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xix

  It is an incredible honor and privilege to follow in the footsteps of an individual who 

had a profound infl uence on the course of history and the fi eld of systems engineering. 

Since publication of the fi rst edition of this book, the fi eld of systems engineering has 

seen signifi cant advances, including a signifi cant increase in recognition of the disci-

pline, as measured by the number of conferences, symposia, journals, articles, and 

books available on this crucial subject. Clearly, the fi eld has reached a high level of 

maturity and is destined for continued growth. Unfortunately, the fi eld has also seen 

some sorrowful losses, including one of the original authors, Alexander Kossiakoff, 

who passed away just 2 years after the publication of the book. His vision, innovation, 

excitement, and perseverance were contagious to all who worked with him and he is 

missed by the community. Fortunately, his vision remains and continues to be the 

driving force behind this book. It is with great pride that we dedicate this second edition 

to the enduring legacy of Alexander Ivanovitch Kossiakoff. 

  ALEXANDER KOSSIAKOFF, 1914 – 2005 

 Alexander Kossiakoff, known to so many as  “ Kossy, ”  gave shape and direction to the 

Johns Hopkins University Applied Physics Laboratory as its director from 1969 to 

1980. His work helped defend our nation, enhance the capabilities of our military, 

pushed technology in new and exciting directions, and bring successive new genera-

tions to an understanding of the unique challenges and opportunities of systems engi-

neering. In 1980, recognizing the need to improve the training and education of technical 

professionals, he started the master of science degree program at Johns Hopkins 

University in Technical Management and later expanded it to Systems Engineering, 

one of the fi rst programs of its kind. 

 Today, the systems engineering program he founded is the largest part - time gradu-

ate program in the United States, with students enrolled from around the world in 

classroom, distance, and organizational partnership venues; it continues to evolve as 

the fi eld expands and teaching venues embrace new technologies, setting the standard 

for graduate programs in systems engineering. The fi rst edition of the book is the foun-

dational systems engineering textbook for colleges and universities worldwide.  

 PREFACE TO THE SECOND 

EDITION     



xx PREFACE TO THE SECOND EDITION

  OBJECTIVES OF THE SECOND EDITION 

 Traditional engineering disciplines do not provide the training, education, and experi-

ence necessary to ensure the successful development of a large, complex system 

program from inception to operational use. The advocacy of the systems engineering 

viewpoint and the goal for the practitioners to think like a systems engineer are still 

the major premises of this book. 

 This second edition of  Systems Engineering Principles and Practice  continues to 

be intended as a graduate - level textbook for courses introducing the fi eld and practice 

of systems engineering. We continue the tradition of utilizing models to assist students 

in grasping abstract concepts presented in the book. The fi ve basic models of the fi rst 

edition are retained, with only minor refi nements to refl ect current thinking. Additionally, 

the emphasis on application and practice is retained throughout and focuses on students 

pursuing their educational careers in parallel with their professional careers. Detailed 

mathematics and other technical fi elds are not explored in depth, providing the greatest 

range of students who may benefi t, nor are traditional engineering disciplines provided 

in detail, which would violate the book ’ s intended scope. 

 The updates and additions to the fi rst edition revolve around the changes occurring 

in the fi eld of systems engineering since the original publication. Special attention was 

made in the following areas  : 

   •      The Systems Engineer ’ s Career.     An expanded discussion is presented on 

the career of the systems engineer. In recent years, systems engineering 

has been recognized by many companies and organizations as a separate fi eld, 

and the position of  “ systems engineer ”  has been formalized. Therefore, we 

present a model of the systems engineer ’ s career to help guide prospective 

professionals.  

   •      The Systems Engineering Landscape.     The only new chapter introduced in the 

second edition is titled by the same name and reinforces the concept of the 

systems engineering viewpoint. Expanded discussions of the implications of this 

viewpoint have been offered.  

   •      System Boundaries.     Supplemental material has been introduced defi ning and 

expanding our discussion on the concept of the system boundary. Through the 

use of the book in graduate - level education, the authors recognized an inherent 

misunderstanding of this concept — students in general have been unable to rec-

ognize the boundary between the system and its environment. This area has been 

strengthened throughout the book.  

   •      System Complexity.     Signifi cant research in the area of system complexity is now 

available and has been addressed. Concepts such as system of systems engineer-

ing, complex systems management, and enterprise systems engineering are intro-

duced to the student as a hierarchy of complexity, of which systems engineering 

forms the foundation.  

   •      Systems Architecting.     Since the original publication, the fi eld of systems archi-

tecting has expanded signifi cantly, and the tools, techniques, and practices of this 
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fi eld have been incorporated into the concept exploration and defi nition chapters. 

New models and frameworks for both traditional structured analysis and object -

 oriented analysis techniques are described and examples are provided, including 

an expanded description of the Unifi ed Modeling Language and the Systems 

Modeling Language. Finally, the extension of these new methodologies, model -

 based systems engineering, is introduced.  

   •      Decision Making and Support.     The chapter on systems engineering decision 

tools has been updated and expanded to introduce the systems engineering 

student to the variety of decisions required in this fi eld, and the modern pro-

cesses, tools, and techniques that are available for use. The chapter has also been 

moved from the original special topics part of the book.  

   •      Software Systems Engineering.     The chapter on software systems engineering has 

been extensively revised to incorporate modern software engineering techniques, 

principles, and concepts. Descriptions of modern software development life 

cycle models, such as the agile development model, have been expanded to 

refl ect current practices. Moreover, the section on capability maturity models has 

been updated to refl ect the current integrated model. This chapter has also been 

moved out of the special topics part and introduced as a full partner of advanced 

development and engineering design.    

 In addition to the topics mentioned above, the chapter summaries have been refor-

matted for easier understanding, and the lists of problems and references have been 

updated and expanded. Lastly, feedback, opinions, and recommendations from graduate 

students have been incorporated where the wording or presentation was awkward or 

unclear.  

  CONTENT DESCRIPTION 

 This book continues to be used to support the core courses of the Johns Hopkins 

University Master of Science in Systems Engineering program and is now a primary 

textbook used throughout the United States and in several other countries. Many pro-

grams have transitioned to online or distance instruction; the second edition was written 

with distance teaching in mind, and offers additional examples. 

 The length of the book has grown, with the updates and new material refl ecting 

the expansion of the fi eld itself. 

 The second edition now has four parts: 

   •      Part  I .     The Foundation of Systems Engineering, consisting of Chapters  1  –  5 , 

describes the origins and structure of modern systems, the current fi eld of systems 

engineering, the structured development process of complex systems, and the 

organization of system development projects.  

   •      Part  II .     Concept Development, consisting of Chapters  6  –  9 , describes the early 

stages of the system life cycle in which a need for a new system is demonstrated, 



xxii PREFACE TO THE SECOND EDITION

its requirements identifi ed, alternative implementations developed, and key 

program and technical decisions made.  

   •      Part  III .     Engineering Development, consisting of Chapters  10  –  13 , describes the 

later stages of the system life cycle, in which the system building blocks are 

engineered (to include both software and hardware subsystems) and the total 

system is integrated and evaluated in an operational environment.  

   •      Part  IV .     Postdevelopment, consisting of Chapters  14  and  15 , describes the roles 

of systems in the production, operation, and support phases of the system life 

cycle and what domain knowledge of these phases a systems engineer should 

acquire.    

 Each chapter contains a summary, homework problems, and bibliography.  

  ACKNOWLEDGMENTS 

 The authors of the second edition gratefully acknowledge the family of Dr. Kossiakoff 

and Mr. William Sweet for their encouragement and support of a second edition to the 

original book. As with the fi rst edition, the authors gratefully acknowledge the many 

contributions made by the present and past faculties of the Johns Hopkins University 

Systems Engineering graduate program. Their sharp insight and recommendations on 

improvements to the fi rst edition have been invaluable in framing this publication. 

Particular thanks are due to E. A. Smyth for his insightful review of the manuscript. 

 Finally, we are exceedingly grateful to our families — Judy Seymour and Michele 

and August Biemer — for their encouragement, patience, and unfailing support, even 

when they were continually asked to sacrifi ce, and the end never seemed to be 

within reach. 

 Much of the work in preparing this book was supported as part of the educational 

mission of the Johns Hopkins University Applied Physics Laboratory.  

    Samuel J. Seymour  

  Steven M. Biemer  

 2010       
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  Learning how to be a successful systems engineer is entirely different from learning 

how to excel at a traditional engineering discipline. It requires developing the ability 

to think in a special way, to acquire the  “ systems engineering viewpoint, ”  and to make 

the central objective the system as a whole and the success of its mission. The systems 

engineer faces three directions: the system user ’ s needs and concerns, the project man-

ager ’ s fi nancial and schedule constraints, and the capabilities and ambitions of the 

engineering specialists who have to develop and build the elements of the system. This 

requires learning enough of the language and basic principles of each of the three 

constituencies to understand their requirements and to negotiate balanced solutions 

acceptable to all. The role of interdisciplinary leadership is the key contribution and 

principal challenge of systems engineering and it is absolutely indispensable to the 

successful development of modern complex systems. 

   1.1    OBJECTIVES 

  Systems Engineering Principles and Practice  is a textbook designed to help students 

learn to think like systems engineers. Students seeking to learn systems engineering 

after mastering a traditional engineering discipline often fi nd the subject highly abstract 

and ambiguous. To help make systems engineering more tangible and easier to grasp, 

the book provides several models: (1) a hierarchical model of complex systems, showing 

them to be composed of a set of commonly occurring building blocks or components; 

(2) a system life cycle model derived from existing models but more explicitly related 

to evolving engineering activities and participants; (3) a model of the steps in the 

systems engineering method and their iterative application to each phase of the life 

cycle; (4) a concept of  “ materialization ”  that represents the stepwise evolution of an 

abstract concept to an engineered, integrated, and validated system; and (5) repeated 

references to the specifi c responsibilities of systems engineers as they evolve during 

the system life cycle and to the scope of what a systems engineer must know to perform 

these effectively. The book ’ s signifi cantly different approach is intended to complement 

the several excellent existing textbooks that concentrate on the quantitative and analyti-

cal aspects of systems engineering. 

 PREFACE TO THE FIRST EDITION     
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 Particular attention is devoted to systems engineers as professionals, their respon-

sibilities as part of a major system development project, and the knowledge, skills, and 

mind - set they must acquire to be successful. The book stresses that they must be inno-

vative and resourceful, as well as systematic and disciplined. It describes the special 

functions and responsibilities of systems engineers in comparison with those of system 

analysts, design specialists, test engineers, project managers, and other members of the 

system development team. While the book describes the necessary processes that 

systems engineers must know and execute, it stresses the leadership, problem - solving, 

and innovative skills necessary for success. 

 The function of systems engineering as defi ned here is to  “ guide the engineering 

of complex systems. ”  To learn how to be a good guide requires years of practice and 

the help and advice of a more experienced guide who knows  “ the way. ”  The purpose 

of this book is to provide a signifi cant measure of such help and advice through the 

organized collective experience of the authors and other contributors. 

 This book is intended for graduate engineers or scientists who aspire to or are 

already engaged in careers in systems engineering, project management, or engineering 

management. Its main audience is expected to be engineers educated in a single disci-

pline, either hardware or software, who wish to broaden their knowledge so as to deal 

with systems problems. It is written with a minimum of mathematics and specialized 

jargon so that it should also be useful to managers of technical projects or organizations, 

as well as to senior undergraduates.  

   1.2    ORIGIN AND CONTENTS 

 The main portion of the book has been used for the past 5 years to support the fi ve core 

courses of the Johns Hopkins University Master of Science in Systems Engineering 

program and is thoroughly class tested. It has also been used successfully as a text for 

distance course offerings. In addition, the book is well suited to support short courses 

and in - house training. 

 The book consists of 14 chapters grouped into fi ve parts  : 

   •      Part  I .     The Foundations of Systems Engineering, consisting of Chapters  1  –  4 , 

describes the origin and structure of modern systems, the stepwise development 

process of complex systems, and the organization of system development 

projects.  

   •      Part  II .     Concept Development, consisting of Chapters  5  –  7 , describes the fi rst 

stage of the system life cycle in which a need for a new system is demonstrated, 

its requirements are developed, and a specifi c preferred implementation concept 

is selected.  

   •      Part  III .     Engineering Development, consisting of Chapters  8  –  10 , describes the 

second stage of the system life cycle, in which the system building blocks are 

engineered and the total system is integrated and evaluated in an operational 

environment.  
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   •      Part  IV .     Postdevelopment, consisting of Chapters  11  and  12 , describes the role 

of systems engineering in the production, operation, and support phases of the 

system life cycle, and what domain knowledge of these phases in the system life 

cycle a systems engineer should acquire.  

   •      Part  V .     Special Topics consists of Chapters  13  and  14 . Chapter  13  describes the 

pervasive role of software throughout system development, and Chapter  14  

addresses the application of modeling, simulation, and trade - off analysis as 

systems engineering decision tools.    

 Each chapter also contains a summary, homework problems, and a bibliography. 

A glossary of important terms is also included. The chapter summaries are formatted 

to facilitate their use in lecture viewgraphs.  
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     Part  I  provides a multidimensional framework that interrelates the basic principles of 

systems engineering, and helps to organize the areas of knowledge that are required to 

master this subject. The dimensions of this framework include 

  1.     a hierarchical model of the structure of complex systems;  

  2.     a set of commonly occurring functional and physical system building blocks;  

  3.     a systems engineering life cycle, integrating the features of the U.S Department 

of Defense, ISO/IEC, IEEE, and NSPE   models;  

  4.     four basic steps of the systems engineering method that are iterated during each 

phase of the life cycle;  

  5.     three capabilities differentiating project management, design specialization, and 

systems engineering;  

  6.     three different technical orientations of a scientist, a mathematician, and an 

engineer and how they combine in the orientation of a systems engineer; and  

  7.     a concept of  “ materialization ”  that measures the degree of transformation of a 

system element from a requirement to a fully implemented part of a real system.    

  PART I 

FOUNDATIONS OF SYSTEMS 

ENGINEERING 
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2 FOUNDATIONS OF SYSTEMS ENGINEERING

 Chapter  1  describes the origins and characteristics of modern complex systems and 

systems engineering as a profession. 

 Chapter  2  defi nes the  “ systems engineering viewpoint ”  and how it differs from the 

viewpoints of technical specialists and project managers. This concept of a systems 

viewpoint is expanded to describe the domain, fi elds, and approaches of the systems 

engineering discipline. 

 Chapter  3  develops the hierarchical model of a complex system and the key build-

ing blocks from which it is constituted. This framework is used to defi ne the breadth 

and depth of the knowledge domain of systems engineers in terms of the system 

hierarchy. 

 Chapter  4  derives the concept of the systems engineering life cycle, which sets the 

framework for the evolution of a complex system from a perceived need to operation 

and disposal. This framework is systematically applied throughout Parts  II  –  IV  of the 

book, each part addressing the key responsibilities of systems engineering in the cor-

responding phase of the life cycle. 

 Finally, Chapter  5  describes the key parts that systems engineering plays in the 

management of system development projects. It defi nes the basic organization and 

the planning documents of a system development project, with a major emphasis on 

the management of program risks.        
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    1.1    WHAT IS SYSTEMS ENGINEERING? 

 There are many ways in which to defi ne systems engineering. For the purposes of this 

book, we will use the following defi nition: 

 The function of systems engineering is to  guide  the  engineering  of  complex systems . 

 The words in this defi nition are used in their conventional meanings, as described 

further below. 

 To guide is defi ned as  “ to lead, manage, or direct, usually based on the superior 

experience in pursuing a given course ”  and  “ to show the way. ”  This characterization 

emphasizes the process of selecting the path for others to follow from among many 

possible courses — a primary function of systems engineering. A dictionary defi nition 

of engineering is  “ the application of scientifi c principles to practical ends; as the design, 

construction and operation of effi cient and economical structures, equipment, and 

systems. ”  In this defi nition, the terms  “ effi cient ”  and  “ economical ”  are particular con-

tributions of good systems engineering. 

 The word  “ system, ”  as is the case with most common English words, has a 

very broad meaning. A frequently used defi nition of a system is  “  a set  of  interrelated 

  1 

SYSTEMS ENGINEERING 

AND THE WORLD OF 

MODERN SYSTEMS     

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet, 
Samuel J. Seymour, and Steven M. Biemer
© 2011 by John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.



4 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS  

components  working  together  toward some  common  objective. ”  This defi nition implies 

a multiplicity of interacting parts that collectively perform a signifi cant function. The 

term  complex  restricts this defi nition to systems in which the elements are diverse and 

have intricate relationships with one another. Thus, a home appliance such as a washing 

machine would not be considered suffi ciently diverse and complex to require systems 

engineering, even though it may have some modern automated attachments. On the 

other hand, the context of an  engineered  system excludes such complex systems as 

living organisms and ecosystems. The restriction of the term  “ system ”  to one that is 

complex and engineered makes it more clearly applicable to the function of systems 

engineering as it is commonly understood. Examples of systems requiring systems 

engineering for their development are listed in a subsequent section. 

 The above defi nitions of  “ systems engineering ”  and  “ system ”  are not represented 

as being unique or superior to those used in other textbooks, each of which defi nes 

them somewhat differently. In order to avoid any potential misunderstanding, the 

meaning of these terms  as used in this book  is defi ned at the very outset, before going 

on to the more important subjects of the responsibilities, problems, activities, and tools 

of systems engineering. 

  Systems Engineering and Traditional Engineering Disciplines 

 From the above defi nition, it can be seen that systems engineering differs from mechani-

cal, electrical, and other engineering disciplines in several important ways: 

  1.     Systems engineering is focused on the system as a whole; it emphasizes its total 

operation. It looks at the system from the outside, that is, at its interactions with 

other systems and the environment, as well as from the inside. It is concerned 

not only with the engineering design of the system but also with external factors, 

which can signifi cantly constrain the design. These include the identifi cation of 

customer needs, the system operational environment, interfacing systems, logis-

tics support requirements, the capabilities of operating personnel, and such other 

factors as must be correctly refl ected in system requirements documents and 

accommodated in the system design.  

  2.     While the primary purpose of systems engineering is to guide, this does not 

mean that systems engineers do not themselves play a key role in system design. 

On the contrary, they are responsible for leading the formative (concept devel-

opment) stage of a new system development, which culminates in the functional 

design of the system refl ecting the needs of the user. Important design decisions 

at this stage cannot be based entirely on quantitative knowledge, as they are for 

the traditional engineering disciplines, but rather must often rely on qualitative 

judgments balancing a variety of incommensurate quantities and utilizing expe-

rience in a variety of disciplines, especially when dealing with new 

technology.  

  3.     Systems engineering  bridges  the traditional engineering disciplines. The diver-

sity of the elements in a complex system requires different engineering disci-
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plines to be involved in their design and development. For the system to perform 

correctly, each system element must function properly in combination with one 

or more other system elements. Implementation of these interrelated functions 

is dependent on a complex set of physical and functional interactions between 

separately designed elements. Thus, the various elements cannot be engineered 

independently of one another and then simply assembled to produce a working 

system. Rather, systems engineers must guide and coordinate the design of each 

individual element as necessary to assure that the interactions and interfaces 

between system elements are compatible and mutually supporting. Such coor-

dination is especially important when individual system elements are designed, 

tested, and supplied by different organizations.     

  Systems Engineering and Project Management 

 The engineering of a new complex system usually begins with an exploratory stage in 

which a new system concept is evolved to meet a recognized need or to exploit a tech-

nological opportunity. When the decision is made to engineer the new concept into an 

operational system, the resulting effort is inherently a major enterprise, which typically 

requires many people, with diverse skills, to devote years of effort to bring the system 

from concept to operational use. 

 The magnitude and complexity of the effort to engineer a new system requires 

a dedicated team to lead and coordinate its execution. Such an enterprise is called 

a  “ project ”  and is directed by a project manager aided by a staff. Systems engineering 

is an inherent part of project management — the part that is concerned with guiding 

the engineering effort itself — setting its objectives, guiding its execution, evaluating 

its results, and prescribing necessary corrective actions to keep it on course. The man-

agement of the planning and control aspects of the project fi scal, contractual, and 

customer relations is supported by systems engineering but is usually not considered 

to be part of the systems engineering function. This subject is described in more detail 

in Chapter  5 . 

 Recognition of the importance of systems engineering by every participant in a 

system development project is essential for its effective implementation. To accomplish 

this, it is often useful to formally assign the leader of the systems engineering team to 

a recognized position of technical responsibility and authority within the project.   

   1.2    ORIGINS OF SYSTEMS ENGINEERING 

 No particular date can be associated with the origins of systems engineering. Systems 

engineering principles have been practiced at some level since the building of the pyra-

mids and probably before. (The Bible records that Noah ’ s Ark was built to a system 

specifi cation.) 

 The recognition of systems engineering as a distinct activity is often associated 

with the effects of World War II, and especially the 1950s and 1960s when a number 

of textbooks were published that fi rst identifi ed systems engineering as a distinct 
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discipline and defi ned its place in the engineering of systems. More generally, the 

recognition of systems engineering as a unique activity evolved as a necessary corollary 

to the rapid growth of technology, and its application to major military and commercial 

operations during the second half of the twentieth century. 

 The global confl agration of World War II provided a tremendous spur to the 

advancement of technology in order to gain a military advantage for one side or the 

other. The development of high - performance aircraft, military radar, the proximity fuse, 

the German VI and V2 missiles, and especially the atomic bomb required revolutionary 

advances in the application of energy, materials, and information. These systems were 

complex, combining multiple technical disciplines, and their development posed engi-

neering challenges signifi cantly beyond those that had been presented by their more 

conventional predecessors. Moreover, the compressed development time schedules 

imposed by wartime imperatives necessitated a level of organization and effi ciency that 

required new approaches in program planning, technical coordination, and engineering 

management. Systems engineering, as we know it today, developed to meet these 

challenges. 

 During the Cold War of the 1950s, 1960s, and 1970s, military requirements con-

tinued to drive the growth of technology in jet propulsion, control systems, and materi-

als. However, another development, that of solid - state electronics, has had perhaps a 

more profound effect on technological growth. This, to a large extent, made possible 

the still evolving  “ information age, ”  in which computing, networks, and communica-

tions are extending the power and reach of systems far beyond their previous limits. 

Particularly signifi cant in this connection is the development of the digital computer 

and the associated software technology driving it, which increasingly is leading to the 

replacement of human control of systems by automation. Computer control is qualita-

tively increasing the complexity of systems and is a particularly important concern of 

systems engineering. 

 The relation of modern systems engineering to its origins can be best understood 

in terms of three basic factors: 

  1.     Advancing Technology,     which provide opportunities for increasing system 

capabilities, but introduces development risks that require systems engineering 

management; nowhere is this more evident than in the world of automation. 

Technology advances in human – system interfaces, robotics, and software make 

this particular area one of the fastest growing technologies affecting system 

design.  

  2.     Competition,     whose various forms require seeking superior (and more 

advanced) system solutions through the use of system - level trade - offs among 

alternative approaches.  

  3.     Specialization,     which requires the partitioning of the system into building 

blocks corresponding to specifi c product types that can be designed and built 

by specialists, and strict management of their interfaces and interactions.    

 These factors are discussed in the following paragraphs. 
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  Advancing Technology: Risks 

 The explosive growth of technology in the latter half of the twentieth century and 

into this century has been the single largest factor in the emergence of systems engi-

neering as an essential ingredient in the engineering of complex systems. Advancing 

technology has not only greatly extended the capabilities of earlier systems, such as 

aircraft, telecommunications, and power plants, but has also created entirely new 

systems such as those based on jet propulsion, satellite communications and navigation, 

and a host of computer - based systems for manufacturing, fi nance, transportation, 

entertainment, health care, and other products and services. Advances in technology 

have not only affected the nature of products but have also fundamentally changed 

the way they are engineered, produced, and operated. These are particularly important 

in early phases of system development, as described in Conceptual Exploration, in 

Chapter  7 . 

 Modern technology has had a profound effect on the very approach to engineering. 

Traditionally, engineering applies known principles to practical ends. Innovation, 

however, produces new materials, devices, and processes, whose characteristics are not 

yet fully measured or understood. The application of these to the engineering of new 

systems thus increases the risk of encountering unexpected properties and effects that 

might impact system performance and might require costly changes and program 

delays. 

 However, failure to apply the latest technology to system development also carries 

risks. These are the risks of producing an inferior system, one that could become pre-

maturely obsolete. If a competitor succeeds in overcoming such problems as may be 

encountered in using advanced technology, the competing approach is likely to be 

superior. The successful entrepreneurial organization will thus assume carefully selected 

technological risks and surmount them by skillful design, systems engineering, and 

program management. 

 The systems engineering approach to the early application of new technology is 

embodied in the practice of  “ risk management. ”  Risk management is a process of 

dealing with calculated risks through a process of analysis, development, test, and 

engineering oversight. It is described more fully in Chapters  5  and  9 . 

 Dealing with risks is one of the essential tasks of systems engineering, requiring 

a broad knowledge of the total system and its critical elements. In particular, systems 

engineering is central to the decision of how to achieve the best balance of risks, that 

is, which system elements should best take advantage of new technology and which 

should be based on proven components, and how the risks incurred should be reduced 

by development and testing. 

 The development of the digital computer and software technology noted earlier 

deserves special mention. This development has led to an enormous increase in the 

automation of a wide array of control functions for use in factories, offi ces, hospitals, 

and throughout society. Automation, most of it being concerned with information pro-

cessing hardware and software, and its sister technology, autonomy, which adds in 

capability of command and control, is the fastest growing and most powerful single 

infl uence on the engineering of modern systems. 
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 The increase in automation has had an enormous impact on people who operate 

systems, decreasing their number but often requiring higher skills and therefore special 

training. Human – machine interfaces and other people – system interactions are particu-

lar concerns of systems engineering. 

 Software continues to be a growing engineering medium whose power and versatil-

ity has resulted in its use in preference to hardware for the implementation of a growing 

fraction of system functions. Thus, the performance of modern systems increasingly 

depends on the proper design and maintenance of software components. As a result, 

more and more of the systems engineering effort has had to be directed to the control 

of software design and its application.  

  Competition: Trade - offs 

 Competitive pressures on the system development process occur at several different 

levels. In the case of defense systems, a primary drive comes from the increasing mili-

tary capabilities of potential adversaries, which correspondingly decrease the effective-

ness of systems designed to defeat them. Such pressures eventually force a development 

program to redress the military balance with a new and more capable system or a major 

upgrade of an existing one. 

 Another source of competition comes with the use of competitive contracting for 

the development of new system capabilities. Throughout the competitive period, which 

may last through the initial engineering of a new system, each contractor seeks to devise 

the most cost - effective program to provide a superior product. 

 In developing a commercial product, there are nearly always other companies that 

compete in the same market. In this case, the objective is to develop a new market or 

to obtain an increased market share by producing a superior product ahead of the com-

petition, with an edge that will maintain a lead for a number of years. The above 

approaches nearly always apply the most recent technology in an effort to gain a com-

petitive advantage. 

 Securing the large sums of money needed to fund the development of a new 

complex system also involves competition on quite a different level. In particular, both 

government agencies and industrial companies have many more calls on their resources 

than they can accommodate and hence must carefully weigh the relative payoff of 

proposed programs. This is a primary reason for requiring a phased approach in new 

system development efforts, through the requirement for justifi cation and formal 

approval to proceed with the increasingly expensive later phases. The results of each 

phase of a major development must convince decision makers that the end objectives 

are highly likely to be attained within the projected cost and schedule. 

 On a still different basis, the competition among the essential characteristics of 

the system is always a major consideration in its development. For example, there is 

always competition between performance, cost, and schedule, and it is impossible to 

optimize all three at once. Many programs have failed by striving to achieve levels 

of performance that proved unaffordable. Similarly, the various performance parame-

ters of a vehicle, such as speed and range, are not independent of one another; the 

effi ciency of most vehicles, and hence their operating range, decreases at higher speeds. 
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Thus, it is necessary to examine alternatives in which these characteristics are allowed 

to vary and to select the combination that best balances their values for the benefi t of 

the user. 

 All of the forms of competition exert pressure on the system development process 

to produce the best performing, most affordable system, in the least possible time. The 

process of selecting the most desirable approach requires the examination of numerous 

potential alternatives and the exercise of a breadth of technical knowledge and judgment 

that only experienced systems engineers possess. This is often referred to as  “ trade - off 

analysis ”  and forms one of the basic practices of systems engineering.  

  Specialization: Interfaces 

 A complex system that performs a number of different functions must of necessity be 

confi gured in such a way that each major function is embodied in a separate component 

capable of being specifi ed, developed, built, and tested as an individual entity. Such a 

subdivision takes advantage of the expertise of organizations specializing in particular 

types of products, and hence is capable of engineering and producing components of 

the highest quality at the lowest cost. Chapter  3  describes the kind of functional and 

physical building blocks that make up most modern systems. 

 The immensity and diversity of engineering knowledge, which is still growing, has 

made it necessary to divide the education and practice of engineering into a number of 

specialties, such as mechanical, electrical, aeronautical, and so on. To acquire the neces-

sary depth of knowledge in any one of these fi elds, further specialization is needed, 

into such subfi elds as robotics, digital design, and fl uid dynamics. Thus, engineering 

specialization is a predominant condition in the fi eld of engineering and manufacturing 

and must be recognized as a basic condition in the system development process. 

 Each engineering specialty has developed a set of specialized tools and facilities 

to aid in the design and manufacture of its associated products. Large and small com-

panies have organized around one or several engineering groups to develop and manu-

facture devices to meet the needs of the commercial market or of the system - oriented 

industry. The development of interchangeable parts and automated assembly has been 

one of the triumphs of the U.S. industry. 

 The convenience of subdividing complex systems into individual building blocks 

has a price: that of integrating these disparate parts into an effi cient, smoothly operating 

system. Integration means that each building block fi ts perfectly with its neighbors and 

with the external environment with which it comes into contact. The  “ fi t ”  must be not 

only physical but also functional; that is, its design will both affect the design charac-

teristics and behavior of other elements, and will be affected by them, to produce the 

exact response that the overall system is required to make to inputs from its environ-

ment. The physical fi t is accomplished at intercomponent boundaries called  interfaces . 

The functional relationships are called  interactions . 

 The task of analyzing, specifying, and validating the component interfaces with 

each other and with the external environment is beyond the expertise of the individual 

design specialists and is the province of the systems engineer. Chapter  3  discusses 

further the importance and nature of this responsibility. 
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 A direct consequence of the subdivision of systems into their building blocks is 

the concept of modularity. Modularity is a measure of the degree of mutual indepen-

dence of the individual system components. An essential goal of systems engineering 

is to achieve a high degree of modularity to make interfaces and interactions as simple 

as possible for effi cient manufacture, system integration, test, operational maintenance, 

reliability, and ease of in - service upgrading. The process of subdividing a system into 

modular building blocks is called  “ functional allocation ”  and is another basic tool of 

systems engineering.   

   1.3    EXAMPLES OF SYSTEMS REQUIRING SYSTEMS ENGINEERING 

 As noted at the beginning of this chapter, the generic defi nition of a system as a  set  of 

 interrelated components  working  together  as an integrated whole to achieve some 

common objective would fi t most familiar home appliances. A washing machine con-

sists of a main clothes tub, an electric motor, an agitator, a pump, a timer, an inner 

spinning tub, and various valves, sensors, and controls. It performs a sequence of timed 

operations and auxiliary functions based on a schedule and operation mode set by the 

operator. A refrigerator, microwave oven, dishwasher, vacuum cleaner, and radio all 

perform a number of useful operations in a systematic manner. However, these appli-

ances involve only one or two engineering disciplines, and their design is based on 

well - established technology. Thus, they fail the criterion of being  complex , and we 

would not consider the development of a new washer or refrigerator to involve much 

systems engineering as we understand the term, although it would certainly require a 

high order of reliability and cost engineering. Of course, home appliances increasingly 

include clever automatic devices that use newly available microchips, but these are 

usually self - contained add - ons and are not necessary to the main function of the 

appliance. 

 Since the development of new modern systems is strongly driven by technological 

change, we shall add one more characteristic to a system requiring systems engineering, 

namely, that some of its key elements use advanced technology. The characteristics of 

a system whose development, test, and application require the practice of systems 

engineering are that the system 

   •      is an engineered product and hence satisfi es a specifi ed need,  

   •      consists of diverse components that have intricate relationships with one another 

and hence is multidisciplinary and relatively complex, and  

   •      uses advanced technology in ways that are central to the performance of its 

primary functions and hence involves development risk and often a relatively 

high cost.    

 Henceforth, references in this text to an  engineered  or  complex  system (or in the 

proper context, just  system ) will mean the type that has the three attributes noted above, 

that is, is an engineered product, contains diverse components, and uses advanced 

technology. These attributes are, of course, in addition to the generic defi nition stated 
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earlier and serve to identify the systems of concern to the systems engineer as those 

that require system design, development, integration, test, and evaluation. In Chapter 

 2 , we explore the full spectrum of systems complexity and why the systems engineering 

landscape presents a challenge for systems engineers. 

  Examples of Complex Engineered Systems 

 To illustrate the types of systems that fi t within the above defi nition, Tables  1.1  and  1.2  

list 10 modern systems and their principal inputs, processes, and outputs.   

  TABLE 1.1.    Examples of Engineered Complex Systems: Signal and Data Systems 

   System     Inputs     Process     Outputs  

  Weather satellite    Images        •      Data storage  

   •      Transmission     

  Encoded images  

  Terminal air traffi c 

control system  

  Aircraft beacon 

responses  

      •      Identifi cation  

   •      Tracking     

      •      Identity  

   •      Air tracks  

   •      Communications     

  Track location system    Cargo routing 

requests  

      •      Map tracing  

   •      Communication     

      •      Routing information  

   •      Delivered cargo     

  Airline reservation 

system  

  Travel requests    Data management        •      Reservations  

   •      Tickets     

  Clinical information 

system  

      •      Patient ID  

   •      Test records  

   •      Diagnosis     

  Information 

management  

      •      Patient status  

   •      History  

   •      Treatment     

  TABLE 1.2.    Examples of Engineered Complex Systems: Material and Energy Systems 

   System     Inputs     Process     Outputs  

  Passenger aircraft        •      Passengers  

   •      Fuel     

      •      Combustion  

   •      Thrust  

   •      Lift     

  Transported 

passengers  

  Modern harvester 

combine  

      •      Grain fi eld  

   •      Fuel     

      •      Cutting  

   •      Threshing     

  Harvested grain  

  Oil refi nery        •      Crude oil  

   •      Catalysts  

   •      Energy     

      •      Cracking  

   •      Separation  

   •      Blending     

      •      Gasoline  

   •      Oil products  

   •      Chemicals     

  Auto assembly plant        •      Auto parts  

   •      Energy     

      •      Manipulation  

   •      Joining  

   •      Finishing     

  Assembled auto  

  Electric power plant        •      Fuel  

   •      Air     

      •      Power generation  

   •      Regulation     

      •      Electric AC power  

   •      Waste products     
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 It has been noted that a system consists of a multiplicity of elements, some of 

which may well themselves be complex and deserve to be considered a system in their 

own right. For example, a telephone - switching substation can well be considered as a 

system, with the telephone network considered as a  “ system of systems. ”  Such issues 

will be discussed more fully in Chapters  2  and  4 , to the extent necessary for the under-

standing of systems engineering. 

  Example: A Modern Automobile.     A more simple and familiar system, which 

still meets the criteria for an engineered system, is a fully equipped passenger automo-

bile. It can be considered as a lower limit to more complex vehicular systems. It is 

made up of a large number of diverse components requiring the combination of several 

different disciplines. To operate properly, the components must work together accu-

rately and effi ciently. Whereas the operating principles of automobiles are well estab-

lished, modern autos must be designed to operate effi ciently while at the same time 

maintaining very close control of engine emissions, which requires sophisticated 

sensors and computer - controlled mechanisms for injecting fuel and air. Antilock brakes 

are another example of a fi nely tuned automatic automobile subsystem. Advanced 

materials and computer technology are used to an increasing degree in passenger pro-

tection, cruise control, automated navigation and autonomous driving and parking. The 

stringent requirements on cost, reliability, performance, comfort, safety, and a dozen 

other parameters present a number of substantive systems engineering problems. 

Accordingly, an automobile meets the defi nition established earlier for a system requir-

ing the application of systems engineering, and hence can serve as a useful example. 

 An automobile is also an example of a large class of systems that require active 

interaction (control) by a human operator. To some degree, all systems require such 

interaction, but in this case, continuous control is required. In a very real sense, the 

operator (driver) functions as an integral part of the overall automobile system, serving 

as the steering feedback element that detects and corrects deviations of the car ’ s path 

on the road. The design must therefore address as a critical constraint the inherent 

sensing and reaction capabilities of the operator, in addition to a range of associated 

human – machine interfaces such as the design and placement of controls and displays, 

seat position, and so on. Also, while the passengers may not function as integral ele-

ments of the auto steering system, their associated interfaces (e.g., weight, seating and 

viewing comfort, and safety) must be carefully addressed as part of the design process. 

Nevertheless, since automobiles are developed and delivered without the human 

element, for purposes of systems engineering, they may be addressed as systems in 

their own right.    

   1.4    SYSTEMS ENGINEERING AS A PROFESSION 

 With the increasing prevalence of complex systems in modern society, and the essential 

role of systems engineering in the development of systems, systems engineering as a 

profession has become widely recognized. Its primary recognition has come in compa-

nies specializing in the development of large systems. A number of these have estab-
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lished departments of systems engineering and have classifi ed those engaging in the 

process as systems engineers. In addition, global challenges in health care, communica-

tions, environment, and many other complex areas require engineering systems methods 

to develop viable solutions. 

 To date, the slowness of recognition of systems engineering as a career is the fact 

that it does not correspond to the traditional academic engineering disciplines. 

Engineering disciplines are built on quantitative relationships, obeying established 

physical laws, and measured properties of materials, energy, or information. Systems 

engineering, on the other hand, deals mainly with problems for which there is incom-

plete knowledge, whose variables do not obey known equations, and where a balance 

must be made among confl icting objectives involving incommensurate attributes. The 

absence of a quantitative knowledge base previously inhibited the establishment of 

systems engineering as a unique discipline. 

 Despite those obstacles, the recognized need for systems engineering in industry 

and government has spurred the establishment of a number of academic programs 

offering master ’ s degrees and doctoral degrees in systems engineering. An increasing 

number of universities are offering undergraduate degrees in systems engineering as 

well. 

 The recognition of systems engineering as a profession has led to the formation of 

a professional society, the International Council on Systems Engineering (INCOSE), 

one of whose primary objectives is the promotion of systems engineering, and the 

recognition of systems engineering as a professional career. 

  Career Choices 

 Systems engineers are highly sought after because their skills complement those in 

other fi elds and often serve as the  “ glue ”  to bring new ideas to fruition. However, career 

choices and the related educational needs for those choices is complex, especially when 

the role and responsibilities of a systems engineer is poorly understood. 

 Four potential career directions are shown in Figure  1.1 : fi nancial, management, 

technical, and systems engineering. There are varying degrees of overlap between them 

despite the symmetry shown in the fi gure. The systems engineer focuses on the whole 

system product, leading and working with many diverse technical team members, fol-

lowing the systems engineering development cycle, conducting studies of alternatives, 

and managing the system interfaces. The systems engineer generally matures in the 

fi eld after a technical undergraduate degree with work experience and a master of 

science degree in systems engineering, with an increasing responsibility of successively 

larger projects, eventually serving as the chief or lead systems engineer for a major 

systems, or systems - of - systems development. Note the overlap and need to understand 

the content and roles of the technical specialists and to coordinate with the program 

manager (PM).   

 The project manager or PM, often with a technical or business background, is 

responsible for interfacing with the customer and for defi ning the work, developing 

the plans, monitoring and controlling the project progress, and delivering the fi nished 

output to the customer. The PM often learns from on the job training (OJT) with 
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projects of increasing size and importance, enhancing the toolset available with a master 

of science degree in technical/program management. While not exclusively true, 

the chief executive offi cer (CEO) frequently originates from the ranks of the organiza-

tion ’ s PMs. 

 The fi nancial or business career path that ultimately could lead to a chief 

fi nancial offi cer (CFO) position usually includes business undergraduate and master of 

business administration (MBA) degrees. Individuals progress through their careers with 

various horizontal and vertical moves, often with specialization in the fi eld. There is 

an overlap in skill and knowledge with the PM in areas of contract and fi nance 

management. 

 Many early careers start with a technical undergraduate degree in engineering, 

science or information technology. The technical specialist makes contributions as part 

of a team in the area of their primary knowledge, honing skills and experience to 

develop and test individual components or algorithms that are part of a larger system. 

Contributions are made project to project over time, and recognition is gained from 

innovative, timely, and quality workmanship. Technical specialists need to continue to 

learn about their fi eld and to stay current in order to be employable compared to the 

next generation of college graduates. Often advanced degrees (MS and PhDs) are 

acquired to enhance knowledge, capability, and recognition, and job responsibilities 

can lead to positions such as lead engineer, lead scientist, or chief technology offi cer 

(CTO) in an organization. The broader minded or experienced specialist often considers 

a career in systems engineering.  

     Figure 1.1.     Career opportunities and growth.  
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  Orientation of Technical Professionals 

 The special relationship of systems engineers with respect to technical disciplines can 

be better understood when it is realized that technical people not only engage in widely 

different professional specialties, but their intellectual objectives, interests, and atti-

tudes, which represent their technical orientations, can also be widely divergent. The 

typical scientist is dedicated to understanding the nature and behavior of the physical 

world. The scientist asks the questions  “ Why? ”  and  “ How? ”  The mathematician is 

usually primarily concerned with deriving the logical consequences of a set of assump-

tions, which may be quite unrelated to the real world. The mathematician develops the 

proposition  “ If A, then B. ”  Usually, the engineer is mainly concerned with creating a 

useful product. The engineer exclaims  “ Voila! ”  

 These orientations are quite different from one another, which accounts for why 

technical specialists are focused on their own aspects of science and technology. 

However, in most professionals, those orientations are not absolute; in many cases, the 

scientist may need some engineering to construct an apparatus, and the engineer may 

need some mathematics to solve a control problem. So, in the general case, the orienta-

tion of a technical professional might be modeled by a sum of three orthogonal vectors, 

each representing the extent of the individual ’ s orientation being in science, mathemat-

ics, or engineering. 

 To represent the above model, it is convenient to use a diagram designed to show 

the composition of a mixture of three components. Figure  1.2 a is such a diagram in 

which the components are science, mathematics, and engineering. A point at each vertex 

represents a mixture with 100% of the corresponding component. The composition of 

the mixture marked by the small triangle in the fi gure is obtained by fi nding the per-

centage of each component by projecting a line parallel to the baseline opposite each 

vertex to the scale radiating from the vertex. This process gives intercepts of 70% 

science, 20% mathematics, and 10% engineering for the orientation marked by the 

triangle.   

 Because the curricula of technical disciplines tend to be concentrated in specialized 

subjects, most students graduate with limited general knowledge. In Figure  1.2 b, the 

circles representing the orientation of individual graduates are seen to be concentrated 

in the corners, refl ecting their high degree of specialization. 

 The tendency of professional people to polarize into diverse specialties and inter-

ests tends to be accentuated after graduation, as they seek to become recognized in their 

respective fi elds. Most technical people resist becoming generalists for fear they will 

lose or fail to achieve positions of professional leadership and the accompanying rec-

ognition. This specialization of professionals inhibits technical communication between 

them; the language barrier is bad enough, but the differences in basic objectives and 

methods of thought are even more serious. The solution of complex interdisciplinary 

problems has had to depend on the relatively rare individuals who, for one reason or 

another, after establishing themselves in their principal profession, have become inter-

ested and involved in solving system problems and have learned to work jointly with 

specialists in various other fi elds. 
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     Figure 1.2.     (a) Technical orientation phase diagram. (b) Technical orientation population 

density distribution.  

(a)

(b)
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 The occasional evolution of technical specialists into systems engineers is symbol-

ized in Figure  1.2 b by the arrows directed from the vertices toward the center. The 

small black triangle corresponds to such an evolved individual whose orientation is 

30% science, 50% engineering, and 20% mathematics, a balance that would be effective 

in the type of problem solving with which a systems engineer is typically involved. It 

is the few individuals who evolve into systems engineers or system architects who 

become the technical leaders of system development programs.  

  The Challenge of Systems Engineering 

 An inhibiting factor in becoming a professional systems engineer is that it represents 

a deviation from a chosen established discipline to a more diverse, complicated profes-

sional practice. It requires the investment of time and effort to gain experience and an 

extensive broadening of the engineering base, as well as learning communication and 

management skills, a much different orientation from the individual ’ s original profes-

sional choice. 

 For the above reasons, an engineer considering a career in systems engineering 

may come to the conclusion that the road is diffi cult. It is clear that a great deal must 

be learned; that the educational experience in a traditional engineering discipline is 

necessary; and that there are few tools and few quantitative relationships to help make 

decisions. Instead, the issues are ambiguous and abstract, defying defi nitive solutions. 

There may appear to be little opportunity for individual accomplishment and even less 

for individual recognition. For a systems engineer, success is measured by the accom-

plishment of the development team, not necessarily the system team leader.  

  What Then Is the Attraction of Systems Engineering? 

 The answer may lie in the challenges of systems engineering rather than its direct 

rewards. Systems engineers deal with the most important issues in the system develop-

ment process. They design the overall system architecture and the technical approach 

and lead others in designing the components. They prioritize the system requirements 

in conjunction with the customer to ensure that the different system attributes are 

appropriately weighted when balancing the various technical efforts. They decide which 

risks are worth undertaking and which are not, and how the former should be hedged 

to ensure program success. 

 It is the systems engineers who map out the course of the development program 

that prescribes the type and timing of tests and simulations to be performed along the 

way. They are the ultimate authorities on how the system performance and system 

affordability goals may be achieved at the same time. 

 When unanticipated problems arise in the development program, as they always 

do, it is the systems engineers who decide how they may be solved. They determine 

whether an entirely new approach to the problem is necessary, whether more intense 

effort will accomplish the purpose, whether an entirely different part of the system can 



18 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS  

be modifi ed to compensate for the problem, or whether the requirement at issue can 

best be scaled back to relieve the problem. 

 Systems engineers derive their ability to guide the system development not from 

their position in the organization but from their superior knowledge of the system as a 

whole, its operational objectives, how all its parts work together, and all the technical 

factors that go into its development, as well as from their proven experience in steering 

complex programs through a maze of diffi culties to a successful conclusion.  

  Attributes and Motivations of Systems Engineers 

 In order to identify candidates for systems engineering careers, it is useful to examine 

the characteristics that may be useful to distinguish people with a talent for systems 

engineering from those who are not likely to be interested or successful in that disci-

pline. Those likely to become talented systems engineers would be expected to have 

done well in mathematics and science in college. 

 A systems engineer will be required to work in a multidisciplinary environment 

and to grasp the essentials of related disciplines. It is here that an aptitude for science 

and engineering helps a great deal because it makes it much easier and less threatening 

for individuals to learn the essentials of new disciplines. It is not so much that they 

require in depth knowledge of higher mathematics, but rather, those who have a limited 

mathematical background tend to lack confi dence in their ability to grasp subjects that 

inherently contain mathematical concepts. 

 A systems engineer should have a creative bent and must like to solve practical 

problems. An interest in the job should be greater than an interest in career advance-

ment. Systems engineering is more of a challenge than a quick way to the top. 

 The following characteristics are commonly found in successful systems engineers. 

They 

  1.     enjoy learning new things and solving problems,  

  2.     like challenges,  

  3.     are skeptical of unproven assertions,  

  4.     are open - minded to new ideas,  

  5.     have a solid background in science and engineering,  

  6.     have demonstrated technical achievement in a specialty area,  

  7.     are knowledgeable in several engineering areas,  

  8.     pick up new ideas and information quickly, and  

  9.     have good interpersonal and communication skills.      

   1.5    SYSTEMS ENGINEER CAREER DEVELOPMENT MODEL 

 When one has the characteristics noted above and is attracted to become a systems 

engineer, there are four more elements that need to be present in the work environment. 

As shown in Figure  1.3 a, one should seek assignments to problems and tasks that are 
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very challenging and are likely to expand technical domain knowledge and creative 

juices. Whatever the work assignment, understanding the context of the work and 

understanding the big picture is also essential. Systems engineers are expected to 

manage many activities at the same time, being able to have broad perspectives but 

able to delve deeply into to many subjects at once. This ability to multiplex is one that 

takes time to develop. Finally, the systems engineer should not be intimidated by 

complex problems since this is the expected work environment. It is clear these ele-

ments are not part of an educational program and must be gained through extended 

professional work experience. This becomes the foundation for the systems engineering 

career growth model.   

 Employers seeking to develop systems engineers to competitively address more 

challenging problems should provide key staff with relevant systems engineering 

work experience, activities that require mature systems thinking, and opportunities 

for systems engineering education and training. In Figure  1.3 b, it can be seen that 

the experience can be achieved not only with challenging problems but also with 

     Figure 1.3.     (a) Systems engineering (SE) career elements derived from quality work experi-

ences. (b) Components of employer development of systems engineers.  

(a)

(b)
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     Figure 1.4.      “ T ”  model for systems engineer career development. CE, chemical engineering; 

ME, mechanical engineering; EE, electrical engineering; AE, aeronautical engineering; App 

Math, applied mathematics.  
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experienced mentors and real, practical exercises. While using systems thinking to 

explore complex problem domains, staff should be encouraged to think creatively and 

out of the box. Often, technically trained people rigidly follow the same processes and 

tired ineffective solutions. Using lessons learned from past programs and case studies 

creates opportunities for improvements. Formal training and use of systems engineering 

tools further enhance employee preparation for tackling complex issues. 

 Interests, attributes, and training, along with an appropriate environment, provide 

the opportunity for individuals to mature into successful systems engineers. The com-

bination of these factors is captured in the  “ T ”  model for systems engineer career devel-

opment illustrated in Figure  1.4 . In the vertical, from bottom to top is the time progression 

in a professional ’ s career path. After completion of a technical undergraduate degree, 

shown along the bottom of the chart, an individual generally enters professional life as 

a technical contributor to a larger effort. The effort is part of a project or program that 

falls in a particular domain such as aerodynamics, biomedicine, combat systems, infor-

mation systems, or space exploration. Within a domain, there are several technical 

competencies that are fundamental for systems to operate or to be developed.   

 The T is formed by snapshots during a professional ’ s career that illustrates in the 

horizontal part of the T the technical competencies at the time that were learned and 

used to meet the responsibilities assigned at that point in their career. After an initial 
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experience in one or two technical domains as technical contributor, one progresses to 

increasing responsibilities in a team setting and eventually to leading small technical 

groups. After eight or more years, the professional has acquired both suffi cient technical 

depth and technical domain depth to be considered a systems engineer. Additional 

assignments lead to project and program systems engineering leadership and eventually 

to being the senior systems engineer for a major development program that exercises 

the full range of the technical competencies for the domain. 

 In parallel with broadening and deepening technical experience and competencies, 

the successful career path is augmented by assignments that involve operational fi eld 

experiences, advanced education and training, and a strong mentoring program. In order 

to obtain a good understanding of the environment where the system under development 

will operate and to obtain fi rsthand knowledge of the system requirements, it is essential 

for the early systems engineer professional to visit the  “ fi eld site ”  and operational loca-

tion. This approach is important to continue throughout one ’ s career. A wide variety of 

systems engineering educational opportunities are available in both classroom and 

online formats. As in most engineering disciplines where the student is not planning 

on an academic career, the master of science is the terminal degree. Courses are usually 

a combination of systems engineering and domain or concentration centric focused with 

a thesis or capstone project for the students to demonstrate their knowledge and skills 

on a practical systems problem. Large commercial companies also provide training in 

systems engineering and systems architecting with examples and tools that are specifi c 

to their organization and products. Finally, the pairing of a young professional with an 

experienced systems engineer will enhance the learning process.  

   1.6    THE POWER OF SYSTEMS ENGINEERING 

 If power is measured by authority over people or money, then systems engineers would 

appear to have little power as members of the system development team. However, if 

power is measured by the infl uence over the design of the system and its major char-

acteristics, and over the success or failure of the system development, then systems 

engineers can be more powerful than project managers. The sources of this power come 

from their knowledge, skills, and attitude. Each of these is discussed in the following 

paragraphs. 

  The Power of Multidisciplinary Knowledge 

 A major system development project is a veritable  “ Tower of Babel. ”  There are literally 

dozens of specialists in different disciplines whose collective efforts are necessary to 

develop and produce a successful new system. Each group of specialists has its own 

language, making up for the imprecision of the English language with a rich set of 

acronyms, which convey a very specifi c meaning but are unintelligible to those outside 

the specialty. The languages, in turn, are backed up by knowledge bases, which the 

specialists use to ply their trade. These knowledge bases contain descriptions of the 

different materials peculiar to each discipline, as well as bodies of relationships, many 
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of them expressed in mathematical terms, that enable the specialists to compute various 

characteristics of their components on the basis of design assumptions. These knowl-

edge bases are also foreign to those outside the discipline. 

 Such a collection of multi - tongued participants could never succeed in collectively 

developing a new system by themselves, just as the citizens of Babylon could never 

build their tower. It is the systems engineers who provide the linkages that enable these 

disparate groups to function as a team. The systems engineers accomplish this feat 

through the power of multidisciplinary knowledge. This means that they are suffi ciently 

literate in the different disciplines involved in their system that they can understand the 

languages of the specialists, appreciate their problems, and are able to interpret the 

necessary communications for their collective endeavor. Thus, they are in the same 

position as a linguist in the midst of a multinational conference, with people speaking 

in their native tongues. Through the ability to understand different languages comes 

the capability to obtain cooperative effort from people who would otherwise never be 

able to achieve a common objective. This capability enables systems engineers to 

operate as leaders and troubleshooters, solving problems that no one else is capable of 

solving. It truly amounts to a power that gives systems engineers a central and decisive 

role to play in the development of a system. 

 It is important to note that the depth of interdisciplinary knowledge, which is 

required to interact effectively with specialists in a given fi eld, is a very small fraction 

of the depth necessary to work effectively in that fi eld. The number of new acronyms 

that one has to learn in a given technical area is nearer to a dozen of the more frequently 

used ones than to a hundred. It also turns out that once one gets past the differences in 

semantics, there are many common principles in different disciplines and many similar 

relationships. For instance, the equation used in communications, connecting signal, 

noise, antenna gain, receiver sensitivity, and other factors, is directly analogous to a 

similar relationship in acoustics. 

 These facts mean that a systems engineer does not need to spend a lifetime becom-

ing expert in associated disciplines, but rather can accumulate a working knowledge of 

related fi elds through selected readings, and more particularly, discussion with col-

leagues knowledgeable in each fi eld. The important thing is to know which principles, 

relationships, acronyms, and the like are important at the system level and which are 

details. The power of multidisciplinary knowledge is so great that, to a systems engi-

neer, the effort required to accumulate it is well worth the learning time.  

  The Power of Approximate Calculation 

 The practice of systems engineering requires another talent besides multidisciplinary 

knowledge. The ability to carry out  “ back of the envelope ”  calculations to obtain a 

 “ sanity check ”  on the result of a complex calculation or test is of inestimable value to 

the systems engineer. In a few cases, this can be done intuitively on the basis of past 

experience, but more frequently, it is necessary to make a rough estimate to ensure that 

a gross omission or error has not been committed. Most successful systems engineers 

have the ability, using fi rst principles, to apply basic relationships, such as the com-

munications equation or other simple calculation, to derive an order of magnitude result 



SUMMARY 23

to serve as a check. This is particularly important if the results of the calculation or 

experiment turn out very differently from what had been originally expected. 

 When the sanity check does not confi rm the results of a simulation or experiment, 

it is appropriate to go back to make a careful examination of the assumptions and 

conditions on which the latter were based. As a matter of general experience, more 

often than not, such examinations reveal an error in the conditions or assumptions under 

which the simulation or experiment was conducted.  

  The Power of Skeptical Positive Thinking 

 The above seemingly contradictory title is meant to capture an important characteristic 

of successful systems engineering. The skeptical part is important to temper the tradi-

tional optimism of the design specialist regarding the probability of success of a chosen 

design approach. It is the driving force for the insistence of validation of the approach 

selected at the earliest possible opportunity. 

 The other dimension of skepticism, which is directly related to the characteristic 

of positive thinking, refers to the reaction in the face of failure or apparent failure of a 

selected technique or design approach. Many design specialists who encounter an 

unexpected failure are plunged into despair. The systems engineer, on the other hand, 

cannot afford the luxury of hand wringing but must have, fi rst of all, a healthy skepti-

cism of the conditions under which the unexpected failure occurred. Often, it is found 

that these conditions did not properly test the system. When the test conditions are 

shown to be valid, the systems engineer must set about fi nding ways to circumvent the 

cause of failure. The conventional answer that the failure must require a new start along 

a different path, which in turn will lead to major delays and increases in program cost, 

is simply not acceptable unless heroic efforts to fi nd an alternative solution do not 

succeed. This is where the power of multidisciplinary knowledge permits the systems 

engineer to look for alternative solutions in other parts of the system, which may take 

the stress off the particular component whose design proved to be faulty. 

 The characteristic of positive thinking is absolutely necessary in both the systems 

engineer and the project manager so that they are able to generate and sustain the 

confi dence of the customer and of company management, as well as the members of 

the design team. Without the  “ can - do ”  attitude, the esprit de corps and productivity of 

the project organization is bound to suffer.   

   1.7    SUMMARY 

  What Is Systems Engineering? 

 The function of systems engineering is to guide the engineering of complex systems. 

And a system is defi ned as a set of interrelated components working together toward 

a common objective. Furthermore, a complex engineered system (as defi ned in this 

book) is (1) composed of a multiplicity of intricately interrelated diverse elements and 

(2) requires systems engineering to lead its development. 
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 Systems engineering differs from traditional disciplines in that (1) it is focused on 

the system as a whole; (2) it is concerned with customer needs and operational environ-

ment; (3) it leads system conceptual design; and (4) it bridges traditional engineering 

disciplines and gaps between specialties. Moreover, systems engineering is an integral 

part of project management in that it plans and guides the engineering effort.  

  Origins of Systems Engineering 

 Modern systems engineering originated because advancing technology brought risks 

and complexity with the growth of automation; competition required expert risk taking; 

and specialization required bridging disciplines and interfaces.  

  Examples of Systems Requiring Systems Engineering 

 Examples of engineered complex systems include 

   •      weather satellites,  

   •      terminal air traffi c control,  

   •      truck location systems,  

   •      airline navigation systems,  

   •      clinical information systems,  

   •      passenger aircraft,  

   •      modern harvester combines,  

   •      oil refi neries,  

   •      auto assembly plants, and  

   •      electric power plants.     

  Systems Engineering as a Profession 

 Systems engineering is now recognized as a profession and has an increasing role in 

government and industry. In fact, numerous graduate (and some undergraduate) degree 

programs are now available across the country. And a formal, recognized organization 

exists for systems engineering professionals: the INCOSE. 

 Technical professionals have specifi c technical orientations — technical graduates 

tend to be highly specialized. Only a few become interested in interdisciplinary 

problems — it is these individuals who often become systems engineers.  

  Systems Engineer Career Development Model 

 The systems engineering profession is diffi cult but rewarding. A career in systems 

engineering typically features technical satisfaction — fi nding the solution of abstract 

and ambiguous problems — and recognition in the form of a pivotal program role. 

Consequently, a successful systems engineer has the following traits and attributes: 
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   •      a good problem solver and should welcome challenges;  

   •      well grounded technically, with broad interests;  

   •      analytical and systematic, but also creative; and  

   •      a superior communicator, with leadership skills.    

 The  “ T ”  model represents the proper convergence of experience, education, men-

toring, and technical depth necessary to become a successful and infl uential systems 

engineer.  

  The Power of Systems Engineering 

 Overall, systems engineering is a powerful discipline, requiring a multidisciplinary 

knowledge, integrating diverse system elements. Systems engineers need to possess the 

ability to perform approximate calculations of complex phenomena, thereby providing 

sanity checks. And fi nally, they must have skeptical positive thinking as a prerequisite 

to prudent risk taking.   

  PROBLEMS 

    1.1     Write a paragraph explaining what is meant by the statement  “ Systems engi-

neering is focused on the system as a whole. ”  State what characteristics of a 

system you think this statement implies and how they apply to systems 

engineering.  

  1.2     Discuss the difference between engineered complex systems and complex 

systems that are not engineered. Give three examples of the latter. Can you 

think of systems engineering principles that can also be applied to nonengi-

neered complex systems?  

  1.3     For each of the following areas, list and explain how at least two major tech-

nological advances/breakthroughs occurring since 1990 have radically changed 

them. In each case, explain how the change was effected in  

  (a)     transportation,  

  (b)     communication,  

  (c)     fi nancial management,  

  (d)     manufacturing,  

  (e)     distribution and sales,  

  (f)     entertainment, and  

  (g)     medical care.    

  1.4     What characteristics of an airplane would you attribute to the system as a 

whole rather than to a collection of its parts? Explain why.  

  1.5     List four pros and cons (two of each) of incorporating some of the latest tech-

nology into the development of a new complex system. Give a specifi c example 

of each.  



26 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS  

  1.6     What is meant by the term  “ modularity? ”  What characteristics does a modular 

system possess? Give a specifi c example of a modular system and identify the 

modules.  

  1.7     The section Orientation of Technical Professionals uses three components to 

describe this characteristic: science, mathematics, and engineering. Using this 

model, describe what you think your orientation is in terms of  x % science,  y % 

mathematics, and  z % engineering. Note that your  “ orientation ”  does not 

measure your knowledge or expertise, but rather your interest and method of 

thought. Consider your relative interest in discovering new truths, fi nding new 

relationships, or building new things and making them work. Also, try to 

remember what your orientation was when you graduated from college, and 

explain how and why it has changed.  

  1.8     Systems engineers have been described as being an advocate for the whole 

system. Given this statement, which stakeholders should the systems engineer 

advocate the most? Obviously, there are many stakeholders and the systems 

engineer must be concerned with most, if not all, of them. Therefore, rank your 

answer in priority order — which stakeholder is the most important to the 

systems engineer; which is second; which is third?     
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    2.1    SYSTEMS ENGINEERING VIEWPOINT 

 The origins of the systems engineering section in Chapter  1  described how the emer-

gence of complex systems and the prevailing conditions of advancing technology, 

competitive pressures, and specialization of engineering disciplines and organizations 

required the development of a new profession: systems engineering. This profession 

did not, until much later, bring with it a new academic discipline, but rather, it was 

initially fi lled by engineers and scientists who acquired through experience the ability 

to lead successfully complex system development programs. To do so, they had to 

acquire a greater breadth of technical knowledge and, more importantly, to develop a 

different way of thinking about engineering, which has been called  “ the systems engi-

neering viewpoint. ”  

 The essence of the systems engineering viewpoint is exactly what it implies —

 making the central objective the system as a whole and the success of its mission. This, 

in turn, means the subordination of individual goals and attributes in favor of those of 

the overall system. The systems engineer is always the advocate of the total system in 

any contest with a subordinate objective. 

  2 
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  Successful Systems 

 The principal focus of systems engineering, from the very start of a system develop-

ment, is the success of the system — in meeting its requirements and development 

objectives, its successful operation in the fi eld, and a long, useful operating life. The 

systems engineering viewpoint encompasses all of these objectives. It seeks to look 

beyond the obvious and the immediate, to understand the user ’ s problems, and the 

environmental conditions that the system will be subjected to during its operation. It 

aims at the establishment of a technical approach that will both facilitate the system ’ s 

operational maintenance and accommodate the eventual upgrading that will likely be 

required at some point in the future. It attempts to anticipate developmental problems 

and to resolve them as early as possible in the development cycle; where this is not 

practicable, it establishes contingency plans for later implementation as required. 

 Successful system development requires the use of a consistent, well - understood 

systems engineering approach within the organization, which involves the exercise of 

systematic and disciplined direction, with extensive planning, analysis, reviews, and 

documentation. Just as important, however, is a side of systems engineering that is often 

overlooked, namely, innovation. For a new complex system to compete successfully in 

a climate of rapid technological change and to retain its edge for many years of useful 

life, its key components must use some of the latest technological advances. These will 

inevitably introduce risks, some known and others as yet unknown, which in turn will 

entail a signifi cant development effort to bring each new design approach to maturity 

and later to validate the use of these designs in system components. Selecting the most 

promising technological approaches, assessing the associated risks, rejecting those for 

which the risks outweigh the potential payoff, planning critical experiments, and decid-

ing on potential fallbacks are all primary responsibilities of systems engineering. Thus, 

the systems engineering viewpoint includes a combination of risk taking and risk 

mitigation.  

  The  “ Best ”  System 

 In characterizing the systems engineering viewpoint, two oft - stated maxims are  “ the 

best is the enemy of the good enough ”  and  “ systems engineering is the art of the good 

enough. ”  These statements may be misleading if they are interpreted to imply that 

systems engineering means settling for second best. On the contrary, systems engineer-

ing does seek the best possible system, which, however, is often not the one that pro-

vides the best performance. The seeming inconsistency comes from what is referred to 

by best. The popular maxims use the terms  “ best ”  and  “ good enough ”  to refer to system 

performance, whereas systems engineering views performance as only one of several 

critical attributes; equally important ones are affordability, timely availability to the 

user, ease of maintenance, and adherence to an agreed - upon development completion 

schedule. Thus, the systems engineer seeks the  best balance  of the critical system 

attributes from the standpoint of the success of the development program and of the 

value of the system to the user. 

 The interdependence of performance and cost can be understood in terms of the 

law of diminishing returns. Assuming a particular technical approach to the achieve-
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ment of a given performance attribute of a system under development, Figure  2.1 a is 

a plot of a typical variation in the level of performance of a hypothetical system com-

ponent as a function of the cost of the expended development effort. The upper hori-

zontal line represents the theoretical limit in performance inherent in the selected 

technical approach. A more sophisticated approach might produce a higher limit, but 

at a higher cost. The dashed horizontal lines represent the minimum acceptable and 

desirable performance levels.   

 The curve of Figure  2.1 a originates at  C  0 , which represents the cost of just achiev-

ing any signifi cant performance. The slope is steep at fi rst, becoming less steep as the 

performance asymptotically approaches the theoretical limit. This decreasing slope, 

     Figure 2.1.     (a) Performance versus cost. (b) Performance/cost versus cost.  
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which is a measure of the incremental gain in performance with an increment of added 

cost, illustrates the law of diminishing returns that applies to virtually all developmental 

activities. 

 An example of the above general principle is the development of an automobile 

with a higher maximum speed. A direct approach to such a change would be to use an 

engine that generates greater power. Such an engine would normally be larger, weigh 

more, and use gas less effi ciently. Also, an increase in speed will result in greater air 

drag, which would require a disproportionately large increase in engine power to over-

come. If it was required to maintain fuel economy and to retain vehicle size and weight 

as nearly as possible, it would be necessary to consider using or developing a more 

advanced engine, improving body streamlining, using special lightweight materials, and 

otherwise seeking to offset the undesirable side effects of increasing vehicle speed. All 

of the above factors would escalate the cost of the modifi ed automobile, with the incre-

mental costs increasing as the ultimate limits of the several technical approaches are 

approached. It is obvious, therefore, that a balance must be struck well short of the 

ultimate limit of any performance attribute. 

 An approach to establishing such a balance is illustrated in Figure  2.1 b. This fi gure 

plots performance divided by cost against cost (i.e.,  y / x  vs.  x  from Fig.  2.1 a). This 

performance - to - cost ratio is equivalent to the concept of cost - effectiveness. It is seen 

that this curve has a maximum, beyond which the gain in effectiveness diminishes. This 

shows that the performance of the best overall system is likely to be close to that where 

the performance/cost ratio peaks, provided this point is signifi cantly above the minimum 

acceptable performance.  

  A Balanced System 

 One of the dictionary defi nitions of the word  “ balance ”  that is especially appropriate 

to system design is  “ a harmonious or satisfying arrangement or proportion of parts or 

elements, as in a design or a composition. ”  An essential function of systems engineering 

is to bring about a balance among the various components of the system, which, it was 

noted earlier, are designed by engineering specialists, each intent on optimizing the 

characteristics of a particular component. This is often a daunting task, as illustrated in 

Figure  2.2 . The fi gure is an artist ’ s conception of what a guided missile might look like 

if it were designed by a specialist in one or another guided missile component technol-

ogy. While the cartoons may seem fanciful, they refl ect a basic truth, that is, that design 

specialists will seek to optimize the particular aspect of a system that they best under-

stand and appreciate. In general, it is to be expected that, while the design specialist 

does understand that the system is a group of components that in combination provide 

a specifi c set of capabilities, during system development, the specialist ’ s attention is 

necessarily focused on those issues that most directly affect his or her own area of 

technical expertise and assigned responsibilities.   

 Conversely, the systems engineer must always focus on the system as a whole, 

while addressing design specialty issues only in so far as they may affect overall system 

performance, developmental risk, cost, or long - term system viability. In short, it is the 

responsibility of the systems engineer to guide the development so that each of the 
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components receives the proper balance of attention and resources while achieving the 

capabilities that are optimal for the best overall system behavior. This often involves 

serving as an  “ honest technical broker ”  who guides the establishment of technical 

design compromises in order to achieve a workable interface between key system 

elements.  

  A Balanced Viewpoint 

 A system view thus connotes a focus on balance, ensuring that no system attribute is 

allowed to grow at the expense of an equally important or more important attribute, for 

example, greater performance at the expense of acceptable cost, high speed at the 

expense of adequate range, or high throughput at the expense of excessive errors. Since 

virtually all critical attributes are interdependent, a proper balance must be struck in 

essentially all system design decisions. These characteristics are typically incommen-

surable, as in the above examples, so that the judgment of how they should be balanced 

must come from a deep understanding of how the system works. It is such judgment 

that systems engineers have to exercise every day, and they must be able to think at a 

level that encompasses all of the system characteristics. 

 The viewpoint of the systems engineer calls for a different combination of skills 

and areas of knowledge than those of a design specialist or a manager. Figure  2.3  is 

     Figure 2.2.     The ideal missile design from the viewpoint of various specialists.  
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intended to illustrate the general nature of these differences. Using the three dimensions 

to represent technical depth, technical breadth, and management depth, respectively, it 

is seen that the design specialist may have limited managerial skills but has a deep 

understanding in one or a few related areas of technology. Similarly, a project manager 

needs to have little depth in any particular technical discipline but must have consider-

able breadth and capability to manage people and technical effort. A systems engineer, 

on the other hand, requires signifi cant capabilities in all three components, representing 

the balance needed to span the needs of a total system effort. In that sense, the systems 

engineer operates in more dimensions than do his or her coworkers.     

   2.2    PERSPECTIVES OF SYSTEMS ENGINEERING 

 While the fi eld of systems engineering has matured rapidly in the past few decades, 

there will continue to exist a variety of differing perspectives as more is learned about 

the potential and the utility of systems approaches to solve the increasing complex 

problems around the world. The growth of systems engineering is evidenced in the 

number of academic programs and graduates in the area. Some surveys note that 

systems engineering is a favored and potentially excellent career path. Employers in 

all sectors, private and government, seek experienced systems engineering candidates. 

Experts in workforce development look for ways to encourage more secondary school 

     Figure 2.3.     The dimensions of design, systems engineering, and project planning and control.  
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and college students to pursue degrees in science, technology, engineering, and math-

ematics (STEM). With experience and additional knowledge, these students would 

mature into capable systems engineers. 

 Since it often requires professional experience in addition to education to tackle 

the most complex and challenging problems, developing a systems mindset — to  “ think 

like a systems engineer ”  — is a high priority at any stage of life. A perspective that 

relates a progression in the maturity of thinking includes concepts of systems thinking, 

systems engineering, and engineering systems (see Table  2.1 ) An approach to under-

standing the environment, process, and policies of a systems problem requires one to 

use systems thinking. This approach to a problem examines the domain and scope of 

the problem and defi nes it in quantitative terms. One looks at the parameters that help 

defi ne the problem and then, through research and surveys, develops observations about 

the environment the problem exists in and fi nally generates options that could address 

the problem. This approach would be appropriate for use in secondary schools to have 

young students gain an appreciation of the  “ big picture ”  as they learn fundamental 

science and engineering skills.   

 The systems engineering approach discussed in this book and introduced in Chapter 

 1  focuses on the products and solutions of a problem, with the intent to develop or 

build a system to address the problem. The approach tends to be more technical, seeking 

from potential future users and developers of the solution system, what are the top level 

needs, requirements, and concepts of operations, before conducting a functional and 

physical design, development of design specifi cations, production, and testing of a 

system solution for the problem. Attention is given to the subsystem interfaces and the 

need for viable and tangible results. The approach and practical end could be applied 

to many degrees of complexity, but there is an expectation of a successful fi eld opera-

tion of a product. The proven reliability of the systems engineering approach for product 

development is evident in many commercial and military sectors. 

 A broader and robust perspective to systems approaches to solve very extensive 

complex engineering problems by integrating engineering, management, and social 

science approaches using advanced modeling methodologies is termed  “ engineering 

  TABLE 2.1.    Comparison of Systems Perspectives 

   Systems thinking     Systems engineering     Engineering systems  

  Focus on process    Focus on whole product    Focus on both process and 

product  

  Consideration of issues    Solve complex technical 

problems  

  Solve complex interdisciplinary 

technical, social, and 

management issues  

  Evaluation of multiple 

factors and infl uences  

  Develop and test tangible 

system solutions  

  Infl uence policy, processes and 

use systems engineering to 

develop system solutions  

  Inclusion of patterns 

relationships, and 

common understanding  

  Need to meet requirements, 

measure outcomes and 

solve problems  

  Integrate human and technical 

domain dynamics and 

approaches  
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systems. ”  The intent is to tackle some of society ’ s grandest challenges with signifi cant 

global impact by investigating ways in which engineering systems behave and interact 

with one another including social, economic, and environmental factors. This approach 

encompasses engineering, social science, and management processes without the 

implied rigidity of systems engineering. Hence, applications to critical infrastructure, 

health care, energy, environment, information security, and other global issues are likely 

areas of attention. 

 Much like the proverbial blind men examining the elephant, the fi eld of systems 

engineering can be considered in terms of various domains and application areas where 

it is applied. Based on the background of the individuals and on the needs of the systems 

problems to be solved, the systems environment can be discussed in terms of the fi elds 

and technologies that are used in the solution sets. Another perspective can be taken 

from the methodologies and approaches taken to solve problems and to develop complex 

systems. In any mature discipline, there exist for systems engineering a number of 

processes, standards, guidelines, and software tools to organize and enhance the effec-

tiveness of the systems engineering professional. The International Council of Systems 

Engineering maintains current information and reviews in these areas. These perspec-

tives will be discussed in the following sections.  

   2.3    SYSTEMS DOMAINS 

 With a broad view of system development, it can be seen that the traditional approach 

to systems now encompasses a growing domain breadth. And much like a Rubik ’ s 

Cube, the domain faces are now completely integrated into the systems engineer ’ s 

perspective of the  “ big (but complex) picture. ”  The systems domain faces shown in 

Figure  2.4  include not only the engineering, technical, and management domains but 

     Figure 2.4.     Systems engineering domains.  
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also social, political/legal, and human domains. These latter softer dimensions require 

additional attention and research to fully understand their impact and utility in system 

development, especially as we move to areas at the enterprise and global family of 

systems levels of complexity.   

 Particularly interesting domains are those that involve scale, such as nano -  and 

microsystems, or systems that operate (often autonomously) in extreme environments, 

such as deep undersea or outer space. Much like physical laws change with scale, does 

the systems engineering approach need to change? Should systems engineering prac-

tices evolve to address the needs for submersibles, planetary explorers, or intravascular 

robotic systems?  

   2.4    SYSTEMS ENGINEERING FIELDS 

 Since systems engineering has a strong connection bridging the traditional engineering 

disciplines like electrical, mechanical, aerodynamic, and civil engineering among 

others, it should be expected that engineering specialists look at systems engineering 

with a perspective more strongly from their engineering discipline. Similarly, since 

systems engineering is a guide to design of systems often exercised in the context of a 

project or program, then functional, project, and senior managers will consider the 

management elements of planning and control to be key aspects of system development. 

The management support functions that are vital to systems engineering success such 

as quality management, human resource management, and fi nancial management can 

all claim an integral role and perspective to the system development. 

 These perceptions are illustrated in Figure  2.5 , and additional fi elds that represent 

a few of the traditional areas associated with systems engineering methods and practices 

are also shown. An example is the area of operations research whose view of systems 

engineering includes provision of a structure that will lead to a quantitative analysis of 

     Figure 2.5.     Examples of systems engineering fi elds.  
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alternatives and optimal decisions. The design of systems also has a contingency of 

professionals who focus on the structures and architectures. In diverse areas such as 

manufacturing to autonomous systems, another interpretation of systems engineering 

comes from engineers who develop control systems, who lean heavily on the systems 

engineering principles that focus on management of interfaces and feedback systems. 

Finally, the overlap of elements of modeling and simulation with systems engineering 

provides a perspective that is integral to a cost - effective examination of systems options 

to meet the requirements and needs of the users. As systems engineering matures, there 

will be an increasing number of perspectives from varying fi elds that adopt it as their 

own.    

   2.5    SYSTEMS ENGINEERNG APPROACHES 

 Systems engineering can also be viewed in terms of the depictions of the sequence of 

processes and methodologies used in the execution of the design, development, integra-

tion, and testing of a system (see Figure  2.6  for examples). Early graphics were linear 

     Figure 2.6.     Examples of systems engineering approaches.  
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in the process fl ow with sequences of steps that are often iterative to show the logical 

means to achieve consistency and viability. Small variations are shown in the waterfall 

charts that provide added means to illustrate interfaces and broader interactions. Many 

of the steps that are repeated and dependent on each other lead to the spiral or loop 

conceptual diagrams. The popular systems engineering  “ V ”  diagram provides a view 

of life cycle development with explicit relationships shown between requirements and 

systems defi nition and the developed and validated product.   

 A broader perspective shown in Figure  2.7  provides a full life cycle view and 

includes the management activities in each phase of development. This perspective 

illustrates the close relationship between management planning and control and the 

systems engineering process.    

   2.6    SYSTEMS ENGINEERING ACTIVITIES AND PRODUCTS 

 Sometimes followed as a road map, the life cycle development of a system can be 

associated with a number of systems engineering and project management products or 

outputs that are listed in Table  2.2 . The variety and breadth of these products refl ect 

     Figure 2.7.     Life cycle systems engineering view. PERT, Program Evaluation and Review 

Technique; PDR, Preliminary Design Review; CDR, Critical Design Review.  
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the challenges early professionals have in understanding the full utility of engaging in 

systems engineering. Throughout this book, these products will be introduced and 

discussed in some detail to help guide the systems engineer in product development.    

   2.7    SUMMARY 

  Systems Engineering Viewpoint 

 The systems engineering viewpoint is focused on producing a successful system that 

meets requirements and development objectives, is successful in its operation in the 

fi eld, and achieves its desired operating life. In order to achieve this defi nition of 

success, the systems engineer must balance superior performance with affordability and 

schedule constraints. In fact, many aspects of systems engineering involve achieving a 

balance among confl icting objectives. For example, the systems engineering typically 

must apply new technology to the development of a new system while managing the 

inherent risks that new technology poses. 

 Throughout the development period, the systems engineer focuses his or her per-

spective on the total system, making decisions based on the impacts and capabilities 

of the system as a whole. Often, this is accomplished by bridging multiple disciplines 

and components to ensure a total solution. Specialized design is one dimensional in 

that it has great technical depth, but little technical breadth and little management 

expertise. Planning and control is two dimensional: it has great management expertise, 

but moderate technical breadth and small technical depth. But systems engineering is 

three dimensional: it has great technical breadth, as well as moderate technical depth 

and management expertise.  

  Perspectives of Systems Engineering 

 A spectrum of views exist in understanding systems engineering, from a general 

systems thinking approach to problems, to the developmental process approach for 

systems engineering, to the broad perspective of engineering systems.  

  TABLE 2.2.    Systems Engineering Activities and Documents 

   Context diagrams     Opportunity assessments     Prototype integration  

  Problem defi nition    Candidate concepts    Prototype test and evaluation  

  User/owner identifi cation    Risk analysis/management plan    Production/operations plan  

  User needs    Systems functions    Operational tests  

  Concept of operations    Physical allocation    Verifi cation and validation  

  Scenarios    Component interfaces    Field support/maintenance  

  Use cases    Traceability    System/product effectiveness  

  Requirements    Trade studies    Upgrade/revise  

  Technology readiness    Component development  &  test    Disposal/reuse  
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  Systems Domains 

 The engineering systems view encompasses not only traditional engineering 

disciplines but also technical and management domains and social, political/legal, 

and human domains. Scales at the extremes are of particular interest due to their 

complexity.  

  Systems Engineering Fields 

 Systems engineering encompasses or overlaps with many related fi elds including engi-

neering, management, operations analysis, architectures, modeling and simulation, and 

many more.  

  Systems Engineering Approaches 

 As the fi eld of systems engineering matures and is used for many applications, several 

process models have been developed including the linear, V, spiral, and waterfall 

models.  

  Systems Engineering Activities and Products 

 A full systems life cycle view illustrated the close relationship with management 

process and leads to a large, diverse set of activities and products.   

  PROBLEMS 

    2.1     Figure  2.1  illustrates the law of diminishing returns in seeking the optimum 

system (or component) performance and hence the need to balance the perfor-

mance against the cost. Give examples of two pairs of characteristics other 

than performance versus cost where optimizing one frequently competes with 

the other, and briefl y explain why they do.  

  2.2     Explain the advantages and disadvantages of introducing system concepts to 

secondary students in order to encourage them to pursue STEM careers.  

  2.3     Select a very large complex system of system example and explain how the 

engineering systems approach could provide useful solutions that would have 

wide acceptance across many communities.  

  2.4     Referring to Figure  2.5 , identify and justify other disciplines that overlap with 

systems engineering and give examples how those disciplines contribute to 

solving complex systems problems.  

  2.5     Discuss the use of different systems engineering process models in terms of 

their optimal use for various system developments. Is one model signifi cantly 

better than another?     
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    3.1    SYSTEM BUILDING BLOCKS AND INTERFACES 

 The need for a systems engineer to attain a broad knowledge of the several interacting 

disciplines involved in the development of a complex system raises the question of how 

deep that understanding needs to be. Clearly, it cannot be as deep as the knowledge 

possessed by the specialists in these areas. Yet it must be suffi cient to recognize such 

factors as program risks, technological performance limits, and interfacing require-

ments, and to make trade - off analyses among design alternatives. 

 Obviously, the answers depend on specifi c cases. However, it is possible to provide 

an important insight by examining the structural hierarchy of modern systems. Such an 

examination reveals the existence of identifi able types of the building blocks that make 

up the large majority of systems and represent the lower working level of technical 

understanding that the systems engineer must have in order to do the job. This is the 

level at which technical trade - offs affecting system capabilities must be worked out and 

at which interface confl icts must be resolved in order to achieve a balanced design 

across the entire system. The nature of these building blocks in their context as funda-

mental system elements and their interfaces and interactions are discussed in the 

ensuing sections.  

  3 
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   3.2    HIERARCHY OF COMPLEX SYSTEMS 

 In order to understand the scope of systems engineering and what a systems engineer 

must learn to carry out the responsibilities involved in guiding the engineering of a 

complex system, it is necessary to defi ne the general scope and structure of that system. 

Yet, the defi nition of a  “ system ”  is inherently applicable to different levels of aggrega-

tion of complex interacting elements. For example, a telephone substation, with its 

distributed lines to the area that it serves, can be properly called a system. Hotel and 

offi ce building switchboards, with their local lines, may be called  “ subsystems, ”  and 

the telephone instruments may be called  “ components ”  of the system. At the same time, 

the substation may be regarded as a subsystem of the city telephone system and that, 

in turn, to be a subsystem of the national telephone system. 

 In another example, a commercial airliner certainly qualifi es to be called a system, 

with its airframe, engines, controls, and so on, being subsystems. The airliner may also 

be called a subsystem of the air transportation system, which consists of the air terminal, 

air traffi c control, and other elements of the infrastructure in which the airliner operates. 

Thus, it is often said that every system is a subsystem of a higher - level system, and 

every subsystem may itself be regarded as a system. 

 The above relationships have given rise to terms such as  “ supersystems ”  to refer 

to overarching systems like the wide - area telephone system and the air transportation 

system. In networked military systems, the term  “ system of systems ”  (SoS) has been 

coined to describe integrated distributed sensor and weapon systems. This nomenclature 

has migrated to the commercial world as well; however, the use and defi nition of the 

term varies by area and specialty. 

  Model of a Complex System 

 While learning the fundamentals of systems engineering, this ambiguity of the scope 

of a system may be confusing to some students. Therefore, for the purpose of illustrat-

ing the typical scope of a systems engineer ’ s responsibilities, it is useful to create a 

more specifi c model of a typical system. As will be described later, the technique of 

modeling is one of the basic tools of systems engineering, especially in circumstances 

where unambiguous and quantitative facts are not readily available. In the present 

instance, this technique will be used to construct a model of a typical complex system 

in terms of its constituent parts. The purpose of this model is to defi ne a relatively 

simple and readily understood system architecture, which can serve as a point of refer-

ence for discussing the process of developing a new system and the role of systems 

engineering throughout the process. While the scope of this model does not extend to 

that of supersystems or an SoS, it is representative of the majority of systems that are 

developed by an integrated acquisition process, such as a new aircraft or a terminal air 

traffi c control system. 

 By their nature, complex systems have a hierarchical structure in that they consist 

of a number of major interacting elements, generally called  subsystems , which them-

selves are composed of more simple functional entities, and so on down to primitive 

elements such as gears, transformers, or light bulbs, usually referred to as  parts . 
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Commonly used terminology for the various architectural levels in the structure of 

systems is confi ned to the generic system and subsystem designation for the uppermost 

levels and parts for the lowest. 

 For reasons that will become evident later in this section, the system model as 

defi ned in this book will utilize two additional intermediate levels, which will be called 

 components  and  subcomponents . While some models use one or two more intermediate 

levels in their representation of systems, these fi ve have proven to be suffi cient for the 

intended purpose. 

  Defi nition of System Levels.     Table  3.1  illustrates the above characterization 

of the hierarchical structure of the system model. In this table, four representative 

system types employing advanced technology are listed horizontally, and successive 

levels of subdivisions within each system are arranged vertically.   

 In describing the various levels in the system hierarchy depicted in the fi gure, it 

was noted previously that the term  system  as commonly used does not correspond to a 

specifi c level of aggregation or complexity, it being understood that systems may serve 

as parts of more complex aggregates or supersystems, and subsystems may themselves 

be thought of as systems. For the purpose of the ensuing discussion, this ambiguity will 

be avoided by limiting the use of the term system to those entities that 

  1.     possess the properties of an engineered system and  

  2.     perform a signifi cant useful service with only the aid of human operators 

and standard infrastructures (e.g., power grid, highways, fueling stations, and 

  TABLE 3.1.    System Design Hierarchy   

    Systems  

  Communications 

systems  

  Information 

systems  

  Material processing 

systems  

  Aerospace systems  

    Subsystems  

  Signal networks    Databases    Material preparation    Engines  

    Components  

  Signal 

receivers  

  Data displays    Database 

programs  

  Power transfer    Material 

reactors  

  Thrust 

generators  

    Subcomponents  

  Signal 

amplifi ers  

  Cathode ray 

tubes  

  Library 

utilities  

  Gear trains    Reactive 

valves  

  Rocket 

nozzles  

  Parts  

  Transformer    LED    Algorithms    Gears    Couplings    Seals  
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communication lines). According to the above conditions, a passenger aircraft 

would fi t the defi nition of a system, as would a personal computer with its 

normal peripherals of input and output keyboard, display, and so on.    

 The fi rst subordinate level in the system hierarchy defi ned in Table  3.1  is appro-

priately called a subsystem and has the conventional connotation of being a major 

portion of the system that performs a closely related subset of the overall system func-

tions. Each subsystem may in itself be quite complex, having many of the properties 

of a system except the ability to perform a useful function in the absence of its com-

panion subsystems. Each subsystem typically involves several technical disciplines 

(e.g., electronic and mechanical). 

 The term component is commonly used to refer to a range of mostly lower - level 

entities, but in this book, the term component will be reserved to refer to the middle 

level of system elements described above. Components will often be found to corre-

spond to confi guration items (CIs) in government system acquisition notation. 

 The level below the component building blocks is composed of entities, referred 

to as subcomponents, which perform elementary functions and are composed of several 

parts. The lowest level, composed of parts, represents elements that perform no signifi -

cant function except in combination with other parts. The great majority of parts come 

in standard sizes and types and can usually be obtained commercially.   

  Domains of the Systems Engineer and Design Specialist 

 From the above discussion, the hierarchical structure of engineered systems can be used 

to defi ne the respective knowledge domains of both the systems engineer and the design 

specialist. The intermediate system components occupy a central position in the system 

development process, representing elements that are, for the most part, products fi tting 

within the domain of industrial design specialists, who can adapt them to a particular 

application based on a given set of specifi cations. The proper specifi cation of compo-

nents, especially to defi ne performance and to ensure compatible interfaces, is the 

particular task of systems engineering. This means that the systems engineer ’ s knowl-

edge must extend to the understanding of the key characteristics of components from 

which the system may be constituted, largely through dialogue and interaction with the 

design specialists, so that he or she may select the most appropriate types and specify 

their performance and interfaces with other components. 

 The respective knowledge domains of the systems engineer and the design special-

ist are shown in Figure  3.1  using the system hierarchy defi ned above. It shows that the 

systems engineer ’ s knowledge needs to extend from the highest level, the system and 

its environment, down through the middle level of primary system building blocks or 

components. At the same time, the design specialist ’ s knowledge needs to extend from 

the lowest level of parts up through the components level, at which point their two 

knowledge domains  “ overlap. ”  This is the level at which the systems engineer and the 

design specialist must communicate effectively, identify and discuss technical prob-

lems, and negotiate workable solutions that will not jeopardize either the system design 

process or the capabilities of the system as a whole.   



SYSTEM BUILDING BLOCKS 45

 The horizontal boundaries of these domains are deliberately shown as continuity 

lines in the fi gure to indicate that they should be extended as necessary to refl ect the 

composition of the particular system. When a subcomponent or part happens to be 

critical to the system ’ s operation (e.g., the ill - fated seal in the space shuttle  Challenger  ’ s 

booster rocket), the systems engineer should be prepared to learn enough about its 

behavior to identify its potential impact on the system as a whole. This is frequently 

the case in high - performance mechanical and thermomechanical devices, such as tur-

bines and compressors. Conversely, when the specifi ed function of a particular compo-

nent imposes unusual demands on its design, the design specialist should call on the 

systems engineer to reexamine the system - level assumptions underlying this particular 

requirement.   

   3.3    SYSTEM BUILDING BLOCKS 

 Using this system model provides systems engineers with a simple method of partition-

ing a system along a functional and physical dimension: understanding the functional 

aspects of the system, then partitioning the system into a physical hierarchy. Each 

dimensional description of the system can then be decomposed into elements. Below 

is the description of these two categories of building blocks and a recommended set of 

elements used in defi ning the components of each. 

     Figure 3.1.     Knowledge domains of the systems engineer and the design specialist.  
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  Functional Building Blocks: Functional Elements 

 The three basic entities that constitute the media on which systems operate are 

  1.     Information:     the content of all knowledge and communication,  

  2.     Material:     the substance of all physical objects, and  

  3.     Energy:     energizes the operation and movement of all active system 

components.    

 Because all system functions involve a purposeful alteration in some characteristic 

of one or more of these entities, the latter constitutes a natural basis for classifying the 

principal system functional units. Since information elements are more than twice as 

populous as the material and energy entities among system functions, it is convenient 

to subdivide them into two classes: (1) elements dealing with propagating information 

(e.g., radio signals), to be referred to as  signal elements , and (2) those dealing with 

stationary information (e.g., computer programs), to be referred to as  data elements . 

The former class is primarily associated with sensing and communications and the latter 

with analysis and decision processes. This results in a total of four classes of system 

functional elements: 

  1.     Signal Elements,   which sense and communicate information;  

  2.     Data Elements,   which interpret, organize, and manipulate information;  

  3.     Material Elements,   which provide structure and transformation of materials; 

and  

  4.     Energy Elements,   which provide energy and motive power.    

 To provide a context for acquainting the student with signifi cant design knowledge 

peculiar to each of the four broad classes of functional elements, a set of generic func-

tional elements has been defi ned that represents the majority of important types for 

each class. 

 To make the selected elements self - consistent and representative, three criteria may 

be used to ensure that each element is neither trivially simple nor inordinately complex 

and has wide application: 

  1.     Signifi cance.     Each functional element must perform a distinct and signifi cant 

function, typically involving several elementary functions.  

  2.     Singularity.     Each functional element should fall largely within the technical 

scope of a single engineering discipline.  

  3.     Commonality.     The function performed by each element can be found in a wide 

variety of system types.    

 In confi guring the individual functional elements, it is noted that regardless of their 

primary function and classifi cation, their physical embodiments are necessarily built of 

material usually controlled by external information and powered by electricity or some 
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other source of energy. Thus, a television set, whose main function is to process infor-

mation in the form of a radio frequency signal into information in the form of a TV 

picture and sound, is built of materials, powered by electricity, and controlled by user -

 generated information inputs. Accordingly, it should be expected that most elements in 

all classes would have information and energy inputs in addition to their principal 

processing inputs and outputs. 

 The above process converges on a set of 23 functional elements, fi ve or six in each 

class. These are listed in the middle column of Table  3.2 . The function of the class as 

a whole is shown in the left column, and typical applications that might embody the 

individual elements are listed in the right column. It should be noted that the above 

classifi cation is not meant to be absolute, but is established solely to provide a system-

atic and logical framework for discussing the properties of systems at the levels of 

importance to systems engineers.   

 Fundamentally, the functional design of any system may be defi ned by conceptu-

ally combining and interconnecting the identifi ed functional elements along with 

perhaps one or two very specialized elements that might perform a unique function in 

certain system applications so as to logically derive the desired system capabilities from 

  TABLE 3.2.    System Functional Elements 

   Class function     Element function     Applications  

   Signal   —  generate, transmit, 

distribute, and receive signals used 

in passive or active sensing and in 

communications  

  Input signal 

 Transmit signal 

 Transduce signal 

 Receive signal 

 Process signal 

 Output signal  

  TV camera 

 FM radio transmitter 

 Radar antenna 

 Radio receiver 

 Image processor  

   Data   —  analyze, interpret, organize, 

query, and/or convert data and 

information into forms desired by 

the user or other systems  

  Input data 

 Process data 

 Control data 

 Control processing 

 Store data 

 Output data 

 Display data  

  Keyboard 

 Computer CPU 

 Operating system 

 Word processor 

 Printer  

   Material   —  provide system structural 

support or enclosure, or transform 

the shape, composition, or location 

of material substances  

  Support material 

 Store material 

 React material 

 Form material 

 Join material 

 Control position  

  Airframe 

 Shipping container 

 Autoclave 

 Milling machine 

 Welding machine 

 Servo actuator  

   Energy   —  provide and convert energy 

or propulsive power to the system  

  Generate thrust 

 Generate torque 

 Generate electricity 

 Control temperature 

 Control motion  

  Turbojet engine 

 Reciprocating engine 

 Solar cell array 

 Refrigerator 

 Auto transmission  
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the available system inputs. In effect, the system inputs are transformed and processed 

through the interconnected functions to provide the desired system outputs.  

  Physical Building Blocks: Components 

 System physical building blocks are the physical embodiments of the functional ele-

ments consisting of hardware and software. Consequently, they have the same distin-

guishing characteristics of signifi cance, singularity, and commonality and are at the 

same level in the system hierarchy, generally one level below a typical subsystem and 

two levels above a part. They will be referred to as  component elements  or simply as 

components. 

 The classes into which the component building blocks have been categorized are 

based on the different design disciplines and technologies that they represent. In total, 

31 different component types were identifi ed and grouped into six categories, as shown 

in Table  3.3 . The table lists the category, component name, and the functional element(s) 

with which it is associated. As in the case of functional elements, the component names 

are indicative of their primary function but, in this case, represent things rather than 

processes. Many of these represent devices that are in widespread use.   

 The systems engineer ’ s concern with the implementation of the functional elements 

within components is related to a different set of factors than those associated with the 

initial functional design itself. Here, the predominant issues are reliability, form and fi t, 

compatibility with the operational environment, maintainability, producibility, testabil-

ity, safety, and cost, along with the requirement that product design does not violate 

the integrity of the functional design. The depth of the systems engineer ’ s understanding 

of the design of individual components needs to extend to the place where the system -

 level signifi cance of these factors may be understood, and any risks, confl icts, and other 

potential problems addressed. 

 The required extent and nature of such knowledge varies widely according to the 

type of system and its constitution. A systems engineer dealing with an information 

system can expect to concentrate largely on the details of the software and user aspects 

of the system while considering mainly the external aspects of the hardware compo-

nents, which are usually standard (always paying special attention to component inter-

faces). At another extreme, an aerospace system such as an airplane consists of a 

complex and typically nonstandard assemblage of hardware and software operating in 

a highly dynamic and often adverse environment. Accordingly, an aerospace systems 

engineer needs to be knowledgeable about the design of system components to a con-

siderably more detailed level so as to be aware of the potentially critical design features 

before they create reliability, producibility, or other problems during the product engi-

neering, test, and operational stages.  

  Common Building Blocks 

 An important and generally unrecognized observation resulting from an examination 

of the hierarchical structure of a large variety of systems is the existence of an inter-

mediate level of elements of types that recur in a variety of systems. Devices such as 
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signal receivers, data displays, torque generators, containers, and numerous others 

perform signifi cant functions used in many systems. Such elements typically constitute 

product lines of commercial organizations, which may confi gure them for the open 

market or customize them to specifi cations to fi t a complex system. In Table  3.1 , the 

above elements are situated at the third or middle level and are referred to by the generic 

name component. 

 The existence of a distinctive set of middle - level system building blocks can be 

seen as a natural result of the conditions discussed in Chapter  1  for the origin of 

complex systems, namely, (1) advancing technology, (2) competition, and (3) special-

ization. Technological advances are generally made at basic levels, such as the develop-

ment of semiconductors, composite materials, light - emitting devices, graphic user 

  TABLE 3.3.    Component Design Elements 

   Category     Component     Functional element(s)  

  Electronic    Receiver 

 Transmitter 

 Data processor 

 Signal processor 

 Communications processors 

 Special electronic equipment  

  Receive signal 

 Transmit signal 

 Process data 

 Process signal 

 Process signal/data 

 Various  

  Electro - optical    Optical sensing device 

 Optical storage device 

 Display device 

 High - energy optics device 

 Optical power generator  

  Input signal 

 Store data 

 Output signal/data 

 Form material 

 Generate electricity  

  Electromechanical    Inertial instrument 

 Electric generator 

 Data storage device 

 Transducer 

 Data input/output device  

  Input data 

 Generate electricity 

 Store data 

 Transduce signal 

 Input/output data  

  Mechanical    Framework 

 Container 

 Material processing machine 

 Material reactor 

 Power transfer device  

  Support material 

 Store material 

 Form/join material 

 React material 

 Control motion  

  Thermomechanical    Rotary engine 

 Jet engine 

 Heating unit 

 Cooling unit 

 Special energy source  

  Generate torque 

 Generate thrust 

 Control temperature 

 Control temperature 

 Generate electricity  

  Software    Operating system 

 Application 

 Support software 

 Firmware  

  Control system 

 Control processing 

 Control processing 

 Control system  



50 STRUCTURE OF COMPLEX SYSTEMS 

interfaces, and so on. The fact of specialization tends to apply such advances primarily 

to devices that can be designed and manufactured by people and organizations special-

ized in certain types of products. Competition, which drives technology advances, also 

favors specialization in a variety of specifi c product lines. A predictable result is the 

proliferation of advanced and versatile products that can fi nd a large market (and hence 

achieve a low cost) in a variety of system applications. The current emphasis in defense 

system development on adapting commercial off - the - shelf (COTS) components, wher-

ever practicable, attempts to capitalize on economies of scale found in the commercial 

component market. 

 Referring back to Table  3.1 , it is noted that as one moves up through the hierarchy 

of system element levels, the functions performed by those in the middle or component 

level are the fi rst that provide a signifi cant functional capability, as well as being found 

in a variety of different systems. For this reason, the types of elements identifi ed as 

components in the fi gure were identifi ed as basic system building blocks. Effective 

systems engineering therefore requires a fundamental understanding of both the func-

tional and physical attributes of these ubiquitous system constituents. To provide a 

framework for gaining an elementary knowledge base of system building blocks, a set 

of models has been defi ned to represent commonly occurring system components. This 

section is devoted to the derivation, classifi cation, interrelationships, and common 

examples of the defi ned system building blocks.  

  Applications of System Building Blocks 

 The system building block model described above may be useful in several ways: 

  1.     The categorization of functional elements into the four classes of signal, data, 

material, and energy elements can help suggest what kind of actions may be 

appropriate to achieve required operational outcomes.  

  2.     Identifying the classes of functions that need to be performed by the system 

may help group the appropriate functional elements into subsystems and thus 

may facilitate functional partitioning and defi nition.  

  3.     Identifying the individual functional building blocks may help defi ne the nature 

of the interfaces within and between subsystems.  

  4.     The interrelation between the functional elements and the corresponding one or 

more physical implementations can help visualize the physical architecture of 

the system.  

  5.     The commonly occurring examples of the system building blocks may suggest 

the kinds of technology appropriate to their implementation, including possible 

alternatives.  

  6.     For those specialized in software and unfamiliar with hardware technology, the 

relatively simple framework of four classes of functional elements and six 

classes of physical components should provide an easily understood organiza-

tion of hardware domain knowledge.      
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   3.4    THE SYSTEM ENVIRONMENT 

 The system environment may be broadly defi ned as everything outside of the system 

that interacts with the system. The interactions of the system with its environment form 

the main substance of system requirements. Accordingly, it is important at the outset 

of system development to identify and specify in detail all of the ways in which the 

system and its environment interact. It is the particular responsibility of the systems 

engineer to understand not only what these interactions are but also their physical basis, 

to make sure that the system requirements accurately refl ect the full range of operating 

conditions. 

  System Boundaries 

 To identify the environment in which a new system operates, it is necessary to identify 

the system ’ s boundaries precisely, that is, to defi ne what is inside the system and what 

is outside. Since we are treating systems engineering in the context of a system devel-

opment project, the totality of the system will be taken as that of the product to be 

developed. 

 Although defi ning the system boundary seems almost trivial at fi rst glance, in 

practice, it is very diffi cult to identify what is part of the system and what is part of the 

environment. Many systems have failed due to miscalculations and assumptions about 

what is internal and what is external. Moreover, different organizations tend to defi ne 

boundaries differently, even with similar systems. 

 Fortunately, several criteria are available to assist in determining whether an entity 

should be defi ned as part of a system: 

   •      Developmental Control.     Does the system developer have control over the enti-

ty ’ s development? Can the developer infl uence the requirements of the entity, 

or are requirements defi ned outside of the developer ’ s sphere of infl uence? 

Is funding part of the developer ’ s budget, or is it controlled by another 

organization?  

   •      Operational Control.     Once fi elded, will the entity be under the operational 

control of the organization that controls the system? Will the tasks and missions 

performed by the entity be directed by the owner of the system? Will another 

organization have operational control at times?  

   •      Functional Allocation.     In the functional defi nition of the system, is the systems 

engineer  “ allowed ”  to allocate functions to the entity?  

   •      Unity of Purpose.     Is the entity dedicated to the system ’ s success? Once fi elded, 

can the entity be removed without objection by another entity?    

 Systems engineers have made mistakes by defi ning entities as part of the system 

when, in fact, the span of control (as understood by the above criteria) was indeed 

small. And typically, either during development or operations, the entity was not avail-

able to perform its assigned functions or tasks. 
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 One of the basic choices required early is to determine whether human users or 

operators of a system are considered part of the system or are external entities. In a 

majority of cases, the user or operator should be considered external to the system. The 

system developer and owner rarely have suffi cient control over operators to justify their 

inclusion in the system. When operators are considered external to the system, the 

systems engineer and the developer will focus on the operator interface, which is critical 

to complex systems. 

 From another perspective, most systems cannot operate without the active partici-

pation of human operators exercising decision and control functions. In a functional 

sense, the operators may well be considered to be integral parts of the system. However, 

to the systems engineer, the operators constitute elements of the system environment 

and impose interface requirements that the system must be engineered to accommodate. 

Accordingly, in our defi nition, the operators will be considered to be external to the 

system. 

 As noted earlier, many, if not most, complex systems can be considered as parts 

of larger systems. An automobile operates on a network of roads and is supported by 

an infrastructure of service stations. However, these are not changed to suit a new 

automobile. A spacecraft must be launched from a complex gantry, which performs the 

fueling and fl ight preparation functions. The gantry, however, is usually a part of the 

launch complex and not a part of the spacecraft ’ s development. In the same manner, 

the electrical power grid is a standard source of electricity, which a data processing 

system may utilize. Thus, the supersystems identifi ed in the above examples need not 

be considered in the engineering process as part of the system being developed but as 

an essential element in its operational environment, and to the extent required to assure 

that all interfacing requirements are correctly and adequately defi ned. 

 Systems engineers must also become involved in interface decisions affecting 

designs both of their own and of an interfacing system. In the example of a spacecraft 

launched from a gantry, some changes to the information handling and perhaps other 

functions of the gantry may well be required. In such instances, the defi nition of 

common interfaces and any associated design issues would need to be worked out with 

engineers responsible for the launch complex.  

  System Boundaries: The Context Diagram 

 An important communications tool available to the systems engineer is the context 

diagram. This tool effectively displays the external entities and their interactions with 

the system and instantly allows the reader to identify those external entities. Figure  3.2  

shows a generic context diagram. This type of diagram is known as a black box diagram 

in that the system is represented by a single geographic fi gure in the center, without 

any detail. Internal composition or functionality is hidden from the reader. The diagram 

consists of three components: 

  1.     External Entities.     These constitute all entities in which the system will interact. 

Many of these entities can be considered as sources for inputs into the system 

and destinations of outputs from the system.  
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  2.     Interactions.     These represent the interactions between the external entities and 

the system and are represented by arrows. Arrowheads represent the direction 

or fl ow of a particular interaction. While double - headed arrows are allowed, 

single - headed arrows communicate clearer information to the reader. Thus, the 

engineer should be careful when using two - directional interactions — make sure 

the meanings of your interactions are clear. Regardless, each interaction (arrow) 

is labeled to identify what is being passed across the interface.      

 The diagram depicts the common types of interactions that a context diagram typi-

cally contains. In an actual context diagram, these interactions would be labeled with 

the specifi c interactions, not the notional words used above. The labels need to be suf-

fi ciently detailed to communicate meaning, but abstract enough to fi t into the diagram. 

Thus, words such as  “ data ”  or  “ communications ”  are to be avoided in the actual 

diagram since they convey little meaning. 

 3.    The System.     This is the single geographic fi gure mentioned already. Typically, 

this is an oval, circle, or rectangle in the middle of the fi gure with only the name 

of the system within. No other information should be present.    

 We can categorize what can be passed across these external interfaces by utilizing 

our defi nitions of the four basic elements above. Using these elements and adding one 

additional element, we can form fi ve categories: 

   •      data,  

   •      signals,  

   •      materials,  

   •      energy, and  

   •      activities.    

     Figure 3.2.     Context diagram.  
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 Thus, a system interacts with its environment (and specifi cally, the external enti-

ties) by accepting and providing either one of the fi rst four elements or by performing 

an activity that infl uences the system or the environment in some manner. 

 Constructing a diagram such as the system context diagram can be invaluable in 

communicating the boundary of the system. The picture clearly and easily identifi es 

the external interfaces needed and provides a short description of what is being passed 

into and out of the system — providing a good pictorial of the system ’ s inputs and 

outputs. 

 Figure  3.3  provides a simple example using a typical automobile as the system. 

Although the system is rather simple, it nicely illustrates all fi ve types of interfaces. 

Four external entities are identifi ed: users (to include the driver and passengers), the 

maintainer (which could be a user, but, because of his specialized interactions with the 

system, is listed separately), an energy source, and the environment. Most systems will 

interact with these four external entity types. Of course, many other entities may interact 

with a system as well.   

 The user provides a multitude of inputs to the system, including various commands 

and controls as well as actions, such as steering and braking. Materials are also passed 

to the system: cargo. In return, several outputs are passed from the automobile back to 

the user, including various status indications on the state of the system. Additionally, 

an activity is performed: entertainment, representing the various forms of entertainment 

available in today ’ s automobile. Finally, cargo is returned to the users when desired. 

 Other entities also interact with the system. The maintainer must provide a request 

for diagnostics data, typically in the form of signals passed to the auto via an interface. 

Diagnostics data are returned along with the exchange of parts. 

     Figure 3.3.     Context diagram for an automobile.  
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 The last two external entities represent somewhat specialized entities: an energy 

source and the ubiquitous environment. In the automobile case, the energy source 

provides gasoline to the automobile. This energy source can be one of many types: a 

gasoline pump at a station or a small container with a simple nozzle. The environment 

requires some special consideration, if for no other reason than it includes everything 

not specifi cally contained in the other external entities. So, in some respects, the envi-

ronment entity represents  “ other. ”  In our example, the automobile will generate heat 

and exhaust in its typical operation. Additionally, a siren and light from various light 

bulbs, horns, and signals will also radiate from the auto. The environment is also a 

source of many inputs, such as physical support, air resistance, and weather. 

 It takes some thought to identify the inputs, outputs, and activities that are part of 

the system – environment interaction. The creator of this diagram could have really gone 

 “ overboard ”  and specifi ed temperature, pressure, light, humidity, and a number of other 

factors in this interaction. This brings up an interesting question: what do we include 

in listing the interactions between the system and the external entity? For that matter, 

how do we know whether an external entity should be included in our diagram? 

Fortunately, there is a simple answer to this: if the interaction is important for the design 

of the system, then it should be included. 

 In our automobile case, physical support is important for our design and will infl u-

ence the type of transmission, steering, and tires. So we include  “ support ”  in our 

diagram. Temperature, humidity, pressure, and so on, will be a factor, but we are not 

sure about their importance to design, so we group these characteristics under  “ weather. ”  

This does not mean that the automobile will be designed for all environmental condi-

tions, only that we are not considering all conditions in our design. We should have an 

idea of the environmental conditions from the requirements, and therefore, we can 

determine whether they should be in our context diagram. 

 Output from the system to the environment also depends on whether it will infl u-

ence the design. The automobile will in fact output many things into the environment: 

heat, smells, texture, colors  …  and especially carbon dioxide as part of the exhaust! 

But which of these infl uence our design? Four will be major infl uences: heat, noise 

from the siren, exhaust, and light. Therefore, we include only those for now and omit 

the others. We can always go back and update the context diagram (in fact, we should, 

as we progress through both the systems engineering process and the system develop-

ment life cycle). 

 The system context diagram is a very simple yet powerful tool to identify, evaluate, 

and communicate the boundaries of our system. Therefore, it becomes the fi rst tool we 

introduce in this book. More will follow that will eventually provide the systems engi-

neer with the collection needed to adequately develop his system.  

  Types of Environmental Interactions 

 To understand the nature of the interactions of a system with its surroundings, it is 

convenient to distinguish between primary and secondary interactions. The former 

involves elements that interact with the system ’ s primary functions, that is, represent 

functional inputs, outputs, and controls; the latter relates to elements that interact with 
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the system in an indirect nonfunctional manner, such as physical supports, ambient 

temperature, and so on. Thus, the functional interactions of a system with its environ-

ment include its inputs and outputs and human control interfaces. Operational mainte-

nance may be considered a quasi - functional interface. Threats to the system are those 

entities that deny or disrupt the system ’ s ability to perform its activities. The physical 

environment includes support systems, system housing, and shipping, handling, and 

storage. Each of these is briefl y described below. 

  Inputs and Outputs.     The primary purpose of most systems is to operate on 

external stimuli and/or materials in such a manner as to process these inputs in a useful 

way. For a passenger aircraft, the materials are the passengers, their luggage, and fuel, 

and the aircraft ’ s function is to transport the passengers and their belongings to a distant 

destination rapidly, safely, and comfortably. Figure  3.4  illustrates some of the large 

     Figure 3.4.     Environments of a passenger airliner. ILS, instrument landing system.  
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variety of interactions that a complex system has with its operating environment for 

the case of a passenger aircraft.    

  System Operators.     As noted previously, virtually all systems, including auto-

mated systems, do not operate autonomously but are controlled to some degree by 

human operators in performing their function. For the purposes of defi ning the systems 

engineer ’ s task, the operator is part of the system ’ s environment. The interface between 

the operator and the system (human – machine interface) is one of the most critical of all 

because of the intimate relationship between the control exercised by the operator and 

the performance of the system. It is also one of the most complex to defi ne and test.  

  Operational Maintenance.     The requirements for system readiness and opera-

tional reliability relate directly to the manner in which it is to be maintained during its 

operating life. This requires that the system be designed to provide access for monitor-

ing, testing, and repair requirements that are frequently not obvious at the outset, but 

nevertheless must be addressed early in the development process. Thus, it is necessary 

to recognize and explicitly provide for the maintenance environment.  

  Threats.     This class of external entities can be man - made or natural. Clearly, 

weather could be considered a threat to a system exposed to the elements. For example, 

when engineering naval systems, the salt water environment becomes a corrosive 

element that must be taken into consideration. Threats can also be man - made. For 

example, a major threat to an automatic teller machine (ATM) would be the thief, whose 

goal might be access to the stored cash. System threats need to be identifi ed early to 

design countermeasures into the system.  

  Support Systems.     Support systems are that part of the infrastructure on which 

the system depends for carrying out its mission. As illustrated in Figure  3.4 , the airport, 

the air traffi c control system, and their associated facilities constitute the infrastructure 

in which an individual aircraft operates, but which is also available to other aircraft. 

These are parts of the SoS represented by the air transportation system, but for an 

airplane, they represent standard available resources with which it rousts interface 

harmoniously. 

 Two examples of common support systems that have been mentioned previously 

are the electric power grids, which distribute usable electric power throughout the civi-

lized world, and the network of automobile fi lling stations and their suppliers. In build-

ing a new airplane, automobile, or other systems, it is necessary to provide interfaces 

that are compatible with and capable of utilizing these support facilities.  

  System Housing.     Most stationary systems are installed in an operating site, 

which itself imposes compatibility constraints on the system. In some cases, the instal-

lation site provides protection for the system from the elements, such as variations in 

temperature, humidity, and other external factors. In other cases, such as installations 

on board ship, these platforms provide the system ’ s mechanical mounting but, other-

wise, may expose the system to the elements, as well as subject it to shock, vibration, 

and other rigors.  
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  Shipping and Handling Environment.     Many systems require transport from 

the manufacturing site to the operating site, which imposes special conditions for which 

the system must be designed. Typical of these are extreme temperatures, humidity, 

shock, and vibration, which are sometimes more stressful than those characteristic of 

the operating environment. It may be noted that the impact of the latter categories of 

environmental interactions is addressed mainly in the engineering development stage.    

   3.5    INTERFACES AND INTERACTIONS 

  Interfaces: External and Internal 

 The previous section described the different ways in which a system interacts with its 

environment, including other systems. These interactions all occur at various boundar-

ies of the system. Such boundaries are called the system ’ s  external interfaces . Their 

defi nition and control are a particular responsibility of the systems engineer because 

they require knowledge of both the system and its environment. Proper interface control 

is crucial for successful system operation. 

 A major theme of systems engineering is accordingly the management of inter-

faces. This involves 

  1.     identifi cation and description of interfaces as part of system concept defi nition 

and  

  2.     coordination and control of interfaces to maintain system integrity during engi-

neering development, production, and subsequent system enhancements.    

 Inside the system, the boundaries between individual components constitute the 

system ’ s  internal interfaces . Here, again, the defi nition of internal interfaces is the 

concern of the systems engineer because they fall between the responsibility boundaries 

of engineers concerned with the individual components. Accordingly, their defi nition 

and implementation must often include consideration of design trade - offs that impact 

on the design of both components.  

  Interactions 

 Interactions between two individual elements of the system are effected through the 

interface connecting the two. Thus, the interface between a car driver ’ s hands and the 

steering wheel enables the driver to guide (interact with) the car by transmitting a force 

that turns the steering wheel and thereby the car ’ s wheels. The interfaces between the 

tires of the car and the road both propel and steer the car by transmitting driving trac-

tion to the road, and also help cushion the car body from the roughness of the road 

surface. 

 The above examples illustrate how functional interactions (guiding or propelling 

the car) are effected by physical interactions (turning the steering wheel or the drive 

wheels) that fl ow across (physical) interfaces. Figure  3.5  illustrates the similar relations 
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between physical interfaces involved in steering an air vehicle and the resulting func-

tional interactions.   

 An important and sometimes less than adequately addressed external system inter-

action occurs during system maintenance. This activity necessarily requires access to 

a number of vital system functions for testing purposes. Such access calls for the provi-

sion of special test points of the system, which can be sampled externally with a 

minimum of manipulation. In some complex systems, an extensive set of built - in tests 

(BITs) is incorporated, which may be exercised while the system is in its operational 

status. The defi nition of such interfaces is also the concern of the systems engineer.  

  Interface Elements 

 To systematize the identifi cation of external and internal interfaces, it is convenient to 

distinguish three different types: 

  1.     connectors, which facilitate the transmission of electricity, fl uid, force, and so 

on, between components;  

  2.     isolators, which inhibit such interactions; and  

  3.     converters, which alter the form of the interaction medium. These interfaces are 

embodied in component parts or subcomponents, which can be thought of as 

interface elements.    

 Table  3.4  lists a number of common examples of interface elements of each of the 

three types, for each of four interaction media: electrical, mechanical, hydraulic, and 

human. The table brings out several points worthy of note: 

     Figure 3.5.     Functional interactions and physical interfaces.  
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  1.     The function of making or breaking a connection between two components (i.e., 

enabling or disabling an interaction between them) must be considered as an 

important design feature, often involved in system control.  

  2.     The function of connecting nonadjacent system components by cables, pipes, 

levers, and so on, is often not part of a particular system component. Despite 

their inactive nature, such conducting elements must be given special attention 

at the system level to ensure that their interfaces are correctly confi gured.  

  3.     The relative simplicity of interface elements belies their critical role in ensuring 

system performance and reliability. Experience has shown that a large fraction 

of system failures occurs at interfaces. Assuring interface compatibility and 

reliability is a particular responsibility of the systems engineer.        

   3.6    COMPLEXITY IN MODERN SYSTEMS 

 Earlier in the chapter, we described the system hierarchy — how systems are subdivided 

into subsystems, then components, subcomponents, and fi nally, parts (see Table  3.1 ). 

And as modern systems grow in complexity, the number, diversity, and complexity of 

these lower - level subsystems, components, and parts increase. Furthermore, the interac-

tions between these entities also increase in complexity. Systems engineering princi-

ples, and their applied practices, are designed to deal with this complexity. 

 Increasingly, a single system may be, or become, a part of a larger entity. While 

there are many terms currently in use today to describe this supersystem concept, the 

term SoS seems to be accepted by a wide variety of organizations. Other terms are 

found in the literature — some meaning the same thing, some having different 

connotations. 

 This section provides a basic introduction to the engineering of entities that are 

considered  “ above, ”  or more complex, than single systems: SoSs and enterprises. 

   S  o  S  

 For our purposes, we will use two defi nitions to describe what is meant by an SoS. 

Both come from the U.S. Department of Defense (DoD). The fi rst is the simplest:

  TABLE 3.4.    Examples of Interface Elements 

   Type     Electrical     Mechanical     Hydraulic     Human – machine  

  Interaction 

medium  

  Current    Force    Fluid    Information  

  Connectors    Cable switch    Joint coupling    Pipe valve    Display control panel  

  Isolator    RF shield 

insulator  

  Shock mount 

bearing  

  Seal    Cover window  

  Converter    Antenna A/D 

converter  

  Gear train 

piston  

  Reducing 

valve pump  

  Keyboard  
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  A set or arrangement of systems that results when independent and useful systems are 

integrated into a larger system that delivers unique capabilities   

 In essence, anytime a set of independently useful systems is integrated together to 

provide an enhanced capability beyond that of the sum of the individual systems ’  capa-

bilities, we have an SoS. Of course, the level of integration could vary signifi cantly. At 

one end of the spectrum, an SoS could be completely integrated from the earliest 

development phases, where the individual systems, while able to operate independently, 

are almost exclusively designed for the SoS. At the other end of the spectrum, multiple 

systems could be loosely joined for a limited purpose and time span to perform a needed 

mission, with no more than an agreement of the owners of each system. Thus, a method 

to capture this range of integration is necessary to fully describe the different nuances 

of SoSs. 

 The U.S. DoD produced a systems engineering guide in 2008 specifi cally for SoS 

environments and captured this spectrum using four categories. The categories are 

presented in the order of how tightly coupled the component systems are — from loosely 

to tightly. 

   •      Virtual.     Virtual SoSs lack a central management authority and a centrally agreed -

 upon purpose for the SoS. Large - scale behavior emerges — and may be desirable —

 but this type of SoS must rely upon relatively invisible mechanisms to maintain 

it.  

   •      Collaborative.     In collaborative SoSs, the component systems interact more or 

less voluntarily to fulfi ll agreed - upon central purposes. Standards are adopted, 

but there is no central authority to enforce them. The central players collectively 

decide how to provide or deny service, thereby providing some means of enforc-

ing and maintaining standards.  

   •      Acknowledged.     Acknowledged SoSs have recognized objectives, a designated 

manager, and resources for an SoS; however, the constituent systems retain 

their independent ownership, objectives, funding, development and sustainment 

approaches. Changes in the systems are based on collaboration between the SoS 

and the system.  

   •      Directed.     Directed SoSs are those in which the integrated SoS is built and 

managed to fulfi ll specifi c purposes. It is centrally managed during long - term 

operation to continue to fulfi ll those purposes as well as any new ones the system 

owners might wish to address. The component systems maintain an ability to 

operate independently, but their normal operational mode is subordinated to the 

central managed purpose.    

 Although one could argue that the last category, the directed SoS, is closer to a 

single, complex system than an SoS, the defi nitions capture the range of situations that 

exist today when systems are integrated together to perform a function, or exhibit a 

capability, that is greater than any one system. 

 As the reader might surmise, engineering and architecting an SoS can be different 

than engineering and architecting a single system, especially for the two middle 
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categories. System of systems engineering (SoSE) can be different because of the 

unique attributes of an SoS. 

 Maier fi rst introduced a formal discussion of SoSs by identifying their character-

istics in 1998. Since then, several publications have refi ned these characteristics; 

however, they have remained remarkably stable over time. Sage and Cuppan summa-

rized these characteristics: 

  1.     Operational Independence of the Individual System.     An SoS is composed of 

systems that are independent and useful in their own right. If an SoS is disas-

sembled into its associated component systems, these component systems are 

capable of independently performing useful operations independently of one 

another.  

  2.     Managerial Independence of the Individual System.     The component systems in 

an SoS not only can operate independently, but they also generally do operate 

independently to achieve an intended purpose. Often, they are individually 

acquired and integrated, and they maintain a continuing operational existence 

and serve purposes that may be independent of those served by the SoS.  

  3.     Geographic Distribution.     The geographic dispersion of component systems is 

often large. Often, these systems can readily exchange only information and 

knowledge with one another.  

  4.     Emergent Behavior.     The SoS performs functions and carries out purposes that 

are not necessarily associated with any component system. These behaviors are 

emergent properties of the entire SoS and not the behavior of any component 

system.  

  5.     Evolutionary Development.     The development of an SoS is generally evolution-

ary over time. Components of structure, function, and purpose are added, 

removed, and modifi ed as experience with the system grows and evolves over 

time. Thus, an SoS is usually never fully formed or complete.    

 These characteristics have since been refi ned to include additional characteristics. 

Although these refi nements have not changed the basic characteristics, they did add 

two important features: 

 6.    Self - organization.     An SoS will have a dynamic organizational structure that is 

able to respond to changes in the environment and to changes in goals and 

objectives for the SoS.  

 7.    Adaptation.     Similar to a dynamic organization, the very structure of the SoS 

will be dynamic and respond to external changes and perceptions of the 

environment.    

 Engineering an SoS that falls into either the collaborative or acknowledged cate-

gory must deal with the seven core attributes of SoS. Therefore, the basic tools that we 

have in systems engineering may not be suffi cient. Additional methods, tools, and 

practices have been developed (and are continuing to be developed) to enable the 

engineer to develop these complex structures. 
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 Some of these tools come from other branches of mathematics and engineering, such 

as complexity theory. Attributes such as emergent behavior, self - organization, and adap-

tation have been examined within this fi eld, and various tools and methods have been 

developed to represent the inherent uncertainty these attributes bring. The challenge is 

to keep the mathematics simple enough for application to systems engineering. 

 Other areas that are being examined to support SoSE include social engineering, 

human behavior dynamics, and chaotic systems (chaos theory). These areas continue 

to be appropriate for further research.  

  Enterprise Systems Engineering 

 SoSE, by its nature, increases the complexity of developing single systems. However, 

it does not represent the highest level of complexity. In fact, just as Table  3.1  presented 

a hierarchy with the system at the apex, we can expand this hierarchy, and go beyond 

SoSs, to an enterprise. Figure  3.6  depicts this hierarchy.   

 Above an SoS lies the enterprise, which typically consists of multiple SoSs within 

its structure. Furthermore, an enterprise may consist of a varied collection of system 

types, not all of which are physical. For instance, an enterprise includes human or social 

systems that must be integrated with physical systems. 

 Formally, an enterprise is  “ anything that consists of people, processes, technology, 

systems, and other resources across organizations and locations interacting with each 

other and their environment to achieve a common mission or goal. ”  The level of inter-

action between these entities varies, just as component systems within an SoS. And 

many entities fi t into this defi nition. Almost all midsize to large organizations would 

satisfy this defi nition. In fact, suborganizations of some large corporations would them-

selves be defi ned as an enterprise. 

 Government agencies and departments would also fi t into this defi nition. And 

fi nally, large social and physical structures, such as cities or nations, satisfy the 

defi nition. 

     Figure 3.6.     Pyramid of system hierarchy.  
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 The source of complexity in enterprise systems engineering is primarily the inte-

gration of a diversity of systems and processes. The enterprise typically includes the 

following components that must be integrated together under the inherent uncertainty 

of today ’ s enterprise: 

   •      business strategy and strategic planning,  

   •      business processes,  

   •      enterprise services,  

   •      governance,  

   •      technical processes,  

   •      people management and interactions,  

   •      knowledge management,  

   •      information technology infrastructure and investment,  

   •      facility and equipment management,  

   •      supplies management, and  

   •      data and information management.    

 Enterprise systems engineering refers to the application of systems engineering 

principles and practices to engineering systems that are part of an enterprise. Developing 

the individual component systems of the enterprise is known by this term. Another 

broader term has also emerged: enterprise engineering. This term, with the  “ systems ”  

omitted, typically refers to the architecting, development, implementation, and opera-

tion of the enterprise as a whole. Some have used the terms interchangeably; however, 

the two terms refer to different levels of abstraction. 

 The reason that enterprise systems engineering is deemed more complex than SoSE 

is that many of the components of an enterprise involve one or more SoSs. Therefore, 

the enterprise could be considered an integration of multiple SoSs. 

 Just as new tools and techniques are being developed for SoSE applications, 

so too are tools, methods, and techniques being developed for this relatively young 

fi eld.   

   3.7    SUMMARY 

  System Building Blocks and Interfaces 

 The need for a systems engineer to attain a broad knowledge of the several interacting 

disciplines involved in the development of a complex system raises the question of how 

deep that understanding needs to be.  

  Hierarchy of Complex Systems 

 Complex systems may be represented by a hierarchical structure in that they are com-

posed of subsystems, components, subcomponents, and parts. 
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 The domain of the systems engineer extends down through the component level 

and extends across several categories. In contrast, the domain of the design specialist 

extends from the part level up through the component level, but typically within a single 

technology area or discipline.  

  System Building Blocks 

 System building blocks are at the level of components and are the basic building blocks 

of all engineered systems characterized by both functional and physical attributes. 

These building blocks are characterized by performing a distinct and signifi cant func-

tion and are singular — they are within the scope of a single engineering discipline. 

 Functional elements are functional equivalents of components and are categorized 

into four classes by operating medium: 

   •      signal elements, which sense and communicate information;  

   •      data elements, which interpret, organize, and manipulate information;  

   •      material elements, which provide structure and process material; and  

   •      energy elements, which provide energy or power.    

 Components are the physical embodiment of functional elements, which are cat-

egorized into six classes by materials of construction: 

   •      electronic,  

   •      electro - optical,  

   •      electromechanical,  

   •      mechanical,  

   •      thermomechanical, and  

   •      software.    

 System building block models can be useful in identifying actions capable of 

achieving operational outcomes, facilitating functional partitioning and defi nition, iden-

tifying subsystem and component interfaces, and visualizing the physical architecture 

of the system.  

  The System Environment 

 The system environment, that is, everything outside the system that interacts with it, 

includes (1) system operators (part of system function but outside the delivered system); 

(2) maintenance, housing, and support systems; (3) shipping, storage, and handling; (4) 

weather and other physical environments; and (5) threats.  

  Interfaces and Interactions 

 Interfaces are a critical systems engineering concern, which effect interactions between 

components and can be classifi ed into three categories: connect, isolate, or convert 
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interactions. They require identifi cation, specifi cation, coordination, and control. 

Moreover, test interfaces typically are provided for integration and maintenance.  

  Complexity in Modern Systems 

 Each system is always part of a larger entity. At times, this larger entity can be classi-

fi ed as a separate system in itself (beyond simply an environment, or  “ nature ” ). These 

situations are referred to as  “ SoSs. ”  They tend to exhibit seven distinct characteristics: 

operational independence of the individual system, managerial independence of the 

individual system, geographic distribution, emergent behavior, evolutionary develop-

ment, self - organization, and adaptation. 

 Enterprise systems engineering is similar in complexity but focuses on an organi-

zational entity. Since an enterprise involves social systems as well as technical systems, 

the complexity tends to become unpredictable.   

  PROBLEMS 

    3.1     Referring to Table  3.1 , list a similar hierarchy consisting of a typical subsys-

tem, component, subcomponent, and part for (1) a terminal air traffi c control 

system, (2) a personal computer system, (3) an automobile, and (4) an electric 

power plant. For each system, you need only to name one example at each 

level.  

  3.2     Give three key activities of a systems engineer that require technical knowl-

edge down to the component level. Under what circumstances should the 

systems engineer need to probe into the subcomponent level for a particular 

system component?  

  3.3     Referring to Figure  3.1 , describe in terms of levels in the system hierarchy 

the knowledge domain of a design specialist. In designing or adapting a 

component for a new system, what typical characteristics of the overall 

system and of other components must the design specialist understand? 

Illustrate by an example.  

  3.4     The last column of Table  3.2  lists examples of the applications of the 23 

functional elements. List one other example of an application than the one 

listed for three elements in each of the four classes of elements.  

  3.5     Referring to Figure  3.4 , for each of the environments and interfaces illus-

trated, (1) list the principal interactions between the environment and the 

aircraft, (2) the nature of each interaction, and (3) describe how each affects 

the system design.  

  3.6     For a passenger automobile, partition the principal parts into four subsystems 

and their components. (Do not include auxiliary functions such as environ-

mental or entertainment.) For the subsystems, group together components 

concerned with each primary function. For defi ning the components, use the 

principles of signifi cance (performs an important function), singularity 
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(largely falls within a simple discipline), and commonality (found in a variety 

of system types). Indicate where you may have doubts. Draw a block diagram 

relating the subsystems and components to the system and to each other.  

  3.7     In the cases selected in answering Problem 3.5, list the specifi c component 

interfaces that are involved in the above interactions.  

  3.8     Draw a context diagram for a standard coffeemaker. Make sure to identify 

all of the external entities and label all of the interactions.  

  3.9     Draw a context diagram for a standard washing machine. Make sure to iden-

tify all of the external entities and label all of the interactions.  

  3.10     In a context diagram,  “ maintainer ”  is typically an external entity, providing 

both activities (i.e.,  “ maintenance ” ) and materials (e.g., spare parts) to the 

system, and the system providing diagnostic data back to the maintainer. 

Describe the nature of the maintainer interfaces and what interactions could 

be done by the user.  

  3.11     List the test interfaces and BIT indicators in your automobile that are avail-

able to the user (do not include those only available to a mechanic).     
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    4.1    SYSTEMS ENGINEERING THROUGH THE SYSTEM LIFE CYCLE 

 As was described in Chapter  1 , modern engineered systems come into being in response 

to societal needs or because of new opportunities offered by advancing technology, or 

both. The evolution of a particular new system from the time when a need for it is 

recognized and a feasible technical approach is identifi ed, through its development and 

introduction into operational use, is a complex effort, which will be referred to as the 

 system development process . This chapter is devoted to describing the basic system 

development process and how systems engineering is applied at each step of this 

process. 

 A typical major system development exhibits the following characteristics: 

   •      It is a complex effort.  

   •      It meets an important user need.  

   •      It usually requires several years to complete.  

   •      It is made up of many interrelated tasks.  

  4 
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   •      It involves several different disciplines.  

   •      It is usually performed by several organizations.  

   •      It has a specifi c schedule and budget.    

 The development and introduction into the use of a complex system inherently 

requires increasingly large commitments of resources as it progresses from concept 

through engineering, production, and operational use. Further, the introduction of new 

technology inevitably involves risks, which must be identifi ed and resolved as early as 

possible. These factors require that the system development be conducted in a step - by -

 step manner, in which the success of each step is demonstrated, and the basis for the 

next one validated, before a decision is made to proceed to the next step.  

   4.2    SYSTEM LIFE CYCLE 

 The term  “ system life cycle ”  is commonly used to refer to the stepwise evolution of 

a new system from concept through development and on to production, operation, and 

ultimate disposal. As the type of work evolves from analysis in the early conceptual 

phases to engineering development and testing, to production and operational use, 

the role of systems engineering changes accordingly. As noted previously, the organiza-

tion of this book is designed to follow the structure of the system life cycle, so as to 

more clearly relate systems engineering functions to their roles in specifi c periods 

during the life of the system. This chapter presents an overview of the system develop-

ment process to create a context for the more detailed discussion of each step in the 

later chapters. 

  Development of a Systems Engineering Life Cycle Model 
for This Book 

 System life cycle models have evolved signifi cantly over the past two decades. 

Furthermore, the number of models has grown as additional unique and custom applica-

tions were explored. Additionally, software engineering has spawned a signifi cant 

number of development models that have been adopted by the systems community. The 

end result is that there is no single life cycle model that (1) is accepted worldwide and 

(2) fi ts every possible situation. Various standards organizations, government agencies, 

and engineering communities have published their particular models or frameworks 

that can be used to construct a model. Therefore, adopting one model to serve as an 

appropriate framework for this book was simply not prudent. 

 Fortunately, all life cycle models subdivide the system life into a set of basic steps 

that separate major decision milestones. Therefore, the derivation of a life cycle model 

to serve as an appropriate framework for this book had to meet two primary objectives. 

First, the steps in the life cycle had to correspond to the progressive transitions in the 

principal systems engineering activities. Second, these steps had to be capable of being 

mapped into the principal life cycle models in use by the systems engineering com-

munity. The derived model will be referred to as the  “ systems engineering life cycle, ”  



SYSTEM LIFE CYCLE 71

and will be based on three different sources: the Department of Defense (DoD) 

Acquisition Management model (DoD 5000.2), the International model ISO/IEC 15288, 

and the National Society of Professional Engineers (NSPE) model. 

   D  o  D  Acquisition Management Model.     In the second half of the twentieth 

century, the United States was in the forefront of developing large - scale complex mili-

tary systems such as warships, airplanes, tanks, and command and control systems. To 

manage the risks in the application of advanced technology, and to minimize costly 

technical or management failures, the DoD has evolved comprehensive system acquisi-

tion guidelines, which are contained in the DoD 5000 series of directives. The fall 2008 

version of the DoD life cycle model, which refl ects the acquisition guidelines, is dis-

played in Figure  4.1 . It consists of fi ve phases: material solution analysis, technology 

development, engineering and manufacturing development, production and deploy-

ment, and operations and support. The two activities of user need determination and 

technology opportunities and resources are considered to be part of the process but are 

not included in the formal portion of the acquisition cycle.   

 The DoD model is tailored toward managing large, complex system development 

efforts where reviews and decisions are needed at key events throughout the life cycle. 

The major reviews are referred to as milestones and are given letter designations: A, 

B, and C. Each of the three major milestones is defi ned with respect to entry and exit 

conditions. For example, at milestone A, a requirements document needs to be approved 

by a military oversight committee before a program will be allowed to transition to the 

next phase. In addition to milestones, the process contains four additional decision 

points: material development decision (MDD), preliminary design review (PDR), 

     Figure 4.1.     DoD system life cycle model.  
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critical design review (CDR) and full - rate production (FRP) decision review. Therefore, 

DoD management is able to review and decide on the future of the program at up to 

seven major points within the life cycle.  

  International  ISO / IEC  15288 Model.     In 2002, the International Organization 

for Standardization (ISO) and the International Electrotechnical Commission (IEC) 

issued the result of several years of effort: a systems engineering standard designated 

ISO/IEC 15288,  Systems Engineering — System Life Cycle Processes . The basic model 

is divided into six stages and 25 primary processes. The processes are intended to 

represent a menu of activities that may need to be accomplished within the basic stages. 

The ISO standard purposely does not align the stages and processes. The six basic 

stages are concept, development, production, utilization, support, and retirement.  

  Professional Engineering Model.     The NSPE model is tailored to the develop-

ment of commercial systems. This model is mainly directed to the development of new 

products, usually resulting from technological advances ( “ technology driven ” ). Thus, 

the NSPE model provides a useful alternative view to the DoD model of how a typical 

system life cycle may be divided into phases. The NSPE life cycle is partitioned into 

six stages: conceptual, technical feasibility, development, commercial validation and 

production preparation, full - scale production, and product support.  

  Systems Engineering Life Cycle Model.     In structuring a life cycle model that 

corresponded to signifi cant transitions in systems engineering activities throughout the 

system ’ s active life, it was found most desirable to subdivide the life cycle into three 

broad stages and to partition these into eight distinct phases. This structure is shown in 

Figure  4.2  and will be discussed below. The names of these subdivisions were chosen 

     Figure 4.2.     System life cycle model.  
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to refl ect the primary activities occurring in each part of the process. Inevitably, some 

of these names are the same or similar to the names of corresponding parts of one or 

more of the existing life cycles.    

  Software Life Cycle Models.     The system life cycle stages and their constituent 

phases represented by the above models apply to the majority of complex systems, 

including those containing signifi cant software functionality at the component level. 

However, software - intensive systems, in which software performs virtually all the 

functionality, as in modern fi nancial systems, airline reservation systems, the World 

Wide Web, and other information systems, generally follow life cycles similar in form 

but often involving iteration and prototyping. Chapter  11  describes the differences 

between software and hardware, discusses the activities involved in the principal 

stages of software system development, and contains a section dealing with examples 

of software system life cycles representing software - intensive systems. However, with 

that exception, the systems engineering life cycle model, as will be discussed in 

Chapters  5  through  15 , provides a natural framework for describing the evolution of 

systems engineering activity throughout the active life of all engineered complex 

systems.   

  Systems Engineering Life Cycle Stages 

 As described above, and illustrated in Figure  4.2 , the systems life cycle model consists 

of three stages, the fi rst two encompassing the developmental part of the life cycle, and 

the third the postdevelopment period. These stages mark the more basic transitions in 

the system life cycle, as well as the changes in the type and scope of effort involved 

in systems engineering. In this book, these stages will be referred to as (1) The  concept 

development  stage, which is the initial stage of the formulation and defi nition of a 

system concept perceived to best satisfy a valid need; (2) the  engineering development  

stage, which covers the translation of the system concept into a validated physical 

system design meeting the operational, cost, and schedule requirements; and (3) the 

 postdevelopment  stage, which includes the production, deployment, operation, and 

support of the system throughout its useful life. The names for the individual stages 

are intended to correspond generally to the principal type of activity characteristic of 

these stages. 

 The concept development stage, as the name implies, embodies the analysis and 

planning that is necessary to establish the need for a new system, the feasibility of its 

realization, and the specifi c system architecture perceived to best satisfy the user needs. 

Systems engineering plays the lead role in translating the operational needs into a 

technically and economically feasible system concept. Maier and Rechtin (2009) call 

this process  “ systems architecting, ”  using the analogy of the building architect translat-

ing a client ’ s needs into plans and specifi cations that a builder can bid on and build 

from. The level of effort during this stage is generally much smaller than in subsequent 

stages. This stage corresponds to the DoD activities of material solution analysis and 

technology development. 
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 The principal objectives of the concept development stage are 

  1.     to establish that there is a valid need (and market) for a new system that is 

technically and economically feasible;  

  2.     to explore potential system concepts and formulate and validate a set of system 

performance requirements;  

  3.     to select the most attractive system concept, defi ne its functional characteristics, 

and develop a detailed plan for the subsequent stages of engineering, produc-

tion, and operational deployment of the system; and  

  4.     to develop any new technology called for by the selected system concept and 

to validate its capability to meet requirements.    

 The engineering development stage corresponds to the process of engineering the 

system to perform the functions specifi ed in the system concept, in a physical embodi-

ment that can be produced economically and maintained and operated successfully in 

its operational environment. Systems engineering is primarily concerned with guiding 

the engineering development and design, defi ning and managing interfaces, developing 

test plans, and determining how discrepancies in system performance uncovered during 

test and evaluation (T & E) should best be rectifi ed. The main bulk of the engineering 

effort is carried out during this stage. The engineering development stage corresponds 

to the DoD activities of engineering and manufacturing development and is a part of 

production and deployment. 

 The principal objectives of the engineering development stage are 

  1.     to perform the engineering development of a prototype system satisfying the 

requirements of performance, reliability, maintainability, and safety; and  

  2.     to engineer the system for economical production and use and to demonstrate 

its operational suitability.    

 The postdevelopment stage consists of activities beyond the system development 

period but still requires signifi cant support from systems engineering, especially when 

unanticipated problems requiring urgent resolution are encountered. Also, continuing 

advances in technology often require in - service system upgrading, which may be just 

as dependent on systems engineering as the concept and engineering development 

stages. This stage corresponds to a part of the DoD production and deployment phase 

and all of the operations and support phase. 

 The postdevelopment stage of a new system begins after the system successfully 

undergoes its operational T & E, sometimes referred to as  acceptance testing , and is 

released for production and subsequent operational use. While the basic development 

has been completed, systems engineering continues to play an important supporting 

role in this effort. 

 The relations among the principal stages in the system life cycle are illustrated in 

the form of a fl owchart in Figure  4.3 . The fi gure shows the principal inputs and outputs 

of each of the stages. The legends above the blocks relate to the fl ow of information 
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in the form of requirements, specifi cations, and documentation, beginning with opera-

tional needs. The inputs and outputs below the blocks represent the stepwise evolution 

of the design representations of an engineered system from the concept to the opera-

tional system. It is seen that both the documentation and design representations become 

increasingly complete and specifi c as the life cycle progresses. The later section entitled 

 “ System Materialization ”  is devoted to a discussion of the factors involved in this 

process.   

  Example: Development Stages of a New Commercial Aircraft.     To illus-

trate the application of this life cycle model, consider the evolution of a new passenger 

aircraft. The concept development stage would include the recognition of a market for 

a new aircraft, the exploration of possible confi gurations, such as number, size, and 

location of engines, body dimensions, wing platform, and so on, leading to the selection 

of the optimum confi guration from the standpoint of production cost, overall effi ciency, 

passenger comfort, and other operational objectives. The above decisions would be 

based largely on analyses, simulations, and functional designs, which collectively 

would constitute justifi cations for selecting the chosen approach. 

 The engineering development stage of the aircraft life cycle begins with the accep-

tance of the proposed system concept and a decision by the aircraft company to proceed 

with its engineering. The engineering effort would be directed to validating the use of 

any unproven technology, implementing the system functional design into hardware 

and software components, and demonstrating that the engineered system meets the user 

needs. This would involve building prototype components, integrating them into an 

operating system and evaluating it in a realistic operational environment. The postde-

velopment stage includes the acquisition of production tooling and test equipment, 

production of the new aircraft, customizing it to fi t requirements of different customers, 

supporting regular operations, fi xing any faults discovered during use, and periodically 

overhauling or replacing engines, landing gear, and other highly stressed components. 

Systems engineering plays a limited but vital supporting and problem - solving role 

during this stage.   

     Figure 4.3.     Principal stages in a system life cycle.  
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  Concept Development Phases 

 While the three stages described above constitute the dominant subdivisions of the 

system life cycle, each of these stages contains recognizable subdivisions with charac-

teristically different objectives and activities. In the case of large programs, formal 

decision points also mark most of these subdivisions, similar to those marking the 

transition between stages. Furthermore, the roles of systems engineering tend to differ 

signifi cantly among these intermediate subdivisions. Hence, to understand how the 

evolution of the system life cycle relates to the systems engineering process, it is useful 

to develop a model of its structure down to this second level of subdivision. 

 The concept development stage of the systems engineering life cycle encompasses 

three phases:  needs analysis ,  concept exploration , and  concept defi nition . Figure  4.4  

shows these phases, their principal activities and inputs and outputs in a format analo-

gous to Figure  4.3 .   

  Needs Analysis Phase.     The needs analysis phase defi nes the need for a new 

system. It addresses the questions  “ Is there a valid need for a new system? ”  and  “ Is 

there a practical approach to satisfying such a need? ”  These questions require a critical 

examination of the degree to which current and perceived future needs cannot be satis-

fi ed by a physical or operational modifi cation of available means, as well as whether 

or not available technology is likely to support the increased capability desired. In many 

cases, the beginning of the life of a new system evolves from a continuing analysis of 

operational needs, or an innovative product development, without a sharply identifi ed 

beginning. 

 The output of this phase is a description of the capabilities and operational effec-

tiveness needed in the new system. In many ways, this description is the fi rst iteration 

of the system itself, albeit a very basic conceptual model of the system. The reader 

     Figure 4.4.     Concept development phases of a system life cycle.  
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should take note of how the  “ system ”  evolves from this very beginning phase through-

out its life cycle. Although we would not yet call this description a set of requirements, 

they certainly are the forerunner of what will be defi ned as offi cial requirements. 

Some communities refer to this early description as an initial capability description. 

 Several classes of tools and practices exist to support the development of the 

system capabilities and effectiveness description. Most fall into two categories of 

mathematics, known as operational analysis and operations research. However, technol-

ogy assessments and experimentation are an integral part of this phase and will be used 

in conjunction with mathematical techniques.  

  Concept Exploration Phase.     This phase examines potential system concepts 

in answering the questions  “ What performance is required of the new system to meet 

the perceived need? ”  and  “ Is there at least one feasible approach to achieving such 

performance at an affordable cost? ”  Positive answers to these questions set a valid and 

achievable goal for a new system project prior to expending a major effort on its 

development. 

 The output of this phase includes our fi rst  “ offi cial ”  set of requirements, typically 

known as system performance requirements. What we mean by offi cial is that a con-

tractor or agency can be measured against this set of required capabilities and perfor-

mance. In addition to an initial set of requirements, this phase produces a set of 

candidate system concepts. Note the plural — more than one alternative is important to 

explore and understand the range of possibilities in satisfying the need. 

 A variety of tools and techniques are available in this phase and range from process 

methods (e.g., requirements analysis) to mathematically based (e.g., decision support 

methods) to expert judgment (e.g., brainstorming). Initially, the number of concepts 

can be quite large from some of these techniques; however, the set quickly reduces to 

a manageable set of alternatives. It is important to understand and  “ prove ”  the feasibility 

of the fi nal set of concepts that will become the input of the next phase.  

  Concept Defi nition Phase.     The concept defi nition phase selects the preferred 

concept. It answers the question  “ What are the key characteristics of a system concept 

that would achieve the most benefi cial balance between capability, operational life, and 

cost? ”  To answer this question, a number of alternative concepts must be considered, 

and their relative performance, operational utility, development risk, and cost must be 

compared. Given a satisfactory answer to this question, a decision to commit major 

resources to the development of the new system can be made. 

 The output is really two perspectives on the same system: a set of functional 

specifi cations that describe what the system must do, and how well, and a selected 

system concept. The latter can be in two forms. If the complexity of the system is rather 

low, a simple concept description is suffi cient to communicate the overall design strat-

egy for the development effort to come. However, if the complexity is high, a simple 

concept description is insuffi cient and a more comprehensive system architecture is 

needed to communicate the various perspectives of the system. Regardless of the depth 

of description, the concept needs to be described in several ways, primarily from a 
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functional perspective and from a physical perspective. Further perspectives may very 

well be needed if complexity is particularly high. 

 The tools and techniques available fall into two categories: analysis of alternatives 

(a particular method pioneered by the DoD, but fully part of operations research), and 

systems architecting (pioneered by Ebbert Rechtin in the early 1990s). 

 As noted previously, in commercial projects (NSPE model), the fi rst two phases 

are often considered as a single preproject effort. This is sometimes referred to as a 

 “ feasibility study ”  and its results constitute a basis for making a decision as to whether 

or not to invest in a concept defi nition effort. In the defense acquisition life cycle, the 

second and third phases are combined, but the part corresponding to the second phase 

is performed by the government, resulting in a set of system performance requirements, 

while that corresponding to the third can be conducted by a government – contractor 

team or performed by several contractors competing to meet the above requirements. 

 In any case, before reaching the engineering development stage, only a fractional 

investment has usually been made in the development of a particular system, although 

some years and considerable effort may have been spent in developing a fi rm under-

standing of the operational environment and in exploring relevant technology at the 

subsystem level. The ensuing stages are where the bulk of the investment will be 

required.   

  Engineering Development Phases 

 Figure  4.5  shows the activities, inputs, and outputs of the constituent phases of the 

engineering development stage of the system life cycle in the same format as used in 

Figure  4.3 . These are referred to as  advanced development ,  engineering design , and 

 integration and evaluation .   

  Advanced Development Phase.     The success of the engineering development 

stage of a system project is critically dependent on the soundness of the foundation laid 

     Figure 4.5.     Engineering development phases in a system life cycle.  
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during the concept development stage. However, since the conceptual effort is largely 

analytical in nature and carried out with limited resources, signifi cant unknowns invari-

ably remain that are yet to be fully defi ned and resolved. It is essential that these 

 “ unknown unknowns ”  be exposed and addressed early in the engineering stage. In par-

ticular, every effort must be made to minimize the number of as yet undisclosed problems 

prior to translating the functional design and associated system requirements into engi-

neering specifi cations for the individual system hardware and software elements. 

 The advanced development phase has two primary purposes: (1) the identifi cation 

and reduction of development risks and (2) the development of system design specifi ca-

tions. The advanced development phase is especially important when the system 

concept involves advanced technology not previously used in a similar application, or 

where the required performance stresses the system components beyond proven limits. 

It is devoted to designing and demonstrating the undeveloped parts of the system, to 

proving the practicality of meeting their requirements, and to laying the basis for con-

verting the functional system requirements into system specifi cations and component 

design requirements. Systems engineering is central to the decisions of what needs to 

be validated and how, and to the interpretation of the results. 

 This phase corresponds to the defense acquisition phase called  “ engineering and 

manufacturing development, ”  once referred to as  “ demonstration and validation. ”  

When the risks of using unproven technology are large, this phase is often contracted 

separately, with contracts for the remaining engineering phase contingent on its 

success. 

 Matching the purpose of this phase, the two primary outputs are the design speci-

fi cations and a validated development model. The specifi cations are a refi nement and 

evolution of the earlier function specifi cations. The development model is the fi nal 

outcome of a very comprehensive risk management task — where those unknowns 

mentioned above have been identifi ed and resolved. This is what we mean when we 

use the adjective  “ validated. ”  The systems engineer needs to be convinced that this 

system can be designed and manufactured before transitioning from this phase. 

Therefore, all risks at this phase must be rated as manageable before proceeding. 

 Modern risk management tools and techniques are essential to reduce and ulti-

mately to mitigate risks inherent in the program. As these risks are managed, the level 

of defi nition continues to migrate down, from the system to the subsystem. Furthermore, 

a set of specifi cations for the next level of decomposition, at the component level, 

occurs. In all of these cases, both experimental models and simulations are often 

employed at this stage to validate component and subsystem design concepts at 

minimum cost.  

  Engineering Design Phase.     The detailed engineering design of the system is 

performed during this phase. Because of the scale of this effort, it is usually punctuated 

by formal design reviews. An important function of these reviews is to provide an 

opportunity for the customer or user to obtain an early view of the product, to monitor 

its cost and schedule, and to provide valuable feedback to the system developer. 

 While issues of reliability, producibility, maintainability, and other  “ ilities ”  

have been considered in previous phases, they are of paramount importance in the 
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engineering design phase. These types of issues are typically known as  “ specialty 

engineering. ”  Since the product consists of a set of components capable of being inte-

grated and tested as a system, the systems engineer is responsible for ensuring that the 

engineering design of the individual components faithfully implements the functional 

and compatibility requirements, and for managing the engineering change process to 

maintain interface and confi guration control. 

 The tasks of this phase deals with converting the component specifi cations into a 

set of component designs. Of course, testing these components is essential to occur 

immediately after design, or in some cases, concurrently with design. One additional 

task is performed during this phase: the refi nement of the system T & E plan. We use 

the term  refi nement  to distinguish between the initiation and continuation. The T & E 

plan is initially developed much earlier in the life cycle. At this phase, the T & E plan 

is largely fi nished, using the knowledge gained from the previous phases. 

 The two primary outputs are the T & E plan and an engineered prototype. The pro-

totype can take many forms and should not be thought of in the same way as we think 

of a software prototype. This phase may produce a prototype that is virtual, physical, 

or a hybrid, depending on the program. For example, if the system is an ocean - going 

cargo vessel, the prototype at this stage may be a hybrid of virtual and physical mock -

 ups. A full - scale prototype of a cargo ship may not be possible or prudent at this phase. 

On the other hand, if the system is a washing machine, a full - scale prototype may be 

totally appropriate. 

 Modern computer - aided design tools are available as design engineers perform 

their trade. System models and simulations are also updated as designs are fi nalized 

and tested.  

  Integration and Evaluation Phase.     The process of integrating the engineered 

components of a complex system into a functioning whole, and evaluating the system ’ s 

operation in a realistic environment, is nominally part of the engineering design process 

because there is no formal break in the development program at this point. However, 

there is a basic difference between the role and responsibility of systems engineering 

during the engineering design of the system elements and that during the integration 

and evaluation process. Since this book is focused on the functions of systems engineer-

ing, the system integration and evaluation process is treated as a separate phase in the 

system life cycle. 

 It is important to realize that the fi rst time a new system can be assembled and 

evaluated as an operating unit is after all its components are fully engineered and built. 

It is at this stage that all the component interfaces must fi t and component interactions 

must be compatible with the functional requirements. While there may have been prior 

tests at the subsystem level or at the level of a development prototype, the integrity of 

the total design cannot be validated prior to this point. 

 It should also be noted that the system integration and evaluation process often 

requires the design and construction of complex facilities to closely simulate opera-

tional stimuli and constraints and to measure the system ’ s responses. Some of these 

facilities may be adapted from developmental equipment, but the magnitude of the task 

should not be underestimated. 
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 The outputs of this phase are twofold: (1) the specifi cations to guide the manufac-

turing of the system, typically called the system production specifi cations (sometimes 

referred to as the production baseline), and (2) the production system itself. The latter 

includes everything necessary to manufacture and assemble the system and may include 

a prototype system. 

 Modern integration techniques and T & E tools, methods, facilities, and principles 

are available to assist and enable the engineers in these tasks. Of course, before full -

 scale production can occur, the fi nal production system needs to be verifi ed and vali-

dated through an evaluation within the operational environment or a suffi cient surrogate 

for the operational environment.   

  Postdevelopment Phases 

  Production Phase.     The production phase is the fi rst of the two phases compris-

ing the postdevelopment stage, which are exactly parallel to the defense acquisition 

phases of  “ production and deployment ”  and  “ operations and support. ”  

 No matter how effectively the system design has been engineered for production, 

problems inevitably arise during the production process. There are always unexpected 

disruptions beyond the control of project management, for example, a strike at a ven-

dor ’ s plant, unanticipated tooling diffi culties, bugs in critical software programs, or an 

unexpected failure in a factory integration test. Such situations threaten costly disrup-

tions in the production schedule that require prompt and decisive remedial action. 

Systems engineers are often the only persons qualifi ed to diagnose the source of the 

problem and to fi nd an effective solution. Often a systems engineer can devise a  “ work -

 around ”  that solves the problem for a minimal cost. This means that an experienced 

cadre of systems engineers intimately familiar with the system design and operation 

needs to be available to support the production effort. Where specialty engineering 

assistance may be required, the systems engineers are often best qualifi ed to decide 

who should be called in and when.  

  Operations and Support Phase.     In the operations and support phase, there is 

an even more critical need for systems engineering support. The system operators and 

maintenance personnel are likely to be only partially trained in the fi ner details of 

system operation and upkeep. While specially trained fi eld engineers generally provide 

support, they must be able to call on experienced systems engineers in case they 

encounter problems beyond their own experience. 

 Proper planning for the operational phase includes provision of a logistic support 

system and training programs for operators and maintenance personnel. This planning 

should have major participation from systems engineering. There are always unantici-

pated problems that arise after the system becomes operational that must be recognized 

and included in the logistic and training systems. Very often, the instrumentation 

required for training and maintenance is itself a major component of the system to be 

delivered. 

 Most complex systems have lifetimes of many years, during which they undergo 

a number of minor and major upgrades. These upgrades are driven by evolution in the 
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system mission, as well as by advances in technology that offer opportunities to 

improve operation, reliability, or economy. Computer - based systems are especially 

subject to periodic upgrades, whose cumulative magnitude may well exceed the initial 

system development. While the magnitude of an individual system upgrade is a fraction 

of that required to develop a new system, it usually entails a great many complex deci-

sions requiring the application of systems engineering. Such an enterprise can be 

extremely complex, especially in the conceptual stage of the upgrade effort. Anyone 

that has undergone a signifi cant home alteration, such as the addition of one bedroom 

and bath, will appreciate the unexpected diffi culty of deciding just how this can be 

accomplished in such a way as to retain the character of the original structure and yet 

realize the full benefi ts of the added portion, as well as be performed for an affordable 

price.    

   4.3    EVOLUTIONARY CHARACTERISTICS OF 
THE DEVELOPMENT PROCESS 

 The nature of the system development process can be better understood by considering 

certain characteristics that evolve during the life cycle. Four of these are described in 

the paragraphs below. The section The Predecessor System discusses the contributions 

of an existing system on the development of a new system that is to replace it. The 

section System Materialization describes a model of how a system evolves from 

concept to an engineered product. The section The Participants describes the composi-

tion of the system development team and how it changes during the life cycle. The 

section System Requirements and Specifi cations describes how the defi nition of the 

system evolves in terms of system requirements and specifi cations as the development 

progresses. 

  The Predecessor System 

 The process of engineering a new system may be described without regard to its resem-

blance to current systems meeting the same or similar needs. The entire concept and 

all of its elements are often represented as starting with a blank slate, a situation that 

is virtually never encountered in practice. 

 In the majority of cases, when new technology is used to achieve radical changes 

in such operations as transportation, banking, or armed combat, there exist predecessor 

systems. In a new system, the changes are typically confi ned to a few subsystems, while 

the existing overall system architecture and other subsystems remain substantially 

unchanged. Even the introduction of automation usually changes the mechanics but not 

the substance of the process. Thus, with the exception of such breakthroughs as the 

fi rst generation of nuclear systems or of spacecraft, a new system development can 

expect to have a predecessor system that can serve as a point of departure. 

 A predecessor system will impact the development of a new system in three ways: 

  1.     The defi ciencies of the predecessor system are usually recognized, often being 

the driving force for the new development. This focuses attention on the most 
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important performance capabilities and features that must be provided by the 

new system.  

  2.     If the defi ciencies are not so serious as to make the current system worthless, 

its overall concept and functional architecture may constitute the best starting 

point for exploring alternatives.  

  3.     To the extent that substantial portions of the current system perform their func-

tion satisfactorily and are not rendered obsolete by recent technology, great cost 

savings (and risk reduction) may be achieved by utilizing them with minimum 

change.    

 Given the above, the average system development will almost always be a hybrid, in 

that it will combine new and undemonstrated components and subsystems with previ-

ously engineered and fully proven ones. It is a particular responsibility of systems 

engineering to ensure that the decisions as to which predecessor elements to use, which 

to reengineer, which to replace by new ones, and how these are to be interfaced are 

made through careful weighing of performance, cost, schedule, and other essential 

criteria.  

  System Materialization 

 The steps in the development of a new system can be thought of as an orderly progres-

sive  “ materialization ”  of the system from an abstract need to an assemblage of actual 

components cooperating to perform a set of complex functions to fulfi ll that need. To 

illustrate this process, Table  4.1  traces the growth of materialization throughout the 

phases of the project life cycle. The rows of the table represent the levels of system 

subdivision, from the system itself at the top to the part level at the bottom. The columns 

are successive phases of the system life cycle. The entries are the primary activities at 

each system level and phase, and their degree of materialization. The shaded areas 

indicate the focus of the principal effort in each phase.   

 It is seen that each successive phase defi nes (materializes) the next lower level of 

system subdivision until every part has been fully defi ned. Examining each row from 

left to right, say, at the component level, it is also seen that the process of defi nition 

starts with visualization (selecting the general type of system element), then proceeds 

to defi ning its functions (functional design, what it must do), and then to its implemen-

tation (detailed design, how it will do it). 

 The above progression holds true through the engineering design phase, where the 

components of the system are fully  “ materialized ”  as fi nished system building blocks. 

In the integration and evaluation phase, the materialization process takes place in a 

distinctly different way, namely, in terms of the materialization of an integrated and 

validated operational system from its individual building blocks. These differences are 

discussed further in Chapter  13 . 

 It is important to note from Table  4.1  that while the detailed design of the system 

is not completed until near the end of its development, its general characteristics must 

be visualized very early in the process. This can be understood from the fact that the 

selection of the specifi c system concept requires a realistic estimate of the cost to 



  TABLE 4.1.  Evolution of System Materialization through the System Life Cycle     

   Level  

   Phase  

   Concept development     Engineering development  

   Needs analysis     Concept exploration     Concept defi nition  

   Advanced 

development  

   Engineering 

design  

   Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, and 

synthesize concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne requirements 

and ensure feasibility  

  Defi ne functional and 

physical architecture  

  Validate subsystems        Integrate and test  

  Component            Allocate functions to 

components  

  Defi ne specifi cations    Design and test    Integrate and test  

  Subcomponent    Visualize    Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

8
4



EVOLUTIONARY CHARACTERISTICS OF THE DEVELOPMENT PROCESS  85

develop and produce it, which in turn requires a visualization of its general physical 

implementation as well as its functionality. In fact, it is essential to have at least a 

general vision of the physical embodiment of the system functions during even the 

earliest investigations of technical feasibility. It is of course true that these early visu-

alizations of the system will differ in many respects from its fi nal materialization, but 

not so far as to invalidate conclusions about its practicality. 

 The role of systems architecting fulfi lls this visualization requirement by providing 

visual perspectives into the system concept early in the life cycle. As a system project 

progresses through its life cycle, the products of the architecture are decomposed to 

ever - lower levels. 

 At any point in the cycle, the current state of system defi nition can be thought of 

as the current system model. Thus, during the concept development stage, the system 

model includes only the system functional model that is made up entirely of descriptive 

material, diagrams, tables of parameters, and so on, in combination with any simula-

tions that are used to examine the relationships between system - level performance and 

specifi c features and capabilities of individual system elements. Then, during the engi-

neering development stage, this model is augmented by the gradual addition of hard-

ware and software designs for the individual subsystems and components, leading 

fi nally to a completed engineering model. The model is then further extended to a 

production model as the engineering design is transformed into producible hardware 

designs, detailed software defi nition, production tooling, and so on. At every stage of 

the process, the current system model necessarily includes models of all externally 

imposed interfaces as well as the internal system interfaces.  

  The Participants 

 A large project involves not only dozens or hundreds of people but also several different 

organizational entities. The ultimate user may or may not be an active participant in 

the project but plays a vital part in the system ’ s origin and in its operational life. The 

two most common situations are when (1) the government serves as the system acquisi-

tion agent and user, with a commercial prime contractor supported by subcontractors 

as the system developer and producer, and (2) a commercial company serves as the 

acquisition manager, system developer, and producer. Other commercial companies or 

the general public may be the users. The principal participants in each phase of the 

project are also different. Therefore, one of the main functions of systems engineering 

is to provide the continuity between successive participating levels in the hierarchy and 

successive development phases and their participants through both formal documenta-

tion and informal communications. 

 A typical distribution of participants in an aerospace system development is shown 

in Figure  4.6   . The height of the columns represents the relative number of engineering 

personnel involved. The entries are the predominant types of personnel in each phase. 

It is seen that, in general, participation varies from phase to phase, with systems engi-

neering providing the main continuity.   

 The principal participants in the early phases are analysts and architects (system 

and operations/market). The concept defi nition phase is usually carried out by an 
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expedited team effort, representing all elements necessary to select and document the 

most cost - effective system concept for meeting the stated requirements. 

 The advanced development phase usually marks the initial involvement of the 

system design team that will carry the project through the engineering stage and on 

into production. It is led by systems engineering, with support from the design and test 

engineers engaged in the development of components and subsystems requiring 

development. 

 The engineering design phase further augments the effort with a major contribution 

from specialty engineering (reliability, maintainability, etc.), as well as test and produc-

tion engineering. For software, this phase involves designers, as well as coders, to the 

extent that prototyping is employed. 

 The integration and evaluation phase relies heavily on test engineering with guid-

ance from systems engineering and support from design engineers and engineering 

specialists.  

  System Requirements and Specifi cations 

 Just as the system design gradually materializes during the successive steps of system 

development, so the successive forms of system requirements and specifi cations become 

more and more specifi c and detailed. These start with a set of operational requirements 

and end with a complete set of production specifi cations, operation, maintenance, and 

     Figure 4.6.     Principal participants in a typical aerospace system development.  
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training manuals and all other information needed to replicate, operate, maintain, and 

repair the system. Thus, each phase can be thought of as producing a more detailed 

description of the system: what it does, how it works, and how it is built. 

 Since the above documents collectively determine both the course of the develop-

ment effort and the form and capabilities of the system as fi nally delivered, oversight 

of their defi nition and preparation is a primary responsibility of systems engineering. 

This effort must, however, be closely coordinated with the associated design specialists 

and other involved organizations. 

 The evolution of system requirements and specifi cations is shown in the fi rst row 

of Table  4.2  as a function of the phases in the system life cycle. It should be emphasized 

that each successive set of documents does not replace the versions defi ned during the 

previous phases but rather supplements them. This produces an accumulation rather 

than a succession of system requirements and other documents. These are  “ living docu-

ments, ”  which are periodically revised and updated.   

 The necessity for an aggregation of formal requirements and specifi cations devel-

oped during successive phases of the system development can be better understood by 

recalling the discussion of  “ Participants ”  and Figure  4.6 . In particular, not only are there 

many different groups engaged in the development process, but many, if not most, of 

the key participants change from one phase to the next. This makes it essential that a 

complete and up - to - date description exists that defi nes what the system must do and 

also, to the extent previously defi ned, how it must do it. 

 The system description documents not only lay the basis for the next phase of 

system design but they also specify how the results of the effort are to be tested in order 

to validate compliance with the requirements. They provide the information base 

needed for devising both the production tools and the tools to be used for inspecting 

and testing the product of the forthcoming phase. 

 The representations of system characteristics also evolve during the development 

process, as indicated in the second row of Table  4.2 . Most of these will be recognized 

as architecture views and conventional engineering design and software diagrams and 

models. Their purpose is to supplement textual descriptions of successive stages of 

system materialization by more readily understandable visual forms. This is especially 

important in defi ning interfaces and interactions among system elements designed by 

different organizations.   

   4.4    THE SYSTEMS ENGINEERING METHOD 

 In the preceding sections, the engineering of a complex system was seen to be divisible 

into a series of steps or phases. Beginning with the identifi cation of an opportunity to 

achieve a major extension of an important operational capability by a feasible techno-

logical approach, each succeeding phase adds a further level of detailed defi nition 

(materialization) of the system, until a fully engineered model is achieved that proves 

to meet all essential operational requirements reliably and at an affordable cost. While 

many of the problems addressed in a given phase are peculiar to that state of system 

defi nition, the systems engineering principles that are employed, and the relations 



  TABLE 4.2.    Evolution of System Representation 

     

   Concept development     Engineering development  

   Needs analysis  

   Concept 

exploration     Concept defi nition  

   Advanced 

development     Engineering design  

   Integration 

and evaluation  

  Documents    System capabilities 

and effectiveness  

  System 

performance 

requirements  

  System functional 

requirements  

  System design 

specifi cations  

  Design documents    Test plans and 

evaluation 

reports  

  System 

models  

  Operational 

diagrams, mission 

simulations  

  System diagrams, 

high - level system 

simulations  

  Architecture 

products and 

views, simulations, 

mock - ups  

  Architecture 

products and 

views, detailed 

simulations, 

breadboards  

  Architecture drawings 

and schematics, 

engineered components, 

computer - aided design 

(CAD) products  

  Test setups, 

simulators, 

facilities, and 

test articles  

8
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among them, are fundamentally similar from one phase to the next. This fact, and its 

importance in understanding the system development process, has been generally rec-

ognized; the set of activities that tends to repeat from one phase to the next has been 

referred to in various publications on systems engineering as the  “ systems engineering 

process, ”  or the  “ systems engineering approach, ”  and is the subject of the sections 

below. In this book, this iterative set of activities will be referred to as the  “ systems 

engineering method. ”  

 The reason for selecting the word  “ method ”  in place of the more widely used 

 “ process ”  or  “ approach ”  is that it is more defi nitive and less ambiguous. The word 

method is more specifi c than process, having the connotation of an orderly and logical 

process. Furthermore, the term systems engineering process is sometimes used to apply 

to the total system development. Method is also more appropriate than approach, which 

connotes an attitude rather than a process. With all this said, the use of a more common 

terminology is perfectly acceptable. 

  Survey of Existing Systems Engineering Methods and Processes 

 The fi rst organization to codify a formal systems engineering process was the U.S. DoD, 

captured in the military standard, MIL - STD - 498. Although the process evolved through 

several iterations, the last formal standard to exist (before being discontinued) was 

MIL - STD - 499B. This process is depicted in Figure  4.7  and contains four major activi-

ties: requirements analysis, functional analysis and allocation, synthesis, and systems 

analysis and control. The component tasks are presented within each activity.   

 While this military standard is no longer in force, it is still used as a guide by many 

organizations and is the foundation for understanding the basics of today ’ s systems 

engineering processes. 

 Three relevant commercial standards describe a systems engineering process: 

IEEE - 1220, the EIA - STD - 632, and the ISO - IEC - IEEE - STD - 15288. As these three 

processes are presented, notice that each commercial standard blends aspects of a 

systems engineering process with the life cycle model describe above. The order that 

we present these three methods is important — they are presented in order of the level 

of convergence with the life cycle model of system development. And in fact, the mili-

tary standard discussed above could be placed fi rst in the sequence. In other words, 

MIL - STD - 499B is the most divergent from the life cycle model. In contrast, ISO - 15288 

could easily be thought of as a life cycle model for system development. 

 Figure  4.8  presents the IEEE - 1220 process. The main control activity is located in 

the middle of the graph. The general fl ow of activities is then clockwise, starting from 

the bottom left, beginning with  “ process inputs ”  and ending with  “ process outputs. ”  

This process could also be thought of as an expansion of the military standard — the 

four basic activities are present, with a verifi cation or validation step in between.   

 Figure  4.9  presents the EIA - 632 process. Actually, the EIA - 632 standard presents 

a collection of 13 processes that are linked together. One can easily recognize the itera-

tive and circular nature of these linkages. Although the general fl ow is top – down, the 

processes are repeated multiple times throughout the system life cycle.   
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     Figure 4.7.     DoD MIL - STD499B.  
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     Figure 4.9.     EIA - 632 systems engineering process.  
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 The 13 processes are further categorized into fi ve sets: technical management, 

acquisition and supply, system design, product realization, and technical evaluation. 

The fi rst and last process sets occur almost continuously throughout the system devel-

opment life cycle. Planning, assessment, and control do not stop after the initial devel-

opment phases, and systems analysis, requirements validation, system verifi cation, and 

end - product validation commence well before a physical product is available. The three 

middle sets occur linearly, but with feedback and iterations. 

 Figure  4.10  presents the ISO - 15288 process. This standard presents processes for 

both the system life cycle and systems engineering activities. In addition, the philoso-

phy behind this standard is based on the systems engineer ’ s and the program manager ’ s 

ability to tailor the processes presented into a sequence of activities that is applicable 

to the program. Thus, no specifi c method is presented that sequences a subset of 

processes.    

  Our Systems Engineering Method 

 The  systems engineering method  can be thought of as the systematic application of the 

scientifi c method to the engineering of a complex system. It can be considered as con-

sisting of four basic activities applied successively, as illustrated in Figure  4.11 : 

  1.     requirements analysis,  

  2.     functional defi nition,  

  3.     physical defi nition, and  

  4.     design validation.      
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     Figure 4.10.     ISO - 15288 Systems engineering process.  
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 These steps will vary in their specifi cs depending on the type of system and the phase 

of its development. However, there is enough similarity in their operating principles 

that it is useful to describe the typical activities of each step in the method. Such brief 

descriptions of the activities in the four steps are listed below. 

  Requirements Analysis (Problem Defi nition).     Typical activities include  

   •      assembling and organizing all input conditions, including requirements, plans, 

milestones, and models from the previous phase;  

   •      identifying the  “ whys ”  of all requirements in terms of operational needs, 

constraints, environment, or other higher - level objectives;  

   •      clarifying the requirements of what the system must do, how well it must do 

it, and what constraints it must fi t; and  

   •      correcting inadequacies and quantifying the requirements wherever 

possible.     

   Functional Defi nition (Functional Analysis and Allocation).     Typical activities 

include  

   •      translating requirements (why) into functions (actions and tasks) that the 

system must accomplish (what),  

   •      partitioning (allocating) requirements into functional building blocks, and  

   •      defi ning interactions among functional elements to lay a basis for their orga-

nization into a modular confi guration.     

   Physical Defi nition (Synthesis, Physical Analysis, and Allocation).     Typical activi-

ties include  

   •      synthesizing a number of alternative system components representing a 

variety of design approaches to implementing the required functions, and 

having the most simple practicable interactions and interfaces among struc-

tural subdivisions;  

   •      selecting a preferred approach by trading off a set of predefi ned and prioritized 

criteria (measures of effectiveness [MOE]) to obtain the best  “ balance ”  among 

performance, risk, cost, and schedule; and  

   •      elaborating the design to the necessary level of detail.     

   Design Validation (Verifi cation and Evaluation).     Typical activities include  

   •      designing models of the system environment (logical, mathematical, simu-

lated, and physical) refl ecting all signifi cant aspects of the requirements and 

constraints;  

   •      simulating or testing and analyzing system solution(s) against environmental 

models; and  

   •      iterating as necessary to revise the system model or environmental models, 

or to revise system requirements if too stringent for a viable solution until the 

design and requirements are fully compatible.      

 The elements of the systems engineering method as described above are displayed 

in the form of a fl ow diagram in Figure  4.12 , which is an expanded view of Figure 
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 4.11 . The rectangular blocks are seen to represent the above four basic steps in the 

method: requirements analysis, functional defi nition, physical defi nition, and design 

validation. At the top are shown inputs from the previous phase, which include require-

ments, constraints, and objectives. At the left of each block are shown external inputs, 

such as the predecessor system, system building blocks, and previous analyses. At the 

upper right of the top blocks and at the very bottom are inputs from systems engineer-

ing methodology.   

     Figure 4.12.     Systems engineering method fl ow diagram.  
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 The circles inside each block are simplifi ed representations of key processes in that 

step of the method. The interfacing arrows represent information fl ow. It is seen that 

there are feedbacks throughout the process, iteration within the elements as well as to 

prior elements, and indeed all the way back to the requirements. 

 Each of the elements of the method is described more fully in the remainder of 

this section.  

  Requirements Analysis (Problem Defi nition) 

 In attempting to solve any problem, it is fi rst necessary to understand exactly what is 

given, and to the extent that it appears to be incomplete, inconsistent, or unrealistic, to 

make appropriate amplifi cations or corrections. This is particularly essential in the 

system development process, where a basic characteristic of systems engineering is that 

everything is not necessarily what it seems and that important assumptions must be 

verifi ed before they are accepted as being valid. 

 Thus, in a system development project, it is the responsibility of systems engineer-

ing to thoroughly analyze all requirements and specifi cations, fi rst in order to under-

stand them vis -  à  - vis the basic needs that the system is intended to satisfy, and then to 

identify and correct any ambiguities or inconsistencies in the defi nition of capabilities 

for the system or system element being addressed. 

 The specifi c activities of requirements analysis vary as the system development 

progresses, as the inputs from the previous phase evolve from operational needs and 

technological opportunities (see Fig.  4.3 ) to increasingly specifi c representations of 

requirements and system design. The role of systems engineering is essential through-

out, but perhaps more so in the early phases, where an understanding of the operational 

environment and the availability and maturity of applicable technology are most criti-

cal. In later phases, environmental, interface, and other interelement requirements are 

the special province of systems engineering. 

  Organization and Interpretation.     In a well - structured acquisition process, a 

new phase of the system life cycle begins with three main inputs, which are defi ned 

during or upon completion of the previous phase: 

  1.     the system model, which identifi es and describes all design choices made and 

validated in the preceding phases;  

  2.     requirements (or specifi cations) that defi ne the design, performance, and inter-

face compatibility features of the system or system elements to be developed 

during the next phase; these requirements are derived from previously devel-

oped higher - level requirements, including any refi nements and/or revisions 

introduced during the latest phase; and  

  3.     specifi c progress to be achieved by each component of the engineering organiza-

tion during the next phase, including the identifi cation of all technical design 

data, hardware/software products, and associated test data to be provided; this 

information is usually presented in the form of a series of interdependent task 

statements.     
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  Clarifi cation, Correction, and Quantifi cation.     It is always diffi cult to express 

objectives in unambiguous and quantitative terms, so it is therefore common that stated 

requirements are often incomplete, inconsistent, and vague. This is especially true if 

the requirements are prepared by those who are unfamiliar with the process of convert-

ing them to system capabilities, or with the origins of the requirements in terms of 

operational needs. In practice, the completeness and accuracy of these inputs can be 

expected to vary with the nature of the system, its degree of departure from predecessor 

systems, the type of acquisition process employed, and the phase itself. 

 The above analysis must include interaction with the prospective users of the 

system to gain a fi rst - hand understanding of their needs and constraints and to obtain 

their inputs where appropriate. The result of the analysis may be modifi cations and 

amplifi cations of the requirements documents so as to better represent the objectives 

of the program or the availability of proposed technological improvements. The end 

objective is to create a fi rm basis from which the nature and location of the design 

changes needed to meet the requirements may be defi ned.   

  Functional Defi nition (Functional Analysis and Allocation) 

 In the systems engineering method, functional design precedes physical or product 

design to ensure a disciplined approach to an effective organization (confi guration) of 

the functions and to the selection of the implementation that best balances the desired 

characteristics of the system (e.g., performance and cost). 

  Translation into Functions.     The system elements that may serve as functional 

building blocks are briefl y discussed in Chapter  3 . The basic building blocks are at the 

component level representing elements that perform a single signifi cant function and 

deal with a single medium, that is, either signals, data, material, or energy. They, in 

turn, consist of subelements performing lower - level functions and aggregate into func-

tional subsystems. Thus, functional design can be thought of as selecting, subdividing, 

or aggregating functional elements appropriate to the required tasks and level of system 

materialization (see Table  4.1 ). 

 Decomposition and allocation of each iterative set of requirements and functions 

for implementation at the next lower level of system defi nition is a prime responsibility 

of systems engineering. This fi rst takes place during the concept development stage as 

follow - on to the defi nition of the system architecture. It includes identifi cation and 

description of all functions to be provided, along with the associated quantitative 

requirements to be met by each subsystem, in order that the prescribed system - level 

capabilities can in fact be achieved  . This information is then refl ected in  system func-

tional specifi cations , which serve as the basis for the follow - on engineering develop-

ment stage. 

 As part of the advanced development phase, these top - level subsystem functions 

and requirements are further allocated to individual system components within each 

subsystem. This, as noted earlier, is the lowest level in the design hierarchy that is of 

direct concern to systems engineering, except in special cases where lower - level ele-

ments turn out to be critical to the operation of the system.  
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  Trade - Off Analysis.     The selection of appropriate functional elements, as all 

aspects of design, is an inductive process, in which a set of postulated alternatives is 

examined, and the one judged to be best for the intended purpose is selected. The 

systems engineering method relies on making design decisions by the use of trade - off 

analysis. Trade - off analysis is widely used in all types of decision making, but in 

systems engineering, it is applied in a particularly disciplined form, especially in the 

step of physical defi nition. As the name implies, trade - offs involve the comparison of 

alternatives, which are superior in one or more required characteristics, with those that 

are superior in others. To ensure that an especially desirable approach is not overlooked, 

it is necessary to explore a suffi cient number of alternative implementations, all defi ned 

to a level adequate to enable their characteristics to be evaluated relative to one another. 

It is also necessary that the evaluation be made relative to a carefully formulated 

set of criteria or  “ MOE. ”  Chapters  8  and  9  contain more detailed discussions of trade -

 off analysis.  

  Functional Interactions.     One of the single most important steps in system 

design is the defi nition of the functional and physical interconnection and interfacing 

of its building blocks. A necessary ingredient in this activity is the early identifi cation 

of all signifi cant functional interactions and the ways in which the functional elements 

may be aggregated so as to group strongly interacting elements together and to make 

the interactions among the groups as simple as possible. Such organizations (architec-

tures) are referred to as  “ modular ”  and are the key to system designs that are readily 

maintainable and capable of being upgraded to extend their useful life. Another essen-

tial ingredient is the identifi cation of all external interactions and the interfaces through 

which they affect the system.   

  Physical Defi nition (Synthesis or Physical Analysis and 
Allocation) 

 Physical defi nition is the translation of the functional design into hardware and software 

components, and the integration of these components into the total system. In the 

concept development stage, where all design is still at the functional level, it is never-

theless necessary to visualize or imagine what the physical embodiment of the concept 

would be like in order to help ensure that the solution will be practically realizable. 

The process of selecting the embodiment to be visualized is also governed by the 

general principles discussed below, applied more qualitatively than in the engineering 

development stage. 

  Synthesis of Alternative System Elements.     The implementation of func-

tional design elements requires decisions regarding the specifi c physical form that the 

implementation should take. Such decisions include choice of implementation media, 

element form, arrangement, and interface design. In many instances, they also offer a 

choice of approaches, ranging from exploiting the latest technology to relying on 

proven techniques. As in the case of functional design, such decisions are made by 

the use of trade - off analysis. There usually being more choices of different physical 
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implementations than functional confi gurations, it is even more important that good 

systems engineering practice be used in the physical defi nition process.  

  Selection of Preferred Approach.     At various milestones in the system life 

cycle, the selection of a preferred approach, or approaches, will need to be made. It is 

important to understand that this selection process changes depending on the phase 

within the life cycle. Early phases may require selecting a several approaches to 

explore, while later phases may require a down - select to a single approach. Additionally, 

the level of decisions evolves. Early decisions relate to the system as a whole; later 

decisions focus on subsystems and components. 

 As stated previously, to make a meaningful choice among design alternatives, it is 

necessary to defi ne a set of evaluation criteria and to establish their relative priority. 

Among the most important variables to be considered in the physical defi nition step is 

the relative affordability or cost of the alternatives and their relative risk of successful 

accomplishment. In particular, early focus on one particular implementation concept 

should be avoided. 

 Risk as a component of trade - off analysis is basically an estimate of the probability 

that a given design approach will fail to produce a successful result whether because 

of defi cient performance, low reliability, excessive cost, or unacceptable schedule. If 

the component risk appears substantial, the risk to the overall project must be reduced 

(risk abatement) by either initiating an intensive component development effort, by 

providing a backup using a proven but somewhat less capable component, by modifying 

the overall technical approach to eliminate the need for the particular component that 

is in doubt, or, if these fail, by relaxing the related system performance specifi cation. 

Identifying signifi cantly high - risk system elements and determining how to deal with 

them are an essential systems engineering responsibility. Chapter  5  discusses the risk 

management process and its constituent parts. 

 Proper use of the systems engineering method thus ensures that 

  1.     all viable alternatives are considered;  

  2.     a set of evaluation criteria is established; and  

  3.     the criteria are prioritized and quantifi ed where practicable.    

 Whether or not it is possible to make quantitative comparisons, the fi nal decision 

should be tempered by judgment based on experience.  

  Interface Defi nition.     Implicit in the physical defi nition step is the defi nition and 

control of  interfaces , both internal and external. Each element added or elaborated in 

the design process must be properly connected to its neighboring elements and to any 

external inputs or outputs. Further, as the next lower design level is defi ned, adjustments 

to the parent elements will inevitably be required, which must in turn be refl ected in 

adjustments to their previously defi ned interfaces. All such defi nitions and readjust-

ments must be incorporated into the model design and interface specifi cations to form 

a sound basis for the next level of design.   
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  Design Validation (Verifi cation and Evaluation) 

 In the development of a complex system, even though the preceding steps of the 

design defi nition may have been carried out apparently in full compliance with require-

ments, there still needs to be an explicit validation of the design before the next 

phase is undertaken. Experience has shown that there are just too many opportunities 

for undetected errors to creep in. The form of such validation varies with the phase 

and degree of system materialization, but the general approach is similar from phase 

to phase. 

  Modeling the System Environment.     To validate a model of the system, it is 

necessary to create a model of the environment with which the system can interact to 

see if it produces the required performance. This task of modeling the system environ-

ment extends throughout the system development cycle. In the concept development 

stage, the model is largely functional, although some parts of it may be physical, as 

when an experimental version of a critical system component is tested over a range of 

ambient conditions. 

 In later stages of development, various aspects of the environment may be repro-

duced in the laboratory or in a test facility, such as an aerodynamic wind tunnel or 

inertial test platform. In cases where the model is dynamic, it is more properly called 

a simulation, in which the system design is subjected to a time - varying input to stimu-

late its dynamic response modes. 

 As the development progresses into the engineering development stage, modeling 

the environment becomes increasingly realistic, and environmental conditions are 

embodied in system and component test equipment, such as environmental chambers, 

or shock and vibration facilities. During operational evaluation testing, the environment 

is, insofar as is practicable, made identical to that in which the system will eventually 

operate. Here, the model has transitioned into greater reality. 

 Some environments that are of great signifi cance to system performance and reli-

ability can only be imperfectly understood and are very diffi cult to simulate, for 

example, the deep ocean and exoatmospheric space. In such cases, defi ning and simu-

lating the environment may become a major effort in itself. Even environments that 

were thought to be relatively well understood can yield surprises, for example, unusual 

radar signal refraction over the Arabian Desert. 

 At each step, the system development process requires a successively more detailed 

defi nition of the requirements that the system must meet. It is against these environ-

mental requirements that the successive models of the system are evaluated and refi ned. 

A lesson to be learned is that the effort required to model the environment of a system 

for the purpose of system T & E needs to be considered at the same level of priority as 

the design of the system itself and may even require a separate design effort comparable 

to the associated system design activity.  

  Tests and Test Data Analysis.     The defi nitive steps in the validation of the 

system design are the conduct of tests in which the system model (or a signifi cant 

portion of it) is made to interact with a model of its environment in such a way that 
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the effects can be measured and analyzed in terms of the system requirements. The 

scope of such tests evolves with the degree of materialization of the system, beginning 

with paper calculations and ending with operational tests in the fi nal stages. In each 

case, the objective is to determine whether or not the results conform to those prescribed 

by the requirements, and if not, what changes are required to rectify the situation. 

 In carrying out the above process, it is most important to observe the following 

key principles: 

  1.     All critical system characteristics need to be stressed beyond their specifi ed 

limits to uncover incipient weak spots.  

  2.     All key elements need to be instrumented to permit location of the exact sources 

of deviations in behavior. The instruments must signifi cantly exceed the test 

articles in precision and reliability.  

  3.     A test plan and an associated test data analysis plan must be prepared to assure 

that the requisite data are properly collected and are then analyzed as necessary 

to assure a realistic assessment of system compliance.  

  4.     All limitations in the tests due to unavoidable artifi cialities need to be explicitly 

recognized and their effect on the results compensated or corrected for, as far 

as possible.  

  5.     A formal test report must be prepared to document the degree of compliance 

by the system and the source of any defi ciencies.    

 The test plan should detail each step in the test procedure and identify exactly  what 

information  will be recorded prior to, during, and at the conclusion of each test step, 

as well as  how  and  by whom  it will be recorded. The test data analysis plan should then 

defi ne how the data would be reduced, analyzed, and reported along with specifi c cri-

teria that will be employed to demonstrate system compliance. 

 To the extent that the validation tests reveal deviations from required performance, 

the following alternatives need to be considered: 

  1.     Can the deviation be due to a defi ciency in the environmental simulation (i.e., 

test equipment)? This can happen because of the diffi culty of constructing a 

realistic model of the environment.  

  2.     Is the deviation due to a defi ciency in the design? If so, can it be remedied 

without extensive modifi cations to other system elements?  

  3.     Is the requirement at issue overly stringent? If so, a request for a deviation may 

be considered. This would constitute a type of feedback that is characteristic of 

the system development process.      

  Preparation for the Next Phase 

 Each phase in the system development process produces a further level of requirements 

or specifi cations to serve as a basis for the next phase. This adds to, rather than replaces, 

previous levels of requirements and serves two purposes: 
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  1.     It documents the design decisions made in the course of the current phase.  

  2.     It establishes the goals for the succeeding phase.    

 Concurrent with the requirements analysis and allocation activity, systems engineering, 

acting in concert with project management, is also responsible for the defi nition of 

specifi c technical objectives to be met, and for the products (e.g., hardware/software 

components, technical documentation, and supporting test data) that will be provided 

in response to the stated requirements for inputs to the next phase. These identifi ed end 

products of each phase are also often accompanied by a set of intermediate technical 

milestones that can be used to judge technical progress during each particular design 

activity. 

 The task of defi ning these requirements or specifi cations and the efforts to be 

undertaken in implementing the related design activities is an essential part of system 

development. Together, these constitute the offi cial guide for the execution of each 

phase of the development. 

 It must be noted, however, that in practice, the realism and effectiveness of this 

effort, which is so critical to the ultimate success of the project, depends in large part 

on good communication and cooperation between systems engineering and project 

management on the one hand, and on the other, the design specialists who are ultimately 

the best judges of what can and cannot be reasonably accomplished given the stated 

requirements, available resources, and allotted time scale. 

 Since the nature of the preparation for the next phase varies widely from phase to 

phase, it is not usually accorded the status of a separate step in the systems engineering 

method; most often, it is combined with the validation process. However, this does not 

diminish its importance because the thoroughness with which it is done directly affects 

the requirements analysis process at the initiation of the next phase. In any event, the 

defi nition of the requirements and tasks to be performed in the next phase serves an 

important interface function between phases.  

  Systems Engineering Method over the System Life Cycle 

 To illustrate how the systems engineering method is applied in successive phases of 

the system life cycle, Table  4.3  lists the primary focus of each of the four steps of the 

method for each of the phases of the system life cycle. As indicated earlier in Table 

 4.1 , it is seen that as the phases progress, the focus shifts to more specifi c and detailed 

(lower - level) elements of the system until the integration and evaluation phase.   

 The table also highlights the difference in character of the physical defi nition and 

design validation steps in going from the concept development to the engineering 

development stage. In the concept development stage (left three columns), the defi ned 

concepts are still in functional form (except where elements of the previous or other 

systems are applied without basic change). Accordingly, physical implementation has 

not yet begun, and design validation is performed by analysis and simulation of the 

functional elements. In the engineering stage, implementation into hardware and soft-

ware proceeds to lower and lower levels, and design validation includes tests of experi-

mental, prototype, and fi nally production system elements and the system itself. 



  TABLE 4.3.    Systems Engineering Method over Life Cycle 

   Step  

   Phase  

   Concept development     Engineering development  

   Needs analysis  

   Concept 

exploration     Concept defi nition  

   Advanced 

development  

   Engineering 

design  

   Integration and 

evaluation  

  Requirements 

analysis  

  Analyze needs    Analyze 

operational 

requirements  

  Analyze 

performance 

requirements  

  Analyze functional 

requirements  

  Analyze design 

requirements  

  Analyze tests 

and evaluation 

requirements  

  Functional 

defi nition  

  Defi ne system 

objectives  

  Defi ne 

subsystem 

functions  

  Develop functional 

architecture 

component 

functions  

  Refi ne functional 

architecture 

subcomponent 

functions140  

  Defi ne part 

functions  

  Defi ne 

functional 

tests  

  Physical 

defi nition  

  Defi ne system 

capabilities; 

visualize subsystems, 

ID technology  

  Defi ne system 

concepts, 

visualize 

components  

  Develop physical 

architecture 

components  

  Refi ne physical 

architecture; 

specify component 

construction  

  Specify 

subcomponent 

construction  

  Defi ne physical 

tests; specify 

test equipment 

and facilities  

  Design 

validation  

  Validate needs and 

feasibility  

  Validate 

operational 

requirements  

  Evaluate system 

capabilities  

  Test and evaluate 

critical subsystems  

  Validate 

component 

construction  

  Test and 

evaluate 

system  

1
0
2
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 In interpreting both Tables  4.3  and  4.1 , it should be borne in mind that in a given 

phase of system development, some parts of the system might be prototyped to a more 

advanced phase to validate critical features of the design. This is particularly true in 

the advanced development phase, where new potentially risky approaches are proto-

typed and tested under realistic conditions. Normally, new software elements are also 

prototyped in this phase to validate their basic design. 

 While these tables present a somewhat idealized picture, the overall pattern of 

the iterative application of the systems engineering method to successively lower 

levels of the system is an instructive and valid general view of the process of system 

development.  

  Spiral Life Cycle Model 

 The iterative nature of the system development process, with the successive applica-

tions of the systems engineering method to a stepwise materialization of the system 

has been captured in the so - called spiral model of the system life cycle. A version of 

this model as applied to life cycle phases is shown in Figure  4.13 . The sectors repre-

senting the four steps in the systems engineering method defi ned in the above section 

are shown separated by heavy radial lines. This model emphasizes that each phase of 

the development of a complex system necessarily involves an iterative application of 

the systems engineering method and the continuing review and updating of the work 

performed and conclusions reached in the prior phases of the effort.     

   4.5    TESTING THROUGHOUT SYSTEM DEVELOPMENT 

 Testing and evaluation are not separate functions from design but rather are inherent 

parts of design. In basic types of design, for example, as of a picture, the function of 

T & E is performed by the artist as part of the process of transferring a design concept 

to canvas. To the extent that the painting does not conform to the artist ’ s intent, he or 

she alters the picture by adding a few brushstrokes, which tailor the visual effect (per-

formance) to match the original objective. Thus, design is a closed - loop process in 

which T & E constitutes the feedback that adjusts the result to the requirements that it 

is intended to meet. 

  Unknowns 

 In any new system development project, there are a great many unknowns that need to 

be resolved in the course of producing a successful product. For each signifi cant depar-

ture from established practice, the result cannot be predicted with assurance. The project 

cost depends on a host of factors, none of them known precisely. The resolution of 

interface incompatibilities often involves design adjustment on both sides of the 

interface, which frequently leads to unexpected and sometimes major technical 

diffi culties. 
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     Figure 4.13.     Spiral model of the system life cycle.  
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 An essential task of systems engineering is to guide the development of the system 

so that the unknowns are turned into knowns as early in the process as possible. Any 

surprises occurring late in the program can prove to be many times more costly than 

those encountered in its early phases. 

 Many unknowns are evident at the beginning, and may be called  “ known 

unknowns. ”  These are identifi ed early as potential problem areas and are therefore 

singled out for examination and resolution. Usually, this can be accomplished through 

a series of critical experiments involving simulations and/or experimental hardware and 

software. However, many other problem areas are only identifi ed later when they are 

discovered during system development. These unanticipated problems are often identi-

fi ed as unknown unknowns or  “ unk - unks ”  to distinguish them from the group of known 

unknowns that were recognized at the outset and dealt with before they could seriously 

impact the overall development process.  
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  Transforming the Unknown into the Known 

 The existence of unk - unks makes the task of attempting to remove all the unknowns 

far more diffi cult. It forces an active search for hidden traps in the favored places of 

technical problems. It is the task of the systems engineer to lead this search based on 

experience gathered during previous system developments and supported by a high 

degree of technical insight and a  “ What if  … ? ”  attitude. 

 Since every unknown poses an uncertainty in the accomplishment of the fi nal 

objective, it represents a potential risk. In fact, unknowns present the principal risks in 

any development program. Hence, the task of risk assessment and integration is one 

and the same as that of identifying unknowns and resolving them. 

 The tools for resolving unknowns are analysis, simulation, and test, these being 

the means for discovering and quantifying critical system characteristics. This effort 

begins during the earliest conceptual stages and continues throughout the entire devel-

opment, only changing in substance and character and not in objective and approach. 

 In designing a new system or a new element of a system that requires an approach 

never attempted before under the same circumstances (as, e.g., the use of new materials 

for making a highly stressed design element), the designer faces a number of unknowns 

regarding the exact manner in which the new design when implemented will perform 

(e.g., the element made of a new material may not be capable of being formed into the 

required shape by conventional tools). In such cases, the process of testing serves to 

reveal whether or not the unknown factors create unanticipated diffi culties requiring 

signifi cant design changes or even abandonment of the approach. 

 When a new design approach is undertaken, it is unwise to wait until the design 

is fully implemented before determining whether or not the approach is sound. Instead, 

testing should fi rst be done on a theoretical or experimental model of the design 

element, which can be created quickly and at a minimum cost. In doing so, a judgment 

must be made as to the balance between the potential benefi t of a greater degree of 

realism of the model and the time and cost of achieving it. This is very often a system -

 level rather than a component - level decision, especially if the performance of the 

element can have a system impact. If the unknowns are largely in the functional behav-

ior of the element, then a computational model or a simulation is indicated. If, on the 

other hand, the unknowns are concerned with the material aspects, an experimental 

model is required.  

  Systems Engineering Approach to Testing 

 The systems engineering approach to testing can be illustrated by comparing the respec-

tive views of testing by the design engineer, the test engineer, and the systems engineer. 

The design engineer wants to be sure that a component passes the test, wanting to know, 

 “ Is it OK? ”  The test engineer wants to know that the test is thorough so as to be sure 

the component is stressed enough. The systems engineer wants to be sure to fi nd and 

identify all defi ciencies present in the component. If the component fails a test, the 

systems engineer wants to know why, so that there will be a basis for devising changes 

that will eliminate the defi ciency. 
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 It is evident from the above that the emphasis of systems engineering is not only 

on the test conditions but also on the acquisition of data showing exactly how the 

various parts of the system did or did not perform. Furthermore, the acquisition of data 

itself is not enough; it is necessary to have in hand procedures for analyzing the data. 

These are often complicated and require sophisticated analytical techniques, which 

must be planned in advance. 

 It also follows that a systems engineer must be an active participant in the formula-

tion of the test procedures and choice of instrumentation. In fact, the prime initiative 

for developing the test plan should lie with systems engineering, working in close 

cooperation with test engineering. To the systems engineer, a test is like an experiment 

is to a scientist, namely, a means of acquiring critical data on the behavior of the system 

under controlled circumstances.  

  System  T  &  E  

 The most intensive use of testing in the system life cycle takes place in the last 

phase of system development, integration and evaluation, which is the subject of 

Chapter  13 . Chapter  10  also contains a section on T & E during the advanced develop-

ment phase.   

   4.6    SUMMARY 

  Systems Engineering through the System Life Cycle 

 A major system development program is an extended complex effort to satisfy an 

important user need. It involves multiple disciplines and applies new technology, 

requires progressively increasing commitment of resources, and is conducted in a step-

wise manner to a specifi ed schedule and budget.  

  System Life Cycle 

 The system life cycle may be divided into three major stages. 

  Concept Development.     Systems engineering establishes the system need, 

explores feasible concepts, and selects a preferred system concept. The concept devel-

opment stage may be further subdivided into three phases: 

  1.     Needs Analysis:     defi nes and validates the need for a new system, demonstrates 

its feasibility, and defi nes system operational requirements;  

  2.     Concept Exploration:     explores feasible concepts and defi nes functional perfor-

mance requirements; and  

  3.     Concept Defi nition:     examines alternative concepts, selects the preferred concept 

on the basis of performance, cost, schedule, and risk, and defi nes system func-

tional specifi cations (A - Spec).     
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  Engineering Development.     Systems engineering validates new technology, 

transforms the selected concept into hardware and software designs, and builds and 

tests production models. The engineering development stage may be further subdivided 

into three phases: 

  1.     Advanced Development:     identifi es areas of risk, reduces these risks through 

analysis, development, and test, and defi nes system development specifi cations 

(B - Spec);  

  2.     Engineering Design:     performs preliminary and fi nal design and builds and tests 

hardware and software components, for example, confi guration items (CIs); and  

  3.     Integration and Evaluation:     integrates components into a production proto-

type, evaluates the prototype system, and rectifi es deviations.     

  Postdevelopment.     Systems engineering produces and deploys the system and 

supports system operation and maintenance. The postdevelopment stage is further 

subdivided into two phases: 

  1.     Production:     develops tooling and manufactures system products, provides the 

system to the users, and facilitates initial operations; and  

  2.     Operations and Support:     supports system operation and maintenance, and 

develops and supports in - service updates.      

  Evolutionary Characteristics of the Development Process 

 Most new systems evolve from predecessor systems — their functional architecture and 

even some components may be reusable. 

 A new system progressively  “ materializes ”  during its development. System descrip-

tions and designs evolve from concepts to reality. Documents, diagrams, models, and 

products all change correspondingly. Moreover, key participants in system development 

change during development; however, systems engineering plays a key role throughout 

all phases.  

  The Systems Engineering Method 

 The systems engineering method involves four basic steps: 

  1.     Requirements Analysis   — identifi es why requirements are needed,  

  2.     Functional Defi nition   — translates requirements into functions,  

  3.     Physical Defi nition   — synthesizes alternative physical implementations, and  

  4.     Design Validation   — models the system environment.    

 These four steps are applied repetitively in each phase during development. Application 

of the systems engineering method evolves over the life cycle — as the system progres-

sively materializes, the focus shifts from system level during needs analysis down to 

component and part levels during engineering design.  
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  Testing throughout System Development 

 Testing is a process to identify unknown design defects in that it verifi es resolution of 

known unknowns and uncovers unknown unknowns (unk - unks) and their causes. Late 

resolution of unknowns may be extremely costly; therefore, test planning and analysis 

is a prime systems engineering responsibility.   

  PROBLEMS 

    4.1     Identify a recent development (since 2000) of a complex system (commercial 

or military) of which you have some knowledge. Describe the need it was 

developed to fi ll and the principal ways in which it is superior to its 

predecessor(s). Briefl y describe the new conceptual approach and/or techno-

logical advances that were employed.  

  4.2     Advances in technology often lead to the development of a new or improved 

system by exploiting an advantage not possessed by its predecessor. Name 

three different types of advantages that an advanced technology may offer and 

cite an example of each.  

  4.3     If there is a feasible and attractive concept for satisfying the requirements for 

a new system, state why it is important to consider other alternatives before 

deciding which to select for development. Describe some of the possible con-

sequences of failing to do so.  

  4.4     The space shuttle was an example of an extremely complicated system using 

leading edge technology. Give three examples of shuttle components that you 

think represented unproven technology at the time of its development, and 

which much have required extensive prototyping and testing to reduce opera-

tional risks to an acceptable level.  

  4.5     What steps can the systems engineer take to help ensure that system compo-

nents designed by different technical groups or contractors will fi t together and 

interact effectively when assembled to make up the total system? Discuss in 

terms of mechanical, electrical, and software system elements.  

  4.6     For six of the systems listed in Tables  1.1  and  1.2 , list their  “ predecessor 

systems. ”  For each, indicate the main characteristics in which the current 

systems are superior to their predecessors.  

  4.7     Table  4.2  illustrates the evolution of system models during the system develop-

ment process. Describe how the evolution of requirements documents illus-

trates the materialization process described in Table  4.1 .  

  4.8     Look up a defi nition of the  “ scientifi c method ”  and relate its steps to those 

postulated for the systems engineering method. Draw a functional fl ow diagram 

of the scientifi c method parallel to that of Figure  4.11 .  

  4.9     Select one of the household appliances listed below:  

   •      automatic dishwasher  

   •      washing machine  
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   •      television set  

  (a)     State the  functions  that it performs during its operating cycle. Indicate 

the primary medium (signals, data, material, or energy) involved in each 

step and the basic function that is performed on this medium.  

  (b)     For the selected appliance, describe the physical elements involved in 

the implementation of each of the above functions.         
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    5.1    MANAGING SYSTEM DEVELOPMENT AND RISKS 

 As noted in the fi rst chapter, systems engineering is an integral part of the management 

of a system development project. The part that systems engineering plays in the project 

management function is pictured in the Venn diagram of Figure  5.1 . The ovals in the 

diagram represent the domain of  project management  and those of its principal con-

stituents:  systems engineering  and  project planning and control . It is seen that both 

constituents are wholly contained within the project management domain, with techni-

cal guidance being the province of systems engineering, while program, fi nancial, and 

contract guidance are the province of project planning and control. The allocation of 

resources and the defi nition of tasks are necessarily shared functions.   

 To better understand the many different functions of systems engineering, this 

chapter describes some of the main features of the project management framework, 

such as the work breakdown structure (WBS), project organization, and the systems 

engineering management plan (SEMP). It also discusses the subject of risk manage-

ment, the organization of systems engineering effort, and the capability maturity model 

integrated as it applies to systems engineering. 

  5 

SYSTEMS ENGINEERING 

MANAGEMENT     

Systems Engineering Principles and Practice, Second Edition. Alexander Kossiakoff, William N. Sweet, 
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 The engineering of a complex system requires the performance of a multitude of 

interrelated tasks by dozens or hundreds of people and a number of contractors or other 

organizational entities. These tasks include not only the entire development process but 

also usually everything needed to support system operation, such as maintenance, 

documentation, training, and so on, which must be provided for. Test equipment, facili-

ties, and transportation have to be developed and acquired. The tasks involved in project 

management and systems engineering, including planning, scheduling, costing, and 

confi guration control, need to be explicitly dealt with. 

 The sections in this chapter are intended to apply to the management of all systems 

engineering activities for all types of complex systems. However, in the management 

of software - intensive systems, in which essentially all of the functionality is performed 

by software, there are a number of special characteristics that need to be considered. 

These are noted in Chapter  11 , in particular, in the section Software Engineering 

Management. 

  Proposal Development and Statement of Work (SOW) 

 System development often starts with someone who has a need, a customer, who 

requests support often in the form of a request for proposal (RFP) when in a competi-

tive environment. Following a corporate decision to respond to the RFP, a program 

manager or a professional proposal team is assigned to generate the proposal. While a 

systems engineer may not be offi cially assigned to the team, it is essential that the 

     Figure 5.1.     Systems engineering as a part of project management.  
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technical concepts and implied design and interfaces are feasible. Hence, even in the 

early phases of a project, the integration of systems engineering with project manage-

ment is evident. 

 A critical element of the proposal is the SOW. This is a narrative description of 

the work that is needed to develop the system to meet the customer needs. The systems 

engineer concerns will focus on the product to be developed; ensuring the scope of 

work in the SOW includes all the products and services needed to complete the effort. 

Specifi cally, the systems engineer focuses on being responsive to the customer needs, 

ensures the SOW is based on a credible concept of operations, reviews the implied 

design for the use of legacy components and their availability, and examines to see if 

the proposed system integrates commercial off - the - shelf (COTS) components and 

determines the technology readiness levels for the important subsystems envisioned in 

the preliminary system design  . This early planning sets the stage for the work the 

technical contributors will have  “ to live with ”  throughout the life of the project.   

   5.2    WBS 

 The successful management of the system development effort requires special tech-

niques to ensure that all essential tasks are properly defi ned, assigned, scheduled, and 

controlled. One of the most important techniques is the systematic organization of 

project tasks into a form called the  WBS  or, less commonly, the project or system 

breakdown structure. It defi nes all of the tasks in terms of goods and services to be 

accomplished during the project in terms of a hierarchical structure. Its formulation 

begins early in the concept defi nition phase to serve as a point of reference for concept 

trade - off studies. It is then more fully articulated in the latter stages to serve as a basis 

for system life cycle costing. The WBS is often a contractual requirement in competi-

tive system developments. 

 The WBS typically defi nes the whole system to be developed, produced, tested, 

deployed, and supported, including hardware, software, services, and data. It defi nes a 

skeleton or framework on which the project is to be implemented. 

  Elements of a Typical WBS 

 The WBS format is generally tailored to the specifi c project in hand, but always follows 

a hierarchical tree structure designed to ensure a specifi c place for every signifi cant 

portion of work under the project. For purposes of illustration, the following paragraphs 

describe the main elements of a typical system WBS. 

 With the system project at level 1 in the hierarchy (some WBS structures begin at 

Level 0), the level 2 categories may be broken down as follows: 

  1.1.     system product,  

  1.2.     system support,  

  1.3.     system testing,  
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  1.4.     project management, and  

  1.5.     systems engineering.    

 Note that these categories are not parallel in content or scope, but collectively, they are 

designed to encompass all the work under the system project. 

  1.1.      System Product  is the total effort required to develop, produce, and integrate 

the system itself, together with any auxiliary equipment required for its opera-

tion. Table  5.1    shows an example of the WBS breakdown of the system 

product. The level 3 entries are seen to be the several subsystems, as well as 

the equipment required for their integration (assembly equipment), and other 

auxiliary equipment used by more than one subsystem. The fi gure also shows 

an example of the level 4 and 5 breakdown of one of the subsystems into its 

  TABLE 5.1.    System Product WBS Partial Breakdown Structure   

   Level 1     Level 2     Level 3     Level 4     Level 5  

  1. System 

product  

                

      1.1 System 

product  

            

          1.1.1 Subsystem A          

              1.1.1.1 

Component A 1   

    

                  1.1.1.1.1 Functional 

design  

                  1.1.1.1.2 Engineering 

design  

                  1.1.1.1.3 Fabrication  

                  1.1.1.1.4 Unit text  

                  1.1.1.1.5 Documentation  

              1.1.1.2 

Component A 2   

    

                  1.1.1.2.1 Functional 

design  …  (etc.)  

          1.1.1 Subsystem B          

              1.1.2.1 

Component B 1   

    

                  1.1.2.1.1 Functional 

design  …  (etc.)  

          1.1.3 Subsystem C          

          1.1.4 Assembly 

equipment  

        

          1.1.5 Assembly 

equipment  
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constituent components, which represent defi nable products of development, 

engineering, and production effort. It is preferred that integration and test of 

hardware and software component is done separately for each subsystem, and 

then the tested subsystems are integrated in the fi nal system for testing (1.3 

below). Finally, for cost allocation and control purposes, each component is 

further broken down at level 5 into work packages that defi ne the several steps 

of the component ’ s design, development, and test. From this level and below 

the WBS, elements are often expressed with action words, for example, pur-

chase, design, integrate, and test.  

  1.2.      System Support  (or integrated logistic support) provides equipment, facilities, 

and services necessary for the development and operation of the system 

product. These items can be categorized (level 3 categories) under six 

headings:  

  1.2.1.     Supply support  

  1.2.2.     Test equipment  

  1.2.3.     Transport and handling  

  1.2.4.     Documentation  

  1.2.5.     Facilities  

  1.2.6.     Personnel and training   

 Each of the system support categories applies to both the development 

process and system operation, which may involve quite different activities.  

  1.3.      System Testing  begins after the design of the individual components has been 

validated via component tests. A very signifi cant fraction of the total test effort 

is usually allocated to system - level testing, which involves four categories of 

tests as follows: 

   1.3.1.     Integration Testing.     This category supports the stepwise integration of 

components and subsystems to achieve a total system.  

  1.3.2.     System Testing.     This category provides for overall system tests and the 

evaluation of test results.  

  1.3.3.     Acceptance Testing.     This category provides for factory and installation 

tests of delivered systems.  

  1.3.4.     Operational Testing and Evaluation.     This category tests the effective-

ness of the entire system in a realistic operational environment.   

 Individual tests to be performed at each level are prescribed in a series 

of separate test plans and procedures. However, an overall description of test 

objectives and content and a listing of the individual tests to be performed 

should also be set forth in an integrated test planning and management docu-

ment, the  “ test and evaluation management plan ”  (TEMP)   in defense acquisi-

tion terminology. Chapter  13  is devoted to the subject of system integration 

and evaluation.  

  1.4      Project Management  tasks include all activities associated with project plan-

ning and control, including the management of the WBS, costing, scheduling, 
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performance measurement, project reviews and reports, and associated 

activities.  

  1.5      Systems Engineering  tasks include the activities of the systems engineering 

staff in guiding the engineering of the system through all its conceptual and 

engineering phases. This specifi cally includes activities such as requirements 

analysis, trade - off studies (analysis of alternatives), technical reviews, test 

requirements and evaluations, system design requirements, confi guration man-

agement, and so on, which are identifi ed in the SEMP. Another important 

activity is the integration of specialty engineering into the early phases of the 

engineering effort, in other words, concurrent engineering.      

 The WBS is structured so that every task is identifi ed at the appropriate place 

within the WBS hierarchy. Systems engineering plays an important role in helping the 

project manager to structure the WBS so as to achieve this objective. The use of the 

WBS as a project - organizing framework generally begins in the concept exploration 

phase. In the concept defi nition phase, the WBS is defi ned in detail as the basis for 

organizing, costing, and scheduling. At this point, the subsystems have been defi ned 

and their constituent components identifi ed. Also, decisions have been made, at least 

tentatively, regarding outside procurement of elements of the system. Accordingly, the 

level down to which the WBS needs to be defi ned in detail should have been 

established. 

 It is, of course, to be expected that the details of the WBS evolve and change as 

the system is further engineered. However, its main outline should remain stable.  

  Cost Control and Estimating 

 The WBS is the heart of the project cost control and estimating system. Its organization 

is arranged so that the lowest indenture work packages correspond to cost allocation 

items. Thus, at the beginning of the project, the target cost is distributed among the 

identifi ed work packages and is partitioned downward as lower - level packages are 

defi ned. Project cost control is then exercised by comparing actual reported costs 

against estimated costs, identifying and focusing attention on those work packages that 

deviate seriously from initial estimates. 

 The collection of project costs down to the component level and their distribution 

among the principal phases of project development, engineering, and fabrication is 

essential also for contributing to a database, which is used by the organization for 

estimating the costs of future projects. For new components, cost estimates must 

be developed by adapting the previously experienced costs of items directly comparable 

to those in the projected system, at the lowest level of aggregation for which cost 

fi gures are available. At higher levels, departures from one system to the next become 

too large to reliably use data derived from previous experience without major 

correction. 

 It should not be expected that the lowest indenture level would be uniform through-

out the various subsystems and their components. For example, if a subsystem is being 

obtained on a fi xed price subcontract, it may well be appropriate to terminate the lowest 



SEMP 117

indenture in the WBS at that subsystem. In general, program control, including costing, 

is exercised at the level at which detailed specifi cations, interface defi nitions, and work 

assignments are available, representing in effect a contract between the project and the 

organization charged with the responsibility for developing, engineering, or fabricating 

given elements of the system.  

  Critical Path Method (CPM) 

 Network scheduling techniques are often used in project management to aid in the 

planning and control of the project. Networks are composed of events and activities 

needed to carry out the project. Events are equivalent to a milestone indicating when 

an activity starts and fi nishes. Activities represent the element of work or task, usually 

derived from the WBS that needs to be accomplished. Critical path analysis is an 

essential project management tool that traces each major element of the system back 

through the engineering of its constituent parts. Estimates are made of not only the size 

but also the duration of effort required for each step. The particular path that is estimated 

to require the longest time to complete its constituent activities is called the  “ critical 

path. ”  The differences between this time and the times required for other paths are 

called  “ slack ”  for those paths. The resulting critical path network is a direct application 

of the WBS. The systems engineer uses the CPM to understand the dependences of 

task activities, to help prioritize the work of the technical teams, and to communicate 

graphically the work of the entire program.   

   5.3    SEMP 

 In the development of a complex system, it is essential that all of the key participants 

in the system development process not only know their own responsibilities but also 

know how they interface with one another. Just as special documentation is required 

to control system interfaces, so the interfacing of responsibilities and authority within 

the project must also be defi ned and controlled. This is usually accomplished through 

the preparation and dissemination of a SEMP or its equivalent. The primary responsibil-

ity of creating such a plan for guiding the engineering effort is that of the systems 

engineering component of project management. 

 The importance of having formalized plans for managing the engineering effort 

has been recognized in defense acquisition programs by requiring the contractor to 

prepare a SEMP as part of the concept defi nition effort. The most important function 

of the SEMP is to ensure that all of the many active participants (subsystem managers, 

component design engineers, test engineers, systems analysts, specialty engineers, 

subcontractors, etc.) know their responsibilities to one another. This is an exact ana-

logue of the component interface function of systems engineering defi ning the interac-

tions among all parts of the system so that they fi t together and operate smoothly. It 

also serves as a reference for the procedures that are to be followed in carrying out the 

numerous systems engineering tasks. The place of the SEMP in the program manage-

ment planning is shown in Figure  5.2 .   
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 The SEMP is intended to be a living document, starting as an outline, and being 

elaborated and otherwise updated as the system development process goes on. Having 

a formal SEMP also provides a control instrument for comparing the planned tasks with 

those accomplished. 

  Elements of a Typical  SEMP  

 The SEMP contains a detailed statement of how the systems engineering functions are 

to be carried out in the course of system development. It can be considered to consist 

of three types of activity:  

   1.     Development Program Planning and Control:     describes the systems engineer-

ing tasks that must be implemented in managing the development program, 

including  

   •      statements of work;  

   •      organization;  

   •      scheduling;  

     Figure 5.2.     Place of SEMP in program management plans.  
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   •      program, design, and test readiness reviews;  

   •      technical performance measurement; and  

   •      risk management.    

  2.     Systems Engineering Process:     describes the systems engineering process as it 

applies to the development of the system, including 

    •      operational requirements,  

   •      functional analysis,  

   •      systems analysis and trade - off strategy, and  

   •      system test and evaluation strategy.    

  3.     Engineering Specialty Integration:     describes how the areas of specialty engi-

neering are to be integrated into the primary system design and development, 

including 

    •      reliability, maintainability, availability (RMA)   engineering;  

   •      producibility engineering;  

   •      safety engineering; and  

   •      human factors engineering.      

 A typical SEMP outline is tailored to the development system but could include the 

following: 

  Introduction  

  Scope, Purpose, Overview, Applicable Documents    

  Program Planning and Control 

   Organizational Structure  

  Responsibilities, Procedures, Authorities  

  WBS, Milestones, Schedules  

  Program Events  

  Program, Technical, Test Readiness Reviews  

  Technical and Schedule Performance Metrics  

  Engineering Program Integration, Interface Plans    

  Systems Engineering Process 

   Mission, System Overview Graphic  

  Requirements and Functional Analysis  

  Trade Studies (Analysis of Alternatives)  

  Technical Interface Analysis/Planning  

  Specifi cation Tree/Specifi cations  

  Modeling and Simulation  

  Test Planning  

  Logistic Support Analysis  

  Systems Engineering Tools    
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  Engineering Integration 

   Integration Design/Plans  

  Specialty Engineering  

  Compatibility/Interference Analysis  

  Producibility Studies        

   5.4    RISK MANAGEMENT 

 The development of a new complex system by its nature requires acquiring knowledge 

about advanced but not fully developed devices and processes so as to wisely guide 

the system design to a product that performs its intended mission reliably and at an 

affordable cost. At every step, however, unpredictable outcomes can be encountered 

that pose risks of performance shortfalls, environmental susceptibility, unsuitability for 

production, or a host of other unacceptable consequences that may require a change in 

course with impacts on program cost and schedule. One of the greatest challenges to 

systems engineering is to steer a course that poses minimum risks while still achieving 

maximum results. 

 At the outset of the development, there are uncertainties and hence risks in every 

aspect. Are the perceived operational requirements realistic? Will they remain valid 

throughout the new system ’ s operational life? Will the resources required to develop 

and produce the system be available when needed? Will the advanced technology nec-

essary to achieve the required operational goals perform as expected? Will the antici-

pated advances in production automation materialize? Will the development organization 

be free from work stoppages? 

 It is the special task of systems engineering to be aware of such possibilities and 

to guide the development so as to minimize (mitigate) their impact if and when they 

may occur. The methodology that is employed to identify and minimize risk in system 

development is called  risk management . It has to begin at the outset of the system 

development and progress throughout its duration. 

  Risk Reduction through the System Life Cycle 

 Reducing program risks is a continual process throughout the life cycle. For example, 

the needs analysis phase reduces the risk of embarking on the development of a system 

that does not address vital operational needs. The concept exploration phase reduces 

the risk of deriving irrelevant or unrealistic system performance requirements. And the 

system defi nition phase selects a system concept that utilizes technical approaches that 

are neither excessively immature nor unaffordable, but rather one that has the best 

chance of meeting all system goals. 

 Figure  5.3  is a schematic representation of how the program risk of a hypothetical 

system development (in arbitrary units) decreases as the development progresses 

through the phases of the life cycle. The abscissa is time, sectioned into the phases of 

system development. In the same fi gure is plotted a curve of the typical relative effort 

expended during each phase.   
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     Figure 5.3.     Variation of program risk and effort throughout system development.  
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 The descending risk curve conveys the fact that as development progresses, uncer-

tainties (unknowns), which constitute risks of unforeseen adverse events, are systemati-

cally eliminated or reduced by analysis, experiment, test, or change in course. A variant 

of this curve is referred to as the  “ risk mitigation waterfall ”  (Figure  5.4 ). The ascending 

effort curve represents the stepwise increases in the costs of succeeding phases of 

system development, showing the progression of activity from conceptual to engineer-

ing to integration and evaluation.   

 Figure  5.3  is intended to illustrate several key principles: 

  1.     As the development progresses, the investment in program effort typically rises 

steeply. To maintain program support, the risk of failure must be correspond-

ingly reduced so as to maintain the fi nancial risk at reasonable levels.  

  2.     The initial stages in the program produce major reductions in risk, when the 

basic decisions are made regarding the system requirements and the system 

concept. This demonstrates the importance of investing adequate effort in the 

formative phases.  

  3.     The two phases that typically produce the greatest risk reduction are  concept 

exploration  and  advanced development . Concept exploration provides a solid 

conceptual basis for the system approach and architecture. Advanced develop-

ment matures new advanced technologies to insure their meeting performance 

goals.  

  4.     By the time the development is complete and the system is ready for production 

and distribution, the residual level of risk must be extremely low if the system 

is to be successful.     
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  Components of Risk Management 

 Risk management is formally recognized in systems engineering standards, and espe-

cially in government acquisition programs. Each program is expected to prepare a risk 

management plan. Risk management for a major system is expected to have its own 

organization, staffi ng, database, reporting, and independent review, and to extend to all 

phase of program development, production, operation, and support. A detailed descrip-

tion of risk management as defi ned by the DoD is contained in the  Risk Management 

Guide for DoD Acquisition  published by the Defense Acquisition University. 

 The  Risk Management Guide  divides the subject of risk management into risk 

planning, risk assessment, risk prioritization, risk handling, and risk monitoring. The 

discussion to follow will combine these into two categories:  risk assessment , which 

will include risk planning and prioritization, and  risk mitigation , which will include 

risk handling and monitoring. The subject of risk planning is addressed by the risk 

management plan, which is part of the SEMP.  

  Risk Assessment 

 The general process of risk assessment is inherent in all decisions involving prospective 

uncertainty. As will be described in Chapter  10 , risk assessment is used to eliminate 

alternative concepts that are overly dependent on immature technologies, unproven 

technical approaches, or other ambitious advances that do not appear to be warranted 

by their projected benefi ts compared to the uncertainty of their realization. Some of the 

more common sources of program risk are listed in Chapter  12 . 

 In the advanced development phase, risk assessment will be seen to be a useful 

approach to the identifi cation and characterization of proposed design features that 

represent a suffi cient development risk (i.e., likelihood of failing to meet requirements) 

     Figure 5.4.     Example of a risk mitigation waterfall chart. PDR, Preliminary Design Review; 

CDR, Critical Design Review.  
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and a signifi cant program impact to warrant analysis and, if necessary, development 

and test. Thus, risk assessment identifi es the weakest and most uncertain features of 

the design and focuses attention on means for eliminating the possibility that these 

features will present complications and will require design changes during the subse-

quent phases of development. 

 Once the system components possessing questionable design features have been 

identifi ed, the task of systems engineering is to defi ne a program of analysis, develop-

ment, and test to eliminate these weaknesses or to take other actions to reduce their 

potential danger to the program to an acceptable level. In this process, the method of 

risk assessment can be of further value by providing a means for determining how to 

best allocate available time and effort among the identifi ed areas of risk. For this 

purpose, risk assessment can be applied to judge the relative risks posed by the design 

features in question. 

 To compare the potential importance of different sources of program risk, it is 

necessary to consider two risk components: the  likelihood  that a given component will 

fail to meet its goals and the  impact  or  criticality  of such a failure to the success of the 

program. Thus, if the impact of a given failure would be catastrophic, even a low likeli-

hood of its occurring cannot be tolerated. Alternatively, if the likelihood of failure of 

a given approach is high, it is usually prudent to take a different approach even if its 

impact may be low but signifi cant. 

 These risk components are often displayed in the form of a  “ risk cube ”  typically 

of three or fi ve dimensions. The fi ve - dimension cube is shown in Figure  5.5 , and 

the three - dimension cube is discussed below. Since the probabilities are usually qualita-

tive in nature, experienced judgment is needed to develop an informed assignment of 

risk. The relative nature is also important to understand since work in foundational 

research areas is naturally more risky than work that is developing a system to well -

 defi ned specifi cations. The risk tolerance of customers will also vary by domain and 

experience.   

  Risk Likelihood: Probability of Failure.     There are too many uncertainties to 

be able to compute a numerical value for the likelihood that a specifi c program goal 

will be achieved, and hence it is not useful to attempt to quantify risks beyond a rela-

tively rough measure to assist in their relative prioritization. 

 In the case of unproven technology, it is possible to estimate very roughly the rela-

tive degree of maturity from the engineering status of the technology. This may be 

carried out by identifying one or more cases where the technology is used in connection 

with a similar functional application and by determining its level of development (e.g., 

in the range from a laboratory design to an experimental prototype to a qualifi ed pro-

duction component). High, medium, and low risk is about as fi ne a scale as is normally 

useful. Beyond that, it is good practice to rank order the parts of the system that appear 

to be risky and to concentrate on the few that are judged to be most immature and 

complex. If the candidates are numerous, it may be a sign that the entire system design 

approach is too ambitious and should be reconsidered. 

 Risks associated with highly complex components and interfaces are even more 

diffi cult to quantify than those using advanced technology. Interfaces always require 
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special attention, especially in human – machine interactions. The latter always warrant 

early prototyping and testing. Here again, rank ordering of the relative complexity is 

an effective way of prioritizing the effort required for risk management. 

 The prioritization of software risks is again a matter of judgment. Real - time pro-

grams with numerous external interrupts always require special attention, as do concur-

rent processes. New or signifi cantly altered operating systems can be particularly 

complicated. Programs with high logic content tend to be more likely to malfunction 

as a consequence of undetected faults than those that are largely computational. 

 Table  5.2  lists some of the considerations discussed above in arriving at a general 

prioritization of risk probabilities.    

  Risk Criticality: Impact of Failure.     It was stated earlier that the seriousness of 

the risk of a particular failure might be considered in terms of two factors — the likeli-

hood that a failure will occur and the criticality of its impact on the success of the 

program. In a semiquantitative sense, the seriousness of the risk can be thought of as 

a combination of those two factors. 

 As in the case of risk likelihood, there is no accepted numerical scale for risk criti-

cality, and one may consider the same relative levels as those for likelihood: high, 

medium, or low. Some agreed - upon defi nitions need to be assigned to these levels, such 

as those listed in Table  5.3 .   

     Figure 5.5.     An example of a risk cube display.  

Medium

High
5

4

3

What is the likelihood the risk will happen?

Your approach and processes …Level

Derived from
Risk Management—A Process Overview by Bob Skalamera

Low
2

1

1 2 3 4 5

L
ik

e
li

h
o

o
d

Consequences
3

2

1

Likely

Low likelihood

Not likely

… May mitigate this risk, but work-arounds 

… Have usually mitigated this type of risk 
       with minimal oversight in similar cases

… Will effectively avoid or mitigate this risk 
       based on standard practices

L
ik

e
li

h
o

o
d

5

4

Near certainty

Highly likely

… Cannot mitigate this type of risk; no known
       processes or work-arounds are available

… Cannot mitigate this risk, but a different 
       approach might

       will be required

Technical

Given the risk is realized, what would be the magnitude of the impact?

Level

1 Minimal or no impact

Schedule Cost

Minimal or no impact Minimal or no impact

4

3

2

Unacceptable, but work-arounds

    available

Moderate performance shortfall, 
    but work-arounds available

Minor performance shortfall, 
    same approach retained

Project critical path affected   

Minor schedule slip, will miss 
    needed dates

Additional activities required,
    able to meet key dates

Budget increase or unit    

Budget increase or unit 
    production cost increase <5%

Budget increase or unit 
    production cost increase <1%

C
o

n
s

e
q

u
e

n
c

e
s

5

4

Unacceptable; no alternatives

    exist

Cannot achieve key project 
    milestones

Budget increase or unit 
    production cost increase >10%

    production cost increase <10%



RISK MANAGEMENT 125

 The middle column of the table lists expected impacts on system operation if the 

system component at risk failed to perform its function. The right column lists the types 

of impacts on the overall program that could be expected if the system component was 

discovered to be faulty late in development and indicates the likely effects on the 

program. 

 While some systems engineering textbooks advocate the derivation of an overall 

risk factor by assigning numerical values to the estimates of risk likelihood and risk 

criticality and taking their product, the disadvantages of this practice are believed to 

outweigh the presumed advantage of a seemingly simple single risk factor. In the fi rst 

place, assignment of numerical estimates creates the illusion of quantitative knowledge, 

which has no real basis. In the second place, combining the two indices into one has 

the effect of diminishing the net information content, as was noted in connection with 

combining fi gures of merit of individual parts of the system into a single score. 

Accordingly, it is recommended that the individual ratings be retained as abstractions, 

  TABLE 5.2.    Risk Likelihood 

   Risk likelihood     Design status  

  High     •  Signifi cant extension from past designs  

       •  Multiple new and untried components  

       •  Complex components and/or interfaces  

       •  Marginal analytical tools and data  

  Medium     •  Moderate extension from past designs  

       •  Components complex but not highly stressed  

       •  Analytical tools available  

  Low     •  Application of qualifi ed components  

       •  Components of medium complexity  

       •  Mature technologies and tools  

  TABLE 5.3.    Risk Criticality 

   Criticality     System impact     Program impact  

  High        •      Major degradation in 

performance (50 – 90%)  

   •      Serious safety problem     

      •      Major increase in cost and/or 

schedule (30 – 70%)  

   •      Production cutbacks     

  Medium        •      Signifi cant degradation in 

performance (10 – 50%)  

   •      Short losses of operability  

   •      Costly operational support     

      •      Signifi cant increases in cost 

and/or schedule (10 – 30%)  

   •      Intense reviews and oversight  

   •      Production delays     

  Low        •      Minor degradation in 

performance ( > 10%)  

   •      Occasional brief delays  

   •      Increased maintenance     

      •      Minor increase in cost and/or 

schedule ( < 10%)  

   •      Vigorous reviews and oversight     
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such as high, medium, and low, and the two components retain their identity, such as 

medium – low, and so on. 

 In connection with the criticality scale, the highest level of criticality listed in Table 

 5.3  stops short of including the case of near total loss in system performance resulting 

in mission failure. Such an eventuality would likely risk program cancellation, and as 

such would be considered unacceptable. This implies that design risks of this degree 

of criticality would not be considered as feasible options.  

  Role of Systems Engineering.     The task of risk assessment (and the subsequent 

task of risk management) is clearly the responsibility of systems engineering. This is 

because the judgments that are involved require a breadth of knowledge of system 

characteristics and the constituent technologies beyond that possessed by design spe-

cialists, and also because judgments of risk criticality are at the system and program 

levels. The process of risk assessment thus helps the systems engineer to identify the 

system features that need to be most thoroughly understood and raised to a level of 

design maturity suitable for full - scale engineering.   

  Risk Mitigation 

 The most common methods of dealing with identifi ed program risks are the following, 

listed in order of increasing seriousness of the perceived risk: 

  1.     intensifi ed technical and management reviews of the engineering process,  

  2.     special oversight of designated component engineering,  

  3.     special analysis and testing of critical design items,  

  4.     rapid prototyping and test feedback,  

  5.     consideration of relieving critical design requirements, and  

  6.     initiation of fallback parallel developments.    

 Each of the above methods is briefl y described below. 

  Technical and Management Reviews.     Formal design reviews may address 

entire subsystems, but the depth of coverage is mainly on design aspects considered of 

greatest importance. It is the responsibility of systems engineering to ensure that the 

signifi cant risk items are fully presented and discussed so that special management 

attention and resources may be directed to issues warranting additional effort. The aim 

should be to resolve problems at the earliest possible time, so full disclosure of expe-

rienced or anticipated diffi culties is essential. The process of design reviews is further 

described in the Component Design section of Chapter  12  (Section  12.4 ).  

  Oversight of Designated Component Engineering.     Regularly scheduled 

design reviews are neither frequent enough nor detailed enough to provide adequate 

oversight of known design problem areas. Each designated problem area should be 

assigned a special status, subjected to appropriately frequent reviews, and overseen by 
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designated senior design and systems engineers. Where appropriate, outside consultants 

should be engaged in the process. A risk mitigation plan should be prepared and tracked 

until the problem areas are resolved.  

  Special Analysis and Testing.     For components whose design involves issues 

not resolved in the advanced technology phase, additional analysis and, if necessary, 

fabrication and test should be carried out to obtain suffi cient design data to validate the 

technical approach. This will require assigning additional resources and modifying the 

engineering schedule to accommodate the results of such analysis and testing.  

  Rapid Prototyping.     For unproven components for which analysis and limited 

testing cannot adequately validate the design, it may be necessary to construct and test 

prototypes to ensure their validity. Such action would normally be taken in the advanced 

technology phase, but sometimes, the problem is not recognized at that time, and in 

other cases, the action fails to resolve the problem.  

  Relief of Excessive Requirements.     Experience has shown that attempting to 

meet all initially posed requirements often fails to achieve a practical overall solution 

and requires an adjustment of some performance or compatibility requirement. This 

possibility should be explored whenever efforts to meet fully a requirement result in a 

solution that is inordinately complex, costly, unreliable, or otherwise undesirable from 

a practical standpoint. This problem is uniquely a task for systems engineering since 

all factors of performance, cost, and schedule need to be considered together. It is an 

option that should be invoked only in exceptional cases, but neither should it be put 

off until excessive resources and time have been committed to vain efforts to fulfi ll the 

requirement.  

  Fallback Alternatives.     The development of alternative design approaches is 

most appropriate for components using new technology whose successful development 

cannot be fully assured. In such cases, adequate alternative approaches should be estab-

lished during the advanced development phase to serve as fallbacks in the event that 

the new designs do not fulfi ll expectations. Such fallback alternatives almost always 

result in reduced performance, greater cost, or some other perceived defi ciency com-

pared to the selected approach, but are more conservative in their design and hence are 

more certain to succeed. 

 It happens not infrequently that the engineering design phase begins before a clear 

resolution is reached as to the ultimate success of a given technical approach, and hence 

before a fi nal decision as to whether or not to fall back to a more conservative alterna-

tive. In such cases, an expedited program to reach such a decision by further develop-

ment, analysis, and test must be invoked. Again the decision is one for systems 

engineering. Often the choice also involves reexamination of the initial requirements, 

as discussed in the previous paragraphs. 

 The above methods may be applied singly, but most often work best in combina-

tion. Their oversight is a program manager ’ s responsibility, and their planning and 

direction are a systems engineering function.   
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  Risk Management Plan 

 The importance of the actions described above to the overall success of a system devel-

opment requires that it be part of the overall program management process. To this end, 

a formal risk management plan should be developed and progressively updated, in 

which mitigation is a major part. 

 For every signifi cant risk, there should be a plan that minimizes its potential impact 

through specifi c actions to be taken, either concurrently with the engineering or to be 

invoked should the anticipated risk materialize. The formulation of such a plan must 

be predicated on the objective of minimizing the total expected program cost, which 

means that the planned activities to contain program risks must not be more costly than 

the expected impact of the risks, should they eventuate. For items for which a fallback 

approach is to be developed, the plan should defi ne the conditions under which the 

backup will be activated, or if activated at the outset, how far it is to be carried in the 

absence of evidence that the main approach will prove unsatisfactory. A diagram of a 

risk mitigation plan known as a  “ risk mitigation waterfall chart ”  is shown in Figure 

 5.4 . An example of a risk plan worksheet is pictured in Table  5.4 .     

   5.5    ORGANIZATION OF SYSTEMS ENGINEERING 

 Despite decades of study, there are many opinions, but no general agreement, on which 

the organizational form is most effective for a given type of enterprise. For this reason, 

  TABLE 5.4.    Sample Risk Plan Worksheet   
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the organizations participating in a system development project are likely to employ a 

variety of different organizational styles. Each individual style has evolved as a result 

of history, experience, and the personal preferences of upper management. Accordingly, 

despite its central importance to the success of a given system development project, 

the systems engineering function will usually need to adapt to preexisting organiza-

tional structures. 

 Virtually all system development projects are managed by a single industrial 

company. Hence, it is the organizational form of this company that drives the organiza-

tion of systems engineering. In most cases, this company will develop some subsystems 

in - house, and contract for other subsystems with subcontractors. We will refer to the 

fi rst company as the prime contractor or system contractor, and to the collection of 

participating contractors as the  “ contractor team. ”  This means that the systems engi-

neering activity must span not only a number of different disciplines but also several 

independent companies. 

 The organizational structure of the prime contractor is usually some form of a 

 “ matrix ”  organization. In a matrix organization, most of the engineering staff is orga-

nized in discipline -  or technology - oriented groups. Major projects are managed by 

project management teams reporting to a  “ vice president for project management ”  or 

an equivalent. At times, these teams are called integrated product teams (IPTs) (see 

Chapter  7 ). A technical staff is assigned to individual projects as required, but employ-

ees retain affi liation with their engineering groups. 

 The main variations in matrix - type organizations relates to whether the bulk of the 

technical staff assigned to a project are physically relocated to an area dedicated to the 

project and remain as full - time participants throughout much of the development or 

whether they remain in their home group areas. A related difference is the degree to 

which authority for the direction of the technical work assignments is retained by their 

home group supervisors. 

 As stated earlier, the organization of the systems engineering function is necessarily 

dependent on the system contractor ’ s organizational structure. There should be some 

common practices, however. Referring to Figure  5.1 , a major system project should 

have a single focus of responsibility for the systems engineering function (a project 

systems engineer), as apart from the project planning and control function. As an inte-

gral part of project management, an appropriate title might be  “ associate (or deputy) 

project manager for systems engineering ”  or, more simply,  “ systems engineering 

manager. ”  Since the systems engineering function is that of guidance, authority is 

exercised by establishing goals (requirements and specifi cations), formulating task 

assignments, conducting evaluations (design reviews, analyses, and tests), and control-

ling the confi guration. 

 Effective technical communications are diffi cult to maintain in any organization 

for a variety of reasons, many of them inherent in human behavior. They are, neverthe-

less, absolutely vital to the ultimate success of the development project. Perhaps the 

single most important task of the project systems engineer is to establish and maintain 

effective communication among the many individuals and groups, inside and outside 

the company, whose work needs to interact with others. This is a human interface func-

tion corresponding to the system physical interface functions that make the system 
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elements fi t together and operate as one. Since the systems engineer usually works in 

parallel with rather than through established lines of authority, he or she must exercise 

extraordinary leadership to bring together those individuals who need to interact. 

 There are several different means of communication, all of which need to be exer-

cised as appropriate: 

  1.     All key participants need to know what they are expected to do, when, and why: 

the  “ what ”  is expressed in task assignments and WBS; the  “ when ”  is contained 

in schedules, milestones, and critical path networks; and the  “ why ”  should be 

answered in the requirements and specifi cations. A clear and complete statement 

of the  “ why ”  is essential to ensure that the designers, analysts, and testers 

understand the objectives and constraints of the task assignments.  

  2.     Participants must be aware of how their portions of the system interact with 

other key elements and of the nature of their mutual interdependence. Such 

interactions, and particularly their underlying causes, can never be suffi ciently 

covered in specifi cation documents. This awareness can only be provided by 

periodic personal communication among the responsible participants and the 

documentation of any resulting agreements, interface defi nitions, and so on, 

however small or tentative. Systems engineering must provide the glue that 

binds these items of system design through the formation of  interface working 

groups  and the development of  interface control documents , and such less 

formal communications as may be needed in special cases.  

  3.     Subcontractors and other key participants at remote sites must be integrated into 

the project communication framework. At the management level, this is the task 

of the system project manager, but at the engineering level, it is the responsibil-

ity of the project systems engineering staff. It is essential that the same two 

coordinating functions described above be provided for the entire contractor 

team. For this purpose, conventional formal contractual mechanisms never 

suffi ce and sometimes hinder. Accordingly, special efforts should be made to 

integrate the team members effectively into the total system development effort. 

This needs to be carried out at two levels: (1) periodic program management 

reviews attended by top - level representatives of the contractor team and (2) 

frequent technical coordination meetings concerned with specifi c ongoing 

aspects of the program.  

  4.     The principal leaders of the system design effort must have a regular and fre-

quent means of communication with one another to keep the program closely 

coordinated and to react quickly to problems. This is discussed in the following 

paragraphs.    

  Systems Analysis Staff 

 An essential part of any systems engineering organization is a highly competent and 

experienced analytical staff. Such a staff need not be a single entity, nor does it need 

to be organizationally colocated with the project staff itself, but it must be part of the 
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systems engineering organization, at least during the conceptual and early engineering 

phases of the project. The systems analysis staff must have a deep understanding of the 

system environment, with respect to both its operational and physical characteristics. 

In both instances, it must be able to model the system environment, by use of mathe-

matical and computer models, to provide a basis for analyzing the effectiveness of 

system models. In the concept exploration phase, the systems analysis staff is the source 

of much of the quantitative data involved in defi ning the system performance required 

to meet its operational requirements. In the concept defi nition phase, the analysis staff 

is responsible for constructing the system simulations used in the trade - off studies and 

in the selection of the best system concept. Throughout the engineering development 

stage of the program, the analysis staff is involved in numerous component trade - off 

studies. It conducts test analyses to derive quantitative measures of the performance of 

system prototypes and contributes to defi ning the quantitative aspects of system design 

specifi cations. 

 While the systems analysis staff must be skilled in mathematical modeling, soft-

ware design, and other specialized techniques, its members are also required to have a 

system perspective and a thorough knowledge of the operational requirements of the 

system under development.  

  System Design Team 

 The exercise of leadership and coordination in any large program requires one or more 

teams of key individuals working closely together, maintaining a general consensus on 

the conduct of the engineering program. A system design team for a complex system 

development project may have the following membership: 

   •      systems engineer,  

   •      lead subsystems engineers,  

   •      software systems engineers,  

   •      support engineers,  

   •      test engineers,  

   •      customer representative, and  

   •      specialty and concurrent engineers.    

 The customer representative is an advocate for the system requirements. The 

advantage of the team approach is that it generally increases the esprit de corps and 

motivation of the participants and broadens their understanding of the status and prob-

lems of other related aspects of the system development. This develops a sense of 

ownership of the team members in the overall system rather than the limitation of 

responsibility that is the rule in many organizations. It makes the response to unex-

pected problems and other program changes more effective. 

 In a particular application, the leadership of the system development needs to be 

tailored to the prime contractor ’ s organization and to the customer ’ s level of involve-

ment in the process. The most important common denominators are 
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  1.     quality of leadership of the team leader,  

  2.     representation of those with key responsibilities, and  

  3.     participation of key technical contributors.    

 Without energetic leadership, the members of the system design team will fl ounder 

or go their separate ways. If for some reason the person designated as the project 

systems engineer does not have the required personal leadership qualities, either the 

project engineer or a deputy systems engineer should assume the team leadership role. 

 The presence of the leaders of the major portion of the development effort is neces-

sary to bring them into the design decision process, as well as to have them available 

to use their resources to resolve problems. There are usually several senior systems 

engineers whose experience and knowledge are of great value to the project. Their 

presence adds a necessary ingredient of wisdom to the design process. 

 Involvement of the customer in the design process is essential but, in many cases, 

may be an inhibiting infl uence on free discussion in team meetings. Frequent but more 

formal meetings with the customer may be preferred to team membership.   

   5.6    SUMMARY 

  Managing System Development and Risks 

 Systems engineering is a part of project management that provides technical guidelines, 

system integration, and technical coordination.  

  WBS 

 The systems engineer ’ s role also involves contributing to resource allocation, task defi -

nition, and customer interaction, with the initial focus on the development of the WBS, 

a hierarchical task organization that subdivides total effort into successively smaller 

work elements. This provides the basis for scheduling, costing, and monitoring, and 

enables cost control and estimating. 

 One key tool used for program scheduling is the CPM. CPM is based on WBS 

work elements and creates a network of sequential activities. Analyzing this network 

enables the systems engineer and program manager to identify paths that take the 

longest to complete.  

  SEMP 

 The SEMP plans the implementation of all systems engineering tasks. In the process, 

it defi nes the roles and responsibilities of all participants.  

  Risk Management 

 Risk management is a major challenge to systems engineering since all new system 

developments present uncertainties and risks. Reducing program risks is a continual 
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process throughout the life cycle; moreover, risk must be reduced as program invest-

ment rises. 

 A risk management plan is important to support risk management. Risk assessment 

identifi es the importance of risk in terms of risk likelihood (probability of occurrence) 

and risk criticality (impact and consequences of risk realization). 

 Risk mitigation of a critical area may include one or more of the following: man-

agement reviews, special engineering oversight, special analysis and tests, rapid proto-

typing, retry of rigorous requirements, and/or fallback developments.  

  Organization of Systems Engineering 

 The systems engineering organization spans disciplines and participating organizations, 

but also adapts to the company organizational structure. Therefore, systems engineering 

must communicate effectively  “ what, when, and why ”  to the proper stakeholders and 

must provide technical reviews for all participants. In large programs, systems engineer-

ing is supported by a systems analysis staff. 

 Large programs will require formal system design teams, which integrate major 

subsystems and subcontractors, and the products of software systems engineering. 

These teams contain members from support engineering and the test organization, and 

typically contain specialty (concurrent engineering) members as appropriate. They may 

also include user representation when appropriate. A key role for systems engineering 

involvement in these design teams is to keep their focus on the success of the entire 

enterprise.   

  PROBLEMS 

    5.1     Developing a detailed WBS for a system development project is a basic func-

tion of project management. What part should be played by systems engineer-

ing in the defi nition of the WBS in addition to detailing the section named 

 “ Systems Engineering ” ?  

  5.2     The preparation of a formal SEMP is usually a required portion of a contrac-

tor ’ s proposal for a competitive system development program. Since at this 

time the system design is still in a conceptual state, explain where you would 

get the information to address the elements of a typical SEMP as listed in 

this chapter.  

  5.3     Defi ne the two main components of risk management discussed in this 

chapter and give two examples of each. Show by an example how you would 

apply risk management processes to a system development project that pro-

poses to use one or more components that utilize unproven technology.  

  5.4     One of the methods for estimating the risk likelihood (probability of failure) 

of a system development is to compare the current design status with com-

parable situations in existing systems. Table  5.2  shows some basic character-

istics that are useful in making these estimates. For each of the fi rst three 
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conditions associated with high - risk projects, briefl y describe an example of 

such a condition in a real system, or describe a hypothetical example having 

such characteristics.  

  5.5     Suppose you are a new systems engineer for a major new system develop-

ment effort that involves new technology. Obviously, this represents a major 

technical (if not programmatic) risk area. What activities would you recom-

mend early in the system development effort to mitigate these technical risks? 

For each mitigation activity, describe whether the activity will lower the 

likelihood of the risk, or the consequences of the risk, or both.  

  5.6     There are a number of risk mitigation methods for dealing with program risks. 

Referring to the description of high and low program impact in Table  5.3 , 

discuss how you would best use risk mitigation methods to reduce their risk 

criticality.  

  5.7     Suppose you are a systems engineer on a new system development project 

in which your design engineers have never developed the subsystems and 

components required for this new system. Obviously, this represents a major 

risk area. What activities would you recommend early in the system develop-

ment effort to mitigate these technical risks? For each mitigation activity, 

describe whether the activity will lower the likelihood of the risk or the 

consequences of the risk, or both.  

  5.8     This chapter presents a method for quantifying risk in two elements, likeli-

hood and criticality, and for plotting these two metrics on a risk matrix. 

Suppose you wanted to combine these two metrics into a single, combined 

metric for risk. Suggest three methods for combining likelihood and critical-

ity into a single metric. List the advantages and disadvantages for each.  

  5.9     Research the building of the tunnel under the English Channel in the late 

twentieth century.  

  (a)     What risks were present with this project?  

  (b)     What successful activities were undertaken to mitigate these risks that 

led to the tunnel ’ s completion?    

  5.10     Describe the general type of the organizational structure in which you work. 

Discuss instances where this structure has been benefi cial and those where it 

has not been so benefi cial to programs you have been involved in or have 

some knowledge of.  

  5.11     Discuss the advantages of using the system design team approach for a large 

development project. List and discuss six requirements that are needed to 

make this approach successful.     
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     Part  II  begins the systematic account of the key roles played by systems engineering 

throughout the three stages of the systems engineering life cycle. This initial stage of 

the life cycle is where systems engineering makes its greatest contribution to the success 

of the system development project by performing the function of  “ systems architect-

ing. ”  The system decisions made during this stage in most cases determine the success 

or failure of the project. 

 Chapter  6  introduces the origins of a new system, whether driven by new needs or 

by technological opportunities. The chapter focuses on the role of systems engineering 

in the validation of an operational need for a new system and the development of a 

defi nitive set of operational requirements. 

 Chapter  7  presents the concept exploration phase, which explains how system 

concepts are developed from the requirements, and how several alternative concepts 

are examined for the purpose of deriving a set of necessary and suffi cient performance 

requirements suitable for defi ning a system meeting the operational needs. 

 The fi nal phase in the concept development stage is selecting a preferred system 

architecture that meets the performance requirements established previously. Chapter 

 8  describes how systems engineering uses modeling, visualization, and analysis to 
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accomplish this result. In the acquisition of major systems, the satisfactory completion 

of this process leads to a commitment to proceed with engineering development and a 

possible ultimate production of the new system. 

 The fi nal chapter in this part describes the process and activities involved in 

engineering - level decision making. A detailed description of the trade - off analysis is 

provided to provide formality to a systems engineer ’ s thinking about decisions.         
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    6.1    ORIGINATING A NEW SYSTEM 

 The primary objective of the needs analysis phase of the system life cycle is to show 

clearly and convincingly that a valid operational need (or potential market) exists for 

a new system or a major upgrade to an existing system, and that there is a feasible 

approach to fulfi lling the need at an affordable cost and within an acceptable level of 

risk. It answers the question of why a new system is needed and shows that such a 

system offers a suffi cient improvement in capability to warrant the effort to bring it 

into being. This is achieved, in part, by devising at least one conceptual system that 

can be shown to be functionally capable of fulfi lling the perceived need, and by describ-

ing it in suffi cient detail to persuade decision makers that it is technically feasible and 

can be developed and produced at an acceptable cost. In short, this whole process must 

produce persuasive and defensible arguments that support the stated needs and create 

a  “ vision of success ”  in the minds of those responsible for authorizing the start of a 

new system development. 

  6 
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  Place of the Needs Analysis Phase in the System Life Cycle 

 The exact beginning of the active development of a new system is often diffi cult to 

identify. This is because the earliest activities in the origin of a new system are usually 

exploratory and informal in nature, without a designated organizational structure, speci-

fi ed objectives, or established timetable. Rather, the activities seek to determine whether 

or not a dedicated effort would be warranted, based on an assessment of a valid need 

for a new system and a feasible technological approach to its implementation. 

 The existence of a discrete phase corresponding to that defi ned as  needs analysis  

in Chapter  4  is more characteristic of need - driven system developments than of those 

that are technology driven. In defense systems, for example,  “ material solution analy-

sis ”  (see Department of Defense [DoD] life cycle of Fig.  4.1 ) is a required prerequisite 

activity for the offi cial creation of a specifi c item in the budget for the forthcoming 

fi scal year, thereby allocating funds for the initiation of a new system project. Within 

this activity, a need determination task produces an initial capability description (ICD), 

which attests to the validity of the system objective or need, and gives evidence that 

meeting the stated objective will yield signifi cant operational gains and is feasible of 

realization. Its completion culminates in the fi rst offi cial milestone of the defense 

acquisition life cycle. 

 In a technology - driven system development, typical of new commercial systems, 

the needs analysis phase is considered to be part of the conceptual development stage 

(Fig.  4.2 ). However, in this case too, there must be similar activities, such as market 

analysis, assessment of competitive products, and assessment of defi ciencies of the 

current system relative to the proposed new system, that establish a bona fi de need 

(potential market) for a product that will be the object of the development. Accordingly, 

the discussion to follow will not distinguish between needs - driven and technology -

 driven system developments except where specifi cally noted. 

 The place of the needs analysis phase in the system life cycle is illustrated in Figure 

 6.1 . Its inputs are seen to be  operational defi ciencies  and/or  technological opportunities . 

     Figure 6.1.     Needs analysis phase in the system life cycle.  
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Its outputs to the following phase,  concept exploration , are an estimate of  system 

operational effectiveness  that specify what results a new system should achieve to meet 

the identifi ed need, together with  system capabilities , the output of various operational 

analyses and system studies, which provide evidence that an affordable system capable 

of meeting the effectiveness target is feasible.   

 As discussed above and depicted in the fi gure, the impetus for the initiation of a 

new system development generally comes from one of two sources: (1) the perception 

of a serious defi ciency in a current system designed to meet an important operational 

need (need driven) or (2) an idea triggered by a technological development whose 

application promises a major advance over available systems in satisfying a need (tech-

nology driven). Either of these may then lead to investigations and analyses that eventu-

ally culminate in a program to develop a new system. Quite often, both factors contribute 

to the fi nal decision.  

  Examples of New System Needs 

 The automobile industry is a prime example where changing conditions have forced 

the need for system improvements. Government laws require manufacturers to make 

substantial improvements in fuel economy, safety, and pollution control. Almost over-

night, existing automobile designs were rendered obsolete. These regulations posed a 

major challenge to the automobile industry because they required technically diffi cult 

trade - offs and the development of many new components and materials. While the 

government gave manufacturers a number of years to phase in these improvements, the 

need for innovative design approaches and new components was urgent. In this case, 

the need for change was triggered by legislative action based on the needs of society 

as a whole. 

 Examples of technology - driven new systems are applications of space technology 

to meet important public and military needs. Here, the development of a range of 

advanced devices, such as powerful propulsion systems, lightweight materials, and 

compact electronics, made the engineering of reliable and affordable spacecraft a practi-

cal reality. In recent years, satellites have become competitive and often superior 

platforms for communication relays, navigation (GPS), weather surveillance, and a host 

of surveying and scientifi c instruments. 

 A more pervasive example of technology - driven system developments is the appli-

cation of computer technology to the automation of a wide range of commercial and 

military systems. Information systems, in particular (e.g., banking, ticketing, routing, 

and inventory), have been drastically altered by computerization. System obsolescence 

in these cases has come not from recognized defi ciencies but rather from opportunities 

to apply rapidly advancing technology to enhance system capabilities, to reduce cost, 

and to improve competitive position. 

  External Events.     As will be seen later in this section, analysis of needs goes on more 

or less continuously in most major mission or product areas. However, external events 

often precipitate intensifi cation and focusing of the process; this results in the formula-

tion of a new operational requirement. In the defense area, this may be an intelligence 
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fi nding of a new potential enemy threat, a local confl ict that exposes the defi ciency in 

a system, a major technological opportunity uncovered in a continuing program of 

concept exploration, or a major defi ciency uncovered in periodic operational testing. 

In the civil products area, a triggering event might be a sudden shift in customer demand 

or a major technological change, such as the discovery of a radically new product, or 

an opportunity to automate a labor - intensive process. The drastic increase in the price 

of petroleum has triggered an intensive and successful effort to develop more fuel -

 effi cient commercial aircraft: the wide - bodied jets.   

  Competitive Issues 

 Going from a perceived need to the initiation of a development program requires more 

than a statement of that need. Regardless of the source of funding (government or 

private), there is likely to be competition for the resources necessary to demonstrate a 

bona fi de need. In the case of the military, it is not unusual for competition to come 

from another department or service. For example, should maritime superiority be pri-

marily a domain of the surface or air navy, or a combination of the two? Should cleaner 

air be achieved by more restrictions on the automobile engine combustion process or 

on the chemical composition of the fuel? The answers to these types of questions can 

have a major impact on the direction of any resulting development. For these reasons, 

strong competition can be expected from many sectors when it is publicly known that 

a new system development is under consideration. The task of sorting out these pos-

sibilities for further consideration is a major systems engineering responsibility.  

  Design Materialization Status 

 As described in Chapter  4 , the phases of the system development process can be con-

sidered as steps in which the system gradually materializes, that is, progresses from a 

general concept to a complex assembly of hardware and software that performs an 

operational function. In this initial phase of the system life cycle, this process of mate-

rialization has only just started. Its status is depicted in Table  6.1 , an overlay of Table 

 4.1  in Chapter  4 .   

 The focus of attention in this phase is on the system operational objectives and 

goes no deeper than the subsystem level. Even at that level, the activity is listed as 

 “ visualize ”  rather than defi nition or design. The term  visualize  is used here and else-

where in the book in its normal sense of  “ forming a mental image or vision, ”  implying 

a conceptual rather than a material view of the subject. It is at this level of generality 

that most designs fi rst originate, drawing on analogies from existing system 

elements. 

 Table  6.1  (and Table  4.1 ) oversimplifi es the representation of the evolving state of 

a system by implying that all of its elements begin as wholly conceptual and evolve at 

a uniform rate throughout the development. This is very seldom, if ever, the case in 

practice. To take an extreme example, a new system based on rectifying a major defi -

ciency in one of the subsystems of its predecessor may well retain the majority of the 

other subsystems with little change, except perhaps in the selection of production parts. 



  TABLE 6.1.    Status of System Materialization at the Needs Analysis Phase 

   Level  

   Phase  

   Concept development     Engineering development  

   Needs analysis     Concept exploration     Concept defi nition  

   Advanced 

development  

   Engineering 

design  

   Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, and 

synthesize concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne requirements 

and ensure feasibility  

  Defi ne functional 

and physical 

architecture  

  Validate 

subsystems  

      Integrate and test  

  Component            Allocate functions 

to components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

1
4

3
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Such a new system would start out with many of its subsystems well advanced in 

materialization status, and with very few, if any, in a conceptual status. 

 Similarly, if a new system is technology driven, as when an innovative technical 

approach promises a major operational advance, it is likely that parts of the system not 

directly involved in the new technology will be based on existing system components. 

Thus, the materialization status of the system in both examples will not be uniform 

across its parts but will differ for each part as a function of its derivation. However, 

the general principle illustrated in the table is nevertheless valuable for the insight it 

provides into the system development process.  

  Applying the Systems Engineering Method in Needs and 
Requirements Analysis 

 Being the initial phase in the system development cycle, the needs analysis phase is 

inherently different from most of the succeeding phases. There being no preceding 

phase, the inputs come from different sources, especially depending on whether the 

development is needs driven or technology driven, and on whether the auspices are the 

government or a commercial company. 

 Nevertheless, the activities during the needs analysis phase can be usefully dis-

cussed in terms of the four basic steps of the systems engineering method described in 

Chapter  4 , with appropriate adaptations. These activities are summarized below: the 

generic names of the individual steps as used in Figure  4.12  are listed in parentheses. 

  Operations Analysis (Requirements Analysis).     Typical activities include  

   •      analyzing projected needs for a new system, either in terms of serious defi cien-

cies of current systems or the potential of greatly superior performance or 

lower cost by the application of new technology;  

   •      understanding the value of fulfi lling projected needs by extrapolating over the 

useful life of a new system; and  

   •      defi ning quantitative operational objectives and the concept of operation.      

 The general products of this activity are a list of  operational objectives  and  system 

capabilities . 

  Functional Analysis (Functional Defi nition).     Typical activities include  

   •      translating operational objectives into functions that must be performed and  

   •      allocating functions to subsystems by defi ning functional interactions and 

organizing them into a modular confi guration.      

 The general product of this activity is a list of initial  functional requirements . 

  Feasibility Defi nition (Physical Defi nition).     Typical activities include  

   •      visualizing the physical nature of subsystems conceived to perform the needed 

system functions and  
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   •      defi ning a feasible concept in terms of capability and estimated cost by 

varying (trading off) the implementation approach as necessary.      

 The general product of this activity is a list of initial  physical requirements . 

  Needs Validation (Design Validation).     Typical activities include  

   •      designing or adapting an effectiveness model (analytical or simulation) with 

operational scenarios, including economic (cost, market, etc.) factors;  

   •      defi ning validation criteria;  

   •      demonstrating the cost - effectiveness of the postulated system concept, after 

suitable adjustment and iteration; and  

   •      formulating the case for investing in the development of a new system to meet 

the projected need.      

 The general product of this activity are a list of operational  validation criteria . 

 Given a successful outcome of the needs analysis process, it is necessary to trans-

late the operational objectives into a formal and quantitative set of  operational require-

ments . Thus, this phase produces four primary products. And since three of these have 

the name  “ requirements ”  as part of their description, it can be confusing to separate the 

three. The primary output of the needs analysis phase is the set of operational require-

ments. But let us introduce four types of requirements so as not to confuse the reader. 

  Operational Requirements.     These refer largely to the mission and purpose of 

the system. The set of operational requirements will describe and communicate the end 

state of the world after the system is deployed and operated. Thus, these types of 

requirements are broad and describe the overall objectives of the system. All references 

relate to the system as a whole. Some organizations refer to these requirements as 

capability requirements, or simply required capabilities.  

  Functional Requirements.     These refer largely to what the system should do. 

These requirements should be action oriented and should describe the tasks or activities 

that the system performs during its operation. Within this phase, they refer to the system 

as a whole, but they should be largely quantitative. These will be signifi cantly refi ned 

in the next two phases.  

  Performance Requirements.     These refer largely to how well the system should 

perform its requirements and affect its environment. In many cases, these requirements 

correspond to the two types above and provide minimal numerical thresholds. These 

requirements are almost always objective and quantitative, though exceptions occur. 

These will be signifi cantly refi ned in the next two phases.  

  Physical Requirements.     These refer to the characteristics and attributes of the 

physical system and the physical constraints placed upon the system design. These may 

include appearance, general characteristics, as well as volume, weight, power, and 
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material and external interface constraints to which the system must adhere. Many 

organizations do not have a special name for these and refer to them simply as  con-

straints , or even  system requirements . These will be signifi cantly refi ned in the next 

two phases. 

 For new start systems, the fi rst iteration through the needs and requirements analy-

sis phase results in a set of operational requirements that are rather broad and are not 

completely defi ned. In the military, for example, the requirements - like document that 

emerges from the needs analysis is formally known as the ICD. This term is also used 

in the non - DoD community as a generic description of capabilities desired. In either 

case, the ICD document contains a broad description of the system concept needed and 

focuses on operational, or capability, requirements. Only top - level functional, perfor-

mance, and physical requirements are included. Later documents will provide detail to 

this initial list. 

 The elements of the systems engineering method as applied to the needs analysis 

phase described above are displayed in the fl ow diagram of Figure  6.2 . It is a direct 

adaptation of Figure  4.12 , with appropriate modifi cations for the activities in this phase. 

Rectangular blocks represent the four basic steps, and the principal activities are shown 

as circles, with the arrows denoting information fl ow.   

 The inputs at the top of the diagram are operational defi ciencies and technological 

opportunities. Defi ciencies in current systems due to obsolescence or other causes are 

need drivers. Technological opportunities resulting from an advance in technology that 

offers a potential major increase in performance or a decrease in cost of a marketable 

system are technology drivers. In the latter case, there must also be a projected concept 

of operation for the application of the new technology. 

 The two middle steps are concerned with determining if there is at least one pos-

sible concept that is likely to be feasible at an affordable cost and at an acceptable risk. 

The validation step completes the above analysis and also seeks to validate the signifi -

cance of the need being addressed in terms of whether or not it is likely to be worth 

the investment in developing a new system. Each of these four steps is further detailed 

in succeeding sections of this chapter.    

   6.2    OPERATIONS ANALYSIS 

 Whether the projected system development is need driven or technology driven, the 

fi rst issue that must be addressed is the existence of a valid need (potential market) for 

a new system. The development of a new system or a major upgrade is likely to be 

very costly and will usually extend over several years. Accordingly, a decision to initiate 

such a development requires careful and deliberate study. 

  Analysis of Projected Needs 

 In the commercial sector, market studies are continuously carried out to assess the 

performance of existing products and the potential demand for new products. Customer 

reactions to product characteristics are solicited. The reason for lagging sales is sys-
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     Figure 6.2.     Needs analysis phase fl ow diagram.  
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tematically probed. The strengths and weaknesses of competing systems and their likely 

future growth are analyzed. 

 For military systems, each service has one or more systems analysis organizations 

whose responsibility is to maintain a current assessment of their operational capability 

and readiness. These organizations have access to intelligence assessments of changes 
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in the military capability of potential adversaries that serve as inputs to effectiveness 

studies. In addition, periodic operational tests, such as simulated combat at sea, landing 

operations, and so on, serve to provide evidence of potential defi ciencies that may signal 

the need for developing a more capable system. A particularly important consideration 

is whether or not modifi cation of doctrine, strategy, or tactics can better meet the need 

with existing assets, thus reducing the urgency of acquiring expensive new assets. 

  Defi ciencies in Current Systems.     In virtually all cases, the need addressed by 

a projected new system is already being fulfi lled, at least in part, by an existing system. 

Accordingly, one of the fi rst steps in the needs analysis process is the detailed identi-

fi cation of the perceived defi ciencies in the current system. If the impetus for the new 

system is technology driven, the current system is examined relative to the predicted 

characteristics achieved with the prospective technology. 

 Since the development of a successor system or even a major upgrade of an exist-

ing system is likely to be technically complex and require years of challenging work, 

operational studies must focus on conditions as much as 10 years in the future. This 

means that the system owner/user must continually extrapolate the conditions in which 

the system operates and reevaluate system operational effectiveness. In this sense, some 

form of needs analysis is being conducted throughout the life of the system. 

 The above process is most effective when it combines accumulated test data with 

analysis, often using existing system simulations. This approach provides two major 

benefi ts: a consistent and accurate evaluation of system operational performance and a 

documented history of results, which can be used to support the formal process of needs 

analysis if a new development program becomes necessary.  

  Obsolescence.     The most prevalent single driving force for new systems is obso-

lescence of existing systems. System obsolescence can occur for a number of reasons; 

for example, the operating environment may change; the current system may become 

too expensive to maintain; the parts necessary for repair may be no longer available; 

competition may offer a much superior product; or technology may have advanced to 

the point where substantial improvements are available for the same or lower cost. 

These examples are not necessarily independent; combined elements of each can 

greatly accelerate system obsolescence. Belated recognition of obsolescence can be 

painful for all concerned. It can signifi cantly delay the onset of the needs analysis phase 

until time becomes critical. Vigilant self - evaluation should be a standard procedure 

during the operational life of a system. 

 An essential factor in maintaining a viable system is keeping aware of advances 

in technology. Varied research and development (R  &  D) activities are carried out by 

many agencies and industry. They receive support from government or private funding 

or combinations of both. In the defense sector, contractors are authorized to use a per-

centage of their revenues on relevant research as allowable overhead. Such activity is 

called independent research and development (IRAD). There are also a number of 

wholly or partially government - funded exploratory development efforts. Most large 

producers of commercial products support extensive applied R  &  D organizations. In 

any case, the wise system sponsor, owner, or operator should continually keep abreast 
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of these activities and should be ready to capitalize on them when the opportunity 

presents itself. Competition at all levels is a potent driver of these activities.   

  Operational Objectives 

 The principal outcome of operational studies is the defi nition of the objectives, in 

operational terms, that a new system must meet in order to justify its development. In 

a needs - driven development, these objectives must overcome such changes in the 

environment or defi ciencies in the current system as have generated the pressure for an 

improved system. In a technology - driven development, the objectives must embody a 

concept of operations that can be related to an important need. 

 The term  “ objectives ”  is used in place of  “ requirements ”  because at this early stage 

of system defi nition, the latter term is inappropriate; it should be anticipated that many 

iterations (see Fig.  6.2 ) would take place before the balance between operational per-

formance and technical risk, cost, and other developmental factors will be fi nally 

established. 

 To those inexperienced in needs analysis, the development of objectives can be a 

strange process. After all, engineers typically think in terms of requirements and speci-

fi cations, not high - level objectives. Although objectives should be quantifi able and 

objective, the reality is that most are qualitative and subjective at this early stage. Some 

rules of thumb can be helpful: 

   •      Objectives should address the end state of the operational environment or 

scenario — it focuses on what the system will accomplish in the large sense.  

   •      Objectives should address the purpose of the system and what constitutes the 

satisfaction of the need.  

   •      Taken together, objectives answer the  “ why ”  question — why is the system 

needed?  

   •      Most objectives start with the infi nitive word  “ provide, ”  but this is not 

mandatory.    

  Objectives Analysis.     The term objectives analysis is the process of developing 

and refi ning a set of objectives for a system. Typically, the product of this effort is an 

objectives tree, where a single or small set of top - level objectives are decomposed into 

a set of primary and secondary objectives. Figure  6.3  illustrates this tree. Decomposition 

is appropriate until an objective becomes verifi able, or you begin to defi ne functions 

of the system. When that occurs, stop at the objective. The fi gure illustrates functions 

by graying the boxes — they would not be part of your objectives tree. In our experience, 

most objectives trees span one or two levels deep; there is no need to identify extensive 

depth.   

 As an example of an objectives analysis, think about a new automobile. Suppose 

an auto company wants to design a new passenger vehicle, which it can market as 

 “ green ”  or environmentally friendly. Understanding the objectives of this new car 

establishes priorities for the eventual design. Thus, company management begins an 

objectives exercise. Objectives analysis forces the company, both management and the 
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technical staff, to evaluate and decide what is important when developing a new system. 

Therefore, it is worth investing some time, energy, and capital in determining what the 

overall objectives of the system are. Moreover, agreeing to a concise single statement 

helps focus the development team to the job at hand. 

 In the automobile example, the company might soon realize that the overall objec-

tive of this new vehicle is to provide users with clean transportation. The top - level 

objective does not include performance, cargo capacity, off - road capability, and so on. 

In the overall objective are two key words: clean and transportation. Both imply various 

aspects or attributes of this new car. Since both words are not yet well defi ned, we need 

to decompose them further. But the overall goal is clear: this vehicle is going to be 

environmentally  “ clean ”  and will provide suffi cient transportation. 

 The fi rst decomposition focuses the thinking of the development team. Clearly, the 

two key words need to be  “ fl eshed out. ”  In this case,  “ clean ”  may mean  “ good gas 

mileage ”  as well as  “ comfortable. ”  Transportation also implies a safe and enjoyable 

experience in the vehicle as it travels from one point to the next. There may also be 

another objective that is loosely tied to  clean  and  transportation  — cost. 

 Thus, in our example, the development team focuses on four primary objectives 

that fl ow from our overarching objective: comfort, mileage, safety, and cost. These four 

words need to be worded as an objective of course. Figure  6.4  presents one possibility 

of an objectives tree.   

 In determining whether an objective needs further decomposition, one should ask 

a couple of questions: 

   •      Does the objective stand on its own in terms of clarity of understanding?  

   •      Is the objective verifi able?  

     Figure 6.3.     Objectives tree structure.  
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   •      Would decomposition lead to better understanding?  

   •      Are requirements and functions readily implied by the objective?    

 In our example, one could argue that three of the primary objectives are suffi cient 

as stated, and all three are verifi able. Only the subjective objective relating to comfort 

needs further decomposition. In this case, comfort can be divided into three compo-

nents: a sound system, noise levels that allow conversation, and physical space. As 

worded in the fi gure, these three could all be verifi ed by various methods (a satisfaction 

survey in the fi rst, a defi nition of noise levels for normal conversation, and volume 

requirements). Having an objectives tree focuses the development effort on the priori-

ties. In our example, the four primary objectives communicate what is important with 

this new automobile. 

 In many cases where objectives trees are used, an initial tree will be similar to our 

example, listing only those objectives that are the highest priorities. These trees would 

then be expanded to include other areas that will need to be addressed. For our auto-

mobile, these  “ other ”  areas would include maintenance considerations, human – system 

interaction expectations, and cargo space, to name a few. An objective of having an 

objectives tree is ultimately to identify the functions and their performance require-

ments. Therefore, the logical next step after objectives analysis is functional analysis.    

   6.3    FUNCTIONAL ANALYSIS 

 At this initial phase of the system development process, functional analysis is an exten-

sion of operational studies, directed to establishing whether there is a feasible technical 

approach to a system that could meet the operational objectives. At this stage, the term 

 “ feasible ”  is synonymous with  “ possible ”  and implies making a case that there is a 

good likelihood that such a system could be developed within the existing state of the 

art, without having to prove it beyond reasonable doubt. 

     Figure 6.4.     Example objectives tree for an automobile.  
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  Translation of Operational Objectives into System Functions 

 To make such a case, it is necessary to visualize the type of system that could carry 

out certain actions in response to its environment that would meet the projected opera-

tional objectives. This requires an analysis of the types of functional capabilities that 

the system would have to possess in order to perform the desired operational actions. 

In needs - driven systems, this analysis is focused on those functional characteristics 

needed to satisfy those operational objectives that are not adequately handled by current 

systems. In technology - driven systems, the advances in functional performances would 

presumably be associated with the technology in question. In any case, both the feasi-

bility of these approaches and their capability to realize the desired operational gains 

must be adequately demonstrated. 

 The visualization of a feasible system concept is inherently an abstract process that 

relies on reasoning on the basis of analogy. This means that all the elements of the 

concept should be functionally related to elements of real systems. A helpful approach 

to the translation of operational objectives to functions is to consider the type of primary 

media (signals, data, material, or energy) that are most likely to be involved in accom-

plishing the various operational objectives. This association usually points to the class 

of subsystems that operate on the medium, as, for example, sensor or communication 

subsystems in the case of signals, computing subsystems for data, and so on. In the 

above process, it must be shown that all of the principal system functions, especially 

those that represent advances over previous systems, are similar to those already dem-

onstrated in some practical context. An exception to this process of reasoning by 

analogy is when an entirely new type of technology or application is a principal part 

of a proposed system; in this case, it may be necessary to go beyond analysis and to 

demonstrate its feasibility by modeling and, ultimately, experimentation. 

 In identifying the top - level functions that the system needs to perform, it is impor-

tant even at this early stage to visualize the entire system life cycle, including its 

nonoperational phases. 

 The above discussion is not meant to imply that all considerations at this stage are 

qualitative. On the contrary, when primarily quantitative issues are involved, as in the 

example of automobile pollution, it is necessary to perform as much quantitative analy-

sis as available resources and existing knowledge permit.  

  Allocation of Functions to Subsystems 

 In cases where all operational objectives can be directly associated with system - level 

functions that are analogous to those presently exhibited by various real systems, it is 

still essential to visualize just how these might be allocated, combined, and imple-

mented in the new system. For this purpose, it is not necessary to visualize some best 

system confi guration. Rather, it need only be shown that the development and produc-

tion of an appropriate system is, in fact, feasible. Toward this end, a top - level system 

concept that implements all the prescribed functions should be visualized in order to 

demonstrate that the desired capabilities can be obtained by a plausible combination of 

the prescribed functions and technical features. Here it is particularly important that all 
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interactions and interfaces, both external and internal to the system, be identifi ed and 

associated with the system functions, and that a trade - off process be employed to ensure 

that the consideration of the various system attributes is thorough and properly bal-

anced. This is typically done in terms of an initial concept of operation.   

   6.4    FEASIBILITY DEFINITION 

 The feasibility of a system concept (and therefore of meeting the projected need) cannot 

be established solely on the basis of its functional design. The issue of feasibility must 

also address the physical implementation. In particular, system cost is always a domi-

nant consideration, especially as it may compare to that of other alternatives, and this 

cannot be judged at the functional level. Accordingly, even at this initial phase of system 

development, it is necessary to visualize the physical makeup of the system as it is 

intended to be produced. It is also necessary to visualize all external constraints and 

interactions, including compatibility with other systems. 

 While it is necessary to consider the physical implementation of the projected 

system in the needs analysis phase, this does not imply that any design decisions are 

made at this time. In particular, no attempt should be made to seek optimum designs; 

those issues are dealt with much later in the development process. The focus at this 

point is to establish feasibility to meet a given set of operational objectives. It is the 

validation of these objectives that is the primary purpose of the needs analysis phase. 

The paragraphs that follow discuss some of the issues that need to be considered, but 

only in an exploratory way. 

  Visualization of Subsystem Implementation 

 Given the allocation of functions to subsystems, it is necessary to envision how these 

might be implemented. At this stage, it is only necessary to fi nd examples of similar 

functional units in existing systems so that the feasibility of applying the same type of 

technology to the new system may be assessed. The identifi cation of the principal media 

involved in each major function (signal, data, material, and energy), as discussed in the 

previous section, is also helpful in fi nding systems with similar functional elements 

and, hence, with physical implementations representative of those required in the new 

system. 

  Relation to the Current System.     Where there exists a system that has been 

meeting the same general need for which the new system is intended, there are usually 

a number of subsystems that may be candidates for incorporation in modifi ed form in 

the new system. Whether or not they will be utilized as such, they are useful in building 

a case for system feasibility and for estimating part of the development and production 

cost of the new system. 

 Existing models and simulations of the current system are especially useful tools 

in this type of analysis since they will usually have been verifi ed against data gathered 

over the life of the system. They may be used to answer  “ What if? ”  questions and to 
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fi nd the driving parameters, which helps to focus the analysis process. Another impor-

tant tool, used in conjunction with the system simulation, is an effectiveness model and 

the analytic techniques of effectiveness analysis, as described in the next section. 

 Other less tangible factors can also come into play, such as the existence of a 

support infrastructure. In the case of the automobile engine, many years of successful 

operation have established a very wide base of support for conventional reciprocating 

engines in terms of repair sites, parts suppliers, and public familiarity. Because of the 

prospective cost for changing this base, innovative changes, such as the Wankel rotary 

engine and designs based on the Stirling cycle  , have been resisted. The point here is 

that benefi cial technological innovations are often overridden by economic or psycho-

logical resistance to change.  

  Application of Advanced Technology.     In technology - driven systems, it is 

more diffi cult to establish feasibility by reference to existing applications. Instead, it 

may be necessary to build the case on the basis of theoretical and experimental data 

available from such research and development work as has been done on the candidate 

technology. In case this proves to be insuffi cient, limited prototyping may be required 

to demonstrate the basic feasibility of the application. Consultation with outside experts 

may be helpful in adding credibility to the feasibility investigation. 

 Unfortunately, highly touted technical advances may also come with unproven 

claims and from unreliable sources. Sometimes, a particular technology may offer a 

very substantial gain but lacks maturity and an established knowledge base. In such 

situations, the case for incorporating the technology should be coupled with a compa-

rably capable backup alternative. Systems engineers must be intimately involved in the 

above process to keep the overall system priorities foremost.  

  Cost.     The assessment of cost is always an important concern in needs analysis. 

This task is particularly complicated when there is a mix of old, new, and modifi ed 

subsystems, components, and parts. Here again, cost models and maintenance records 

of the current system, combined with infl ation factors, can be helpful. By comparing 

similar components and development activities, cost estimation will at least have 

a credible base from which to work. In the case of new technology, cost estimates 

should contain provisions for substantial development and testing prior to commitment 

for its use.   

  Defi nition of a Feasible Concept 

 To satisfy the objectives of the needs analysis phase, the above considerations should 

culminate in the defi nition and description of a plausible system concept, and a well -

 documented substantiation of its technical feasibility and affordability. The system 

description should include a discussion of the development process, anticipated risks, 

general development strategy, design approach, evaluation methods, production issues, 

and concept of operations. It should also describe how the cost of system development 

and production had been assessed. It need not be highly detailed but should show that 

all major aspects of system feasibility have been addressed.   
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   6.5    NEEDS VALIDATION 

 The fi nal and most critical step in the application of the systems engineering method 

is the systematic examination of the validity of the results of the previous steps. In the 

case of the needs analysis phase, the validation step consists of determining the basic 

soundness of the case that has been made regarding the existence of a need for a new 

system and for the feasibility of meeting this need at an affordable cost and at an accept-

able risk. 

  Operational Effectiveness Model 

 In the concept development stage the analyses that are designed to estimate the degree 

to which a given system concept may be expected to meet a postulated set of operational 

requirements is called  operational effectiveness analysis . It is based on a mathematical 

model of the operational environment and of the candidate system concept being 

analyzed. 

 In effectiveness analysis, the operational environment is modeled in terms of a set 

of scenarios — postulated actions that represent a range of possible encounters to which 

the system must react. Usually, initial scenarios are selected to present the more likely 

situations, followed by more advanced cases for testing the limits of the operational 

requirements. For each scenario, the acceptable responses of the system in terms of 

operational outcomes are used as evaluation criteria. To animate the engagements 

between the system model and the scenarios, an effectiveness model is designed with 

the capability of accepting variable system performance parameters from the system 

model. A more extensive treatment of operational scenarios is contained in the next 

section. 

 Effectiveness analysis must include not only the operational modes of the system 

but also must represent its nonoperating modes, such as transport, storage, installation, 

maintenance, and logistics support. Collectively, all the signifi cant operational require-

ments and constraints need to be embodied in operational scenarios and in the accom-

panying documentation of the system environment. 

  System Performance Parameters.     The inputs from the system model to the 

effectiveness analysis are values of performance characteristics that defi ne the system ’ s 

response to its environment. For example, if a radar device needs to sense the presence 

of an object (e.g., an aircraft), its predicted sensing parameters are entered to determine 

the distance at which the object will be detected. If it needs to react to the presence of 

the object, its response processing time will be entered. The effectiveness model ensures 

that all of the signifi cant operational functions are addressed in constructing the system 

model.  

  Measures of Effectiveness (MOE).     To evaluate the results of effectiveness 

simulations, a set of criteria is established that identifi es those characteristics of 

the system response to its environment that are critical to its operational utility. These 

are called  “ MOE. ”  They should be directly associated with specifi c objectives and 
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prioritized according to their relative operational importance. MOE and measures of 

performance (MOP) are described in more detail below. 

 While the effort required to develop an adequate effectiveness model for a major 

system is extensive, once developed, it will be valuable throughout the life of the 

system, including potential future updates. In the majority of cases where there is a 

current system, much of the new effectiveness model may be derived from its 

predecessor.  

  The Analysis Pyramid.     When estimating or measuring the effectiveness of a 

system, the analyst needs to determine the perspective within which the system ’ s effec-

tiveness will be described. For example, the system effectiveness may be described 

within a larger context, or mission, where the system is one of many working loosely 

or tightly together to accomplish a result. On the other hand, effectiveness can be 

described in terms of an individual system ’ s performance in a given situation in 

response to selected stimuli, where interaction with other systems is minimal. 

 Figure  6.5  depicts a common representation of what is known as the analysis 

pyramid. At the base of the pyramid is the foundational physics and physical phenom-

enology knowledge. Analysis at this end of the spectrum involves a detailed evaluation 

of environmental interactions, sometimes down to the molecular level.   

 As the analyst travels up the pyramid, details are abstracted and the perspective of 

the analyst broadens, until he reaches the apex. At this level, technical details have been 

completely abstracted and the analysis focuses on strategy and policy alternatives and 

implications. 

 The systems engineer will fi nd that typically, analysis perspectives during the needs 

analysis phase tend to be near the top of the pyramid. Although strategy may not be in 

the domain of the system development effort, certainly the system ’ s effectiveness within 

a multiple - mission or a single - mission context would need to be explored. The lower 

     Figure 6.5.     Analysis pyramid.  
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part of the pyramid is usually not analyzed due to lack of system defi nition. As the 

system becomes more defi ned, the analysis performed will tend to migrate down the 

pyramid. We will explore the analysis pyramid more as we continue our look at systems 

engineering within the development phases.   

  MOE and MOP 

 With the introduction of operational effectiveness analysis, we need to explore the 

concept and meaning of certain metrics. Metrics are key to ultimately defi ning the 

system, establishing meaningful and verifi able requirements, and testing the system. 

Therefore, defi ning these metrics appropriately and consistently through the develop-

ment life cycle is essential. 

 Many terms exist to describe these effectiveness and performance metrics. Two 

commonly used terms (and ones we will use throughout this book) are MOEs and 

MOPs. Unfortunately, no universal defi nitions exist for these terms. But the basic 

concept behind them is crucial to understanding and communicating a system concept. 

 We propose the following defi nitions for this book: 

  MOE:       a qualitative or quantitative metric of a system ’ s overall performance that 

indicates the degree to which it achieves it objectives under specifi ed conditions. 

An MOE always refers to the system as a whole.  

  MOP:       a quantitative metric of a system ’ s characteristics or performance of a par-

ticular attribute or subsystem. An MOP typically measures a level of physical 

performance below that of the system as a whole.    

 Regardless of the defi nition you use, it is a universal axiom that an MOE is superior 

to MOP. In other words, if the two are placed in a hierarchy, MOEs will always be 

above MOPs. 

 Typically, an MOE or MOP will have three parts: the metric, its units, and the 

conditions or context under which the metric applies. For example, an MOE of a new 

recreational aircraft (such as a new version of Piper Cub) would be maximum range, 

in nautical miles at sea level on a standard atmospheric day. The metric is  “ maximum 

range ” ; the units are  “ nautical miles ” ; and the conditions are  “ a standard atmospheric 

day (which is well defi ned) at sea level. ”  This MOE relates to the aircraft as a whole 

and describes one aspect of its performance in achieving the objective of aerial fl ight. 

 MOEs can be of many forms, but we can defi ne three general categories: measure-

ment, likelihood, or binary. Measurement is an MOE that can be directly measured 

(either from an actual system, subsystem, or mathematical or physical model). It may 

be deterministic or random. Likelihood MOEs correspond to a probability of an event 

occurring and may include other MOEs. For example, a likelihood MOE could be the 

probability of an aircraft achieving a maximum altitude of 20,000   ft. In this case, the 

likelihood is defi ned in terms of another measurement MOE. Finally, a binary MOE is 

a logical variable of the occurrence of an event. Either the event occurs or not. 

 When an MOE is measured or determined, we call the resultant measurement 

the  value  of the MOE. Thus, in our aircraft example, if we measure the maximum 
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range of a new aircraft as 1675   nm, then  “ 1675 ”  is the value. Of course, MOEs, as any 

metrics, can have multiple values under different conditions or they could be random 

values. 

 Finally, engineers use binary MOEs to determine whether a particular characteristic 

of a system exceeds a threshold. For example, we could defi ne a threshold for the 

maximum range of an aircraft as 1500   nm at sea level on a standard day. A binary MOE 

could then be defi ned to determine whether a measured value of the MOE exceeds our 

threshold. For example, the binary MOE would be  “ yes ” ; our measured value of 

1675   nm exceeds our threshold of 1500   nm. 

 MOEs and MOPs are diffi cult concepts to grasp! Unless one has worked with 

metrics before, they tend to be confusing. Many students of systems engineering will 

provide a requirement when asked for an MOE. Others provide values. Still others 

simply cannot identify MOEs for a new system. However, the concept of measures is 

utilized throughout the systems engineering discipline. We will revisit these concepts 

in the subsequent chapters.  

  Validation of Feasibility and Need 

 Finally, the effectiveness analysis described above is mainly directed to determining 

whether or not a system concept, derived in the functional and physical defi nition 

process, is (1) feasible and (2) satisfi es the operational objectives required to meet a 

projected need. It assumes that the legitimacy of the need has been established previ-

ously. This assumption is not always a reliable one, especially in the case of technology -

 driven system developments, where the potential application is new and its acceptance 

depends on many intangible factors. A case in point, of which there are hundreds of 

examples, is the application of automation to a system previously operated mainly by 

people. (The airplane reservation and ticketing system is one of the larger successful 

ones.) The validation of the need for such a system requires technical, operational, and 

market analyses that seek to take into account the many complex factors likely to affect 

the acceptability of an automated system and its probable profi tability. 

 In complex cases such as the above example, only a very preliminary validation 

can be expected before considerable exploratory development and experimentation 

should take place. However, even a preliminary validation analysis will bring out most 

of the critical issues and may occasionally reveal that the likelihood of meeting some 

postulated needs may be too problematical to warrant a major investment at the current 

state of the technology.   

   6.6    SYSTEM OPERATIONAL REQUIREMENTS 

 The primary product of needs analysis is a set of operational objectives, which are then 

translated into a set of operational requirements. The system operational requirements 

that result from the needs analysis phase will establish the reference against which the 

subsequent development of a system to meet the projected needs will be judged. 

Accordingly, it is essential that these requirements be clear, complete, consistent, and 
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feasible of accomplishment. The feasibility has presumably been established by the 

identifi cation of at least one system approach that is judged to be both feasible and 

capable of meeting the need. It remains to make certain that the operational require-

ments are adequate and consistent. 

  Operational Scenarios 

 A logical method of developing operational requirements is to postulate a range of 

scenarios that together are representative of the full gamut of expected operational situ-

ations. These scenarios must be based on an extensive study of the operational environ-

ment, discussions with experienced users of the predecessor and similar systems, and 

a detailed understanding of past experience and demonstrated defi ciencies of current 

systems. It is especially important to establish the user priorities for the required 

improvements, in particular, those that appear most diffi cult to achieve. 

 While scenarios range widely in their content depending on their application, we 

are able to defi ne fi ve basic components of almost all scenarios. 

  1.     Mission Objectives.     The scenario should identify the overall objectives of the 

mission represented, and the purpose and role of the system(s) in focus in 

accomplishing those objectives. In some cases, this component is system inde-

pendent, meaning that the role of any one system is not presented — only a 

general description of the mission at stake and the objectives sought. In a com-

mercial example, the mission could be to capture market share. In a government 

example, the mission might be to provide a set of services to constituents. In a 

military example, the mission might be to take control of a particular physical 

installation.  

  2.     Architecture.     The scenario should identify the basic system architecture 

involved. This includes a list of systems, organizations, and basic structural 

information. If governance information is available, this would be included. 

This component could also include basic information on system interfaces or a 

description of the information technology infrastructure. In essence, a descrip-

tion of the resources available is provided. In a commercial scenario, the 

resources of the organization are described. If this is a government scenario, 

the organizations and agencies involved in the mission are described. If this is 

a military scenario, these resources could include the units involved, with their 

equipment.  

  3.     Physical Environment.     The scenario should identify the environment in which 

the scenario takes place. This would include the physical environment (e.g., 

terrain, weather, transportation grid, and energy grid) as well as the business 

environment (e.g., recession and growth period).  “ Neutral ”  entities are described 

in this section. For example, customers and their attributes would be defi ned, 

or neutral nations and their resources.  

  4.     Competition.     The scenario should identify competition to your efforts. This 

may be elements that are directly opposed to your mission success, such as a 
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software hacker or other type of  “ enemy. ”  This may be your competition in the 

market or outside forces that infl uence your customers. This could also include 

natural disasters, such as a tsunami or hurricane.  

  5.     General Sequence of Events.     The scenario should describe a general sequence 

of events within the mission context. We are careful to use the term  general  

though. The scenario should allow for freedom of action on the part of the 

players. Since we use scenarios to generate operational requirements and to 

estimate system effectiveness, we need the ability to alter various parameters 

and events within the overall scenario description. Scenarios should not  “ script ”  

the system; they are analysis tools, not shackles to restrain the system develop-

ment. Thus, scenarios typically provide a general sequence of events and leave 

the details to an analyst using the scenario. At times, a scenario may provide a 

detailed sequence of events leading up to a point in time, whereby the analysis 

starts and actions may be altered from that time forward.    

 A scenario could include much more, depending on its application and intended 

purpose. They come in all sizes, from a short, graphic description of a few pictures to 

hundreds of pages of text and data. 

 Even though the operational scenarios developed during this phase are frequently 

not considered a part of the formal operational requirements document, in complex 

systems, they should be an essential input to the concept exploration phase. Experience 

has shown that it is seldom possible to encompass all of the operational parameters into 

a requirements document. Further, the effectiveness analysis process requires opera-

tional inputs in scenario form. Accordingly, a set of operational scenarios should be 

appended to the requirements document, clearly stating that they are representative and 

not a comprehensive statement of requirements. 

 As noted above, the scenarios should include not only the active operational inter-

actions of the system with its environment but also the requirements involved in its 

transport, storage, installation, maintenance, and logistics support. These phases often 

impose physical and environmental constraints and conditions that are more severe than 

normal operations. The only means for judging whether or not requirements are com-

plete is to be sure that all situations are considered. For example, the range of tempera-

ture or humidity of the storage site may drastically affect system life.  

  Operational Requirements Statements 

 Operational requirements must initially be described in terms of operational outcomes 

rather than system performance. They must not be stated in terms of implementation 

nor biased toward a particular conceptual approach. All requirements should be 

expressed in measurable (testable) terms. In cases where the new system is required to 

use substantial portions of an existing system, this should be specifi cally stated. 

 The rationale for all requirements must be stated or referenced. It is essential for 

the systems engineers leading the system development to understand the requirements 

in terms of user needs so that inadvertent ambiguities do not result in undue risks or 

costs. 
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 The time at which a new system needs to be available is not readily derived 

from purely operational factors but may be critical in certain instances due to 

fi nancial factors, obsolescence of current systems, schedules of system platforms 

(e.g., airplanes and airports), and other considerations. This may place constraints on 

system development time and hence on the degree of departure from the existing 

system. 

 Since the initially stated operational requirements for a new system are seldom 

based on an exhaustive analysis, it should be understood by both the customer and 

potential developer that these requirements will be refi ned during the development 

process, as further knowledge is gained concerning the system needs and operating 

environment. 

 From the above considerations, it is seen that work carried out during the needs 

analysis phase must be regarded as preliminary. Subsequent phases will treat all system 

aspects in more detail. However, experience has shown that the basic conceptual 

approach identifi ed during needs analysis often survives into subsequent phases. This 

is to be expected because considerable time and effort is usually devoted to this process, 

which may last for 2 or 3 years. Even though only limited funds are expended, many 

organizations are often involved.  

  Feasibility Validation 

 Effectiveness analysis is intrinsically concerned with the functional performance of a 

system and therefore cannot in itself validate the feasibility of its physical implementa-

tion. This is especially true in the case where unproven technology is invoked to achieve 

certain performance attributes. 

 An indirect approach to feasibility validation is to build a convincing case by 

analogy with already demonstrated applications of the projected technique. Such an 

approach may be adequate, provided that the application cited is truly representative 

of that proposed in a new system. It is important, however, that the comparison be 

quantitative rather than only qualitative so as to support the assumed performance 

resulting from the technology application. 

 A direct approach to validating the feasibility of a new physical implementation is 

to conduct experimental investigations of the techniques to be applied to demonstrate 

that the predicted performance characteristics can be achieved in practice. This approach 

is often referred to as  “ critical experiments, ”  which are conducted early in the program 

to explore new implementation concepts. 

 The resources available for carrying out the validation process in the needs analysis 

phase are likely to be quite limited, since the commitment to initiate the actual develop-

ment of the system has not yet been made. Accordingly, the quality of the validation 

process will depend critically on the experience and ingenuity of the systems engineer-

ing staff. The experience factor is especially important here because of the dependence 

of the work on knowledge of the operational environment, of the predecessor system, 

of analyses and studies previously performed, of the technological base, and of the 

methods of systems analysis and systems engineering. 
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  Importance of Feasibility Demonstration.     In defi ning a basis for developing 

a new system, the needs analysis phase not only demonstrates the existence of an 

important unfulfi lled operational need but also provides evidence that satisfying the 

need is feasible. Such evidence is obtained by visualizing a realistic system concept 

that has the characteristics required to meet the operational objectives. This process 

illustrates a basic systems engineering principle that establishing realistic system 

requirements must include the simultaneous consideration of a system concept that 

could meet those requirements. This principle contradicts the widely held notion that 

requirements, derived from needs, should be established prior to consideration of any 

system concept that can fulfi ll those requirements.    

   6.7    SUMMARY 

  Originating a New System 

 Objectives of the needs analysis phase are to identify a valid operational need for a 

new system and to develop a feasible approach to meeting that need. This needs - driven 

system development approach is characteristic of most defense and other government 

programs and typically stems from a defi ciency in current system capabilities. This type 

of development requires a feasible and affordable technical approach. 

 The other major type of approach is the technology - driven system development 

approach. This approach is characteristic of most commercial system development and 

stems from a major technological opportunity to better meet a need. This type of devel-

opment requires demonstration of practicality and marketability. 

 Activities comprising the needs analysis phase are the following: 

   •      Operations Analysis —   understanding the needs for a new system;  

   •      Functional Analysis —   deriving functions required to accomplish operations;  

   •      Feasibility Defi nition —   visualizing a feasible implementation approach; and  

   •      Needs Validation —   demonstrating cost - effectiveness.     

  Operations Analysis 

 Studies and analyses are conducted to generate and understand the operational needs 

of the system. These studies feed the development of an objectives tree — describing 

the hierarchy of system expectations and outcomes.  

  Functional Analysis 

 Initial system functions are identifi ed and organized that will achieve operational 

objectives. These functions are vetted through analysis and presentation to users and 

stakeholders.  
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  Feasibility Defi nition 

 The system development approach is decided upon, articulated to stakeholders, and 

approximately costed. Moreover, an early feasible concept is articulated. Finally, devel-

oping operational requirements commences.  

  Needs Validation 

 The vetted set of operational needs is now validated by operational effectiveness analy-

sis, usually at multiple levels within the analysis pyramid. System concepts that satisfy 

the operational needs are evaluated with agreed - upon MOE and refl ect the entire system 

life cycle.   

  PROBLEMS 

    6.1     Describe and defi ne the principal outputs (products) of the needs analysis 

phase. List and defi ne the primary systems engineering activities that contrib-

ute to these products.  

  6.2     Identify the relationships between operational objectives and functional 

requirements for the case of a new commuter aircraft. Cite three operational 

objectives and the functional requirements that are needed to realize these 

objectives. (Use qualitative measures only.)  

  6.3     Referring to Figure  6.2 , which illustrates the application of the systems engi-

neering method to the needs analysis phase, select one of the four sections of 

the diagram and write a description of the processes pictured in the diagram. 

Explain the nature and signifi cance of the two processes represented by circles 

and of each internal and external interaction depicted by arrows. The descrip-

tion should be several times more detailed than the defi nition of the step in 

the subsection describing the systems engineering method in needs analysis.  

  6.4     What is meant by  “ MOE ” ? For the effectiveness analysis of a sport utility 

vehicle (SUV), list what you think would be the 10 most important character-

istics that should be exercised and measured in the analysis.  

  6.5     For six of the MOE of the SUV (see Problem 6.4), describe an operational 

scenario for obtaining a measure of its effectiveness.  

  6.6     Assume that you have a business in garden care equipment and are planning 

to develop one or two models of lawn tractors to serve suburban homeowners. 

Consider the needs of the majority of such potential customers and write at 

least six operational requirements that express these needs. Remember the 

qualities of good requirements as you do so. Draw a context diagram for a 

lawn tractor.  

  6.7     Given the results of Problem 6.6, describe how you would perform an analysis 

of alternatives to gain an understanding of the functional requirements and 

optional features that could fi t the tractor to individual needs. Describe the 



164 NEEDS ANALYSIS

MOE you would use and the alternative architectures you would analyze. 

Describe the pros and cons for a single model as opposed to two models of 

different sizes and powers.     
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    7.1    DEVELOPING THE SYSTEM REQUIREMENTS 

 Chapter  6  discussed the process of needs analysis, which is intended to provide a well -

 documented justifi cation for initiating the development of a new system. The process 

also produces a set of operational requirements (or objectives) that describe what the 

new system must be designed to do. Assuming that those responsible for authorizing 

the initiation of a system development have been persuaded that these preliminary 

requirements are reasonable and attainable within the constraints imposed by time, 

money, and other external constraints, the conditions have been achieved for taking the 

next step in the development of a new system. 

 The principal objective of the concept exploration phase, as defi ned here, is to 

convert the operationally oriented view of the system derived in the needs analysis 

phase into an engineering - oriented view required in the concept defi nition and subse-

quent phases of development. This conversion is necessary to provide an explicit and 

quantifi able basis for selecting an acceptable functional and physical system concept, 

and then for guiding its evolution into a physical model of the system. It must be 
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remembered, however, that the performance requirements are an interpretation, not a 

replacement of operational requirements. 

 As in the case of operational requirements, the derivation of system performance 

requirements must also simultaneously consider system concepts that could meet them. 

However, to ensure that the performance requirements are suffi ciently broad to avoid 

unintentionally restricting the range of possible system confi gurations, it is necessary 

to conceive not one, but to explore a variety of candidate concepts. 

 New systems that strive for a major advance in capability over their predecessors, 

or depend on the realization of a technological advance, require a considerable amount 

of exploratory research and development (R  &  D)   before a well - founded set of perfor-

mance requirements can be established. The same is true for systems that operate in 

highly complex environments and whose characteristics are not fully understood. For 

these cases, an objective of the concept exploration phase is to acquire the needed 

knowledge through applied R  &  D. This objective may sometimes take several years 

to accomplish, and occasionally, these efforts prove that some of the initial operational 

objectives are impracticable to achieve and require major revision. 

 For the above reasons it, is appropriate that this chapter, which deals with the 

development of system requirements, is entitled  “ Concept Exploration. ”  Its intent is to 

describe the typical activities that take place in this phase of system development and 

to explain their whys and hows. 

 The discussion that follows is generally applicable to all types of complex systems. 

For information systems, in which software performs virtually all the functionality, the 

section on software concept development in Chapter  11  discusses software system 

architecture and its design and should also be consulted. 

  Place of Concept Exploration Phase in the System Life Cycle 

 The place of the concept exploration phase in the overall system development process 

is shown in Figure  7.1 . It is seen that the top - level system operational requirements 

     Figure 7.1.     Concept exploration phase in a system life cycle.  
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come from needs analysis, which establishes that the needs are justifi ed and that a 

development program is feasible within prescribed bounds. The outputs of the concept 

exploration phase are a set of system performance requirements down to the subsystem 

level and a number of potential system design concepts that analysis indicates to be 

capable of fulfi lling those requirements.   

 While the formally defi ned concept exploration phase has a well - defi ned beginning 

and end, many of the supporting activities do not. For example, the exploratory devel-

opment of advanced technological approaches or the quantitative characterization of 

complex system environments often begins before and extends beyond the formal terms 

of this phase, being supported by independent research and development (IRAD)   or 

other nonproject funds. Additionally, considerable preliminary concept defi nition activ-

ity usually takes place well before the formal beginning of this phase. 

 The specifi c content of the concept exploration phase depends on many factors, 

particularly the relationship between the customer and the supplier or developer, and 

whether the development is needs driven or technology driven. If the system developer 

and supplier are different from the customer, as is frequently the case in needs - driven 

system developments, the concept exploration phase is conducted in part by the cus-

tomer ’ s own organization or with the assistance of a systems engineering agent engaged 

by the customer. The focus is on the development of performance requirements that 

accurately state the customer ’ s needs in terms that one or more suppliers could respond 

to with specifi c product concepts. In the case of a technology - driven system develop-

ment, the concept exploration phase is often conducted by the system developer and is 

focused on ensuring that all viable alternative courses of action are considered before 

deciding whether or not to pursue the development of a new system. In both cases, a 

primary objective is to derive a set of performance requirements that can serve as the 

basis of the projected system development and that have been demonstrated to ensure 

that the system product will meet a valid operational need. 

 For many acquisition programs, the period between the approval of a new 

system start and the availability of budgeted funds is often used to sponsor explora-

tory contractor efforts to advance technologies related to the anticipated system 

development.  

  System Materialization Status 

 The needs analysis phase was devoted to defi ning a valid set of operational objectives 

to be achieved by a new system, while a feasible system concept was visualized only 

as necessary to demonstrate that there was at least one possible way to meet the pro-

jected need. The term  “ visualize ”  is meant to connote the conceptualization of the 

general functions and physical embodiment of the subject in the case of needs analysis 

at the subsystem level. 

 Thus, in the concept exploration phase, one starts with a vision based generally on 

the above feasible concept. The degree of system materialization addressed in this phase 

has progressed to the next level, namely, the defi nition of the functions that the system 

and its subsystems must perform to achieve the operational objectives, and to the 



  TABLE 7.1.    Status of System Materialization of the Concept Exploration Phase 

   Level  

   Phase  

   Concept development     Engineering development  

   Needs analysis  

   Concept 

exploration     Concept defi nition  

   Advanced 

development  

   Engineering 

design  

   Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, 

and synthesize 

concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne 

requirements and 

ensure feasibility  

  Defi ne functional 

and physical 

architecture  

  Validate 

subsystems  

      Integrate and test  

  Component            Allocate functions 

to components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

1
6
8
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visualization of the system ’ s component confi guration, as illustrated in Table  7.1  (an 

overlay of Table  4.1 ).    

  Systems Engineering Method in Concept Exploration 

 The activities in the concept exploration phase and their interrelationships are the result 

of the application of the systems engineering method (see Chapter  4 ). A brief summary 

of these activities is listed below; the names of the four generic steps in the method are 

shown in parentheses. 

  Operational Requirements Analysis (Requirements Analysis).     Typical activities 

include  

   •      analyzing the stated operational requirements in terms of their objectives; 

and  

   •      restating or amplifying, as required, to provide specifi city, independence, 

and consistency among different objectives, to assure compatibility with 

other related systems, and to provide such other information as may be 

needed for completeness.     

   Performance Requirements Formulation (Functional Defi nition).     Typical activi-

ties include  

   •      translating operational requirements into system and subsystem functions 

and  

   •      formulating the performance parameters required to meet the stated opera-

tional requirements.     

   Implementation Concept Exploration (Physical Defi nition).     Typical activities 

include  

   •      exploring a range of feasible implementation technologies and concepts 

offering a variety of potentially advantageous options,  

   •      developing functional descriptions and identifying the associated system 

components for the most promising cases, and  

   •      defi ning a necessary and suffi cient set of performance characteristics 

refl ecting the functions essential to meeting the system ’ s operational 

requirements.     

   Performance Requirements Validation (Design Validation).     Typical activities 

include  

   •      conducting effectiveness analyses to defi ne a set of performance 

requirements that accommodate the full range of desirable system 

concepts; and  

   •      validating the conformity of these requirements with the stated operational 

objectives and refi ning the requirements if necessary.      

 The interrelationships among the activities in the above steps in the systems engineering 

method are depicted in the fl ow diagram of Figure  7.2 .     
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   7.2    OPERATIONAL REQUIREMENTS ANALYSIS 

 As in all phases of the system development process, the fi rst task is to understand 

thoroughly, and, if necessary, to clarify and extend, the system requirements defi ned in 

the previous phase (in this case the operational requirements). In so doing, it is impor-

tant to be alert for and to avoid shortcomings that are often present in the operational 

requirements as initially stated. We use a general process, known as  requirements 

     Figure 7.2.     Concept exploration phase fl ow diagram.  
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analysis , to identify and discover performance requirements, to synthesize and mini-

mize initial sets of requirements, and fi nally, to validate the fi nal set of requirements. 

This requirements analysis process, as mentioned in Chapter  4 , occurs at each phase. 

However, the majority of effort occurs in the concept exploration phase where opera-

tional requirements are transformed into system performance requirements with mea-

surable thresholds of performance. These system performance requirements tend to be 

the basis for contractual agreements between the customer and the developer and there-

fore need to be accurate and concise. 

 Figure  7.3  depicts the general process for developing requirements. Of course, this 

would be tailored to a specifi c application. The fi rst activity involves the creation of a 

set of requirements. It is rare this occurs out of whole cloth — typically, a source of 

needs exists. In the concept exploration phase, a set of operational needs and require-

ments have been established. However, those needs and requirements are typically 

expressed in the language and context of an operator or user. These must be translated 

into a set of system - specifi c requirements describing its performance.   

  Requirements Elicitation 

 When analysts are developing operational requirements, they rely heavily on input from 

users and operators, typically through market surveys and interviews. When analysts 

are developing performance requirements, they rely on both people and studies. Initially, 

the customer (or buying agent within an organization) is able to provide thresholds of 

affordability and levels of performance that are desirable. But subject matter experts 

(SMEs) can also provide performance parameters as a function of technology levels, 

cost, and manufacturability. Previous studies and system development efforts can also 

assist in determining performance requirements. And fi nally, a requirements analyst 

performs a system effectiveness analysis to provide insight into the level of perfor-

mance needed. All of these sources provide the analyst with an initial set of performance 

requirements. 

     Figure 7.3.     Simple requirements development process.  
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 Many times, however, this set of requirements contains inconsistencies, or even 

dichotomies. Further, many requirements are redundant, especially when they come 

from different sources. So the analyst must conduct a synthesis to transform an initial 

set of requirements into a concise, consistent set. More information is provided in 

Section  7.3  on formulating requirements. 

 A useful approach to developing requirements of any type is to ask the six inter-

rogatives: who, what, where, why, when, and how. Of course, different types of require-

ments focus on different interrogatives, as described in Chapter  6 . Operational 

requirements focus on the  “ why, ”  defi ning the objectives and purpose of the system. 

Performance requirements focus on the  “ what, ”  defi ning what the system should do 

(and how well).  

  Requirements Analysis 

 This activity starts with an initial set of requirements from the elicitation stage. 

Individual requirements as well as the set as a whole are analyzed for various attributes 

and characteristics. Some characteristics are desirable, such as  “ feasible ”  and  “ verifi -

able. ”  Other characteristics are not, such as  “ vague ”  or  “ inconsistent. ”  

 For each requirement, a set of tests (or questions) is applied to determine whether 

the requirement is valid. And while many tests have been developed by numerous 

organizations, we present a set of tests that at least form a baseline. These tests are 

specifi c to the development of system performance requirements. 

  1.     Is the requirement traceable to a user need or operational requirement?  

  2.     Is the requirement redundant with any other requirement?  

  3.     Is the requirement consistent with other requirements? (Requirements should 

not contradict each other or force the engineer to an infeasible solution.)  

  4.     Is the requirement unambiguous and not subject to interpretation?  

  5.     Is the requirement technologically feasible?  

  6.     Is the requirement affordable?  

  7.     Is the requirement verifi able?    

 If the answer to any of the questions above is  “ no, ”  then the requirement needs to 

be revised, or possibly omitted. In addition, other requirements may need to be revised 

after performing this test. 

 In addition to individual requirements tests, a collective set of tests is also per-

formed (usually after the individual tests have been performed on each requirement). 

  1.     Does the set of requirements cover all of the user needs and operational 

requirements?  

  2.     Is the set of requirements feasible in terms of cost, schedule, and technology?  

  3.     Can the set of requirements be verifi ed as a whole?    

 Both types of tests may need to be iterated before a fi nal set of performance require-

ments exists.  
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  Requirements Validation 

 Once a set of performance requirements is available, the set needs to be validated. This 

may be accomplished formally or informally. Formal validation means using an inde-

pendent organization to apply various validation methods to validate the set of require-

ments against operational situations (i.e., scenarios and use cases) and to determine 

whether the requirements embodied within a system concept could achieve the user 

needs and objectives. Informal validation at this point means reviewing the set of 

requirements with the customer and/or users to determine the extent and comprehen-

siveness of the requirements. Section  7.5  provides further detail on the requirements 

validation process.  

  Requirements Documentation 

 A fi nal, important activity is the documentation of the performance requirements. This 

is typically accomplished through the use of an automated tool, such as DOORS. Many 

tools exist that manage requirements, especially large, complex requirements hierar-

chies. As system complexity increases, the number and types of requirements tends to 

grow, and using simple spreadsheet software may not be suffi cient to manage require-

ments databases.  

  Characteristics of Well - Stated Requirements 

 As mentioned above, the requirements analysis process leads to a concise set of per-

formance requirements. This section examines the challenges associated specifi cally 

with translating operational requirements to performance requirements. 

 Since operational requirements are fi rst formulated as a result of studies and analy-

ses performed outside a formal project structure, they tend to be less complete and 

rigorously structured than requirements prepared in the subsequent managed phases of 

the development and are mainly oriented to justifying the initiation of a system devel-

opment. Accordingly, in order to provide a valid basis for the defi nition of system 

performance requirements, their analysis must be particularly exacting and mindful of 

frequently encountered defi ciencies, such as lack of specifi city, dependence on a single 

assumed technical approach, incomplete operational constraints, lack of traceability to 

fundamental needs, and requirements not adequately prioritized. Each of these is briefl y 

discussed in the succeeding paragraphs. 

 In an effort to cover all expected operating conditions (and to  “ sell ”  the project), 

operational requirements are often overly broad and vague where they should be spe-

cifi c. In the case of most complex systems, it is necessary to supplement the basic 

requirements with a set of well - defi ned operational scenarios that represent the range 

of conditions that the system is required to meet. 

 The opposite problem occurs if operational requirements are stated so as to be 

dependent on a specifi c assumed system confi guration. To enable consideration of 

alternative system approaches, such requirements need to be restated to be independent 

of specifi c or  “ point ”  designs. 

 Often, operational requirements are complete only in regard to the active 

operational functions of the system and do not cover all the constraints and external 
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interactions that the system must comply with during its production, transportation, 

installation, and operational maintenance. To ensure that these interactions are treated 

as fully as possible at this stage of development, it is necessary to perform a life cycle 

analysis and to provide scenarios that represent these interactions. 

 All requirements must be associated with and traceable to fulfi lling the operational 

objectives of the user. This includes understanding who will be using the system and 

how it will be operated. Compliance with this guideline helps to minimize unnecessary 

or extraneous requirements. It also serves as a good communication link between the 

customer and developer when particular requirements subsequently lead to complex 

design problems or diffi cult technical trade - offs. 

 The essential needs of the customer must be given top priority. If the needs analysis 

phase has been done correctly, requirements stemming from these needs will be clearly 

understood by all concerned. When design confl icts occur later in development, a review 

of these primary objectives can often provide useful guidance for making a decision. 

 Beyond the above primary or essential requirements, there are always those capa-

bilities that are desirable if they prove to be readily achievable and affordable. 

Requirements that are essential should be separately distinguished from those that are 

desirable but not truly necessary for the success of the primary mission. Often, prefer-

ences of the customer come through as hard and fast requirements, when they are meant 

to be desirable features. Examples of desirable requirements are those that provide an 

additional performance capability or design margin. There should be some indication 

of cost and risk associated with each desirable requirement so that an informed priori-

tization can be made. The discrimination between essential and desirable requirements 

and their prioritization is a key systems engineering function.  

  The Triumvirate of Conceptual Design 

 Above, we mentioned the use of the six primitive interrogatives in developing require-

ments. We also discussed that operational requirements ’  focus on  “ why ”  and functional 

requirements ’  focus on the  “ what ”  (along with performance requirements ’  focus on its 

associated interrogative,  “ how much ” ). So, if the two sets of requirements focus on 

why and what, then where does the analyst go to understand the other four primitive 

interrogatives? The answer lies with what we call the triumvirate of conceptual design, 

illustrated in Figure  7.4 .   

 Three products are needed to describe the six interrogatives that collectively could 

be considered a system concept. The requirements (all three types we have addressed 

in detail up to this point) address why and what. A new product, the operational concept, 

sometimes referred to as a concept of operations (CONOPS), addresses how and who. 

And a description of the operational context, sometimes referred to as scenarios, 

addresses where and when. Of course, there is a signifi cant overlap between the three, 

and often two or more of these products are combined into a single document.  

  Operational Concept (CONOPS) 

 Although the two terms are often used synonymously, in truth, an operational concept 

is a broader description of a capability that encompasses multiple systems. It tends to 
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describe how a large collection of systems will operate. Examples would include an 

operational concept for the U.S. Transportation System (or even a subsystem of the 

whole system). In this case,  “ system ”  does not refer to a single system but a collection 

of systems. Another example would be an operational concept for an oil refi nery — again 

referring to how a collection of systems would operate together. When referring to a 

single system, the term CONOPS is generally used. A further distinction relates to 

scenarios. An operational concept is suffi ciently broad to be scenario independent. A 

CONOPS tends to relate to a single scenario or a set of related scenarios. 

 Operational concepts are useful since requirements should avoid prescribing how 

they should be fulfi lled. Requirements documents risk inadvertently barring an espe-

cially favorable solution. However, a set of operational requirements alone is often 

insuffi cient to constrain the system solutions to the types desired. For example, the 

operational requirements for defending an airplane against terrorist attack could con-

ceivably be met by counterweapons, passenger surveillance, or sensor technology. In 

a particular program initiative, the requirements would be constrained by adding a 

CONOPS, which would describe the general type of counterweapons that are to be 

considered. This extension of the operational requirement adds constraints, which 

express the customer ’ s expectation for the anticipated system development. 

 The term  CONOPS  is quite general. The components of a CONOPS usually 

include 

  1.     mission descriptions, with success criteria;  

  2.     relationships with other systems or entities;  

  3.     information sources and destinations; and  

  4.     other relationships or constraints.    

     Figure 7.4.     Triumvirate of conceptual design.  
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 The CONOPS should be considered as an addition to the operational requirements. 

It defi nes the general approach, though not a specifi c implementation, to the desired 

system, thereby eliminating undesired approaches. In this way, the CONOPS clarifi es 

the intended goal of the system. 

 The CONOPS should be prepared by the customer organization or by an agent of 

the customer and should be available prior to the beginning of the concept defi nition 

phase. Thereafter, it should be a  “ living ”  document, together with the operational 

requirements document.  

  Operational Context Description (Scenarios) 

 A description of an operational context is the last piece of the triumvirate in defi ning 

the system concept. This description (as depicted in Fig.  7.4 ) focuses on the where and 

when. Specifi cally, an operational context description describes the environment within 

which the system is expected to operate. A specifi c instantiation of this context is known 

as a scenario. 

 A scenario can be defi ned as  “ a sequence of events involving detailed plans of one 

or more participants and a description of the physical, social, economic, military, and 

political environment in which these events occur. ”  With respect to system develop-

ment, scenarios are typically projected into the future to provide designers and engi-

neers a context for the system description and design. 

 Most scenarios include at least fi ve elements: 

  1.     Mission Objectives:     a description of the overall mission with success criteria. 

The reader should notice this is the same as one of the components of a 

CONOPS. The mission can be of any type, for example, military, economic, 

social, or political.  

  2.     Friendly Parties:     a description of friendly parties and systems, and the relation-

ships among those parties and systems.  

  3.     Threat Actions (and Plans):     a description of actions and objectives of threat 

forces. These threats need not be human; they could be natural (e.g., volcano 

eruption).  

  4.     Environment:     a description of the physical environment germane to the mission 

and system.  

  5.     Sequence of Events:     a description of individual events along a timeline. 

These event descriptions should not specify detailed system implementation 

details  .    

 Scenarios come in all sizes and fl avors. The type of scenario is determined by the system 

in questions and the problem being examined. Figure  7.5  shows different levels of 

scenarios that might be needed in a system development effort. During the early phases 

(needs analysis and concept exploration), the scenarios tend to be higher levels, near 

the top of the pyramid. As the development effort transitions to later phases, more detail 

is available as the design improves, and lower - level scenarios are used in engineering 



OPERATIONAL REQUIREMENTS ANALYSIS 177

analyses. High - level scenarios continue to be used throughout to estimate the overall 

system effectiveness as the design matures.    

  Analysis of Alternatives 

 The needs analysis phase is usually conducted without the benefi t of a well - organized 

and funded effort. In such cases, the operational requirements that are formulated during 

this phase are necessarily a preliminary and incomplete defi nition of the full mission 

objectives. Therefore, an essential part of the concept exploration phase is to develop 

the operational requirements into a complete and self - consistent framework as a basis 

for developing an effective operational system. 

 For the above reason, before initiating a major program, one or more studies are 

generally carried out to refi ne the operational requirements by modeling the interaction 

of operational scenarios. One of the common designations for such studies is  “ analysis 

of alternatives ”  because they involve the defi nition of a range of alternative system 

approaches to the general operational mission, and a comparative evaluation of their 

operational effectiveness. Such analyses defi ne the realistic limits of expected opera-

tional effectiveness for the postulated operational situation and provide the framework 

for a set of complete, consistent, and realistic operational requirements. 

  Guidelines for Defi ning Alternative Concepts.     As noted in the next section, 

conceiving new candidate approaches to satisfying a set of requirements is an inductive 

process and hence requires a leap of the imagination. For such a process, it is helpful 

to postulate some guidelines for selecting alternatives: 

  1.     Start with the existing (predecessor) system as a baseline.  

  2.     Partition the system into its major subsystems.  

     Figure 7.5.     Hierarchy of scenarios.  
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  3.     Postulate alternatives that replace one or more of the subsystems essential to 

the mission with an advanced, less costly, or otherwise superior version.  

  4.     Vary the chosen subsystems (or superior version) singly or in combination.  

  5.     Consider modifi ed architectures, if appropriate.  

  6.     Continue until you have a total of four to six meaningful alternatives.     

  Effectiveness Simulation.     Where the analysis of alternatives involves complex 

systems, the analysis often requires the use of a computer simulation that measures the 

effectiveness of a model of a system concept in dealing with a model scenario of the 

system environment. Chapter  9  contains a brief description of the character and applica-

tion of system effectiveness simulation. 

 The advantage of computer simulation is that it is possible to provide controls that 

vary the behavior of a selected system and environmental parameters in order to study 

their effect on the overall system behavior. This feature is especially valuable in char-

acterizing the effect of operational and performance requirements on the system archi-

tecture necessary to satisfy them, and in turn, establishing practical bounds on the 

requirements. A range of solutions of varying capability and cost can be considered. 

Every particular application has its own key variables that can be called into play.    

   7.3    PERFORMANCE REQUIREMENTS FORMULATION 

 As noted previously, in the course of developing a new system, it is necessary to trans-

form the system operational requirements, which are stated as required outcomes of 

system action, into a set of system performance requirements, which are stated in terms 

of engineering characteristics. This step is essential to permit subsequent stages of 

system development to be based on and evaluated in engineering rather than operational 

terms. Thus, system functional performance requirements represent the transition from 

operational to engineering terms of reference. 

  Derivation of Subsystem Functions 

 In deriving performance requirements from operational objectives, it is fi rst necessary 

to identify the major functions that the system must perform to carry out the prescribed 

operational actions. That means, for example, that if a system is needed to transport 

passengers to such destinations as they may wish along existing roadways, its functional 

elements must include, among others, a source of power, a structure to house the pas-

sengers, a power - transmitting interface with the roadway, and operator - activated con-

trols of locomotion and direction. Expressed in functional terms (verb – object), these 

elements might be called  “ power vehicle, ”   “ house passengers, ”   “ transmit power to 

roadway, ”   “ control locomotion, ”  and  “ control direction. ”  

 As described in Chapter  6 , a beginning in this process has already been made in 

the preceding phase. However, a more defi nitive process is needed to establish specifi c 

performance parameters. Correspondingly, as seen in Table  4.1 , during this phase, the 

functional defi nition needs to be carried a step further, that is, to a defi nition of sub-
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system functions, and to the visualization of the functional and associated physical 

components, which collectively can provide these subsystem functions.  

  The Nondeterministic Nature of System Development 

 The derivation of performance requirements from desired operational outcomes is far 

from straightforward. This is because, like other steps in the system materialization 

process, the design approach is inductive rather than deductive, and hence not directly 

reversible. In going from the more general operational requirements to the more specifi -

cally defi ning system performance requirements, it is necessary to fi ll in many details 

that were not explicitly called out in the operational requirements. This can obviously 

be done in a variety of ways, meaning that more than one system confi guration can, in 

principle, satisfy a given set of system requirements. This is also why in the system 

development process the selection of the  “ best ”  system design at a given level of mate-

rialization is accomplished by trade - off analysis, using a predefi ned set of evaluation 

criteria. 

 The above process is exactly the same as that used in inductive reasoning. For 

example, in designing a new automobile to achieve an operational goal of 600   mi on a 

tank of gasoline, one could presumably make its engine extremely effi cient, or give it 

a very large gasoline tank, or make the body very light, or some combination of these 

characteristics. Which combination of these design approaches is selected would depend 

on the introduction of other factors, such as relative cost, development risk, passenger 

capacity, safety, and many others. 

 This process can also be understood by considering a deductive operation, as, for 

example, performance analysis. Given a specifi c system design, the system ’ s perfor-

mance may be deduced unambiguously from the characteristics of its components by 

fi rst breaking down component functions, then by calculating their individual perfor-

mance parameters, and fi nally by aggregating these into measures of the performance 

of the system as a whole. The reverse of this deductive process is, therefore, inductive 

and consequently nondeterministic. 

 One can see from the preceding discussion that, given a set of operational require-

ments, there is no direct (deductive) method of inferring a corresponding unique set of 

system performance characteristics that are necessary and suffi cient to specify the 

requirements for a system to satisfy the operational needs. Instead, one must rely on 

experience - based heuristics, and to a large extent, on a trial and error approach. This 

is accomplished through a process in which a variety of different system confi gurations 

are tentatively defi ned, their performance characteristics are deduced by analysis or 

data collection, and these are subjected to effectiveness analysis to establish those 

characteristics required to meet the operational requirements. The above process is 

described in greater detail in the next section.  

  Functional Exploration and Allocation 

 The exploration of potential system confi gurations is performed at both the functional 

and physical levels. The range of different functional approaches that produce 
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behavior suitable to meet the system operational requirements is generally much 

more limited than the possibilities for different physical implementations. However, 

there are often several signifi cantly different ways of obtaining the called for opera-

tional actions. It is important that the performance characteristics of these different 

functional approaches be considered in setting the bounds on system performance 

requirements. 

 As noted earlier in Figure  7.2 , one of the outputs of this step is the allocation of 

operational functions to individual subsystems. This is important in order to set the 

stage for the next step, in which the basic physical building block components may be 

visualized as part of the exploration of implementation concepts. These two steps are 

very tightly bound through iterative loops, as shown in the fi gure. Two important inputs 

to the functional allocation process are the predecessor system and functional building 

blocks. In most cases, the functions performed by the subsystems of the predecessor 

system will largely carry over to the new system. Accordingly, the predecessor system 

is especially useful as a point of departure in defi ning a functional architecture for the 

new system. And since each functional building block is associated with both a set of 

performance characteristics and a particular type of physical component, the building 

blocks can be used to establish the selection and interconnection of elementary func-

tions and the associated components needed to provide the prescribed subsystem 

functions. 

 To aid in the process of identifying those system functions responsible for its 

operational characteristics, recall from Chapter  3  that functional media can be classed 

into four basic types: signals, data, material, and energy. The process addresses the 

following series of questions: 

  1.     Are there operational objectives that require sensing or communications? If so, 

this means that signal input, processing, and output functions must be involved.  

  2.     Does the system require information to control its operation? If so, how are data 

generated, processed, stored, or otherwise used?  

  3.     Does system operation involve structures or machinery to house, support, or 

process materials? If so, what operations contain, support, process, or manipu-

late material elements?  

  4.     Does the system require energy to activate, move, power, or otherwise provide 

necessary motion or heat?    

 Furthermore, functions can be divided again into three categories: input, transformative, 

and output. Input functions relate to the processes of sensing and inputting signals, data, 

material, and energy into the system. Output functions relate to the processes of inter-

preting, displaying, synthesizing, and outputting signals, data, material, and energy out 

of the system. Transformative functions relate to the processes of transforming the 

inputs to the outputs of the four types of functional media. Of course, for complex 

systems, the number of transformative functions may be quite large, and has successive 

 “ sequences ”  of transformations. Figure  7.6  depicts the concept of this two - dimensional 

construct, function category versus functional media.   
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 In constructing an initial function list, it helps to identify inputs and outputs (as 

described in Chapter  3 ). This list directly leads the engineer to a list of input and output 

functions. The transformative functions may be easier to identify when examining them 

in the light of a system ’ s inputs and outputs. 

 As an example, while acknowledging it is not a complex system, consider a 

common coffeemaker (without any frills). By observation, an analyst can identify the 

necessary inputs: 

   •      Signals:     user commands (which we will simply identify as  “ on ”  and  “ off ” )  

   •      Data:     none  

   •      Materials:     fresh coffee grinds, fi lter, and water  

   •      Energy:     electricity  

   •      Forces:     mechanical support    

 Outputs can also be easily identifi ed: 

   •      Signals:     status (which we will simply identify as on and off)  

   •      Data:     none  

   •      Materials:     brewed coffee, used fi lter, used coffee grinds  

   •      Energy:     heat  

   •      Forces:     none    

 Identifying inputs and outputs assists the analyst in identifying functions. Input 

functions will directly proceed from the input list (deductive reasoning). Output func-

tions will directly proceed from the output list (deductive as well). The transformative 

functions will be more diffi cult to identify since doing so relies on inductive reasoning. 

     Figure 7.6.     Function category versus functional media.  
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However, we now have a guide to this inductive process: we know that we must trans-

form the six inputs into the fi ve outputs. 

 This line of inquiry normally reveals all operationally signifi cant functions and 

permits them to be grouped in relation to specifi c operational objectives. Further, this 

grouping naturally tends to bring together the elements of different subsystems, which 

are the fi rst - level building blocks of the system itself. The above strategy is also appro-

priate even if the basic confi guration is derived from a predecessor system because its 

generic and systematic approach tends to reveal elements that might otherwise be 

overlooked. In the coffeemaker case, we can focus on transforming the input materials 

and signals into output materials and signals. In other words, we can identify functions 

by answering the question  “ How do we transform fresh coffee grinds, a fi lter, water, 

and an on/off command into brewed coffee, a used fi lter, used coffee grinds, and a 

status? ”  

 Keeping the list of functions minimal and high level, and using the verb – object 

syntax, an example list pertaining to the coffeemaker could be 

 Input Functions 

  1.     Accept user command (on/off)  

  2.     Receive coffee materials  

  3.     Distribute electricity  

  4.     Distribute weight   

  Transformative Functions 

  5.     Heat water  

  6.     Mix hot water with coffee grinds  

  7.     Filter out coffee grinds  

  8.     Warm brewed coffee   

  Output Functions 

  9.     Provide status  

  10.     Facilitate removal of materials  

  11.     Dissipate heat    

 Can you map the inputs and outputs to one or more functions? Can you identify how 

the inputs are transformed into the outputs? Since a coffeemaker is a very simple 

system, the number of transformative functions was low. But keep in mind that regard-

less of a system ’ s complexity, a top - level function list with about 5 – 12 functions can 

always be identifi ed. So a complex system may have a large hierarchy of functions, but 

any system can be aggregated into an appropriate set of top - level functions. 

  Formulation of Performance Characteristics.     As noted above, the objective 

of the concept exploration phase is to derive a set of system performance characteristics 

that are both necessary and suffi cient. This means that a system possessing them will 

satisfy the following criteria: 
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  1.     A system that meets the system operational requirements and is technically 

feasible and affordable will comply with the performance characteristics.  

  2.     A system that possesses these characteristics will meet the system operational 

requirements and can be designed to be technically feasible and affordable.    

 The condition that the set of performance requirements must be necessary as well 

as suffi cient is essential to ensure that they do not inadvertently exclude a system 

concept that may be especially advantageous compared to others just because it may 

take an unusual approach to a particular system function. This often happens when the 

performance requirements are derived in part from a predecessor system and carry over 

features that are not essential to its operational behavior. It also happens when there is 

a preconceived notion of how a particular operational action should be translated into 

a system function. 

 For the above reasons, the defi nition of performance characteristics needs to be an 

exploratory and iterative process, as shown in Figure  7.2 . In particular, if there are 

alternative functional approaches to an operational action, they should all be refl ected 

in the performance characteristics, at least until some may be eliminated in the imple-

mentation and validation steps in the process.  

  Incompatible Operational Requirements.     It should be noted that a given set 

of operational requirements does not always lead to feasible performance characteris-

tics. In Chapter  6 , the automobile was mentioned as a system that was required to 

undergo signifi cant changes because of government - imposed regulations concerning 

safety, fuel economy, and pollution control. Initially, these areas of regulation were 

independently developed. Each set of requirements was imposed solely on the basis of 

a particular need, with little regard for either the associated engineering problems or 

other competing needs. When these regulations were subjected to engineering analysis, 

it was shown that they were not collectively feasible within the practical technology 

available at that time. Also, the investment in development and production would result 

in a per - unit cost far in excess of the then current automobile prices. The basic reason 

for these problems was that the available pollution controls necessary to meet emission 

requirements resulted in lowered fuel economy, while the weight reduction necessary 

to meet the required fuel economy defeated the safety requirements. In other words, 

the three independent sets of operational requirements turned out to be incompatible 

because no one had initially considered their combined impact on the design. Note that 

in this instance, an analysis of the requirements did not depend on a detailed design 

study since simply examining the design concepts readily revealed the confl icts.  

  Example: Concepts for a New Aircraft.     An instructive example of concept 

exploration is illustrated by the acquisition of a new commercial aircraft. Assume for 

this discussion that an airline company serves short to medium domestic routes using 

two - engine propeller - driven aircraft. Many of the airports it serves have relatively short 

runways. This arrangement has worked well for a number of years. The problem that 

has become more and more apparent is that because of increasing maintenance and fuel 
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expenses, the cost per passenger mile has increased to the point where the business is 

marginally profi table. The company is therefore considering a major change in its 

aircraft. In essence, the airline ’ s need is to lower the cost per passenger mile to some 

acceptable value and to maintain its competitive edge in short - route service. 

 The company approaches several aircraft manufacturers for a preliminary discus-

sion of a new or modifi ed airplane to meet its needs. The discussions indicate that there 

are several options available. Three such options are the following: 

  1.     A stretched aircraft body and increased power. Engines of the appropriate form 

and fi t exist for such a confi guration. This option permits a quick, relatively 

low - cost upgrade, which increases the number of passengers per aircraft, thereby 

lowering the overall cost per passenger mile.  

  2.     A new, larger, four - engine propeller aircraft, using state - of - the - art technology. 

This option offers a good profi t return in the near term. It is reasonably low 

risk, but the total useful life of the aircraft is not well - known, and growth 

potential is limited.  

  3.     A jet - powered aircraft that is capable of takeoff and landing at most, but not 

necessarily all, of the current airports being served. This option permits a sig-

nifi cant increase in passengers per airplane and opens up the possibility of 

competing for new, longer routes. This is also the most expensive option. 

Because of the inherent lower maintenance and fuel costs of jet engines relative 

to propeller engines, operating costs for this aircraft are attractive, but some 

existing routes will be lost.    

 It is evident that the fi nal choice will require considerable expertise and should be 

based on a competition among interested manufacturers. The airline engages the ser-

vices of an engineering consulting company to help its staff prepare a set of aircraft 

performance requirements that can serve as a basis for competitive bids and to assist 

in the selection process. 

 In exploring the above and related options, the alternative functional approaches 

are considered fi rst. These appear to center on the choice between staying with propeller 

engines, an option that retains the basic features of the present aircraft, or moving to 

jet engines, which offer considerable operating economies. However, the latter is a 

major departure from the current system and will also affect its operational capabilities. 

To permit this choice to be left open to the bidders, the performance requirements such 

as runway length, cruising speed, and cruising altitude will need to be suffi ciently broad 

to accommodate these two quite different functional approaches.   

  Requirements Formulation by Integrated Product Teams (IPTs) 

 As noted earlier, the responsibility for defi ning the performance requirements of a new 

product is that of the customer, or in the case of government programs, that of the 

acquisition agency. However, the organization of the process and its primary partici-

pants varies greatly with the nature of the product, the magnitude of the development, 

and the customer auspices. 
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 As in the case of all acquisition practices, the Department of Defense (DoD) has 

had the most experience with various methods for organizing the acquisition process. 

A recent practice introduced by DoD is the use of IPTs throughout the acquisition 

process. IPTs are intended to bring a number of benefi ts to the process: 

  1.     They bring senior industry participants into the system conceptual design 

process at the earliest opportunity, thereby educating them in the operational 

needs and injecting their ideas during the formative stages of the 

development.  

  2.     They bring together the different disciplines and specialty engineering view-

points throughout the development.  

  3.     They capitalize on the motivational advantages of team collaboration and con-

sensus building.  

  4.     They bring advanced technology and COTS knowledge to bear on system 

design approaches.    

 As in the case of any organization, the success of this approach is highly dependent on 

the experience and interpersonal skills of the participants, as well as on the leadership 

qualities of the persons responsible for team organization. And perhaps even more 

important is the systems engineering experience of the team leaders and members. 

Without this, the majority of the team members, who tend to be specialists, will not be 

able to communicate effectively and hence the IPT will not achieve its objectives.   

   7.4    IMPLEMENTATION OF CONCEPT EXPLORATION 

 The previous section discussed the exploration of alternative functional approaches —

 concepts in which the nature of the activities involved differs from one case to the 

next. The physical implementation of such concepts involves the examination of dif-

ferent technological approaches, generally offering a more diverse source of alterna-

tives. As in the case of examining alternative functional concepts, the objective of 

exploring implementation concepts is to consider a suffi cient variety of approaches 

to support the defi nition of a set of system performance requirements that are feasible 

of realization in practice and do not inadvertently preclude the application of an other-

wise desirable concept. To that end, the exploration of system concepts needs to be 

broadly based. 

  Alternative Implementation Concepts 

 The predecessor system, where one exists, forms one end of the spectrum to be 

explored. Given the operational defi ciencies of the predecessor system to meet pro-

jected needs, modifi cations to the current system concept should fi rst be explored with 

a view to eliminating these defi ciencies. Such concepts have the advantage of being 

relatively easier to assess from the standpoint of performance, development risk, and 
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cost than are radically different approaches. They can also generally be implemented 

faster, more cheaply, and with less risk than innovative concepts. On the other hand, 

they are likely to have severely limited growth potential. 

 The other end of the spectrum is represented by innovative technical approaches 

featuring advanced technology. For example, the application of powerful, modern 

microprocessors might permit extensive automation of presently employed manual 

operations. These concepts are generally riskier and more expensive to implement 

but offer large incremental improvements or cost reduction and greater growth poten-

tial. In between are intermediate or hybrid concepts, including those defi ned in 

the needs analysis phase for demonstrating the feasibility of meeting the proposed 

system needs. 

 Many techniques exist for developing new and innovative concepts. Perhaps the 

oldest is brainstorming, individually and within a group. Within the concept of brain-

storming, several modern methods, or variations, to the old fashioned, largely unstruc-

tured brainstorming process have risen. One of our favorite techniques, which engineers 

may not be familiar with (but nonengineering practitioners may be), is Mind Maps. 

This particular technique uses visual images to assist in the brainstorming of new 

ideas. A simple Web search will point the reader to multiple Web sites describing the 

technique. 

 The natural temptation to focus quickly on a single concept or  “ point design ”  

approach can easily preclude the identifi cation of other potentially advantageous 

approaches based on fundamentally different concepts. Accordingly, several concepts 

spanning a range of possible design approaches should be defi ned and investigated. At 

this stage, it is important to encourage creative thinking. It is permissible, even some-

times desirable, to include some concepts that do not meet all of the requirements; 

otherwise, a superior alternative may be passed by because it fails to meet what may 

turn out to be a relatively arbitrary requirement. Just as in the needs analysis phase, 

negotiations with the customer regarding which requirements are really necessary and 

which are not can often make a signifi cant difference in cost and risk factors while 

having minimal impact on performance. 

  Example: Concept Exploration for a New Aircraft.     Returning to the 

example introduced in the previous section, it will be recalled that two principal func-

tional options were explored to meet the need of the airline company: a propeller - driven 

and a jet - driven aircraft. It remains to explore alternative physical implementations of 

each of these options. As is usually the case, these are more numerous than the basic 

functional alternatives. 

 In the period since the airline ’ s present fl eet was acquired, a host of technological 

advances have occurred. For example, automation has become more widespread, espe-

cially in autopilots and navigation systems. Changes in safety requirements, such as 

for deicing provisions, must also be examined to identify those performance character-

istics that should be called out. In exploring alternative implementations, the main 

features of each candidate system must fi rst be analyzed to see if they are conceptually 

achievable. At this stage of development, a detailed design analysis is usually not pos-

sible because the concept is not yet suffi ciently formulated. However, based on previous 
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experience and engineering judgment, someone, usually the systems engineer, must 

decide whether or not the concept as proposed is likely to be achievable within the 

given bounds of time, cost, and risk. 

 There are numerous other options and variations of the above examples. It is noted 

that all the cited options have pros and cons, which typically leave the customer with 

no obvious choice. Note also that the option to use jet aircraft may partially violate the 

operational requirement that short - route capability be maintained. However, as noted 

earlier, it is not at all unusual at this stage to consider options that do not meet all the 

initial requirements to ensure that no desirable option is overlooked. The airline may 

decide that the loss of some routes is more than compensated for by the advantages to 

the overall system of using jet aircraft. 

 It is also important to note that the entire system life cycle must be considered in 

exploring alternatives. For example, while the jet option offers a number of perfor-

mance advantages, it will require a substantial investment in training and logistic 

support facilities. Thus, assessment of these supporting functions must be included in 

formulating system requirements. In order to be a  “ smart buyer, ”  the airline needs to 

have a staff well versed in aircraft characteristics, as well as in the business of running 

an airline, and access to consultants or engineering services organizations capable of 

carrying out the analyses involved in developing the requisite set of performance 

requirements.  

  Preferred System.     Although in most cases it is best to refrain from picking a 

superior system concept prematurely, there are instances where it is permissible for the 

requirements defi nition effort to identify a so - called preferred system, in addition to 

considering a number of other viable system alternatives. Preference for a system or 

subsystem may be set forth when signifi cant advanced development work has taken 

place and has produced very promising results in anticipation of future upgrades to the 

current system. Such work is often conducted or sponsored by the customer. Another 

justifying factor may be when there has been a recent major technological break-

through, which promises high gains in performance at an acceptable risk. The idea of 

a preferred system approach is that subsystem analysis can start building on this 

concept, thereby saving time and cost. Of course, further analysis may show the favored 

approach not to be as desirable as predicted.   

  Technology Development 

 Whether the origin of a new system is needs driven or technology driven, the great 

majority of new systems have been brought into being, directly or indirectly, as a result 

of technological growth. In the process of exploring potential concepts for the satisfac-

tion of a newly established need, a primary input is derived from what is called the 

technology base, which means the sum total of the then existing technology. It is, 

therefore, important for systems engineers to understand the nature and sources of 

technological advances that may be pertinent to a proposed system development. 

 System - oriented exploratory R  &  D can be distinguished according to whether it 

relates to new needs - driven or technology - driven systems. The former is mainly directed 
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to gaining a fi rm understanding of the operational environment and the factors underly-

ing the increased need for the new system. 

 The latter is usually focused on extending and quantifying the knowledge base for 

the new technology and its application to the new system objectives. In both instances, 

the objective is to generate a fi rm technical base for the projected system development, 

thus clarifying the criteria for selecting specifi c implementation concepts and trans-

forming unknown characteristics and relationships into knowns. 

 Both industry and government support numerous programs of R  &  D on compo-

nents, devices, materials, and fabrication techniques, which offer signifi cant gains in 

performance or cost. For instance, most large automobile manufacturers have ongoing 

programs to develop more effi cient engines, electrically powered vehicles, automated 

fuel controls, lighter and stronger bodies, and a host of other improvements that are 

calculated to enhance their future competitive position. In recent years, the greatest 

amount of technology growth has been in the electronics industry, especially computers 

and communication equipment, which in turn has driven the explosive growth of infor-

mation systems and automation generally. 

 In government - sponsored R  &  D, there is also a continuing large - scale effort, 

mainly among government contractors, laboratories, and universities, directed toward 

the development of technologies of direct interest to the government. These cover many 

diverse applications, and their scope is almost as broad as that of commercial R  &  D. 

As has been noted previously, defense contractors are permitted to charge a percentage 

of their revenues from government contracts to IRAD as allowable overhead. A large 

fraction of such funds is devoted to activities that relate to potential new system devel-

opments. In addition, there is a specifi c category in the Congressional Research, 

Development, Test and Evaluation (RDT & E) appropriation, designated Research and 

Exploratory Development, which funds specifi c R  &  D proposals to the military ser-

vices. Such projects are not intended to directly support specifi c new system develop-

ments but do have to be justifi ed as contributing to existing mission areas.  

  Performance Characteristics 

 The derivation of performance characteristics by the exploration of implementation 

concepts can be thought of as consisting of a combination of two analytical processes: 

performance analysis and effectiveness analysis. Performance analysis derives a set of 

performance parameters that characterize each candidate concept. Effectiveness analy-

sis determines whether or not a candidate concept meets the operational requirements 

and, if not, how the concept needs to be changed to do so. It employs an effectiveness 

model that is used to evaluate the performance of a conceptual system design in terms 

of a selected set of criteria or measures of effectiveness. This is a similar model to that 

used in the previous phase and to the one employed in the next step, the validation of 

performance requirements. The main difference in its use in the above applications is 

the level of detail and rigor. 

  Performance Analysis.     The performance analysis part of the process is used to 

derive a set of relevant performance characteristics for each candidate system concept 
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that has been found to satisfy the effectiveness criteria. The issue of relevancy arises 

because a full description of any complex system will involve many parameters, some 

of which may not be directly related to its primary mission. For example, some features, 

such as the ability of an aircraft search radar device to track some particular coded 

beacon transponder, might be included only to facilitate system test or calibration. 

Therefore, the performance analysis process must extract from the identifi ed system 

characteristics only those that directly affect the system ’ s operational effectiveness. At 

the same time, care must be taken to include all characteristics that can impact effec-

tiveness under one or another particular operating condition. 

 The problem of irrelevant characteristics is especially likely to occur when the 

concept for a particular subsystem has been derived from the design of an existing 

subsystem employed in a different application. For example, a relatively high value of 

the maximum rate of train or elevation for a radar antenna assembly might not be 

relevant to the application now being examined. Thus, the derived model should not 

refl ect this requirement unless it is a determining factor in the overall subsystem design 

concept. In short, as stated previously, the defi ned set of characteristics must be both 

necessary and suffi cient to facilitate a valid determination of effectiveness for each 

candidate system concept.  

  Constraints.     At this phase of the project, the emphasis will naturally be focused 

on active system performance characteristics and functions to achieve them. However, 

it is essential that other relevant performance characteristics not be overlooked, espe-

cially the interfaces and interactions with other systems or parts of systems, which will 

invariably place constraints on the new system. These constraints may affect physical 

form and fi t, weight and power, schedules (e.g., a launch date), mandated software tools, 

operating frequencies, operator training, and so on. While constraints of this type will 

be dealt with in great detail later in the development process, it is not too soon to rec-

ognize their impact during the process of requirements defi nition. The immediate 

benefi t of early attention to such problems is that confl icting concepts can be fi ltered 

out, leaving more time for analysis of the more promising approaches. 

 To accomplish the above objectives, it is necessary to consider the complete system 

life cycle. To a large extent, the constraints on the system will not depend on the specifi c 

system architecture. For example, environmental conditions of temperature, humidity, 

shock vibration, and so forth, for a great part of the system life cycle are often the same 

for any candidate system concept. Omission of any constraints such as these may result 

in serious defi ciencies in the system design, which would adversely impact performance 

and operability.    

   7.5    PERFORMANCE REQUIREMENTS VALIDATION 

 Having derived the operationally signifi cant performance characteristics for several 

feasible alternative concepts, all of which appear to be capable of meeting the system 

operational requirements, the next step is to refi ne and integrate them into a singular 

set to serve as a basis for the preparation of formal system performance requirements. 
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As stated earlier, these performance requirements, stated in engineering units, provide 

an unambiguous basis for the ensuing phases of system development, up to the stage 

where the actual system can be tested in a realistic environment. 

 The operations involved in the refi nement and validation of system performance 

requirements can be thought of as two tightly coupled processes — an integration 

process, which compares and combines the performance characteristics of the feasible 

alternative concepts, and an effectiveness analysis process, which evaluates the validity 

of the integrated characteristics in terms of the operational requirements. 

  Performance Characteristics Integration 

 The integration process serves to select and refi ne those characteristics of the different 

system concepts examined in the exploration process that are necessary and suffi cient 

to defi ne a system that will possess the essential operational characteristics. Regardless 

of the analytical tools that may be available, this process requires the highest level of 

systems engineering judgment. 

 This and other processes in this phase can benefi t greatly by the participation of 

systems engineers with experience with the predecessor system, which has been men-

tioned a number of times previously. The knowledge and database that comes with that 

system is an invaluable source of information for developing new requirements and 

concepts. In many cases, some of the key engineers and managers who directed its 

development may still be available to contribute to the development of new require-

ments and concepts. They may not only be aware of the current defi ciencies but are 

likely to have considered various improvements. Additionally, they are probably aware 

of what the customer really wants, based on their knowledge of operational factors over 

a number of years. Just one key systems engineer with this background can provide 

signifi cant help. Experienced people of this type will also have an educated  “ gut feel ”  

about the viability of the requirements and concepts that are being considered. Their 

help, at least as consultants, will not alleviate the need for requirements analysis, but 

it may quickly point the effort in the right direction and avoid blind alleys that might 

otherwise be pursued.  

  Performance Characteristics Validation 

 The fi nal steps in the process are to validate the derived performance characteristics 

against the operational requirements and constraints and to convert them into the form 

of a requirements document. Ideally, the performance characteristics derived from the 

refi nement step will have been obtained from concepts validated in the implementation 

concept exploration process. However, it is likely that the effort to remove irrelevant 

or redundant characteristics in the integration step, and to add external constraints not 

present in the effectiveness model, will have signifi cantly altered the resultant set of 

characteristics. Hence, it is essential to subject them once more to an effectiveness 

analysis to verify their compliance with the operational requirements. The effectiveness 

model in the above step should generally be more rigorous and detailed than models 
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used in previous steps so as to ensure that the fi nal product does not contain defi ciencies 

due to omission of important evaluation criteria. 

 The above processes operate in closed - loop fashion until a self - consistent set of 

 system performance characteristics  that meets the following objectives is obtained: 

  1.     They defi ne what the system must do, and how well, but not how the system 

should do it.  

  2.     They defi ne characteristics in engineering terms that can be verifi ed by analyti-

cal means or experimental tests, so as to constitute a basis for ensuing engineer-

ing phases of system development.  

  3.     They completely and accurately refl ect the system operational requirements and 

constraints, including external interfaces and interactions, so that if a system 

possesses the stated characteristics, it will satisfy the operational 

requirements.     

  Requirements Documentation 

 To convert the system performance characteristics into a requirements document 

involves skillful organization and editing. Since the system performance requirements 

will be used as the primary basis for the ensuing concept defi nition phase and its suc-

cessors, it is most important that this document be clear, consistent, and complete. 

However, it is equally important to recognize that it is not carved in stone but is a living 

document, which will continue to evolve and improve as the system is developed and 

tested. 

 In a need - driven system development in which it is intended to compete the concept 

defi nition phase among a number of bidders, the system performance requirements are 

a primary component of the competitive solicitation, along with a complete statement 

of all other conditions and constraints. Such a solicitation is often circulated in draft 

form among potential bidders to help ensure its completeness and clarity. 

 In a technology - driven system development in which the same commercial 

company that will carry out the defi nition and subsequent phases conducts the explor-

atory phase, the end product typically serves as a basis for deciding whether or not to 

authorize and fund a concept defi nition phase preliminary to engineering development. 

For this purpose, the requirements document typically includes a thorough description 

of the most attractive alternative concepts investigated, evidence of their feasibility, 

market studies validating the need for a new system, and estimates of development, 

production, and market introduction costs.   

   7.6    SUMMARY 

  Developing the System Requirements 

 The objectives of the concept exploration phase (as defi ned here) are to explore alterna-

tive concepts to derive common characteristics and to convert the operationally oriented 
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system view into an engineering - oriented view. Outputs of concept exploration are (1) 

system performance requirements, (2) a system architecture down to the subsystem 

level, and (3) alternative system concepts. 

 Activities that comprise concept exploration are the following: 

   •      Operational Requirements Analysis —   ensuring completeness and consistency;  

   •      Implementation Concept Exploration —   refi ning functional characteristics;  

   •      Performance Requirements Formulation —   deriving functions and parameters; 

and  

   •      Performance Requirements Validation —   ensuring operational validity.     

  Operational Requirements Analysis 

 Requirements development involves four basic steps: elicitation, analysis, validation, 

and documentation. These steps will, done correctly, lead to a robust set of well -

 articulated requirements. 

 Generating operational - level requirements usually involves analyses of alternative 

concepts, typically involving effectiveness models and simulations. In order to conduct 

these important analyses, three components are necessary: an initial set of operational 

requirements, an operational concept for the system in question, and the operational 

context — a set of operational scenarios depicting the environment.  

  Performance Requirements Formulation 

 System development is a nondeterministic process in that it requires an iterative induc-

tive reasoning process, and many possible solutions can satisfy a set of operational 

requirements. The predecessor system can be of great assistance as it will help defi ne 

the system functional architecture and the performance of functional building blocks.  

  Implementation Concept Exploration 

 Exploration of alternative implementation concepts should 

   •      avoid the  “ point design syndrome ” ;  

   •      address a broad spectrum of alternatives;  

   •      consider the adaptation of a predecessor system technology;  

   •      consider innovative approaches using advanced technology; and  

   •      assess the performance, risk, cost, and growth potential of each alternative.    

 Technology development is also an important component of system development. 

Industry and government support major R  &  D programs that lead to new technologies. 

This foundation of technology is typically referred to as the  “ technical base ”  and is the 

source of many innovative concepts. 
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 System performance requirements are developed through analyses to establish the 

performance parameters of each concept. These requirements are then assessed for 

conformance with operational requirements and constraints. Sources of these con-

straints include (1) system operator, maintenance, and test considerations; (2) require-

ments for interfacing with other systems; (3) externally determined operational 

environments; and (4) fabrication, transportation, and storage environments. 

 When completed, system performance requirements defi ne what the system 

should do, but not how it should do it. They present system characteristics in engineer-

ing terms — a necessary and suffi cient set refl ecting operational requirements and 

constraints.  

  Performance Requirements Validation 

 Performance requirements validation involves two interrelated activities: (1) integration 

of requirements derived from alternative system concepts and (2) effectiveness analyses 

to demonstrate satisfaction of the operational requirements. Performance requirements 

are defi ned in a living document; requirements are reviewed and updated throughout 

the system life cycle.   

  PROBLEMS 

    7.1     Explain why it is necessary to examine a number of alternative system con-

cepts prior to defi ning a set of system performance requirements for the 

purpose of competitive system acquisition. What are the likely results of failing 

to examine a suffi cient range of such concepts?  

  7.2     To meet future pollution standards, several automobile manufacturers are 

developing cars powered by electricity. Which major components of gasoline -

 powered automobiles would you expect to be retained with minor changes? 

Which ones would probably be substantially changed? Which would be new? 

(Do not consider components not directly associated with the automobile ’ s 

primary functions, such as entertainment, automatic cruise control, power seats 

and windows, and air bags.)  

  7.3     List the characteristics of a set of well - stated operational requirements, that is, 

the qualities that you would look for in analyzing their adequacy. For each, 

state what could be the result if a requirement did not have these 

characteristics.  

  7.4     In the section of performance requirements formulation, the process of system 

development is stated to be  “ nondeterministic. ”  Explain in your own words 

what is meant by this term. Describe an example of another common process 

that is nondeterministic.  

  7.5     Derive the principal functions of a DVD player by following the checklist 

shown in the subsection Functional Exploration and Allocation. How does 

each function relate to the operational requirements of the DVD player?  
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  7.6     IPTs are stated to have four main benefi ts. What specifi c activities 

would you expect systems engineers to perform in realizing each of these 

benefi ts?  

  7.7     What role does exploratory R  &  D conducted prior to the establishment 

of a formal system acquisition program play in advancing the objective of a 

system acquisition program? What are the main differences between the orga-

nization and funding of R  &  D programs and system development 

programs?  

  7.8     In considering potential system concepts to meet the operational requirements 

for a new system, there is frequently a particular concept that appears to be an 

obvious solution to the system requirements. Knowing that premature focusing 

on a  “ point solution ”  is a poor systems engineering practice, describe two 

approaches for identifying a range of alternative system concepts for 

consideration.  

  7.9       (a)     Develop a set of operational requirements for a simple lawn tractor. Limit 

yourself to no more than 15 operational requirements.  

  (b)     Develop a set of performance requirements for the same lawn tractor. 

Limit yourself to no more than 30 performance requirements.  

  (c)     Based on your experience, write a short paper defi ning the process of 

transforming operational requirements to performance requirements.  

  (d)     How would you go about validating the requirements in (b)?       
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    8.1    SELECTING THE SYSTEM CONCEPT 

 The concept defi nition phase of the system life cycle marks the beginning of a serious, 

dedicated effort to defi ne the functional and physical characteristics of a new system 

(or major upgrade of an existing system) that is proposed to meet an operational need 

defi ned in the preceding conceptual phases. It marks a commitment to characterize the 

system in suffi cient detail to enable its operational performance, time of development, 

and life cycle cost to be predicted in quantitative terms. As illustrated in Chapter  4  

(Figure  4.6 ), the level of effort in the concept defi nition phase is sharply greater than 

in previous phases, as system designers and engineering specialists are added to the 

systems engineers and analysts who largely staffed the preceding phases. In most needs -

 driven system developments, this phase is conducted by several competing developers, 

based on performance requirements developed in the preceding phases by or for the 

customer. The output of this phase is the selection, from a number of alternative system 

concepts, of a specifi c confi guration that will constitute the baseline for development 

and engineering. From this phase on, the system development consists of implementing 
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the selected system concept (with modifi cations as necessary) in hardware and software, 

and engineering it for production and operational use. 

 With the advent and formal defi nition of systems architecting, this phase has been 

known in some sources as the system architecture phase. While this may not be entirely 

appropriate, systems architecting, as it is now defi ned and understood, is a major activ-

ity within this phase. The specifi cs of systems architecting are discussed in Section  8.8 . 

  Place of the Concept Defi nition Phase in the System Life Cycle 

 The place of the concept defi nition phase in the overall system development is shown 

in Figure  8.1 . It constitutes the last phase of the concept development stage and leads 

to the initiation of the engineering development stage, beginning with the advanced 

development phase. Its inputs are system performance requirements, the technology 

base that includes a number of feasible system concepts, and the contractual and orga-

nizational framework in which the system development is to be cast. Its outputs are 

system functional specifi cations, a defi ned system concept, and a detailed plan for the 

ensuing engineering program. The planning outputs of this phase are usually specifi ed 

to include the systems engineering management plan (SEMP), which defi nes in detail 

the systems engineering approach to be followed, the project work breakdown structure 

(WBS), cost estimates for development and production, test plans, and such other sup-

porting material as may be directed (see Chapter  5 ).   

 When the customer is the government, laws specify that all acquisition programs 

be conducted competitively, except in unusual circumstances. The competition fre-

quently occurs during the concept defi nition phase. It customarily begins with a formal 

solicitation, which contains the system requirements, usually at the level of total system 

functionality, performance, and compatibility. Based on this solicitation, competing 

contractors carry out a proposal preparation effort, which embodies the concept defi ni-

tion phase of the program. The system concept and approach proposed by the successful 

     Figure 8.1.     Concept defi nition phase in system life cycle.  
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bidder (or in some cases more than one) then becomes the baseline for the ensuing 

system development. 

 In the development of a commercial product, the concept defi nition phase generally 

begins after the conclusion of a feasibility study, which established a valid need for 

the product and the feasibility of meeting this need by one or more technical approaches. 

It is the point at which the company has decided to commit signifi cant resources 

to defi ne the product to a degree where a further decision can be made whether or 

not to proceed to full - scale development. Except for the formality and requirements 

for detailed documentation, the general technical activities during this phase for 

commercial and government programs are similar. One or several design concepts 

may be pursued, depending on the perceived importance of the objective and available 

funds.  

  Design Materialization Status 

 The previous phase was concerned with system design only to the level necessary to 

defi ne a set of performance requirements that could be realized with a feasible system 

design, and that would not rule out other advantageous design concepts. For that 

purpose, it was suffi cient to defi ne functions at the subsystem level and only visualize 

the type of components that would be needed to implement the concept. 

 In order to defi ne a system to the level where its operational performance, develop-

ment effort, and production cost can be estimated with any degree of confi dence (by 

analogy with previously developed systems), the conceptual design must be carried one 

level further. Thus, in the concept defi nition phase, the design focus is on components, 

the fundamental building blocks of systems. As indicated in Table  8.1 , which is an 

overlay of Table  4.1 , the focus in this phase is on the selection and functional defi nition 

of the system components and the defi nition of their confi guration into subsystems.   

 Performance of the above tasks is primarily a systems engineering responsibility 

since they address technical issues that often cut across both technical disciplines and 

organizational boundaries. However, the functional defi nition task can be effectively 

carried out only if the component implementation used to achieve each prescribed 

function is reasonably well understood and is suffi ciently visualized to serve as the 

basis for risk assessment and costing, which cannot be carried out solely at the func-

tional level. Accordingly, as with many systems engineering tasks, consultation with 

and advice from experienced design specialists are almost always required, especially 

in cases where advanced techniques may be used to extend subsystem performance 

beyond previously achieved levels.  

  Systems Engineering Method in Concept Defi nition 

 The activities in the concept defi nition phase are discussed in the following sections in 

terms of the four steps of the systems engineering method (see Chapter  4 ), followed 

by a description of the planning of the ensuing system development effort and the 

formulation of system functional requirements. The four steps, as applied to this phase, 

are summarized below (generic names in parentheses): 



  TABLE 8.1.    Status of System Materialization of Concept Defi nition Phase 

   Level  

   Phase  

   Concept development     Engineering development  

   Needs analysis  

   Concept 

exploration  

   Concept 

defi nition  

   Advanced 

development  

   Engineering 

design  

   Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, 

and synthesize 

concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne 

requirements and 

ensure feasibility  

  Defi ne functional 

and physical 

architecture  

  Validate 

subsystems  

      Integrate and test  

  Component            Allocate 

functions to 

components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

2
0
0
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  Performance Requirements Analysis (Requirement Analysis).     Typical activities 

include  

   •      analyzing the system performance requirements and relating them to opera-

tional objectives and to the entire life cycle scenario, and  

   •      refi ning the requirements as necessary to include unstated constraints and 

quantifying qualitative requirements where possible.     

   Functional Analysis and Formulation (Functional Defi nition).     Typical activities 

include  

   •      allocating subsystem functions to the component level in terms of system 

functional elements and defi ning element interactions,  

   •      developing functional architectural products, and  

   •      formulating preliminary functional requirements corresponding to the assigned 

functions.     

   Concept Selection (Physical Defi nition).     Typical activities include  

   •      synthesizing alternative technological approaches and component confi gura-

tions designed to performance requirements;  

   •      developing physical architectural products; and  

   •      conducting trade - off studies among performance, risk, cost, and schedule to 

select the preferred system concept, defi ned in terms of components and 

architectures.     

   Concept Validation (Design Validation).     Typical activities include  

   •      conducting system analyses and simulations to confi rm that the selected 

concept meets requirements and is superior to its competitors, and  

   •      refi ning the concept as may be necessary.      

 The application of the systems engineering method to the concept defi nition 

phase is illustrated in Figure  8.2 , which is an elaboration of the generic diagram of 

Figure  4.12 . Inputs are shown to come from the previous (requirements defi nition) 

phase in the form of system performance requirements and competitive design con-

cepts. In addition, there are important external inputs in the form of technology, system 

building blocks (components), tools, models, and an experience knowledge base. 

Outputs include system functional requirements, a defi ned system concept, and (not 

shown in the diagram) detailed plans for the ensuing engineering stage of system 

development.     

   8.2    PERFORMANCE REQUIREMENTS ANALYSIS 

 As noted in Chapter  4 , each phase of development must begin with a detailed analysis 

of all of the requirements and other terms of reference on which the ensuing program 

is to be predicated. In terms of problem solving, this is equivalent to fi rst achieving a 

complete understanding of the problem to be solved. 
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  Analysis of Stated Performance Requirements 

 Requirements analysis in the concept defi nition phase is especially important because 

system performance requirements as initially stated often represent an imperfect inter-

pretation of the user ’ s actual needs. Even though the previous phases may have been 

thoroughly carried out, the derivation of a set of performance requirements for a 

complex system is necessarily an imprecise and often subjective process, not to mention 

     Figure 8.2.     Concept defi nition phase fl ow diagram.  
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iterative. In particular, the stated requirements tend to be infl uenced by personal and 

often not well - founded presumptions of what will turn out to be hard or easy to achieve. 

This may result in some performance requirements being unnecessarily stringent 

because they are believed to be readily achievable (a presumption that may turn out to 

be invalid). It is therefore essential that both the basis for the requirements and their 

underlying assumptions be clearly understood. Following this, steps can be taken to 

refi ne the requirements as necessary to support the defi nition of a truly viable system 

concept. The estimated relative diffi culty of achieving the requirements will help to 

guide resource allocation during development. 

 The task of understanding the source of the given performance requirements in 

terms of user needs is the particular province of systems engineering. This task requires 

as intimate an acquaintance with the operational environment and with system users as 

circumstances may permit. In the case of complex operational systems, such an under-

standing can best be derived through years of work in the fi eld. 

  Categories of System Requirements.     In discussing the subject of require-

ments analysis, attention is usually focused on what functions the system must perform 

and how well. We have named these types of requirements,  functional  and  performance . 

Such requirements are generally well defi ned. There are, however, other types of 

requirements that may be equally important but may be much more poorly defi ned, or 

even omitted up to this point. These include the following: 

  1.     Compatibility Requirements:     how the system is to interface with its operating 

site, its logistics support, and with other systems.  

  2.     Reliability, Maintainability, Availability (RMA)   Requirements:     how reliable the 

system must be to fulfi ll its purpose, how it will be maintained, and what support 

facilities will be required.  

  3.     Environmental Requirements:     what extremes of the physical environment must 

the system be built to withstand throughout its lifetime.    

 RMA requirements, when explicitly stated, tend to be arbitrary and often not well 

defi ned. For the other two categories, requirements are often largely confi ned to the 

system ’ s operational mode and leave out the conditions of shipping, storage, transit, 

assembling, and supporting the system. In these circumstances, it is necessary to inves-

tigate in detail the entire life of the system, from product delivery to the end of its 

operating life and its disposition.  

  System Life Cycle Scenario.     To understand all of the situations that the system will 

encounter during its lifetime, it is necessary to develop a model or scenario that identi-

fi es all of the different circumstances to which the system will be exposed. These will 

include at least 

  1.     storage of the system and/or its components,  

  2.     transportation of the system to its operational site,  
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  3.     assembly and readying the system for operation,  

  4.     extended deployment in the fi eld,  

  5.     operation of the system,  

  6.     routine and emergency maintenance,  

  7.     system modifi cation and upgrading, and  

  8.     system disposition.    

 The model of these phases of the system ’ s use must be suffi ciently detailed to 

reveal any interactions between the system and its environment that will affect its 

design. For example, the maintenance of the system will require a supply of spare parts, 

special test equipment, special test points, and other provisions that need to be 

recognized. 

 The model also needs to contain information for life cycle costing. Only by visual-

izing the complete life of the projected system can valid requirements and associated 

costs be developed.   

  Completion and Refi nement of System Requirements 

 The development of a system life cycle model will almost always reveal that 

many important system requirements were not explicitly stated. This is likely to be 

true not only for the nonoperating phases of the system but also for its interaction 

with the physical environment. These environmental specifi cations are often derived 

from  “ boiler plate, ”  especially in many military systems, rather than from a realistic 

model of the operating environment. In contrast, the desire to make use of standard 

commercial components may cause such specifi cations to be unduly relaxed or omitted 

entirely. 

 Probably the most important requirement that is often not stated is that of afford-

ability. In competitive system developments, the projected system cost is one of the 

factors considered in selecting the winning proposal. Therefore, affordability must be 

considered as equivalent to other stated requirements, even though it may not be rep-

resented as such. It is, therefore, necessary to gain as much insight as practicable into 

what level of projected system cost development, production, and support will consti-

tute an acceptable (or competitive) value. 

 Useful life is another system characteristic that is seldom stated as a requirement. 

To prevent early obsolescence, a system that uses high technology must be capable of 

periodic upgrading or modernization. To make such a process economically viable, the 

system must be designed with this objective in mind, making those subsystems or 

components that are susceptible to early obsolescence easy to modify or replace with 

newer technology. 

 In some programs, such upgrading or growth capability is explicitly provided 

for. This process is sometimes called  “ preplanned product improvement ”  (P 3 I). In the 

majority of cases, however, especially when initial cost is a major concern, there is 

not a stated requirement for such capability. Nevertheless, it must be kept in mind 

as an important criterion for comparing alternative system concepts, since in 
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practice, future changes in operating conditions and/or system environment (or 

product competition) will more often than not lead to increasing pressures for a system 

upgrade. 

  Unquantifi ed Requirements.     In order to be useful, a system requirement must 

be verifi able. This typically means measurable. Where the requirement is stated in 

nonquantifi able terms, the task of requirements analysis includes endowing it with as 

much quantifi cation as possible. The following two examples are typical of such 

requirements. 

 A commonly unquantifi ed area is that of user requirements, and especially the 

user – system interface. The overworked term  “ user friendly ”  does not translate readily 

into measurable form. Accordingly, it is important to gain a fi rsthand understanding of 

the user ’ s needs and limitations. This, in turn, is complicated by the fact that there may 

be several users with different interfacing constraints and levels of training. There is 

also the maintenance interface, which has totally different requirements. 

 The interfaces between the system and other equipment at its operating site and 

with related systems are also often not stated in measurable terms. This may require a 

fi rsthand examination of the projected system environment, and even measurements of 

these interfaces, if necessary. For example, are there specifi cations for such parameters 

as available power or input signals that must be provided at the site?  

  Requirements and the Predecessor System.     As noted previously, if there is 

a predecessor (current) system that performs the same or similar function as the pro-

jected system, as is usually the case, it is the single richest source of information on 

the requirements for the new system. It deserves detailed study by systems engineering 

at all stages of development, especially in the formative phases. 

 The predecessor system offers an excellent basis for understanding the exact nature 

of the defi ciencies that led to the call for a new system. Since all its attributes are 

measurable, they can serve as a point of departure for quantifying the requirements for 

the new system. There is frequently documentation available that can provide a direct 

comparison to requirements for the new system. 

 The users of the predecessor system are usually the best source of information of 

what is needed in a new system. Thus, systems engineering should make the effort to 

gain a detailed fi rsthand understanding of system operation.  

  Operational Availability.     There may or may not be a stated requirement for 

the date at which the system is to be ready for operational use. When there is, it is 

important to try to understand the priority of meeting this date relative to the importance 

of development cost, performance, and other system characteristics. This knowledge is 

needed because these factors are mutually interdependent, and their proper balance is 

essential to the success of the system development. 

 In any event, the time of availability is always important to the ultimate value of 

the system. This is because the growth of technology and competitive pressures operate 

continuously to shorten the new system ’ s effective operational life. Thus, the time of 

operational availability must be considered a prime factor in the planning of a system 
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development. In commercial developments, the fi rst product to exploit a new technol-

ogy often gains a lion ’ s share of the market.  

  Determining Customer/User Needs.     As noted previously, it is always neces-

sary to clarify, extend, and verify the stated system requirements through contacts not 

only with the customer but also with present users of existing or similar systems. 

 In a competitive acquisition program, access to the customer may often be formally 

controlled. However, it should be used, insofar as possible, to clarify ambiguities and 

inconsistencies in the requirements as originally stated. This may be done directly, 

through correspondence, or at a bidders ’  conference, as appropriate. 

 A better opportunity to clarify system requirements is in the preproposal stage. In 

many large acquisition programs, a draft request for proposal (RFP) is circulated to 

prospective bidders for comment. During this period, it is usually possible to obtain a 

better understanding of the customer requirements than will be possible after the issu-

ance of the RFP. This emphasizes the fact that the effort to respond to a system acquisi-

tion RFP must begin well before (months or years) its formal issuance. 

 In developing commercial systems, there is always an active and often an extended 

market survey to establish customer/user needs. In these cases, explicit system require-

ments may often not yet exist. As a prerequisite to the defi nition of a system concept 

and its associated performance requirements, it is therefore essential that systems engi-

neering interact as directly as possible with potential customers and users of current 

systems to observe at fi rst hand the system strengths, limitations, and associated operat-

ing procedures.    

   8.3    FUNCTIONAL ANALYSIS AND FORMULATION 

 It has been seen that in keeping with the inherent magnitude of designing a complex 

system, the systems engineering method divides the design task into two closely 

coupled steps: (1) analyzing and formulating the functional design of the system (what 

actions it needs to perform) and (2) selecting the most advantageous implementation 

of the system functions (how the actions can best be physically generated). The close 

coupling between these steps results from their mutual interdependence, which requires 

both visualization of the implementation step in formulating the functional design and 

iteration of the implementation step when alternative approaches are considered. Those 

familiar with software engineering will recognize these two steps as design and imple-

mentation, respectively. 

  Defi nition of Component Functions 

 The system materialization process in the concept defi nition phase is mainly concerned 

with the functional defi nition of system components (see Table  7.1 ). If the details of 

the concept exploration phase are available, the functional confi guration at the system 

level has already been explored (recall the coffeemaker example in Chapter  7 ). If not, 
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there will have almost always been exploratory studies preceding the formal start of 

concept defi nition that have laid out one or more candidate top - level concepts that can 

serve as a starting point for component functional design. 

  Functional Building Blocks.     The general nature of the task of translating per-

formance requirements into system functions can be illustrated by using the concept of 

system functional building blocks as summarized in Chapter  3 . Extending the discus-

sion in Chapter  7 , the following steps are involved: 

  1.     Identifi cation of Functional Media.     The type of medium (signals, data, materi-

als, energy, and force) involved in each of the primary system functions can 

usually be readily associated with one of these fi ve classes, using the criteria 

suggested in Chapter  7 .  

  2.     Identifi cation of Functional Elements.     Operations on each of the fi ve classes of 

media are represented by fi ve or six basic functional elements, listed in Chapter 

 3 , each performing a signifi cant function and found in a wide variety of system 

types. The system actions (functions) can be constructed from a selection of 

those functional building blocks.  

  3.     Relation of Performance Requirements to Element Attributes.     Each functional 

element possesses several key performance attributes (e.g., speed, accuracy, and 

capacity). If these can be related to the relevant system performance 

requirement(s), it confi rms the correct selection of the functional element.  

  4.     Confi guration of Functional Elements.     The functional elements selected to 

achieve the required performance characteristics must be interconnected and 

grouped into integrated subsystems. This may require adding interfacing (input/

output) elements to achieve connectivity.  

  5.     Analysis and Integration of All External Interactions.     The given performance 

requirements often leave out important interactions of the system with its opera-

tional (or other) environment (e.g., external controls or energy source). These 

interactions need to be integrated into the total functional confi guration.    

 It is not advisable to attempt to optimize at this stage. The initial formulation of 

the system functional design will need to be modifi ed after the subsequent step of 

physical defi nition and the ensuing iteration.  

  Functional Interactions.     The functional elements are inherently constituted 

to require a minimum of interconnections to other elements besides primary inputs 

and outputs. However, most of them depend on external controls and sources of 

energy, as well as being housed or supported by a material structure. Their grouping 

into subsystems should be such as to make each subsystem as self - suffi cient as 

possible. 

 Minimizing critical functional interactions among different subsystems has 

two purposes. One is to aid the system development, engineering, integration, test, 
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maintenance, and logistics support. The other is to facilitate making future changes in 

the system during its operational life to upgrade its effectiveness. 

 When several different ways to group functions (functional confi gurations) 

are comparably effective, these alternatives should be carried forward to the next 

step of the design process where a choice of the superior confi guration may be more 

obvious.   

  Functional Block Diagramming Tools 

 Several formal tools and methods exist (and continue to be developed) for representing 

a system ’ s functionality and their interactions. Commercial industry has used the func-

tional fl ow diagram, formally referred to as the functional fl ow block diagram (FFBD), 

to represent not only functionality but also the fl ow of control (or any of the fi ve basic 

elements). This diagramming technique can be used at multiple levels to form a hier-

archy of functionality. 

 Recently developed is a method known as the integrated defi nition (IDEF) method. 

In fact, IDEF extends beyond functionality and now encompasses a range of capability 

descriptions for a system. Integrated defi nition zero (IDEF0) is the primary technique 

for representing system functionality. The basic construct is the functional entity, rep-

resented by a rectangle, as shown in Figure  8.3 . Strict rules exist for identifying inter-

faces to and from a function. Sometimes, detail is included within the box, such as the 

listing of multiple functions performed by the entity; other times, the inside of the 

rectangle is left blank. Inputs always enter from the left; outputs exit to the right. 

Controls (separated from inputs) enter the function from the top, and mechanisms (or 

implementation) enter from the bottom.   

 One of the simplest diagramming techniques is the functional block diagram 

(FBD). This technique is similar to FFBDs, but without the fl ow structure, and IDEF0, 

     Figure 8.3.     IDEF0 functional model structure.  
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but without the diagramming rules. Basically, each function is represented by a rect-

angle. Interfaces between functions are identifi ed by directional arrows and are labeled 

to represent what is being passed between the functions. When a function interfaces 

with an external entity, the entity is represented in some fashion (e.g., rectangle and 

circle) and an interface arrow is provided. 

 Recall from Chapter  7  the example of the coffeemaker. Eleven functions were 

identifi ed; they are relisted here: 

 Input Functions 

   •      Accept user command (on/off)  

   •      Receive coffee materials  

   •      Distribute electricity  

   •      Distribute weight   

  Transformative Functions 

   •      Heat water  

   •      Mix hot water with coffee grinds  

   •      Filter out coffee grinds  

   •      Warm brewed coffee   

  Output Functions 

   •      Provide status  

   •      Facilitate removal of materials  

   •      Dissipate heat    

 Figure  8.4  represents an FBD using the 11 functions. Three external entities were 

also identifi ed: the user, a power source (assumed to be an electrical outlet), and the 

environment. Notice that within the functions list, and the diagram, maintenance is not 

considered. This is due to the nature of household appliances in general, and coffeemak-

ers in particular. They are not designed to be maintained. They are  “ expendable ”  or 

 “ throwaway. ”    

 Since it is diffi cult to avoid crossing lines, several mechanisms exist to distinguish 

between separate interface arrows. Color is probably the most prevalent. But other 

methods, such as dashed lines, are used as well. In the case of power, we have simply 

listed the functions that require power (e.g.,  “ F5 ” ). We have tried to be rather thorough 

in this example to help the reader think through the process of identifying functions 

and developing a functional structure for the system. Simplifying this diagram would 

not be diffi cult since we could omit several functions at this stage, as long as we did 

not forget about them later on. For example, function 10,  “ facilitate removal of materi-

als  , ”  could be omitted at this stage, as long as the ultimate design does indeed allow 

the user to easily remove materials. Notice as well that we can categorize the functions 

into those handling the fi ve basic elements: 
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     Figure 8.4.     Functional block diagram of a standard coffeemaker.  

1. Receive 
Coffee 

Materials

User

5. Heat Water

Coffee Grinds
Filter

Water

Water

Hot Water

Heat

2. Accept User 
Command 

6. Mix Hot 
Water with 

Coffee Grinds 11. Dissipate 
Heat

On/Off
Command

C
o

ff
e

e
 G

ri
n

d
s

On/Off
Signal

On/Off

7. Filter Out 
Coffee Grinds

9. Provide 
Status

Heat

F
ilt

e
r

On/Off
Signal

Coffee Sludge

Heat
On/Off
Status

Environment
8. Warm 

Brewed Coffee

10. Facilitate 
Removal of 

Brewed Coffee

Heat

Power 3 Distribute 4 Di t ib t

Brewed Coffee
Materials

F5
F6 All

Used Filter
Used Coffee Grinds

Used Filter
Used Coffee Grinds

Warm 
Brewed
Coffee

Weight

Weight

Source
3. Distribute 
Electricity

4. Distribute 
Weight

User

F6
F8
F9

Functions

E
le

c
tr

ic
it
y

E
le

c
tr

ic
it
y

  Materials    Receive coffee materials  

  Mix hot water with coffee grinds  

  Filter out coffee grinds  

  Facilitate removal of materials  

  Data    Provide status  

  Signals    Accept user commands  

  Energy    Distribute electricity  

  Heat water  

  Warm brewed coffee  

  Dissipate heat  

  Force    Distribute weight  

 This is not a  “ clean ”  categorization, since some functions input one type of element 

and convert it into another type. For example, function 2,  “ accept user commands, ”  

inputs a datum and converts it to signals. Subjective judgment is necessary. 

  Hardware – Software Allocation.     The issue of whether a given function should 

be performed by hardware or software may seem like a question of implementation 

rather than function. However, system - level issues are almost always involved in such 
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decisions, such as the effect on operator interfaces, test equipment, and widespread 

interaction with other system elements. Accordingly, the defi nition of functional build-

ing blocks makes a clear distinction between software elements (e.g., control system 

and control processing) and hardware elements (e.g., process signal and process data). 

For these reasons, the functional defi nition at the component level should include the 

allocation of all signifi cant processing functions to either hardware or software. An 

important consideration in such decisions is provision for future growth potential to 

keep up with the rapidly advancing data processing technology. 

 In software - embedded systems, as defi ned in Chapter  11 , software tends to be 

assigned most of the critical functions, especially those related to controls, because of 

its versatility. In software - intensive systems, in which virtually all the functionality is 

performed by software, functional allocation is not as straightforward because of the 

absence of commonly occurring functional elements. Chapter  11  describes the inherent 

differences between hardware and software and their effect on system design, and 

addresses the methods used in designing software system architectures. 

 To the extent that decisions may be involved in selecting functional elements, 

confi guring them, or quantifying their functional characteristics, trade - offs should be 

made among the candidates using a set of predefi ned criteria. The principles and 

methods of trade - off analysis are described in Chapter  9 .   

  Simulation 

 The analysis of the behavior of systems that have dynamic modes of response to events 

occurring in their environment often requires the construction of computer - driven 

models that simulate such behavior. The analysis of the motion of an aircraft, or for 

that matter of any vehicle, requires the use of a simulation that embodies its kinematic 

characteristics. 

 Simulations can be thought of as a form of experimental testing. They are used to 

obtain information critical to the design process in a much shorter time and at lesser 

cost than building and testing system components. In effect, simulations permit design-

ers and analysts to gain an understanding of how a system will behave before the system 

exists in physical form. Simulations also permit designers to conduct  “ what - if ”  experi-

ments by making selected changes in key parameters. Simulations are dynamic; that 

is, they represent time - dependent behavior. They are driven by a programmed set of 

inputs or scenarios, whose parameters may be varied to produce the particular responses 

to be studied, and may include input – output functional models of selected system ele-

ments. These characteristics are especially useful for conducting system trade - off 

studies. 

 In the concept defi nition phase, system simulation is particularly useful in the 

concept selection process, especially in cases where the dynamic behavior of the system 

is important. Simulation of the several alternative concepts permits the conduct of 

 “ experiments ”  that present the candidates with a range of critical potential challenges. 

The use of simulation results in scoring the candidates is generally more meaningful 

and persuasive than using judgment alone. Chapter  9  describes in greater detail some 

of the different types of simulation used in system development.  
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  Formulation of Functional Specifi cations 

 One of the outputs of the concept defi nition phase is a set of system functional speci-

fi cations to serve as an input to the advanced development phase. It is appropriate to 

formulate a preliminary set of functional specifi cations at this step in the process to lay 

the groundwork for more formal documents. This also serves as a check on the com-

pleteness and consistency of the functional analysis. 

 In stating functional specifi cations, it is essential to quantify them insofar as may 

be inferred from the performance and compatibility requirements. The quantifi cation 

should be considered provisional at this time, to be iterated during the physical defi ni-

tion step and incorporated into the formal system functional specifi cation document at 

the end of the concept defi nition phase. It is at this level in the system hierarchy that 

the physical confi guration becomes clearly evident.   

   8.4    FUNCTIONAL ALLOCATION 

 The decisions in the process of concept defi nition center on the selection of a particular 

system confi guration or concept and the defi nition of the functions it is to perform. 

These decisions do more to determine the ultimate performance, cost, and utility of the 

new system than those in any subsequent phase of the development. Further, in a com-

petitive acquisition process, selection of who will develop the system is largely based 

on the evaluation of the proposed concept and the supporting documentation. For those 

reasons, the functional allocation process is of crucial importance. 

 The systems engineering method calls for such decisions to be made by a structured 

process that considers the relative merit of a number of alternatives before any one is 

selected. This process is called  “ trade - off studies ”  or  “ trade - off analysis ”  and is used 

in decision - making processes throughout system development. Trade - off analysis is 

most conspicuously employed during the concept defi nition phase, largely in the selec-

tion of the physical implementation of system components. As stated previously, 

Chapter  9  contains a description of the principles and methods of trade - off analysis. 

  Formulation of Alternative Concepts 

 The fi rst step in selecting a preferred system concept is to formulate a set of alternative 

solutions, or in this case, system concepts. In the early development phases, the alterna-

tive construction begins by allocating the functions identifi ed above to physical 

components of the system. In other words, we must determine how we will implement 

the functions above. Of course, this might entail decomposing the top - level functions 

in an FBD (or other functional representation) into lower - level functions. Many 

times, this activity provides insight into alternative methods of implementing each 

function. 

 As we identify system components, beginning with subsystems, we are constantly 

faced with the question of whether multiple functions can and should be implemented 

by a single physical component. The converse is also an issue: should a single function 
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be implemented by multiple subsystems? Ideally, a one - to - one mapping is our goal. 

However, other factors may lead one to map multiple functions to a single component, 

or vice versa. 

 A specifi c allocation of functions to physical components, and the functional and 

physical interfaces that result from that allocation, is considered a single alternative. 

Other allocation schemes will result in different alternatives. The trade - offs mentioned 

above can occur at multiple levels, from the entire system to individual components. 

Many times, these trade - offs are part of the functional allocation process. 

 An important objective is to ensure that no potentially valuable opportunities are 

omitted. The following paragraphs discuss issues with developing alternatives. 

  The Predecessor System as a Baseline.     As noted earlier, most system devel-

opments are aimed at extending the capabilities or increasing the effi ciency of some 

function that is presently being inadequately performed by an existing system. In cases 

where the functions of the current system are the same or similar to those of the new 

system, the current system provides a natural point of departure for system concept 

defi nition. Where the main driving force comes from serious defi ciencies of limited 

portions of the current system, an obvious (partial) set of alternative approaches would 

begin with a minimum modifi cation of the system, restricted to those subsystems or 

major components that are clearly defi cient. Other alternatives would progressively 

modify or replace other subsystems that may be made obsolescent by modern technol-

ogy. The general confi guration of the system would be retained. 

 In cases where there are new and improved technological advances at the compo-

nent level, or when there are standard commercial off - the - shelf components that could 

be applied to the new system, the impetus for change to a new system would be 

technology - driven. In this case, a commonly used approach is to introduce improve-

ments sequentially over time as modifi cations to the current system confi guration. 

 Even when there are reasons against retaining any parts of the current system, as, 

for example, when moving from a conventional, manually controlled process to an 

automated and higher - speed operation, the current system ’ s general functional confi gu-

ration, component selection, materials of construction, special features, and other char-

acteristics usually provide a useful point of departure for alternative concepts.  

  Technological Advances.     As noted in Chapter  6 , some new system develop-

ments are driven more by advances in technology than by operational defi ciencies in 

the previous system. These advances may arise either in exploratory research and 

development programs aimed at particular application areas, such as development of 

advanced jet engines, or may come from broadly applicable technology such as high -

 speed computing and communication devices. 

 Such advances are often incorporated into an existing system to achieve specifi c 

performance improvements. However, if their impact is major, the possibility of a 

radical departure from the previous confi guration should be included among the alterna-

tives. Beyond a certain point, the existing framework may overly constrain the achiev-

able benefi ts and should therefore be abandoned. Thus, when advanced technology is 

involved, a wide range of choices for change should be examined.  
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  Original Concepts.     In relatively rare instances, a really different concept is advanced 

to meet an operational need, especially when the need had not been previously met. In 

such instances, there is not likely to be a previous system to use for comparison, so 

that different types of alternatives would need to be examined. Often, various versions 

of the new concept can be considered, differing in the degree of reliance on new and 

unproven technology in exchange for projected performance and cost.   

  Modeling of Alternatives 

 For comparing alternative concepts, each must be represented by a model that possesses 

the key attributes on which the relative values of the alternatives will be judged. As a 

minimum, an FFBD of each should be constructed, and a pictorial or other physical 

description produced for providing a more realistic view of the system candidate. 

 Both the above modeling and the simulation of alternative concepts will contribute 

important context to the selection process and associated trade - offs.   

   8.5    CONCEPT SELECTION 

 The objective of trade - off studies in the concept defi nition phase is to assess the relative 

 “ goodness ”  of alternative system concepts with respect to 

   •      operational performance and compatibility,  

   •      program cost,  

   •      program schedule, and  

   •      risk in achieving each of the above.    

 The results are judged not only by the  degree  to which each characteristic is expected 

to be achieved but also by the  balance  among them. Such a judgment is of necessity 

highly program dependent because of the differing priorities that may be placed on the 

above characteristics. 

     Design Margins.     In a competitive program, there is always a tendency to maxi-

mize system performance so as to gain an edge over competing system proposals. This 

often results in pushing the system design to a point where various design margins are 

reduced to a bare minimum. The term  “ design margin ”  refers to the amount that a given 

system parameter can deviate from its nominal value without producing unacceptable 

behavior of the system as a whole. A reduction in design margins is inevitably refl ected 

in tighter restrictions on the environmentally induced changes in component character-

istics during system operation and/or on the fabrication tolerances imposed in the 

production process. Either can lead to higher program risk, cost, or both. Accordingly, 

the issue of design margins should be explicitly addressed as an important criterion 

when selecting a preferred system concept.  
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  System Performance, Cost, and Schedule.     To the extent that stated perfor-

mance requirements are quantifi ed, are found to be an accurate expression of opera-

tional needs, and are within current system capabilities, they may be considered a 

minimum baseline for the system. However, where they are found to stress the state of 

the art, or to be desirable rather than truly essential, they need to be considered elastic 

and capable of being traded off against cost, schedule, risk, or other factors. Unstated 

requirements found to be signifi cant should always be included among the variables. 

 Program cost must be derived from the system life cycle cost, which in turn must 

be derived from a model of the complete system life cycle. The appropriate relative 

weighting of the near - term versus long - term costs depends on the fi nancial constraints 

of the acquisition strategy. Specifi c cost drivers should be identifi ed wherever 

possible. 

 The appropriate weighting of schedule requirements is very program dependent 

and may be diffi cult to establish. There is an inherent tendency, especially in govern-

ment and other programs where competition among contractors is especially strong, to 

estimate both cost and schedule of a new acquisition on the optimistic side, making no 

provision for the unforeseen delays that always occur in new system developments and 

are often caused by  “ unk - unks, ”  as discussed in Chapter  4 . This optimism factor also 

applies to the estimation of system performance and technical risk. Overall, it tends to 

slant the trade - off process toward the selection of advanced concepts and optimistic 

schedules over more conservative ones.  

  Program Risks.     The assessment of risk is another primary systems engineering 

task. It involves estimating the probability that a given technical approach will  not  

succeed in achieving the intended objective at an affordable cost. Such risk is 

present in every previously untried approach. In the development of new complex 

systems, there are many areas in which risk of failure must be explicitly considered 

and measures taken to avoid such risks or to reduce their potential impact to manage-

able levels. 

 Chapter  5 , which devotes a section to the subject of risk management, shows that 

program risk can be considered to consist of two factors: (1) probability of failure — the 

probability that the system will fail to achieve an essential program objective, and (2) 

criticality of failure — the impact of the failure on the success of the program. Thus, the 

seriousness of each risk can be qualitatively considered as a combination of the prob-

ability of the failure weighted by its criticality to the system. For the purposes of this 

chapter, the following are examples of conditions that may result in a signifi cant prob-

ability of program failure: 

   •      A leading - edge unproven technology is to be applied.  

   •      A major increase in performance is required.  

   •      A major decrease in cost is required for the same performance.  

   •      A signifi cantly more severe operating environment is postulated.  

   •      An unduly short development schedule is imposed.     
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  Selection Strategy.     The preceding discussion shows that the principal criteria 

involved in selecting a preferred system concept are complex, semiquantitative at best, 

and involve comparisons of incommensurables. This means that the evaluation of the 

relative merits of alternatives must be such as to expose and illuminate their most criti-

cal characteristics and to allow the maximum exercise of judgment throughout the 

evaluation process. 

 Two additional guidelines for conducting complex trade - off analyses may be 

useful: (1) to conserve analytical effort, use a staged approach to the selection process, 

in which only the most likely winners are subjected to the full system evaluation; and 

(2) to retain the visibility of the complete evaluation profi le of each concept (against 

each critical measure of effectiveness) until the fi nal selection, rather than combining 

the components into a single fi gure of merit, a practice that is often employed but that 

tends to submerge signifi cant differences. 

 In pursuing a staged approach, the following suggestions can serve as a checklist, 

to be applied where appropriate: 

  1.     For the fi rst stage of evaluation, make sure that a suffi cient number of alterna-

tive approaches are considered to address all needs and to explore all relevant 

technical opportunities.  

  2.     If the number of alternatives is larger than can be individually evaluated in 

detail, perform a preliminary comparison to winnow out the  “ outliers. ”  This is 

equivalent to qualifying the candidates. But be careful not to discard prema-

turely any candidates that present a new and unique technological opportunity, 

unless they are inherently incapable of qualifying.  

  3.     For the next stage of evaluation, examine the list of performance and compat-

ibility requirements and select a subset of the most critical ones that are also 

the most likely to reject unsuitable system concepts. Include consideration of 

growth capability and design margins as appropriate.  

  4.     For each candidate concept, evaluate its expected compliance with each selected 

criterion. In the case of partial noncompliance, attempt to adjust the concept 

where possible to satisfy the criteria. Estimate the resultant performance, cost, 

risk, and schedule. In the event of conspicuous imbalance in the above, attempt 

to modify further the concept to achieve an acceptable balance for all 

requirements.  

  5.     Assign weighting factors or priorities to the evaluation criteria, including cost, 

risk, and schedule, and apply to the ranking of each concept. Avoid concepts 

that do not have a sound balance of the above factors.  

  6.     For each evaluation criterion, rank order the several candidate concepts.  

  7.     Look for and eliminate clear losers.  

  8.     Unless there is a single clear winner, perform a signifi cantly more detailed 

comparison among the two or three potential winners. To this end, develop 

a life cycle model for each concept, along with a WBS, and a risk abatement 

plan.    
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 In making the fi nal system concept selection, review the evaluation profi le of the 

merit of each candidate concept against each critical measure of effectiveness to ensure 

that the choice has no major weaknesses. Check for the sensitivity of the result to a 

reasonable variation of the weighting of individual criteria. 

 As stated previously, use each of the above suggestions only where it may be 

appropriate to the particular selection process. Chapter  9  devotes a section to the fun-

damentals of trade - off analysis, with an example of their application.    

   8.6    CONCEPT VALIDATION 

 The task of designing a model of the system environment to serve as the basis for 

concept validation builds on the set of parameters initially established for use in the 

trade - off studies of the selection process. 

  Modeling the System and Its Environment 

 Since the degree of system defi nition at this stage is largely functional, its validation 

must rely primarily on analysis rather than on testing. The rapid growth of computer 

modeling and simulation in recent years is providing powerful tools for the validation 

of complex system concepts. 

  System Effectiveness Models.     In complex operational systems, system effec-

tiveness models are developed in the needs analysis and concept exploration phases to 

provide a fuller understanding of the effectiveness of existing systems in performing 

their missions and in identifying defi ciencies that need to be remedied. These are most 

often computer simulations that include provisions for varying key parameters to estab-

lish the sensitivity of overall performance to environmental and system parameter 

variations and to determine the nature and extent of system changes needed to offset 

any identifi ed defi ciencies (see also Chapter  9 ). 

 In the concept defi nition phase, the construction of system effectiveness models 

by the system developer depends on whether or not the models used in the previous 

phases are available, as in the case where the developer is also the customer. In that 

case, the models can be readily extended to conform to the selected system concept 

for the validation process. If not, the construction of the model becomes part of the 

concept defi nition task. For this and other reasons, the preparation for the competitive 

effort often begins months (and sometimes years) before the start of the formal 

competition. 

 Computer models are also capable of validating a host of subsystem or component -

 level technical design features. Areas such as aerodynamic design, microwave antennae, 

hydrodynamics, heat transfer, and many others can be modeled for analysis through the 

use of special computer codes. Advances in computer capabilities have made such 

modeling more and more accurate in predicting system behavior for purposes of design 

and evaluation.  
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  Critical Experiments.     When a proposed system concept relies on technical 

approaches that have not been previously proven in similar applications, its feasibility 

must be demonstrated. Often this cannot be done credibly through analysis alone and 

must be subjected to experimental verifi cation. This is diffi cult to accommodate in the 

limited time and constrained resources of a competitive acquisition, but must neverthe-

less be undertaken to support the proposed system concept. 

 The term  “ critical experiment ”  is appropriate in such instances because it is related 

to the specifi c purpose of substantiating a critical feature of the design. It purposely 

stresses the proposed design feature to its extreme limits to ensure that it is not just 

marginally satisfactory. The term  “ experiment ”  rather than  “ test ”  is appropriate because 

it is performed for the purpose of obtaining suffi cient data to understand thoroughly 

the behavior of the system element, rather than merely to measure whether or not the 

element operates within certain limits. By the same token, extensive data analyses are 

also performed to illuminate the system behavior.   

  Analysis of Validation Results 

 The analysis of the results of system validation simulations can produce three different 

types of unsatisfactory fi ndings that require remedial action: (1) defi ciencies in 

the assumed characteristics of the system being modeled, (2) defi ciencies in the 

test model, or (3) excessively stringent system requirements. It is the purpose of 

the analysis process to attribute the results of the simulation to one or more of the 

above causes. Beyond these fi ndings, the analysis should also indicate what kind 

and degree of changes would eliminate the discrepancies. This latter fi nding usually 

requires a series of simulations or analyses that test the effect of alternative remedial 

actions. 

 The feedback resulting from the validation analysis results in an iterative process 

in which the system model design and environmental model are refi ned as necessary 

to bring the system model in compliance with the requirements.  

  Iteration of System Concepts and Requirements 

 The above description of the validation process implies that only one concept was found 

to be superior in the concept trade - off evaluation, and that this concept was then vali-

dated against the full system requirements. Not infrequently, two and sometimes more 

concepts turn out to be nearly equal in preliminary rankings. In that case, each should 

be evaluated against the full requirements to see if the more rigorous comparison pro-

duces a clear discriminator for selecting the preferred concept. 

 The system requirements should always be regarded as fl exible up to a point. If 

the validation or trade - off results show that one or more stated requirements appear to 

be responsible for unduly driving up system complexity, cost, or risk, they should be 

subjected to critical analysis, and if appropriate, highlighted for discussions with the 

customer by program management.   
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   8.7    SYSTEM DEVELOPMENT PLANNING 

 A major product of the concept defi nition phase is a set of plans that defi ne how the 

engineering program is to be managed. Among these are the WBS, the life cycle model, 

the SEMP or its equivalent, system development schedules, the operational (or inte-

grated logistic) support plan, and such others as may be specifi ed by the contracting 

agency to provide all participants with clear objectives and timescales for accomplish-

ing their respective tasks. 

 Of the above plans, systems engineering has prime responsibility only for 

the SEMP. However, it is also deeply involved in all the others by having to provide 

a detailed description and ongoing assessment of the development process to those 

who are directly responsible for the other technical management documents. For 

example, systems engineers are often asked to review initial estimates of the time 

and effort required to perform a particular engineering task, and based on their 

appraisal of the associated technical risks, to recommend approval or modifi cation as 

appropriate. 

   WBS  

 The WBS, which was described in Chapter  5 , is one of the essential development plan-

ning vehicles. The WBS provides a hierarchical framework designed to accommodate 

all the tasks that need to be accomplished during the entire life of the project. The 

topmost level represents the project as a whole; the next contains the system product 

itself, and the principal supporting and management categories. Succeeding levels 

subdivide the total effort into successively smaller work elements. This subdivision is 

continued until the complexity and cost of each work element or task are reduced to 

the point that the task can be directly planned, costed, scheduled, and controlled. The 

process must ensure that no necessary task is overlooked and that realistic cost and 

schedule estimates can be made. 

 The specifi c form of the WBS is dependent on the nature of the project and is often 

stipulated in the contract for the system development, especially if the government is 

the customer. Government programs have had to comply with standards, which defi ne 

a specifi c hierarchical structure that provides a logical framework and a place for every 

aspect of a system product, often with a high degree of detail. 

 As an example of a typical WBS structure, the system project is at level 1, and the 

next level (level 2) is broken down into fi ve types of activities, abbreviated from the 

more detailed descriptions in Chapter  5 : 

  1.      System Product , including the total effort of developing, producing, and inte-

grating the system itself, together with any auxiliary equipment required for its 

operation. It includes all of the design, engineering, and fabrication of the 

system, as well as the testing of its components (unit test).  

  2.      System Support  (also referred to as  “ integrated logistics support ” ), involving 

provision of equipment, facilities, and services necessary for the development 
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and operation of the system product. It includes all equipment, facilities, and 

training for both development and system operations.  

  3.      System Test , beginning at the integration test level, unit tests of individual com-

ponents being part of the effort of developing the system product. It includes 

integration and testing of subsystems and of the total system.  

  4.      Project Management , covering the project planning and control effort through-

out the program.  

  5.      Systems Engineering , covering all aspects of systems engineering support.    

 The WBS is by its nature an evolving document. As noted previously, it begins in the 

concept exploration phase, when only the topmost level can be identifi ed. It is in the 

concept defi nition phase, when the system components and architecture have been 

defi ned, that serious costing and scheduling may be undertaken. Thereafter, the WBS 

must evolve along with the development and engineering of the system components 

and progressive discovery and resolution of problems. Thus, at any time, the WBS 

should refl ect the latest knowledge of the program tasks and their status, and should 

constitute a reliable basis for program planning. 

 As noted in Chapter  5 , the WBS is structured so that every task is identifi ed at the 

appropriate place within the WBS hierarchy. Systems engineering plays an important 

role in helping the project manager to structure the WBS so as to achieve this 

objective.  

   SEMP  

 Chapter  5  described the nature and purpose of the planning of the systems engineering 

tasks that are to be performed in the course of developing a system. In many system 

acquisition programs, such a plan is referred to as the SEMP and is a required deliver-

able as part of a proposal for a system development program. 

 The SEMP is a detailed plan showing how the key systems engineering activities 

are to be conducted. It typically covers three main activities: 

  1.     Development Program Management —   including organization, scheduling, and 

risk management;  

  2.     Systems Engineering Process —   including requirements, functional analysis, and 

trade - offs; and  

  3.     Engineering Specialty Integration —   including reliability, maintainability, pro-

ducibility, safety, and human factors.     

  Life Cycle Cost Estimating 

 The provision of a credible cost estimate for development, production, and (usually) 

operational support of the proposed new system is a required product of the concept 

defi nition phase. While systems engineering is not primarily responsible for this task, 

it has an essential role in providing key items of information to those who are. 
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 The only basis for deriving costs for a new task is through the identifi cation of a 

similar and successfully completed task whose costs are known. To this end, the system 

concept must be decomposed into elements analogous to existing components. Since 

the concept at this stage is still mainly functional, the systems engineer must visualize 

the likely physical embodiment of these functions. Once this is done, and any unusual 

features are identifi ed, those experienced in cost estimating can usually make a reason-

able estimate of the prospective costs. 

 The main guides for deriving system costs are the WBS, the life cycle model, and 

costing models. The WBS, which spells out all the tasks to be performed during system 

development, is the chief reference for deriving development costs. 

 The costs of developing new or modifi ed components are usually derived from 

estimates provided by those who expect to do the development — whether subcontrac-

tors or in - house. Special care must be taken to assure that these estimates refl ect an 

assessment of the associated development risk that is neither unduly optimistic nor 

overly cautious. These estimates should be reviewed critically by systems engineering 

to provide a check on the above factors. 

 The costs for component production, assembly, and testing are usually derived 

using a cost model developed for this purpose. The cost model is based on the accu-

mulated experience of the developing organization and is updated after each new 

program. The actual costing is usually done by cost estimating specialists. However, 

these specialists must rely heavily on the vision of the system elements as provided by 

systems engineers and the design engineers responsible for component development. 

 The preparation of cost estimates must not only be as expertly performed as pos-

sible, but it must also be documented so as to be credible to management and to the 

customer. In a competitive acquisition program, the magnitude and credibility of the 

cost estimates, especially development costs that are the most immediate, weigh heavily 

in the evaluation.  

  The  “ Selling ”  of the System Development Proposal 

 The selection of a feasible and affordable concept in the concept defi nition phase is a 

necessary but not suffi cient step to assure that the engineering of that concept into an 

operational system will be undertaken. Progression to the engineering development 

stage requires a management decision to devote much larger resources to the project 

than have as yet been expended in the conceptual phases. Whether the concept is to be 

part of a competitive proposal for a formal acquisition program or is to be presented 

informally to in - house management, there are always other ways to spend the money 

required to develop the proposed system. Accordingly, such a decision requires compel-

ling evidence that the result will be well worth the cost and time to be expended. 

 To accomplish its purpose, the concept defi nition phase must produce persuasive 

evidence in favor of proceeding with the development of the proposed system. This 

requires that the reasons for selecting the proposed concept are clear and compelling, 

that the feasibility of the approach is persuasively demonstrated, and that the plan for 

carrying out the system development is thoroughly thought out and documented. The 

end result must be to instill a high degree of confi dence that the new system will achieve 



222 CONCEPT DEFINITION

the required performance within the estimated cost and time and be superior to other 

potential system approaches. 

 In developing such a case, it must be remembered that those making the decision 

to proceed are not likely to be technical experts, so that the evidence will have to be 

couched in terms that intelligent laymen can understand. This is a very diffi cult con-

straint, which must nevertheless be observed. Translating and condensing design spe-

cialist jargon and test data into a form that is readily understood, and is clearly relevant 

to the issues of concept feasibility, risk, and cost, is a very important responsibility that 

is commonly also assigned to systems engineering. 

 In this task of selling the system concept and development plan, the following 

general approach is recommended: 

  1.     Show the shortfalls in existing systems and the need to be fi lled by the proposed 

system.  

  2.     Demonstrate that the proposed concept was selected after a thorough examina-

tion of alternatives. Illustrate the alternatives and indicate which main features 

of the selected system drove the decision.  

  3.     Fully discuss program risks and the proposed means for their management. 

Describe results of critical experiments designed to reveal problems and identify 

solutions, especially in the application of new technology.  

  4.     Display evidence of careful planning of the development and production 

program. Documents such as the WBS, SEMP, TEMP, and other formal plans 

give evidence of such planning.  

  5.     Present evidence of the organization ’ s experience and previous successes in 

system developments of a similar nature, and the carryover of key staff to the 

proposed system.  

  6.     Present the derivation of the life cycle costing for the project and the level of 

confi dence in the conservatism of the estimates.  

  7.     Provide further justifi cation as indicated by the specifi c evaluation criteria listed 

in the system requirements. Discuss environmental impact analysis if that is an 

issue.      

   8.8    SYSTEMS ARCHITECTING 

 When we think of the word  “ architecture, ”  something like Figure  8.5  comes to mind. 

For many people, architecture refers to buildings, and an architect is someone who 

designs buildings. Over two decades ago, though, a professor at the University of 

Southern California challenged that notion. He reasoned that as systems grew in com-

plexity, the top - level design, or more accurately the conceptual design of a system, as 

defi ned at the time, was insuffi cient to guide engineers and designers to accurate and 

effi cient designs. He looked to the fi eld of architecture to understand how complex 

systems (i.e., buildings) could be created and developed, and (as far as we understand) 

coined the term  “ systems architecting. ”  That man was Eberhardt Rechtin.   
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 The Institute of Electrical and Electronics Engineers (IEEE) Std 610.12 defi nes an 

architecture as  “ the structure of components, their relationships, and the principles and 

guidelines governing their design and evolution over time. ”  This applies to complex 

systems, such as aircraft, power plants, and spacecraft, as much as buildings. Therefore, 

Rechtin ’ s premise was to apply the principles from the fi eld of architecture to systems 

engineering, not as a replacement, but as part of developing a system. 

 Dr. Rechtin defi ned the term  systems architecting  in this way:

  The essence of architecting is structuring. Structuring can mean bringing form to func-

tion, bringing order out of chaos, or converting the partially formed ideas of a client 

     Figure 8.5.     Traditional view of architecture.  
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into a workable conceptual model. The key techniques are balancing the needs, fi tting 

the interfaces, and compromising among the extremes.   

 Read closely, the principles of concept development and defi nition are within his defi ni-

tion. Twenty years ago, conceptual design and components of architecting were lumped 

into the phrase  “ preliminary design. ”  Fortunately, that term has been replaced by the 

more extensive  “ architecting. ”  

  Architectural Views 

 While this section is not intended to present the reader with a full description of systems 

architecting (see Further Reading for more detail on architecting), we do want to present 

the basic concepts behind the development of a system architecture. In this vein, most 

commercial and government work on architectures has followed the notion of archi-

tectural views. The idea is this. Develop representations of a system from multiple 

perspectives, or views, to assist the stakeholders in understanding a system concept 

(and in making those valuable trade - off decisions) before extensive development has 

occurred. 

 While many different architecture development methods and guidelines exist 

today, all have a very common set of these perspectives. In general, a system architec-

ture will present three common views of a system. 

  Operational View.     This representation is from the users ’  or operators ’  perspec-

tive. This view would include products that address operational system phases, scenarios, 

and task fl ows. Information fl ow from the users ’  perspectives might also be addressed. 

User interfaces would also be described. Example products that might be included in 

this view would be operational fi gures or graphics, scenario descriptions (including use 

cases), task fl ow diagrams, organization charts, and information fl ow diagrams.  

  Logical View.     This representation is from the manager ’ s or customer ’ s perspec-

tive. The logical view would include products that defi ne the system ’ s boundary with 

its environment and the functional interfaces with external systems, major system func-

tions and behaviors, data fl ow, internal and external data sets, internal and external 

users, and internal functional interfaces. Example products for this view would be 

FFBDs, context diagrams, N2 diagrams, IDEF0 diagrams, data fl ow diagrams, and 

various stakeholder - specifi c products (including business - related products).  

  Physical View.     This representation is from the designers ’  perspective. This view 

would include products that defi ne the physical system boundary, the system ’ s physical 

components and how they interface and interact together, the internal databases and 

data structures, the information technology (IT) infrastructure of the system and the 

external IT infrastructure with which the system interfaces, and the standards in force 

in its development. Example products include physical block diagrams down to a fairly 

high level of detail, database topologies, interface control documents (ICDs)  , and 

standards. 
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 Different architectural guidelines and standards may use different names, but all 

three of these perspectives are included in every architectural description. 

 A common question from someone just introduced to the concept of systems 

architecting is  “ What is the difference between architecting and designing? ”  A conve-

nient method of answering that question is to delineate the uses of an architecture versus 

a design. 

 A system architecture is used 

   •      to discover and refi ne operational and functional requirements,  

   •      to drive the system to a specifi c use or purpose,  

   •      to discriminate between options, and  

   •      to resolve make/buy decisions.    

 A system design is used 

   •      to develop system components,  

   •      to build and integrate system components, and  

   •      to understand confi guration changes as the system is modifi ed.    

 The nature of these uses means there is a difference between architecting and 

engineering. Systems architecting is largely an inductive process that focuses on 

functionality and behavior. Consequently, architecting deals with unmeasurable 

parameters and characteristics as much if not more than measureable ones. The toolset 

is largely unquantitative and imprecise — diagramming is a large component of 

the architect ’ s toolset. Heuristics typically guide an architect ’ s decisions rather than 

algorithms. 

 Design engineering can be contrasted with architecting since it relies on deductive 

processes. Engineering focuses on form and physical decomposition and integration. 

Consequently, design engineering deals with measurable quantities, characteristics, 

and attributes. Thus, analytical tools derived from physics are the engineer ’ s primary 

tools. 

 Given these characteristics of the two fi elds (which should certainly not be con-

sidered loosely coupled), the architect tends to be active in the early phases of the 

system development life cycle. The architect tends to be rather dormant during the 

detailed design, fabrication, and unit testing phases. Integration and system testing will 

see the architect emerge again to ensure requirements and top - level architectures are 

being followed. In contrast, the design engineer ’ s activity peaks during the architect ’ s 

dormant phases, though he is by no means completely inactive during the early and 

late phases of system development.  

  Architecting in the Engineering Hierarchy.     With the differences between 

architecting and engineering, it is obvious the two activities are separate. An obvious 

question then arises: who works for whom? Although there are exceptions, our role of 

systems architecting leads to the management structure where the architect works for 
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the systems engineer. Systems architecting is a subset of systems engineering. This is 

different from the role and place of the traditional architect — which is typically at the 

top. When a new building is designed, developed, and constructed, the architect plays 

the primary role in the building ’ s design and continues with that prominent role through-

out development and construction. In system development, the systems engineer holds 

the prominent technical position and the architect works for the systems engineer.   

  Architecture Frameworks 

 As mentioned, architectures are used extensively now in large, complex system devel-

opment programs. The architect and his team have a large latitude in developing and 

integrating products. This initially led to architectures that were technically accurate 

but diverse in their structure. In order to standardize the architecture development effort 

and the products associated with architectures, many organizations developed and 

mandated the use of architecture frameworks. 

 An architecture framework is a set of standards that prescribes a structured 

approach, products, and principles for developing a system architecture. Two early 

frameworks that emerged were the Command, Control, Communications, Computers, 

Intelligence, Surveillance and Reconnaissance (C4ISR) Architecture Framework man-

dated by the U.S. Department of Defense (DoD) and The Open Group Architecture 

Framework (TOGAF) developed for commercial organizations. 

 Other frameworks have emerged recently as well, and some that have been around 

for decades are being recognized as architecture frameworks, though that particular title 

was not applied until recently (e.g., the Zachman Framework). The early frameworks 

were focused on individual systems and their architectures. Newer versions, however, 

have expanded into the fi eld of enterprise architecture, a subset of enterprise engineer-

ing or enterprise systems engineering (see Chapter  3  for a discussion of enterprise 

systems engineering). All of the current versions, including the Department of Defense 

Architecture Framework (DODAF) and TOGAF, have enterprise editions of their 

frameworks. 

 Many architecture frameworks that can be applied to system development exist, 

even if the primary purpose is enterprise architecting. Below is a selected list of archi-

tecture frameworks: 

   •      DODAF  

   •      TOGAF  

   •      The Zachman Framework  

   •      Ministry of Defense Architecture Framework (MODAF)  

   •      Federal Enterprise Architecture Framework (FEAF)  

   •      NATO Architecture Framework (NAF)  

   •      Treasury Enterprise Architecture Framework (TEAF)  

   •      Integrated Architecture Framework (IAF)  

   •      Purdue Enterprise Reference Architecture Framework (PERAF)    
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  DODAF.     Although by no means more important or  “ better ”  than any other frame-

work, we discuss the basic products of the DODAF to illustrate the basic components 

of a framework. 

 The DOD framework, like all frameworks mentioned, is divided into a series of 

perspectives, or viewpoints. Figure  8.6  depicts these viewpoints using a fi gure from the 

DODAF description. The viewpoints can be observed in three bundles. The fi rst con-

sists of four viewpoints that describe the overall system and its environment: capability, 

operational, services, and systems. The second bundle consists of the underlying prin-

ciples, infrastructure, and standards: all data and information and standards. The fi nal 

bundle is a single viewpoint focusing on the system development project.   

 Version 2 of this framework is easily scalable from the system level to the enter-

prise level, where multiple systems are under development and would be integrated 

into a legacy system architecture. In fact, each of the three major system - level archi-

tecture frameworks, DODAF, MODAF, and TOGAF, are now compatible with enter-

prise development efforts. Furthermore, with the addition a services viewpoint, 

service - oriented architectures are now possible within the DODAF framework. 

 Within each viewpoint, a set of views is defi ned. A total of 52 views are defi ned 

by DODAF, organized within the eight viewpoints. For each view, a variety of methods 

and techniques are available to represent the view. For example, one view within the 

operational viewpoint is the operational activity model. This view can be represented 

by a variety of models, such as the FFBD. Other models can be used to represent the 

     Figure 8.6.     DODAF version 2.0 viewpoints.  
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operational activity model, such as an IDEF0 diagram, or a combination of diagrams. 

Thus, an architecture framework will typically have three layers of entities: a set of 

 viewpoints  that compose the  framework , a set of  views  that defi ne each viewpoint, and 

a set of  models  that can represent the view. 

 Every large system development effort must have a minimum set of architecture 

views. Rarely will a system architecture contain all 52 architecture views. Pertinent 

views are decided beforehand by the systems engineer and system architect, depending 

on the intended communication and the appropriate stakeholders. 

 The key to developing successful system architectures is to understand the purpose 

of the architecture. Although each system development effort is different, depending 

on the magnitude and complexity of the system, all architectures have at least one 

common purpose: to communicate information. Choosing which framework to use, 

which viewpoints within the framework, which views within the viewpoint, and which 

models within the view all depends on the purpose the architect is trying to achieve. 

 The existing frameworks defi ne the superset of viewpoints and views that may be 

included within the architecture. Within each view, the framework typically suggests 

candidate models, which can be used to represent the view. A hallmark of the current 

frameworks, however, is the fl exibility inherent within each view. If the architect desires 

to use a model not included in the candidate list, he can — as long as he does not violate 

the overall framework constraints. 

 For example, many of the current frameworks were initially defi ned using tradi-

tional, structured analysis models (e.g., IDEF0, FFBD, data fl ow diagrams) to defi ne 

their views. However, engineers familiar with object - oriented (OO) models began to 

use a combination of OO and structured analysis models to represent views. As the 

trend increased, the organizations responsible for the common architecture frameworks 

revised the available models to include OO models that can represent the views. Section 

 8.9  discusses two languages that implement OO models.    

   8.9    SYSTEM MODELING LANGUAGES: UNIFIED MODELING 
LANGUAGE (UML) AND SYSTEMS MODELING LANGUAGE (SysML)   

 All architecture frameworks use models to represent aspects, perspectives, and views 

of the system. Traditional models, like standard block diagramming techniques, are 

based on the top - down decomposition of a system. These methods are typically func-

tionally based and are formed into a hierarchy of models representing attributes of the 

system in increasing levels of detail. In the 1970s, when software engineering was 

expanding at a signifi cant rate, a formal modeling construct emerged and was called 

 “ structured analysis and design ”  (SAAD). The term has been applied to systems in 

general and is not restricted to software systems only. 

 Models that have been in use for decades resemble many of the SAAD constructs, 

and they have been grouped into what we call  traditional hierarchical methods , or 

simply  traditional systems modeling . This book uses many of the traditional models to 

represent aspects of systems. This informal modeling language has evolved into an 

excellent educational language for communicating principles and techniques. 
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 After the advent of SAAD, a new set of modeling languages has emerged, based 

on object - oriented analysis and design (OOAD) principles. This analysis and design 

method is primarily bottoms - up in approach and focuses on entities, as opposed to 

functions, though the two are closely related. In the 1990s, a new modeling language 

that incorporated OOAD principles and techniques was formalized: the UML. 

  UML 

 It was noted that in developing a complex system, it is essential to create high - level 

models of its structure and behavior to gain an understanding of how it may be con-

fi gured to meet its requirements. In the development of OOAD methodology, several 

of the principal practitioners separately developed such models. In the mid - 1990s, three 

of them (Booch, Rumbaugh, and Jacobson), developed a common modeling terminol-

ogy they called the  “ UML. ”  This language has been adopted as a standard by the 

software community and is widely used throughout industry and government. It is sup-

ported by sophisticated tools produced by several major software tool developers. 

 Whereas structured methodology employs three complementary views of a system, 

UML provides OO analysts and designers with 13 different ways to diagram different 

system characteristics. They may be divided into six static or structural diagrams and 

seven dynamic or behavioral diagrams. Figure  8.7  also lists the two sets of diagrams.   

  Structural diagrams  represent different views of system entity relationships: 

   •       Class Diagrams  show a set of classes, their relationships, and their interfaces.  

   •       Object Diagrams  show a set of instances of classes and their relationships.  

   •       Component Diagrams  are typically used to illustrate the structure of, and rela-

tionships among, physical objects.  

   •       Deployment Diagrams  show a static view of the physical components of the 

system.  

   •       Composite Structure Diagrams  provide a runtime decomposition of classes.  

   •       Package Diagrams  present a hierarchy of components.    

     Figure 8.7.     UML models.  
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  Behavioral diagrams  represent different views of system dynamic 

characteristics. 

   •       Use Case Diagrams  show interrelations among a set of use cases representing 

system functions that respond to interactions with external entities ( “ actors ” ).  

   •       Sequence Diagrams  show the interactions among a set of objects in executing a 

system scenario, arranged in chronological order.  

   •       State Machine Diagrams  model the transition events and activities that change 

the state of the system.  

   •       Activity Diagrams  are fl owcharts of activities within a portion of the system 

showing control fl ows between activities.  

   •       Communication Diagrams  defi ne links between objects, focusing on their 

interactions.  

   •       Interaction Overview Diagrams  are a mix of sequence and activity diagrams.  

   •       Timing Diagrams  present interactions between objects with timing 

information.    

 UML class diagrams correspond approximately to entity relationship diagrams in 

structural analysis, while state chart diagrams correspond to state transition diagrams. 

Others, especially activity diagrams, are different views of functional fl ow diagrams. 

 The new language was quickly adopted by the software engineering community 

as the de facto standard for representing software concepts and software - intensive 

systems. Although the origins of the language are in the software world, recently, the 

language has been used successfully in developing systems that include both hardware 

and software. 

 UML is governed by the Object Management Group (OMG), a worldwide consor-

tium. UML will continue to evolve with new releases and added complexity. 

 Rather than providing examples and explanations to all of the diagrams, we present 

some examples — several behavioral diagrams: the use case diagram, the activity 

diagram, and the sequence diagram; and one structural diagram: the class diagram. 

  Use Case Diagram.     We present the use case diagram fi rst due to its utility in 

defi ning a system ’ s operation. In software, and in some hardware applications, use cases 

have been used to assist the identifi cation and analysis of operational and functional 

requirements. 

 The form of a use case diagram is shown in Figure  8.8 , modeling the interaction 

of an  “ actor ”  on the left side (represented by the stick fi gures) with a single use case 

(represented by an oval), which leads to a subordinate activity (a separate use case), 

while the other three interact with a second (external) actor. The arrows indicate the 

initiation of the use case, not the fl ow of information. For example, the librarian actor 

can initiate the  “ manage loans ”  use case. The  “ check - in book ”  use case may also initiate 

the same use case.   

 Each use case in the diagram represents a separate sequence of activities and 

events. UML defi nes a standard set of components for a use case, including 
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   •      title;  

   •      short description;  

   •      list of actors;  

   •      initial (or pre - ) conditions describing the state of the environment before the use 

case occurs (or is executed);  

   •      end (or post - ) conditions describing the state of the environment after the use 

case occurs (or has been executed); and  

   •      sequence of events, a list of actions or events that occur in a defi ned sequence.    

 Table  8.2  displays an example use case description for  “ check - out book. ”  The 

sequence of events lists the actions and activities that both actors and subsystems 

execute. In this case, the use case involves one actor and two subsystems — the check -

 out station and the loan management subsystem. This use case represents an automated 

check - out system at a library using the Universal Product Code (UPC) symbology.   

 Although not required, it can be benefi cial to use columns to separate actions of 

each actor and subsystem, such as was done in Table  8.2 . This allows the reader to 

easily determine who is performing the action and in what order (sometimes simultane-

ously). Use cases can, of course, be stylized or tailored to specifi c situations and may 

demonstrate the preferences of their authors. In other words, two engineers may come 

up with different use case sequences of events for the same use case. This may not 

represent a fl aw or problem. In fact, a use case may have several different variants, 

known in UML as  “ scenarios. ”  Unfortunately, the use of the term scenarios differs from 

our traditional defi nition provided earlier.  

  Activity Diagram.     As another example of a behavior diagram, we turn to the 

activity diagram. Activity diagrams can represent any type of fl ow inherent in a system, 

including processes, operations, or control. The diagram accomplishes this through a 

     Figure 8.8.     Use case diagram.  
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  TABLE 8.2.    Use Case Example —  “ Check - Out Book ”  

   Title      Check book  

  Short description    This use case describes a typical process of a library member 

checking out a library book.  

  List of actors    Library member  

  Initial conditions    Library member has no books assigned to him on loan.  

  End conditions    Library member has a single book assigned to him on loan.  

   Sequence 

of events     Library member     Check - out station  

   Loan management 

subsystem  

  1        Displays  “ Please swipe card ”       

  2    Swipes library car          

  3        Reads member data from card      

  4        Sends request to confi rm 

member is in good standing  

    

  5            Checks database for 

member information  

  6            Confi rms good standing  

  7        Receives confi rmation    Sends confi rmation  

  8        Displays  “ Place book UPC   

under scanner ”   

    

  9    Places book UPC 

symbol under 

scanner  

        

  10        Scans book UPC      

  11        Sends request to confi rm 

book is available  

    

  12            Checks database for 

book information  

  13            Confi rms availability  

  14        Receives confi rmation    Sends confi rmation  

  15        Displays  “ Thank you! Book 

is due in two weeks. ”   

  Indicates book as  “ out ”   

sequence of activities and events. The sequence of activities and events is regulated via 

various control nodes. The basic components of the activity diagram are described 

below: 

   •      Action:     an elementary executable step within an activity (rectangle with rounded 

corners);  

   •      Activity Edge:     a connecting link between actions, and between actions and nodes 

(an arrow); activity edges are further divided into two types: object fl ows and 

control fl ows;  

   •      Object Flow:     an activity edge that transports objects (or object tokens);  



SYSTEM MODELING LANGUAGES 233

   •      Control Flow:     an activity edge that represents direction of control (also trans-

ports control tokens);  

   •      Pin:     a connecting link between action parameters and a fl ow (a box connected 

to an action and a fl ow); a pin accepts explicit inputs or produces explicit outputs 

from an action;  

   •      Initial Node:     the starting point for a control fl ow (solid circle);  

   •      Final Node:     the termination point for a control fl ow (solid circle within an open 

circle);  

   •      Decision Node:     a branch point for a fl ow in which each branch fl ow contains a 

condition that must be satisfi ed (diamond);  

   •      Merge Node:     a combination point in which multiple fl ows are merged into a 

single fl ow (diamond);  

   •      Fork Node:     a point at which a single fl ow is split into multiple concurrent fl ows 

(a solid line segment); and  

   •      Join Node:     a point in which multiple fl ows are synchronized and joined into a 

single fl ow (a solid line segment).    

 Figure  8.9  represents   a simple activity diagram, which is analogous to a functional 

fl ow diagram, for our library book system. The diagram shows the activity path to split 

into two concurrent activities, one of which follows one of two logical paths, of return-

ing or borrowing a library book.    

     Figure 8.9.     UML activity diagram.  
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     Figure 8.10.     UML sequence diagram.  
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  Sequence Diagram.     Our last behavior diagram is the sequence diagram. These 

diagrams are usually linked to a use case where actions or events are listed in sequential 

formats. The sequence diagram takes advantage of this sequence and provides a visual 

depiction of the sequence of events, tied to the actor or subsystem performing the action. 

 Figure  8.10  depicts an example sequence diagram of the check - out operation. The 

diagram is tied to the use case presented above but provides additional information 

over what was presented in the use case description.    

  Class Diagram.     At the heart of the UML is the concept of the class and is 

depicted in the class diagram. A class is simply a set of objects (which can be real or 

virtual) that have the same characteristics and semantics. In this case, an object can be 
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almost anything and, within the UML, can be represented in software. The class typi-

cally describes the structure and behavior of its objects. 

 Within a class defi nition, three primary components exist (among others): 

   •      Attributes:     the structural properties of the class;  

   •      Operations:     the behavior properties of the class; and  

   •      Responsibilities:     the obligations of the class.    

 Classes typically have relationships with other classes. The basic structural relationship 

is known as an  association . Figure  8.11  depicts a simple association between the two 

classes,  “ employee ”  and  “ company. ”  The line linking the two classes can have an arrow; 

however, if no arrow is present, then a bidirectional relationship is assumed. The nature 

of the association can also be provided by using a triangle. The association is then read 

like a sentence,  “ Employee  works for  company, ”  and  “ Company  employs  employee. ”  

Finally, if the author wants to designate the association as a numerical relationship, he 

can use  multiplicity . Multiplicity designates the numerical aspects of the association 

and can be expressed with specifi c numbers or a series of shorthand notations. For 

example, 0..2 means that any value between 0 and 2 can exist as part of the association. 

The star symbol,  * , is used as a wildcard symbol, and can be thought of as  “ many. ”  

Thus, in our example, both the star and the number  “ 1 ”  are used to represent the fact 

that an employee works for only one company, and the company employs many 

employees.   

 Two other relationship types between classes are  generalization  and  dependency . 

Generalization refers to a taxonomic relationship between a special, or specifi c, class 

and a general class. Figure  8.12  depicts a generalization relationship between the three 

classes, customer, corporate customer, and personal customer. In this case, both the 

corporate and the personal customers are specifi c class types belonging to the general 

class, customer. This relationship is depicted as an arrow with a large arrowhead. In 

this diagram, the class attributes and operations are provided for each.   

 When a generalization relationship is defi ned, the specifi c classes inherit the attri-

butes and operations of the parent. Thus, the corporate customer class not only has its 

own specifi c attributes and operation but would also contain the attributes Name and 

Address, in addition to the operation, getCreditRating(). The same is true for the per-

sonal customer class. 

 Dependency is the third type of relationship and denotes the situation where one 

class requires the other for its specifi cation or implementation. We should note that 

dependency is a relationship type that can be used among other elements within the 

UML, not just classes. 

     Figure 8.11.     Example of a class association.  
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     Figure 8.12.     Example of a class generalization association.  
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 Figure  8.13  includes the dependency association with our library example. The 

class diagram depicts several association types as presents a number of classes that 

would be defi ned as part of the library check - out system.     

  Systems Modeling Language (SysML) 

 Although UML has been applied to systems that include both hardware and software, 

it became evident that a variant form of UML, developed specifi cally for systems that 

combine software and hardware, could be used more effectively. Additionally, with the 

evolution of systems engineering, and specifi cally systems architecting, during the 

1990s, a formal modeling language was recognized as benefi cial to establish a consis-

tent standard. The International Council on Systems Engineering (INCOSE) commis-

sioned an effort in 2001 to develop a standard modeling language. Due to its popularity 

and fl exibility, the new language was based on UML, specifi cally version 2.0. The OMG 

collaborated with this effort and established the Systems Engineering Domain Special 

Interest Group in 2001. Together, the two organizations developed and published the 

systems engineering extension to UML, called the SysML for short. 

 Perhaps the most important difference between UML and SysML is that a user of 

SysML need not be an expert in OOAD principles and techniques. SysML supports 

many traditional systems engineering principles, features, and models. Figure  8.14  

presents the diagrams that serve as the basis for the language.   
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     Figure 8.13.     Class diagram of the library check - out system.  
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     Figure 8.14.     SysML models.  
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 A new category, consisting of a single diagram of the same name, has been intro-

duced: the requirements diagram. Only four of the 13   UML diagrams are included 

without changes: package, use case, state machine, and sequence. Diagrams that rely 

heavily on OO methodologies and approaches are omitted. 

 As with UML above, we present an example diagram from each category — in this 

case three — the requirements diagram, the internal block diagram, and the activity 

diagram. The latter two correspond closely to the UML class and activity diagrams; 

however, we will highlight the differences in our discussion. 

  Requirements Diagram.     In UML, software requirements are primarily cap-

tured in the use case descriptions. However, these are primarily functional require-

ments; nonfunctional requirements are not explicitly presented in UML. Stereotypes 

were developed in response to this gap; however, SysML introduces a new model that 

specifi cally addresses any form of requirements. 

 Figure  8.15  presents a simple example of a requirements diagram. The primary 

requirement is the maximum aircraft velocity. This is a system - level requirement that 

has three attributes: an identifi cation tag, text, and the units of the requirements metric. 

The text is the  “ classical ”  description of the specifi c requirement. As described in the 

previous chapters, the system - level requirement has a verifi cation method — in this case 

a test, indicated by  “ TestCase. ”  The details of the AircraftVelocityTest would be found 

elsewhere.   

     Figure 8.15.     SysML requirements diagram.  
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 This system - level requirement may lead to a set of derived requirements, typically 

associated with subsystems of the system. In the fi gure, three derived requirements are 

included: engine thrust, aircraft weight, and aircraft lift. These requirements would also 

have attributes and characteristics, although they are not shown in this particular 

diagram. 

 Finally, the satisfy relationship is depicted in the fi gure. This indicates a mecha-

nism, or entity, that will satisfy the derived requirement. In the case of engine thrust, 

the engine subsystem is responsible for satisfying the derived requirement. 

 The requirements diagram is typically a series of rectangles that identify and asso-

ciate many system - level requirements with subsystem - level requirements, their verifi -

cation methods, derived requirements, and their satisfaction concepts. The latter allows 

the concept of mapping or tracing requirements to functional and physical entities. 

 As with operational, performance, and functional requirements, these diagrams are 

updated throughout the systems engineering method and the system development 

process. Linkages between components of the requirements model represented in this 

diagram, and the functional and physical models represented in other SysML diagrams, 

are crucial to successful systems engineering. Modern tools have been, and are being, 

developed to facilitate these linkages between model components.  

  Allocation.     In SysML, a formal mechanism has been developed to enable the 

user to connect, or bind, elements of different models together. This mechanism is 

called allocation. SysML provides three types of allocations, although users can defi ne 

others: behavior, structure, and object fl ow. The behavior allocation links, or allocates, 

behavior (represented in one or more of the behavioral diagrams) to a block that real-

izes this behavior. Recall that behavior is typically an activity or action. The structure 

allocation links, or allocates, logical structures with physical structures (and vice versa). 

This mechanism enables the engineer to link components of a logical defi nition of the 

system (typically represented by logical blocks) with components of a physical defi ni-

tion of the system (typically represented by physical blocks and packages). Finally, the 

object fl ow allocation connects an item fl ow (found in the structure diagram) with an 

object fl ow edge (found in the activity diagram). Allocation can be signifi ed by a dashed 

arrow in many of the SysML diagrams.  

  Block Defi nition Diagram.     In UML, the basic element is the  class , with the 

 object  representing its instantiation. Because these terms are so closely identifi ed with 

software development, SysML uses a different name to represent its basic element — the 

 block . The structure and meaning of the block is almost identical to the class. A block 

contains attributes, may be associated with other blocks, and may also describe a set 

of activities that it conducts or behaviors it exhibits. 

 Blocks are used to represent the static structure of a system. They may represent 

either logical (or functional) elements or physical elements. The latter can also be 

divided into many types of physical manifestations — hardware, software, documenta-

tion, and so on. Figure  8.16  depicts an example block defi nition. The various compo-

nents of a block defi nition are also depicted. This defi nition would be part of the block 

defi nition diagram (or sets of diagrams).   
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 The block name is at the top. Values are the attributes or characteristics of the radar 

that are pertinent; the fi gure displays a sample set of attributes for this radar block. The 

next section down is the operations or the actions and behaviors of the block. In this 

example, the radar conducts only two types of operations, DetectTarget and StatusCheck. 

In reality, of course, common radars would perform many other operations. There may 

be constraints put on the operations or attributes of the block, so the next section lists 

any constraints. The block may also be defi ned with its subsystems or components, 

typically referred to as  “ parts. ”  The example lists six basic subsystems of the radar. 

Finally, references (to other blocks) are provided. 

 Figure  8.17  depicts several types of block associations. Associations, similar to 

their counterparts in UML, represent relationships between blocks. Simple associations 

are depicted as lines connecting blocks. If direction is needed, then an arrow is placed 

     Figure 8.16.     SysML block defi nition.  
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on one end — this type of association is called a  navigable association . Special catego-

ries are also available: aggregation associations represent blocks that are part of a 

whole; composition associations represent blocks that are part of a composite; depen-

dency associations represent blocks that are dependent on other blocks; and generaliza-

tion associations represent specialized blocks that are incorporated into a general block.    

  Activity Diagram.     Of UML ’ s behavioral diagrams, only one has been signifi -

cantly expanded within SysML: the activity diagram. Four major extensions have been 

incorporated: 

   •      Control fl ow has been extended with control operators.  

   •      Modeling of continuous systems is now enabled using continuous object fl ows.  

   •      Flows can have associated probabilities.  

   •      Modeling rules for activities have been extended.    

 With these extensions, some existing functional modeling techniques can be imple-

mented, such as the extended functional fl ow block diagram (EFFBD). Additionally, 

with the new extensions, a function tree can be represented quite easily, as shown in 

Figure  8.18 a. This example uses the coffeemaker functions provided in Figure  8.4 .   

 These functions can be arranged into a more traditional activity diagram, shown 

in Figure  8.18 b. For clarity, the diagram does not include all 11 functions. The general 

control fl ow is indicated by the fl ow arrows and follows the general fl ow of Figure  8.4  

(the FBD). Inputs and outputs are depicted by separate connectors — arrows with pins 

(or rectangles connected to the activity). These connectors are labeled with the entities 

     Figure 8.17.     SysML block associations.  
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        Figure 8.18.     (a) SysML functional hierarchy tree. (b) SysML activity diagram.  
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passed across the interfaces. A control operator is also included to illustrate this type 

of special control mechanism. In this case, a control operator regulates what is passed 

to the  Display Status  activity, depending on the combination of its three inputs. 

 We have presented three SysML diagrams to illustrate some of the basic techniques 

of the language — one from each diagram category. Like UML, SysML offers the 

systems engineer and the systems architect with a fl exible modeling kit with which to 

represent many aspects and perspectives of a system concept. Furthermore, it over-

comes some of the inherent challenges within the UML when representing the more 

traditional methods of systems engineering, the requirements diagram being perhaps 

the most relevant example. With the advent of SysML, numerous commercial applica-

tions have risen to assist the engineer in developing, analyzing, and refi ning system 

concepts.    

   8.10    MODEL - BASED SYSTEMS ENGINEERING (MBSE) 

 With the advent of formal modeling languages, such as UML and SysML, and system 

architecture frameworks, such as DODAF and TOGAF, the ability of systems engineers 

to represent system requirements, behaviors, and structures has never been greater. 

Thus, exploring and defi ning system concepts have now been formalized and a new 

subset of systems engineering, systems architecting, has risen from obscurity to signifi -

cance. In broad terms, the system architecture can be thought of as a model of the 

system, or at least the system concept. This is not to be confused with the fact that 

the term  “ model ”  is also used to denote the basic building blocks of a system 

architecture. 

 Soon after the fi rst formal version of UML was released, OMG released the fi rst 

version of their new model - driven architecture (MDA). This architecture was the fi rst 

formal architecture framework that recognized the shift from a code - centric software 

development paradigm to an object - centric paradigm, enabled by the then de facto 

standard for software engineering model languages, UML. The MDA presented a set 

of standard principles, concepts, and model defi nitions that allowed for consistency in 

defi ning object models across the software community. 

 MDA delineated between the real system and its representation by a set of models. 

These models, in turn, would conform to a metamodel defi nition, which would in turn, 

conform to a meta - meta model defi nition. Several concepts, processes and techniques 

were presented in the literature using this concept, although the names differed: model -

 driven development, model - driven system design (MDSD), and model - driven engineer-

ing. They were all based on the basic concepts of focusing on a model and its metamodel 

to represent the system from the early stages of development through deployment and 

operations. 

 With the attempt to merge software and systems engineering processes and prin-

ciples, model - driven development was applied several times to system development in 

various forms. In 2007, these attempts (along with their techniques and concepts) were 

grouped by INCOSE under the banner of MBSE. And with the release of the current 

versions of SysML, this approach has continued to increase in popularity. 
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 The basic notion behind MBSE is that a model of the system is developed early 

in the process and evolves over the system development life cycle until the model 

becomes, in essence, the build - to baseline. Early in the life cycle, the models have low 

levels of fi delity and are used primarily for decision making (not unlike the system 

architecture in Section  8.8  above). As the system is developed, the level of fi delity 

increases until the models can be used for design. Finally, the models are transformed 

yet again into the build - to baseline. At each stage, similar to the standard systems 

engineering method introduced in Chapter  4 , a subprocess is performed to evolve the 

set of system models. Baker introduced this subprocess for his approach (which he 

called MDSD). This subprocess is shown in Figure  8.19 .   

 Additionally, Baker defi ned an early information model, or view, for an MDSD. 

This is provided in Figure  8.20  and is read similarly to a UML class diagram. The 

arrows represent the direction of the relationship, not the fl ow of information.   

     Figure 8.19.     Baker ’ s MDSD subprocesses.  
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     Figure 8.20.     Baker ’ s information model for MDSD.  
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 Although this approach may sound familiar to the traditional systems engineering 

approach, several signifi cant differences exist between the two. The foremost difference 

is the products of each. In traditional systems engineering (including either of the 

structured analysis or OO approaches), the primary products early in the system devel-

opment life cycle are documents. Regardless of whether these documents are electronic 

or paper, they tend to be static representations of the system. With MBSE, the primary 

products are models, which can be executed to some extent. Thus, reviewing an MDSD 

(regardless of where one is along the life cycle) involves interrogating a set of models, 

which is an automated process. Reviewing traditional systems engineering products 

involves largely reading text and diagrams (although modern representations and dis-

plays greatly assist in this). 

 Of course, there is a price for this ability. Additional computing resources (applica-

tions, databases, hardware, visualization, and networking) are required to facilitate the 

MDSD effort. Currently, few of these resources are available, although more are in 

development and should be available to engineers soon. Furthermore, until projects 

are implemented using this approach, we do not yet have a rich lessons learned 

database. 

 With this inexperience in mind, INCOSE set about to identify and document the 

products which implemented this approach in part or whole. The INCOSE MBSE Focus 

Group published its fi nding in May 2007 and they identifi ed fi ve methodologies: 

  1.     Telelogic ’ s Harmony  ®   – SE.     This proprietary methodology is modeled after the 

products classical systems engineering  “ Vee ”  process, except that a require-

ments and model repository is established and updated during each step in the 

process. Additionally, a test data repository is also established and updated to 

track test cases and data. Several tools and applications have been developed 

or revised to facilitate the harmony methodology. Telelogic produces several of 

these (e.g., Rhapsody, Popkin, DOORS), although the methodology itself is 

application - neutral.  

  2.     INCOSE ’ s Object - Oriented Systems Engineering Method (OOSEM).     This 

approach implements the model - based approach using SysML to support the 

specifi cation, analysis, design, and verifi cation of a system. The basic set of 

activities produces artifacts that can be refi ned and used in other applications. 

These activities and artifacts are listed below:  

  a.     Analyze stakeholder needs.  

  b.     Defi ne system requirements.  

  c.     Defi ne logical architecture.  

  d.     Synthesize candidate allocated architectures.  

  e.     Optimize and evaluate alternatives.  

  f.     Validate and verify the system.    

  3.     IBM ’ s Rational Unifi ed Process for Systems Engineering (RUP – SE).     The goal 

of the RUP – SE process was to apply the discipline and best practices found in 

the RUP and to apply them to the challenges of system specifi cation, analysis, 

design, and development. Moreover, RUP – SE was developed specifi cally to 
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implement model - driven system development. This adaptation of the existing 

unifi ed process focuses on four modeling levels: context, analysis, design, and 

implementation, each incorporating higher levels of fi delity than the previous. 

These fi rst three model levels are then cross - indexed with six viewpoints: 

worker, logical, information, distribution, process, and geometric, to produce 

17 architecture artifacts (the context/process pair does not produce an artifact, 

and the implementation model produces actual  physical  artifacts). These arti-

facts become the basis of the RUP – SE architecture framework.  

  4.     Vitech ’ s MBSE Methodology.     This approach is based on four primary activities 

that are integrated through a common design repository: 

   a.     source requirements analysis,  

  b.     functional/behavior analysis,  

  c.     architecture/synthesis, and  

  d.     design validation and verifi cation.   

 This methodology requires a common information model to manage 

the syntax and semantics of artifacts. Vitech has defi ned a system defi nition 

language (SDL) for use with their process (which also can be used with their 

tool, CORE), although the process itself can use any information model 

language.  

  5.     Jet Propulsion Laboratory ’ s (JPL) State Analysis (SA).     This last methodology 

leverages a model -  and state - based control architecture to capture system 

requirements and design. This process distinguishes between a system ’ s state 

and one ’ s knowledge of that state. Generally, the knowledge of the system state 

is represented by more abstract concepts than the actual states themselves. How 

the system evolves from state to state is represented within a set of models. 

Finally, system control is also represented by models, although complete control 

is considered impossible due to system complexity.    

 The establishment and maturation of OO methods, systems modeling languages, and 

the proliferation of tools and applications implementing those methods and languages 

have led to an increased awareness of the benefi ts of using a model - driven approach 

in systems engineering. And although the approach does come with a price in increased 

resources, the benefi ts may indeed provide for an adequate return on investment. Case 

studies are slowly being offered as  “ proof ”  that this approach can indeed work. More 

time and experience is necessary before the community as a whole embraces MBSE; 

however, its basic principles are sound. And this methodology and approach is one 

more step in the convergence of software and systems engineering practices.  

   8.11    SYSTEM FUNCTIONAL SPECIFICATIONS 

 The concept defi nition phase is not complete until a formal basis is created to 

guide the follow - on engineering design stage. A linchpin of such a basis is a statement 
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describing completely and concisely all the functions that the system must be 

designed to perform in order to fulfi ll its operational requirements. In major govern-

ment acquisitions, such a statement is usually called the  “ system specifi cation ”  or 

 “ A - Spec. ”  

 The system specifi cation can be thought of as a textual and diagrammatic repre-

sentation of the system concept. It does not, however, address specifi cally how the 

system is implemented to perform its functions but stipulates what functions are to be 

performed, with what precision, and under what conditions. In so doing, it is essential 

that the defi nitions be stated in measurable terms because the engineering implementa-

tion of those functions will rely on these defi nitions. 

 While the preparation of system specifi cations is logically a part of the concept 

defi nition phase, in a competitive acquisition process, it is usually prepared immediately 

after the selection process by the successful contractor team. In commercial product 

development, the process is not as formal but is similar in purpose. 

 The system specifi cation document should address at least the following 

subjects: 

  System Defi nition 

 Mission and concept of operation system functions 

 Confi guration and organization of system interfaces  

  Required Characteristics 

 Performance characteristics (hardware and software) and compatibility 

requirements 

 RMA requirements  

  Support Requirements 

 Shipping, handling, and storage training 

 Special facilities  

  Special Requirements 

 Security and safety human engineering    

 The leadership and much of the actual work involved in formulating the system 

specifi cation document is the responsibility of systems engineering.  

   8.12    SUMMARY 

  Selecting the System Concept 

 Objectives of the concept defi nition phase are to select a preferred system confi guration 

and to defi ne system functional specifi cations, as well as a development schedule and 

cost. 

 Concept defi nition concludes the concept development stage, which lays the basis 

for the engineering development stage of the system life cycle. Defi ning a preferred 

concept also provides a baseline for development and engineering. 
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 Activities that comprise concept defi nition are 

   •      Performance Requirements Analysis —   relating to operational objectives,  

   •      Functional Analysis and Formulation —   allocating functions to components,  

   •      Concept Selection —   choosing the preferred concept by trade - off analysis, and  

   •      Concept Validation —   confi rming the validity and superiority of the chosen 

concept.     

  Performance Requirements Analysis 

 Performance requirements analysis must include ensuring compatibility with the system 

operating site and its logistics support. The analysis must also address reliability, main-

tainability, and support facilities, as well as environmental compatibility. A specifi c 

focus on the entire life cycle, from production to system disposition, must be kept. 

Finally, the analysis must resolve the defi nition of unquantifi ed requirements.  

  Functional Analysis and Formulation 

 Functional system building blocks (Chapter  3 ) are useful for functional defi nition. The 

selection of a preferred concept is a systems engineering function, which formulates 

and compares evaluation of a range of alternative concepts.  

  Functional Allocation 

 Developing alternative concepts requires part art and part science. Certainly, the pre-

decessor system can act as a baseline for further concepts (assuming a predecessor is 

available). Brainstorming and other team innovation techniques can assist in developing 

alternatives.  

  Concept Selection 

 System concepts are evaluated in terms of (1) operational performance and compatibil-

ity, (2) program cost and schedule, and (3) risks in achieving each of the above. Program 

risk can be considered to consist of a combination of two factors: likelihood that the 

system will fail to achieve its objectives and impact of the failure on the success of the 

program. 

 Program risks can result from a number of sources: 

   •      unproven technology,  

   •      diffi cult performance requirements,  

   •      severe environments,  

   •      inadequate funding or staffi ng, and  

   •      an unduly short schedule.    

 Trade - off analysis is fundamental in all systematic decision making.  
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  Concept Validation 

 In concept selection, trade - off analysis should be 

   •      Organized —   set up as a distinct process,  

   •      Exhaustive —   consider the full range of alternatives,  

   •      Semiquantitative —   use relative weightings of criteria,  

   •      Comprehensive —   consider all major characteristics, and  

   •      Documented —   describe the results fully.    

 Justifi cation for the development of the selected concept should 

   •      show the validity of the need to be met;  

   •      state reasons for selecting the concept over the alternatives;  

   •      describe program risks and means for containment;  

   •      give evidence of detailed plans, such as WBS, SEMP, and so on;  

   •      give evidence of previous experience and successes;  

   •      present life cycle costing; and  

   •      cover other relevant issues, such as environmental impact.     

  System Development Planning 

 The WBS is essential in a system development program and is organized in a hierarchi-

cal structure. It defi nes all of the constituent tasks in the program. 

 The SEMP (or equivalent) defi nes all systems engineering activities through the 

system life cycle.  

  Systems Architecting 

 Systems architecting is primarily the development and articulation of different perspec-

tives, or viewpoints, of a system. Almost all system architectures have at least three 

perspectives: 

   •      Operational View —   a system representation from the user ’ s or operator ’ s 

perspective,  

   •      Logical View —   a system representation from the customer ’ s or manager ’ s per-

spective, and  

   •      Physical View —   a system representation from the designer ’ s perspective.    

 Architecture frameworks defi ne the structure and models used to develop and 

present a system architecture. These frameworks are meant to ensure consistency across 

programs in articulating the various perspectives.  
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  System Modeling Languages: UML and SysML 

 The UML provides 13 system models to represent both structural and behavioral 

aspects of the system. Although UML was developed for software development applica-

tions, it has been successfully applied to software - intensive systems. The language 

differs from the traditional structured analysis approach by focusing on entities (repre-

sented by classes and objects) instead of functions and activities. 

 The SysML is an extension of UML that enables a more complete modeling of 

software/hardware systems and facilitates the top - down approach of traditional systems 

engineering. An emphasis on requirements to drive the development effort is inherent 

in SysML. To distinguish the two languages, SysML uses the block as its primary entity, 

in place of the class.  

  MBSE 

 The basic notion behind MBSE is that a model of the system is developed early in the 

process and evolves over the system development life cycle until the model becomes, 

in essence, the build - to baseline. Early in the life cycle, the models have low levels of 

fi delity and are used primarily for decision making (not unlike the system architecture 

in Section  8.8  above). As the system is developed, the level of fi delity increases until 

the models can be used for design. Finally, the models are transformed yet again into 

the build - to baseline.  

  System Functional Specifi cations 

 System functional specifi cations address the system functional description, its required 

characteristics, and the support requirements.   

  PROBLEMS 

    8.1     Describe three principal differences between system performance require-

ments, which are an input to the concept defi nition phase, and system func-

tional specifi cations, which are an output (see Fig.  8.1 ).  

  8.2     Both the concept exploration and concept defi nition phases analyze several 

alternative system concepts. Explain the principal differences in the objec-

tives of this process in the two phases and in the manner in which the analysis 

is performed.  

  8.3     Describe what is meant by the term  “ functional allocation ”  and illustrate its 

application to a personal computer. Draw a functional diagram of a personal 

computer using the functional elements described in Chapter  3  as building 

blocks. For each building block, describe what functions it performs, how it 

interacts with other building blocks, and how it relates to the external inputs 

and outputs of the computer system.  
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  8.4     Under the subsection Program Risks, fi ve examples are listed of conditions 

that may result in a signifi cant probability of program failure. For each 

example, explain briefl y what consequences of the condition may lead to a 

program failure.  

  8.5     In the subsection Selection Strategy, it is recommended that in comparing 

different concepts, the weighted evaluations of the individual criteria for each 

concept should not be collapsed into a single fi gure of merit for each concept 

(as is commonly done) but should be retained in the form of an evaluation 

 “ profi le. ”  Explain the rationale for this recommendation and illustrate it with 

a hypothetical example.  

  8.6     Discuss how you would use trade - off analysis to prioritize the efforts to be 

allocated to the mitigation of identifi ed high and medium program risks.  

  8.7     The section The  “ Selling ”  of the System Development Proposal lists seven 

elements in a recommended approach to the authorities responsible for 

making the decision. Illustrate the utility of each element by explaining in 

each case what the authorities might conclude in the absence of a suitable 

discussion of the subject.  

  8.8       (a)     Develop a top - level function list for an ATM system. Limit yourself to 

no more than 12 functions.  

  (b)     Draw an FBD of the ATM using the functions in (a).    

  8.9       (a)     Identify the functions of a common desktop computer.  

  (b)     Identify the components of a common desktop computer.  

  (c)     Allocate the functions in (a) to the components in (b).    

  8.10     Suppose you have completed the functional analysis and allocation activities 

within the concept defi nition phase of a system ’ s development. 

   (a)     Suppose that you have some functions that are allocated to multiple 

components (as opposed to a single component). What does that mean 

regarding your conceptual design? Is this a problem?  

  (b)     Suppose that you have many functions that are allocated to a single 

component. What does that mean regarding your conceptual design? Is 

this a problem?    

  8.11     Convert the coffeemaker FBD in Figure  8.4  to an IDEF0 diagram.  

  8.12     Draw a physical block diagram of the coffeemaker represented in Figure  8.4 . 

Within the diagram, use rectangles to represent physical components and 

label the interfaces between the components.  

  8.13     Draw a diagram that presents the associations and relationships between the 

following: 

    •      the system,  

   •      system architecture,  

   •      architecture framework,  

   •      viewpoint,  
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   •      view,  

   •      modeling language, and  

   •      model.    

  The diagram should include seven rectangles (one for each entity above) and 

labeled arrows that describe the relationships between the entities.  

  8.14     Convert the coffeemaker FBD in Figure  8.4  to  a  UML activity diagram.  

  8.15     Write a two - page essay comparing and contrasting the latest versions of 

DODAF and TOGAF.  

  8.16     Suppose you are the system architect for a new private business jet aircraft 

that is intended to seat eight executives. Suppose also that you have been 

asked to use DODAF as your architecture framework. Decide and explain 

which views you would include in your architecture. Of course, all of the 

views within DODAF will not be necessary for this type of system.  

  8.17     Build a matrix that maps UML models to DODAF views. In other words, 

which UML model(s) would be appropriate for each DODAF view? Hint: 

many DODAF views will be not applicable while   others will have more than 

a single UML view. Please use a matrix or table.  

  8.18     Repeat Problem 8.17, but map SysML models to DODAF.  

  8.19     Repeat Problem 8.17, but map UML to TOGAF.  

  8.20     Research MBSE and write an essay comparing and contrasting MBSE with 

traditional systems engineering, as described in Chapters  1  –  8  of this book. 

What are the principles of MBSE? What is different? Can traditional systems 

engineering implement the basic principles without signifi cant upgrades?     
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     The preceding chapters have described the multitude of decisions that systems engi-

neers must make during the life cycle of a complex new system. It was seen that many 

of these involve highly complex technical factors and uncertain consequences, such as 

incomplete requirements, immature technology, funding limitations, and other technical 

and programmatic issues. Two of the strategies that have been devised to aid in the 

decision process are the application of the systems engineering method and the structur-

ing of the system life cycle into a series of defi ned phases. 

 Decision making comes in a variety of forms and within numerous contexts. 

Moreover, everyone engages in decision making almost continuously from the time 

they wake up to the time they fall asleep. Put simply, not every decision is the same. 

Nor is there a one - size - fi ts - all process for making decisions. Certainly, the decision 

regarding what you will eat for breakfast is not on par with deciding where to locate a 

new nuclear power plant. 

 Decision making is not independent of its context. In this chapter, we will explore 

decisions typically made by systems engineers in the development of complex systems. 

Thus, our decisions will tend to contain complexity in their own right. They are the 

hard decisions that must be made. Typically, these decisions will be made under levels 
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of uncertainty — the systems engineer will not have all of the information needed to 

make an optimal decision. Even with large quantities of information, the decision maker 

may not be able to process and integrate the information before a decision is required.  

   9.1    DECISION MAKING 

 Simple decision making typically requires nothing more than some basic information 

and intuition. For example, deciding what one will have for breakfast requires some 

information — what food is available, what cooking skill level is available, and how 

much time one has. The output of this simple decision is the food that is to be prepared. 

But complex decisions require more inputs, more outputs, and much more planning. 

Furthermore, information that is collected needs to be organized, integrated (or fused), 

and presented to decision makers in such a way as to provide adequate support to make 

 “ good ”  decisions. 

 Figure  9.1  depicts a simplifi ed decision - making process for complex decisions. A 

more detailed process will be presented later in the chapter.   

     Figure 9.1.     Basic decision - making process.  
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 Obviously, this appears to be rather cumbersome. However, how much time, 

energy, and the level of resource commitment devoted to each stage will be dependent 

on the type, complexity, and scope of the decision required. Formal decisions, typical 

in large government acquisition programs, may take years, while component decisions 

for a relatively simple system may require only hours or less. 

 Each stage requires a fi nite amount of time. Even  “ making the decision ”  is not 

necessarily instantaneous. For example, if more than a single person must make and 

approve the decision, this stage may be quite lengthy. If consensus is required, then 

this stage may become quite involved, and would include political as well as technical 

and programmatic considerations. Government legislatures are good examples in 

understanding the resources required in each step. Planning, gathering, and organizing 

are usually completed by staffs and through public and private hearings. The stage, 

making the decision, is actually an involved process that includes political maneuver-

ing, deal making, marketing, campaigning, and posturing. This stage has lasted months 

in many cases. 

 Regardless of the type of decision, or the forum within which the decision will be 

made, there are many factors that must be considered to initiate and complete the plan-

ning stage. 

  Factors in the Decision - Making Process 

 Complex decisions require an understanding of the multidimensionality of the process 

before an appropriate and useful decision can be made. The following factors need to 

be considered as part of the planning stage. 

  Goals and Objectives.     Before making decisions, one needs to ask: what are the 

goals and objectives of the stakeholders? These will probably be different at different 

levels of the organization. The goals of a line supervisor will be different than a program 

manager. Which holds the higher priority? And what are the goals of management above 

the decision maker? The decision should be made to satisfy (as far as possible) the 

goals and objectives of the important stakeholders.  

  Decision Type.     The decision maker needs to understand the type of decision 

required. Many bad decisions stem from a misunderstanding about the type required. 

Is the decision binary? Maybe the decision is concerned with a permission of some 

sort. In these cases, a simple yes/no decision is required. Other binary decisions may 

not be yes or no, but a choice between two alternatives, make or buy being a classic 

example. More complex decisions typically involve one or more choices among a set 

of alternatives. Lastly, the decision maker needs to understand who and what will be 

affected. Is the decision purely technical, or is there a personal element? Providing the 

wrong type of decision will certainly lead to signifi cantly negative consequences. 

 In the same vein, understanding who needs to be included in the decision is vital. 

Is this decision to be made by an individual? Or is a consensus among a group required? 

Who needs to approve the decision before it is implemented? The answers to these 

questions infl uences when, and how, decisions will be made.  
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  Decision Context.     Understanding the scope of the decision is also essential to 

making a proper decision. A global (or enterprise - wide) decision will be much different 

than a system component decision. The consequences of a wrong decision will be far -

 reaching if the decision affects the enterprise, for example. Context involves under-

standing the problem or issue that led to a decision point. This will be diffi cult since 

context has many dimensions, leading to different goals and objectives for your decision 

maker: 

   •      technical, involving physical entities, such as subsystem decisions;  

   •      fi nancial, involving investment instruments and quantities;  

   •      personnel, involving people;  

   •      process, involving business and technical procedures, methods, and 

techniques;  

   •      programmatic, involving resource allocations (including time, space, and 

funding);  

   •      temporal, meaning the time frame in which a decision is needed (this may be 

dynamic); and  

   •      legacy, involving past decisions.     

  Stakeholders.     Stakeholders can be defi ned as anyone (people or organizations) 

who will be affected by the results of the decision. Understanding who the stakeholders 

are with respect to a decision needs to be established before a decision is made. Many 

times, this does not occur — stakeholders are not recognized before a decision is made. 

Yet, once the decision is announced or implemented, we can be sure that all who are 

affected will make their opinion heard.  

  Legacy Decisions.     Understanding what relevant decisions have been made in 

the past helps with both the context (described above) and the environment in which 

the current decision must be made. Consequences and stakeholders can be identifi ed 

more readily if the decision maker has knowledge of the past.  

  Supporting Data.     Finally, necessary supporting data for the decision need to be 

provided in a timely fashion. A coherent and timely data collection plan is needed to 

ensure proper information can be gathered to support the decision. Accuracy in data 

collected is dependent on the decision type and context. Many times, decisions are 

delayed unnecessarily because greater accuracy than needed was demanded before the 

decision maker would act.   

  Decision Framework 

 As mentioned above, understanding the type of decision needed is critical in planning 

for and executing any process. Several decision frameworks are available in the litera-

ture to assist in understanding the decision type. In Table  9.1 , we present a framework 

that is a combination of several.   
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 There are many ways to categorize decisions. Our categorization focuses on three 

types of decisions: structured, semistructured, and unstructured. 

  Structured.     These types of decisions tend to be routine, in that the context is 

well understood and the decision scope is known. Supporting information is usually 

available, and minimal organization or processing is necessary to make a good decision. 

In many cases, standards are available, either globally or within an organization, to 

provide solution methods. Structured decisions have typically been made in the past; 

thus, a decision maker has a historical record of similar or exact decisions made like 

the one he is facing.  

  Semistructured.     These types of decisions fall outside of  “ routine. ”  Although 

similar decisions may have been made, circumstances are different enough that past 

decisions are not a clear indicator of the right decision choice. Typically, guidance is 

available though, even when specifi c methods are not. Many systems engineering deci-

sions fall within the category.  

  Unstructured.     Unstructured decisions represent complex problems that are 

unique and typically one - time. Decisions regarding new technologies tend to fall into 

this category due to the lack of experience or knowledge of the situation. First - time 

decisions fall into this category. As experience grows and decisions are tested, they 

may transition from an unstructured decision to the semistructured category. 

 In addition to the type, the scope of control is important to recognize. Decisions 

within each scope are structured differently, have different stakeholders, and require 

different technologies to support.  

  TABLE 9.1.    Decision Framework     

  Type of 

Decision  

   Scope of Control  

   Technology 

needed     Operational     Managerial  

   Strategic 

planning  

  Structured    Known 

procedures 

algorithms  

  Policies Laws 
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analysis 

Logic  

  Historical 

analysis 

Goal - oriented 

task analysis  

  Information 
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  Semistructured    Tailored 

procedures 

Heuristics  

  Tailored 

policies 

Heuristics 

Logic  

  Causality ROI 

analysis 

Probabilities  

  Decision 

support 

systems  

  Unstructured    Intuition 

Experimental  

  Intuition 

Experimental  

  Intuition 

Creativity 

Theory  

  Expert 

systems  
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  Operational.     This is the lowest scope of control that systems engineering is 

concerned about. Operational control is at the practitioner level — the engineers, ana-

lysts, architects, testers, and so on, who are performing the work. Many decisions at 

this scope of control involve structured or semistructured decisions. Heuristics, proce-

dures, and algorithms are typically available to either describe in detail when and how 

decisions should be made or at least to provide guidelines to decision making. In rare 

cases, when new technologies are implemented, or a new fi eld is explored, unstructured 

decisions may rise.  

  Managerial.     This scope of control defi nes the primary level of systems engineer-

ing decision making — that of the chief engineer, the program manager, and of course, 

the systems engineer. This scope of control defi nes the management, mentoring, or coach-

ing level of decisions. Typically, for semistructured decisions, policies, heuristics, and 

logical relationships are available to guide the systems engineer in these decisions.  

  Strategic Planning.     This level of control represents an executive -  or enterprise -

 level control. Semistructured decisions usually rely on causality concepts to guide 

decisions making. Additionally, investment decisions and decisions under uncertainty 

are typically made at this scope of control level.   

  Supporting Decisions 

 The level of technologies needed to support the three different decision types varies. 

For structured decisions, uncertainty is minimal. Databases and information systems 

are able to organize and present information clearly, enabling informed decisions. For 

semistructured decisions, however, simply organizing information is not suffi cient. 

Decision support systems (DSS) are needed to analyze information, to fuse information 

from multiple sources, and to process information to discover trends and patterns. 

 Unstructured decisions require the most sophisticated level of technology, expert 

systems, sometimes called knowledge - based systems. Due to the high level of uncer-

tainty and a lack of historical precedence and knowledge, sophisticated inference is 

required from these systems to provide knowledge to decision makers.  

  Formal Decision - Making Process 

 In 1976, Herbert Simon, in his landmark work on management decision science, pro-

vided a structured decision process for managers consisting of four phases. Table  9.2  

is a depiction of this process.   

 This process is similar to the one in Figure  9.1  but provides a new perspective — the 

concept of modeling the decision. This concept refers to the activities of developing a 

model of the issue or problem at hand and predicting the outcome of each possible 

alternative choice available to the decision maker. 

 Developing a model of the decision means creating a model that represents the 

decision context and environment. If the decision refers to an engineering subsystem 

trade - off, then the model would be of the subsystem in question. Alternative confi gura-
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tions, representing the different choices available, would be implemented in the model 

and various outcomes would be captured. These are then compared to enable the deci-

sion maker to make an informed choice. 

 Of course, models can be quite complex in scope and fi delity. Available resources 

typically provide the constraints on these two attributes. Engineers tend to desire a large 

scope and high fi delity, while the available resources constrain the feasibility of attain-

ing these two desires. The balance needed is one responsibility of the systems engineer. 

Determining the balance between what is desired from a technical perspective with 

what is available from a programmatic perspective is a balance that few people beyond 

the systems engineer are able to strike. 

 Although we have used the term  “ model ”  in the previous chapters, it is important 

to realize that models come in all shapes and sizes. A spreadsheet can be a model of a 

decision. A complex digital simulation can also be an appropriate model. What type of 

model to develop to support decision making depends on many factors. 

  1.     Decision Time Frame.     How much time does the decision maker have to make 

the decision? If the answer is  “ not much, ”  then simple models are the only 

available resource, unless more sophisticated models are already developed and 

ready for use.  

  2.     Resources.     Funding, personnel, skill level, and facilities/equipment are all con-

straints on one ’ s ability to develop and exercise a model to support decisions.  

  3.     Problem Scope.     Clearly, simple decisions do not need complicated models. 

Complex decisions generally do. The scope of the problem will, in some 

respects, dictate the scope and fi delity of the model required. Problem scope 

itself has many factors as well: range of infl uence of the decision, number and 

type of stakeholders, number and complexity of entities involved in the decision 

space, and political constraints.  

  4.     Uncertainty.     The level of uncertainty in the information needed will also affect 

the model type. If large uncertainty exists, some representation of probabilistic 

reasoning must be included in the model.  

  TABLE 9.2.    Simon ’ s Decision Process 

  Phase I: Intelligence    Defi ne problem 

 Collect and synthesize data  

  Phase II: Design    Develop model 

 Identify alternatives 

 Evaluate alternatives  

  Phase III: Choice    Search choices 

 Understand sensitivities 

 Make decision(s)  

  Phase IV: Implementation    Implement change 

 Resolve problem  
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  5.     Stakeholder Objectives and Values.     Decisions are subjective by nature, even 

with objective data to support them. Stakeholders have values that will affect 

the decision and, in turn, will be affected by the decision. The systems engineer 

must determine how values will be represented. Some may, and should, be 

represented within the model. Others can, and should, be represented outside 

of the model. Keep in mind that a large part of stakeholder values involves their 

risk tolerance. Individuals and organizations have different tolerances for risk. 

The engineer will need to determine whether risk tolerance is embedded within 

the model or handled separately.    

 In summary, modeling is a powerful strategy for dealing with decisions in the face 

of complexity and uncertainty. In broad terms, modeling is used to focus on particular 

key attributes of a complex system and to illuminate their behavior and relationships 

apart from less important system characteristics. The objective is to reveal critical 

system issues by stripping away properties that are not immediately concerned with the 

issue under consideration.   

   9.2    MODELING THROUGHOUT SYSTEM DEVELOPMENT 

 Models have been referred to and illustrated throughout this book. The purpose of the 

next three sections is to provide a more organized and expanded picture of the use of 

modeling tools in support of systems engineering decision making and related activities. 

This discussion is intended to be a broad overview, with the goal of providing an aware-

ness of the importance of modeling to the successful practice of systems engineering. 

The material is necessarily limited to a few selected examples to illustrate the most 

common forms of modeling. Further study of relevant modeling techniques is strongly 

recommended. 

 Specifi cally, the next three sections will describe three concepts: 

   •      Modeling:     describes a number of the most commonly used static representations 

employed in system development. Many of these can be of direct use to systems 

engineers, especially during the conceptual stage of development, and are worth 

the effort of becoming familiar with their usage.  

   •      Simulation:     discusses several types of dynamic system representations used in 

various stages of system development. Systems engineers should be knowledge-

able with the uses, value, and limitations of simulations relevant to the system 

functional behavior, and should actively participate in the planning and manage-

ment of the development of such simulations.  

   •      Trade - Off Analysis:     describes the modeling approach to the analysis of alterna-

tives (AoA). Systems engineers should be expert in the use of trade - off analysis 

and should know how to critically evaluate analyses performed by others. This 

section also emphasizes the care that must be taken in interpreting the results of 

analyses based on various models of reality.     
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   9.3    MODELING FOR DECISIONS 

 As stated above, we use models as a prime means of coping with complexity, to help in 

managing the large cost of developing, building, and testing complex systems. In this 

vein, a model has been defi ned as  “ a physical, mathematical, or otherwise logical rep-

resentation of a system entity, phenomenon, or process. ”  We use models to represent 

systems, or parts thereof, so we can examine their behavior under certain conditions. 

After observing the model ’ s behavior within a range of conditions, and using those results 

as an estimate of the system ’ s behavior, we can make intelligent decisions on a system 

development, production, and deployment. Furthermore, we can represent processes, 

both technical and business, via models to understand the potential impacts of imple-

menting those processes within various environments and conditions. Again, we gain 

insight from the model ’ s behavior to enable us to make a more informed decision. 

 Modeling only provides us with a representation of a system, its environment, and 

the business and technical processes surrounding that system ’ s usage. The results of 

modeling provide only estimates of a system ’ s behavior. Therefore, modeling is just 

one of the four principal decision aids, along with simulation, analysis, and experimen-

tation. In many cases, no one technique is suffi cient to reduce the uncertainty necessary 

to make good decisions. 

  Types of Models 

 A model of a system can be thought of as a simplifi ed representation or abstraction of 

reality used to mimic the appearance or behavior of a system or system element. There 

is no universal standard classifi cation of models. The one we shall use here was coined 

by Blanchard and Fabrycky, who defi ne the following categories: 

   •      Schematic Models   are diagrams or charts representing a system element or 

process. An example is an organization chart or data fl ow diagram (DFD). This 

category is also referred to as  “ descriptive models. ”   

   •      Mathematical Models   use mathematical notation to represent a relationship or 

function. Examples are Newton ’ s laws of motion, statistical distributions, and 

the differential equations modeling a system ’ s dynamics.  

   •      Physical Models   directly refl ect some or most of the physical characteristics of 

the actual system or system element under study. They may be scale models of 

vehicles such as airplanes or boats, or full - scale mock - ups, such as the front 

section of an automobile undergoing crash tests. In some cases, the physical 

model may be an actual part of a real system, as in the previous example, or an 

aircraft landing gear assembly undergoing drop tests. A globe of the earth 

showing the location of continents and oceans is another example, as is a ball 

and stick model of the structure of a molecule. Prototypes are also classifi ed as 

physical models.    

 The above three categories of models are listed in the general order of increasing reality 

and decreasing abstraction, beginning with a system context diagram and ending with 
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a production prototype. Blanchard and Fabrycky also defi ne a category of  “ analog 

models, ”  which are usually physical but not geometrical equivalents. For the purpose 

of this section, they will be included in the physical model category.  

  Schematic Models 

 Schematic models are an essential means of communication in systems engineering, as 

in all engineering disciplines. They are used to convey relationships in diagrammatic 

form using commonly understood symbology. Mechanical drawings or sketches model 

the component being designed; circuit diagrams and schematics model the design of 

the electronic product. 

 Schematic models are indispensable as a means for communication because they 

are easily and quickly drawn and changed when necessary. However, they are also the 

most abstract, containing a very limited view of the system or one of its elements. 

Hence, there is a risk of misinterpretation that must be reduced by specifying the 

meaning of any nonstandard and nonobvious terminology. Several types of schematic 

models are briefl y described in the paragraphs below. 

  Cartoons.     While not typically a systems engineering tool, cartoons are a form of 

pictorial model that illustrates some of the modeled object ’ s distinguishing character-

istics. First, it is a simplifi ed depiction of the subject, often to an extreme degree. 

Second, it emphasizes and accentuates selected features, usually by exaggeration, to 

convey a particular idea. Figure  2.2 ,  “ The ideal missile design from the viewpoint of 

various specialists, ”  makes a visual statement concerning the need for systems engi-

neering better than words alone can convey. An illustration of a system concept of 

operations may well contain a cartoon of an operational scenario.  

  Architectural Models.     A familiar example of the use of modeling in the design 

of a complex product is that employed by an architect for the construction of a home. 

Given a customer who intends to build a house to his or her own requirements, an 

architect is usually hired to translate the customer ’ s desires into plans and specifi cations 

that will instruct the builder exactly what to build and, to a large extent, how. In this 

instance, the architect serves as the  “ home systems engineer, ”  with the responsibility 

to design a home that balances the desires of the homeowner for utility and aesthetics 

with the constraints of affordability, schedule, and local building codes. 

 The architect begins with several sketches based on conversations with the cus-

tomer, during which the architect seeks to explore and solidify the latter ’ s general 

expectations of size and shape. These are pictorial models focused mainly on exterior 

appearance and orientation on the site. At the same time, the architect sketches a number 

of alternative fl oor plans to help the customer decide on the total size and approximate 

room arrangements. If the customer desires to visualize what the house would more 

nearly look like, the architect may have a scale model made from wood or cardboard. 

This would be classifi ed as a physical model, resembling the shape of the proposed 

house. For homes with complex roofl ines or unusual shapes, such a model may be a 

good investment. 
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 The above models are used to communicate design information between the cus-

tomer and the architect, using the form (pictorial) most understandable to the customer. 

The actual construction of the house is done by a number of specialists, as is the build-

ing of any complex system. There are carpenters, plumbers, electricians, masons, and 

so on, who must work from a much more specifi c and detailed information that they 

can understand and implement with appropriate building materials. This information is 

contained in drawings and specifi cations, such as wiring layouts, air conditioning 

routing, plumbing fi xtures, and the like. The drawings are models, drawn to scale and 

dimensioned, using special industrial standard symbols for electrical, plumbing, and 

other fi xtures. This type of model represents physical features, as do the pictorials of 

the house, but is more abstract in the use of symbols in place of pictures of components. 

The models serve to communicate detailed design information to the builders.  

  System Block Diagrams.     Systems are, of course, far more complex than con-

ventional structures. They also typically perform a number of functions in reacting to 

changes in their environment. Consequently, a variety of different types of models are 

required to describe and communicate their structure and behavior. 

 One of the most simple models is the  “ block diagram. ”  Hierarchical block diagrams 

have the form of a tree, with its branch structure representing the relationship between 

components at successive layers of the system. The top level consists of a single block 

representing the system; the second level consists of blocks representing the subsys-

tems; the third decomposes each subsystem into the components, and so on. At each 

level, lines connect the blocks to their parent block. Figure  9.2  shows a generic system 

block diagram of a system composed of three subsystems and eight components.   

 The block diagram is seen to be a very abstract model, focusing solely on the units 

of the system structure and their physical relationships. The simple rectangular blocks 

are strictly symbolic, with no attempt to depict the physical form of the system ele-

ments. However, the diagram does communicate very clearly an important type of 

relationship among the system elements, as well as identify the system ’ s organizing 

     Figure 9.2.     Traditional hierarchical block diagram.  
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principle. More complex interactions across the subsystems and components are left to 

more detailed diagrams and descriptions. The interactions among blocks may be rep-

resented by labeling the connecting lines.  

  System Context Diagrams.     Another useful model in system design is the 

context diagram, which represents all external entities that may interact with a system, 

either directly or indirectly. We have already seen the context diagram in Figure  3.2 . 

Such a diagram pictures the system at the center, with no details of its interior structure, 

surrounded by all its interacting systems, environments, and activities. The objective 

of a system context diagram is to focus attention on external factors and events that 

should be considered in developing a complete set of system requirements and con-

straints. In so doing, it is necessary to visualize not only the operational environment 

but also the stages leading up to operations, such as installation, integration, and opera-

tional evaluation. 

 Figure  9.3  shows a context diagram for the case of a passenger airliner. The model 

represents the external relationships between the airliner and various external entities. 

The system context diagram is a useful starting point for describing and defi ning the 

system ’ s mission and operational environment, showing the interaction of a system with 

all external entities that may be relevant to its operation. It also provides a basis for 

formulating system operational scenarios that represent the different conditions under 

which it must be designed to operate. In commercial systems, the  “ enterprise diagram ”  

also shows all the system ’ s external inputs and outputs but also usually includes a 

representation of the related external entities.    

     Figure 9.3.     Context diagram of a passenger aircraft.  
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  Functional Flow Block Diagrams ( FFBD  s ).     The models discussed previously 

deal primarily with static relationships within the system ’ s physical structure. The more 

signifi cant characteristics of systems and their components are related to how they 

behave in response to changes in the environment. Such behavior results from the func-

tions that a system performs in response to certain environmental inputs and constraints. 

Hence, to model system behavior, it is necessary to model its principal functions, how 

they are derived, and how they are related to one another. The most common form of 

functional model is called the FFBD. 

 An example of an FFBD is shown in Figure  9.4 . The fi gure shows the functional 

fl ow through an air defense system at the top - level functions of detect, control, and 

engage, and at the second - level functions that make up each of the above. Note the 

numbering system of the functional blocks that ties them together. Note also that the 

names in the blocks represent functions, not physical entities, and thus, all begin with 

a verb instead of a noun. The arrowheads on the lines between blocks in an FFBD 

indicate the fl ow of control and, in this case, also the fl ow of information. Keep in mind 

that fl ow of control does not necessarily equate with fl ow of information in all 

cases. The identity of the functions fl owing between the blocks may be denoted on the 

FFBD as an optional feature but is not expected to be complete as it would be in a 

software DFD.   

 In the above example, the physical implementation of the functional blocks is 

not represented and may be subject to considerable variation. From the nature of the 

     Figure 9.4.     Air defense functional fl ow block diagram.  
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functions, however, it may be inferred that a radar installation may be involved in the 

detection function, along with very considerable software; that the control function is 

mostly software with operator displays; and that the engage function is largely hard-

ware, such as guns, missiles, or aircraft. 

 A valuable application of functional fl ow diagrams was developed by the then 

Radio Corporation of America, Moorestown Division. Named the functional fl ow dia-

grams and descriptions (F 2 D 2 ), the method is used to diagram several functional levels 

of the system hierarchy, from the system level down to subcomponents. The diagrams 

use distinctive symbols to identify hardware, software, and people functions, and show 

the data that fl ow between system elements. An important use of F 2 D 2  diagrams is in 

a  “ war room ”  or storyboard arrangement, where diagrams for all subsystems are 

arranged on the walls of a conference room and linked to create a diagram of the entire 

system. Such a display makes an excellent communication and management tool during 

the system design process.  

   DFD  s .     DFDs are used in the software structural analysis methodology to model 

the interactions among the functional elements of a computer program. DFDs have also 

been used to represent the data fl ow among physical entities in systems consisting of 

both hardware and software components. In either case, the labels represent data fl ow 

and are labeled with a description of the data traversing the interface.  

  Integrated Defi nition Language 0 ( IDEF 0) Diagrams.     IDEF0 is a standard 

representation of system activity models, similar to software DFDs, and was described 

in Chapter  8 . Figure  8.3  depicts the rules for depicting an activity. IDEF0 is widely 

used in the modeling of complex information systems. As in FFBD and F 2 D 2  diagrams, 

the functional blocks are rectangular and the sides of the activity boxes have a unique 

function. Processing inputs always enter from the left, controls from the top, and 

mechanisms or resources from the bottom; outputs exit on the right. The name of each 

block starts with a vowel and carries a label identifying its hierarchical location.  

  Functional Flow Process Diagrams ( FFPD ).     The functional fl ow diagrams 

described earlier model the functional behavior of a system or a system product. 

Such diagrams are equally useful in modeling processes, including those involved 

in systems engineering. Examples of FFPDs are found in every chapter. The system 

life cycle model is a prime example of a process FFPD. In Chapter  4 , Figures  4.1 ,  4.3 , 

and  4.4  defi ne the fl ow of system development through the defi ned stages and phases 

of the system life cycle. In Chapters  5  –  8 , the fi rst fi gures show the functional inputs 

and outputs between the corresponding life cycle phase and those immediately 

adjoining. 

 The systems engineering method is modeled in Chapter  4 , Figure  4.10 , and in 

greater detail in Figure  4.11 . The functional blocks in this case are the principal pro-

cesses that constitute the systems engineering method. Inside each block is a functional 

fl ow diagram that represents the functions performed by the block. The inputs coming 

from outside the blocks represent the external factors that contribute to the respective 
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processes. Chapters  5  –  8  contain similar functional fl ow diagrams to illustrate the pro-

cesses that take place during each phase of system development. 

 FFPDs are especially useful as training aids for production workers by resolving 

complex processes into their elementary components in terms readily understandable 

by the trainees. All process diagrams have a common basic structure, which consists 

of three elements: input    →    processing    →    output.  

  Trigonal System Models.     In attempting to understand the functioning of 

complex systems, it is useful to resolve them into subsystems and components that 

individually are more simple to understand. A general method that works well in most 

cases is to resolve the system and each of its subsystems into three basic components: 

  1.     sensing or inputting signals, data, or other media that the system element oper-

ates on;  

  2.     processing the inputs to deduce an appropriate reaction to the inputs; and  

  3.     acting on the basis of the instructions from the processing element to implement 

the system element ’ s response to the input.    

 In an example of a system simulation described in the previous subsection, an air 

defense system was shown to be composed of three functions, namely, detect, control, 

and engage (see Fig.  9.4 ). The detect function is seen to correspond to the input portion, 

control (or analyze and control response) to the processing portion, and engage to the 

response action portion. 

 The input – processing – output segmentation can then be applied to each of the 

subsystems themselves. Thus, in the air defense system example, the detect function 

can be further resolved into the radar, which senses the refl ection from the enemy 

airplane or missile, the radar signal processor, which resolves the target refl ection from 

interfering clutter and jamming, and the automatic detection and track software, which 

correlates the signal with previous scans to form a track and calculate its coordinates 

and velocity vector for transmission to the control subsystem. The other two subsystems 

may be similarly resolved. 

 In many systems, there is more than a single input. For example, the automobile 

is powered by fuel but is steered by the driver. The input – processing – output analysis 

will produce two or more functional fl ows: tracing the fuel input will involve the fuel 

tank and fuel pump, which deliver the fuel, the engine, which converts (processes) the 

fuel into torque, and the wheels, which produce traction on the road surface to propel 

the car. A second set of components are associated with steering the car, in which the 

sensing and decision is accomplished by the driver, with the automobile executing the 

actual turn in response to steering wheel rotation.  

  Modeling Languages.     The schematic models described above together were 

developed relatively independently. Thus, although they have been in use for several 

decades, they are used according to the experience of the engineer. However, these 

models do have certain attributes in common. They are, by and large, activity focused. 



270 DECISION ANALYSIS AND SUPPORT 

They communicate functionality of systems, whether that is of the form of activities, 

control, or data. Even block diagrams representing physical entities include interfaces 

among the entities showing fl ow of materials, energy, or data. Because of their age 

(basic block diagrams have been around for over 100 years), we tend to categorize 

these models as  “ functional ”  or  “ traditional. ”  

 When software engineering emerged as a signifi cant discipline within system 

development, a new perspective was presented to the engineering community: object -

 oriented analysis (OOA). Rather than activity based, OOA presented concepts and 

models that were object based, where object is defi ned in very broad terms. Theoretically, 

anything can be an object. As described in Chapter  8 , Unifi ed Modeling Language 

(UML) is now a widely used modeling language for support of systems engineering 

and architecting.   

  Mathematical Models 

 Mathematical models are used to express system functionality and dependencies in the 

language of mathematics. They are most useful where system elements can be isolated 

for purposes of analysis and where their primary behavior can be represented by well -

 understood mathematical constructs. If the process being modeled contains random 

variables, simulation is likely to be a preferable approach. An important advantage of 

mathematical models is that they are widely understood. Their results have inherent 

credibility, provided that the approximations made can be shown to be of secondary 

importance. Mathematical models include a variety of forms that represent determin-

istic (not random) functions or processes. Equations, graphs, and spreadsheets, when 

applied to a specifi c system element or process, are common examples. 

  Approximate Calculations.     Chapter  1  contains a section entitled The Power of 

Systems Engineering, which cites the critical importance of the use of approximate 

( “ back of the envelope ” ) calculations to the practice of systems engineering. The ability 

to perform  “ sanity checks ”  on the results of complex calculations or experiments is of 

inestimable value in avoiding costly mistakes in system development. 

 Approximate calculations represent the use of mathematical models, which are 

abstract representations of selected functional characteristics of the system element 

being studied. Such models capture the dominant variables that determine the main 

features of the outcome, omitting higher - order effects that would unduly complicate 

the mathematics. Thus, they facilitate the understanding of the primary functionality of 

the system element. 

 As with any model, the results of approximate calculations must be interpreted 

with full knowledge of their limitations due to the omission of variables that may be 

signifi cant. If the sanity check deviates signifi cantly from the result being checked, the 

approximations and other assumptions should be examined before questioning the 

original result. 

 In developing the skill to use approximate calculations, the systems engineer must 

make the judgment as to how far to go into the technical fundamentals in each specifi c 

case. One alternative is to be satisfi ed with an interrogation of the designers who made 
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the original analysis. Another is to ask an expert in the discipline to make an indepen-

dent check. A third is to apply the systems engineer ’ s own knowledge, to augment it 

by reference to a handbook or text, and to carry out the approximate calculation 

personally. 

 The appropriate choice among these alternatives is, of course, situation dependent. 

However, it is advisable that in selected critical technical areas, the systems engineer 

becomes suffi ciently familiar with the fundamentals to feel comfortable in making 

independent judgments. Developing such skills is part of the systems engineer ’ s special 

role of integrating multidisciplinary efforts, assessing system risks, and deciding the 

areas that require analysis, development, or experimentation.  

  Elementary Relationships.     In every fi eld of engineering and physics, there are 

some elementary relationships with which the systems engineer should be aware, or 

familiar. Newton ’ s laws are applicable in all vehicular systems. In the case of structural 

elements under stress, it is often useful to refer to relationships involving strength and 

elastic properties of beams, cylinders, and other simple structures. With electronic 

components, the systems engineer should be familiar with the elementary properties of 

electronic circuits. There are  “ rules of thumb ”  in most technical fi elds, which are usually 

based on elementary mathematical relationships.  

  Statistical Distributions.     Every engineer is familiar with the Gaussian (normal) 

distribution function characteristic of random noise and other simple natural effects. 

Some other distribution functions that are of interest include the Rayleigh distribution, 

which is valuable in analyzing signals returned from radar clutter, the Poisson distribu-

tion, the exponential distribution, and the binomial distribution; all of these obey simple 

mathematical equations.  

  Graphs.     Models representing empirical relationships that do not correspond to 

explicit mathematical equations are usually depicted by graphs. Figure  2.1 a in Chapter 

 2  is a graph illustrating the typical relationship between performance and the cost to 

develop it. Such models are mainly used to communicate qualitative concepts, although 

test data plotted in the form of a graph can show a quantitative relationship. Bar charts, 

such as one showing the variations in production by month, or the cost of alternative 

products, are also models that serve to communicate relationships in a more effective 

manner than by a list of numbers.   

  Physical Models 

 Physical models directly refl ect some or most of the physical characteristics of an actual 

system or system element under study. In that sense, they are the least abstract and 

therefore the most easily understood type of modeling. Physical models, however, are 

by defi nition simplifi cations of the modeled articles. They may embody only a part of 

the total product; they may be scaled - down versions or developmental prototypes. Such 

models have multiple uses throughout the development cycle, as illustrated by the 

examples described next. 
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  Scale Models.     These are (usually) small - scale versions of a building, vehicle, or 

other system, often used to represent the external appearance of a product. An example 

of the engineering use of scale models is the testing of a model of an air vehicle in a 

wind tunnel or of a submersible in a water tunnel or tow tank.  

  Mock - Ups.     Full - scale versions of vehicles, parts of a building, or other structures 

are used in later stages of development of systems containing accommodation for 

operators and other personnel. These provide realistic representations of human – system 

interfaces to validate or possibly to modify their design prior to a detailed design of 

the interfaces.  

  Prototypes.     Previous chapters have discussed the construction and testing of 

development, engineering, and product prototypes, as appropriate to the system in 

hand. These also represent physical models of the system, although they possess most 

of the properties of the operational system. However, strictly speaking, they are still 

models. 

 Computer - based tools are being increasingly used in place of physical models such 

as mock - ups and even prototypes. Such tools can detect physical interferences and 

permit many engineering tasks formerly done with physical models to be accomplished 

with computer models.    

   9.4    SIMULATION 

 System simulation is a general type of modeling that deals with the dynamic behavior 

of a system or its components. It uses a numerical computation technique for conduct-

ing experiments with a software model of a physical system, function, or process. 

Because simulation can embody the physical features of the system, it is inherently less 

abstract than many forms of modeling discussed in the previous section. On the other 

hand, the development of a simulation can be a task of considerable magnitude. 

 In the development of a new complex system, simulations are used at nearly every 

step of the way. In the early phases, the characteristics of the system have not yet been 

determined and can only be explored by modeling and simulation. In the later phases, 

estimates of their dynamic behavior can usually be obtained earlier and more economi-

cally by using simulations than by conducting tests with hardware and prototypes. Even 

when engineering prototypes are available, fi eld tests can be augmented by using simu-

lations to explore system behavior under a greater variety of conditions. Simulations 

are also used extensively to generate synthetic system environmental inputs for test 

purposes. Thus, in every phase of system development, simulations must be considered 

as potential development tools. 

 There are many different types of simulations and one must differentiate static from 

dynamic simulations, deterministic from stochastic (containing random variables), and 

discrete from continuous. For the purposes of relating simulations to their application 

to systems engineering, this section groups simulations into four categories: opera-

tional, physical, environmental, and virtual reality simulation. All of these are either 
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wholly or partly software based because of the versatility of software to perform an 

almost infi nite variety of functions. 

 Computer - based tools also perform simulations at a component or subcomponent 

level, which will be referred to as engineering simulation. 

  Operational Simulation 

 In system development, operational simulations are primarily used in the conceptual 

development stage to help defi ne operational and performance requirements, explore 

alternative system concepts, and help select a preferred concept. They are dynamic, 

stochastic, and discrete event simulations. This category includes simulations of opera-

tional systems capable of exploring a wide range of scenarios, as well as system 

variants.  

  Games 

 The domain of analyzing operational mission areas is known as operations analysis. 

This fi eld seeks to study operational situations characteristic of a type of commerce, 

warfare, or other broad activity and to develop strategies that are most suitable to 

achieving successful results. An important tool of operations analysis is the use of 

games to evaluate experimentally the utility of different operational approaches. The 

military is one of the organizations that relies on games, called war games, to explore 

operational considerations. 

 Computer - aided games are examples of operational simulations involving people 

who control a simulated system (blue team) in its engagement with the simulated 

adversary (red team), with referees observing both sides of the action and evaluating 

the results (white team). In business games, the two sides represent competitors. In 

other games, the two teams can represent adversaries. 

 The behavior of the system(s) involved in a game is usually based on that of exist-

ing operational systems, with such extensions as may be expected to be possible in the 

next generation of the system. These may be implemented by variable parameters to 

explore the effect of different system features on their operational capabilities. 

 Gaming has several benefi ts. First, it enables the participants to gain a clearer 

understanding of the operational factors involved in various missions, as well as of 

their interaction with different features of the system, which translates into experience 

in operational decision making. Second, by varying key system features, the partici-

pants can explore system improvements that may be expected to enhance their 

effectiveness. Third, through variation in operational strategy, it may be possible to 

develop improved operational processes, procedures, and methods. Fourth, analysis of 

the game results may provide a basis for developing a more clearly stated and prioritized 

set of operational requirements for an improved system than could be derived 

otherwise. 

 Commercial games are utilized by large corporations to identify and assess 

business strategies over a single and multiple business cycles within a set of plausible 

economic scenarios. Although these games do not typically predict technological 
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breakthroughs, they can identify  “ breakthrough ”  technologies that could lead to para-

digm shifts in an industry. 

 Military organizations conduct a variety of games for multiple purposes such as 

assessing new systems within a combat situation, analyzing a new concept for transport-

ing people and material, or evaluating a new technology to detect stealthy targets. 

The games are facilitated by large screen displays and a bank of computers. The geo-

graphic displays are realistic, derived from detailed maps of the globe available on the 

Internet and from military sources. A complex game may last from a day to several 

weeks. The experience is highly enlightening to all participants. Short of actual opera-

tional experience, such games are the best means for acquiring an appreciation of the 

operational environment and mission needs, which are important ingredients in systems 

engineering. 

 Lastly, government organizations and alliances conduct geopolitical games to 

assess international engagement strategies. These types of games tend to be complex 

as the dimensions of interactions can become quite large. For example, understanding 

national reactions to a country ’ s policy actions involves diplomatic, intelligence, mili-

tary, and economic (DIME) ramifi cations. Also, because interactions are complex, 

standard simulation types may not be adequate to capture the realm of actions that a 

nation might take. Therefore, sophisticated simulations are developed specifi cally to 

model various components of a national entity. These components are known as  agents .  

  System Effectiveness Simulation 

 During the concept exploration and concept defi nition phases of system development, 

the effort is focused on the comparative evaluation of different system capabilities and 

architectures. The objective is fi rst to defi ne the appropriate system performance 

requirements and then to select the preferred system concept to serve as the basis for 

development. A principal vehicle for making these decisions is the use of computer 

system effectiveness simulations, especially in the critical activity of selecting a pre-

ferred system concept during concept defi nition. At this early point in the system life 

cycle, there is neither time nor resources to build and test all elements of the system. 

Further, a well - designed simulation can be used to support the claimed superiority of 

the system concept recommended to the customer. Modern computer display techniques 

can present system operation in realistic scenarios. 

 The design of a simulation of a complex system that is capable of providing a basis 

for comparing the effectiveness of candidate concepts is a prime systems engineering 

task. The simulation itself is likely to be complex in order to refl ect all the critical 

performance factors. The evaluation of system performance also requires the design 

and construction of a simulation of the operational environment that realistically chal-

lenges the operational system ’ s capabilities. Both need to be variable to explore differ-

ent operational scenarios, as well as different system features. 

 A functional block diagram of a typical system effectiveness simulation is illus-

trated in Figure  9.5 . The subject of the simulation is an air defense system, which is 

represented by the large rectangle in the center containing the principal subsystems 

detect, control, and engage. At the left is the simulation of the enemy force, which 
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contains a scenario generator and an attack generator. At the right is the analysis sub-

system, which assesses the results of the engagement against an expected outcome or 

against results from other engagements. The operator interface, shown at the bottom, 

is equipped to modify the attacking numbers and tactics and also to modify the perfor-

mance of these system elements to determine the effects on system effectiveness.   

 The size and direction of system effectiveness variations resulting from changes 

in the system model should be subjected to sanity checks before acceptance. Such 

checks involve greatly simplifi ed calculations of the system performance and are 

best carried out by analysts not directly responsible for either the design or the 

simulation.  

  Mission Simulation 

 The objective of the simulations referred to as mission simulations is focused on the 

development of the operational modes of systems rather than on the development of 

the systems themselves. Examples of such simulations include the conduct of air traffi c 

control, the optimum trajectories of space missions, automobile traffi c management, 

and other complex operations. 

     Figure 9.5.     System effectiveness simulation.  
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 For example, space missions to explore planets, asteroids, and comets are preceded 

by exhaustive simulations of the launch, orbital mechanics, terminal maneuvers, instru-

ment operations, and other vital functions that must be designed into the spacecraft and 

mission control procedures. Before design begins, an analytical foundation using simu-

lation techniques is developed. 

 Such simulations model the vehicles and their static and dynamic characteristics, 

the information available from various sensors, and signifi cant features of the environ-

ment and, if appropriate, present these items to the system operator ’ s situation displays 

mimicking what they would see in real operations. The simulations can be varied to 

present a variety of possible scenarios, covering the range of expected operational situ-

ations. Operators may conduct  “ what if ”  experiments to determine the best solution, 

such as a set of rules, a safe route, an optimum strategy, or whatever the operational 

requirements call for.  

  Physical Simulation 

 Physical simulations model the physical behavior of system elements. They are primar-

ily used in system development during the engineering development stage to support 

systems engineering design. They permit the conduct of simulated experiments that can 

answer many questions regarding the fabrication and testing of critical components. 

They are dynamic, deterministic, and continuous. 

 The design of all high - performance vehicles — land, sea, air, or space — depends 

critically on the use of physical simulations. Simulations enable the analyst and designer 

to represent the equations of motion of the vehicle, the action of external forces, such 

as lift and drag, and the action of controls, whether manual or automated. As many 

experiments as may be necessary to study the effects of varying conditions or design 

parameters may be conducted. Without such tools, the development of modern aircraft 

and spacecraft would not have been practicable. Physical simulations do not eliminate 

the need for exhaustive testing, but they are capable of studying a great variety of situ-

ations and of eliminating all but a few alternative designs. The savings in development 

time can be enormous. 

  Examples: Aircraft, Automobiles, and Space Vehicles.     Few technical prob-

lems are as complicated as the design of high - speed aircraft. The aerodynamic forces 

are quite nonlinear and change drastically in going between subsonic and supersonic 

regimes. The stresses on airplane structures can be extremely high, resulting in fl exure 

of wings and control surfaces. There are fl ow interference effects between the wings 

and tail structure that depend sharply on altitude, speed, and fl ight attitude. Simulation 

permits all of these forces and effects to be realistically represented in six - degree - of -

 freedom models (three position and three rotation coordinates). 

 The basic motions of an automobile are, of course, far simpler than those of an 

aircraft. However, modern automobiles possess features that call on very sophisticated 

dynamic analysis. The control dynamics of antilock brakes are complex and critical, as 

are those of traction control devices. The action of airbag deployment devices is even 

more critical and sensitive. Being intimately associated with passenger safety, these 
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devices must be reliable under all expected conditions. Here again, simulation is an 

essential tool. 

 Without modern simulation, there would be no space program as we know it. The 

task of building a spacecraft and booster assembly that can execute several burns to 

put the spacecraft into orbit, that can survive launch, deploy solar panels, and antennae, 

control its attitude for reasons of illumination, observation, or communication, and 

perform a series of experiments in space would simply be impossible without a variety 

of simulations. The international space station program achieved remarkable sustain-

ability as each mission was simulated and rehearsed to near perfection.   

  Hardware - in - the - Loop Simulation 

 This is a form of physical simulation in which actual system hardware is coupled with 

a computer - driven simulation. An example of such a simulation is a missile homing 

guidance facility. For realistic experiments of homing dynamics, such a facility is 

equipped with microwave absorbing materials, movable radiation sources, and actual 

seeker hardware. This constitutes a dynamic  “ hardware - in - the - loop ”  simulation, which 

realistically represents a complex environment. 

 Another example of a hardware - in - the - loop simulation is a computer - driven motion 

table used in the development testing of inertial components and platforms. The table 

is caused to subject the components to movement and vibration representing the motion 

of its intended platform, and is instrumented to measure the accuracy of the resulting 

instrument output. Figure  9.6  shows a developmental inertial platform mounted on a 

     Figure 9.6.     Hardware - in - the - loop simulation.  
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motion table, with a motor drive controlled by an operator and the feedback from the 

platform. A motion analyzer compares the table motion with the inertial platform 

outputs.    

  Engineering Simulation 

 At the component and subcomponent level, there are engineering tools that are exten-

sions of mathematical models, described in the previous section. These are primarily 

used by design specialists, but their capabilities and limitations need to be understood 

by systems engineers in order to understand their proper applications. 

 Electronic circuit design is no longer done by cut - and - try methods using bread-

boards. Simulators can be used to design the required functionality, test it, and modify 

it until the desired performance is obtained. Tools exist that can automatically document 

and produce a hardware version of the circuit. 

 Similarly, the structural analysis of complex structures such as buildings and 

bridges can be done with the aid of simulation tools. This type of simulation can 

accommodate the great number of complicated interactions among the mechanical 

elements that make up the structure, which are impractical to accomplish by analysis 

and testing.  

  Development of the Boeing 777 Aircraft 

 As noted previously, virtually all of the structural design of the Boeing 777 was done 

using computer - based modeling and simulation. One of the aircraft ’ s chief reasons for 

success was the great accuracy of interface data that allowed the various portions of 

the aircraft to be designed and built separately and then to be easily integrated. This 

technology set the stage for the Boeing 797, the Dreamliner. 

 The above techniques have literally revolutionized many aspects of hardware 

design, development, testing, and manufacture. It is essential for systems engineers 

working in these areas to obtain a fi rsthand appreciation of the application and capabil-

ity of engineering simulation to be able to lead effectively the engineering effort.  

  Environmental Simulation 

 Environmental simulations are primarily used in system development during engineer-

ing test and evaluation. They are a form of physical simulation in which the simulation 

is not of the system but of elements of the system ’ s environment. The majority of such 

simulations are dynamic, deterministic, and discrete events. 

 This category is intended to include simulation of (usually hazardous) operating 

environments that are diffi cult or unduly expensive to provide for validating the design 

of systems or system elements, or that are needed to support system operation. Some 

examples follow. 

  Mechanical Stress Testing.     System or system elements that are designed to 

survive harsh environments during their operating life, such as missiles, aircraft systems, 
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spacecraft, and so on, need to be subjected to stresses simulating such conditions. This 

is customarily done with mechanical shake tables, vibrators, and shock testing.  

  Crash Testing.     To meet safety standards, automobile manufacturers subject their 

products to crash tests, where the automobile body is sacrifi ced to obtain data on the 

extent to which its structural features lessen the injury suffered by the occupant. This 

is done by use of simulated human occupants, equipped with extensive instrumentation 

that measures the severity of the blow resulting from the impact. The entire test and 

test analysis are usually computer driven.  

  Wind Tunnel Testing.     In the development of air vehicles, an indispensable tool 

is an aerodynamic wind tunnel. Even though modern computer programs can model 

the forces of fl uid fl ow on fl ying bodies, the complexity of the behavior, especially near 

the velocity of sound, and interactions between different body surfaces often require 

extensive testing in facilities that produce controlled airfl ow conditions impinging on 

models of aerodynamic bodies or components. In such facilities, the aerodynamic 

model is mounted on a fi xture that measures forces along all components and is com-

puter controlled to vary the model angle of attack, control surface defl ection, and other 

parameters, and to record all data for subsequent analysis. 

 As noted in the discussion of scale models, analogous simulations are used in the 

development of the hulls and steering controls of surface vessels and submersibles, 

using water tunnels and tow tanks.   

  Virtual Reality Simulation 

 The power of modern computers has made it practical to generate a three - dimensional 

visual environment of a viewer that can respond to the observer ’ s actual or simulated 

position and viewing direction in real time. This is accomplished by having all the 

coordinates of the environment in the database, recomputing the way it would appear 

to the viewer from his or her instantaneous position and angle of sight, and projecting 

it on a screen or other display device usually mounted in the viewer ’ s headset. Some 

examples of the applications of virtual reality simulations are briefl y described next. 

  Spatial Simulations.     A spatial virtual reality simulation is often useful when it 

is important to visualize the interior of enclosed spaces and the connecting exits and 

entries of those spaces. Computer programs exist that permit the rapid design of these 

spaces and the interior furnishings. A virtual reality feature makes it possible for an 

observer to  “ walk ”  through the spaces in any direction. This type of model can be useful 

for the preliminary designs of houses, buildings, control centers, storage spaces, parts 

of ships, and even factory layouts. An auxiliary feature of this type of computer model 

is the ability to print out depictions in either two -  or three - dimensional forms, including 

labels and dimensions. 

 Spatial virtual simulations require the input to the computer of a detailed three -

 dimensional description of the space and its contents. Also, the viewing position is input 

into the simulation either from sensors in the observer ’ s headset or directed with a 
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joystick, mouse, or other input device. The virtual image is computed in real time and 

projected either to the observer ’ s headset or on a display screen. Figure  9.7  illustrates 

the relationship between the coordinates of two sides of a room with a bookcase on 

one wall, a window on the other, and a chair in the corner, and a computer - generated 

image of how an observer facing the corner would see it.    

  Video Games.     Commercial video games present the player with a dynamic 

scenario with moving fi gures and scenery that responds to the player ’ s commands. In 

many games, the display is fashioned in such a way that the player has the feeling of 

being inside the scene of the action rather than of being a spectator.  

  Battlefi eld Simulation.     A soldier on a battlefi eld usually has an extremely 

restricted vision of the surroundings, enemy positions, other forces, and so on. Military 

departments are actively seeking ways to extend the soldier ’ s view and knowledge by 

integrating the local picture with situation information received from other sources 

through communication links. Virtual reality techniques are expected to be one of the 

key methods of achieving these objectives of situational awareness.   

  Development of System Simulations 

 As may be inferred from this section, the several major simulations that must be con-

structed to support the development of a complex system are complex in their own 

     Figure 9.7.     Virtual reality simulation.  
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right. System effectiveness simulations have to not only simulate the system functional-

ity but also to simulate realistically the system environment. Furthermore, they have to 

be designed so that their critical components may be varied to explore the performance 

of alternative confi gurations. 

 In Chapter  5 , modeling and simulation were stated to be an element of the systems 

engineering management plan. In major new programs, the use of various simulations 

may well account for a substantial portion of the total cost of the system development. 

Further, the decisions on the proper balance between simulation fi delity and complexity 

require a thorough understanding of the critical issues in system design, technical and 

program risks, and the necessary timing for key decisions. In the absence of careful 

analysis and planning, the fi delity of simulations is likely to be overspecifi ed, in an 

effort to prevent omissions of key parameters. The result of overambitious fi delity is 

the extension of project schedules and exceedance of cost goals. For these reasons, the 

planning and management of the system simulation effort should be an integral part of 

systems engineering and should be refl ected in management planning. 

 Often the most effective way to keep a large simulation software development 

within bounds is to use iterative prototyping, as described in Chapter  11 . In this 

instance, the simulated system architecture is organized as a central structure that per-

forms the basic functions, which is coupled to a set of separable software modules 

representing the principal system operational modes. This permits the simulation to be 

brought to limited operation quickly, with the secondary functions added, as time and 

effort are available.  

  Simulation Verifi cation and Validation 

 Because simulations serve an essential and critical function in the decision making 

during system development, it is necessary that their results represent valid conclusions 

regarding the predicted behavior of the system and its key elements. To meet this cri-

terion, it must be determined that they accurately represent the developer ’ s conceptual 

description and specifi cation (verifi cation) and are accurate representations of the real 

world, to the extent required for their intended use (validation). 

 The verifi cation and validation of key simulations must, therefore, be an integral 

part of the total system development effort, again under the direction of systems engi-

neering. In the case of new system effectiveness simulations, which are usually complex, 

it is advisable to examine their results for an existing (predecessor) system whose 

effectiveness has been previously analyzed. Another useful comparison is with the 

operation of an older version of the simulation, if one exists. 

 Every simulation that signifi cantly contributes to a system development should also 

be documented to the extent necessary to describe its objectives, performance specifi ca-

tions, architecture, concept of operation, and user modes. A maintenance manual and 

user guide should also be provided. 

 The above actions are sometimes neglected to meet schedules and in competition 

with other activities. However, while simulations are not usually project deliverables, 

they should be treated with equal management attention because of their critical role 

in the success of the development. 
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 Even though a simulation has been verifi ed and validated, it is important to 

remember that it is necessarily only a model, that is, a simplifi cation and approximation 

to reality. Thus, there is no such thing as an  absolutely validated  simulation. In particu-

lar, it should only be used for the prescribed application for which it has been tested. 

It is the responsibility of systems engineering to circumscribe the range of valid 

applicability of a given simulation and to avoid unwarranted reliance on the accuracy 

of its results. 

 Despite these cautions, simulations are absolutely indispensable tools in the devel-

opment of complex systems.   

   9.5    TRADE - OFF ANALYSIS 

 Performing a trade - off is what we do whenever we make a decision, large or small. 

When we speak, we subconsciously select words that fi t together to express what we 

mean, instinctively rejecting alternative combinations of words that might have served 

the purpose, but not as well. At a more purposeful level, we use trade - offs to decide 

what to wear to a picnic or what fl ight to take on a business trip. Thus, all decision 

processes involve choices among alternative courses of action. We make a decision by 

comparing the alternatives against one another and by choosing the one that provides 

the most desirable outcome. 

 In the process of developing a system, hundreds of important systems engineering 

decisions have to be made, many of them with serious impacts on the potential success 

of the development. Those cases in which decisions have to be approved by manage-

ment or by the customer must be formally presented, supported by evidence attesting 

to the thoroughness and objectivity of the recommended course of action. In other cases, 

the decision only has to be convincing to the systems engineering team. Thus, the 

trade - off process needs to be tailored to its ultimate use. To differentiate a formal trade -

 off study intended to result in a recommendation to higher management from an infor-

mal decision aid, the former will be referred to as a  “ trade - off analysis ”  or a  “ trade 

study, ”  while the latter will be referred to as simply a  “ trade - off. ”  The general principles 

are similar in both cases, but the implementation is likely to be considerably different, 

especially with regard to documentation. 

  Basic Trade - Off Principles 

 The steps in a trade - off process can be compared to those characterizing the systems 

engineering methodology, as used in the systems concept defi nition phase for selecting 

the preferred system concept to meet an operational objective. The basic steps in the 

trade - off process at any level of formality are the following (corresponding steps in the 

systems engineering methodology are shown in parentheses). 

  Defi ning the Objective (Requirements Analysis).     The trade - off process 

must start by defi ning the objectives for the trade study itself. This is carried out by 

identifying the requirements that the solution (i.e., the result of the decision) must fulfi ll. 
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The requirements are best expressed in terms of measures of effectiveness (MOE), as 

quantitatively as practicable, to characterize the merits of a candidate solution.  

  Identifi cation of Alternatives (Concept Exploration).     To provide a set of 

alternative candidates, an effort must be made to identify as many potential courses of 

action as will include all promising candidate alternatives. Any that fail to comply with 

an essential requirement should be rejected.  

  Comparing the Alternatives (Concept Defi nition).     To determine the rela-

tive merits of the alternatives, the candidate solutions should be compared with one 

another with respect to each of their MOEs. The relative order of merit is judged by 

the cumulative rating of all the MOEs, including a satisfactory balance among the dif-

ferent MOEs.  

  Sensitivity Analysis (Concept Validation).     The results of the process should 

be validated by examining their sensitivity to the assumptions. MOE prioritization and 

candidate ratings are varied within limits refl ecting the accuracy of the data. Candidates 

rated low in only one or two MOEs should be reexamined to determine whether this 

result could be changed by a relatively straightforward modifi cation. Unless a single 

candidate is clearly superior, and the result is stable to such variations, further study 

should be conducted.   

  Formal Trade - Off Analysis and Trade Studies 

 As noted above, when trade - offs are conducted to derive and support a recommendation 

to management, they must be performed and presented in a formal and thoroughly 

documented manner. As distinguished from informal decision processes, trade - off 

studies in systems engineering should have the following characteristics: 

  1.     They are organized as defi ned processes. They are carefully planned in advance, 

and their objective, scope, and method of approach are established before they 

are begun.  

  2.     They consider all key system requirements. System cost, reliability, maintain-

ability, logistics support, growth potential, and so on, should be included. Cost 

is frequently handled separately from other criteria. The result should demon-

strate thoroughness.  

  3.     They are exhaustive. Instead of considering only the obvious alternatives in 

making a systems engineering decision, a search is made to identify all options 

deserving consideration to ensure that a promising one is not inadvertently 

overlooked. The result should demonstrate objectivity.  

  4.     They are semiquantitative. While many factors in the comparison of alternatives 

may be only approximately quantifi able, systems engineering trade - offs seek to 

quantify all possible factors to the extent practicable. In particular, the various 

MOEs are prioritized relative to one another in order that the weighting of the 
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various factors achieves the best balance from the standpoint of the system 

objectives. All assumptions must be clearly stated.  

  5.     They are thoroughly documented. The results of systems engineering trade - off 

analyses must be well documented to allow review and to provide an audit trail 

should an issue need reconsideration. The rationale behind all weighting and 

scoring should be clearly stated. The results should demonstrate logical 

reasoning.    

 A formal trade study leading to an important decision should include the steps 

described in the following paragraphs. Although presented linearly, many overlap and 

several can be, and should be, coupled together in an iterative subprocess. 

  Step 1: Defi nition of the Objectives.     To introduce the trade study, the objec-

tives must be clearly defi ned. These should include the principal requirements and 

should identify the mandatory ones that all candidates must meet. The issues that will 

be involved in selecting the preferred solution should also be included. The objectives 

should be commensurate with the phase of system development. The operational 

context and the relationships to other trade studies should be identifi ed at this time. 

Trade studies conducted early in the system development cycle are typically conducted 

at the system level and higher. Detailed component - level trade studies are conducted 

later, during engineering and implementation phases.  

  Step 2: Identifi cation of Viable Alternatives.     As stated previously, before 

embarking on a comparative evaluation, an effort should be made to defi ne several 

candidates to ensure that a potentially valuable one is not overlooked. A useful strategy 

for fi nding candidate alternatives is to consider those that maximize a particularly 

important characteristic. Such a strategy is illustrated in the section on concept selection 

in Chapter  8 , in which it is suggested to consider candidates based on the following: 

   •      the predecessor system as a baseline,  

   •      technological advances,  

   •      innovative concepts, and  

   •      candidates suggested by interested parties.    

 In selecting alternatives, no candidate should be included that does not meet the 

mandatory requirements, unless it can be modifi ed to qualify. However, keep the set of 

mandatory requirements small. Sometimes, an alternative concept that does not quite 

meet a mandatory requirement but is superior in other categories, or results in signifi cant 

cost savings, is rejected because it does not reach a certain threshold. Ensure that all 

mandatory requirements truly are mandatory — and not simply someone ’ s guess or wish. 

 The factors to consider in developing the set of alternatives are the following: 

   •      There is never a single possible solution. Complex problems can be solved in a 

variety of ways and by a variety of implementations. In our experience, we have 

never encountered a problem with one and only one solution.  
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   •      Finding the optimal solution is rarely worth the effort. In simple terms, systems 

engineering can be thought of as the art and science of fi nding the  “ good enough ”  

solution. Finding the mathematical optimum is expensive and many times near 

impossible.  

   •      Understand the discriminators among alternatives. Although the selection criteria 

are not chosen at this step (this is the subject of the next step), the systems 

engineer should have an understanding of what discriminates alternatives. Some 

discriminators are obvious and exist regardless of the type of system you are 

developing: cost, technical risk, reliability, safety, and quality. Even of some of 

these cannot be quantifi ed, yet a basic notion of how alternatives discriminate 

within these basic categories will enable the culling of alternatives to a reason-

able quantity.  

   •      Remain open to additional solutions surfacing during the trade study. This step 

is not forgotten once an initial set of alternatives has been identifi ed. Many times, 

even near the end of the formal trade study, additional options may emerge that 

hold promise. Typically, a new option arises that combines the best features of 

two or more original alternatives. Many times, identifying these alternatives is 

not possible, or at least diffi cult, early in the process.     

  Staged Process.     This step tends to occur in discrete stages. Initially, a large 

number and variety of alternatives should be considered. Brainstorming is one effective 

method of capturing a variety of alternatives, without evaluating their merits. Challenge 

participants to think  “ out of the box ”  to ensure that no option is overlooked. And while 

some ridiculous ideas are offered, this tends to stimulate thinking on other, plausible 

options. In our experience, 40 – 50 alternatives can be identifi ed initially. This set is not 

our fi nal set of alternatives, of course. It needs to be reduced. 

 As long as there are more than three to fi ve potential alternatives, it is suggested 

that the staged approach be continued, culling the set down to a manageable set. The 

process of reducing alternatives generally follows a rank - ordering process, rather than 

quantitative weighing and scoring, to weed out less desirable candidates. Options can 

be dismissed due to a variety of reasons: cost, technological feasibility, safety, manu-

facturability, operational risk, and so on. This process may also uncover criteria that 

are not useful differentiators. Follow - on stages would focus on a few candidates that 

include likely candidates. These would be subjected to a much more thorough analysis 

as described below. 

 Remember to document the choices and reasoning behind the decision. Include the 

specifi cations for the alternatives to make the trade - off as quantitative as possible. The 

result of this multistage process is a reasonable set of alternatives that can be evaluated 

formally and comprehensively.  

  Step 3: Defi nition of Selection Criteria.     The basis of differentiating between 

alternative solutions is a set of selection criteria to be chosen from and referenced to 

the requirements that defi ne the solution. Each criterion must be an essential attribute 

of the product, expressed as a MOE, related to one or more of its requirements. It is 

desirable that it be quantifi able so that its value for each alternative may be derived 
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objectively. Cost is almost always a key criterion. Reliability and maintainability are 

also usually important characteristics, but they must be quantifi ed. In the case of large 

systems, size, weight, and power requirements can be important criteria. In software 

products, ease of use and supportability are usually important differentiators. 

 Characteristics that are possessed by all candidates to a comparable degree do not 

serve to distinguish among them and hence should not be used, because their inclusion 

only tends to obscure the signifi cant discriminators. Also, two closely interdependent 

characteristics do not contribute more discrimination than can be obtained by one of 

them with appropriate weighting. The number of criteria used in a particular formal 

trade study can vary widely but usually ranges between 6 and 10. Fewer criteria may 

not appear convincing of a thorough study. More criteria tend to make the process 

unwieldy without adding value.  

  Step 4: Assignment of Weighting Factors to Selection Criteria.     In a given 

set of criteria, not all of them are equally important in determining the overall value of 

an alternative. Such differences in importance are taken into account by assigning each 

criterion a  “ weighting factor ”  that magnifi es the contribution of the most critical crite-

ria, that is, those to which the total value is the most sensitive, in comparison to the 

less critical. This procedure often turns out to be troublesome to carry out because 

many, if not most, of the criteria are incommensurable, such as cost versus risk, or 

accuracy versus weight. Also, judgments of relative criticality tend to be subjective and 

often depend on the particular scenario used for the comparison. 

 Several alternative weighting schemes are available. All of them should engage 

domain experts to help with the decisions. Perhaps the simplest is to assign weights 

from 1 to  n  (with  n  having the greatest contribution). Although subjective, the criteria 

are measured relative to each other (as opposed to an absolute measure). A disadvantage 

with using the typical 1 to  n  scheme is that people tend to group around the median, 

in this case, (1    +     n )/2. For example, using a 1 – 5 scale may really be using a 1 – 3 scale 

since many will simply not use 1 and 5 often. Other times, people tend to rate all criteria 

high, either a 4 or 5 — resulting in the equivalent of using 1 – 2. 

 Adding some objectivity requires a trade - off decision in and of itself when 

assigning weights. For instance, we could still use the 1 – 5 scale, but use a maximum 

number of weighting points; that is, the sum of all of the weights must not exceed a 

maximum value. A good starting maximum sum might be to take the sum of all average 

weights,

   MaxSum
MaxWeight MinWeight

=
−( )

,
2

n  

where

  MaxSum      is the total number of weighting points to be allocated;  

 MaxWeight      is the greatest weight allowed;  

 MinWeight      is the least weight allowed; and  

  n       is the number of criteria.    
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 Thus, this scheme holds the average weight as a constant. If the engineer (or 

stakeholders, depending on who is weighting the criteria) wants to weight a criterion 

higher, then she must reduce the weight of another criterion. Keep in mind, however, 

with any subjective weighting scheme (any scheme that uses  “ 1 to  n  ” ), you are making 

assumptions about the relative importance. A  “ 5 ”  is fi ve times as relevant as a  “ 1. ”  

These numbers are used in the calculations to compare alternatives. Make sure the 

scheme is appropriate. 

 If more mathematical accuracy is desired, the weights could be constrained to 

sum to 1.0. Thus, each weighting would be a number between 0 and 1.0. This scheme 

has some mathematical advantages that will be described later in this chapter. 

One logical advantage is that weightings are not constrained to integers. If one 

alternative is 50% more important than another, this scheme can represent that relation-

ship; integers cannot. When using spreadsheets for the calculations, be sure not to allow 

too many signifi cant fi gures! The credibility of the engineering judgment would 

fall quickly. 

 To summarize, deciding on a weighting scheme is important. Careful thinking 

about the types of relative importance of alternatives is required. Otherwise, the engi-

neer can inadvertently bias the results without knowing.  

  Step 5: Assignment of Value Ratings for Alternatives.     This step can be 

confusing to many people. You may ask, why can we not simply measure the criteria 

values for each alternative at this point and use those values in our comparison? Of 

course, we could, but it becomes hard to compare the alternatives without integrating 

the criteria in some manner. Each criterion may use different units; so how does the 

systems engineer integrate multiple criteria together to gain an understanding of an 

overall value assessment for each alternative? We cannot combine measures of area 

(square foot) with velocity (foot per second), for example. And what if a criterion is 

impossible to measure? Does that mean subjective criteria are simply not used? In fact, 

subjective criteria are used in system development frequently (though usually in com-

bination with objective criteria). Thus, we need a method to combine criterion together 

without trying to integrate units that are different. Basically, we need an additional 

step beyond measuring criterion values for each alternative. We need to assign an 

effectiveness value. 

 There are several methods of assigning a value for each criterion to each alterna-

tive. Each has its own set of advantages and attributes. And the method ultimately used 

may not be a choice for the systems engineer, depending on what data can be collected. 

Three basic options are available: (1) the subjective value method, (2) the step function 

method, and (3) the utility function method. 

 The fi rst method relies on the systems engineer ’ s subjective assessment of the 

alternative relative to each criterion. The latter two methods use actual measurements 

and translate the measurement to a value. For example, if volume is a criterion with 

cubic feet as the unit, then each alternative would be measured directly — what is the 

volume that each alternative fi lls, in cubic feet? Combinations of the three methods are 

also frequently used.  
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  Subjective Value Method.     When this method is chosen, the procedure begins 

with a judgment of the relative utility of each criterion on a scale analogous to student 

grading, say 1 – 5. Thus, 1    =    poor, 2    =    fair, 3    =    satisfactory, 4    =    good, and 5    =    superior. 

(A candidate that fails a criterion may be given a zero, or even a negative score if the 

scores are to be summed, to ensure that the candidate will be rejected despite high 

scores on other criteria.) This is the effectiveness  value  for each criterion/alternative 

pair. The  score  assigned to the contribution of a given criterion to a specifi c candidate 

is the product of the weight assigned to the criterion and the assigned effectiveness 

value of the candidate in meeting the criterion. 

 Table  9.3  depicts a generic example that could be constructed for each alter-

native, for four selection criteria (they are not described, just numbered one through 

four).   

 In this method, the value  v i   would be an integer between 1 and 5 (using our subjec-

tive effectiveness rating above), and would be assigned by the systems engineer.  

  Actual Measurement Method.     If a more objective effectiveness rating is 

desired (more than  “ poor/fair/satisfactory/good/superior ” ), and alternatives could be 

measured for each criterion, then a simple mathematical step function could be con-

structed that translates an actual measurement into an effectiveness value. The systems 

engineer still needs to defi ne this function and what value will be assigned to what 

range of measurements. Using our example of volume as a criterion, we could defi ne 

a step function that assigns an effectiveness value to certain levels of volume. Assuming 

lesser volume is better effectiveness, 

     

  TABLE 9.3.    Weighted Sum Integration of Selection Criteria 

   For each alternative  …   

   Selection criteria     Weights     Value     Score    =    weight    ×    value  

  1     w  1      v  1      w  1  v  1   

  2    w 2      v  2      w  2  v  2   

  3     w  3      v  3      w  3  v  3   

  4     w  4      v  4      w  4  v  4   

   Volume (ft 3 )     Value  

  0 – 2.0    5  

  2.01 – 3.0    4  

  3.01 – 4.0    3  

  4.01 – 5.0    2  

   > 5.0    1  
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 If an alternative fi lls 3.47   ft 3  of volume, it would be given an effectiveness value 

of 3. Keep this concept in mind as we will use something similar with our next method. 

 Table  9.4  illustrates this method. In this case, the alternative is actually measured 

for each criterion; the result is  m i  . The step function is then used to translate the mea-

surement to an effectiveness value,  v i  . The fi nal score for that criterion is the product 

of the measurement and value,  m i v i  . Once the measurements are converted to values, 

the actual measurements,  m i  , are no longer used.    

  Utility Function Method.     A refi nement of the second approach is to develop a 

utility function for each criterion, which relates its measurable performance to a number 

between zero and one. Each criterion is measured, just as in the second method. But 

instead of allocating subjective values, a utility function is used to map each measure-

ment to a value between zero and one. 

 Advantages to this method over the second are mathematical. As in using a utility 

function for weights (i.e., summing the weights to one), using utility functions places 

all criteria on an equal basis — the effectiveness of each criterion is constrained to a 

number between zero and one. Furthermore, if utility functions are used, mathematical 

properties of utility functions can be utilized. These are described in the next section. 

 Figure  9.8  illustrates some examples of utility functions. A utility function can be 

either continuous or discrete, linear or nonlinear.   

 If utility functions are used, calculating a total score for each criterion is similar 

to the second method. The score is simply the product of the weight and the utility. 

Table  9.5  depicts these relationships.    

  TABLE 9.4.    Weighted Sum of Actual Measurement 

   For each alternative  …   

   Selection criteria     Weights     Measurement     Value     Score    =    weight    ×    value  

  1     w  1      m  1      v  1      w  1  v  1   

  2     w  2      m  2      v  2      w  2  v  2   

  3     w  3      m  3      v  3      w  3  v  3   

  4     w  4      m  4      v  4      w  4  v  4   

     Figure 9.8.     Candidate utility functions.  
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  Step 6: Calculating Comparative Scores.     The conventional method for com-

bining the scores for the several alternatives is to calculate the sum of the weighted 

scores for each criterion to produce a total score. The candidate with the greatest 

summed value is judged to be the best candidate given the selection criteria and weight-

ings, provided the score of the next highest alternative is statistically lower:

   Alternative total score = + + +w v w v w v w v1 1 2 2 3 3 4 4.   

 This process is simple to implement, but lumping together the scores of the indi-

vidual criteria tends to obscure factors that may be more important than initially sup-

posed. For example, a candidate may receive a very low score on an essential MOE 

and high scores on several others. This lack of balance should not be obscured. It is 

strongly recommended that in addition to presenting the total scores, a graph of the 

criteria profi le for each candidate be also included. Figure  9.9  presents a notional 

example of a criteria profi le for three alternatives.   

 Deciding which alternative among the three is best is diffi cult since Alt - 1 scores 

very low on criterion D but very high on criteria A, B, and C. Is this signifi cant? If 

only the weighted sums are used, then Alt - 1 would be the best candidate (with a sum 

of 5    +    5    +    4    +    1    =    15). In its purest form, Alt - 1 is selected due to its greatest weighted 

sum, but as always, numbers do not tell the whole story; we need analysis.  

  TABLE 9.5.    Weighted Sum of Utility Scores 

   For each alternative  …   

   Selection criteria     Weights     Measurement     Utility     Score    =    weight    ×    utility  

  1     w  1      m  1      u  1      w  1  u  1   

  2     w  2      m  2      u  2      w  2  u  2   

  3     w  3      m  3      u  3      w  3  u  3   

  4     w  4      m  4      u  4      w  4  u  4   

     Figure 9.9.     Criteria profi le.  
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  Step 7: Analyzing the Results.     Because of the necessary reliance on qualita-

tive judgments and the incommensurable nature of many of the criteria, the results of 

a trade study should be subjected to critical scrutiny. This process is especially impor-

tant when the two or three top scores are close together and do not produce a decisive 

winner. 

 An essential step in analyzing the results is to examine the individual candidate 

profi les (scores for each criterion). Candidates that score poorly on one or more criteria 

may be less desirable than those with satisfactory scores in all categories. Cost is 

another factor that needs to be considered separately. 

 The conventional method of summing the individual scores is simple to use but 

has the unfortunate characteristic of underemphasizing low scores. A technique that 

does not suffer from this defect is to derive the composite score for a candidate by 

calculating the product (or geometric mean), rather than the sum, of the individual 

scores for the several criteria. If a candidate scores a zero on any criterion, the product 

function will also be zero, rejecting the alternative. An equivalent variant with the same 

property is to sum the logarithms of the individual scores. 

 A conventional approach to testing the robustness of trade study results is called 

 “ sensitivity analysis. ”  Sensitivity analysis tests the invariance of the results to small 

changes in the individual weighting factors and scores. Because of uncertainties in the 

assignment of weighting and scores, substantial variations (20 – 30%) should be consid-

ered. A preferred approach is to sequentially set each criterion equal to zero and to 

recalculate the study. When such variations do not change the initial top choice, the 

procedure builds confi dence in the result of the analysis. 

 An additional sensitivity test is to consider if there are important criteria that have 

not been included in the evaluation. Examples may be risk, growth potential, avail-

ability of support services, maturity of the product or of its supplier, ease of use, and 

so on. One of the alternatives may be considerably more attractive in regard to several 

of such additional issues.  

  Trade - Off Analysis Report.     The results of a formal trade study represent an 

important milestone in the development of a system or other important operation and 

will contribute to decisions that will determine the future course. As such, they have 

to be communicated to all principal participants, who may include customers, manag-

ers, technical leaders, and others closely associated with the subject at issue. Such 

communication takes two forms: presentations and written reports. 

 Both oral and written reports must contain suffi cient material to fully explain the 

method used and the rationale leading to the conclusions. They should include 

   •      a statement of the issue and requirements on the solution;  

   •      a discussion of assumptions and relationships to other components and 

subsystems;  

   •      a setting of mission or operational considerations;  

   •      a listing of relevant and critical system or subsystem requirements;  
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   •      a description of each alternative selected and the key features that led to its 

selection;  

   •      an explanation of how the evaluation criteria were selected and the rationale for 

their prioritization (weighting);  

   •      a rationale for assigning specifi c scores to each alternative for each criterion;  

   •      a summary of the resulting comparison;  

   •      a description of the sensitivity analysis and its results;  

   •      the fi nal conclusion of the analysis and an evaluation of its validity;  

   •      recommendation for adoption of the study results or further analysis; and  

   •      references to technical, quantitative material.    

 The presentation has the objective of presenting valuable information to program 

decision makers in order to make informed decisions. It requires a careful balance 

between suffi cient substance to be clear and too much detail to be confusing. To this 

end, it should consist mainly of graphical displays, for which the subject is well suited, 

with a minimum of word charts. On the other hand, it is essential that the rationale for 

selection weighting and scoring is clear, logical, and persuasive. A copy of the com-

parison spreadsheet may be useful as a handout. 

 The purpose of the written trade study report is not only to provide a historical 

record of the basis for program decisions but also, more importantly, to provide a refer-

ence for reviewing the subject if problems arise later in the program. It represents the 

documented record of the analysis and its results. Its scope affords the opportunity for 

a detailed account of the steps of the study. For example, it may contain drawings, 

functional diagrams, performance analysis results, experimental data, and other materi-

als that support the trade - off study.   

  Trade - Off Analysis Example 

 An example of a trade - off matrix is illustrated in Table  9.6 , for the case of selecting a 

software code analysis tool. The table compares the ratings of fi ve candidate commer-

cial software tools with respect to six evaluation criteria: 

   •      speed of operation, measured in minutes per run;  

   •      accuracy in terms of errors per 10 runs;  

   •      versatility in terms of number of applications addressed;  

   •      reliability, measured by program crashes per 100 runs;  

   •      user interface, in terms of ease of operation and clarity of display; and  

   •      user support, measured by response time for help and repair.      

  Scoring.     On a scale of 0 – 5, the maximum weight of 5 was assigned to accuracy —

 for obvious reasons. The next highest, 4, was assigned to speed, versatility, and reli-

ability, all of which have a direct impact on the utility of the tool. User interface and 



  TABLE 9.6.    Trade - Off Matrix Example 

   Criteria     Weight  

   Videx     PeopleSoft     CodeView     HPA     Zenco  

   Score  

   Weighted 

score     Score  

   Weighted 

score     Score  

   Weighted 

score     Score  

   Weighted 

score     Score  

   Weighted 

score  

  Speed    4    5    20    5    20    3    12    3    12    5    20  

  Accuracy    5    2    10    4    20    3    15    4    20    2    10  

  Versatility    4    5    20    5    20    3    12    5    20    5    20  

  Reliability    4    3    12    2    8    3    12    5    20    4    16  

  User interface    3    5    15    5    15    3    9    5    15    5    15  

  User support    3    2    6    1    3    3    9    4    12    5    15  

  Weighted sum            83        86        69        99        96  

  Cost            750        520        420        600        910  

  Weighted sum/cost            0.11        0.17        0.16        0.17        0.11  

2
9

3
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support were assigned a medium weight of 3 because, while they are important, they 

are not quite as critical as the others to the successful use of the tool. 

 Cost was considered separately to enable the consideration of cost/effectiveness as 

a separate evaluation factor. 

 The  subjective value method  was used to determine raw scores. The raw scores for 

each of the candidates were assigned on a scale of 5    =    superior, 4    =    good, 3    =    satisfac-

tory, 2    =    weak, 1    =    poor, and 0    =    unacceptable. The row below the criteria lists the 

summed total of the weighted scores. The cost for each candidate tool and the ratio of 

the total score to the cost are listed in the last two rows.  

  Analysis.     Comparing the summed scores in Table  9.6  shows that HPA and Zenco 

score signifi cantly higher than the others. It is worth noting, however, that CodeView 

scored  “ satisfactory ”  on all criteria and is the least expensive by a substantial margin. 

Videx, CodeView, and HPA are essentially equal in cost/effectiveness. 

 Sensitivity analysis by varying criteria weightings does not resolve the difference 

between HPA and Zenco. However, examining the profi les of the candidates ’  raw scores 

highlights the weak performance of Zenco with respect to accuracy. This, coupled with 

its very high price, would disqualify this candidate. The profi le test also highlights the 

weak reliability and poor user support of PeopleSoft, and the weak accuracy and high 

price of Videx. In contrast, HPA scores satisfactory or above in all categories and 

superior in half of them. 

 The above detailed analysis should result in a recommendation to select HPA as 

the best tool, with an option of accepting CodeView if cost is a determining factor.   

  Limitations of Numeric Comparisons 

 Any decision support method provides information to decision makers; it does not make 

the decision for them. Stated another way, trade - off analysis is a valuable aid to deci-

sion making rather than an infallible formula for success. It serves to organize a set of 

inputs in a systematical and logical manner, but is wholly dependent on the quality and 

suffi ciency of the inputs. 

 The above trade - off example illustrates the need for a careful examination of all 

of the signifi cant characteristics of a trade - off before making a fi nal decision. It is clear 

that the total candidate scores in themselves mask important information (e.g., the 

serious weaknesses in some of the candidates). It is also clear that conventional sensi-

tivity analysis does not necessarily suffi ce to resolve ties or to test the validity of the 

highest - scoring candidate. The example shows that the decision among alternatives 

should not be reduced to merely a mathematical exercise. 

 Furthermore, when, as is very often the case, the relative weightings of MOE are 

based on qualitative judgments rather than on objective measurements, there are serious 

implications produced by the automated algorithms that compute the results. One 

problem is that such methods tend to produce the impression of credibility well beyond 

the reliability of the inputs. Another is that the results are usually presented to more 

signifi cant fi gures than are warranted by the input data. Only in the case of existing 

products whose characteristics are accurately known are the inputs truly quantitative. 
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For these reasons, it is absolutely necessary to avoid blindly trusting the numbers. A 

third limitation is that the trade - off studies often fail to include the assumptions that 

went into the calculations. To alleviate the above problems, it is important to accompany 

the analysis with a written rationale for the assignment of weighting factors, rounding 

off the answer to the relevant number of signifi cant fi gures, and performing a sanity 

check on the results.  

  Decision Making 

 As was stated in the introduction to this section, all important systems engineering 

decisions should follow the basic principles of the decision - making process. When a 

decision does not require a report to management, the basic data gathering and reason-

ing should still be thorough. Thus, all decisions, formal and informal, should be con-

ducted in a systematic manner, use the key requirements to derive the decision criteria, 

defi ne relevant alternatives, and attempt to compare the candidates ’  utility as objectively 

as practicable. In all important decisions, the opinions of colleagues should be sought 

to obtain the advantage of collective judgment to resolve complex issues.   

   9.6    REVIEW OF PROBABILITY 

 The next section discusses the various evaluation methods that are available to the 

systems engineer when making decisions among a set of alternatives. All of the evalu-

ation methods involve some level of mathematics, especially probability. Therefore, it 

is necessary to present a quick review of basic probability theory before describing the 

methods. 

 Even in the classical period of history, people noticed that some events could not 

be predicted with certainty. Initial attempts at representing uncertainty were subjective 

and nonquantitative. It was not until the late Middle Ages before some quantitative 

methods were developed. Once mathematics had matured, probability theory could be 

grounded in mathematical principles. It was not long before probability was applied 

beyond games of chance and equipossible outcomes (where it started). Before long, 

probability was applied to the physical sciences (e.g., thermodynamics and quantum 

mechanics), social sciences (e.g., actuarial tables and surveying), and industrial applica-

tions (e.g., equipment failures). 

 Although modern probability theory is grounded in mathematics, there still exists 

different perspectives on what probability is and how best it should be used: 

   •      Classical.     Probability is the ratio of favorable cases to the total equipossible 

cases.  

   •      Frequentist.     Probability is the limiting value as the number of trials becomes 

infi nite of the frequency of occurrence of a random event that is well - defi ned.  

   •      Subjectivist.     Probability is an ideal rational agent ’ s degree of belief about an 

uncertain event. This perspective is also known as Bayesian.    
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     Probability Basics.     At its core, probability is a method of expressing someone ’ s 

belief or direct knowledge about the likelihood of an event occurring, or having 

occurred. It is expressed as a number between zero and one, inclusive. We use the 

term probability to always refer to uncertainty — that is, information about events 

that either have yet to occur or have occurred, but our knowledge of their occurrence 

is incomplete. In other words, probability refers only to situations that contain 

uncertainty. 

 As a common example, we can estimate the probability of rain for a certain area 

within a specifi ed time frame. Typically referred to as  “ chance, ”  we commonly hear, 

 “ The chance of rain today for your area is 70%. ”  What does that mean? It actually may 

have different meanings than is commonly interpreted, unless a precise description is 

given. However, after the day is over, and it indeed rained for a period of time that day, 

we cannot say that the probability of rain yesterday was 100%. We do not use probabil-

ity to refer to known events. 

 Probability has been described by certain axioms and properties. Some basic prop-

erties are provided below: 

  1.     The probability of an event,  A , occurring is given as a real number between 

zero and one.  

   P A( ) [ , ]∈ 0 1    

  2.     The probability of an event,  A , NOT occurring is represented by several symbols 

including  ∼ A,   ¬A, and A ′  (among others), and is expressed as  

   P A P A(~ ) ( ).= −1    

  3.     The probability of the domain of events occurring (i.e., all possible events) is 

always  

   P D( ) . .= 1 0    

  4.     The probability of the union of two events,  A  and  B , is given by the equation  

   P A B P A P B P A B( ) ( ) ( ) ( )∪ ∩= + −    

   P A B P A P B A B( ) ( ) ( ), .∪ = + if and are independent   

 This concept is depicted in Figure  9.10 .  

  5.     The probability of an event,  A , occurring given that another event,  B , has 

occurred is expressed as  P ( A | B ) and is given by the equation  

   P A B
P A B

P B
( | )

( )

( )
.=

∩
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 This concept is depicted in Figure  9.11 . In essence, the domain is reduced to 

the event  B , and the probability of the event  A  is only relevant to the domain 

of  B .  

  6.     The probability of the intersection of two events,  A  and  B , is given by the 

equation  

   P A B P A B P B( ) ( | ) ( )∩ =    

   P A B P A P B A B( ) ( ) ( ), .∩ = if and are independent         

     Figure 9.10.     Union of two events.  
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  Bayes ’  Rule.     Using the above properties and equalities, an important rule was 

derived by Thomas Bayes (1702 – 1761). Offi cially known as Bayes ’  theorem, the rule 

is commonly expressed as the equality

   P A B
P B A P A

P B
( | )

( | ) ( )

( )
.=   

 Apart from the mathematical advantages of this rule, a very practical usage of this 

equality stems from situations that require the conditional relationship among events 

to reverse. For example, suppose we desire to calculate the probability that a system 

will fail given that preventative maintenance is performed over a period of time. 

Unfortunately, we may not have measured data to directly calculate this probability. 

Suppose that we only have the following probabilities: 

   •      the probability that any system will fail (0.2),  

   •      the probability that a system has had preventative maintenance performed on it 

over its life cycle (0.4), and  

   •      the probability that a system had preventative maintenance, given it failed 

(0.02).    

 How might we calculate the probability that a system will fail, given we perform 

preventative maintenance over its life cycle? Let us call  P ( F ) as the probability that a 

system will fail over its life cycle,  P ( M ) as the probability that a system had preventa-

tive maintenance over its life cycle, and  P ( M | F ) as the probability that a system had 

preventative maintenance over its life cycle, given that it failed at some point. This is 

represented as

   P F( ) . ;= 0 2  

   P M( ) . ;= 0 3 and  

   P M F( | ) . .= 0 02   

 We can use Bayes ’  rule to calculate the probability we seek:

   P F M
P M F P F

P M
( | )

( | ) ( )

( )
;=  

   P F M( | )
( . )( . )

.
;=

0 02 0 2

0 3
and  

   P F M( | ) . .= 0 013   

 The probability that our system will fail, given we perform preventative mainte-

nance throughout its life cycle, is very low, 0.013, or almost 20 times lower than the 

probability of any system failing. 
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 Bayes ’  rule is a powerful tool for calculating conditional probabilities. But it does 

have its limitations. Bayes ’  rule assumes that we have a priori knowledge in order to 

apply it. In most cases, in engineering and science, we either do have a priori knowledge 

of the domain or can collect data to estimate it. In our example, the a priori knowledge 

was the probability that any system would fail,  P ( F ). If we did not have this knowledge, 

then we could not apply Bayes ’  rule. 

 We could collect statistical data on historical system failures to obtain an estimate 

of  P ( F ). We could also test systems to collect these data. But if the system is new, with 

new technologies, or new procedures, we may not have suffi cient historical data. And 

applying Bayes ’  rule would not be possible. 

 Now that we have reviewed the basics of probability, we are able to survey and 

discuss a sample of evaluation methods used in systems engineering today.    

   9.7    EVALUATION METHODS 

 In the section above, we described a systematic method for performing trade - off analy-

ses. We used a rather simple scheme for evaluating a set of alternatives against a set 

of weighted selection criteria. In fact, we used a method that is part of a larger math-

ematical method, known as multiattribute utility theory (MAUT). Other methods exist 

that allow systems engineers to evaluate a set of alternatives. Some use a form of 

MAUT incorporating more complex mathematics to increase accuracy or objectivity, 

while others take an entirely different approach. This section introduces the reader to 

fi ve types of methods, commonly used in decision support, starting with a discussion 

of MAUT. Others exist as well, to include linear programming, integer programming, 

design of experiments, infl uence diagrams, and Bayesian networks, to name just a few. 

 This section is simply an introduction of several, selected mathematical methods. 

References at the end of this chapter provide sources of more detail on any of these 

methods. 

   MAUT  

 This form of mathematics (which falls under operations research) is used quite exten-

sively in all types of engineering, due to its simplicity. It can easily be implemented 

via a spreadsheet. 

 As described above, the basic concept involves identifying a set of evaluation 

criteria with which to select among a set of alternative candidates. We would like to 

combine the effectiveness values for these criteria into a single metric. However, these 

criteria do not have similar meanings that allow their integration. For example, suppose 

we had three selection criteria: reliability, volume, and weight. How do we evaluate 

the three together? Moreover, we typically need to trade off one attribute for another. 

So, how much reliability is worth  x  volume and  y  weight? In addition, criteria typically 

have different units. Reliability has no units as it is a probability; volume may use cubic 

meter and weight may use kilogram. How do we combine these three criteria into a 

single measure? 
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     Figure 9.12.     AHP example.  
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 MAUT ’ s answer to this dilemma is to use the concept of utility and utility func-

tions. A utility function,  U ( m i  ), translates the selection criterion,  m i  , to a unitless 

measure of utility. This function may be subjective or objective, depending on the data 

that are available. Typically, utility is measured using a scalar between zero and one, 

but any range of values will do. 

 Combining weighted utilities can be accomplished in a number of ways. Three 

were mentioned above: weighted sum, weighted product, and sum of the logarithms of 

the weighted utility. Typically, the weighted sum is used, at least as a start. During 

sensitivity analysis, other methods of combining terms are attempted.  

  Analytical Hierarchy Process ( AHP ) 

 A widely used tool to support decisions in general, and trade studies in particular, is 

based on the AHP. AHP may be applied using an Excel spreadsheet, or a commercial 

tool, such as Expert Choice. The latter produces a variety of analyses as well as graphs 

and charts that can be used to illustrate the fi ndings in the trade study report. 

 The AHP is based on pairwise comparisons to derive both weighting factors and 

comparative scores. In deriving criterion - weighting factors, each criterion is compared 

with every other, and the results are entered into a computation that derives the relative 

factors. For informal trade - offs, the values obtained by simple prioritization are usually 

within 10% of those derived by AHP, so the use of the tool is hardly warranted in such 

cases. On the other hand, for a formal trade study, graphs and charts produced through 

the use of AHP may lend an appearance of credibility to the presentation. 

 Weighting factors are calculated using eigenvectors and matrix algebra. Thus, the 

method has a mathematical basis to it, although the pairwise comparisons are usually 

subjective, adding uncertainty to the process. The result is a weighting factor distribu-

tion among the criteria, summing to one. Figure  9.12  shows the results using the AHP 

of an example decision to select a new car. Three criteria were used: style, reliability, 

and fuel economy. After a pairwise comparison among these three criteria, AHP calcu-

lated the weights, which sum to one.   

 Once weighting factors are calculated, a second set of pairwise comparisons is 

performed. These comparisons are among the alternatives, for each criterion. Two 

results are provided during this stage of the method. First, the alternatives are evaluated 

within each criterion individually. Each alternative is provided with a criterion score 
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between zero and one, with the sum equal to one. Second, the method produces a fi nal 

score for each alternative across all criteria, between zero and one, with the sum equal 

to one. Figure  9.13  displays both sets of results — each alternative car (lettered  A  through 

 D ) is given a score for each criterion, and then the scores are combined into a single, 

fi nal score.   

 Sensitivity analysis is still needed to check results and to make any changes neces-

sary to arrive at a preferred alternative.  

  Decision Trees 

 Decisions were developed to assist decision makers in identifying alternative decision 

paths and in evaluating and comparing different courses of action. The concept utilizes 

probability theory to determine the value or utility of alternative decision paths. 

 As the name suggests, a tree is used to formulate a problem. Typically, two symbols 

are used — one for decisions and one for events that could occur and are out of the 

decision maker ’ s control. Figure  9.14  depicts a simple decision tree in which two deci-

sions and two events are included. The decisions are depicted by rectangles and are 

lettered  A  and  B ; the events are depicted by circles and are designated  E  1  and  E  2 . In 

this example, each decision has two possible choices. Events also have more than one 

outcome, with probabilities associated with each. Finally, the value of each decision 

path is shown to the right. A value can be anything that represents the quantitative 

outcome of a decision path. This includes money, production, sales, profi t, wildlife 

saved, and so on.   

     Figure 9.13.     AHP results  .  
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 In this example, an engineer is faced with an initial decision,  A . She has two 

choices,  A  1  and  A  2 . If she chooses  A  2 , then an event will occur that provides a value to 

her of either 100 or 30, with a probability of 0.1 or 0.9, respectively. If she chooses  A  2 , 

she is immediately faced with a second decision,  B , which also has two choices,  B  1  or 

 B  2 . Choosing  B  2  will result in a value of 40. Choosing  B  1  will result in an event,  E  2 , 

with two possible outcomes. These outcomes result in values of 70 and 30, with prob-

abilities of 0.3 and 0.7, respectively. Which decision path is the  “ best? ”  

 The answer to the last question is dependent on the objective(s) of the trade - off 

study. If the study objective is to maximize the expected value of the decision path, 

then we can solve the tree using a defi ned method (which we will not go through in 

detail here). Basically, an analyst or engineer would start at the values (to the right) 

and work left. First, calculate the expected value for each event. Then at each decision 

point, choose the greatest expected value. In our example, calculating the events yield 

an expected value of 37 for  E  1  and 42 for  E  2 . Thus, decision  B  is between choosing  B  1  

and gaining a value of 42, over  B  2 , with a value of 40. Decision  A  is now between two 

expected values:  A  1  yields a value of 37, while  A  2  yields an expected value of 42. Thus, 

choosing  A  2  yields the greatest expected value. 

 The decision tree solution is depicted in Figure  9.15 .   

     Figure 9.14.     Decision tree example.  
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     Figure 9.15.     Decision path.  
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 Of course, the objective may not be to maximize expected value. It may be to 

minimize expected loss, or to minimize the maximum loss, or even to maximize value. 

If the objective was the last of these three, maximum value, then choosing  A  1  would 

be preferred, since only  A  1  yields a possibility of achieving a value of 100. Choosing 

 A  2  yields a maximum possible value of only 70. Thus, the objective of the trade - off 

study determines how to solve the tree. 

 An alternative method of using decision trees is to add a utility assessment. 

Basically, instead of using values, we use utilities. The reason we may want to substitute 

utilities for actual values is to incorporate risk into the equation. Suppose, for example, 

that we have the decision tree shown in Figure  9.16 , already solved to maximize the 

expected value. However, the customer is extremely risk adverse. In other words, 

the customer would forego larger profi ts than lose large amounts of value (in this case, 

the value could be profi ts).   

 We can develop a utility curve that provides a mathematical representation of the 

customer ’ s risk tolerance. Figure  9.17  provides such a curve. The utility curve reveals 

the customer is conservative — large profi ts are great, but large losses are catastrophic. 

Small gains are good, and small losses are acceptable.   

 By substituting utilities for value (in this case, profi t), we get a new decision tree 

and a new solution. The conservative nature of the customer, refl ected by the utility 

curve, reveals a conservative decision path: A 2  – B 2 , which yield a utility of 5, which is 

a profi t of 20. Figure  9.18  provides the new decision tree.   

 Decision trees are powerful tools for decision makers to make trade - off decisions. 

They have the advantage of combining decisions that are interdependent. Although the 

methods we have discussed can also represent this case, the mathematics becomes more 

complicated. Their disadvantage includes the fact that a priori knowledge of the event 

probabilities is required. Methods can be combined — each decision in a decision tree 

can be represented as a formal trade - off study in itself.  

  Cost – Benefi t Analysis ( CBA ) 

 If time and resources permit, a more detailed type of trade - off study can be performed 

than what is described above. These types of studies are often mandated by policy and 

     Figure 9.16.     Decision tree solved.  
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are known as an AoA. In many of these situations, the straightforward trade - off study 

methodology of the last section is not suffi cient. Detailed analysis using models, and 

high - fi delity simulations, are typically required to measure the alternative systems ’  

effectiveness. In these cases, a CBA is warranted. 

 The basic concept of the CBA is to measure the effectiveness and estimate the cost 

of each alternative. These two metrics are then combined in such a way as to shed light 

on their cost - effectiveness, or put another way, their effectiveness per unit cost. More 

often than not, the effectiveness of an alternative is a multidimensional metric, and cost 

is typically divided into its major components: development, procurement, and opera-

tions (which include maintenance). In some cases (such as with nuclear reactors), 

retirement and disposal costs are included. 

     Figure 9.18.     Decision tree solved with a utility function.  
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     Figure 9.17.     Utility function.  
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 Combining cost and effectiveness results is crucial in offering decision makers the 

information they need to make informed decisions. Three basic types of cost -

 effectiveness analyses exist, each offering advantages. Figure  9.19  illustrates the three 

types for a single - dimensional analysis.   

  Equal Cost – Variable Effectiveness.     This type constrains the alternatives to a 

single cost level or a maximum cost threshold. If all of the alternatives are constrained 

to similar or the same costs, then the results offer an observable difference in 

effectiveness — enabling a simple ranking of alternatives. In essence, cost is taken out 

of the equation in comparing alternative systems. 

 The disadvantages of this CBA include the diffi culty in constraining the alterna-

tives to the same, or a maximum cost. Examples include selecting a system within a 

cost range, such as selecting a new car or purchasing equipment. Of course, one could 

argue that decisions such as these do not need detailed analysis — a straightforward 

trade - off study would be suffi cient! More detailed examples include a new strike 

weapon system for the military. A maximum cost level is typically included in a new 

system ’ s requirements, including its key performance parameter (KPP). All alternatives 

are required to be less than the cost threshold. Only effectiveness of these system 

alternatives varies.  

  Variable Cost – Equal Effectiveness.     This type constrains the alternatives to a 

single effectiveness level or a minimum effectiveness threshold. If all of the alternatives 

are constrained to similar or the same effectiveness levels, then the results offer an 

observable difference in cost, enabling a simple ranking of alternatives. In essence, 

effectiveness is taken out of the equation in comparing alternative systems. 

 The disadvantages of this CBA include the diffi culty in constraining the alterna-

tives to the same or minimum effectiveness level. Examples include selecting a power 

plant to provide a selected amount of energy. In this case, the energy level, or amount 

of electricity, would be the minimum effectiveness threshold. Options would then be 

judged largely on cost.  

     Figure 9.19.     Example of cost - effectiveness integration.  
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  Variable Cost – Variable Effectiveness.     This type constrains the alternatives to 

both a maximum cost level and a minimum effectiveness level. However, beyond the 

limits, the alternatives can be any combination of cost and effectiveness. In some cases, 

no limits are established, and the alternatives are  “ free ”  to be at any cost and effective-

ness levels. This is rare for government CBAs, but there can be advantages to this form 

of analysis. Out - of - the - box alternatives can be explored when cost and effectiveness 

constraints are removed. In some cases, a possible alternative that provides effective-

ness that is just under the minimum (say, 5% under the threshold) may cost 50% less 

than any other alternative. Would not a decision maker at least want to be informed of 

that possibility? By and large, however, minimum and maximum levels are established 

to keep the number of alternatives manageable, with the exceptional case being handled 

separately. 

 The disadvantages of this CBA type include the risk that no alternative is clearly 

 “ better ”  than the rest. Each alternative offers effectiveness that is commensurate with 

its cost. Of course, this is not necessarily bad; the decision maker then must decide 

which alternative he wants. In these cases, calculating the effectiveness per unit cost is 

an additional measure that can shed light on the decision. 

 Most systems fall into this category: a new vehicle design, a new spaceship or 

satellite, a new software system, a new energy system, and so on. 

 Of course, the examples and notional Figure  9.19  all address single - dimensional 

applications. Multidimensional costs and effectiveness increase the complexity but still 

fall into one of the three types of CBA. Two general methods for handling multidimen-

sional CBA are (1) combining effectiveness and cost into a single metric, typically by 

employing MAUT, then applying one of the three methods described; or (2) using an 

effectiveness and cost profi le vector, with mathematical constraints on the vector as 

opposed to a single scalar threshold.   

  Quality Function Deployment ( QFD ) 

 QFD originated in Japan during the 1960s as a quality improvement program. Dr. Yoji 

Akao pioneered the modern version of QFD in 1972 with his article in the journal 

 Standardization and Quality Control , followed by a book describing the process in 

1978. Ford Motor Company brought the process to America by adopting it in the 1980s. 

By the 1990s, some agencies within the U.S. government had adopted the process 

as well. 

 At the heart of the process is the QFD matrix, known as the house of quality. Figure 

 9.20  depicts the general form of this tool, which consists of six elements. More complex 

forms of the QFD house of quality are also available but are not presented here. The 

basic use of QFD is in the design process — keeping design engineers, manufacturers, 

and marketers focused on customer requirements and priorities. It has also been used 

in decision making.   

 QFD is an excellent tool for developing design objectives that satisfy key customer 

priorities. It has also been used in trade studies as a method for developing 

selection criteria and weightings. The output of the house of quality process and analy-
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sis is a technical evaluation of alternative subsystems and the relative importance and 

technical diffi culty of developing and manufacturing each component in the technical 

description. This output is at the bottom of the fi gure. This evaluation is accomplished 

by comparing prioritized customer requirements with technical component options and 

by determining the characteristics of their relationships. Generally, a subset of relation-

ship types, or strengths, is determined. In the fi gure, four distinct relationships are 

given: strong, medium, weak, and negative. Additionally, each technical component is 

compared against other components using the same relationship scale (represented by 

the triangle at the top or roof of the house). The mathematics (which are not described 

here but are based on matrix algebra) are then used to determine the technical 

evaluation. 

 QFD is typically used in conjunction with trade studies — either to generate inputs 

to a formal trade study or to conduct the trade studies as part of a design development 

effort.   

     Figure 9.20.     QFD house of quality.  
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   9.8    SUMMARY 

  Decision Making 

 Decision making is a process that contains several steps. How formal each step is 

undertaken depends on the type and complexity of the decision. We defi ne a decision 

framework that examines three types of decisions: structured, semistructured, and 

unstructured. This categorization is not discrete as the three distinct types suggest but 

represents a continuum of decisions from the typical/common/understood structured 

decisions to the atypical/intuitive/subjective unstructured decisions. 

 The decision - making process has been defi ned and understood for a long time with 

little revision. The process contains four phases: preparation and research, model design 

and evaluation, choosing among alternatives, and implementation.  

  Modeling throughout System Development 

 Modeling guides decisions in the face of complexity and uncertainty; modeling illumi-

nates the behavior and relationships of key issues. One modeling tool, simulation, is 

the modeling of dynamic behavior. Other tools, such as trade - off analysis techniques, 

model the decision process among alternative choices.  

  Modeling for Decisions 

 Models may be divided into three categories. 

  1.     Schematic Models   use diagrams to represent system elements or processes. An 

architect ’ s sketches, such as fl oor layouts, are examples of schematic models. 

System block diagrams model system organizations. They are often arranged 

in a treelike structure to represent hierarchical organizations, or they use simple 

rectangular boxes to represent physical or other elements.  

  System context diagrams show all external entities that interact with 

the system, where the system is represented as a  “ black box ”  (not showing 

internal structure). The diagram describes the system ’ s interactions with its 

environment.  

  FFBDs model functional interactions, where functional elements are rep-

resented by rectangles, and arrows represent interactions and fl ow of informa-

tion, material, or energy between elements. The names of the elements begin 

with a verb, denoting action. Examples and extensions of FFBDs include system 

life cycle models, IDEF0 diagrams, and F 2 D 2 .  

  FFPDs are similar — they form a hierarchical description of a complex 

process. They also interrelate process design with requirements and 

specifi cations.  

  The diagrams defi ned by UML and Systems Modeling Language (SysML  ) 

are examples of schematic models (see Chapter  8 ).    
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  2.     Mathematical Models   use mathematical notation to represent relationships. 

They are important aids to system development and can be useful both for 

design and systems engineering. They also perform sanity checks on results of 

complex analyses and simulations.  

  3.     Physical Models   are physical representations of systems or system elements. 

They are extensively used in system design and testing, and include test models, 

mock - ups, and prototypes.     

  Simulation 

 System simulations deal with the dynamic behavior of systems and system elements 

and are used in every phase of system development. Management of simulation effort 

is a systems engineering responsibility. 

 Computer  “ war games ”  are an example of operational simulations, which involve 

a simulated adversarial system operated by two teams of players. They are used to 

assess the operational effectiveness of tactics and system variants. 

 System effectiveness simulations assess alternative system architectures and are 

used during conceptual development to make comparative evaluations. The design of 

effectiveness simulations is itself a complex systems engineering task. Developing 

complex simulations such as these must seek a balance between fi delity and cost since 

such simulations can be systems in their own right. Scope must be controlled to obtain 

effective and timely results. 

 Physical or physics - based simulations are used in the design of high - performance 

vehicles and other dynamic systems, and they can save enormous amounts of develop-

ment time and cost. 

 Hardware - in - the - loop simulations include hardware components coupled to 

computer - driven mechanisms. They are a form of physical simulation, modeling 

dynamic operational environments. 

 Environmental simulations subject systems and system elements to stressful condi-

tions . They generate synthetic system environments that test systems ’  conformance to 

operational requirements. 

 Finally, computer - based engineering tools greatly facilitate circuit design, struc-

tural analysis, and other engineering functions.  

  Trade - Off Analysis 

 Trade - off processes are involved consciously or subconsciously in every decision we 

make (personally as well as professionally). An important issue with respect to trade 

studies is the stimulation of alternatives. Trades ultimately select the  “ best ”  course of 

action from two or more alternatives. Major decisions (which are typical within systems 

engineering) require formal trade - off analysis. 

 A trade - off, formal or informal, consists of the following steps: 

  1.     Defi ne the objective.  

  2.     Identify qualifi ed alternative candidates.  
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  3.     Defi ne selection criteria in the form of MOE.  

  4.     Assign weights to selection criteria in terms of their importance to the 

decision.  

  5.     Identify or develop a value rating for each criterion.  

  6.     Calculate or collect comparative scores for each alternative ’ s criterion; combine 

the evaluations for each alternative.  

  7.     Analyze the basis and robustness of the results.    

 Revise fi ndings if necessary and reject any alternatives that fail to meet an essential 

requirement. For example, delete MOEs that do not discriminate signifi cantly among 

alternatives. Limit the value of assignments to the least accurate quantity and examine 

the total  “ profi le ”  of scores of the individual candidates. 

 Trade - off studies and analyses are aids to decision making — they are not infallible 

formulae for success. Numerical results produce an exaggerated impression of accuracy 

and credibility. Finally, if the apparent winner is not decisively superior, further analysis 

is necessary.  

  Review of Probability 

 At its core, probability is a method of expressing someone ’ s belief or direct knowledge 

about the likelihood of an event occurring or having occurred. It is expressed as a 

number between zero and one, inclusive. We use the term probability to always refer 

to uncertainty — that is, information about events that either have yet to occur or have 

occurred, but our knowledge of their occurrence is incomplete.  

  Evaluation Methods 

 As systems engineering is confronted with complex decisions about uncertain out-

comes, it has a collection of tools and techniques that can be useful support aids. We 

present fi ve such tools: 

  1.      MAUT    uses a utility function to translate a selection criterion to a unitless utility 

value, which can then be combined with other utility functions to derive a total 

value score for each alternative.  

  2.      AHP    is a mathematically based technique that uses pairwise comparisons of 

criteria and alternatives to general weightings and combines utility scores for 

alternatives.  

  3.     Decision Trees   are graphical networks that represent decision choices. Each 

choice can be assigned a value and an uncertainty measure (in terms of prob-

abilities) to determine expected values of alternative decision paths.  

  4.      CBA    is a method typically used with modeling and simulation to calculate the 

effectiveness or a system alternative per unit cost.  
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  5.      QFD    defi nes a matrix (the house of quality) that incorporates relationships 

between customers ’  needs, system specifi cations, system components, and com-

ponent importance to overall design. The matrix can be solved to generate 

quantitative evaluations of system alternatives.      

  PROBLEMS 

    9.1     Suppose you needed to make a decision regarding which engine type to use 

in a new automobile. Using the process in Figure  9.1 , describe the fi ve steps 

in deciding on a new engine type for an advanced automobile.  

  9.2     Identify the stakeholders for the following decisions:  

  (a)     the design of a traffi c light at a new intersection,  

  (b)     the design of a new weather satellite,  

  (c)     the choice of a communications subsystem on a new mid - ocean buoy 

designed to measure ocean temperature at various depths,  

  (d)     the choice of a security subsystem for a new power plant, and  

  (e)     the design of a new enterprise management system for a major 

company.    

  9.3     Give two examples of each decision type: structured, semistructured, and 

unstructured.  

  9.4     Write an essay describing the purpose of each type of model: schematic, 

mathematical, and physical. What are their advantages?  

  9.5     Develop a context diagram for a new border security system. This system 

would be intended to protect the land border between two countries.  

  9.6     In an essay, compare and contrast the three types of functional diagrams: 

functional block diagram, functional fl ow diagram, and IDEF0. A table that 

lists the characteristics of each of the three would be a good start to this 

problem.  

  9.7     Describe three examples of problems or systems where gaming would be 

useful in their development and ultimate design.  

  9.8     Perform a trade study on choosing a new car. Identify four alternatives, 

between three and fi ve criteria, and collect the necessary information 

required.  

  9.9     To illustrate some important issues in conducting trade studies, consider the 

following simplifi ed example. The trade study involved six alternative system 

concepts. Five MOEs were used, each weighted equally. For simplicity ’ s sake, 

I have titled the MOEs  A ,  B ,  C ,  D , and  E . After assigning values to each MOE 

of the six alternatives, the results were the following: 

 Note that two stood out well above the rest, both receiving the same total 

number of points: 
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 On the basis of the above rating profi les, 

   (a)     Would you conclude that concept III to be superior, equal, or inferior to 

concept V? 

 Explain your answer.  

  (b)     If you were not entirely satisfi ed with this result, what further information 

would you try to obtain?  

  (c)     Discuss potential opportunities for further study that might lead to a 

clearer recommendation between concepts III and V.    

  9.10     Supposed that you are looking to purchase a new vacuum cleaner, and you 

have decided to conduct a trade study to assist you in your decision. Conduct 

product research and narrow down your choices to fi ve products. 

 Please conduct the following steps: 

   (a)     Identify exactly  four  selection criteria, not including purchase price or 

operating cost.  

  (b)     Assign weights to each criterion, explaining in one sentence your 

rationale.  

  (c)     Construct a utility function for each criterion — describe it verbally or 

graphically.  

  (d)     Research the actual values for your criteria for each alternative.  

  (e)     Perform the analysis, calculating a weighted sum for each alternative.  

  (f)     Calculate the effectiveness/unit cost for each alternative using purchase 

price for cost.  

  (g)     Describe your choice for purchase, along with any rationale.       
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     Part  III  is concerned with the implementation of the system concept into hardware and 

software components, their integration into a total system, and the validation of the 

systems operational capability through a process of developmental and operational 

testing. Systems engineering plays a decisive part in these activities in the form of 

analysis, oversight, and problem solving. 

 A critical application of systems engineering is to identify and reduce potential 

diffi culties inherent in the use of unproven components based on new technology, 

highly stressed system elements, and other sources of risk. This subject is discussed in 

detail in Chapter  10 , which describes typical sources of potential risk, the use of pro-

totype development, and the process of validation testing and analysis. The identifi ca-

tion, prioritization, and reduction of program risks is a vital contribution of systems 

engineering. 

 Chapter  11  introduces the special and unique features of software systems engi-

neering and highlights differences between hardware and software development. 

Common life cycle models are introduced for software - intensive systems, and the 

primary steps for developing software functionality are discussed. 

  PART III 

ENGINEERING 

DEVELOPMENT STAGE 
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 The engineering design phase is concerned with the implementation of the system 

architectural units into engineered components that are producible, reliable, maintain-

able, and can be integrated into a system meeting performance requirements. The 

systems engineering responsibilities are to oversee and guide this process, to supervise 

the confi guration management function, and to resolve problems that inevitably arise 

in this process. Chapter  12 , Engineering Design, deals with these issues. 

 The engineered system components are integrated into a fully operational system 

and are evaluated in the integration and evaluation phase of the life cycle. Thorough 

systems engineering planning is necessary to organize and execute this process effi -

ciently, with the best practical combination of realism and economy of time and 

resources. Chapter  13  describes the elements of the successful accomplishment of the 

integration and evaluation processes, which qualifi es the system for production and 

operational use.         
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    10.1    REDUCING PROGRAM RISKS 

 The advanced development phase is that part of the system development cycle in which 

the great majority of the uncertainties inherent in the selected system concept are 

resolved through analysis, simulation, development, and prototyping. The principal 

purpose of the advanced development phase is to reduce the potential risks in the 

development of a new complex system to a level where the functional design of all 

previously unproven subsystems and components has been validated. At its conclusion, 

the risks of discovering serious problems must be suffi ciently low that full - scale engi-

neering may be begun with confi dence. This phase ’ s primary objectives are to develop, 

where necessary, and validate a sound technical approach to the system design and to 

demonstrate it to those who must authorize the full - scale development of the system. 

 The general methodology of accomplishing risk reduction is discussed in Chapter 

 5  in the section on risk management. The components of risk management are described 

as risk assessment, in which risks are identifi ed and their magnitude assessed, and risk 

mitigation, in which the potential damage to the development is eliminated or reduced. 

  10 

ADVANCED DEVELOPMENT     
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This chapter is concerned with typical sources of risks encountered in the early phases 

of developments of complex systems and the methods for their mitigation. 

 To accomplish the above objectives, the degree of defi nition of the system design 

and its description must be advanced from a system functional design to a physical 

system confi guration consisting of proven components coupled with a design specifi ca-

tion, to serve as the basis for the full - scale engineering of the system. In most new 

complex systems, this calls for mature designs of the subsystems and components. All 

ambiguities in the initial system requirements must be eliminated, and often, some of 

the more optimistic design goals of the original concept of the system must be signifi -

cantly curtailed. 

 It should be noted that all new system developments do not have to go through a 

formal advanced development phase. If all major subsystems are directly derivable 

from proven predecessor or otherwise mature subsystems, and their characteristics can 

be reliably predicted, then the system development can proceed on to the engineering 

design phase. Such is the case with most new model automobiles, in which the great 

majority of components are directly related to those of previous models. In that case, 

such critical items as the airbag system or pollution control may be individually built 

and tested in parallel with the engineering of the new model. 

  Place of the Advanced Development Phase in the System 
Life Cycle 

 The advanced development phase marks the transition of the system development from 

the concept development to the engineering development stage. As seen in Figure  10.1 , 

it follows the concept defi nition phase, from which it derives the inputs of system 

functional specifi cations and a defi ned system concept. Its outputs to the engineering 

design phase are system design specifi cations and a validated development model. It 

thus converts the requirements of  what  the system is to do and a conceptual approach 

of its confi guration into a specifi cation of generally  how  the required functions are to 

     Figure 10.1.     Advanced development phase in system life cycle.  
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be implemented in hardware and software. Other required outputs, not shown in the 

fi gure, include an updated work breakdown structure (WBS), a revised systems engi-

neering management plan (SEMP) or its equivalent, and related planning documents. 

Additionally, the system architecture is updated to refl ect changes to date.   

 As noted above, this phase is especially critical in the development of complex 

systems that involve extensive use of advanced technology and/or novel unproven 

concepts. It may require several years of intensive development effort before the new 

features are suffi ciently mature and well demonstrated to warrant initiating full - scale 

engineering. In addition, it may also be necessary to develop new manufacturing pro-

cesses to support the proposed new technology. In such cases, the advanced develop-

ment phase is frequently contracted separately from the follow - on engineering. 

 At the other end of the spectrum, those systems that do not involve major techno-

logical advances over similar previous systems, and hence require only a minor amount 

of development, may not have a separately defi ned and managed advanced development 

phase. Instead, the corresponding work may be included in the front end of the engi-

neering design phase. However, the tasks embodied in the translation of the system 

functional requirements into a system implementation concept and system - level design 

specifi cations must still be accomplished prior to undertaking detailed engineering.  

  Design Materialization Status 

 Table  10.1  depicts the system materialization status during the advanced development 

phase. It is seen that the principal change in the system status is designated as 

 “ validation ”  — validation of the soundness of the selected concept, validation of its 

partitioning into components, and validation of the functional allocation to the compo-

nent and subcomponent levels. The focus of development in this phase is thus the defi -

nition of how the components will be built to implement their assigned functions. The 

manner in which these tasks are accomplished is the subject of this chapter.    

  Systems Engineering Method in Advanced Development 

 The organization of this chapter is arranged according to the four steps of the systems 

engineering method (see Chapter  4 ) followed by a brief section that discusses risk 

reduction, a methodology used throughout system development, but is especially 

important in this phase. The principal activities during this phase in each of the four 

steps in the systems engineering method, as applied to those subsystems and compo-

nents requiring development, are briefl y summarized below and are illustrated in 

Figure  10.2 .   

  Requirements Analysis.     Typical activities include 

   •      analyzing the system functional specifi cations with regard to both their deriva-

tion from operational and performance requirements and the validity of their 

translation into subsystem and component functional requirements and  

   •      identifying components requiring development.     



  TABLE 10.1.    Status of System Materialization at the Advanced Development Phase 

   Phase      Concept development      Engineering development  

  Level    Needs analysis    Concept 

exploration  

  Concept defi nition    Advanced 

development  

  Engineering 

design  

  Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, 

and synthesize 

concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne 

requirements and 

ensure feasibility  

  Defi ne functional 

and physical 

architecture  

  Validate 

subsystems  

  Integrate and test  

  Component            Allocate functions 

to components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy  

3
2
0
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  Functional Analysis and Design.     Typical activities include 

   •      analyzing the allocation of functions to components and subcomponents, and 

identifying analogous functional elements in other systems; and  

   •      performing analyses and simulations to resolve outstanding performance issues.     

     Figure 10.2.     Advanced development phase fl ow diagram.  

Analyze
System

Functional
Specs

Concept Definition
Phase

Requirements

Identify
Immature

Components

Candidate Components 

Analysis

Identify
Functional

Performance
Issues

Resolve
Issues
Design

Software

for Development

Functional 

Analysis and

Design

Incompatibilities

Functional
Designs

Design
Issues

Identify
Unproven

Technology

Design and
Build Critical
Components

Prototype

Development

Excessive

Test Issues

Development

Engineering
Design
Phase

Requirements

Build 
Test Setup

Conduct
Tests

Evaluate
Test 

Results

Previous Test Models

Validated Design

Testing

System
Requirements

Design
Deficiencies

Critical
Components



322 ADVANCED DEVELOPMENT

  Prototype Development.     Typical activities include 

   •      identifying issues of physical implementation involving unproven technology 

and determining the level of analysis, development, and test required to reduce 

risks to acceptable values;  

   •      designing critical software programs;  

   •      designing, developing, and building prototypes of critical components and sub-

systems; and  

   •      correcting defi ciencies fed back from test and evaluation.     

  Development Testing.     Typical activities include 

   •      creating test plans and criteria for evaluating critical elements, and developing, 

purchasing, and reserving special test equipment and facilities; and  

   •      conducting tests of critical components, evaluating results, and feeding back 

design defi ciencies or excessively stringent requirements as necessary for cor-

rection, leading to a mature, validated system design.       

   10.2    REQUIREMENTS ANALYSIS 

 As stated above, the initial effort in the advanced development phase is mainly devoted 

to two areas: 

  1.     reexamining the validity of the system functional specifi cations developed in 

or following the concept defi nition phase and  

  2.     identifying those components of the selected system concept that are not suf-

fi ciently mature for full - scale engineering (i.e., have not been proven in existing 

systems), and which therefore should be further developed during the advanced 

development phase.    

  System Functional Specifi cations 

 In defi ning the preferred system concept in the concept defi nition phase, the system 

functions were allocated to the principal subsystems, and these were further broken 

down into functional elements. These functional design concepts were then embodied 

in the system specifi cations document prepared as an input to the advanced develop-

ment phase. 

 The analysis of these specifi cations should take into account the circumstances 

under which the concept defi nition phase took place. If, as is frequently the case, it was 

performed in the space of a few months and with limited funding, and especially if it 

was done in a competitive environment, then the results should be viewed as prelimi-

nary and subject to modifi cation, and must be analyzed very thoroughly. Prior design 

decisions must be viewed with some skepticism until they are examined and demon-
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strated to be well founded. This does not mean that the selected technical approaches 

should necessarily be changed, only that they should not be accepted without under-

standing their derivation.  

  Requirements Derivation 

 The key to understanding the signifi cance and sensitivity of system functional specifi ca-

tions is to trace them back to their derivation from the system performance require-

ments. Such an understanding is essential to making the design decisions required for 

the physical implementation of the functions in hardware and software. 

 The system life cycle support scenario should be revisited to identify functions 

necessary to sustain the different circumstances to which the system will be exposed 

during its preoperational as well as its operational life. In addition, the requirements 

for compatibility; reliability, maintainability, availability (RMA); and environmental 

susceptibility should be examined, as well as those for operational performance. At this 

time, specifi cations concerning human – system interface issues and safety are incorpo-

rated into subsystem and component specifi cations. 

 As stated previously, some requirements are frequently unstated, and others are 

immeasurable. For example, affordability and system growth potential are frequently 

not explicitly addressed. User interface requirements are often qualitative and are not 

susceptible to measurement. The relation of each of the above issues to the functional 

design needs to be understood and documented.  

  Relation to Operational Requirements 

 If some system specifi cations cannot be readily met, it is necessary to gain an even 

deeper understanding of their validity by tracing them back one step further, namely, 

to their relationship to the execution of the system ’ s mission, that is, to the system 

operational requirements. This relationship is often lost in the early phases of system 

defi nition and needs to be recaptured to provide the systems engineer with an informed 

rationale for dealing with problems that invariably arise during development. 

 One of the means for gaining such understanding, as well as for obtaining an 

appreciation of operational factors beyond those formally stated, is to develop contacts 

with prospective system users. Such contacts are not always available, but when they 

are, they can prove to be extremely valuable. Organizations that specialize in opera-

tional analyses and those that conduct system fi eld evaluations are also valuable sources 

in many system areas. Involving the user as a team member during development should 

be considered where appropriate.  

  Relation to Predecessor Systems 

 If the new system has a predecessor that fulfi lls a similar function, as is usually the 

case, it is important to fully understand the areas of similarity and difference, and how 

and why the new requirements differ from the old. This includes the understanding of 
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the perceived defi ciencies of the predecessor system and how the new system is 

intended to eliminate them. 

 The degree of benefi t to be gained from this comparison, of course, depends on 

the accessibility of key persons and records from the predecessor system development. 

However, at a minimum, the comparison should provide added confi dence in the chosen 

approach or suggest alternatives to be explored. Where key participants in the develop-

ment are accessible, their advice with regard to potential problems and lessons learned 

can be invaluable.  

  Identifi cation of Components Requiring Development 

 The principal purpose of the advanced development phase has been stated as ensuring 

that all components of the system have been demonstrated to be ready for full - scale 

engineering. This means that component design is sound and capable of being imple-

mented without signifi cant risk of functional or physical defi ciencies that would require 

different approaches to satisfy the requirements. 

 The above statement implies that all system components must be brought up to a 

level of maturity where all signifi cant design issues have been resolved. The process 

that raises the level of maturity is called  “ development, ”  and therefore the advanced 

development phase consists largely of development effort focused on those system 

components that have not previously been brought to the necessary level of proven 

performance. This, in turn, means that all components that are determined to be insuf-

fi ciently mature for full - scale engineering would be further developed and their design 

validated. Those components that are deemed to be suffi ciently mature that they do not 

require development still need to be validated through analysis or test prior to their 

acceptance for engineering. 

  Assessment of Component Maturity.     The determination of whether or not a 

given component is suffi ciently proven for full - scale engineering can only be made by 

comparing the component with analogous components that have been successfully 

engineered and produced. If no proven analogous component is similar to the new one, 

the comparison may often be made in two parts, functional and physical, by asking the 

following questions: 

  1.     Are there proven components that have very similar functionality and perfor-

mance characteristics? Where signifi cant differences exist, are they within the 

demonstrated performance boundaries of this type of component?  

  2.     Are there existing components whose physical construction uses similar materi-

als and architectures? Are the projected stresses, tolerances, safety, and lifetime 

characteristics within the demonstrated limits of similar existing components?    

 If both of these questions are answered in the affi rmative, a case may be made that 

development is not necessary. However, an additional critical question is whether or 

not the functional interactions and physical interfaces of the components with their 

operational environment are understood well enough not to require development and 
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experimentation. The answer to this question depends on whether the differences 

between the proposed component design and those previously proven are reliably pre-

dictable from known engineering relationships, or whether the relationship is too 

remote or complicated to be predicted with assurance. A common example of the latter 

case has to do with human – machine interfaces, which are seldom well enough under-

stood to obviate the need for experimental verifi cation.  

  Risk Analysis.     After identifying those system elements that require further devel-

opment, the next step is to determine the appropriate nature and extent of such develop-

ment. This is where systems engineering knowledge and judgment are especially 

important because these decisions involve a careful balance between the cost of a 

thorough development effort on one hand and the risks inherent in insuffi cient develop-

ment and consequent residual uncertainties on the other. Reference to the application 

of risk assessment to system development is contained in the paragraphs below, and 

this methodology is enlarged upon in a separate section at the end of this chapter.  

  Development Planning.     It is clear from the above discussion that the planning 

of the advanced development phase should be based on a component - by - component 

assessment of the maturity of the proposed system design to defi ne (1) the specifi c 

character of the unproven design features and (2) the type of analysis, development, 

and test activities required to resolve the residual issues. In most new systems, the 

uncertainties are concentrated in a limited number of critical areas, so that the develop-

ment effort can be focused on those components defi cient in design maturity.  

  Risk Reduction Budget.     The result of the above analysis of risks and defi nition 

of appropriate risk reduction efforts should be incorporated into a detailed development 

plan to guide the analysis, development, and testing effort of the advanced development 

phase. In doing so, an essential step is to revise carefully the relative allocation of effort 

to the individual components or subsystems that are planned for development. Do the 

relative allocations correspond to an appropriate balance from the standpoint of a 

potential gain to investment ratio? Is each allocation adequate to acquire the needed 

data? If, as is often the case, the available resources do not cover all the proposed effort, 

it is usually better to replace some of the most risky components with more conserva-

tive choices than to fail to validate their use in the system. Thus, the risk reduction/

development plan should contain a risk mitigation budget broken down into the signifi -

cant individual development efforts.  

  Example: Unproven Components.     Table  10.2  illustrates the above consider-

ations by listing several representative examples of hypothetical unproven components 

that use new functional or physical design approaches or new production methods. The 

fi rst column indicates the relative maturity of the functional, physical, and production 

characteristics of the design approach. The second column is a bar graph representing 

the maturity of these three characteristics (names abbreviated) by the relative heights 

of the three vertical bars. The third column shows the type of development that is 

usually appropriate to resolving the resulting issues of each of the new designs. The 
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fourth column lists the particular characteristic to be validated. These examples are, of 

course, very much simplifi ed compared to the factors that must be considered for an 

actual complex system, but they indicate the component - by - component analysis and 

planning that is associated with the advanced development process. The table illustrates 

that components in a new system may have a variety of different types of unproven 

features, each requiring a development approach tailored to its specifi c character. The 

decisions as to the choice of development strategy are the primary responsibility of 

systems engineering. The subsequent three sections describe the application of each of 

the remaining steps of the systems engineering method to the resolution of the above 

design issues.    

  Example: Natural Gas - Powered Automobile.     The development of an auto-

mobile that uses natural gas as a fuel in place of gasoline offers an example of some 

of the principles discussed above. This development has the dual objective of conform-

ing to future strict auto pollution standards while at the same time preserving all the 

desirable characteristics of conventional modern automobiles, including affordability. 

Thus, it seeks to minimize the required changes in standard auto design by limiting 

them to the fuel system and its immediate interfaces. Other changes to the body, engine, 

and other components are kept to a minimum. 

  TABLE 10.2.    Development of New Components 

   Design approach     Maturity     Development     Validation  

  New function 

 Proven physical medium 

and production method    

    

1

0
Func Phys Prod

1

0
Func Phys Prod

1

0
Func Phys Prod

1

0
Func Phys Prod

  

  Design, build, and test 

rapid prototype  

  Functional 

performance  

  New implementation 

 Proven function and 

production method  

  Design, build, and test 

rapid development 

model  

  Engineering 

design  

  New production method 

 Proven function and 

implementation  

  Perform critical 

experiments on the 

production method  

  Production 

method  

  Extended function 

 Proven component  

  Design and run 

functional simulation  

  Functional 

performance  
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 The changes to the fuel subsystem, however, are considerable and also impact the 

design of the rear section of the body. Storing a suffi cient amount of natural gas to 

obtain the desired travel distance between refueling, and also keeping the volume small 

enough to have adequate trunk space, requires gas storage pressures higher than those 

used in conventional storage cylinders. To minimize weight, fi ber - wrapped composites 

are used in place of steel. To maximize safety, the container design consists of a cluster 

of cylinders, anchored to the frame so as to withstand severe rear - end impacts. 

 This example falls in the third category in Table  10.2 . The physical construction 

of the fuel container is a major departure from conventional containers in its physical 

design and materials. Furthermore, the determination of its safety from explosion in 

case of a collision is not derivable from engineering data but must be established by 

experiment. The fuel control and refi ll provisions will also be new designs. Thus, a 

substantial development effort will have to be undertaken to validate the design and 

probably will involve comparative tests of several design variations. 

 The components that interface directly with the fuel subsystem, such as the engine 

and the rear body structure, especially the trunk and suspension, will also need to be 

tested in conjunction with the fuel container. Components not associated with this 

system element will not require development but must be examined to ensure that 

signifi cant interactions are not overlooked. 

 The above example illustrates a common case of a new system that differs from 

its predecessor in a major way, but one that is restricted to a few components.    

   10.3    FUNCTIONAL ANALYSIS AND DESIGN 

 Because of the rapid advance of modern technology, a new system that is to be devel-

oped to replace an obsolescent current system will inevitably have performance require-

ments well beyond those of its predecessor. Moreover, in order for the new system to 

have a long, useful operational life in the face of further projected increases in the 

capability of competitive or opposing systems, the requirements will specify that its 

performance more than meets current needs. While the concept defi nition phase should 

have eliminated excessively risky approaches, these requirements will necessitate the 

application of advanced development and therefore development of some advanced 

system elements. 

 The increase in system performance frequently requires a signifi cant increase in 

component complexity, as in many of today ’ s automated computer - based systems. The 

means for achieving such projected extensions are often not reliably predictable by 

analytical or simulation methods and have to be determined experimentally. System 

elements involving dynamic behavior with feedback may be analyzed through simula-

tion but usually require the construction and testing of experimental models to establish 

a fi rm basis for engineering. 

 A common instance where system functions may require development is where the 

user needs and the environment are not well understood, as is often the case with deci-

sion support and other complex automated systems. In such instances, the only sound 

approach (especially if user interfaces are concerned) is to build prototype components 
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corresponding to the critical system elements and to test their suitability by 

experimentation. 

 In summary, three types of components that frequently require development are 

  1.     components required to have extended functional performance beyond previ-

ously demonstrated limits,  

  2.     components required to perform highly complex functions, and  

  3.     components whose interactions with their environment are imperfectly 

understood.    

 Each of these is described in greater detail in the succeeding paragraphs. 

  Extended Functional Performance 

 The identifi cation of system elements (components or subsystems) whose required 

performance may exceed demonstrated limits can be illustrated by reference to the set 

of functional system building blocks discussed in Chapter  3 . Table  3.2  lists 23 basic 

functional elements grouped into four classes: signal, data, material, and energy. Each 

functional element has a number of key characteristics that defi ne its functional capabil-

ity. Most of these characteristics have limits established by the physical properties of 

their implementing technologies and often by the basic interdependence between func-

tions (e.g., accuracy vs. speed). A functional requirement for a new system that poses 

demands on a system element beyond its previously demonstrated limits signals the 

potential need for either a component development effort or a reallocation of the 

requirement. 

 To illustrate this type of comparison, Table  10.3  lists the functional elements along 

with some of the characteristics that most often turn out to be critical in new systems. 

The table represents the application of the systems engineering approach to the analysis 

of system functional requirements and the identifi cation of development objectives.   

 In using system building blocks to identify functional elements requiring develop-

ment, the fi rst step is to relate each system element to its functionally equivalent generic 

element and then to compare the required performance with that of corresponding 

physical components whose capabilities have been demonstrated as a part of existing 

systems. 

 Given an approximate correspondence, the next step is to see whether the differ-

ences between the required and existing elements can be compared quantitatively by 

established engineering relations so as to make a convincing case that the new element 

can be engineered with confi dence, on the basis of proven performance and straight-

forward engineering practice. When such a case cannot be made, it is necessary either 

to reduce the specifi ed performance requirement to a level where it can be so adapted 

or to plan a development and test program to obtain the necessary engineering data. 

 The process of identifying elements requiring development is often part of the 

process of  “ risk identifi cation ”  or  “ risk assessment. ”  Risk assessment considers the 

likely effect of a given decision, in this case, the choice of a particular technical 
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  TABLE 10.3.    Selected Critical Characteristics of System Functional Elements 

   Functional elements     Critical characteristics  

  Input signal    Fidelity and speed  

  Transmit signal    High - power, complex waveform  

  Transduce signal    Gain, beam pattern, and multielement  

  Receive signal    Sensitivity and dynamic range  

  Process signal    Capacity, accuracy, and speed  

  Output signal    Resolution and versatility  

  Input data    Fidelity and speed  

  Process data    Versatility and speed  

  Control data    User adaptability and versatility  

  Control processing    Architecture, logic, and complexity  

  Store data    Capacity and access speed  

  Output data    Versatility  

  Display data    Resolution  

  Support material    Strength and versatility  

  Store material    Capacity and input/output capability  

  React material    Capacity and controls  

  Form material    Capacity, accuracy, and speed  

  Join material    Capacity, accuracy, and speed  

  Control position    Capacity, accuracy, and speed  

  Generate thrust    Power, effi ciency, and safety  

  Generate torque    Power, effi ciency, and control  

  Generate electricity    Power, effi ciency, and control  

  Control temperature    Capacity and range  

  Control motion    Capacity, accuracy, and response time  

approach, on the success or failure of the overall objective. Thus, the utilization of 

unproven system components involves a degree of risk depending on the likelihood 

that the system will fail to meet its design goals. If the risk is considerable, as when 

the element is both unproven and critical to the overall system operation, then the 

element must be developed to a point where its performance may be demonstrated and 

validated (i.e., low risk). The subject of risk management is discussed in Chapter  5  and 

is encountered in all phases of the system life cycle.  

  Highly Complex Components 

 Consideration of the functional building blocks as system architectural components is 

also useful in identifying highly complex functions. Equally important is to identify 

complex interfaces and interactions because elements of even moderate complexity 

may interact with one another in complicated ways. Interfaces are especially important 

because complexities internal to elements are likely to be detected and resolved during 

design, while problems resulting from interface complexities may not reveal themselves 

until integration testing, at which time changes required to make them operate properly 
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are likely to be very costly in time and effort. The existence of excessively complicated 

interfaces is a sign of inappropriate system partitioning and is the particular responsibil-

ity of the systems engineer to discover and to resolve. This concern is particularly 

important when several organizations are involved in the system development. 

  Specialized Software.     Certain customized software components are inherently 

complex and hence are sources of program risk, and should be treated accordingly. 

Three types of software in particular are especially diffi cult to analyze without proto-

typing. These are (1) real - time software, (2) distributed processing, and (3) graphical 

user interface software. In real - time systems, the control of timing can be especially 

complicated, as when system interrupts occur at unpredictable times and with different 

priorities for servicing. In distributed software systems, the designer gives up a large 

degree of control over the location of system data and processing among networked 

data processors and memories. This makes the course of system operation exceedingly 

diffi cult to analyze. In graphical user interfaces, the requirements are often incomplete 

and subject to change. Further, the very fl exibility that makes such systems useful is 

itself an invitation to complexity. Thus, the above special software modes, which have 

made computer systems so powerful and ubiquitous in today ’ s information systems, 

inherently create complexities that must be resolved by highly disciplined design, 

extensive experimentation, and rigorous verifi cation, including formal design reviews, 

code  “ walk - throughs, ”  and integration tests. Chapter  11  is devoted to the subject of 

software engineering and its special challenges.  

  Dynamic System Elements.     Another form of complexity that usually requires 

development and testing is inherent in closed - loop dynamic systems such as those that 

are used for automated controls (e.g., autopilots). While these lend themselves to digital 

or analog simulation, they often involve coupling and secondary effects (e.g., fl exure 

of the mounting of an inertial component) that cannot be readily separated from their 

physical implementation. Thus, the great majority of such system elements must be 

built and tested to ensure that problems of overall system stability are well in hand.   

  Ill - Defi ned System Environments 

 Poorly defi ned system environments and imprecise external interface requirements are 

also design issues that must be carefully examined and clarifi ed. For example, a radar 

system designed to detect targets in the presence of clutter due to weather or surface 

returns is impossible to characterize in a well - defi ned fashion due to the great diversity 

of possible operational and environmental conditions and the limited understanding of 

the physics of radar scattering by clutter and of anomalous radar propagation. Similarly, 

space environments are diffi cult to understand and characterize due to the limited data 

available from past missions. The expense of placing systems into the space environ-

ment means testing and operational data are not as prevalent as atmospheric data. 

 The operation of user - interactive systems involves the human – machine interface, 

which is also inherently diffi cult to defi ne. The parts of the system that display informa-

tion to the user and that accept and respond to user inputs are often relatively uncom-
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plicated physically but are very intricate logically. This complexity operates at several 

levels, sometimes beginning with the top - level objective of the system, as in the con-

ceptual design of a medical information system where the needs of the physicians, 

nurses, clerical staff, and others that interact with the system tend to be not only ill -

 defi ned but also highly variable and subject to argument. At lower levels, the form of 

the display, the format of information access (menu, commands, speech, etc.), portabil-

ity, and means of data entry may all constitute system design issues that are not likely 

to be settled without an extensive testing of alternatives. 

 The design of automobile air bags represents another type of component with a 

complex environmental interface that has required extensive development. In this case, 

the conditions for actuating the air bag had to be explored very thoroughly to establish 

a range between excessively frequent (and traumatic) false alarms and assured response 

to real collisions. The shape, size, and speed of infl ation and subsequent defl ation of 

the air bag had to provide maximum safety for the individual with minimum chance 

for injury by the force of infl ation of the bag. This example is representative of system –

 environment interactions that can only be accurately defi ned experimentally. It also 

illustrates a system component whose operational and functional performance cannot 

be separated from its physical implementation.  

  Functional Design 

 Beyond identifying system elements requiring further development, the functional 

design and integration of the total system and all its functional elements must be com-

pleted during this phase. This is a necessary step to developing the system design 

specifi cations, which are a prerequisite to the start of the engineering design phase. 

  Functional and Physical Interfaces.     Prior to initiating full - scale engineering, 

it is especially important to ensure that the overall system functional partitioning is 

sound and will not require signifi cant alteration in the engineering design phase. Before 

a major commitment is made to the detailed design of individual components, the 

proposed functional allocations to subsystems and components and their interactions 

must be carefully examined to ensure that a maximum degree of functional indepen-

dence and minimum interface complexity has been achieved. This is necessary so that 

each component can be designed, built, tested, and assembled with other components 

without signifi cant fi tting or adjustment, not to mention adaptation. This examination 

must take into account the availability of test points at the interfaces for fault isolation 

and maintenance, environmental provisions, opportunity for future growth with 

minimum change to associated components, and all the other systems engineering 

characteristics of a good product. The system functional and physical architectures are 

emphasized in this phase because the design should be suffi ciently advanced to make 

such judgments meaningful but is not as yet so committed as to make modifi cations 

unduly time - consuming and expensive.  

  Software Interfaces.     It was noted above that many new software components 

are too complex to be validated only through analysis and need therefore to be designed 
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and tested in this phase. Further, many hardware elements are controlled by or interface 

with software. Hence, as a general rule, it can be assumed that many, if not most, 

software system elements will have to be fi rst designed and subsequently implemented 

in this phase of the system development.   

  Use of Simulations 

 While many of the above problem areas require resolution by prototyping actual hard-

ware and software, a number of others can be effectively explored by simulation. Some 

examples are the following: 

   •      Dynamic Elements.     Except for very high frequency dynamic effects, most 

system dynamics can be simulated with adequate fi delity. The six - degree - of -

 freedom dynamics of an aircraft or missile can be explored in great detail.  

   •      Human – Machine Interfaces.     User interfaces are control elements of most 

complex systems. Their proper design requires the active participation of poten-

tial users in the design of this system element. Such participation can best be 

obtained by providing a simulation of the interface early in the development and 

by enhancing it as experience accumulates.  

   •      Operational Scenarios.     Operational systems are usually exposed to a variety of 

scenarios that impact the system in different ways. A simulation with variable 

input conditions is valuable in modeling these different effects well before 

system prototypes or fi eld tests can be conducted.    

  Example: Aircraft Design.     Illustrating a use of simulation, assume, as in the 

example in Chapter  7 , that an aircraft company is considering the development of a 

new medium - range commercial airplane. The two basic options being considered are 

to power it with either turbo - prop or jet engines. While the gross characteristics of these 

options are known, the overall performance of the aircraft with various types and 

numbers of engines is not suffi ciently well - known to make a choice. It is clearly not 

practical to build a prototype aircraft to obtain the necessary data. However, in this 

case, simulation is a practical and appropriate method for this purpose because exten-

sive engineering data on aircraft performance under various conditions are available. 

 Since the primary issue at this stage is the type and number of engines, it is only 

necessary to have a fi rst - order, two - dimensional (i.e., vertical and longitudinal) model 

of the aerodynamic and fl ight dynamics of the airplane. The performance of various 

engines can be represented by expressions of thrust as a function of fuel fl ow, speed, 

altitude, and so on, known from their measured performance data. From this simple 

model, basic performance in terms of such variables as take - off distance, climb rate, 

and maximum cruise speed can be determined for various design parameters such as 

gross weight, number of engines, and payload. Assuming that this process led to a 

recommended confi guration, extension of this simple simulation to higher orders of 

detail could provide the necessary data for advanced analysis. Thus, such simulations 

can save cost and can build on the experience gained at each stage of effort. 
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 To validate or amplify the results of the above type of analysis of a prototype 

engine, it could be operated in an engine test facility where the airfl ow and atmospheric 

conditions are varied over the range of predicted fl ight conditions. The measured engine 

thrust and fuel consumption can then be factored into the overall performance analysis. 

A still more realistic test would be to mount a prototype engine in a special pod under 

the wing of a  “ mother ”  aircraft, which would fl y at various speeds and altitudes. In this 

case, the mother aircraft itself can be thought of as a development facility.    

   10.4    PROTOTYPE DEVELOPMENT AS A RISK MITIGATION 
TECHNIQUE 

 In the previous chapters, we have discussed the principles and techniques to identify, 

manage, and ultimately mitigate risks. Signifi cant problem areas have been identifi ed 

at this point, and individual strategies are in full implementation by the advanced 

development stage. However, in the development of a new complex system, the deci-

sions as to which components and subsystems require further development and testing 

prior to full - scale engineering, and issues regarding their physical implementation, are 

frequently more diffi cult and critical than those regarding their functional design and 

performance. One of the reasons is that many physical characteristics (e.g., fatigue 

cracking) do not easily lend themselves to analysis or simulation, but rather require the 

component to be designed, built, and tested to reveal potential problems. The para-

graphs below describe general approaches to identifying and resolving problems in 

areas that do not lend themselves to mitigation through these methods. 

 During early risk management activities, the systems engineering approach to the 

identifi cation of potential problem areas is to take a skeptical attitude, especially to 

design proposals unsupported by relevant precedent or hard engineering data. The 

systems engineer asks: 

  1.     What things could go wrong?  

  2.     How will they fi rst manifest themselves?  

  3.     What could then be done to make them right?    

  Potential Problem Areas 

 In looking for potential problems, it is essential to examine the entire system life 

cycle — engineering, production, storage, operational use, and operational maintenance. 

Special attention must be devoted to manufacturing processes, the  “ ilities ”  (RMA  ), 

logistic support, and the operational environment. The approach is that of risk assess-

ment: what risks may be involved at each phase and where are the unknowns such as 

areas in which prior experience is scanty? For each potential risk, the likelihood and 

impact of a failure in that area must be determined. 

 As in the case of functional characteristics, the most likely areas where proposed 

component implementation may be signifi cantly different from previous experience can 

be classifi ed in four categories: 
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  1.     components requiring unusually stringent physical performance, such as reli-

ability, endurance, safety, or extremely tight manufacturing tolerances;  

  2.     components utilizing new materials or new manufacturing methods;  

  3.     components subjected to extreme or ill - defi ned environmental conditions; and  

  4.     component applications involving unusual or complex interfaces.    

 Examples of each of these categories are discussed below. 

  Unusually High Performance.     Most new systems are designed to provide 

performance well in excess of that of their predecessors. When such systems are at the 

same time more complex, and also demand greater reliability and operating life, it is 

almost always necessary to verify the validity of the design approach experimentally. 

 Radars used in air traffi c control systems are examples of complex devices requir-

ing extremely high reliability. These radars are frequently unmanned and must operate 

without interruption for weeks between maintenance periods. The combination of per-

formance, complexity, and reliability requires special attention to detailed design and 

extensive validation testing. All key components of these radars require development 

and testing prior to full - scale engineering. 

 Modern aircraft are another example of systems required to perform under high 

stress with very high reliability. Many aircraft have operating lifetimes of 30 – 40 years, 

with only a limited renewal of the more highly stressed structural and power compo-

nents. The development and testing of aircraft components is notably extensive. 

 The components used in manned space fl ight must be designed with special con-

sideration for safety as well as reliability. The launch and reentry environment places 

enormous stresses on all parts of the space vehicle and on the crew. Special procedures 

are employed to conceive of all possible accidents that might occur and to ensure that 

causes of such eventualities are eliminated or otherwise dealt with, for example, by 

extensive design redundancy. 

 More familiar systems do not have quite such dramatic requirements, but many 

require remarkable performance. The engines of some of today ’ s automobiles do not 

require maintenance until 50,000 – 100,000 miles. Such reliable performance has 

required years of development and testing to achieve.  

  Special Materials and Processes.     Advances in technology and new processes 

and manufacturing techniques continue to produce new materials with remarkable prop-

erties. In many instances, it is these new materials and processes that have made possible 

the advances in component performance discussed in the previous paragraphs. 

 Table  10.4  lists some examples of the many special materials developed in recent 

years that have made a major impact on the performance of the components in which 

they are used. In each new application, however, these components have undergone 

extensive testing to validate their intended function and freedom from unwanted side 

effects. Titanium has proven extremely effective in many applications but has been 

found to be more diffi cult to machine than the steel or aluminum that it replaced. 

Sintered metals can be formed easily into complex forms but do not have the strength 
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of the conventionally formed metal. Some of the new adhesives are remarkably strong 

but do not retain their strength at elevated temperatures. These examples show that the 

use of a special material in the critical elements of a component needs to be carefully 

examined and, in most cases, tested in a realistic environment before acceptance.   

 The same considerations apply to the use of new processes in the manufacture of 

a component. The introduction of extensive automation of production processes has 

generally increased precision and reproducibility and has decreased production costs. 

But it has also introduced greater complexity, with its risks of unexpected shutdowns, 

and has usually required years of development and testing of the new equipment. 

 Unfortunately, it is very diffi cult to appraise the time and cost of introducing a new 

manufacturing process in advance of its development and full - scale testing. For this 

reason, a new system that counts on the availability of projected new production pro-

cesses must ensure that adequate time and resources are invested in process develop-

ment and engineering, or it must have a fallback plan that does not rely on the 

availability of the process.  

  Extreme Environmental Conditions.     The proper operation of every system 

component depends on its ability to satisfactorily operate within its environment, 

including such transport, storage, and other conditions as it may encounter during its 

life cycle. This includes the usual factors of shock, vibration, extreme temperatures, 

and humidity, and, in special instances, radiation, vacuum, corrosive fl uids, and other 

potentially damaging environments. 

 The susceptibility of components to unfavorable environments can often be inferred 

from their basic constitution. For example, cathode ray tube components (e.g., displays) 

tend to be inherently fragile. Some thermomechanical components, such as jet engines, 

operate at very high internal temperatures in very cold external environments (7 miles 

above the surface of the earth), placing great stress on their internal parts. The endur-

ance of such components as the turbines in aircraft engines is always a potential 

problem. 

  TABLE 10.4.    Some Examples of Special Materials 

   Material     Characteristics     Typical applications  

  Titanium    High strength - to - weight ratio, 

corrosion resistant  

  Lightweight structures  

  Tungsten    Temperature resistant, hard to work    Power sources  

  Sintered metal    Easy to mold    Complex shapes  

  Glues    High strength    Composite structures  

  Gallium arsenate    Temperature resistant    Reliable microelectronics  

  Glass fi bers    Optical transmission    Fiber optic cable  

  Ceramic components    Strength, temperature resistant    Pressure vessels  

  Plastics    Ease of forming, low weight and 

low cost  

  Containers  
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 Military equipment has to be designed to operate over a large temperature range 

and to withstand rough handling in the fi eld. The recent trend in using standard com-

mercial components (e.g., computers) in military systems, and the relaxation of military 

specifi cations (milspecs) to save cost, has created potential problems that require special 

attention. Fortunately, such commercial equipment is usually inherently reliable and 

designed to be rugged enough to withstand shipping and handling by inexperienced 

operators. However, each component needs to be carefully examined to ensure that it 

will in fact survive in the projected environment. These circumstances place an even 

greater responsibility on systems engineering than when milspecs were rigidly enforced.  

  Component Interfaces.     Perhaps the most neglected aspect of system design is 

component interfaces. Since these are seldom identifi ed as critical elements, and since 

they fall between the domains of individual design specialists, often only systems 

engineering feels responsible for their adequacy. And the press of more urgent problems 

frequently crowds out the necessary effort to ensure proper interface management. 

Aggravating this problem is the fact that physical interfaces require detailed design, 

and frequently construction, of both components to ensure their compatibility — a costly 

process. 

 To overcome the above obstacles, special measures are required, such as establish-

ment of interface control groups, interface documentation and standards, interface 

design reviews, and other similar means, for revealing defi ciencies in time to avoid 

later mismatches. Such measures also provide a sound basis for the continuation of this 

activity in the engineering design phase.   

  Component Design 

 The previous sections described a number of criteria that may be used to identify com-

ponents that require development effort to bring their design to a level of maturity 

suffi cient to qualify them for full - scale engineering. Such development effort involves 

some combination of analysis, simulation, design, and testing according to the specifi c 

nature of the proposed design approach and its departure from proven practice. 

 The extent of development required may, naturally, vary widely. At one extreme, 

the design may be taken only to the stage where its adequacy can be verifi ed by inspec-

tion and analysis. This may be done for components whose departure from their pre-

decessors is mainly related to size and fi t rather than to performance or producibility. 

At the other extreme, components for which the validation of new materials, or the 

verifi cation of stringent production tolerances (or other characteristics of the production 

article), are required may need to be designed, constructed, and extensively tested. Here 

again, the decisions involve systems engineering trade - offs between program risk, 

technical performance, cost, and schedule. 

  Concurrent Engineering.     It is evident from the above that such issues as RMA, 

safety, and producibility must be very seriously considered at this stage in the program 

rather than deferred until the engineering design phase. Failure to do so runs a high 

risk of major design modifi cations in the subsequent phase, with their likely impact on 
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other components and on the system as a whole. This is an area where many system 

developments encounter serious diffi culties and resultant overruns in cost and 

schedule. 

 To minimize the risks inherent in such circumstances, it has been recognized that 

specialty engineers who are particularly versed in production, maintenance, logistics, 

safety, and other end - item considerations should be brought into the advanced develop-

ment process to inject their experience into decisions on design and early validation. 

This practice is referred to as  “ concurrent engineering ”  and is part of the function of 

integrated product teams (IPTs), which are used in the acquisition of defense systems. 

The phrase concurrent engineering should not be confused with the term  “ concurrency, ”  

which is often applied to the practice of carrying out two phases of the system 

life cycle, such as advanced development and engineering design, concurrently (i.e., at 

the same time) rather than sequentially. The effective integration of specialty engineers 

into the development process is not easy and must be orchestrated by systems 

engineers. 

 The problem in making concurrent engineering effective is that design specialists, 

as the name implies, have a deep understanding of their own disciplines but typically 

have only a limited knowledge of other disciplines, and hence lack a common vocabu-

lary (and frequently interest) for communicating with specialists in other disciplines. 

Systems engineers, who by defi nition should have such a common knowledge, vocabu-

lary, and interest, must serve as coordinators, interpreters, and, where necessary, as 

mentors. It is essential that the specialty engineers be led to acquire a suffi cient level 

of understanding of the specifi c design requirements to render their opinions relevant 

and meaningful. It is equally essential that the component design specialists become 

suffi ciently knowledgeable in the issues and methods involved in designing components 

that will result in reliable, producible, and otherwise excellent products. Without such 

mutual understanding, the concurrent engineering process can be wholly ineffectual. It 

is noteworthy that such mutual learning builds up the effectiveness of those involved 

with each successive system development, and hence the profi ciency of the engineering 

organization as a whole.  

  Software Components.     Software components should be addressed similarly. 

Each component is assessed for complexity, and a risk strategy is developed and imple-

mented. Particularly complex components, especially those controlling system hard-

ware elements, may necessitate the design and test of many system software components 

in prototype form during this phase of system development. This generally constitutes 

an effort of major proportions and is of critical importance to the system effort as a 

whole. 

 To support software design, it is necessary to have an assortment of support tools 

(computer - aided software engineering [CASE]), as well as a set of development and 

documentation standards. The existence of such facilities and established quality prac-

tices are the best guarantee for successful software system development. The Software 

Engineering Institute (SEI), operated by Carnegie Mellon University, is the current 

source of standards and evaluation criteria to rate the degree of software engineering 

maturity of an organization. As noted previously, Chapter  11  is entirely devoted to the 
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special systems engineering problems associated with software - embedded and software -

 intensive systems.   

  Design Testing 

 The process of component design is iterative, just as we have seen the system develop-

ment process to be. This means that testing must be an integral part of design rather 

than just a step at the end to make sure it came out properly. This is especially true in 

the design of components with new functionality or those utilizing unproven imple-

mentation approaches. The appropriate process in such cases is  “ build a little, test a 

little, ”  providing design feedback at every step of the way. This may not sound very 

orderly but is often the fastest and most economical procedure. The objective is to vali-

date the large majority of design elements at lower levels, where the results are more 

easily determined in less complex test confi gurations and errors corrected at the earliest 

time. 

 As stated earlier, the degree of completion to which the design of a given compo-

nent is carried during this phase is very much a function of what is required to ensure 

a sound basis for its subsequent engineering. Thus, if a component ’ s design issues are 

largely functional, they may be resolved by comparative simulation to establish which 

will best fulfi ll the required functional needs of the system. However, if the design 

issues relate to physical characteristics, then the component usually needs to be designed 

and built in prototype form, which can then be tested in a physical environment simu-

lating operational conditions. The design of such tests and of the corresponding test 

equipment will be discussed in the next section.  

  Rapid Prototyping 

 This is a term describing the process of expedited design and building of a test model 

of a component, a subsystem, and sometimes the total system to enable it to be tested 

at an early stage in a realistic environment. This process is employed most often when 

the user requirements cannot be suffi ciently well defi ned without experimenting with 

an operating model of the system. This is particularly true of decision support systems, 

dynamic control systems, and those operating in unusual environments. Rapid prototyp-

ing can be thought of as a case of carrying development to a full - scale demonstration 

stage prior to committing the design to production engineering. 

 When engaging in rapid prototyping, the term  “ rapid ”  means that adherence to 

strict quality standards, normally a full part of system development, is suspended. The 

goal is to produce a prototype that features selected functionality of the system for 

demonstration as quickly as possible. The article that is produced is not intended to 

survive — once requirements are developed and validated using the prototype, the article 

itself should be discarded. At times, the prototype article is used as a basis for another 

iteration of rapid prototyping. The risk in this process is that eventually, the pressure 

to use the prototype article as the foundation for the production article becomes too 

great. Unfortunately, because the prototype was developed without the strict quality 

standards, it is not appropriate for production. 
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 Examples abound where rapid prototyping was engaged and a prototype 

article was developed without quality controls (e.g., development standards, docu-

mentation, and testing). Unfortunately, the customer deems the article suffi cient 

and requires the developer to provide the article for production (after all, the customer 

paid for the prototype — he owns it!). Once production starts, the fl aws in this process 

quickly become evident, and the system fails its development and operational 

testing. In the end, development and production cause slippages in schedule and over-

runs in cost. 

 Rapid prototyping was pioneered in software development and will be discussed 

further in the next chapter.  

  Development Facilities 

 A development facility or environmental test facility, as referred to here, is a physical 

site dedicated to simulating a particular environmental condition of a system or a part 

thereof in a realistic and quantitative manner. It is usually a fi xed installation capable 

of use on a variety of physical and virtual models (or actual system components with 

embedded software) representing different systems or components. It can be used for 

either development or validation testing, depending on the maturity of the system/

component subjected to the environment. Such facilities contain a set of instrumentation 

to control the simulated environment and to measure its effects on the system. They 

may be used in conjunction with a system simulation and usually have computing 

equipment to analyze and display the outputs. 

 A development facility usually represents a substantial investment; it is often 

enclosed in a dedicated building and/or requires a signifi cant amount of real estate. A 

wind tunnel is an example of a facility used to obtain aerodynamic data. It contains a 

very substantial amount of equipment test chambers, air compressors, precise force 

measuring devices, and data reduction computers and plotters. Often the cost to build 

and operate a wind tunnel is so high that support is shared by a number of commercial 

and government users. When a wind tunnel is used to obtain data on a number of can-

didate aerodynamic bodies or control surfaces, it can be thought of as a development 

tool; when it is used to supply a source of high - speed airfl ow to check out a full - scale 

airplane control surface, it serves as a validation test facility. 

 Automobile manufacturers use test tracks to help design and test new model cars 

and to prove - in the fi nal prototypes before production begins. Test tracks can simulate 

various wear conditions under accelerated aging, for example, by driving heavily 

loaded cars at high speed or over rough pavement. Other development facilities use 

electromagnetic radiation to test various electronic devices, for example, to measure 

antenna patterns, to test receiver sensitivity, to check for radio frequency (RF) interfer-

ence, and so on. 

 Most development facilities use some form of models and simulations when con-

ducting tests. It is common for some part of the system under test to be the actual article 

while other parts are simulated. An RF anechoic chamber that tests a tracking device 

in the presence of various RF interference signals is an example. In this case, the fl ight 
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of the vehicle can also be simulated by a computer, which solves the equations of 

motion using appropriate aerodynamic and dynamic models of the system. 

 The engineering design of hardware components that are subjected to external 

stresses, high temperatures, and vacuum conditions in space requires the extensive use 

of stress testing, environmental chambers, and other special test facilities. The same 

facilities are also used in the development of these components. Thus, shake and shock 

facilities, vacuum chambers, hot and cold chambers, and many other engineering test 

facilities are as necessary in the development as in the engineering phases. The main 

difference is that development testing usually requires the acquisition of more perfor-

mance data and more extensive analyses of the results.   

   10.5    DEVELOPMENT TESTING 

 The determination that all of the design issues identifi ed during the advanced develop-

ment phase have been satisfactorily resolved requires a systematic program of analysis, 

simulation, and test of not only the particular components and subsystem directly 

involved but also of their interfaces and interactions with other parts of the system. It 

also requires explicit consideration of the operational environment and its effect on 

system performance. 

 Development testing should not be confused with what is traditionally referred to 

as  “ developmental testing ”  and  “ operational testing. ”  Developmental testing typically 

involves the engineered system within a series of test environments, under controlled 

scenarios. This type of testing is conducted by the developer. Operational testing is also 

on the engineered system, but involves the customer, and is conducted under more 

realistic operational conditions, including environments and scenarios.  “ Development 

testing, ”  on the other hand, is on subsystems and components and is conducted by the 

developer. 

 A well - planned development test program generally requires the following 

steps: 

  1.     development of a test plan, test procedures, and test analysis plan;  

  2.     development or acquisition of test equipment and special test facilities;  

  3.     conduct of demonstration and validation tests, including software validation;  

  4.     analysis and evaluation of test results; and  

  5.     correction of design defi ciencies.    

 These steps are discussed briefl y below. 

  Test and Test Analysis Plans 

 An essential but sometimes insuffi ciently emphasized step in the advanced development 

process is the development of a well - designed test plan for determining whether or not 

the system design is suffi ciently mature to proceed to the engineering design phase. 
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  Test Planning Methodology.     The overall testing approach must be designed 

to uncover potential design defi ciencies and acquire suffi cient test data to identify 

sources of these defi ciencies and provide a sound basis for their elimination. This is 

very different from an approach that presupposes success and performs a minimal test 

with scanty data acquisition. Whereas the latter costs less initially, its inadequacies often 

cause design faults to be overlooked, which later result in program interruptions and 

delays, and in a far greater ultimate cost. The following steps provide a useful 

checklist: 

  1.     Determine the objectives of the test program. The primary purpose, of course, 

is to test the subsystems and system against a selected set of operational and 

performance requirements. However, other objectives might be introduced as 

well: (1) increasing customer confi dence in particular aspects of the system, 

(2) uncovering potential design fl aws in high - risk areas, (3) demonstrating the 

selected capability publicly, and (4) demonstrating interfaces with selected 

external entities.  

  2.     Review the operational and top - level requirements. Determine what features 

and parameters must be evaluated. Key performance parameters identifi ed 

early in the development process must be included in this set. However, testing 

every requirement usually is not possible.  

  3.     Determine the conditions under which these items will be tested. Consider 

upper and lower limits and tolerances.  

  4.     Review the process leading to the selection of components requiring develop-

ment and of the design issues involved in the selection.  

  5.     Review development test results and the degree of resolution of design 

issues.  

  6.     Identify all interfaces and interactions between the selected components and 

other parts of the system as well as the environment.  

  7.     On the basis of the above factors, defi ne the appropriate test confi gurations 

that will provide the proper system context for testing the components in 

question.  

  8.     Identify the test inputs necessary to stimulate the components and the outputs 

that measure system response.  

  9.     Defi ne requirements for test equipment and facilities to support the above 

measurements.  

  10.     Determine the costs and manpower requirements to conduct the tests.  

  11.     Develop test schedules for preparation, conduct, and analysis of the tests.  

  12.     Prepare detailed test plans.    

 The importance of any one task and the effort required to execute it will depend 

on the particular system element under test, the resources available to conduct the tests, 

and the associated risk. In any case, the systems engineer must be familiar with each 

of these items and must be prepared to make decisions that may have a major impact 
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on the success of the overall development program. It is evident that the above tasks 

involve a close collaboration between systems engineers and test engineers.  

  Test Prioritization.     The test planning process is often conducted under consider-

able stress because of time and cost constraints. These restrictions call for a strict 

prioritization of the test schedule and test equipment to allocate the available time and 

resources in the most effi cient manner. Such prioritization should be a particular respon-

sibility of systems engineering because it requires a careful balancing of a wide range 

of risks based on a comparative judgment of possible outcomes in terms of perfor-

mance, schedule, and cost. 

 The above considerations are especially pertinent to defi ning test confi gurations. 

The ideal confi guration would place all components in the context of the total system 

in its operating environment. However, such a confi guration would require a prototype 

of the entire system and of its full environment, which is usually too costly in terms 

of resources. The minimum context would be an individual component with simple 

simulations of all its interfacing elements. A more practical middle ground is incorpo-

rating the component under test in a prototype subsystem, within a simulation of 

the remainder of the system and the relevant part of the operating environment. The 

choice of a specifi c test confi guration in each case requires a complex balancing of 

risks, costs, and contingency plans requiring the highest level of systems engineering 

judgment.  

  Test Analysis Planning.     The planning of how the test results are to be analyzed 

is just as important as how the tests are to be conducted. The following steps should 

be taken: 

  1.     Determine what data must be collected.  

  2.     Consider the methods by which these data can be obtained — for example, 

special laboratory tests, simulations, subsystem tests, or full - scale system tests.  

  3.     Defi ne how all data will be processed, analyzed, and presented.    

 Detailed analysis plans are especially important where a test is measuring the dynamic 

performance of a system, thus producing a data stream that must be analyzed in terms 

of dynamic system inputs. In such cases, where a large volume of data is produced, the 

analysis must be performed with the aid of a computer program that is either designed 

for the purpose or is a customized version of an existing program. The analysis plan 

must, therefore, specify exactly what analysis software will be needed and when. 

 The test analysis plan should also specify that the test confi guration has the neces-

sary test points and auxiliary sensors that will yield measurements of the accuracy 

needed for the analysis. It also must contain the test scenarios that will drive the system 

during the tests. Whereas the details of the test analysis plan are usually written by test 

engineers and analysts, the defi nition of the test and test analysis requirements is the 

task of systems engineering. The loop needs to be closed between the defi nition of test 

confi guration, test scenarios, test analysis, and criteria for design adequacy. These 
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relationships require the expertise of systems engineers who must ensure that the test 

produces the data needed for analysis. 

 Special consideration is needed when testing human – machine interactions and 

interfaces. The evaluation of such interactions usually does not lend itself to quantitative 

measurement and analysis, but must nevertheless be provided for in the test and analysis 

plan. This is an area where the active participation of specialists is essential. All the 

above plans should be defi ned during the early to middle phases of the advanced devel-

opment phase to provide the time to develop or otherwise to acquire the necessary 

supporting equipment and analysis software before formal testing is scheduled to begin.  

  Test and Evaluation Master Plan ( TEMP ).     In government projects, the devel-

opment of a comprehensive test plan is a formal requirement. Designated the TEMP, 

the plan is to be prepared fi rst as a part of concept defi nition and then expanded and 

detailed at each phase of the development. The TEMP is not so much a  test  plan as a 

 test management  plan. Thus, it does not spell out  how  the system is to be evaluated or 

the procedures to be used but is directed to  what  is planned to be done and  when . The 

typical contents of a system TEMP are the following: 

   •       System Introduction   

  Mission description  

  Operational environment  

  Measures of effectiveness and suitability  

  System description  

  Critical technical parameters    

   •       Integrated Test Program Summary  

   Test program schedule  

  Management  

  Participating organizations    

   •       Developmental Test and Evaluation  

   Method of approach  

  Confi guration description  

  Test objectives  

  Events and scenarios    

   •       Operational Test and Evaluation  

   Purpose  

  Confi guration description  

  Test objectives  

  Events and scenarios    

   •       Test and Evaluation Resource Summary  

   Test articles  

  Test sites  

  Test instrumentation  
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  Test environment and sites  

  Test support operations  

  Computer simulations and models  

  Special requirements        

  Special Test Equipment and Test Facilities 

 It has been noted in previous chapters that the simulation of the system operational 

environment for purposes of system test and evaluation can be a task of major propor-

tions, sometimes approaching the magnitude of the system design and engineering 

effort itself. In the advanced development phase, this aspect of system development 

is not only very important but frequently is also very expensive. Thus, the judgment 

as to the degree of realism and precision that is required of such simulation is an 

important systems engineering function. This and related subjects are also discussed in 

Chapter  13 . 

 The magnitude of the effort to provide suitable test equipment and facilities natu-

rally depends on the nature of the system and on whether the developer has had prior 

experience with similar systems. Thus, the development of a new spacecraft requires 

a host of equipment and facilities ranging from vacuum chambers and shake and vibra-

tion facilities that simulate the space and launch environment, and space communica-

tion facilities to send commands and receive data from the spacecraft, to clean rooms 

that prevent contamination during the building and testing of the spacecraft. Some of 

these facilities were described in the subsection on development facilities. Having a 

full complement of such equipment and facilities enables an established spacecraft 

developer to limit the cost and time for developing the necessary support for a new 

development. However, even if the bulk of such equipment may be available from 

previous system developments, every new program inevitably calls for different equip-

ment combinations and confi gurations. The rate of technological change creates both 

new demands and new opportunities, and this is no less true in the area of system testing 

than in the area of system design. 

  Creating the Test Environment.     The design and construction of the test envi-

ronment to validate a major component or subsystem requires equipment for the real-

istic generation of all the input functions and the measurement of the resulting outputs. 

It also requires the prediction and generation of a set of outputs representing what the 

system element should produce if it operates according to its requirements. The latter, 

in turn, requires the existence of mathematical or physical models designed to convert 

the test inputs into predicted system outputs for comparison with test results. 

 The above operations are represented by a functional fl ow diagram (Figure  10.3 ) 

that is an expansion of the test and evaluation block of Figure  8.2 . The four functions 

on the left side of the fi gure show how the design of the test environment creates a 

predictive test model and a test scenario, which in turn activates a test stimulus genera-

tor. The test stimuli activate the system element (component or subsystem) under test 

and are also used by the mathematical or physical model of the system element to create 
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a corresponding set of predicted outputs for comparison with the actual test outputs. 

The functions on the right side of Figure  8.3  represent the analysis and evaluation of 

test results, as further described below in a subsequent subsection bearing that name.    

  Test Software.     Test support and analysis software requires special attention in 

virtually all developments and has to be tailored very specifi cally to the system at hand. 

Establishing its objectives and detailed requirements is a major systems engineering 

task. Where user (human — machine) interfaces are also involved, the task becomes 

even more complex. Such support software is usually best developed by rapid prototyp-

ing, with strong inputs from the test engineers and analysts who will be responsible for 

installing and using it. For this reason, and because of the inherent diffi culty in predict-

ing software development time, it is important to begin this task as early as possible.  

  Test Equipment Validation.     Like any system element, test equipment for 

system design validation itself requires test and validation to ensure that it is suffi ciently 

accurate and reliable to serve as a measure of system performance. This process requires 

careful analysis and consideration because it often stresses the limits of equipment 

measurement capabilities. This task is often underestimated and is not allocated with 

suffi cient time and effort.   

  Demonstration and Validation Testing 

 The actual conduct of tests to demonstrate and validate the system design is often the 

most critical period in the development of a new system. The primary effort during 

advanced development has been seen to be concerned with the resolution of identifi ed 

design issues — in other words, eliminating the known unknowns or  “ unks. ”  And, with 

     Figure 10.3.     Test and evaluation process of a system element.  
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luck, it will succeed in resolving the great majority of the initial uncertainties in the 

system design. But every new complex system inevitably also encounters unanticipated 

 “ unknown unknowns, ”  or  “ unk - unks. ”  Thus, it is also a major objective of the advanced 

development phase to discover such features before committing to full - scale engineer-

ing. To this end, the validation tests are designed to subject the system to a broad enough 

range of conditions to reveal hitherto undiscovered design defi ciencies. 

  Dealing with Test Failures.     It can be seen that the above process is at once 

necessary and at the same time poses program risks. When a test uncovers an unk - unk, 

it usually manifests itself in the failure of the system element to function as expected. 

In some cases, the failure may be spectacular and publicly visible, as in testing a new 

aircraft or guided missile. Because the failure is unexpected, there is a period of time 

before a proposed solution can be implemented. During this time, the impact of the 

failure on system development may be serious. Because the decision to proceed with 

the engineering design phase hinges on the successful validation of the system design, 

a hiatus in the program may be in prospect, and if no adequate solution is found rela-

tively quickly, the entire program may be jeopardized. 

 It is when eventualities such as the above occur that systems engineers are most 

indispensable. They are the only members of the program staff who are equipped to 

bring together the breadth of knowledge and experience necessary to guide the effort 

to fi nd solutions to unexpected system problems. Quite often, a defi ciency found in the 

design of a given component cannot be overcome by a local fi x but can be compensated 

for by a change in a related part of the system. In other cases, analysis may show the 

fault to be in the test equipment or procedure rather than in the system itself. In some 

instances, analysis can demonstrate that the particular system performance requirement 

that was at issue cannot be fully justifi ed on the basis of operational need. In these and 

other cases, the expedited search and identifi cation of the most desirable solution to the 

problem is led by systems engineering, as is the task of persuading program manage-

ment, the customer, and other decision makers that the recommended solution is worthy 

of their confi dence and support.  

  Testing and the System Life Cycle.     It has been noted in previous chapters 

that a new system not only has to perform in its operational environment but also must 

be designed to survive conditions to which it will be exposed throughout its life, such 

as shipping, storage, installation, and maintenance. These conditions are often insuf-

fi ciently addressed, especially in the early stages of system design, only to unexpectedly 

cause problems at a stage when their correction is extremely costly. For these reasons, 

it is essential that the design validation tests include an explicit imposition of all condi-

tions that the system is expected to encounter.  

  Testing of Design Modifi cations.     As noted above, the test programs must 

anticipate that unexpected results that reveal design defi ciencies may occur. Accordingly, 

it must provide scheduled time and resources to validate design changes that correct 

such defi ciencies. Too often, test schedules are made on the assumption of 100% 

success, with little or no provision for contingencies. The frequent occurrence of time 
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and cost overruns in the development of new complex systems is in considerable part 

due to such unrealistic test planning.   

  Analysis and Evaluation of Test Results 

 The operations involved in evaluating test results are illustrated in the right half of 

Figure  10.3 . The outputs from the component or subsystem under test are either 

recorded for subsequent analysis or compared in real time with the predicted values 

from the simulated element model. The results must then be analyzed to disclose all 

signifi cant discrepancies, to identify their source, and to assess whether or not remedial 

measures are called for, as derived with reference to a set of evaluation criteria. These 

criteria should be developed prior to the test on the basis of careful interpretation of 

system requirements and understanding of the critical design features of the system 

element. 

 It should be noted that one of the fi rst places to look for as a cause of a test dis-

crepancy is a defect in the test equipment or procedure. This is largely because there 

is usually less time and effort available to validate the test setup than has gone into the 

design of the system element under test. 

 The successful use of test results to either confi rm the design approach or to iden-

tify specifi c design defi ciencies is wholly dependent on the acquisition of high - quality 

data and its correct interpretation in terms of system requirements. An essential factor 

in effective test analysis is a versatile and experienced analysis team composed of 

analysts, test engineers, and systems engineers. The function of the analysts is to apply 

analytical tools and techniques to convert the raw test results to a measurement of the 

performance of specifi c system elements. The test engineers contribute their intimate 

knowledge of the test conditions, sensors, and other test variables to the systems analy-

sis. The systems engineers apply the above knowledge to the interpretation of the tests 

in terms of system performance as related to requirements. 

 Tracing defi ciencies in performance to the stated system requirements is especially 

important when remedying the defi ciencies may require signifi cant redesign. In such 

cases, the requirements must be critically reviewed to determine whether or not they 

may be relaxed without signifi cant loss in system effectiveness, in preference to expend-

ing the time and cost required to effect the system changes required to meet them fully. 

In view of the potential impact of any defi ciencies uncovered in the test analysis 

process, it is essential that the analysis be accomplished quickly and its results used to 

infl uence further testing, as well as to initiate such further design investigations as may 

be called for.  

  Evaluation of User Interfaces 

 A special problem in the validation of system design is posed by the interface and 

interaction between the user/controller and the system. This is especially true in deci-

sion support systems where the system response is critically dependent on the rapid 

and accurate interpretation of complex information inputs by a human operator aided 

by displays driven by computer - based logic. The air traffi c controller function is a prime 
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example of such an interface. However, even in much less information - intensive 

systems, the trends toward increased automation have made user interfaces more inter-

active and hence more complex. Even the basic interface between a personal computer 

and the user, while becoming more intuitive and powerful, has nevertheless become 

correspondingly more complicated and challenging to the nonexpert user. 

 The test and evaluation of user interface controls and displays poses diffi cult prob-

lems because interfaces are inherently incapable of objective quantitative measurement, 

except in their most primitive features (e.g., display luminosity). Large variations in 

the experience, visual and logical skills, and personal likes and dislikes of individual 

users also color their reactions to a given situation. Moreover, it is essential that 

members of the design team do not serve as sole subjects for the assessment of user 

interfaces. Rather, to the maximum extent possible, operators of similar systems should 

be employed for this purpose. 

 Nonetheless, the importance of an effective user interface to the performance of 

most systems makes it essential to plan and conduct the most substantive evaluation of 

this systems feature as may be practicable. This is especially relevant because of the 

inherent diffi culty of establishing user requirements at the outset of the development. 

Thus, there are bound to be surprises when users are fi rst confronted with the task of 

operating the system. 

 User interfaces are areas where rapid prototyping can be particularly effective. 

Before the full system or even the full human – computer interface is designed, proto-

types can be developed and demonstrated with potential users to solicit early feedback 

on preferences of information representation. 

 The evaluation of the user interface may be considered in four parts: 

  1.     ease of learning to use the operational controls,  

  2.     clarity of visual situational displays,  

  3.     usefulness of information content to system operation, and  

  4.     online user assistance.    

 Of these, the fi rst and last are not explicitly parts of the basic system operation, but 

their effectiveness can play a decisive role in the user ’ s performance. It is, therefore, 

important that suffi cient attention be paid to user training and basic user help to ensure 

that these factors do not obscure the evaluation of the basic system design features. 

 Even more than most other design characteristics, user interfaces should be tested 

in anticipation of discovering and having to fi x inadequacies. To this end, wherever 

practicable, users should be presented with design alternatives to choose from rather 

than having to register their level of satisfaction with a single design option. This may 

usually be accomplished in software rather than in hardware. 

 As in the case of other operational characteristics, such as reliability, producibility, 

and so on, the design related to the human – machine interface should have involved 

human factor experts as well as potential users. For the developer to obtain the partici-

pation of the latter, it may be necessary to obtain customer assistance. In these and 

other cases, customer participation in the development process can materially enhance 

the utility and acceptance of the fi nal product. 
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 The evaluation of the effectiveness of the user interface is not subject to quantita-

tive engineering methods and extends the systems engineer into the fi eld of human –

 machine interaction. The experts (usually psychologists) in certain aspects of such 

interactions are mostly specialists (e.g., in visual responses) and must be integrated into 

the evaluation process along with other specialists. It is a systems engineering respon-

sibility to plan, lead, and interpret the tests and their analysis in terms of what system 

design changes might best make the user most effective. To do so, the systems engineer 

must learn enough of the basics of human – machine interactions to exercise the neces-

sary technical leadership and system - level decision making.  

  Correction of Design Defi ciencies 

 All of the previous discussions have centered on discovering potential defi ciencies in 

the system design that may not have been eliminated in the development and test 

process. If the development has been generally successful, the defi ciencies that remain 

will prove to be relatively few, but how to eliminate them may not always be obvious 

nor the effort required trivial. Further, there is almost always little time and few 

resources available at this point in the program to carry out a deliberate program of 

redesign and retest. Thus, as noted earlier, there must be a highly expedited and priori-

tized effort to quickly bring the system design to a point where full - scale engineering 

can begin with a relatively high expectation of success. The planning and leadership 

of such an effort is a particularly critical systems engineering responsibility.   

   10.6    RISK REDUCTION 

 As described in Chapter  5 , a major fraction of risk reduction during the system life 

cycle should be accomplished during the advanced development phase. To reiterate, 

the principal purpose of the advanced development phase is to reduce the potential risks 

in the development of a new complex system to a level where the functional design of 

all previously unproven subsystems and components has been validated. 

 The typical sources of development risks are described in the sections on Functional 

Analysis and Design and Prototype Development. Most of them are seen to arise 

because of a lack of adequate knowledge about new technologies, devices, or processes 

that are intended to be key elements in the system design. Thus, the process of risk 

reduction in this phase amounts to the acquisition of additional knowledge through 

analysis, simulation, or implementation and testing. 

 We have advocated two primary methods to reduce risk within this phase: proto-

type development (both hardware and software) and development testing. While both 

methods could certainly be implemented earlier (and should be in many cases), it is 

not until the advanced development phase that suffi cient information on the system 

architecture (both functional and physical) are available to properly implement proto-

typing and advanced testing. 

 Other risk reduction strategies are available to both the program manager and 

the systems engineer. From the program manager ’ s perspective, several acquisition 
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strategies are available to reduce risk, depending on the level of resources: (1) parallel 

development efforts developing alternative technologies or processes in case a primary 

technology or process fails to mature, (2) alternative integration strategies to emphasize 

alternative interface options, and (3) one of the incremental development strategies to 

engineer functional increments while technologies mature. 

 The systems engineer also has several strategies available beyond those of proto-

typing and testing: (1) increase use of modeling and simulation over physical prototyp-

ing to ensure an increased understanding of the environment and system processes and 

(2) interface development and testing before engineered components are available to 

reduce interface risks. Regardless of strategies ultimately employed to reduce risks, the 

program manager and systems engineer work hand in hand to ensure risk reduction 

occurs at the proper time. 

  How Much Development? 

 A key decision that must be made in planning the risk reduction effort is by what means 

and how far each risk area should be developed. If the development is too limited, the 

residual risk will remain high. If it is very extensive, the time and cost consumed in 

risk reduction may unnecessarily infl ate the total system development cost. Striking the 

proper balance calls on the exercise of expert systems engineering judgment. 

 The decision as to how much development should be undertaken on a given com-

ponent should be part of the risk management plan, as described in Chapter  5 . The 

objective of the plan is to minimize the total cost of managing each signifi cant risk 

area. This  “ risk cost ”  is the sum of the cost of such analysis, simulation, and design 

and testing that may be undertaken, that is, the  “ development cost, ”  and the cost of 

mitigating the residual risk to the low level required to proceed to the engineering 

design phase, that is, the  “ mitigation cost. ”  By varying the nature and amount of devel-

opment, a judgment can be made as to the most favorable balance. Thus, for a critical, 

immature component, the balance may call for development up to the prototype stage, 

while for a noncritical or mature component, it would only call for analysis.   

   10.7    SUMMARY 

  Reducing Program Risks 

 Objectives of the advanced development phase are to resolve the majority of uncertain-

ties (risks) through analysis and development and to validate the system design approach 

as a basis for full - scale engineering. The outputs of advanced development are a system 

design specifi cation and a validated development model. 

 Advanced development is especially critical for systems containing extensive 

advanced development or unproven concepts that may involve several years of develop-

ment effort. 

 Activities encompassed by advanced development are the following: 
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   •      Requirements Analysis —     relating functional requirements to needs,  

   •      Functional Analysis and Design —     identifying performance issues,  

   •      Prototype Development —     building and testing prototypes of critical components, 

and  

   •      Test and Evaluation —     validating the maturity of critical components.     

  Requirements Analysis 

 Analysis of system functional specifi cations is required to relate them to their origin in 

operational requirements, especially those not readily met. Their differences from those 

of a predecessor system are also noted.  

  Functional Analysis and Design 

 Components that may require further development include those that 

   •      implement a new function;  

   •      are a new implementation of an existing function;  

   •      use a new production method for an existing type of component;  

   •      extend the function of a proven component; and  

   •      involve complex functions, interfaces, and interactions.     

  Prototype Development as a Risk Mitigation Technique 

 Program risks requiring development may result from a number of conditions: 

   •      unusually high performance requirements,  

   •      new materials and processes,  

   •      extreme environmental conditions,  

   •      complex component interfaces, and  

   •      new software elements.     

  Development Testing 

 Validation testing to confi rm the resolution of risks requires the development of a formal 

test plan (TEMP). Furthermore, test equipment must be developed; validation tests must 

be conducted; and test results must be analyzed and evaluated. The results of this testing 

lead to the correction of design defi ciencies. However, special test equipment and facili-

ties often represent a major investment. Therefore, early experimental exploration of 

the interface design is essential. 

 Models of systems and components are used extensively in system development. 

Simulations are increasingly important in all stages of development and are essential 
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in the analysis of dynamic systems and software that require development and a staff 

of analysts and operators. 

 Development facilities are installations simulating environmental conditions and 

are used for development tests and component evaluation. They represent a major 

investment and require a permanent operating staff.  

  Risk Reduction 

 Risk assessment is a basic systems engineering tool, which is used throughout develop-

ment, but especially during advanced development. It involves identifying sources of 

risk, risk likelihood, and criticality.   

  PROBLEMS 

    10.1     The systems engineering method applies to the advanced development 

phase in a similar set of four steps, as it does to the preceding concept defi -

nition phase. For each step in the method, compare the activities in the two 

phases with one another, stating in your own words (a) how they are similar 

and (b) how they are different.  

  10.2     What specifi c activities in the advanced development phase sometimes 

cause it to be referred to as a  “ risk reduction ”  phase? Give an example of 

each activity considering a real or hypothetical system.  

  10.3     Why do so many new complex system developments incur large risks by 

choosing to apply immature technology? Give an example of where and 

how such choices paid off and one where they did not.  

  10.4     Table  10.2  illustrates four cases of developments involving different aspects 

of a system. Each is shown to require a different set of development activi-

ties to validate the result. Explain the rationale for each of the four develop-

ment processes in terms of the given conditions.  

  10.5     In the development of a major upgrade to a terminal air traffi c control 

system, what would you except to be three signifi cant risks and what 

systems engineering approaches would you recommend to mitigate each of 

these risks? (Consider problems of failing to meet the schedule as well as 

safety problems.)  

  10.6     Components that are required to have extended functional performance well 

beyond previously demonstrated limits frequently need further develop-

ment. Give an example of one such component in each of the four functional 

element categories (signal, data, material, and energy) as shown in Table 

 10.3 . Give reasons for your choice of examples.  

  10.7     Graphical user interface software is generally diffi cult to design and test. 

Explain why this is true, giving at least three situations to illustrate your 

points. What types of development tests would you propose for each 

situation?  



PROBLEMS 353

  10.8     Closed - loop dynamic systems are often diffi cult to analyze and test. Special 

test facilities are often constructed for this purpose. Diagram such a test 

setup for evaluating an unmanned air vehicle (UAV) designed for remote 

surveillance using an optical sensor. Assume that the test equipment includes 

an actual optical sensor, while other system components are simulated. 

Indicate which elements in the simulation are part of the system under test 

and which elements represent external inputs. Label all blocks and input/

output lines. 

 One systems engineering responsibility of advanced development is to 

understand how the system concept will accept, transform, consume, and 

produce each of the four functional elements of signals, data, materials, and 

energy. To illustrate this concept, for Problems 10.9 – 10.13, use a standard 

automated car wash found at most service stations in which a car enters an 

enclosed car wash via an automated conveyor belt and goes through several 

phases of activities before exiting the facility. 

 For each problem, construct a table with four columns labeled  “ Accept, ”  

 “ Transform, ”   “ Consume, ”  and  “ Produce. ”   

  10.9     In the Accept column, describe what signals the system will accept from all 

external entities. In the Transform column, describe the transformation of 

these signals and what the system will transform these signals into. In the 

Consume column, describe what signals the system will consume and for 

what purpose. Note that the system will either transform or consume all of 

its input signals. In the Produce column, describe what signals the system 

will produce for output.  

  10.10     In the Accept column, describe what data the system will accept from all 

external entities. In the Transform column, describe the transformation of 

these data and what the system will transform these data into. In the Consume 

column, describe what data the system will consume and for what purpose. 

Note that the system will either transform or consume all of its input data. 

In the Produce column, describe what data the system will produce for 

output.  

  10.11     In the Accept column, describe what materials the system will accept from 

all external entities. In the Transform column, describe the transformation 

of these materials and what the system will transform these materials into. 

In the Consume column, describe what materials the system will consume 

and for what purpose. Note that the system will either transform or consume 

all of its input materials. In the Produce column, describe what materials 

the system will produce for output.  

  10.12     In the Accept column, describe what energy the system will accept from all 

external entities. In the Transform column, describe the transformation of 

these energies and what the system will transform these energies into. In 

the Consume column, describe what energies the system will consume and 

for what purpose. Note that the system will either transform or consume all 

of its input energy. In the Produce column, describe what energies the 
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system will produce for output. Remember that energy may take several 

forms.     
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     Advancing information technology (IT) is the driving element to what many have called 

the  “ information revolution, ”  changing the face of much of modern industry, commerce, 

fi nance, education, entertainment — in fact, the very way of life in developed countries. 

IT has accomplished this feat largely by automating tasks that had been performed by 

human beings, doing more complex operations than had been possible, and doing them 

faster and with great precision. Not only has this capability given rise to a whole range 

of new complex software - controlled systems but it has also been embedded in nearly 

every form of vehicle and appliance, and even in children ’ s toys. 

 The previous chapters discussed the application of systems engineering principles 

and practice to all types of systems and system elements without regard to whether they 

were implemented in hardware or software. Software engineering, however, has 

advanced along a separate path than systems engineering. And only recently have the 

two paths begun to converge. Many principles, techniques, and tools are similar for 

both fi elds, and research has fostered the evolving merger. 

 The term  software systems engineering  was proposed by Dr. Winston Royce, father 

of the waterfall chart, early in the history of software engineering to represent the 
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natural relationship between the two. However, the term was not adopted by the 

growing software community, and the term  software engineering  became the moniker 

for the fi eld. 

 Within the fi rst decade of the twenty - fi rst century, the fact that the two fi elds have 

more in common has been recognized by both communities. And the  “ old ”  term was 

resurrected to represent the application of systems engineering principles and tech-

niques to software development. Of course, the fl ow of ideas has gone in both direc-

tions, spawning new concepts in systems engineering as well — object - oriented systems 

engineering (OOSE) being one example. Today, the expanding role of software in 

modern complex systems is undeniable. 

 The two terms, software engineering and software systems engineering, are not 

synonymous, however. The former refers to the development and delivery of software 

products, stand - alone or embedded. The latter refers to the application of principles to 

the software engineering discipline. 

 Accordingly, this chapter will focus on software systems engineering — and how 

software engineering relates to systems. In other words, we take the perspective of 

using software to implement the requirements, functionality, and behaviors of a larger 

system. This excludes stand - alone commercial applications in our discussions, such as 

the ubiquitous offi ce productivity products we all use today. While systems engineering 

principles could certainly be applied to the development of these types of products, we 

do not address these challenges. 

  Components of Software   

 We defi ne software by its three primary components: 

   •      Instructions.       Referred to as a  “ computer program ”  or simply as  “ code, ”  software 

includes the list of instructions that are executed by a variety of hardware plat-

forms to provide useful features, functionality, and performance. These instruc-

tions vary in levels of detail, syntax, and language.  

   •      Data Structures.       Along with the set of instructions are the defi nitions of data 

structures that will store information for manipulation and transformation by the 

instructions.  

   •      Documentation.       Finally, software includes the necessary documents that describe 

the use and operation of the software.    

 Together, these three components are referred to as  “ software. ”  A  software system  is 

software (as defi ned above) that also meets the defi nition of a system (see Chapter  1 ).   

   11.1    COPING WITH COMPLEXITY AND ABSTRACTION 

 One of the most fundamental differences between engineering software and engineering 

hardware is the abstract nature of software. Since modern systems are dependent on 
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software for many critical functions, it is appropriate to focus on the unique challenges 

of engineering the software components of complex systems and to provide an over-

view of the fundamentals of software engineering of most interest to systems 

engineers. 

 In earlier chapters, we discussed the relationships between the systems engineer 

and design, or specialty engineers. Typically, the systems engineer acts in the role of a 

lead engineer responsible for the technical aspects of the system development. 

Concurrently, the systems engineer works with the program manager to ensure the 

proper programmatic aspects of system development. Together, the two work hand in 

hand, resulting in a successful program. Design engineers usually work for systems 

engineers (unoffi cially, if not directly reporting to them) in this split between 

responsibilities. 

 One perspective that can be taken with respect to software engineering is that the 

software engineer is simply another design engineer responsible for a portion of the 

system ’ s functionality. As functions are allocated to software, the software engineer is 

called upon to implement those functions and behaviors in software code. In this role, 

the software engineer sits alongside his peers in the engineering departments, develop-

ing subsystems and components using programming code as his tool, rather than physi-

cal devices and parts. Figure  11.1  is an IEEE software systems engineering process 

chart that depicts this perspective using the traditional  “ Vee ”  diagram.   

     Figure 11.1.     IEEE software systems engineering process.  
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 Once a subsystem has been allocated for software development (or a combined 

software/hardware implementation), a subprocess of developing software requirements, 

architecture, and design commences. A combination of systems engineering and soft-

ware engineering steps occurs before these software components are integrated into the 

overall system. 

 Unfortunately, this perspective tends to promote  “ independence ”  between the 

systems and software development teams. After design, hardware and software engi-

neers begin their respective developments. However, the nature of software requires 

that software development strategies be devised early — during system design, depicted 

as the second major step in the Vee. If hardware and software are  “ split ”  during the 

design phase (i.e., functionality and subsystem components are allocated to hardware 

and software implementation) during or at the end of system design, then the differences 

in processes developing and implementing these components will cause the system 

development effort to become unbalanced in time. 

 Therefore, software development must be integrated earlier than what has been 

traditional — in the systems analysis phase. Although not shown in the fi gure, systems 

architecting is now a major portion of what this process constitutes as  systems analysis . 

It is during this activity that software systems engineering is considered. 

  Role of Software in Systems 

 The development of software has coincided with the evolution of digital computing in 

the second half of the twentieth century, which in turn has been driven by the growth 

of semiconductor technology. Software is the control and processing element of data 

systems (see Chapter  3 ). It is the means by which a digital computer is directed to 

operate on sources of data to convert the data into useful information or action. In the 

very early days of computers, software was used to enable crude versions of computers 

to calculate artillery tables for the World War II effort. Software is being used today to 

control computers ranging from single chips to tremendously powerful supercomputers 

to perform an almost infi nite variety of tasks. This versatility and potential power makes 

software an indispensable ingredient in modern systems, simple and complex. 

 While software and computer hardware are inextricably linked, the histories of 

their development have been very different. Computers, which consist largely of semi-

conductor chips, tend to be standardized in design and operation. All of the processing 

requirements of specifi c applications are, therefore, incorporated into the software. This 

division of function has made it possible to put great effort into increasing the speed 

and capability of computers while maintaining standardization and keeping computer 

costs low by mass production and marketing. Meanwhile, to handle increasing demands, 

software has grown in size and complexity, becoming a dominant part of the majority 

of complex systems. 

 A traditional view of the role of software in a computer system is represented in 

Figure  11.2 . The fi gure shows the layering of software and its relationship to the user 

and to the machine on which it runs. The user can be either a human operator or another 

computer. The user is seen to interact with all layers through a variety of interfaces. 

The fi gure shows that the user interface is wrapped around all the software layers, as 



COPING WITH COMPLEXITY AND ABSTRACTION 359

     Figure 11.2.     Software hierarchy.  
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     Figure 11.3.     Notional three - tier architecture.  
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well as having some minimal interaction directly with the hardware. Software at the 

application layer is the essence of the computer system, and it is the application that is 

supported by the other layers.   

 Modern software systems are rarely found within single, stand - alone computers, 

such as that represented in this fi gure. Today, software is found across complex net-

works of routers, servers, and clients, all within a multitiered architecture of systems. 

Figure  11.3  depicts a simplifi ed three - tier architecture utilizing thin clients over a series 
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of networks. Within each component of the architecture, a similar hierarchy as depicted 

in Figure  11.2  is resident.   

 As one can imagine, the complexity of computer systems (which should not be 

called computer networks) has grown signifi cantly. Software is no longer dedicated to 

single platforms, or even platform types, but must operate across heterogeneous hard-

ware platforms. Moreover, software manages complex networks in addition to manag-

ing individual platforms. 

 Because of the increasing complexity of software and its ever - increasing role in 

complex systems, developing software is now an integrated and comprehensive part of 

system development. Thus, systems engineering must include software engineering as 

an integral discipline, not simply as another design engineering effort to implement 

functionality.   

   11.2    NATURE OF SOFTWARE DEVELOPMENT 

  Types of Software 

 While many people have presented categories of software over the past decades, we 

fi nd that most of them can be consolidated into three broad types: 

   •      System Software.       This category of software provides services for other software 

and is not intended for stand - alone use. The classic example of this type is the 

operating system. The operating system of a computer or server provides mul-

tiple data, fi le, communications, and interface services (to name a few) for other 

resident software.  

   •      Embedded Software.       This category of software provides specifi c services, func-

tions, or features of a larger system. This type is most readily recognized with 

systems engineering since a basic principle allocated functionality to specifi c 

subsystems, including software - based subsystems. Examples of this type are 

readily found in systems such as satellites, defense systems, homeland security 

systems, and energy systems.  

   •      Application Software.       This category of software provides services to solve a 

specifi c need and is considered  “ stand - alone. ”  Applications typically interact 

with system and embedded software to utilize their services. Examples include 

the popular offi ce productivity applications — word processors, spreadsheets, and 

presentation support.      

 Although these three categories cover the wide variety of software today, they do not 

provide any understanding of the multiple specialties that exist. Table  11.1  is presented 

to provide an additional categorization. The three major software categories are shown 

in the table for comparison. Four additional categories are presented: engineering/

scientifi c, product line, Web based, and artifi cial intelligence. While all four fall under 

one or more of the three major categories, each type also addresses particular niches 

in the software community.    
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  TABLE 11.1.    Software Types 

   Software type     Short description     Examples  

  System    A system software provides services to 

other software.  

  Operating system, 

network manager  

  Embedded    An embedded software resides within a 

larger system and implements specifi c 

functions or features.  

  GUI, navigation 

software  

  Application    An application software is a stand - alone 

program that solves a specifi c need.  

  Business software, 

data processors, 

process controllers  

  Engineering/

scientifi c  

  An engineering/scientifi c software utilizes 

complex algorithms to solve advanced 

problems in science and engineering.  

  Simulations, 

computer - aided 

design  

  Product line    A product - line software is intended for 

wide use across a spectrum of users and 

environments.  

  Word processing, 

spreadsheets, 

multimedia  

  Web based    A Web - based software, sometimes called 

Web applications, is specifi cally 

designed for wide area network usage.  

  Internet browsers, 

Web site software  

  Artifi cial 

intelligence  

  An artifi cial intelligence software is 

distinguished by its use of nonnumerical 

algorithms to solve complex problems.  

  Robotics, expert 

systems, pattern 

recognition, games  

  Types of Software Systems 

 While software has become a major element in virtually all modern complex systems, 

the task of systems engineering a new system may be very different depending on the 

nature of functions performed by the software system elements. Despite the fact that 

there are no commonly accepted categories for different types of systems, it is useful 

to distinguish three types of software systems, which will be referred to as software -

 embedded systems, software - intensive systems, and computing - intensive systems. The 

term  “ software - dominated systems ”  will be used as inclusive of software systems in 

general. 

 The characteristics of the three categories of software - dominated systems and 

familiar examples are listed in Table  11.2  and are described more fully below.   

  Software - Embedded Systems.     Software - embedded systems (also referred to 

as software - shaped systems, real - time systems, or sociotechnical systems) are hybrid 

combinations of hardware, software, and people. This category of systems is one in 

which the principal actions are performed by hardware but with software playing a 

major supporting role. Examples are vehicles, radar systems, computer - controlled 

manufacturing machinery, and so on. The function of software is usually that of per-

forming critical control functions in support of the human operators and the active 

hardware components. 
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 Software - embedded systems usually run continuously, typically on embedded 

microprocessors (hence the designation), and the software must therefore operate in 

real time. In these systems, software is usually embodied in components designed in 

accordance with requirements fl owed down from system and subsystem levels. The 

requirements may be specifi ed for individual software components or for a group of 

components operating as a subsystem. In these systems, the role of software can range 

from control functions in household appliances to highly complex automation functions 

in military weapons systems.  

  Software - Intensive Systems.     Software - intensive systems, which include all 

information systems, are composed largely of networks of computers and users, in 

which the software and computers perform virtually all of the system functionality, 

usually in support of human operators. Examples include automated information pro-

cessing systems such as airline reservations systems, distributed merchandising systems, 

fi nancial management systems, and so on. These software - intensive systems usually 

run intermittently in response to user inputs and do not have as stringent requirements 

on latency as real - time systems. On the other hand, the software is subject to system -

 level requirements directly linked to user needs. These systems can be very large and 

distributed over extended networks. The World Wide Web is an extreme example of a 

software - intensive system. 

  TABLE 11.2.    Categories of Software - Dominated Systems 

   Characteristic  

   Software - embedded 

systems  

   Software - intensive 

systems  

   Data - intensive 

computing systems  

  Objective    Automate complex 

subsystems to 

perform faster and 

more accurately  

  Manipulate masses of 

information to 

support decisions or 

to acquire knowledge  

  Solve complex problems, 

model complex systems 

by computation and 

simulation  

  Functions    Algorithmic, logical    Transactional    Computational  

  Inputs    Sensor data, controls    Information, objects    Data numeric patterns  

  Processing    Real - time 

computation  

  Manipulation, GUI, 

networking  

  Non - real - time 

computation  

  Outputs    Actions, products    Information, objects    Information  

  Timing    Real time, continuous    Intermittent    Scheduled  

  Examples    Air traffi c control 

 Military weapons 

systems 

 Aircraft navigation 

and control  

  Banking network 

 Airline reservation 

system 

 Web applications  

  Weather predictions 

 Nuclear effect prediction 

 Modeling and simulation  

  Hardware    Mini and micro 

processors  

   N  - tier architectures    Supercomputers  

  Typical users    Operators    Managers    Scientists, analysts  
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 In software - intensive systems, software is key at all levels, including the system 

control itself. Hence, these must be systems engineered from the beginning. Most of 

them can be thought of as  “ transactional ”  systems (fi nancial, airline reservation, 

command, and control). They are generally built around databases that contain domain 

information entities that must be accessed to produce the desired transaction.  

  Data - Intensive Computing Systems.     A type of software system that is sig-

nifi cantly different from the above software system categories includes large - scale 

computing resources dedicated to executing complex computational tasks. Examples 

are weather analysis and prediction centers, nuclear effects prediction systems, advanced 

information decryption systems, and other computationally intensive operations. 

 These data - intensive computing systems usually operate as facilities in which the 

computing is typically performed either on supercomputers or on assemblies of high -

 speed processors. In some cases, the processing is done by a group of parallel proces-

sors, with computer programs designed for parallel operation. 

 The development of data - intensive computing systems requires a systems approach 

like other systems. However, most of these are one of a kind and involve very special-

ized technical approaches. Accordingly, this chapter will be focused on the systems 

engineering problems associated with the much more common software - embedded and 

software - intensive systems.   

  Differences between Hardware and Software 

 It was noted at the beginning of this chapter that there are a number of fundamental 

differences between hardware and software that have profound effects on the systems 

engineering of software - dominated systems. Every systems engineer must have a clear 

appreciation of these differences and their import. The following paragraphs and Table 

 11.3  are devoted to describing software systems and how they differ signifi cantly from 

hardware.   

  Structural Units.     Most hardware components are made up of standard physical 

parts, such as gears, transistors, motors, and so on. The great majority are implementa-

tions of commonly occurring functional elements, such as  “ generate torque ”  or  “ process 

data ”  (see Chapter  3 ). In contrast, software structural units can be combined in count-

less different ways to form the instructions that defi ne the functions to be performed 

by the software. There is not a fi nite set of commonly occurring functional building 

blocks, such as makeup hardware subsystems and components. The main exceptions 

are generic library functions (e.g., trigonometric) contained in some software program-

ming environments and certain commercial software  “ components ”  mostly related to 

graphic user interface functions.  

  Interfaces.     Because of its lack of well - defi ned physical components, software 

systems tend to have many more interfaces, with deeper and less visible interconnec-

tions than hardware systems. These features make it more diffi cult to achieve good 

system modularity and to control the effects of local changes.  
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  Functionality.     There are no inherent limits on the functionality of software as 

there are on hardware due to physical constraints. For this reason, the most critical, 

complex, and nonstandard operations in systems are usually allocated to software.  

  Size.     While the size of hardware components is limited by volume, weight, and 

other constraints, there is no inherent limit to the size of a computer program, especially 

with modern memory technology. The large size of many software - based systems 

constitutes a major systems engineering challenge because they can embody an enor-

mous amount of custom - built system complexity.  

  Changeability.     Compared to the effort required to make a change in a hardware 

element, it is often falsely perceived to be easy to make changes in software, that is, 

 “ merely ”  by altering a few lines of code. The impacts of software changes are more 

diffi cult to predict or determine due to the complexity and interface problems cited 

above. A  “ simple ”  software change may require retesting of the entire system.  

  Failure Modes.     Hardware is continuous in both structure and operation, while 

software is digital and discontinuous. Hardware usually yields before it fails and tends 

to fail in a limited area. Software tends to fail abruptly, frequently resulting in a system 

breakdown.  

  Abstraction.     Hardware components are described by mechanical drawings, 

circuit diagrams, block diagrams, and other representations that are models of physical 

elements readily understood by engineers. Software is inherently abstract. Besides the 

  TABLE 11.3.    Differences between Hardware and Software 

   Attribute     Hardware     Software  

   Software engineering 

complications  

  Structural 

units  

  Physical parts, 

components  

  Objects, modules    Few common building blocks, 

rare component reuse  

  Interfaces    Visible at 

component 

boundaries  

  Less visible, deeply 

penetrating 

numerous  

  Diffi cult interface control, 

lack of modularity  

  Functionality    Limited by power, 

accuracy  

  No inherent limit 

(limited only by 

hardware)  

  Very complex programs, 

diffi cult to maintain  

  Size    Limited by space, 

weight  

  No inherent limits    Very large modules, diffi cult 

to manage  

  Changeability    Requires effort    Deceptively easy 

but risky  

  Diffi cult confi guration 

management  

  Failure mode    Yields before 

failing  

  Fails abruptly    Greater impact of failures  

  Abstraction    Consists of 

physical elements  

  Textual and 

symbolic  

  Diffi cult to understand  
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actual code, architectural and modeling diagrams are highly abstract and each diagram 

restricted in its information context. Abstractions may be the single most fundamental 

difference between software and hardware. 

 The above differences, summarized in Table  11.3 , profoundly affect the systems 

engineering of complex software - dominated systems. Not appreciating these differ-

ences and effectively accounting for them have contributed to a number of spectacular 

failures in major programs, such as an attempted modernization of the air traffi c control 

system, the initial data acquisition system for the Hubble telescope, the Mars Lander 

spacecraft, and an airport baggage handling system. 

 For the majority of systems engineers who do not have experience in software 

engineering, it is essential that they acquire a grounding in the fundamentals of this 

discipline. The following sections are intended to provide a brief overview of software 

and the software development process.    

   11.3    SOFTWARE DEVELOPMENT LIFE CYCLE MODELS 

 As described in previous chapters, every development project passes through a series 

of phases as it evolves from its inception to its completion. The concept of a life cycle 

model is a valuable management tool for planning the activities, staffi ng, organization, 

resources, schedules, and other supporting activities required for a project ’ s successful 

execution. It is also useful for establishing milestones and decision points to help keep 

the project on schedule and budget. 

 Chapter  4  described a system life cycle model appropriate for developing, produc-

ing, and fi elding a typical, new large - scale complex system. It was seen to consist of a 

series of steps beginning with the establishment of a bona fi de need for a new system 

and systematically progressing to devising a technical approach for meeting the need; 

engineering a hardware/software system embodying an effective, reliable, and afford-

able implementation of the system concept; validating its performance; and producing 

as many units as required for distribution to the users/customers. 

 The software elements in software - embedded systems perform critical functions, 

which are embodied in components or subcomponents. Therefore, their system life 

cycle is governed by the nature of the system and major subsystems and generally 

follows the steps characteristic of systems in general, as described in Chapters  4  and 

 6  –  10 . A signifi cant feature of the life cycle of software - embedded systems is the fact 

that there is no production for the software elements themselves, only of the processors 

on which the software runs. Also, there is cause for caution in that software elements 

are deceptively complex for their size and usually play critical roles in system opera-

tion. Hence, special measures for risk reduction in this area need to be considered. 

     Basic Development Phases.     Just as the systems engineering method was seen 

to consist of four basic steps (Fig.  4.10 ), 

  1.     requirements analysis,  

  2.     functional defi nition,  
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  3.     physical defi nition, and  

  4.     design validation,    

 so also the software development process can be resolved into four basic steps: 

  1.     analysis;  

  2.     design, including architectural, procedural, and so on;  

  3.     coding and unit test, also called implementation; and  

  4.     test, including integration and system test.    

 Although not strictly coincident with the systems engineering method, the general 

objectives of each of these steps correspond closely. 

 It should be noted that like the systems engineering method, different versions of 

the software process use variations in terminology in naming the steps or phases, and 

some split up one or more of the basic steps. For example, design may be divided into 

preliminary design and detailed design; unit test is sometimes combined with coding 

or made a separate step. System test is sometimes referred to as integration and test. It 

must be remembered that this stepwise formulation is a model of the process and hence 

is subject to variation and interpretation. 

 For the category of software - intensive systems, which have come to dominate 

communication, fi nance, commerce, entertainment, and other users of information, 

there are a variety of life cycle models in use. A few notable examples of these are 

discussed briefl y in the following paragraphs. Detailed discussions of software life 

cycles may be found in the chapter references and in other sources. 

 As in the case of system life cycle models, the various software process models 

involve the same basic functions, differing mainly in the manner in which the steps are 

carried out, the sequencing of activities, and in some cases the form in which they are 

represented. Overall, software development generally falls into four categories: 

  1.     Linear.       Like formal system development life cycle models, the linear software 

development model category consists of a sequence of steps, typically with 

feedback, resulting in a software product. Linear development models work 

well in environments with well - understood and stable requirements, reasonable 

schedules and resources, and well - documented practices.  

  2.     Incremental.       Incremental models utilize the same basic steps as linear models 

but repeat the process in multiple iterations. In addition, not every step is per-

formed to the same degree of detail within each iteration. These types of devel-

opment models provide partial functionality at incremental points in time as the 

system is developed. They work well in environments with stable requirements 

where partial functionality is desired before the full system is developed.  

  3.     Evolutionary.       Evolutionary models are similar to the incremental concept but 

work well in environments where the fi nal product ’ s characteristics and attri-

butes are not known at the beginning of the development process. Evolutionary 

models provide limited functionality in nonproduction forms (e.g., prototypes) 
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for experimentation, demonstration, and familiarization. Feedback is critical to 

evolutionary models as the system  “ evolves ”  to meet the needs of the users 

through these three procedures.  

  4.     Agile.       Agile development models deviate most from the four basic steps we 

have identifi ed above. With linear, incremental, and evolutionary models, the 

four steps are manipulated into different sequences and are repeated in different 

ways. Within agile development environments, the four steps are combined in 

some manner and the delineations between them are lost. Agile methods are 

appropriate for environments where structure and defi nition are not available, 

and change is the constant throughout the process.    

 In addition to the four basic development model categories above, specialized 

development models have been proffered, practiced, and published. Two well - known 

examples are the component - based development model and the aspect - oriented devel-

opment model. These special - purpose models have specifi c but limited applications 

warranting their use. We have chosen to omit these specialized models from our 

discussions.   

  Linear Development Models 

 The  waterfall model  is the classic software development life cycle, also called the 

 “ sequential ”  model (see Fig.  11.4 ). It consists of a sequence of steps, systematically 

     Figure 11.4.     Classical waterfall software development cycle.  
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proceeding from analysis to design, coding and unit test, and integration and system 

test. The waterfall model with feedback (see dashed arrows) depicts the adjustment of 

inputs from a preceding step to resolve unexpected problems before proceeding to the 

subsequent step. The waterfall model corresponds most closely to the conventional 

system life cycle. Table  11.4  lists the system life cycle phases, their objectives, and the 

corresponding activity in the waterfall life cycle phase.     

 Over the years, the basic waterfall model has morphed into many variations, 

including some that quite honestly could no longer be described as linear. Waterfall has 

been combined with the other types to form hybrids that could be classifi ed as a com-

bination of two or more categories. And while the basic waterfall model is rarely used 

in today ’ s modern software engineering community, its basic principles can be recog-

nized throughout, as will be evidenced in the next two sections.  

  Incremental Development Models 

 The  basic incremental  model involves two concepts: (1) performing the basic steps of 

software development repeatedly to build multiple increments and (2) achieving partial 

operational functionality early in the process, and building that functionality over time. 

Figure  11.5  depicts this process using the steps of the basic waterfall process model. 

The reader should keep in mind that not all steps of every increment are performed to 

the same level of detail. For example (and depicted in the fi gure), the analysis phase 

may not need the same attention in the second and third increments as it received in 

the fi rst increment. Initial analysis may cover the needs, requirements, and feature defi -

nition for all increments, not just the fi rst. Similarly, by the second iteration, the overall 

design of the software system may be largely completed. Further design would not be 

needed in the third iteration.   

  TABLE 11.4.    Systems Engineering Life Cycle and the Waterfall Model 

   System phase     Objective     Waterfall phase  

  Needs analysis    Establish system need and 

feasibility  

  Analysis  

  Concept exploration    Derive necessary system    Analysis  

  Concept defi nition    Select a preferred system 

architecture  

  Design  

  Advanced development    Build and test risky system 

elements  

  Design (and prototype)  

  Engineering design    Engineer system components to 

meet performance requirements  

  Coding and unit test  

  Integration and evaluation    Integrate and validate system 

design  

  Integration and system test  

  Production    Production and distribution    None  

  Operations and support    Operation    Maintenance  
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 Another aspect of incremental development concerns the incremental releases, 

sometimes called  “ builds. ”  As a new increment is released, older increments may be 

retired. In its purest form, once the last increment is released, all of the older increments 

are retired. Of course, situations arise when customers are fully satisfi ed with an 

increment — leading to multiple increments, and thus versions of the software — or 

future increments are cancelled. This is depicted in the fi gure by the triangles  . 

 The  rapid application development  (RAD) model (sometimes called the  “ all - at -

 once ”  model) features an incremental development process with a very short cycle time. 

It is an iterative form of the waterfall model, depending on the use of previously devel-

oped or commercially available components. Its use is best suited to business applica-

tion software of limited size that lends itself to relatively quick and low - risk development, 

and whose marketability depends on deployment ahead of an anticipated competitor.  

  Evolutionary Development Models 

 In situations where user needs and requirements are not well defi ned, and/or develop-

ment complexity is suffi ciently high to incur signifi cant risk, an evolutionary approach 

may be best. The basic concept involves the development of an early software product, 

or prototype. The prototype is not intended for actual operations, sales, or deployment, 

but to assist in identifying and refi ning requirements, or in reducing development risks. 

If the purpose of the prototype is identifying and refi ning requirements, then typically, 

an experimental version of the system, or a representative portion that exhibits the 

characteristics of the user interface, is built early in the design phase of the development 

and operated by the intended user or a surrogate of the projected user. With the fl exibil-

ity of software, such a prototype can often be designed and built relatively quickly and 

inexpensively. Attention to formal methods, documentation, and quality design need 

not be implemented, since the version is not intended for production. 

     Figure 11.5.     Software incremental model.  
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 In addition to refi ning requirements by building trial user interfaces, software 

prototyping is often used as a general risk reduction mechanism as in the advanced 

development phase. New design constructs can be prototyped early to refi ne the 

approach. Interfaces with other hardware and software can also be developed and tested 

early to reduce risk. As an example, consider an air traffi c control system. It is often 

necessary to discover the real requirements of the system interfaces by testing prelimi-

nary models of the system in the fi eld. 

 Perhaps the most common form of the evolutionary model is the  spiral model . It 

is similar to that pictured in Figure  4.12  but is generally much less formal and with 

shorter cycles. Figure  11.6  depicts a version of the spiral development model. It differs 

in form by starting in the center and spiraling outward. The expanding spirals represent 

successive prototypes, which iteratively perfect the attainment of customer objectives 

by the system. Finally, the fi nishing steps are applied on the last spiral/prototype, result-

ing in a fi nished product.   

 With all evolutionary methods, it is important to plan for the disposition of the 

prototypes (or spirals) after they have been used. Examples abound where a spiral 

approach was adopted, and one or two prototypes were developed and tested using 

actual users or surrogates. However, after experiencing the prototype, the customer 

declared the product suffi cient and requested immediate delivery. Unfortunately, 

without formal procedures and methods in place, nor general quality assurance followed 

in the prototype development, the  “ fi nal product ”  was in no condition to be deployed 

     Figure 11.6.     Spiral model.  
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in the fi eld (or sold to the market). Upon deployment, problems ensued quickly. Our 

recommendation is that prototypes should be discarded upon completion of their 

purpose — and the customer should be forewarned of the signifi cant risks involved in 

deployment prototypes as operational systems. 

 The second model, which falls under the evolutionary category, is the  concurrent 

development model . This approach eliminates the two concepts of sequence and incre-

ments, and develops all phases simultaneously. The model achieves this approach 

through the defi nition of software development states. Software modules are tagged 

with which state they belong. Formal state transition criteria are defi ned that enables 

software modules to transition from one state to the other. Development teams focus 

on specifi c activities within a single state. Figure  11.7  depicts an example state transi-

tion diagram (STD) associated with this type of model.   

 Software modules are initially assigned to the  “ awaiting development ”  state. This 

state could be thought of as a queue for the development teams. A module is not tran-

sitioned to the  “ under development ”  state until a team is assigned to its development. 

Once completed, the module is transitioned to the  “ under review ”  state, where a review 

team (or person) is assigned. Again, transition does not occur until a team is assigned 

to the module. This process is repeated. Since modules are developed simultaneously 

by different teams, modules can be in the same state. A push/pull system can be imple-

mented to increase the effi ciency of the associated teams.  

     Figure 11.7.     State transition diagram in the concurrent development model.  
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  Agile Development Models 

 A common result of many software development projects is failure to adapt to changing 

or poorly defi ned user requirements and a consequent impact on project cost. A response 

to this situation has been the formulation, in the late 1990s and early 2000s, of an 

adaptive software methodology referred to as  “ agile. ”  It uses an iterative life cycle to 

quickly produce prototypes that the user can evaluate and use to refi ne requirements. 

It is especially suitable for small -  to medium - size projects (with less than 30 – 50 people) 

where the requirements are not fi rmly defi ned and where the customer is willing to 

work with the developer to achieve a successful product. This last point is particularly 

important — the agile methodology depends on customer/user involvement. Without a 

commitment from the customer for this level of interaction, the agile methodology 

incurs a signifi cant risk. 

 As defi ned by its proponents, the agile methodology is based on the following 

postulates, assuming the above conditions: 

  1.     Requirements (in many projects) are not wholly predictable and will change 

during the development period. A corollary is that customer priorities are likely 

to change during the same period.  

  2.     Design and construction should be integrated because the validity of the design 

can seldom be judged before the implementation is tested.  

  3.     Analysis, design, construction, and testing are not predictable and cannot be 

planned with adequate levels of precision.    

 These methods rely heavily on the software development team to conduct simultaneous 

activities. Formal requirements analysis and design are not separate steps — they are 

incorporated in the coding and testing of software. This concept is not for the faint - of -

 heart customer — a great level of trust is required. Nevertheless, agile methods represent 

a leap in software development that can lead to highly robust software more quickly 

than traditional methods. 

 Agile methods include a number of recent process models: 

   •      Adaptive Software Development ( ASD )   focuses on successive iterations of three 

activities: speculation, collaboration, and learning. The initial phase, speculation, 

focuses on the customer ’ s needs and mission. The second phase, collaboration, 

utilizes the concept of synergistic talents working together to develop the soft-

ware. The fi nal phase, learning, provides feedback to the team, the customer, and 

the other stakeholders, and includes formal review and testing.  

   •      Extreme Programming   (XP) focuses on successive iterations of four activities: 

planning, design, coding, and testing. Requirements are identifi ed through the 

use of user stories — informal user descriptions of features and functionality. 

These stories are organized and used through the iteration process, including as 

the basis for fi nal testing.  

   •      Scrum   focuses on a short, 30 - day iterative cycle — with strong teaming. This 

process yields several iterations in various maturities with which to learn, adapt, 
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and evolve. Within each cycle, a basic set of activities occurs: requirements, 

analysis, design, evolution, and delivery.  

   •      Feature - Driven Development   focuses on short iterations (typically about 2 

weeks), each of which delivers tangible functionality (features) that the user 

values. Eventually, features are organized and grouped into modules that are then 

integrated in the system.  

   •      The Crystal   family of agile methods focuses on adaptation of a core set of agile 

methodologies to individual projects.    

 In all of the above approaches, quality and robustness are required attributes of 

products. Thus, the iterations are to be built on rather than thrown away (in contrast to 

the incremental and spiral methods). All projects that are based on uncertain require-

ments should consider the above principles in deciding on the methodology to be used. 

 In general, the software development life cycles follow the same pattern of progres-

sive risk reduction and system  “ materialization ”  that has been described in Chapters  3  

and  5  –  10 . The remaining sections of this chapter follow a similar structure.  

  Software System Upgrades 

 Because of the rapid evolution of IT, the associated developments in data processors, 

peripherals, and networks, and the perceived ease of introducing software changes, 

there are relatively frequent cases where system software is subjected to signifi cant 

modifi cations or  “ upgrades. ”  In a large fraction of instances, the upgrades are planned 

and implemented by different individuals from those responsible for their development, 

with the resulting probability of inadvertent interface or performance defi ciencies. Such 

cases call for participation of and control by systems engineering staff who can plan 

the upgrade design from a system point of view and can ensure an adequate require-

ments analysis, interface identifi cations, application of modular principles, and thor-

ough testing at all levels. 

 When the system to be upgraded was designed before the general use of modern 

programming languages, there can be a severe problem of dealing with an obsolete 

language no longer supported by modern data processors. Such legacy software is 

generally not capable of being run on modern high - performance processors, and the 

programs, which total billions of lines of code, have to either be rewritten or translated 

into a modern language. The cost of the former is, in many cases, prohibitive, and the 

latter has not come into general practice. The result has been that many of these systems 

continue to use obsolete hardware and software and are maintained by a dwindling 

group of programmers still capable of dealing with the obsolete technology.   

   11.4    SOFTWARE CONCEPT DEVELOPMENT: ANALYSIS AND DESIGN 

 The analysis and design steps in the traditional software life cycle described in 

the previous sections generally correspond to the concept development stage that is 
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embodied in Part II of this book. These are the activities that defi ne the requirements 

and architecture of the software elements of the system. The line of demarcation 

between analysis and design may vary substantially among projects and practitioners, 

there being broad areas referred to as design analysis or design modeling. For this 

reason, the subsections below will focus more on approaches and problems that are of 

special interest to systems engineers than on issues of terminology. 

  Needs Analysis 

 The precondition for the development of any new system is that it is truly needed, that 

a feasible development approach is available, and that the system is worth the effort to 

develop and produce it. In the majority of software - intensive systems, the main role of 

software is to automate functions in legacy systems that have been performed by people 

or hardware, to do them at less cost, in less time, and more accurately. The issue of 

need becomes one of trading off the projected gains in performance and cost against 

the effort to develop and deploy the new system. 

 In new systems in which key operations performed by people or hardware are to 

be replaced with software, users are typically not unanimous regarding their needs, and 

the optimum degree of automation is seldom determinable without building and testing. 

Further, an extensive market analysis is usually necessary to gauge the acceptance of 

an automated system and the costs and training that this entails. Such an analysis also 

usually involves issues of market penetration, customer psychology, introduction trials, 

and corporate investment strategy. 

  Feasibility Analysis.     The decision to proceed with system design has been seen 

to require the demonstration of technical feasibility. Within the realm of software, 

almost anything appears feasible. Modern microprocessors and memory chips can 

accommodate large software systems. There are no clear size, endurance, or accuracy 

limits such as there are on hardware components. Thus, technical feasibility tends to 

be taken for granted. This is a great advantage of software but also invites complexity 

and the assumption of challenging requirements. However, the resulting complexity 

may in itself prove too diffi cult and costly.   

  Software Requirements Analysis 

 The scope of the requirements analysis effort for a new system usually depends on 

whether the software is an element in a software - embedded system or if it embraces a 

total software - intensive system. In either case, however, the development of a concept 

of operations should play an important part. 

  Software - Embedded System Components.     As noted previously, the soft-

ware elements in software - embedded systems are usually at the component level, 

referred to as computer system confi guration items (CSCIs). Their requirements are 

generated at the system and subsystem levels and are allocated to CSCIs, usually in a 
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formal requirement specifi cation document. The software team is expected to design 

and build a product to these specifi cations. 

 Too often, such specifi cations are generated by systems engineers with an inade-

quate knowledge of software capabilities and limitations. For example, a large dynamic 

range in combination with high precision may be prescribed, which may unduly stress 

the system computational speed. Other requirement mismatches may result from the 

communication gap that frequently exists between systems and software engineers and 

organizations. For such reasons, it is incumbent on the software development team to 

make a thorough analysis of requirements allocated to software and to question any 

that fail to have the characteristics described in Chapter  7 . These reasons also constitute 

a good argument for including software engineers in the top - level requirements analysis 

process.  

  Software - Intensive System Requirements.     As noted earlier, in a software -

 intensive system, software dominates every aspect and must be an issue at the highest 

level of system requirements analysis. Thus, the very formulation of the overall system 

requirements must be subject to analysis and participation by software systems 

engineers. 

 The basic problems in developing system requirements for software - intensive 

systems are fundamentally the same as for all complex systems. However, there are 

several aspects that are peculiar to requirements for systems that depend on the exten-

sive software automation of critical control functions. One special aspect has been noted 

previously, namely, unreasonable performance expectations based on the extensibility 

of software. Another is the generally diverse customer base, with little understanding 

of what software automation is capable of doing, and hence is often not a good 

source of requirements. 

 The consequences of these and other factors that inhibit the derivation of a reliable 

set of requirements typically result in a considerable degree of uncertainty and fl uidity 

in software - based system requirements. This is a major reason for the use of prototyp-

ing, RAD, or evolutionary development, all of which produce an early version of the 

system that can be subjected to experimentation by users to modify and fi rm up initial 

assumptions of desired system characteristics. 

 Several variations of developing software requirements exist today. Of course, 

many depend on the type of software development model being used; however, some 

generic features exist regardless of the model chosen. Figure  11.8  depicts a hierarchy 

of software requirements, starting with the user needs at the apex. These needs are 

decomposed into desired features, functional and performance requirements, and fi nally 

specifi cations. If the system in question is software embedded, the upper levels of the 

hierarchy are typically performed at the system level and requirements or specifi cations 

are allocated to software subsystems or components.   

 If the system in question is software intensive, the upper levels of the hierarchy 

are needed. In those cases, a separate process for developing and refi ning requirements 

may be needed. Several processes have been offered in the literature. A generic process 

is presented in Figure  11.9 . Four steps, which can be further divided into separate steps, 

are critical to this effort: 
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   •      Requirements Elicitation.     This step seems straightforward but, in reality, can be 

challenging. Bridging the language barrier between users and developers is not 

simple. Although tools have been developed to facilitate this process (e.g., use 

cases, described below), users and developers simply do not speak the same 

language. Many elicitation methods exist — from direct interaction with stake-

holders and users, involving interviews and surveys, to indirect methods, involv-

ing observation and data collection. Of course, prototyping can be of valuable 

use.  

     Figure 11.8.     User needs, software requirements, and specifi cations.  
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   •      Requirements Analysis and Negotiation.     Chapter  7  described a series of methods 

to analyze and refi ne a set of requirements. These are applicable to software as 

much as they are to hardware. In general, these techniques involve checking four 

attributes of a requirements set: necessity, consistency, completeness, and feasi-

bility. Once requirements have been refi ned, they need to be accepted — this is 

where negotiation begins. Requirements are discussed with stakeholders and are 

refi ned until agreement is reached. When possible, requirements are prioritized 

and problematic requirements are resolved. A more advanced analysis is then 

performed, examining the following attributes: business goal conformity, ambi-

guity, testability, technology requirements, and design implications.  

   •      Requirements Documentation.     Documentation is always the obvious step and 

can be omitted since everyone is expecting the requirements to be documented. 

We include it because of the criticality in articulating and distributing require-

ments to the entire development team.  

   •      Requirements Validation.     This step can be confusing because many engineers 

include  “ analysis ”  in this step, that is, the concept that each requirement is evalu-

ated to be consistent, coherent, and unambiguous. However, we have already 

performed this type of analysis in our second step above. Validation in this 

context means a fi nal examination of the requirements set in whole to determine 

whether the set will ultimately meet the needs of the users/customers/parent 

system. Several methods exist to enable requirement validation — prototyping, 

modeling, formal reviews, manual development, and inspection — even test case 

development can assist in the validation process.       

  Use Cases.     As mentioned in Chapter  8 , a popular tool available to requirements 

engineers is the  use case . A use case has been best described as a story, describing how 

a set of actors interact with a system under a specifi c set of circumstances. Because the 

set of circumstances can be large, even infi nite, the number of possible use cases for 

any system can also be large. It is the job of the requirements engineer, developers, 

users, and systems engineer to limit the number and variety of use cases to those that 

will infl uence the development of the system. 

 Use cases represent a powerful tool in bridging the language gap between users, 

or any stakeholder, and developers. All can understand sequences of events and activi-

ties that need to be performed. Although use cases were developed for describing 

software system behavior and features, they are regularly used in the systems world to 

describe any type of system, regardless of the functionality implemented by software.  

  Interface Requirements.     Whichever the type of an essential tool of require-

ments analysis is the identifi cation of all external interfaces of the system, and the 

association of each input and output with requirements on its handling within the 

system. This process not only provides a checklist of all relevant requirements but also 

a connection between internal functions required to produce external outcomes. In all 

software - dominated systems, this approach is especially valuable because of the numer-

ous subtle interactions between the system and its environment, which may otherwise 

be missed in the analysis process.   
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  System Architecture 

 It was seen in Chapter  8  that in complex systems, it is absolutely essential to partition 

them into relatively independent subsystems that may be designed, developed, pro-

duced, and tested as separate system building blocks, and similarly to subdivide the 

subsystems into relatively self - contained components. This approach handles system 

complexity by segregating groups of mutually interdependent elements and highlight-

ing their interfaces. This step in the systems engineering method is referred to as 

functional defi nition or functional analysis and design (Fig.  4.10 ). 

 In hardware - based systems, the partitioning process not only reduces system com-

plexity by subdividing it into manageable elements but also serves to collect elements 

together that correspond to engineering disciplines and industrial product lines (e.g., 

electronic, hydraulic, structural, and software). In software - intensive systems, the seg-

regation by discipline is not applicable, while the inherent complexity of software 

makes it all the more necessary to partition the system into manageable elements. 

Software has numerous subdisciplines (algorithm design, databases, transactional soft-

ware, etc.), which may, in certain cases, provide partitioning criteria. In systems that 

are distributed, the characteristics of the connective network can be used to derive the 

system architecture. 

  Software Building Blocks.     The objective of the partitioning process is to 

achieve a high degree of  “ modularity. ”  The principles that guide the defi nition and 

design of software components are intrinsically similar to those that govern hardware 

component design, but the essentially different nature of the implementation results in 

signifi cant differences in the design process. One fundamental difference is in regard 

to commonly occurring building blocks such as those described in Chapter  3 . There is 

a profusion of standard commercial software packages, especially for business and 

scientifi c applications (e.g., word processors, spread sheets, and math packages), but 

rarely for system components. Exceptions to this general situation are the commercial -

 off - the - shelf (COTS) software components heavily used in low - complexity information 

systems. 

 Another source of software building blocks is that of common objects (COs). These 

are somewhat the equivalents in software to standard hardware parts such as gears or 

transformers, or at higher levels to motors or memory chips. They are most often used 

in the graphical user interface (GUI) environment. The CO concept is represented by 

the Microsoft - developed distributed common object model (DCOM). A more vendor -

 independent implementation is the common object resource broker architecture 

(CORBA), which is a standard defi ned by the Object Management Group (OMG), an 

organization committed to vendor neutral software standards. However, these CO 

components comprise only a small fraction of system design. The result is that despite 

such efforts at  “ reuse, ”  the great majority of new software products are very largely 

unique.  

  Modular Partitioning.     Despite the lack of standard parts, software modules 

nevertheless can be well structured, with an ordered hierarchy of modular subdivisions 

and well - defi ned interfaces. The same principles of modularity to minimize the inter-
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dependence of functional elements that apply to hardware components are applicable 

also to computer programs. 

 The principles of modular partitioning are illustrated in Figure  11.10 . The upper 

patterns show the elements of  “ binding, ”  also referred to as  “ cohesion, ”  which measures 

the mutual relation of items within software modules (represented by boxes with the 

names of colors). It is desirable for binding to be  “ tight ”  — all closely related items 

should be grouped together in a single functional area. Conversely, unrelated and/or 

potentially incompatible items should be located in separate areas.   

 The lower two diagrams illustrate the elements of  “ coupling, ”  which measures the 

interactions between the contents of different modules (boxes). With tight coupling as 

illustrated at the left, any change within a module will likely dictate changes in each 

of the other two modules. Conversely, with  “ loose ”  coupling, interactions between the 

modules are minimized. The ideal arrangement, usually only partially achievable, is 

illustrated in the right - hand diagram, where interactions between modules are kept 

simple and data fl ows are unidirectional. This subject is discussed further below as it 

relates to different design methodologies.  

  Architecture Modeling.     As noted in Chapter  10 , models are an indispensable 

tool of systems engineering for making complex structures and relationships under-

standable to analysts and designers. This is especially true in software - dominated 

systems where the abstract nature of the medium can make its form and function virtu-

ally incomprehensible. 

     Figure 11.10.     Principles of modular partitioning.  
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 The two main methodologies used to model software systems are called  “ structured 

analysis and design ”  and  “ object - oriented analysis and design (OOAD). ”  The former 

is organized around functional units called procedures and functions. It is based on a 

hierarchical organization and uses decomposition to handle complexity. Generally, 

structured analysis is considered a top - down methodology. 

 OOAD is organized around units called  “ objects, ”  which represent entities and 

encapsulate data with its associated functions. Its roots are in software engineering and 

it focuses on information modeling, using classes to handle complexity. Generally, 

OOAD can be considered a bottom - up methodology.   

  Structured Analysis and Design 

 Structured analysis uses four general types of models: the functional fl ow block diagram 

(FFBD), the data fl ow diagram (DFD), the entity relationship diagram (ERD), and the 

state transition diagram (STD). 

   FFBD .     The FFBD comes in a variety of forms. We introduced one of those variet-

ies, the functional block diagram, in Chapter  8  (see Fig.  8.4 ). The FFBD is similar, 

except that rather than depicting functional interfaces like the block diagram, connec-

tions (represented by arrows) represent fl ow of control. Since the FFBD incorporates 

sequencing (something that neither the functional block diagram (FBD) nor the inte-

grated defi nition 0 (IEDF0) formats do), logical breaking points are depicted by 

summing gates. These constructs enable the depiction of process - oriented concepts. 

Almost any process can be modeled using the FFBD. Figure  11.11  is an example of an 

FFBD.   

 As with all functional diagrams, each function within the hierarchy can be decom-

posed into subfunctions, and a corresponding diagram can be developed at each level. 

Functional diagrams are the standard method within structured analysis to depict a 

system ’ s behavior and functionality.  

   DFD .     This diagram consists primarily of a set of  “ bubbles ”  (circles or ellipses) 

representing functional units, connected by lines annotated with the names of data 

fl owing between the units. Data stores are represented by a pair of parallel lines and 

external entities are shown as rectangles. Figure  11.12  shows a DFD for the checkout 

function of a small public library system.   

 A system is normally represented by DFDs at several levels, starting with a context 

diagram in which there is only one bubble, the system, surrounded by external entity 

rectangles (see Fig.  3.2 ). Successive levels break down each of the bubbles at the upper 

levels into subsidiary data fl ows. To systems engineers, a software DFD is similar to 

the functional fl ow diagram except for the absence of control fl ow.  

   ERD .     The ERD model defi nes the relationships among data objects. In its basic 

form, the entities are shown as rectangles and are connected by lines representing the 

relationship between them (shown inside a diamond). In addition to this basic ERD 

notation, the model can be used to represent hierarchical relationships and types of 

associations among objects. These models are extensively used in database design.  



     Figure 11.11.     Functional fl ow block diagram example.  
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     Figure 11.12.     Data fl ow diagram: library checkout.  
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   STD .     An STD models how the system behaves in response to external events. An 

STD shows the different states that the system passes through, the events that cause it 

to transition from one state to another, and the actions taken to effect the state 

transition.  

  Data Dictionary.     In addition to the above diagrams, an important modeling tool 

is an organized collection of the names and characteristics of all data, function, and 

control elements used in the system models. This is called the  “ data dictionary ”  and is 

a necessary ingredient in understanding the meaning of the diagrammatic representa-

tions. It is analogous to a hardware part and interface listing of sets of data and proce-

dure declarations, followed by the defi nition of a number of procedures that operate on 

the data. It is not diffi cult to trace the functional relationships, evidenced by function/

procedure calls, and thereby to construct a  “ function call tree ”  tracing the fl ow of func-

tions throughout the program.   

   OOAD  

 As discussed in Chapter  8 , OOAD takes a quite different approach to software archi-

tecting. It defi nes a program entity  “ class, ”  which encapsulates data and functions that 

operate on them, producing more self - contained, robust, and inherently more reusable 

program building blocks. Classes also have the property of  “ inheritance ”  to enable 

 “ child ”  classes to use all or some of the characteristics of their  “ parent ”  class with a 

resultant reduction of redundancy. An object is defi ned as an instance of a class. 

 The boundary between the steps of analysis and design in object - oriented (OO) 

methodology is not precisely defi ned by the practitioners but generally is where the 

process of understanding and experimentation changes to one of synthesizing the archi-

tectural form of the system. This step also involves some experimentation, but its 

objective is to produce a complete specifi cation of the software required to meet the 

system requirements. 

 The construction of the system architecture in OO methodology consists of arrang-

ing related classes into groups — called subsystems or packages — and of defi ning all of 

the relations/responsibilities within and among the groups. 

 OO methodology has been especially effective in many modern information 

systems that are largely transactional. In such programs as inventory management, 

fi nancial management, airline reservation systems, and many others, the process is 

largely the manipulation of objects, physical or numerical. OO methods are not as well 

suited for primarily algorithmic and computational programs. 

  Modeling and Functional Decomposition.     Object - oriented design (OOD) 

also has the advantage of using a precisely defi ned and comprehensive modeling 

language — the Unifi ed Modeling Language (UML). This provides a powerful tool for all 

stages of program development. The characteristics of UML are described in Chapter  8 . 

 A shortcoming of the OO methodology as commonly practiced is that it does not 

follow a basic systems engineering principle — that of managing complexity by parti-

tioning the system into a hierarchy of loosely coupled subsystems and components. 
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This is accomplished by the systems engineering step of functional decomposition and 

allocation. By focusing on objects (things) rather than functions, OOD tends to build 

programs from the bottom - up rather than the top - down approach inherent in the systems 

engineering method. 

 OOD does have a structural element, the use case, which is basically a functional 

entity. As described above, use cases connect the system ’ s external interfaces (actors) 

with internal objects. The application of use cases to design the upper levels of the 

system architecture and introducing objects at lower levels may facilitate the applica-

tion of systems engineering principles to software system design. This approach is 

described in Rosenberg ’ s book,  Use Case Driven Object Modeling with UML .  

  Strengths of  UML .     The UML language combines the best ideas of the principal 

methodologists in the fi eld of OOAD. It is the only standardized, well - supported, and 

widely used software modeling methodology. It therefore serves as a high - level form 

of communicating software architectural information within and among organizations 

and individuals engaged in a development program. 

 Moreover, UML has been applied successfully in software - intensive systems proj-

ects. Portions of UML are also used regularly in systems engineering to assist in com-

municating concepts and in bridging the language gaps between engineers and users 

(e.g., use case diagrams) and between software and hardware engineers (e.g., commu-

nications diagrams). 

 A major strength of UML is the existence of commercial tools that support the 

construction and use of its repertoire of diagrams. In the process, these tools store all 

the information contained in the diagrams, including names, messages, relationships, 

attributes, methods (functions), and so on, as well as additional descriptive information. 

The result is an organized database, which is automatically checked for completeness, 

consistency, and redundancy. In addition, many of the tools have the property of con-

verting a set of diagrams into C +  +  or Java source code down to procedure headers. 

Many also provide a limited degree of reverse engineering — converting source code 

into one or several top - level UML diagrams. These capabilities can save a great deal 

of time in the design process.   

  Other Methodologies 

 The growing importance of software - dominated systems, and their inherent complexity 

and abstractness, has engendered a number of variants of structured and OO methodolo-

gies. Two of the more noteworthy ones are briefl y discussed below. 

  Robustness Analysis.     This is an extension of OO methodology that serves as a 

link between OO analysis (what) and design (how). It classifi es objects into three types: 

  1.     boundary objects, which link external objects (actors) with the system;  

  2.     entity objects, which embody the principal objects that contain data and perform 

services (functions); and  

  3.     control objects, which direct the interaction among boundary and entity objects.    
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 Robustness analysis creates a robustness diagram for each UML use case, in which the 

objects involved in the processing of the use case are classifi ed as boundary and entity 

objects and are linked by control objects defi ned for the purpose. An example of a 

robustness diagram for the checkout use case for an automated library is shown in 

Figure  11.13 . It is seen to resemble a functional fl ow diagram and to be easily 

understandable.   

 In the process of preliminary design, the robustness diagram is transformed into 

class, sequence, and other standard UML diagrams. Control objects may remain as 

controller types, or their functionality may be absorbed into methods of the other 

objects. To a systems engineer, robustness analysis serves as an excellent introduction 

to OOAD.  

  Function - Class Decomposition ( FCD ).     This methodology, referred to as FCD, 

is a hybrid method that combines structured analysis with OO methodology. It is aimed 

at the top - down decomposition of complex systems into a hierarchy of functional sub-

systems and components, while at the same time identifying objects associated with 

each unit. 

     Figure 11.13.     Robustness diagram: library checkout.  
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 As previously noted, conventional OO methodology tends to design a system from 

the bottom - up and has little guidance on how to group objects into packages. It is said 

to lead to a  “ fl at ”  modular organization. The FCD method seeks to provide a top - down 

approach to system partitioning by using functional decomposition to defi ne a hierarchi-

cal architecture into which objects are integrated. In so doing, it introduces the impor-

tant systems engineering principle of functional decomposition and allocation into OO 

software system design. 

 FCD uses an iterative approach to partition successively lower levels of the system 

while at the same time also adding such objects as turn out to be needed for the lower -

 level functions. UML class diagrams are introduced after the fi rst several levels are 

decomposed. The developers of the FCD method have demonstrated its successful use 

on a number of large system developments.    

   11.5    SOFTWARE ENGINEERING DEVELOPMENT: 
CODING AND UNIT TEST 

 The process of software engineering development consists of implementing the archi-

tectural design of system components, developed in the concept development stage, 

into an operational software that can control a processor to perform the desired system 

functions. The principal steps in this process and their systems engineering content are 

outlined below. 

  Program Structure 

 Software has been seen to be embodied in units called computer programs, each con-

sisting of a set of instructions. 

  Program Building Blocks.     A computer program may be considered to consist 

of several types of subdivisions or building blocks. In descending order of size, the 

subdivisions of a computer program and their common names are as follows: 

  1.     A  “ module ”  or  “ package ”  constitutes a major subdivision of the overall program, 

performing one or more program activities. A medium to large program will 

typically consist of from several to tens or hundreds of modules.  

  2.     In OO programs, a class is a unit composed of a set of  “ attributes ”  (data ele-

ments) combined with a set of associated  “ methods ”  or  “ services ”  (functions). 

An object is an instance of a class.  

  3.     A function is a set of instructions that performs operations on data and controls 

the processing fl ow among related functions. A  “ utility ”  or  “ library function ”  

is a commonly used transform (e.g., trigonometric function) that is supplied 

with an operating system.  

  4.     A  “ control structure ”  is a set of instructions that controls the order in which 

they are executed. The four types of control structures are the following:  
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  (a)     Sequence:     a series of instructions;  

  (b)     Conditional Branch:      if  (condition)  then  (operation 1),  else  (operation 2  );  

  (c)     Loop:      do while  (condition) or  do until  (condition); and  

  (d)     Multiple Branch:      case  (key 1): (operation 1)  …  (key  n ) (operation  n ).    

  5.     An  “ instruction ”  is a  “ declarative ”  or  “ executable ”  order to the computer, com-

posed of language key words, symbols, and names of data and functions.  

  6.     A language key word, symbol, or name of a data element or function.    

 Finally, a  “ data structure ”  is a defi nition of a composite combination of related data 

elements, such as a  “ record, ”   “ array, ”  or  “ linked list. ”  

 As noted previously, software has no commonly occurring building blocks com-

parable to standard hardware parts and subcomponents such as pumps, motors, digital 

memory chips, cabinets, and a host of others that simplify designing and building 

production hardware. With few exceptions, software components are custom designed 

and built.  

  Program Design Language ( PDL ).     A useful method for representing software 

designs produced by the conventional structured analysis and design methodology is 

PDL, sometimes called  “ structured English. ”  This consists of high - level instructions 

formatted with control structures like an actual computer program, but consists of 

textual statements rather than programming language key words and phrases. PDL 

produces a program listing that can be readily understood by any software engineer and 

can be translated more or less directly into executable source codes.  

   OOD  Representation.     It was seen that OOD produces a set of diagrams and 

descriptive material, including defi ned objects that constitute intermediate program 

building blocks. Through the use of a UML support tool, the design information can 

be automatically converted into the architecture of the computer program.   

  Programming Languages 

 The choice of programming language is one of the major decisions in software design. 

It depends critically on the type of system — for example, whether software - embedded, 

software - intensive, or data - intensive computing, whether military or commercial, or 

whether real - time or interactive. While it is often constrained by the programming 

talents of the software designers, the nature of the application should have priority. A 

language may impact the maintainability, portability, readability, and a variety of other 

characteristics of a software product. 

 Except for very special applications, computer programs are written in a high - level 

language, where individual instructions typically perform a number of elementary 

computer operations. Table  11.5  lists a sample of past and current computer languages, 

their structural constituents, primary usage, and general description.   

  Fourth - Generation Language (4 GL ) and Special - Purpose Language.     4GLs 

are typically proprietary languages that provide higher - level methods to accomplish a 
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problem solution in a specifi c domain. These 4GLs are usually coupled with a database 

system and are related to use of the structured query language (SQL). A key feature of 

4GL tools is to bring the programming language environment as close to the natural 

language of the problem domain as possible and to provide interactive tools to create 

solutions. For example, the creation of a user input form on a workstation is carried 

out interactively with the programmer. The programmer enters the labels and identifi es 

allowable entry values and any restrictions, and then the  “ screen ”  becomes part of the 

application. 4GLs can speed up the development time for specifi c applications but are 

generally not portable across products from different vendors. 

 There are many specialty areas where very effi cient high - level languages have been 

developed. Such languages usually take on the jargon and constructs of the area they 

  TABLE 11.5.    Commonly Used Computer Languages 

   Language  

   Structural 

constituents     Primary usage     Description  

  Ada 95        •      Objects  

   •      Functions  

   •      Tasks  

   •      Packages     

      •      Military systems  

   •      Real - time systems     

  Designed expressly for 

embedded military systems, 

generally replaced C +  +   

  C    Functions        •      Operating systems  

   •      Hardware interfaces  

   •      Real - time applications  

   •      General purpose     

  A powerful, general - purpose 

language with signifi cant 

fl exibility  

  C +  +         •      Objects  

   •      Functions     

      •      Simulations  

   •      Real - time applications  

   •      Hardware interfaces  

   •      General purpose     

  A powerful, general - purpose 

language that implements 

object - oriented constructs  

  COBOL    Subroutines        •      Business and fi nancial 

applications     

  A wordy language that is 

somewhat self - documenting, 

the primary language for 

legacy business systems  

  FORTRAN        •      Subroutines  

   •      Functions     

      •      Scientifi c  

   •      Data analysis  

   •      Simulation  

   •      General purpose     

  A long - standing general -

 purpose language used 

mainly for computation -

 intensive programs  

  Java        •      Objects  

   •      Functions     

      •      Internal applications  

   •      General purpose     

  Derived from C +  + , an 

interpretative language that 

is platform independent  

  Visual 

Basic  

      •      Objects  

   •      Subroutines     

      •      Graphical applications  

   •      User interfaces     

  A language that allows 

graphical manipulation of 

subprogram objects  

  Assembly 

language  

      •      Subroutines  

   •      Macros     

      •      Hardware control  

   •      Drivers     

  A language for primitive 

operations, enables 

complete machine control  
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are intended to serve. The intent of these special - purpose languages is to mimic the 

problem domain where possible, and to decrease development time while increasing 

reliability. In many cases, the special - purpose nature of such languages may limit per-

formance for the sake of ease of use and development. When undertaking custom 

software development, the systems engineer should explore the availability and utility 

of languages in a required specialty area. Table  11.6  lists a number of special - purpose 

languages that have been developed for specifi c application domains, such as expert 

systems and Internet formatting.     

  Programming Support Tools 

 To support the effort of developing computer programs to implement software system 

design, a set of programming support tools and training in their effective use is essential. 

It is useful for the systems engineer and program manager to be knowledgeable about 

their uses and capabilities. 

  Editors.     Editors provide programmers with the means to enter and change source 

code and documentation. Editors enhance the entry of programming data for specifi c 

languages. Some editors can be tailored to help enforce programming style guides.  

  TABLE 11.6.    Some Special - Purpose Computer Languages 

   Language  

   Structural 

constituents     Primary usage     Description  

  Smalltalk 

and variants  

  Objects        •      Database applications  

   •      Simulations     

  The original object -

 oriented language  

  LISP    Lists        •      Artifi cial intelligence 

applications  

   •      Expert systems     

  A language based on 

operations of lists  

  Prolog        •      Objects  

   •      Relationships     

      •      Artifi cial intelligence 

applications  

   •      Expert systems     

  A powerful logic - based 

language with many 

variants  

  Perl        •      Statements  

   •      Functions     

      •      Data test manipulation  

   •      Report generation     

  A portable language 

with built - in text 

handling capabilities  

  HTML        •      Tags  

   •      Identifi ers  

   •      Test elements     

  Formatting and 

hyperlinking of 

documents  

  A document markup 

language with a unique 

but simple syntax  

  XML        •      Tags  

   •      Identifi ers  

   •      Strings/text     

      •      Formatting  

   •      Field identifi cation 

and linking     

  A textual data markup 

language with a unique 

complex syntax  

  PHP        •      Tags  

   •      Identifi ers  

   •      Strings/text  

   •      Commands     

  Server scripting    A document generation 

control language  
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  Debuggers.     Debuggers are programs that allow an application to be run in a 

controlled manner for testing and debugging purposes. There are two major types of 

debuggers: symbolic and numeric. The symbolic debugger allows the user to reference 

variable names and parameters in the language of the source code. A numeric debugger 

works at the assembly or machine code level. The computer instructions written in a 

programming language is called  “ source code. ”  To convert the source code produced 

by the programmers into executable code, several additional tools are required.  

  Compilers.     A compiler converts the source language into an intermediate format 

(often called object code) that is compatible for use by the hardware. In this process, 

the compiler detects syntax errors, omissions of data declarations, and many other 

programming errors, and identifi es the offending statements. 

 A compiler is specifi c to the source language and usually to the data processor. 

Compilers for a given language may not be compatible with each other. It is important 

to know what standards govern the compiler that will be used and to be aware of any 

issues associated with code portability. Some compilers come with their own program-

ming development environment that can increase programmer productivity and sim-

plify the program documentation process.  

  Linkers and Loaders.     A linker links several object code modules and libraries 

together to form a cohesive executable program. If there is a mixed language applica-

tion (C and Java are common), the combination of a compiler and linker that works on 

multiple languages is required. Tools that help manage the linking of complex applica-

tions are essential in the management and control of software development. A loader 

converts linked object code into an executable module that will run in the designated 

environment. It is often combined with the linker.   

  Software Prototyping 

 The section on the software system life cycle described several models that used the 

prototyping approach, either once or recursively. The objective of software prototyping 

is the same as it is in hardware systems, where it is used to reduce risks by constructing 

and testing immature subsystems or components. In software systems, prototyping is 

generally used even more frequently for three reasons: (1) requirements are poorly 

defi ned; (2) the functionality is unproven; and (3) building the prototype does not 

require bending metal, only writing code  . 

 Conventionally, a prototype is often taken to mean a test model that is to be dis-

carded after being used. In practice, the system prototype often becomes the fi rst step 

in an evolutionary development process. This strategy has the advantage of preserving 

the design features of the prototype after they have been improved as a result of user 

feedback, as well as building upon the initial programming effort. However, it requires 

that the prototype programs be engineered using a disciplined and well - planned and 

documented process. This places a limit on how fast the process can be. The choice of 

strategy must obviously be based on the particular requirements and circumstances of 

the project. Table  11.7  lists the typical characteristics of exploratory prototypes, which 
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are meant to be discarded, and of evolutionary prototypes, which are meant to be built 

upon.   

 The success of a prototyping effort is critically dependent on the realism and fi del-

ity of the test environment. If the test setup is not suffi ciently realistic and complete, 

the prototype tests are likely to be inadequate to validate the design approach and 

sometimes can be actually misleading. The design of the test should receive a compa-

rable degree of expert attention as the prototype design itself. As in hardware systems, 

this is a key area for systems engineering oversight.  

  Software Product Design 

 In typical hardware system developments, product design consists of the transformation 

of development prototype hardware components, which might be called  “ breadboards, ”  

into reliable, maintainable, and producible units. In this process, the functional perfor-

mance is preserved, while the physical embodiments may be changed quite radically. 

Much of this work is carried out by engineers particularly skilled in the problems of 

production, environmental packaging, materials, and their fabrication methods, with 

the objective that the fi nal product can be produced effi ciently and reliably. 

 In the software elements of the system, the product design process is very different. 

There is no  “ production ”  process in software. However, other aspects of a production 

article are still present. Maintainability continues to be a critical characteristic due to 

the numerous interfaces inherent within software. Repair by replacement of a failed 

component — a standby in hardware — does not work in software. An effective user 

interface is another crucial characteristic of operational software that is often not 

achieved in the initial version of the system. 

 Thus, considerable effort is usually required to make a working computer program 

into a software product usable by others. Fred Brooks has postulated this effort to be 

three times the effort required to develop a working program. However, there is no 

professional group in software engineering comparable to the hardware production and 

packaging engineer. Instead, the  “ productionization ”  must be incorporated into the 

software by the same designers responsible for its basic functionality. Such breadth of 

  TABLE 11.7.    Characteristics of Prototypes 

   Aspect     Exploratory     Evolutionary  

  Objective        •      Validate design  

   •      Explore requirements     

      •      Demonstrate  

   •      Evaluate     

  Nature of product        •      Algorithms  

   •      Concepts     

      •      Engineered  

   •      Programed     

  Environment    Virtual    Operational  

  Confi guration management    Informal    Formal  

  Testing    Partial    Rigorous  

  Ultimate use    Disposable    A foundation for further builds  
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expertise is often not present in the average software designer, with the result that 

maintainability of software products is frequently less than satisfactory. 

  Computer User Interfaces.     As noted previously, a critical part of engineering 

operational software systems is the design of the user interface. A computer interface 

should display information in a form giving the user a clear and well - organized picture 

of the system status so as to assist the decision process effectively and to provide simple 

and rapid modes of control. The selection of the appropriate interface mode, display 

format, interactive logic, and related factors most often requires prototype design and 

testing with representative users. 

 The most common control modes offered by computer interfaces are menu interac-

tions, command languages, and object manipulation. A summary of some comparative 

characteristics of these is given in Table  11.8 .   

 The most rapidly growing computer interface mode is that of object manipulation, 

the objects being usually referred to as  “ icons. ”  In addition to the characteristics listed 

in Table  11.8 , graphical presentations of information can often present relationships and 

can convey meaning better than text. They enable the user to visualize complex infor-

mation and form inferences that can lead to faster and more error - free decisions than 

can be achieved by other methods. GUIs are most commonly seen in PC operating 

systems such as Macintosh OS and Microsoft Windows. The power of the World Wide 

Web owes a great deal to its GUI formats. 

 To the systems engineer, GUIs offer both opportunities and challenges. The oppor-

tunities are in the virtually infi nite possibilities of presenting information to the user in 

a highly enlightening and intuitive form. The challenges come from the same source, 

namely, the sheer number of choices that tempt the designer to continue to optimize, 

unrestrained by an inherent limit. Since GUIs involve a complex software design, there 

is a risk of cost and schedule impact if the systems engineer is not alert to this hazard.  

  Advanced Modes.     In designing user interfaces for computer - controlled systems, 

the rapidly advancing technology in this area makes it necessary to consider less 

  TABLE 11.8.    Comparison of Computer Interface Modes 

   Mode     Description     Advantages     Disadvantages  

  Menu interaction    Choice from a list 

of actions  

      •      User preference  

   •      Accurate     

      •      Limited choices  

   •      Limited speed     

  Command mode    Abbreviated 

action commands  

      •      Flexible  

   •      Fast     

      •      Long training  

   •      Subject to errors     

  Object manipulation    Click or drag icon        •      Intuitive  

   •      Accurate     

      •      Moderate fl exibility  

   •      Moderate speed     

  Graphical user 

interface (GUI)  

  Click graphical 

buttons  

  Visual Basic and 

Java support  

      •      Moderate fl exibility  

   •      Moderate speed     

  Touch screen and 

character recognition  

  Touch or write on 

screen  

      •      Simple  

   •      Flexible     

  Easy to make errors  
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conventional modes that offer special advantages. Three examples are briefl y described 

below: 

  1.     Voice Control.     Spoken commands processed by speech recognition software 

provide a form of rapid and easy input that leaves the hands free for other 

actions. Currently, reliable operation is somewhat limited to carefully enunci-

ated words selected from a fi xed vocabulary. Capabilities to understand sen-

tences are gradually being evolved.  

  2.     Visual Interaction.     Computer graphics are being used to aid decision makers 

by generating displays modeling the results of possible actions, enabling  “ what -

 if ”  simulations in real time. Visual interactive simulation (VIS) is an advanced 

form of visual interactive modeling (VIM).  

  3.     Virtual Reality.     A form of 3 - D interface in which the user wears stereo goggles 

and a headset. Head movements generate a simulated motion of the image cor-

responding to what the eyes would see in the virtual scene. Such displays are 

used for a growing variety of tasks, such as design of complex structures and 

pilot training. They are used in battlefi eld situations and games.      

  Unit Testing 

 The engineering design phase of system development begins with the engineering of 

the individual system components whose functional design has been defi ned and the 

technical approach validated in the previous phase. Before the resulting engineered 

component is ready to be integrated with the other system components, its performance 

and compatibility must be tested to ensure that they comply with requirements. In 

software development, this test phase is called  “ unit testing ”  and is focused on each 

individual software component. 

 Unit tests are generally performed as  “ white box ”  tests, namely, those based on 

the known confi guration of the component. Such tests deliberately exercise the critical 

parts of the design, such as complex control structures, external and internal interfaces, 

timing or synchronization constraints, and so on. 

 A compensating characteristic of software for the added testing problems is that 

the test equipment itself is almost wholly software and can usually be designed and 

built correspondingly quickly. However, the effort of test design must be as carefully 

planned and executed as is the system design. 

 Unit tests for a given component or major module consist usually of a series of 

test cases, each designed to test a control path, a data structure, a complex algorithm, 

a timing constraint, a critical interface, or some combination of these. Test cases should 

be designed to test each function that the unit is required to perform. Since there are 

typically too many paths to test them all, the selection of test cases requires systems 

engineering judgment. 

 Errors uncovered in unit testing should be documented and decisions made as to 

when and how they should be corrected. Any corrective changes must be carefully 

considered before deciding which previous test cases should be repeated.   
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   11.6    SOFTWARE INTEGRATION AND TEST 

 The subject of system integration and evaluation is discussed in detail in Chapter  13 , 

and the general techniques and strategies apply equally to the software components of 

software - embedded systems and to the software - intensive systems themselves. The 

discussion makes clear that this aspect of a system ’ s development process is critically 

important, that it must be carefully planned, expertly executed, and rigorously analyzed, 

and that the magnitude of the effort required is a large fraction of the entire develop-

ment effort. 

 At the system level, the test objectives and strategies of software - dominated 

systems are similar to those described in Chapter  13 . At the software component level, 

it is necessary to use testing approaches more nearly designed to test software units. 

The balance of this chapter is devoted to methods of integration and testing complex 

software programs and software - intensive systems. 

 The objectives of testing hardware components and subsystems are many — from 

reducing technical and programmatic risks to verifying specifi cations. Additional objec-

tives related to politics, marketing, and communications are also part of a system test 

program. At the lower element level, however, the objectives of testing hardware and 

software converge. 

 For software, the objective of testing generally falls into a single category: verifi ca-

tion or validation of the software. Moreover, the general method to accomplish this 

objective is to discover and identify all instances where the program fails to perform 

its designated function. These range all the way from a case where it fails to meet an 

essential requirement to where a coding error causes it to crash. Contrary to popular 

belief, the most valuable test is one that fi nds a hitherto undiscovered error, rather than 

one in which the program happens to produce the expected result. Because of the large 

variety of input scenarios characteristic of the environment of a complex system, the 

latter result may simply mean that the program happens to handle the particular condi-

tions imposed in that test. 

  Verifi cation and Validation 

 Although the terms verifi cation and validation are not for software only, they apply 

equally to hardware and systems — they are often used more within a software context 

than any other.  Verifi cation  is simply the process of determining whether the software 

implements the functionality and features correctly and accurately. These functions and 

features are usually found in a software specifi cations description. In other words, veri-

fi cation determines whether we implemented the product right. 

  Validation , in contrast, is the process of determining whether the software satisfi es 

the users ’  or customers ’  needs. In other words, validation determines whether we imple-

mented the right product. 

 Testing is typically a primary method used to perform verifi cation and validation, 

though not the only method. However, a robust test program can satisfy a large portion 

of both evaluation types.  



394 SOFTWARE SYSTEMS ENGINEERING

  Differences in Testing Software 

 While the general objectives of testing software may be the same as testing hardware 

system elements, the basic differences between hardware and software described at the 

beginning of this chapter make software testing techniques and strategies considerably 

different. 

  Test Paths.     The unconstrained use of control structures (branches, loops, and 

switches) may create a multitude of possible logical paths through even a relatively 

small program. This makes it impractical to test all possible paths and forces the choice 

of a fi nite number of cases.  

  Interfaces.     The typically large number of interfaces between software modules, 

and their depth and limited visibility, makes it diffi cult to locate strategic test points 

and to identify the exact sources of discrepancies encountered during testing.  

  Abstraction.     The design descriptions of software are more abstract and are less 

intuitively understandable than hardware design documentation. This complicates test 

planning.  

  Changes.     The apparent ease of making changes in software requires correspond-

ingly more frequent retesting. Local changes often require repetition of system - level 

tests.  

  Failure Modes.     The catastrophic nature of many software errors has two critical 

consequences. One is the severity of the impact on system operation. The other is that 

prompt diagnosing of the source of the failure is often frustrated by the inoperability 

of the system.   

  Integration Testing 

 Integration testing is performed on a partially assembled system as system components 

are progressively linked together. The integration of a complex system is described in 

Chapter  13  to be a process that must be carefully planned and systematically executed. 

This is no less true with software systems. The principles and general methods dis-

cussed in that chapter apply equally.  

  Regression Testing 

 In an integration test sequence, the addition of each component creates new interactions 

among previously integrated components, which may change their behavior and 

invalidate the results of earlier successful tests. Regression testing is the process of 

repeating a selected fraction of such tests to ensure the discovery of newly created 

discrepancies. The more numerous, complex, and less visible interactions typical 
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of software make it necessary to resort to regression testing more often than for primar-

ily hardware systems. 

 A problem with regression testing is that unless it is used judiciously, the number 

of tests can grow beyond practical bounds. For this reason, the test strategy should 

include careful selectivity of the test cases to be repeated. A balance must be struck 

between insuffi cient and excessive rigor to achieve a usable yet affordable product; a 

systems engineering approach to planning and carrying out integration testing is 

required.  

  Validation Testing 

 Validation testing is intended to determine whether or not a system or a major subsystem 

performs the functions required to satisfy the operational objectives of the system. 

Validation testing consists of a series of test scenarios, which collectively exercise the 

critical system capabilities. 

 The planning of validation testing and design of test cases also demands a systems 

engineering approach. The same is true of the analysis of test results, which requires a 

thorough knowledge of system requirements and of the impact of any signifi cant devia-

tions from nominally required performance. At this stage of system development, deci-

sions on how to handle test discrepancies are critically important. The choice between 

embarking on a corrective change or seeking a deviation requires an intimate knowl-

edge of the impact of the decision on program cost, schedule, and system performance. 

Often the best course of action is to investigate the operation of the test equipment, 

which is itself occasionally at fault, and to repeat the test under more controlled 

conditions. 

  Black Box Testing.     The section on unit testing described white box testing as 

addressing the known design features of the component. Validation and other system -

 level tests consider the system under test as an input - to - output transfer function, without 

any assumption of its internal workings. As such, black box testing is complementary 

to white box testing and is likely to uncover interface errors, incorrect functions, ini-

tialization errors, as well as critical performance errors.  

  Alpha and Beta Testing.     For software products built for many users, as in the 

case of much commercial software, most producers have a number of potential custom-

ers operate the software before releasing the product for distribution. Alpha testing is 

typically conducted in a controlled environment at the developer ’ s site, often by 

employees of a customer. The developer records errors and other problems. Beta testing 

is conducted at a customer ’ s site without the developer ’ s presence. The customer 

records the perceived errors and operating problems and reports these to the developer. 

In both cases, the advantage to the customer is the opportunity to become acquainted 

with an advanced new product. The developer gains by avoiding the risk of fi elding 

a product containing user defi ciencies that would signifi cantly curtail the product ’ s 

marketability.    
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   11.7    SOFTWARE ENGINEERING MANAGEMENT 

 The basic elements of managing the development of complex systems were discussed 

in Chapter  5 , and specifi c aspects in Chapters  6  –  10 . This section deals with some 

aspects of the management of software - dominated systems that are particularly infl u-

enced by the distinguishing character of software, of which systems engineers should 

be cognizant. 

  Computer Tools for Software Engineering 

 Software support tools are software systems that assist the development and mainte-

nance of software programs. In any major software development effort, the availability 

and quality of the support tools may spell the difference between success and failure. 

Support tools are used in all aspects of the product life cycle and are becoming more 

widely available in the commercial marketplace. For these reasons, and the fact that 

tools for a major software development project require very signifi cant investment, the 

subject is a proper concern of systems engineers and project managers. 

 The more specifi c subject of programming support tools was described briefl y in 

Section  11.5 . The paragraphs below discuss the subject of integrated computer - aided 

software engineering   (CASE) tools and some of their typical applications. 

   CASE .     CASE is a collection of tools that are designed to standardize as much of 

the software development process as possible. Modern CASE tools revolve around 

graphics - oriented diagramming tools that let the designer defi ne the structure, program 

and data fl ow, modules or units, and other aspects of an intended software application. 

By the use of well - defi ned symbology, these tools provide the basis for the requirements 

analysis and design phases of the development cycle.  

  Requirements Management Tools.     The derivation, analysis, quantifi cation, 

revision, tracing, verifi cation, validation, and documentation of operational, functional, 

performance, and compatibility system requirements have been seen to extend through-

out the system life cycle. For a complex system development, it is a critical and exacting 

task that involves operational, contractual, as well as technical issues. Several computer -

 based tools are commercially available that assist in creating an organized database and 

provide automatic consistency checks, traceability, report preparation, and other valu-

able services.  

  Software Metrics Tools.     Several commercial tools and tool sets are available 

to produce automatically measures of various technical characteristics of computer 

programs, relating to their semantic structure and complexity. (See later section on 

metrics.)  

  Integrated Development Support Tools.     Several tools have become avail-

able that provide a set of compatible integrated support functions, and, in some cases, 

the capability of importing and exporting data from and to complementary tools from 
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other manufacturers. For example, some tools integrate project management, UML 

diagramming, requirements analysis, and metrics acquisition capabilities. Such tools 

simplify the problem of maintaining information consistency among the related domains 

of software development.  

  Software Confi guration Management ( CM ).     CM in system development 

was discussed at some length in Chapter  10 . Its importance increases with system 

complexity and criticality. In software systems, strict CM is the most critical activity 

during and after the engineering development stage. Some of the reasons for this may 

be inferred from the section on the differences between hardware and software: 

  1.     Software ’ s abstractness and lack of well - defi ned components makes it diffi cult 

to understand.  

  2.     Software has more interfaces; their penetration is deeper and hence is diffi cult 

to trace.  

  3.     Any change may propagate deep into the system.  

  4.     Any change may require retesting of the total system.  

  5.     When a software system fails, it often breaks down abruptly.  

  6.     The fl exibility of software renders making a software change deceptively 

easy.      

  Capability Maturity Model Integration   (CMMI) 

 The abstract nature of software, and its lack of inherent limits on functionality, com-

plexity, or size, makes software development projects considerably more diffi cult to 

manage than hardware projects of comparable scope. 

 Organizations whose business is to produce software - intensive systems or compo-

nents and to meet fi rm schedules and costs have often failed to meet their goals because 

their management practices were not suited to the special needs of software. To help 

such organizations produce successful products, the Carnegie Mellon University 

Software Engineering Institute (SEI), operating under government sponsorship, devised 

a model representing the capabilities that an organization should have to reach a given 

level of  “ maturity. ”  This is called a capability maturity model (CMM). A maturity model 

defi nes a set of maturity levels and prescribes a set of key process areas that character-

ize each level. This model provides a means for assessing a given organization ’ s capa-

bility maturity level through a defi ned set of measurements. CMM has been accepted 

as a standard of industry. It is related to but not equivalent to the International Standard 

ISO 9000 for software. 

 Software and systems engineering had separate maturity models until the SEI 

published the fi rst integrated CMM, combining several previous models into a single, 

integrated model known as CMMI. Today, CCMI addresses three specifi c areas of 

interest: (1) product and service development; (2) service establishment, management, 

and delivery; and (3) product and service acquisition. As of this writing, CMMI, Version 

1.2 is the latest version of the model. 
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 At its core, CMMI is a process improvement methodology. Understanding the 

current maturity of an organization ’ s processes and identifying the objective maturity 

level for the future are keys concepts behind the model. Therefore, one aspect of CMMI 

is the formal defi nition of maturity levels. These apply to organizations, not projects, 

although as projects grow in size and complexity, the lines of demarcation between an 

organization and a project can become blurred. 

  Capability Maturity Levels.     The CMM defi nes six capability and fi ve maturity 

levels as summarized in Tables  11.9  and  11.10 . The CMMI process is fully institutional-

ized. Key performance areas (KPAs  ) are defi ned for each level and are used in deter-

mining an organization ’ s maturity level. Each KPA is further defi ned by a set of goals 

  TABLE 11.9.    Capability Levels 

  Capability level 0: incomplete  

  An  “ incomplete process ”  is a process that either is not performed or partially performed. One 

or more of the specifi c goals of the process area are not satisfi ed, and no generic goals exist 

for this level since there is no reason to institutionalize a partially performed process.  

  Capability level 1: performed  

  A performed process is a process that satisfi es the specifi c goals of the process area. It 

supports and enables the work needed to produce work products.  

  Capability level 2: managed  

  A managed process is a performed (capability level 1) process that has the basic infrastructure 

in place to support the process. It is planned and executed in accordance with police; 

employs skilled people who have adequate resources to produce controlled outputs; involves 

relevant stake holders; is monitored, controlled, and reviewed; and is evaluated for adherence 

to its process description.  

  Capability level 3: defi ned  

  A defi ned process is a managed (capability level 2) process that is tailored from the 

organization ’ s set of standard processes according to the organization ’ s tailoring guidelines 

and contributes work products, measures, and other process improvement information to the 

organizational process assets.  

  Capability level 4: quantitatively managed  

  A quantitatively managed process is a defi ned (capability level) process that is controlled using 

statistical and other quantitative techniques. Quantitative objectives for quality and process 

performance are established and used as criteria in managing the process. Quality and process 

performance is understood in statistical terms and is managed throughout the life of the 

process.  

  Capability level 5: optimizing  

  An optimizing process is a quantitatively managed (capability level 4) process that is 

improved based on an understanding of the common causes of variation inherent in the 

process. The focus of an optimizing process is on continually improving the range of process 

performance through both incremental and innovative improvements.  
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and key practices that address these goals. SEI also defi nes key indicators that are 

designed to determine whether or not the KPA goals have been achieved. These are 

used in CMM assessments of an organization ’ s capability maturity level.   

 CMMI is widely used by industry, especially by large system and software devel-

opment organizations. The U.S. DoD   prescribes a demonstration of CMMI Level 3 

capability for major system acquisitions. However, the investment necessary to achieve 

CMMI certifi cation is considerable, and it is generally estimated that going from level 

1 to level 2 or from level 2 to level 3 requires from 1 to 2 years.  

  Systems Engineering Implications.     Examination of the KPAs reveals that 

they address a combination of project management, systems engineering, and process 

improvement issues. At level 2, the KPAs addressing requirements management 

and CM are clearly systems engineering responsibilities, while project planning, 

project tracking and oversight, and subcontract management are mainly project man-

agement functions. At level 3, software product engineering, intergroup coordination, 

and peer reviews are of direct concern to systems engineers. At higher levels, the focus 

is largely on process improvement based on quantitative measurements of process 

results.   

  TABLE 11.10.    Maturity Levels 

  Maturity level 1: initial  

  Processes are usually ad hoc and chaotic.  

  Maturity level 2: managed  

  The projects of the organization have ensured that processes are planned and executed in 

accordance with policy; the projects employ skilled people who have adequate resources to 

produce controlled outputs; involve relevant stakeholders; are monitored, controlled, and 

reviewed; and are evaluated for adherence to their process descriptions.  

  Maturity level 3: defi ned  

  Processes are well characterized and understood, and are described in standards, procedures, 

tools, and methods. The organization ’ s set of standard processes, is established and improved 

over time. These standard processes are used to establish consistency across the organization. 

Projects establish their defi ned processes by tailoring the organization ’ s set of standard 

processes according to tailoring guidelines.  

  Maturity level 4: quantitatively managed  

  The organization and projects establish quantitative objectives for quality and process 

performance and use them as criteria in managing processes. Quantitative objectives are 

based on the needs of the customer, end uses, organization, and process implementers. 

Quality and process performance is understood in statistical terms and is managed through 

cut the life of the processes.  

  Maturity level 5: optimizing  

  An organization continually improves its processes based on a quantitative understanding of 

the common causes of variation inherent in processes.  
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  Software Metrics 

 Metrics are quantitative measures used to assess progress, uncover problems, and 

provide a basis for improving a process or product. Software metrics can be classifi ed 

as project metrics, process metrics, or technical metrics. 

  Project Metrics.     Software project metrics are concerned with measures of the 

success of project management — stability of requirements, quality of project planning, 

adherence to project schedules, extent of task descriptions, quality of project reviews, 

and so on. These are basically the same as would be used on any comparable project 

to track management practices. A reason for greater attention to project metrics on a 

software development is the traditionally more diffi cult task of reliable planning and 

estimating new software tasks. Project metrics should be tailored to the formality, size, 

and other special characteristics of the project.  

  Process Metrics.     Software process metrics are fundamental to the practice of 

establishing process standards as described in the previous section on software capabil-

ity maturity assessment. Such standards identify a set of process areas that need to be 

addressed. They do not generally prescribe how they should be handled but require that 

appropriate practices be defi ned, documented, and tracked.  

  Technical Metrics.     Technical software metrics are focused largely on assessing 

the quality of the software product rather than on management or process. In that sense, 

they are an aid to design by identifying sections of software that are exceptionally 

convoluted, insuffi ciently modularized, diffi cult to test, inadequately commented, or 

otherwise less than of high quality. Such measures are useful for directly improving 

the product, and for refi ning design and programming practices that contributed to the 

defi ciencies. There are numerous commercial tools that are designed to track technical 

software metrics.  

  Management of Metrics.     Software metrics can be useful in developing good 

practices and in improving productivity and software quality. However, they can also 

be misused with negative results for the projects and the software staff. It is important 

to observe a number of principles in the management of metrics: 

  1.     The purpose of each metric must be clearly understood by all concerned to be 

benefi cial and worth the effort to collect and analyze.  

  2.     The metrics collected on a given project should be appropriate to its character 

and criticality.  

  3.     The results of metrics collection should be used primarily by the project to 

increase its probability of success.  

  4.     The results should never be used to threaten or appraise individuals or teams.  

  5.     There should be a transition period for the introduction of new metrics before 

the data collected are used.      
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  Future Outlook 

 The continuing growth of information systems is exerting severe pressure to improve 

software technology in order to keep pace with rising demands and to minimize risks 

of major software project failures, which have been all too frequent in recent years. 

Furthermore, the unreliability of much commercial software has frustrated many com-

puter users. Below are some trends that have the potential to meet some of the above 

needs. 

  Process Improvement.     The establishment and widespread adoption of software 

process standards, such as CMMI, have signifi cantly strengthened the discipline used 

in software design. They have introduced engineering practices and management over-

sight into a culture derived from science and art. For large, well - defi ned projects, these 

approaches, which have been found to reduce failure rates, vary signifi cantly. For 

smaller projects having loosely defi ned requirements, agile methods have attracted 

many adherents.  

  Programming Environment.     Computer - aided programming environments, 

such as that for Visual Basic, are likely to continue to improve, providing better automatic 

error checking, program visualization, database support, and other features designed to 

make programming faster and less prone to error. Integration of syntax checking, debug-

ging, and other programming support functions into the environment, along with more 

powerful user interfaces, is likely to continue to improve productivity and accuracy.  

  Integrated  CASE  Tools.     Requirements and CM tools are being integrated with 

modeling and other functions to facilitate the development, upgrading, and maintenance 

of large software programs. The integration of these tools enables the traceability of 

program modules to requirements and the management of the massive number of data 

elements present in complex systems capabilities. While the development of such tools 

is expensive, their growth and consequent increases in productivity are likely to con-

tinue, especially if more emphasis is placed on reducing the time and cost of becoming 

profi cient in their use.  

  Software Components.     Reuse of software components has long been a major 

goal, but its effective realization has been the exception rather than the rule. One such 

exception has been the availability of commercial GUI components, supporting features 

such as windowing and pull - down menus. With the proliferation of automated transac-

tional systems (fi nancial, travel, inventory, etc.), it is likely that numerous other stan-

dard components will be identifi ed and made commercially available. The gains in 

development cost and reliability in automated transactional systems are potentially 

very large.  

  Design Patterns.     A different approach to reusable components has been the 

development of design patterns. A seminal work on this subject by Gamma et al. defi nes 
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23 basic patterns of OO functions and describes an example of each. The patterns are 

subdivided into three classes: creational patterns that build various types of objects, 

structural patterns that operate on objects, and behavioral patterns that perform specifi ed 

functions. While this approach appears to hold great promise of creating versatile soft-

ware building blocks, it has thus far not been adopted by a signifi cant fraction of 

developers.  

  Software Systems Engineering.     Perhaps the most signifi cant advance in the 

development of software - dominated systems would come from the effective application 

of systems engineering principles and methods to software system design and engineer-

ing. Despite the many differences between the nature of software and hardware tech-

nologies, some avenues to narrowing this gap are being actively explored. The 

development of the CMMI by SEI, which addresses both systems engineering and 

software engineering in a common framework, may contribute to a more common 

outlook. However, real progress in this direction must involve education and extensions 

of current software methodologies to facilitate modular partitioning, clean interfaces, 

architectural visibility, and other basic features of well - designed systems. The continu-

ing demand for complex software - dominated systems may accelerate efforts to intro-

duce systems engineering methods into software development.    

   11.8    SUMMARY 

 The terms software engineering and software systems engineering are not synony-

mous, however. The former refers to the development and delivery of software 

products, stand - alone or embedded. The latter refers to the application of principles 

to the software engineering discipline. We defi ne software as having three major 

components: (1) instructions, also referred to as code; (2) data structures; and (3) 

documentation. 

  Coping with Complexity and Abstraction 

 The role of software has changed over the past 20 years — most modern systems are 

dominated by software. Therefore, software engineering has become a full part of 

system development.  

  Nature of Software Development 

 Software can be categorized as either 

  (a)     system software, providing services to other software;  

  (b)     embedded software, providing functions, services, or features within a larger 

system; or  

  (c)     application software, providing services as a stand - alone system.    
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 Systems that utilize software can be categorized in one of three ways: 

  1.     Software - Embedded Systems   are a hybrid combination of hardware and soft-

ware. Although predominantly hardware, these systems use software to control 

the action of hardware components. Examples are most vehicles, spacecraft, 

robotics, and military systems.  

  2.     Software - Intensive Systems   consist of computers and networks, controlled by 

software. These systems use software to perform virtually all of the systems ’  

functionality, including all automated complex information functionality. 

Examples are fi nancial management, airline reservations, and inventory 

control.  

  3.     Data - Intensive Computing Systems   are large - scale computing resources dedi-

cated to executing complex computational tasks. Examples are weather analysis 

and prediction centers, nuclear effects prediction systems, advanced informa-

tion decryption systems, and other computationally intensive operations.    

 Software has intrinsic differences from hardware, including 

   •      near - infi nite variability of software structural units  

   •      few commonly occurring software components;  

   •      software is assigned most critical functions;  

   •      interfaces are more numerous, deeper, and less visible; software functionality 

and size have almost no inherent limits; software is easily changeable;  

   •      simple software changes may require extensive testing; software often fails 

abruptly, without warning signs; and  

   •      software is abstract and diffi cult to visualize.     

  Software Development Life Cycle Models 

 The life cycles of software - dominated systems are generally similar to the systems 

engineering life cycle described in Chapter  4 . While there are a plethora of life cycle 

models, we can defi ne four basic types: 

  1.     Linear —   a sequence of steps, typically with feedback;  

  2.     Incremental —   a repetition of a sequence of steps to generate incremental capa-

bilities and functionality until the fi nal increment, which incorporates full 

capabilities;  

  3.     Evolutionary —   similar to incremental, except early increments are intended to 

provide functionality for experimentation, analysis, familiarization, and dem-

onstration. Later increments are infl uenced heavily from experience with early 

increments.  

  4.     Agile —   the typical steps for software development are combined in various 

forms to enable rapid yet robust development.     
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  Software Concept Development: Analysis and Design 

 Performance requirements for software - embedded systems are developed at the system 

level and should be verifi ed by software developers. 

 Performance requirements for software - intensive systems should be established 

with close interaction with customers/users and may need to be verifi ed by rapid pro-

totyping. They should not unreasonably stress software extensibility. 

 Software requirements are typically developed using four steps: elicitation from 

users, customers and stakeholders, analysis and negotiation with customers, documen-

tation, and validation. 

 Two prevailing methodologies for designing software systems are structured analy-

sis and design and OOAD. Structured analysis focuses on functional architecture, using 

functional decomposition, and defi nes program modules as the primary structural units. 

This methodology proceeds with top - down functional allocation. In contrast, OOAD 

focuses on  “ classes ”  of objects as program units and encapsulates data variables with 

operations. This methodology uses an iterative rather than a top - down development. 

 Other methodologies include robustness analysis, which focuses on initial OO 

architectural design, FCD, and combined structured and OO approaches. 

 UML supports all phases of OO development. UML provides 13 types of diagrams, 

presenting different views of the system, and is widely used. UML has been adopted 

as an industry standard.  

  Software Engineering Development: Coding and Unit Test 

 The engineering design phase of software development implements software architec-

tural design and the computer instructions to execute the prescribed functionality. The 

phase produces computer programs written in a high - level language (source code) and 

subjects each program unit to a  “ unit test ”  before acceptance. 

 The programming language must be suited to the type of software and compiler 

availability. It must conform with the design methodology and requires that staff expe-

rienced with the language be available. 

 Prototyping an iterative development comes in two forms: (1) purely exploratory 

and is to be discarded once its purpose is fulfi lled, and (2) evolutionary, and is to be 

built upon. In the latter case, high quality must be built in from the beginning. 

 Human – computer interfaces are critical elements in all software - intensive systems. 

These types of interfaces usually use interactive graphics formats and may include voice 

activation and other advanced techniques.  

  Software Integration and Test 

 Testing software systems involves many more test paths and interfaces than hardware 

and requires special test points for diagnosing failures and their sources. Testing often 

requires end - to - end system - level retesting after eliminating a failure. 

 Alpha and beta testing subject the new system to tests by the customer and expose 

user problems before wide product distribution.  
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  Software Engineering Management 

 CM for software - dominated systems is critical in that software is inherently complex 

and has numerous and deep interfaces. Since software is responsible for controlling 

some of the most critical system functions, software tends to be subject to frequent 

changes. 

 The CMMI establishes six levels of capability and fi ve levels of maturity for an 

organization. CMMI establishes KPAs for each level and provides a basis for assessing 

an organization ’ s overall systems and software engineering capability.   

  PROBLEMS 

    11.1     With reference to Figure  11.1 , list two specifi c examples of each of the 

blocks shown in the diagrams. For one case of each block, describe the kind 

of data that fl ows along the paths shown by the lines between the blocks.  

  11.2     Look up (if necessary) the principal  subcomponents  of the data processor 

(CPU) of a personal computer. Draw a block diagram of the subcomponents 

and their interconnections. Describe in your own words the functions of 

each subcomponent.  

  11.3     Extend the examples of the three types of software - dominated systems 

shown in Table  11.1  by listing two more examples of each type. Briefl y 

indicate why you placed each example into the selected category.  

  11.4     Using the example of an automated supermarket grocery inventory and 

management system, draw the system context diagram. Assume that the 

master - pricing database comes from a central offi ce. Neglect special dis-

counts for store card carriers.  

  11.5     For the same example, defi ne the functions performed by the automated 

grocery system in processing each individual grocery item. Differentiate 

between those carrying bar codes and those sold by weight.  

  11.6     Draw a functional fl ow diagram for the processing of a grocery item showing 

the two alternate branches mentioned in Problem 11.5.  

  11.7     Identify the objects involved in the above automated grocery system and 

their attributes. Draw an activity diagram corresponding to the processes 

described in Problem 11.6. 

 For Problems 11.8 – 11.12, suppose you have been asked to develop the 

software for an elevator system for a multistory building. The system will 

contain three elevators and will have fi ve fl oors and a basement - level 

parking garage.  

  11.8     Develop 20 – 25 functional and performance requirements for this software 

system. Please perform analysis on your list to ensure your fi nal list is 

robust, consistent, succinct, nonredundant, and precise.  

  11.9     (a)   Identify 8 – 12 top - level functions for this software system.  

 (b)    Draw an FFBD for this system using the functions in (a).  
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  11.10     (a)   Identify 8 – 12 classes for this software system. Each class should have 

a title, attributes, and operations.  

 (b)    Draw a class diagram showing the associations between the classes in 

(a).  

  11.11     (a) Identify the 8 – 12 top - level hardware components of the elevator 

system.  

 (b)    Identify the interfaces between the software and hardware components 

of this system in (a). Please construct a table with three columns. In the 

fi rst column, labeled  “ hardware component, ”  identify the component in 

which the software will need to interface. In the second column, labeled 

 “ input/output, ”  identify whether the interface is an input, an output, or 

both. In the third column, labeled  “ what is passed, ”  identify what is 

passed between the software and hardware.  

  11.12     Develop an operational test plan for this software system. The test plan 

should include a purpose, a description of no more than fi ve tests, 

and a linkage between each test and the requirement(s) that are being 

tested.     

  FURTHER READING 

    G.   Booch  ,   J.   Rumbaugh  , and   J.   Jacobson  .  The Unifi ed Modeling Language User Guide .  Addison -

 Wesley ,  1999 .  

    F. P.   Brooks ,  Jr.    The Mythical Man Month — Essays on Software Engineering .  Addison - Wesley , 

 1995 , Chapter 8.  

    B.   Bruegge   and   A. H.   Dutoit  .  Object - Oriented Software Engineering .  Prentice Hall ,  2000 , 

Chapters 1 – 7.  

    P.   DeGrace   and   L. H.   Stahl  .  Wicked Problems, Righteous Solutions .  Yourdon Press, Prentice Hall , 

 1990 , Chapter 3.  

    A.   Denis  ,   B. H.   Wixom  , and   R. M.   Roth  .  Systems Analysis Design ,  Third Edition .  John Wiley  &  

Sons, Inc. ,  2006 , Chapters 4, 6, and 8 – 10.    

    G.   Eisner  .  Computer - Aided Systems Engineering .  Prentice Hall ,  1988 , Chapters 8 and 14.  

    H.   Eisner  .  Essentials of Project and Systems Engineering Management .  John Wiley  &  Sons, Inc. , 

 1997 , Chapters 10 and 12.    

    E.   Gamma  ,   R.   Helm  ,   R.   Johnson  , and   J.   Dlissides  .  Design Patterns .  Addison - Wesley ,  1995 .  

    K. E.   Kendall   and   J. E.   Kendall  .  Systems Analysis and Design ,  Sixth Edition .  Prentice Hall ,  2005 , 

Chapters 6, 7, 14, and 18.  

    M.   Maier   and   E.   Rechtin  .  The Art of Systems Architecting .  CRC Press ,  2009 , Chapter 6.  

    R. S.   Pressman  .  Software Engineering: A Practitioner ’ s Approach ,  Sixth Edition .  McGraw - Hill , 

 2005 , Chapters 20 – 24.  

    E.   Rechtin  .  Systems Architecting: Creating and Building Complex Systems .  Prentice Hall ,  1991 , 

Chapter 5.  

    N. B.   Reilly  .  Successful Systems for Engineers and Managers .  Van Nostrand Reinhold ,  1993 , 

Chapters 13 and 14.  



COPING WITH COMPLEXITY AND ABSTRACTION 407

    D.   Rosenberg  .  Use Case Driven Object Modeling with UML .  Addison - Wesley ,  1999 , Chapters 

1 – 4.  

    J.   Rumbaugh  ,   M.   Blaha  ,   W.   Premerlani  ,   F.   Eddy  , and   W.   Lorenson  .  Object - Oriented Modeling 

and Design .  Prentice Hall ,  1991 , Chapters 1 – 3.  

   Sommerville .  Software Engineering ,  Eighth Edition .  Addison - Wesley ,  2007 , Chapters 2, 4, 6, 7, 

and 11.   

  

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

  

 





409

    12.1    IMPLEMENTING THE SYSTEM BUILDING BLOCKS 

 The engineering design phase is that part of the development of a new system that is 

concerned with designing all the component parts so that they will fi t together as an 

operating whole that meets the system operational requirements. It is an intensive and 

highly organized effort, focused on designing components that are reliable, maintain-

able, and safe under all conditions to which the system is likely to be subjected, and 

that are producible within established cost and schedule goals. While the general design 

approach required to meet the above objectives presumably has been established in 

previous phases, the engineering design phase is where detailed internal and external 

interfaces are established and the design is fi rst fully implemented in hardware and 

software. 

 It was noted in Chapter  10  that during the advanced development phase, any previ-

ously unproven components should be further developed to the point where all signifi -

cant issues regarding their functional and physical performance have been resolved. 

However, experience in developing complex new systems has shown that some 
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 “ unknown unknowns ”  (unk - unks) almost always escape detection until later, revealing 

themselves during component design and integration. Such eventualities should there-

fore be anticipated in contingency planning for the engineering design phase. 

  Place of the Engineering Design Phase in the System Life Cycle 

 As shown in Figure  12.1 , the place of the engineering design phase in the systems 

engineering life cycle follows the advanced development phase and precedes the inte-

gration and evaluation phases. Its inputs from the advanced development phase are seen 

to be system design specifi cations and a validated development model of the system. 

Other inputs, not shown, include applicable commercial components and parts, and the 

design tools and test facilities that will be employed during this phase. Its outputs to 

the integration and evaluation phase are detailed test and evaluation plans and a com-

plete set of fully engineered and tested components. Program management planning 

documents, such as the work breakdown structure (WBS) and the systems engineering 

management plan (SEMP), as well as the test and evaluation master plan (TEMP), or 

their equivalents, are utilized and updated in this process. Figure  12.2  shows that the 

integration and evaluation phase usually begins well before the end of engineering 

design to accommodate test planning, test equipment design, and related activities.    

  Design Materialization Status 

 The change in system materialization status during the engineering design phase is 

schematically shown in Table  12.1 . It is seen that the actions  “ visualize, ”   “ defi ne, ”  and 

 “ validate ”  in previous phases are replaced by the more decisive terms  “ design, ”   “ make, ”  

and  “ test, ”  representing implementation decisions rather than tentative proposals. This 

is characteristic of the fact that in this phase, the conceptual and developmental results 

of the previous phases fi nally come together in a unifi ed and detailed system design.   

 At the beginning of the engineering design phase, the design maturity of different 

components is likely to vary signifi cantly; and these variations will be refl ected in dif-

     Figure 12.1.     Engineering design phase in a system life cycle.  
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     Figure 12.2.     Engineering design phase in relation to integration and evaluation.  

Engineering

Design
Functional
Analysis

Conceptual
Design

Component
Test

Deficiency
Correction

Phase

Test Requirements Test Deficiencies

Integration

and Evaluation
System Integration

and Evaluation

Test
Planning

Phase

ferences in component materialization status. For example, some components that were 

derived from a predecessor system may have been fully engineered and tested in sub-

stantially the same confi guration as that selected for the new system, while others that 

utilize new technology or innovative functionality may have been brought only to the 

stage of experimental prototypes. However, by the end of the engineering design phase, 

such initial variations in component engineering status must be eliminated and all 

components fully  “ materialized ”  in terms of detailed hardware and software design and 

construction. 

 A primary effort in this phase is the defi nition of the interfaces and interactions 

among internal components and with external entities. Experience has shown that 

aggressive technical leadership by systems engineering is essential for the expeditious 

resolution of any interface incompatibilities that are brought to light during engineering 

design.  

  Systems Engineering Method in Engineering Design 

 The principal activities in each of the four steps in the systems engineering method (see 

Chapter  4 ) during engineering design are briefl y stated below and are illustrated in 

Figure  12.3 . Steps 3 and 4 will constitute the bulk of the effort in this phase. 

  1.     Requirements Analysis.     Typical activities include  

   •      analyzing system design requirements for consistency and completeness and  

   •      identifying requirements for all external and internal interactions and 

interfaces.    

  2.     Functional Analysis and Design (Functional Defi nition).     Typical activities 

include 

    •      analyzing component interactions and interfaces and identifying design, inte-

gration, and test issues;  

   •      analyzing detailed user interaction modes; and  

   •      designing and prototyping user interfaces.    



  TABLE 12.1.    Status of System Materialization at the Engineering Design Phase 

   Phase      Concept development      Engineering development  

  Level    Needs analysis    Concept exploration    Concept defi nition    Advanced 

development  

  Engineering 

design  

  Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, and 

synthesize concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne requirements 

and ensure feasibility  

  Defi ne functional and 

physical architecture  

  Validate 

subsystems  

      Integrate and test  

  Component            Allocate functions to 

components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

4
1
2
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     Figure 12.3.     Engineering design phase fl ow diagram.  
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  3.     Component Design (Physical Defi nition).     Typical activities include 

    •      laying out preliminary designs of all hardware and software components and 

interfaces,  

   •      implementing detailed hardware designs and software code after review, and  

   •      building prototype versions of engineered components.    
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  4.     Design Validation.     Typical activities include 

    •      conducting test and evaluation of engineered components with respect to 

function, interfaces, reliability, and producibility;  

   •      correcting defi ciencies; and  

   •      documenting product design.          

   12.2    REQUIREMENTS ANALYSIS 

 In the advanced development phase, the system functional specifi cations were trans-

lated into a set of system design specifi cations that defi ned the design approach selected 

and validated as fully addressing the system operational objectives. As in previous 

phases of the development process, these specifi cations must now be analyzed again 

for relevance, completeness, and consistency to constitute a sound basis for full - scale 

engineering. In particular, the analysis must consider any changes occurring due to the 

passage of time or external events. 

  System Design Requirements 

 It will be recalled that the focus of the advanced development phase was on those 

system components that required further maturation in terms of analysis, design, devel-

opment, and/or testing to demonstrate fully their validity. These are the components 

that represent the greatest development risks, and hence their design approach must be 

carefully analyzed to ensure that the residual risks have been reduced to manageable 

levels. For example, components with initially ill - defi ned external interface descriptions 

must be reexamined to resolve any remaining uncertainties. 

 Components that were identifi ed as involving some risk, but not to the extent of 

requiring special development effort, and previously proven components that will be 

required to perform at higher levels or in more stressful environments must be particu-

larly scrutinized at this stage. The results of these analyses should be inputs to the 

planning of risk management during engineering design. (See section on risk manage-

ment in Chapter  5 .)  

  External System Interface Requirements 

 Since the whole system has not been physically assembled in previous phases, it is 

likely that the design of its interfaces with the environment has been considered less 

than rigorously. Hence, a comprehensive analysis of system - level environmental inter-

faces must be carried out prior to the initiation of engineering design. 

  User Interfaces.     As noted previously, the functional interactions and physical 

interfaces of the system with the user(s) are not only often critical but also diffi cult to 

defi ne adequately. This situation is aggravated by the fact that potential users of a new 

system do not really know how they can best operate it before they fi rst physically 

interact with it. Thus, except for very simple human – machine interfaces, a prototype 
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model of the user consoles, displays, and controls should be constructed at the earliest 

practicable time to enable the user(s) to examine various responses to system inputs 

and to experiment with alternative interface designs. If this has not been done ade-

quately in the advanced development phase, it must be done early in engineering design. 

 The user interfaces related to system maintenance involve fault isolation, compo-

nent replacement, logistics, and a host of related issues. Interface design is often given 

only cursory attention prior to the engineering design phase, an omission that is likely 

to lead to the need for a signifi cant redesign of previously defi ned component 

interfaces.  

  Environmental Interfaces.     In defi ning external interfaces subject to shock, 

vibration, extreme temperatures, and other potentially damaging environments, it is 

essential to again consider all stages of a system ’ s life, including production, shipment, 

storage, installation, operation, and maintenance, and to anticipate all of the interactions 

with the environment during each step. Interface elements such as seals, joints, radiation 

shields, insulators, shock mounts, and so on, should be reviewed and redefi ned if neces-

sary to ensure their adequacy in the fi nal design. Some of the above subjects are treated 

more fully in a later section of this chapter, which discusses interface design.   

  Assembly and Installation Requirements 

 In addition to the usual design requirements, the system design must also take into 

consideration all special requirements for system assembly and installation at the opera-

tional site. This is especially important for large systems that must be shipped in sec-

tions. An example is a shipboard system, subsystems of which are to be installed below 

decks in an existing ship. In this case, the size of hatches and passageways will dictate 

the largest object that can pass through. System installation aboard aircraft is another 

example. Even buildings have load and size limits on freight elevators. In any case, 

when on - site assembly is required, the system design must consider where the system 

will be  “ cut ”  and how it will be reassembled. If physical mating is implemented by 

bolts, for example, then the location and size of these fasteners must take into account 

the size and position of the wrenches needed for assembly. Many developers have been 

embarrassed when they realize there is not enough elbowroom to perform a prescribed 

assembly procedure. 

 Another on - site problem can occur when the assembly process is found to be dif-

fi cult and slow to perform. A classic example concerns a suspended walkway that was 

installed in a large Midwestern hotel lobby. During a large evening dance party, a 

number of people were dancing on the elevated walkway, causing it to collapse with 

attendant loss of life. The investigation of this accident revealed that a design change 

had been made at the assembly site because the originally specifi ed long, threaded 

supporting rods were diffi cult to install. A so - called trivial design change was made to 

permit easier assembly, but it increased the load on the rod structure by a factor of two. 

The fault was attributed to those involved in the design change. However, it can be 

argued that if the original designers had given more attention to the diffi cult assembly 

process, this problem and the resulting accident might not have occurred.  
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  Risk Mitigation 

 As in the previous chapters, a necessary step in the planning of the development and 

engineering process is the consideration of program risk. In the advanced development 

phase, risk assessment was used to refer to the process of identifying components that 

required further maturation to eliminate or greatly reduce the potential engineering 

problems inherent in the application of new technology or complex functionality. By 

the beginning of the engineering design phase, those risks should have been resolved 

through further development. This in turn should have reduced the remaining program 

risks to a level that could be tolerated through the application of risk management, a 

process that identifi es and seeks to mitigate (abate or minimize) the likelihood and 

impact of residual risks. Methods for mitigating risks are discussed briefl y in the section 

on component design (Section  12.4 ) and in greater detail in Chapter  5 .  

  Critical Design Requirements 

 To the extent that previous analysis has shown that a particular requirement places 

undue stress on the engineering design, this is the last opportunity seriously to explore 

the possibility of its relaxation and thus to reduce the risk of an unsuccessful design.   

   12.3    FUNCTIONAL ANALYSIS AND DESIGN 

 The principal focus of the engineering design phase is on the design of the system 

components. Insofar as the functional defi nition of the components is concerned, it may 

be assumed that the primary allocation of functions has been accomplished in previous 

phases, but that the defi nition of their mutual interactions has not been fi nalized. A 

primary objective of the functional analysis and design step is to defi nitize the interac-

tions of components with one another and with the system environment in such a way 

as to maximize their mutual independence, and thus to facilitate their acquisition, inte-

gration, and maintenance and the ease of future system upgrading. 

 This section stresses three important areas of functional analysis and design: 

  1.     Modular Confi guration:     simplifying interactions among system components 

and with the environment  

  2.     Software Design:     defi ning a modular software architecture  

  3.     User Interfaces:     defi ning and demonstrating effective human – machine 

interfaces.    

  Modular Confi guration 

 The single most important objective of the functional analysis and design step in the 

engineering design phase is to defi ne the boundaries between the components and 

subsystems so as to minimize their interactions (i.e., their dependence on one another). 

This is essential to ensure that 



FUNCTIONAL ANALYSIS AND DESIGN 417

  1.     each component can be specifi ed, developed, designed, manufactured, and 

tested as a self - contained unit;  

  2.     when assembled with the other components, a component will perform its func-

tions properly and without further adjustment;  

  3.     a faulty component can be replaced directly by an equivalent interchangeable 

component; and  

  4.     a component can be upgraded internally without affecting the design of other 

components.    

 A system design with the above characteristics is referred to as  “ modular ”  or 

 “ sectionalized. ”  These characteristics apply to both hardware and software components. 

They depend on physical as well as functional interactions, but the latter are fundamen-

tal and must be defi ned before the physical interfaces can be established. 

  Functional Elements.     The system functional elements defi ned in Chapter  3  are 

examples of highly modular system building blocks. These building blocks were 

selected using three criteria: 

  1.     Signifi cance:     each functional element performs a distinct and signifi cant func-

tion, typically involving several elementary functions.  

  2.     Singularity:     each functional element falls largely within the technical scope of 

a single engineering discipline.  

  3.     Commonality:     the function performed by each element is found in a wide 

variety of system types.    

 Each of the functional elements was seen to be the functional embodiment of a 

type of component element (see Table  3.3 ), which is a commonly occurring building 

block of modern systems. Their characteristic of  “ commonality ”  results from the fact 

that each is highly modular in function and construction. It follows that the functional 

elements of a new system should use standard building blocks whenever practicable.   

  Software Design 

 As noted previously, the development and engineering of software components are 

suffi ciently different from that of hardware components that a separate chapter is 

devoted to the special systems engineering problems and solutions of software (Chapter 

 11 ). The paragraphs below contain a few selected subjects relevant to this chapter. 

  Prototype Software.     The previous chapters noted that the extensive use of 

software throughout most modern complex systems usually makes it necessary to 

design and test many software components in prototype form during the advanced 

development phase. Common instances of this are found in embedded real - time pro-

grams and user interfaces. The existence of such prototype software at the beginning 
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of the engineering design phase presents the problem of whether or not to reuse it in 

the engineered system and, if so, just how it should be adapted for this purpose. 

 Redoing the prototype software from scratch can be extremely costly. However, 

its reuse requires careful assessment and revision, where necessary. The following 

conditions are necessary for successful reuse: 

  1.     The prototype software must be of high quality, that is, designed and built to 

the same standards that are established for the engineered version (except 

perhaps for the degree of formal reviews and documentation).  

  2.     Changes in requirements must be limited.  

  3.     The software should be either functionally complete or compatible with directly 

related software.    

 Given the above conditions, modern computer - aided software engineering (CASE) 

tools are available to facilitate the necessary analysis, modifi cation, and documentation 

to integrate the prototype software into the engineered system.  

  Software Methodologies.     Chapter  11  identifi es many of the key aspects of 

software engineering that are of direct interest to systems engineers. Two principal 

methodologies are used in software analysis and design:  structured analysis  and  design 

and object - oriented analyses and design . The former and more mature methodology is 

organized around functional units generally called procedures or functions and is 

assembled in modules or packages. In good structured design, data values are passed 

between procedures by means of calling parameters, with a minimum of externally 

addressed (global) data. Object - oriented analysis (OOA) and object - oriented design 

(OOD) are more recent methods of software system development and are widely 

believed to be inherently superior in managing complexity, which is a critical problem 

in all large, information - rich systems. Using object - oriented methods in developing 

hardware and combined hardware/software systems has become more commonplace 

and is usually referred to as object - oriented systems engineering (OOSE). The particu-

lars of this method will be described below in a separate section. Accordingly, today ’ s 

systems engineers need to know the basic elements and capabilities of these methodolo-

gies in order to evaluate their appropriate place in system development.   

  User Interface Design 

 Among the most critical elements in complex systems are those concerned with the 

control of the system by the user — analogous to the steering wheel, accelerator, shift 

lever, and brakes in an automobile. In system terminology, those elements are collec-

tively referred to as the  “ user interface. ”  Their criticality is due to the essential role 

they play in the effective operation of most systems, and to the inherent problem of 

matching a specifi c system design to the widely variable characteristics of the many 

different human operators who will use the system during its lifetime. If several indi-

viduals operate different parts of the system simultaneously, their mutual interactions 

present additional design issues. 
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 The principal elements involved in user control include 

  1.     Displays:     presentations provided to the user containing information on system 

status to indicate need for possible user action. They may be dials, words, 

numbers, or graphics appearing on a display screen, or a printout, sound, or 

other signals.  

  2.     User Reaction:     user ’ s interpretation of the display based on knowledge about 

system operation and control, and consequent decisions on the action to be 

taken.  

  3.     User Command:     user ’ s action to cause the system to change its state or behav-

ior to that desired. It may be movement of a control lever, selection of an item 

from a displayed menu, a typed command, or another form of signal to which 

the system is designed to respond.  

  4.     Command Actuator:     device designed to translate the user ’ s action into a system 

response. This may be a direct mechanical or electrical link or, in automated 

systems, a computer that interprets the user command and activates the appro-

priate response devices.    

 The design of a user – system interface is truly a multidisciplinary problem, as the 

above list implies, and hence is the domain of systems engineering. Even human factors 

engineering, considered to be a discipline in itself, is actually fragmented into special-

ties in terms of its sensory and cognitive aspects. While much research has been carried 

out, quantitative data on which to base engineering design are sparse. Thus, each new 

system presents problems peculiar to itself and often requires experimentation to defi ne 

its interface requirements. 

 The increasing use of computer automation in modern systems has brought with 

it the computer - driven display and controls as the preferred user interface medium. A 

computer interface has the facility to display information in a form processed to give 

the user a clearer and better organized picture of the system status, to simplify the 

decision process, and to offer more simple and easier modes of control. 

 Chapter  11  contains a brief description of computer control modes, graphical user 

interfaces (GUIs), and advanced modes of user – computer interactions, such as voice 

control and visual reality. 

  Functional System Design Diagrams.     As the components of a complex 

system are integrated, it becomes increasingly important to establish system - wide rep-

resentations of the functional system architecture to ensure its understanding by all 

those concerned with designing the interacting system elements. Functional diagrams 

are discussed in more detail in Chapter  8 .    

   12.4    COMPONENT DESIGN 

 The object of the component design step of the engineering design phase is to 

implement the functional designs of system elements as engineered hardware and 
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software components with compatible and testable interfaces. During this phase, the 

system components that do not already exist as engineered items are designed, built, 

and tested as units, to be integrated into subsystems and then assembled into an engi-

neering prototype in the integration and evaluation phase. The associated engineering 

effort during this phase is more intense than at any other time during the system life 

cycle. During the design of any complex new system, unexpected problems inevitably 

occur; their timely resolution depends on quick and decisive action. This high level 

of activity, and the potential impact of any unforeseen problems on the successful 

conduct of the program, tends to place a severe stress on systems engineering during 

this period. 

 In the development of major defense and space systems, the engineering design 

effort is performed in two steps: designated preliminary design and detailed design, 

respectively. Although preliminary design is typically started under systems architect-

ing, many offi cial programs continue to establish a subphase where the initial architec-

ture is translated into a preliminary design. Each step is followed by a formal design 

review by the customer before the succeeding step is authorized. The purpose of this 

highly controlled process is to ensure very thorough preparation prior to commitment 

to the costly full - scale implementation of the design into hardware and software. This 

general methodology, without some of its formality, may be applied to any system 

development. 

 The level of system subdivision on which the above design process is focused is 

called a  “ confi guration item ”  (CI). This level corresponds most closely to that referred 

to here as  “ component. ”  It should be noted that in common engineering parlance, the 

term component is used much more loosely than in this book and sometimes is applied 

to lower - level system elements, which are identifi ed here as subcomponents. CIs and 

 “ confi guration baselines ”  are discussed further in the section on confi guration manage-

ment (CM  ) (Section  9.6 ). 

  Preliminary Design 

 The objective of preliminary design is to demonstrate that the chosen system design 

conforms to system performance and design specifi cations and can be produced by 

existing methods within established constraints of cost and schedule. It thereafter pro-

vides a framework for the next step, detailed design. The bulk of the functional design 

effort, as described in the previous section, is properly a part of preliminary design. 

 Typical products of preliminary design include 

   •      design and interface specifi cations (B specs);  

   •      supporting design and effectiveness trade studies;  

   •      mock - ups, models, and breadboards;  

   •      interface design;  

   •      software top - level design;  

   •      development, integration, and verifi cation test plans; and  

   •      engineering specialty studies (RMA, producibility, logistic support, etc.).    
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 Major systems engineering input and review is essential for all of the above items. Of 

particular importance is the manner in which the functional modules defi ned in the 

functional design process are implemented in hardware and software. Often this requires 

detailed adjustments in the boundaries between components to ensure that physical 

interfaces, as well as functional interactions, are as simple as practicable. To the extent 

that the advanced development phase has not resolved all signifi cant risks, further 

analyses, simulations, and experiments may have to be conducted to support the pre-

liminary design process. 

  Preliminary Design Review ( PDR ).     In government programs, the PDR is nor-

mally conducted by the acquisition agency to certify the completion of the preliminary 

design. For major commercial programs, company management acts in the role of the 

customer. The process is frequently led or supported by a commercial or nonprofi t 

systems engineering organization. The review may last for a few or many days and 

may require several follow - on sessions if additional engineering is found to be required. 

 The issues on which PDR is usually centered include major (e.g., subsystem and 

external) interfaces, risk areas, long - lead items, and system - level trade - off studies. 

Design requirements and specifi cations, test plans, and logistics support plans are 

reviewed. Systems engineering is central to the PDR process and must be prepared to 

deal with any questions that may arise in the above areas. 

 Prior to the formal PDR, the development team should arrange for an internal 

review to ensure that the material to be presented is suitable and adequate. The prepara-

tion, organization, and qualifi cation of the review process is critical. This is no less 

important for commercial systems, even though the review process may be less formal, 

because success of the development is critically dependent on the quality of design at 

this stage. 

 The completion of preliminary design corresponds to the establishment of the 

allocated baseline system confi guration (see Section  12.6 ).   

  Detailed Design 

 The objective of detailed design is to produce a complete description of the end items 

constituting the total system. For large systems, a massive engineering effort is required 

to produce all the necessary plans, specifi cations, drawings, and other documentation 

necessary to justify the decision to begin fabrication. The amount of effort to produce 

a detailed design of a particular component depends on its  “ maturity, ”  that is, its degree 

of previously proven design. For newly developed components, it is usually necessary 

to build prototypes and to test them under simulated operating conditions to demon-

strate that their engineering design is valid. 

 Typical products of detailed design include 

   •      draft C, D, and E specs (production specifi cations);  

   •      subsystem detailed engineering drawings;  

   •      prototype hardware;  
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   •      interface control drawings;  

   •      confi guration control plan;  

   •      detailed test plans and procedures;  

   •      quality assurance plan; and  

   •      detailed integrated logistic support plans.    

 Systems engineering inputs are especially important to the interface designs and 

test plans. Where necessary, detailed analysis, simulation, component tests, and proto-

typing must be performed to resolve risk areas. 

  Critical Design Review ( CDR ).     The general procedures for the CDR of the 

products of detailed design are similar to those for the PDR. The CDR is usually more 

extensive and may be conducted separately for hardware and software CIs. The CDR 

examines drawings, schematics, data fl ow diagrams, test and logistic supply plans, and 

so on, to ensure their soundness and adequacy. The issues addressed in the CDR are 

partly predicated on those identifi ed as critical in the PDR and are therefore scheduled 

for further review in light of the additional analysis, simulations, breadboard or brass-

board, or prototype tests conducted after the PDR. 

 As in the case of PDR, systems engineering plays a crucial role in this process, 

especially in the review of interfaces and plans for integration and testing. Similarly, 

internal reviews are necessary prior to the offi cial CDR to ensure that unresolved issues 

do not arise in the formal sessions. But if they do, systems engineering is usually 

assigned the responsibility of resolving the issues as quickly as possible. 

 The completion of detailed design results in the product baseline (see Section  12.6 ).   

  Computer - Aided Design ( CAD ) 

 The microelectronic revolution has profoundly changed the process of hardware com-

ponent design and fabrication. It has enabled the development and production of 

increasingly complex systems without corresponding increases in cost and degradations 

in reliability. The introduction of CAD of mechanical components has completely 

changed how such components are designed and built. Even more dramatic has been 

the explosive development of electronics in the form of microelectronic chips of enor-

mous capacity and power, and their principal product, digital computing. 

  Mechanical Components.     CAD permits the detailed design of complex 

mechanical shapes to be performed by an engineer at a computer workstation without 

making conventional drawings or models. The design takes form in the computer data-

base and can be examined in any position, at any scale of magnifi cation, and in any 

cross section. The same database can be used for calculating stresses, weights, positions 

relative to other components, and other relevant information. When the design is com-

pleted, the data can be transformed into fabrication instructions and transferred to digi-
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tally driven machines for computer - aided manufacture (CAM) of exact replicas of the 

design. It can also generate production documentation in whatever form may be required. 

 One of the dramatic impacts this technology has had on the design and manufactur-

ing process is that once a part has been correctly designed and built, all subsequent 

copies will also be correct within the tolerances of the production machines. An equally 

major impact is on the ease of integrating mechanical components with one another. 

Since the physical interfaces of components can be specifi ed precisely in three dimen-

sions, two adjacent components made to a common interface specifi cation will match 

exactly when brought together. Today, a complex microwave antenna can be designed, 

fabricated, and assembled into a fi nely tuned device without the months of cut - and - try 

testing that used to characterize antenna design. This technique also largely eliminates 

the need for the elaborate jigs and fi xtures previously used to make the parts fi t a given 

pattern, or specially built gages or other inspection devices to check whether or not the 

parts conform to the established tolerances.  

  Electronic Components.     The design of most electronic components has been 

revolutionized by modern technology even more than that of mechanical components. 

Processing is almost entirely digital, using standard memory chips and processors. All 

parts, such as circuit cards, card cages, connectors, equipment racks, and so on, are 

purchased to strict standards. All physical interfaces fi t because they are made to stan-

dards. Further, in digital circuits, voltages are low; there is little heat generation; and 

electrical interfaces are digital streams. Inputs and outputs can be generated and ana-

lyzed using computer - based test equipment. 

 Most circuits are assembled on standard circuit cards and are interconnected by 

programmed machines. Instead of being composed of individual resistors, capacitors, 

transistors, and so on, most circuit functions are frequently incorporated in circuit chips. 

The design and fabrication of chips represents a still higher level of automation than 

that of circuit boards. The progressive miniaturization of the basic components (e.g., 

transistors, diodes, and capacitors) and of their interconnections has resulted in a dou-

bling of component density and operating speed every 18 months (Moore ’ s law) since 

the early 1980s — a trend that has not yet diminished. However, the cost of creating an 

assembly line for a complex new chip has progressively mounted into hundreds of 

millions of dollars, restricting the number of companies capable of competing in the 

production of large memory and processing chips. On the other hand, making smaller 

customized chips is not prohibitive in cost and offers the advantages of high reliability 

at affordable prices. 

 Components that handle high power and high voltage, such as transmitters and 

power supplies, generally do not lend themselves to the above technology, and for the 

most part must still be custom built and designed with great care to avoid reliability 

problems (see later section).  

  Systems Engineering Considerations.     To the systems engineer, these devel-

opments are vital because of their critical impact on component cost, reliability, and 
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often design feasibility. Thus, systems engineers need to have fi rst - hand knowledge of 

the available automated tools, their capabilities and limitations, and their effect on 

component performance, quality, and cost. This knowledge is essential in judging 

whether or not the estimated performance and cost of proposed components are real-

istic, and whether their design takes adequate advantage of such tools. 

 It is also important that systems engineers be aware of the rate of improvement of 

automated tools for design and manufacture, to better estimate their capabilities at the 

time they will be needed later in the system development cycle. This is also important 

in anticipating competitive developments, and hence the likely effective life of the 

system prior to the onset of obsolescence.  

  Example: The Boeing 777.     The development of the Boeing 777 airliner has 

received a great deal of publicity as a pioneer in large - scale automated design and 

manufacture. It was claimed by Boeing to be the fi rst major aircraft that was designed 

and manufactured without one or more stages of prototype ground and fl ight testing. 

This achievement was made possible mainly because of four factors: (1) the use of 

automated design and manufacture for all parts of the aircraft structure, (2) the high 

level of knowledge of aerodynamics and structures of aircraft obtained through years 

of development and experimentation, (3) the application of computer - based analysis 

tools, and (4) highly integrated and committed engineering teams. Thus, aircraft body 

panels were designed and built directly from computer - based design data and fi t together 

perfectly when assembled. This approach was used for the entire airplane body and 

associated structures. 

 It should be noted that the 777 engines, whether built by Pratt and Whitney, General 

Electric, or Rolls Royce, were thoroughly ground tested before delivery because the 

degree of knowledge and predictability for jet engines is not at the level of that for 

airframes. Also, the 777 design did not embody radical departures from previous aircraft 

experience. Thus, the development cycle of the 777 as a total system did not depart as 

widely from the traditional sequence as it may have appeared to. However, it was a 

major milestone and a dramatic illustration of the power of automation in certain 

modern systems.   

  Reliability 

 The reliability of a system is the probability that the system will perform its functions 

correctly for a specifi ed period of time under specifi ed conditions. Thus, the total reli-

ability ( P  R ) of a system is the probability that every component on which its function 

depends functions correctly. Formally, reliability is defi ned as one minus the failure 

distribution function of a system or component:

    R t F t f t dt
t

( ) ( ) ( ) ,= − =

∞

∫1   

where  F ( t ) is the failure distribution function and  f ( t ) is the probability density function 

of  F ( t ).  f ( t ) can follow any number of known probability distributions. A common 

representation for a failure function is the exponential distribution
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 This distribution is used quite extensively for common component reliability approxi-

mations, such as those relating to electrical and mechanical devices  . An advantage of 

using the exponential distribution is its various properties relating to reliability:
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 MTBF is  “ mean time between failure ”  and is explained below. By using the exponential 

distribution, we can calculate individual reliabilities fairly easily and perform simple 

mathematics to obtain reliability approximations, described below. 

 Calculating the probability depends on the confi guration of the individual system 

components. If the components are arranged in a series, each one depending on the 

operation of the others, the total system probability is equal to the product of the reli-

abilities of each component (Pr):

    P nR l= × …Pr Pr Pr .2
  

  For example, if a system consisting of 10 critical components in series is required to 

have a reliability of 99%, then the average reliability of each component must be at 

least 99.9%. 

 If a system contains components that are confi gured in parallel, representing redun-

dancy in operations, a different equation is used. For example, if two components are 

operating in parallel, the overall reliability of the system is

    PR l= + − ×Pr Pr (Pr Pr ).2 1 2
  

  For pure parallel components, such as the example above, at least one component 

operating would allow the total system to operate effectively. Redundancy is discussed 

further below. 

 In most cases, a system consists of both parallel and series components. Keep in 

mind that for both examples above, time is considered integral to the defi nition of 

probability. Pr  i   would be defi ned and calculated from the failure distribution function, 

which contains  t . For the exponential distribution, Pr  i   would be expressed as 1/ e   −    t   /   M  . 

 For systems that must operate continuously, it is common to express their reliability 

in terms of the MTBF. In the 10 - component system just mentioned, if the system MTBF 

must be 1000 hours, the component MTBF must average 10,000 hours. From these 
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considerations, it is evident that the components of a complex system must meet 

extremely stringent reliability standards. 

 Since system failures almost always occur at the level of components or below, 

the main responsibility for a reliable design rests on design specialists who understand 

the details of how components and their subcomponents and parts work and are manu-

factured. However, the diffi culty of achieving a given level of reliability differs widely 

among the various components. For example, components composed largely of inte-

grated microcircuits can be expected to be very reliable, whereas power supplies and 

other high - voltage components are much more highly stressed and therefore require a 

greater fraction of the overall reliability  “ budget. ”  Accordingly, it is necessary to allo-

cate the allowable reliability requirements among the various components so as to 

balance, insofar as practicable, the burden of achieving the necessary reliabilities 

among the components. This allocation is a particular systems engineering responsibil-

ity and must be based on a comprehensive analysis of reliability records of components 

of similar functionality and construction. 

 A number of specifi c reliability issues must not be left entirely to the discretion of 

the component designers; these issues should not only be examined at formal reviews 

but should also be subject to oversight throughout the design process. Such issues 

include 

  1.     External Interfaces:     Surfaces exposed to the environment must be protected 

from corrosion, leakage, radiation, structural damage, thermal stress, and other 

potential hazards.  

  2.     Component Mounting:     Systems subjected to shock or vibration during opera-

tion or transport must have suitable shock mountings for fragile components.  

  3.     Temperature and Pressure:     Systems subjected to extremes of temperature and 

pressure must provide protective controls at either the system or component 

level.  

  4.     Contamination:     Components susceptible to dust or other contaminants must be 

assembled under clean room conditions and sealed if necessary.  

  5.     High - Voltage Components:     Components using high voltage, such as power 

supplies, require special provisions to avoid short circuits or arcing.  

  6.     Workmanship:     Parts requiring precise workmanship should be designed for 

easy inspection to detect defects that could lead to failures in operation.  

  7.     Potential Hazards:     Components that may present operating hazards if not 

properly made or used should be designed to have large reliability margins. 

These include rocket components, pyrotechnics, hazardous chemicals, high -

 pressure containers, and so on.    

  Software Reliability.     Software does not break, short - circuit, wear out, or oth-

erwise fail from causes similar to those that lead to most hardware failures. Nevertheless, 

complex systems do fail due to malfunctioning software as often as and sometimes 

even more often than from hardware faults. Anyone whose computer keyboard has 

 “ locked up, ”  or who has tried to buy an airline ticket when the  “ computer is down ”  has 
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experienced this phenomenon. With systems increasingly dependent on complex soft-

ware, its reliability is becoming ever more crucial. 

 Software operating failures occur due to imperfect code, that is, computer program 

defi ciencies that allow the occurrence of unintended conditions, causing the system to 

produce erroneous outputs, or in extreme cases to abort ( “ crash ” ). Examples of condi-

tions that cause such events are infi nite loops (repeated sequences that do not always 

terminate, thereby causing the system to hang up), overfl ows of memory space allocated 

to data arrays (which cause excess data to overwrite instruction space, producing 

 “ garbage ”  instructions), and mishandling of external interrupts (which cause losses or 

errors of input or output). 

 As described in Chapter  11 , there is no possibility of fi nding all the defi ciencies in 

complex code by inspection, nor is it practical to devise suffi ciently exacting tests to 

discover all possible faults. The most effective means of producing reliable software is 

to employ experienced software designers and testers in combination with disciplined 

software design procedures, such as 

  1.     highly modular program architecture,  

  2.     disciplined programming language with controlled data manipulation,  

  3.     disciplined coding conventions requiring extensive comments,  

  4.     design reviews and code  “ walk - throughs, ”   

  5.     prototyping of all critical interfaces,  

  6.     formal CM,  

  7.     independent verifi cation and validation, and  

  8.     endurance testing to eliminate  “ infant mortality ”      

  Redundancy.     Complex systems that must operate extremely reliably, such as air 

traffi c control systems, telephone networks, power grids, and passenger aircraft, require 

the use of redundant or backup subsystems or components to achieve the required levels 

of uninterrupted operation. If a power grid line is struck by lightning, its load is 

switched to other lines with a minimum disruption of service. If an aircraft landing 

gear ’ s motors fail, it can be cranked down manually. Air traffi c control has several 

levels of backups to maintain safe (though degraded) operation in case of failure of the 

primary system. 

 The equation for calculating the reliability of parallel components was presented 

above. Another perspective on parallel component reliability is to understand that the 

failure probability is a product of the failure probabilities of the individual system 

modes. Since the reliability ( P  R ) is one minus the failure probability ( P  F ), the reliability 

of a system with two redundant (parallel) subsystems is

    P P PR F F= − ×1 1 2( ).   

  The reader is encouraged to prove to himself that the two reliability equations presented 

are indeed equivalent  . As an example, if a system reliability of 99.9 is required for a 

system, and a critical subsystem cannot be designed to have a reliability better than 
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99%, providing a backup subsystem of equal reliability will raise the effective reliability 

of the parallel subsystem to 99.99% (1    –    0.01    ×    0.01    =    0.9999). 

 Systems that must reconfi gure themselves by automatically switching over to a 

backup component in place of a failed one must also incorporate appropriate failure 

sensors and switching logic. A common example is the operation of an uninterruptible 

power supply for a computer, which automatically switches to a battery power supply 

in the event of an interruption in external power. Telephone networks switch paths 

automatically not only when a link fails but also when one becomes overloaded. An 

inherent problem with such automatic switching systems is that the additional sensors 

and switches add further complexity and are themselves subject to failure. Another is 

that complex automatic reconfi guration systems may overreact to an unexpected set of 

conditions by a catastrophic crash of the whole system. Such events have occurred in 

a number of multistate power grid blackouts and telephone outages. Automatically 

reconfi gurable systems require extremely comprehensive systems engineering analysis, 

simulation, and testing under all conceivable conditions. When this has been expertly 

done, as in the manned space program, unprecedented levels of reliability have been 

achieved.  

  Techniques to Increase Reliability.     Several techniques exist to increase, or 

even maximize, reliability within a system design. Several have been discussed already: 

   •      System Modularity.     Increase the modularity of system components to achieve 

loose coupling among components. This will minimize the number of compo-

nents that are in series and thus could cause a system failure.  

   •      Redundancy.     Increase component redundancy either with parallel operating 

components or through the use of switches that automatically transfer control 

and operations to backup components.  

   •      Multiple Functional Paths.     A technique to increase reliability without necessar-

ily adding redundant components involves including functional multiple paths 

within the system design. This is sometimes known as  “ channels of 

operation. ”   

   •      Derating Components.      Derating  refers to the technique of using a component 

under stress conditions considerably below the rated performance value to 

achieve a reliability margin in the design.    

 Several methods and formal techniques exist to analyze failure modes, effects, and 

mitigation strategies. Five common techniques (not described here) are failure mode, 

effects, and criticality analysis (FMECA), fault tree analysis, critical useful life analysis, 

stress – strength analysis, and reliability growth analysis. The reader is encouraged to 

explore any or all of the techniques as effective analyses strategies.   

  Maintainability 

 The maintainability of a system is a measure of the ease of accomplishing the functions 

required to maintain the system in a fully operable condition. System maintenance takes 
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two forms: (1) repair if a system fails during operation and (2) scheduled periodic 

servicing including testing to detect and repair failures that occur during standby. High 

maintainability requires that the system components and their physical confi gurations 

be designed with an explicit and detailed knowledge of how these functions will be 

carried out. 

 Since to repair a system failure it is fi rst necessary to identify the location and 

nature of the fault, that is, to carry out a failure diagnosis, system design should provide 

for means to make diagnosis easy and quick. In case repair is needed, the design must 

be dovetailed with logistic support plans to ensure that components or component parts 

that may fail will be stocked and will be replaceable in minimum time. 

 Unlike hardware faults, replacement of the failed component is not an option for 

software because software failures result from faults in the code. Instead, the error in 

the code must be identifi ed and the code modifi ed. This must be done with great care 

and the change in confi guration documented. To prevent the same fault from causing 

failures in other units of the system, the correction must be incorporated in their pro-

grams. Thus, software maintenance can be a critical function. 

 A measure of system maintainability during operation is the mean time to repair/

restore (MTTR). The  “ time to repair ”  is the sum of the time to detect and diagnose the 

fault, the time to secure any necessary replacement parts, and the time to effect the 

replacement or repair. The  “ time to restore ”  also includes the time required to restore 

the system to full operation and to confi rm its operational readiness. 

  Built - In Test Equipment ( BITE ).     A direct means for reducing the MTTR of a 

system is to incorporate auxiliary sensors that detect the occurrence of faults that would 

render the system inoperable or ineffective when called upon, then to signal an operator 

that repairs are required, and indicate the location of the fault. Such built - in equipment 

effectively eliminates the time to detect the fault and focuses the diagnosis on a specifi c 

function. Examples of such built - in fault detection and signaling devices are present in 

most modern automobiles, which sense and signal any faulty indications of air bag or 

antilock brake status, low oil level, or low battery voltage, and so on. In controlling 

complex systems, such as in aircraft controls, power plant operations, and hospital 

intensive care units, such devices are absolutely vital. In automatically reconfi gurable 

systems (see section on redundancy, above) the built - in sensors provide signals to 

automatic controls rather than to a system operator. 

 The use of BITE presents two important system - level problems. First, it adds to 

the total complexity of the system and hence to potential failures and cost. Second, it 

is itself capable of false indications, which can in turn impact system effectiveness. 

Only when these problems are examined in detail can a good balance be struck between 

not enough and too much system self - testing. Systems engineering bears the principal 

responsibility for achieving such a balance.  

  Design for Maintainability.     The issues that must be addressed to ensure a 

maintainable system design begin at the system level and range all the way down to 

component parts. They include 
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  1.     Modular System Architecture:     A high degree of system modularity (self -

 contained components with simple interfaces) is absolutely vital to all three 

forms of maintenance (repair of operational failures, periodic maintenance, and 

system upgrading).  

  2.     Replaceable Units:     Because it is often impractical to repair a failed part in 

place, the unit that contains the part must be replaced by an identical spare unit. 

Such units must be accessible, simply and safely replaceable, and part of the 

logistic support supply.  

  3.     Test Points and Functions:     To identify the location of a failure to a specifi c 

replaceable unit, there must be a hierarchy of test points and functions that 

permits a short sequence of tests to converge on the failed unit.    

 To achieve the above, there must be an emphasis on design for maintainability through-

out the system defi nition, development, and engineering design process. In addition to 

the design, comprehensive documentation and training are essential.   

  Availability 

 An important measure of the operational value of a system that does not operate con-

tinuously is referred to as system availability, that is, the probability that it will perform 

its function correctly when called upon. Availability can be expressed as a simple func-

tion of system reliability and maintainability for relatively short repair times and low 

failure rates:

    PA

MTTR

MTBF
= −1 ,   

where

   P  A          =    probability that the system will perform when called upon;  

 MTBF         =    mean time between failure; and  

 MTTR         =    mean time to restore.    

 This formula shows that system maintainability is just as critical as reliability and 

emphasizes the importance of rapid failure detection, diagnosis, and repair or parts 

replacement. It also points to the importance of logistic support to ensure the immediate 

availability of necessary replacement parts.  

  Producibility 

 For systems that are produced in large quantities, such as commercial aircraft, automo-

tive vehicles, or computer systems, reducing the costs associated with the manufactur-

ing process is a major design objective. The characteristic that denotes relative system 

production costs is called  “ producibility. ”  The issue of producibility is almost wholly 
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associated with hardware components since the cost of replicating software is only that 

of the medium in which it is stored. 

 Design for producibility is the primary province of the design specialist. However, 

systems engineers need to be suffi ciently knowledgeable about manufacturing pro-

cesses and other production cost issues to recognize characteristics that may infl ate 

costs and to guide design accordingly. Such understanding is necessary for the systems 

engineer to achieve an optimum balance between system performance (including reli-

ability), schedule (timeliness), and cost (affordability). 

 Some of the measures that are used to enhance producibility are 

  1.     maximum use of commercially available parts, subcomponents, and even com-

ponents (referred to as commercial off - the - shelf [ “ COTS ” ] items); this also 

reduces development cost;  

  2.     setting dimensional tolerances of mechanical parts well within the normal preci-

sion of production machinery;  

  3.     design of subassemblies for automatic manufacture and testing;  

  4.     maximum use of stampings, castings, and other forms suitable for high - rate 

production;  

  5.     use of easily formed or machined materials;  

  6.     maximum standardization of subassemblies, for example, circuit boards, cages, 

and so on; and  

  7.     maximum use of digital versus analog circuitry.    

 As noted in previous chapters, the objective of producibility, along with other 

specialty engineering features, should be introduced into the system design process 

early in the life cycle. However, the application of producibility to specifi c design 

features occurs largely in the engineering design phase as part of the design process. 

Chapter  14  is devoted to the subject of production and its systems engineering content.  

  Risk Management 

 Many of the methods of risk mitigation listed in Chapter  5  are pertinent to the 

component design step in the engineering design phase. Components containing 

residual risk factors must be subjected to special technical and management oversight, 

including analysis and testing to ensure the early discovery and resolution of any design 

problems. Where the acceptability of a given design requires testing under operational 

conditions, as in the case of user interfaces, rapid prototyping and user feedback 

may be in order. In exceptional circumstances, where the risk inherent in the chosen 

approach remains unacceptably high, it may be necessary to initiate a backup effort to 

engineer a more conservative replacement in case the problems with the fi rst line design 

cannot be resolved when the design must be frozen. Alternatively, it may be wise to 

seek relaxation of stringent requirements that would produce only marginal gains in 

system effectiveness. All of the above measures require systems engineering 

leadership.   
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   12.5    DESIGN VALIDATION 

 Design validation proceeds at various levels throughout the engineering development 

stage of the system life cycle. This section focuses on the validation of the physical 

implementation of the component system building blocks. 

  Test Planning 

 Planning the testing of components to validate their design and construction is an 

essential part of the overall test and evaluation plan. It covers two types of tests: devel-

opment testing during the component design process and unit qualifi cation testing to 

ensure that the fi nal production design meets specifi cations. 

 Component test planning must be done during the early part of the engineering 

design phase for several reasons. First, the required test equipment is often complex 

and requires a time to design and build comparable to that required for the system 

components themselves. Second, the cost of test tools usually represents a very signifi -

cant fraction of the system development costs and must be provided for in the total cost 

equation. Third, test planning must involve design engineers, test engineers, and systems 

engineers in a  team effort , often across organizational and sometimes across contractual 

lines. From these detailed plans, test procedures are derived for all phases of the test 

operations. 

 As in system - level test planning, systems engineering must play a major role in 

the development of component test plans, that is, what should be tested, at what stage 

in the development, to what degree of accuracy, what data should be obtained, and so 

on. An important systems engineering contribution is to ensure that component features 

that were identifi ed as potential risks are subjected to tests to confi rm their elimination 

or mitigation.  

  Component Fabrication 

 In the previous sections, the design process has been discussed in terms of its objectives 

and has been related to design decisions defi ned in terms of drawings, schematics, 

specifi cations, and other forms of design representation as expressed on paper and in 

computer data. To determine the degree to which a design will actually result in the 

desired component performance, and whether or not the component will properly inter-

face with the others, it is necessary to convert its design to a physical entity and to test 

it. This requires that hardware elements be fabricated and individual software compo-

nents be coded. Prior to fabrication, reviews are held between the designers and fabrica-

tion personnel to assure that what has been designed is within the capabilities of the 

facility that has to build it. 

 The implementation process is seldom unidirectional (i.e., noniterative). Design 

defi ciencies are often discovered and corrected during implementation, even before 

testing, especially in hardware components. Even though CAD has greatly reduced the 

probability of dimensional and other incompatibilities, it has to be anticipated that some 

changes will need to be made in the design to achieve a successful functioning product. 
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 At this stage of component engineering, the tools that are to be used in production 

(such as computer - driven, metal - forming machines and automatic assembly devices) 

are seldom available for use, so that initial fabrication must often be carried out using 

manually operated machines and hand assembly. It is important, however, that a real-

istic experimental replica of the fabrication process be employed for any component 

parts that are to be built using unconventional manufacturing processes. This is essential 

to ensure that the transition to production tooling will not invalidate the results of the 

prototyping process. Involving the production people during sign - off, prior to the time 

the article reaches the manufacturing facility, will greatly expedite production. 

 In the case of complex electronic circuits, signifi cant alterations in the initially 

fabricated model are to be expected before a completely suitable design is fi nally 

achieved. Accordingly, it has been customary to fi rst construct and test these circuits 

in a more open  “ breadboard ”  or  “ brassboard ”  form (with rudimentary packaging con-

straints) so as to facilitate circuit changes before packaging the component in its fi nal 

form. However, with modern automated tools, it is often more effi cient to go directly 

to a packaged confi guration, even though this may dictate the fabrication of several 

such packages before a suitable design is fi nally achieved.  

  Development Testing 

 The objective of engineering development testing is different from production accep-

tance testing in that the latter is mainly concerned with whether the component should 

be accepted or rejected, while the former must not only quantify each discrepancy but 

must also help diagnose its source. It should be anticipated that design discrepancies 

will be found and design changes will be needed in order to comply with requirements. 

Thus, component testing is very much a part of the development process. Changes at 

this point must be introduced via an  “ engineering change notice ”  agreed to by all cog-

nizant parties to avoid chaotic, noncoordinated change. 

 Development testing is concerned with validating the basic design of the compo-

nent, focusing on its performance, especially on features that are critical to its operation 

within the system or that represent characteristics that are highly stressed, newly devel-

oped, or are expected to operate at levels beyond those commonly attained in previous 

devices of this type. These tests also focus on the features of the design that are subject 

to severe environmental conditions, such as shock, vibration, external radiation, and 

so on. 

 For components subject to wear, such as those containing moving parts, develop-

ment tests can also include endurance testing, usually performed under accelerated 

conditions to simulate years of wear in a matter of months. 

  Reliability and Maintainability Data.     Whereas during development compo-

nents may not be built from the identical parts used in the production article, it is good 

practice to begin collecting reliability statistics as early as possible by recording all 

failures during operation and test and by identifying their source. This will reduce the 

likelihood of incipient failures carrying on into the production article. This is particu-

larly important where the number of units to be built is too small to collect adequate 
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statistical samples of production components. Involvement of quality assurance engi-

neers in this process is essential. 

 Development testing must also examine the adequacy and accessibility of test 

points for providing failure diagnosis during system maintenance. If maintenance of 

the system will require disassembling the component and replacing subcomponents 

such as circuit boards, this feature must also be evaluated.  

  Test Operations.     Component development tests are part of the design process 

and are usually conducted within the design group by a team headed by the lead design 

engineer and composed of members of the design team as well as other staff experi-

enced in testing the type of component under development. The team should be inti-

mately familiar with the use of test tools and special test facilities that may be required. 

The validity and adequacy of the test setup and analysis procedures should be overseen 

by systems engineering. 

 An important lesson that systems engineers (and test engineers) must learn is that 

the apparent failure of a component to meet some test objective may not be due to a 

defective design but rather due to a defi ciency in the test equipment or test procedure. 

This is especially true when a component is fi rst tested in a newly designed test setup. 

The need for testing the test equipment occurs all too frequently. This is a direct result 

of the diffi culty of ensuring perfect compatibility between two or more interacting and 

interfacing components, whether they are system elements or test equipment units 

(hardware or software). Thus, a period of preliminary testing should be scheduled to 

properly integrate a new component with its test equipment, and unit testing should not 

begin until all the test bugs have been eliminated.  

  Change Control.     It will be recalled that after the CDR, the detailed design of a 

complex system is frozen and placed under formal CM (see Section  9.6 ). This means 

that thereafter, any proposed design change requires justifi cation, evaluation, and formal 

approval, usually from a  “ confi guration control board ”  or an equivalent. Such approval 

is usually granted only on the basis of a written engineering change request containing 

a precise defi nition of the nature of the defi ciency revealed by the test process and a 

thorough analysis of the impact of the proposed change on system performance, cost, 

and schedule. The request should also contain trade - offs of alternative remedies, includ-

ing possible relaxation of requirements, and an in - depth assessment of risks and costs 

associated with making (and not making) the change. This formal process is not 

intended to prevent changes but to ensure that they are introduced in an orderly and 

documented manner.   

  Qualifi cation Testing 

 Testing a productionized component ( “ fi rst - unit ”  testing) prior to its delivery to the 

integration facility is very much like the acceptance testing of units off the production 

line. Qualifi cation tests are usually more limited than development tests, but are fre-

quently more quantitative, being concerned with the exact conformance of the unit to 

interface tolerances so that it will fi t exactly with mating system components. 
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Accordingly, equipment used for this purpose should be much like production test 

equipment. Qualifi cation tests are generally more severe than the conditions to which 

the article is subjected in operational use. 

 The validation of the design of an individual system component can be rigorously 

accomplished only by inserting it into an environment identical to that in which it will 

operate as part of the total system. In the case of complex components, it is seldom 

practicable to reproduce exactly its environment. Therefore, a test setup that closely 

approximates this situation has to be used. 

 The problem is made more diffi cult by the fact that components are almost always 

developed and built by different engineering groups, often by independent contractors. 

In the case of software programs, the designers may be from the same company but 

generally do not understand each other ’ s designs in detail. The system developer thus 

has the problem of ensuring that the component designers test their products to the 

identical standards to be used during system integration. The critical point, of course, 

is that each component ’ s interfaces must be designed to fi t exactly with their connecting 

components and with the environment. 

  Tolerances.     The specifi cation of component interfaces to ensure fi t and inter-

changeability involves the assignment of tolerances to each dimension or other interface 

parameters. Tolerances represent the positive and negative deviation from a nominal 

parameter value to ensure a proper fi t. The assignment of tolerances requires striking 

a balance between ease of manufacturing on one hand and assurance of satisfactory fi t 

and performance on the other. Whenever either producibility or reliability is signifi -

cantly affected, the systems engineer needs to enter the process of setting the preferred 

balance.  

  Computer - Aided Tools.     The widespread use of CAD and CAM has greatly 

simplifi ed the above problems in many types of equipment. With these tools, component 

specifi cations can be converted into a digital form and can be directly used in their 

design. The CAD database can be shared electronically between the system developer 

and the component designer and producer. The same data can be used to automate test 

equipment. 

 In the area of electronic equipment, the widespread use of standard commercial 

parts, from chips to boards to cabinets to connectors, has made interfacing much easier 

than with custom - built components. These developments have produced economies in 

test and integration, as well as in component costs. Miniaturization has resulted in a 

greater number of functions being performed on a circuit board, or encapsulated in a 

circuit chip, thereby minimizing interconnections and numbers of boards.  

  Test Operations.     Component qualifi cation tests are performed to ensure that the 

fi nal production component design meets all of its requirements as part of the overall 

system. Hence, they are much more formal than development tests and are conducted 

by the test organization, sometimes with oversight by the system contractor. Design 

engineering supports the test operations, especially during test equipment checkout and 

data analysis.   
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  Test Tools 

 A set of test tools for verifying the performance and compatibility of a system compo-

nent must be designed to provide an appropriate set of inputs and to compare the 

resulting outputs with those prescribed in the specifi cations. In effect, they constitute 

a simulator, which models the physical and functional environments of the component, 

both external and internal to the system, and measures all signifi cant interactions and 

interfaces. Functionally, such a simulator may be as complex as the component that it 

is designed to test, and its development usually requires a comparable level of analysis 

and engineering effort. Moreover, the assessment of a component ’ s adherence to speci-

fi ed parameter tolerance values usually requires the test equipment precision to be 

several times better than the allowable variations in component parameters. This 

requirement sometimes calls for precision greater than that readily available, involving 

a special effort to develop the necessary capability. 

 Development test tools often may be available or may be adaptable from other 

programs. In addition, standard measuring instruments, such as signal generators, spec-

trum analyzers, displays, and so on, are readily available in a form that can be incor-

porated as part of a computer - driven test setup. On the other hand, highly specialized 

and complex components, such as a jet engine, may require the provision of dedicated 

and extensively instrumented test facilities to be used to support testing during com-

ponent development and sometimes also during production. 

 In any event, such special tools as are required to support design and testing during 

component development must be designed and built early in the engineering design 

phase. Moreover, since similar tools will also be needed to test these same components 

during production, efforts should be made to assure that the design and construction of 

engineering and production test equipment are closely coordinated and mutually sup-

porting. To keep the cost of such test tools within acceptable bounds, signifi cant systems 

engineering effort is usually needed to support the planning and defi nition of their 

design and performance requirements.  

  Role of Systems Engineering 

 From the above discussion, it should be evident that systems engineering plays an 

essential part in the component validation process. Systems engineers should defi ne the 

overall test plan, specify what parameters should be tested and to what accuracy, how 

to diagnose discrepancies, and how the test results should be analyzed. Systems engi-

neering must also lead the change initiation and control process. The proper balance 

between  “ undertesting ”  and  “ overtesting ”  requires knowledge of the system impact of 

each test, including overall cost. This, in turn, depends on a fi rst - hand knowledge of the 

interactions of the component with other parts of the system and with its environment.   

   12.6     CM  

 The development of a complex new system has been seen to be resolvable into a series 

of steps or phases in which each of the characteristics of the system is defi ned in terms 



CM 437

of successively more specifi c system requirements and specifi cations. The systems 

engineering process that maintains the continuity and integrity of the system design 

throughout these phases of system development is called  “ CM. ”  

 The CM process generally begins incrementally during the concept exploration 

phase, which fi rst defi nes the selected top - level system confi guration in terms of func-

tional requirements after a process of trade - offs among alternative system concepts. It 

then progresses throughout the phases of the engineering development stage, culminat-

ing in system production specifi cations. The CM process is described more fully in this 

chapter because the intensity and importance of CM is greatest during the engineering 

design phase. The terminology of formal CM includes two basic elements, CIs and 

confi guration baselines. Each of these is briefl y described below. 

   CI  s  

 A CI is a system element that is the basis of describing and formally controlling the 

design of a system. In early phases of system defi nition, it may be at the level of a 

subsystem. In later phases, it usually corresponds to that of a component in the hierarchy 

defi ned in this book (see Chapter  3 ). Like the component, the CI is considered as a 

basic building block of the system, designed and built by a single organization, whose 

characteristics and interfaces to other building blocks must be defi ned and controlled 

to ensure its proper operation within the system as a whole. It is customary to distin-

guish between hardware confi guration items (HWCIs) and computer software confi gu-

ration items (CSCIs  ) because of the basically different processes used in defi ning and 

controlling their designs.  

  Confi guration Baselines 

 An important concept in the management of the evolving system design during the 

system life cycle is that of confi guration baselines. The most widely used forms are 

called functional, allocated, and product baselines. Table  12.2  shows the phase in which 

each is usually defi ned, the type of specifi cation that describes it, and the primary 

characteristics that are specifi ed.   

  TABLE 12.2.    Confi guration Baselines 

   Baseline     Phase defi ned  

   Type of 

specifi cation     Characteristics     Element specifi ed  

  Functional    Concept defi nition    A    Functional 

specifi cations  

  System  

  Allocated    Engineering design    B    Development 

specifi cations  

  Confi guration item  

  Product    Engineering design    C, D, E    Product, process 

specifi cations  

  Confi guration item  
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 The functional baseline describes the system functional specifi cations as they are 

derived from system performance requirements during the concept defi nition phase and 

serves as an input to the advanced development phase. 

 The allocated baseline is defi ned during the engineering design phase as the alloca-

tions of functions to system components (CIs) are validated by analyses and tests. The 

resulting development specifi cation defi nes the performance specifi cations for each CI, 

as well as the technical approaches developed to satisfy the specifi ed objective. 

 The product baseline is established during the engineering design phase in terms 

of detailed design specifi cations. It consists of product, process, and material specifi ca-

tions and engineering drawings.  

  Interface Management 

 It has been stressed throughout this book that the defi nition and management of the 

interfaces and interactions of the system ’ s building blocks with one another and with 

the system environment is a vital systems engineering function. This function is embod-

ied in the concept of CM, irrespective of whether or not it is formally defi ned in terms 

of CIs and baselines as described above. It is therefore incumbent on project manage-

ment with the aid of systems engineering to organize the necessary people and proce-

dures to carry out this function. 

 A primary condition for the effective defi nition and management of a given inter-

face is to ensure the involvement of all key persons and organizations responsible for 

the designs of the CIs. This is generally accomplished by means of interface confi gura-

tion working groups (ICWGs), or their equivalents, whose members have the technical 

knowledge and authority to represent their organizations in negotiating a complete, 

compatible, and readily achievable defi nition of the respective interfaces. In large 

systems, formal sign - off procedures have been found to be necessary to ensure com-

mitment of all parties to the agreed - upon interface coordination documents (ICDs). The 

form of these documents is a function of the type of interface being documented, but 

during the engineering design phase, it must be suffi ciently specifi c in terms of data 

and drawings to specify completely the interface conditions, so that the individual 

component developers may design and test their products independently.  

  Change Control 

 Change is vital to the development of a new and advanced system, especially to take 

advantage of evolving technology to achieve a suffi cient advance in system capability 

to provide a long useful life. Thus, during the formative stages of system development, 

it is desirable to maintain suffi cient design fl exibility to accommodate relevant techno-

logical opportunities. The price of such fl exibility is that each change inevitably affects 

related system elements and often requires a series of adaptations extending far beyond 

the initial area of interest. Thus, a great deal of systems engineering analysis, test, and 

evaluation is required to manage the system evolution process. 

 The effort and cost associated with accommodating changes increases rapidly as 

the design matures. By the time the system design is formulated in detail during the 
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engineering design phase, the search for opportunities for further enhancement can no 

longer be sustained. Accordingly, the system design is frozen, and formal change 

control procedures are imposed to deal with necessary modifi cations, such as those 

required by incompatibilities, external changes, or unexpected design defi ciencies. This 

usually happens after successful completion of the CDR or its equivalent. 

 It is customary to categorize proposed changes as class I, or class changes have 

system -  or program - level impact, such as cost, schedule, major interfaces, safety, per-

formance, reliability, and so on. Formal change control of system - level changes is 

usually exercised by a designated group composed of senior engineers with recognized 

technical and management expertise capable of making judgments among performance, 

cost, and schedule. For large programs, this group is called a change control board. It 

is of necessity led by systems engineering but usually reports at the topmost program 

level.   

   12.7    SUMMARY 

  Implementing the System Building Blocks 

 The objectives of the engineering design phase are to design system components to 

performance, cost, and schedule requirements. This phase also establishes consistent 

internal and external interfaces. 

 Engineering design culminates in materialization of components of a new system 

focused on the fi nal design of the system building blocks. Activities constituting engi-

neering design are 

   •      Requirements Analysis:     identifying all interfaces and interactions,  

   •      Functional Analysis and Design:     focusing on modular confi guration,  

   •      Component Design:     designing and prototyping all components, and  

   •      Design Validation:     testing and evaluating system components.     

  Requirements Analysis 

 External system interface requirements are especially important at this point in develop-

ment. User interfaces and environmental interactions require particular attention.  

  Functional Analysis and Design 

 Functional design stresses three areas: 

   •      Modular Confi guration:     simplifi ed interactions  

   •      Software Design:     modular architecture  

   •      User Interfaces:     effective human interaction.    

 Modular partitioning groups  “ tightly bound ”  functions together into  “ loosely bound ”  

modules.  
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  Component Design 

 Major defense and space systems engineering is performed in two steps: preliminary 

design followed by a PDR detailed design followed by a CDR. 

 The engineering design process is focused on CIs. These are substantially equiva-

lent to components as defi ned in this book. 

 A preliminary design has the objective to demonstrate that chosen designs conform 

to system performance and design requirements that can be produced within cost and 

schedule goals. The PDR centers on major interfaces, risk areas, long - lead items, and 

system - level trade studies. 

 A detailed design has the objective to produce a complete description of the end 

items (CIs) constituting the total system. The CDR examines drawings, plans, and so 

on, for soundness and adequacy. Within the detailed design, CAD has revolutionized 

hardware implementation — mechanical component design can now be analyzed and 

designed in software. Digital electronics is miniaturized, standardized, and does not 

need breadboarding. The Boeing 777 development illustrates the power of automated 

engineering. 

 Reliability must be designed at the component level where interfaces, environment, 

and workmanship are vulnerable areas. Additionally, software must be built to exacting 

standards and prototyped. Where extreme reliability is required, it is typically achieved 

by redundancy. Measuring reliability usually includes the MTBF. 

 Maintainability requires rapid fault detection diagnosis and repair. MTTR is used 

as a typical measure of maintainability. BITE is used to detect and diagnose faults. 

 Availability measures the probability of the system being ready when called in: 

availability increases with MTBF and decreases with MTTR. 

 Producibility measures the ease of production of system components and benefi ts 

from use of commercial components, digital circuitry, and broad tolerances.  

  Design Validation 

 Test planning must be done early since test equipment requires extensive time to design 

and build. Additionally, test costs must be allocated early to ensure suffi cient resources. 

Finally, test planning is a team effort. 

 Development testing is part of the design process and should start accumulating 

reliability statistics on failures. These test failures are often due to test equipment or 

procedures and should be planned for since changes after CDR are subject to formal 

CM. 

 Qualifi cation testing validates component release to integration and focuses on 

component interfaces. Regardless of the testing phase, test tools must be consistent with 

the system integration process.  

   CM  

 CM is a systems engineering process that maintains the continuity and integrity of 

system design. Confi guration baselines defi ned in major system developments include 
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   •      Functional Baseline:     system functional specifi cations,  

   •      Allocation Baseline:     system development specifi cations, and  

   •      Product Baseline:     product, process, and material specifi cations.    

 The CI is a system element used to describe and formally control system design.   

    PROBLEMS 

    12.1     In spite of the effort devoted to develop critical system components during 

advanced development, unknown unknowns can be expected to appear during 

engineering design. Discuss what contingency actions a systems engineer 

should take in anticipation of these  “ unk - unks. ”  Your answer should include 

the consideration of the potential impact on cost, schedule, personnel assign-

ments, and test procedures. If you have knowledge of a real - life example 

from your work, you may use that as the basis for your discussion.  

  12.2     External system interfaces are especially important during engineering 

design. Using the design of a new subway system as an example, list six 

types of external interfaces that will require critical attention. Explain your 

answer.  

  12.3     Modular or sectionalized system design is a fundamental characteristic of 

good system design practice. Using a passenger automobile as an example, 

discuss its main subsystems from the standpoint of modularity. Describe 

those that are modular and those that are not. For the latter, state how and 

why you think they depart from modular design.  

  12.4     A PDR is an important event during engineering design and the systems 

engineer has a key role during this review. Assume you (the systems engineer) 

have been given the assignment to be the principal presenter for an important 

PDR. Discuss what specifi c actions you would take to prepare for this 

meeting. How would you prepare for items that could be considered 

controversial?  

  12.5     The personal laptop computer is a product that has proven to be very reliable 

in spite of the fact that it has many interfaces, is operated by a variety of 

people, operates nearly continuously, and includes a number of internal 

moving parts (e.g., fl oppy disk drive, hard drive, and CD - ROM drive). It is 

a portable device that operates in a wide range of environments (temperature, 

shock, vibration, etc.). List six design features or characteristics that contrib-

ute to the laptop reliability. For each item in your list, estimate the contribu-

tions this item has on the overall computer cost. A ranking of high, medium, 

and low is suffi cient.  

  12.6     There are six methods of dealing with program risks listed in the section 

labeled  “ Risk Management Methods. ”  For four of these six methods, give 

two examples of situations where that method could be used for risk reduction 

and explain how.  
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  12.7     Design changes are vital to the development of new and advanced systems, 

especially to take advantage of evolving technology. Thus, during system 

development, some degree of design fl exibility must be maintained. However, 

design changes come with a price that increases as the design matures. 

Assuming you are the systems engineer for the development of a new com-

mercial jet aircraft, give two types of design changes you would support in 

each of the early part, middle part, and late part of the engineering design 

phase.     
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    13.1    INTEGRATING, TESTING, AND EVALUATING 
THE TOTAL SYSTEM 

 As its name implies, the integration and evaluation phase has the objectives of assem-

bling and integrating the engineered components of the new system into an effectively 

operating whole, and demonstrating that the system meets all of its operational require-

ments. The goal is to qualify the system ’ s engineering design for release to production 

and subsequent operational use. 

 As previously noted, the systems engineering life cycle model defi nes integration 

and evaluation as a separate phase of system development because its objectives and 

activities differ sharply from those of the preceding portion called the engineering 

design phase. These differences are also refl ected in changes in the primary participants 

engaged in carrying out the technical effort. 

 If all of the building blocks of a new system were correctly engineered, and if their 

design was accurately implemented, their integration and subsequent evaluation would 

be relatively straightforward. In reality, when a team of contractors develops a complex 
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system during a period of rapidly evolving technology, the above conditions are never 

fully realized. Hence, the task of system integration and evaluation is always complex 

and diffi cult and requires the best efforts of expert technical teams operating under 

systems engineering leadership. 

 The success of the integration and evaluation effort is also highly dependent on 

the advance planning and preparation for this effort that was accomplished during the 

previous phases. A detailed test and evaluation master plan (TEMP) is required to be 

formulated by the end of concept exploration and elaborated at each step thereafter (see 

Chapter  10 ). In practice, such planning usually remains quite general until well into 

the engineering design phase for several reasons: 

  1.     The specifi c test approach is dependent on just how the various system elements 

are physically implemented.  

  2.     Test planning is seldom allocated adequate priority in either staffi ng or funding 

in the early phases of system development.  

  3.     Simulating the system operational environment is almost always complicated 

and costly.    

 Hence, the integration and evaluation phase may begin with very considerable 

preparation remaining and may therefore proceed considerably slower than originally 

planned. The purpose of this chapter is to describe the essential activities that are typi-

cally required in this phase, a number of the problems that are commonly encountered, 

and some of the approaches to helping overcome the resulting obstacles. 

  Place of the Integration and Evaluation Phase in the System 
Life Cycle 

 It was seen in previous chapters that the general process of test and evaluation is an 

essential part of every phase of system development, serving as the validation step of 

the systems engineering method. It can be generally defi ned as embodying those activi-

ties necessary to reveal the critical attributes of a product (in this case a system element, 

such as a subsystem or component) and to compare them to expectations in order to 

deduce the product ’ s readiness for succeeding activities or processes. In the integration 

and evaluation phase, the process of test and evaluation becomes the central activity, 

terminating with the evaluation of the total system in a realistic replica of its intended 

operational environment. 

 Figures  13.1  and  13.2  show two different aspects of the relation between the inte-

gration and evaluation phase and its immediately adjacent phases in the system life 

cycle. Figure  13.1  is a functional fl ow view, which shows the integration and evaluation 

phase to be the transition from engineering design to production and operation. Its 

inputs from the engineering design phase are an engineered prototype, including com-

ponents, and a test and evaluation plan, with test requirements. The outputs of the 

integration and evaluation phase are system production specifi cations and a validated 

production system design. Figure  13.2  is a schedule and level - of - effort view, which 
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shows the overlap of the integration and evaluation phase with the engineering 

design phase.   

 The differences in the primary objectives, activities, and technical participants of 

the integration and evaluation phase from those of the engineering design phase are 

summarized in the following paragraphs. 

  Program Focus.     The engineering design phase is focused on the design and 

testing of the individual system components and is typically carried out by a number 

of different engineering organizations, with systems engineering and program manage-

ment oversight being exercised by the system developer. On the other hand, the integra-

tion and evaluation phase is concerned with assembling and integrating these engineered 

components into a complete working system, creating a comprehensive system test 

environment and evaluating the system as a whole. Thus, while these activities overlap 

in time, their objectives are quite different.  

     Figure 13.1.     Integration and evaluation phase in a system life cycle.  
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     Figure 13.2.     Integration and evaluation phase in relation to engineering design.  

Engineering

Design
Component

Design and Test
Deficiency
Correction

Phase

Test Requirements Test Deficiencies

Integration

and Evaluation
System

Test
Operational
Evaluation

System and Subsystem
Integration

Test Planning
and Preparation 

Phase



446 INTEGRATION AND EVALUATION

  Program Participants.     The primary participating technical groups in the inte-

gration and evaluation phase are systems engineering, test engineering, and design 

engineering. Their functions are pictured in the Venn diagram of Figure  13.3 , which 

shows the activities that are primary ones for each technical group and those that are 

shared. Systems engineering is shown as having the prime responsibility for defi ning 

the test requirements and evaluation criteria. It shares the responsibility for test planning 

with test engineering and the defi nition of test methodology and data to be collected 

with design engineering. Test engineering has responsibility for test conduct and data 

analysis; it usually provides a majority of the technical effort during this period. In 

many programs, design engineering has the prime responsibility for test equipment 

design. It is also responsible for component design changes to eliminate defi ciencies 

uncovered in the test and evaluation process.    

  Critical Problems.     The system integration process represents the fi rst time that 

fully engineered components and subsystems are linked to one another and are made 

to perform as a unifi ed functional entity. Despite the best plans and efforts, the integra-

tion of a system containing newly developed elements is almost certain to reveal 

unexpected incompatibilities. At this late stage in the development, such incompatibili-

ties must be resolved in a matter of days rather than weeks or months. The same is true 

when defi ciencies are discovered in system evaluation tests. Any crash program to 

     Figure 13.3.     System test and evaluation team.  
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resolve such critical problems should be led by systems engineers working closely with 

the project manager.  

  Management Scrutiny.     A large - scale system development program represents 

a major commitment of government and/or industrial funds and resources. When the 

development reaches the stage of system integration and testing, management scrutiny 

becomes intense. Any real or apparent failures are viewed with alarm, and temptations 

to intervene become strong. It is especially important that the program management 

and systems engineering leadership have the full confi dence of top management, and 

the authority to act, at this time.   

  Design Materialization Status 

 The status of system materialization in the integration and evaluation phase is shown 

in Table  13.1 . The table entries identifying the principal activities in this phase are 

seen to be in the upper right - hand corner, departing sharply from the downward pro-

gression of activities in the previous phases. This corresponds to the fact that in the 

other phases, the activities referred to the stepwise materialization of the individual 

component building blocks, progressing through the states of visualization, functional 

defi nition, and physical defi nition to detailed design, fabrication, and testing. In con-

trast, the activities in the integration and evaluation phase refer to the stepwise mate-

rialization of the entire system as an operational entity, proceeding through the 

integration and test of physically complete components into subsystems, and these into 

the total system.   

 A very important feature of the materialization status, which is not explicitly shown 

in Table  13.1 , is the characterization of interactions and interfaces. This process should 

have been completed in the previous phase but cannot be fully validated until the whole 

system is assembled. The inevitable revelation of some incompatibilities must therefore 

be anticipated as the new system is integrated. Their prompt identifi cation and resolu-

tion is a top priority of systems engineering. Accomplishing the integration of interfaces 

and interactions may not appear to be a major increase in the materialization of a 

system, but in reality, it is a necessary (and sometimes diffi cult) step in achieving a 

specifi ed capability. 

 This view of the activities and objectives of the integration and evaluation phase 

can be further amplifi ed by expanding the activities pictured in the last column of Table 

 13.1 . This is demonstrated in Table  13.2 , in which the fi rst column lists the system 

aggregation corresponding to the integration level as in Table  13.1 ; the second column 

indicates the nature of the environment in which the corresponding system element is 

evaluated; the third column lists the desired objective of the activity; and the fourth 

defi nes the nature of the activity, expanding the corresponding entries in Table  13.1 . 

The sequence of activities, which proceeds upward in the above table, starts with tested 

components, integrates these into subsystems, and then into the total system. The 

process then evaluates the system, fi rst in a simulated operational environment and 

fi nally in a realistic version of the environment in which the system is intended to 

operate. Thus, as noted earlier, in the integration and evaluation phase, the process of 



  TABLE 13.1.    Status of System Materialization at the Integration and Evaluation Phase 

   Phase      Concept development      Engineering development  

  Level    Needs analysis    Concept 

exploration  

  Concept defi nition    Advanced 

development  

  Engineering 

design  

  Integration and 

evaluation  

  System    Defi ne system 

capabilities and 

effectiveness  

  Identify, explore, 

and synthesize 

concepts  

  Defi ne selected 

concept with 

specifi cations  

  Validate concept        Test and evaluate  

  Subsystem        Defi ne 

requirements and 

ensure feasibility  

  Defi ne functional 

and physical 

architecture  

  Validate 

subsystems  

      Integrate and test  

  Component            Allocate functions 

to components  

  Defi ne 

specifi cations  

  Design and test    Integrate and test  

  Subcomponent        Visualize        Allocate functions 

to subcomponents  

  Design      

  Part                    Make or buy      

4
4
8



INTEGRATING, TESTING, AND EVALUATING THE TOTAL SYSTEM  449

materialization refers to the system as a whole and represents the synthesis of the total 

operational system from the previously physically materialized components.    

  Systems Engineering Method in Integration and Evaluation 

 Since the structure of the integration and evaluation phase does not conform to the 

characteristics of the preceding phases, the application of the systems engineering 

method is correspondingly different. In this phase, the requirements analysis or problem 

defi nition step corresponds to test planning — the preparation of a comprehensive plan 

of how the integration and evaluation tests are to be carried out. Since the functional 

design of the system and its components has been completed in previous phases, the 

functional defi nition step in this phase relates to the test equipment and facilities, which 

should be defi ned as a part of test preparation. The physical defi nition or synthesis step 

corresponds to subsystem and system integration, the components having been imple-

mented in previous phases. The design validation step corresponds to system test and 

evaluation. 

 The organization of the principal sections in this chapter will follow the order 

of the above sequence. However, it is convenient to combine test planning and 

test equipment defi nition into a single section on test planning and preparation and to 

divide system test and evaluation into two sections: developmental system testing, and 

operational test and evaluation. These sections will be seen to correspond to the pro-

cesses listed in the right - hand column of Table  13.2 , reading upward from the fourth 

row. 

  Test Planning and Preparation.     Typical activities include 

   •      reviewing system requirements and defi ning detailed plans for integration and 

system testing, and  

   •      defi ning the test requirements and functional architecture.     

  TABLE 13.2.    System Integration and Evaluation Process 

   Integration level     Environment     Objective     Process  

  System    Real operational 

environment  

  Demonstrated operational 

performance  

  Operational test and 

evaluation  

  System    Simulated operational 

environment  

  Demonstrated compliance 

with all requirements  

  Developmental test 

and evaluation  

  System    Integration facility    Fully integrated system    System integration 

and test  

  Subsystem    Integration facility    Fully integrated 

subsystems  

  Subsystem 

integration and test  

  Component    Component test 

equipment  

  Verifi ed component 

performance  

  Component test  
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  System Integration.     Typical activities include 

   •      integrating the tested components into subsystems and the subsystems into a total 

operational system by the sequential aggregation and testing of the constituent 

elements, and  

   •      designing and building integration test equipment and facilities needed to support 

the system integration process and demonstrating end - to - end operation.     

  Developmental System Testing.     Typical activities include 

   •      performing system - level tests over the entire operating regime and comparing 

system performance with expectations,  

   •      developing test scenarios exercising all system operating modes, and  

   •      eliminating all performance defi ciencies.     

  Operational Test and Evaluation.     Typical activities include 

   •      performing tests of system performance in a fully realistic operational environ-

ment under the cognizance of an independent test agent and  

   •      measuring degree of compliance with all operational requirements and evaluat-

ing the readiness of the system for full production and operational 

deployment.       

   13.2    TEST PLANNING AND PREPARATION 

 As described earlier, planning for test and evaluation throughout the system develop-

ment process begins in its early phases and is continually extended and refi ned. As the 

system design matures, the test and evaluation process becomes more exacting and 

critical. By the time the development nears the end of the engineering design phase, 

the planning and preparation for the integration and evaluation of the total system 

represents a major activity in its own right. 

   TEMP  

 It was noted in Chapter  10  that acquisition programs often require the preparation of a 

formal TEMP. Many of the principal subjects covered in the TEMP are applicable to 

the development of commercial systems as well. For reference purposes, the main ele-

ments of the TEMP format, described more fully in Chapter  10 , are listed below: 

  1.     System Introduction:     describes the system and its mission and operational 

environment and lists measures of effectiveness;  

  2.     Integrated Test Program Summary:     lists the test program schedule and partici-

pating organizations;  
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  3.     Developmental Test and Evaluation:     describes objectives, method of approach, 

and principal events;  

  4.     Operational Test and Evaluation:     describes objectives, test confi guration, 

events, and scenarios; and  

  5.     Test and Evaluation Resource Summary:     lists test articles, sites, instrumenta-

tion, and support operations.    

 Elements 3 and 4 will be referred to in somewhat greater detail in the fi nal sections of 

this chapter.  

  Analogy of Test and Evaluation Planning to System Development 

 The importance of the test and evaluation planning process is illustrated in Table  13.3 , 

which shows the parallels between this process and system development as a whole. 

The left half of the table lists the principal activities involved in each of four major 

steps in the system development process. The entries in the right half of the table list 

the corresponding activities in developing the test and evaluation plan. The table shows 

that the tasks comprising the test and evaluation planning process require major deci-

sions regarding the degree of realism, trade - offs among test approaches, defi nition of 

objectives, and resources for each test event, as well as development of detailed pro-

cedures and test equipment. In emphasizing the correspondence between these activi-

ties, the table also brings out the magnitude of the test and evaluation effort and its 

criticality to successful system development.   

 As may be inferred from Table  13.3 , specifi c plans for the integration and evalu-

ation phase must be developed before or concurrently with the engineering design 

  TABLE 13.3.    Parallels between System Development and Test and Evaluation (T & E) 
Planning 

   System development     T & E planning  

  Need: 

 Defi ne the capability to be fi elded.  

  Objective: 

 Determine the degree of sophistication 

required of the test program.  

  System concept: 

 Analyze trade - offs between performance, 

schedule, and cost to develop a system 

concept.  

  Test concept: 

 Evaluate trade - offs between test approaches, 

schedule, and cost to develop a test concept.  

  Functional design: 

 Translate functional requirements into two 

level specifi cation for the (sub)system(s).  

  Test plan: 

 Translate test requirements into a description 

of each test event and the resources required.  

  Detailed design: 

 Design the various components that 

comprise the system.  

  Test procedures: 

 Develop detailed test procedures and test tools 

for each event.  
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process. This is necessary in order to provide the time required for designing and build-

ing special test equipment and facilities that will be needed during integration and 

system testing. Costing and scheduling of the test program is an essential part of the 

plan since the costs and duration for system testing are very often underestimated, seri-

ously impacting the overall program.  

  Review of System Requirements 

 Prior to the preparation of detailed test plans, it is necessary to conduct a fi nal review 

of the system - level operational and functional requirements to ensure that no changes 

have occurred during the engineering design phase that may impact the system test and 

evaluation process. Three potential sources for such changes are described below: 

  1.     Changes in Customer Requirements.     Customer needs and requirements 

seldom remain unchanged during the years that it takes to develop a complex 

new system. Proposed changes to software requirements seem deceptively 

easy to incorporate but frequently prove disproportionately costly and time - 

consuming.  

  2.     Changes in Technology.     The rapid advances in key technologies, especially in 

solid - state electronics, accumulated over the system development time, offer 

the temptation to take advantage of new devices or techniques to gain signifi cant 

performance or cost savings. The compulsion to do so is heightened by increases 

in the performance of competitive products that utilize such advances. Such 

changes, however, usually involve signifi cant risks, especially if made late in 

the engineering design phase.  

  3.     Changes in Program Plans.     Changes that impact system requirements and are 

unavoidable may come from programmatic causes. The most common is 

funding instability growing out of the universal competition for resources. Lack 

of adequate funds to support the production phase may lead to a slip in the 

development schedule. Such events are often beyond the control of program 

management and have to be accommodated by changes in schedules and fund 

allocations.     

  Key Issues 

 There are several circumstances that require special attention during test planning and 

preparation for system integration and evaluation. These include the following: 

  1.     Oversight.     Management oversight is especially intense during the fi nal stages 

of a major development. System tests, especially fi eld tests, are regarded as 

indicators of program success. Test failures receive wide attention and invite 

critical investigation. Test plans must provide for acquisition of data that are 

necessary to be able to explain promptly and fully any mishaps and remedial 

measures to program management, the customer, and other concerned 

authorities.  



TEST PLANNING AND PREPARATION 453

  2.     Resource Planning.     Test operations, especially in the late stages of the program, 

are costly in manpower and funds. Too frequently, overruns and slippages in 

the development phases cut into test schedules and budgets. Serious problems 

of this type can be avoided only through careful planning to assure that the 

necessary resources are made available when required.  

  3.     Test Equipment and Facilities.     Facilities for supporting test operations must be 

designed and built concurrently with system development to be ready when 

needed. Advance planning for such facilities is essential. Also, the sharing of 

facilities between developmental and operational testing, wherever practicable, 

is important in order to stay within program funding limits.     

  Test Equipment Design 

 As noted in Chapter  11 , the testing of system elements, as well as the system as a whole, 

requires test equipment and facilities that can stimulate the element under test with 

external inputs and can measure the system responses. This equipment must meet exact-

ing standards: 

  1.     Accuracy.     The inputs and measurements should be several times more precise 

than the tolerances on the system element inputs and responses. There must be 

calibration standards available for ensuring that the test equipment is in proper 

adjustment.  

  2.     Reliability.     The test equipment must be highly reliable to minimize test dis-

crepancies due to test equipment errors. It should be either equipped with self -

 test monitors or subjected to frequent checks.  

  3.     Flexibility.     To minimize costs where possible, test equipment should be 

designed to serve several purposes, although not at the expense of accuracy or 

reliability. It is frequently possible to use some of the equipment designed for 

component tests also for.    

 Before designing the test equipment, it is important to defi ne fully the test proce-

dures so as to avoid later redesign to achieve compatibility between test equipment and 

the component or subsystem under test. This again emphasizes the importance of early 

and comprehensive test planning. 

 The paragraphs below discuss some of the aspects of test preparation peculiar to 

the integration, system test, and operational evaluation parts of the test and evaluation 

process.  

  Integration Test Planning 

 Preparing for the system integration process is dependent on the manner in which the 

system components and subsystems are developed. Where one or more components of 

a subsystem involve new technical approaches, the entire subsystem is often developed 

by the same organization and integrated prior to delivery to the system contractor. For 
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example, aircraft engines are usually developed and integrated as units before delivery 

to the airplane developer. In contrast, components using mature technologies are often 

acquired to a specifi cation and delivered as individual building blocks. The integration 

process at the system contractor ’ s facility must deal with whatever assortment of com-

ponents, subsystems, or intermediate assemblies is delivered from the respective 

contractors. 

 As stated previously, it is important to support the integration process at both the 

subsystem and system levels by capable integration facilities. These must provide the 

necessary test inputs, environmental constraints, power and other services, output mea-

surement sensors, as well as test recording and control stations. Many of these must be 

custom designed for each specifi c use. The facilities must be designed, built, and cali-

brated before integration is to begin. A typical physical test confi guration for is described 

in Section  13.3 , System Integration.  

  Developmental System Test Planning 

 Preparing for system - level tests to determine that the system performance requirements 

are met and that the system is ready for operational evaluation is more than a normal 

extension of the integration test process. Integration testing is necessarily focused on 

ensuring that the system ’ s components and subsystems fi t together in form and function. 

System performance tests go well beyond this goal and measure how the system as a 

whole responds to its specifi ed inputs and whether its performance meets the require-

ments established at the outset of its development. 

 The success or failure of a test program is critically dependent on the extent to 

which the total effort is thoughtfully planned and precisely detailed, the test equipment 

is well engineered and tested, and the task is thoroughly understood by the test and 

data analysis teams. Problems in system testing are at least as likely to be caused by 

faults in the test equipment, poorly defi ned procedures, or human error as by improper 

system operation. Thus, it is necessary that the test facilities be engineered and tested 

under the same rigorous discipline as that used in system development. Many programs 

suffer from insuffi cient time and effort being assigned to the testing process, and pay 

for such false economy by delays and excessive costs during system testing. To mini-

mize the likelihood of such consequences, the test program must be planned early and 

in suffi cient detail to identify and estimate the cost of the required facilities, equipment, 

and manpower.  

  Operational Evaluation Planning 

 Because operational evaluation is usually conducted by the customer or a test agent, 

its planning is necessarily done separately from that for integration and development 

testing. However, in many large - scale system developments, the costs of system - level 

testing compel the common use of as much development test equipment and facilities 

as may be practicable. 

 In some cases, a joint developer – customer test and evaluation program is carried 

out, in which the early phases are directed by the developer and the later phases by the 
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customer or the customer ’ s agent. Such collaborative programs have the advantage of 

providing a maximum exchange of information between the developer and customer, 

which is to their mutual benefi t. This also helps to avoid misunderstandings, as well as 

to quickly resolve unanticipated problems encountered during the process. 

 At the other extreme are operational test and evaluation programs that are carried 

out in a very formal manner by a special system evaluation agent and with maximum 

independence from the developer. However, even in such cases, it is important for both 

the developer and the system evaluation agent to establish channels of communication 

to minimize misinformation and unnecessary delays.   

   13.3    SYSTEM INTEGRATION 

 In the engineering of new complex systems with many interacting components, testing 

at the system level cannot begin until the system has been fully assembled and dem-

onstrated to operate as a unifi ed whole. The likelihood that some of the interfaces 

among the elements may not fi t or function properly, or that one or more interactions 

among them may fall outside prescribed tolerances, is usually high. It is only the very 

simplest systems that are assembled without testing at several intermediate levels of 

aggregation. Thus, experience has shown that no matter how thoroughly the individual 

components have been tested, there almost always remain unforeseen incompatibilities 

that do not reveal themselves until the system elements are brought together. Such 

discrepancies usually require changes in some components before the integrated system 

works properly. These changes, in turn, frequently require corresponding alterations in 

test equipment or procedures and must be refl ected in all relevant documentation. This 

section describes the general process and problems involved in integrating a typical 

complex system. 

 The successful and expeditious integration of a complex system depends on how 

well it has been partitioned into subsystems that have simple interactions with one 

another and are themselves subdivided into well - defi ned components. The integration 

process can be thought of as the reverse of partitioning. It is normally accomplished in 

two stages: (1) the individual subsystems are integrated from their components, and (2) 

the subsystems are assembled and integrated into the total system. At intervals during 

both stages, the assembled elements are tested to determine whether or not they fi t and 

interact together in accordance with expectations. In the event that they do not, special 

test procedures are instituted to reveal the particular design features that need to be 

corrected. Throughout the entire process, system integration proceeds in an orderly, 

stepwise manner with system elements added one or two at a time and then tested to 

demonstrate proper operation before proceeding to the next step. This procedure main-

tains control of the process and simplifi es diagnosis of discrepancies. The price for this 

stepwise integration of the system is that at every step, the test equipment must simulate 

the relevant functions of the missing parts of the system. Nevertheless, experience 

in the development of large systems has repeatedly demonstrated that the provision 

of this capability is, in the long run, quite cost - effective. In the integration of large 

software programs, this is frequently done by connecting the  “ program executive ”  to 
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 “ stubbed - off ”  or nonfunctioning modules  , which are successively replaced one at a time 

by functioning modules. 

 Determining the most effective order of assembly and selecting the optimum test 

intervals are critical to minimizing the effort and time needed to accomplish the integra-

tion process. Since both system - level knowledge and test expertise are essential to the 

defi nition of this process, the task is normally assigned to a special task team composed 

of systems engineers and test specialists. 

  Physical Test Confi guration 

 Integration testing requires versatile and readily reconfi gurable integration facilities. To 

understand their operation, it is useful to start with a generic model of a system element 

test confi guration. Such a model is illustrated in Figure  13.4  and is described below.   

 The  system element  (component or subsystem) under test is represented by the 

block at the top center of the fi gure. The  input generator  converts test commands into 

exact replicas, functionally and physically, of the inputs that the system element is 

expected to receive. These may be a sequence of typical inputs covering the range 

expected under operational conditions. The input signals in the same or simulated form 

are also fed to the element model. The  output analyzer  converts any outputs that are not 

already in terms of quantitative physical measures into such form. Whether or not the 

data obtained in the tests are compared in real time with predicted responses from the 

element model, they should also be recorded, along with the test inputs and other condi-

tions, for subsequent analysis. In the event of discrepancies, this permits a more detailed 

diagnosis of the source of the problem and a subsequent comparison with results of 

     Figure 13.4.     System element test confi guration.  
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suitably modifi ed elements. The physical building blocks in the top row of Figure  13.4  

may be seen to implement the corresponding functional elements of Figure  13.3 . 

 The  element model , pictured in the center of the Figure  13.4 , has the function of 

reproducing very precisely the response that the component or subsystem under test is 

expected to produce to each input, according to its performance specifi cations. The 

element model may take several forms. At one extreme, it may be a specially con-

structed and validated replica of the system element itself. At the other, it may be a 

mathematical model of the element, perhaps as simple as a table lookup if the predicted 

performance is an explicit function of the input. How it is confi gured determines the 

form of input required to drive it. 

 The  test manager  introduces a function not represented in the basic test architecture 

of Figure  13.3 . Because the testing of most elements of complex systems is a compli-

cated process, it requires active supervision by a test engineer, usually supported by a 

control console. This allows critical test results to be interpreted in real time in terms 

of required performance so that the course of testing can be altered if signifi cant devia-

tions are observed. 

 The  performance comparator  matches the measured system element outputs with 

the expected outputs from the element model in accordance with test criteria provided 

by the test manager. The comparison and assessment is performed in real time whenever 

practicable to enable a rapid diagnosis of the source of deviations from expected results, 

as noted previously. The evaluation criteria are designed to refl ect the dependence of 

the operational performance on individual performance parameters. 

 Most actual test confi gurations are considerably more complex than the simplifi ed 

example in Figure  13.4 . For example, tests may involve simultaneous inputs from 

several sources involving various types of system elements (e.g., signal, material, and 

mechanical), each requiring a different type of signal generator. Similarly, there are 

usually several outputs, necessitating different measuring devices to convert them into 

forms that can be compared with predicted outputs. The tests may also involve a series 

of programmed inputs representing typical operating sequences, all of which must be 

correctly processed. 

 It is clear from the above discussion that the functionality embodied in the test 

confi guration of a system element is necessarily comparable to that of the element itself. 

Hence, designing the test equipment is itself a task of comparable diffi culty to that of 

developing the system element. One factor that makes the task somewhat simpler is 

that the environment in which the test equipment operates is usually benign, whereas 

the system operating environment is often severe. On the other hand, the precision of 

the test equipment must be greater than that of the system element to ensure that it does 

not contribute signifi cantly to measured deviations from the specifi ed element 

performance.  

  Subsystem Integration 

 As noted previously, the integration of a subsystem (or system) from its component 

parts is normally a stepwise assembly and test process in which parts are systematically 

aggregated, and the assembly is periodically tested to reveal and correct any faulty 
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interfaces or component functions as early in the process as practicable. The time and 

effort required to conduct this process is critically dependent on the skillful organization 

of the test events and the effi cient use of facilities. Some of the most important con-

siderations are discussed below. 

 The order in which system components are integrated should be selected to avoid 

the need to construct special input generators for simulating components within the 

subsystem, that is, other than those simulating inputs from sources external to the 

subsystem being integrated. Thus, at any point in the assembly, the component that is 

to be added should have inputs that are derivable from either generators of external 

inputs or the outputs of components previously assembled. 

 The above approach means that subsystem integration should begin with compo-

nents that have only external inputs, either from the system environment or from other 

subsystems. Examples of such components include 

  1.     subsystem support structures,  

  2.     signal or data input components (e.g., external control transducers), and  

  3.     subsystem power supplies.    

 The application of the above approach to the integration of a simple subsystem is 

illustrated in Figure  13.5 . The fi gure is an extension of Figure  13.4 , in which the sub-

system under test is composed of three components. The confi guration of components 

in the fi gure is purposely chosen so that each component has a different combination 

of inputs and outputs. Thus, component A has a single input from an external subsystem 

and two outputs — one an internal output to B and the other to another subsystem. 

Component B has no external interfaces — getting its input from A and producing an 

output to C. Component C has two inputs — one external and the other internal, and a 

single output to another subsystem.   

 The special features of the test confi guration are seen to be 

  1.     a compound input generator to provide the two external inputs to the subsystem

 — one to A and the other to C;  

  2.     internal test outputs from the interfaces between A and B, and between B and 

C; these are needed to identify the source of any observed deviation in the 

overall performance and are in addition to the external subsystem outputs from 

A and C; and  

  3.     a compound element model containing the functions performed by the constitu-

ent components and providing the predicted outputs of the test interfaces.    

 Following the integration sequence approach described above, the confi guration in 

Figure  13.5  would be assembled as follows: 

  1.     Start with A, which has no internal inputs. Test A ’ s outputs.  

  2.     Add B and test its output. If faulty, check if input from A is correct.  

  3.     Add C and test its output.    
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 The above integration sequence does not require the construction of input genera-

tors to provide internal functions and should rapidly converge on the source of a faulty 

component or interface. 

 The approach described above works in the great majority of cases but must, of 

course, be carefully reviewed in the light of any special circumstances. For example, 

there may be safety issues that make it necessary to leave out or add steps to circumvent 

unsafe testing conditions. The temporary unavailability of key components may require 

a substitution or simulation of elements. Particularly critical elements may have to be 

tested earlier than in the ideal sequence. Systems engineering judgment must be applied 

in examining such issues before defi ning the integration sequence. 

  Test Conduct and Analysis.     The determination of whether or not a given step 

in the integration process is successful requires matching the outputs of the partially 

assembled components against their expected values as predicted by the model. The 

effort required to make this comparison depends on the degree of automation of the 

test confi guration and of the analytical tools embodied in the performance comparator 

block in Figure  13.5 . The trade - off between the sophistication of the test and analysis 

     Figure 13.5.     Subsystem test confi guration.  
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tools and the analysis effort itself is one of the critical decisions to be made in planning 

the integration process. 

 In scheduling and costing the integration effort, it must be expected that numerous 

deviations will be observed in the measured performance from that predicted by the 

model, despite the fact that all components presumably have previously passed quali-

fi cation tests. Each discrepancy must be dealt with by fi rst documenting it in detail, 

identifying the principal source(s) of the deviations, and devising the most appropriate 

means of eliminating or otherwise resolving the discrepancy. 

 It should be emphasized that in practice, most failures observed during the integra-

tion process are usually due to causes other than component malfunctions. Some of the 

most frequently occurring problem areas are faulty test equipment or procedures, mis-

interpretation of specifi cations, unrealistically tight tolerances, and personnel error. 

These are discussed in the succeeding paragraphs. 

 There are several reasons why faults are frequently found in the test equipment: 

  1.     The amount of design effort allocated to the design and fabrication of test equip-

ment is far smaller than the effort spent on component design.  

  2.     The test equipment must be more precise than the components to ensure that 

its tolerances do not contribute signifi cantly to observed deviations from 

predictions.  

  3.     The equipment used to test separately an individual component may not be 

exactly the same as that incorporated into the integration test facility, or its 

calibration may be different.  

  4.     The predictions of expected performance of the element under test by the 

element model may be imperfect due to the impossibility of modeling exactly 

the behavior of the test element.    

 Not infrequently, the specifi cations of interfaces and interactions among components 

permit different interpretations by the designers of interfacing components. This can 

result in signifi cant mismatches when the components are assembled. There is no practi-

cal and foolproof method of entirely eliminating this source of potential problems. Their 

number can, however, be minimized through critical attention to and review of each 

interface specifi cation prior to its release for design of the associated hardware or soft-

ware. In most cases, establishing an interface coordination team, including all involved 

contractors, has proven to be advantageous. 

 To ensure that interfacing mechanical, electrical, or other elements fi t together and 

interact properly, the specifi cations for each separate element must include the permit-

ted tolerances (deviations from prescribed values) in the interacting quantities. For 

example, if the interfacing components are held together by bolts, the location of the 

holes in each component must be specifi ed within a plus/minus tolerance of their 

nominal dimensions. These tolerances must allow for the degree of precision of produc-

tion machinery, as well as normal variations in the size of standard bolts. If the specifi ed 

tolerances are too tight, there will be excessive rejects in manufacture; if too loose, 

there will be occasional misalignments, causing fi t failures. 
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 Personnel errors are a common source of test failure and one that can never be 

completely avoided. Such failures may occur because of inadequate training, unclear 

or insuffi ciently detailed test procedures, overly complex or demanding test methods, 

fatigue, or simple carelessness. Errors of this type can occur at any point in the plan-

ning, execution, and support of the testing process.  

  Changes.     If the diagnosis of a faulty test traces the problem to a component 

design feature, it is necessary to undertake a highly expedited effort to determine the 

most practical and effective means of resolving the problem. At this stage of develop-

ment, the design should be under strict confi guration management. Since any signifi cant 

change will be costly and potentially disruptive, all means of avoiding or minimizing 

the change must be explored and several alternatives examined. The fi nal decision will 

have to be made at the program management level if signifi cant program cost and 

schedule changes are involved. 

 If there is no  “ quick fi x ”  available, consideration may be given to seeking a waiver 

to deviate from a certain specifi cation for an initial quantity of production units so as 

to afford adequate time to design and validate the change prior to its release for produc-

tion. Not infrequently, careful analysis reveals that the effect of the deviation on opera-

tional performance is not suffi cient to warrant the cost of making the change, and a 

permanent waiver is granted. Systems engineering analysis is the key to determining 

the best course of action in such circumstances, and to advocating its approval by 

management and the customer.   

  Total System Integration 

 The integration of the total system from its subsystems is based on the same general 

principles as those governing the integration of individual subsystems, described in 

the preceding paragraphs. The main differences are those of relative scale, complexity, 

and hence criticality. Faults encountered at this stage are more diffi cult to trace, 

costly to remedy, and have a greater potential impact on overall program cost 

and schedule. Hence, a more detailed planning and direction of the test program are in 

order. Under these conditions, the application of systems engineering oversight 

and diagnostic expertise are even more essential than in the earlier stages of system 

development. 

  System Integration Test Facility.     It was noted that specially designed facilities 

are normally required to support the integration and test of systems and their major 

subsystems. This is even more true for the assembly and integration of total systems. 

Often, such a facility is gradually built up during system development to serve as a 

 “ test bed ”  for risk reduction testing and may be assembled in part from subsystem test 

facilities. 

 As in the case of subsystem integration test facilities, the system integration facility 

must provide for extracting data from test points at internal boundaries between sub-

systems, as well as from the normal system outputs. It should also be designed to be 

fl exible enough to accommodate system updates. Thus, the design of the integration 
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facilities needed to achieve the necessary test conditions, measurements, and data 

analysis capabilities is itself a major systems engineering task.    

   13.4    DEVELOPMENTAL SYSTEM TESTING 

 The system integration process was seen to be focused on ensuring that component and 

subsystem interfaces and interactions fi t together and function as they were designed. 

Once this is accomplished, the system may, for the fi rst time, be tested as a unifi ed 

whole to determine whether or not it meets its technical requirements, for example, 

performance, compatibility, reliability, maintainability, availability (RMA), safety, and 

so on. The above process is referred to as verifi cation that the system satisfi es its speci-

fi cations. Since the responsibility for demonstrating successful system verifi cation is a 

necessary part of the development process, it is conducted by the system developer and 

will be referred to as developmental system testing. 

  System Testing Objectives 

 While the primary emphasis of developmental system - level testing is on the satisfaction 

of system specifi cations, evidence must also be obtained concerning the system ’ s capa-

bility to satisfy the operational needs of the user. If any signifi cant issues exist in this 

regard, they should be resolved before the system is declared ready for operational 

evaluation. For this reason, the testing process requires the use of a realistic test envi-

ronment, extensive and accurate instrumentation, and a detailed analysis process that 

compares the test outputs with predicted values and identifi es the nature and source of 

any discrepancies to aid in their prompt resolution. In a real sense, the tests should 

include a  “ rehearsal ”  for operational evaluation. 

 In the case of complex systems, there are frequently several governing entities in 

the acquisition and validation process that must be satisfi ed that the system is ready for 

full - scale production and operational use. These typically include the acquisition or 

distribution agency (customer), which has contracted for the development and produc-

tion of the system, and in the case of products to be used by the public, one or more 

regulatory agencies (certifi ers) concerned with conformance with safety or environmen-

tal regulations. In addition, the customer may have an independent testing agent who 

must pass favorably on the system ’ s operational worth. In the case of a commercial 

airliner, the customer is an airline company and the certifi cation agencies are the Federal 

Aviation Administration (FAA) and the Civil Aeronautics Board (CAB). 

 An essential precondition to system - level testing is that component and has been 

successfully completed and documented. When system test failures occur in compo-

nents or subsystems because of insuffi cient testing at lower levels, the system evalua-

tion program risks serious delays. A required  “ stand - down ”  at this point in the program 

is time - consuming, expensive, and may subject the program to a critical management 

review. It is axiomatic, therefore, that the system test program should not be started 

unless the developer and customer have high confi dence in the overall system design 

and in the quality of the test equipment and test plans. 
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 Despite careful preparation, the test process should be conducted with the expecta-

tion that something may go wrong. Consequently, means must be provided to quickly 

identify the source of such unexpected problems and to determine what, within the 

bounds of acceptable costs in money and time, can be done to correct them. Systems 

engineering knowledge, judgment, and experience are crucial factors in the handling 

of such  “ late - stage ”  problems.  

  Developmental Test Planning 

 The provisions of the defense TEMP regarding developmental test and evaluation state 

that, in part, plans should 

   •      defi ne the specifi c technical parameters to be measured;  

   •      summarize test events, test scenarios, and the test design concept;  

   •      list all models and simulations to be used; and  

   •      describe how the system environment will be represented.     

  System Test Confi guration 

 System testing requires that the test confi guration be designed to subject the system 

under test to all of the operational inputs and environmental conditions that it is 

practical to reproduce or simulate, and to measure all of the signifi cant responses and 

operating functions that the system is required to perform. The sources for determining 

which measurements are signifi cant should be found largely in system - level require-

ments and specifi cations. The principal elements that must be present in a system test 

confi guration are summarized below and are discussed in the subsequent paragraphs of 

this section. 

   •       System Inputs and Environment   

  1.     The test confi guration must represent all conditions that affect the system ’ s 

operation, including not only the primary system inputs but also the interac-

tions of the system with its environment.  

  2.     As many of the above conditions as practicable should be exact replicas of 

those that the system will encounter in its intended use. The others should be 

simulated to realistically represent their functional interactions with the 

system.  

  3.     Where the real operational inputs cannot be reproduced or simulated as part 

of the total test confi guration (e.g., the impact of rain on an aircraft fl ying at 

supersonic speed), special tests should be carried out in which these functions 

can be reproduced and their interaction with the system measured.    

   •       System Outputs and Test Points  

   1.     All system outputs required for assessing performance should be converted 

into measurable quantities and recorded during the test period.  
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  2.     Measurements and recordings should also be made of the test inputs and 

environmental conditions to enable correlation of the variations in inputs with 

changes in outputs.  

  3.     A suffi cient number of internal test points should be monitored to enable 

tracing the cause of any deviations from expected test results to their source 

in a specifi c subsystem or component.    

   •       Test Conditions  

   1.     To help ensure that contractor system testing leads to successful operational 

evaluation by the customer, it is important to visualize and duplicate, insofar 

as possible, the conditions to which the system is most likely to be subjected 

during operational evaluation.  

  2.     Some system tests may intentionally overstress selected parts of the system 

to ensure system robustness under extreme conditions. For example, it is 

common to specify that a system degrade  “ gracefully ”  when overstressed 

rather than suddenly crash. This type of test also includes validating the 

procedures that enable the system to recover to full capability.  

  3.     Wherever practicable, customer operating and evaluation agent personnel 

should be involved in contractor system testing. This provides an important 

mutual exchange of system and operational knowledge that can result in 

better planned and more realistic system tests and more informed test 

analyses.       

  Development of Test Scenarios 

 In order to evaluate a system over the range of conditions that it is expected to encounter 

in practice, as defi ned in top - level system requirements, a structured series of tests must 

be planned to explore adequately all relevant cases. The tests should seek to combine 

a number of related objectives in each test event so that the total test series is not exces-

sively prolonged and costly. Further, the order in which tests are conducted should be 

planned so as to build upon the results of preceding tests, as well as to require the least 

amount of retesting in the event of an unexpected result. 

 Composite system tests of the type described above are referred to as test events 

conducted in accordance with test scenarios, which defi ne a series of successive test 

conditions to be imposed on the system. The overall test objectives are allocated among 

a set of such scenarios, and these are arranged in a test event sequence. The planning 

of test scenarios is a task for systems engineers with the support of test engineers 

because it requires a deep understanding of the system functions and internal as well 

as external interactions. 

 The combination of several specifi c test objectives within a given scenario usually 

requires that the operational or environmental inputs to the system must be varied to 

exercise different system modes or stress system functions. Such variations must be 

properly sequenced to produce maximum useful data. Decisions have to be made as to 

whether or not the activation of a given test event will depend on a successful result 

of the preceding test. Similarly, the scenario test plan must consider what test results 
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outside expected limits would be cause for interrupting the test sequence, and if so, 

when the sequence would be resumed.  

  System Performance Model 

 In describing the testing and integration of system components, a necessary element 

was stated to be a model of the component that predicted how it is expected to respond 

to a given set of input conditions. The model is usually either a combination of physi-

cal, mathematical and hybrid elements, or wholly a computer simulation. 

 In predicting the expected behavior of a complex system in its totality, it is usually 

impractical to construct a performance model capable of reproducing in detail the 

behavior of the whole system. Thus, in system - level tests, the observed system perfor-

mance is usually analyzed at two levels. The fi rst is in terms of the end - to - end perfor-

mance characteristics that are set forth in the system requirements documents. The 

second is at the subsystem or component level where certain critical behavior is called 

for. The latter is especially important when an end - to - end test does not yield the 

expected result and it is required to locate the source of the discrepancy. 

 Decisions as to the degree of modeling that is appropriate at the system test level 

are very much a systems engineering function, where the risks of not modeling certain 

features have to be weighed against the effort required. Since it is impractical to test 

everything, the prioritization of test features, and hence of model predictions, must be 

based on a system - level analysis of the relative risks of omitting particular 

characteristics. 

 The design, engineering, and validation of system performance models is itself a 

complex task and must be carried out by the application of the same systems engineer-

ing methods used in the engineering of the system itself. At the same time, pains must 

be taken to limit the cost of the modeling and simulation effort to an affordable fraction 

of the overall system development. The balance between realism and cost of modeling 

is one of the more diffi cult tasks of systems engineering.  

  Engineering Development Model ( EDM ) 

 As mentioned earlier, the system test process often requires that essentially all of the 

system be subjected to testing before the fi nal system has been produced. For this 

reason, it is sometimes necessary to construct a prototype, referred to as an  “ EDM, ”  

for test purposes, especially in the case of very large complex systems. An EDM must 

be as close as possible to the fi nal product in form, fi t, and function. For this reason, 

EDMs can be expensive to produce and maintain, and must be justifi ed on the basis of 

their overall benefi t to the development program.  

  System Test Conduct 

 The conduct of contractor system tests is usually led by the test organization, which is 

also involved in the integration - testing phase, and is intimately familiar with system 

design and operation. There are, however, numerous other important participants. 
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  Test Participants.     As shown in Figure  13.3 , systems engineers should have been 

active in the planning of the test program from its inception and should have approved 

the overall test plans and test confi gurations. An equally critical systems engineering 

function is that of resolving discrepancies between actual and predicted test results. As 

mentioned previously, those may arise from a variety of sources and must be quickly 

traced to the specifi c system or test element responsible; a system - level approach must 

be taken to devise the most effective and least disruptive remedy. 

 Design engineers are also key participants, especially in the engineering of test 

equipment and analysis of any design problems encountered during testing. In the latter 

instance, they are essential to effect quickly and expertly such design changes as may 

be required to remedy the defi ciency. 

 Engineering specialists, such as reliability, maintainability, and safety engineers, 

are essential participants in their respective areas. Of particular importance is the par-

ticipation of specialists in the testing of human – machine interfaces, which are likely to 

be of critical concern in the operational evaluation phase. Data analysts must participate 

in test planning to ensure that appropriate data are acquired to support performance and 

fault diagnostic analysis. 

 As noted earlier, while system testing is under the direction of the developer, the 

customer and/or the customer ’ s evaluation agent will often participate as observers of 

the process and will use this opportunity to prepare for the coming operational evalu-

ation tests. It is always advantageous for customer test personnel to receive some 

operation training during this period.  

  Safety.     Whenever system testing occurs, there must be a section of the test plan 

that specifi cally addresses safety provisions. This is best handled by assigning one or 

more safety engineers to the test team, making them responsible for all aspects of this 

subject. Many large systems have hazardous exposed moving parts, pyrotechnic and/or 

explosive devices, high voltages, dangerous radiation, toxic materials, or other charac-

teristics that require safeguards during testing. This is particularly true of military systems. 

 In addition to the system itself, the external test environment may also pose safety 

problems. The safety engineers must brief all participating test personnel on the poten-

tial dangers that may be present, provide special training, and supply any necessary 

safety equipment. Systems engineers must be fully informed on all safety issues and 

must be prepared to assist the safety engineers as required.   

  Test Analysis and Evaluation 

 Test analysis begins with a detailed comparison of system performance, as a function 

of test stimuli and environments, with that predicted by the system performance 

model. Any deviations must trigger a sequence of actions designed to resolve the 

discrepancies. 

  Diagnosing the Sources of Discrepancies.     In all discrepancies in which the 

cause is not obvious, systems engineering judgment is required to determine the most 

promising course of action for identifying the cause. Time is always of the essence, but 
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never as much so as in the middle of system - level evaluation. The cause of a test dis-

crepancy can be due to a fault in (1) test equipment, (2) test procedures, (3) test execu-

tion, (4) test analysis, (5) the system under test, or (6) occasionally, to an excessively 

stringent performance requirement. As noted previously, faults are frequently traceable 

to one of the fi rst four causes, so that these should be eliminated before contemplating 

emergency system fi xes. However, since there is seldom time to investigate possible 

causes one at a time, it is usually prudent to pursue several of them in parallel. It is 

here that the acquisition of data at many test points within the system may be essential 

to rapidly narrow the search and to indicate an effective priority of investigative efforts. 

This is also a reason why test procedures must be thoroughly understood and rehearsed 

well in advance of actual testing.   

  Dealing with System Performance Discrepancies 

 If a problem is traced to the system under test, then it becomes a matter of deciding if 

it is minor and easily corrected, or serious, and/or not understood, in which case delays 

may be required, or not serious and agreeable to the contractor and customer that cor-

rective action may be postponed. 

 The above decisions involve one of the most critical activities of systems engineers. 

They require a comprehensive knowledge of system design, performance requirements, 

and operational needs, and of the  “ art of the possible. ”  Few major discrepancies at this 

stage of the program can be quickly corrected; any design change initiates a cascade 

of changes in design documentation, test procedures, interface specifi cations, produc-

tion adjustments, and so on. In many instances, there may be alternative means of 

eliminating the discrepancy, such as by software rather than hardware changes. Many 

changes propagate well beyond their primary location. Dealing with such situations 

usually requires the mobilization of a  “ tiger team ”  charged with quickly reaching an 

acceptable resolution of the problem. 

 Any change made to the system raises the question whether or not the change 

requires the repetition of tests previously passed — another systems engineering issue 

with a serious impact on program schedule and cost. 

 In cases where the system performance discrepancy is not capable of being elimi-

nated in time to meet established production goals, the customer has the option of 

choosing to accept release of the system design for limited production, assuming that 

it is otherwise operationally suitable. Such a decision is taken only after exhaustive 

analysis has been made of all viable alternatives and usually provides for later backfi t-

ting of the initial production systems to the fully compliant design.   

   13.5    OPERATIONAL TEST AND EVALUATION 

 In previous periods of subsystem and system testing, the basis of comparison was a 

model that predicted the performance expected from an ideal implementation of the 

functional design. In system operational evaluation, the test results are compared to the 

operational requirements themselves rather than to their translation into performance 
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requirements. Thus, the process is focused on  validation  of the system design in terms 

of its operational requirements rather than on  verifi cation  that it performs according to 

specifi cations. 

 The operational evaluation of a new system is conducted by the customer or by an 

independent test agent acting on the customer ’ s behalf. It consists of a series of tests 

in which the system is caused to perform its intended functions in an environment 

identical or closely similar to that in which it will operate in its intended use. The 

satisfactory performance of the system in meeting its operational requirements is a 

necessary prerequisite to initiation of production and deployment. In the case of systems 

built for public use, such as commercial aircraft, there will also be special tests or 

inspections by government agents responsible for certifying the product ’ s safety, envi-

ronmental suitability, and other characteristics subject to government regulation. 

  Operational Test Objectives 

 Operational test and evaluation is focused on operational requirements, mission effec-

tiveness, and user suitability. The subject of operational evaluation is usually a prepro-

duction prototype of the system. The expectation is that all obvious faults will have 

been eliminated during development testing, and that any further signifi cant faults may 

cause suspension of evaluation tests, pending their elimination by the developer. The 

limitations of time and resources normally available for operational evaluation require 

careful prioritization of test objectives. A generally applicable list of high - priority areas 

for testing includes the following: 

  1.     New Features.     Features designed to eliminate defi ciencies in a predecessor 

system are likely to be the areas of greatest change and hence greatest uncer-

tainty. Testing their performance should be a top priority.  

  2.     Environmental Susceptibility.     Susceptibilities to severe operational environ-

ments are areas least likely to have been fully tested. Operational evaluation is 

sometimes the fi rst opportunity to subject the system to conditions closely 

resembling those that it is designed to encounter.  

  3.     Interoperability.     Compatibility with external equipment, subject to nonstandard 

communication protocols and other data link characteristics, makes it essential 

to test the system when it is connected to the same or functionally identical 

external elements as it will be connected to in its operational condition.  

  4.     User Interfaces.     How well the system users/operators are able to control its 

operations, that is, the effectiveness of the system human – machine interfaces, 

must be determined. This includes assessing the amount and type of training 

that will be required, the adequacy of training aids, the clarity of displays, and 

the effectiveness of decision support aids.    

  Example: Operational Evaluation of an Airliner.     The function of a com-

mercial airliner is to transport a number of passengers and their luggage from a given 

location to remote destinations, rapidly, comfortably, and safely. Its operational con-
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fi guration is illustrated by a so - called context diagram in Figure  13.6 a. The diagram 

lists the principal operational inputs and outputs, together with the ambient and support 

environments, that contribute to and affect the operation of the system. The principal 

inputs besides passengers and luggage are fuel, fl ight crew, and navigation aids. 

Numerous secondary but important functions, such as those relating to the comfort of 

the passengers (food, entertainment, etc.) that must also be considered are omitted from 

the fi gure for the sake of clarity. The operational fl ight environment includes the fl ight 

medium, with its variation in pressure, temperature, wind velocity, and weather 

extremes, which the system must be designed to withstand with minimum effect on its 

primary functions.   

 Figure  13.6 b is the corresponding diagram of the airliner in its operational test 

mode. A comparison with Figure  13.6 a shows that the test inputs duplicate the opera-

tional inputs, except that most of the passengers and luggage are simulated. The 

     Figure 13.6.     (a) Operation of a passenger airliner. (b) Operational testing of an airliner.  
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measured outputs include data from the plane ’ s instruments and special test sensors to 

enable the evaluation of performance factors relating to effi ciency, passengers comfort, 

and safety, as well as to permit the reconstruction of the causes of any in - fl ight abnor-

malities. The operational test environment duplicates the operational environment, 

except for conditions of adverse weather, such as wind shear. To compensate for the 

diffi culty of reproducing adverse weather, an airplane under test may be intentionally 

subjected to stresses beyond its normal operating conditions so as to ensure that suf-

fi cient safety margin has been built in to withstand severe environments. In addition, 

controllable severe fl ight conditions can be produced in wind tunnel tests, in specially 

equipped hangars, or in system simulations.   

  Test Planning and Preparation 

 Test plans and procedures, which are used to guide operational evaluation, must not 

only provide the necessary directions for conducting the operational tests but should 

also specify any follow - up actions that, for various reasons, could not be completed 

during previous testing, or need to be repeated to achieve a higher level of confi dence. 

It should also be noted that while there are general principles that apply to most system 

test confi gurations, each specifi c system is likely to have special testing needs that must 

be accommodated in the test planning. 

 The extensive scope of test planning for the operational evaluation of a major 

system is illustrated by the provisions of the TEMP. It requires that plans for operational 

test and evaluation should, in part, 

   •      list critical operational issues to be examined to determine operational 

suitability,  

   •      defi ne technical parameters critical to the above issues,  

   •      defi ne operational scenarios and test events,  

   •      defi ne the operational environment to be used and the impact of test limitations 

on conclusions regarding operational effectiveness,  

   •      identify test articles and necessary logistic support, and  

   •      state test personnel training requirements.    

  Test and Evaluation Scope.     Evaluation planning must include a defi nition of 

the appropriate scope of the effort, how realistic the test conditions must be, how many 

system characteristics must be tested, what parameters must be measured to evaluate 

system performance, and how accurately. Each of these defi nitions involves trade - offs 

between the degree of confi dence in the validity of the result, and the cost of the test 

and evaluation effort. Confi dence in the results, in turn, depends on the realism with 

which the test conditions represent the expected operational environment. The general 

relationship between test and evaluation realism and evaluation program cost is pictured 

in Figure  13.7 . It obeys the classic law of diminishing returns, in which cost escalates 

as the test sophistication approaches full environmental reality and complete parameter 

testing.   
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 The decision of  “ how much testing is enough ”  is inherently a systems engineering 

issue. It requires a basic knowledge of the operational objectives, how these relate to 

system performance, what system characteristics are most critical and least well proven, 

how diffi cult it would be to measure critical performance factors, and other equally 

vital elements of the trade - offs that must be made. It also requires the inputs of test 

engineers, design engineers, engineering specialists, and experts in the operational use 

of the system.  

  Test Scenarios.     System operational evaluation should proceed in accordance 

with a set of carefully planned test scenarios, each of which consists of a series of 

events or specifi c test conditions. The objective is to validate all of the system require-

ments in the most effi cient manner, that is, involving the least expenditure of time and 

resources. 

 The planning of the test events and their sequencing must not only make the most 

effective use of test facilities and personnel but also must be ordered so that each test 

builds on the preceding ones. The proper functioning of the links between the system 

and external systems, such as communications, logistics, and other support functions, 

is essential for the successful testing of the system itself and must, therefore, be among 

the fi rst to be tested. At the same time, all test equipment, including data acquisition, 

should be recalibrated and recertifi ed.  

  Test Procedures.     The preparation of clear and specifi c test procedures for each 

test event is particularly important in operational testing because the results are critical 

for program success. Also, the user test personnel are generally less familiar with the 

detailed operation of the system under test than development test personnel. The test 

     Figure 13.7.     Test realism versus cost.  
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procedures should be formally documented and thoroughly reviewed for completeness 

and accuracy. They should address the preparation of the test site, the confi guration of 

the test equipment, the setup of the system, and the step - by - step conduct of each test. 

The required actions of each test participant should be described, including those 

involved in data acquisition.  

  Analysis Plan.     An analysis plan must be prepared for each test event specifying 

how the data obtained will be processed to evaluate the proper performance of the 

system. The collective test plans should be reviewed to ensure that they combine to 

obtain all of the measures needed to establish the validity of the system in meeting its 

operational requirements. This review requires systems engineering oversight to provide 

the necessary system - level perspective.   

  Personnel Training 

 The fact that these tests are performed under the direction of personnel who have not 

been part of the system development team makes the evaluation task especially chal-

lenging. An essential part of the preparation for operational evaluation is, therefore, the 

transfer of technical system knowledge from the development organization and the 

acquisition agency to those responsible for planning and executing the evaluation 

process. This must be started at least during the developmental system test period, 

preferably by securing the active participation of the evaluation agent ’ s test planning 

and analysis personnel. The developer ’ s systems engineering staff should be prepared 

to take the lead in effecting the necessary transfer of this knowledge. 

 While it is to everyone ’ s benefi t to effect the above knowledge transfer, the process 

is too often inadequate. Signifi cant funding is seldom earmarked for this purpose, and 

the appropriate personnel are often occupied with other priority tasks. Another common 

obstacle is an excessive spirit of independence that motivates some evaluation agents 

to avoid becoming involved in the preevaluation testing phase. Therefore, it usually 

remains for an experienced program manager or chief systems engineer in either orga-

nization to take the initiative to make it happen.  

  Test Equipment and Facilities 

 Since the focus of operational evaluation is on end - to - end system performance, only 

limited data are strictly required regarding the operation of individual subsystems. On 

the other hand, it is essential that any system performance discrepancy be quickly 

identifi ed and resolved. To this end, the system developer is often permitted to make 

auxiliary measurements of the performance of selected subsystems or components. The 

same equipment as was employed in developmental testing is usually suitable for this 

purpose. It is to the advantage of both the evaluation agent and the developer to monitor 

and record the outputs from a suffi cient number of system test points to support a 

detailed posttest diagnosis of system performance when required. 

 As stated previously, the conditions to which each system is subjected must be 

representative of its intended operational environment. In the above example of a com-
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mercial airliner, the operational environment happens to differ from readily reproduc-

ible fl ying conditions only in the availability of adverse weather conditions that the 

airliner must be able to handle safely. This fortunate circumstance is not typical of the 

evaluation of most complex systems. Operational testing of ground transport vehicles 

requires a specially selected terrain that stresses their performance capabilities over a 

broad range of conditions. Systems depending on external communications require 

special auxiliary test instrumentation to provide such inputs and to receive any corre-

sponding output.  

  Test Conduct 

 If system developer personnel participate, they do so either as observers, or more com-

monly, in a support capacity. In the latter role, they assist in troubleshooting, logistic 

support, and provision of special test equipment. In no case are they allowed to infl u-

ence the conduct of the tests or their interpretation. Nonetheless, they often can play a 

key role in helping quickly to resolve unexpected diffi culties or misunderstandings of 

some feature of the system operation. 

 As a preliminary to conducting each test, the operational personnel should be 

thoroughly briefed on the test objectives, the operations to be performed, and their 

individual responsibilities. As noted previously, personnel and test equipment errors are 

often the most prevalent causes of test failures. 

  Test Support.     Operational and logistic support of evaluation tests is critical to 

their success and timely execution. Since these tests are in series with key program deci-

sions, such as authorization of full - scale production or operational deployment, they are 

closely watched by both developer and customer management. Thus, adequate supplies 

of consumables and spare parts, transportation and handling equipment, and technical 

data and manuals must be provided, together with associated personnel. Test equipment 

must be calibrated and fully manned. As noted earlier, support should be obtained from 

the system developer to provide engineering and technical personnel capable of quickly 

resolving any minor system discrepancies that may invalidate or delay testing.  

  Data Acquisition.     It was noted in the previous paragraphs that data acquired 

during operational evaluation are usually much more limited than that which was col-

lected during developer system tests. Nevertheless, it is essential that the end - to - end 

system performance be measured thoroughly and accurately. This means that the 

 “ ground truth ”  must be carefully monitored by instrumenting all external conditions to 

which the system is subjected and the measurements recorded for posttest analysis. The 

external conditions include all functional system inputs as well as signifi cant environ-

mental conditions, especially those that may interfere with or otherwise affect system 

operation.  

  Human – Machine Interfaces.     In most complex systems, there are human –

 machine interfaces that permit an operator to observe information and to interact with 

the system, serving as a critical element in achieving overall system performance. A 
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classic example is an air traffi c controller. While data input from various sensors is 

automatic, the controller must make life - and - death decisions and take action based on 

information displayed on a control console and received from reporting pilots. A similar 

operator function is part of many types of military combat systems. 

 In such operator interactions, system performance will depend on two interrelated 

factors: (1) effectiveness of operator training and (2) how well the human interface 

units have been designed. During operational testing, this aspect of system performance 

will be an important part of the overall evaluation because improper operator action 

often results in test failures. When such errors do occur, they are often diffi cult to track 

down. They can result from slow reaction time of the operator (e.g., fatigue after many 

hours on station), awkward placement of operator controls and/or display symbology, 

or many other related causes.  

  Safety.     As in the case of development system tests, special efforts must be exerted 

to ensure the safety of both test personnel and inhabitants neighboring the test area. In 

the case of military missile test ranges, instrumentation is provided to detect any indica-

tion of loss of control, in which case a command is sent to the missile by the range 

safety offi cer to actuate a self - destruct system to terminate the fl ight.   

  Test Analysis and Evaluation 

 The objectives of operational evaluation have been seen to determine whether or not 

the system as developed meets the needs of the customer, that is, to validate that its 

performance meets the operational requirements. The depth of evaluation data analysis 

varies from  “ go no - go ”  conclusions to a detailed analysis of the system and all major 

subsystems. 

 Under some circumstances, an independent evaluation agent may judge that a new 

system is defi cient in meeting the user ’ s operational goals to a degree not resolvable 

by a minor system design or procedural change. Such a situation may arise because of 

changes in operational needs during the development process, changes in operational 

doctrine, or just differences of opinion between the evaluator and the acquisition agent. 

Such cases are usually resolved by a compromise, in which a design change is negoti-

ated with the developer through a contract amendment, or a temporary waiver is agreed 

upon for a limited number of production units.  

  Test Reports 

 Because of the attention focused on the results of the operational evaluation tests, it is 

essential to provide timely reports of all signifi cant events. It is customary to issue 

several different types of reports during the evaluation process. 

  Quick - Look Reports.     These provide preliminary test results immediately fol-

lowing a signifi cant test event. An important purpose of such reports is to prevent 

misinterpretation of a notable or unexpected test result by presenting all the pertinent 

facts and by placing them in their proper perspective.  
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  Status Reports.     These are periodic reports (e.g., monthly) of specifi c signifi cant 

test events. They are designed to keep the interested parties generally aware of the 

progress of the test program. There may be an interim report of the cumulative test 

fi ndings at the conclusion of the test program while the data analysis and fi nal report 

are being completed.  

  Final Evaluation Report.     The fi nal report contains the detailed test fi ndings, 

their evaluation relative to the system ’ s intended functions, and recommendations rela-

tive to its operational suitability. It may also include recommendations for changes to 

eliminate any defi ciencies identifi ed in the test program.    

   13.6    SUMMARY 

  Integrating, Testing, and Evaluating the Total System 

 The objectives of the integration and evaluation phase are to integrate the engineered 

components of a new system into an operating whole and to demonstrate that the system 

meets all its operational requirements. The outputs of the integration and evaluation 

phase are 

   •      validated production designs and specifi cations, and  

   •      qualifi cation for production and subsequent operational use.    

 The activities constituting integration and evaluation are 

   •      Test Planning:     defi ning test issues, test scenarios, and test equipment;  

   •      System Integration:     integrating components into subsystems and the total 

system;  

   •      Developmental System Testing:     verifying that the system meets specifi cations; 

and  

   •      Operational Test and Evaluation:     validating that the system meets operational 

requirements.     

  Test Planning and Preparation 

 Integration and evaluation  “ materializes ”  the system as a whole and synthesizes a 

functioning total system from individual components. These activities solve any remain-

ing interface and interaction problems. 

 Defense systems require a formal TEMP, which covers test and evaluation planning 

throughout system development. 

 System requirements should be reviewed prior to preparing test plans to allow for 

customer requirements changing during system development. Late injection of technol-

ogy advances always poses risks. 
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 Key issues during system integration and evaluation include 

   •      intense management scrutiny during system testing,  

   •      changes in test schedules and funding due to development overruns, and  

   •      readiness of test equipment and facilities.    

 System test equipment design must meet exacting standards and accuracy must be 

much more precise than component tolerances. Reliability must be high to avoid 

aborted tests. Finally, the design must accommodate multiple use and failure 

diagnosis.  

  System Integration 

 A typical test confi guration consists of 

   •      the system element (component or subsystem) under test,  

   •      a physical or computer model of the component or subsystem,  

   •      an input generator that provides test stimuli,  

   •      an output analyzer that measures element test responses, and  

   •      control and performance analysis units.    

 Subsystem integration should be organized to minimize special component test 

generators, to build on results of prior tests, and to monitor internal test points for fault 

diagnosis. 

 Test failures are often not due to component defi ciencies, but test equipment may 

be inadequate. Additionally, interface specifi cations may be misinterpreted or interface 

tolerances may be mismatched. And fi nally, inadequate test plans, training, or proce-

dures may lead to personnel errors. 

 Integration test facilities are essential to the engineering of complex systems and 

represent a signifi cant investment. However, they may be useful throughout the life of 

the system.  

  Developmental System Testing 

 Developmental system testing has the objectives of verifying that the system satisfi es 

all its specifi cations and of obtaining evidence concerning its capability to meet opera-

tional requirements. 

 The system test environment should be as realistic as practicable — all external 

inputs should be real or simulated. Conditions expected in operational evaluation should 

be anticipated. Moreover, effects impractical to reproduce should be exercised by 

special tests. However, the entire system life cycle should be considered. 

 Test events must be carefully planned — related test objectives should be combined 

to save time and resources. Detailed test scenarios need to be prepared with suffi cient 

fl exibility to react to unexpected test results. 
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 A predictive system performance model must be developed. This is a major task 

requiring systems engineering leadership and effort; however, an EDM is excellent for 

this purpose. 

 Developmental tests are carried out by a coordinated team consisting of 

   •      systems engineers, who defi ne test requirements and evaluation criteria;  

   •      test engineers, who conduct test and data analysis; and  

   •      design engineers, who design test equipment and correct design discrepancies.    

 System performance discrepancies during developmental testing must be accounted 

for in test scheduling, quickly responded to by a remedial plan of action.  

  Operational Test and Evaluation 

 System operational test and evaluation has the objectives of validating that the system 

design satisfi es its operational requirement and of qualifying the system for production 

and subsequent operational use. 

 Typical high - priority operational test issues are 

   •      new features designed to eliminate defi ciencies in a predecessor system,  

   •      susceptibilities to severe operational environments,  

   •      interoperability with interacting external equipment, and  

   •      user system control interfaces.    

 The essential features of an effective operational evaluation include 

   •      familiarity of the customer ’ s or the customer agent ’ s test personnel with the 

system;  

   •      extensive preparation and observation of developmental testing;  

   •      test scenarios making effective use of facilities and test results;  

   •      clear and specifi c test procedures and detailed analysis plans;  

   •      thorough training of test operation and analysis personnel;  

   •      fully instrumented test facilities replicating the operational environment;  

   •      complete support of test consumables, spare parts, manuals, and so on;  

   •      accurate data acquisition for diagnostic purposes;  

   •      special attention to human – machine interfaces;  

   •      complete provisions for the safety of test personnel and neighboring 

inhabitants;  

   •      technical support by system development staff; and  

   •      timely and accurate test reports.      
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  PROBLEMS 

    13.1     Figure  13.3  pictures the individual and common responsibilities of design 

engineers, test engineers, and systems engineers. In addition to differences 

in their responsibilities, these classes of individuals typically approach their 

tasks with signifi cantly different points of view and objectives. Discuss these 

differences, and emphasize the essential role that systems engineers play in 

coordinating the total effort.  

  13.2     Figure  13.4  diagrams the test confi guration for a component or a subsystem 

in which it is subjected to controlled inputs and its response is compared in 

real time with that of a computer model of the element under test. When a 

real - time simulation of the element is not available, the test confi guration 

records the test response to be analyzed at a later time. Draw a diagram 

similar to Figure  13.4  representing the latter test confi guration, as well as that 

of the subsequent test analysis operation. Describe the functioning of each 

unit in these confi gurations.  

  13.3     Test failures are not always due to component defi ciencies; sometimes, they 

result from an improper functioning of the test equipment. Describe what 

steps you would take before, during, and after a test to enable a quick diag-

nosis in the event of a test failure.  

  13.4     The systems engineering method in the integration and evaluation phase is 

outlined in the introduction to this chapter. Construct a functional fl ow 

diagram for the four steps in this process.  

  13.5     In designing system tests, probes are placed at selected internal test points, 

as well as at system outputs, to enable a rapid and accurate diagnosis of the 

cause of any discrepancy. List the considerations that must be applied to the 

selection of the appropriate test points (e.g., what characteristics should be 

examined). Illustrate these considerations using the example of testing the 

antilock brake system of an automobile.  

  13.6     Describe the differences in objectives and operations between developmental 

test and evaluation and operational test and evaluation. Illustrate your points 

with an example of a lawn tractor.  

  13.7     Defi ne the terms  “ verifi cation ”  and  “ validation. ”  Describe the types of tests 

that are directed at each, and explain how they meet the defi nitions of these 

terms.     
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 Part  IV  goes beyond most systems engineering books in examining the role that systems 

engineering must play in the production, installation, operations, and support of complex 

systems. It also identifi es the knowledge of these phases that systems engineers should 

acquire to ensure that the system will be affordable and fully effective in its intended 

operational environment. 

 The transition of a system from development to production is often a source of 

serious diffi culties and program delays. If the properties of reliability, producibility, and 

maintainability have not been fully integrated into the system design, the transition is 

likely to be slow and costly. Chapter  14 , Production, discusses these problems and 

describes the production facilities and operations as a system in its own right. It also 

discusses what a systems engineer needs to learn about production processes and prob-

lems associated with the types of systems he or she is concerned with, to guide effec-

tively the development and engineering of such systems. 

 As in the case of production, the operations and support of complex systems also 

requires the participation of systems engineering. Unanticipated problems are the rule 

rather than the exception in the operation of new complex systems, and they require 

urgent resolution by system - oriented personnel. Chapter  15  discusses such problems as 

well as the systems engineering participation in the process of system upgrading and 

modernization.        

  PART IV 

POST D EVELOPMENT STAGE 
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    14.1    SYSTEMS ENGINEERING IN THE FACTORY 

 The production phase of the system life cycle represents the culmination of the system 

development process, leading to the manufacture and distribution of multiple units of 

the engineered and tested system. The objective of this phase is to embody the engi-

neering designs and specifi cations created during the engineering development stage 

into identical sets of hardware and software components, and to assemble each set into 

a system suitable for delivery to the users. Essential requirements are that the produced 

system performs as required, is affordable, and functions reliably and safely as long as 

required. To fulfi ll these requirements, systems engineering principles must be applied 

to the design of the factory and its operations. 

 Most of the discussion in this chapter is concerned with the production of hardware 

system elements. On the other hand, as noted in Chapter  11 , almost all modern products 

are controlled by embedded microprocessors. Thus, production tests necessarily include 

testing the associated software. 

 This chapter is organized in four main sections. It begins with Engineering for 

Production, which describes where production considerations must be applied during 

  14 

PRODUCTION       
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each phase of system development in order to ensure that the end product is both afford-

able and satisfi es performance and reliability goals. The section Transition from 

Development to Production describes the problems typically encountered in the transfer 

of responsibility from the engineering to the manufacturing organizations and the role 

of systems engineering in their resolution. Production Operations describes the organi-

zation of the overall system manufacturing program as a complex system in its own 

right, especially as it is typically distributed among a team of contractors. The fi nal 

section, Acquiring a Production Knowledge Base, describes the scope of knowledge 

that development systems engineers need to acquire in order to lead properly a system 

development effort, together with some of the means by which it may be best obtained. 

  Place of the Production Phase in the System Life Cycle 

 The production phase is the fi rst part of the postdevelopment stage of the system life 

cycle. This relation is shown in Figure  14.1 , which is a functional fl ow diagram relating 

the production phase to the preceding integration and evaluation phase and to the suc-

ceeding phase, operation, and support. The inputs from integration and evaluation are 

specifi cations and the production system design; the outputs are operational documenta-

tion and the delivered system.   

 Figure  14.2  shows the timing of the production phase relative to its preceding and 

succeeding phases. As in the case of the integration and evaluation phase, there is a 

considerable overlap between the end of each phase and the beginning of the next. 

Overlap between the end of integration and evaluation and the beginning of the produc-

tion phase is necessary to order long - lead materials, to acquire factory tooling and test 

equipment, and to prepare production facilities for operations. Similarly, the initial 

produced systems are expected to be placed in operation while the production of sub-

sequent units is continuing.    

     Figure 14.1.     Production phase in a system life cycle.  
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     Figure 14.2.     Production phase overlap with adjacent phases.  
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  Design Materialization Status 

 The materialization status of the system would seem to be off the scale of previous 

diagrams, such as Table  13.1  and its predecessors, because the prior phases of the 

system development process have essentially fully  “ materialized ”  the system compo-

nents and the system as a whole. However, since the majority of complex systems are 

made from components produced at a variety of locations, the process of materialization 

cannot be considered completed until the components are assembled at a central loca-

tion and are accepted as a total system. This dispersal of manufacturing effort creates 

stress on vendor coordination, interface control, integration testing, and calibration 

standards. These will be discussed further in a subsequent section.   

   14.2    ENGINEERING FOR PRODUCTION 

 During the development stages of the system life cycle, and especially during concept 

development, the technical effort is focused primarily on issues related to achieving the 

performance objectives of the system. However, unless the fi nal product is also afford-

able and functions reliably, it will not meet its operational need. Since these latter 

factors are strongly infl uenced by the choice of system functions and especially by their 

physical implementation, they must be considered from the beginning and throughout 

the development process. The process of introducing production considerations during 
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development is generally referred to as  “ concurrent engineering ”  or  “ product develop-

ment. ”  This section addresses how this process is applied during each phase of system 

development. 

 The accepted method of incorporating production considerations into the develop-

ment process is to include such production specialists and other specialty engineers as 

members of the system design team. These may include experts in such specialties as 

reliability, producibility, safety, maintainability, and user interfaces, as well as packag-

ing and shipping. 

 To make the contributions of these experts effective, it is necessary to bring them 

into active participation in the system design process. In this connection, it is essential 

to apply their specialized knowledge to the system requirements, as well as to interpret 

their specialty languages to other members of the system design team. Without systems 

engineering leadership, communication skills, and insistence on system balance, the 

concurrent engineering process is not likely to be effective. 

  Concurrent Engineering throughout System Development 

 The following paragraphs describe examples of the application of concurrent 

engineering in successive phases of system development, as well as the role of 

systems engineers in making these applications effective. As may be expected, this 

effort grows in relevancy as the system design progresses; however, it must be initiated 

at the outset of the program and effectively implemented throughout even the earliest 

phases. 

  Needs Analysis.     Production and reliability considerations apply in the needs 

analysis for both needs - driven and technology - driven situations. The decision to begin 

a new system development must consider its feasibility to be produced as a reliable 

and affordable entity. Making such a decision relies heavily on systems engineering 

analyses, together with fi rst - hand knowledge of the postulated development and manu-

facturing processes.  

  Concept Exploration.     A principal product of the concept exploration phase is 

a set of system performance requirements that will serve as a basis for selecting the 

most desirable system concept from among competing candidates. In framing these 

requirements, a balance must be struck among performance, cost, and schedule goals —

 a balance requiring a total system perspective in which production processes are essen-

tial factors. 

 As will be discussed in the section on production operations, just as technology is 

advancing rapidly in solid - state electronics, communications, system automation, mate-

rials, propulsion, and many other system component areas, it is similarly revolution-

izing production processes. A clear sense of the status and trend of manufacturing 

technology is a necessary element in the formulation of realistic system requirements. 

Systems engineering must make informed evaluations of the contributions by produc-

tion specialists. For example, the selection of materials will be infl uenced by the dif-

fi culty and cost of production processes.  
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  Concept Defi nition.     Perhaps the most critical contribution of systems engineer-

ing is in the selection and defi nition of the preferred system conceptual design. At this 

point in the development, a clear concept of the implementation of the system in hard-

ware and software is required to develop credible estimates of manufacturing and life 

cycle costs. 

 The selection of the proposed system design requires a balance among many 

factors, and for most of these, the assessment of risk is a central factor. As noted in 

Chapter  8 , taking advantage of advancing technology necessarily involves some degree 

of risk both in terms of component design and process design. The estimates of risks 

are infl uenced by the nature and maturity of the associated manufacturing methods, 

which must be heavily weighted in trade - off analyses of alternative system confi gura-

tions. In bringing the experience of production experts to bear on these judgments, 

systems engineers must serve as informed translators and mediators between them and 

design engineers and analysts.  

  Advanced Development.     The advanced development phase provides an oppor-

tunity to reduce program risks by conducting analyses, simulations, experiments, and 

demonstrations of critical subsystems or components. Similarly, new production pro-

cesses and materials must be validated before acceptance. Because of the expense 

involved in all such activities, especially experiments and demonstrations, the decision 

as to which ones warrant such validation must be made with full knowledge of the 

nature and extent of the risks, the magnitude of the gains expected from the use of the 

proposed processes and materials, and the scope of experimentation necessary to settle 

the issue. Again, this is a major systems engineering issue requiring expertise in pro-

duction as well as in system design and performance. 

 This phase must provide a suitable basis for defi ning production processes, 

critical materials, tooling, and so on, through trade studies that consider the risks 

and costs of alternative approaches. Systems engineering must be intimately involved 

in the planning and evaluation of such studies to ensure their appropriate integration 

into the overall plans for the engineering design phase. In this connection, critical atten-

tion must be given to the impact of manufacturing methods on the compatibility of 

component interfaces in order to minimize production, assembly, and testing 

problems.  

  Engineering Design.     The engineering design phase is where production factors 

become especially prominent in the detailed design of system components. Component 

and subcomponent interface tolerance specifi cations must be compatible with the capa-

bilities of manufacturing processes and allocated costs. The design and construction of 

factory test equipment must also be accomplished during this phase so as to be ready 

when production is authorized. 

 During this phase, design engineers obtain major inputs from specialty engineers 

applying their experience in the areas of producibility, reliability, maintainability, and 

safety. In this collective effort, systems engineers serve as mediators, interpreters, 

analysts, and validators of the fi nal product. To play these roles, the systems engineers 

must have a suffi cient understanding of the intersecting disciplines to effect meaningful 
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communication across technical specialties and to guide the effort toward the best 

available outcome. 

 An important part of the engineering design phase is the design and fabrication of 

production prototypes to demonstrate the performance of the product, as it will be 

manufactured. The degree to which the prototype fabrication methods are selected to 

duplicate the actual manufacturing tooling and process control is a matter requiring 

systems engineering judgment as well as design and manufacturing considerations. 

 Usually, many components of a complex system are designed and manufactured 

by subcontractors. The selection of component contractors must involve the evaluation 

of their manufacturing as well as engineering capabilities, especially when the compo-

nents involve advanced materials and production techniques. Systems engineers should 

be able to help judge the profi ciency of candidate sources, be key participants in source 

selection and in setting the requirements for product acceptance, and serve as technical 

leads in subcontracting. 

 Such knowledge is also essential for leading the interface defi nition effort among 

component suppliers, the specifi cation of interface tolerances, and the defi nition of 

component test equipment design and calibration standards for use in both development 

and production acceptance testing. 

 The above considerations all affect production cost estimates, which systems engi-

neers must contribute to and evaluate; considerations of uncertainty and risks must also 

be given due weight in forming the fi nal cost and schedule estimates.  

  Integration and Evaluation.     Unexpected incompatibilities at component inter-

faces are often fi rst brought to light during the integration of prototype system compo-

nents and subsequent system testing. These problems are normally corrected through 

component redesign, refi nement of component test equipment, and so on, prior to fi nal 

release for production. Nevertheless, during the subsequent assembly and test of the 

production system, design changes introduced to correct these incompatibilities, 

together with other  “ minor ”  changes and adjustments introduced to facilitate production 

and test activities, may themselves produce new areas of incompatibility. Accordingly, 

systems engineers should monitor the initial production assembly and test activities so 

as to alert program management to any problem areas that must be addressed prior to 

deployment of the product. In order to identify and expeditiously deal with such prob-

lems at the earliest possible time, systems engineers must be knowledgeable of both 

factory production and test acceptance processes. In some cases, acceptance test pro-

cedures are written by systems engineers.   

  Application of Deployment Considerations in 
System Development 

 It has been stressed in previous chapters that the system design must consider system 

behavior throughout the total life cycle. In many systems, the deployment or distribu-

tion process subjects the system and its constituent components to substantial environ-

mental stresses during transportation, storage, and installation at the operational site. 

While these factors are considered during system defi nition, in many instances, they 
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are not quantitatively characterized until the advanced development phase or sometimes 

even later. It is therefore mandatory that the deployment of the system be planned in 

detail as early in the development process as possible. Factors such as the risk of expo-

sure to environments that might affect system performance or reliability must be 

assessed and refl ected either in the system design requirements or in restrictions to be 

observed during the deployment process. In some cases, protective shipping containers 

will be required. In those cases where problem areas still exist, provision should be 

made for their resolution through further analysis and/or experimentation. 

 In many cases, the predecessor system provides a prime source of information 

regarding the conditions that a new system may encounter during its transit from pro-

ducer to user. When the operational site and the system physical confi guration are the 

same or similar to that of the new system, the deployment process can be quantitatively 

defi ned.   

   14.3    TRANSITION FROM DEVELOPMENT TO PRODUCTION 

  Transition in Management and Participants 

 As may be inferred from the life cycle model, wholesale changes in program manage-

ment focus and participants necessarily take place when the production of a new system 

is initiated. These areas are briefl y summarized below. 

  Management.     The management procedures, tools, experience base, and skills 

needed for successful program direction and control during the production phase differ 

materially from those needed during system development. Accordingly, the production 

of a new system is almost always managed by a team different from the one that directed 

the earlier engineering development, integration, and test efforts. Moreover, the produc-

tion contract is sometimes completed among several companies, some of which may 

have been only peripherally involved in the system development. For all these reasons, 

there is normally little carryover of key personnel from the engineering into the produc-

tion phase. At best, selected members of the development engineering team may be 

made available when requested to provide technical assistance to the production orga-

nization. Production funding is usually embodied in a contract separate from the one 

that was in force during engineering development and is administered separately to 

provide its own audit trail and future costing data.  

  Program Focus.     As noted earlier, the production phase is focused on producing 

and distributing identical copies of the product design. The stress is on effi ciency, 

economy, and product quality. Automated manufacturing methods are employed where 

practicable. Confi guration control is extremely tight.  

  Participants.     The participants in this phase are very different from those who 

were involved in the development effort. Specifi cally, the great majority of participants 

in this phase are technicians, many of whom are highly skilled as automatic equipment 
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and factory test operators. The engineering participants are chiefl y concerned with 

process design, tool and test equipment design and calibration, quality control, factory 

supervision, and troubleshooting. Most are specialists in their respective disciplines. 

However, as stated earlier, to effect a successful transition into production, there must 

also be an experienced team of systems engineers guiding the process.   

  Problems in the Transition Process 

 The transition of a new system from development to production can be a particularly 

diffi cult process. Many of the associated problems can be ascribed to the factors that 

were fi rst cited in Chapter  1  (i.e., advancing technology, intercompany competition, 

and technical specialization) as dictating the need for a special systems engineering 

activity. These factors are further discussed below. 

  Advancing Technology.     It was seen that while the incorporation of technologi-

cal advances in the design of new systems is often necessary to achieve the desired 

gain in capability and thus preclude premature obsolescence, this also incurs the risk 

of introducing unanticipated complications in both the development and production 

processes. Although the development process provides methods for the identifi cation 

and reduction of performance problems, production - related diffi culties are frequently 

not revealed until production prototypes have been fabricated and tested. By that time, 

remedial action is likely to cause severe and very expensive delays in production 

schedules. Systems engineering expertise is crucial, both for anticipating such unin-

tended results insofar as possible and for quickly identifying and resolving those that 

still do unexpectedly occur. 

 An example of technological advances that must be considered in the transition 

process is that of the speed of digital processors, accompanied by reductions in size 

and cost. The pressure to install the latest products can be irresistible but comes at a 

price of changes in packaging, testing, and sometimes software revision.  

  Competition.     Competition puts stresses on the transition process from several 

directions. Competition for funds often results in insuffi cient effort being budgeted for 

production preparation; moreover, it almost always eliminates the availability of reserve 

funding to deal with unexpected problems, which always arise in the development of 

complex systems. This results in too little testing of production prototypes, or delay of 

their fabrication until after the time that decisions on tooling, materials, and other 

production factors have to be made. Despite slippages in production preparation, pro-

duction schedules are frequently held fi rm to avoid the external appearance of program 

problems, which are likely to cause customer concern and possibly even direct interven-

tion. Competition for experienced staff within the organization can also result in reas-

signment of key engineers to a higher priority activity, even though they may have been 

counted on for continued commitment to the project. Competition for facilities may 

delay the availability of the facilities needed for the start of production. These are only 

examples of the competing forces that must be dealt with in managing the transition 

process.  
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  Specialization.     The transition from development to production also involves 

transfer of prime technical responsibility for the system from specialists in engineering 

and development to specialists in manufacturing. Moreover, at this point, the primary 

location of activity also shifts to the manufacturing facilities and their supporting orga-

nizations, which typically are separated physically from and managerially independent 

of engineering — an arrangement that can and often does severely attenuate essential 

communications between the engineering and production organizations. Systems engi-

neers with some knowledge of production are frequently the only individuals who can 

communicate effectively between engineering and production personnel. 

 The above problems are rendered still more diffi cult by the usual dispersion of 

development and production of major components and subsystems among several 

specialized subcontractors. Coordination during the production phase in such cases is 

many times more complicated than during development because of the need to closely 

synchronize the timing and tempo of fabrication and testing with system assembly and 

delivery schedules. For these reasons, successful prototypes do not necessarily guaran-

tee successful production systems.   

  Product Preparation 

 The importance of the above transition process in commercial development and produc-

tion has led the National Society of Professional Engineers (NSPE) to dedicate a sepa-

rate phase in their system life cycle to  “ commercial validation and production 

preparation. ”  The engineering activities during this phase of development are stated to 

include the following: 

   •      Complete a preproduction prototype.  

   •      Select manufacturing procedures and equipment.    

 Demonstrate the effectiveness of 

   •      fi nal product design and performance;  

   •      installation and start - up plans for the manufacturing process, selection of produc-

tion tools and technology;  

   •      selection of materials, components, and subsystem vendors and logistics; design 

of a fi eld support system; and  

   •      preparing a comprehensive deployment/distribution plan.    

 Either as part of the production plan or separately, other associated activities must also 

be defi ned or refi ned at this time. These include 

   •      logistic support plans,  

   •      confi guration control plans, and  

   •      document control plans and procedures.     
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  Production Confi guration Management 

 The forces of advancing technology, competition, and specialization all exert pressure 

to make changes in the engineering design of the system, especially at the component 

and subcomponent levels. As noted previously, new technology offers opportunities to 

introduce higher performance or cheaper elements (e.g., new materials, commercial 

off-the-shelf [COTS]  ). Moreover, competition presses for less costly designs, and engi-

neers at component producers may petition to adapt designs to fi t their particular pro-

duction tooling. All of these factors tend to produce numerous engineering change 

proposals (ECPs), each of which must be analyzed and accepted, modifi ed, or rejected. 

The system contractor ’ s systems engineers play a crucial role in analyzing these propos-

als, planning and overseeing test efforts where required and recommending the appro-

priate action on change proposals. The time available for such action is very short and 

the stakes are very high. Intercontractual pressures often complicate the decision 

process. 

 Viewed in this light, the transition from engineering design to production is the 

most critical period in the confi guration management process and calls for effective 

analytical, engineering, and communication skills on the part of systems engineers and 

project managers. Above all, documentation must not be allowed to lag signifi cantly 

behind the change process, and all concerned must be kept in the communication loop. 

Systems engineering is the keeper of the integrity of the design. 

 It follows that the confi guration management process does not stop when produc-

tion begins; it continues even more intensively throughout the production process. At 

the beginning of production, component interface incompatibilities that have not been 

previously detected and eliminated (or inadvertently have been created in product 

design) will be revealed and must be dealt with quickly. Each incompatibility requires 

a decision as to whether it can be remedied in parallel with continuing production or 

if production should be interrupted, and if so, at what point. Because of their impact 

on cost and schedule, such decisions are made at management levels, but the most 

critical inputs are provided by systems engineering. These inputs come from close 

teamwork between the confi guration management team and supporting systems and 

production engineering staffs. If, as often happens, communication between the produc-

tion and engineering organization is poor, the above process will be ineffi cient and 

costly.   

   14.4    PRODUCTION OPERATIONS 

 Planning the development and evaluation of a major new system requires well thought -

 out and documented plans, such as the systems engineering management plan (SEMP) 

and the test and evaluation master plan (TEMP), which are promulgated widely to 

coordinate the efforts of the system development. For the same reasons, the production 

phase must have a formal system production plan to provide a blueprint of the organi-

zation, tasks, and schedules for system production. 
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  Production Planning 

 The key elements of a production plan include the following subplans and sections: 

   •      responsibility and delivery schedule for each major subassembly (component);  

   •      manufacturing sites and facilities;  

   •      tooling requirements, including special tools;  

   •      factory test equipment;  

   •      engineering releases;  

   •      component fabrication;  

   •      components and parts inspection;  

   •      quality control;  

   •      production monitoring and control assembly;  

   •      acceptance test;  

   •      packaging and shipping;  

   •      discrepancy reports;  

   •      schedule and cost reports; and  

   •      production readiness reviews.    

 Preparation of the production plan should begin during engineering design and 

forms the basis for initiating production. It must be a living document and must evolve 

during the production process. Lessons learned should be documented and passed on 

to future programs. Systems engineers not only contribute to the plan but, in the process, 

also benefi t by learning about the diverse activities that must be managed during 

production.  

  Production Organization as a Complex System 

 The manufacture of a new complex system typically requires the coordinated efforts 

of a team of contractors with extensive facilities, equipment, and technical personnel, 

usually distributed geographically but working to unifi ed specifi cations and schedules. 

As in an engineered system, all these subsystems and their elements must work together 

effectively and effi ciently to perform their collective mission — the production of units 

of a system of value to its users. The planning, design, implementation, and operation 

of this production system are tasks of comparable complexity to that required to develop 

the system itself. 

 Figure  14.3  is a schematic representation of the confi guration of the facilities for 

producing a typical new complex system. The large blocks correspond to the engineer-

ing and production facilities of the prime contractor. The blocks on the left represent 

suppliers of newly developed components, while those at the top represent suppliers of 

standard components. The suppliers of developed components are shown to have engi-

neering elements that operate under the technical direction of the prime contractor. 
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Whether or not the component suppliers are owned by the prime contractor, they are 

to all intents separate organizations that have to be technically coordinated by the prime 

contractor ’ s engineering organization. It is seen that this combination of facilities must 

itself be managed as an integrated system, with strict control of all of the interfaces 

with respect to product performance, quality, and schedule.   

 The overall task of bringing this entity into being is usually led by a management 

team assembled by the prime production contractor. While systems engineers do not 

lead this effort, they must be important contributors because of their broad knowledge 

of the system requirements, architecture, risk elements, interfaces, and other key 

features. 

 The  “ architecting ”  of the production system is complicated by a number of factors, 

including 

  1.     Advancing Technology  , especially of automated production machinery, which 

raises issues as to when to introduce the most recent development and into 

which processes; similar decisions are required on the extent and timing of 

introducing advanced materials;  

  2.     Requirement to Ensure Compatibility of New Processes with Workforce 

Organization and Training —   in numerous cases, technology - driven changes 

have resulted in decreases in productivity;  

     Figure 14.3.     Production operation system.  
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  3.     Design of Communications among Distributed Production Facilities —   a balance 

between lack of information exchange and information overload is crucial;  

  4.     Factory and Acceptance Test Equipment —   in a distributed system, there must 

be a highly coordinated set of component test equipment that ensures identical 

acceptance criteria at component manufacturers and at the integration and 

assembly facility, as well as conformity of system - level acceptance test equip-

ment with the integrated component tolerance structure;  

  5.     Manufacturing Information Management —   in any complex system, an enor-

mous amount of data must be collected at all system levels in order to effectively 

govern and control the manufacturing and assembly process; the database man-

agement system required to deal with this information is a large software system 

in its own right and therefore requires an expert staff for its implementation and 

operation;  

  6.     Provisions for Change —   for production operations expected to extend for a 

period of years, the facilities need to be designed to adapt to variations in rates 

of production and to the introduction of design changes; many systems are fi rst 

produced at low rates to validate the process on when production is stretched 

out for funding reasons; accommodation of the process to these changes while 

maintaining an effi cient operation is an important goal.    

 All of the above problems require the application of systems engineering principles 

to obtain effective solutions.  

  Component Manufacture 

 We have seen that the building blocks of complex systems are components representing 

different specialized product lines. These are integrated from subcomponents into 

complete units, tested, and shipped to a system assembly plant or to spare parts distri-

bution facilities. Thus, the manufacturing process takes place at a number of separate 

facilities, many of which are usually under different company managements. As noted 

in the previous section, the management of such a distributed operation poses special 

problems. An example is the necessity for extremely tight coordination between the 

component manufacturers and the system producer of production schedules, testing, 

inspection, and quality control activities. The diffi culty of managing a distributed pro-

duction process for a new and complex system necessitates an integrated team effort 

in which systems engineers play an essential role in helping to deal rapidly and effi -

ciently with such inadvertent incompatibilities as may be encountered. 

 Component manufacturing is the place where most special tooling, such as auto-

matic material forming, joining, and handling machinery, is required. The use of auto-

mation can substantially reduce the cost of production, but at the same time may involve 

large development costs and extensive worker training. If newly introduced, it can also 

cause start - up delays. Thus, the introduction of special tooling for component manu-

facture must be closely coordinated by the production contractor to minimize schedul-

ing problems. 
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 Production tolerances require special attention because they are directly affected 

by tooling, as well as by any minor changes that may be made to reduce production 

costs. Since these may affect both the ability to interface with components made by 

another contractor and also system performance, systems engineering oversight by the 

production contractor is necessary. 

 Usually, the company that produces a given new system component is also the one 

that developed it. However, the organizational separation of the company ’ s manufactur-

ing from its engineering operation creates the potential for mistakes in the design of 

production tooling and test equipment resulting from imperfect communications. 

Incompatibilities inadvertently introduced by design changes made in the interest of 

cost reduction or other worthy objectives may consequently pass unnoticed until fi nal 

component testing or even until system assembly. A degree of systems engineering 

oversight is important, especially to ensure compatibility between the test equipment 

at component manufacturers and that which will be used at the integration facility for 

component acceptance. This should also include provisions for and periodic revalida-

tion of common calibration standards. 

 The establishment of commercial standards at the part and subcomponent levels 

has greatly simplifi ed many aspects of production and integration of electronic and 

mechanical components. Economies of scale have reduced costs and have enabled a 

broad degree of interchangeability, especially in component containers, mounting, and 

interconnections.  

  System Acceptance Tests 

 Before each production system is accepted by the customer for delivery, it must pass 

a formal systems acceptance test. This is usually an automated end - to - end test with 

go – no go indications of key system performance. 

 For a complex system, the design and development of suitable acceptance test 

procedures and equipment is a major task requiring strong systems engineering leader-

ship. The test must determine that the requirement of ensuring that the product is 

properly constructed meets the key requirements and is ready for operational use. Its 

results must be unequivocal, regarding success or failure, and must require minimum 

interpretation. At the same time, the test must be capable of being performed relatively 

quickly without adding materially to the total cost of manufacturing. Such a balance 

requires the application of systems engineering judgment as to what is essential to be 

tested and what is not. 

 The system acceptance test is usually witnessed by representative(s) of the cus-

tomer and is signed off on successful completion.  

  Manufacturing Technology 

 The explosive advance of modern technology has had dramatic impacts on products 

and the process of production. Microelectronic chips, high - speed computing devices, 

low - cost optics, piezoelectrics, and microelectromechanical devices are but a few of 

dozens of technological advances that have radically changed the composition of com-
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ponents and the way they are made. Even more changes in manufacturing methods and 

equipment have been produced by the wholesale replacement of human factory opera-

tors by automatic controls and robotics. The new methods have greatly increased speed, 

precision, and versatility of machining and other processes. Of comparable importance 

is the reduction of the time to convert a machine from one operation to another from 

days or weeks to minutes or hours. These changes have resulted in major economies 

at nearly every aspect of manufacture. They have also made it possible to produce 

higher - quality and more uniform components. 

 Prior to the widespread application of computer - aided manufacture (CAM) and 

component design, control of interfaces had to rely on inspection and testing using a 

multiplicity of special tools and fi xtures. Today ’ s computer - controlled manufacture and 

assembly, as well as the use of computer - based confi guration management tools that 

can be electronically coordinated among organizations, make the management of inter-

faces of components built remotely far easier than in the past. However, to effectively 

implement this degree of automation requires planning, qualifi ed staff, and signifi cant 

funding. This, in turn, requires systems engineering thinking on the part of those orga-

nizing the production system.   

   14.5    ACQUIRING A PRODUCTION KNOWLEDGE BASE 

 For inexperienced systems engineers, the acquisition of knowledge regarding the 

production phase that is both broad enough and suffi ciently detailed to infl uence 

effectively the development process can appear to be an especially daunting task. 

However, this task is basically similar to that of broadening the knowledge base in 

diverse engineering specialties, in the elements of program management, and in 

the interorganizational communications that every systems engineer must accomplish 

over time. Some of the most effective means for acquiring this knowledge are 

summarized below. 

  Systems Engineering Component Knowledge Base   

 In order to guide the engineering of a new system, systems engineers must acquire a 

basic level of knowledge concerning the basic design and production processes of 

system components. This means that systems engineers must appreciate the impact of 

production factors on the suitability of particular components to meet the requirements 

for their use in a specifi c system application. To make the acquisition of such a knowl-

edge base more achievable, the following considerations may be helpful: 

  1.     Focus on those components that use advanced technology and/or recently devel-

oped production processes. This means that attention to mature components and 

established production processes may be relaxed.  

  2.     Focus on previously identifi ed risk areas as they may affect or be affected by 

production.  
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  3.     For these identifi ed risk areas, identify and establish contact with sources of 

expert knowledge from key in - house and contractor engineers. This will be 

invaluable in helping solve problems that may arise later.    

 The type and extent of the necessary knowledge base will vary with the system 

and component areas. Some examples are described below. 

  Electronics Components.     Modern electronics is largely driven by semiconduc-

tor technology, so familiarity with the nature of circuit chips, circuit boards, solid - state 

memories, microprocessors, and gate arrays is necessary, though only to the level of 

understanding what they are, what they do, and how they should, and even more impor-

tantly, should not be used. Their development is in turn driven by commercial technol-

ogy, and in many instances, their capability is multiplying according to Moore ’ s law. 

It is therefore important to have a feel for the current state of the art (e.g., component 

densities, processor speeds, chip capabilities) and its rate of change.  

  Electro - optical Components.     In communications and displays, electro - optical 

components play key roles, thanks to advances in lasers, fi ber optics, and solid - state 

electro - optical elements. Their development is also driven by commercial applications 

and is advancing rapidly in the above areas.  

  Electromechanical Components.     As their name implies, these components 

combine the features of electrical and mechanical devices (e.g., antennae, motors). 

Their characteristics tend to be peculiar to the specifi c application and can best be 

learned on a case - by - case basis.  

  Mechanical Components.     Most applications of mechanical components are 

mature. However, several areas are moving rapidly. These include advanced materials 

(e.g., composites, plastics), robotics, and micro devices. Their design and production 

have been revolutionized by computer - aided engineering (CAE) and CAM.  

  Thermomechanical Components.     Most of these components relate to energy 

sources and thermal controls. For this reason, safety is frequently a key issue in their 

system applications, as is the related function of control.  

  Software Components.     Software, and embedded fi rmware derived from it, is 

rapidly becoming part of virtually every device (e.g., communications, transportation, 

toys). The process of designing and producing reliable software is also advancing as 

rapidly. The production aspects of software and fi rmware are of course very different 

from hardware. Every systems engineer should understand the general capabilities, 

including the advantages and limitations, of software quality and software design and 

implementation, as well as the basic differences between computer - based software and 

fi rmware. Software is treated in greater depth in Chapter  11 .   
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  Production Processes 

 Production processes are not the responsibility of systems engineers. Nevertheless, the 

general nature of these processes and typical problems associated with them must be 

understood by systems engineers to give them the knowledge to resolve problems that 

occur in production, especially during start - up. 

  Observing Production Operations.     The factory fl oor is often the most illu-

minating source of insight concerning the manufacturing process, especially when 

observation is supplemented by questioning factory personnel. Opportunities to observe 

production operations occur naturally during site visits, production planning, and other 

activities, but these are seldom adequate to provide even a superfi cial understanding of 

manufacturing processes. Systems engineers should endeavor to schedule special 

factory tours to acquire a fi rst - hand feel of how the factory operates. This is especially 

important because of the rapid advances in manufacturing tools and processes brought 

about by increasing automation. Because the initial production of new components is 

likely to run into problems with tools, processes, materials, parts availability, quality 

control, and so on, it is important to develop a feel for the nature of the associated 

activities and possible means for problem resolution. Of course, the best opportunity 

to learn production processes is a short assignment in the manufacturing 

organization.  

  Production Organization.     It has been previously noted that the organization 

and management of the production process of a major system is different from the 

organization and management of the system development process. It is important for 

systems engineers to be acquainted with the differences, both generically and for the 

specifi c system under development. While this is of most immediate concern for 

program management, it strongly infl uences how the transition from engineering to 

production should be planned, including the transfer of design knowledge from design 

engineers to production engineers. In particular, in many companies, the communica-

tions between engineering and production personnel are often formal and largely 

inadequate. When this is the case, company management should provide special means 

to establish adequate communication across this critical interface — a function in which 

systems engineers can play a leadership role. Failure to bridge this potential commu-

nication gap properly has been a major contributor to critical delays and near failures 

in the production of numerous major systems.  

  Production Standards.     Virtually all types of manufacturing are governed by 

industry or government standards. The U.S. government is replacing most of its own 

standards by those developed by industry, as well as moving to utilize COTS parts and 

components insofar as is practicable. These standards are primarily process oriented 

and defi ne all aspects of production. Systems engineers must be familiar with the stan-

dards that are applicable to components and subsystems in their own system domain 

and with the way in which these standards are applied to the manufacturing process. 

These standards are often indicative of the quality of the components that are likely to 
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be produced, and hence of the degree to which oversight, special testing, and other 

management measures will be required. While the decisions regarding such actions are 

the responsibility of program management, systems engineering judgment is a neces-

sary ingredient.    

   14.6    SUMMARY 

  Systems Engineering in the Factory 

 The objectives of the production phase are to produce sets of identical hardware and 

software components, to assemble components into systems meeting specifi cations, and 

to distribute produced systems to customers. 

 Essential requirements are that the produced system performs as required, is afford-

able, and functions reliably and safely as long as required.  

  Engineering for Production 

 Concurrent engineering, or product development, has the following features: it is the 

process of introducing production considerations during development. Production spe-

cialists and other specialty engineers are key members of the design team. Therefore, 

systems engineers must facilitate communications among team members. 

 The decision to begin new system development must demonstrate its need, techni-

cal feasibility, and affordability. The formulation of realistic system requirements must 

include a clear sense of the status and trend in manufacturing technology. As technology 

evolves, requirements must also evolve to stay consistent. 

 Production risks are infl uenced by the nature and maturity of the associated manu-

facturing methods and are heavily weighted in trade - off analyses of system 

alternatives. 

 Successful production requires that new production processes and materials are 

validated before acceptance, that component interfaces are compatible with manufac-

turing processes, and that factory test equipment is validated and ready. The latter is 

typically demonstrated by production prototypes that have demonstrated product 

performance. 

 Unexpected incompatibilities at component interfaces have the following 

features: 

   •      They are often fi rst discovered during the integration of prototype components.  

   •      Corrections of incompatibilities may themselves produce new areas of 

incompatibility.    

 Systems engineers must be knowledgeable of factory production and test accep-

tance processes. Direction and control of production differs from system development 

in the following: (1) different tools, experience base, and skills; and (2) a different team 

of specialists — few key personnel carry over from   development. 
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 Production risks are frequently not revealed until production prototypes are fabri-

cated and tested. Remedial action is likely to cause expensive delays; therefore, systems 

engineering expertise is crucial for resolution.  

  Transition from Development to Production 

 Stresses on the transition from development to production result from 

   •      insuffi cient funding for production preparation,  

   •      little or no reserve funds for unexpected problems,  

   •      too little testing of production prototypes, and  

   •      schedules held fi rm even though problems exist.    

 The transition to production is a most critical period for continuity of operations 

and features must be recognized. The transition transfers responsibility from develop-

ment to manufacturing specialists. And manufacturing facilities are typically separate 

and independent of engineering. Therefore, communication is diffi cult between engi-

neering and production personnel. Consequently, systems engineers are needed for 

facilitating communications. Finally, a system production plan is required as a blueprint 

for transition. 

 The transition to production is critical to the confi guration management process 

because documentation cannot lag behind the change process; systems engineering is 

the keeper of the integrity of the design.  

  Production Operations 

 The planning, design, implementation, and operation of a  “ production system ”  is a task 

of comparable complexity to developing the system itself. Architecting of the produc-

tion system requires 

   •      acquisition of extensive tooling and test equipment,  

   •      coordination with component manufacturing facilities,  

   •      organization of a tight confi guration management capability,  

   •      establishment of an effective information system with enginery organization,  

   •      training the production staff in the use of new tooling,  

   •      accommodation of both low and high production rates, and  

   •      promotion of fl exibility to accommodate future product changes.    

 Specialized components often represent different product lines and pose special 

problems. Tight coordination is needed between component manufacturing and system 

producers, in production schedules, testing, inspection, and quality control. Establishment 

of commercial standards at the part and subcomponent levels leads to greatly simplifi ed 

production and integration of components. 
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 Computer - controlled manufacturing methods greatly increase speed, precision, and 

versatility of factory operations. They reduce time to reconfi gure machines between 

operation modes, and produce higher - quality parts and more uniform components. This 

often leads to major cost savings.  

  Acquiring a Production Knowledge Base 

 Systems engineers must acquire a basic knowledge concerning production processes to 

be capable of guiding the engineering of a new system. They must focus on advanced 

technology and new production processes, as well as risk areas as they may be affected 

by production.   

  PROBLEMS 

    14.1     Because complex systems contain a large number of subsystems, compo-

nents, and parts, it is usually necessary to obtain a signifi cant number of them 

from outside subcontractors and vendors. In many cases, it is possible to 

make these items either in - house or procure them elsewhere. Both approaches 

have advantages and disadvantages. Discuss the main criteria that are involved 

in deciding which approach is best in a given case.  

  14.2     One of the requirements of a good systems engineer who is engaged in 

developing systems which have signifi cant components that are manufac-

tured is that he or she be knowledgeable about factory production and accep-

tance test processes. Give two examples that illustrate the importance of this 

knowledge in achieving on - time delivery of the fi nal product.  

  14.3     Confi guration management is particularly important during the transition 

from system development to production. Identify four specifi c areas where 

close attention to confi guration management is crucial during this phase 

transition and explain why.  

  14.4     Discuss how the planning, design, implementation, and operation of a pro-

duction system is a task of comparable complexity to that required to develop 

the actual system itself.  

  14.5     Describe the process referred to as concurrent engineering, its objectives, use 

of interdisciplinary integrated product teams (IPTs), and its place in the 

system life cycle. Describe the role of systems engineers on the teams. 

Describe what problems you would expect to be encountered in assembling 

an IPT and in making its effort productive and how they might be handled.  

  14.6     Discuss four typical problems that make the transition from development to 

production diffi cult and the approaches to minimizing them.  

  14.7     Production is typically the responsibility of a division of a company inde-

pendent of the development organization. It has been stated that the transition 

to production and the production process itself requires systems engineering 

expertise in certain critical areas. List some instances where systems engi-
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neering expertise in the production organization is required in the production 

of medical devices (e.g., implantable pacemakers).  

  14.8     Discuss the principal areas in which CAM has revolutionized the manufac-

ture of automobiles.     
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    15.1    INSTALLING, MAINTAINING, AND UPGRADING THE SYSTEM 

 The operations and support phase of the system life cycle is the time during which the 

products of the system development and production phases perform the operational 

functions for which they were designed. In theory, the tasks of systems engineering 

have been completed. In practice, however, the operation of modern complex systems 

is never without incident. Such systems usually require substantial technical effort in 

their initial installation and can be expected to undergo signifi cant testing and compo-

nent replacement during periodic maintenance periods. Occasional operational glitches 

must also be expected due to operator error, operating stresses, or random equipment 

failures. In such cases, systems engineering principles must be applied by system opera-

tors, maintenance staff, or outside engineering support to identify the cause of the 

problem and to devise an effective remedy. Further, large complex systems, such as an 

air traffi c control system, are too costly to replace in their entirety and therefore are 

subject to major upgrades as they age, which introduce new subsystems in place of 

obsolescent ones. All of these factors are suffi ciently signifi cant in the total role of 

systems engineering in the overall system life cycle to warrant a special place in the 

study of systems engineering. 

  15 

OPERATIONS AND SUPPORT         
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 The principal sections of this chapter summarize the typical activities that take 

place in the course of a system ’ s operating life, beginning with the time it is delivered 

from the production or integration facility to the operational site until it is replaced by 

a newer system or otherwise rendered obsolete and disposed of. The section on  instal-

lation and test  deals with problems associated with integrating the system with its 

operating site and the successful interconnection of internal and external interfaces. The 

section covering  in - service support  concerns activities during the normal operations of 

the system; these include maintenance, fi eld service support, logistics, and dealing with 

unexpected operational emergencies. The section on  major system upgrades  is con-

cerned with periodic subsystem modifi cations that may be introduced to maintain 

system effectiveness in the face of changing user requirements and advancing technol-

ogy. Such system upgrades require the same type of systems engineering expertise as 

did the original system development, and may also present new and unique challenges 

due to added constraints that may be imposed by the process of integrating new and 

old components. The last section on  operational factors in system development  describes 

the kinds of information that systems engineers should seek to acquire regarding the 

operational characteristics of the system being developed, together with the opportuni-

ties that they may have for obtaining such knowledge. Such knowledge is just as 

important to systems engineers who lead the system development as is a fi rm grounding 

in factors that affect system production processes and costs. 

  Place of the Operations and Support Phase in the System 
Life Cycle 

 Before discussing the systems engineering activities during the operations and support 

phase, it should be noted that this phase is the concluding step of the system life cycle. 

The functional fl ow diagram of Figure  15.1  shows the inputs from the production phase 

to be operational documentation and a delivered system, and the outputs to be an obso-

lete system and a plan for disposing it in an appropriate way.    

     Figure 15.1.     Operations and support phase in a system life cycle.  
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  Systems Engineering in the Operations and Support Phase 

 During its operating life, a typical complex system encounters a number of different 

periods when its operation is interrupted. These incidents are represented in Figure  15.2 . 

The abscissa is time, running from system delivery to its disposal. The ordinate repre-

sents the relative level of systems engineering involvement in the various events identi-

fi ed by the captions in the upper part of the fi gure. At the start, a column is seen 

symbolizing the installation and test period, which is shown to take substantial time 

(usually weeks or months) and a relatively large systems engineering effort. The four 

low, regularly spaced columns represent planned maintenance periods, which may 

require days of system downtime. The narrow spikes at irregular intervals are meant 

to correspond to random system breakdowns requiring emergency fault identifi cation 

and repairs. These are usually fi xed quickly but may take considerable systems engi-

neering effort to fi nd a solution that can be effected with minimum downtime. The large 

column on the right represents a major system upgrade, requiring a relatively long 

period (many months) and a high level of systems engineering. The latter may rival the 

effort involved in a new system development and may itself require a multiphase 

approach.     

   15.2    INSTALLATION AND TEST 

  System Installation 

 The effort required for installing a delivered system at its operating site is strongly 

dependent on two factors: (1) the degree of physical and functional integration that had 

     Figure 15.2.     System operations history.  
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been accomplished at the production facility and (2) the number and complexity of the 

interfaces between the system and the operating site (including other interacting 

systems). In the case of an aircraft, for example, virtually all signifi cant system elements 

typically are assembled and integrated at the prime contractor ’ s factory site so that 

when the aircraft leaves the production facility, it is ready for fl ight. The same is true 

for an automobile, a military truck, or almost any kind of vehicle. 

 The installation of many large - scale systems on a land or ship platform may be a 

major operation, especially if some of its subsystems are manufactured at separate 

locations by different contractors and are assembled only after delivery to the operating 

site. For example, an air terminal control system typically consists of several radars, a 

computer complex, and a control tower with an array of displays and communication 

equipment, all of which must be integrated to operate as a system and linked to the en 

route control system, runway landing control systems, and an array of associated equip-

ment required to handle air traffi c in and out of an airport. The installation and test of 

such a system is in itself a major systems engineering enterprise. Another such example 

is a ship navigation system, which consists of many subsystems that are manufactured 

at various sites, frequently by different contractors, and which have complex interfaces 

with ship elements. After the initial ship systems pass integration tests at a land site, 

subsequent production subsystems are often assembled and integrated only after they 

are delivered to the shipyard. The task of interfacing elements of the system with ship 

structure, power, controls, and communications is usually performed at the shipyard by 

experts in ship installations. 

  Internal System Interfaces.     As discussed previously, the systems engineer has 

a responsibility to assure that system integrity is maintained throughout assembly and 

installation. Installation procedures must be carefully planned and agreed to by all 

involved organizations. The systems engineer must be a key participant in this planning 

effort and in seeing it properly carried out. However, regardless of the degree of plan-

ning, the proper integration of subsystem interfaces will always be a potential source 

of trouble and therefore deserves special effort. 

 As noted previously, interfacing of the subsystems at the operating site is especially 

complicated when major subsystems are designed and manufactured by different con-

tractors. In shipboard systems, two common examples of such subsystems are propul-

sion and communications. These subsystems include interfacing elements that employ 

both low -  and high - power digital and analog signals, together with numerous switching 

and routing processors. Some of these equipments will be new state - of - the - art elements 

designed specifi cally for this project, and some will be older, off - the - shelf items. 

 Under such circumstances, problems during installation and checkout are almost 

certain to be encountered. Moreover, some problems will be diffi cult to track down 

because the necessary resources, such as test specialists and troubleshooting equipment, 

may not be available at the installation site. In such instances, it is not unusual for the 

acquisition agency to bring in special  “ tiger teams ”  for assistance. If available, the 

people who developed the original system, particularly the systems engineers who will 

have the most system - level knowledge and management skills, are best qualifi ed to 

work on these problems.  
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  System Integration Site.     For systems where integration of major subsystems 

is especially diffi cult to accomplish at the operational site, it becomes cost - effective to 

utilize a specially equipped and supported integration site where subsystems and com-

ponents are assembled and various levels of checkout are performed prior to partial 

disassembly and shipment to the operational site. This may be the same integration site 

that is used during development to test and evaluate various elements of prototype 

equipment, or it may be a separate facility also used for training of operators and 

maintenance personnel. In either case, such a special site can also be extremely valuable 

in checking out fi xes to problems encountered during initial operations, as well as in 

supporting the engineering of system upgrades.  

  External System Interfaces.     In addition to numerous internal subsystem inter-

faces, complex systems have many critical external interfaces. Two examples are prime 

power, which is usually generated and distributed by an external system, and commu-

nication links, which interface through hardwired electronic circuits or by microwave 

links. Communication links not only have to be electronically compatible but must also 

have the appropriate set of message protocols, which are usually processed by 

software. 

 A further complicating factor is that large systems must often interface with 

systems that are procured from developers who are not under the control of either 

the prime system contractor or the system acquisition agent. This means that design 

changes, quality control, delivery schedules, and so on, can become major coordination 

issues. This also makes the resolution of problems more troublesome by raising 

the issue of who may be at fault and should therefore assume responsibility for cor-

recting any resulting problems. Problems of this type emphasize the importance of 

having a well - planned and executed test program during system assembly and 

integration. 

 During system development, special pains must be taken to ensure that the details 

of external interactions are fully specifi ed early in the design process. In many cases, 

the documentation of interacting systems is insuffi ciently detailed and sometimes so 

far out of date that their interface connections to the newly developed system are no 

longer valid. Systems engineers who have fi rst - hand experience with system environ-

ments can often anticipate many such critical factors relating to external interfaces, 

thereby ensuring that their characteristics are defi ned early enough in the development 

process to avoid problems during system installation. 

 Communication links other than standard commercial communications are notori-

ously troublesome. They often employ special connections and message protocols 

whose detailed specifi cations are diffi cult to obtain ahead of time. 

 The result can lead to surprises during system installation and initial operation, 

with no clear evidence as to which organization is responsible for the incompatibility 

and capable of resolving it. In such circumstances, it is usually advisable for the 

development contractor to take the initiative to at least identify the specifi c technical 

problem and to propose the means for a solution. Otherwise, the blame for the lack of 

system interoperability is commonly placed arbitrarily on the new system and its 

developer.   
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  Nondisruptive Installation 

 Some critical systems require continuous operations and cannot be stopped or paused 

during system installation or upgrades. This tends to be the case when installing a 

system into a large system of systems. The installation of a new or upgraded system 

into the system of systems cannot disrupt current operations. Examples include system 

installation into a city power grid, a complex industrial wide area network, a national 

communications network, a major defense system of systems, and the national air traffi c 

control system of systems. All of these examples require 24 - hour operations without 

signifi cant disruption. 

 Installing major systems into a system of systems without disruption requires 

careful planning and attention to detail. In the recent past, two general approaches have 

emerged to assist in this area: maintaining a system of systems simulation and maintain-

ing a system of systems test bed. Figure  15.3  depicts the fi rst option.   

 With this strategy, a system of systems simulation with hardware - in - the - loop is 

created. This simulation is typically user - in - the - loop as well, as opposed to stand alone. 

This simulation facility is verifi ed and validated against actual data collected from the 

operational system of systems, which interacts with the environment. Typically, the 

simulation would not interact with the environment (although there are exceptions 

to this). 

 The system of systems simulation is used as a test bed to determine (1) the impact 

the new system will have on the system of systems before it is actually installed and 

(2) an installation strategy that will keep operations at an acceptable level. Once a 

strategy has been developed and verifi ed using the system of systems simulation facil-

ity, knowledge and confi dence is gained on how to install the system into the actual 

system of systems. 

 The advantage of this nondisruptive installation mode is the cost savings and the 

ability to model installation procedures and techniques before installing the system into 

the actual system of systems. The system of systems simulation facility, while expen-

sive and complex, is only a representation of the actual system of systems and can be 

scoped to desired budget and tolerance levels. Obviously, if the system of systems in 

     Figure 15.3.     Non - disruptive installation via simulation.  
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question is a defense network responsibility for the survival of a nation, extremely 

high tolerances would be required. However, if the system of systems is a business 

information technology (IT) network, tolerance may be relaxed to a comfortable 

risk level. 

 The second concept used within nondisruptive installations involves the develop-

ment of a duplicate system of systems, scaled down from the operational one, and is 

depicted in Figure  15.4 . The concept is similar to the fi rst concept in that the system is 

installed into the scaled - down version of the system of systems, and testing occurs. 

During this process, the duplicate system of systems is typically disconnected from the 

operational system of systems to avoid any interference or disruption. An installation 

strategy is developed from the experience to apply for installation into the full - scale 

system of systems.   

 Once confi dence in the risk of disruption is acceptable, the system is installed into 

the operational system of systems. Many times, the operational system of systems is 

disconnected from the environment — the duplicate system of systems is used as a sur-

rogate during the installation. This is typically performed during a low demand situation 

or time frame to ensure the limited capacity of the duplicated system of systems is 

suffi cient. 

 Although this strategy for nondisruptive installation is expensive (you are basically 

building a scaled - down version of the operation system of systems), it has two major 

benefi ts: (1) the duplicate system of systems is an architecture copy of the operational 

system of systems and is the closest representation that is possible without duplicating 

both the architecture and scale of the original; and (2) during peak demand, the dupli-

cate, scaled - down system of systems can be used to augment the operational system of 

systems. National communications systems use this technique to keep its networks 

operational continuously, and to allow for unexpected peak demand periods.  

     Figure 15.4.     Non - disruptive installation via a duplicate system.  
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  Facilities and Personnel Limitations 

 Neither the facilities nor the personnel assigned to the task of system installation and 

test are normally equipped to deal with signifi cant diffi culties. Funds are inevitably 

budgeted on the assumption of success. And, while the installation staff may be expe-

rienced with the installation and test of similar equipment, they are seldom knowledge-

able about the particular system being installed until they have gained experience during 

the installation of several production units. Moreover, the development contractor staff 

consists of fi eld test engineers, while systems engineers are seldom assigned until 

trouble is encountered, and when it is, the time required to select and assign this addi-

tional support can be costly. 

 The lesson to be learned is that the installation and test part of the life cycle should 

be given adequate priority to avoid major program impact. This means that particular 

attention to systems engineering leadership in the planning and execution of this process 

is a necessity. This should include the preparation and review of technical manuals 

describing procedures to be followed during installation and operation.  

  Early System Operational Diffi culties 

 Like many newly developed pieces of equipment, new systems are composed of a 

combination of new and modifi ed components and are therefore subject to an excessive 

rate of component failure or other operational problems during the initial period of 

operation, a problem that is sometimes referred to as  “ infant mortality. ”  This is simply 

the result of the diffi culty of fi nding all system faults prior to total system operation. 

Problems of this type are especially common at external system interfaces and in opera-

tor control functions that can be fully tested only when the system is completely 

assembled in an operational setting. During this system shakedown period, it is highly 

desirable that a special team, led by the user and supported by developer engineers, be 

assigned to rapidly identify and resolve problems as soon as they appear. Systems 

engineering leadership is necessary to expedite such efforts, as well as to decide what 

fi xes should be incorporated into the system design and production, when this can best 

be done, and what to do about other units that may have been already shipped or 

installed. The need for rapid problem resolution is essential in order to effect necessary 

changes in time to resolve uncertainties regarding the integrity of the production design. 

Continuing unresolved problems can lead to stoppages in production and installation, 

resulting in costly and destructive impact on the program.   

   15.3    IN - SERVICE SUPPORT 

  Operational Readiness Testing 

 Systems that do not operate continuously but that must be ready at all times to perform 

when called upon are usually subjected to periodic checks during their standby periods 

to ensure that they will operate at their full capability when required. An aircraft that 

has been idle for days or weeks is put through a series of test procedures before being 
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released to fl y. Most complex systems are subjected to such periodic readiness tests to 

ensure their availability. Usually, readiness tests are designed to exercise but not to fully 

stress all functions that are vital to the basic operation of the system or to operational 

safety. 

 All systems, sooner or later, will experience unexpected problems during opera-

tional use. This can occur when they encounter environmental conditions that were not 

known or planned for during development. Periodic system tests provide information 

that helps assess and resolve such problems quickly when they occur. 

 Periodic operational readiness tests also provide an opportunity to collect data on 

the history of the system operating status throughout its life. When unexpected prob-

lems occur, such data are immediately available for troubleshooting and error correc-

tion. System readiness tests have to be designed and instrumented with great skill to 

serve their purpose effectively and economically — a true systems engineering task. 

 Readiness tests often must be modifi ed after system installation to conform more 

fully to the needs and capabilities of system operators and maintenance personnel. 

Development systems engineers can effectively contribute to such an activity. Location 

of data collection test points and the characteristics of the data to be collected, for 

example, data rate, accuracy, recording period, and so on, also represent systems engi-

neering decisions.  

  Commonly Encountered Operational Problems 

  Software Faults.     Faults in complex software - intensive systems are notoriously 

diffi cult to eliminate and tend to persist well past the initial system shakedown period. 

The diffi culties stem from such inherent features as the abstractness and lack of visibil-

ity of software functionality, sparseness of documentation, multiplicity of interactions 

among software modules, obscure naming conventions, changes during fault resolu-

tions, and a host of other factors. This is especially true of embedded real - time software 

commonly found in dispersed automated systems. 

 The variety of computer languages and programming methodology further com-

plicates system software support. While most analog circuitry has been replaced by 

digital circuits in signal processing and many other applications, computer code written 

in older languages, such as COBOL, FORTRAN, and JOVIAL, is still in widespread 

use. This  “ legacy ”  code, mixed with more recent and modern code (e.g., C +  + , Java), 

makes it that much more diffi cult to maintain and modify operational computer 

programs. 

 Remedies for software faults are correspondingly complicated and troublesome. A 

corrective patch in a particular program module is likely to affect the behavior of several 

interacting modules. The diffi culty of tracing all paths in a program and the mathemati-

cal impossibility of testing all possible conditions make it virtually impossible to ensure 

the validity of changes made to correct faults in operational software. 

 The relative ease of making software changes often leads to situations where these 

changes are made too quickly, and without signifi cant analysis and testing. In such 

cases, documentation of the system changes is likely to be incomplete, causing diffi cul-

ties in system maintenance. 
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 The only way to prevent serious deterioration of system software quality is to 

continue to subject all software changes to strict confi guration control procedures and 

formal review and validation as practiced during the engineering design and production 

phases. As noted elsewhere, proving - in changes at a test facility by experienced soft-

ware engineers prior to installing these in the operational system is an excellent prac-

tice; this procedure will pay for itself by minimizing the inadvertent introduction of 

additional faults in the course of system repair. Chapter  11  is devoted to a discussion 

of all of the special aspects of software engineering.  

  Complex Interfaces.     In the section on system installation and test (Section 

 15.2 ), it was stated that external system interfaces were always a potential source of 

problems. During installation, there is always a strong push for accomplishing the 

process as quickly as possible so that operational schedules are maintained. So, while 

documented installation procedures are generally followed, insuffi cient time is often 

allocated to exercise thoroughly the necessary checkout procedures. As noted earlier, 

examples of areas where operational problems typically show up in a shipboard system 

are displays, navigation, and communication subsystems. The control panels for these 

subsystems are usually distributed among various locations and therefore have a strong 

functional as well as physical interaction. In such cases, the operational crews should 

be alerted to the potential problems and should be provided with explicit information 

on the locations and interfaces of all interacting system elements.   

  Field Service Support 

 It is common for deployed complex systems to require fi eld support during the lifetime 

of the system. In the case of military systems, this is often provided by an engineering 

support unit within a branch of the service. It is also common for that unit to contract 

with civilian agencies to provide general engineering support to keep the system operat-

ing as intended. 

 When system operating problems are detected, it is necessary fi rst to determine 

whether the problem is due to a fault in the operational system or is a result of improper 

functioning of a built - in fault indicator. For example, the device may be erroneously 

signaling a failure (false alarm) or may be ascribing it to the wrong function. Therefore, 

the fi eld engineer who is called upon to troubleshoot a problem should be knowledge-

able in system operation, including especially the functioning of built - in test devices. 

 When any fault is encountered during system operation, the required remedial 

actions are more diffi cult to implement than they would have been during development 

or even during installation and test. This is because (1) user personnel are not technical 

specialists; (2) special checkout and calibration equipment used during installation will 

have been removed; (3) most analysis and troubleshooting tools (e.g., simulations) are 

not available at the operational site; and (4) most knowledgeable people originally 

assigned to the development project are likely to have been reassigned, to have changed 

jobs, or to have retired. Because of these factors, for operational fi xes to be done reli-

ably, they often have to be developed remotely; that is, data will have to be collected 

at the operational site and transmitted back to the appropriate development site for 
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analysis; corrective action will have to be formulated; and fi nally, the required changes 

will have to be implemented at the operational site by a special engineering team. 

 As noted previously, facilities at the developer ’ s test site are excellent locations 

for follow - on system work because of the availability of knowledgeable people, con-

fi guration fl exibility, extensive data collection and analysis equipment, and the oppor-

tunity to carry out disciplined and well - documented tests and analyses.  

  Scheduled Maintenance and Field Changes 

 Most complex systems undergo periods of scheduled maintenance, testing, and often 

revalidation. Nonemergency fi eld changes are best accomplished during such scheduled 

maintenance periods, where they can be carried out under controlled conditions by 

expert personnel and can be properly tested and documented. Fortunately, this usually 

accommodates the majority of signifi cant changes. In most cases, as in that of com-

mercial aircraft, such operations utilize special facilities with a full complement of 

checkout equipment, have a substantial parts stockpile and an automated inventory 

system, and are conducted by specially trained personnel. 

 Any changes, large or small, to an operational system require careful planning. As 

noted earlier, changes should be made under confi guration control and should conform 

to documentation requirements that specifi cally state how they will be carried out. All 

changes should be viewed from a system perspective so that a change in one area does 

not cause new problems in other areas. Any technical change to an operational system 

will usually also require changes in hardware – software system documentation, repair 

manuals, spare parts lists, and operating procedure manuals. In this process, systems 

engineering is required to see that all issues are properly handled and to communicate 

these issues to those responsible for the overall operation.  

  Severe Operational Casualties 

 The previous paragraphs dealt with operational problems that could be corrected during 

operations or short periods of scheduled maintenance. It must be assumed that a 

complex system built to operate for a dozen years or more may accidentally suffer a 

failure of such magnitude that it is effectively put out of commission until corrected, 

such as by a fi re, a collision, or through other major damage. Such a situation normally 

calls for the system to be taken out of service for the time necessary to repair and 

reevaluate it. However, before undertaking the drastic step of an extended interruption 

of service, a systems engineering team should be assembled to explore all available 

alternatives and to recommend the most cost - effective course of action for restoring 

operation. The severe casualty poses a classical system problem where all factors must 

be carefully weighed and a recovery plan developed that suitably balances operational 

requirements, cost, and schedule.  

  Logistics Support 

 The materials and processes involved in the logistics support of a major operational 

system constitute a complex system themselves. The logistics for a major fi elded system 
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may consist of a chain of stations, extending from the factory to the operational sites, 

which supplies a fl ow of spare parts, repair kits, documentation, and, when necessary, 

expert assistance as required to maintain the operating system in a state of readiness at 

all times. Technical manuals and training materials should be considered part of system 

support. The effort of developing, producing, and supporting effective logistics support 

for a major operating system can represent a substantial fraction of the total system 

development, production, and operating cost. 

 A basic problem in logistics support is that it must be planned and implemented 

on the basis of estimates of which system components (not yet designed) will need the 

most spare parts, what the optimum replacement levels will be for the different sub-

systems (not yet completely defi ned), what means of transportation, and hence time to 

resupply, will be available in potential (hypothetical) theaters of operation, and many 

other assumptions. These estimates can benefi t from strong systems engineering par-

ticipation and must be periodically readjusted on the basis of knowledge gained during 

development and operating experience. This means that logistic plans will need con-

tinual review and revision, as will the location and stocking level of depots and transport 

facilities. 

 There are also direct connections between the logistics support system and system 

design and production. The sources of most spare parts are usually the production 

facilities that manufacture the corresponding components and may include the system 

production contractor and the producers of system components. Moreover, subcompo-

nents and parts commonly include commercial elements and hence are subject to 

obsolescence design changes or discontinued availability. 

 System fi eld changes also directly affect the logistic supply of the affected com-

ponents and other spare parts. Since the process of refl ecting such changes in the 

logistics inventory cannot be instantaneous, it is essential to expedite it, as well as to 

maintain complete records of the status of each affected part wherever it is stored. 

 It can be seen from the above that the quality and timeliness of overall support 

provided by the logistic system will have direct effects on operability. This is particu-

larly true for systems operating in the fi eld, where the timely delivery of spare parts 

can be crucial to survival. In the case of commercial airlines, timely delivery of needed 

parts is also critical to maintaining schedules. Managing such a logistics enterprise is 

itself an enormous task of vital importance to the successful operational capability of 

the system.   

   15.4    MAJOR SYSTEM UPGRADES: MODERNIZATION 

 In the chapters dealing with the origin of new systems, it was noted that systems are 

usually developed in response to the forces of advancing technology and competition, 

which combine to create technical opportunities and generate new needs. Similarly, 

during the development and operational life of a system, the dynamic infl uence of 

these same factors continues, thereby leading to a gradual decrease in the system ’ s 

effective operational value relative to advances made by its potential competitors or 

adversaries. 
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 Advances in technology are far from uniform across the many components that 

constitute a modern complex system. The fastest growth has been in semiconductor 

technology and electro - optics, with the resultant dramatic impact on computer speed 

and memory and on sensors. Mechanical technology has also advanced, but mainly in 

relatively limited areas, such as special materials and computer - aided design and manu-

facture. For example, in a guided missile system, the guidance components may become 

outdated, while the missile structure and launcher remain effective. 

 Thus, obsolescence of a large complex system often tends to be localized to a 

limited number of components or subsystems rather than affecting the system as a 

whole. This presents the opportunity of restoring its relative overall effectiveness by 

replacing a limited number of critical components in a few subsystems at a fraction of 

the cost of replacing the total system. Such a modifi cation is usually referred to as a 

system upgrade. Aircraft generally undergo several such upgrades during their operat-

ing life, which, among other modifi cations, incorporate the most advanced computers, 

sensors, displays, and other devices into their avionics suites. A complication often 

encountered is discontinued production by manufacturing sources, which requires 

adjusting system interfaces to fi t the replacements. 

  System Upgrade Life Cycle 

 The development, production, and installation of a major system upgrade can be con-

sidered to have a mini life cycle of its own, with phases that are similar to those of the 

main life cycle. Active participation by systems engineering is therefore a vital part of 

any upgrade program. 

  Conceptual Development Stage.     Like the beginning of a new system devel-

opment, the upgrade life cycle begins with the recognition through a needs analysis 

process of a need for a major improvement in mission effectiveness because of growth 

in the mission needs and defi ciencies in the current system ’ s response to these needs. 

 There follows a process of concept exploration, which compares several options 

of upgrading a portion of the current system with its total replacement by a new and 

superior system, as well as with options for achieving the objective by different means. 

If the comparison shows a convincing preference for the strategy of a limited system 

modifi cation or upgrade, and is feasible both technically and economically, then a deci-

sion to inaugurate such a program is appropriate. 

 The equivalent of the concept defi nition phase for a system upgrade is similar to 

that for a new system, except that the scope of system architecture and functional 

allocation is limited to designated portions of the system and to those components that 

contain the parts of the system to be replaced. Proportionally greater effort is required 

to achieve compatibility with the unmodifi ed parts of the system, keeping the original 

functional and physical architecture unaltered. The above constraints require a high 

order of systems engineering to accommodate successfully the variety of interfaces and 

interactions between the retained elements of the system and the new components, 

and to accomplish this with a minimum of rework while assuming that performance 

and reliability have not been compromised.  
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  Engineering Development Stage.     The advanced development phase of the 

upgrade program, and most of the engineering design phase, is limited to the new 

components that are to be introduced. Here again, special effort must be directed toward 

interfacing the new components with the retained portions of the system. 

 The integration of the upgraded system faces diffi culties well beyond those nor-

mally associated with the integration of a new system. This is caused by at least the 

following two factors. 

 First, the system being modifi ed will likely have been subjected to numerous repair 

and maintenance actions over a period of years. During this time, changes may not 

always have been rigorously controlled and documented, as would have been the case 

if strict confi guration management procedures had then been in force. Accordingly, over 

time, the deployed systems are likely to become increasingly different from each other. 

This situation is especially troublesome in the case of software changes, which them-

selves are often patched to repair coding errors. The above uncertainty in the detailed 

confi guration of each fi elded system requires extensive diagnostic testing and adapta-

tion during the integration process. 

 Second, while vehicles and other portable systems are normally brought to a special 

integration facility for the installation of the upgrade components, many large land -  and 

ship - based systems must be upgraded at their operating sites, thereby complicating the 

integration process. The upgrading of the navigation systems on a fl eet of cargo vessels 

with new displays and added automation requires effecting these changes on board ship, 

using a combination of contractor fi eld engineers and shipyard installation technicians. 

Installation and integration plans should provide special management oversight, extra 

support when needed, and generous scheduled time to ensure a successful completion 

of the task.  

  System Test and Evaluation.     The level and scope of system test and evaluation 

required after a major system upgrade can range all the way from evaluating only the 

new capabilities provided by the upgrade to a repeat of the original system evaluation 

effort. The choice usually rests on the degree to which the modifi cations affect a distinct 

and limited part of the system capabilities that can be tested separately. Accordingly, 

when the upgrade alters the central functions of the system, it is customary to perform 

a comprehensive reevaluation of the total system.  

  Operations and Support.     Major system upgrades always require correspond-

ingly large changes in the logistics support system, especially in the inventory of spare 

parts. Operation training, with accompanying manuals and system documentation, must 

also be provided. 

 These phases require the same expert systems engineering guidance as did the 

development of the basic system. While the scope of the effort is less, the criticality of 

design decisions is no less important.   

  Software Upgrades 

 As described in Chapter  11 , software is much easier to change than hardware. Such 

changes usually do not require an extensive system stand - down or special facilities. 
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With increasing system functionality being controlled by software, the pressure for 

software upgrades tends to make them considerably more frequent than major hardware 

upgrades. 

 However, to ensure that such operations are successful, special systems engineer-

ing and project management oversight is required to manage the diffi culties inherent 

in system software changes: 

  1.     It is essential that the proposed changes be thoroughly checked out at the devel-

oper ’ s site before being installed into the operational software.  

  2.     The changes must be entered into the confi guration management database to 

document the changed system confi guration.  

  3.     An analysis must be performed to determine the degree of regression testing 

necessary to demonstrate the absence of unintended consequences.  

  4.     Operation and maintenance documentation must be suitably updated.    

 The above actions are required for any system change but are often neglected for appar-

ently small software changes. It must be remembered that in a complex system, no 

changes are  “ small. ”  

 Obsolescent legacy programs suffer from two disadvantages. First, the number of 

software support personnel willing to work on legacy software is diminishing and 

becoming inadequate. Second, modern high - performance digital processors do not have 

compilers that handle the legacy languages. On the other hand, the task of rewriting 

the programs in a modern language is comparable to the task of its original develop-

ment and is generally prohibitively costly. This presents a diffi cult system problem for 

systems in the above position. Some programs have successfully used a software lan-

guage translation to greatly reduce the cost of converting legacy programs to a modern 

language.  

  Preplanned Product Improvement ( P  3  I ) 

 For systems that are likely to require one or more major upgrades, a strategy referred 

to as P 3 I is often employed. This strategy calls for the defi nition during system develop-

ment of a planned program of future upgrades that will incorporate a specifi ed set of 

advanced features, thereby increasing system capabilities in particular ways. 

 The advantage of P 3 I is that changes are anticipated in advance so that, when 

needed, the planning is already in place; the design can accommodate the projected 

changes with minimum reconfi guration; and the upgrade process can proceed smoothly 

with minimum disruption to system operations. These preplanned changes will vary in 

magnitude and complexity depending on the need and availability of appropriate tech-

nology. Commercial airlines, for example, will often plan for a stretched version of an 

existing aircraft that will carry more passengers and incorporate larger engines and new 

control systems. By modifying an existing aircraft instead of developing a new one, 

the problems of government recertifi cation can often be alleviated. In the military, the 

planned upgrade process has the advantage of prior mission justifi cation. Since the 
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current system is operational and performing a needed function, the proposed system 

changes will not affect already approved mission and system objectives. 

 In the case of future improvements defi ned during initial system development, the 

contract for implementing them is usually awarded to the development contractor. This 

is the most straightforward contractual arrangement for carrying out a major system 

upgrade. It is also most likely to secure the services of engineers familiar with the 

current system characteristics to participate in the planning and execution of system 

changes. While even in this case the original development team may have largely dis-

persed, that part that remains provides a major advantage by its knowledge of the 

system. However, as can sometimes occur in government - sponsored programs, the 

pressure for competition can become especially severe and can even lead to the selec-

tion of a different contractor team for the upgrade contract. In such cases, an intensive 

education program will be required for the new team to learn the fi ner points of the 

system environment and detailed operation.   

   15.5    OPERATIONAL FACTORS IN SYSTEM DEVELOPMENT 

 In Chapter  14 , Production, it was pointed out that systems engineers who guide the 

development of a new system must have signifi cant fi rst - hand knowledge of relevant 

production processes, limitations, and typical problems in order to coordinate the intro-

duction of producibility considerations into the system design process. It is likewise 

important that systems engineers be knowledgeable about the system ’ s operational 

functions and environment, including its interaction with the user(s), in order to be 

aware of how the system design can best meet the user ’ s needs and accommodate the 

full range of conditions under which the system is to be used. 

 Unfortunately, the kinds of opportunities described in Chapter  14  that exist for 

systems engineers in a development organization to learn about manufacturing pro-

cesses frequently are not available for learning about the system ’ s operational environ-

ment. The latter is seldom accessible to development contractor personnel, except for 

those who provide technical support services, and these are more likely to be techni-

cians or equipment specialists rather than systems engineers. Another inhibiting factor 

is that the operational environment is usually so system specifi c that acquaintance with 

the environment of an existing operational system does not necessarily provide insight 

into the conditions under which the particular system under development will operate. 

 The type of operational knowledge that systems engineers must acquire can be 

illustrated by the example of developing a new display for an air traffi c control terminal. 

In this case, it is essential that the systems engineers have an intimate knowledge of 

how the controllers do their job, such as the data they need, its relative importance in 

sending messages to aircraft, the expected fl uctuations in air traffi c, the traffi c condi-

tions that are deemed critical, and a host of other data that impact the controller ’ s 

functions. Engineers developing a control console for a civil air terminal can usually 

observe the operations at fi rst hand and interview controllers and pilots. 

 However diffi cult, it is essential that engineers responsible for system design 

acquire a solid understanding of the conditions under which the system being developed 
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will operate. Without such knowledge, they cannot interpret the formal requirements 

that are provided to guide the development since these are seldom complete and fully 

representative of user needs. As a result, it is possible that defi ciencies due to faulty 

operational interfaces will be discovered only during system operation, when they will 

be very costly or even impractical to remedy. 

 The term  “ operational environment ”  as used here includes not only the external 

physical conditions under which a system operates but also other factors such as the 

characteristics of all systems interfaces, procedures for achieving various levels of 

system operational readiness, factors affecting human – machine operations, mainte-

nance and logistic issues, and so on. Figure  3.4  illustrates the complex environment in 

which a passenger airliner routinely operates. 

 Operational environments can vary radically depending on the type of system 

under consideration. For example, an information system (e.g., a telephone exchange 

or airline reservation system) operates in a controlled climate inside a building. In 

contrast, most military systems (airplanes, tanks, and ships) operate in harsh physical, 

electronic, and climatic conditions that can severely stress the systems they carry. 

Systems engineers must understand the key characteristics and effects of these environ-

ments, including how they are specifi ed in the system requirements and measured 

during operations. 

  Sources of Operational Knowledge 

 A number of potential sources of operational knowledge may be available in certain 

situations. These include operational tests of similar systems, integration testing during 

system installation, system readiness tests, and maintenance operations. These activities 

all address the problems associated with successfully integrating the system ’ s external 

interfaces with the site and with associated external systems  . These can often expose 

serious problems that are not adequately revealed by the interface specifi cations pro-

vided to the developer. 

 To gain the necessary operational background, the systems engineer should 

endeavor to witness the operation of as many systems of the type under consideration 

as possible. Serving as an active participant in system test operations, or even by simply 

acting as an observer, is a good opportunity for learning. When present at such tests, 

the systems engineer should make the most of the opportunity by asking questions of 

system operators at appropriate times. Of special importance is information regarding 

what parts of the system are the sources of most problems and why. Learning about 

operational human – machine interfaces is particularly valuable because of the diffi culty 

of realistically representing them during development. 

  System Readiness Tests.     A useful source of operational knowledge is observ-

ing procedures used to determine the level of system readiness. All complex systems 

go through some form of checklist or fast test sequence prior to operation, often using 

automatic test equipment under operator control. A commercial airliner goes through 

an extensive checklist prior to each takeoff and a much more thorough series of checks 

prior to and during scheduled maintenance. It is instructive to observe how operators 
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react to fault indications, what remedial action is taken, what level of training these 

operators have been given, and what type of documentation has been provided.  

  Operating Modes.     Most complex systems include a number of operating modes 

in order to respond effectively to differences in their environment or operating status. 

Some systems that must operate in a variety of external conditions, such as a military 

system, usually have several levels of operational readiness, for example,  “ threats pos-

sible, ”   “ threats likely, ”   “ full - scale hostilities, ”  as well as periods of scheduled mainte-

nance or standby. There may also be backup modes in case of degraded system 

operation or power failure. The systems engineer should observe the conditions under 

which each mode is induced and how the system responds to each mode change.   

  Assistance from Operational Personnel 

 In view of the limited opportunities for the developer ’ s systems engineers to acquire 

an adequate level of operational expertise, it is often advisable to obtain the active 

participation of experienced operational personnel during system development. A par-

ticularly effective arrangement is when the user stations a team designated to be system 

operators at the development contractor ’ s facility during the period of systems engineer-

ing, integration, and test. These individuals bring knowledge of the special circum-

stances of the system ’ s interaction with the intended operational site, as well as represent 

the system operator ’ s viewpoint. 

 Another source of operational expertise comes from system maintenance personnel 

who are experienced in the problems of servicing similar systems at their operating 

sites and in their logistics support. Systems engineers can gain considerable knowledge 

by well - planned interviews with such individuals. As noted earlier, complex systems 

often have maintenance support facilities that may be excellent sources of operational 

knowledge.   

   15.6    SUMMARY 

  Installing, Maintaining, and Upgrading the System 

 The application of systems engineering principles and expertise continue to be required 

throughout the operational life of the system. The operations and support phase includes 

installation and test, in - service support, and implementation of major system upgrades. 

 Interface integration and test can be challenging due to a mix of various organiza-

tional units, complex external interfaces, and incomplete or poorly defi ned interfaces.  

  Installation and Test 

 Installation and test problems can be diffi cult to solve because installation staff have a 

limited system knowledge. Systems engineers are seldom assigned until trouble is 

encountered. However, periodic operational readiness testing is necessary for systems 
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that do not operate continuously. This can help minimize unexpected system 

problems. 

 Where nondisruptive installation is required, care to plan the installation proce-

dures, via a hybrid simulation or a duplicate system operating in parallel, is absolutely 

essential.  

  In - Service Support 

 System software must be subject to strict confi guration control to prevent serious dete-

rioration of software quality. In this vein, built - in fault indicators are very valuable for 

detecting internal faults, although they sometimes produce false alarms. Therefore, fi eld 

engineers should be knowledgeable about built - in test devices. 

 Remedial actions to correct operational problems are diffi cult to implement: opera-

tional personnel are not technical specialists. Furthermore, troubleshooting tools are 

limited. And materials and processes involved in logistics support themselves constitute 

a complex system.  

  Major System Upgrades: Modernization 

 Logistics cost is a large part of system cost. Therefore, P 3 I facilitates improvement of 

systems during major upgrades. Advanced features are defi ned during system develop-

ment, and advanced planning permits minimum disruption to system operation.  

  Operational Factors in System Development 

 Possible sources of operational knowledge include operational and installation tests —

 by observing system operations within its environment. Of course, assistance from 

operational and maintenance personnel is invaluable.   

  PROBLEMS 

    15.1     Identify and discuss four potential problems associated with the installation 

and test of a complex navigation and communication system aboard a trans-

oceanic cargo vessel. Assume that some of the subsystems have been inte-

grated at land sites prior to shipment. Assume that a number of contractors 

are involved, as well as the shipping company and government inspectors.  

  15.2     Interface problems are usually diffi cult to diagnose and to correct during fi nal 

system integration. Why is this so? What measures should be taken to mini-

mize the impact of such problems?  

  15.3     Operational readiness testing is an important function for deployed systems. 

As a systems engineer who is familiar with the design and operation of a 

large complex system, describe how you would advise operational personnel 

to defi ne and conduct this type of testing.  



524 OPERATIONS AND SUPPORT

  15.4     Many complex systems incorporate a built - in fault indicator subsystem. This 

subsystem can itself be complex, costly, and require specialized training and 

maintenance. List and discuss the key requirements and issues that must be 

considered in the overall design of a built - in test subsystem. What are the 

principal trade - offs that must be addressed?  

  15.5     An effective logistics support system is an essential part of successful system 

operational performance. While the support system is  “ outside ”  of the deliv-

ered system, discuss why the systems engineer should be involved in the 

design and defi nition of the support system. Discuss the functions of some 

of the characteristics that must be considered, such as the supply chain, spare 

parts, replaceable part level, training, and documentation.  

  15.6     Discuss the types of systems that are best suited for applying P 3 I during the 

design phase. Describe the key elements in justifying the additional cost of 

a P 3 I approach.  

  15.7     In maintaining an operational system, hardware faults are usually corrected 

by replacing the offending subcomponent by a spare. Software faults are 

typically coding errors and must be eliminated by correcting the code. In 

complex systems, software changes must be made with extreme care and 

must be validated. Discuss ways in which software faults can be handled in 

a controlled manner where the operating system is remote from the develop-

ment organization.     
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