available.

 Since the primary issue at this stage is the type and number of engines, it is only

necessary to have a fi rst - order, two - dimensional (i.e., vertical and longitudinal) model

of the aerodynamic and fl ight dynamics of the airplane. The performance of various

engines can be represented by expressions of thrust as a function of fuel fl ow, speed,

altitude, and so on, known from their measured performance data. From this simple

model, basic performance in terms of such variables as take - off distance, climb rate,

and maximum cruise speed can be determined for various design parameters such as

gross weight, number of engines, and payload. Assuming that this process led to a

recommended confi guration, extension of this simple simulation to higher orders of

detail could provide the necessary data for advanced analysis. Thus, such simulations

can save cost and can build on the experience gained at each stage of effort.

PROTOTYPE DEVELOPMENT AS A RISK MITIGATION TECHNIQUE 333

 To validate or amplify the results of the above type of analysis of a prototype

engine, it could be operated in an engine test facility where the airfl ow and atmospheric

conditions are varied over the range of predicted fl ight conditions. The measured engine

thrust and fuel consumption can then be factored into the overall performance analysis.

A still more realistic test would be to mount a prototype engine in a special pod under

the wing of a “ mother ” aircraft, which would fl y at various speeds and altitudes. In this

case, the mother aircraft itself can be thought of as a development facility.

 10.4 PROTOTYPE DEVELOPMENT AS A RISK MITIGATION
TECHNIQUE

 In the previous chapters, we have discussed the principles and techniques to identify,

manage, and ultimately mitigate risks. Signifi cant problem areas have been identifi ed

at this point, and individual strategies are in full implementation by the advanced

development stage. However, in the development of a new complex system, the deci-

sions as to which components and subsystems require further development and testing

prior to full - scale engineering, and issues regarding their physical implementation, are

frequently more diffi cult and critical than those regarding their functional design and

performance. One of the reasons is that many physical characteristics (e.g., fatigue

cracking) do not easily lend themselves to analysis or simulation, but rather require the

component to be designed, built, and tested to reveal potential problems. The para-

graphs below describe general approaches to identifying and resolving problems in

areas that do not lend themselves to mitigation through these methods.

 During early risk management activities, the systems engineering approach to the

identifi cation of potential problem areas is to take a skeptical attitude, especially to

design proposals unsupported by relevant precedent or hard engineering data. The

systems engineer asks:

 1. What things could go wrong?

 2. How will they fi rst manifest themselves?

 3. What could then be done to make them right?

 Potential Problem Areas

 In looking for potential problems, it is essential to examine the entire system life

cycle — engineering, production, storage, operational use, and operational maintenance.

Special attention must be devoted to manufacturing processes, the “ ilities ” (RMA),

logistic support, and the operational environment. The approach is that of risk assess-

ment: what risks may be involved at each phase and where are the unknowns such as

areas in which prior experience is scanty? For each potential risk, the likelihood and

impact of a failure in that area must be determined.

 As in the case of functional characteristics, the most likely areas where proposed

component implementation may be signifi cantly different from previous experience can

be classifi ed in four categories:

334 ADVANCED DEVELOPMENT

 1. components requiring unusually stringent physical performance, such as reli-

ability, endurance, safety, or extremely tight manufacturing tolerances;

 2. components utilizing new materials or new manufacturing methods;

 3. components subjected to extreme or ill - defi ned environmental conditions; and

 4. component applications involving unusual or complex interfaces.

 Examples of each of these categories are discussed below.

 Unusually High Performance. Most new systems are designed to provide

performance well in excess of that of their predecessors. When such systems are at the

same time more complex, and also demand greater reliability and operating life, it is

almost always necessary to verify the validity of the design approach experimentally.

 Radars used in air traffi c control systems are examples of complex devices requir-

ing extremely high reliability. These radars are frequently unmanned and must operate

without interruption for weeks between maintenance periods. The combination of per-

formance, complexity, and reliability requires special attention to detailed design and

extensive validation testing. All key components of these radars require development

and testing prior to full - scale engineering.

 Modern aircraft are another example of systems required to perform under high

stress with very high reliability. Many aircraft have operating lifetimes of 30 – 40 years,

with only a limited renewal of the more highly stressed structural and power compo-

nents. The development and testing of aircraft components is notably extensive.

 The components used in manned space fl ight must be designed with special con-

sideration for safety as well as reliability. The launch and reentry environment places

enormous stresses on all parts of the space vehicle and on the crew. Special procedures

are employed to conceive of all possible accidents that might occur and to ensure that

causes of such eventualities are eliminated or otherwise dealt with, for example, by

extensive design redundancy.

 More familiar systems do not have quite such dramatic requirements, but many

require remarkable performance. The engines of some of today ’ s automobiles do not

require maintenance until 50,000 – 100,000 miles. Such reliable performance has

required years of development and testing to achieve.

 Special Materials and Processes. Advances in technology and new processes

and manufacturing techniques continue to produce new materials with remarkable prop-

erties. In many instances, it is these new materials and processes that have made possible

the advances in component performance discussed in the previous paragraphs.

 Table 10.4 lists some examples of the many special materials developed in recent

years that have made a major impact on the performance of the components in which

they are used. In each new application, however, these components have undergone

extensive testing to validate their intended function and freedom from unwanted side

effects. Titanium has proven extremely effective in many applications but has been

found to be more diffi cult to machine than the steel or aluminum that it replaced.

Sintered metals can be formed easily into complex forms but do not have the strength

PROTOTYPE DEVELOPMENT AS A RISK MITIGATION TECHNIQUE 335

of the conventionally formed metal. Some of the new adhesives are remarkably strong

but do not retain their strength at elevated temperatures. These examples show that the

use of a special material in the critical elements of a component needs to be carefully

examined and, in most cases, tested in a realistic environment before acceptance.

 The same considerations apply to the use of new processes in the manufacture of

a component. The introduction of extensive automation of production processes has

generally increased precision and reproducibility and has decreased production costs.

But it has also introduced greater complexity, with its risks of unexpected shutdowns,

and has usually required years of development and testing of the new equipment.

 Unfortunately, it is very diffi cult to appraise the time and cost of introducing a new

manufacturing process in advance of its development and full - scale testing. For this

reason, a new system that counts on the availability of projected new production pro-

cesses must ensure that adequate time and resources are invested in process develop-

ment and engineering, or it must have a fallback plan that does not rely on the

availability of the process.

 Extreme Environmental Conditions. The proper operation of every system

component depends on its ability to satisfactorily operate within its environment,

including such transport, storage, and other conditions as it may encounter during its

life cycle. This includes the usual factors of shock, vibration, extreme temperatures,

and humidity, and, in special instances, radiation, vacuum, corrosive fl uids, and other

potentially damaging environments.

 The susceptibility of components to unfavorable environments can often be inferred

from their basic constitution. For example, cathode ray tube components (e.g., displays)

tend to be inherently fragile. Some thermomechanical components, such as jet engines,

operate at very high internal temperatures in very cold external environments (7 miles

above the surface of the earth), placing great stress on their internal parts. The endur-

ance of such components as the turbines in aircraft engines is always a potential

problem.

 TABLE 10.4. Some Examples of Special Materials

 Material Characteristics Typical applications

 Titanium High strength - to - weight ratio,

corrosion resistant

 Lightweight structures

 Tungsten Temperature resistant, hard to work Power sources

 Sintered metal Easy to mold Complex shapes

 Glues High strength Composite structures

 Gallium arsenate Temperature resistant Reliable microelectronics

 Glass fi bers Optical transmission Fiber optic cable

 Ceramic components Strength, temperature resistant Pressure vessels

 Plastics Ease of forming, low weight and

low cost

 Containers

336 ADVANCED DEVELOPMENT

 Military equipment has to be designed to operate over a large temperature range

and to withstand rough handling in the fi eld. The recent trend in using standard com-

mercial components (e.g., computers) in military systems, and the relaxation of military

specifi cations (milspecs) to save cost, has created potential problems that require special

attention. Fortunately, such commercial equipment is usually inherently reliable and

designed to be rugged enough to withstand shipping and handling by inexperienced

operators. However, each component needs to be carefully examined to ensure that it

will in fact survive in the projected environment. These circumstances place an even

greater responsibility on systems engineering than when milspecs were rigidly enforced.

 Component Interfaces. Perhaps the most neglected aspect of system design is

component interfaces. Since these are seldom identifi ed as critical elements, and since

they fall between the domains of individual design specialists, often only systems

engineering feels responsible for their adequacy. And the press of more urgent problems

frequently crowds out the necessary effort to ensure proper interface management.

Aggravating this problem is the fact that physical interfaces require detailed design,

and frequently construction, of both components to ensure their compatibility — a costly

process.

 To overcome the above obstacles, special measures are required, such as establish-

ment of interface control groups, interface documentation and standards, interface

design reviews, and other similar means, for revealing defi ciencies in time to avoid

later mismatches. Such measures also provide a sound basis for the continuation of this

activity in the engineering design phase.

 Component Design

 The previous sections described a number of criteria that may be used to identify com-

ponents that require development effort to bring their design to a level of maturity

suffi cient to qualify them for full - scale engineering. Such development effort involves

some combination of analysis, simulation, design, and testing according to the specifi c

nature of the proposed design approach and its departure from proven practice.

 The extent of development required may, naturally, vary widely. At one extreme,

the design may be taken only to the stage where its adequacy can be verifi ed by inspec-

tion and analysis. This may be done for components whose departure from their pre-

decessors is mainly related to size and fi t rather than to performance or producibility.

At the other extreme, components for which the validation of new materials, or the

verifi cation of stringent production tolerances (or other characteristics of the production

article), are required may need to be designed, constructed, and extensively tested. Here

again, the decisions involve systems engineering trade - offs between program risk,

technical performance, cost, and schedule.

 Concurrent Engineering. It is evident from the above that such issues as RMA,

safety, and producibility must be very seriously considered at this stage in the program

rather than deferred until the engineering design phase. Failure to do so runs a high

risk of major design modifi cations in the subsequent phase, with their likely impact on

PROTOTYPE DEVELOPMENT AS A RISK MITIGATION TECHNIQUE 337

other components and on the system as a whole. This is an area where many system

developments encounter serious diffi culties and resultant overruns in cost and

schedule.

 To minimize the risks inherent in such circumstances, it has been recognized that

specialty engineers who are particularly versed in production, maintenance, logistics,

safety, and other end - item considerations should be brought into the advanced develop-

ment process to inject their experience into decisions on design and early validation.

This practice is referred to as “ concurrent engineering ” and is part of the function of

integrated product teams (IPTs), which are used in the acquisition of defense systems.

The phrase concurrent engineering should not be confused with the term “ concurrency, ”

which is often applied to the practice of carrying out two phases of the system

life cycle, such as advanced development and engineering design, concurrently (i.e., at

the same time) rather than sequentially. The effective integration of specialty engineers

into the development process is not easy and must be orchestrated by systems

engineers.

 The problem in making concurrent engineering effective is that design specialists,

as the name implies, have a deep understanding of their own disciplines but typically

have only a limited knowledge of other disciplines, and hence lack a common vocabu-

lary (and frequently interest) for communicating with specialists in other disciplines.

Systems engineers, who by defi nition should have such a common knowledge, vocabu-

lary, and interest, must serve as coordinators, interpreters, and, where necessary, as

mentors. It is essential that the specialty engineers be led to acquire a suffi cient level

of understanding of the specifi c design requirements to render their opinions relevant

and meaningful. It is equally essential that the component design specialists become

suffi ciently knowledgeable in the issues and methods involved in designing components

that will result in reliable, producible, and otherwise excellent products. Without such

mutual understanding, the concurrent engineering process can be wholly ineffectual. It

is noteworthy that such mutual learning builds up the effectiveness of those involved

with each successive system development, and hence the profi ciency of the engineering

organization as a whole.

 Software Components. Software components should be addressed similarly.

Each component is assessed for complexity, and a risk strategy is developed and imple-

mented. Particularly complex components, especially those controlling system hard-

ware elements, may necessitate the design and test of many system software components

in prototype form during this phase of system development. This generally constitutes

an effort of major proportions and is of critical importance to the system effort as a

whole.

 To support software design, it is necessary to have an assortment of support tools

(computer - aided software engineering [CASE]), as well as a set of development and

documentation standards. The existence of such facilities and established quality prac-

tices are the best guarantee for successful software system development. The Software

Engineering Institute (SEI), operated by Carnegie Mellon University, is the current

source of standards and evaluation criteria to rate the degree of software engineering

maturity of an organization. As noted previously, Chapter 11 is entirely devoted to the

338 ADVANCED DEVELOPMENT

special systems engineering problems associated with software - embedded and software -

 intensive systems.

 Design Testing

 The process of component design is iterative, just as we have seen the system develop-

ment process to be. This means that testing must be an integral part of design rather

than just a step at the end to make sure it came out properly. This is especially true in

the design of components with new functionality or those utilizing unproven imple-

mentation approaches. The appropriate process in such cases is “ build a little, test a

little, ” providing design feedback at every step of the way. This may not sound very

orderly but is often the fastest and most economical procedure. The objective is to vali-

date the large majority of design elements at lower levels, where the results are more

easily determined in less complex test confi gurations and errors corrected at the earliest

time.

 As stated earlier, the degree of completion to which the design of a given compo-

nent is carried during this phase is very much a function of what is required to ensure

a sound basis for its subsequent engineering. Thus, if a component ’ s design issues are

largely functional, they may be resolved by comparative simulation to establish which

will best fulfi ll the required functional needs of the system. However, if the design

issues relate to physical characteristics, then the component usually needs to be designed

and built in prototype form, which can then be tested in a physical environment simu-

lating operational conditions. The design of such tests and of the corresponding test

equipment will be discussed in the next section.

 Rapid Prototyping

 This is a term describing the process of expedited design and building of a test model

of a component, a subsystem, and sometimes the total system to enable it to be tested

at an early stage in a realistic environment. This process is employed most often when

the user requirements cannot be suffi ciently well defi ned without experimenting with

an operating model of the system. This is particularly true of decision support systems,

dynamic control systems, and those operating in unusual environments. Rapid prototyp-

ing can be thought of as a case of carrying development to a full - scale demonstration

stage prior to committing the design to production engineering.

 When engaging in rapid prototyping, the term “ rapid ” means that adherence to

strict quality standards, normally a full part of system development, is suspended. The

goal is to produce a prototype that features selected functionality of the system for

demonstration as quickly as possible. The article that is produced is not intended to

survive — once requirements are developed and validated using the prototype, the article

itself should be discarded. At times, the prototype article is used as a basis for another

iteration of rapid prototyping. The risk in this process is that eventually, the pressure

to use the prototype article as the foundation for the production article becomes too

great. Unfortunately, because the prototype was developed without the strict quality

standards, it is not appropriate for production.

PROTOTYPE DEVELOPMENT AS A RISK MITIGATION TECHNIQUE 339

 Examples abound where rapid prototyping was engaged and a prototype

article was developed without quality controls (e.g., development standards, docu-

mentation, and testing). Unfortunately, the customer deems the article suffi cient

and requires the developer to provide the article for production (after all, the customer

paid for the prototype — he owns it!). Once production starts, the fl aws in this process

quickly become evident, and the system fails its development and operational

testing. In the end, development and production cause slippages in schedule and over-

runs in cost.

 Rapid prototyping was pioneered in software development and will be discussed

further in the next chapter.

 Development Facilities

 A development facility or environmental test facility, as referred to here, is a physical

site dedicated to simulating a particular environmental condition of a system or a part

thereof in a realistic and quantitative manner. It is usually a fi xed installation capable

of use on a variety of physical and virtual models (or actual system components with

embedded software) representing different systems or components. It can be used for

either development or validation testing, depending on the maturity of the system/

component subjected to the environment. Such facilities contain a set of instrumentation

to control the simulated environment and to measure its effects on the system. They

may be used in conjunction with a system simulation and usually have computing

equipment to analyze and display the outputs.

 A development facility usually represents a substantial investment; it is often

enclosed in a dedicated building and/or requires a signifi cant amount of real estate. A

wind tunnel is an example of a facility used to obtain aerodynamic data. It contains a

very substantial amount of equipment test chambers, air compressors, precise force

measuring devices, and data reduction computers and plotters. Often the cost to build

and operate a wind tunnel is so high that support is shared by a number of commercial

and government users. When a wind tunnel is used to obtain data on a number of can-

didate aerodynamic bodies or control surfaces, it can be thought of as a development

tool; when it is used to supply a source of high - speed airfl ow to check out a full - scale

airplane control surface, it serves as a validation test facility.

 Automobile manufacturers use test tracks to help design and test new model cars

and to prove - in the fi nal prototypes before production begins. Test tracks can simulate

various wear conditions under accelerated aging, for example, by driving heavily

loaded cars at high speed or over rough pavement. Other development facilities use

electromagnetic radiation to test various electronic devices, for example, to measure

antenna patterns, to test receiver sensitivity, to check for radio frequency (RF) interfer-

ence, and so on.

 Most development facilities use some form of models and simulations when con-

ducting tests. It is common for some part of the system under test to be the actual article

while other parts are simulated. An RF anechoic chamber that tests a tracking device

in the presence of various RF interference signals is an example. In this case, the fl ight

340 ADVANCED DEVELOPMENT

of the vehicle can also be simulated by a computer, which solves the equations of

motion using appropriate aerodynamic and dynamic models of the system.

 The engineering design of hardware components that are subjected to external

stresses, high temperatures, and vacuum conditions in space requires the extensive use

of stress testing, environmental chambers, and other special test facilities. The same

facilities are also used in the development of these components. Thus, shake and shock

facilities, vacuum chambers, hot and cold chambers, and many other engineering test

facilities are as necessary in the development as in the engineering phases. The main

difference is that development testing usually requires the acquisition of more perfor-

mance data and more extensive analyses of the results.

 10.5 DEVELOPMENT TESTING

 The determination that all of the design issues identifi ed during the advanced develop-

ment phase have been satisfactorily resolved requires a systematic program of analysis,

simulation, and test of not only the particular components and subsystem directly

involved but also of their interfaces and interactions with other parts of the system. It

also requires explicit consideration of the operational environment and its effect on

system performance.

 Development testing should not be confused with what is traditionally referred to

as “ developmental testing ” and “ operational testing. ” Developmental testing typically

involves the engineered system within a series of test environments, under controlled

scenarios. This type of testing is conducted by the developer. Operational testing is also

on the engineered system, but involves the customer, and is conducted under more

realistic operational conditions, including environments and scenarios. “ Development

testing, ” on the other hand, is on subsystems and components and is conducted by the

developer.

 A well - planned development test program generally requires the following

steps:

 1. development of a test plan, test procedures, and test analysis plan;

 2. development or acquisition of test equipment and special test facilities;

 3. conduct of demonstration and validation tests, including software validation;

 4. analysis and evaluation of test results; and

 5. correction of design defi ciencies.

 These steps are discussed briefl y below.

 Test and Test Analysis Plans

 An essential but sometimes insuffi ciently emphasized step in the advanced development

process is the development of a well - designed test plan for determining whether or not

the system design is suffi ciently mature to proceed to the engineering design phase.

DEVELOPMENT TESTING 341

 Test Planning Methodology. The overall testing approach must be designed

to uncover potential design defi ciencies and acquire suffi cient test data to identify

sources of these defi ciencies and provide a sound basis for their elimination. This is

very different from an approach that presupposes success and performs a minimal test

with scanty data acquisition. Whereas the latter costs less initially, its inadequacies often

cause design faults to be overlooked, which later result in program interruptions and

delays, and in a far greater ultimate cost. The following steps provide a useful

checklist:

 1. Determine the objectives of the test program. The primary purpose, of course,

is to test the subsystems and system against a selected set of operational and

performance requirements. However, other objectives might be introduced as

well: (1) increasing customer confi dence in particular aspects of the system,

(2) uncovering potential design fl aws in high - risk areas, (3) demonstrating the

selected capability publicly, and (4) demonstrating interfaces with selected

external entities.

 2. Review the operational and top - level requirements. Determine what features

and parameters must be evaluated. Key performance parameters identifi ed

early in the development process must be included in this set. However, testing

every requirement usually is not possible.

 3. Determine the conditions under which these items will be tested. Consider

upper and lower limits and tolerances.

 4. Review the process leading to the selection of components requiring develop-

ment and of the design issues involved in the selection.

 5. Review development test results and the degree of resolution of design

issues.

 6. Identify all interfaces and interactions between the selected components and

other parts of the system as well as the environment.

 7. On the basis of the above factors, defi ne the appropriate test confi gurations

that will provide the proper system context for testing the components in

question.

 8. Identify the test inputs necessary to stimulate the components and the outputs

that measure system response.

 9. Defi ne requirements for test equipment and facilities to support the above

measurements.

 10. Determine the costs and manpower requirements to conduct the tests.

 11. Develop test schedules for preparation, conduct, and analysis of the tests.

 12. Prepare detailed test plans.

 The importance of any one task and the effort required to execute it will depend

on the particular system element under test, the resources available to conduct the tests,

and the associated risk. In any case, the systems engineer must be familiar with each

of these items and must be prepared to make decisions that may have a major impact

342 ADVANCED DEVELOPMENT

on the success of the overall development program. It is evident that the above tasks

involve a close collaboration between systems engineers and test engineers.

 Test Prioritization. The test planning process is often conducted under consider-

able stress because of time and cost constraints. These restrictions call for a strict

prioritization of the test schedule and test equipment to allocate the available time and

resources in the most effi cient manner. Such prioritization should be a particular respon-

sibility of systems engineering because it requires a careful balancing of a wide range

of risks based on a comparative judgment of possible outcomes in terms of perfor-

mance, schedule, and cost.

 The above considerations are especially pertinent to defi ning test confi gurations.

The ideal confi guration would place all components in the context of the total system

in its operating environment. However, such a confi guration would require a prototype

of the entire system and of its full environment, which is usually too costly in terms

of resources. The minimum context would be an individual component with simple

simulations of all its interfacing elements. A more practical middle ground is incorpo-

rating the component under test in a prototype subsystem, within a simulation of

the remainder of the system and the relevant part of the operating environment. The

choice of a specifi c test confi guration in each case requires a complex balancing of

risks, costs, and contingency plans requiring the highest level of systems engineering

judgment.

 Test Analysis Planning. The planning of how the test results are to be analyzed

is just as important as how the tests are to be conducted. The following steps should

be taken:

 1. Determine what data must be collected.

 2. Consider the methods by which these data can be obtained — for example,

special laboratory tests, simulations, subsystem tests, or full - scale system tests.

 3. Defi ne how all data will be processed, analyzed, and presented.

 Detailed analysis plans are especially important where a test is measuring the dynamic

performance of a system, thus producing a data stream that must be analyzed in terms

of dynamic system inputs. In such cases, where a large volume of data is produced, the

analysis must be performed with the aid of a computer program that is either designed

for the purpose or is a customized version of an existing program. The analysis plan

must, therefore, specify exactly what analysis software will be needed and when.

 The test analysis plan should also specify that the test confi guration has the neces-

sary test points and auxiliary sensors that will yield measurements of the accuracy

needed for the analysis. It also must contain the test scenarios that will drive the system

during the tests. Whereas the details of the test analysis plan are usually written by test

engineers and analysts, the defi nition of the test and test analysis requirements is the

task of systems engineering. The loop needs to be closed between the defi nition of test

confi guration, test scenarios, test analysis, and criteria for design adequacy. These

DEVELOPMENT TESTING 343

relationships require the expertise of systems engineers who must ensure that the test

produces the data needed for analysis.

 Special consideration is needed when testing human – machine interactions and

interfaces. The evaluation of such interactions usually does not lend itself to quantitative

measurement and analysis, but must nevertheless be provided for in the test and analysis

plan. This is an area where the active participation of specialists is essential. All the

above plans should be defi ned during the early to middle phases of the advanced devel-

opment phase to provide the time to develop or otherwise to acquire the necessary

supporting equipment and analysis software before formal testing is scheduled to begin.

 Test and Evaluation Master Plan (TEMP). In government projects, the devel-

opment of a comprehensive test plan is a formal requirement. Designated the TEMP,

the plan is to be prepared fi rst as a part of concept defi nition and then expanded and

detailed at each phase of the development. The TEMP is not so much a test plan as a

 test management plan. Thus, it does not spell out how the system is to be evaluated or

the procedures to be used but is directed to what is planned to be done and when . The

typical contents of a system TEMP are the following:

 • System Introduction

 Mission description

 Operational environment

 Measures of effectiveness and suitability

 System description

 Critical technical parameters

 • Integrated Test Program Summary

 Test program schedule

 Management

 Participating organizations

 • Developmental Test and Evaluation

 Method of approach

 Confi guration description

 Test objectives

 Events and scenarios

 • Operational Test and Evaluation

 Purpose

 Confi guration description

 Test objectives

 Events and scenarios

 • Test and Evaluation Resource Summary

 Test articles

 Test sites

 Test instrumentation

344 ADVANCED DEVELOPMENT

 Test environment and sites

 Test support operations

 Computer simulations and models

 Special requirements

 Special Test Equipment and Test Facilities

 It has been noted in previous chapters that the simulation of the system operational

environment for purposes of system test and evaluation can be a task of major propor-

tions, sometimes approaching the magnitude of the system design and engineering

effort itself. In the advanced development phase, this aspect of system development

is not only very important but frequently is also very expensive. Thus, the judgment

as to the degree of realism and precision that is required of such simulation is an

important systems engineering function. This and related subjects are also discussed in

Chapter 13 .

 The magnitude of the effort to provide suitable test equipment and facilities natu-

rally depends on the nature of the system and on whether the developer has had prior

experience with similar systems. Thus, the development of a new spacecraft requires

a host of equipment and facilities ranging from vacuum chambers and shake and vibra-

tion facilities that simulate the space and launch environment, and space communica-

tion facilities to send commands and receive data from the spacecraft, to clean rooms

that prevent contamination during the building and testing of the spacecraft. Some of

these facilities were described in the subsection on development facilities. Having a

full complement of such equipment and facilities enables an established spacecraft

developer to limit the cost and time for developing the necessary support for a new

development. However, even if the bulk of such equipment may be available from

previous system developments, every new program inevitably calls for different equip-

ment combinations and confi gurations. The rate of technological change creates both

new demands and new opportunities, and this is no less true in the area of system testing

than in the area of system design.

 Creating the Test Environment. The design and construction of the test envi-

ronment to validate a major component or subsystem requires equipment for the real-

istic generation of all the input functions and the measurement of the resulting outputs.

It also requires the prediction and generation of a set of outputs representing what the

system element should produce if it operates according to its requirements. The latter,

in turn, requires the existence of mathematical or physical models designed to convert

the test inputs into predicted system outputs for comparison with test results.

 The above operations are represented by a functional fl ow diagram (Figure 10.3)

that is an expansion of the test and evaluation block of Figure 8.2 . The four functions

on the left side of the fi gure show how the design of the test environment creates a

predictive test model and a test scenario, which in turn activates a test stimulus genera-

tor. The test stimuli activate the system element (component or subsystem) under test

and are also used by the mathematical or physical model of the system element to create

DEVELOPMENT TESTING 345

a corresponding set of predicted outputs for comparison with the actual test outputs.

The functions on the right side of Figure 8.3 represent the analysis and evaluation of

test results, as further described below in a subsequent subsection bearing that name.

 Test Software. Test support and analysis software requires special attention in

virtually all developments and has to be tailored very specifi cally to the system at hand.

Establishing its objectives and detailed requirements is a major systems engineering

task. Where user (human — machine) interfaces are also involved, the task becomes

even more complex. Such support software is usually best developed by rapid prototyp-

ing, with strong inputs from the test engineers and analysts who will be responsible for

installing and using it. For this reason, and because of the inherent diffi culty in predict-

ing software development time, it is important to begin this task as early as possible.

 Test Equipment Validation. Like any system element, test equipment for

system design validation itself requires test and validation to ensure that it is suffi ciently

accurate and reliable to serve as a measure of system performance. This process requires

careful analysis and consideration because it often stresses the limits of equipment

measurement capabilities. This task is often underestimated and is not allocated with

suffi cient time and effort.

 Demonstration and Validation Testing

 The actual conduct of tests to demonstrate and validate the system design is often the

most critical period in the development of a new system. The primary effort during

advanced development has been seen to be concerned with the resolution of identifi ed

design issues — in other words, eliminating the known unknowns or “ unks. ” And, with

 Figure 10.3. Test and evaluation process of a system element.

Requirements

Analysis

Prototype

Development

Generate Stimulate Record
the Test

Response

Excessive Requirements

Design
Deficiencies

Stimuli

System
Response

Test
Stimuli

the System
Element

Identify
the

Source of
Deviations

Evaluation
Criteria

Design
and Build
the Test

envionment

Previous
Model

Stimulate
the Element

Model

Compare
Test

Responses
ElElement
Model

Predicted
Response

Test Deficiencies

346 ADVANCED DEVELOPMENT

luck, it will succeed in resolving the great majority of the initial uncertainties in the

system design. But every new complex system inevitably also encounters unanticipated

 “ unknown unknowns, ” or “ unk - unks. ” Thus, it is also a major objective of the advanced

development phase to discover such features before committing to full - scale engineer-

ing. To this end, the validation tests are designed to subject the system to a broad enough

range of conditions to reveal hitherto undiscovered design defi ciencies.

 Dealing with Test Failures. It can be seen that the above process is at once

necessary and at the same time poses program risks. When a test uncovers an unk - unk,

it usually manifests itself in the failure of the system element to function as expected.

In some cases, the failure may be spectacular and publicly visible, as in testing a new

aircraft or guided missile. Because the failure is unexpected, there is a period of time

before a proposed solution can be implemented. During this time, the impact of the

failure on system development may be serious. Because the decision to proceed with

the engineering design phase hinges on the successful validation of the system design,

a hiatus in the program may be in prospect, and if no adequate solution is found rela-

tively quickly, the entire program may be jeopardized.

 It is when eventualities such as the above occur that systems engineers are most

indispensable. They are the only members of the program staff who are equipped to

bring together the breadth of knowledge and experience necessary to guide the effort

to fi nd solutions to unexpected system problems. Quite often, a defi ciency found in the

design of a given component cannot be overcome by a local fi x but can be compensated

for by a change in a related part of the system. In other cases, analysis may show the

fault to be in the test equipment or procedure rather than in the system itself. In some

instances, analysis can demonstrate that the particular system performance requirement

that was at issue cannot be fully justifi ed on the basis of operational need. In these and

other cases, the expedited search and identifi cation of the most desirable solution to the

problem is led by systems engineering, as is the task of persuading program manage-

ment, the customer, and other decision makers that the recommended solution is worthy

of their confi dence and support.

 Testing and the System Life Cycle. It has been noted in previous chapters

that a new system not only has to perform in its operational environment but also must

be designed to survive conditions to which it will be exposed throughout its life, such

as shipping, storage, installation, and maintenance. These conditions are often insuf-

fi ciently addressed, especially in the early stages of system design, only to unexpectedly

cause problems at a stage when their correction is extremely costly. For these reasons,

it is essential that the design validation tests include an explicit imposition of all condi-

tions that the system is expected to encounter.

 Testing of Design Modifi cations. As noted above, the test programs must

anticipate that unexpected results that reveal design defi ciencies may occur. Accordingly,

it must provide scheduled time and resources to validate design changes that correct

such defi ciencies. Too often, test schedules are made on the assumption of 100%

success, with little or no provision for contingencies. The frequent occurrence of time

DEVELOPMENT TESTING 347

and cost overruns in the development of new complex systems is in considerable part

due to such unrealistic test planning.

 Analysis and Evaluation of Test Results

 The operations involved in evaluating test results are illustrated in the right half of

Figure 10.3 . The outputs from the component or subsystem under test are either

recorded for subsequent analysis or compared in real time with the predicted values

from the simulated element model. The results must then be analyzed to disclose all

signifi cant discrepancies, to identify their source, and to assess whether or not remedial

measures are called for, as derived with reference to a set of evaluation criteria. These

criteria should be developed prior to the test on the basis of careful interpretation of

system requirements and understanding of the critical design features of the system

element.

 It should be noted that one of the fi rst places to look for as a cause of a test dis-

crepancy is a defect in the test equipment or procedure. This is largely because there

is usually less time and effort available to validate the test setup than has gone into the

design of the system element under test.

 The successful use of test results to either confi rm the design approach or to iden-

tify specifi c design defi ciencies is wholly dependent on the acquisition of high - quality

data and its correct interpretation in terms of system requirements. An essential factor

in effective test analysis is a versatile and experienced analysis team composed of

analysts, test engineers, and systems engineers. The function of the analysts is to apply

analytical tools and techniques to convert the raw test results to a measurement of the

performance of specifi c system elements. The test engineers contribute their intimate

knowledge of the test conditions, sensors, and other test variables to the systems analy-

sis. The systems engineers apply the above knowledge to the interpretation of the tests

in terms of system performance as related to requirements.

 Tracing defi ciencies in performance to the stated system requirements is especially

important when remedying the defi ciencies may require signifi cant redesign. In such

cases, the requirements must be critically reviewed to determine whether or not they

may be relaxed without signifi cant loss in system effectiveness, in preference to expend-

ing the time and cost required to effect the system changes required to meet them fully.

In view of the potential impact of any defi ciencies uncovered in the test analysis

process, it is essential that the analysis be accomplished quickly and its results used to

infl uence further testing, as well as to initiate such further design investigations as may

be called for.

 Evaluation of User Interfaces

 A special problem in the validation of system design is posed by the interface and

interaction between the user/controller and the system. This is especially true in deci-

sion support systems where the system response is critically dependent on the rapid

and accurate interpretation of complex information inputs by a human operator aided

by displays driven by computer - based logic. The air traffi c controller function is a prime

348 ADVANCED DEVELOPMENT

example of such an interface. However, even in much less information - intensive

systems, the trends toward increased automation have made user interfaces more inter-

active and hence more complex. Even the basic interface between a personal computer

and the user, while becoming more intuitive and powerful, has nevertheless become

correspondingly more complicated and challenging to the nonexpert user.

 The test and evaluation of user interface controls and displays poses diffi cult prob-

lems because interfaces are inherently incapable of objective quantitative measurement,

except in their most primitive features (e.g., display luminosity). Large variations in

the experience, visual and logical skills, and personal likes and dislikes of individual

users also color their reactions to a given situation. Moreover, it is essential that

members of the design team do not serve as sole subjects for the assessment of user

interfaces. Rather, to the maximum extent possible, operators of similar systems should

be employed for this purpose.

 Nonetheless, the importance of an effective user interface to the performance of

most systems makes it essential to plan and conduct the most substantive evaluation of

this systems feature as may be practicable. This is especially relevant because of the

inherent diffi culty of establishing user requirements at the outset of the development.

Thus, there are bound to be surprises when users are fi rst confronted with the task of

operating the system.

 User interfaces are areas where rapid prototyping can be particularly effective.

Before the full system or even the full human – computer interface is designed, proto-

types can be developed and demonstrated with potential users to solicit early feedback

on preferences of information representation.

 The evaluation of the user interface may be considered in four parts:

 1. ease of learning to use the operational controls,

 2. clarity of visual situational displays,

 3. usefulness of information content to system operation, and

 4. online user assistance.

 Of these, the fi rst and last are not explicitly parts of the basic system operation, but

their effectiveness can play a decisive role in the user ’ s performance. It is, therefore,

important that suffi cient attention be paid to user training and basic user help to ensure

that these factors do not obscure the evaluation of the basic system design features.

 Even more than most other design characteristics, user interfaces should be tested

in anticipation of discovering and having to fi x inadequacies. To this end, wherever

practicable, users should be presented with design alternatives to choose from rather

than having to register their level of satisfaction with a single design option. This may

usually be accomplished in software rather than in hardware.

 As in the case of other operational characteristics, such as reliability, producibility,

and so on, the design related to the human – machine interface should have involved

human factor experts as well as potential users. For the developer to obtain the partici-

pation of the latter, it may be necessary to obtain customer assistance. In these and

other cases, customer participation in the development process can materially enhance

the utility and acceptance of the fi nal product.

RISK REDUCTION 349

 The evaluation of the effectiveness of the user interface is not subject to quantita-

tive engineering methods and extends the systems engineer into the fi eld of human –

 machine interaction. The experts (usually psychologists) in certain aspects of such

interactions are mostly specialists (e.g., in visual responses) and must be integrated into

the evaluation process along with other specialists. It is a systems engineering respon-

sibility to plan, lead, and interpret the tests and their analysis in terms of what system

design changes might best make the user most effective. To do so, the systems engineer

must learn enough of the basics of human – machine interactions to exercise the neces-

sary technical leadership and system - level decision making.

 Correction of Design Defi ciencies

 All of the previous discussions have centered on discovering potential defi ciencies in

the system design that may not have been eliminated in the development and test

process. If the development has been generally successful, the defi ciencies that remain

will prove to be relatively few, but how to eliminate them may not always be obvious

nor the effort required trivial. Further, there is almost always little time and few

resources available at this point in the program to carry out a deliberate program of

redesign and retest. Thus, as noted earlier, there must be a highly expedited and priori-

tized effort to quickly bring the system design to a point where full - scale engineering

can begin with a relatively high expectation of success. The planning and leadership

of such an effort is a particularly critical systems engineering responsibility.

 10.6 RISK REDUCTION

 As described in Chapter 5 , a major fraction of risk reduction during the system life

cycle should be accomplished during the advanced development phase. To reiterate,

the principal purpose of the advanced development phase is to reduce the potential risks

in the development of a new complex system to a level where the functional design of

all previously unproven subsystems and components has been validated.

 The typical sources of development risks are described in the sections on Functional

Analysis and Design and Prototype Development. Most of them are seen to arise

because of a lack of adequate knowledge about new technologies, devices, or processes

that are intended to be key elements in the system design. Thus, the process of risk

reduction in this phase amounts to the acquisition of additional knowledge through

analysis, simulation, or implementation and testing.

 We have advocated two primary methods to reduce risk within this phase: proto-

type development (both hardware and software) and development testing. While both

methods could certainly be implemented earlier (and should be in many cases), it is

not until the advanced development phase that suffi cient information on the system

architecture (both functional and physical) are available to properly implement proto-

typing and advanced testing.

 Other risk reduction strategies are available to both the program manager and

the systems engineer. From the program manager ’ s perspective, several acquisition

350 ADVANCED DEVELOPMENT

strategies are available to reduce risk, depending on the level of resources: (1) parallel

development efforts developing alternative technologies or processes in case a primary

technology or process fails to mature, (2) alternative integration strategies to emphasize

alternative interface options, and (3) one of the incremental development strategies to

engineer functional increments while technologies mature.

 The systems engineer also has several strategies available beyond those of proto-

typing and testing: (1) increase use of modeling and simulation over physical prototyp-

ing to ensure an increased understanding of the environment and system processes and

(2) interface development and testing before engineered components are available to

reduce interface risks. Regardless of strategies ultimately employed to reduce risks, the

program manager and systems engineer work hand in hand to ensure risk reduction

occurs at the proper time.

 How Much Development?

 A key decision that must be made in planning the risk reduction effort is by what means

and how far each risk area should be developed. If the development is too limited, the

residual risk will remain high. If it is very extensive, the time and cost consumed in

risk reduction may unnecessarily infl ate the total system development cost. Striking the

proper balance calls on the exercise of expert systems engineering judgment.

 The decision as to how much development should be undertaken on a given com-

ponent should be part of the risk management plan, as described in Chapter 5 . The

objective of the plan is to minimize the total cost of managing each signifi cant risk

area. This “ risk cost ” is the sum of the cost of such analysis, simulation, and design

and testing that may be undertaken, that is, the “ development cost, ” and the cost of

mitigating the residual risk to the low level required to proceed to the engineering

design phase, that is, the “ mitigation cost. ” By varying the nature and amount of devel-

opment, a judgment can be made as to the most favorable balance. Thus, for a critical,

immature component, the balance may call for development up to the prototype stage,

while for a noncritical or mature component, it would only call for analysis.

 10.7 SUMMARY

 Reducing Program Risks

 Objectives of the advanced development phase are to resolve the majority of uncertain-

ties (risks) through analysis and development and to validate the system design approach

as a basis for full - scale engineering. The outputs of advanced development are a system

design specifi cation and a validated development model.

 Advanced development is especially critical for systems containing extensive

advanced development or unproven concepts that may involve several years of develop-

ment effort.

 Activities encompassed by advanced development are the following:

SUMMARY 351

 • Requirements Analysis — relating functional requirements to needs,

 • Functional Analysis and Design — identifying performance issues,

 • Prototype Development — building and testing prototypes of critical components,

and

 • Test and Evaluation — validating the maturity of critical components.

 Requirements Analysis

 Analysis of system functional specifi cations is required to relate them to their origin in

operational requirements, especially those not readily met. Their differences from those

of a predecessor system are also noted.

 Functional Analysis and Design

 Components that may require further development include those that

 • implement a new function;

 • are a new implementation of an existing function;

 • use a new production method for an existing type of component;

 • extend the function of a proven component; and

 • involve complex functions, interfaces, and interactions.

 Prototype Development as a Risk Mitigation Technique

 Program risks requiring development may result from a number of conditions:

 • unusually high performance requirements,

 • new materials and processes,

 • extreme environmental conditions,

 • complex component interfaces, and

 • new software elements.

 Development Testing

 Validation testing to confi rm the resolution of risks requires the development of a formal

test plan (TEMP). Furthermore, test equipment must be developed; validation tests must

be conducted; and test results must be analyzed and evaluated. The results of this testing

lead to the correction of design defi ciencies. However, special test equipment and facili-

ties often represent a major investment. Therefore, early experimental exploration of

the interface design is essential.

 Models of systems and components are used extensively in system development.

Simulations are increasingly important in all stages of development and are essential

352 ADVANCED DEVELOPMENT

in the analysis of dynamic systems and software that require development and a staff

of analysts and operators.

 Development facilities are installations simulating environmental conditions and

are used for development tests and component evaluation. They represent a major

investment and require a permanent operating staff.

 Risk Reduction

 Risk assessment is a basic systems engineering tool, which is used throughout develop-

ment, but especially during advanced development. It involves identifying sources of

risk, risk likelihood, and criticality.

 PROBLEMS

 10.1 The systems engineering method applies to the advanced development

phase in a similar set of four steps, as it does to the preceding concept defi -

nition phase. For each step in the method, compare the activities in the two

phases with one another, stating in your own words (a) how they are similar

and (b) how they are different.

 10.2 What specifi c activities in the advanced development phase sometimes

cause it to be referred to as a “ risk reduction ” phase? Give an example of

each activity considering a real or hypothetical system.

 10.3 Why do so many new complex system developments incur large risks by

choosing to apply immature technology? Give an example of where and

how such choices paid off and one where they did not.

 10.4 Table 10.2 illustrates four cases of developments involving different aspects

of a system. Each is shown to require a different set of development activi-

ties to validate the result. Explain the rationale for each of the four develop-

ment processes in terms of the given conditions.

 10.5 In the development of a major upgrade to a terminal air traffi c control

system, what would you except to be three signifi cant risks and what

systems engineering approaches would you recommend to mitigate each of

these risks? (Consider problems of failing to meet the schedule as well as

safety problems.)

 10.6 Components that are required to have extended functional performance well

beyond previously demonstrated limits frequently need further develop-

ment. Give an example of one such component in each of the four functional

element categories (signal, data, material, and energy) as shown in Table

 10.3 . Give reasons for your choice of examples.

 10.7 Graphical user interface software is generally diffi cult to design and test.

Explain why this is true, giving at least three situations to illustrate your

points. What types of development tests would you propose for each

situation?

PROBLEMS 353

 10.8 Closed - loop dynamic systems are often diffi cult to analyze and test. Special

test facilities are often constructed for this purpose. Diagram such a test

setup for evaluating an unmanned air vehicle (UAV) designed for remote

surveillance using an optical sensor. Assume that the test equipment includes

an actual optical sensor, while other system components are simulated.

Indicate which elements in the simulation are part of the system under test

and which elements represent external inputs. Label all blocks and input/

output lines.

 One systems engineering responsibility of advanced development is to

understand how the system concept will accept, transform, consume, and

produce each of the four functional elements of signals, data, materials, and

energy. To illustrate this concept, for Problems 10.9 – 10.13, use a standard

automated car wash found at most service stations in which a car enters an

enclosed car wash via an automated conveyor belt and goes through several

phases of activities before exiting the facility.

 For each problem, construct a table with four columns labeled “ Accept, ”

 “ Transform, ” “ Consume, ” and “ Produce. ”

 10.9 In the Accept column, describe what signals the system will accept from all

external entities. In the Transform column, describe the transformation of

these signals and what the system will transform these signals into. In the

Consume column, describe what signals the system will consume and for

what purpose. Note that the system will either transform or consume all of

its input signals. In the Produce column, describe what signals the system

will produce for output.

 10.10 In the Accept column, describe what data the system will accept from all

external entities. In the Transform column, describe the transformation of

these data and what the system will transform these data into. In the Consume

column, describe what data the system will consume and for what purpose.

Note that the system will either transform or consume all of its input data.

In the Produce column, describe what data the system will produce for

output.

 10.11 In the Accept column, describe what materials the system will accept from

all external entities. In the Transform column, describe the transformation

of these materials and what the system will transform these materials into.

In the Consume column, describe what materials the system will consume

and for what purpose. Note that the system will either transform or consume

all of its input materials. In the Produce column, describe what materials

the system will produce for output.

 10.12 In the Accept column, describe what energy the system will accept from all

external entities. In the Transform column, describe the transformation of

these energies and what the system will transform these energies into. In

the Consume column, describe what energies the system will consume and

for what purpose. Note that the system will either transform or consume all

of its input energy. In the Produce column, describe what energies the

354 ADVANCED DEVELOPMENT

system will produce for output. Remember that energy may take several

forms.

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition. Prentice Hall ,

 2006 , Chapter 5.

 F. P. Brooks , Jr . The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,

 1995 .

 W. P. Chase . Management of Systems Engineering . John Wiley & Sons, Inc. , 1974 , Chapter 9.

 P. DeGrace and L. H. Stahl . Wicked Problems, Righteous Solutions . Yourdon Press , Prentice Hall ,

 1990 .

 H. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapter 13.

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 .

 J. N. Martin . Systems Engineering Guidebook: A Process for Developing Systems and Products .

 CRC Press , 1997 , Chapter 10.

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach . McGraw Hill , 1982 .

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapter 13.

 A. P. Sage . Systems Engineering . McGraw Hill , 1992 , Chapter 6.

 A. P. Sage and J. E. Armstrong , Jr . Introduction to Systems Engineering . John Wiley & Sons,

Inc. , 2000 , Chapter 6.

 S. M. Shinners . A Guide for Systems Engineering and Management . Lexington Books , 1989 ,

Chapter 5.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Chapter 11.

 Systems Engineering Fundamentals . SEFGuide - 12 - 00, Defense Acquisition University (DAU

Press) , 2001 , Chapter 4.

355

 Advancing information technology (IT) is the driving element to what many have called

the “ information revolution, ” changing the face of much of modern industry, commerce,

fi nance, education, entertainment — in fact, the very way of life in developed countries.

IT has accomplished this feat largely by automating tasks that had been performed by

human beings, doing more complex operations than had been possible, and doing them

faster and with great precision. Not only has this capability given rise to a whole range

of new complex software - controlled systems but it has also been embedded in nearly

every form of vehicle and appliance, and even in children ’ s toys.

 The previous chapters discussed the application of systems engineering principles

and practice to all types of systems and system elements without regard to whether they

were implemented in hardware or software. Software engineering, however, has

advanced along a separate path than systems engineering. And only recently have the

two paths begun to converge. Many principles, techniques, and tools are similar for

both fi elds, and research has fostered the evolving merger.

 The term software systems engineering was proposed by Dr. Winston Royce, father

of the waterfall chart, early in the history of software engineering to represent the

 11

SOFTWARE SYSTEMS

ENGINEERING

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

356 SOFTWARE SYSTEMS ENGINEERING

natural relationship between the two. However, the term was not adopted by the

growing software community, and the term software engineering became the moniker

for the fi eld.

 Within the fi rst decade of the twenty - fi rst century, the fact that the two fi elds have

more in common has been recognized by both communities. And the “ old ” term was

resurrected to represent the application of systems engineering principles and tech-

niques to software development. Of course, the fl ow of ideas has gone in both direc-

tions, spawning new concepts in systems engineering as well — object - oriented systems

engineering (OOSE) being one example. Today, the expanding role of software in

modern complex systems is undeniable.

 The two terms, software engineering and software systems engineering, are not

synonymous, however. The former refers to the development and delivery of software

products, stand - alone or embedded. The latter refers to the application of principles to

the software engineering discipline.

 Accordingly, this chapter will focus on software systems engineering — and how

software engineering relates to systems. In other words, we take the perspective of

using software to implement the requirements, functionality, and behaviors of a larger

system. This excludes stand - alone commercial applications in our discussions, such as

the ubiquitous offi ce productivity products we all use today. While systems engineering

principles could certainly be applied to the development of these types of products, we

do not address these challenges.

 Components of Software

 We defi ne software by its three primary components:

 • Instructions. Referred to as a “ computer program ” or simply as “ code, ” software

includes the list of instructions that are executed by a variety of hardware plat-

forms to provide useful features, functionality, and performance. These instruc-

tions vary in levels of detail, syntax, and language.

 • Data Structures. Along with the set of instructions are the defi nitions of data

structures that will store information for manipulation and transformation by the

instructions.

 • Documentation. Finally, software includes the necessary documents that describe

the use and operation of the software.

 Together, these three components are referred to as “ software. ” A software system is

software (as defi ned above) that also meets the defi nition of a system (see Chapter 1).

 11.1 COPING WITH COMPLEXITY AND ABSTRACTION

 One of the most fundamental differences between engineering software and engineering

hardware is the abstract nature of software. Since modern systems are dependent on

COPING WITH COMPLEXITY AND ABSTRACTION 357

software for many critical functions, it is appropriate to focus on the unique challenges

of engineering the software components of complex systems and to provide an over-

view of the fundamentals of software engineering of most interest to systems

engineers.

 In earlier chapters, we discussed the relationships between the systems engineer

and design, or specialty engineers. Typically, the systems engineer acts in the role of a

lead engineer responsible for the technical aspects of the system development.

Concurrently, the systems engineer works with the program manager to ensure the

proper programmatic aspects of system development. Together, the two work hand in

hand, resulting in a successful program. Design engineers usually work for systems

engineers (unoffi cially, if not directly reporting to them) in this split between

responsibilities.

 One perspective that can be taken with respect to software engineering is that the

software engineer is simply another design engineer responsible for a portion of the

system ’ s functionality. As functions are allocated to software, the software engineer is

called upon to implement those functions and behaviors in software code. In this role,

the software engineer sits alongside his peers in the engineering departments, develop-

ing subsystems and components using programming code as his tool, rather than physi-

cal devices and parts. Figure 11.1 is an IEEE software systems engineering process

chart that depicts this perspective using the traditional “ Vee ” diagram.

 Figure 11.1. IEEE software systems engineering process.

System

Analysis

System

Testing

System

Design

System

Integration

Testing

Software (SW)

Requirements

Analysis

SW System

Testing

Architectural

SW Design

SW Integration

Testing

Detailed SW

Design

SW Subsystem

Testing

Software EngineeringSoftware Engineering

Systems Engineering

Software Systems Engineering

Code and

Unit Test

358 SOFTWARE SYSTEMS ENGINEERING

 Once a subsystem has been allocated for software development (or a combined

software/hardware implementation), a subprocess of developing software requirements,

architecture, and design commences. A combination of systems engineering and soft-

ware engineering steps occurs before these software components are integrated into the

overall system.

 Unfortunately, this perspective tends to promote “ independence ” between the

systems and software development teams. After design, hardware and software engi-

neers begin their respective developments. However, the nature of software requires

that software development strategies be devised early — during system design, depicted

as the second major step in the Vee. If hardware and software are “ split ” during the

design phase (i.e., functionality and subsystem components are allocated to hardware

and software implementation) during or at the end of system design, then the differences

in processes developing and implementing these components will cause the system

development effort to become unbalanced in time.

 Therefore, software development must be integrated earlier than what has been

traditional — in the systems analysis phase. Although not shown in the fi gure, systems

architecting is now a major portion of what this process constitutes as systems analysis .

It is during this activity that software systems engineering is considered.

 Role of Software in Systems

 The development of software has coincided with the evolution of digital computing in

the second half of the twentieth century, which in turn has been driven by the growth

of semiconductor technology. Software is the control and processing element of data

systems (see Chapter 3). It is the means by which a digital computer is directed to

operate on sources of data to convert the data into useful information or action. In the

very early days of computers, software was used to enable crude versions of computers

to calculate artillery tables for the World War II effort. Software is being used today to

control computers ranging from single chips to tremendously powerful supercomputers

to perform an almost infi nite variety of tasks. This versatility and potential power makes

software an indispensable ingredient in modern systems, simple and complex.

 While software and computer hardware are inextricably linked, the histories of

their development have been very different. Computers, which consist largely of semi-

conductor chips, tend to be standardized in design and operation. All of the processing

requirements of specifi c applications are, therefore, incorporated into the software. This

division of function has made it possible to put great effort into increasing the speed

and capability of computers while maintaining standardization and keeping computer

costs low by mass production and marketing. Meanwhile, to handle increasing demands,

software has grown in size and complexity, becoming a dominant part of the majority

of complex systems.

 A traditional view of the role of software in a computer system is represented in

Figure 11.2 . The fi gure shows the layering of software and its relationship to the user

and to the machine on which it runs. The user can be either a human operator or another

computer. The user is seen to interact with all layers through a variety of interfaces.

The fi gure shows that the user interface is wrapped around all the software layers, as

COPING WITH COMPLEXITY AND ABSTRACTION 359

 Figure 11.2. Software hierarchy.

User

User interface (Screen, Keyboard, Mouse, Channel, DMA …)

Application Software (Custom, Support Tools, Commercial Products …)

Application Program Interface Libraries

Operating System Services

HardwareFirmware

 Figure 11.3. Notional three - tier architecture.

Clients

The “Network”

Application
Servers

The Network

Data Servers
with

Databases

well as having some minimal interaction directly with the hardware. Software at the

application layer is the essence of the computer system, and it is the application that is

supported by the other layers.

 Modern software systems are rarely found within single, stand - alone computers,

such as that represented in this fi gure. Today, software is found across complex net-

works of routers, servers, and clients, all within a multitiered architecture of systems.

Figure 11.3 depicts a simplifi ed three - tier architecture utilizing thin clients over a series

360 SOFTWARE SYSTEMS ENGINEERING

of networks. Within each component of the architecture, a similar hierarchy as depicted

in Figure 11.2 is resident.

 As one can imagine, the complexity of computer systems (which should not be

called computer networks) has grown signifi cantly. Software is no longer dedicated to

single platforms, or even platform types, but must operate across heterogeneous hard-

ware platforms. Moreover, software manages complex networks in addition to manag-

ing individual platforms.

 Because of the increasing complexity of software and its ever - increasing role in

complex systems, developing software is now an integrated and comprehensive part of

system development. Thus, systems engineering must include software engineering as

an integral discipline, not simply as another design engineering effort to implement

functionality.

 11.2 NATURE OF SOFTWARE DEVELOPMENT

 Types of Software

 While many people have presented categories of software over the past decades, we

fi nd that most of them can be consolidated into three broad types:

 • System Software. This category of software provides services for other software

and is not intended for stand - alone use. The classic example of this type is the

operating system. The operating system of a computer or server provides mul-

tiple data, fi le, communications, and interface services (to name a few) for other

resident software.

 • Embedded Software. This category of software provides specifi c services, func-

tions, or features of a larger system. This type is most readily recognized with

systems engineering since a basic principle allocated functionality to specifi c

subsystems, including software - based subsystems. Examples of this type are

readily found in systems such as satellites, defense systems, homeland security

systems, and energy systems.

 • Application Software. This category of software provides services to solve a

specifi c need and is considered “ stand - alone. ” Applications typically interact

with system and embedded software to utilize their services. Examples include

the popular offi ce productivity applications — word processors, spreadsheets, and

presentation support.

 Although these three categories cover the wide variety of software today, they do not

provide any understanding of the multiple specialties that exist. Table 11.1 is presented

to provide an additional categorization. The three major software categories are shown

in the table for comparison. Four additional categories are presented: engineering/

scientifi c, product line, Web based, and artifi cial intelligence. While all four fall under

one or more of the three major categories, each type also addresses particular niches

in the software community.

COPING WITH COMPLEXITY AND ABSTRACTION 361

 TABLE 11.1. Software Types

 Software type Short description Examples

 System A system software provides services to

other software.

 Operating system,

network manager

 Embedded An embedded software resides within a

larger system and implements specifi c

functions or features.

 GUI, navigation

software

 Application An application software is a stand - alone

program that solves a specifi c need.

 Business software,

data processors,

process controllers

 Engineering/

scientifi c

 An engineering/scientifi c software utilizes

complex algorithms to solve advanced

problems in science and engineering.

 Simulations,

computer - aided

design

 Product line A product - line software is intended for

wide use across a spectrum of users and

environments.

 Word processing,

spreadsheets,

multimedia

 Web based A Web - based software, sometimes called

Web applications, is specifi cally

designed for wide area network usage.

 Internet browsers,

Web site software

 Artifi cial

intelligence

 An artifi cial intelligence software is

distinguished by its use of nonnumerical

algorithms to solve complex problems.

 Robotics, expert

systems, pattern

recognition, games

 Types of Software Systems

 While software has become a major element in virtually all modern complex systems,

the task of systems engineering a new system may be very different depending on the

nature of functions performed by the software system elements. Despite the fact that

there are no commonly accepted categories for different types of systems, it is useful

to distinguish three types of software systems, which will be referred to as software -

 embedded systems, software - intensive systems, and computing - intensive systems. The

term “ software - dominated systems ” will be used as inclusive of software systems in

general.

 The characteristics of the three categories of software - dominated systems and

familiar examples are listed in Table 11.2 and are described more fully below.

 Software - Embedded Systems. Software - embedded systems (also referred to

as software - shaped systems, real - time systems, or sociotechnical systems) are hybrid

combinations of hardware, software, and people. This category of systems is one in

which the principal actions are performed by hardware but with software playing a

major supporting role. Examples are vehicles, radar systems, computer - controlled

manufacturing machinery, and so on. The function of software is usually that of per-

forming critical control functions in support of the human operators and the active

hardware components.

362 SOFTWARE SYSTEMS ENGINEERING

 Software - embedded systems usually run continuously, typically on embedded

microprocessors (hence the designation), and the software must therefore operate in

real time. In these systems, software is usually embodied in components designed in

accordance with requirements fl owed down from system and subsystem levels. The

requirements may be specifi ed for individual software components or for a group of

components operating as a subsystem. In these systems, the role of software can range

from control functions in household appliances to highly complex automation functions

in military weapons systems.

 Software - Intensive Systems. Software - intensive systems, which include all

information systems, are composed largely of networks of computers and users, in

which the software and computers perform virtually all of the system functionality,

usually in support of human operators. Examples include automated information pro-

cessing systems such as airline reservations systems, distributed merchandising systems,

fi nancial management systems, and so on. These software - intensive systems usually

run intermittently in response to user inputs and do not have as stringent requirements

on latency as real - time systems. On the other hand, the software is subject to system -

 level requirements directly linked to user needs. These systems can be very large and

distributed over extended networks. The World Wide Web is an extreme example of a

software - intensive system.

 TABLE 11.2. Categories of Software - Dominated Systems

 Characteristic

 Software - embedded

systems

 Software - intensive

systems

 Data - intensive

computing systems

 Objective Automate complex

subsystems to

perform faster and

more accurately

 Manipulate masses of

information to

support decisions or

to acquire knowledge

 Solve complex problems,

model complex systems

by computation and

simulation

 Functions Algorithmic, logical Transactional Computational

 Inputs Sensor data, controls Information, objects Data numeric patterns

 Processing Real - time

computation

 Manipulation, GUI,

networking

 Non - real - time

computation

 Outputs Actions, products Information, objects Information

 Timing Real time, continuous Intermittent Scheduled

 Examples Air traffi c control

 Military weapons

systems

 Aircraft navigation

and control

 Banking network

 Airline reservation

system

 Web applications

 Weather predictions

 Nuclear effect prediction

 Modeling and simulation

 Hardware Mini and micro

processors

 N - tier architectures Supercomputers

 Typical users Operators Managers Scientists, analysts

COPING WITH COMPLEXITY AND ABSTRACTION 363

 In software - intensive systems, software is key at all levels, including the system

control itself. Hence, these must be systems engineered from the beginning. Most of

them can be thought of as “ transactional ” systems (fi nancial, airline reservation,

command, and control). They are generally built around databases that contain domain

information entities that must be accessed to produce the desired transaction.

 Data - Intensive Computing Systems. A type of software system that is sig-

nifi cantly different from the above software system categories includes large - scale

computing resources dedicated to executing complex computational tasks. Examples

are weather analysis and prediction centers, nuclear effects prediction systems, advanced

information decryption systems, and other computationally intensive operations.

 These data - intensive computing systems usually operate as facilities in which the

computing is typically performed either on supercomputers or on assemblies of high -

 speed processors. In some cases, the processing is done by a group of parallel proces-

sors, with computer programs designed for parallel operation.

 The development of data - intensive computing systems requires a systems approach

like other systems. However, most of these are one of a kind and involve very special-

ized technical approaches. Accordingly, this chapter will be focused on the systems

engineering problems associated with the much more common software - embedded and

software - intensive systems.

 Differences between Hardware and Software

 It was noted at the beginning of this chapter that there are a number of fundamental

differences between hardware and software that have profound effects on the systems

engineering of software - dominated systems. Every systems engineer must have a clear

appreciation of these differences and their import. The following paragraphs and Table

 11.3 are devoted to describing software systems and how they differ signifi cantly from

hardware.

 Structural Units. Most hardware components are made up of standard physical

parts, such as gears, transistors, motors, and so on. The great majority are implementa-

tions of commonly occurring functional elements, such as “ generate torque ” or “ process

data ” (see Chapter 3). In contrast, software structural units can be combined in count-

less different ways to form the instructions that defi ne the functions to be performed

by the software. There is not a fi nite set of commonly occurring functional building

blocks, such as makeup hardware subsystems and components. The main exceptions

are generic library functions (e.g., trigonometric) contained in some software program-

ming environments and certain commercial software “ components ” mostly related to

graphic user interface functions.

 Interfaces. Because of its lack of well - defi ned physical components, software

systems tend to have many more interfaces, with deeper and less visible interconnec-

tions than hardware systems. These features make it more diffi cult to achieve good

system modularity and to control the effects of local changes.

364 SOFTWARE SYSTEMS ENGINEERING

 Functionality. There are no inherent limits on the functionality of software as

there are on hardware due to physical constraints. For this reason, the most critical,

complex, and nonstandard operations in systems are usually allocated to software.

 Size. While the size of hardware components is limited by volume, weight, and

other constraints, there is no inherent limit to the size of a computer program, especially

with modern memory technology. The large size of many software - based systems

constitutes a major systems engineering challenge because they can embody an enor-

mous amount of custom - built system complexity.

 Changeability. Compared to the effort required to make a change in a hardware

element, it is often falsely perceived to be easy to make changes in software, that is,

 “ merely ” by altering a few lines of code. The impacts of software changes are more

diffi cult to predict or determine due to the complexity and interface problems cited

above. A “ simple ” software change may require retesting of the entire system.

 Failure Modes. Hardware is continuous in both structure and operation, while

software is digital and discontinuous. Hardware usually yields before it fails and tends

to fail in a limited area. Software tends to fail abruptly, frequently resulting in a system

breakdown.

 Abstraction. Hardware components are described by mechanical drawings,

circuit diagrams, block diagrams, and other representations that are models of physical

elements readily understood by engineers. Software is inherently abstract. Besides the

 TABLE 11.3. Differences between Hardware and Software

 Attribute Hardware Software

 Software engineering

complications

 Structural

units

 Physical parts,

components

 Objects, modules Few common building blocks,

rare component reuse

 Interfaces Visible at

component

boundaries

 Less visible, deeply

penetrating

numerous

 Diffi cult interface control,

lack of modularity

 Functionality Limited by power,

accuracy

 No inherent limit

(limited only by

hardware)

 Very complex programs,

diffi cult to maintain

 Size Limited by space,

weight

 No inherent limits Very large modules, diffi cult

to manage

 Changeability Requires effort Deceptively easy

but risky

 Diffi cult confi guration

management

 Failure mode Yields before

failing

 Fails abruptly Greater impact of failures

 Abstraction Consists of

physical elements

 Textual and

symbolic

 Diffi cult to understand

COPING WITH COMPLEXITY AND ABSTRACTION 365

actual code, architectural and modeling diagrams are highly abstract and each diagram

restricted in its information context. Abstractions may be the single most fundamental

difference between software and hardware.

 The above differences, summarized in Table 11.3 , profoundly affect the systems

engineering of complex software - dominated systems. Not appreciating these differ-

ences and effectively accounting for them have contributed to a number of spectacular

failures in major programs, such as an attempted modernization of the air traffi c control

system, the initial data acquisition system for the Hubble telescope, the Mars Lander

spacecraft, and an airport baggage handling system.

 For the majority of systems engineers who do not have experience in software

engineering, it is essential that they acquire a grounding in the fundamentals of this

discipline. The following sections are intended to provide a brief overview of software

and the software development process.

 11.3 SOFTWARE DEVELOPMENT LIFE CYCLE MODELS

 As described in previous chapters, every development project passes through a series

of phases as it evolves from its inception to its completion. The concept of a life cycle

model is a valuable management tool for planning the activities, staffi ng, organization,

resources, schedules, and other supporting activities required for a project ’ s successful

execution. It is also useful for establishing milestones and decision points to help keep

the project on schedule and budget.

 Chapter 4 described a system life cycle model appropriate for developing, produc-

ing, and fi elding a typical, new large - scale complex system. It was seen to consist of a

series of steps beginning with the establishment of a bona fi de need for a new system

and systematically progressing to devising a technical approach for meeting the need;

engineering a hardware/software system embodying an effective, reliable, and afford-

able implementation of the system concept; validating its performance; and producing

as many units as required for distribution to the users/customers.

 The software elements in software - embedded systems perform critical functions,

which are embodied in components or subcomponents. Therefore, their system life

cycle is governed by the nature of the system and major subsystems and generally

follows the steps characteristic of systems in general, as described in Chapters 4 and

 6 – 10 . A signifi cant feature of the life cycle of software - embedded systems is the fact

that there is no production for the software elements themselves, only of the processors

on which the software runs. Also, there is cause for caution in that software elements

are deceptively complex for their size and usually play critical roles in system opera-

tion. Hence, special measures for risk reduction in this area need to be considered.

 Basic Development Phases. Just as the systems engineering method was seen

to consist of four basic steps (Fig. 4.10),

 1. requirements analysis,

 2. functional defi nition,

366 SOFTWARE SYSTEMS ENGINEERING

 3. physical defi nition, and

 4. design validation,

 so also the software development process can be resolved into four basic steps:

 1. analysis;

 2. design, including architectural, procedural, and so on;

 3. coding and unit test, also called implementation; and

 4. test, including integration and system test.

 Although not strictly coincident with the systems engineering method, the general

objectives of each of these steps correspond closely.

 It should be noted that like the systems engineering method, different versions of

the software process use variations in terminology in naming the steps or phases, and

some split up one or more of the basic steps. For example, design may be divided into

preliminary design and detailed design; unit test is sometimes combined with coding

or made a separate step. System test is sometimes referred to as integration and test. It

must be remembered that this stepwise formulation is a model of the process and hence

is subject to variation and interpretation.

 For the category of software - intensive systems, which have come to dominate

communication, fi nance, commerce, entertainment, and other users of information,

there are a variety of life cycle models in use. A few notable examples of these are

discussed briefl y in the following paragraphs. Detailed discussions of software life

cycles may be found in the chapter references and in other sources.

 As in the case of system life cycle models, the various software process models

involve the same basic functions, differing mainly in the manner in which the steps are

carried out, the sequencing of activities, and in some cases the form in which they are

represented. Overall, software development generally falls into four categories:

 1. Linear. Like formal system development life cycle models, the linear software

development model category consists of a sequence of steps, typically with

feedback, resulting in a software product. Linear development models work

well in environments with well - understood and stable requirements, reasonable

schedules and resources, and well - documented practices.

 2. Incremental. Incremental models utilize the same basic steps as linear models

but repeat the process in multiple iterations. In addition, not every step is per-

formed to the same degree of detail within each iteration. These types of devel-

opment models provide partial functionality at incremental points in time as the

system is developed. They work well in environments with stable requirements

where partial functionality is desired before the full system is developed.

 3. Evolutionary. Evolutionary models are similar to the incremental concept but

work well in environments where the fi nal product ’ s characteristics and attri-

butes are not known at the beginning of the development process. Evolutionary

models provide limited functionality in nonproduction forms (e.g., prototypes)

COPING WITH COMPLEXITY AND ABSTRACTION 367

for experimentation, demonstration, and familiarization. Feedback is critical to

evolutionary models as the system “ evolves ” to meet the needs of the users

through these three procedures.

 4. Agile. Agile development models deviate most from the four basic steps we

have identifi ed above. With linear, incremental, and evolutionary models, the

four steps are manipulated into different sequences and are repeated in different

ways. Within agile development environments, the four steps are combined in

some manner and the delineations between them are lost. Agile methods are

appropriate for environments where structure and defi nition are not available,

and change is the constant throughout the process.

 In addition to the four basic development model categories above, specialized

development models have been proffered, practiced, and published. Two well - known

examples are the component - based development model and the aspect - oriented devel-

opment model. These special - purpose models have specifi c but limited applications

warranting their use. We have chosen to omit these specialized models from our

discussions.

 Linear Development Models

 The waterfall model is the classic software development life cycle, also called the

 “ sequential ” model (see Fig. 11.4). It consists of a sequence of steps, systematically

 Figure 11.4. Classical waterfall software development cycle.

Analysis

Design

Coding and

Unit Test

Integration and
System Test

Operation and
Maintenance

368 SOFTWARE SYSTEMS ENGINEERING

proceeding from analysis to design, coding and unit test, and integration and system

test. The waterfall model with feedback (see dashed arrows) depicts the adjustment of

inputs from a preceding step to resolve unexpected problems before proceeding to the

subsequent step. The waterfall model corresponds most closely to the conventional

system life cycle. Table 11.4 lists the system life cycle phases, their objectives, and the

corresponding activity in the waterfall life cycle phase.

 Over the years, the basic waterfall model has morphed into many variations,

including some that quite honestly could no longer be described as linear. Waterfall has

been combined with the other types to form hybrids that could be classifi ed as a com-

bination of two or more categories. And while the basic waterfall model is rarely used

in today ’ s modern software engineering community, its basic principles can be recog-

nized throughout, as will be evidenced in the next two sections.

 Incremental Development Models

 The basic incremental model involves two concepts: (1) performing the basic steps of

software development repeatedly to build multiple increments and (2) achieving partial

operational functionality early in the process, and building that functionality over time.

Figure 11.5 depicts this process using the steps of the basic waterfall process model.

The reader should keep in mind that not all steps of every increment are performed to

the same level of detail. For example (and depicted in the fi gure), the analysis phase

may not need the same attention in the second and third increments as it received in

the fi rst increment. Initial analysis may cover the needs, requirements, and feature defi -

nition for all increments, not just the fi rst. Similarly, by the second iteration, the overall

design of the software system may be largely completed. Further design would not be

needed in the third iteration.

 TABLE 11.4. Systems Engineering Life Cycle and the Waterfall Model

 System phase Objective Waterfall phase

 Needs analysis Establish system need and

feasibility

 Analysis

 Concept exploration Derive necessary system Analysis

 Concept defi nition Select a preferred system

architecture

 Design

 Advanced development Build and test risky system

elements

 Design (and prototype)

 Engineering design Engineer system components to

meet performance requirements

 Coding and unit test

 Integration and evaluation Integrate and validate system

design

 Integration and system test

 Production Production and distribution None

 Operations and support Operation Maintenance

COPING WITH COMPLEXITY AND ABSTRACTION 369

 Another aspect of incremental development concerns the incremental releases,

sometimes called “ builds. ” As a new increment is released, older increments may be

retired. In its purest form, once the last increment is released, all of the older increments

are retired. Of course, situations arise when customers are fully satisfi ed with an

increment — leading to multiple increments, and thus versions of the software — or

future increments are cancelled. This is depicted in the fi gure by the triangles .

 The rapid application development (RAD) model (sometimes called the “ all - at -

 once ” model) features an incremental development process with a very short cycle time.

It is an iterative form of the waterfall model, depending on the use of previously devel-

oped or commercially available components. Its use is best suited to business applica-

tion software of limited size that lends itself to relatively quick and low - risk development,

and whose marketability depends on deployment ahead of an anticipated competitor.

 Evolutionary Development Models

 In situations where user needs and requirements are not well defi ned, and/or develop-

ment complexity is suffi ciently high to incur signifi cant risk, an evolutionary approach

may be best. The basic concept involves the development of an early software product,

or prototype. The prototype is not intended for actual operations, sales, or deployment,

but to assist in identifying and refi ning requirements, or in reducing development risks.

If the purpose of the prototype is identifying and refi ning requirements, then typically,

an experimental version of the system, or a representative portion that exhibits the

characteristics of the user interface, is built early in the design phase of the development

and operated by the intended user or a surrogate of the projected user. With the fl exibil-

ity of software, such a prototype can often be designed and built relatively quickly and

inexpensively. Attention to formal methods, documentation, and quality design need

not be implemented, since the version is not intended for production.

 Figure 11.5. Software incremental model.

Analysis Design
Coding and
Unit Test

Integration and
System Test

Operation and
Maintenance

Increment 3

Analysis Design
Coding and
Unit Test

Integration and
SystemTest

Operation and
Maintenance

Increment 2

Operation

Coding and Integration and Operation and

Increment 1

Operation and Evaluation

Analysis Design
Unit Test System Test Maintenance

Operation and Evaluation

Time

370 SOFTWARE SYSTEMS ENGINEERING

 In addition to refi ning requirements by building trial user interfaces, software

prototyping is often used as a general risk reduction mechanism as in the advanced

development phase. New design constructs can be prototyped early to refi ne the

approach. Interfaces with other hardware and software can also be developed and tested

early to reduce risk. As an example, consider an air traffi c control system. It is often

necessary to discover the real requirements of the system interfaces by testing prelimi-

nary models of the system in the fi eld.

 Perhaps the most common form of the evolutionary model is the spiral model . It

is similar to that pictured in Figure 4.12 but is generally much less formal and with

shorter cycles. Figure 11.6 depicts a version of the spiral development model. It differs

in form by starting in the center and spiraling outward. The expanding spirals represent

successive prototypes, which iteratively perfect the attainment of customer objectives

by the system. Finally, the fi nishing steps are applied on the last spiral/prototype, result-

ing in a fi nished product.

 With all evolutionary methods, it is important to plan for the disposition of the

prototypes (or spirals) after they have been used. Examples abound where a spiral

approach was adopted, and one or two prototypes were developed and tested using

actual users or surrogates. However, after experiencing the prototype, the customer

declared the product suffi cient and requested immediate delivery. Unfortunately,

without formal procedures and methods in place, nor general quality assurance followed

in the prototype development, the “ fi nal product ” was in no condition to be deployed

 Figure 11.6. Spiral model.

Spiral

Determine objectives,
alternatives and constraints

Plan next phases
Develop and verify
next-level product

Evaluate alternatives,
identify and resolve risks

Cumulative cost

Progress through
steps

Requirements plan
Life cycle plan

Risk
analysis

Risk
analysis

Concept of
operation

 Software
requirements

Requirements
validation

Design V and V

Software
product

design

Detailed
design

CodeUnit
test

Integration
and test

Acceptance

test

Implementation

Simulations, models benchmarks

Risk
analysis

Risk
analysis

Prototype
1

Prototype
2

Prototype
3

Operational
prototype

Development
plan

Integration and
test plan

Commitment
Partition

Review

COPING WITH COMPLEXITY AND ABSTRACTION 371

in the fi eld (or sold to the market). Upon deployment, problems ensued quickly. Our

recommendation is that prototypes should be discarded upon completion of their

purpose — and the customer should be forewarned of the signifi cant risks involved in

deployment prototypes as operational systems.

 The second model, which falls under the evolutionary category, is the concurrent

development model . This approach eliminates the two concepts of sequence and incre-

ments, and develops all phases simultaneously. The model achieves this approach

through the defi nition of software development states. Software modules are tagged

with which state they belong. Formal state transition criteria are defi ned that enables

software modules to transition from one state to the other. Development teams focus

on specifi c activities within a single state. Figure 11.7 depicts an example state transi-

tion diagram (STD) associated with this type of model.

 Software modules are initially assigned to the “ awaiting development ” state. This

state could be thought of as a queue for the development teams. A module is not tran-

sitioned to the “ under development ” state until a team is assigned to its development.

Once completed, the module is transitioned to the “ under review ” state, where a review

team (or person) is assigned. Again, transition does not occur until a team is assigned

to the module. This process is repeated. Since modules are developed simultaneously

by different teams, modules can be in the same state. A push/pull system can be imple-

mented to increase the effi ciency of the associated teams.

 Figure 11.7. State transition diagram in the concurrent development model.

Awaiting
Development

Under Design
Revision

Under
Development

Under Review

Rejected

Accepted

Awaiting
Integration

IntegratedIntegrated

372 SOFTWARE SYSTEMS ENGINEERING

 Agile Development Models

 A common result of many software development projects is failure to adapt to changing

or poorly defi ned user requirements and a consequent impact on project cost. A response

to this situation has been the formulation, in the late 1990s and early 2000s, of an

adaptive software methodology referred to as “ agile. ” It uses an iterative life cycle to

quickly produce prototypes that the user can evaluate and use to refi ne requirements.

It is especially suitable for small - to medium - size projects (with less than 30 – 50 people)

where the requirements are not fi rmly defi ned and where the customer is willing to

work with the developer to achieve a successful product. This last point is particularly

important — the agile methodology depends on customer/user involvement. Without a

commitment from the customer for this level of interaction, the agile methodology

incurs a signifi cant risk.

 As defi ned by its proponents, the agile methodology is based on the following

postulates, assuming the above conditions:

 1. Requirements (in many projects) are not wholly predictable and will change

during the development period. A corollary is that customer priorities are likely

to change during the same period.

 2. Design and construction should be integrated because the validity of the design

can seldom be judged before the implementation is tested.

 3. Analysis, design, construction, and testing are not predictable and cannot be

planned with adequate levels of precision.

 These methods rely heavily on the software development team to conduct simultaneous

activities. Formal requirements analysis and design are not separate steps — they are

incorporated in the coding and testing of software. This concept is not for the faint - of -

 heart customer — a great level of trust is required. Nevertheless, agile methods represent

a leap in software development that can lead to highly robust software more quickly

than traditional methods.

 Agile methods include a number of recent process models:

 • Adaptive Software Development (ASD) focuses on successive iterations of three

activities: speculation, collaboration, and learning. The initial phase, speculation,

focuses on the customer ’ s needs and mission. The second phase, collaboration,

utilizes the concept of synergistic talents working together to develop the soft-

ware. The fi nal phase, learning, provides feedback to the team, the customer, and

the other stakeholders, and includes formal review and testing.

 • Extreme Programming (XP) focuses on successive iterations of four activities:

planning, design, coding, and testing. Requirements are identifi ed through the

use of user stories — informal user descriptions of features and functionality.

These stories are organized and used through the iteration process, including as

the basis for fi nal testing.

 • Scrum focuses on a short, 30 - day iterative cycle — with strong teaming. This

process yields several iterations in various maturities with which to learn, adapt,

COPING WITH COMPLEXITY AND ABSTRACTION 373

and evolve. Within each cycle, a basic set of activities occurs: requirements,

analysis, design, evolution, and delivery.

 • Feature - Driven Development focuses on short iterations (typically about 2

weeks), each of which delivers tangible functionality (features) that the user

values. Eventually, features are organized and grouped into modules that are then

integrated in the system.

 • The Crystal family of agile methods focuses on adaptation of a core set of agile

methodologies to individual projects.

 In all of the above approaches, quality and robustness are required attributes of

products. Thus, the iterations are to be built on rather than thrown away (in contrast to

the incremental and spiral methods). All projects that are based on uncertain require-

ments should consider the above principles in deciding on the methodology to be used.

 In general, the software development life cycles follow the same pattern of progres-

sive risk reduction and system “ materialization ” that has been described in Chapters 3

and 5 – 10 . The remaining sections of this chapter follow a similar structure.

 Software System Upgrades

 Because of the rapid evolution of IT, the associated developments in data processors,

peripherals, and networks, and the perceived ease of introducing software changes,

there are relatively frequent cases where system software is subjected to signifi cant

modifi cations or “ upgrades. ” In a large fraction of instances, the upgrades are planned

and implemented by different individuals from those responsible for their development,

with the resulting probability of inadvertent interface or performance defi ciencies. Such

cases call for participation of and control by systems engineering staff who can plan

the upgrade design from a system point of view and can ensure an adequate require-

ments analysis, interface identifi cations, application of modular principles, and thor-

ough testing at all levels.

 When the system to be upgraded was designed before the general use of modern

programming languages, there can be a severe problem of dealing with an obsolete

language no longer supported by modern data processors. Such legacy software is

generally not capable of being run on modern high - performance processors, and the

programs, which total billions of lines of code, have to either be rewritten or translated

into a modern language. The cost of the former is, in many cases, prohibitive, and the

latter has not come into general practice. The result has been that many of these systems

continue to use obsolete hardware and software and are maintained by a dwindling

group of programmers still capable of dealing with the obsolete technology.

 11.4 SOFTWARE CONCEPT DEVELOPMENT: ANALYSIS AND DESIGN

 The analysis and design steps in the traditional software life cycle described in

the previous sections generally correspond to the concept development stage that is

374 SOFTWARE SYSTEMS ENGINEERING

embodied in Part II of this book. These are the activities that defi ne the requirements

and architecture of the software elements of the system. The line of demarcation

between analysis and design may vary substantially among projects and practitioners,

there being broad areas referred to as design analysis or design modeling. For this

reason, the subsections below will focus more on approaches and problems that are of

special interest to systems engineers than on issues of terminology.

 Needs Analysis

 The precondition for the development of any new system is that it is truly needed, that

a feasible development approach is available, and that the system is worth the effort to

develop and produce it. In the majority of software - intensive systems, the main role of

software is to automate functions in legacy systems that have been performed by people

or hardware, to do them at less cost, in less time, and more accurately. The issue of

need becomes one of trading off the projected gains in performance and cost against

the effort to develop and deploy the new system.

 In new systems in which key operations performed by people or hardware are to

be replaced with software, users are typically not unanimous regarding their needs, and

the optimum degree of automation is seldom determinable without building and testing.

Further, an extensive market analysis is usually necessary to gauge the acceptance of

an automated system and the costs and training that this entails. Such an analysis also

usually involves issues of market penetration, customer psychology, introduction trials,

and corporate investment strategy.

 Feasibility Analysis. The decision to proceed with system design has been seen

to require the demonstration of technical feasibility. Within the realm of software,

almost anything appears feasible. Modern microprocessors and memory chips can

accommodate large software systems. There are no clear size, endurance, or accuracy

limits such as there are on hardware components. Thus, technical feasibility tends to

be taken for granted. This is a great advantage of software but also invites complexity

and the assumption of challenging requirements. However, the resulting complexity

may in itself prove too diffi cult and costly.

 Software Requirements Analysis

 The scope of the requirements analysis effort for a new system usually depends on

whether the software is an element in a software - embedded system or if it embraces a

total software - intensive system. In either case, however, the development of a concept

of operations should play an important part.

 Software - Embedded System Components. As noted previously, the soft-

ware elements in software - embedded systems are usually at the component level,

referred to as computer system confi guration items (CSCIs). Their requirements are

generated at the system and subsystem levels and are allocated to CSCIs, usually in a

COPING WITH COMPLEXITY AND ABSTRACTION 375

formal requirement specifi cation document. The software team is expected to design

and build a product to these specifi cations.

 Too often, such specifi cations are generated by systems engineers with an inade-

quate knowledge of software capabilities and limitations. For example, a large dynamic

range in combination with high precision may be prescribed, which may unduly stress

the system computational speed. Other requirement mismatches may result from the

communication gap that frequently exists between systems and software engineers and

organizations. For such reasons, it is incumbent on the software development team to

make a thorough analysis of requirements allocated to software and to question any

that fail to have the characteristics described in Chapter 7 . These reasons also constitute

a good argument for including software engineers in the top - level requirements analysis

process.

 Software - Intensive System Requirements. As noted earlier, in a software -

 intensive system, software dominates every aspect and must be an issue at the highest

level of system requirements analysis. Thus, the very formulation of the overall system

requirements must be subject to analysis and participation by software systems

engineers.

 The basic problems in developing system requirements for software - intensive

systems are fundamentally the same as for all complex systems. However, there are

several aspects that are peculiar to requirements for systems that depend on the exten-

sive software automation of critical control functions. One special aspect has been noted

previously, namely, unreasonable performance expectations based on the extensibility

of software. Another is the generally diverse customer base, with little understanding

of what software automation is capable of doing, and hence is often not a good

source of requirements.

 The consequences of these and other factors that inhibit the derivation of a reliable

set of requirements typically result in a considerable degree of uncertainty and fl uidity

in software - based system requirements. This is a major reason for the use of prototyp-

ing, RAD, or evolutionary development, all of which produce an early version of the

system that can be subjected to experimentation by users to modify and fi rm up initial

assumptions of desired system characteristics.

 Several variations of developing software requirements exist today. Of course,

many depend on the type of software development model being used; however, some

generic features exist regardless of the model chosen. Figure 11.8 depicts a hierarchy

of software requirements, starting with the user needs at the apex. These needs are

decomposed into desired features, functional and performance requirements, and fi nally

specifi cations. If the system in question is software embedded, the upper levels of the

hierarchy are typically performed at the system level and requirements or specifi cations

are allocated to software subsystems or components.

 If the system in question is software intensive, the upper levels of the hierarchy

are needed. In those cases, a separate process for developing and refi ning requirements

may be needed. Several processes have been offered in the literature. A generic process

is presented in Figure 11.9 . Four steps, which can be further divided into separate steps,

are critical to this effort:

376 SOFTWARE SYSTEMS ENGINEERING

 • Requirements Elicitation. This step seems straightforward but, in reality, can be

challenging. Bridging the language barrier between users and developers is not

simple. Although tools have been developed to facilitate this process (e.g., use

cases, described below), users and developers simply do not speak the same

language. Many elicitation methods exist — from direct interaction with stake-

holders and users, involving interviews and surveys, to indirect methods, involv-

ing observation and data collection. Of course, prototyping can be of valuable

use.

 Figure 11.8. User needs, software requirements, and specifi cations.

Problem

User
Needs

Domain

Software
Features

Software Requirements

Solution
Domain

Software Specifications Technology Domain

 Figure 11.9. Software requirements generation process.

Requirements
Elicitation

Requirements
Analysis and
Negotiation

Requirements
Documentation

Requirements
Validation

Inputs

Outputs

COPING WITH COMPLEXITY AND ABSTRACTION 377

 • Requirements Analysis and Negotiation. Chapter 7 described a series of methods

to analyze and refi ne a set of requirements. These are applicable to software as

much as they are to hardware. In general, these techniques involve checking four

attributes of a requirements set: necessity, consistency, completeness, and feasi-

bility. Once requirements have been refi ned, they need to be accepted — this is

where negotiation begins. Requirements are discussed with stakeholders and are

refi ned until agreement is reached. When possible, requirements are prioritized

and problematic requirements are resolved. A more advanced analysis is then

performed, examining the following attributes: business goal conformity, ambi-

guity, testability, technology requirements, and design implications.

 • Requirements Documentation. Documentation is always the obvious step and

can be omitted since everyone is expecting the requirements to be documented.

We include it because of the criticality in articulating and distributing require-

ments to the entire development team.

 • Requirements Validation. This step can be confusing because many engineers

include “ analysis ” in this step, that is, the concept that each requirement is evalu-

ated to be consistent, coherent, and unambiguous. However, we have already

performed this type of analysis in our second step above. Validation in this

context means a fi nal examination of the requirements set in whole to determine

whether the set will ultimately meet the needs of the users/customers/parent

system. Several methods exist to enable requirement validation — prototyping,

modeling, formal reviews, manual development, and inspection — even test case

development can assist in the validation process.

 Use Cases. As mentioned in Chapter 8 , a popular tool available to requirements

engineers is the use case . A use case has been best described as a story, describing how

a set of actors interact with a system under a specifi c set of circumstances. Because the

set of circumstances can be large, even infi nite, the number of possible use cases for

any system can also be large. It is the job of the requirements engineer, developers,

users, and systems engineer to limit the number and variety of use cases to those that

will infl uence the development of the system.

 Use cases represent a powerful tool in bridging the language gap between users,

or any stakeholder, and developers. All can understand sequences of events and activi-

ties that need to be performed. Although use cases were developed for describing

software system behavior and features, they are regularly used in the systems world to

describe any type of system, regardless of the functionality implemented by software.

 Interface Requirements. Whichever the type of an essential tool of require-

ments analysis is the identifi cation of all external interfaces of the system, and the

association of each input and output with requirements on its handling within the

system. This process not only provides a checklist of all relevant requirements but also

a connection between internal functions required to produce external outcomes. In all

software - dominated systems, this approach is especially valuable because of the numer-

ous subtle interactions between the system and its environment, which may otherwise

be missed in the analysis process.

378 SOFTWARE SYSTEMS ENGINEERING

 System Architecture

 It was seen in Chapter 8 that in complex systems, it is absolutely essential to partition

them into relatively independent subsystems that may be designed, developed, pro-

duced, and tested as separate system building blocks, and similarly to subdivide the

subsystems into relatively self - contained components. This approach handles system

complexity by segregating groups of mutually interdependent elements and highlight-

ing their interfaces. This step in the systems engineering method is referred to as

functional defi nition or functional analysis and design (Fig. 4.10).

 In hardware - based systems, the partitioning process not only reduces system com-

plexity by subdividing it into manageable elements but also serves to collect elements

together that correspond to engineering disciplines and industrial product lines (e.g.,

electronic, hydraulic, structural, and software). In software - intensive systems, the seg-

regation by discipline is not applicable, while the inherent complexity of software

makes it all the more necessary to partition the system into manageable elements.

Software has numerous subdisciplines (algorithm design, databases, transactional soft-

ware, etc.), which may, in certain cases, provide partitioning criteria. In systems that

are distributed, the characteristics of the connective network can be used to derive the

system architecture.

 Software Building Blocks. The objective of the partitioning process is to

achieve a high degree of “ modularity. ” The principles that guide the defi nition and

design of software components are intrinsically similar to those that govern hardware

component design, but the essentially different nature of the implementation results in

signifi cant differences in the design process. One fundamental difference is in regard

to commonly occurring building blocks such as those described in Chapter 3 . There is

a profusion of standard commercial software packages, especially for business and

scientifi c applications (e.g., word processors, spread sheets, and math packages), but

rarely for system components. Exceptions to this general situation are the commercial -

 off - the - shelf (COTS) software components heavily used in low - complexity information

systems.

 Another source of software building blocks is that of common objects (COs). These

are somewhat the equivalents in software to standard hardware parts such as gears or

transformers, or at higher levels to motors or memory chips. They are most often used

in the graphical user interface (GUI) environment. The CO concept is represented by

the Microsoft - developed distributed common object model (DCOM). A more vendor -

 independent implementation is the common object resource broker architecture

(CORBA), which is a standard defi ned by the Object Management Group (OMG), an

organization committed to vendor neutral software standards. However, these CO

components comprise only a small fraction of system design. The result is that despite

such efforts at “ reuse, ” the great majority of new software products are very largely

unique.

 Modular Partitioning. Despite the lack of standard parts, software modules

nevertheless can be well structured, with an ordered hierarchy of modular subdivisions

and well - defi ned interfaces. The same principles of modularity to minimize the inter-

COPING WITH COMPLEXITY AND ABSTRACTION 379

dependence of functional elements that apply to hardware components are applicable

also to computer programs.

 The principles of modular partitioning are illustrated in Figure 11.10 . The upper

patterns show the elements of “ binding, ” also referred to as “ cohesion, ” which measures

the mutual relation of items within software modules (represented by boxes with the

names of colors). It is desirable for binding to be “ tight ” — all closely related items

should be grouped together in a single functional area. Conversely, unrelated and/or

potentially incompatible items should be located in separate areas.

 The lower two diagrams illustrate the elements of “ coupling, ” which measures the

interactions between the contents of different modules (boxes). With tight coupling as

illustrated at the left, any change within a module will likely dictate changes in each

of the other two modules. Conversely, with “ loose ” coupling, interactions between the

modules are minimized. The ideal arrangement, usually only partially achievable, is

illustrated in the right - hand diagram, where interactions between modules are kept

simple and data fl ows are unidirectional. This subject is discussed further below as it

relates to different design methodologies.

 Architecture Modeling. As noted in Chapter 10 , models are an indispensable

tool of systems engineering for making complex structures and relationships under-

standable to analysts and designers. This is especially true in software - dominated

systems where the abstract nature of the medium can make its form and function virtu-

ally incomprehensible.

 Figure 11.10. Principles of modular partitioning.

Tight Binding

Tight Coupling Loose Coupling

Loose Binding

Red Blue BlueBlue Red Red Blue Blue

Module A Module B Module C Module D

RedRed RedBlue Red Red Blue Blue

Module A Module A

Module B Module C Module B Module C

380 SOFTWARE SYSTEMS ENGINEERING

 The two main methodologies used to model software systems are called “ structured

analysis and design ” and “ object - oriented analysis and design (OOAD). ” The former

is organized around functional units called procedures and functions. It is based on a

hierarchical organization and uses decomposition to handle complexity. Generally,

structured analysis is considered a top - down methodology.

 OOAD is organized around units called “ objects, ” which represent entities and

encapsulate data with its associated functions. Its roots are in software engineering and

it focuses on information modeling, using classes to handle complexity. Generally,

OOAD can be considered a bottom - up methodology.

 Structured Analysis and Design

 Structured analysis uses four general types of models: the functional fl ow block diagram

(FFBD), the data fl ow diagram (DFD), the entity relationship diagram (ERD), and the

state transition diagram (STD).

 FFBD . The FFBD comes in a variety of forms. We introduced one of those variet-

ies, the functional block diagram, in Chapter 8 (see Fig. 8.4). The FFBD is similar,

except that rather than depicting functional interfaces like the block diagram, connec-

tions (represented by arrows) represent fl ow of control. Since the FFBD incorporates

sequencing (something that neither the functional block diagram (FBD) nor the inte-

grated defi nition 0 (IEDF0) formats do), logical breaking points are depicted by

summing gates. These constructs enable the depiction of process - oriented concepts.

Almost any process can be modeled using the FFBD. Figure 11.11 is an example of an

FFBD.

 As with all functional diagrams, each function within the hierarchy can be decom-

posed into subfunctions, and a corresponding diagram can be developed at each level.

Functional diagrams are the standard method within structured analysis to depict a

system ’ s behavior and functionality.

 DFD . This diagram consists primarily of a set of “ bubbles ” (circles or ellipses)

representing functional units, connected by lines annotated with the names of data

fl owing between the units. Data stores are represented by a pair of parallel lines and

external entities are shown as rectangles. Figure 11.12 shows a DFD for the checkout

function of a small public library system.

 A system is normally represented by DFDs at several levels, starting with a context

diagram in which there is only one bubble, the system, surrounded by external entity

rectangles (see Fig. 3.2). Successive levels break down each of the bubbles at the upper

levels into subsidiary data fl ows. To systems engineers, a software DFD is similar to

the functional fl ow diagram except for the absence of control fl ow.

 ERD . The ERD model defi nes the relationships among data objects. In its basic

form, the entities are shown as rectangles and are connected by lines representing the

relationship between them (shown inside a diamond). In addition to this basic ERD

notation, the model can be used to represent hierarchical relationships and types of

associations among objects. These models are extensively used in database design.

 Figure 11.11. Functional fl ow block diagram example.

1.0 RECEIVE ORDER

2.0 DETERMINE
STOCK

3.0 REJECT ORDEROUT OF

STOCK

AND

IN STOCK

4.0 FILL ORDER
5.0 DETERMINE
SHIPPING METHOD

6.0 BILL CUSTOMER

AND

7.0 PACKAGE
ORDER

8.0 SHIP NORMAL

OR

10.0 CLOSE OUT
ORDER

OR
9.0 SHIP PRIORITY

 Figure 11.12. Data fl ow diagram: library checkout.

Member File Book File

Interact
with

Librarian

Manage
Checkout

Activation

Approval

Librarian
Flag
Loan

M
e

m
b

e
r IDM

em
ber I

D

M
em

ber C
ode

Book C
ode

Bar Code
Reader

Record
Loan

Book ID

Loan Record

L
o
a
n
 P

o
in

te
r

L
o
a
n
 P

o
in

te
rL

o
a
n
 P

o
in

te
r

Lo
an

R
eq

ue
st

381

382 SOFTWARE SYSTEMS ENGINEERING

 STD . An STD models how the system behaves in response to external events. An

STD shows the different states that the system passes through, the events that cause it

to transition from one state to another, and the actions taken to effect the state

transition.

 Data Dictionary. In addition to the above diagrams, an important modeling tool

is an organized collection of the names and characteristics of all data, function, and

control elements used in the system models. This is called the “ data dictionary ” and is

a necessary ingredient in understanding the meaning of the diagrammatic representa-

tions. It is analogous to a hardware part and interface listing of sets of data and proce-

dure declarations, followed by the defi nition of a number of procedures that operate on

the data. It is not diffi cult to trace the functional relationships, evidenced by function/

procedure calls, and thereby to construct a “ function call tree ” tracing the fl ow of func-

tions throughout the program.

 OOAD

 As discussed in Chapter 8 , OOAD takes a quite different approach to software archi-

tecting. It defi nes a program entity “ class, ” which encapsulates data and functions that

operate on them, producing more self - contained, robust, and inherently more reusable

program building blocks. Classes also have the property of “ inheritance ” to enable

 “ child ” classes to use all or some of the characteristics of their “ parent ” class with a

resultant reduction of redundancy. An object is defi ned as an instance of a class.

 The boundary between the steps of analysis and design in object - oriented (OO)

methodology is not precisely defi ned by the practitioners but generally is where the

process of understanding and experimentation changes to one of synthesizing the archi-

tectural form of the system. This step also involves some experimentation, but its

objective is to produce a complete specifi cation of the software required to meet the

system requirements.

 The construction of the system architecture in OO methodology consists of arrang-

ing related classes into groups — called subsystems or packages — and of defi ning all of

the relations/responsibilities within and among the groups.

 OO methodology has been especially effective in many modern information

systems that are largely transactional. In such programs as inventory management,

fi nancial management, airline reservation systems, and many others, the process is

largely the manipulation of objects, physical or numerical. OO methods are not as well

suited for primarily algorithmic and computational programs.

 Modeling and Functional Decomposition. Object - oriented design (OOD)

also has the advantage of using a precisely defi ned and comprehensive modeling

language — the Unifi ed Modeling Language (UML). This provides a powerful tool for all

stages of program development. The characteristics of UML are described in Chapter 8 .

 A shortcoming of the OO methodology as commonly practiced is that it does not

follow a basic systems engineering principle — that of managing complexity by parti-

tioning the system into a hierarchy of loosely coupled subsystems and components.

COPING WITH COMPLEXITY AND ABSTRACTION 383

This is accomplished by the systems engineering step of functional decomposition and

allocation. By focusing on objects (things) rather than functions, OOD tends to build

programs from the bottom - up rather than the top - down approach inherent in the systems

engineering method.

 OOD does have a structural element, the use case, which is basically a functional

entity. As described above, use cases connect the system ’ s external interfaces (actors)

with internal objects. The application of use cases to design the upper levels of the

system architecture and introducing objects at lower levels may facilitate the applica-

tion of systems engineering principles to software system design. This approach is

described in Rosenberg ’ s book, Use Case Driven Object Modeling with UML .

 Strengths of UML . The UML language combines the best ideas of the principal

methodologists in the fi eld of OOAD. It is the only standardized, well - supported, and

widely used software modeling methodology. It therefore serves as a high - level form

of communicating software architectural information within and among organizations

and individuals engaged in a development program.

 Moreover, UML has been applied successfully in software - intensive systems proj-

ects. Portions of UML are also used regularly in systems engineering to assist in com-

municating concepts and in bridging the language gaps between engineers and users

(e.g., use case diagrams) and between software and hardware engineers (e.g., commu-

nications diagrams).

 A major strength of UML is the existence of commercial tools that support the

construction and use of its repertoire of diagrams. In the process, these tools store all

the information contained in the diagrams, including names, messages, relationships,

attributes, methods (functions), and so on, as well as additional descriptive information.

The result is an organized database, which is automatically checked for completeness,

consistency, and redundancy. In addition, many of the tools have the property of con-

verting a set of diagrams into C + + or Java source code down to procedure headers.

Many also provide a limited degree of reverse engineering — converting source code

into one or several top - level UML diagrams. These capabilities can save a great deal

of time in the design process.

 Other Methodologies

 The growing importance of software - dominated systems, and their inherent complexity

and abstractness, has engendered a number of variants of structured and OO methodolo-

gies. Two of the more noteworthy ones are briefl y discussed below.

 Robustness Analysis. This is an extension of OO methodology that serves as a

link between OO analysis (what) and design (how). It classifi es objects into three types:

 1. boundary objects, which link external objects (actors) with the system;

 2. entity objects, which embody the principal objects that contain data and perform

services (functions); and

 3. control objects, which direct the interaction among boundary and entity objects.

384 SOFTWARE SYSTEMS ENGINEERING

 Robustness analysis creates a robustness diagram for each UML use case, in which the

objects involved in the processing of the use case are classifi ed as boundary and entity

objects and are linked by control objects defi ned for the purpose. An example of a

robustness diagram for the checkout use case for an automated library is shown in

Figure 11.13 . It is seen to resemble a functional fl ow diagram and to be easily

understandable.

 In the process of preliminary design, the robustness diagram is transformed into

class, sequence, and other standard UML diagrams. Control objects may remain as

controller types, or their functionality may be absorbed into methods of the other

objects. To a systems engineer, robustness analysis serves as an excellent introduction

to OOAD.

 Function - Class Decomposition (FCD). This methodology, referred to as FCD,

is a hybrid method that combines structured analysis with OO methodology. It is aimed

at the top - down decomposition of complex systems into a hierarchy of functional sub-

systems and components, while at the same time identifying objects associated with

each unit.

 Figure 11.13. Robustness diagram: library checkout.

Member Record Book Record

Checkout

Workstation Controller

Librarian

Loan
Flagger

Bar Code
Reader

Loan
Recorder

Loan Record

COPING WITH COMPLEXITY AND ABSTRACTION 385

 As previously noted, conventional OO methodology tends to design a system from

the bottom - up and has little guidance on how to group objects into packages. It is said

to lead to a “ fl at ” modular organization. The FCD method seeks to provide a top - down

approach to system partitioning by using functional decomposition to defi ne a hierarchi-

cal architecture into which objects are integrated. In so doing, it introduces the impor-

tant systems engineering principle of functional decomposition and allocation into OO

software system design.

 FCD uses an iterative approach to partition successively lower levels of the system

while at the same time also adding such objects as turn out to be needed for the lower -

 level functions. UML class diagrams are introduced after the fi rst several levels are

decomposed. The developers of the FCD method have demonstrated its successful use

on a number of large system developments.

 11.5 SOFTWARE ENGINEERING DEVELOPMENT:
CODING AND UNIT TEST

 The process of software engineering development consists of implementing the archi-

tectural design of system components, developed in the concept development stage,

into an operational software that can control a processor to perform the desired system

functions. The principal steps in this process and their systems engineering content are

outlined below.

 Program Structure

 Software has been seen to be embodied in units called computer programs, each con-

sisting of a set of instructions.

 Program Building Blocks. A computer program may be considered to consist

of several types of subdivisions or building blocks. In descending order of size, the

subdivisions of a computer program and their common names are as follows:

 1. A “ module ” or “ package ” constitutes a major subdivision of the overall program,

performing one or more program activities. A medium to large program will

typically consist of from several to tens or hundreds of modules.

 2. In OO programs, a class is a unit composed of a set of “ attributes ” (data ele-

ments) combined with a set of associated “ methods ” or “ services ” (functions).

An object is an instance of a class.

 3. A function is a set of instructions that performs operations on data and controls

the processing fl ow among related functions. A “ utility ” or “ library function ”

is a commonly used transform (e.g., trigonometric function) that is supplied

with an operating system.

 4. A “ control structure ” is a set of instructions that controls the order in which

they are executed. The four types of control structures are the following:

386 SOFTWARE SYSTEMS ENGINEERING

 (a) Sequence: a series of instructions;

 (b) Conditional Branch: if (condition) then (operation 1), else (operation 2);

 (c) Loop: do while (condition) or do until (condition); and

 (d) Multiple Branch: case (key 1): (operation 1) … (key n) (operation n).

 5. An “ instruction ” is a “ declarative ” or “ executable ” order to the computer, com-

posed of language key words, symbols, and names of data and functions.

 6. A language key word, symbol, or name of a data element or function.

 Finally, a “ data structure ” is a defi nition of a composite combination of related data

elements, such as a “ record, ” “ array, ” or “ linked list. ”

 As noted previously, software has no commonly occurring building blocks com-

parable to standard hardware parts and subcomponents such as pumps, motors, digital

memory chips, cabinets, and a host of others that simplify designing and building

production hardware. With few exceptions, software components are custom designed

and built.

 Program Design Language (PDL). A useful method for representing software

designs produced by the conventional structured analysis and design methodology is

PDL, sometimes called “ structured English. ” This consists of high - level instructions

formatted with control structures like an actual computer program, but consists of

textual statements rather than programming language key words and phrases. PDL

produces a program listing that can be readily understood by any software engineer and

can be translated more or less directly into executable source codes.

 OOD Representation. It was seen that OOD produces a set of diagrams and

descriptive material, including defi ned objects that constitute intermediate program

building blocks. Through the use of a UML support tool, the design information can

be automatically converted into the architecture of the computer program.

 Programming Languages

 The choice of programming language is one of the major decisions in software design.

It depends critically on the type of system — for example, whether software - embedded,

software - intensive, or data - intensive computing, whether military or commercial, or

whether real - time or interactive. While it is often constrained by the programming

talents of the software designers, the nature of the application should have priority. A

language may impact the maintainability, portability, readability, and a variety of other

characteristics of a software product.

 Except for very special applications, computer programs are written in a high - level

language, where individual instructions typically perform a number of elementary

computer operations. Table 11.5 lists a sample of past and current computer languages,

their structural constituents, primary usage, and general description.

 Fourth - Generation Language (4 GL) and Special - Purpose Language. 4GLs

are typically proprietary languages that provide higher - level methods to accomplish a

COPING WITH COMPLEXITY AND ABSTRACTION 387

problem solution in a specifi c domain. These 4GLs are usually coupled with a database

system and are related to use of the structured query language (SQL). A key feature of

4GL tools is to bring the programming language environment as close to the natural

language of the problem domain as possible and to provide interactive tools to create

solutions. For example, the creation of a user input form on a workstation is carried

out interactively with the programmer. The programmer enters the labels and identifi es

allowable entry values and any restrictions, and then the “ screen ” becomes part of the

application. 4GLs can speed up the development time for specifi c applications but are

generally not portable across products from different vendors.

 There are many specialty areas where very effi cient high - level languages have been

developed. Such languages usually take on the jargon and constructs of the area they

 TABLE 11.5. Commonly Used Computer Languages

 Language

 Structural

constituents Primary usage Description

 Ada 95 • Objects

 • Functions

 • Tasks

 • Packages

 • Military systems

 • Real - time systems

 Designed expressly for

embedded military systems,

generally replaced C + +

 C Functions • Operating systems

 • Hardware interfaces

 • Real - time applications

 • General purpose

 A powerful, general - purpose

language with signifi cant

fl exibility

 C + + • Objects

 • Functions

 • Simulations

 • Real - time applications

 • Hardware interfaces

 • General purpose

 A powerful, general - purpose

language that implements

object - oriented constructs

 COBOL Subroutines • Business and fi nancial

applications

 A wordy language that is

somewhat self - documenting,

the primary language for

legacy business systems

 FORTRAN • Subroutines

 • Functions

 • Scientifi c

 • Data analysis

 • Simulation

 • General purpose

 A long - standing general -

 purpose language used

mainly for computation -

 intensive programs

 Java • Objects

 • Functions

 • Internal applications

 • General purpose

 Derived from C + + , an

interpretative language that

is platform independent

 Visual

Basic

 • Objects

 • Subroutines

 • Graphical applications

 • User interfaces

 A language that allows

graphical manipulation of

subprogram objects

 Assembly

language

 • Subroutines

 • Macros

 • Hardware control

 • Drivers

 A language for primitive

operations, enables

complete machine control

388 SOFTWARE SYSTEMS ENGINEERING

are intended to serve. The intent of these special - purpose languages is to mimic the

problem domain where possible, and to decrease development time while increasing

reliability. In many cases, the special - purpose nature of such languages may limit per-

formance for the sake of ease of use and development. When undertaking custom

software development, the systems engineer should explore the availability and utility

of languages in a required specialty area. Table 11.6 lists a number of special - purpose

languages that have been developed for specifi c application domains, such as expert

systems and Internet formatting.

 Programming Support Tools

 To support the effort of developing computer programs to implement software system

design, a set of programming support tools and training in their effective use is essential.

It is useful for the systems engineer and program manager to be knowledgeable about

their uses and capabilities.

 Editors. Editors provide programmers with the means to enter and change source

code and documentation. Editors enhance the entry of programming data for specifi c

languages. Some editors can be tailored to help enforce programming style guides.

 TABLE 11.6. Some Special - Purpose Computer Languages

 Language

 Structural

constituents Primary usage Description

 Smalltalk

and variants

 Objects • Database applications

 • Simulations

 The original object -

 oriented language

 LISP Lists • Artifi cial intelligence

applications

 • Expert systems

 A language based on

operations of lists

 Prolog • Objects

 • Relationships

 • Artifi cial intelligence

applications

 • Expert systems

 A powerful logic - based

language with many

variants

 Perl • Statements

 • Functions

 • Data test manipulation

 • Report generation

 A portable language

with built - in text

handling capabilities

 HTML • Tags

 • Identifi ers

 • Test elements

 Formatting and

hyperlinking of

documents

 A document markup

language with a unique

but simple syntax

 XML • Tags

 • Identifi ers

 • Strings/text

 • Formatting

 • Field identifi cation

and linking

 A textual data markup

language with a unique

complex syntax

 PHP • Tags

 • Identifi ers

 • Strings/text

 • Commands

 Server scripting A document generation

control language

COPING WITH COMPLEXITY AND ABSTRACTION 389

 Debuggers. Debuggers are programs that allow an application to be run in a

controlled manner for testing and debugging purposes. There are two major types of

debuggers: symbolic and numeric. The symbolic debugger allows the user to reference

variable names and parameters in the language of the source code. A numeric debugger

works at the assembly or machine code level. The computer instructions written in a

programming language is called “ source code. ” To convert the source code produced

by the programmers into executable code, several additional tools are required.

 Compilers. A compiler converts the source language into an intermediate format

(often called object code) that is compatible for use by the hardware. In this process,

the compiler detects syntax errors, omissions of data declarations, and many other

programming errors, and identifi es the offending statements.

 A compiler is specifi c to the source language and usually to the data processor.

Compilers for a given language may not be compatible with each other. It is important

to know what standards govern the compiler that will be used and to be aware of any

issues associated with code portability. Some compilers come with their own program-

ming development environment that can increase programmer productivity and sim-

plify the program documentation process.

 Linkers and Loaders. A linker links several object code modules and libraries

together to form a cohesive executable program. If there is a mixed language applica-

tion (C and Java are common), the combination of a compiler and linker that works on

multiple languages is required. Tools that help manage the linking of complex applica-

tions are essential in the management and control of software development. A loader

converts linked object code into an executable module that will run in the designated

environment. It is often combined with the linker.

 Software Prototyping

 The section on the software system life cycle described several models that used the

prototyping approach, either once or recursively. The objective of software prototyping

is the same as it is in hardware systems, where it is used to reduce risks by constructing

and testing immature subsystems or components. In software systems, prototyping is

generally used even more frequently for three reasons: (1) requirements are poorly

defi ned; (2) the functionality is unproven; and (3) building the prototype does not

require bending metal, only writing code .

 Conventionally, a prototype is often taken to mean a test model that is to be dis-

carded after being used. In practice, the system prototype often becomes the fi rst step

in an evolutionary development process. This strategy has the advantage of preserving

the design features of the prototype after they have been improved as a result of user

feedback, as well as building upon the initial programming effort. However, it requires

that the prototype programs be engineered using a disciplined and well - planned and

documented process. This places a limit on how fast the process can be. The choice of

strategy must obviously be based on the particular requirements and circumstances of

the project. Table 11.7 lists the typical characteristics of exploratory prototypes, which

390 SOFTWARE SYSTEMS ENGINEERING

are meant to be discarded, and of evolutionary prototypes, which are meant to be built

upon.

 The success of a prototyping effort is critically dependent on the realism and fi del-

ity of the test environment. If the test setup is not suffi ciently realistic and complete,

the prototype tests are likely to be inadequate to validate the design approach and

sometimes can be actually misleading. The design of the test should receive a compa-

rable degree of expert attention as the prototype design itself. As in hardware systems,

this is a key area for systems engineering oversight.

 Software Product Design

 In typical hardware system developments, product design consists of the transformation

of development prototype hardware components, which might be called “ breadboards, ”

into reliable, maintainable, and producible units. In this process, the functional perfor-

mance is preserved, while the physical embodiments may be changed quite radically.

Much of this work is carried out by engineers particularly skilled in the problems of

production, environmental packaging, materials, and their fabrication methods, with

the objective that the fi nal product can be produced effi ciently and reliably.

 In the software elements of the system, the product design process is very different.

There is no “ production ” process in software. However, other aspects of a production

article are still present. Maintainability continues to be a critical characteristic due to

the numerous interfaces inherent within software. Repair by replacement of a failed

component — a standby in hardware — does not work in software. An effective user

interface is another crucial characteristic of operational software that is often not

achieved in the initial version of the system.

 Thus, considerable effort is usually required to make a working computer program

into a software product usable by others. Fred Brooks has postulated this effort to be

three times the effort required to develop a working program. However, there is no

professional group in software engineering comparable to the hardware production and

packaging engineer. Instead, the “ productionization ” must be incorporated into the

software by the same designers responsible for its basic functionality. Such breadth of

 TABLE 11.7. Characteristics of Prototypes

 Aspect Exploratory Evolutionary

 Objective • Validate design

 • Explore requirements

 • Demonstrate

 • Evaluate

 Nature of product • Algorithms

 • Concepts

 • Engineered

 • Programed

 Environment Virtual Operational

 Confi guration management Informal Formal

 Testing Partial Rigorous

 Ultimate use Disposable A foundation for further builds

COPING WITH COMPLEXITY AND ABSTRACTION 391

expertise is often not present in the average software designer, with the result that

maintainability of software products is frequently less than satisfactory.

 Computer User Interfaces. As noted previously, a critical part of engineering

operational software systems is the design of the user interface. A computer interface

should display information in a form giving the user a clear and well - organized picture

of the system status so as to assist the decision process effectively and to provide simple

and rapid modes of control. The selection of the appropriate interface mode, display

format, interactive logic, and related factors most often requires prototype design and

testing with representative users.

 The most common control modes offered by computer interfaces are menu interac-

tions, command languages, and object manipulation. A summary of some comparative

characteristics of these is given in Table 11.8 .

 The most rapidly growing computer interface mode is that of object manipulation,

the objects being usually referred to as “ icons. ” In addition to the characteristics listed

in Table 11.8 , graphical presentations of information can often present relationships and

can convey meaning better than text. They enable the user to visualize complex infor-

mation and form inferences that can lead to faster and more error - free decisions than

can be achieved by other methods. GUIs are most commonly seen in PC operating

systems such as Macintosh OS and Microsoft Windows. The power of the World Wide

Web owes a great deal to its GUI formats.

 To the systems engineer, GUIs offer both opportunities and challenges. The oppor-

tunities are in the virtually infi nite possibilities of presenting information to the user in

a highly enlightening and intuitive form. The challenges come from the same source,

namely, the sheer number of choices that tempt the designer to continue to optimize,

unrestrained by an inherent limit. Since GUIs involve a complex software design, there

is a risk of cost and schedule impact if the systems engineer is not alert to this hazard.

 Advanced Modes. In designing user interfaces for computer - controlled systems,

the rapidly advancing technology in this area makes it necessary to consider less

 TABLE 11.8. Comparison of Computer Interface Modes

 Mode Description Advantages Disadvantages

 Menu interaction Choice from a list

of actions

 • User preference

 • Accurate

 • Limited choices

 • Limited speed

 Command mode Abbreviated

action commands

 • Flexible

 • Fast

 • Long training

 • Subject to errors

 Object manipulation Click or drag icon • Intuitive

 • Accurate

 • Moderate fl exibility

 • Moderate speed

 Graphical user

interface (GUI)

 Click graphical

buttons

 Visual Basic and

Java support

 • Moderate fl exibility

 • Moderate speed

 Touch screen and

character recognition

 Touch or write on

screen

 • Simple

 • Flexible

 Easy to make errors

392 SOFTWARE SYSTEMS ENGINEERING

conventional modes that offer special advantages. Three examples are briefl y described

below:

 1. Voice Control. Spoken commands processed by speech recognition software

provide a form of rapid and easy input that leaves the hands free for other

actions. Currently, reliable operation is somewhat limited to carefully enunci-

ated words selected from a fi xed vocabulary. Capabilities to understand sen-

tences are gradually being evolved.

 2. Visual Interaction. Computer graphics are being used to aid decision makers

by generating displays modeling the results of possible actions, enabling “ what -

 if ” simulations in real time. Visual interactive simulation (VIS) is an advanced

form of visual interactive modeling (VIM).

 3. Virtual Reality. A form of 3 - D interface in which the user wears stereo goggles

and a headset. Head movements generate a simulated motion of the image cor-

responding to what the eyes would see in the virtual scene. Such displays are

used for a growing variety of tasks, such as design of complex structures and

pilot training. They are used in battlefi eld situations and games.

 Unit Testing

 The engineering design phase of system development begins with the engineering of

the individual system components whose functional design has been defi ned and the

technical approach validated in the previous phase. Before the resulting engineered

component is ready to be integrated with the other system components, its performance

and compatibility must be tested to ensure that they comply with requirements. In

software development, this test phase is called “ unit testing ” and is focused on each

individual software component.

 Unit tests are generally performed as “ white box ” tests, namely, those based on

the known confi guration of the component. Such tests deliberately exercise the critical

parts of the design, such as complex control structures, external and internal interfaces,

timing or synchronization constraints, and so on.

 A compensating characteristic of software for the added testing problems is that

the test equipment itself is almost wholly software and can usually be designed and

built correspondingly quickly. However, the effort of test design must be as carefully

planned and executed as is the system design.

 Unit tests for a given component or major module consist usually of a series of

test cases, each designed to test a control path, a data structure, a complex algorithm,

a timing constraint, a critical interface, or some combination of these. Test cases should

be designed to test each function that the unit is required to perform. Since there are

typically too many paths to test them all, the selection of test cases requires systems

engineering judgment.

 Errors uncovered in unit testing should be documented and decisions made as to

when and how they should be corrected. Any corrective changes must be carefully

considered before deciding which previous test cases should be repeated.

COPING WITH COMPLEXITY AND ABSTRACTION 393

 11.6 SOFTWARE INTEGRATION AND TEST

 The subject of system integration and evaluation is discussed in detail in Chapter 13 ,

and the general techniques and strategies apply equally to the software components of

software - embedded systems and to the software - intensive systems themselves. The

discussion makes clear that this aspect of a system ’ s development process is critically

important, that it must be carefully planned, expertly executed, and rigorously analyzed,

and that the magnitude of the effort required is a large fraction of the entire develop-

ment effort.

 At the system level, the test objectives and strategies of software - dominated

systems are similar to those described in Chapter 13 . At the software component level,

it is necessary to use testing approaches more nearly designed to test software units.

The balance of this chapter is devoted to methods of integration and testing complex

software programs and software - intensive systems.

 The objectives of testing hardware components and subsystems are many — from

reducing technical and programmatic risks to verifying specifi cations. Additional objec-

tives related to politics, marketing, and communications are also part of a system test

program. At the lower element level, however, the objectives of testing hardware and

software converge.

 For software, the objective of testing generally falls into a single category: verifi ca-

tion or validation of the software. Moreover, the general method to accomplish this

objective is to discover and identify all instances where the program fails to perform

its designated function. These range all the way from a case where it fails to meet an

essential requirement to where a coding error causes it to crash. Contrary to popular

belief, the most valuable test is one that fi nds a hitherto undiscovered error, rather than

one in which the program happens to produce the expected result. Because of the large

variety of input scenarios characteristic of the environment of a complex system, the

latter result may simply mean that the program happens to handle the particular condi-

tions imposed in that test.

 Verifi cation and Validation

 Although the terms verifi cation and validation are not for software only, they apply

equally to hardware and systems — they are often used more within a software context

than any other. Verifi cation is simply the process of determining whether the software

implements the functionality and features correctly and accurately. These functions and

features are usually found in a software specifi cations description. In other words, veri-

fi cation determines whether we implemented the product right.

 Validation , in contrast, is the process of determining whether the software satisfi es

the users ’ or customers ’ needs. In other words, validation determines whether we imple-

mented the right product.

 Testing is typically a primary method used to perform verifi cation and validation,

though not the only method. However, a robust test program can satisfy a large portion

of both evaluation types.

394 SOFTWARE SYSTEMS ENGINEERING

 Differences in Testing Software

 While the general objectives of testing software may be the same as testing hardware

system elements, the basic differences between hardware and software described at the

beginning of this chapter make software testing techniques and strategies considerably

different.

 Test Paths. The unconstrained use of control structures (branches, loops, and

switches) may create a multitude of possible logical paths through even a relatively

small program. This makes it impractical to test all possible paths and forces the choice

of a fi nite number of cases.

 Interfaces. The typically large number of interfaces between software modules,

and their depth and limited visibility, makes it diffi cult to locate strategic test points

and to identify the exact sources of discrepancies encountered during testing.

 Abstraction. The design descriptions of software are more abstract and are less

intuitively understandable than hardware design documentation. This complicates test

planning.

 Changes. The apparent ease of making changes in software requires correspond-

ingly more frequent retesting. Local changes often require repetition of system - level

tests.

 Failure Modes. The catastrophic nature of many software errors has two critical

consequences. One is the severity of the impact on system operation. The other is that

prompt diagnosing of the source of the failure is often frustrated by the inoperability

of the system.

 Integration Testing

 Integration testing is performed on a partially assembled system as system components

are progressively linked together. The integration of a complex system is described in

Chapter 13 to be a process that must be carefully planned and systematically executed.

This is no less true with software systems. The principles and general methods dis-

cussed in that chapter apply equally.

 Regression Testing

 In an integration test sequence, the addition of each component creates new interactions

among previously integrated components, which may change their behavior and

invalidate the results of earlier successful tests. Regression testing is the process of

repeating a selected fraction of such tests to ensure the discovery of newly created

discrepancies. The more numerous, complex, and less visible interactions typical

COPING WITH COMPLEXITY AND ABSTRACTION 395

of software make it necessary to resort to regression testing more often than for primar-

ily hardware systems.

 A problem with regression testing is that unless it is used judiciously, the number

of tests can grow beyond practical bounds. For this reason, the test strategy should

include careful selectivity of the test cases to be repeated. A balance must be struck

between insuffi cient and excessive rigor to achieve a usable yet affordable product; a

systems engineering approach to planning and carrying out integration testing is

required.

 Validation Testing

 Validation testing is intended to determine whether or not a system or a major subsystem

performs the functions required to satisfy the operational objectives of the system.

Validation testing consists of a series of test scenarios, which collectively exercise the

critical system capabilities.

 The planning of validation testing and design of test cases also demands a systems

engineering approach. The same is true of the analysis of test results, which requires a

thorough knowledge of system requirements and of the impact of any signifi cant devia-

tions from nominally required performance. At this stage of system development, deci-

sions on how to handle test discrepancies are critically important. The choice between

embarking on a corrective change or seeking a deviation requires an intimate knowl-

edge of the impact of the decision on program cost, schedule, and system performance.

Often the best course of action is to investigate the operation of the test equipment,

which is itself occasionally at fault, and to repeat the test under more controlled

conditions.

 Black Box Testing. The section on unit testing described white box testing as

addressing the known design features of the component. Validation and other system -

 level tests consider the system under test as an input - to - output transfer function, without

any assumption of its internal workings. As such, black box testing is complementary

to white box testing and is likely to uncover interface errors, incorrect functions, ini-

tialization errors, as well as critical performance errors.

 Alpha and Beta Testing. For software products built for many users, as in the

case of much commercial software, most producers have a number of potential custom-

ers operate the software before releasing the product for distribution. Alpha testing is

typically conducted in a controlled environment at the developer ’ s site, often by

employees of a customer. The developer records errors and other problems. Beta testing

is conducted at a customer ’ s site without the developer ’ s presence. The customer

records the perceived errors and operating problems and reports these to the developer.

In both cases, the advantage to the customer is the opportunity to become acquainted

with an advanced new product. The developer gains by avoiding the risk of fi elding

a product containing user defi ciencies that would signifi cantly curtail the product ’ s

marketability.

396 SOFTWARE SYSTEMS ENGINEERING

 11.7 SOFTWARE ENGINEERING MANAGEMENT

 The basic elements of managing the development of complex systems were discussed

in Chapter 5 , and specifi c aspects in Chapters 6 – 10 . This section deals with some

aspects of the management of software - dominated systems that are particularly infl u-

enced by the distinguishing character of software, of which systems engineers should

be cognizant.

 Computer Tools for Software Engineering

 Software support tools are software systems that assist the development and mainte-

nance of software programs. In any major software development effort, the availability

and quality of the support tools may spell the difference between success and failure.

Support tools are used in all aspects of the product life cycle and are becoming more

widely available in the commercial marketplace. For these reasons, and the fact that

tools for a major software development project require very signifi cant investment, the

subject is a proper concern of systems engineers and project managers.

 The more specifi c subject of programming support tools was described briefl y in

Section 11.5 . The paragraphs below discuss the subject of integrated computer - aided

software engineering (CASE) tools and some of their typical applications.

 CASE . CASE is a collection of tools that are designed to standardize as much of

the software development process as possible. Modern CASE tools revolve around

graphics - oriented diagramming tools that let the designer defi ne the structure, program

and data fl ow, modules or units, and other aspects of an intended software application.

By the use of well - defi ned symbology, these tools provide the basis for the requirements

analysis and design phases of the development cycle.

 Requirements Management Tools. The derivation, analysis, quantifi cation,

revision, tracing, verifi cation, validation, and documentation of operational, functional,

performance, and compatibility system requirements have been seen to extend through-

out the system life cycle. For a complex system development, it is a critical and exacting

task that involves operational, contractual, as well as technical issues. Several computer -

 based tools are commercially available that assist in creating an organized database and

provide automatic consistency checks, traceability, report preparation, and other valu-

able services.

 Software Metrics Tools. Several commercial tools and tool sets are available

to produce automatically measures of various technical characteristics of computer

programs, relating to their semantic structure and complexity. (See later section on

metrics.)

 Integrated Development Support Tools. Several tools have become avail-

able that provide a set of compatible integrated support functions, and, in some cases,

the capability of importing and exporting data from and to complementary tools from

COPING WITH COMPLEXITY AND ABSTRACTION 397

other manufacturers. For example, some tools integrate project management, UML

diagramming, requirements analysis, and metrics acquisition capabilities. Such tools

simplify the problem of maintaining information consistency among the related domains

of software development.

 Software Confi guration Management (CM). CM in system development

was discussed at some length in Chapter 10 . Its importance increases with system

complexity and criticality. In software systems, strict CM is the most critical activity

during and after the engineering development stage. Some of the reasons for this may

be inferred from the section on the differences between hardware and software:

 1. Software ’ s abstractness and lack of well - defi ned components makes it diffi cult

to understand.

 2. Software has more interfaces; their penetration is deeper and hence is diffi cult

to trace.

 3. Any change may propagate deep into the system.

 4. Any change may require retesting of the total system.

 5. When a software system fails, it often breaks down abruptly.

 6. The fl exibility of software renders making a software change deceptively

easy.

 Capability Maturity Model Integration (CMMI)

 The abstract nature of software, and its lack of inherent limits on functionality, com-

plexity, or size, makes software development projects considerably more diffi cult to

manage than hardware projects of comparable scope.

 Organizations whose business is to produce software - intensive systems or compo-

nents and to meet fi rm schedules and costs have often failed to meet their goals because

their management practices were not suited to the special needs of software. To help

such organizations produce successful products, the Carnegie Mellon University

Software Engineering Institute (SEI), operating under government sponsorship, devised

a model representing the capabilities that an organization should have to reach a given

level of “ maturity. ” This is called a capability maturity model (CMM). A maturity model

defi nes a set of maturity levels and prescribes a set of key process areas that character-

ize each level. This model provides a means for assessing a given organization ’ s capa-

bility maturity level through a defi ned set of measurements. CMM has been accepted

as a standard of industry. It is related to but not equivalent to the International Standard

ISO 9000 for software.

 Software and systems engineering had separate maturity models until the SEI

published the fi rst integrated CMM, combining several previous models into a single,

integrated model known as CMMI. Today, CCMI addresses three specifi c areas of

interest: (1) product and service development; (2) service establishment, management,

and delivery; and (3) product and service acquisition. As of this writing, CMMI, Version

1.2 is the latest version of the model.

398 SOFTWARE SYSTEMS ENGINEERING

 At its core, CMMI is a process improvement methodology. Understanding the

current maturity of an organization ’ s processes and identifying the objective maturity

level for the future are keys concepts behind the model. Therefore, one aspect of CMMI

is the formal defi nition of maturity levels. These apply to organizations, not projects,

although as projects grow in size and complexity, the lines of demarcation between an

organization and a project can become blurred.

 Capability Maturity Levels. The CMM defi nes six capability and fi ve maturity

levels as summarized in Tables 11.9 and 11.10 . The CMMI process is fully institutional-

ized. Key performance areas (KPAs) are defi ned for each level and are used in deter-

mining an organization ’ s maturity level. Each KPA is further defi ned by a set of goals

 TABLE 11.9. Capability Levels

 Capability level 0: incomplete

 An “ incomplete process ” is a process that either is not performed or partially performed. One

or more of the specifi c goals of the process area are not satisfi ed, and no generic goals exist

for this level since there is no reason to institutionalize a partially performed process.

 Capability level 1: performed

 A performed process is a process that satisfi es the specifi c goals of the process area. It

supports and enables the work needed to produce work products.

 Capability level 2: managed

 A managed process is a performed (capability level 1) process that has the basic infrastructure

in place to support the process. It is planned and executed in accordance with police;

employs skilled people who have adequate resources to produce controlled outputs; involves

relevant stake holders; is monitored, controlled, and reviewed; and is evaluated for adherence

to its process description.

 Capability level 3: defi ned

 A defi ned process is a managed (capability level 2) process that is tailored from the

organization ’ s set of standard processes according to the organization ’ s tailoring guidelines

and contributes work products, measures, and other process improvement information to the

organizational process assets.

 Capability level 4: quantitatively managed

 A quantitatively managed process is a defi ned (capability level) process that is controlled using

statistical and other quantitative techniques. Quantitative objectives for quality and process

performance are established and used as criteria in managing the process. Quality and process

performance is understood in statistical terms and is managed throughout the life of the

process.

 Capability level 5: optimizing

 An optimizing process is a quantitatively managed (capability level 4) process that is

improved based on an understanding of the common causes of variation inherent in the

process. The focus of an optimizing process is on continually improving the range of process

performance through both incremental and innovative improvements.

COPING WITH COMPLEXITY AND ABSTRACTION 399

and key practices that address these goals. SEI also defi nes key indicators that are

designed to determine whether or not the KPA goals have been achieved. These are

used in CMM assessments of an organization ’ s capability maturity level.

 CMMI is widely used by industry, especially by large system and software devel-

opment organizations. The U.S. DoD prescribes a demonstration of CMMI Level 3

capability for major system acquisitions. However, the investment necessary to achieve

CMMI certifi cation is considerable, and it is generally estimated that going from level

1 to level 2 or from level 2 to level 3 requires from 1 to 2 years.

 Systems Engineering Implications. Examination of the KPAs reveals that

they address a combination of project management, systems engineering, and process

improvement issues. At level 2, the KPAs addressing requirements management

and CM are clearly systems engineering responsibilities, while project planning,

project tracking and oversight, and subcontract management are mainly project man-

agement functions. At level 3, software product engineering, intergroup coordination,

and peer reviews are of direct concern to systems engineers. At higher levels, the focus

is largely on process improvement based on quantitative measurements of process

results.

 TABLE 11.10. Maturity Levels

 Maturity level 1: initial

 Processes are usually ad hoc and chaotic.

 Maturity level 2: managed

 The projects of the organization have ensured that processes are planned and executed in

accordance with policy; the projects employ skilled people who have adequate resources to

produce controlled outputs; involve relevant stakeholders; are monitored, controlled, and

reviewed; and are evaluated for adherence to their process descriptions.

 Maturity level 3: defi ned

 Processes are well characterized and understood, and are described in standards, procedures,

tools, and methods. The organization ’ s set of standard processes, is established and improved

over time. These standard processes are used to establish consistency across the organization.

Projects establish their defi ned processes by tailoring the organization ’ s set of standard

processes according to tailoring guidelines.

 Maturity level 4: quantitatively managed

 The organization and projects establish quantitative objectives for quality and process

performance and use them as criteria in managing processes. Quantitative objectives are

based on the needs of the customer, end uses, organization, and process implementers.

Quality and process performance is understood in statistical terms and is managed through

cut the life of the processes.

 Maturity level 5: optimizing

 An organization continually improves its processes based on a quantitative understanding of

the common causes of variation inherent in processes.

400 SOFTWARE SYSTEMS ENGINEERING

 Software Metrics

 Metrics are quantitative measures used to assess progress, uncover problems, and

provide a basis for improving a process or product. Software metrics can be classifi ed

as project metrics, process metrics, or technical metrics.

 Project Metrics. Software project metrics are concerned with measures of the

success of project management — stability of requirements, quality of project planning,

adherence to project schedules, extent of task descriptions, quality of project reviews,

and so on. These are basically the same as would be used on any comparable project

to track management practices. A reason for greater attention to project metrics on a

software development is the traditionally more diffi cult task of reliable planning and

estimating new software tasks. Project metrics should be tailored to the formality, size,

and other special characteristics of the project.

 Process Metrics. Software process metrics are fundamental to the practice of

establishing process standards as described in the previous section on software capabil-

ity maturity assessment. Such standards identify a set of process areas that need to be

addressed. They do not generally prescribe how they should be handled but require that

appropriate practices be defi ned, documented, and tracked.

 Technical Metrics. Technical software metrics are focused largely on assessing

the quality of the software product rather than on management or process. In that sense,

they are an aid to design by identifying sections of software that are exceptionally

convoluted, insuffi ciently modularized, diffi cult to test, inadequately commented, or

otherwise less than of high quality. Such measures are useful for directly improving

the product, and for refi ning design and programming practices that contributed to the

defi ciencies. There are numerous commercial tools that are designed to track technical

software metrics.

 Management of Metrics. Software metrics can be useful in developing good

practices and in improving productivity and software quality. However, they can also

be misused with negative results for the projects and the software staff. It is important

to observe a number of principles in the management of metrics:

 1. The purpose of each metric must be clearly understood by all concerned to be

benefi cial and worth the effort to collect and analyze.

 2. The metrics collected on a given project should be appropriate to its character

and criticality.

 3. The results of metrics collection should be used primarily by the project to

increase its probability of success.

 4. The results should never be used to threaten or appraise individuals or teams.

 5. There should be a transition period for the introduction of new metrics before

the data collected are used.

COPING WITH COMPLEXITY AND ABSTRACTION 401

 Future Outlook

 The continuing growth of information systems is exerting severe pressure to improve

software technology in order to keep pace with rising demands and to minimize risks

of major software project failures, which have been all too frequent in recent years.

Furthermore, the unreliability of much commercial software has frustrated many com-

puter users. Below are some trends that have the potential to meet some of the above

needs.

 Process Improvement. The establishment and widespread adoption of software

process standards, such as CMMI, have signifi cantly strengthened the discipline used

in software design. They have introduced engineering practices and management over-

sight into a culture derived from science and art. For large, well - defi ned projects, these

approaches, which have been found to reduce failure rates, vary signifi cantly. For

smaller projects having loosely defi ned requirements, agile methods have attracted

many adherents.

 Programming Environment. Computer - aided programming environments,

such as that for Visual Basic, are likely to continue to improve, providing better automatic

error checking, program visualization, database support, and other features designed to

make programming faster and less prone to error. Integration of syntax checking, debug-

ging, and other programming support functions into the environment, along with more

powerful user interfaces, is likely to continue to improve productivity and accuracy.

 Integrated CASE Tools. Requirements and CM tools are being integrated with

modeling and other functions to facilitate the development, upgrading, and maintenance

of large software programs. The integration of these tools enables the traceability of

program modules to requirements and the management of the massive number of data

elements present in complex systems capabilities. While the development of such tools

is expensive, their growth and consequent increases in productivity are likely to con-

tinue, especially if more emphasis is placed on reducing the time and cost of becoming

profi cient in their use.

 Software Components. Reuse of software components has long been a major

goal, but its effective realization has been the exception rather than the rule. One such

exception has been the availability of commercial GUI components, supporting features

such as windowing and pull - down menus. With the proliferation of automated transac-

tional systems (fi nancial, travel, inventory, etc.), it is likely that numerous other stan-

dard components will be identifi ed and made commercially available. The gains in

development cost and reliability in automated transactional systems are potentially

very large.

 Design Patterns. A different approach to reusable components has been the

development of design patterns. A seminal work on this subject by Gamma et al. defi nes

402 SOFTWARE SYSTEMS ENGINEERING

23 basic patterns of OO functions and describes an example of each. The patterns are

subdivided into three classes: creational patterns that build various types of objects,

structural patterns that operate on objects, and behavioral patterns that perform specifi ed

functions. While this approach appears to hold great promise of creating versatile soft-

ware building blocks, it has thus far not been adopted by a signifi cant fraction of

developers.

 Software Systems Engineering. Perhaps the most signifi cant advance in the

development of software - dominated systems would come from the effective application

of systems engineering principles and methods to software system design and engineer-

ing. Despite the many differences between the nature of software and hardware tech-

nologies, some avenues to narrowing this gap are being actively explored. The

development of the CMMI by SEI, which addresses both systems engineering and

software engineering in a common framework, may contribute to a more common

outlook. However, real progress in this direction must involve education and extensions

of current software methodologies to facilitate modular partitioning, clean interfaces,

architectural visibility, and other basic features of well - designed systems. The continu-

ing demand for complex software - dominated systems may accelerate efforts to intro-

duce systems engineering methods into software development.

 11.8 SUMMARY

 The terms software engineering and software systems engineering are not synony-

mous, however. The former refers to the development and delivery of software

products, stand - alone or embedded. The latter refers to the application of principles

to the software engineering discipline. We defi ne software as having three major

components: (1) instructions, also referred to as code; (2) data structures; and (3)

documentation.

 Coping with Complexity and Abstraction

 The role of software has changed over the past 20 years — most modern systems are

dominated by software. Therefore, software engineering has become a full part of

system development.

 Nature of Software Development

 Software can be categorized as either

 (a) system software, providing services to other software;

 (b) embedded software, providing functions, services, or features within a larger

system; or

 (c) application software, providing services as a stand - alone system.

COPING WITH COMPLEXITY AND ABSTRACTION 403

 Systems that utilize software can be categorized in one of three ways:

 1. Software - Embedded Systems are a hybrid combination of hardware and soft-

ware. Although predominantly hardware, these systems use software to control

the action of hardware components. Examples are most vehicles, spacecraft,

robotics, and military systems.

 2. Software - Intensive Systems consist of computers and networks, controlled by

software. These systems use software to perform virtually all of the systems ’

functionality, including all automated complex information functionality.

Examples are fi nancial management, airline reservations, and inventory

control.

 3. Data - Intensive Computing Systems are large - scale computing resources dedi-

cated to executing complex computational tasks. Examples are weather analysis

and prediction centers, nuclear effects prediction systems, advanced informa-

tion decryption systems, and other computationally intensive operations.

 Software has intrinsic differences from hardware, including

 • near - infi nite variability of software structural units

 • few commonly occurring software components;

 • software is assigned most critical functions;

 • interfaces are more numerous, deeper, and less visible; software functionality

and size have almost no inherent limits; software is easily changeable;

 • simple software changes may require extensive testing; software often fails

abruptly, without warning signs; and

 • software is abstract and diffi cult to visualize.

 Software Development Life Cycle Models

 The life cycles of software - dominated systems are generally similar to the systems

engineering life cycle described in Chapter 4 . While there are a plethora of life cycle

models, we can defi ne four basic types:

 1. Linear — a sequence of steps, typically with feedback;

 2. Incremental — a repetition of a sequence of steps to generate incremental capa-

bilities and functionality until the fi nal increment, which incorporates full

capabilities;

 3. Evolutionary — similar to incremental, except early increments are intended to

provide functionality for experimentation, analysis, familiarization, and dem-

onstration. Later increments are infl uenced heavily from experience with early

increments.

 4. Agile — the typical steps for software development are combined in various

forms to enable rapid yet robust development.

404 SOFTWARE SYSTEMS ENGINEERING

 Software Concept Development: Analysis and Design

 Performance requirements for software - embedded systems are developed at the system

level and should be verifi ed by software developers.

 Performance requirements for software - intensive systems should be established

with close interaction with customers/users and may need to be verifi ed by rapid pro-

totyping. They should not unreasonably stress software extensibility.

 Software requirements are typically developed using four steps: elicitation from

users, customers and stakeholders, analysis and negotiation with customers, documen-

tation, and validation.

 Two prevailing methodologies for designing software systems are structured analy-

sis and design and OOAD. Structured analysis focuses on functional architecture, using

functional decomposition, and defi nes program modules as the primary structural units.

This methodology proceeds with top - down functional allocation. In contrast, OOAD

focuses on “ classes ” of objects as program units and encapsulates data variables with

operations. This methodology uses an iterative rather than a top - down development.

 Other methodologies include robustness analysis, which focuses on initial OO

architectural design, FCD, and combined structured and OO approaches.

 UML supports all phases of OO development. UML provides 13 types of diagrams,

presenting different views of the system, and is widely used. UML has been adopted

as an industry standard.

 Software Engineering Development: Coding and Unit Test

 The engineering design phase of software development implements software architec-

tural design and the computer instructions to execute the prescribed functionality. The

phase produces computer programs written in a high - level language (source code) and

subjects each program unit to a “ unit test ” before acceptance.

 The programming language must be suited to the type of software and compiler

availability. It must conform with the design methodology and requires that staff expe-

rienced with the language be available.

 Prototyping an iterative development comes in two forms: (1) purely exploratory

and is to be discarded once its purpose is fulfi lled, and (2) evolutionary, and is to be

built upon. In the latter case, high quality must be built in from the beginning.

 Human – computer interfaces are critical elements in all software - intensive systems.

These types of interfaces usually use interactive graphics formats and may include voice

activation and other advanced techniques.

 Software Integration and Test

 Testing software systems involves many more test paths and interfaces than hardware

and requires special test points for diagnosing failures and their sources. Testing often

requires end - to - end system - level retesting after eliminating a failure.

 Alpha and beta testing subject the new system to tests by the customer and expose

user problems before wide product distribution.

COPING WITH COMPLEXITY AND ABSTRACTION 405

 Software Engineering Management

 CM for software - dominated systems is critical in that software is inherently complex

and has numerous and deep interfaces. Since software is responsible for controlling

some of the most critical system functions, software tends to be subject to frequent

changes.

 The CMMI establishes six levels of capability and fi ve levels of maturity for an

organization. CMMI establishes KPAs for each level and provides a basis for assessing

an organization ’ s overall systems and software engineering capability.

 PROBLEMS

 11.1 With reference to Figure 11.1 , list two specifi c examples of each of the

blocks shown in the diagrams. For one case of each block, describe the kind

of data that fl ows along the paths shown by the lines between the blocks.

 11.2 Look up (if necessary) the principal subcomponents of the data processor

(CPU) of a personal computer. Draw a block diagram of the subcomponents

and their interconnections. Describe in your own words the functions of

each subcomponent.

 11.3 Extend the examples of the three types of software - dominated systems

shown in Table 11.1 by listing two more examples of each type. Briefl y

indicate why you placed each example into the selected category.

 11.4 Using the example of an automated supermarket grocery inventory and

management system, draw the system context diagram. Assume that the

master - pricing database comes from a central offi ce. Neglect special dis-

counts for store card carriers.

 11.5 For the same example, defi ne the functions performed by the automated

grocery system in processing each individual grocery item. Differentiate

between those carrying bar codes and those sold by weight.

 11.6 Draw a functional fl ow diagram for the processing of a grocery item showing

the two alternate branches mentioned in Problem 11.5.

 11.7 Identify the objects involved in the above automated grocery system and

their attributes. Draw an activity diagram corresponding to the processes

described in Problem 11.6.

 For Problems 11.8 – 11.12, suppose you have been asked to develop the

software for an elevator system for a multistory building. The system will

contain three elevators and will have fi ve fl oors and a basement - level

parking garage.

 11.8 Develop 20 – 25 functional and performance requirements for this software

system. Please perform analysis on your list to ensure your fi nal list is

robust, consistent, succinct, nonredundant, and precise.

 11.9 (a) Identify 8 – 12 top - level functions for this software system.

 (b) Draw an FFBD for this system using the functions in (a).

406 SOFTWARE SYSTEMS ENGINEERING

 11.10 (a) Identify 8 – 12 classes for this software system. Each class should have

a title, attributes, and operations.

 (b) Draw a class diagram showing the associations between the classes in

(a).

 11.11 (a) Identify the 8 – 12 top - level hardware components of the elevator

system.

 (b) Identify the interfaces between the software and hardware components

of this system in (a). Please construct a table with three columns. In the

fi rst column, labeled “ hardware component, ” identify the component in

which the software will need to interface. In the second column, labeled

 “ input/output, ” identify whether the interface is an input, an output, or

both. In the third column, labeled “ what is passed, ” identify what is

passed between the software and hardware.

 11.12 Develop an operational test plan for this software system. The test plan

should include a purpose, a description of no more than fi ve tests,

and a linkage between each test and the requirement(s) that are being

tested.

 FURTHER READING

 G. Booch , J. Rumbaugh , and J. Jacobson . The Unifi ed Modeling Language User Guide . Addison -

 Wesley , 1999 .

 F. P. Brooks , Jr. The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,

 1995 , Chapter 8.

 B. Bruegge and A. H. Dutoit . Object - Oriented Software Engineering . Prentice Hall , 2000 ,

Chapters 1 – 7.

 P. DeGrace and L. H. Stahl . Wicked Problems, Righteous Solutions . Yourdon Press, Prentice Hall ,

 1990 , Chapter 3.

 A. Denis , B. H. Wixom , and R. M. Roth . Systems Analysis Design , Third Edition . John Wiley &

Sons, Inc. , 2006 , Chapters 4, 6, and 8 – 10.

 G. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapters 8 and 14.

 H. Eisner . Essentials of Project and Systems Engineering Management . John Wiley & Sons, Inc. ,

 1997 , Chapters 10 and 12.

 E. Gamma , R. Helm , R. Johnson , and J. Dlissides . Design Patterns . Addison - Wesley , 1995 .

 K. E. Kendall and J. E. Kendall . Systems Analysis and Design , Sixth Edition . Prentice Hall , 2005 ,

Chapters 6, 7, 14, and 18.

 M. Maier and E. Rechtin . The Art of Systems Architecting . CRC Press , 2009 , Chapter 6.

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach , Sixth Edition . McGraw - Hill ,

 2005 , Chapters 20 – 24.

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapter 5.

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapters 13 and 14.

COPING WITH COMPLEXITY AND ABSTRACTION 407

 D. Rosenberg . Use Case Driven Object Modeling with UML . Addison - Wesley , 1999 , Chapters

1 – 4.

 J. Rumbaugh , M. Blaha , W. Premerlani , F. Eddy , and W. Lorenson . Object - Oriented Modeling

and Design . Prentice Hall , 1991 , Chapters 1 – 3.

 Sommerville . Software Engineering , Eighth Edition . Addison - Wesley , 2007 , Chapters 2, 4, 6, 7,

and 11.

409

 12.1 IMPLEMENTING THE SYSTEM BUILDING BLOCKS

 The engineering design phase is that part of the development of a new system that is

concerned with designing all the component parts so that they will fi t together as an

operating whole that meets the system operational requirements. It is an intensive and

highly organized effort, focused on designing components that are reliable, maintain-

able, and safe under all conditions to which the system is likely to be subjected, and

that are producible within established cost and schedule goals. While the general design

approach required to meet the above objectives presumably has been established in

previous phases, the engineering design phase is where detailed internal and external

interfaces are established and the design is fi rst fully implemented in hardware and

software.

 It was noted in Chapter 10 that during the advanced development phase, any previ-

ously unproven components should be further developed to the point where all signifi -

cant issues regarding their functional and physical performance have been resolved.

However, experience in developing complex new systems has shown that some

 12

ENGINEERING DESIGN

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

410 ENGINEERING DESIGN

 “ unknown unknowns ” (unk - unks) almost always escape detection until later, revealing

themselves during component design and integration. Such eventualities should there-

fore be anticipated in contingency planning for the engineering design phase.

 Place of the Engineering Design Phase in the System Life Cycle

 As shown in Figure 12.1 , the place of the engineering design phase in the systems

engineering life cycle follows the advanced development phase and precedes the inte-

gration and evaluation phases. Its inputs from the advanced development phase are seen

to be system design specifi cations and a validated development model of the system.

Other inputs, not shown, include applicable commercial components and parts, and the

design tools and test facilities that will be employed during this phase. Its outputs to

the integration and evaluation phase are detailed test and evaluation plans and a com-

plete set of fully engineered and tested components. Program management planning

documents, such as the work breakdown structure (WBS) and the systems engineering

management plan (SEMP), as well as the test and evaluation master plan (TEMP), or

their equivalents, are utilized and updated in this process. Figure 12.2 shows that the

integration and evaluation phase usually begins well before the end of engineering

design to accommodate test planning, test equipment design, and related activities.

 Design Materialization Status

 The change in system materialization status during the engineering design phase is

schematically shown in Table 12.1 . It is seen that the actions “ visualize, ” “ defi ne, ” and

 “ validate ” in previous phases are replaced by the more decisive terms “ design, ” “ make, ”

and “ test, ” representing implementation decisions rather than tentative proposals. This

is characteristic of the fact that in this phase, the conceptual and developmental results

of the previous phases fi nally come together in a unifi ed and detailed system design.

 At the beginning of the engineering design phase, the design maturity of different

components is likely to vary signifi cantly; and these variations will be refl ected in dif-

 Figure 12.1. Engineering design phase in a system life cycle.

System Design
Specifications

Test and Evaluation
Plan

Advanced
Development

Engineering Design

Component Engineering
Component Test

Specialty Engineering

Integration and
Evaluation

Validated Development
Model

Engineered
Prototype

IMPLEMENTING THE SYSTEM BUILDING BLOCKS 411

 Figure 12.2. Engineering design phase in relation to integration and evaluation.

Engineering

Design
Functional
Analysis

Conceptual
Design

Component
Test

Deficiency
Correction

Phase

Test Requirements Test Deficiencies

Integration

and Evaluation
System Integration

and Evaluation

Test
Planning

Phase

ferences in component materialization status. For example, some components that were

derived from a predecessor system may have been fully engineered and tested in sub-

stantially the same confi guration as that selected for the new system, while others that

utilize new technology or innovative functionality may have been brought only to the

stage of experimental prototypes. However, by the end of the engineering design phase,

such initial variations in component engineering status must be eliminated and all

components fully “ materialized ” in terms of detailed hardware and software design and

construction.

 A primary effort in this phase is the defi nition of the interfaces and interactions

among internal components and with external entities. Experience has shown that

aggressive technical leadership by systems engineering is essential for the expeditious

resolution of any interface incompatibilities that are brought to light during engineering

design.

 Systems Engineering Method in Engineering Design

 The principal activities in each of the four steps in the systems engineering method (see

Chapter 4) during engineering design are briefl y stated below and are illustrated in

Figure 12.3 . Steps 3 and 4 will constitute the bulk of the effort in this phase.

 1. Requirements Analysis. Typical activities include

 • analyzing system design requirements for consistency and completeness and

 • identifying requirements for all external and internal interactions and

interfaces.

 2. Functional Analysis and Design (Functional Defi nition). Typical activities

include

 • analyzing component interactions and interfaces and identifying design, inte-

gration, and test issues;

 • analyzing detailed user interaction modes; and

 • designing and prototyping user interfaces.

 TABLE 12.1. Status of System Materialization at the Engineering Design Phase

 Phase Concept development Engineering development

 Level Needs analysis Concept exploration Concept defi nition Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore, and

synthesize concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne requirements

and ensure feasibility

 Defi ne functional and

physical architecture

 Validate

subsystems

 Integrate and test

 Component Allocate functions to

components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

4
1
2

IMPLEMENTING THE SYSTEM BUILDING BLOCKS 413

 Figure 12.3. Engineering design phase fl ow diagram.

Analyze
System
Design

Requirements

Advanced Development
Phase

Requirements

Analysis
Identify
External
Interface

Requirements

Component

Analyze
Component
Interactions

Maximize
System

Modularity

Requirements

Functional

Analysis and

Design

Incompatibilities

Functional
Designs

Design
Issues

Perform
Preliminary

Product
Design

Detail
Design

Components

Component

Design

Test
Requirements

Validated Design

Design

Design
Deficiencies

Excessive
Requirements Component

Designs

Design and
Build Test
Equipment

Validate
Component

Design

Validation

Integration

and Evaluation

Phase

 3. Component Design (Physical Defi nition). Typical activities include

 • laying out preliminary designs of all hardware and software components and

interfaces,

 • implementing detailed hardware designs and software code after review, and

 • building prototype versions of engineered components.

414 ENGINEERING DESIGN

 4. Design Validation. Typical activities include

 • conducting test and evaluation of engineered components with respect to

function, interfaces, reliability, and producibility;

 • correcting defi ciencies; and

 • documenting product design.

 12.2 REQUIREMENTS ANALYSIS

 In the advanced development phase, the system functional specifi cations were trans-

lated into a set of system design specifi cations that defi ned the design approach selected

and validated as fully addressing the system operational objectives. As in previous

phases of the development process, these specifi cations must now be analyzed again

for relevance, completeness, and consistency to constitute a sound basis for full - scale

engineering. In particular, the analysis must consider any changes occurring due to the

passage of time or external events.

 System Design Requirements

 It will be recalled that the focus of the advanced development phase was on those

system components that required further maturation in terms of analysis, design, devel-

opment, and/or testing to demonstrate fully their validity. These are the components

that represent the greatest development risks, and hence their design approach must be

carefully analyzed to ensure that the residual risks have been reduced to manageable

levels. For example, components with initially ill - defi ned external interface descriptions

must be reexamined to resolve any remaining uncertainties.

 Components that were identifi ed as involving some risk, but not to the extent of

requiring special development effort, and previously proven components that will be

required to perform at higher levels or in more stressful environments must be particu-

larly scrutinized at this stage. The results of these analyses should be inputs to the

planning of risk management during engineering design. (See section on risk manage-

ment in Chapter 5 .)

 External System Interface Requirements

 Since the whole system has not been physically assembled in previous phases, it is

likely that the design of its interfaces with the environment has been considered less

than rigorously. Hence, a comprehensive analysis of system - level environmental inter-

faces must be carried out prior to the initiation of engineering design.

 User Interfaces. As noted previously, the functional interactions and physical

interfaces of the system with the user(s) are not only often critical but also diffi cult to

defi ne adequately. This situation is aggravated by the fact that potential users of a new

system do not really know how they can best operate it before they fi rst physically

interact with it. Thus, except for very simple human – machine interfaces, a prototype

REQUIREMENTS ANALYSIS 415

model of the user consoles, displays, and controls should be constructed at the earliest

practicable time to enable the user(s) to examine various responses to system inputs

and to experiment with alternative interface designs. If this has not been done ade-

quately in the advanced development phase, it must be done early in engineering design.

 The user interfaces related to system maintenance involve fault isolation, compo-

nent replacement, logistics, and a host of related issues. Interface design is often given

only cursory attention prior to the engineering design phase, an omission that is likely

to lead to the need for a signifi cant redesign of previously defi ned component

interfaces.

 Environmental Interfaces. In defi ning external interfaces subject to shock,

vibration, extreme temperatures, and other potentially damaging environments, it is

essential to again consider all stages of a system ’ s life, including production, shipment,

storage, installation, operation, and maintenance, and to anticipate all of the interactions

with the environment during each step. Interface elements such as seals, joints, radiation

shields, insulators, shock mounts, and so on, should be reviewed and redefi ned if neces-

sary to ensure their adequacy in the fi nal design. Some of the above subjects are treated

more fully in a later section of this chapter, which discusses interface design.

 Assembly and Installation Requirements

 In addition to the usual design requirements, the system design must also take into

consideration all special requirements for system assembly and installation at the opera-

tional site. This is especially important for large systems that must be shipped in sec-

tions. An example is a shipboard system, subsystems of which are to be installed below

decks in an existing ship. In this case, the size of hatches and passageways will dictate

the largest object that can pass through. System installation aboard aircraft is another

example. Even buildings have load and size limits on freight elevators. In any case,

when on - site assembly is required, the system design must consider where the system

will be “ cut ” and how it will be reassembled. If physical mating is implemented by

bolts, for example, then the location and size of these fasteners must take into account

the size and position of the wrenches needed for assembly. Many developers have been

embarrassed when they realize there is not enough elbowroom to perform a prescribed

assembly procedure.

 Another on - site problem can occur when the assembly process is found to be dif-

fi cult and slow to perform. A classic example concerns a suspended walkway that was

installed in a large Midwestern hotel lobby. During a large evening dance party, a

number of people were dancing on the elevated walkway, causing it to collapse with

attendant loss of life. The investigation of this accident revealed that a design change

had been made at the assembly site because the originally specifi ed long, threaded

supporting rods were diffi cult to install. A so - called trivial design change was made to

permit easier assembly, but it increased the load on the rod structure by a factor of two.

The fault was attributed to those involved in the design change. However, it can be

argued that if the original designers had given more attention to the diffi cult assembly

process, this problem and the resulting accident might not have occurred.

416 ENGINEERING DESIGN

 Risk Mitigation

 As in the previous chapters, a necessary step in the planning of the development and

engineering process is the consideration of program risk. In the advanced development

phase, risk assessment was used to refer to the process of identifying components that

required further maturation to eliminate or greatly reduce the potential engineering

problems inherent in the application of new technology or complex functionality. By

the beginning of the engineering design phase, those risks should have been resolved

through further development. This in turn should have reduced the remaining program

risks to a level that could be tolerated through the application of risk management, a

process that identifi es and seeks to mitigate (abate or minimize) the likelihood and

impact of residual risks. Methods for mitigating risks are discussed briefl y in the section

on component design (Section 12.4) and in greater detail in Chapter 5 .

 Critical Design Requirements

 To the extent that previous analysis has shown that a particular requirement places

undue stress on the engineering design, this is the last opportunity seriously to explore

the possibility of its relaxation and thus to reduce the risk of an unsuccessful design.

 12.3 FUNCTIONAL ANALYSIS AND DESIGN

 The principal focus of the engineering design phase is on the design of the system

components. Insofar as the functional defi nition of the components is concerned, it may

be assumed that the primary allocation of functions has been accomplished in previous

phases, but that the defi nition of their mutual interactions has not been fi nalized. A

primary objective of the functional analysis and design step is to defi nitize the interac-

tions of components with one another and with the system environment in such a way

as to maximize their mutual independence, and thus to facilitate their acquisition, inte-

gration, and maintenance and the ease of future system upgrading.

 This section stresses three important areas of functional analysis and design:

 1. Modular Confi guration: simplifying interactions among system components

and with the environment

 2. Software Design: defi ning a modular software architecture

 3. User Interfaces: defi ning and demonstrating effective human – machine

interfaces.

 Modular Confi guration

 The single most important objective of the functional analysis and design step in the

engineering design phase is to defi ne the boundaries between the components and

subsystems so as to minimize their interactions (i.e., their dependence on one another).

This is essential to ensure that

FUNCTIONAL ANALYSIS AND DESIGN 417

 1. each component can be specifi ed, developed, designed, manufactured, and

tested as a self - contained unit;

 2. when assembled with the other components, a component will perform its func-

tions properly and without further adjustment;

 3. a faulty component can be replaced directly by an equivalent interchangeable

component; and

 4. a component can be upgraded internally without affecting the design of other

components.

 A system design with the above characteristics is referred to as “ modular ” or

 “ sectionalized. ” These characteristics apply to both hardware and software components.

They depend on physical as well as functional interactions, but the latter are fundamen-

tal and must be defi ned before the physical interfaces can be established.

 Functional Elements. The system functional elements defi ned in Chapter 3 are

examples of highly modular system building blocks. These building blocks were

selected using three criteria:

 1. Signifi cance: each functional element performs a distinct and signifi cant func-

tion, typically involving several elementary functions.

 2. Singularity: each functional element falls largely within the technical scope of

a single engineering discipline.

 3. Commonality: the function performed by each element is found in a wide

variety of system types.

 Each of the functional elements was seen to be the functional embodiment of a

type of component element (see Table 3.3), which is a commonly occurring building

block of modern systems. Their characteristic of “ commonality ” results from the fact

that each is highly modular in function and construction. It follows that the functional

elements of a new system should use standard building blocks whenever practicable.

 Software Design

 As noted previously, the development and engineering of software components are

suffi ciently different from that of hardware components that a separate chapter is

devoted to the special systems engineering problems and solutions of software (Chapter

 11). The paragraphs below contain a few selected subjects relevant to this chapter.

 Prototype Software. The previous chapters noted that the extensive use of

software throughout most modern complex systems usually makes it necessary to

design and test many software components in prototype form during the advanced

development phase. Common instances of this are found in embedded real - time pro-

grams and user interfaces. The existence of such prototype software at the beginning

418 ENGINEERING DESIGN

of the engineering design phase presents the problem of whether or not to reuse it in

the engineered system and, if so, just how it should be adapted for this purpose.

 Redoing the prototype software from scratch can be extremely costly. However,

its reuse requires careful assessment and revision, where necessary. The following

conditions are necessary for successful reuse:

 1. The prototype software must be of high quality, that is, designed and built to

the same standards that are established for the engineered version (except

perhaps for the degree of formal reviews and documentation).

 2. Changes in requirements must be limited.

 3. The software should be either functionally complete or compatible with directly

related software.

 Given the above conditions, modern computer - aided software engineering (CASE)

tools are available to facilitate the necessary analysis, modifi cation, and documentation

to integrate the prototype software into the engineered system.

 Software Methodologies. Chapter 11 identifi es many of the key aspects of

software engineering that are of direct interest to systems engineers. Two principal

methodologies are used in software analysis and design: structured analysis and design

and object - oriented analyses and design . The former and more mature methodology is

organized around functional units generally called procedures or functions and is

assembled in modules or packages. In good structured design, data values are passed

between procedures by means of calling parameters, with a minimum of externally

addressed (global) data. Object - oriented analysis (OOA) and object - oriented design

(OOD) are more recent methods of software system development and are widely

believed to be inherently superior in managing complexity, which is a critical problem

in all large, information - rich systems. Using object - oriented methods in developing

hardware and combined hardware/software systems has become more commonplace

and is usually referred to as object - oriented systems engineering (OOSE). The particu-

lars of this method will be described below in a separate section. Accordingly, today ’ s

systems engineers need to know the basic elements and capabilities of these methodolo-

gies in order to evaluate their appropriate place in system development.

 User Interface Design

 Among the most critical elements in complex systems are those concerned with the

control of the system by the user — analogous to the steering wheel, accelerator, shift

lever, and brakes in an automobile. In system terminology, those elements are collec-

tively referred to as the “ user interface. ” Their criticality is due to the essential role

they play in the effective operation of most systems, and to the inherent problem of

matching a specifi c system design to the widely variable characteristics of the many

different human operators who will use the system during its lifetime. If several indi-

viduals operate different parts of the system simultaneously, their mutual interactions

present additional design issues.

COMPONENT DESIGN 419

 The principal elements involved in user control include

 1. Displays: presentations provided to the user containing information on system

status to indicate need for possible user action. They may be dials, words,

numbers, or graphics appearing on a display screen, or a printout, sound, or

other signals.

 2. User Reaction: user ’ s interpretation of the display based on knowledge about

system operation and control, and consequent decisions on the action to be

taken.

 3. User Command: user ’ s action to cause the system to change its state or behav-

ior to that desired. It may be movement of a control lever, selection of an item

from a displayed menu, a typed command, or another form of signal to which

the system is designed to respond.

 4. Command Actuator: device designed to translate the user ’ s action into a system

response. This may be a direct mechanical or electrical link or, in automated

systems, a computer that interprets the user command and activates the appro-

priate response devices.

 The design of a user – system interface is truly a multidisciplinary problem, as the

above list implies, and hence is the domain of systems engineering. Even human factors

engineering, considered to be a discipline in itself, is actually fragmented into special-

ties in terms of its sensory and cognitive aspects. While much research has been carried

out, quantitative data on which to base engineering design are sparse. Thus, each new

system presents problems peculiar to itself and often requires experimentation to defi ne

its interface requirements.

 The increasing use of computer automation in modern systems has brought with

it the computer - driven display and controls as the preferred user interface medium. A

computer interface has the facility to display information in a form processed to give

the user a clearer and better organized picture of the system status, to simplify the

decision process, and to offer more simple and easier modes of control.

 Chapter 11 contains a brief description of computer control modes, graphical user

interfaces (GUIs), and advanced modes of user – computer interactions, such as voice

control and visual reality.

 Functional System Design Diagrams. As the components of a complex

system are integrated, it becomes increasingly important to establish system - wide rep-

resentations of the functional system architecture to ensure its understanding by all

those concerned with designing the interacting system elements. Functional diagrams

are discussed in more detail in Chapter 8 .

 12.4 COMPONENT DESIGN

 The object of the component design step of the engineering design phase is to

implement the functional designs of system elements as engineered hardware and

420 ENGINEERING DESIGN

software components with compatible and testable interfaces. During this phase, the

system components that do not already exist as engineered items are designed, built,

and tested as units, to be integrated into subsystems and then assembled into an engi-

neering prototype in the integration and evaluation phase. The associated engineering

effort during this phase is more intense than at any other time during the system life

cycle. During the design of any complex new system, unexpected problems inevitably

occur; their timely resolution depends on quick and decisive action. This high level

of activity, and the potential impact of any unforeseen problems on the successful

conduct of the program, tends to place a severe stress on systems engineering during

this period.

 In the development of major defense and space systems, the engineering design

effort is performed in two steps: designated preliminary design and detailed design,

respectively. Although preliminary design is typically started under systems architect-

ing, many offi cial programs continue to establish a subphase where the initial architec-

ture is translated into a preliminary design. Each step is followed by a formal design

review by the customer before the succeeding step is authorized. The purpose of this

highly controlled process is to ensure very thorough preparation prior to commitment

to the costly full - scale implementation of the design into hardware and software. This

general methodology, without some of its formality, may be applied to any system

development.

 The level of system subdivision on which the above design process is focused is

called a “ confi guration item ” (CI). This level corresponds most closely to that referred

to here as “ component. ” It should be noted that in common engineering parlance, the

term component is used much more loosely than in this book and sometimes is applied

to lower - level system elements, which are identifi ed here as subcomponents. CIs and

 “ confi guration baselines ” are discussed further in the section on confi guration manage-

ment (CM) (Section 9.6).

 Preliminary Design

 The objective of preliminary design is to demonstrate that the chosen system design

conforms to system performance and design specifi cations and can be produced by

existing methods within established constraints of cost and schedule. It thereafter pro-

vides a framework for the next step, detailed design. The bulk of the functional design

effort, as described in the previous section, is properly a part of preliminary design.

 Typical products of preliminary design include

 • design and interface specifi cations (B specs);

 • supporting design and effectiveness trade studies;

 • mock - ups, models, and breadboards;

 • interface design;

 • software top - level design;

 • development, integration, and verifi cation test plans; and

 • engineering specialty studies (RMA, producibility, logistic support, etc.).

COMPONENT DESIGN 421

 Major systems engineering input and review is essential for all of the above items. Of

particular importance is the manner in which the functional modules defi ned in the

functional design process are implemented in hardware and software. Often this requires

detailed adjustments in the boundaries between components to ensure that physical

interfaces, as well as functional interactions, are as simple as practicable. To the extent

that the advanced development phase has not resolved all signifi cant risks, further

analyses, simulations, and experiments may have to be conducted to support the pre-

liminary design process.

 Preliminary Design Review (PDR). In government programs, the PDR is nor-

mally conducted by the acquisition agency to certify the completion of the preliminary

design. For major commercial programs, company management acts in the role of the

customer. The process is frequently led or supported by a commercial or nonprofi t

systems engineering organization. The review may last for a few or many days and

may require several follow - on sessions if additional engineering is found to be required.

 The issues on which PDR is usually centered include major (e.g., subsystem and

external) interfaces, risk areas, long - lead items, and system - level trade - off studies.

Design requirements and specifi cations, test plans, and logistics support plans are

reviewed. Systems engineering is central to the PDR process and must be prepared to

deal with any questions that may arise in the above areas.

 Prior to the formal PDR, the development team should arrange for an internal

review to ensure that the material to be presented is suitable and adequate. The prepara-

tion, organization, and qualifi cation of the review process is critical. This is no less

important for commercial systems, even though the review process may be less formal,

because success of the development is critically dependent on the quality of design at

this stage.

 The completion of preliminary design corresponds to the establishment of the

allocated baseline system confi guration (see Section 12.6).

 Detailed Design

 The objective of detailed design is to produce a complete description of the end items

constituting the total system. For large systems, a massive engineering effort is required

to produce all the necessary plans, specifi cations, drawings, and other documentation

necessary to justify the decision to begin fabrication. The amount of effort to produce

a detailed design of a particular component depends on its “ maturity, ” that is, its degree

of previously proven design. For newly developed components, it is usually necessary

to build prototypes and to test them under simulated operating conditions to demon-

strate that their engineering design is valid.

 Typical products of detailed design include

 • draft C, D, and E specs (production specifi cations);

 • subsystem detailed engineering drawings;

 • prototype hardware;

422 ENGINEERING DESIGN

 • interface control drawings;

 • confi guration control plan;

 • detailed test plans and procedures;

 • quality assurance plan; and

 • detailed integrated logistic support plans.

 Systems engineering inputs are especially important to the interface designs and

test plans. Where necessary, detailed analysis, simulation, component tests, and proto-

typing must be performed to resolve risk areas.

 Critical Design Review (CDR). The general procedures for the CDR of the

products of detailed design are similar to those for the PDR. The CDR is usually more

extensive and may be conducted separately for hardware and software CIs. The CDR

examines drawings, schematics, data fl ow diagrams, test and logistic supply plans, and

so on, to ensure their soundness and adequacy. The issues addressed in the CDR are

partly predicated on those identifi ed as critical in the PDR and are therefore scheduled

for further review in light of the additional analysis, simulations, breadboard or brass-

board, or prototype tests conducted after the PDR.

 As in the case of PDR, systems engineering plays a crucial role in this process,

especially in the review of interfaces and plans for integration and testing. Similarly,

internal reviews are necessary prior to the offi cial CDR to ensure that unresolved issues

do not arise in the formal sessions. But if they do, systems engineering is usually

assigned the responsibility of resolving the issues as quickly as possible.

 The completion of detailed design results in the product baseline (see Section 12.6).

 Computer - Aided Design (CAD)

 The microelectronic revolution has profoundly changed the process of hardware com-

ponent design and fabrication. It has enabled the development and production of

increasingly complex systems without corresponding increases in cost and degradations

in reliability. The introduction of CAD of mechanical components has completely

changed how such components are designed and built. Even more dramatic has been

the explosive development of electronics in the form of microelectronic chips of enor-

mous capacity and power, and their principal product, digital computing.

 Mechanical Components. CAD permits the detailed design of complex

mechanical shapes to be performed by an engineer at a computer workstation without

making conventional drawings or models. The design takes form in the computer data-

base and can be examined in any position, at any scale of magnifi cation, and in any

cross section. The same database can be used for calculating stresses, weights, positions

relative to other components, and other relevant information. When the design is com-

pleted, the data can be transformed into fabrication instructions and transferred to digi-

COMPONENT DESIGN 423

tally driven machines for computer - aided manufacture (CAM) of exact replicas of the

design. It can also generate production documentation in whatever form may be required.

 One of the dramatic impacts this technology has had on the design and manufactur-

ing process is that once a part has been correctly designed and built, all subsequent

copies will also be correct within the tolerances of the production machines. An equally

major impact is on the ease of integrating mechanical components with one another.

Since the physical interfaces of components can be specifi ed precisely in three dimen-

sions, two adjacent components made to a common interface specifi cation will match

exactly when brought together. Today, a complex microwave antenna can be designed,

fabricated, and assembled into a fi nely tuned device without the months of cut - and - try

testing that used to characterize antenna design. This technique also largely eliminates

the need for the elaborate jigs and fi xtures previously used to make the parts fi t a given

pattern, or specially built gages or other inspection devices to check whether or not the

parts conform to the established tolerances.

 Electronic Components. The design of most electronic components has been

revolutionized by modern technology even more than that of mechanical components.

Processing is almost entirely digital, using standard memory chips and processors. All

parts, such as circuit cards, card cages, connectors, equipment racks, and so on, are

purchased to strict standards. All physical interfaces fi t because they are made to stan-

dards. Further, in digital circuits, voltages are low; there is little heat generation; and

electrical interfaces are digital streams. Inputs and outputs can be generated and ana-

lyzed using computer - based test equipment.

 Most circuits are assembled on standard circuit cards and are interconnected by

programmed machines. Instead of being composed of individual resistors, capacitors,

transistors, and so on, most circuit functions are frequently incorporated in circuit chips.

The design and fabrication of chips represents a still higher level of automation than

that of circuit boards. The progressive miniaturization of the basic components (e.g.,

transistors, diodes, and capacitors) and of their interconnections has resulted in a dou-

bling of component density and operating speed every 18 months (Moore ’ s law) since

the early 1980s — a trend that has not yet diminished. However, the cost of creating an

assembly line for a complex new chip has progressively mounted into hundreds of

millions of dollars, restricting the number of companies capable of competing in the

production of large memory and processing chips. On the other hand, making smaller

customized chips is not prohibitive in cost and offers the advantages of high reliability

at affordable prices.

 Components that handle high power and high voltage, such as transmitters and

power supplies, generally do not lend themselves to the above technology, and for the

most part must still be custom built and designed with great care to avoid reliability

problems (see later section).

 Systems Engineering Considerations. To the systems engineer, these devel-

opments are vital because of their critical impact on component cost, reliability, and

424 ENGINEERING DESIGN

often design feasibility. Thus, systems engineers need to have fi rst - hand knowledge of

the available automated tools, their capabilities and limitations, and their effect on

component performance, quality, and cost. This knowledge is essential in judging

whether or not the estimated performance and cost of proposed components are real-

istic, and whether their design takes adequate advantage of such tools.

 It is also important that systems engineers be aware of the rate of improvement of

automated tools for design and manufacture, to better estimate their capabilities at the

time they will be needed later in the system development cycle. This is also important

in anticipating competitive developments, and hence the likely effective life of the

system prior to the onset of obsolescence.

 Example: The Boeing 777. The development of the Boeing 777 airliner has

received a great deal of publicity as a pioneer in large - scale automated design and

manufacture. It was claimed by Boeing to be the fi rst major aircraft that was designed

and manufactured without one or more stages of prototype ground and fl ight testing.

This achievement was made possible mainly because of four factors: (1) the use of

automated design and manufacture for all parts of the aircraft structure, (2) the high

level of knowledge of aerodynamics and structures of aircraft obtained through years

of development and experimentation, (3) the application of computer - based analysis

tools, and (4) highly integrated and committed engineering teams. Thus, aircraft body

panels were designed and built directly from computer - based design data and fi t together

perfectly when assembled. This approach was used for the entire airplane body and

associated structures.

 It should be noted that the 777 engines, whether built by Pratt and Whitney, General

Electric, or Rolls Royce, were thoroughly ground tested before delivery because the

degree of knowledge and predictability for jet engines is not at the level of that for

airframes. Also, the 777 design did not embody radical departures from previous aircraft

experience. Thus, the development cycle of the 777 as a total system did not depart as

widely from the traditional sequence as it may have appeared to. However, it was a

major milestone and a dramatic illustration of the power of automation in certain

modern systems.

 Reliability

 The reliability of a system is the probability that the system will perform its functions

correctly for a specifi ed period of time under specifi ed conditions. Thus, the total reli-

ability (P R) of a system is the probability that every component on which its function

depends functions correctly. Formally, reliability is defi ned as one minus the failure

distribution function of a system or component:

 R t F t f t dt
t

() () () ,= − =

∞

∫1

where F (t) is the failure distribution function and f (t) is the probability density function

of F (t). f (t) can follow any number of known probability distributions. A common

representation for a failure function is the exponential distribution

COMPONENT DESIGN 425

pdf
if

otherwise
cdf

if

o
: () ; : ()f x

e x
F x

e x
X X=

≥⎧
⎨
⎩

⎫
⎬
⎭

=
− ≥− −λ λ λ0

0

1 0

0 ttherwise

Expectation variance Var

⎧
⎨
⎩

⎫
⎬
⎭

= =: [] ; : [] .E X X
1 1

2λ λ

 This distribution is used quite extensively for common component reliability approxi-

mations, such as those relating to electrical and mechanical devices . An advantage of

using the exponential distribution is its various properties relating to reliability:

f t e tt() = =−1

θ
θθ/ , where mean life and is the time period of intterest

where failure rate and

where reliabi

;

, ;

,/

λ
θ

λ− =

= =−

1

R e Rt M llity of the system

MTBFM = .

 MTBF is “ mean time between failure ” and is explained below. By using the exponential

distribution, we can calculate individual reliabilities fairly easily and perform simple

mathematics to obtain reliability approximations, described below.

 Calculating the probability depends on the confi guration of the individual system

components. If the components are arranged in a series, each one depending on the

operation of the others, the total system probability is equal to the product of the reli-

abilities of each component (Pr):

 P nR l= × …Pr Pr Pr .2

 For example, if a system consisting of 10 critical components in series is required to

have a reliability of 99%, then the average reliability of each component must be at

least 99.9%.

 If a system contains components that are confi gured in parallel, representing redun-

dancy in operations, a different equation is used. For example, if two components are

operating in parallel, the overall reliability of the system is

 PR l= + − ×Pr Pr (Pr Pr).2 1 2

 For pure parallel components, such as the example above, at least one component

operating would allow the total system to operate effectively. Redundancy is discussed

further below.

 In most cases, a system consists of both parallel and series components. Keep in

mind that for both examples above, time is considered integral to the defi nition of

probability. Pr i would be defi ned and calculated from the failure distribution function,

which contains t . For the exponential distribution, Pr i would be expressed as 1/ e − t / M .

 For systems that must operate continuously, it is common to express their reliability

in terms of the MTBF. In the 10 - component system just mentioned, if the system MTBF

must be 1000 hours, the component MTBF must average 10,000 hours. From these

426 ENGINEERING DESIGN

considerations, it is evident that the components of a complex system must meet

extremely stringent reliability standards.

 Since system failures almost always occur at the level of components or below,

the main responsibility for a reliable design rests on design specialists who understand

the details of how components and their subcomponents and parts work and are manu-

factured. However, the diffi culty of achieving a given level of reliability differs widely

among the various components. For example, components composed largely of inte-

grated microcircuits can be expected to be very reliable, whereas power supplies and

other high - voltage components are much more highly stressed and therefore require a

greater fraction of the overall reliability “ budget. ” Accordingly, it is necessary to allo-

cate the allowable reliability requirements among the various components so as to

balance, insofar as practicable, the burden of achieving the necessary reliabilities

among the components. This allocation is a particular systems engineering responsibil-

ity and must be based on a comprehensive analysis of reliability records of components

of similar functionality and construction.

 A number of specifi c reliability issues must not be left entirely to the discretion of

the component designers; these issues should not only be examined at formal reviews

but should also be subject to oversight throughout the design process. Such issues

include

 1. External Interfaces: Surfaces exposed to the environment must be protected

from corrosion, leakage, radiation, structural damage, thermal stress, and other

potential hazards.

 2. Component Mounting: Systems subjected to shock or vibration during opera-

tion or transport must have suitable shock mountings for fragile components.

 3. Temperature and Pressure: Systems subjected to extremes of temperature and

pressure must provide protective controls at either the system or component

level.

 4. Contamination: Components susceptible to dust or other contaminants must be

assembled under clean room conditions and sealed if necessary.

 5. High - Voltage Components: Components using high voltage, such as power

supplies, require special provisions to avoid short circuits or arcing.

 6. Workmanship: Parts requiring precise workmanship should be designed for

easy inspection to detect defects that could lead to failures in operation.

 7. Potential Hazards: Components that may present operating hazards if not

properly made or used should be designed to have large reliability margins.

These include rocket components, pyrotechnics, hazardous chemicals, high -

 pressure containers, and so on.

 Software Reliability. Software does not break, short - circuit, wear out, or oth-

erwise fail from causes similar to those that lead to most hardware failures. Nevertheless,

complex systems do fail due to malfunctioning software as often as and sometimes

even more often than from hardware faults. Anyone whose computer keyboard has

 “ locked up, ” or who has tried to buy an airline ticket when the “ computer is down ” has

COMPONENT DESIGN 427

experienced this phenomenon. With systems increasingly dependent on complex soft-

ware, its reliability is becoming ever more crucial.

 Software operating failures occur due to imperfect code, that is, computer program

defi ciencies that allow the occurrence of unintended conditions, causing the system to

produce erroneous outputs, or in extreme cases to abort (“ crash ”). Examples of condi-

tions that cause such events are infi nite loops (repeated sequences that do not always

terminate, thereby causing the system to hang up), overfl ows of memory space allocated

to data arrays (which cause excess data to overwrite instruction space, producing

 “ garbage ” instructions), and mishandling of external interrupts (which cause losses or

errors of input or output).

 As described in Chapter 11 , there is no possibility of fi nding all the defi ciencies in

complex code by inspection, nor is it practical to devise suffi ciently exacting tests to

discover all possible faults. The most effective means of producing reliable software is

to employ experienced software designers and testers in combination with disciplined

software design procedures, such as

 1. highly modular program architecture,

 2. disciplined programming language with controlled data manipulation,

 3. disciplined coding conventions requiring extensive comments,

 4. design reviews and code “ walk - throughs, ”

 5. prototyping of all critical interfaces,

 6. formal CM,

 7. independent verifi cation and validation, and

 8. endurance testing to eliminate “ infant mortality ”

 Redundancy. Complex systems that must operate extremely reliably, such as air

traffi c control systems, telephone networks, power grids, and passenger aircraft, require

the use of redundant or backup subsystems or components to achieve the required levels

of uninterrupted operation. If a power grid line is struck by lightning, its load is

switched to other lines with a minimum disruption of service. If an aircraft landing

gear ’ s motors fail, it can be cranked down manually. Air traffi c control has several

levels of backups to maintain safe (though degraded) operation in case of failure of the

primary system.

 The equation for calculating the reliability of parallel components was presented

above. Another perspective on parallel component reliability is to understand that the

failure probability is a product of the failure probabilities of the individual system

modes. Since the reliability (P R) is one minus the failure probability (P F), the reliability

of a system with two redundant (parallel) subsystems is

 P P PR F F= − ×1 1 2().

 The reader is encouraged to prove to himself that the two reliability equations presented

are indeed equivalent . As an example, if a system reliability of 99.9 is required for a

system, and a critical subsystem cannot be designed to have a reliability better than

428 ENGINEERING DESIGN

99%, providing a backup subsystem of equal reliability will raise the effective reliability

of the parallel subsystem to 99.99% (1 – 0.01 × 0.01 = 0.9999).

 Systems that must reconfi gure themselves by automatically switching over to a

backup component in place of a failed one must also incorporate appropriate failure

sensors and switching logic. A common example is the operation of an uninterruptible

power supply for a computer, which automatically switches to a battery power supply

in the event of an interruption in external power. Telephone networks switch paths

automatically not only when a link fails but also when one becomes overloaded. An

inherent problem with such automatic switching systems is that the additional sensors

and switches add further complexity and are themselves subject to failure. Another is

that complex automatic reconfi guration systems may overreact to an unexpected set of

conditions by a catastrophic crash of the whole system. Such events have occurred in

a number of multistate power grid blackouts and telephone outages. Automatically

reconfi gurable systems require extremely comprehensive systems engineering analysis,

simulation, and testing under all conceivable conditions. When this has been expertly

done, as in the manned space program, unprecedented levels of reliability have been

achieved.

 Techniques to Increase Reliability. Several techniques exist to increase, or

even maximize, reliability within a system design. Several have been discussed already:

 • System Modularity. Increase the modularity of system components to achieve

loose coupling among components. This will minimize the number of compo-

nents that are in series and thus could cause a system failure.

 • Redundancy. Increase component redundancy either with parallel operating

components or through the use of switches that automatically transfer control

and operations to backup components.

 • Multiple Functional Paths. A technique to increase reliability without necessar-

ily adding redundant components involves including functional multiple paths

within the system design. This is sometimes known as “ channels of

operation. ”

 • Derating Components. Derating refers to the technique of using a component

under stress conditions considerably below the rated performance value to

achieve a reliability margin in the design.

 Several methods and formal techniques exist to analyze failure modes, effects, and

mitigation strategies. Five common techniques (not described here) are failure mode,

effects, and criticality analysis (FMECA), fault tree analysis, critical useful life analysis,

stress – strength analysis, and reliability growth analysis. The reader is encouraged to

explore any or all of the techniques as effective analyses strategies.

 Maintainability

 The maintainability of a system is a measure of the ease of accomplishing the functions

required to maintain the system in a fully operable condition. System maintenance takes

COMPONENT DESIGN 429

two forms: (1) repair if a system fails during operation and (2) scheduled periodic

servicing including testing to detect and repair failures that occur during standby. High

maintainability requires that the system components and their physical confi gurations

be designed with an explicit and detailed knowledge of how these functions will be

carried out.

 Since to repair a system failure it is fi rst necessary to identify the location and

nature of the fault, that is, to carry out a failure diagnosis, system design should provide

for means to make diagnosis easy and quick. In case repair is needed, the design must

be dovetailed with logistic support plans to ensure that components or component parts

that may fail will be stocked and will be replaceable in minimum time.

 Unlike hardware faults, replacement of the failed component is not an option for

software because software failures result from faults in the code. Instead, the error in

the code must be identifi ed and the code modifi ed. This must be done with great care

and the change in confi guration documented. To prevent the same fault from causing

failures in other units of the system, the correction must be incorporated in their pro-

grams. Thus, software maintenance can be a critical function.

 A measure of system maintainability during operation is the mean time to repair/

restore (MTTR). The “ time to repair ” is the sum of the time to detect and diagnose the

fault, the time to secure any necessary replacement parts, and the time to effect the

replacement or repair. The “ time to restore ” also includes the time required to restore

the system to full operation and to confi rm its operational readiness.

 Built - In Test Equipment (BITE). A direct means for reducing the MTTR of a

system is to incorporate auxiliary sensors that detect the occurrence of faults that would

render the system inoperable or ineffective when called upon, then to signal an operator

that repairs are required, and indicate the location of the fault. Such built - in equipment

effectively eliminates the time to detect the fault and focuses the diagnosis on a specifi c

function. Examples of such built - in fault detection and signaling devices are present in

most modern automobiles, which sense and signal any faulty indications of air bag or

antilock brake status, low oil level, or low battery voltage, and so on. In controlling

complex systems, such as in aircraft controls, power plant operations, and hospital

intensive care units, such devices are absolutely vital. In automatically reconfi gurable

systems (see section on redundancy, above) the built - in sensors provide signals to

automatic controls rather than to a system operator.

 The use of BITE presents two important system - level problems. First, it adds to

the total complexity of the system and hence to potential failures and cost. Second, it

is itself capable of false indications, which can in turn impact system effectiveness.

Only when these problems are examined in detail can a good balance be struck between

not enough and too much system self - testing. Systems engineering bears the principal

responsibility for achieving such a balance.

 Design for Maintainability. The issues that must be addressed to ensure a

maintainable system design begin at the system level and range all the way down to

component parts. They include

430 ENGINEERING DESIGN

 1. Modular System Architecture: A high degree of system modularity (self -

 contained components with simple interfaces) is absolutely vital to all three

forms of maintenance (repair of operational failures, periodic maintenance, and

system upgrading).

 2. Replaceable Units: Because it is often impractical to repair a failed part in

place, the unit that contains the part must be replaced by an identical spare unit.

Such units must be accessible, simply and safely replaceable, and part of the

logistic support supply.

 3. Test Points and Functions: To identify the location of a failure to a specifi c

replaceable unit, there must be a hierarchy of test points and functions that

permits a short sequence of tests to converge on the failed unit.

 To achieve the above, there must be an emphasis on design for maintainability through-

out the system defi nition, development, and engineering design process. In addition to

the design, comprehensive documentation and training are essential.

 Availability

 An important measure of the operational value of a system that does not operate con-

tinuously is referred to as system availability, that is, the probability that it will perform

its function correctly when called upon. Availability can be expressed as a simple func-

tion of system reliability and maintainability for relatively short repair times and low

failure rates:

 PA

MTTR

MTBF
= −1 ,

where

 P A = probability that the system will perform when called upon;

 MTBF = mean time between failure; and

 MTTR = mean time to restore.

 This formula shows that system maintainability is just as critical as reliability and

emphasizes the importance of rapid failure detection, diagnosis, and repair or parts

replacement. It also points to the importance of logistic support to ensure the immediate

availability of necessary replacement parts.

 Producibility

 For systems that are produced in large quantities, such as commercial aircraft, automo-

tive vehicles, or computer systems, reducing the costs associated with the manufactur-

ing process is a major design objective. The characteristic that denotes relative system

production costs is called “ producibility. ” The issue of producibility is almost wholly

COMPONENT DESIGN 431

associated with hardware components since the cost of replicating software is only that

of the medium in which it is stored.

 Design for producibility is the primary province of the design specialist. However,

systems engineers need to be suffi ciently knowledgeable about manufacturing pro-

cesses and other production cost issues to recognize characteristics that may infl ate

costs and to guide design accordingly. Such understanding is necessary for the systems

engineer to achieve an optimum balance between system performance (including reli-

ability), schedule (timeliness), and cost (affordability).

 Some of the measures that are used to enhance producibility are

 1. maximum use of commercially available parts, subcomponents, and even com-

ponents (referred to as commercial off - the - shelf [“ COTS ”] items); this also

reduces development cost;

 2. setting dimensional tolerances of mechanical parts well within the normal preci-

sion of production machinery;

 3. design of subassemblies for automatic manufacture and testing;

 4. maximum use of stampings, castings, and other forms suitable for high - rate

production;

 5. use of easily formed or machined materials;

 6. maximum standardization of subassemblies, for example, circuit boards, cages,

and so on; and

 7. maximum use of digital versus analog circuitry.

 As noted in previous chapters, the objective of producibility, along with other

specialty engineering features, should be introduced into the system design process

early in the life cycle. However, the application of producibility to specifi c design

features occurs largely in the engineering design phase as part of the design process.

Chapter 14 is devoted to the subject of production and its systems engineering content.

 Risk Management

 Many of the methods of risk mitigation listed in Chapter 5 are pertinent to the

component design step in the engineering design phase. Components containing

residual risk factors must be subjected to special technical and management oversight,

including analysis and testing to ensure the early discovery and resolution of any design

problems. Where the acceptability of a given design requires testing under operational

conditions, as in the case of user interfaces, rapid prototyping and user feedback

may be in order. In exceptional circumstances, where the risk inherent in the chosen

approach remains unacceptably high, it may be necessary to initiate a backup effort to

engineer a more conservative replacement in case the problems with the fi rst line design

cannot be resolved when the design must be frozen. Alternatively, it may be wise to

seek relaxation of stringent requirements that would produce only marginal gains in

system effectiveness. All of the above measures require systems engineering

leadership.

432 ENGINEERING DESIGN

 12.5 DESIGN VALIDATION

 Design validation proceeds at various levels throughout the engineering development

stage of the system life cycle. This section focuses on the validation of the physical

implementation of the component system building blocks.

 Test Planning

 Planning the testing of components to validate their design and construction is an

essential part of the overall test and evaluation plan. It covers two types of tests: devel-

opment testing during the component design process and unit qualifi cation testing to

ensure that the fi nal production design meets specifi cations.

 Component test planning must be done during the early part of the engineering

design phase for several reasons. First, the required test equipment is often complex

and requires a time to design and build comparable to that required for the system

components themselves. Second, the cost of test tools usually represents a very signifi -

cant fraction of the system development costs and must be provided for in the total cost

equation. Third, test planning must involve design engineers, test engineers, and systems

engineers in a team effort , often across organizational and sometimes across contractual

lines. From these detailed plans, test procedures are derived for all phases of the test

operations.

 As in system - level test planning, systems engineering must play a major role in

the development of component test plans, that is, what should be tested, at what stage

in the development, to what degree of accuracy, what data should be obtained, and so

on. An important systems engineering contribution is to ensure that component features

that were identifi ed as potential risks are subjected to tests to confi rm their elimination

or mitigation.

 Component Fabrication

 In the previous sections, the design process has been discussed in terms of its objectives

and has been related to design decisions defi ned in terms of drawings, schematics,

specifi cations, and other forms of design representation as expressed on paper and in

computer data. To determine the degree to which a design will actually result in the

desired component performance, and whether or not the component will properly inter-

face with the others, it is necessary to convert its design to a physical entity and to test

it. This requires that hardware elements be fabricated and individual software compo-

nents be coded. Prior to fabrication, reviews are held between the designers and fabrica-

tion personnel to assure that what has been designed is within the capabilities of the

facility that has to build it.

 The implementation process is seldom unidirectional (i.e., noniterative). Design

defi ciencies are often discovered and corrected during implementation, even before

testing, especially in hardware components. Even though CAD has greatly reduced the

probability of dimensional and other incompatibilities, it has to be anticipated that some

changes will need to be made in the design to achieve a successful functioning product.

DESIGN VALIDATION 433

 At this stage of component engineering, the tools that are to be used in production

(such as computer - driven, metal - forming machines and automatic assembly devices)

are seldom available for use, so that initial fabrication must often be carried out using

manually operated machines and hand assembly. It is important, however, that a real-

istic experimental replica of the fabrication process be employed for any component

parts that are to be built using unconventional manufacturing processes. This is essential

to ensure that the transition to production tooling will not invalidate the results of the

prototyping process. Involving the production people during sign - off, prior to the time

the article reaches the manufacturing facility, will greatly expedite production.

 In the case of complex electronic circuits, signifi cant alterations in the initially

fabricated model are to be expected before a completely suitable design is fi nally

achieved. Accordingly, it has been customary to fi rst construct and test these circuits

in a more open “ breadboard ” or “ brassboard ” form (with rudimentary packaging con-

straints) so as to facilitate circuit changes before packaging the component in its fi nal

form. However, with modern automated tools, it is often more effi cient to go directly

to a packaged confi guration, even though this may dictate the fabrication of several

such packages before a suitable design is fi nally achieved.

 Development Testing

 The objective of engineering development testing is different from production accep-

tance testing in that the latter is mainly concerned with whether the component should

be accepted or rejected, while the former must not only quantify each discrepancy but

must also help diagnose its source. It should be anticipated that design discrepancies

will be found and design changes will be needed in order to comply with requirements.

Thus, component testing is very much a part of the development process. Changes at

this point must be introduced via an “ engineering change notice ” agreed to by all cog-

nizant parties to avoid chaotic, noncoordinated change.

 Development testing is concerned with validating the basic design of the compo-

nent, focusing on its performance, especially on features that are critical to its operation

within the system or that represent characteristics that are highly stressed, newly devel-

oped, or are expected to operate at levels beyond those commonly attained in previous

devices of this type. These tests also focus on the features of the design that are subject

to severe environmental conditions, such as shock, vibration, external radiation, and

so on.

 For components subject to wear, such as those containing moving parts, develop-

ment tests can also include endurance testing, usually performed under accelerated

conditions to simulate years of wear in a matter of months.

 Reliability and Maintainability Data. Whereas during development compo-

nents may not be built from the identical parts used in the production article, it is good

practice to begin collecting reliability statistics as early as possible by recording all

failures during operation and test and by identifying their source. This will reduce the

likelihood of incipient failures carrying on into the production article. This is particu-

larly important where the number of units to be built is too small to collect adequate

434 ENGINEERING DESIGN

statistical samples of production components. Involvement of quality assurance engi-

neers in this process is essential.

 Development testing must also examine the adequacy and accessibility of test

points for providing failure diagnosis during system maintenance. If maintenance of

the system will require disassembling the component and replacing subcomponents

such as circuit boards, this feature must also be evaluated.

 Test Operations. Component development tests are part of the design process

and are usually conducted within the design group by a team headed by the lead design

engineer and composed of members of the design team as well as other staff experi-

enced in testing the type of component under development. The team should be inti-

mately familiar with the use of test tools and special test facilities that may be required.

The validity and adequacy of the test setup and analysis procedures should be overseen

by systems engineering.

 An important lesson that systems engineers (and test engineers) must learn is that

the apparent failure of a component to meet some test objective may not be due to a

defective design but rather due to a defi ciency in the test equipment or test procedure.

This is especially true when a component is fi rst tested in a newly designed test setup.

The need for testing the test equipment occurs all too frequently. This is a direct result

of the diffi culty of ensuring perfect compatibility between two or more interacting and

interfacing components, whether they are system elements or test equipment units

(hardware or software). Thus, a period of preliminary testing should be scheduled to

properly integrate a new component with its test equipment, and unit testing should not

begin until all the test bugs have been eliminated.

 Change Control. It will be recalled that after the CDR, the detailed design of a

complex system is frozen and placed under formal CM (see Section 9.6). This means

that thereafter, any proposed design change requires justifi cation, evaluation, and formal

approval, usually from a “ confi guration control board ” or an equivalent. Such approval

is usually granted only on the basis of a written engineering change request containing

a precise defi nition of the nature of the defi ciency revealed by the test process and a

thorough analysis of the impact of the proposed change on system performance, cost,

and schedule. The request should also contain trade - offs of alternative remedies, includ-

ing possible relaxation of requirements, and an in - depth assessment of risks and costs

associated with making (and not making) the change. This formal process is not

intended to prevent changes but to ensure that they are introduced in an orderly and

documented manner.

 Qualifi cation Testing

 Testing a productionized component (“ fi rst - unit ” testing) prior to its delivery to the

integration facility is very much like the acceptance testing of units off the production

line. Qualifi cation tests are usually more limited than development tests, but are fre-

quently more quantitative, being concerned with the exact conformance of the unit to

interface tolerances so that it will fi t exactly with mating system components.

DESIGN VALIDATION 435

Accordingly, equipment used for this purpose should be much like production test

equipment. Qualifi cation tests are generally more severe than the conditions to which

the article is subjected in operational use.

 The validation of the design of an individual system component can be rigorously

accomplished only by inserting it into an environment identical to that in which it will

operate as part of the total system. In the case of complex components, it is seldom

practicable to reproduce exactly its environment. Therefore, a test setup that closely

approximates this situation has to be used.

 The problem is made more diffi cult by the fact that components are almost always

developed and built by different engineering groups, often by independent contractors.

In the case of software programs, the designers may be from the same company but

generally do not understand each other ’ s designs in detail. The system developer thus

has the problem of ensuring that the component designers test their products to the

identical standards to be used during system integration. The critical point, of course,

is that each component ’ s interfaces must be designed to fi t exactly with their connecting

components and with the environment.

 Tolerances. The specifi cation of component interfaces to ensure fi t and inter-

changeability involves the assignment of tolerances to each dimension or other interface

parameters. Tolerances represent the positive and negative deviation from a nominal

parameter value to ensure a proper fi t. The assignment of tolerances requires striking

a balance between ease of manufacturing on one hand and assurance of satisfactory fi t

and performance on the other. Whenever either producibility or reliability is signifi -

cantly affected, the systems engineer needs to enter the process of setting the preferred

balance.

 Computer - Aided Tools. The widespread use of CAD and CAM has greatly

simplifi ed the above problems in many types of equipment. With these tools, component

specifi cations can be converted into a digital form and can be directly used in their

design. The CAD database can be shared electronically between the system developer

and the component designer and producer. The same data can be used to automate test

equipment.

 In the area of electronic equipment, the widespread use of standard commercial

parts, from chips to boards to cabinets to connectors, has made interfacing much easier

than with custom - built components. These developments have produced economies in

test and integration, as well as in component costs. Miniaturization has resulted in a

greater number of functions being performed on a circuit board, or encapsulated in a

circuit chip, thereby minimizing interconnections and numbers of boards.

 Test Operations. Component qualifi cation tests are performed to ensure that the

fi nal production component design meets all of its requirements as part of the overall

system. Hence, they are much more formal than development tests and are conducted

by the test organization, sometimes with oversight by the system contractor. Design

engineering supports the test operations, especially during test equipment checkout and

data analysis.

436 ENGINEERING DESIGN

 Test Tools

 A set of test tools for verifying the performance and compatibility of a system compo-

nent must be designed to provide an appropriate set of inputs and to compare the

resulting outputs with those prescribed in the specifi cations. In effect, they constitute

a simulator, which models the physical and functional environments of the component,

both external and internal to the system, and measures all signifi cant interactions and

interfaces. Functionally, such a simulator may be as complex as the component that it

is designed to test, and its development usually requires a comparable level of analysis

and engineering effort. Moreover, the assessment of a component ’ s adherence to speci-

fi ed parameter tolerance values usually requires the test equipment precision to be

several times better than the allowable variations in component parameters. This

requirement sometimes calls for precision greater than that readily available, involving

a special effort to develop the necessary capability.

 Development test tools often may be available or may be adaptable from other

programs. In addition, standard measuring instruments, such as signal generators, spec-

trum analyzers, displays, and so on, are readily available in a form that can be incor-

porated as part of a computer - driven test setup. On the other hand, highly specialized

and complex components, such as a jet engine, may require the provision of dedicated

and extensively instrumented test facilities to be used to support testing during com-

ponent development and sometimes also during production.

 In any event, such special tools as are required to support design and testing during

component development must be designed and built early in the engineering design

phase. Moreover, since similar tools will also be needed to test these same components

during production, efforts should be made to assure that the design and construction of

engineering and production test equipment are closely coordinated and mutually sup-

porting. To keep the cost of such test tools within acceptable bounds, signifi cant systems

engineering effort is usually needed to support the planning and defi nition of their

design and performance requirements.

 Role of Systems Engineering

 From the above discussion, it should be evident that systems engineering plays an

essential part in the component validation process. Systems engineers should defi ne the

overall test plan, specify what parameters should be tested and to what accuracy, how

to diagnose discrepancies, and how the test results should be analyzed. Systems engi-

neering must also lead the change initiation and control process. The proper balance

between “ undertesting ” and “ overtesting ” requires knowledge of the system impact of

each test, including overall cost. This, in turn, depends on a fi rst - hand knowledge of the

interactions of the component with other parts of the system and with its environment.

 12.6 CM

 The development of a complex new system has been seen to be resolvable into a series

of steps or phases in which each of the characteristics of the system is defi ned in terms

CM 437

of successively more specifi c system requirements and specifi cations. The systems

engineering process that maintains the continuity and integrity of the system design

throughout these phases of system development is called “ CM. ”

 The CM process generally begins incrementally during the concept exploration

phase, which fi rst defi nes the selected top - level system confi guration in terms of func-

tional requirements after a process of trade - offs among alternative system concepts. It

then progresses throughout the phases of the engineering development stage, culminat-

ing in system production specifi cations. The CM process is described more fully in this

chapter because the intensity and importance of CM is greatest during the engineering

design phase. The terminology of formal CM includes two basic elements, CIs and

confi guration baselines. Each of these is briefl y described below.

 CI s

 A CI is a system element that is the basis of describing and formally controlling the

design of a system. In early phases of system defi nition, it may be at the level of a

subsystem. In later phases, it usually corresponds to that of a component in the hierarchy

defi ned in this book (see Chapter 3). Like the component, the CI is considered as a

basic building block of the system, designed and built by a single organization, whose

characteristics and interfaces to other building blocks must be defi ned and controlled

to ensure its proper operation within the system as a whole. It is customary to distin-

guish between hardware confi guration items (HWCIs) and computer software confi gu-

ration items (CSCIs) because of the basically different processes used in defi ning and

controlling their designs.

 Confi guration Baselines

 An important concept in the management of the evolving system design during the

system life cycle is that of confi guration baselines. The most widely used forms are

called functional, allocated, and product baselines. Table 12.2 shows the phase in which

each is usually defi ned, the type of specifi cation that describes it, and the primary

characteristics that are specifi ed.

 TABLE 12.2. Confi guration Baselines

 Baseline Phase defi ned

 Type of

specifi cation Characteristics Element specifi ed

 Functional Concept defi nition A Functional

specifi cations

 System

 Allocated Engineering design B Development

specifi cations

 Confi guration item

 Product Engineering design C, D, E Product, process

specifi cations

 Confi guration item

438 ENGINEERING DESIGN

 The functional baseline describes the system functional specifi cations as they are

derived from system performance requirements during the concept defi nition phase and

serves as an input to the advanced development phase.

 The allocated baseline is defi ned during the engineering design phase as the alloca-

tions of functions to system components (CIs) are validated by analyses and tests. The

resulting development specifi cation defi nes the performance specifi cations for each CI,

as well as the technical approaches developed to satisfy the specifi ed objective.

 The product baseline is established during the engineering design phase in terms

of detailed design specifi cations. It consists of product, process, and material specifi ca-

tions and engineering drawings.

 Interface Management

 It has been stressed throughout this book that the defi nition and management of the

interfaces and interactions of the system ’ s building blocks with one another and with

the system environment is a vital systems engineering function. This function is embod-

ied in the concept of CM, irrespective of whether or not it is formally defi ned in terms

of CIs and baselines as described above. It is therefore incumbent on project manage-

ment with the aid of systems engineering to organize the necessary people and proce-

dures to carry out this function.

 A primary condition for the effective defi nition and management of a given inter-

face is to ensure the involvement of all key persons and organizations responsible for

the designs of the CIs. This is generally accomplished by means of interface confi gura-

tion working groups (ICWGs), or their equivalents, whose members have the technical

knowledge and authority to represent their organizations in negotiating a complete,

compatible, and readily achievable defi nition of the respective interfaces. In large

systems, formal sign - off procedures have been found to be necessary to ensure com-

mitment of all parties to the agreed - upon interface coordination documents (ICDs). The

form of these documents is a function of the type of interface being documented, but

during the engineering design phase, it must be suffi ciently specifi c in terms of data

and drawings to specify completely the interface conditions, so that the individual

component developers may design and test their products independently.

 Change Control

 Change is vital to the development of a new and advanced system, especially to take

advantage of evolving technology to achieve a suffi cient advance in system capability

to provide a long useful life. Thus, during the formative stages of system development,

it is desirable to maintain suffi cient design fl exibility to accommodate relevant techno-

logical opportunities. The price of such fl exibility is that each change inevitably affects

related system elements and often requires a series of adaptations extending far beyond

the initial area of interest. Thus, a great deal of systems engineering analysis, test, and

evaluation is required to manage the system evolution process.

 The effort and cost associated with accommodating changes increases rapidly as

the design matures. By the time the system design is formulated in detail during the

SUMMARY 439

engineering design phase, the search for opportunities for further enhancement can no

longer be sustained. Accordingly, the system design is frozen, and formal change

control procedures are imposed to deal with necessary modifi cations, such as those

required by incompatibilities, external changes, or unexpected design defi ciencies. This

usually happens after successful completion of the CDR or its equivalent.

 It is customary to categorize proposed changes as class I, or class changes have

system - or program - level impact, such as cost, schedule, major interfaces, safety, per-

formance, reliability, and so on. Formal change control of system - level changes is

usually exercised by a designated group composed of senior engineers with recognized

technical and management expertise capable of making judgments among performance,

cost, and schedule. For large programs, this group is called a change control board. It

is of necessity led by systems engineering but usually reports at the topmost program

level.

 12.7 SUMMARY

 Implementing the System Building Blocks

 The objectives of the engineering design phase are to design system components to

performance, cost, and schedule requirements. This phase also establishes consistent

internal and external interfaces.

 Engineering design culminates in materialization of components of a new system

focused on the fi nal design of the system building blocks. Activities constituting engi-

neering design are

 • Requirements Analysis: identifying all interfaces and interactions,

 • Functional Analysis and Design: focusing on modular confi guration,

 • Component Design: designing and prototyping all components, and

 • Design Validation: testing and evaluating system components.

 Requirements Analysis

 External system interface requirements are especially important at this point in develop-

ment. User interfaces and environmental interactions require particular attention.

 Functional Analysis and Design

 Functional design stresses three areas:

 • Modular Confi guration: simplifi ed interactions

 • Software Design: modular architecture

 • User Interfaces: effective human interaction.

 Modular partitioning groups “ tightly bound ” functions together into “ loosely bound ”

modules.

440 ENGINEERING DESIGN

 Component Design

 Major defense and space systems engineering is performed in two steps: preliminary

design followed by a PDR detailed design followed by a CDR.

 The engineering design process is focused on CIs. These are substantially equiva-

lent to components as defi ned in this book.

 A preliminary design has the objective to demonstrate that chosen designs conform

to system performance and design requirements that can be produced within cost and

schedule goals. The PDR centers on major interfaces, risk areas, long - lead items, and

system - level trade studies.

 A detailed design has the objective to produce a complete description of the end

items (CIs) constituting the total system. The CDR examines drawings, plans, and so

on, for soundness and adequacy. Within the detailed design, CAD has revolutionized

hardware implementation — mechanical component design can now be analyzed and

designed in software. Digital electronics is miniaturized, standardized, and does not

need breadboarding. The Boeing 777 development illustrates the power of automated

engineering.

 Reliability must be designed at the component level where interfaces, environment,

and workmanship are vulnerable areas. Additionally, software must be built to exacting

standards and prototyped. Where extreme reliability is required, it is typically achieved

by redundancy. Measuring reliability usually includes the MTBF.

 Maintainability requires rapid fault detection diagnosis and repair. MTTR is used

as a typical measure of maintainability. BITE is used to detect and diagnose faults.

 Availability measures the probability of the system being ready when called in:

availability increases with MTBF and decreases with MTTR.

 Producibility measures the ease of production of system components and benefi ts

from use of commercial components, digital circuitry, and broad tolerances.

 Design Validation

 Test planning must be done early since test equipment requires extensive time to design

and build. Additionally, test costs must be allocated early to ensure suffi cient resources.

Finally, test planning is a team effort.

 Development testing is part of the design process and should start accumulating

reliability statistics on failures. These test failures are often due to test equipment or

procedures and should be planned for since changes after CDR are subject to formal

CM.

 Qualifi cation testing validates component release to integration and focuses on

component interfaces. Regardless of the testing phase, test tools must be consistent with

the system integration process.

 CM

 CM is a systems engineering process that maintains the continuity and integrity of

system design. Confi guration baselines defi ned in major system developments include

PROBLEMS 441

 • Functional Baseline: system functional specifi cations,

 • Allocation Baseline: system development specifi cations, and

 • Product Baseline: product, process, and material specifi cations.

 The CI is a system element used to describe and formally control system design.

 PROBLEMS

 12.1 In spite of the effort devoted to develop critical system components during

advanced development, unknown unknowns can be expected to appear during

engineering design. Discuss what contingency actions a systems engineer

should take in anticipation of these “ unk - unks. ” Your answer should include

the consideration of the potential impact on cost, schedule, personnel assign-

ments, and test procedures. If you have knowledge of a real - life example

from your work, you may use that as the basis for your discussion.

 12.2 External system interfaces are especially important during engineering

design. Using the design of a new subway system as an example, list six

types of external interfaces that will require critical attention. Explain your

answer.

 12.3 Modular or sectionalized system design is a fundamental characteristic of

good system design practice. Using a passenger automobile as an example,

discuss its main subsystems from the standpoint of modularity. Describe

those that are modular and those that are not. For the latter, state how and

why you think they depart from modular design.

 12.4 A PDR is an important event during engineering design and the systems

engineer has a key role during this review. Assume you (the systems engineer)

have been given the assignment to be the principal presenter for an important

PDR. Discuss what specifi c actions you would take to prepare for this

meeting. How would you prepare for items that could be considered

controversial?

 12.5 The personal laptop computer is a product that has proven to be very reliable

in spite of the fact that it has many interfaces, is operated by a variety of

people, operates nearly continuously, and includes a number of internal

moving parts (e.g., fl oppy disk drive, hard drive, and CD - ROM drive). It is

a portable device that operates in a wide range of environments (temperature,

shock, vibration, etc.). List six design features or characteristics that contrib-

ute to the laptop reliability. For each item in your list, estimate the contribu-

tions this item has on the overall computer cost. A ranking of high, medium,

and low is suffi cient.

 12.6 There are six methods of dealing with program risks listed in the section

labeled “ Risk Management Methods. ” For four of these six methods, give

two examples of situations where that method could be used for risk reduction

and explain how.

442 ENGINEERING DESIGN

 12.7 Design changes are vital to the development of new and advanced systems,

especially to take advantage of evolving technology. Thus, during system

development, some degree of design fl exibility must be maintained. However,

design changes come with a price that increases as the design matures.

Assuming you are the systems engineer for the development of a new com-

mercial jet aircraft, give two types of design changes you would support in

each of the early part, middle part, and late part of the engineering design

phase.

 FURTHER READING

 C. Alexander . The Timeless Way of Building . Oxford University Press , 1979 .

 A. B. Badiru . Handbook of Industrial and Systems Engineering . CRC Press , 2006 , Chapters 8,

9, 11, and 15.

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapters 4 and 5.

 F. P. Brooks , Jr. The Mythical Man Month — Essays on Software Engineering . Addison - Wesley ,

 1995 .

 G. E. Dieter and L. C. Schmidt . Engineering Design , Fourth Edition . McGraw - Hill , 2009 ,

Chapters 1, 2, 9, 13, and 14.

 C. E. Ebeling . An Introduction to Reliability and Maintainability Engineering . Waveland Press,

Inc. , 2005 , Chapters 1, 2, 5, 8, 9, and 11.

 H. Eisner . Computer - Aided Systems Engineering . Prentice Hall , 1988 , Chapters 14 and 15.

 B. Hyman . Fundamentals of Engineering Design , Second Edition . Prentice Hall , 2003 , Chapters

1, 5, 6, and 10.

 J. A. Lacy . Systems Engineering Management: Achieving Total Quality, Part II . McGraw Hill ,

 1992 .

 P. D. T. O ’ Connor . Practical Reliability Engineering , Fourth Edition . John Wiley & Sons, Inc. ,

 2008 , Chapters 1, 2, and 7.

 R. S. Pressman . Software Engineering: A Practitioner ’ s Approach , McGraw Hill , 1982 .

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems , Prentice Hall , 1991 ,

Chapter 6.

 N. B. Reilly . Successful Systems for Engineers and Managers , Van Nostrand Reinhold , 1993 ,

Chapters 8 – 10.

 A. P. Sage . Systems Engineering , McGraw Hill , 1992 , Chapter 6.

 R. M. Shinners . A Guide for Systems Engineering and Management , Lexington Books , 1989 ,

Chapter 3.

 Systems Engineering Fundamentals . Defense Acquisition University (DAU Press) , 2001 ,

Chapters 6 and 10.

 Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities ,

INCOSE - TP - 2003 - 002 - 03.2, Section 4. International Council on Systems Engineering , 2010 .

443

 13.1 INTEGRATING, TESTING, AND EVALUATING
THE TOTAL SYSTEM

 As its name implies, the integration and evaluation phase has the objectives of assem-

bling and integrating the engineered components of the new system into an effectively

operating whole, and demonstrating that the system meets all of its operational require-

ments. The goal is to qualify the system ’ s engineering design for release to production

and subsequent operational use.

 As previously noted, the systems engineering life cycle model defi nes integration

and evaluation as a separate phase of system development because its objectives and

activities differ sharply from those of the preceding portion called the engineering

design phase. These differences are also refl ected in changes in the primary participants

engaged in carrying out the technical effort.

 If all of the building blocks of a new system were correctly engineered, and if their

design was accurately implemented, their integration and subsequent evaluation would

be relatively straightforward. In reality, when a team of contractors develops a complex

 13

INTEGRATION AND

EVALUATION

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

444 INTEGRATION AND EVALUATION

system during a period of rapidly evolving technology, the above conditions are never

fully realized. Hence, the task of system integration and evaluation is always complex

and diffi cult and requires the best efforts of expert technical teams operating under

systems engineering leadership.

 The success of the integration and evaluation effort is also highly dependent on

the advance planning and preparation for this effort that was accomplished during the

previous phases. A detailed test and evaluation master plan (TEMP) is required to be

formulated by the end of concept exploration and elaborated at each step thereafter (see

Chapter 10). In practice, such planning usually remains quite general until well into

the engineering design phase for several reasons:

 1. The specifi c test approach is dependent on just how the various system elements

are physically implemented.

 2. Test planning is seldom allocated adequate priority in either staffi ng or funding

in the early phases of system development.

 3. Simulating the system operational environment is almost always complicated

and costly.

 Hence, the integration and evaluation phase may begin with very considerable

preparation remaining and may therefore proceed considerably slower than originally

planned. The purpose of this chapter is to describe the essential activities that are typi-

cally required in this phase, a number of the problems that are commonly encountered,

and some of the approaches to helping overcome the resulting obstacles.

 Place of the Integration and Evaluation Phase in the System
Life Cycle

 It was seen in previous chapters that the general process of test and evaluation is an

essential part of every phase of system development, serving as the validation step of

the systems engineering method. It can be generally defi ned as embodying those activi-

ties necessary to reveal the critical attributes of a product (in this case a system element,

such as a subsystem or component) and to compare them to expectations in order to

deduce the product ’ s readiness for succeeding activities or processes. In the integration

and evaluation phase, the process of test and evaluation becomes the central activity,

terminating with the evaluation of the total system in a realistic replica of its intended

operational environment.

 Figures 13.1 and 13.2 show two different aspects of the relation between the inte-

gration and evaluation phase and its immediately adjacent phases in the system life

cycle. Figure 13.1 is a functional fl ow view, which shows the integration and evaluation

phase to be the transition from engineering design to production and operation. Its

inputs from the engineering design phase are an engineered prototype, including com-

ponents, and a test and evaluation plan, with test requirements. The outputs of the

integration and evaluation phase are system production specifi cations and a validated

production system design. Figure 13.2 is a schedule and level - of - effort view, which

INTEGRATING, TESTING, AND EVALUATING THE TOTAL SYSTEM 445

shows the overlap of the integration and evaluation phase with the engineering

design phase.

 The differences in the primary objectives, activities, and technical participants of

the integration and evaluation phase from those of the engineering design phase are

summarized in the following paragraphs.

 Program Focus. The engineering design phase is focused on the design and

testing of the individual system components and is typically carried out by a number

of different engineering organizations, with systems engineering and program manage-

ment oversight being exercised by the system developer. On the other hand, the integra-

tion and evaluation phase is concerned with assembling and integrating these engineered

components into a complete working system, creating a comprehensive system test

environment and evaluating the system as a whole. Thus, while these activities overlap

in time, their objectives are quite different.

 Figure 13.1. Integration and evaluation phase in a system life cycle.

Test and Evaluation
Plan
 System Production

Specifications

Integration and
Evaluation

Production and
Deployment

Engineering Design System Integration

System Test
Operational Evaluation

Engineered
Components

Production
System

 Figure 13.2. Integration and evaluation phase in relation to engineering design.

Engineering

Design
Component

Design and Test
Deficiency
Correction

Phase

Test Requirements Test Deficiencies

Integration

and Evaluation
System

Test
Operational
Evaluation

System and Subsystem
Integration

Test Planning
and Preparation

Phase

446 INTEGRATION AND EVALUATION

 Program Participants. The primary participating technical groups in the inte-

gration and evaluation phase are systems engineering, test engineering, and design

engineering. Their functions are pictured in the Venn diagram of Figure 13.3 , which

shows the activities that are primary ones for each technical group and those that are

shared. Systems engineering is shown as having the prime responsibility for defi ning

the test requirements and evaluation criteria. It shares the responsibility for test planning

with test engineering and the defi nition of test methodology and data to be collected

with design engineering. Test engineering has responsibility for test conduct and data

analysis; it usually provides a majority of the technical effort during this period. In

many programs, design engineering has the prime responsibility for test equipment

design. It is also responsible for component design changes to eliminate defi ciencies

uncovered in the test and evaluation process.

 Critical Problems. The system integration process represents the fi rst time that

fully engineered components and subsystems are linked to one another and are made

to perform as a unifi ed functional entity. Despite the best plans and efforts, the integra-

tion of a system containing newly developed elements is almost certain to reveal

unexpected incompatibilities. At this late stage in the development, such incompatibili-

ties must be resolved in a matter of days rather than weeks or months. The same is true

when defi ciencies are discovered in system evaluation tests. Any crash program to

 Figure 13.3. System test and evaluation team.

Systems

Engineering

Test requirements
and evaluation

Test
planning

Test
measurements

Test

Test
architecture

Design

Engineering Engineering

Test equipment Test conduct
and analysis

Test
equipment

requirements

INTEGRATING, TESTING, AND EVALUATING THE TOTAL SYSTEM 447

resolve such critical problems should be led by systems engineers working closely with

the project manager.

 Management Scrutiny. A large - scale system development program represents

a major commitment of government and/or industrial funds and resources. When the

development reaches the stage of system integration and testing, management scrutiny

becomes intense. Any real or apparent failures are viewed with alarm, and temptations

to intervene become strong. It is especially important that the program management

and systems engineering leadership have the full confi dence of top management, and

the authority to act, at this time.

 Design Materialization Status

 The status of system materialization in the integration and evaluation phase is shown

in Table 13.1 . The table entries identifying the principal activities in this phase are

seen to be in the upper right - hand corner, departing sharply from the downward pro-

gression of activities in the previous phases. This corresponds to the fact that in the

other phases, the activities referred to the stepwise materialization of the individual

component building blocks, progressing through the states of visualization, functional

defi nition, and physical defi nition to detailed design, fabrication, and testing. In con-

trast, the activities in the integration and evaluation phase refer to the stepwise mate-

rialization of the entire system as an operational entity, proceeding through the

integration and test of physically complete components into subsystems, and these into

the total system.

 A very important feature of the materialization status, which is not explicitly shown

in Table 13.1 , is the characterization of interactions and interfaces. This process should

have been completed in the previous phase but cannot be fully validated until the whole

system is assembled. The inevitable revelation of some incompatibilities must therefore

be anticipated as the new system is integrated. Their prompt identifi cation and resolu-

tion is a top priority of systems engineering. Accomplishing the integration of interfaces

and interactions may not appear to be a major increase in the materialization of a

system, but in reality, it is a necessary (and sometimes diffi cult) step in achieving a

specifi ed capability.

 This view of the activities and objectives of the integration and evaluation phase

can be further amplifi ed by expanding the activities pictured in the last column of Table

 13.1 . This is demonstrated in Table 13.2 , in which the fi rst column lists the system

aggregation corresponding to the integration level as in Table 13.1 ; the second column

indicates the nature of the environment in which the corresponding system element is

evaluated; the third column lists the desired objective of the activity; and the fourth

defi nes the nature of the activity, expanding the corresponding entries in Table 13.1 .

The sequence of activities, which proceeds upward in the above table, starts with tested

components, integrates these into subsystems, and then into the total system. The

process then evaluates the system, fi rst in a simulated operational environment and

fi nally in a realistic version of the environment in which the system is intended to

operate. Thus, as noted earlier, in the integration and evaluation phase, the process of

 TABLE 13.1. Status of System Materialization at the Integration and Evaluation Phase

 Phase Concept development Engineering development

 Level Needs analysis Concept

exploration

 Concept defi nition Advanced

development

 Engineering

design

 Integration and

evaluation

 System Defi ne system

capabilities and

effectiveness

 Identify, explore,

and synthesize

concepts

 Defi ne selected

concept with

specifi cations

 Validate concept Test and evaluate

 Subsystem Defi ne

requirements and

ensure feasibility

 Defi ne functional

and physical

architecture

 Validate

subsystems

 Integrate and test

 Component Allocate functions

to components

 Defi ne

specifi cations

 Design and test Integrate and test

 Subcomponent Visualize Allocate functions

to subcomponents

 Design

 Part Make or buy

4
4
8

INTEGRATING, TESTING, AND EVALUATING THE TOTAL SYSTEM 449

materialization refers to the system as a whole and represents the synthesis of the total

operational system from the previously physically materialized components.

 Systems Engineering Method in Integration and Evaluation

 Since the structure of the integration and evaluation phase does not conform to the

characteristics of the preceding phases, the application of the systems engineering

method is correspondingly different. In this phase, the requirements analysis or problem

defi nition step corresponds to test planning — the preparation of a comprehensive plan

of how the integration and evaluation tests are to be carried out. Since the functional

design of the system and its components has been completed in previous phases, the

functional defi nition step in this phase relates to the test equipment and facilities, which

should be defi ned as a part of test preparation. The physical defi nition or synthesis step

corresponds to subsystem and system integration, the components having been imple-

mented in previous phases. The design validation step corresponds to system test and

evaluation.

 The organization of the principal sections in this chapter will follow the order

of the above sequence. However, it is convenient to combine test planning and

test equipment defi nition into a single section on test planning and preparation and to

divide system test and evaluation into two sections: developmental system testing, and

operational test and evaluation. These sections will be seen to correspond to the pro-

cesses listed in the right - hand column of Table 13.2 , reading upward from the fourth

row.

 Test Planning and Preparation. Typical activities include

 • reviewing system requirements and defi ning detailed plans for integration and

system testing, and

 • defi ning the test requirements and functional architecture.

 TABLE 13.2. System Integration and Evaluation Process

 Integration level Environment Objective Process

 System Real operational

environment

 Demonstrated operational

performance

 Operational test and

evaluation

 System Simulated operational

environment

 Demonstrated compliance

with all requirements

 Developmental test

and evaluation

 System Integration facility Fully integrated system System integration

and test

 Subsystem Integration facility Fully integrated

subsystems

 Subsystem

integration and test

 Component Component test

equipment

 Verifi ed component

performance

 Component test

450 INTEGRATION AND EVALUATION

 System Integration. Typical activities include

 • integrating the tested components into subsystems and the subsystems into a total

operational system by the sequential aggregation and testing of the constituent

elements, and

 • designing and building integration test equipment and facilities needed to support

the system integration process and demonstrating end - to - end operation.

 Developmental System Testing. Typical activities include

 • performing system - level tests over the entire operating regime and comparing

system performance with expectations,

 • developing test scenarios exercising all system operating modes, and

 • eliminating all performance defi ciencies.

 Operational Test and Evaluation. Typical activities include

 • performing tests of system performance in a fully realistic operational environ-

ment under the cognizance of an independent test agent and

 • measuring degree of compliance with all operational requirements and evaluat-

ing the readiness of the system for full production and operational

deployment.

 13.2 TEST PLANNING AND PREPARATION

 As described earlier, planning for test and evaluation throughout the system develop-

ment process begins in its early phases and is continually extended and refi ned. As the

system design matures, the test and evaluation process becomes more exacting and

critical. By the time the development nears the end of the engineering design phase,

the planning and preparation for the integration and evaluation of the total system

represents a major activity in its own right.

 TEMP

 It was noted in Chapter 10 that acquisition programs often require the preparation of a

formal TEMP. Many of the principal subjects covered in the TEMP are applicable to

the development of commercial systems as well. For reference purposes, the main ele-

ments of the TEMP format, described more fully in Chapter 10 , are listed below:

 1. System Introduction: describes the system and its mission and operational

environment and lists measures of effectiveness;

 2. Integrated Test Program Summary: lists the test program schedule and partici-

pating organizations;

TEST PLANNING AND PREPARATION 451

 3. Developmental Test and Evaluation: describes objectives, method of approach,

and principal events;

 4. Operational Test and Evaluation: describes objectives, test confi guration,

events, and scenarios; and

 5. Test and Evaluation Resource Summary: lists test articles, sites, instrumenta-

tion, and support operations.

 Elements 3 and 4 will be referred to in somewhat greater detail in the fi nal sections of

this chapter.

 Analogy of Test and Evaluation Planning to System Development

 The importance of the test and evaluation planning process is illustrated in Table 13.3 ,

which shows the parallels between this process and system development as a whole.

The left half of the table lists the principal activities involved in each of four major

steps in the system development process. The entries in the right half of the table list

the corresponding activities in developing the test and evaluation plan. The table shows

that the tasks comprising the test and evaluation planning process require major deci-

sions regarding the degree of realism, trade - offs among test approaches, defi nition of

objectives, and resources for each test event, as well as development of detailed pro-

cedures and test equipment. In emphasizing the correspondence between these activi-

ties, the table also brings out the magnitude of the test and evaluation effort and its

criticality to successful system development.

 As may be inferred from Table 13.3 , specifi c plans for the integration and evalu-

ation phase must be developed before or concurrently with the engineering design

 TABLE 13.3. Parallels between System Development and Test and Evaluation (T & E)
Planning

 System development T & E planning

 Need:

 Defi ne the capability to be fi elded.

 Objective:

 Determine the degree of sophistication

required of the test program.

 System concept:

 Analyze trade - offs between performance,

schedule, and cost to develop a system

concept.

 Test concept:

 Evaluate trade - offs between test approaches,

schedule, and cost to develop a test concept.

 Functional design:

 Translate functional requirements into two

level specifi cation for the (sub)system(s).

 Test plan:

 Translate test requirements into a description

of each test event and the resources required.

 Detailed design:

 Design the various components that

comprise the system.

 Test procedures:

 Develop detailed test procedures and test tools

for each event.

452 INTEGRATION AND EVALUATION

process. This is necessary in order to provide the time required for designing and build-

ing special test equipment and facilities that will be needed during integration and

system testing. Costing and scheduling of the test program is an essential part of the

plan since the costs and duration for system testing are very often underestimated, seri-

ously impacting the overall program.

 Review of System Requirements

 Prior to the preparation of detailed test plans, it is necessary to conduct a fi nal review

of the system - level operational and functional requirements to ensure that no changes

have occurred during the engineering design phase that may impact the system test and

evaluation process. Three potential sources for such changes are described below:

 1. Changes in Customer Requirements. Customer needs and requirements

seldom remain unchanged during the years that it takes to develop a complex

new system. Proposed changes to software requirements seem deceptively

easy to incorporate but frequently prove disproportionately costly and time -

consuming.

 2. Changes in Technology. The rapid advances in key technologies, especially in

solid - state electronics, accumulated over the system development time, offer

the temptation to take advantage of new devices or techniques to gain signifi cant

performance or cost savings. The compulsion to do so is heightened by increases

in the performance of competitive products that utilize such advances. Such

changes, however, usually involve signifi cant risks, especially if made late in

the engineering design phase.

 3. Changes in Program Plans. Changes that impact system requirements and are

unavoidable may come from programmatic causes. The most common is

funding instability growing out of the universal competition for resources. Lack

of adequate funds to support the production phase may lead to a slip in the

development schedule. Such events are often beyond the control of program

management and have to be accommodated by changes in schedules and fund

allocations.

 Key Issues

 There are several circumstances that require special attention during test planning and

preparation for system integration and evaluation. These include the following:

 1. Oversight. Management oversight is especially intense during the fi nal stages

of a major development. System tests, especially fi eld tests, are regarded as

indicators of program success. Test failures receive wide attention and invite

critical investigation. Test plans must provide for acquisition of data that are

necessary to be able to explain promptly and fully any mishaps and remedial

measures to program management, the customer, and other concerned

authorities.

TEST PLANNING AND PREPARATION 453

 2. Resource Planning. Test operations, especially in the late stages of the program,

are costly in manpower and funds. Too frequently, overruns and slippages in

the development phases cut into test schedules and budgets. Serious problems

of this type can be avoided only through careful planning to assure that the

necessary resources are made available when required.

 3. Test Equipment and Facilities. Facilities for supporting test operations must be

designed and built concurrently with system development to be ready when

needed. Advance planning for such facilities is essential. Also, the sharing of

facilities between developmental and operational testing, wherever practicable,

is important in order to stay within program funding limits.

 Test Equipment Design

 As noted in Chapter 11 , the testing of system elements, as well as the system as a whole,

requires test equipment and facilities that can stimulate the element under test with

external inputs and can measure the system responses. This equipment must meet exact-

ing standards:

 1. Accuracy. The inputs and measurements should be several times more precise

than the tolerances on the system element inputs and responses. There must be

calibration standards available for ensuring that the test equipment is in proper

adjustment.

 2. Reliability. The test equipment must be highly reliable to minimize test dis-

crepancies due to test equipment errors. It should be either equipped with self -

 test monitors or subjected to frequent checks.

 3. Flexibility. To minimize costs where possible, test equipment should be

designed to serve several purposes, although not at the expense of accuracy or

reliability. It is frequently possible to use some of the equipment designed for

component tests also for.

 Before designing the test equipment, it is important to defi ne fully the test proce-

dures so as to avoid later redesign to achieve compatibility between test equipment and

the component or subsystem under test. This again emphasizes the importance of early

and comprehensive test planning.

 The paragraphs below discuss some of the aspects of test preparation peculiar to

the integration, system test, and operational evaluation parts of the test and evaluation

process.

 Integration Test Planning

 Preparing for the system integration process is dependent on the manner in which the

system components and subsystems are developed. Where one or more components of

a subsystem involve new technical approaches, the entire subsystem is often developed

by the same organization and integrated prior to delivery to the system contractor. For

454 INTEGRATION AND EVALUATION

example, aircraft engines are usually developed and integrated as units before delivery

to the airplane developer. In contrast, components using mature technologies are often

acquired to a specifi cation and delivered as individual building blocks. The integration

process at the system contractor ’ s facility must deal with whatever assortment of com-

ponents, subsystems, or intermediate assemblies is delivered from the respective

contractors.

 As stated previously, it is important to support the integration process at both the

subsystem and system levels by capable integration facilities. These must provide the

necessary test inputs, environmental constraints, power and other services, output mea-

surement sensors, as well as test recording and control stations. Many of these must be

custom designed for each specifi c use. The facilities must be designed, built, and cali-

brated before integration is to begin. A typical physical test confi guration for is described

in Section 13.3 , System Integration.

 Developmental System Test Planning

 Preparing for system - level tests to determine that the system performance requirements

are met and that the system is ready for operational evaluation is more than a normal

extension of the integration test process. Integration testing is necessarily focused on

ensuring that the system ’ s components and subsystems fi t together in form and function.

System performance tests go well beyond this goal and measure how the system as a

whole responds to its specifi ed inputs and whether its performance meets the require-

ments established at the outset of its development.

 The success or failure of a test program is critically dependent on the extent to

which the total effort is thoughtfully planned and precisely detailed, the test equipment

is well engineered and tested, and the task is thoroughly understood by the test and

data analysis teams. Problems in system testing are at least as likely to be caused by

faults in the test equipment, poorly defi ned procedures, or human error as by improper

system operation. Thus, it is necessary that the test facilities be engineered and tested

under the same rigorous discipline as that used in system development. Many programs

suffer from insuffi cient time and effort being assigned to the testing process, and pay

for such false economy by delays and excessive costs during system testing. To mini-

mize the likelihood of such consequences, the test program must be planned early and

in suffi cient detail to identify and estimate the cost of the required facilities, equipment,

and manpower.

 Operational Evaluation Planning

 Because operational evaluation is usually conducted by the customer or a test agent,

its planning is necessarily done separately from that for integration and development

testing. However, in many large - scale system developments, the costs of system - level

testing compel the common use of as much development test equipment and facilities

as may be practicable.

 In some cases, a joint developer – customer test and evaluation program is carried

out, in which the early phases are directed by the developer and the later phases by the

SYSTEM INTEGRATION 455

customer or the customer ’ s agent. Such collaborative programs have the advantage of

providing a maximum exchange of information between the developer and customer,

which is to their mutual benefi t. This also helps to avoid misunderstandings, as well as

to quickly resolve unanticipated problems encountered during the process.

 At the other extreme are operational test and evaluation programs that are carried

out in a very formal manner by a special system evaluation agent and with maximum

independence from the developer. However, even in such cases, it is important for both

the developer and the system evaluation agent to establish channels of communication

to minimize misinformation and unnecessary delays.

 13.3 SYSTEM INTEGRATION

 In the engineering of new complex systems with many interacting components, testing

at the system level cannot begin until the system has been fully assembled and dem-

onstrated to operate as a unifi ed whole. The likelihood that some of the interfaces

among the elements may not fi t or function properly, or that one or more interactions

among them may fall outside prescribed tolerances, is usually high. It is only the very

simplest systems that are assembled without testing at several intermediate levels of

aggregation. Thus, experience has shown that no matter how thoroughly the individual

components have been tested, there almost always remain unforeseen incompatibilities

that do not reveal themselves until the system elements are brought together. Such

discrepancies usually require changes in some components before the integrated system

works properly. These changes, in turn, frequently require corresponding alterations in

test equipment or procedures and must be refl ected in all relevant documentation. This

section describes the general process and problems involved in integrating a typical

complex system.

 The successful and expeditious integration of a complex system depends on how

well it has been partitioned into subsystems that have simple interactions with one

another and are themselves subdivided into well - defi ned components. The integration

process can be thought of as the reverse of partitioning. It is normally accomplished in

two stages: (1) the individual subsystems are integrated from their components, and (2)

the subsystems are assembled and integrated into the total system. At intervals during

both stages, the assembled elements are tested to determine whether or not they fi t and

interact together in accordance with expectations. In the event that they do not, special

test procedures are instituted to reveal the particular design features that need to be

corrected. Throughout the entire process, system integration proceeds in an orderly,

stepwise manner with system elements added one or two at a time and then tested to

demonstrate proper operation before proceeding to the next step. This procedure main-

tains control of the process and simplifi es diagnosis of discrepancies. The price for this

stepwise integration of the system is that at every step, the test equipment must simulate

the relevant functions of the missing parts of the system. Nevertheless, experience

in the development of large systems has repeatedly demonstrated that the provision

of this capability is, in the long run, quite cost - effective. In the integration of large

software programs, this is frequently done by connecting the “ program executive ” to

456 INTEGRATION AND EVALUATION

 “ stubbed - off ” or nonfunctioning modules , which are successively replaced one at a time

by functioning modules.

 Determining the most effective order of assembly and selecting the optimum test

intervals are critical to minimizing the effort and time needed to accomplish the integra-

tion process. Since both system - level knowledge and test expertise are essential to the

defi nition of this process, the task is normally assigned to a special task team composed

of systems engineers and test specialists.

 Physical Test Confi guration

 Integration testing requires versatile and readily reconfi gurable integration facilities. To

understand their operation, it is useful to start with a generic model of a system element

test confi guration. Such a model is illustrated in Figure 13.4 and is described below.

 The system element (component or subsystem) under test is represented by the

block at the top center of the fi gure. The input generator converts test commands into

exact replicas, functionally and physically, of the inputs that the system element is

expected to receive. These may be a sequence of typical inputs covering the range

expected under operational conditions. The input signals in the same or simulated form

are also fed to the element model. The output analyzer converts any outputs that are not

already in terms of quantitative physical measures into such form. Whether or not the

data obtained in the tests are compared in real time with predicted responses from the

element model, they should also be recorded, along with the test inputs and other condi-

tions, for subsequent analysis. In the event of discrepancies, this permits a more detailed

diagnosis of the source of the problem and a subsequent comparison with results of

 Figure 13.4. System element test confi guration.

System
Element

T
e
s
t In

p
u
ts

Test Response

Input
Generator

Output
Analyzer

Test
Predicted

Element
Model

Input
Commands

C
o
n
tro

ls

Test
Data

Response

Test
Control

Unit

Performance
Comparator

Test Criteria

Test
ManagerTest

Commands
Test Performance

SYSTEM INTEGRATION 457

suitably modifi ed elements. The physical building blocks in the top row of Figure 13.4

may be seen to implement the corresponding functional elements of Figure 13.3 .

 The element model , pictured in the center of the Figure 13.4 , has the function of

reproducing very precisely the response that the component or subsystem under test is

expected to produce to each input, according to its performance specifi cations. The

element model may take several forms. At one extreme, it may be a specially con-

structed and validated replica of the system element itself. At the other, it may be a

mathematical model of the element, perhaps as simple as a table lookup if the predicted

performance is an explicit function of the input. How it is confi gured determines the

form of input required to drive it.

 The test manager introduces a function not represented in the basic test architecture

of Figure 13.3 . Because the testing of most elements of complex systems is a compli-

cated process, it requires active supervision by a test engineer, usually supported by a

control console. This allows critical test results to be interpreted in real time in terms

of required performance so that the course of testing can be altered if signifi cant devia-

tions are observed.

 The performance comparator matches the measured system element outputs with

the expected outputs from the element model in accordance with test criteria provided

by the test manager. The comparison and assessment is performed in real time whenever

practicable to enable a rapid diagnosis of the source of deviations from expected results,

as noted previously. The evaluation criteria are designed to refl ect the dependence of

the operational performance on individual performance parameters.

 Most actual test confi gurations are considerably more complex than the simplifi ed

example in Figure 13.4 . For example, tests may involve simultaneous inputs from

several sources involving various types of system elements (e.g., signal, material, and

mechanical), each requiring a different type of signal generator. Similarly, there are

usually several outputs, necessitating different measuring devices to convert them into

forms that can be compared with predicted outputs. The tests may also involve a series

of programmed inputs representing typical operating sequences, all of which must be

correctly processed.

 It is clear from the above discussion that the functionality embodied in the test

confi guration of a system element is necessarily comparable to that of the element itself.

Hence, designing the test equipment is itself a task of comparable diffi culty to that of

developing the system element. One factor that makes the task somewhat simpler is

that the environment in which the test equipment operates is usually benign, whereas

the system operating environment is often severe. On the other hand, the precision of

the test equipment must be greater than that of the system element to ensure that it does

not contribute signifi cantly to measured deviations from the specifi ed element

performance.

 Subsystem Integration

 As noted previously, the integration of a subsystem (or system) from its component

parts is normally a stepwise assembly and test process in which parts are systematically

aggregated, and the assembly is periodically tested to reveal and correct any faulty

458 INTEGRATION AND EVALUATION

interfaces or component functions as early in the process as practicable. The time and

effort required to conduct this process is critically dependent on the skillful organization

of the test events and the effi cient use of facilities. Some of the most important con-

siderations are discussed below.

 The order in which system components are integrated should be selected to avoid

the need to construct special input generators for simulating components within the

subsystem, that is, other than those simulating inputs from sources external to the

subsystem being integrated. Thus, at any point in the assembly, the component that is

to be added should have inputs that are derivable from either generators of external

inputs or the outputs of components previously assembled.

 The above approach means that subsystem integration should begin with compo-

nents that have only external inputs, either from the system environment or from other

subsystems. Examples of such components include

 1. subsystem support structures,

 2. signal or data input components (e.g., external control transducers), and

 3. subsystem power supplies.

 The application of the above approach to the integration of a simple subsystem is

illustrated in Figure 13.5 . The fi gure is an extension of Figure 13.4 , in which the sub-

system under test is composed of three components. The confi guration of components

in the fi gure is purposely chosen so that each component has a different combination

of inputs and outputs. Thus, component A has a single input from an external subsystem

and two outputs — one an internal output to B and the other to another subsystem.

Component B has no external interfaces — getting its input from A and producing an

output to C. Component C has two inputs — one external and the other internal, and a

single output to another subsystem.

 The special features of the test confi guration are seen to be

 1. a compound input generator to provide the two external inputs to the subsystem

 — one to A and the other to C;

 2. internal test outputs from the interfaces between A and B, and between B and

C; these are needed to identify the source of any observed deviation in the

overall performance and are in addition to the external subsystem outputs from

A and C; and

 3. a compound element model containing the functions performed by the constitu-

ent components and providing the predicted outputs of the test interfaces.

 Following the integration sequence approach described above, the confi guration in

Figure 13.5 would be assembled as follows:

 1. Start with A, which has no internal inputs. Test A ’ s outputs.

 2. Add B and test its output. If faulty, check if input from A is correct.

 3. Add C and test its output.

SYSTEM INTEGRATION 459

 The above integration sequence does not require the construction of input genera-

tors to provide internal functions and should rapidly converge on the source of a faulty

component or interface.

 The approach described above works in the great majority of cases but must, of

course, be carefully reviewed in the light of any special circumstances. For example,

there may be safety issues that make it necessary to leave out or add steps to circumvent

unsafe testing conditions. The temporary unavailability of key components may require

a substitution or simulation of elements. Particularly critical elements may have to be

tested earlier than in the ideal sequence. Systems engineering judgment must be applied

in examining such issues before defi ning the integration sequence.

 Test Conduct and Analysis. The determination of whether or not a given step

in the integration process is successful requires matching the outputs of the partially

assembled components against their expected values as predicted by the model. The

effort required to make this comparison depends on the degree of automation of the

test confi guration and of the analytical tools embodied in the performance comparator

block in Figure 13.5 . The trade - off between the sophistication of the test and analysis

 Figure 13.5. Subsystem test confi guration.

Input
Generator

Subsystem

A Component

T
e

s
t In

p
u

ts

A Input

C Input
B Component

Output
Analyzer

Actual

C Component

Subsystem Model

Input
Commands

Model
Inputs

Test
Data

Predicted
ResponseA Model

B Model

Test
Control

Unit

Performance
Comparator

C Model

Test
Manager

Test
Commands

Test Performance

Test Criteria

460 INTEGRATION AND EVALUATION

tools and the analysis effort itself is one of the critical decisions to be made in planning

the integration process.

 In scheduling and costing the integration effort, it must be expected that numerous

deviations will be observed in the measured performance from that predicted by the

model, despite the fact that all components presumably have previously passed quali-

fi cation tests. Each discrepancy must be dealt with by fi rst documenting it in detail,

identifying the principal source(s) of the deviations, and devising the most appropriate

means of eliminating or otherwise resolving the discrepancy.

 It should be emphasized that in practice, most failures observed during the integra-

tion process are usually due to causes other than component malfunctions. Some of the

most frequently occurring problem areas are faulty test equipment or procedures, mis-

interpretation of specifi cations, unrealistically tight tolerances, and personnel error.

These are discussed in the succeeding paragraphs.

 There are several reasons why faults are frequently found in the test equipment:

 1. The amount of design effort allocated to the design and fabrication of test equip-

ment is far smaller than the effort spent on component design.

 2. The test equipment must be more precise than the components to ensure that

its tolerances do not contribute signifi cantly to observed deviations from

predictions.

 3. The equipment used to test separately an individual component may not be

exactly the same as that incorporated into the integration test facility, or its

calibration may be different.

 4. The predictions of expected performance of the element under test by the

element model may be imperfect due to the impossibility of modeling exactly

the behavior of the test element.

 Not infrequently, the specifi cations of interfaces and interactions among components

permit different interpretations by the designers of interfacing components. This can

result in signifi cant mismatches when the components are assembled. There is no practi-

cal and foolproof method of entirely eliminating this source of potential problems. Their

number can, however, be minimized through critical attention to and review of each

interface specifi cation prior to its release for design of the associated hardware or soft-

ware. In most cases, establishing an interface coordination team, including all involved

contractors, has proven to be advantageous.

 To ensure that interfacing mechanical, electrical, or other elements fi t together and

interact properly, the specifi cations for each separate element must include the permit-

ted tolerances (deviations from prescribed values) in the interacting quantities. For

example, if the interfacing components are held together by bolts, the location of the

holes in each component must be specifi ed within a plus/minus tolerance of their

nominal dimensions. These tolerances must allow for the degree of precision of produc-

tion machinery, as well as normal variations in the size of standard bolts. If the specifi ed

tolerances are too tight, there will be excessive rejects in manufacture; if too loose,

there will be occasional misalignments, causing fi t failures.

SYSTEM INTEGRATION 461

 Personnel errors are a common source of test failure and one that can never be

completely avoided. Such failures may occur because of inadequate training, unclear

or insuffi ciently detailed test procedures, overly complex or demanding test methods,

fatigue, or simple carelessness. Errors of this type can occur at any point in the plan-

ning, execution, and support of the testing process.

 Changes. If the diagnosis of a faulty test traces the problem to a component

design feature, it is necessary to undertake a highly expedited effort to determine the

most practical and effective means of resolving the problem. At this stage of develop-

ment, the design should be under strict confi guration management. Since any signifi cant

change will be costly and potentially disruptive, all means of avoiding or minimizing

the change must be explored and several alternatives examined. The fi nal decision will

have to be made at the program management level if signifi cant program cost and

schedule changes are involved.

 If there is no “ quick fi x ” available, consideration may be given to seeking a waiver

to deviate from a certain specifi cation for an initial quantity of production units so as

to afford adequate time to design and validate the change prior to its release for produc-

tion. Not infrequently, careful analysis reveals that the effect of the deviation on opera-

tional performance is not suffi cient to warrant the cost of making the change, and a

permanent waiver is granted. Systems engineering analysis is the key to determining

the best course of action in such circumstances, and to advocating its approval by

management and the customer.

 Total System Integration

 The integration of the total system from its subsystems is based on the same general

principles as those governing the integration of individual subsystems, described in

the preceding paragraphs. The main differences are those of relative scale, complexity,

and hence criticality. Faults encountered at this stage are more diffi cult to trace,

costly to remedy, and have a greater potential impact on overall program cost

and schedule. Hence, a more detailed planning and direction of the test program are in

order. Under these conditions, the application of systems engineering oversight

and diagnostic expertise are even more essential than in the earlier stages of system

development.

 System Integration Test Facility. It was noted that specially designed facilities

are normally required to support the integration and test of systems and their major

subsystems. This is even more true for the assembly and integration of total systems.

Often, such a facility is gradually built up during system development to serve as a

 “ test bed ” for risk reduction testing and may be assembled in part from subsystem test

facilities.

 As in the case of subsystem integration test facilities, the system integration facility

must provide for extracting data from test points at internal boundaries between sub-

systems, as well as from the normal system outputs. It should also be designed to be

fl exible enough to accommodate system updates. Thus, the design of the integration

462 INTEGRATION AND EVALUATION

facilities needed to achieve the necessary test conditions, measurements, and data

analysis capabilities is itself a major systems engineering task.

 13.4 DEVELOPMENTAL SYSTEM TESTING

 The system integration process was seen to be focused on ensuring that component and

subsystem interfaces and interactions fi t together and function as they were designed.

Once this is accomplished, the system may, for the fi rst time, be tested as a unifi ed

whole to determine whether or not it meets its technical requirements, for example,

performance, compatibility, reliability, maintainability, availability (RMA), safety, and

so on. The above process is referred to as verifi cation that the system satisfi es its speci-

fi cations. Since the responsibility for demonstrating successful system verifi cation is a

necessary part of the development process, it is conducted by the system developer and

will be referred to as developmental system testing.

 System Testing Objectives

 While the primary emphasis of developmental system - level testing is on the satisfaction

of system specifi cations, evidence must also be obtained concerning the system ’ s capa-

bility to satisfy the operational needs of the user. If any signifi cant issues exist in this

regard, they should be resolved before the system is declared ready for operational

evaluation. For this reason, the testing process requires the use of a realistic test envi-

ronment, extensive and accurate instrumentation, and a detailed analysis process that

compares the test outputs with predicted values and identifi es the nature and source of

any discrepancies to aid in their prompt resolution. In a real sense, the tests should

include a “ rehearsal ” for operational evaluation.

 In the case of complex systems, there are frequently several governing entities in

the acquisition and validation process that must be satisfi ed that the system is ready for

full - scale production and operational use. These typically include the acquisition or

distribution agency (customer), which has contracted for the development and produc-

tion of the system, and in the case of products to be used by the public, one or more

regulatory agencies (certifi ers) concerned with conformance with safety or environmen-

tal regulations. In addition, the customer may have an independent testing agent who

must pass favorably on the system ’ s operational worth. In the case of a commercial

airliner, the customer is an airline company and the certifi cation agencies are the Federal

Aviation Administration (FAA) and the Civil Aeronautics Board (CAB).

 An essential precondition to system - level testing is that component and has been

successfully completed and documented. When system test failures occur in compo-

nents or subsystems because of insuffi cient testing at lower levels, the system evalua-

tion program risks serious delays. A required “ stand - down ” at this point in the program

is time - consuming, expensive, and may subject the program to a critical management

review. It is axiomatic, therefore, that the system test program should not be started

unless the developer and customer have high confi dence in the overall system design

and in the quality of the test equipment and test plans.

DEVELOPMENTAL SYSTEM TESTING 463

 Despite careful preparation, the test process should be conducted with the expecta-

tion that something may go wrong. Consequently, means must be provided to quickly

identify the source of such unexpected problems and to determine what, within the

bounds of acceptable costs in money and time, can be done to correct them. Systems

engineering knowledge, judgment, and experience are crucial factors in the handling

of such “ late - stage ” problems.

 Developmental Test Planning

 The provisions of the defense TEMP regarding developmental test and evaluation state

that, in part, plans should

 • defi ne the specifi c technical parameters to be measured;

 • summarize test events, test scenarios, and the test design concept;

 • list all models and simulations to be used; and

 • describe how the system environment will be represented.

 System Test Confi guration

 System testing requires that the test confi guration be designed to subject the system

under test to all of the operational inputs and environmental conditions that it is

practical to reproduce or simulate, and to measure all of the signifi cant responses and

operating functions that the system is required to perform. The sources for determining

which measurements are signifi cant should be found largely in system - level require-

ments and specifi cations. The principal elements that must be present in a system test

confi guration are summarized below and are discussed in the subsequent paragraphs of

this section.

 • System Inputs and Environment

 1. The test confi guration must represent all conditions that affect the system ’ s

operation, including not only the primary system inputs but also the interac-

tions of the system with its environment.

 2. As many of the above conditions as practicable should be exact replicas of

those that the system will encounter in its intended use. The others should be

simulated to realistically represent their functional interactions with the

system.

 3. Where the real operational inputs cannot be reproduced or simulated as part

of the total test confi guration (e.g., the impact of rain on an aircraft fl ying at

supersonic speed), special tests should be carried out in which these functions

can be reproduced and their interaction with the system measured.

 • System Outputs and Test Points

 1. All system outputs required for assessing performance should be converted

into measurable quantities and recorded during the test period.

464 INTEGRATION AND EVALUATION

 2. Measurements and recordings should also be made of the test inputs and

environmental conditions to enable correlation of the variations in inputs with

changes in outputs.

 3. A suffi cient number of internal test points should be monitored to enable

tracing the cause of any deviations from expected test results to their source

in a specifi c subsystem or component.

 • Test Conditions

 1. To help ensure that contractor system testing leads to successful operational

evaluation by the customer, it is important to visualize and duplicate, insofar

as possible, the conditions to which the system is most likely to be subjected

during operational evaluation.

 2. Some system tests may intentionally overstress selected parts of the system

to ensure system robustness under extreme conditions. For example, it is

common to specify that a system degrade “ gracefully ” when overstressed

rather than suddenly crash. This type of test also includes validating the

procedures that enable the system to recover to full capability.

 3. Wherever practicable, customer operating and evaluation agent personnel

should be involved in contractor system testing. This provides an important

mutual exchange of system and operational knowledge that can result in

better planned and more realistic system tests and more informed test

analyses.

 Development of Test Scenarios

 In order to evaluate a system over the range of conditions that it is expected to encounter

in practice, as defi ned in top - level system requirements, a structured series of tests must

be planned to explore adequately all relevant cases. The tests should seek to combine

a number of related objectives in each test event so that the total test series is not exces-

sively prolonged and costly. Further, the order in which tests are conducted should be

planned so as to build upon the results of preceding tests, as well as to require the least

amount of retesting in the event of an unexpected result.

 Composite system tests of the type described above are referred to as test events

conducted in accordance with test scenarios, which defi ne a series of successive test

conditions to be imposed on the system. The overall test objectives are allocated among

a set of such scenarios, and these are arranged in a test event sequence. The planning

of test scenarios is a task for systems engineers with the support of test engineers

because it requires a deep understanding of the system functions and internal as well

as external interactions.

 The combination of several specifi c test objectives within a given scenario usually

requires that the operational or environmental inputs to the system must be varied to

exercise different system modes or stress system functions. Such variations must be

properly sequenced to produce maximum useful data. Decisions have to be made as to

whether or not the activation of a given test event will depend on a successful result

of the preceding test. Similarly, the scenario test plan must consider what test results

DEVELOPMENTAL SYSTEM TESTING 465

outside expected limits would be cause for interrupting the test sequence, and if so,

when the sequence would be resumed.

 System Performance Model

 In describing the testing and integration of system components, a necessary element

was stated to be a model of the component that predicted how it is expected to respond

to a given set of input conditions. The model is usually either a combination of physi-

cal, mathematical and hybrid elements, or wholly a computer simulation.

 In predicting the expected behavior of a complex system in its totality, it is usually

impractical to construct a performance model capable of reproducing in detail the

behavior of the whole system. Thus, in system - level tests, the observed system perfor-

mance is usually analyzed at two levels. The fi rst is in terms of the end - to - end perfor-

mance characteristics that are set forth in the system requirements documents. The

second is at the subsystem or component level where certain critical behavior is called

for. The latter is especially important when an end - to - end test does not yield the

expected result and it is required to locate the source of the discrepancy.

 Decisions as to the degree of modeling that is appropriate at the system test level

are very much a systems engineering function, where the risks of not modeling certain

features have to be weighed against the effort required. Since it is impractical to test

everything, the prioritization of test features, and hence of model predictions, must be

based on a system - level analysis of the relative risks of omitting particular

characteristics.

 The design, engineering, and validation of system performance models is itself a

complex task and must be carried out by the application of the same systems engineer-

ing methods used in the engineering of the system itself. At the same time, pains must

be taken to limit the cost of the modeling and simulation effort to an affordable fraction

of the overall system development. The balance between realism and cost of modeling

is one of the more diffi cult tasks of systems engineering.

 Engineering Development Model (EDM)

 As mentioned earlier, the system test process often requires that essentially all of the

system be subjected to testing before the fi nal system has been produced. For this

reason, it is sometimes necessary to construct a prototype, referred to as an “ EDM, ”

for test purposes, especially in the case of very large complex systems. An EDM must

be as close as possible to the fi nal product in form, fi t, and function. For this reason,

EDMs can be expensive to produce and maintain, and must be justifi ed on the basis of

their overall benefi t to the development program.

 System Test Conduct

 The conduct of contractor system tests is usually led by the test organization, which is

also involved in the integration - testing phase, and is intimately familiar with system

design and operation. There are, however, numerous other important participants.

466 INTEGRATION AND EVALUATION

 Test Participants. As shown in Figure 13.3 , systems engineers should have been

active in the planning of the test program from its inception and should have approved

the overall test plans and test confi gurations. An equally critical systems engineering

function is that of resolving discrepancies between actual and predicted test results. As

mentioned previously, those may arise from a variety of sources and must be quickly

traced to the specifi c system or test element responsible; a system - level approach must

be taken to devise the most effective and least disruptive remedy.

 Design engineers are also key participants, especially in the engineering of test

equipment and analysis of any design problems encountered during testing. In the latter

instance, they are essential to effect quickly and expertly such design changes as may

be required to remedy the defi ciency.

 Engineering specialists, such as reliability, maintainability, and safety engineers,

are essential participants in their respective areas. Of particular importance is the par-

ticipation of specialists in the testing of human – machine interfaces, which are likely to

be of critical concern in the operational evaluation phase. Data analysts must participate

in test planning to ensure that appropriate data are acquired to support performance and

fault diagnostic analysis.

 As noted earlier, while system testing is under the direction of the developer, the

customer and/or the customer ’ s evaluation agent will often participate as observers of

the process and will use this opportunity to prepare for the coming operational evalu-

ation tests. It is always advantageous for customer test personnel to receive some

operation training during this period.

 Safety. Whenever system testing occurs, there must be a section of the test plan

that specifi cally addresses safety provisions. This is best handled by assigning one or

more safety engineers to the test team, making them responsible for all aspects of this

subject. Many large systems have hazardous exposed moving parts, pyrotechnic and/or

explosive devices, high voltages, dangerous radiation, toxic materials, or other charac-

teristics that require safeguards during testing. This is particularly true of military systems.

 In addition to the system itself, the external test environment may also pose safety

problems. The safety engineers must brief all participating test personnel on the poten-

tial dangers that may be present, provide special training, and supply any necessary

safety equipment. Systems engineers must be fully informed on all safety issues and

must be prepared to assist the safety engineers as required.

 Test Analysis and Evaluation

 Test analysis begins with a detailed comparison of system performance, as a function

of test stimuli and environments, with that predicted by the system performance

model. Any deviations must trigger a sequence of actions designed to resolve the

discrepancies.

 Diagnosing the Sources of Discrepancies. In all discrepancies in which the

cause is not obvious, systems engineering judgment is required to determine the most

promising course of action for identifying the cause. Time is always of the essence, but

OPERATIONAL TEST AND EVALUATION 467

never as much so as in the middle of system - level evaluation. The cause of a test dis-

crepancy can be due to a fault in (1) test equipment, (2) test procedures, (3) test execu-

tion, (4) test analysis, (5) the system under test, or (6) occasionally, to an excessively

stringent performance requirement. As noted previously, faults are frequently traceable

to one of the fi rst four causes, so that these should be eliminated before contemplating

emergency system fi xes. However, since there is seldom time to investigate possible

causes one at a time, it is usually prudent to pursue several of them in parallel. It is

here that the acquisition of data at many test points within the system may be essential

to rapidly narrow the search and to indicate an effective priority of investigative efforts.

This is also a reason why test procedures must be thoroughly understood and rehearsed

well in advance of actual testing.

 Dealing with System Performance Discrepancies

 If a problem is traced to the system under test, then it becomes a matter of deciding if

it is minor and easily corrected, or serious, and/or not understood, in which case delays

may be required, or not serious and agreeable to the contractor and customer that cor-

rective action may be postponed.

 The above decisions involve one of the most critical activities of systems engineers.

They require a comprehensive knowledge of system design, performance requirements,

and operational needs, and of the “ art of the possible. ” Few major discrepancies at this

stage of the program can be quickly corrected; any design change initiates a cascade

of changes in design documentation, test procedures, interface specifi cations, produc-

tion adjustments, and so on. In many instances, there may be alternative means of

eliminating the discrepancy, such as by software rather than hardware changes. Many

changes propagate well beyond their primary location. Dealing with such situations

usually requires the mobilization of a “ tiger team ” charged with quickly reaching an

acceptable resolution of the problem.

 Any change made to the system raises the question whether or not the change

requires the repetition of tests previously passed — another systems engineering issue

with a serious impact on program schedule and cost.

 In cases where the system performance discrepancy is not capable of being elimi-

nated in time to meet established production goals, the customer has the option of

choosing to accept release of the system design for limited production, assuming that

it is otherwise operationally suitable. Such a decision is taken only after exhaustive

analysis has been made of all viable alternatives and usually provides for later backfi t-

ting of the initial production systems to the fully compliant design.

 13.5 OPERATIONAL TEST AND EVALUATION

 In previous periods of subsystem and system testing, the basis of comparison was a

model that predicted the performance expected from an ideal implementation of the

functional design. In system operational evaluation, the test results are compared to the

operational requirements themselves rather than to their translation into performance

468 INTEGRATION AND EVALUATION

requirements. Thus, the process is focused on validation of the system design in terms

of its operational requirements rather than on verifi cation that it performs according to

specifi cations.

 The operational evaluation of a new system is conducted by the customer or by an

independent test agent acting on the customer ’ s behalf. It consists of a series of tests

in which the system is caused to perform its intended functions in an environment

identical or closely similar to that in which it will operate in its intended use. The

satisfactory performance of the system in meeting its operational requirements is a

necessary prerequisite to initiation of production and deployment. In the case of systems

built for public use, such as commercial aircraft, there will also be special tests or

inspections by government agents responsible for certifying the product ’ s safety, envi-

ronmental suitability, and other characteristics subject to government regulation.

 Operational Test Objectives

 Operational test and evaluation is focused on operational requirements, mission effec-

tiveness, and user suitability. The subject of operational evaluation is usually a prepro-

duction prototype of the system. The expectation is that all obvious faults will have

been eliminated during development testing, and that any further signifi cant faults may

cause suspension of evaluation tests, pending their elimination by the developer. The

limitations of time and resources normally available for operational evaluation require

careful prioritization of test objectives. A generally applicable list of high - priority areas

for testing includes the following:

 1. New Features. Features designed to eliminate defi ciencies in a predecessor

system are likely to be the areas of greatest change and hence greatest uncer-

tainty. Testing their performance should be a top priority.

 2. Environmental Susceptibility. Susceptibilities to severe operational environ-

ments are areas least likely to have been fully tested. Operational evaluation is

sometimes the fi rst opportunity to subject the system to conditions closely

resembling those that it is designed to encounter.

 3. Interoperability. Compatibility with external equipment, subject to nonstandard

communication protocols and other data link characteristics, makes it essential

to test the system when it is connected to the same or functionally identical

external elements as it will be connected to in its operational condition.

 4. User Interfaces. How well the system users/operators are able to control its

operations, that is, the effectiveness of the system human – machine interfaces,

must be determined. This includes assessing the amount and type of training

that will be required, the adequacy of training aids, the clarity of displays, and

the effectiveness of decision support aids.

 Example: Operational Evaluation of an Airliner. The function of a com-

mercial airliner is to transport a number of passengers and their luggage from a given

location to remote destinations, rapidly, comfortably, and safely. Its operational con-

OPERATIONAL TEST AND EVALUATION 469

fi guration is illustrated by a so - called context diagram in Figure 13.6 a. The diagram

lists the principal operational inputs and outputs, together with the ambient and support

environments, that contribute to and affect the operation of the system. The principal

inputs besides passengers and luggage are fuel, fl ight crew, and navigation aids.

Numerous secondary but important functions, such as those relating to the comfort of

the passengers (food, entertainment, etc.) that must also be considered are omitted from

the fi gure for the sake of clarity. The operational fl ight environment includes the fl ight

medium, with its variation in pressure, temperature, wind velocity, and weather

extremes, which the system must be designed to withstand with minimum effect on its

primary functions.

 Figure 13.6 b is the corresponding diagram of the airliner in its operational test

mode. A comparison with Figure 13.6 a shows that the test inputs duplicate the opera-

tional inputs, except that most of the passengers and luggage are simulated. The

 Figure 13.6. (a) Operation of a passenger airliner. (b) Operational testing of an airliner.

Ambient Environment

Flight Medium
(a)

Weather Extremes

Operational Outputs

Passengers
Luggage

Operational Inputs

Navigational Aids
Flight Crew
Passengers

Luggage
Fuel

Support Environment

Airport
Maintenance

Ambient Environment

Flight Medium
(b)

Simulated Weather

Measured Outputs

Flight Efficiency
Flight Control

Response to Environment

Test Inputs

Navigational Aids
Test Crew

Simulated Passengers

Support Environment

Flight instruments
Passenger Comfort Factor

Simulated Luggage
Fuel

Test Airport
Maintenance

470 INTEGRATION AND EVALUATION

measured outputs include data from the plane ’ s instruments and special test sensors to

enable the evaluation of performance factors relating to effi ciency, passengers comfort,

and safety, as well as to permit the reconstruction of the causes of any in - fl ight abnor-

malities. The operational test environment duplicates the operational environment,

except for conditions of adverse weather, such as wind shear. To compensate for the

diffi culty of reproducing adverse weather, an airplane under test may be intentionally

subjected to stresses beyond its normal operating conditions so as to ensure that suf-

fi cient safety margin has been built in to withstand severe environments. In addition,

controllable severe fl ight conditions can be produced in wind tunnel tests, in specially

equipped hangars, or in system simulations.

 Test Planning and Preparation

 Test plans and procedures, which are used to guide operational evaluation, must not

only provide the necessary directions for conducting the operational tests but should

also specify any follow - up actions that, for various reasons, could not be completed

during previous testing, or need to be repeated to achieve a higher level of confi dence.

It should also be noted that while there are general principles that apply to most system

test confi gurations, each specifi c system is likely to have special testing needs that must

be accommodated in the test planning.

 The extensive scope of test planning for the operational evaluation of a major

system is illustrated by the provisions of the TEMP. It requires that plans for operational

test and evaluation should, in part,

 • list critical operational issues to be examined to determine operational

suitability,

 • defi ne technical parameters critical to the above issues,

 • defi ne operational scenarios and test events,

 • defi ne the operational environment to be used and the impact of test limitations

on conclusions regarding operational effectiveness,

 • identify test articles and necessary logistic support, and

 • state test personnel training requirements.

 Test and Evaluation Scope. Evaluation planning must include a defi nition of

the appropriate scope of the effort, how realistic the test conditions must be, how many

system characteristics must be tested, what parameters must be measured to evaluate

system performance, and how accurately. Each of these defi nitions involves trade - offs

between the degree of confi dence in the validity of the result, and the cost of the test

and evaluation effort. Confi dence in the results, in turn, depends on the realism with

which the test conditions represent the expected operational environment. The general

relationship between test and evaluation realism and evaluation program cost is pictured

in Figure 13.7 . It obeys the classic law of diminishing returns, in which cost escalates

as the test sophistication approaches full environmental reality and complete parameter

testing.

OPERATIONAL TEST AND EVALUATION 471

 The decision of “ how much testing is enough ” is inherently a systems engineering

issue. It requires a basic knowledge of the operational objectives, how these relate to

system performance, what system characteristics are most critical and least well proven,

how diffi cult it would be to measure critical performance factors, and other equally

vital elements of the trade - offs that must be made. It also requires the inputs of test

engineers, design engineers, engineering specialists, and experts in the operational use

of the system.

 Test Scenarios. System operational evaluation should proceed in accordance

with a set of carefully planned test scenarios, each of which consists of a series of

events or specifi c test conditions. The objective is to validate all of the system require-

ments in the most effi cient manner, that is, involving the least expenditure of time and

resources.

 The planning of the test events and their sequencing must not only make the most

effective use of test facilities and personnel but also must be ordered so that each test

builds on the preceding ones. The proper functioning of the links between the system

and external systems, such as communications, logistics, and other support functions,

is essential for the successful testing of the system itself and must, therefore, be among

the fi rst to be tested. At the same time, all test equipment, including data acquisition,

should be recalibrated and recertifi ed.

 Test Procedures. The preparation of clear and specifi c test procedures for each

test event is particularly important in operational testing because the results are critical

for program success. Also, the user test personnel are generally less familiar with the

detailed operation of the system under test than development test personnel. The test

 Figure 13.7. Test realism versus cost.

80

100

40

60

R
e
a
lis

m

20

Cost

472 INTEGRATION AND EVALUATION

procedures should be formally documented and thoroughly reviewed for completeness

and accuracy. They should address the preparation of the test site, the confi guration of

the test equipment, the setup of the system, and the step - by - step conduct of each test.

The required actions of each test participant should be described, including those

involved in data acquisition.

 Analysis Plan. An analysis plan must be prepared for each test event specifying

how the data obtained will be processed to evaluate the proper performance of the

system. The collective test plans should be reviewed to ensure that they combine to

obtain all of the measures needed to establish the validity of the system in meeting its

operational requirements. This review requires systems engineering oversight to provide

the necessary system - level perspective.

 Personnel Training

 The fact that these tests are performed under the direction of personnel who have not

been part of the system development team makes the evaluation task especially chal-

lenging. An essential part of the preparation for operational evaluation is, therefore, the

transfer of technical system knowledge from the development organization and the

acquisition agency to those responsible for planning and executing the evaluation

process. This must be started at least during the developmental system test period,

preferably by securing the active participation of the evaluation agent ’ s test planning

and analysis personnel. The developer ’ s systems engineering staff should be prepared

to take the lead in effecting the necessary transfer of this knowledge.

 While it is to everyone ’ s benefi t to effect the above knowledge transfer, the process

is too often inadequate. Signifi cant funding is seldom earmarked for this purpose, and

the appropriate personnel are often occupied with other priority tasks. Another common

obstacle is an excessive spirit of independence that motivates some evaluation agents

to avoid becoming involved in the preevaluation testing phase. Therefore, it usually

remains for an experienced program manager or chief systems engineer in either orga-

nization to take the initiative to make it happen.

 Test Equipment and Facilities

 Since the focus of operational evaluation is on end - to - end system performance, only

limited data are strictly required regarding the operation of individual subsystems. On

the other hand, it is essential that any system performance discrepancy be quickly

identifi ed and resolved. To this end, the system developer is often permitted to make

auxiliary measurements of the performance of selected subsystems or components. The

same equipment as was employed in developmental testing is usually suitable for this

purpose. It is to the advantage of both the evaluation agent and the developer to monitor

and record the outputs from a suffi cient number of system test points to support a

detailed posttest diagnosis of system performance when required.

 As stated previously, the conditions to which each system is subjected must be

representative of its intended operational environment. In the above example of a com-

OPERATIONAL TEST AND EVALUATION 473

mercial airliner, the operational environment happens to differ from readily reproduc-

ible fl ying conditions only in the availability of adverse weather conditions that the

airliner must be able to handle safely. This fortunate circumstance is not typical of the

evaluation of most complex systems. Operational testing of ground transport vehicles

requires a specially selected terrain that stresses their performance capabilities over a

broad range of conditions. Systems depending on external communications require

special auxiliary test instrumentation to provide such inputs and to receive any corre-

sponding output.

 Test Conduct

 If system developer personnel participate, they do so either as observers, or more com-

monly, in a support capacity. In the latter role, they assist in troubleshooting, logistic

support, and provision of special test equipment. In no case are they allowed to infl u-

ence the conduct of the tests or their interpretation. Nonetheless, they often can play a

key role in helping quickly to resolve unexpected diffi culties or misunderstandings of

some feature of the system operation.

 As a preliminary to conducting each test, the operational personnel should be

thoroughly briefed on the test objectives, the operations to be performed, and their

individual responsibilities. As noted previously, personnel and test equipment errors are

often the most prevalent causes of test failures.

 Test Support. Operational and logistic support of evaluation tests is critical to

their success and timely execution. Since these tests are in series with key program deci-

sions, such as authorization of full - scale production or operational deployment, they are

closely watched by both developer and customer management. Thus, adequate supplies

of consumables and spare parts, transportation and handling equipment, and technical

data and manuals must be provided, together with associated personnel. Test equipment

must be calibrated and fully manned. As noted earlier, support should be obtained from

the system developer to provide engineering and technical personnel capable of quickly

resolving any minor system discrepancies that may invalidate or delay testing.

 Data Acquisition. It was noted in the previous paragraphs that data acquired

during operational evaluation are usually much more limited than that which was col-

lected during developer system tests. Nevertheless, it is essential that the end - to - end

system performance be measured thoroughly and accurately. This means that the

 “ ground truth ” must be carefully monitored by instrumenting all external conditions to

which the system is subjected and the measurements recorded for posttest analysis. The

external conditions include all functional system inputs as well as signifi cant environ-

mental conditions, especially those that may interfere with or otherwise affect system

operation.

 Human – Machine Interfaces. In most complex systems, there are human –

 machine interfaces that permit an operator to observe information and to interact with

the system, serving as a critical element in achieving overall system performance. A

474 INTEGRATION AND EVALUATION

classic example is an air traffi c controller. While data input from various sensors is

automatic, the controller must make life - and - death decisions and take action based on

information displayed on a control console and received from reporting pilots. A similar

operator function is part of many types of military combat systems.

 In such operator interactions, system performance will depend on two interrelated

factors: (1) effectiveness of operator training and (2) how well the human interface

units have been designed. During operational testing, this aspect of system performance

will be an important part of the overall evaluation because improper operator action

often results in test failures. When such errors do occur, they are often diffi cult to track

down. They can result from slow reaction time of the operator (e.g., fatigue after many

hours on station), awkward placement of operator controls and/or display symbology,

or many other related causes.

 Safety. As in the case of development system tests, special efforts must be exerted

to ensure the safety of both test personnel and inhabitants neighboring the test area. In

the case of military missile test ranges, instrumentation is provided to detect any indica-

tion of loss of control, in which case a command is sent to the missile by the range

safety offi cer to actuate a self - destruct system to terminate the fl ight.

 Test Analysis and Evaluation

 The objectives of operational evaluation have been seen to determine whether or not

the system as developed meets the needs of the customer, that is, to validate that its

performance meets the operational requirements. The depth of evaluation data analysis

varies from “ go no - go ” conclusions to a detailed analysis of the system and all major

subsystems.

 Under some circumstances, an independent evaluation agent may judge that a new

system is defi cient in meeting the user ’ s operational goals to a degree not resolvable

by a minor system design or procedural change. Such a situation may arise because of

changes in operational needs during the development process, changes in operational

doctrine, or just differences of opinion between the evaluator and the acquisition agent.

Such cases are usually resolved by a compromise, in which a design change is negoti-

ated with the developer through a contract amendment, or a temporary waiver is agreed

upon for a limited number of production units.

 Test Reports

 Because of the attention focused on the results of the operational evaluation tests, it is

essential to provide timely reports of all signifi cant events. It is customary to issue

several different types of reports during the evaluation process.

 Quick - Look Reports. These provide preliminary test results immediately fol-

lowing a signifi cant test event. An important purpose of such reports is to prevent

misinterpretation of a notable or unexpected test result by presenting all the pertinent

facts and by placing them in their proper perspective.

SUMMARY 475

 Status Reports. These are periodic reports (e.g., monthly) of specifi c signifi cant

test events. They are designed to keep the interested parties generally aware of the

progress of the test program. There may be an interim report of the cumulative test

fi ndings at the conclusion of the test program while the data analysis and fi nal report

are being completed.

 Final Evaluation Report. The fi nal report contains the detailed test fi ndings,

their evaluation relative to the system ’ s intended functions, and recommendations rela-

tive to its operational suitability. It may also include recommendations for changes to

eliminate any defi ciencies identifi ed in the test program.

 13.6 SUMMARY

 Integrating, Testing, and Evaluating the Total System

 The objectives of the integration and evaluation phase are to integrate the engineered

components of a new system into an operating whole and to demonstrate that the system

meets all its operational requirements. The outputs of the integration and evaluation

phase are

 • validated production designs and specifi cations, and

 • qualifi cation for production and subsequent operational use.

 The activities constituting integration and evaluation are

 • Test Planning: defi ning test issues, test scenarios, and test equipment;

 • System Integration: integrating components into subsystems and the total

system;

 • Developmental System Testing: verifying that the system meets specifi cations;

and

 • Operational Test and Evaluation: validating that the system meets operational

requirements.

 Test Planning and Preparation

 Integration and evaluation “ materializes ” the system as a whole and synthesizes a

functioning total system from individual components. These activities solve any remain-

ing interface and interaction problems.

 Defense systems require a formal TEMP, which covers test and evaluation planning

throughout system development.

 System requirements should be reviewed prior to preparing test plans to allow for

customer requirements changing during system development. Late injection of technol-

ogy advances always poses risks.

476 INTEGRATION AND EVALUATION

 Key issues during system integration and evaluation include

 • intense management scrutiny during system testing,

 • changes in test schedules and funding due to development overruns, and

 • readiness of test equipment and facilities.

 System test equipment design must meet exacting standards and accuracy must be

much more precise than component tolerances. Reliability must be high to avoid

aborted tests. Finally, the design must accommodate multiple use and failure

diagnosis.

 System Integration

 A typical test confi guration consists of

 • the system element (component or subsystem) under test,

 • a physical or computer model of the component or subsystem,

 • an input generator that provides test stimuli,

 • an output analyzer that measures element test responses, and

 • control and performance analysis units.

 Subsystem integration should be organized to minimize special component test

generators, to build on results of prior tests, and to monitor internal test points for fault

diagnosis.

 Test failures are often not due to component defi ciencies, but test equipment may

be inadequate. Additionally, interface specifi cations may be misinterpreted or interface

tolerances may be mismatched. And fi nally, inadequate test plans, training, or proce-

dures may lead to personnel errors.

 Integration test facilities are essential to the engineering of complex systems and

represent a signifi cant investment. However, they may be useful throughout the life of

the system.

 Developmental System Testing

 Developmental system testing has the objectives of verifying that the system satisfi es

all its specifi cations and of obtaining evidence concerning its capability to meet opera-

tional requirements.

 The system test environment should be as realistic as practicable — all external

inputs should be real or simulated. Conditions expected in operational evaluation should

be anticipated. Moreover, effects impractical to reproduce should be exercised by

special tests. However, the entire system life cycle should be considered.

 Test events must be carefully planned — related test objectives should be combined

to save time and resources. Detailed test scenarios need to be prepared with suffi cient

fl exibility to react to unexpected test results.

SUMMARY 477

 A predictive system performance model must be developed. This is a major task

requiring systems engineering leadership and effort; however, an EDM is excellent for

this purpose.

 Developmental tests are carried out by a coordinated team consisting of

 • systems engineers, who defi ne test requirements and evaluation criteria;

 • test engineers, who conduct test and data analysis; and

 • design engineers, who design test equipment and correct design discrepancies.

 System performance discrepancies during developmental testing must be accounted

for in test scheduling, quickly responded to by a remedial plan of action.

 Operational Test and Evaluation

 System operational test and evaluation has the objectives of validating that the system

design satisfi es its operational requirement and of qualifying the system for production

and subsequent operational use.

 Typical high - priority operational test issues are

 • new features designed to eliminate defi ciencies in a predecessor system,

 • susceptibilities to severe operational environments,

 • interoperability with interacting external equipment, and

 • user system control interfaces.

 The essential features of an effective operational evaluation include

 • familiarity of the customer ’ s or the customer agent ’ s test personnel with the

system;

 • extensive preparation and observation of developmental testing;

 • test scenarios making effective use of facilities and test results;

 • clear and specifi c test procedures and detailed analysis plans;

 • thorough training of test operation and analysis personnel;

 • fully instrumented test facilities replicating the operational environment;

 • complete support of test consumables, spare parts, manuals, and so on;

 • accurate data acquisition for diagnostic purposes;

 • special attention to human – machine interfaces;

 • complete provisions for the safety of test personnel and neighboring

inhabitants;

 • technical support by system development staff; and

 • timely and accurate test reports.

478 INTEGRATION AND EVALUATION

 PROBLEMS

 13.1 Figure 13.3 pictures the individual and common responsibilities of design

engineers, test engineers, and systems engineers. In addition to differences

in their responsibilities, these classes of individuals typically approach their

tasks with signifi cantly different points of view and objectives. Discuss these

differences, and emphasize the essential role that systems engineers play in

coordinating the total effort.

 13.2 Figure 13.4 diagrams the test confi guration for a component or a subsystem

in which it is subjected to controlled inputs and its response is compared in

real time with that of a computer model of the element under test. When a

real - time simulation of the element is not available, the test confi guration

records the test response to be analyzed at a later time. Draw a diagram

similar to Figure 13.4 representing the latter test confi guration, as well as that

of the subsequent test analysis operation. Describe the functioning of each

unit in these confi gurations.

 13.3 Test failures are not always due to component defi ciencies; sometimes, they

result from an improper functioning of the test equipment. Describe what

steps you would take before, during, and after a test to enable a quick diag-

nosis in the event of a test failure.

 13.4 The systems engineering method in the integration and evaluation phase is

outlined in the introduction to this chapter. Construct a functional fl ow

diagram for the four steps in this process.

 13.5 In designing system tests, probes are placed at selected internal test points,

as well as at system outputs, to enable a rapid and accurate diagnosis of the

cause of any discrepancy. List the considerations that must be applied to the

selection of the appropriate test points (e.g., what characteristics should be

examined). Illustrate these considerations using the example of testing the

antilock brake system of an automobile.

 13.6 Describe the differences in objectives and operations between developmental

test and evaluation and operational test and evaluation. Illustrate your points

with an example of a lawn tractor.

 13.7 Defi ne the terms “ verifi cation ” and “ validation. ” Describe the types of tests

that are directed at each, and explain how they meet the defi nitions of these

terms.

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapters 6, 12, and 13.

 W. P. Chase . Management of Systems Engineering . John Wiley & Sons, Inc. , 1974 , Chapter 6.

 D. K. Hitchins . Systems Engineering: A 21st Century Systems Methodology . John Wiley & Sons,

Inc. , 2007 , Chapters 8, 11, and 12.

FURTHER READING 479

 International Council on Systems Engineering . Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities , INCOSE - TP - 2003 - 002 - 03.2, Section 4 . July,

 2010 .

 D. C. Montgomery . Design and Analysis of Experiments , Sixth Edition . John Wiley & Sons, Inc. ,

 2005 , Chapters 1 and 2.

 P. D. T. O ’ Connor . Test Engineering: A Concise Guide to Cost - effective Design, Development

and Manufacture . John Wiley & Sons, Inc. , 2005 , Chapters 6 – 8 and 10.

 H. Petroski . Success through Failure: The Paradox of Design . Princeton University , 2006 .

 E. Rechtin . Systems Architecting: Creating and Building Complex Systems . Prentice Hall , 1991 ,

Chapter 7.

 M. T. Reynolds . Test and Evaluation of Complex Systems . John Wiley & Sons, Inc. , 1996 .

 S. M. Shinners . A Guide for Systems Engineering and Management . Lexington Books , 1989 ,

Chapter 7.

 R. Stevens , P. Brook , K. Jackson , and S. Arnold . Systems Engineering, Coping with Complexity .

 Prentice Hall , 1998 , Chapter 5.

 Systems Engineering Fundamentals . Defense Acquisition University (DAU Press), 2001 ,

Chapter 7.

481

 Part IV goes beyond most systems engineering books in examining the role that systems

engineering must play in the production, installation, operations, and support of complex

systems. It also identifi es the knowledge of these phases that systems engineers should

acquire to ensure that the system will be affordable and fully effective in its intended

operational environment.

 The transition of a system from development to production is often a source of

serious diffi culties and program delays. If the properties of reliability, producibility, and

maintainability have not been fully integrated into the system design, the transition is

likely to be slow and costly. Chapter 14 , Production, discusses these problems and

describes the production facilities and operations as a system in its own right. It also

discusses what a systems engineer needs to learn about production processes and prob-

lems associated with the types of systems he or she is concerned with, to guide effec-

tively the development and engineering of such systems.

 As in the case of production, the operations and support of complex systems also

requires the participation of systems engineering. Unanticipated problems are the rule

rather than the exception in the operation of new complex systems, and they require

urgent resolution by system - oriented personnel. Chapter 15 discusses such problems as

well as the systems engineering participation in the process of system upgrading and

modernization.

 PART IV

POST D EVELOPMENT STAGE

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

483

 14.1 SYSTEMS ENGINEERING IN THE FACTORY

 The production phase of the system life cycle represents the culmination of the system

development process, leading to the manufacture and distribution of multiple units of

the engineered and tested system. The objective of this phase is to embody the engi-

neering designs and specifi cations created during the engineering development stage

into identical sets of hardware and software components, and to assemble each set into

a system suitable for delivery to the users. Essential requirements are that the produced

system performs as required, is affordable, and functions reliably and safely as long as

required. To fulfi ll these requirements, systems engineering principles must be applied

to the design of the factory and its operations.

 Most of the discussion in this chapter is concerned with the production of hardware

system elements. On the other hand, as noted in Chapter 11 , almost all modern products

are controlled by embedded microprocessors. Thus, production tests necessarily include

testing the associated software.

 This chapter is organized in four main sections. It begins with Engineering for

Production, which describes where production considerations must be applied during

 14

PRODUCTION

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

484 PRODUCTION

each phase of system development in order to ensure that the end product is both afford-

able and satisfi es performance and reliability goals. The section Transition from

Development to Production describes the problems typically encountered in the transfer

of responsibility from the engineering to the manufacturing organizations and the role

of systems engineering in their resolution. Production Operations describes the organi-

zation of the overall system manufacturing program as a complex system in its own

right, especially as it is typically distributed among a team of contractors. The fi nal

section, Acquiring a Production Knowledge Base, describes the scope of knowledge

that development systems engineers need to acquire in order to lead properly a system

development effort, together with some of the means by which it may be best obtained.

 Place of the Production Phase in the System Life Cycle

 The production phase is the fi rst part of the postdevelopment stage of the system life

cycle. This relation is shown in Figure 14.1 , which is a functional fl ow diagram relating

the production phase to the preceding integration and evaluation phase and to the suc-

ceeding phase, operation, and support. The inputs from integration and evaluation are

specifi cations and the production system design; the outputs are operational documenta-

tion and the delivered system.

 Figure 14.2 shows the timing of the production phase relative to its preceding and

succeeding phases. As in the case of the integration and evaluation phase, there is a

considerable overlap between the end of each phase and the beginning of the next.

Overlap between the end of integration and evaluation and the beginning of the produc-

tion phase is necessary to order long - lead materials, to acquire factory tooling and test

equipment, and to prepare production facilities for operations. Similarly, the initial

produced systems are expected to be placed in operation while the production of sub-

sequent units is continuing.

 Figure 14.1. Production phase in a system life cycle.

Operations and
System Production

Specifications
Maintenance

Documentation

Integration and
Evaluation

Production and
Deployment

Operation and
SupportTooling and Test Equipment

Production and Acceptance
System Delivery

Production
System

Installed
Operational

System

ENGINEERING FOR PRODUCTION 485

 Figure 14.2. Production phase overlap with adjacent phases.

Integration

and Evaluation

Phase

System
Test

Operational
Evaluation

System and
Subsystem
Integration

Transition to Production

Production

Phase
Material

Procurement
Production
Engineering

Low Rate
Production

Full
Production

Operational Introduction

Installation
and Test

System
Operations

Operation

and Support

Phase

 Design Materialization Status

 The materialization status of the system would seem to be off the scale of previous

diagrams, such as Table 13.1 and its predecessors, because the prior phases of the

system development process have essentially fully “ materialized ” the system compo-

nents and the system as a whole. However, since the majority of complex systems are

made from components produced at a variety of locations, the process of materialization

cannot be considered completed until the components are assembled at a central loca-

tion and are accepted as a total system. This dispersal of manufacturing effort creates

stress on vendor coordination, interface control, integration testing, and calibration

standards. These will be discussed further in a subsequent section.

 14.2 ENGINEERING FOR PRODUCTION

 During the development stages of the system life cycle, and especially during concept

development, the technical effort is focused primarily on issues related to achieving the

performance objectives of the system. However, unless the fi nal product is also afford-

able and functions reliably, it will not meet its operational need. Since these latter

factors are strongly infl uenced by the choice of system functions and especially by their

physical implementation, they must be considered from the beginning and throughout

the development process. The process of introducing production considerations during

486 PRODUCTION

development is generally referred to as “ concurrent engineering ” or “ product develop-

ment. ” This section addresses how this process is applied during each phase of system

development.

 The accepted method of incorporating production considerations into the develop-

ment process is to include such production specialists and other specialty engineers as

members of the system design team. These may include experts in such specialties as

reliability, producibility, safety, maintainability, and user interfaces, as well as packag-

ing and shipping.

 To make the contributions of these experts effective, it is necessary to bring them

into active participation in the system design process. In this connection, it is essential

to apply their specialized knowledge to the system requirements, as well as to interpret

their specialty languages to other members of the system design team. Without systems

engineering leadership, communication skills, and insistence on system balance, the

concurrent engineering process is not likely to be effective.

 Concurrent Engineering throughout System Development

 The following paragraphs describe examples of the application of concurrent

engineering in successive phases of system development, as well as the role of

systems engineers in making these applications effective. As may be expected, this

effort grows in relevancy as the system design progresses; however, it must be initiated

at the outset of the program and effectively implemented throughout even the earliest

phases.

 Needs Analysis. Production and reliability considerations apply in the needs

analysis for both needs - driven and technology - driven situations. The decision to begin

a new system development must consider its feasibility to be produced as a reliable

and affordable entity. Making such a decision relies heavily on systems engineering

analyses, together with fi rst - hand knowledge of the postulated development and manu-

facturing processes.

 Concept Exploration. A principal product of the concept exploration phase is

a set of system performance requirements that will serve as a basis for selecting the

most desirable system concept from among competing candidates. In framing these

requirements, a balance must be struck among performance, cost, and schedule goals —

 a balance requiring a total system perspective in which production processes are essen-

tial factors.

 As will be discussed in the section on production operations, just as technology is

advancing rapidly in solid - state electronics, communications, system automation, mate-

rials, propulsion, and many other system component areas, it is similarly revolution-

izing production processes. A clear sense of the status and trend of manufacturing

technology is a necessary element in the formulation of realistic system requirements.

Systems engineering must make informed evaluations of the contributions by produc-

tion specialists. For example, the selection of materials will be infl uenced by the dif-

fi culty and cost of production processes.

ENGINEERING FOR PRODUCTION 487

 Concept Defi nition. Perhaps the most critical contribution of systems engineer-

ing is in the selection and defi nition of the preferred system conceptual design. At this

point in the development, a clear concept of the implementation of the system in hard-

ware and software is required to develop credible estimates of manufacturing and life

cycle costs.

 The selection of the proposed system design requires a balance among many

factors, and for most of these, the assessment of risk is a central factor. As noted in

Chapter 8 , taking advantage of advancing technology necessarily involves some degree

of risk both in terms of component design and process design. The estimates of risks

are infl uenced by the nature and maturity of the associated manufacturing methods,

which must be heavily weighted in trade - off analyses of alternative system confi gura-

tions. In bringing the experience of production experts to bear on these judgments,

systems engineers must serve as informed translators and mediators between them and

design engineers and analysts.

 Advanced Development. The advanced development phase provides an oppor-

tunity to reduce program risks by conducting analyses, simulations, experiments, and

demonstrations of critical subsystems or components. Similarly, new production pro-

cesses and materials must be validated before acceptance. Because of the expense

involved in all such activities, especially experiments and demonstrations, the decision

as to which ones warrant such validation must be made with full knowledge of the

nature and extent of the risks, the magnitude of the gains expected from the use of the

proposed processes and materials, and the scope of experimentation necessary to settle

the issue. Again, this is a major systems engineering issue requiring expertise in pro-

duction as well as in system design and performance.

 This phase must provide a suitable basis for defi ning production processes,

critical materials, tooling, and so on, through trade studies that consider the risks

and costs of alternative approaches. Systems engineering must be intimately involved

in the planning and evaluation of such studies to ensure their appropriate integration

into the overall plans for the engineering design phase. In this connection, critical atten-

tion must be given to the impact of manufacturing methods on the compatibility of

component interfaces in order to minimize production, assembly, and testing

problems.

 Engineering Design. The engineering design phase is where production factors

become especially prominent in the detailed design of system components. Component

and subcomponent interface tolerance specifi cations must be compatible with the capa-

bilities of manufacturing processes and allocated costs. The design and construction of

factory test equipment must also be accomplished during this phase so as to be ready

when production is authorized.

 During this phase, design engineers obtain major inputs from specialty engineers

applying their experience in the areas of producibility, reliability, maintainability, and

safety. In this collective effort, systems engineers serve as mediators, interpreters,

analysts, and validators of the fi nal product. To play these roles, the systems engineers

must have a suffi cient understanding of the intersecting disciplines to effect meaningful

488 PRODUCTION

communication across technical specialties and to guide the effort toward the best

available outcome.

 An important part of the engineering design phase is the design and fabrication of

production prototypes to demonstrate the performance of the product, as it will be

manufactured. The degree to which the prototype fabrication methods are selected to

duplicate the actual manufacturing tooling and process control is a matter requiring

systems engineering judgment as well as design and manufacturing considerations.

 Usually, many components of a complex system are designed and manufactured

by subcontractors. The selection of component contractors must involve the evaluation

of their manufacturing as well as engineering capabilities, especially when the compo-

nents involve advanced materials and production techniques. Systems engineers should

be able to help judge the profi ciency of candidate sources, be key participants in source

selection and in setting the requirements for product acceptance, and serve as technical

leads in subcontracting.

 Such knowledge is also essential for leading the interface defi nition effort among

component suppliers, the specifi cation of interface tolerances, and the defi nition of

component test equipment design and calibration standards for use in both development

and production acceptance testing.

 The above considerations all affect production cost estimates, which systems engi-

neers must contribute to and evaluate; considerations of uncertainty and risks must also

be given due weight in forming the fi nal cost and schedule estimates.

 Integration and Evaluation. Unexpected incompatibilities at component inter-

faces are often fi rst brought to light during the integration of prototype system compo-

nents and subsequent system testing. These problems are normally corrected through

component redesign, refi nement of component test equipment, and so on, prior to fi nal

release for production. Nevertheless, during the subsequent assembly and test of the

production system, design changes introduced to correct these incompatibilities,

together with other “ minor ” changes and adjustments introduced to facilitate production

and test activities, may themselves produce new areas of incompatibility. Accordingly,

systems engineers should monitor the initial production assembly and test activities so

as to alert program management to any problem areas that must be addressed prior to

deployment of the product. In order to identify and expeditiously deal with such prob-

lems at the earliest possible time, systems engineers must be knowledgeable of both

factory production and test acceptance processes. In some cases, acceptance test pro-

cedures are written by systems engineers.

 Application of Deployment Considerations in
System Development

 It has been stressed in previous chapters that the system design must consider system

behavior throughout the total life cycle. In many systems, the deployment or distribu-

tion process subjects the system and its constituent components to substantial environ-

mental stresses during transportation, storage, and installation at the operational site.

While these factors are considered during system defi nition, in many instances, they

TRANSITION FROM DEVELOPMENT TO PRODUCTION 489

are not quantitatively characterized until the advanced development phase or sometimes

even later. It is therefore mandatory that the deployment of the system be planned in

detail as early in the development process as possible. Factors such as the risk of expo-

sure to environments that might affect system performance or reliability must be

assessed and refl ected either in the system design requirements or in restrictions to be

observed during the deployment process. In some cases, protective shipping containers

will be required. In those cases where problem areas still exist, provision should be

made for their resolution through further analysis and/or experimentation.

 In many cases, the predecessor system provides a prime source of information

regarding the conditions that a new system may encounter during its transit from pro-

ducer to user. When the operational site and the system physical confi guration are the

same or similar to that of the new system, the deployment process can be quantitatively

defi ned.

 14.3 TRANSITION FROM DEVELOPMENT TO PRODUCTION

 Transition in Management and Participants

 As may be inferred from the life cycle model, wholesale changes in program manage-

ment focus and participants necessarily take place when the production of a new system

is initiated. These areas are briefl y summarized below.

 Management. The management procedures, tools, experience base, and skills

needed for successful program direction and control during the production phase differ

materially from those needed during system development. Accordingly, the production

of a new system is almost always managed by a team different from the one that directed

the earlier engineering development, integration, and test efforts. Moreover, the produc-

tion contract is sometimes completed among several companies, some of which may

have been only peripherally involved in the system development. For all these reasons,

there is normally little carryover of key personnel from the engineering into the produc-

tion phase. At best, selected members of the development engineering team may be

made available when requested to provide technical assistance to the production orga-

nization. Production funding is usually embodied in a contract separate from the one

that was in force during engineering development and is administered separately to

provide its own audit trail and future costing data.

 Program Focus. As noted earlier, the production phase is focused on producing

and distributing identical copies of the product design. The stress is on effi ciency,

economy, and product quality. Automated manufacturing methods are employed where

practicable. Confi guration control is extremely tight.

 Participants. The participants in this phase are very different from those who

were involved in the development effort. Specifi cally, the great majority of participants

in this phase are technicians, many of whom are highly skilled as automatic equipment

490 PRODUCTION

and factory test operators. The engineering participants are chiefl y concerned with

process design, tool and test equipment design and calibration, quality control, factory

supervision, and troubleshooting. Most are specialists in their respective disciplines.

However, as stated earlier, to effect a successful transition into production, there must

also be an experienced team of systems engineers guiding the process.

 Problems in the Transition Process

 The transition of a new system from development to production can be a particularly

diffi cult process. Many of the associated problems can be ascribed to the factors that

were fi rst cited in Chapter 1 (i.e., advancing technology, intercompany competition,

and technical specialization) as dictating the need for a special systems engineering

activity. These factors are further discussed below.

 Advancing Technology. It was seen that while the incorporation of technologi-

cal advances in the design of new systems is often necessary to achieve the desired

gain in capability and thus preclude premature obsolescence, this also incurs the risk

of introducing unanticipated complications in both the development and production

processes. Although the development process provides methods for the identifi cation

and reduction of performance problems, production - related diffi culties are frequently

not revealed until production prototypes have been fabricated and tested. By that time,

remedial action is likely to cause severe and very expensive delays in production

schedules. Systems engineering expertise is crucial, both for anticipating such unin-

tended results insofar as possible and for quickly identifying and resolving those that

still do unexpectedly occur.

 An example of technological advances that must be considered in the transition

process is that of the speed of digital processors, accompanied by reductions in size

and cost. The pressure to install the latest products can be irresistible but comes at a

price of changes in packaging, testing, and sometimes software revision.

 Competition. Competition puts stresses on the transition process from several

directions. Competition for funds often results in insuffi cient effort being budgeted for

production preparation; moreover, it almost always eliminates the availability of reserve

funding to deal with unexpected problems, which always arise in the development of

complex systems. This results in too little testing of production prototypes, or delay of

their fabrication until after the time that decisions on tooling, materials, and other

production factors have to be made. Despite slippages in production preparation, pro-

duction schedules are frequently held fi rm to avoid the external appearance of program

problems, which are likely to cause customer concern and possibly even direct interven-

tion. Competition for experienced staff within the organization can also result in reas-

signment of key engineers to a higher priority activity, even though they may have been

counted on for continued commitment to the project. Competition for facilities may

delay the availability of the facilities needed for the start of production. These are only

examples of the competing forces that must be dealt with in managing the transition

process.

TRANSITION FROM DEVELOPMENT TO PRODUCTION 491

 Specialization. The transition from development to production also involves

transfer of prime technical responsibility for the system from specialists in engineering

and development to specialists in manufacturing. Moreover, at this point, the primary

location of activity also shifts to the manufacturing facilities and their supporting orga-

nizations, which typically are separated physically from and managerially independent

of engineering — an arrangement that can and often does severely attenuate essential

communications between the engineering and production organizations. Systems engi-

neers with some knowledge of production are frequently the only individuals who can

communicate effectively between engineering and production personnel.

 The above problems are rendered still more diffi cult by the usual dispersion of

development and production of major components and subsystems among several

specialized subcontractors. Coordination during the production phase in such cases is

many times more complicated than during development because of the need to closely

synchronize the timing and tempo of fabrication and testing with system assembly and

delivery schedules. For these reasons, successful prototypes do not necessarily guaran-

tee successful production systems.

 Product Preparation

 The importance of the above transition process in commercial development and produc-

tion has led the National Society of Professional Engineers (NSPE) to dedicate a sepa-

rate phase in their system life cycle to “ commercial validation and production

preparation. ” The engineering activities during this phase of development are stated to

include the following:

 • Complete a preproduction prototype.

 • Select manufacturing procedures and equipment.

 Demonstrate the effectiveness of

 • fi nal product design and performance;

 • installation and start - up plans for the manufacturing process, selection of produc-

tion tools and technology;

 • selection of materials, components, and subsystem vendors and logistics; design

of a fi eld support system; and

 • preparing a comprehensive deployment/distribution plan.

 Either as part of the production plan or separately, other associated activities must also

be defi ned or refi ned at this time. These include

 • logistic support plans,

 • confi guration control plans, and

 • document control plans and procedures.

492 PRODUCTION

 Production Confi guration Management

 The forces of advancing technology, competition, and specialization all exert pressure

to make changes in the engineering design of the system, especially at the component

and subcomponent levels. As noted previously, new technology offers opportunities to

introduce higher performance or cheaper elements (e.g., new materials, commercial

off-the-shelf [COTS]). Moreover, competition presses for less costly designs, and engi-

neers at component producers may petition to adapt designs to fi t their particular pro-

duction tooling. All of these factors tend to produce numerous engineering change

proposals (ECPs), each of which must be analyzed and accepted, modifi ed, or rejected.

The system contractor ’ s systems engineers play a crucial role in analyzing these propos-

als, planning and overseeing test efforts where required and recommending the appro-

priate action on change proposals. The time available for such action is very short and

the stakes are very high. Intercontractual pressures often complicate the decision

process.

 Viewed in this light, the transition from engineering design to production is the

most critical period in the confi guration management process and calls for effective

analytical, engineering, and communication skills on the part of systems engineers and

project managers. Above all, documentation must not be allowed to lag signifi cantly

behind the change process, and all concerned must be kept in the communication loop.

Systems engineering is the keeper of the integrity of the design.

 It follows that the confi guration management process does not stop when produc-

tion begins; it continues even more intensively throughout the production process. At

the beginning of production, component interface incompatibilities that have not been

previously detected and eliminated (or inadvertently have been created in product

design) will be revealed and must be dealt with quickly. Each incompatibility requires

a decision as to whether it can be remedied in parallel with continuing production or

if production should be interrupted, and if so, at what point. Because of their impact

on cost and schedule, such decisions are made at management levels, but the most

critical inputs are provided by systems engineering. These inputs come from close

teamwork between the confi guration management team and supporting systems and

production engineering staffs. If, as often happens, communication between the produc-

tion and engineering organization is poor, the above process will be ineffi cient and

costly.

 14.4 PRODUCTION OPERATIONS

 Planning the development and evaluation of a major new system requires well thought -

 out and documented plans, such as the systems engineering management plan (SEMP)

and the test and evaluation master plan (TEMP), which are promulgated widely to

coordinate the efforts of the system development. For the same reasons, the production

phase must have a formal system production plan to provide a blueprint of the organi-

zation, tasks, and schedules for system production.

PRODUCTION OPERATIONS 493

 Production Planning

 The key elements of a production plan include the following subplans and sections:

 • responsibility and delivery schedule for each major subassembly (component);

 • manufacturing sites and facilities;

 • tooling requirements, including special tools;

 • factory test equipment;

 • engineering releases;

 • component fabrication;

 • components and parts inspection;

 • quality control;

 • production monitoring and control assembly;

 • acceptance test;

 • packaging and shipping;

 • discrepancy reports;

 • schedule and cost reports; and

 • production readiness reviews.

 Preparation of the production plan should begin during engineering design and

forms the basis for initiating production. It must be a living document and must evolve

during the production process. Lessons learned should be documented and passed on

to future programs. Systems engineers not only contribute to the plan but, in the process,

also benefi t by learning about the diverse activities that must be managed during

production.

 Production Organization as a Complex System

 The manufacture of a new complex system typically requires the coordinated efforts

of a team of contractors with extensive facilities, equipment, and technical personnel,

usually distributed geographically but working to unifi ed specifi cations and schedules.

As in an engineered system, all these subsystems and their elements must work together

effectively and effi ciently to perform their collective mission — the production of units

of a system of value to its users. The planning, design, implementation, and operation

of this production system are tasks of comparable complexity to that required to develop

the system itself.

 Figure 14.3 is a schematic representation of the confi guration of the facilities for

producing a typical new complex system. The large blocks correspond to the engineer-

ing and production facilities of the prime contractor. The blocks on the left represent

suppliers of newly developed components, while those at the top represent suppliers of

standard components. The suppliers of developed components are shown to have engi-

neering elements that operate under the technical direction of the prime contractor.

494 PRODUCTION

Whether or not the component suppliers are owned by the prime contractor, they are

to all intents separate organizations that have to be technically coordinated by the prime

contractor ’ s engineering organization. It is seen that this combination of facilities must

itself be managed as an integrated system, with strict control of all of the interfaces

with respect to product performance, quality, and schedule.

 The overall task of bringing this entity into being is usually led by a management

team assembled by the prime production contractor. While systems engineers do not

lead this effort, they must be important contributors because of their broad knowledge

of the system requirements, architecture, risk elements, interfaces, and other key

features.

 The “ architecting ” of the production system is complicated by a number of factors,

including

 1. Advancing Technology , especially of automated production machinery, which

raises issues as to when to introduce the most recent development and into

which processes; similar decisions are required on the extent and timing of

introducing advanced materials;

 2. Requirement to Ensure Compatibility of New Processes with Workforce

Organization and Training — in numerous cases, technology - driven changes

have resulted in decreases in productivity;

 Figure 14.3. Production operation system.

Standard Components

ProductionProduction

Suppliers

ProductionProduction

Developed

Components
System

Assembly
Integration

Acceptance TestEngineering

Users
Products

Engineering

Production

Engineering

Subcontractors Prime Contractor

Legend:
Shipping
Coordination

PRODUCTION OPERATIONS 495

 3. Design of Communications among Distributed Production Facilities — a balance

between lack of information exchange and information overload is crucial;

 4. Factory and Acceptance Test Equipment — in a distributed system, there must

be a highly coordinated set of component test equipment that ensures identical

acceptance criteria at component manufacturers and at the integration and

assembly facility, as well as conformity of system - level acceptance test equip-

ment with the integrated component tolerance structure;

 5. Manufacturing Information Management — in any complex system, an enor-

mous amount of data must be collected at all system levels in order to effectively

govern and control the manufacturing and assembly process; the database man-

agement system required to deal with this information is a large software system

in its own right and therefore requires an expert staff for its implementation and

operation;

 6. Provisions for Change — for production operations expected to extend for a

period of years, the facilities need to be designed to adapt to variations in rates

of production and to the introduction of design changes; many systems are fi rst

produced at low rates to validate the process on when production is stretched

out for funding reasons; accommodation of the process to these changes while

maintaining an effi cient operation is an important goal.

 All of the above problems require the application of systems engineering principles

to obtain effective solutions.

 Component Manufacture

 We have seen that the building blocks of complex systems are components representing

different specialized product lines. These are integrated from subcomponents into

complete units, tested, and shipped to a system assembly plant or to spare parts distri-

bution facilities. Thus, the manufacturing process takes place at a number of separate

facilities, many of which are usually under different company managements. As noted

in the previous section, the management of such a distributed operation poses special

problems. An example is the necessity for extremely tight coordination between the

component manufacturers and the system producer of production schedules, testing,

inspection, and quality control activities. The diffi culty of managing a distributed pro-

duction process for a new and complex system necessitates an integrated team effort

in which systems engineers play an essential role in helping to deal rapidly and effi -

ciently with such inadvertent incompatibilities as may be encountered.

 Component manufacturing is the place where most special tooling, such as auto-

matic material forming, joining, and handling machinery, is required. The use of auto-

mation can substantially reduce the cost of production, but at the same time may involve

large development costs and extensive worker training. If newly introduced, it can also

cause start - up delays. Thus, the introduction of special tooling for component manu-

facture must be closely coordinated by the production contractor to minimize schedul-

ing problems.

496 PRODUCTION

 Production tolerances require special attention because they are directly affected

by tooling, as well as by any minor changes that may be made to reduce production

costs. Since these may affect both the ability to interface with components made by

another contractor and also system performance, systems engineering oversight by the

production contractor is necessary.

 Usually, the company that produces a given new system component is also the one

that developed it. However, the organizational separation of the company ’ s manufactur-

ing from its engineering operation creates the potential for mistakes in the design of

production tooling and test equipment resulting from imperfect communications.

Incompatibilities inadvertently introduced by design changes made in the interest of

cost reduction or other worthy objectives may consequently pass unnoticed until fi nal

component testing or even until system assembly. A degree of systems engineering

oversight is important, especially to ensure compatibility between the test equipment

at component manufacturers and that which will be used at the integration facility for

component acceptance. This should also include provisions for and periodic revalida-

tion of common calibration standards.

 The establishment of commercial standards at the part and subcomponent levels

has greatly simplifi ed many aspects of production and integration of electronic and

mechanical components. Economies of scale have reduced costs and have enabled a

broad degree of interchangeability, especially in component containers, mounting, and

interconnections.

 System Acceptance Tests

 Before each production system is accepted by the customer for delivery, it must pass

a formal systems acceptance test. This is usually an automated end - to - end test with

go – no go indications of key system performance.

 For a complex system, the design and development of suitable acceptance test

procedures and equipment is a major task requiring strong systems engineering leader-

ship. The test must determine that the requirement of ensuring that the product is

properly constructed meets the key requirements and is ready for operational use. Its

results must be unequivocal, regarding success or failure, and must require minimum

interpretation. At the same time, the test must be capable of being performed relatively

quickly without adding materially to the total cost of manufacturing. Such a balance

requires the application of systems engineering judgment as to what is essential to be

tested and what is not.

 The system acceptance test is usually witnessed by representative(s) of the cus-

tomer and is signed off on successful completion.

 Manufacturing Technology

 The explosive advance of modern technology has had dramatic impacts on products

and the process of production. Microelectronic chips, high - speed computing devices,

low - cost optics, piezoelectrics, and microelectromechanical devices are but a few of

dozens of technological advances that have radically changed the composition of com-

ACQUIRING A PRODUCTION KNOWLEDGE BASE 497

ponents and the way they are made. Even more changes in manufacturing methods and

equipment have been produced by the wholesale replacement of human factory opera-

tors by automatic controls and robotics. The new methods have greatly increased speed,

precision, and versatility of machining and other processes. Of comparable importance

is the reduction of the time to convert a machine from one operation to another from

days or weeks to minutes or hours. These changes have resulted in major economies

at nearly every aspect of manufacture. They have also made it possible to produce

higher - quality and more uniform components.

 Prior to the widespread application of computer - aided manufacture (CAM) and

component design, control of interfaces had to rely on inspection and testing using a

multiplicity of special tools and fi xtures. Today ’ s computer - controlled manufacture and

assembly, as well as the use of computer - based confi guration management tools that

can be electronically coordinated among organizations, make the management of inter-

faces of components built remotely far easier than in the past. However, to effectively

implement this degree of automation requires planning, qualifi ed staff, and signifi cant

funding. This, in turn, requires systems engineering thinking on the part of those orga-

nizing the production system.

 14.5 ACQUIRING A PRODUCTION KNOWLEDGE BASE

 For inexperienced systems engineers, the acquisition of knowledge regarding the

production phase that is both broad enough and suffi ciently detailed to infl uence

effectively the development process can appear to be an especially daunting task.

However, this task is basically similar to that of broadening the knowledge base in

diverse engineering specialties, in the elements of program management, and in

the interorganizational communications that every systems engineer must accomplish

over time. Some of the most effective means for acquiring this knowledge are

summarized below.

 Systems Engineering Component Knowledge Base

 In order to guide the engineering of a new system, systems engineers must acquire a

basic level of knowledge concerning the basic design and production processes of

system components. This means that systems engineers must appreciate the impact of

production factors on the suitability of particular components to meet the requirements

for their use in a specifi c system application. To make the acquisition of such a knowl-

edge base more achievable, the following considerations may be helpful:

 1. Focus on those components that use advanced technology and/or recently devel-

oped production processes. This means that attention to mature components and

established production processes may be relaxed.

 2. Focus on previously identifi ed risk areas as they may affect or be affected by

production.

498 PRODUCTION

 3. For these identifi ed risk areas, identify and establish contact with sources of

expert knowledge from key in - house and contractor engineers. This will be

invaluable in helping solve problems that may arise later.

 The type and extent of the necessary knowledge base will vary with the system

and component areas. Some examples are described below.

 Electronics Components. Modern electronics is largely driven by semiconduc-

tor technology, so familiarity with the nature of circuit chips, circuit boards, solid - state

memories, microprocessors, and gate arrays is necessary, though only to the level of

understanding what they are, what they do, and how they should, and even more impor-

tantly, should not be used. Their development is in turn driven by commercial technol-

ogy, and in many instances, their capability is multiplying according to Moore ’ s law.

It is therefore important to have a feel for the current state of the art (e.g., component

densities, processor speeds, chip capabilities) and its rate of change.

 Electro - optical Components. In communications and displays, electro - optical

components play key roles, thanks to advances in lasers, fi ber optics, and solid - state

electro - optical elements. Their development is also driven by commercial applications

and is advancing rapidly in the above areas.

 Electromechanical Components. As their name implies, these components

combine the features of electrical and mechanical devices (e.g., antennae, motors).

Their characteristics tend to be peculiar to the specifi c application and can best be

learned on a case - by - case basis.

 Mechanical Components. Most applications of mechanical components are

mature. However, several areas are moving rapidly. These include advanced materials

(e.g., composites, plastics), robotics, and micro devices. Their design and production

have been revolutionized by computer - aided engineering (CAE) and CAM.

 Thermomechanical Components. Most of these components relate to energy

sources and thermal controls. For this reason, safety is frequently a key issue in their

system applications, as is the related function of control.

 Software Components. Software, and embedded fi rmware derived from it, is

rapidly becoming part of virtually every device (e.g., communications, transportation,

toys). The process of designing and producing reliable software is also advancing as

rapidly. The production aspects of software and fi rmware are of course very different

from hardware. Every systems engineer should understand the general capabilities,

including the advantages and limitations, of software quality and software design and

implementation, as well as the basic differences between computer - based software and

fi rmware. Software is treated in greater depth in Chapter 11 .

ACQUIRING A PRODUCTION KNOWLEDGE BASE 499

 Production Processes

 Production processes are not the responsibility of systems engineers. Nevertheless, the

general nature of these processes and typical problems associated with them must be

understood by systems engineers to give them the knowledge to resolve problems that

occur in production, especially during start - up.

 Observing Production Operations. The factory fl oor is often the most illu-

minating source of insight concerning the manufacturing process, especially when

observation is supplemented by questioning factory personnel. Opportunities to observe

production operations occur naturally during site visits, production planning, and other

activities, but these are seldom adequate to provide even a superfi cial understanding of

manufacturing processes. Systems engineers should endeavor to schedule special

factory tours to acquire a fi rst - hand feel of how the factory operates. This is especially

important because of the rapid advances in manufacturing tools and processes brought

about by increasing automation. Because the initial production of new components is

likely to run into problems with tools, processes, materials, parts availability, quality

control, and so on, it is important to develop a feel for the nature of the associated

activities and possible means for problem resolution. Of course, the best opportunity

to learn production processes is a short assignment in the manufacturing

organization.

 Production Organization. It has been previously noted that the organization

and management of the production process of a major system is different from the

organization and management of the system development process. It is important for

systems engineers to be acquainted with the differences, both generically and for the

specifi c system under development. While this is of most immediate concern for

program management, it strongly infl uences how the transition from engineering to

production should be planned, including the transfer of design knowledge from design

engineers to production engineers. In particular, in many companies, the communica-

tions between engineering and production personnel are often formal and largely

inadequate. When this is the case, company management should provide special means

to establish adequate communication across this critical interface — a function in which

systems engineers can play a leadership role. Failure to bridge this potential commu-

nication gap properly has been a major contributor to critical delays and near failures

in the production of numerous major systems.

 Production Standards. Virtually all types of manufacturing are governed by

industry or government standards. The U.S. government is replacing most of its own

standards by those developed by industry, as well as moving to utilize COTS parts and

components insofar as is practicable. These standards are primarily process oriented

and defi ne all aspects of production. Systems engineers must be familiar with the stan-

dards that are applicable to components and subsystems in their own system domain

and with the way in which these standards are applied to the manufacturing process.

These standards are often indicative of the quality of the components that are likely to

500 PRODUCTION

be produced, and hence of the degree to which oversight, special testing, and other

management measures will be required. While the decisions regarding such actions are

the responsibility of program management, systems engineering judgment is a neces-

sary ingredient.

 14.6 SUMMARY

 Systems Engineering in the Factory

 The objectives of the production phase are to produce sets of identical hardware and

software components, to assemble components into systems meeting specifi cations, and

to distribute produced systems to customers.

 Essential requirements are that the produced system performs as required, is afford-

able, and functions reliably and safely as long as required.

 Engineering for Production

 Concurrent engineering, or product development, has the following features: it is the

process of introducing production considerations during development. Production spe-

cialists and other specialty engineers are key members of the design team. Therefore,

systems engineers must facilitate communications among team members.

 The decision to begin new system development must demonstrate its need, techni-

cal feasibility, and affordability. The formulation of realistic system requirements must

include a clear sense of the status and trend in manufacturing technology. As technology

evolves, requirements must also evolve to stay consistent.

 Production risks are infl uenced by the nature and maturity of the associated manu-

facturing methods and are heavily weighted in trade - off analyses of system

alternatives.

 Successful production requires that new production processes and materials are

validated before acceptance, that component interfaces are compatible with manufac-

turing processes, and that factory test equipment is validated and ready. The latter is

typically demonstrated by production prototypes that have demonstrated product

performance.

 Unexpected incompatibilities at component interfaces have the following

features:

 • They are often fi rst discovered during the integration of prototype components.

 • Corrections of incompatibilities may themselves produce new areas of

incompatibility.

 Systems engineers must be knowledgeable of factory production and test accep-

tance processes. Direction and control of production differs from system development

in the following: (1) different tools, experience base, and skills; and (2) a different team

of specialists — few key personnel carry over from development.

SUMMARY 501

 Production risks are frequently not revealed until production prototypes are fabri-

cated and tested. Remedial action is likely to cause expensive delays; therefore, systems

engineering expertise is crucial for resolution.

 Transition from Development to Production

 Stresses on the transition from development to production result from

 • insuffi cient funding for production preparation,

 • little or no reserve funds for unexpected problems,

 • too little testing of production prototypes, and

 • schedules held fi rm even though problems exist.

 The transition to production is a most critical period for continuity of operations

and features must be recognized. The transition transfers responsibility from develop-

ment to manufacturing specialists. And manufacturing facilities are typically separate

and independent of engineering. Therefore, communication is diffi cult between engi-

neering and production personnel. Consequently, systems engineers are needed for

facilitating communications. Finally, a system production plan is required as a blueprint

for transition.

 The transition to production is critical to the confi guration management process

because documentation cannot lag behind the change process; systems engineering is

the keeper of the integrity of the design.

 Production Operations

 The planning, design, implementation, and operation of a “ production system ” is a task

of comparable complexity to developing the system itself. Architecting of the produc-

tion system requires

 • acquisition of extensive tooling and test equipment,

 • coordination with component manufacturing facilities,

 • organization of a tight confi guration management capability,

 • establishment of an effective information system with enginery organization,

 • training the production staff in the use of new tooling,

 • accommodation of both low and high production rates, and

 • promotion of fl exibility to accommodate future product changes.

 Specialized components often represent different product lines and pose special

problems. Tight coordination is needed between component manufacturing and system

producers, in production schedules, testing, inspection, and quality control. Establishment

of commercial standards at the part and subcomponent levels leads to greatly simplifi ed

production and integration of components.

502 PRODUCTION

 Computer - controlled manufacturing methods greatly increase speed, precision, and

versatility of factory operations. They reduce time to reconfi gure machines between

operation modes, and produce higher - quality parts and more uniform components. This

often leads to major cost savings.

 Acquiring a Production Knowledge Base

 Systems engineers must acquire a basic knowledge concerning production processes to

be capable of guiding the engineering of a new system. They must focus on advanced

technology and new production processes, as well as risk areas as they may be affected

by production.

 PROBLEMS

 14.1 Because complex systems contain a large number of subsystems, compo-

nents, and parts, it is usually necessary to obtain a signifi cant number of them

from outside subcontractors and vendors. In many cases, it is possible to

make these items either in - house or procure them elsewhere. Both approaches

have advantages and disadvantages. Discuss the main criteria that are involved

in deciding which approach is best in a given case.

 14.2 One of the requirements of a good systems engineer who is engaged in

developing systems which have signifi cant components that are manufac-

tured is that he or she be knowledgeable about factory production and accep-

tance test processes. Give two examples that illustrate the importance of this

knowledge in achieving on - time delivery of the fi nal product.

 14.3 Confi guration management is particularly important during the transition

from system development to production. Identify four specifi c areas where

close attention to confi guration management is crucial during this phase

transition and explain why.

 14.4 Discuss how the planning, design, implementation, and operation of a pro-

duction system is a task of comparable complexity to that required to develop

the actual system itself.

 14.5 Describe the process referred to as concurrent engineering, its objectives, use

of interdisciplinary integrated product teams (IPTs), and its place in the

system life cycle. Describe the role of systems engineers on the teams.

Describe what problems you would expect to be encountered in assembling

an IPT and in making its effort productive and how they might be handled.

 14.6 Discuss four typical problems that make the transition from development to

production diffi cult and the approaches to minimizing them.

 14.7 Production is typically the responsibility of a division of a company inde-

pendent of the development organization. It has been stated that the transition

to production and the production process itself requires systems engineering

expertise in certain critical areas. List some instances where systems engi-

FURTHER READING 503

neering expertise in the production organization is required in the production

of medical devices (e.g., implantable pacemakers).

 14.8 Discuss the principal areas in which CAM has revolutionized the manufac-

ture of automobiles.

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapters 16 and 17.

 G. E. Dieter and L. C. Schmidt . Engineering Design , Fourth Edition . McGraw - Hill , 2009 ,

Chapter 13.

 International Council on Systems Engineering . Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities , INCOSE - TP - 2003 - 002 - 03.2, Sections 4 and 9.

July, 2010 .

 Systems Engineering Fundamentals . Defense Acquisition University (DAU Press) , 2001 ,

Chapter 7.

505

 15.1 INSTALLING, MAINTAINING, AND UPGRADING THE SYSTEM

 The operations and support phase of the system life cycle is the time during which the

products of the system development and production phases perform the operational

functions for which they were designed. In theory, the tasks of systems engineering

have been completed. In practice, however, the operation of modern complex systems

is never without incident. Such systems usually require substantial technical effort in

their initial installation and can be expected to undergo signifi cant testing and compo-

nent replacement during periodic maintenance periods. Occasional operational glitches

must also be expected due to operator error, operating stresses, or random equipment

failures. In such cases, systems engineering principles must be applied by system opera-

tors, maintenance staff, or outside engineering support to identify the cause of the

problem and to devise an effective remedy. Further, large complex systems, such as an

air traffi c control system, are too costly to replace in their entirety and therefore are

subject to major upgrades as they age, which introduce new subsystems in place of

obsolescent ones. All of these factors are suffi ciently signifi cant in the total role of

systems engineering in the overall system life cycle to warrant a special place in the

study of systems engineering.

 15

OPERATIONS AND SUPPORT

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

506 OPERATIONS AND SUPPORT

 The principal sections of this chapter summarize the typical activities that take

place in the course of a system ’ s operating life, beginning with the time it is delivered

from the production or integration facility to the operational site until it is replaced by

a newer system or otherwise rendered obsolete and disposed of. The section on instal-

lation and test deals with problems associated with integrating the system with its

operating site and the successful interconnection of internal and external interfaces. The

section covering in - service support concerns activities during the normal operations of

the system; these include maintenance, fi eld service support, logistics, and dealing with

unexpected operational emergencies. The section on major system upgrades is con-

cerned with periodic subsystem modifi cations that may be introduced to maintain

system effectiveness in the face of changing user requirements and advancing technol-

ogy. Such system upgrades require the same type of systems engineering expertise as

did the original system development, and may also present new and unique challenges

due to added constraints that may be imposed by the process of integrating new and

old components. The last section on operational factors in system development describes

the kinds of information that systems engineers should seek to acquire regarding the

operational characteristics of the system being developed, together with the opportuni-

ties that they may have for obtaining such knowledge. Such knowledge is just as

important to systems engineers who lead the system development as is a fi rm grounding

in factors that affect system production processes and costs.

 Place of the Operations and Support Phase in the System
Life Cycle

 Before discussing the systems engineering activities during the operations and support

phase, it should be noted that this phase is the concluding step of the system life cycle.

The functional fl ow diagram of Figure 15.1 shows the inputs from the production phase

to be operational documentation and a delivered system, and the outputs to be an obso-

lete system and a plan for disposing it in an appropriate way.

 Figure 15.1. Operations and support phase in a system life cycle.

Operations and
Maintenance

Documentation
Disposal

Plan

Production and
Deployment

Operations and
Support

System Operation
Logistics Support
System Upgrades

Disposal

Installed
Operational

System

Obsolete
System

INSTALLATION AND TEST 507

 Systems Engineering in the Operations and Support Phase

 During its operating life, a typical complex system encounters a number of different

periods when its operation is interrupted. These incidents are represented in Figure 15.2 .

The abscissa is time, running from system delivery to its disposal. The ordinate repre-

sents the relative level of systems engineering involvement in the various events identi-

fi ed by the captions in the upper part of the fi gure. At the start, a column is seen

symbolizing the installation and test period, which is shown to take substantial time

(usually weeks or months) and a relatively large systems engineering effort. The four

low, regularly spaced columns represent planned maintenance periods, which may

require days of system downtime. The narrow spikes at irregular intervals are meant

to correspond to random system breakdowns requiring emergency fault identifi cation

and repairs. These are usually fi xed quickly but may take considerable systems engi-

neering effort to fi nd a solution that can be effected with minimum downtime. The large

column on the right represents a major system upgrade, requiring a relatively long

period (many months) and a high level of systems engineering. The latter may rival the

effort involved in a new system development and may itself require a multiphase

approach.

 15.2 INSTALLATION AND TEST

 System Installation

 The effort required for installing a delivered system at its operating site is strongly

dependent on two factors: (1) the degree of physical and functional integration that had

 Figure 15.2. System operations history.

Casualty and Repairs

System
Upgrade

System
Installation

System
Disposal

D
e
g
re

e
 o

f
S

ys
te

m
s
 E

g
in

e
e

ri
n
g

Scheduled Maintenance

Logistics Supply

508 OPERATIONS AND SUPPORT

been accomplished at the production facility and (2) the number and complexity of the

interfaces between the system and the operating site (including other interacting

systems). In the case of an aircraft, for example, virtually all signifi cant system elements

typically are assembled and integrated at the prime contractor ’ s factory site so that

when the aircraft leaves the production facility, it is ready for fl ight. The same is true

for an automobile, a military truck, or almost any kind of vehicle.

 The installation of many large - scale systems on a land or ship platform may be a

major operation, especially if some of its subsystems are manufactured at separate

locations by different contractors and are assembled only after delivery to the operating

site. For example, an air terminal control system typically consists of several radars, a

computer complex, and a control tower with an array of displays and communication

equipment, all of which must be integrated to operate as a system and linked to the en

route control system, runway landing control systems, and an array of associated equip-

ment required to handle air traffi c in and out of an airport. The installation and test of

such a system is in itself a major systems engineering enterprise. Another such example

is a ship navigation system, which consists of many subsystems that are manufactured

at various sites, frequently by different contractors, and which have complex interfaces

with ship elements. After the initial ship systems pass integration tests at a land site,

subsequent production subsystems are often assembled and integrated only after they

are delivered to the shipyard. The task of interfacing elements of the system with ship

structure, power, controls, and communications is usually performed at the shipyard by

experts in ship installations.

 Internal System Interfaces. As discussed previously, the systems engineer has

a responsibility to assure that system integrity is maintained throughout assembly and

installation. Installation procedures must be carefully planned and agreed to by all

involved organizations. The systems engineer must be a key participant in this planning

effort and in seeing it properly carried out. However, regardless of the degree of plan-

ning, the proper integration of subsystem interfaces will always be a potential source

of trouble and therefore deserves special effort.

 As noted previously, interfacing of the subsystems at the operating site is especially

complicated when major subsystems are designed and manufactured by different con-

tractors. In shipboard systems, two common examples of such subsystems are propul-

sion and communications. These subsystems include interfacing elements that employ

both low - and high - power digital and analog signals, together with numerous switching

and routing processors. Some of these equipments will be new state - of - the - art elements

designed specifi cally for this project, and some will be older, off - the - shelf items.

 Under such circumstances, problems during installation and checkout are almost

certain to be encountered. Moreover, some problems will be diffi cult to track down

because the necessary resources, such as test specialists and troubleshooting equipment,

may not be available at the installation site. In such instances, it is not unusual for the

acquisition agency to bring in special “ tiger teams ” for assistance. If available, the

people who developed the original system, particularly the systems engineers who will

have the most system - level knowledge and management skills, are best qualifi ed to

work on these problems.

INSTALLATION AND TEST 509

 System Integration Site. For systems where integration of major subsystems

is especially diffi cult to accomplish at the operational site, it becomes cost - effective to

utilize a specially equipped and supported integration site where subsystems and com-

ponents are assembled and various levels of checkout are performed prior to partial

disassembly and shipment to the operational site. This may be the same integration site

that is used during development to test and evaluate various elements of prototype

equipment, or it may be a separate facility also used for training of operators and

maintenance personnel. In either case, such a special site can also be extremely valuable

in checking out fi xes to problems encountered during initial operations, as well as in

supporting the engineering of system upgrades.

 External System Interfaces. In addition to numerous internal subsystem inter-

faces, complex systems have many critical external interfaces. Two examples are prime

power, which is usually generated and distributed by an external system, and commu-

nication links, which interface through hardwired electronic circuits or by microwave

links. Communication links not only have to be electronically compatible but must also

have the appropriate set of message protocols, which are usually processed by

software.

 A further complicating factor is that large systems must often interface with

systems that are procured from developers who are not under the control of either

the prime system contractor or the system acquisition agent. This means that design

changes, quality control, delivery schedules, and so on, can become major coordination

issues. This also makes the resolution of problems more troublesome by raising

the issue of who may be at fault and should therefore assume responsibility for cor-

recting any resulting problems. Problems of this type emphasize the importance of

having a well - planned and executed test program during system assembly and

integration.

 During system development, special pains must be taken to ensure that the details

of external interactions are fully specifi ed early in the design process. In many cases,

the documentation of interacting systems is insuffi ciently detailed and sometimes so

far out of date that their interface connections to the newly developed system are no

longer valid. Systems engineers who have fi rst - hand experience with system environ-

ments can often anticipate many such critical factors relating to external interfaces,

thereby ensuring that their characteristics are defi ned early enough in the development

process to avoid problems during system installation.

 Communication links other than standard commercial communications are notori-

ously troublesome. They often employ special connections and message protocols

whose detailed specifi cations are diffi cult to obtain ahead of time.

 The result can lead to surprises during system installation and initial operation,

with no clear evidence as to which organization is responsible for the incompatibility

and capable of resolving it. In such circumstances, it is usually advisable for the

development contractor to take the initiative to at least identify the specifi c technical

problem and to propose the means for a solution. Otherwise, the blame for the lack of

system interoperability is commonly placed arbitrarily on the new system and its

developer.

510 OPERATIONS AND SUPPORT

 Nondisruptive Installation

 Some critical systems require continuous operations and cannot be stopped or paused

during system installation or upgrades. This tends to be the case when installing a

system into a large system of systems. The installation of a new or upgraded system

into the system of systems cannot disrupt current operations. Examples include system

installation into a city power grid, a complex industrial wide area network, a national

communications network, a major defense system of systems, and the national air traffi c

control system of systems. All of these examples require 24 - hour operations without

signifi cant disruption.

 Installing major systems into a system of systems without disruption requires

careful planning and attention to detail. In the recent past, two general approaches have

emerged to assist in this area: maintaining a system of systems simulation and maintain-

ing a system of systems test bed. Figure 15.3 depicts the fi rst option.

 With this strategy, a system of systems simulation with hardware - in - the - loop is

created. This simulation is typically user - in - the - loop as well, as opposed to stand alone.

This simulation facility is verifi ed and validated against actual data collected from the

operational system of systems, which interacts with the environment. Typically, the

simulation would not interact with the environment (although there are exceptions

to this).

 The system of systems simulation is used as a test bed to determine (1) the impact

the new system will have on the system of systems before it is actually installed and

(2) an installation strategy that will keep operations at an acceptable level. Once a

strategy has been developed and verifi ed using the system of systems simulation facil-

ity, knowledge and confi dence is gained on how to install the system into the actual

system of systems.

 The advantage of this nondisruptive installation mode is the cost savings and the

ability to model installation procedures and techniques before installing the system into

the actual system of systems. The system of systems simulation facility, while expen-

sive and complex, is only a representation of the actual system of systems and can be

scoped to desired budget and tolerance levels. Obviously, if the system of systems in

 Figure 15.3. Non - disruptive installation via simulation.

New

System(s)

V and V
Operational

System of

Systems
SoS Simulation

SoS Testing
System Deployment StrategyE

n
vi

ro
n
m

en
t

INSTALLATION AND TEST 511

question is a defense network responsibility for the survival of a nation, extremely

high tolerances would be required. However, if the system of systems is a business

information technology (IT) network, tolerance may be relaxed to a comfortable

risk level.

 The second concept used within nondisruptive installations involves the develop-

ment of a duplicate system of systems, scaled down from the operational one, and is

depicted in Figure 15.4 . The concept is similar to the fi rst concept in that the system is

installed into the scaled - down version of the system of systems, and testing occurs.

During this process, the duplicate system of systems is typically disconnected from the

operational system of systems to avoid any interference or disruption. An installation

strategy is developed from the experience to apply for installation into the full - scale

system of systems.

 Once confi dence in the risk of disruption is acceptable, the system is installed into

the operational system of systems. Many times, the operational system of systems is

disconnected from the environment — the duplicate system of systems is used as a sur-

rogate during the installation. This is typically performed during a low demand situation

or time frame to ensure the limited capacity of the duplicated system of systems is

suffi cient.

 Although this strategy for nondisruptive installation is expensive (you are basically

building a scaled - down version of the operation system of systems), it has two major

benefi ts: (1) the duplicate system of systems is an architecture copy of the operational

system of systems and is the closest representation that is possible without duplicating

both the architecture and scale of the original; and (2) during peak demand, the dupli-

cate, scaled - down system of systems can be used to augment the operational system of

systems. National communications systems use this technique to keep its networks

operational continuously, and to allow for unexpected peak demand periods.

 Figure 15.4. Non - disruptive installation via a duplicate system.

E
n
v
ir

o
n
m

e
n
t

New

System

SoS Testing
System Deployment Strategy

Operational

System of

Systems
Duplicate

System of

Systems

512 OPERATIONS AND SUPPORT

 Facilities and Personnel Limitations

 Neither the facilities nor the personnel assigned to the task of system installation and

test are normally equipped to deal with signifi cant diffi culties. Funds are inevitably

budgeted on the assumption of success. And, while the installation staff may be expe-

rienced with the installation and test of similar equipment, they are seldom knowledge-

able about the particular system being installed until they have gained experience during

the installation of several production units. Moreover, the development contractor staff

consists of fi eld test engineers, while systems engineers are seldom assigned until

trouble is encountered, and when it is, the time required to select and assign this addi-

tional support can be costly.

 The lesson to be learned is that the installation and test part of the life cycle should

be given adequate priority to avoid major program impact. This means that particular

attention to systems engineering leadership in the planning and execution of this process

is a necessity. This should include the preparation and review of technical manuals

describing procedures to be followed during installation and operation.

 Early System Operational Diffi culties

 Like many newly developed pieces of equipment, new systems are composed of a

combination of new and modifi ed components and are therefore subject to an excessive

rate of component failure or other operational problems during the initial period of

operation, a problem that is sometimes referred to as “ infant mortality. ” This is simply

the result of the diffi culty of fi nding all system faults prior to total system operation.

Problems of this type are especially common at external system interfaces and in opera-

tor control functions that can be fully tested only when the system is completely

assembled in an operational setting. During this system shakedown period, it is highly

desirable that a special team, led by the user and supported by developer engineers, be

assigned to rapidly identify and resolve problems as soon as they appear. Systems

engineering leadership is necessary to expedite such efforts, as well as to decide what

fi xes should be incorporated into the system design and production, when this can best

be done, and what to do about other units that may have been already shipped or

installed. The need for rapid problem resolution is essential in order to effect necessary

changes in time to resolve uncertainties regarding the integrity of the production design.

Continuing unresolved problems can lead to stoppages in production and installation,

resulting in costly and destructive impact on the program.

 15.3 IN - SERVICE SUPPORT

 Operational Readiness Testing

 Systems that do not operate continuously but that must be ready at all times to perform

when called upon are usually subjected to periodic checks during their standby periods

to ensure that they will operate at their full capability when required. An aircraft that

has been idle for days or weeks is put through a series of test procedures before being

IN-SERVICE SUPPORT 513

released to fl y. Most complex systems are subjected to such periodic readiness tests to

ensure their availability. Usually, readiness tests are designed to exercise but not to fully

stress all functions that are vital to the basic operation of the system or to operational

safety.

 All systems, sooner or later, will experience unexpected problems during opera-

tional use. This can occur when they encounter environmental conditions that were not

known or planned for during development. Periodic system tests provide information

that helps assess and resolve such problems quickly when they occur.

 Periodic operational readiness tests also provide an opportunity to collect data on

the history of the system operating status throughout its life. When unexpected prob-

lems occur, such data are immediately available for troubleshooting and error correc-

tion. System readiness tests have to be designed and instrumented with great skill to

serve their purpose effectively and economically — a true systems engineering task.

 Readiness tests often must be modifi ed after system installation to conform more

fully to the needs and capabilities of system operators and maintenance personnel.

Development systems engineers can effectively contribute to such an activity. Location

of data collection test points and the characteristics of the data to be collected, for

example, data rate, accuracy, recording period, and so on, also represent systems engi-

neering decisions.

 Commonly Encountered Operational Problems

 Software Faults. Faults in complex software - intensive systems are notoriously

diffi cult to eliminate and tend to persist well past the initial system shakedown period.

The diffi culties stem from such inherent features as the abstractness and lack of visibil-

ity of software functionality, sparseness of documentation, multiplicity of interactions

among software modules, obscure naming conventions, changes during fault resolu-

tions, and a host of other factors. This is especially true of embedded real - time software

commonly found in dispersed automated systems.

 The variety of computer languages and programming methodology further com-

plicates system software support. While most analog circuitry has been replaced by

digital circuits in signal processing and many other applications, computer code written

in older languages, such as COBOL, FORTRAN, and JOVIAL, is still in widespread

use. This “ legacy ” code, mixed with more recent and modern code (e.g., C + + , Java),

makes it that much more diffi cult to maintain and modify operational computer

programs.

 Remedies for software faults are correspondingly complicated and troublesome. A

corrective patch in a particular program module is likely to affect the behavior of several

interacting modules. The diffi culty of tracing all paths in a program and the mathemati-

cal impossibility of testing all possible conditions make it virtually impossible to ensure

the validity of changes made to correct faults in operational software.

 The relative ease of making software changes often leads to situations where these

changes are made too quickly, and without signifi cant analysis and testing. In such

cases, documentation of the system changes is likely to be incomplete, causing diffi cul-

ties in system maintenance.

514 OPERATIONS AND SUPPORT

 The only way to prevent serious deterioration of system software quality is to

continue to subject all software changes to strict confi guration control procedures and

formal review and validation as practiced during the engineering design and production

phases. As noted elsewhere, proving - in changes at a test facility by experienced soft-

ware engineers prior to installing these in the operational system is an excellent prac-

tice; this procedure will pay for itself by minimizing the inadvertent introduction of

additional faults in the course of system repair. Chapter 11 is devoted to a discussion

of all of the special aspects of software engineering.

 Complex Interfaces. In the section on system installation and test (Section

 15.2), it was stated that external system interfaces were always a potential source of

problems. During installation, there is always a strong push for accomplishing the

process as quickly as possible so that operational schedules are maintained. So, while

documented installation procedures are generally followed, insuffi cient time is often

allocated to exercise thoroughly the necessary checkout procedures. As noted earlier,

examples of areas where operational problems typically show up in a shipboard system

are displays, navigation, and communication subsystems. The control panels for these

subsystems are usually distributed among various locations and therefore have a strong

functional as well as physical interaction. In such cases, the operational crews should

be alerted to the potential problems and should be provided with explicit information

on the locations and interfaces of all interacting system elements.

 Field Service Support

 It is common for deployed complex systems to require fi eld support during the lifetime

of the system. In the case of military systems, this is often provided by an engineering

support unit within a branch of the service. It is also common for that unit to contract

with civilian agencies to provide general engineering support to keep the system operat-

ing as intended.

 When system operating problems are detected, it is necessary fi rst to determine

whether the problem is due to a fault in the operational system or is a result of improper

functioning of a built - in fault indicator. For example, the device may be erroneously

signaling a failure (false alarm) or may be ascribing it to the wrong function. Therefore,

the fi eld engineer who is called upon to troubleshoot a problem should be knowledge-

able in system operation, including especially the functioning of built - in test devices.

 When any fault is encountered during system operation, the required remedial

actions are more diffi cult to implement than they would have been during development

or even during installation and test. This is because (1) user personnel are not technical

specialists; (2) special checkout and calibration equipment used during installation will

have been removed; (3) most analysis and troubleshooting tools (e.g., simulations) are

not available at the operational site; and (4) most knowledgeable people originally

assigned to the development project are likely to have been reassigned, to have changed

jobs, or to have retired. Because of these factors, for operational fi xes to be done reli-

ably, they often have to be developed remotely; that is, data will have to be collected

at the operational site and transmitted back to the appropriate development site for

IN-SERVICE SUPPORT 515

analysis; corrective action will have to be formulated; and fi nally, the required changes

will have to be implemented at the operational site by a special engineering team.

 As noted previously, facilities at the developer ’ s test site are excellent locations

for follow - on system work because of the availability of knowledgeable people, con-

fi guration fl exibility, extensive data collection and analysis equipment, and the oppor-

tunity to carry out disciplined and well - documented tests and analyses.

 Scheduled Maintenance and Field Changes

 Most complex systems undergo periods of scheduled maintenance, testing, and often

revalidation. Nonemergency fi eld changes are best accomplished during such scheduled

maintenance periods, where they can be carried out under controlled conditions by

expert personnel and can be properly tested and documented. Fortunately, this usually

accommodates the majority of signifi cant changes. In most cases, as in that of com-

mercial aircraft, such operations utilize special facilities with a full complement of

checkout equipment, have a substantial parts stockpile and an automated inventory

system, and are conducted by specially trained personnel.

 Any changes, large or small, to an operational system require careful planning. As

noted earlier, changes should be made under confi guration control and should conform

to documentation requirements that specifi cally state how they will be carried out. All

changes should be viewed from a system perspective so that a change in one area does

not cause new problems in other areas. Any technical change to an operational system

will usually also require changes in hardware – software system documentation, repair

manuals, spare parts lists, and operating procedure manuals. In this process, systems

engineering is required to see that all issues are properly handled and to communicate

these issues to those responsible for the overall operation.

 Severe Operational Casualties

 The previous paragraphs dealt with operational problems that could be corrected during

operations or short periods of scheduled maintenance. It must be assumed that a

complex system built to operate for a dozen years or more may accidentally suffer a

failure of such magnitude that it is effectively put out of commission until corrected,

such as by a fi re, a collision, or through other major damage. Such a situation normally

calls for the system to be taken out of service for the time necessary to repair and

reevaluate it. However, before undertaking the drastic step of an extended interruption

of service, a systems engineering team should be assembled to explore all available

alternatives and to recommend the most cost - effective course of action for restoring

operation. The severe casualty poses a classical system problem where all factors must

be carefully weighed and a recovery plan developed that suitably balances operational

requirements, cost, and schedule.

 Logistics Support

 The materials and processes involved in the logistics support of a major operational

system constitute a complex system themselves. The logistics for a major fi elded system

516 OPERATIONS AND SUPPORT

may consist of a chain of stations, extending from the factory to the operational sites,

which supplies a fl ow of spare parts, repair kits, documentation, and, when necessary,

expert assistance as required to maintain the operating system in a state of readiness at

all times. Technical manuals and training materials should be considered part of system

support. The effort of developing, producing, and supporting effective logistics support

for a major operating system can represent a substantial fraction of the total system

development, production, and operating cost.

 A basic problem in logistics support is that it must be planned and implemented

on the basis of estimates of which system components (not yet designed) will need the

most spare parts, what the optimum replacement levels will be for the different sub-

systems (not yet completely defi ned), what means of transportation, and hence time to

resupply, will be available in potential (hypothetical) theaters of operation, and many

other assumptions. These estimates can benefi t from strong systems engineering par-

ticipation and must be periodically readjusted on the basis of knowledge gained during

development and operating experience. This means that logistic plans will need con-

tinual review and revision, as will the location and stocking level of depots and transport

facilities.

 There are also direct connections between the logistics support system and system

design and production. The sources of most spare parts are usually the production

facilities that manufacture the corresponding components and may include the system

production contractor and the producers of system components. Moreover, subcompo-

nents and parts commonly include commercial elements and hence are subject to

obsolescence design changes or discontinued availability.

 System fi eld changes also directly affect the logistic supply of the affected com-

ponents and other spare parts. Since the process of refl ecting such changes in the

logistics inventory cannot be instantaneous, it is essential to expedite it, as well as to

maintain complete records of the status of each affected part wherever it is stored.

 It can be seen from the above that the quality and timeliness of overall support

provided by the logistic system will have direct effects on operability. This is particu-

larly true for systems operating in the fi eld, where the timely delivery of spare parts

can be crucial to survival. In the case of commercial airlines, timely delivery of needed

parts is also critical to maintaining schedules. Managing such a logistics enterprise is

itself an enormous task of vital importance to the successful operational capability of

the system.

 15.4 MAJOR SYSTEM UPGRADES: MODERNIZATION

 In the chapters dealing with the origin of new systems, it was noted that systems are

usually developed in response to the forces of advancing technology and competition,

which combine to create technical opportunities and generate new needs. Similarly,

during the development and operational life of a system, the dynamic infl uence of

these same factors continues, thereby leading to a gradual decrease in the system ’ s

effective operational value relative to advances made by its potential competitors or

adversaries.

MAJOR SYSTEM UPGRADES: MODERNIZATION 517

 Advances in technology are far from uniform across the many components that

constitute a modern complex system. The fastest growth has been in semiconductor

technology and electro - optics, with the resultant dramatic impact on computer speed

and memory and on sensors. Mechanical technology has also advanced, but mainly in

relatively limited areas, such as special materials and computer - aided design and manu-

facture. For example, in a guided missile system, the guidance components may become

outdated, while the missile structure and launcher remain effective.

 Thus, obsolescence of a large complex system often tends to be localized to a

limited number of components or subsystems rather than affecting the system as a

whole. This presents the opportunity of restoring its relative overall effectiveness by

replacing a limited number of critical components in a few subsystems at a fraction of

the cost of replacing the total system. Such a modifi cation is usually referred to as a

system upgrade. Aircraft generally undergo several such upgrades during their operat-

ing life, which, among other modifi cations, incorporate the most advanced computers,

sensors, displays, and other devices into their avionics suites. A complication often

encountered is discontinued production by manufacturing sources, which requires

adjusting system interfaces to fi t the replacements.

 System Upgrade Life Cycle

 The development, production, and installation of a major system upgrade can be con-

sidered to have a mini life cycle of its own, with phases that are similar to those of the

main life cycle. Active participation by systems engineering is therefore a vital part of

any upgrade program.

 Conceptual Development Stage. Like the beginning of a new system devel-

opment, the upgrade life cycle begins with the recognition through a needs analysis

process of a need for a major improvement in mission effectiveness because of growth

in the mission needs and defi ciencies in the current system ’ s response to these needs.

 There follows a process of concept exploration, which compares several options

of upgrading a portion of the current system with its total replacement by a new and

superior system, as well as with options for achieving the objective by different means.

If the comparison shows a convincing preference for the strategy of a limited system

modifi cation or upgrade, and is feasible both technically and economically, then a deci-

sion to inaugurate such a program is appropriate.

 The equivalent of the concept defi nition phase for a system upgrade is similar to

that for a new system, except that the scope of system architecture and functional

allocation is limited to designated portions of the system and to those components that

contain the parts of the system to be replaced. Proportionally greater effort is required

to achieve compatibility with the unmodifi ed parts of the system, keeping the original

functional and physical architecture unaltered. The above constraints require a high

order of systems engineering to accommodate successfully the variety of interfaces and

interactions between the retained elements of the system and the new components,

and to accomplish this with a minimum of rework while assuming that performance

and reliability have not been compromised.

518 OPERATIONS AND SUPPORT

 Engineering Development Stage. The advanced development phase of the

upgrade program, and most of the engineering design phase, is limited to the new

components that are to be introduced. Here again, special effort must be directed toward

interfacing the new components with the retained portions of the system.

 The integration of the upgraded system faces diffi culties well beyond those nor-

mally associated with the integration of a new system. This is caused by at least the

following two factors.

 First, the system being modifi ed will likely have been subjected to numerous repair

and maintenance actions over a period of years. During this time, changes may not

always have been rigorously controlled and documented, as would have been the case

if strict confi guration management procedures had then been in force. Accordingly, over

time, the deployed systems are likely to become increasingly different from each other.

This situation is especially troublesome in the case of software changes, which them-

selves are often patched to repair coding errors. The above uncertainty in the detailed

confi guration of each fi elded system requires extensive diagnostic testing and adapta-

tion during the integration process.

 Second, while vehicles and other portable systems are normally brought to a special

integration facility for the installation of the upgrade components, many large land - and

ship - based systems must be upgraded at their operating sites, thereby complicating the

integration process. The upgrading of the navigation systems on a fl eet of cargo vessels

with new displays and added automation requires effecting these changes on board ship,

using a combination of contractor fi eld engineers and shipyard installation technicians.

Installation and integration plans should provide special management oversight, extra

support when needed, and generous scheduled time to ensure a successful completion

of the task.

 System Test and Evaluation. The level and scope of system test and evaluation

required after a major system upgrade can range all the way from evaluating only the

new capabilities provided by the upgrade to a repeat of the original system evaluation

effort. The choice usually rests on the degree to which the modifi cations affect a distinct

and limited part of the system capabilities that can be tested separately. Accordingly,

when the upgrade alters the central functions of the system, it is customary to perform

a comprehensive reevaluation of the total system.

 Operations and Support. Major system upgrades always require correspond-

ingly large changes in the logistics support system, especially in the inventory of spare

parts. Operation training, with accompanying manuals and system documentation, must

also be provided.

 These phases require the same expert systems engineering guidance as did the

development of the basic system. While the scope of the effort is less, the criticality of

design decisions is no less important.

 Software Upgrades

 As described in Chapter 11 , software is much easier to change than hardware. Such

changes usually do not require an extensive system stand - down or special facilities.

MAJOR SYSTEM UPGRADES: MODERNIZATION 519

With increasing system functionality being controlled by software, the pressure for

software upgrades tends to make them considerably more frequent than major hardware

upgrades.

 However, to ensure that such operations are successful, special systems engineer-

ing and project management oversight is required to manage the diffi culties inherent

in system software changes:

 1. It is essential that the proposed changes be thoroughly checked out at the devel-

oper ’ s site before being installed into the operational software.

 2. The changes must be entered into the confi guration management database to

document the changed system confi guration.

 3. An analysis must be performed to determine the degree of regression testing

necessary to demonstrate the absence of unintended consequences.

 4. Operation and maintenance documentation must be suitably updated.

 The above actions are required for any system change but are often neglected for appar-

ently small software changes. It must be remembered that in a complex system, no

changes are “ small. ”

 Obsolescent legacy programs suffer from two disadvantages. First, the number of

software support personnel willing to work on legacy software is diminishing and

becoming inadequate. Second, modern high - performance digital processors do not have

compilers that handle the legacy languages. On the other hand, the task of rewriting

the programs in a modern language is comparable to the task of its original develop-

ment and is generally prohibitively costly. This presents a diffi cult system problem for

systems in the above position. Some programs have successfully used a software lan-

guage translation to greatly reduce the cost of converting legacy programs to a modern

language.

 Preplanned Product Improvement (P 3 I)

 For systems that are likely to require one or more major upgrades, a strategy referred

to as P 3 I is often employed. This strategy calls for the defi nition during system develop-

ment of a planned program of future upgrades that will incorporate a specifi ed set of

advanced features, thereby increasing system capabilities in particular ways.

 The advantage of P 3 I is that changes are anticipated in advance so that, when

needed, the planning is already in place; the design can accommodate the projected

changes with minimum reconfi guration; and the upgrade process can proceed smoothly

with minimum disruption to system operations. These preplanned changes will vary in

magnitude and complexity depending on the need and availability of appropriate tech-

nology. Commercial airlines, for example, will often plan for a stretched version of an

existing aircraft that will carry more passengers and incorporate larger engines and new

control systems. By modifying an existing aircraft instead of developing a new one,

the problems of government recertifi cation can often be alleviated. In the military, the

planned upgrade process has the advantage of prior mission justifi cation. Since the

520 OPERATIONS AND SUPPORT

current system is operational and performing a needed function, the proposed system

changes will not affect already approved mission and system objectives.

 In the case of future improvements defi ned during initial system development, the

contract for implementing them is usually awarded to the development contractor. This

is the most straightforward contractual arrangement for carrying out a major system

upgrade. It is also most likely to secure the services of engineers familiar with the

current system characteristics to participate in the planning and execution of system

changes. While even in this case the original development team may have largely dis-

persed, that part that remains provides a major advantage by its knowledge of the

system. However, as can sometimes occur in government - sponsored programs, the

pressure for competition can become especially severe and can even lead to the selec-

tion of a different contractor team for the upgrade contract. In such cases, an intensive

education program will be required for the new team to learn the fi ner points of the

system environment and detailed operation.

 15.5 OPERATIONAL FACTORS IN SYSTEM DEVELOPMENT

 In Chapter 14 , Production, it was pointed out that systems engineers who guide the

development of a new system must have signifi cant fi rst - hand knowledge of relevant

production processes, limitations, and typical problems in order to coordinate the intro-

duction of producibility considerations into the system design process. It is likewise

important that systems engineers be knowledgeable about the system ’ s operational

functions and environment, including its interaction with the user(s), in order to be

aware of how the system design can best meet the user ’ s needs and accommodate the

full range of conditions under which the system is to be used.

 Unfortunately, the kinds of opportunities described in Chapter 14 that exist for

systems engineers in a development organization to learn about manufacturing pro-

cesses frequently are not available for learning about the system ’ s operational environ-

ment. The latter is seldom accessible to development contractor personnel, except for

those who provide technical support services, and these are more likely to be techni-

cians or equipment specialists rather than systems engineers. Another inhibiting factor

is that the operational environment is usually so system specifi c that acquaintance with

the environment of an existing operational system does not necessarily provide insight

into the conditions under which the particular system under development will operate.

 The type of operational knowledge that systems engineers must acquire can be

illustrated by the example of developing a new display for an air traffi c control terminal.

In this case, it is essential that the systems engineers have an intimate knowledge of

how the controllers do their job, such as the data they need, its relative importance in

sending messages to aircraft, the expected fl uctuations in air traffi c, the traffi c condi-

tions that are deemed critical, and a host of other data that impact the controller ’ s

functions. Engineers developing a control console for a civil air terminal can usually

observe the operations at fi rst hand and interview controllers and pilots.

 However diffi cult, it is essential that engineers responsible for system design

acquire a solid understanding of the conditions under which the system being developed

OPERATIONAL FACTORS IN SYSTEM DEVELOPMENT 521

will operate. Without such knowledge, they cannot interpret the formal requirements

that are provided to guide the development since these are seldom complete and fully

representative of user needs. As a result, it is possible that defi ciencies due to faulty

operational interfaces will be discovered only during system operation, when they will

be very costly or even impractical to remedy.

 The term “ operational environment ” as used here includes not only the external

physical conditions under which a system operates but also other factors such as the

characteristics of all systems interfaces, procedures for achieving various levels of

system operational readiness, factors affecting human – machine operations, mainte-

nance and logistic issues, and so on. Figure 3.4 illustrates the complex environment in

which a passenger airliner routinely operates.

 Operational environments can vary radically depending on the type of system

under consideration. For example, an information system (e.g., a telephone exchange

or airline reservation system) operates in a controlled climate inside a building. In

contrast, most military systems (airplanes, tanks, and ships) operate in harsh physical,

electronic, and climatic conditions that can severely stress the systems they carry.

Systems engineers must understand the key characteristics and effects of these environ-

ments, including how they are specifi ed in the system requirements and measured

during operations.

 Sources of Operational Knowledge

 A number of potential sources of operational knowledge may be available in certain

situations. These include operational tests of similar systems, integration testing during

system installation, system readiness tests, and maintenance operations. These activities

all address the problems associated with successfully integrating the system ’ s external

interfaces with the site and with associated external systems . These can often expose

serious problems that are not adequately revealed by the interface specifi cations pro-

vided to the developer.

 To gain the necessary operational background, the systems engineer should

endeavor to witness the operation of as many systems of the type under consideration

as possible. Serving as an active participant in system test operations, or even by simply

acting as an observer, is a good opportunity for learning. When present at such tests,

the systems engineer should make the most of the opportunity by asking questions of

system operators at appropriate times. Of special importance is information regarding

what parts of the system are the sources of most problems and why. Learning about

operational human – machine interfaces is particularly valuable because of the diffi culty

of realistically representing them during development.

 System Readiness Tests. A useful source of operational knowledge is observ-

ing procedures used to determine the level of system readiness. All complex systems

go through some form of checklist or fast test sequence prior to operation, often using

automatic test equipment under operator control. A commercial airliner goes through

an extensive checklist prior to each takeoff and a much more thorough series of checks

prior to and during scheduled maintenance. It is instructive to observe how operators

522 OPERATIONS AND SUPPORT

react to fault indications, what remedial action is taken, what level of training these

operators have been given, and what type of documentation has been provided.

 Operating Modes. Most complex systems include a number of operating modes

in order to respond effectively to differences in their environment or operating status.

Some systems that must operate in a variety of external conditions, such as a military

system, usually have several levels of operational readiness, for example, “ threats pos-

sible, ” “ threats likely, ” “ full - scale hostilities, ” as well as periods of scheduled mainte-

nance or standby. There may also be backup modes in case of degraded system

operation or power failure. The systems engineer should observe the conditions under

which each mode is induced and how the system responds to each mode change.

 Assistance from Operational Personnel

 In view of the limited opportunities for the developer ’ s systems engineers to acquire

an adequate level of operational expertise, it is often advisable to obtain the active

participation of experienced operational personnel during system development. A par-

ticularly effective arrangement is when the user stations a team designated to be system

operators at the development contractor ’ s facility during the period of systems engineer-

ing, integration, and test. These individuals bring knowledge of the special circum-

stances of the system ’ s interaction with the intended operational site, as well as represent

the system operator ’ s viewpoint.

 Another source of operational expertise comes from system maintenance personnel

who are experienced in the problems of servicing similar systems at their operating

sites and in their logistics support. Systems engineers can gain considerable knowledge

by well - planned interviews with such individuals. As noted earlier, complex systems

often have maintenance support facilities that may be excellent sources of operational

knowledge.

 15.6 SUMMARY

 Installing, Maintaining, and Upgrading the System

 The application of systems engineering principles and expertise continue to be required

throughout the operational life of the system. The operations and support phase includes

installation and test, in - service support, and implementation of major system upgrades.

 Interface integration and test can be challenging due to a mix of various organiza-

tional units, complex external interfaces, and incomplete or poorly defi ned interfaces.

 Installation and Test

 Installation and test problems can be diffi cult to solve because installation staff have a

limited system knowledge. Systems engineers are seldom assigned until trouble is

encountered. However, periodic operational readiness testing is necessary for systems

PROBLEMS 523

that do not operate continuously. This can help minimize unexpected system

problems.

 Where nondisruptive installation is required, care to plan the installation proce-

dures, via a hybrid simulation or a duplicate system operating in parallel, is absolutely

essential.

 In - Service Support

 System software must be subject to strict confi guration control to prevent serious dete-

rioration of software quality. In this vein, built - in fault indicators are very valuable for

detecting internal faults, although they sometimes produce false alarms. Therefore, fi eld

engineers should be knowledgeable about built - in test devices.

 Remedial actions to correct operational problems are diffi cult to implement: opera-

tional personnel are not technical specialists. Furthermore, troubleshooting tools are

limited. And materials and processes involved in logistics support themselves constitute

a complex system.

 Major System Upgrades: Modernization

 Logistics cost is a large part of system cost. Therefore, P 3 I facilitates improvement of

systems during major upgrades. Advanced features are defi ned during system develop-

ment, and advanced planning permits minimum disruption to system operation.

 Operational Factors in System Development

 Possible sources of operational knowledge include operational and installation tests —

 by observing system operations within its environment. Of course, assistance from

operational and maintenance personnel is invaluable.

 PROBLEMS

 15.1 Identify and discuss four potential problems associated with the installation

and test of a complex navigation and communication system aboard a trans-

oceanic cargo vessel. Assume that some of the subsystems have been inte-

grated at land sites prior to shipment. Assume that a number of contractors

are involved, as well as the shipping company and government inspectors.

 15.2 Interface problems are usually diffi cult to diagnose and to correct during fi nal

system integration. Why is this so? What measures should be taken to mini-

mize the impact of such problems?

 15.3 Operational readiness testing is an important function for deployed systems.

As a systems engineer who is familiar with the design and operation of a

large complex system, describe how you would advise operational personnel

to defi ne and conduct this type of testing.

524 OPERATIONS AND SUPPORT

 15.4 Many complex systems incorporate a built - in fault indicator subsystem. This

subsystem can itself be complex, costly, and require specialized training and

maintenance. List and discuss the key requirements and issues that must be

considered in the overall design of a built - in test subsystem. What are the

principal trade - offs that must be addressed?

 15.5 An effective logistics support system is an essential part of successful system

operational performance. While the support system is “ outside ” of the deliv-

ered system, discuss why the systems engineer should be involved in the

design and defi nition of the support system. Discuss the functions of some

of the characteristics that must be considered, such as the supply chain, spare

parts, replaceable part level, training, and documentation.

 15.6 Discuss the types of systems that are best suited for applying P 3 I during the

design phase. Describe the key elements in justifying the additional cost of

a P 3 I approach.

 15.7 In maintaining an operational system, hardware faults are usually corrected

by replacing the offending subcomponent by a spare. Software faults are

typically coding errors and must be eliminated by correcting the code. In

complex systems, software changes must be made with extreme care and

must be validated. Discuss ways in which software faults can be handled in

a controlled manner where the operating system is remote from the develop-

ment organization.

 FURTHER READING

 B. Blanchard and W. Fabrycky . System Engineering and Analysis , Fourth Edition . Prentice Hall ,

 2006 , Chapter 15.

 Performance Based Logistics: A Program Manager ’ s Product Support Guide . Defense Acquisition

University (DAU Press) , 2005 .

 N. B. Reilly . Successful Systems for Engineers and Managers . Van Nostrand Reinhold , 1993 ,

Chapter 11.

 Systems Engineering Fundamentals . Defense Acquisition University (DAU Press) , 2001 ,

Chapter 8.

Abstraction, 356

Activity diagram, 230

Adaptive software development (ASD), 372

Advanced development, 78, 317

Advanced technology, 154

Agile software models, 367

Analysis of alternatives, 177

Analysis pyramid, 156

Analytical hierarchy process (AHP), 300

Application software, 360

Architecture frameworks, 226

Automobile, 12, 30, 54, 150

Availability, 430

Balanced system, 30

Block defi nition diagram, 239

Boundaries, 51

Building blocks, 41, 45

Built-in test equipment, 429

Capability maturity model integrated

(CMMI), 397

Career development models, 18

Careers, 13

Class diagram, 229

Coding, 385

Commercial aircraft, 56, 75, 183, 278, 469

Communication diagram, 230

Competition, 142

Complex systems, 3, 11, 60

Component design, 336, 420

Component diagram, 229

Component knowledge base, 497

Components, 48

INDEX

525

Composite structure dDiagram, 229

Computer-aided design (CAD), 422

Computer system confi guration items (CSCI),

374

Concept development phase, 76

Concept defi nition, 77, 197

Concept exploration, 77, 165, 185

Concept of operations (CONOPS), 174

Concept selection, 214

Concept validation, 217

Concurrent development model, 370

Concurrent engineering, 336, 486

Confi guration baselines, 437

Confi guration items, 437

Confi guration management, 436, 492

Constraints, 189

Context diagram, 52, 266

Cost-benefi t analysis, 303

Cost control, 116

Cost estimating, 220

Critical design review (CDR), 72, 422

Critical experiments, 218

Critical path method (CPM), 117

Data fl ow diagram, 268, 380

Data-intensive computing systems, 363

Decision analysis, 255

Decision framework, 259

Decision making, 256

Decision trees, 301

Demonstration testing, 345

Department of Defense (DOD)

acquisition model, 71

Architecture Framework (DODAF), 226

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet,
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

526 INDEX

Deployment diagram, 229

Design

detailed, 421

specialist, 44

testing, 338

validation, 99, 432

Development testing, 340, 433, 454, 462

DOD acquisition model, 71

DODAF, 226

EIA-632, 91

Embedded software, 360

Engineering

design, 409

design phase, 79

development, 78

disciplines, 4

for production, 485

simulation, 278

specialty, 9

Enterprise systems engineering, 63

Entity-relationship diagram (ERD), 380

Environment, 51

Evolutionary software models, 366

Extreme programming (XP), 372

Feature-driven development, 373

Field service support, 514

Functional allocation, 152, 179, 212

Functional analysis, 96, 151, 206, 327,

416

Functional block diagram (FBD), 209

tools, 208

Functional-class decomposition, 384

Functional defi nition, 96

Functional elements, 46

Functional fl ow block diagram (FFBD), 267,

380

Functional fl ow process diagram, 268

Functional requirements, 145

Games, 273

Hardware-in-the-loop simulation, 277

Hardware software allocation, 210

Hierarchy of complex systems, 42

IEEE-1220, 90

IEEE Std 610.12, 223

IEEE software systems engineering process,

357

INCOSE, 245

Incremental software models, 366

Installation, 505

Integrated defi nition (IDEF), 208, 268

Integrated product teams (IPTs), 184

Integration, 443

and evaluation phase, 80

test planning, 453

Interaction overview diagram, 230

Interfaces, 9, 58, 98

ISO/IEC 15288, 72, 92

Life cycle, 37, 69

Linear software models, 366

Logical view, 224

Logistics support, 515

Maintainability, 428

Management, 111

Mathematical models, 270

Measures of effectiveness (MOE), 155

Measures of performance (MOP), 157

MIL-STD-499B, 90

Ministry of Defense architecture framework

(MODAF), 227

Mission simulation, 275

Model/modeling, 262

agile software models, 367

-based systems engineering, 243

career development models, 18

of a complex system, 42

concurrent development model, 370

DOD acquisition model, 71

evolutionary software models, 366

incremental software models, 366

life cycle model, 73

linear software models, 366

mathematical models, 270

operational effectiveness model, 155

physical models, 271

schematic models, 264

spiral life cycle model, 103, 204

spiral model, 370

system effectiveness model, 217

system performance model, 465

T model, 20

waterfall model, 367

 JOHN E. GIBSON, WILLIAM T. SCHERER, and WILLAM F. GIBSON

 How to Do Systems Analysis

 WILLIAM F. CHRISTOPHER

 Holistic Management: Managing What Matters for Company Success

 WILLIAM B. ROUSE

 People and Organizations: Explorations of Human - Centered Design

 GREGORY S. PARNELL, PATRICK J. DRISCOLL, and DALE L. HENDERSON

 Decision Making in Systems Engineering and Management

 MO JAMSHIDI

 System of Systems Engineering: Innovations for the Twenty - First Century

 ANDREW P. SAGE and WILLIAM B. ROUSE

 Handbook of Systems Engineering and Management, Second Edition

 JOHN R. CLYMER

 Simulation - Based Engineering of Complex Systems, Second Edition

 KRAG BROTBY

 Information Security Governance: A Practical Development and
Implementation Approach

 JULIAN TALBOT and MILES JAKEMAN

 Security Risk Management Body of Knowledge

 SCOTT JACKSON

 Architecting Resilient Systems: Accident Avoidance and Survival and
Recovery from Disruptions

 JAMES A. GEORGE and JAMES A. RODGER

 Smart Data: Enterprise Performance Optimization Strategy

 YORAM KOREN

 The Global Manufacturing Revolution: Product - Process - Business Integration
and Reconfi gurable Systems

 AVNER ENGEL

 Verifi cation, Validation, and Testing of Engineered Systems

 WILLIAM B. ROUSE (editor)

 The Economics of Human Systems Integration: Valuation of Investments in
People ’ s Training and Education, Safety and Health, and Work Productivity

 ALEXANDER KOSSIAKOFF, WILLIAM N. SWEET, SAM SEYMOUR, and
STEVEN M. BIEMER
 Systems Engineering Principles and Practice, Second Edition

INDEX 527

Modernization, 516

Modular partitioning, 378

Multiattribute utility theory, 299

Multidisciplinary knowledge, 21

Needs analysis phase, 76, 139, 374

Needs validation, 155

Nondisruptive installation, 510

NSPE, 72

Object diagram, 229

Object-oriented analysis, 228, 270, 382

Objectives, 149

analysis, 149

tree, 150

Obsolescence, 148

Open Group Architecture Framework, The

(TOGAF), 226

Operational availability, 205

Operational concepts, 174

Operational effectiveness model, 155

Operational problems, 513

Operational readiness testing, 512

Operational requirements, 145, 158, 170, 323

Operational test and evaluation, 467

Operational view, 224

Operations, 505

analysis, 146

and support phase, 81

Origins, 5

Package diagram, 229

Performance

vs. cost, 29

requirements, 145, 178, 189, 201

Physical defi nition, 97

Physical models, 271

Physical requirements, 145

Physical simulation, 276

Physical view, 224

Predecessor system, 82

Preliminary design, 420

review (PDR), 71, 421

Preplanned product improvement (P3I), 519

Probability, 296

Producibility, 430

Production, 483, 493

phase, 81

Profession, 12

Program design language (PDL), 386

Programming languages, 386

Project management, 5, 112

Proposal development, 112

Program risks, 215, 317

Prototypes, 333, 389

Qualifi cation testing, 434

Quality function deployment (QFD), 306

Rapid application development (RAD), 369

Rapid prototyping, 127, 338

Regression testing, 395

Requirements, 86

analysis, 95, 144, 172, 322, 374, 414

diagram, 238

validation, 173

Reliability, 424

Risk(s), 7, 111, 317

assessment, 122

management, 120, 431

management plan, 128

mitigation, 126, 333, 416

reduction, 349

Robustness analysis, 383

Robustness diagram, 383

Scenarios, 159, 176

Schematic models, 264

Scrum, 372

Selection criteria, 286

Sequence diagram, 230

Simulation, 211, 262, 272, 332

Specifi cations, 86, 247, 322

Spiral life cycle model, 103, 204

Spiral model, 370

Software

-embedded systems, 361

engineering management, 396

integration and test, 393

-intensive systems, 362

life cycle model, 73

metrics, 400

prototyping, 389, 417

systems engineering, 355

State machine diagram, 230

State transition diagram (STD), 382

Statement of work, 112

Structured analysis and design, 380

528 INDEX

System

acceptance test, 496

architecting, 222, 378

defi nition, 3

design team, 131

development planning, 219

domains, 34

effectiveness model, 217

effectiveness simulations, 274

materialization, 83, 142, 167, 199, 319,

410, 447

modeling language (SysML), 228

performance model, 465

requirements, 165, 204

software, 360

of systems, 60

Systems engineering

approaches, 36

defi nition, 3

master plan (SEMP), 117, 220

method, 87, 92

perspectives, 32

viewpoint, 27

Systems integration, 455

T model, 20

Technical professional, 15

Technology development, 188

Test/testing, 99, 103, 115

equipment, 453, 472

plan, 100, 340

planning, 450, 470

scenarios, 464

special equipment, 344

unit, 392

Test and evaluation, 106

master plan (TEMP), 343, 450

3-tier architecture, 358

Timing diagram, 230

Trade-off(s), 8, 97

analysis, 97, 262, 282

Trade studies, 283

Training, 472

Transition from development to production,

489

Unifi ed modeling language (UML),

228, 382

Unit testing, 392

Upgrades, 516

Use case(s), 230, 377

diagram, 230

User interfaces, 348, 415, 418

Utility functions, 289

Verifi cation and validation, 281, 393

Virtual reality simulation, 279

Visualization, 153

Waterfall model, 367

Work breakdown structure (WBS),

113, 219

 Andrew P. Sage, Editor

 ANDREW P. SAGE and JAMES D. PALMER

 Software Systems Engineering

 WILLIAM B. ROUSE

 Design for Success: A Human - Centered Approach to Designing Successful
Products and Systems

 LEONARD ADELMAN

 Evaluating Decision Support and Expert System Technology

 ANDREW P. SAGE

 Decision Support Systems Engineering

 YEFIM FASSER and DONALD BRETTNER

 Process Improvement in the Electronics Industry, Second Edition

 WILLIAM B. ROUSE

 Strategies for Innovation

 ANDREW P. SAGE

 Systems Engineering

 HORST TEMPELMEIER and HEINRICH KUHN

 Flexible Manufacturing Systems: Decision Support for Design
and Operation

 WILLIAM B. ROUSE

 Catalysts for Change: Concepts and Principles for Enabling Innovation

 LIPING FANG, KEITH W. HIPEL, and D. MARC KILGOUR

 Interactive Decision Making: The Graph Model for Confl ict Resolution

 DAVID A. SCHUM

 Evidential Foundations of Probabilistic Reasoning

 JENS RASMUSSEN, ANNELISE MARK PEJTERSEN,
and LEONARD P. GOODSTEIN

 Cognitive Systems Engineering

 ANDREW P. SAGE

 Systems Management for Information Technology and Software Engineering

 ALPHONSE CHAPANIS

 Human Factors in Systems Engineering

 WILEY SERIES IN SYSTEMS ENGINEERING
AND MANAGEMENT

 YACOV Y. HAIMES

 Risk Modeling, Assessment, and Management, Third Edition

 DENNIS M. BUEDE

 The Engineering Design of Systems: Models and Methods, Second Edition

 ANDREW P. SAGE and JAMES E. ARMSTRONG, Jr.

 Introduction to Systems Engineering

 WILLIAM B. ROUSE

 Essential Challenges of Strategic Management

 YEFIM FASSER and DONALD BRETTNER

 Management for Quality in High - Technology Enterprises

 THOMAS B. SHERIDAN

 Humans and Automation: System Design and Research Issues

 ALEXANDER KOSSIAKOFF and WILLIAM N. SWEET

 Systems Engineering Principles and Practice

 HAROLD R. BOOHER

 Handbook of Human Systems Integration

 JEFFREY T. POLLOCK and RALPH HODGSON

 Adaptive Information: Improving Business Through Semantic
Interoperability, Grid Computing, and Enterprise Integration

 ALAN L. PORTER and SCOTT W. CUNNINGHAM

 Tech Mining: Exploiting New Technologies for Competitive Advantage

 REX BROWN

 Rational Choice and Judgment: Decision Analysis for the Decider

 WILLIAM B. ROUSE and KENNETH R. BOFF (editors)

 Organizational Simulation

 HOWARD EISNER

 Managing Complex Systems: Thinking Outside the Box

 STEVE BELL

 Lean Enterprise Systems: Using IT for Continuous Improvement

 J. JERRY KAUFMAN and ROY WOODHEAD

 Stimulating Innovation in Products and Services: With Function Analysis and
Mapping

 WILLIAM B. ROUSE

 Enterprise Tranformation: Understanding and Enabling Fundamental Change

	SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE
	CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	PREFACE TO THE SECOND EDITION
	PREFACE TO THE FIRST EDITION
	PART I: FOUNDATIONS OF SYSTEMS ENGINEERING
	1: SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS
	1.1 WHAT IS SYSTEMS ENGINEERING?
	1.2 ORIGINS OF SYSTEMS ENGINEERING
	1.3 EXAMPLES OF SYSTEMS REQUIRING SYSTEMS ENGINEERING
	1.4 SYSTEMS ENGINEERING AS A PROFESSION
	1.5 SYSTEMS ENGINEER CAREER DEVELOPMENT MODEL
	1.6 THE POWER OF SYSTEMS ENGINEERING
	1.7 SUMMARY
	PROBLEMS
	FURTHER READING

	2: SYSTEMS ENGINEERING LANDSCAPE
	2.1 SYSTEMS ENGINEERING VIEWPOINT
	2.2 PERSPECTIVES OF SYSTEMS ENGINEERING
	2.3 SYSTEMS DOMAINS
	2.4 SYSTEMS ENGINEERING FIELDS
	2.5 SYSTEMS ENGINEERNG APPROACHES
	2.6 SYSTEMS ENGINEERING ACTIVITIES AND PRODUCTS
	2.7 SUMMARY
	PROBLEMS
	FURTHER READING

	3: STRUCTURE OF COMPLEX SYSTEMS
	3.1 SYSTEM BUILDING BLOCKS AND INTERFACES
	3.2 HIERARCHY OF COMPLEX SYSTEMS
	3.3 SYSTEM BUILDING BLOCKS
	3.4 THE SYSTEM ENVIRONMENT
	3.5 INTERFACES AND INTERACTIONS
	3.6 COMPLEXITY IN MODERN SYSTEMS
	3.7 SUMMARY
	PROBLEMS
	FURTHER READING

	4: THE SYSTEM DEVELOPMENT PROCESS
	4.1 SYSTEMS ENGINEERING THROUGH THE SYSTEM LIFE CYCLE
	4.2 SYSTEM LIFE CYCLE
	4.3 EVOLUTIONARY CHARACTERISTICS OF THE DEVELOPMENT PROCESS
	4.4 THE SYSTEMS ENGINEERING METHOD
	4.5 TESTING THROUGHOUT SYSTEM DEVELOPMENT
	4.6 SUMMARY
	PROBLEMS
	FURTHER READING

	5: SYSTEMS ENGINEERING MANAGEMENT
	5.1 MANAGING SYSTEM DEVELOPMENT AND RISKS
	5.2 WBS
	5.3 SEMP
	5.4 RISK MANAGEMENT
	5.5 ORGANIZATION OF SYSTEMS ENGINEERING
	5.6 SUMMARY
	PROBLEMS
	FURTHER READING

	PART II: CONCEPT DEVELOPMENT STAGE
	6: NEEDS ANALYSIS
	6.1 ORIGINATING A NEW SYSTEM
	6.2 OPERATIONS ANALYSIS
	6.3 FUNCTIONAL ANALYSIS
	6.4 FEASIBILITY DEFINITION
	6.5 NEEDS VALIDATION
	6.6 SYSTEM OPERATIONAL REQUIREMENTS
	6.7 SUMMARY
	PROBLEMS
	FURTHER READING

	7: CONCEPT EXPLORATION
	7.1 DEVELOPING THE SYSTEM REQUIREMENTS
	7.2 OPERATIONAL REQUIREMENTS ANALYSIS
	7.3 PERFORMANCE REQUIREMENTS FORMULATION
	7.4 IMPLEMENTATION OF CONCEPT EXPLORATION
	7.5 PERFORMANCE REQUIREMENTS VALIDATION
	7.6 SUMMARY
	PROBLEMS
	FURTHER READING

	8: CONCEPT DEFINITION
	8.1 SELECTING THE SYSTEM CONCEPT
	8.2 PERFORMANCE REQUIREMENTS ANALYSIS
	8.3 FUNCTIONAL ANALYSIS AND FORMULATION
	8.4 FUNCTIONAL ALLOCATION
	8.5 CONCEPT SELECTION
	8.6 CONCEPT VALIDATION
	8.7 SYSTEM DEVELOPMENT PLANNING
	8.8 SYSTEMS ARCHITECTING
	8.9 SYSTEM MODELING LANGUAGES: UNIFIED MODELING LANGUAGE (UML) AND SYSTEMS MODELING LANGUAGE (SysML)
	8.10 MODEL - BASED SYSTEMS ENGINEERING (MBSE)
	8.11 SYSTEM FUNCTIONAL SPECIFICATIONS
	8.12 SUMMARY
	PROBLEMS
	FURTHER READING

	9: DECISION ANALYSIS AND SUPPORT
	9.1 DECISION MAKING
	9.2 MODELING THROUGHOUT SYSTEM DEVELOPMENT
	9.3 MODELING FOR DECISIONS
	9.4 SIMULATION
	9.5 TRADE - OFF ANALYSIS
	9.6 REVIEW OF PROBABILITY
	9.7 EVALUATION METHODS
	9.8 SUMMARY
	PROBLEMS
	FURTHER READING

	PART III: ENGINEERING DEVELOPMENT STAGE
	10: ADVANCED DEVELOPMENT
	10.1 REDUCING PROGRAM RISKS
	10.2 REQUIREMENTS ANALYSIS
	10.3 FUNCTIONAL ANALYSIS AND DESIGN
	10.4 PROTOTYPE DEVELOPMENT AS A RISK MITIGATION TECHNIQUE
	10.5 DEVELOPMENT TESTING
	10.6 RISK REDUCTION
	10.7 SUMMARY
	PROBLEMS
	FURTHER READING

	11: SOFTWARE SYSTEMS ENGINEERING
	11.1 COPING WITH COMPLEXITY AND ABSTRACTION
	11.2 NATURE OF SOFTWARE DEVELOPMENT
	11.3 SOFTWARE DEVELOPMENT LIFE CYCLE MODELS
	11.4 SOFTWARE CONCEPT DEVELOPMENT: ANALYSIS AND DESIGN
	11.5 SOFTWARE ENGINEERING DEVELOPMENT: CODING AND UNIT TEST
	11.6 SOFTWARE INTEGRATION AND TEST
	11.7 SOFTWARE ENGINEERING MANAGEMENT
	11.8 SUMMARY
	PROBLEMS
	FURTHER READING

	12: ENGINEERING DESIGN
	12.1 IMPLEMENTING THE SYSTEM BUILDING BLOCKS
	12.2 REQUIREMENTS ANALYSIS
	12.3 FUNCTIONAL ANALYSIS AND DESIGN
	12.4 COMPONENT DESIGN
	12.5 DESIGN VALIDATION
	12.6 CM
	12.7 SUMMARY
	PROBLEMS
	FURTHER READING

	13: INTEGRATION AND EVALUATION
	13.1 INTEGRATING, TESTING, AND EVALUATING THE TOTAL SYSTEM
	13.2 TEST PLANNING AND PREPARATION
	13.3 SYSTEM INTEGRATION
	13.4 DEVELOPMENTAL SYSTEM TESTING
	13.5 OPERATIONAL TEST AND EVALUATION
	13.6 SUMMARY
	PROBLEMS
	FURTHER READING

	PART IV: POSTDEVELOPMENT STAGE
	14: PRODUCTION
	14.1 SYSTEMS ENGINEERING IN THE FACTORY
	14.2 ENGINEERING FOR PRODUCTION
	14.3 TRANSITION FROM DEVELOPMENT TO PRODUCTION
	14.4 PRODUCTION OPERATIONS
	14.5 ACQUIRING A PRODUCTION KNOWLEDGE BASE
	14.6 SUMMARY
	PROBLEMS
	FURTHER READING

	15:OPERATIONS AND SUPPORT
	15.1 INSTALLING, MAINTAINING, AND UPGRADING THE SYSTEM
	15.2 INSTALLATION AND TEST
	15.3 IN - SERVICE SUPPORT
	15.4 MAJOR SYSTEM UPGRADES: MODERNIZATION
	15.5 OPERATIONAL FACTORS IN SYSTEM DEVELOPMENT
	15.6 SUMMARY
	PROBLEMS
	FURTHER READING

	INDEX

