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Preface

Purpose of the book

Societies generally, and in the long run, require some sort of mechanism to prevent
chronic and widespread internal violence and to provide for an orderly process of
collective decision making. I say ‘generally and in the long run’ because such
problems may not be solved, or only partially solved, for considerable periods of
time. Questions about the nature of these problems might be thought of as
questions about the foundations of political-economic systems.

The purpose of this book is to provide social scientists with an introduction to
some of the applications of strategic choice, or game, theory to some of these
questions. It also deals with some aspects of collective decision making.

The focus on questions about the foundations of political-economic systems
places this work within an old, and continuing, tradition in political-economic
theory. The aim of this tradition is to understand political-economic systems as
broadly as possible by starting at the most basic level. This is the level that requires
the smallest number of assumptions about the existence of institutions, such as the
state and markets, and questions the preconditions for their existence. That is,
rather than simply assume the existence of order and property rights and some
systematic process of choice, it is asked, what would happen in the absence of these
institutions? Why are they needed?

This focus is a departure from much of the more familiar literature in economics and
public choice. In this literature the tendency is to start by assuming the existence of a
market without analysing the preconditions required for trade and exchange. The
problem here is that the structure of the system as a whole may sometimes be forgotten.
The preconditions required for trade to take place and for security of property tend to be
overlooked. One result of this is that government and collective choice mechanisms
tend to be treated as a residual category that compensate for market failure. At best this
is a distorted framework. It may be more useful to think of the market as a means of
compensating for collective choice failures.

The techniques of game theory provide the most appropriate formal approach to
the analysis of problems of security and collective choice because these problems
arise as the result of strategic interaction. They do not arise as the result of
individuals taking actions that have no consequences for anyone else. Moreover,
the game theory approach has the advantage of consistency. This is because it
applies the assumption that individuals are optimizing in a consistent way and
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allows individuals to make any moves that are optimal, rather than those that are
somehow nice. Among the examples of fully optimal moves are the use of violence
and the organization of force.

An immediate consequence of taking optimization seriously is that the state, or
some institution for ensuring order, has to be built into any general theory from the
beginning. It is not consistent to ignore the necessity of having an institution to
enforce rules in order to attack problems of general equilibrium in a pure market
environment. If rules are required to make transactions possible, they must be
explicitly dealt with in the analysis.

The applications of game theory are explored in a sequence that follows the logic
of the problems being dealt with. In tracking these problems, the game theory can
be set out so that the discussion of the techniques in game theory progresses with
the analysis. This provides a natural progression from simpler to more complex
techniques. One advantage of this is that it is possible to provide some substantive
content for the applications of the theory and to build on previous solutions.
Another is that a reader, interested in a particular type of problem, can turn
immediately to the appropriate techniques.

Since the book is organized around problems it differs from books that attempt to
provide a systematic introduction to game theory. These are usually organized
around the type of mathematical technique used or the characteristics of the
particular class of game. Excellent examples of this type of book at the basic level are
Luce and Raiffa’s classic Games and Decisions and Binmore’s Fun and Games. Many
others are included in the bibliography.

Although not intended as a systematic introduction, this book provides all the
basic definitions and theorems needed. Nearly all the material is accessible to
anyone who remembers their high school calculus, or is prepared to brush up as the
study progresses.

This book will serve as a text for courses in political economy, or on the theory of
the state and collective decisions for students in economics, political science, public
choice and related disciplines. Most of the material in the early part of each chapter
is accessible to undergraduates, especially if accompanied by lectures and some
additional reading. I have found it easy to make this material comprehensible to
students with a traditional arts and humanities background. This includes students
who have an active dislike of mathematics.

Outline

The book starts with some basic questions about the problem of order and then
progresses to more complex questions about property rights, markets for protection
and collective choice mechanisms. Each stage introduces additional game theory
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techniques and shows why they are needed to solve the problems at hand. The study is
able to progress fairly systematically because some of the most simple techniques
provide a reasonably adequate basis for analysing some of the most basic problems of
social life.

Chapter 1 outlines the general problem of analyzing the place of the state and
collective decision processes in political-economic systems. It also outlines some of
the substantive implications of the study. In particular, it looks at the debate
between the view that social order is a political, and hence collective, construct and
the view that markets are natural and part of a spontaneous order. It also provides an
introduction to the techniques to be used.

Chapters 2, 3 and 4 look at the question of whether it is desirable to enforce
collective decisions or whether enforcement is necessary to make such decisions
binding. This is done in the traditional manner by examining the outcome in a
situation where there are no rules to protect life or property.

In Chapter 5 the question of whether markets could emerge without a state to
enforce rules and whether it would be possible to buy rules on a market is
considered. This question is interesting for an assessment of the political-economic
and pure economic approaches. If it were possible for the market to provide the rules
it needs, it would be possible to construct a closed economic theory.

Chapter 6 looks at the notion of spontaneous evolution and evolutionary stable
strategies. This deals with the important question of what we can learn about
outcomes if the notion of global optimization is dropped. In this case, individuals
are assumed to base their choices on imperfect information and trial and error
tactics.

Chapter 7 examines the criteria that might be used to make collective decisions.
What economists call collective goods are dealt with in this section. It will be seen
that these goods are simply a subset of strategic action and do not present any new
problems. From a strategic choice approach, it is the market which is the special
case.

In Chapter 8 I examine problems of collective decision making and welfare
maximization. If there is a state to enforce collective decisions would it be possible
to design a mechanism to allow the utilities of individuals to be aggregated? One
problem is that individuals might lie in order to manipulate the outcome.

In chapter nine I look at voting from the viewpoint of strategic manipulation.
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1

State, Anarchy and Game Theory

1.1 Introduction

Social scientists currently give a great deal of attention to questions about the nature
of collective decision making and about the extent to which a centralized authority
is necessary to enforce such decisions. These questions have been around, in their
modern form, at least since the time of Hobbes’s Leviathan and Locke’s Two Treatises
of Government. They are central to much of modern formal theory as well as to
popular debates between proponents of various choice processes, such as those that
leave final outcomes to markets and those that determine final outcomes directly.
They also form the basis of what is now commonly studied under the headings of
social choice theory, public choice, and modern political economy. They include
the following: Why is it necessary to have a state, or any other mechanism, to
enforce rules over things like protection for life and property? Why do not
individuals simply co-operate to do what is best for the society? If rules are needed,
why do not individuals spontaneously provide these, or buy them on the market?!
Why are collective decisions necessary? How is it possible to ascertain which choices
are best? Does society have a preference in any coherent sense? How should
collective decisions be made? Would it be possible to find out what individuals want
by asking them?

The purpose of this book is to consider some of the applications of strategic
choice, or game, theory to questions of this type. It is essentially an introduction to
applied game theory.

The words ‘state’ and ‘anarchy’ are used in the title to emphasize the links between
this study and the traditional concerns of political economists with enforceability,
authority and questions of violence. The analysis of these questions gives the study a
somewhat broader focus than the more usual collective choice theory. I follow the
standard practice of dealing with questions about the outcome of individual decisions



2 State, Anarchy and Collective Decisions

as they arise in a situation without a state or government, or what is usually referred to
as a state of nature. No attempt is made to address the sufficient conditions for the
state, or any other enforcement mechanism, to be justified.

It must be noted that there is a distinction between the question, ‘how did
enforcement mechanisms for collective choice come into being?’ and the questions,
‘why do we need them?, what do they do?’ This book is primarily concerned with
the second type of question. The first question is historical. The answer most likely
has something to do with treachery, bloodshed and violence.

The applications of game theory are developed by starting with the most basic
problems of security and moving progressively to more advanced problems of
property and decision making. This trajectory is partly justified by the argument that
it is more defensible to start with problems that require less, rather than more,
assumptions. It is also partly justified by the primacy of security in social life. This
point is taken up in 1.3.

As the main task of this study is to provide an introduction to the game theory
approach, no attempt is made to argue a single thesis. In so far as there is an
argument, it is implicit in the sequence of development outlined. The argument is
that the focus on problems of strategic action make this sequence appear to be a
natural trajectory for any attempt to develop a general analysis of political economic
phenomena. That is, there seems to be some inherent logic in the order of the
approach to the problems. This does not mean that a different sequence could not
be used. It does mean that it is more likely to involve more messy assumptions.

Apart from the emphasis placed on the sequence of the analysis, the position
adopted is that the study of social phenomena is best approached by treating them
as a series of problems. These are simply dealt with on an individual basis. It is
almost certainly true that everything is connected. I do not think, however, that we
are in much of a position to deal with these connections at the present stage.

To begin, it might be useful to provide a few notes on the approach to be adopted. I
shall also take this opportunity to expand the previous comments and to give the
subsequent game theoretical analysis some general context.

1.2 The game theory approach

The main advantage of a game theory approach is that it provides a framework for
analysing a broad range of social institutions in a formal and rigorous way. This
stems from the fact that it analyses social interaction or interdependence. More
precisely, it analyses the case in which the decision of one player affects others. That
is, each individual, i, chooses the strategy that will give the optimum pay-off bearing
in mind that each other player will choose whatever strategy will maximize their
return given that i is choosing an optimum strategy. Since the actions of one
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individual may impose costs on another, or prevent others achieving some desirable
outcome, it is necessary from the outset to consider questions about the nature of
these costs and the related questions of authority, collective decisions and rules. For
example, the fact that each individual is attempting to maximize in isolation means
that their choices may not result in an outcome that provides a collective optimum.

The difference between non-strategic and strategic action can be illustrated by
considering the difference between transactions in a market with an infinite
number of traders and the decisions of opposing generals in a war. The market is
essentially a single agent model in which the actions of one individual do not
influence others. Although the bread price faced by any one individual will depend
on the decisions of all others, the decisions of any one individual will not affect this
price or the pay-offs of others. For analytical purposes the decisions can be treated as
independent. The decision of one general cannot be treated as analytically separate
from the decisions of the opposing general. The pay-offs of each general will, in
most cases, depend on the decisions of the other.

Since the game theory approach provides the framework for the simultaneous
analysis of phenomena that are often divided into political and economic, it might
also be considered the basis of a formal political economy. It might be speculated
that one reason for the separation of the analysis of political phenomena and
economic phenomena into political science and economics shortly after the turn of
the century was the inability of the available mathematical techniques to deal with
strategic, or political, interaction. The early attempts to study interpendence, such
as Cournot’s model of duopoly, were restricted to a small class of cases. Hence the
study of political phenomena tended to remain largely historical and descriptive.
Von Neumann and Morgenstern’s Theory of Games and Economic Behaviour (1944)
provided the first systematic development of the techniques needed for a formal
attack on political and economic phenomena together. The single agent model of
agents in markets becomes a special case of the multi-agent model.

The fact that strategic action generates suboptimalities was familiar to political
philosophers such as Hobbes, Locke and Hume. Something of the notion also
underlies some of Rousseau’s work. Rousseau’s belief that society is necessary for
people to be good but corrupts them, or that the general will can only be expressed
in small communities, are examples. Part of the argument for small communities is
that, where communities exceed a certain size, individuals may no longer identify
the common good with their individual good. This gives rise to strategic action
problems.

Somewhat intriguingly, the problem of strategic action turns out to be that
individuals have too much choice, or that too many worthwhile strategies are
available. This may seem a somewhat strange idea for those brought up in the
liberal-democratic tradition. This tell us that choice is a good thing, and that an
expansion of options increases the welfare of individuals. This is only true, however,
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if there is no interdependence. It turns out that, with interdependence, increasing
the range of worthwhile choices does not always improve the outcome.

To illustrate the argument, imagine a rock concert. If the only choice is to remain
seated, all can see. If the range of choice is increased so allowing people to stand or
move to the front, no more can see and many may be injured.

The point just covered might be called the paradox of strategic interaction. This is
that an increase in the range of actions may cause individuals to move to an inferior
position.

The characteristic feature of the game theory, or political-economic, approach is that
it simplifies problems as much as possible by studying a system made up of optimizing
individuals.? It is assumed that these individuals are trying to maximize such things as
their security, or material welfare or whatever is relevant to the issue being analysed.
The questions that will be asked concern the outcome of these choices under different
rules. What will be the outcome if there are no rules? What would happen if a
collective choice procedure of type A or B were in operation?

The emphasis on optimization means that the analysis abstracts from considera-
tions of norms and values in so far as they directly affect the choice of strategies. It
could be thought of as a three billion stooges view of social life since it gives a very
sparse view of human thought processes. It is justified in that it gives a useful
starting point for thinking about more complex environments. In the simple
systems studied, the choices made depend on nothing more than the available
strategies and the endowments and preferences of individuals.

The analysis also abstracts from all question of the moral worth of different
arrangements. It does not, for example, have anything to say about the body of
claims that runs through Plato and Rousseau to the modern Hegelians that the state
and political life is an end in itself. This study is not intended to criticize these claims
by omission. It seems quite plausible to argue that collective action is a good in itself
and provides a means to both express and develop good intentions.? These views are
simply not discussed.

A more systematic idea of the problems generated by strategic interaction can be
gained by observing that there are three general cases that are of concern when
considering the consequences of individual and collective choice. These are
characterized according to the type of outcomes that individual actions will produce.
The possibilities are as follows:

[Ai] Spontaneous selection of the strategies that produce a collectively optimal
outcome in some sense. This means that it will pay all individuals to follow
the strategy that leads to the collectively optimal strategy. Any deviation will
make the individual who deviates worse off.

[Aii] Voluntary agreement to adhere to some rule that produces an optimal
outcome. Imagine, for example, that all players meet and agree to do x in
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order to get some desired outcome, but there is no punishment for deviating.
It will be in the interest of all individuals to keep this promise only if the pay-
offs for keeping it are greater than the pay-offs for breaking it. Examples would
be an agreement to meet at a certain place for mutual advantage, or a trade
that makes all parties better off.

[Aiii] Individuals only keep an agreement that leads to an optimal outcome if there
is an enforcement mechanism. In this case there is an optimal outcome that
all individuals want but neither [Ai] nor [Aii] apply. The only way to get the
agreement is to set up a mechanism to enforce the appropriate action.

Each of these possibilities is generated by interactions within a different structure.
That is, a game that produces spontaneous co-operation has a different structure
than one in which co-operation has to be enforced.

1.3 The problems considered
The problems to be dealt with fall naturally into two sections.

1.3.1 Section one. Security

The first set of problems concern the question of whether individuals could
spontaneously co-operate to provide things such as physical security and rules of
property. These are essentially questions about the structure of interaction that
applies to each case. It is obvious that, if all interactions were of types [Ai] neither
social choice nor enforcement would be desirable in the first instance. There would
not even be an argument that a government is useful to provide defence against
external aggressors. This is because those who were organized and had a structure of
authority would not necessarily have any military advantage. Spontaneous peoples’
armies would undertake scientific research, automatically form fighting units and so
on. Alternatively, if once security were provided interactions were of type [Ai] and
[Aii], then only a minimal security-providing state might be required.
More specifically, I shall concentrate on the following questions.

[Qi] Security problems created by individuals pursuing optimal strategies without any
enforceable rules. Would it be possible for individuals to provide physical security
without a mechanism to enforce collective decisions?

The question of security and of the enforcement of collective decisions has been
placed first because security is usually taken to be the prerequisite for any social
order and because its analysis throws some light on the nature of collective decisions
and why they are needed in the first place. The problem of order is commonly
known as the Hobbesian problem. The problem is that, where there are no rules,
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individuals who desire peace and safety for life and limb may not be able to attain it
through their own efforts without some form of authority structure. Whether this is
a justified description of the state of nature is taken up in Chapter 2. What is
obvious, however, is that the security problem has some claim to primacy in
thinking about the foundations of welfare. Without security there is ‘no place for
industry because the fruit thereof is uncertain: and consequently no culture of the
earth; no navigation and use of commodities that may be imported by sea ... no
arts, no letters, no society’ (Hobbes, 1968, p. 186).

The analysis of security problems, and of the conditions that make it difficult to
arrive at collectively optimal outcomes as the result of spontaneous action, throws
some light on collective decisions because it helps us to understand the need for
such decisions. It also helps in understanding when decisions need to be enforced as
well as the type of mechanisms that are required.

This analysis has implications for a range of secondary issues not directly
addressed in the body of this study.

[Qi.a] The question of what would happen if there were not an institution to enforce
collective decisions explores some of the necessary conditions for a state or
government to be desirable. These conditions are necessary in the sense that the
effort to sustain some co-operative organization would not be voluntarily forthcoming
unless it helped solve some problems that would otherwise exist. It is assumed that
individuals would not give some institution a near monopoly of violence, for example,
unless it made them better off. Similarly, unless it is assumed that individuals are
naturally subordinate to authority, or have an innate tendency to desire traffic lights,
an explanation of why they would create such arrangements is needed. One way to get
an insight into structures of authority, markets, or the rules of the road, is to ask what
sorts of problem they solve, and for whom.

[Qi.b] If the state is required to provide security, then it can be understood why it
requires a preponderance of violence in some area. Without the ability to uphold its
claims to be the enforcement agency, it could not prevent other institutions making
the same claim. Where there is more than one such claim, the different groups
making the claims have no authority over them to constrain their actions. Hence,
the conditions that generated the Hobbesian problem would remain.

[Qi.c] If a state is in place to provide security, then the solution to subsequent
problems of collective choice have a different form. This is because all subsequent
questions take the form of, what should be done with an already exiting mechanism?
That is, once the security problem is solved, the setting-up costs of the state have
already been incurred. The difference is somewhat like the difference between the
decision to purchase a car for work, and the decision of whether to use it to go to the
store for a can of beer.
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Point [Qi.c] is often misunderstood. Elster, for example, believes that for all
collective goods ‘decentralized solutions are more fundamental than centralized
ones, since compliance with centralized directives is itself a collective action
problem’, (Elster, 1989, p. 17). This is only true for the problem of establishing the
state in the first instance. The problem of getting an agreement to accept an
authoritative mechanism does not have to be solved again for every subsequent
issue.

The focus is solely on the security problem as it arises between individuals.
Security problems between states are not of concern. In some cases the players could
be taken as groups without affecting the interpretation of the models. In other cases,
however, the analysis of groups presents problems that have to be dealt with in co-
operative game theory. This is because groups involve consideration of internal co-
ordination and bargaining.

This point is illustrated by comparing the problems facing states in
an international system with those facing individuals. Bull (1977, p. 46) argues that
there is order between states. There are several reasons why this does not allow us to
assume that there will be a similar order between individuals. First, the number of
states that can threaten the security of any other state is relatively small. As will be
seen, this generates a different dynamic than games with a large number of players.
Second, states have a collective entity such that the losses from conflict may be
much less than the losses to an individual. Bull notes similarly that ‘states are not
vulnerable to violent attack to the same degree that individuals are’ (1977, p. 49).
Third, the assumption of order between states is not justified. If states are treated as
having a corporate life-span, the number of major conflicts during a life is
significant.

From a formal perspective, the security problem for groups may look more like the
problem of struggles over material possession faced by individuals than the security
problem for individuals. Because groups do not necessarily face annihilation,
struggles between groups may be thought of in terms of players trying to minimize
the costs of the conflict, rather than in terms of avoiding physical destruction.

[Qii] Struggles over material possessions. Is the state necessary to enforce rules of
property?

The problem of physical security is not the same as the problem of providing
security for property. One of the weaknesses of the Hobbesian approach is that it
makes the mistake of treating the question of property as if it were subsumed by the
problem of order. Some attempt is made to disaggregate these problems in the
Lockean tradition, but this is often done by making arbitrary assumptions about
rights. It is easy to see, however, that these problems can be separated. It would
logically be possible to have a state that protected life and limb but did not protect
property. Imagine, for example, a state that solved the Hobbesian problem by
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protecting life and privatizing all other functions of the police force. Individuals
would then have to decide whether it was worthwhile renting police to protect
property. Something like this already happens with private security firms.

[Qiii] Markets for security. Could the market provide its own rules?

This question has some interesting implications for political economy. If the
market could provide its own rules, it could operate as a closed system that produced
its inputs as outputs, once physical safety was assured. If this were the case, we might
be able to get close to a theory of markets that did not require that the state be
treated endogenously.

[Qiv] Evolutionary stability. Could equilibria evolve?

This is the problem of equilibria when the assumption that individuals are global
optimizers is relaxed. It looks at the possibility of spontaneous order emerging for
trial and error type strategies.

1.3.2 Section two. Collective choice

The questions in this section concern the criteria or mechanisms which might be
used to choose between the various possible alternatives. It is assumed that
enforcement of collective decisions is no longer a problem. In this case, the primary
question thus becomes, how are social choices to be made?

The most obvious distinction is between a mechanism that depends on collective
choice over ends and a mechanism that accepts the unintended consequence of
individual decisions under specified rules. The conditions under which each
mechanism is most likely to be appropriate partly depend on whether the pay-offs
for one individual are related to the decisions of others, and how they are related. The
goods that can be provided optimally by individual decisions are those that do not
have a strategic component. Some goods have a strategic component that cannot be
eliminated by properly designed rules. Among these may be the rules themselves. In
these cases the problem is irreducibly one of collective choice.

[Qi] What criteria might be used for co-operative decision-making and for sharing
the gains from co-operation?

To be worthwhile for all individuals, the condition for co-operation is that there is
some mechanism for sharing the joint gains or the surplus from co-operation that
makes no-one worse off. It follows that there must be some choice mechanism that
has this characteristic for all co-operative decisions. Note that this type of
mechanism preserves the optimal outcome for each individual. This is not
necessarily the case with the welfare maximizing mechanism discussed below.
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[Qii] Would it be possible for a planner or a benevolent despot to maximize
welfare?

The simplest approach to collective choice would be to select whatever outcome
maximizes welfare, in some sense. It might be imagined that individuals collectively
accept this as an appropriate decision criterion even if it does not provide the optimal
outcome for each individual. The planner, or benevolent despot, could determine the
outcome that maximizes welfare, if it were possible to get sufficient information on
what each individual would prefer. Maybe the planner could simply ask the
population. The problem here is that some of the considerations that make a
collective choice mechanism necessary in the first place may operate to subvert the
collective choice. For example, suppose that each individual is asked to reveal the
value that is placed on some good that all desire, and the reported value determines
the share of the cost. In this case each individual may understate this value, thus
distorting the choice process.

When the assumption that collective choice is made by a benevolent dictator is
dropped, some mechanism must be found to aggregate the preferences of the
population. This is often done by choice among a menu of outcomes through some
scoring or voting procedure.

[Qiii] Is it possible to make preference aggregation procedures strategy proof?

This question concerns the mechanisms that might be put into place to allow
individuals to choose the optimum outcome from some menu of possible outcomes.
There are a large number of possibilities here from choice by lottery to various sorts
of voting systems. Once more, if individuals vote strategically, problem of collective
sub-optimalities may arise. In considering this question, the study will only focus on
solutions to choice problems that have a strategic content.

1.4 Some implications of the approach

Starting with the assumption that individuals are unrestrained optimizing agents
and allowing all strategies, including violence, produces an emphasis on security
and rules that is much less evident in many neo-classical market, or individual
agent, based approaches. It also means that many special problems such as collective
goods, externalities and free riding become subsumed in the more general stategic
action framework.

The possibility that there is something missing from the majority of neoclassical
market based approaches has also been observed by Usher in The Welfare Economics
of Markets, Voting and Predation. He notes the ‘remarkable fact about welfare
economics’ is that ‘there is no role for violence at all’.’ The difference between
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Usher’s work and this study is in the approach. The point made here is that the
omission of violence may not be accidental or an oversight that can be rectified
within the existing framework. It may be the product of a non-strategic approach.

In many ways the trajectory developed in this study is closer to that of the earlier
classical political economy and political science. Some of the possible consequences
of this are briefly dealt with here. These are speculative and no attempt is made to
argue the case fully.

The most important consequence is that the institutions and rules supported by
government are important in sustaining social life because spontaneous equilibria
over things like the rules of property cannot easily be obtained. Hence it is necessary
to consider the possibility that some form of rule enforcement mechanism may be
required for such things as large-scale markets. If so, markets are largely created and
held together by an enforcement mechanism, rather than being self-sustaining.
That is, collective choice and government are not fully explained as institutions that
are required for the purpose of correcting market failures. They logically precede and
construct the market.

The statement that political decisions are important in creating and maintain-
ing much of the basis of social life is not particularly profound. The point is that
the implications of this are often obscured in approaches that do not take strategic
interaction as the starting point. The consequence is that rules and enforcement
are pushed into the background. Not only is the state sometimes explained in
terms of market failure, but it is often assumed that the market is somehow
natural or pre-political, and the state is artificial. Related to this is the observation
that concepts such as redistribution may be misleading. If rules emerge as the
result of agreement, then there is no natural distribution to be redistributed. There
is only a choice between different distributions.

In Politics and Vision, Wolin develops some of the historical aspects of the way in
which perception of the relation between the state and society have developed.
Wolin argues that there are two broad positions on this relation. The first, starting
with Hobbes sees the state as necessary to provide the framework within which
material production and other forms of activity take place. The second follows from
Locke and is traced through modern libertarians such as Nozick. In this second
approach there is some natural condition, or spontaneous equilibrium which
precedes the state and allows for a substantial amount of welfare.

The qualification that welfare must be substantial is important. It is not simply the
existence of equilibrium that matters. Unless Hollywood is not to be believed, ‘kill
them all’ is often an equilibrium strategy. If a spontaneous equilibrium with a
substantial level of welfare exists, the state is not essential, or even necessary, for a
commodious existence. It is an add-on. It is seen as ‘something like a better set of
accommodation for those who already were home owners, rather than a shelter
erected in desperation by the shelterless’ (Wolin, 1960, p. 306).
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The consequences of these two positions have considerable normative interest. If
there were a set of holdings that precede the state it would be possible to argue that
these should not be altered by collective choice. For such a set of holdings to exist
there must be a spontaneous and reproducible order. This order must be such that it
requires no enforcement mechanism for its support.

The claim that there is a natural order gets some of its underpinnings from
Smith’s The Wealth of Nations. Smith argued that a system of uncontrolled
exchange amongst optimizing agents could bring about an outcome in which the
system could continue to operate and the demand for goods and services was
satisfied. The individual attempting to maximize his returns ‘intends only his own
gain’ but ‘he is in this, as in many other cases led by an invisible hand to promote
an end which was no part of his intention’ (Smith, 1937, p. 423). This intuition was
later systematized in Walrasian general equilibrium theory. What this demonstrated
is that a perfectly free market could, under the proper conditions, reach an
equilibrium in which all prices and quantities were determined. In addition, at
equilibrium, it is not possible to improve on the welfare of any one individual without
reducing that of another.

Supporters of the notion of a natural or spontaneous order have sought an
analogue of market equilibrium in a wider class of social phenomena. This idea has
been pursued by many recent writers. It has been expanded at length by Hayek in
Law, Legislation and Liberty. It is taken up from an anarchist perspective by Taylor in
Community, Anarchy and Liberty and from a libertarian perspective by Nozick in
Anarchy, State, and Utopia. Spontaneous order arguments are also explored by Elster
in The Cement of Society and Sugden in The Economics of Rights, Co-operation, and
Welfare. These are less sweeping in their claims than Hayek or Nozick.

Hayek’s and Nozick’s arguments depend on special assumptions that are outside a
game theory analysis. Some of Taylor’s arguments are considered in chapters 2 and 3.

Sugden and Elster’s arguments raise the question of the degree to which the
notion of spontaneity applies to the sort of large scale problems that are of concern
when considering the need for enforceable rules. It is true that individuals can,
through conventions, mutual coercion, or other devices, solve many co-operation
problems. The examples that are usually given of this are, however, small scale
problems such as who does the washing up, or of reciprocity in sending Christmas
cards, or who goes through a door first (Sugden, 1986, p. 51-4). What is important,
however, is whether spontaneous order holds for problems such as safety, security of
property against theft, or the provision of collective goods such as an acceptable
environment.

In its most simplistic form, much of the argument of the spontaneous rules
approach depends on the observation that ‘a competitive society with no
externality-producing activities will inevitably allocate its resources efficiently.
Thus it will have no role for government’ (Auster and Silver, 1979, p. 8). This is true
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by definition. No externalities means no strategic interaction. The obvious question
is, ‘why will rational individuals not act strategically?’

1.5 Brief notes on some selected literature

Arrow’s Social Choice and Individual Values, the papers in Tullock’s Studies in the Theory of
Anarchy and the work by Buchanan and Tullock, The Calculus of Consent are among the
earliest of the distinctly modern attempts to give choice an axiomatic foundation and
to extend the Hobbesian and Lockean traditions within a contemporary political-
economic framework. The question of rules and social order has been pursued by
Buchanan in his writings on constitutional political economy. Brennan and Buchanan
have recognized the importance of a rational choice explanation of the origins of rules
in their The Reason of Rules.

Bush and Mayer, and more recently, Grossman and Kim, Hirshleifer, Skaperdas
and others have explored the question of the allocation of resources between
productive and unproductive activities in their studies of struggles over material
goods, organized crime and theft. This group of studies throws light on the
property problem and questions about the need for rules of property. It also helps
in understanding the relation between the state and other wielders of violence.
Some of these questions are considered in chapters 3 and 4 of this book. Usher also
considers violence and the evolution of forms of state in his The Welfare Economics
mentioned in the previous section. He departs from many standard texts in welfare
economics by developing the argument, in a systematic manner, that theft and
predation are the major barriers to efficiency.

There have also been several recent works dealing with the problem of the
necessity of the state in general terms. The most interesting are those of Taylor and
Nozick, mentioned in the previous section. This study applies game theory to a
much broader range of questions than the work of Taylor and Nozick.® It attempts to
give an appreciation of the broader applications of the game theory approach, and
of different ways of interpreting each question.

Some writers have attempted to apply notions of monopoly trading and
transaction costs from neoclassical economics to the state.” In these approaches
the state is analysed by looking at various aspects of externalities and economies of
scale. Similar ideas are found scattered through much of the literature on public
choice and public policy. One example of such work is Auster and Silver’s The State
as a Firm. Auster and Silver rightly believe that the theory of the firm has many
applications to an understanding of the state. A similar point is made by North in
Structure and Change in Economic History (1981, p. 21). This belief is, however,
probably more true of some of the recent work on the foundations of the firm than
the earlier style of analysis referred to by Auster and Silver.®



State, Anarchy and Game Theory 13

One problem with Auster and Silver’s approach is that it is confined to an analysis
of marginal rates of return. The state’s role in providing security, for example, is
analysed by treating the state as a firm which equates the marginal returns from
resources devoted to enforcement with the marginal costs. This is reasonable if there
is a state already in place. In this case the problem is to analyse the benefits of more
expenditure on such things as reducing violence or the externalities from pollution.
This approach does not explain the necessity of states and enforcement activities,
however. Nor does it tell us what is essential about collective choice mechanisms. It
cannot simply be assumed that the relations between the state and citizens are the
same as between customers and a producer of a good or service. For example,
security, justice and welfare do not seem to be like corn flakes or cans of beer in all
respects.

North also attempts to develop a neoclassical theory of the state. He essentially
sees the state as a producer of security. This is traded with the population in
exchange for revenue. The state attempts to maximize revenue and is constrained by
the potential of other would be states to offer a better deal (North, 1981, p. 23). This
also tends to make too close an analogy with the firm and to treat the state as if it
were attempting to maximize profits or revenues in a competitive market. This may
make more sense as a proto-model of party competition within democratic systems.

Axelrod’s books, The Evolution of Cooperation and The Complexity of Cooperation, are
probably the best known and thorough attempts to analyse the prisoner’s dilemma
problem. Of particular note is the extensive use of simulations and agent-based
models in the second of these books. These models allow experimental research into
different forms of interaction and the problem of the evolution of strategies to be
addressed through the use of genetic algorithms. This is outside the analytical
approach of this book.

On the social choice side, much of the emphasis has been on voting as a scoring
method which allows choice between alternatives. This trajectory runs through such
writers as de Borda, Condorcet, Dodgson, Arrow and modern social choice theorists.
Revelation problems and voting problems are dealt with extensively in the literature
of social choice and its offshoot, public choice theory. The work by Buchanan and
Tulloch is a classic in the field. Two excellent studies in social choice are those of
Moulin, The Strategy of Social Choice and Axioms of Cooperative Decision Making. A fairly
standard, and less technical, reference to public choice is Mueller Public Choice II.

More recent work on social choice has developed a topological approach.
Pattanaik and Salles’s Social Choice and Welfare gives an introduction to this work.
Although interesting, the topological approach requires a good deal of mathema-
tical sophistication and is beyond the scope of this book.

This study will only deal with a small part of the social choice problem. In keeping
with the emphasis on game theory it will focus on strategic aspects of preference
revelation and choice mechanisms.
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1.6 Some game theoretical concepts

1.6.1 The elements of a game

The elements of a game are the players, the available strategies, the payoffs and the
information available to each player.

[1] The players are the individuals involved in the game. This set is written N.
Player i is an element of N. This is written i € N. I prefer ‘players’ to individuals or
actors because it serves as a reminder of the level of abstraction being used. I shall
refer to players as ‘it’ or ‘them’ throughout to avoid the ugly him/her or variants.

[2] Players have preferences that are complete and transitive. Completeness
means that an individual has a preference ordering over all possible outcomes. The
symbol > will be used in its usual sense of greater than or equal to and also to stand
for preferred or equivalent to. This is an abuse of the notation, but the meaning will
be clear in each context. Transitive means that a > b and b > c then a > c. This is a
consistency requirement. To see the point leta =10,b=5and c = 1.

[3] Pay-offs can be measured in utilities or in the value of an outcome. Let v(-) be
the pay-off function, or the value, assigned to an outcome. Then if a > b, v(a) > v(b).
Observe that nothing has been said about the substance of a and b. a may be a rat in
a brown paper bag and b may be a million dollars.

[4] It is assumed that players always attempt to maximize their pay-offs. An
optimizing individual will sometimes be referred to as rational.’

[S] Sisthe set of strategies that are available. A strategy available toiiss; € S;. Hence

§ = x §; . For all players other than i a strategy is written s_;, or s;.
ieN

The connection between pay-offs and strategies is specified by letting V be the set
of values or pay-offs. Fach strategy gives a pay-off depending on the strategy of the
opponent in all non-trivial cases. A strategy choice s; for individual i gives a pay-
off

vii(si,s—i) >xeR

for each s; € §;. This says that the pay-off function provides a mapping from the
strategy of player i and the strategy of all other players to a pay-off given as real
number.

[6] Information is given by the set I. It is assumed that each player has complete
information unless otherwise specified.



State, Anarchy and Game Theory 15
These elements give a game
y=1[S, V, N, I]

The game theory interpretation of questions about non-co-operative behaviour and
situations where co-operation is possible is captured in the following distinction.

[1] Non-co-operative games are those in which all strategies are completely
specified. In other words each player always plays whatever strategy maximizes its
returns given the available pay-offs. It would be possible in such a game, for
example, for players to keep promises, but it would be necessary to prove that this
was the optimal strategy for each individual given the rewards and penalties. Every
aspect of the relevant institutions and rules, and the moves available to all the
players would have to be specified.

These games may be one shot simultaneous move game or repeated games.
Assume that the game is one shot unless it is specified otherwize and that players do
not communicate unless they are specifically allowed to send signals.

[2] Co-operative games are those in which players are allowed to keep promises
or to make commitments to certain strategies before the play of any particular game.
These games start with assumptions about the sociology of individual and group
behaviour. These assumptions are not derived from a more primitive model of
optimization. Since players can make commitments, they can pursue strategies that
are collectively optimal. In a fully co-operative game with transferable utilities and
side-payments, a move to the Pareto frontier is always possible because the gains can
be distributed among the players by prior agreement.

1.6.2 The solution to a game

The solution to a game is the set of strategies that it would be optimal for each of the
players to choose. Let the solution be s* € S, where

S =(87,85, ..., Sp)-
If a solution exists it can be thought of as being produced by some mechanism that
gives a mapping from the specifications of the game to an outcome. This is written:
Q.Y —> S* (11)
where s} € S solves

maximizeg v; = vi(si, S_;) (1.ii)

When such an s* exists for all players the game has an equilibrium.
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A mistake that is often made in trying to determine s* is that of confusing what is
collectively reasonable and what is individually optimal. This mistake is common in the
analysis of the problem of security and other problems of co-operation. It is illustrated
by de Jasay’s belief that game theoretical problems of security are the result of the
assumption that individuals in the state of nature are ‘myopic simpletons clad in
animal skins clubbing each other on the head’ (de Jasay, p. 3). In other words, they are
too stupid to see that violence produces a sub-optimal solution.

This type of mistake may stem from the assumption that it is always rational to do
what is reasonable. The chain of thought probably goes something like the
following: it seems reasonable for individuals not to engage in destructive
behaviour, therefore it is rational not to do so. It follows that anyone who does
engage in such behaviour is stupid.

In game theory terms, this confuses the non-co-operative question of the optimal
strategies for individuals with the co-operative question of what set of bargains
individuals might make if promises could be kept and contracts enforced. To find
out what is rational it is necessary to analyse the structure of the game. Myopic
simpletons might, for example, attain security more easily than individuals trained
in mathematical optimization theory. Incompetent generals might lose fewer troops
in their campaigns than competent generals because they are unable to locate their
enemy.

The problem to be solved by the mechanism ¢ is that of finding all the solutions to
equation (1.ii) that have the property that no player has an incentive to change its
strategy, given the strategies chosen by others. In other words, a solution exists if
there is no move that a player could make that would make it better off. In some
cases a player will have a strategy that solves (1.ii) regardless of the strategies pursued
by the other players. This can be seen as a dominant strategy. In other cases the
selection of strategies will be more difficult.

The problem of finding a solution to a game with two players is illustrated with
the following example. To simplify the illustration assume that a strategy is the
choice of a point on some closed interval, say [a, b]. This might occur for example
where the strategy is some amount of a resource to devote to an activity and the
resource can be treated as if it is infinitely divisible. In this case sk is a choice of
some amount, x*, where x* € [a, b]. Let the strategy sets for players i and j be the
intervals I and ] respectively.

The intuition is that player i will play a strategy that maximizes its pay-off
against a strategy by j. This allows us to draw a graph by plotting the strategies
available to i on the horizontal and those available to j on the vertical. r; = r(s;)
can be thought of as a best response correspondence. It is the best reply of i to a
strategy s; played by j.

The great insight developed by Nash was that the strategies of all players will be in
equilibrium when no player has an incentive to deviate or change its reply in
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Figure 1.1 Reaction functions for two players

response to the best strategy of any other player. This means that ¢ selects a s* such
that each player has picked the s that is the best response to the other player’s best
response. This idea is set out in Figure 1.1.

Any point within the heavily shaded area is an equilibrium for both players. The
proof that such a point exists for the specified class of games depends on Brouwer’s
beautiful fixed point theorem. It can be seen intuitively, however, that if player i and
player j pick strategies that intersect in the shaded area neither has an incentive to
change its choice.

An interesting question is, how do the players get to the equilibrium? There are
three main possibilities.

[1] A process of calculation. The players solve the game or calculate the
optimum strategies directly. This may assume a higher degree of computational
capacity than is reasonable.

[2] A process of evolution. In this process each generation of players gets
differential rewards according to the pay-offs from its strategies and reproduction
rates reflect these payoffs. The requirement here is a repeated game with a large
number of players. It is often argued that animals arrive at optimal strategies in this
way.!0 Alternatively, it might be thought that strategies evolve through some sort of
observation and learning process.

[3] An updating strategy. Players update their strategies based on observations of
their success against the strategies of other players. There are a large number of trial and
error updating schemes that might be used. The simplest is the titonnement process.
This process is not very well specified in that it assumes that players never attempt to
anticipate responses. It is, however, useful for illustrative purposes. I shall discuss it in
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order to illustrate the general idea of stability of equilibria and some of the problems
this entails. I deal with evolutionary stable strategies in chapter 6.

Definition: A tatonnement process occurs when player i picks an s; at time t and j
chooses the best reply s;(s;) at 4 1, assuming that s; remains unchanged. i now
selects the best reply at t + 2 to j's strategy at £ + 1, and so on. [ |

Now, consider when i will stop changing strategies. This will occur when the set of
strategies i has chosen are also the best reply to what j has chosen. If the strategies
that j has chosen are the best reply to what i has chosen, neither will have an
incentive to deviate. In this case ri(s7) =87 andri(sf) = sj. Hence the strategies will be
an equilibrium and

st =(s7, s}

The equilibria for a game may be stable or unstable relative to whatever updating
process is used. Roughly a stable equilibrium can be thought of as one towards
which successive strategies move, or around which the strategy paths would orbit.
An equilibrium is unstable if the paths move away. This will be determined by the
properties of the reaction correspondences and the process chosen.!! It is also
possible that an equilibrium is stable for starting points within some small radius of
the equilibrium but not for regions further away.

Figure 1.2 illustrates the case where there is an equilibrium but the titonnement
process does not lead to it for a starting point some distance away. This does not

\ fj(Si)

1 (sy)

Figure 1.2 Equilibrium without convergence
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mean, however, that there is not some other iterative process that would produce
converge.

1.6.3 Expected pay-offs where there is uncertainty

Where players are uncertain about outcomes, it is assumed that they assign a value
to the probability of an outcome and attempt to maximize the expected value of this
outcome. For simplicity attitudes to risk are ignored. Individuals that prefer more
money to less will assign a higher value to a bet that gives them one chance in ten of
winning a hundred dollars to a bet that gives them one chance in five of winning
forty dollars.

To calculate the expected value, let the result of a strategy s° be a set of outcomes,
where outcome i occurs with probability p; and has value v\. p; e p,i =1, ..., n where
p is a probability measure.!? Then the expected value of s° is

E[s | pl =) pi/

1.6.4 Sub-game perfectness and credible threats

Players might issue threats to each other in the form of retaliation for a previous
action. For example, one player might make the threat that if some other player
steals its resources it will retaliate by fighting. One of the lessons of game theory, and
life, is that talk is cheap. In order to deal with threats, we need a notion of credibility.
This is covered by the concept of sub-game perfect equilibria.

Sub-game perfection refers to the common sense idea that, once a round of the
game has been played, a response is only optimal if it maximizes the returns given
the game from that point forward. In economics this is covered under the heading of
sunk costs. This point is illustrated in Figure 1.3. There are two players and player 1
moves first and player 2 moves second.

Imagine that player two has indicated that it will retaliate if player 1 plays s; = a
by playing s, = a to give a pay-off (—1, 0). Player 1 plays a. What does player 2 do in
the sub-game starting on branch a? From the assumption that players are pay-off
maximizing, it must play b. Hence the threat is not credible because the strategy (a,
a) cannot be sustained in the second move of the game.

1.6.5 Strategic form and extensive form

There are two ways to represent the strategic interaction problem in non-co-
operative games. One is to construct a diagram with branches that connect every
strategic choice that a player might make to the strategic choices of all other
players. The outcome of each sequence of strategies is given as a pay-off. In this
case the game would be in extensive form. Figure 1.3 gives an example. The other
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Figure 1.3 Extensive form and subgame perfect equilibria

would be to write a strategy as the choice of a sequence of strategies. Let a game
have m nodes and sk be the kth strategy for player i. Then

k=1 5™

is the kth strategy move at each node of a game. This means that, in the above
diagram, each of the paths that leads to a pay-off would be represented by a single
strategy. In this case the game is said to be in strategic form.

Since the number of possible strategies and responses is often large, the extensive
form poses some problems of tractability. I will not deal with games in extensive
form in what follows. This may involve some loss of information. In some cases the
sequence of moves and the dynamics of the path is important. I think that this
problem can only be satisfactorily solved by a dynamic theory of non-co-operative
games.

1.7 The measure of welfare and Pareto superiority

The terms welfare, and Pareto superiority are used throughout this study. These
terms and some of the assumptions they require are dealt with below.

Aggregate welfare is some measure of the welfare derived by all individuals from some
state of affairs. For example the welfare from some state of affairs @ may be measured by
adding the utilities derived by each individual
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w(a) =vi(a) +ve(a)+ ... +v3(a)

Situations can also be compared using the concept of Pareto superiority. All this
requires is ordinal information, that is the rankings that individuals assign to
different states of affairs. It does not require any measure that makes interpersonal
comparison possible. Let a =(ai,...,a,) be a vector that gives outcome a; to
individual i. Then

Definition: ais Pareto-superior to b if all individuals are at least as well off with a as
with b, and one individual is strictly better off. That is vj(a) > v;(b) for all i € N and
vi(a) > vj(b) for at least one j € N. [ |

A state of affairs where no further Pareto superior moves could be made is said to
be on the Pareto frontier.

Definition: The Pareto frontier is the set of points where one individual cannot
be made better off without making some other individual worse off. [ |

Note that a programme that maximizes welfare will be on the Pareto frontier since
everything will be distributed. A welfare maximizing move will not necessarily be
Pareto superior, however. Think of taking a good from a person for whom it has very
little utility and giving it to another person for whom it has a great deal of utility. An
example would be a dollar from a millionaire to a starving person.

The idea of Pareto superiority is found in Hobbes, for example, when he claims
that the move from the state of nature to a situation with an enforcement
mechanism is an improvement for all. Locke has a version of Pareto superiority in
mind when he argues that property rights make everybody better off. He compares
the best holding of material goods without property and accumulation with the
worst holding with accumulation. He claims that ‘a king of a large and fruitful
territory there feeds, lodges, and is clad worse than a day labourer in England’
(Locke, 1963, p. 339). In this case he is making a claim for what might be thought
of as super-Pareto superiority.

Pareto-superior moves and the Pareto frontier are illustrated in Figure 1.4. Imagine
that there are two individuals and the pay-offs for individual one and two are
written v; and v,. Assume that there is some good that is infinitely divisible and that
the pay-offs can be represented by a continuous function. It might be though that
the good is the benefit from buying and distributing a pizza or from some joint
venture. Let the amount they can get in the original position be ¢; for individual 1
and c¢; for individual 2. It will be observed that any move to the right of ¢c; makes
player 1 better off and any move above ¢, makes player 2 better off. In the area a, b, ¢
both players can be made better off. Any move from c into this region is Pareto
superior.
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Figure 1.4 The Pareto frontier for two players in the positive quadrant
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From the assumption that more utilities are preferred to less, individuals will
move to this frontier. Note that the location on the frontier is not determined. It
may be some point like a’ ora’.

1.8 Note on the general problem of optimal outcomes

It was previously claimed that the equilibrium strategies of individuals may not
always provide a Pareto optimal outcome in non-co-operative games and outcomes
of type [Ai] in chapter 1 may not be common. This claim will be examined in the
subsequent chapters. Before doing this, however, it may be worthwhile considering
the case for games in general. The point that Pareto efficient outcomes are not, in
general, to be expected can be illustrated with a fairly simple example. This example
is somewhat abstract. It is included here because it is a rather neat way to make the
point independently of the particular arguments and it sums much of the detailed
analysis of the succeeding chapters. It can be skipped without any loss of
comprehension in what follows.

Return to the general form of the problem given in equation (1.ii) above and
assume that the problem for each player is to decide how much to spend on some
activity, such as buying security, or undertaking research, or fishing. A strategy is the
amount spent.

Assume that the pay-offs are continuously differentiable with respect to the
strategies at all points in the domain of v, and that the Pareto frontier is strictly
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concave. Strictly concave means no horizontal or vertical sections. These
assumptions could be dropped but it would make the proof tedious. Let s; be a
strategy of spending some amount of a resource and treat the strategy space as a
closed interval, s; € [0, a].

1.8.1 Nash equilibrium

Suppose that there is some strategy s; that is a non-co-operative equilibrium for
player i. A Nash equilibrium is defined more fully in chapter 2. The first order
condition is that a strategy, s*, is an equilibrium if a player cannot be made better off
by changing. This means

(3vi (s™)/ds;)ds; <0 (1.iii)

foralli=1,...,n.

1.8.2 Pareto optimality

The definition of Pareto-optimality says that s is on the Pareto frontier if a gain for
any one player causes a loss to some other player. To see this consider Figure 1.4 with
v(s) some point on the frontier. That is, for (3vi(s)/ds;)ds; > 0, (3v;(s)/dsi)ds; < 0, # i.
This means that an outcome is Pareto optimal if, for some « > 0, it satisfies the
equation

i: Olj(av,' (S)/aSi)dSi =0 (1.iv)
j=1

1.8.3 Comparison

The solutions to equation (1.iv) will exist for any s such that v(s) is on the Pareto
frontier. However, from equation (1.iii) the individual equilibrium for a player, i,
tells us nothing about

av;(s*)/0s;

Therefore the solution to equation (1.iii) is not, in general, a solution to equation
(1.iv). It follows that Pareto optimal solutions are not, in general, non-co-operative
equilibrium solutions.

It might be thought that agreement can solve the problem. Suppose that
players agree to make a move to a Pareto optimal outcome. The question is, why
should any player keep the agreement? From equation (1.iv) and the assumption
that the Pareto frontier is strictly concave, a general condition for an outcome to
be on this frontier is that there exists a change in the strategy of player i such that
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(avi(s)/asi)ds; > 0. In this case, unless there are constraints, it will pay every player
to choose a different strategy.

Taking the same problem from the other direction, it may be a Pareto superior
move for an agent to change its strategy from s* to s. But, from equation (1.iii),
(avi(s)/as)ds; < O at the optimum. Hence Av; < O for any infinitesimal change in s;.
Hence, the change is not an optimal move for the agents acting individually.

This also reveals an interesting connection between strategic interaction and the
Pareto frontier. The conditions (dv;(s*)/ds;)ds; < 0 and equation (1.iv) is satisfied for
an internal solution when

avi(s*)/ds; = 0 and dvj(s*)/ds; =0

for all j. Define strategic dependence as a situation where the pay-offs for i depend on
the strategies of j. Then

avi(s)/0s; # 0.

This means that the non-co-operative equilibrium will always meet the conditions
required for the Pareto frontier where there is no strategic dependence.



2

Security in the Hobbesian State
of Nature and Related
Non-Co-operative Games

2.1 Introduction

States are necessary to enforce collective decisions over security for life and limb, it is
argued in the Hobbesian tradition, because, without enforceable rules, the optimal
choices of individuals create a situation where there is no security or any of the other
preconditions for material production or civilized existence. Hobbes argues, for
example, that the desire for security will lead to continual preparation for war and a
condition in which there is ‘continual fear and danger of violent death, and the life
of man solitary, poor, nasty, brutish and short’ (1968, p. 186). This argument is a
specific case of the more general problem of individual actions leading to a Pareto
inferior outcome outlined in Chapter 1. Note that the argument does not depend on
the assumption that individuals want this outcome. If security would emerge
through the working of some spontaneous mechanism there would be no need to
submit to a centralized authority in order to get protection and to solve problems of
conflict. If, on the other hand, security requires an enforcement mechanism to
provide the rules necessary for non-violence to be an equilibrium outcome, the
argument for centralized control of force is more plausible.! It must be stressed that
the assumptions made about such things as the nature of the pay-offs in the absence
of authority, and the extent to which the game can be repeated, are critical when
thinking about the problem of security. It is not at all clear, for example, that the
case where the same game can be repeated a large number of times is appropriate for
the security problem.

This chapter introduces basic models in static non-co-operative games to analyse
the security problem and some related questions. It also looks at the structure of
these games when repetition is allowed.

It will be noted that the structure of the Hobbesian problem is analogous to the
structure of collective goods problems more generally. From this angle, the problem
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of security is a variant of the more general collective goods problem.

One of the themes that emerges from the chapter is that, for the type of game
analysed, spontaneous co-operation is neither easy to come by nor particularly
robust. Many of the interactions produce outcomes of type [Aiii].

Since it has received a great deal of attention in the literature, some brief
consideration is given in the last section of this chapter to the question of whether
individuals could agree to a structure of authority.

2.2 The simple Hobbesian problem

The Hobbesian argument is set up by starting with the methodological device of a
fictitious state of nature in which there are no constraints on action. The
argument depends on the assumption that being dominated is the worst of all
possible outcomes, and that individuals can only choose between arming
themselves for battle or being unarmed and dominated by an armed player. The
state of war includes both battle and preparing for offensive and defensive
activities. In seeking security, individuals are engaged in a quest for power. Power
is relative in the sense that one individual’s power can only increase at the
expense of others in the relevant group. Hence the quest for security creates a
‘perpetual and restless desire for power after power that ceaseth only in death
(Hobbes 1968, p. 161).

Such problems have been interpreted in many ways by political theorists.? It is
not the purpose of this study to make an argument in favour of any particular
interpretation. All that needs to be emphasized is that it is the structure of the game
which produces the Hobbesian problem, not a desire for aggression.

This point is often misunderstood. Paglia says that the point of Hobbes’s
argument is that ‘aggression comes from nature’ (1990, p. 2). This is simply wrong in
any non-trivial sense of the argument.

The justification for concentrating on the strategies of arming or not arming is
that other strategies are not of interest for the analysis of the Hobbesian state of
nature. Similarly, costs of fighting are a secondary consideration. It is always better
in this state of nature to fight at any cost than to be dominated. It might be argued
that this assumption is too strong. This would amount to claiming that costs of
fighting have to be taken into account, and that submitting might be preferable to
fighting. This possibility is dealt with in the subsequent chapters.

In order to analyse this situation consider a simple game with a dominant sub-
optimal strategy. This game is well known under the unfortunate title of the
prisoner’s dilemma. This is analysed by treating it as a one-shot interaction
between players. This means that the game is played once and that both players
move simultaneously.
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2.2.1 The prisoner’s dilemma and dominant strategies

The prisoner’s dilemma represents the Hobbesian problem, and problems of
collective action more generally, in their most simple form. This game also gives a
simple model of a range of other problems and is seen by many as ubiquitous in
social interaction.? It has probably been more widely applied than it deserves, and is
often used to draw conclusions that are more general than seem justified. Many of
its striking predictions arise from the restrictive assumptions of the one-shot game.
None the less, it is a useful starting point and is of particular interest for the problem
of security. It also gives rise to a number of perversities in interaction that are
instructive for an introduction to game theory.*

The set up is that there are two players and each has two strategies. This might also
be thought of as a game between player 1 taken at random and one, or any number,
of other individuals given by player 2. The strategies are a choice between arming
and not arming, or cheating and not cheating, depending on the precise problem.
These strategies are usually called co-operate and defect.

Let S; be the strategy set of individual i. Let

S1 =(s5,s) and Sp = (s5, s9)

where the superscripts ¢ and d stand for not arm and arm, or co-operate and defect,
respectively. The pay-off is security. Hence to dominate is better than being equal
and to being dominated. To arm against domination is better than being
dominated. This is because the possession of arms gives a non-zero probability of
avoiding domination. That is, for player,

vi(s?,85) > vi(sq, s5) and vy(s9, s9) > vi(s$, s9).

The general structure of the game is given in strategic form in Figure 2.1(a).
The game is symmetric for all players so that the pay-off for player 1 against player
2 using strategy s5 is the same as the pay-off for 2 against 1 playing sj. In the
Hobbesian state of nature ¢; > a; and d; > b;. For ease of reference these inequalities
can be represented by any order preserving numbers. That is any number x can be
assigned to ¢; and y to a;, provided that x > y. An example is given in Figure 2.1(b).
In order to analyse this game the following definition is useful.

Definition: Dominant strategies. A strategy s; will be said to strictly dominate s;
when

Vi(si*, s—i) > vi(si, S=i)
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That is when the pay-offs for s} are strictly greater than the pay-offs for any other
strategy against all the strategies used by other players. If

Vi(S7, $-i) = VilSi, S—i)

s¥ weakly dominates s;. |
d
s5 $ s S2
(o —
sf a, & by, b, St 22 1, 4
d —
s¢ c G d, d, 7 4, -1 0, 0
@ (b)

Figure 2.1 The prisoner’s dilemma

Theorem 2.1: A player never uses a dominated strategy.
Proof: Obvious [ ]

It follows immediately from the pay-offs and the definition that the game has a
dominant strategy and the solution is

¢ =(s].59)

Remark [i]: The dominant strategy is played for all strategies of the opponent and
hence these do not have to be considered. The force of this point is often missed.
One provision that is commonly made in presenting the prisoner’s dilemma is that
players are not allowed to communicate.> It will be seen, however, that
communication will not alter the outcome. This is because there is no alternative
equilibrium that players could converge on which gives both a greater pay-off than
defecting. An agreement to co-operate is not an equilibrium because the value of
defecting is greater than the value of co-operating against any strategy chosen by an
opponent.

Remark [ii]: This game illustrates the more general point in section 1.8 that equilibria
need not be Pareto optimal. Although it is one of a class of such games, it has been taken
as the prime example of a particularly perverse or unreasonable outcome. This is
probably because of its simplicity and the fact that the players get what they were most
trying to avoid.
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Remark [iii]: It is sometimes suggested that players would evolve norms of co-
operation or some other pattern of behaviour in order to avoid such a sub-optimal
outcome (Ullman-Margalit, 1977). This may be true in some cases. What must be
stressed, however, is that the notion of players having a change of heart and
developing the right sort of values is, in no sense, a solution to the prisoner’s
dilemma. If the norms are so altered that a player prefers, say, co-operation with a
high probability of being dead to non-co-operation, the game is no longer a
prisoner’s dilemma. This is because the pay-off structure is altered.

What would be needed, then, if the Hobbesian argument were to be avoided is a
solution to the game that can be generated within the logic of non-co-operative strategic
interaction. This leads to a study of repeated games.

2.3 Repeated interactions

Axelrod has examined some of the conditions under which repetition of
the prisoner’s dilemma makes co-operation possible in The Evolution of Co-operation
and The Complexity of Co-operation. The first contains the celebrated tit-for-tat strategy.
In the second he develops a simulation that allows strategies to evolve as the result of
a selection process that rewards those that are more successful. Taylor and others have
suggested that the argument underlying the Hobbesian problem may not be valid if
the prisoner’s dilemma game is repeated; de Jasay agrees with this claim (1985, p. 44).
I shall briefly consider these claims before looking at the characteristics of the repeated
prisoner’s dilemma.

The argument that co-operation is possible when the game is repeated a large
number of times is correct. It would not be correct, however, to extend this to the
proposition that repetition can solve the Hobbesian problem. This is because the
conditions required for punishment to be effective may not hold in many cases.
Most importantly, a game of security might only be played once (Zupan, 1991). It is
then possible for the winner to write the rules for subsequent engagements. If so, a
strategy of co-operate on the first encounter may prove fatal. In Axelrod’s work on
the evolution of strategies each round of the evolutionary game consisted of 151
plays with each opponent (1997, p. 20).

More generally repetition requires special circumstances that do not always hold in
games where there are large pay-offs from defecting if another player co-operates.
This problem is most acute in large groups. Even if the same game were played several
times it may only be played repeatedly with the same individuals in special
conditions. Transactions with large pay-offs, or large potential losses, such as buying
a house or investing savings, for example, are not often repeated under
circumstances that allow punishment for defection. This is why it is plausible that
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small communities, where all individuals know each other, can more readily enforce
co-operation than large open groups of individuals.®

The feature that is common to all repeated games is that the structure of the
game changes when players are concerned about future interactions. A strategy of
co-operation can be enforced by making the strategy chosen at time ¢t dependent
on the strategies of opponents at times (0, 1, ..., t — 1). Thus the strategy set for the
repeated game is not the same as the one shot game because it is possible to punish
opponents who do not co-operate by playing strategies that reduce their future
pay-offs. For example, if player 2 defects on any round player 1 could punish by
defecting on a number of subsequent round and co-operating when player 2 has
been sufficiently co-operative.

One way to think of a repeated game is to imagine that players can announce a
strategy which includes their proposed response to the strategies of other players in the
previous rounds of the game. Such a game would give a self-enforcing optimal collective
outcome if it is optimal for other players to respond in a way that supports this outcome.

Definition: A repeated game is a series of rounds of the same one-shot stage game
with the same pay-offs at each round. In this case, the game has to be extended to
take into account the information that each player has received from previous
moves. This gives

y=I[S.V.N,«]

where « is the information that the play has received up to round ¢t —1 of the
game. ]

It will be noted that, unlike the dominant strategy case, the optimum response of
each player now depends on what it thinks that the other players will do. The
solution requires the idea of the Nash equilibrium in Figure 1.1. Specifically:

Definition: Nash equilibria. A strategy s* is a Nash equilibrium if for all players
vi(si®, $—i") = vi(si, s-i%)
for all s; € S;. |

If all other players play s_;*, then a strategy s; # s7 cannot give a higher pay-off for
player i than s}.

One problem that is faced in the analysis of repeated games is that of making
the pay-offs meaningful. Let w! be the pay-off for player i in round t. It is obvious
that where t = 1...n, and n tends to infinity

v = wa

also tends to infinity.
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Since we are dealing with pay-offs stretching into the future, however, it is
appropriate to consider that a pay-off at some future time may be worth less than the
same pay-off now. This is dealt with by discounting. It follows that the value of the
pay-off streams would decline in some fashion. This assumption is justified by
noting that interest rates are usually positive and life is uncertain. One way to do
this is to multiply future pay-offs by a discount factor § < 1. Note that the lower the
value of § the more the future is discounted. In this case the pay-off stream would be
Wi + 8w + dw; + ... + §"w; or

=
Il

™

2,

|

=,

Since § < 1 the pay-off converges because §' — 0 as n — oo.

2.4 Analysis of repeated games

The argument that infinite repetitions of the prisoner’s dilemma may allow co-
operation is most easily seen in what is called the folk theorem. This says that in
infinitely repeated games any outcome is possible. An infinitely repeated game and a
game without a known termination date have similar characteristics as long as a
sufficiently low probability is attached to termination at any one game. At each
stage each player knows what moves every other player has made previously. This
outcome may be a string of co-operate moves, or of defect moves, or any
permutation of a string of co-operates and defects.

Theorem 2.2: (Folk theorem). For an infinitely repeated game there is a discount rate
such that there is a Nash equilibrium for every feasible strategy vector s and pay-off
vector v, where v; > vi". v is the minimum to which all other players can holdi. W

The idea can be grasped without a formal proof. What the theorem says is that, if
the discount rate is sufficiently low, any pattern of co-operation can be enforced by
players who are prepared to punish a non-co-operator. Thus, any combination of
pay-offs can result.

This says that co-operation is sometimes possible with infinite plays of the
game, but says nothing about the strategies that might be employed or their
results. Consider some specific strategies under the best assumptions for the
argument that spontaneous co-operation is possible.

2.4.1 Example one: trigger strategy or grim strategy with a large number
of players

The grim, or trigger, strategy is particularly interesting because, if it is an
equilibrium, it enforces co-operation throughout the game. Moreover, it would
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enforce co-operation without any repeated interaction between individual players.
All that would be required is a communication by all players that they intended to
use this strategy and the belief that this is a truthful message.

This strategy punishes any player who deviates from s¢ at t* by a response of s¢
forever from that point by all other players. To see the set-up of the argument,
approximate the discounted stream of pay-offs by a smooth curve over time and
consider the pay-off stream in Figure 2.2.

Assume that the discount rate § is sufficiently high that the area

[a] = [vi(s{, <)) = vils§, s ]t

at t* is less than the area between v(s§, s¢;) and v;(s¢, s?,) from t* + 1. If the threat is
credible player i does not defect. Hence ¢ = (s{, 5<;).

The first point to consider in thinking about the grim strategy is the role of the
discount factor. This can be examined by using the pay-offs in Figure 2.1.

Let vi(s, s¢,) = a, vi(s?, ;) = ¢, and vi(s{, s?,) = d. For player i to co-operate on all
rounds it must be the case that the pay-off is greater than defecting on any round
t+ 1. Hence

1+8+..)a>A+8+...+8Ha+sHc+ (™2 +..)d

Subtracting the a terms and dividing both sides through by (§*! +...), and noting
that 871 /(81 4+ ...) = (1 — 8) gives

§>(c—a)/(c—d) (2.1)

This gives § > 0 from the assumption that c is the largest pay-off in the game.

d
v; (sj s5)

N Vi (Sicr S—C/) [a]

d.d
™~ v; (s s5)

t* t

Figure 2.2 Pay-off stream with discounting
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Since ¢ — a is the difference between the pay-off for defecting if everyone else co-
operates and co-operating if everyone else co-operates § needs to increase as this
difference increases. That is, the future has to be less heavily discounted as this
difference increases.

Note that for (c — a) > (c — d) players never co-operate since this requires § > 1. This
means that for large differences between the co-operation and the defection pay-off, or
sufficiently large pay-off for all players defecting, co-operation is impossible.

An interesting implication of this is for the case where players have some reason to
assume that some other player in the game will be tempted to defect and shitft all
strategies to s?. This assumption may arise from uncertainty about discount factors
or from the possibility that players make mistakes. As the probability of a defection
increases the value of the discount factor is reduced. This reduces the likelihood that
8 can meet the condition in equation (2.i). It follows that uncertainty makes the
trigger strategy equilibrium precarious.

The second point to consider is that the threat of defecting forever is not always
credible. It is sub-game perfect in the sense that, if every other player defects the
non-co-operative equilibrium for i is to defect also. To see this consider the two
player game. Observe that (s¢, s9), is a Nash equilibrium for each individual game.
However, this depends on both players staying with their defect strategy. It is not
clear that this threat would be enforced.

The way out of this problem is to invoke an additional restriction on equilibrium
for dynamic games known as Pareto perfection. The idea here is that players will not
use a dominated equilibrium in any sub-game.

Consider the two player game. Observe that in the grim strategy players are
allowed to announce a threat. If a threat can be announced before move one, it can
be re-announced or renegotiated at move t. Suppose player i defects at some time
and then announces that it wishes to co-operate for all future games. Since

d
Vi(si, $7) > vi(si, s)

player j can do better by returning to a co-operative strategy.

Similarly, in the n player case where the pay-off is a positive and increasing
function of the number of contributors it may be possible to sustain a number of
permanent defectors. Let the number who contribute be m and v; = f(m) with
f(0) = 0. Imagine player i defects on round t* and says that it will not co-operate
in any future game. Now each of the other players is faced with the choice of

vi(sf, s)) = fim — 1)

where j # i for all future rounds or
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vi(si. sy = f(m — 1)

where f(0) < f(m — 1), m > 1. Hence it is not optimal to defect forever even if some
players never co-operate.

2.4.2 Example two: tit-for-tat with n players

The idea behind the tit-for-tat strategy is that co-operation can be induced in a
repeated prisoner’s dilemma by a direct eye-for-an-eye response (Axelrod, 1984).
Player i starts by playing s{ and then plays whatever the other player used on the
last round. A move of s, is punished on the next round by s¢. It is easy to see that
tit-for-tat is a Nash equilibrium and is sub-game perfect where the game is played
repeatedly, the discount factor is sufficiently large and the pay-off matrix meets a
condition called condition ¢.

To define ¢ use the pay-offs from Figure 2.1(a). Then v;(s{, s—{) = a, v,-(s‘f, sC)=¢
and v;(s?, s7,) = d.vi(s¢,s7,) = b.

The matrix game 2.1(a) meets condition ¢ if and only if c + b < 2a.

Under these conditions tit-for-tat is a Nash equilibrium because it is a best reply to
itself. It gives pay-offs at each round of v;(s{, s5). No strategy does better since gains
from defecting at tare lost at ¢ + 1. It is sub-game perfect because a threat of (s¢, s7,) is
a Nash equilibrium for player i in any sub-game.

The first thing to notice is that the tit-for-tat strategy requires special conditions to
produce an equilibrium. It will not work for games that give an opponent an
advantage in future rounds or that fail to meet condition ¢. This is the same as saying
it will not work for games that have a large penalty for losing.

This point is illustrated by using Axelrod’s computer tournament with the iterated
prisoner’s dilemma (Axelrod, 1997, p. 16). This meets condition ¢ since
a=3,c=5,b=0.Hencec+b < 2a.

Suppose now that the pay-offs for defecting while the other player co-operates
increase to a = 10. Then

c+b=10 > 2a.

Let players i and —i play s} = s*; = tit-for-tat and v; = }_ v/ where t is a round of the
game and discounting is ignored. Then there exists an s; such that

Vi(si®, 5-i") < vi(si, $-i")
hence tit-for-tat is not Nash. In particular let

si=s?, s¢ s? ¢ s? .

I e e R ]
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This is a sort of a reverse tit-for-tat. It meets each co-operation with a defect and each
defect with a co-operation. This gives pay-offs 10+0+104+0+... >
3+34+3+....

To avoid this consequence the strategy would have to be altered to play m
defections for each defection by an opponent. m must be such that the pay-offs
meet a new condition ¢’.

The matrix game 2.1(a) meets conditions ¢’ if and only if ¢ +mb > (m+ 1)a

Similarly, tit-for-tat will not work where there are a large number of players, unless
player i plays j an indefinite and large number of times, or every player is decisive.”
That is to say, in an n player game without repeated interactions, it must be
necessary for n — 1 to co-operate in order to make it worthwhile for all others to co-
operate. It will be noted that condition ¢’ puts much heavier weight on interaction
than condition ¢ in that a much more lengthy run of interactions is needed to make
retaliation effective.

In addition certain restrictions on discounting are required. If the game is played
once a year, for example, and i discounts next year heavily retaliation may not
induce co-operation on round one.

Repetition generates an interesting problem where there are many players, repetition
is not guaranteed, and players are not certain about the type of their opponent. With
what probability would the game have to be repeated for tit-for-tat to be a worthwhile
strategy? This problem is now analysed. Since it is not possible to consider every case,
consider the following example.

Assume that the initial pairing of players occurs at random. The players only have
a choice between tit-for-tat and a strategy of defect, and the probability that the
game will continue to the next round is given by o € [0, 1]. Let the good be order and
the pay-offs vi(s$,s<) =a,v; (s¢,5°,)=c, and vi(s?,s?)=0. v(s§,s?)=b, and
a,c>0and b <O.

In this game a tit-for-tat player will get a pay-off of

a(l+o+02...+0"

which is the same as a/(1 — o) if the other player plays tit-for-tat and b+ 0 +...0 if
the other player defects (Figure 2.3).

Let the probability that the opponent is a tit-for-tat player be p,pe
[0,1].... Then to play tit-for-tat requires that
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d
sy s,
sy al(1-o) b
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S, c 0

Figure 2.3 Pay-offs with tit-for-tat and defecting players

pla/(1 = o))+ —p)b = pc,
which requires
p=-b(1—-0)/la—(b+o)(1-0)] (2.1)

Inequality (2.ii) has some interesting features. Observe that it requires
a > c(1 — o) for p < 1. By definition ¢ > a. This means that the value of o cannot be
too small.

As noted, the usual assumption in the Hobbesian game is that domination is the
best outcome and being dominated is the worst. For example, let c=2,a =1 and
b = —3 and the probability that the other player is tit-for-tat be 1. For tit-for-tat to be
the best first move for player one, the probability that the game will be played again
for every round must be given by

3= —b(l—0)/[a—{b+o)(1-0)

This gives
oc>1—a/(c—Db)
which is 0.8.

2.4.3 Example three: finite number of plays

The case where the game has a known termination date produces the backward
induction paradox (Luce and Raiffa, 1985).8 It gets the label ‘backward’ because the
game unravels from the end point.
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To see how the backward induction works, suppose there are two players and each
player knows that the game terminates at some time t,. Hence

d d
on = (57, 52).

At t,_1 both players know that (s¢, s9) will be played on the next move and no
turther punishment is possible. Hence

d d
¥n-1 = (57, 52)-

In this way the game unravels so that (s¢, s9) is played on every move.

d _d
e_ (s, s%

-2 Ih_1 tn

This argument has worried many writers since Luce and Raiffa suggested that it
seemed unreasonable in the 1950s (Luce and Raiffa 1985, p. 101). For example
vi(s¢, s5) — v1(sq, s5) might only be one cent whereas v1(s§, s5) — v1(s?, s9) might be a
million dollars. If there are r rounds of the game, the players sacrifice a chance of
(10 — 0.01) dollars to gain one cent.

To see this outcome as paradoxical is to miss the point made previously that
intuitive understandings of what is optimal for each individual player may often be
wrong. It simply illustrates the point made in Chapter 1 that the equilibrium
strategies for individuals may not be on the Pareto frontier.

2.5 Pay-offs depend on contributions

The analysis of security games can be extended by returning to the one shot
simultaneous moves case. Consider the possibility that individuals attempt to
provide security through some voluntary agreement to contribute towards the costs
of order. In this case, pay-offs depend on contributions. This example falls short of
the full security market that is analysed subsequently. It is interesting here because it
is conceivable that such a game may not be a prisoner’s dilemma at all levels of
contribution. In addition, Taylor has argued that co-operation may be self-enforcing
under a voluntary contributions scheme.
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Figure 2.4 Continuous pay-offs with conditional co-operation

2.5.1 Example one: pay-offs depend on contributions

This can be analysed as follows. The value of security will be treated as a continuous
function f(m) where there are n players and m is the number of contributors. The
cost is ¢ where

f(1) < ¢ < f(m) for some m.

Let the case with no security have value zero. Pay-offs are for player i. In this case the
pay-off matrix for i against all others is set out in Figure 2.4.
For s’ not to be a dominant strategy,

Fm) —c > fan - 1)

at some level of contribution. That is each additional contributor must produce
more additional pay-off in security than the cost of the contribution.

2.5.1a Additional security not greater than the cost
In the case f(m) — ¢ < f(m — 1) any player can announce permanent defection in order
to get

vis?, s<) = f(m —1).

The threat on the behalf of other players to retaliate is sub-game perfect because (s¢, s7))
is a Nash equilibrium for the game. As with the previous analysis of repeated games, this
threat is not Pareto perfect. It reduces the pay-off of all other players to zero forever.

2.5.1b Additional security greater than the cost at some level of contribution

Suppose that, for some level of m, the contribution to security of an additional
player produces a return greater than the cost. It might be the case, for example,
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that the production function has increasing economies of scale over some of its
range. At very low levels of contribution, a low return is expected. This return then
begins to increase as contributions increase.

To make the analysis simple assume that the number of players 7 is sufficiently
large that it can be approximated by a dense set in some interval on R and the pay-
off function can be represented by a continuous curve.’ The pay-offs for this game
can then be represented in Figure 2.5.

The value f(m*) on this figure is the point where

f(m)—c=f(m—1).

To see what is happening imagine a similar curve for f(m — 1) on the same graph. For
m=1,

f(1)—c < f(0) =0.
As the function f gets steeper the returns for each contribution increase. Where the
return for an additional contribution is ¢ the two curves would intersect. The first
intersection is the point m = m** where df /dm = c. Think of starting with f(m™)

and taking away a contribution. f(m** — 1) is now equal to f(m**) — c. At m = m* the
curves intersect again at df /dm = c. For m > m*,

fm)—c<f(m-1).

We can ignore points around m** for this argument.

f dfidn<c
df (m*)/dm=c
h
f(m)-c
dfl dm>c
m** m* n

Figure 2.5 Pay-offs depend on contributions
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Figure 2.6 Continuous pay-off function that violates vi(s{, s?;) > vi(s§, s7,).

It is easy to see that one Nash equilibrium for this game is for m* of the population
to contribute to providing the good. Any additional individual gets a smaller pay-off
than the no contribute pay-off, and any member of m* gets less if she withdraws. If
less than m* have contributed it pays any non-contributing member to contribute.

It will be noted that, for m > m* the pay-off for any player from being in the set M
with m* members where M contributes is less than being in the set that does not
contribute. Hence if i knows that m* others would contribute, i is better off not
contributing. If m others intend to contribute for m < m*, then i is better off
contributing.

A consequence of this is that, if the number of players n < m*, then the game has an
equilibrium. If, however, the number of players increase such that n > m* every
player’s optimal strategy is s¢. In other words the game has an equilibrium in co-
operative strategies for n low but switches to an equilibrium in which no player
contributes at some critical level n = m* + 1.

To see the reasoning here imagine a game between i and n > m* other players with
the matrix of pay-offs in Figure 2.4. In this case

vi(sd,5¢)) > vi(sé, s€ ;) and vi(s?, 7)) > vi(sS, 7).

Note that the pay-off function had to be drawn in a particular way for
vi(sd, s7,) > vi(s, s7,) to apply for m = 1. Consider the pay-off function in Figure 2.6.
The difference here is that

4

vi(st, s8) < vi(s§, s) for m = 1.
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If all other players do not co-operate then it pays player 1 to co-operate
unilaterally since (1) — ¢ > f(0). The analysis of this game is more complicated and
is taken up in Chapter 5.

An important variant of this type of problem is one where the players are prepared
to offer conditional co-operation.

2.5.2 Example two: the problem of conditional co-operation

A strategy of conditional co-operation has the form of a number of players each
offering to co-operate if and only if a — 1 for a < n other players co-operate. Taylor
makes the claim that the strategy of conditional co-operation may produce an
equilibrium in which collective goods, such as security, are provided in the n person
prisoner’s dilemma (1987, pp. 88-92, 137). This claim only holds under very strong
assumptions. Moreover, it violates the provision that threats have to be credible as
required by sub-game perfect equilibria. I omit the discussion of the conditions
required for discount factors to simplify the notation.

The essence of Taylor’s argument can be expressed in our notation as follows. The
pay-off function for the collective good is f (1) and the pay-off for any contributor is
f(m) — c. f(m) is an increasing function of m and f(m) — ¢ < f(m — 1). If none of the
good is provided the pay-off is zero. The total number of players is n and there are
two types of players conditional co-operators and defectors. Conditional co-
operators co-operate provided that m’ others co-operate, and defectors always
defect. There are r conditional co-operators

It is obvious in this case that, if the appropriate assumptions are made, then there
is an equilibrium in which some conditional co-operators co-operate. The
assumptions that are required are restrictive, however, and it is not at all obvious
when they could be met. There are several different permutations possible.

Consider the example that Taylor discusses of a group of conditional co-operators
that assign different values to m. Let a group be R; with r; members. r =ry + 1 +13.

For a group R; with m’ = a — 1 to co-operate the following conditions are necessary.

[Ci] fi(m')—c > fi(0)
[Cii] r—) r=a
[Ciii] fim' —1)—c < f{(0)

Condition [Ci] says that the expected pay-off to each player in R; when a players
contribute is greater than the pay-off when no-one contributes. Condition [Cii] says
that the players will only co-operate if r; = a. That is, after players in the first other
two groups have withdrawn it must be the case that defection by one player in group
R; would cause conditional co-operation to collapse.

To see the necessity of condition [Cii], suppose thatr; > a. In this case the optimal
strategy for each player in group R; is to defect. Similarly if r; < @ no member of
group R; finds it worthwhile to co-operate.



42  State, Anarchy and Collective Decisions

It follows immediately that, for different values of m’, only one group of
conditional co-operators co-operate.

Condition [Ciii] says that for every member of a group of conditional co-
operators with some value of m’ it must be the case that if one player withdraws
each of the other conditional co-operators is indifferent between co-operating
and defecting or is made worse off by co-operating. Unless this were true, the
threat of conditionality is not sub-game perfect. Suppose that each player in R;
sets m = m’. Suppose j announces permanent defection. This leaves each i with a
pay-off fi(m’ — 1) — c. Let fi(m’ — 1) — ¢ > f;(0). In this case the threat of permanent
defection by the remaining players is not credible.

2.6 A note on agreement to form a state

The problem of whether individuals in the Hobbesian state of nature could enter
into an agreement to set up a some form of authority structure is now briefly
considered. The problem is simpler than is sometimes thought because the game
faced by players attempting to leave the state of nature is not a prisoner’s dilemma.°
This problem is dealt with here in its simplest form without reference to any
particular authority structure. It involves no new game theoretical ideas and can be
dealt with using one-shot and repeated games.

2.6.1a Stage one

Start with some individual z who offers to act as a rule enforcer and invites other
individuals to form a protective coalition A. The cost of joining A is some payment ¢
where ¢ can be infinitesimally small. This is retained by player z. The pay-off to z
increases with the size of A. A member of A is obliged to accept the instructions of z
or be punished by the other members of A. Write the number of members of a
coalition A as a. A coalition A defeats a coalition A’ if a > a’.

Let a strategy of acting as an enforcer be s¢ and of accepting the offer be s{ and
rejecting the offer be s¢. Let the state of war pay-off be v;(h). The pay-off for a
member of a coalition A is

Vi(s5, 89) — e > sf =v;(h)

since the coalition always defeats an individual. For the case where A =z the
coalition A = zU i does better against any random opponent than i does alone.

Hence i does better in the coalition than outside it.
Proposition: (a) There is some z such that s,(s?) = s¢; (b) ¢ = (¢, s¢

VA Fa

Proof: (a) Suppose z does not offer to act as an enforcer. Then z gets the state of war
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pay-off v,(h). If z acts as an enforcer it gets v(s5) + (a — 1) > v,(h). (b) Immediate
from the preceding. |

2.6.1b Stage two

It is optimal for any member of A to follow an instruction by z to reduce its arms
provided all other members follow the same instruction. Since instruction following
is enforced by A it is optimal for all members of A to reduce their arms.

A more sophisticated variant of this game would be to allow players two moves in
the first stage. Without formalities it is sketched as follows. In the first stage they
choose an enforcer. It is tempting to say that this would allow a selection between
enforcers that offer the best deal, but such a deal is not binding in the state of nature.
The choice is a statement of preference that serves a signalling device to each player
about the intention of others. In the second stage the potential leader with the most
support forms a coalition A and asks non-supporters to join. Since A is the largest
coalition it is optimal to join.

Some obvious refinements of this argument are needed for an analysis of
actual states. Although outside our immediate interest they are worth a brief
mention.

One of the implications of the assumption about the size of coalition A is that
there should only be a single state. Why are there multiple states? Clearly coalition
size does not map monotonically into coalition strength. An obvious consideration
is the internal costs to a coalition of accommodating individuals with different pay-
off functions. These are usually summed under things like culture and national
identity.

Assume, for example, that these differences increased monotonically from some
central point. The coalition cost function would then be discontinuous at a barrier
to military activity, say a river or a mountain pass. This would start to produce a
division into multiple coalitions.

2.7 Note on the strategic goods problem in general

The strategic goods, or what is commonly known as collective goods, problem is
that where individuals can get some benefits from the contributions of others they
will contribute less to provision of a good than is collectively optimal. Some
examples of such goods are clean air, conserving fisheries and wilderness, and
contributing to preventing greenhouse emissions. Many of the essential features of
such problems have the same structure as the prisoner’s dilemma. In other words,
security can be seen as a strategic good. For completeness I sketch out here the pay-
off matrix for the n player case where # is large.
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Si g(n) - ¢ 0

Figure 2.7 An n person collective goods problem

The pay-off for the good is ¢ where g is a function of the number of contributors.
g(n — 1) = g(n) — e where ¢ is small. Each player contributes ¢ > ¢. This gives the pay-
off matrix in figure 2.7. g(1) = e. All the previous analysis follows.
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Security and Material Possessions in a
Lockean State of Nature -
Non-Co-operative Games

3.1 Introduction

States also provide protection for material possessions by enforcing rules of
ownership and exchange, and this raises questions about the security of property
and enforcement analogous to those in Chapter 2. This chapter makes a start on
these questions. This will be done by extending the analysis of conflict in the state of
nature to the case where there are no rules of possession and there are conflicts over
material goods. In order to deal with this question it must be assumed that the
Hobbesian problem is solved and that individuals have some level of material
wealth. This is referred to as a Lockean state of nature. Without this assumption it is
difficult to see how material possessions can be treated as a greater concern than
domination and fear of violent death. The Hobbesian problem might be avoided by
assuming that there is already an ultra-minimal state that protects life. The absence
of rules of property means that individuals are involved in struggles where there are
material pay-offs. For these interactions to be interesting it is also necessary to
assume that strategies are costly. It turns out that the problem of studying struggles
over possessions is more complicated than the analysis of struggles over
domination. This is because the single dominant strategy of the Hobbesian problem
is lost and the equilibrium of one-shot games may not be uniquely determined.

This chapter continues the previous analysis of non-co-operative games with two
moves by allowing players to have a choice between strategies of being aggressive
and attempting to steal and protect their own property, or being non-aggressive. It
also introduces games in which strategies are a choice of how much resource to
devote to each activity.

One of the consequence of concentrating on struggles over material possessions is
that the costs of fighting might exceed the gains. Despite the additional
complications, the general result that state of nature games may not produce
collectively desirable outcomes is carried through.

45
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3.2 A security problem with mixed strategies: hawk—dove games

The feature of struggles over material possessions that differentiates it from the
prisoner’s dilemma is that it is possible to imagine that a player might be better off
not fighting an aggressor. Assume that the conflict is costly to both the winning
player and the losing player. This is because players spend resources in preparing to
fight and in the fight itself. Perhaps it would be possible to flee, for example. In this
case, the costs of fighting may be greater than the value of winning. In such cases
immediate surrender or flight would be the optimum strategy.

The obvious example of such games is conflicts which may result in death, but
where the consequences of losing are preferable to being dead. The conflict may be
over material possessions such as territory, or a stock of food, or other goods. At
some point the costs of defending, or attempting to take the good, may exceed the
material value of the object of the struggle.

Since the addition of costs of fighting means that the dominant equilibria
associated with the prisoner’s dilemma is lost, each player has to take into account
the strategies of other players in the one-shot game. This may lead to multiple
equilibria and the possibility that players may randomize between the pure
strategies. That is a strategy might consist of a probability distribution between the
available pure strategies.

To consider this problem start with one-shot games and assume that strategy sets
are finite.

Definition: A mixed strategy is a random selection from among the pure strategies
available to a player. [ |

A mixed strategy is given by a probability distribution

U:Zai

summed over all the pure strategies s}!...s! €S; with j=1,...,n. It assigns a
probability to every pure strategy, o/ > 0. For a pure strategy that would not be
played o/ = 0. Since at least one strategy must be used,

Zoi =1.

A pure strategy is simply a degenerate case of a mixed strategy. In this case
probability zero is assigned to every other strategy than the one played. o/ = 1 and
o' =0, for all i # j. Hence i plays sl." with probability one.

The possibility that players may use mixed strategies makes the following theorem
possible.
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Theorem: Nash (1950). Every finite strategic form game has an equilibrium in
mixed strategies. |

This theorem is proven in any of the standard texts, for example Fudenberg and
Tirole (1992, p. 29) or Binmore (1992, p. 322). Its importance is that it gives an
assurance that a solution exists for this type of game. It still leaves the problem of
finding the solutions.

The most well known example of a finite strategy game where the costs of fighting
may exceed the costs of losing is called a hawk-dove or chicken game.

3.2.1 Hawk-dove game

The hawk-dove game can be understood by thinking of two players in dispute
about some material good. Assume that, if player 2 capitulates or acts peacefully,
player 1 is better off claiming the good. If player 2 does not capitulate, then player
1 is better off capitulating if the costs of fighting are greater than the value of the
prize in dispute.

The logic of this game can be understood from the game of chicken which gives
this structure its alternative name. This is the game of two players driving cars
towards each other and getting most points for not swerving if the opponent
swerves. In the hawk-dove game the players have only two strategies, or are one of
two types. The hawk strategy is to not swerve, or to fight, whenever confronted with
an opponent, the dove strategy is to flee. If a hawk meets a dove the hawk gets the
higher pay-off. If two hawks meet they damage each other. A hawk gets a lesser pay-
off against another hawk than a dove gets against a hawk. Doves do better against
each other than hawks against each other

This game is set out in its general form in Figure 3.1(a) with pay-offs for player 1.
Let hawk be s" and dove be s¢. ¢; > a; and b; > d;. For simplicity some values are
given in Figure 3.1(b).

This game has two Nash equilibria in pure strategies.

S2 sé’ Sg Sg
d
S1 al bl Sl 1, 1 0, 3
sh o d sh 3,0 -1, -1
(@ (b)

Figure 3.1 The hawk-dove game
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o1 = (s],59) and ¢ = (s, s5).

It will be observed that player one prefers ¢; and player two prefers ¢,.

Communication did not solve the prisoner’s dilemma. In this game, if players
were able to communicate, the messages they send would be part of their strategy
set. Player 1 may send a signal that it intends to use s, in an attempt to bring about
¢1. One obvious difficulty here is that player 2 may attempt to send the same signal.
This leads to the analysis of the strategies the players may adopt to ensure that their
signals are credible. This problem will be pursued in the analysis of repeated games
and war of attrition games.

This game also has a solution in mixed strategies. A mixed strategy may be
thought of as a player choosing to act like a dove with a probability x and like a hawk
with a probability (1 — x) with x € [0, 1]. This means that

s1=(xs?, (1 —x)s™).

Another interpretation of mixed strategies for a game with several players is that
some percentage of the population play hawk and some percentage play dove. In this
case the mixed strategy gives the distribution of the population between the two types.
This interpretation has some applications to a study of the different strategies that
players might adopt in a struggle over property. It is interesting to note that it has also
received considerable attention in the analysis of the evolution of animal behaviour.!

The best reply strategy can be thought of in terms of evolutionary stability. If a stable
Nash equilibrium exists it is the pattern that would emerge as the result of random
maximizing behaviour with selection in favour of the strategies with the best pay-offs.
It will be observed that neither a population of hawks nor a population of doves is
stable. A strategy of playing hawk is not a best reply to a strategy in which everyone
else plays hawk, for example. The population of hawks gets

v(s'f, 52) =-1

and can be invaded by a dove which gets
vi(sd, sty =o.

A population of doves can always be invaded by a hawk which gets
vi(sh, s9) = 3.

It follows that the only pattern that would be stable must contain a mix of hawks
and doves.
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A simple way to calculate the mixed strategy is to reason as follows.? Since ¢ is a
mixed strategy, neither hawk nor dove can be dominant. Hence, from theorem 2.1

vi(s]) < vi(s)) and vy (s) < vi(s)).

Therefore vi(s7) = v1(s9).
Let player 2 use the mixed strategy s, = [ysd, (1 — y)sh]. From the pay-off matrix in
Figure 3.1 this means,

yai + (1 —y)by =yc1 +(1 - y)dq
Hence

y=(d1—b1)/(a1+d1 —b1 —c1)

Substituting the numerical pay-offs y = 1. Since the game is the same for all players

=5 = (

win

).

s

W=

The expected value of the game for player 1 and player 2 is
E(vy) =xy(1) + x(1 = p)(0) + (1 = x)y3) + (1 — )1 = p)(=1)
This gives
E(v1) = E(v2) = 4.

Since the players do not always fight in equilibrium the pay-off for each player is
not as bad as the Hobbesian game in which everyone fights and the value is given by

v(sh, sty = —1.

It is, however, worse than the co-operative outcome
v(st, 9 =1.

Remark: The mixed strategy for player 1 was calculated using the pay-offs for player 2.
This observation holds for all games with two players and a finite strategy set with
mixed strategy equilibria. This means that changing the pay-offs available to a player
will not change its behaviour. To see the importance of this observation, consider the
following example.

Suppose that the game is a struggle over material goods and the strategies are steal
and not steal for player 1 and guard and not guard for player 2. Player 2 could be the
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police, for example. The police may not wish to guard continuously. If player 1 does
not wish to get caught stealing when player 2 is guarding the game will have the
hawk-dove structure just analysed. It follows that increasing the penalties for
stealing by player 2 will not decrease the amount of stealing.

This is a strong result. It is for the social scientist to judge whether it holds for the
situation being analysed, or whether it is merely an artefact of the simple model
which is used. For example, would the police play the mixed strategy equilibrium, or
would they play hawk with probability (1 —y) where (1 —y) is set such that the
dominant strategy for the thief is s7?

3.2.2 Security in mixed strategies

The difficulty with the mixed strategy is that, compared with playing safe and being a
dove, it is risky. This raises the question of security levels, or the safety of a move, and
whether mixed strategies or pure strategies are safer.

The secure pay-off of a player is defined as the best pay-off against an opponent
who inflicts the maximum damage. In the case of games of absolute conflict, such as
zero sum games, this level is the best that a player can expect to get against a rational
opponent. In other cases it would take a degree of paranoia to assume that all
opponents will use the strategy that inflicts maximum losses regardless of cost to
themselves. None the less, where the stakes are high the security of any move is a
reasonable consideration.

Definition: The security pay-off is the best that can be obtained against an
opponent that inflicts maximum losses. This can be defined as

V{ = max g min_(S;, S_;) = min_; max (S, S_;)

In other words, it is the best that i can do against an opponent
if i maximizes the minimum pay-off or —i minimizes the maximum pay-off. [ |

The concept of a security strategy is important in applied and pure game theory
and is supported by the well-known von Neumann minimax theorem. It can be
understood by introducing the notion of a saddle point.

Imagine a saddle shape. This has two transverse curves, one open up and the other
open down, like this UN. The first is on top of the second and they touch at their
minimum and maximum points. Player —i controls the first curve and so holds it to
the minimum. Player i controls the second curve and pushes it to its maximum.

Formally, a pay-off matrix has a saddle point if there is some pay-off that is the
largest for its column and the smallest for its row. That is

Vi(s7, 5_i) = vi(s7, s%;) = vi(si. s%})

where 52, s is the saddle point. This give the following theorem.

i i
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Theorem 3.1: The security strategy s} gives the security value
max,; ming_; = ming_; maxg of a game with a saddle point.

Proof:: The strategy s/ gives a pay-off such that
vi(s?, s=i) = vi(s?, s2)).

Hence player i must get at least v;(s{, s?;) which is max; if the opponent picks the
column that minimizes the pay-off in each row = maxg; ming_;. v;(s?, s°;) > vi(si, $2;).
Hence i cannot get more than v;(s?, s?;) because this is the maximum of the column
the opponent selects to minimize the maximum pay-off = min,_; maxg;. [ |

This general theorem can be illustrated by returning to the hawk-dove game. Here
there is a saddle point in the pay-offs for player one with pay-off v; = 0. Observe that
there is no mixed strategy that can do better than s{ against si.

There is always a security strategy in games with a finite number of pure strategies
in which max,; ming_;(s;, S_;) = minmax. In general, if the game does not have a
saddle point then the security strategy may be a mixed strategy.

3.3 Repeated hawk-dove games

The repeated hawk-dove game will now be considered. As with the analysis of
Hobbesian problems, a question that arises is whether the repeated hawk-dove
game is more likely than the repeated prisoner’s dilemma to produce a stable co-
operative equilibrium, in which there is security for property.

The difficulty with the repeated hawk-dove game is that a retaliation strategy like
tit-for-tat is not sub-game perfect as it was in the prisoner’s dilemma. This is because,
if player j chooses hawk on every round and never deviates, it is not a Nash
equilibrium for player i to punish by choosing hawk in every round. That is

d h h . h
vi(sy, 5;) > V,-(Si', S )

Hence retaliation is not optimal against a determined hawk player.

Myerson suggests a strategy for the hawk-dove game called the g positional
strategy (1991, p. 329). He argues that it is plausible to assume that the player who
has played hawk in the past might be more likely to play hawk in the future. One
motivation for this is that hawkish behaviour might be an attribute of a type of
player. Alternatively a player might have to make an investment in being a hawk,
perhaps by acquiring greater technologies of violence.

Myerson's suggested strategy is that in a contest between i and j, i chooses hawk if
i has chosen hawk strictly more times than j, and dove if it has chosen hawk strictly
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less times. If both players have chosen hawk an equal number of times they choose
hawk with a probability of g and dove with a probability of (1 — q). This strategy is a
Nash equilibrium and also a sub-game perfect equilibrium for some value of q.

The problem is that there are pay-offs from establishing a reputation for being
tough, and this may lead each player to follow a strategy of investing in being tough
now in an attempt to get the benefits of an equilibrium in which it has strategy
st,i=1,2. This gives a variant of the problem of credible signals noted in the
analysis of the one shot game. In this case, what may emerge is a strategy in which
each player tries to out-spend the other.

Myerson shows that, for a low future discount which gives a discount factor
approaching one, the value of g will also approach one. This means that the game
will tend to converge to a hawk, hawk equilibrium. If so, there is no reason for
believing that the repeated hawk-dove game holds out a greater hope for a
spontaneous Pareto-efficient equilibrium than the repeated prisoner’s dilemma.

To analyse the question of which strategies are likely to emerge in repeated games
the notion of the resistance is introduced.

3.3.1 Resistance in repeated games

The question of whether the repeated hawk-dove game is more likely to produce a
Pareto-efficient equilibrium than the prisoner’s dilemma can be studied by
constructing an index of the relative stability of a retaliatory strategy in the two
games. This can be done by exploring the idea of resistance.® The resistance of a
strategy s* against some other strategy s indicates the capacity of s* to sustain itself
when other players are using a different strategy. Specifically, the resistance of s*
against s is the maximum proportion of s players that could be put into a
population of players using s* before the pay-off for the s players is greater than for
the s* players (Myerson, 1991, p. 119). Obviously, the higher the proportion of
players that are required the greater the resistance of s* against s, and hence the
more probable a strategy can be sustained in a repeated game.

In order to analyse resistance a more tractable measure of the pay-offs for games
without a finite stopping point is needed than the discounted pay-offs dealt with
previously. This is done by defining the discounted average of a sequence of pay-offs
as

vi=(1-9) i(?k_lwf(si, 5-i) (3.9)
k=1

Each player’s objective is now to maximize the discounted average pay-off. Observe
that multiplying the game by (1 — §) does not alter the equilibrium strategies. This is
often called a time averaging process (Fudenberg and Tirole, 1992, p. 149).
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For an example of how the averaging process works, imagine that the pay-off is w;
for every round. Use the result

00

> 8" =1/1-9).

n=0
It will be seen that

Vi=(1 =91 +8+...+ 8w =w;.
It is now possible to solve the problem of finding the resistance of strategy s*
against s. Let the proportion of s players required for v(s) > v(s*) be a. The resistance
is calculated by finding the largest value of « € [0, 1] such that

vilsi, (as—i + (1 — )s™ )] = vils;, (as—i + (1 — a)s™ )] (3.ii)

The resistance of the tit-for-tat strategy against the always defect strategy for the
prisoner’s dilemma game can be calculated by using the pay-offs in Figure 2.1(a). Let
st stand for tit-for-tat and s? for always defect. Then

vi(st, st,) = a;, and vi(s¢, s7,) = d;

If the second player is not tit-for-tat, then tit-for-tat gives b; on the first round and d;
on every other round.*

vi(st, s%) = (1 — &)b; + od;
Similarly
vi(sd, st ) = (1 = 8)c; + d;.
Substituting these values into equation (3.ii).
o < [a; — ci(1 — 8) — 8di)/[a; + di — bi(1 — 8) — ci(1 — 8) — 25d] (3.iii)

Hence

a <X

where x tends to a/a =1 as § tends to 1.
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It follows that, for a negligible value of the discount factor tit-for-tat can survive
unless the proportion of permanent defectors is high. Observe that the discount
factor cannot be 1. If § = 1 the pay-off function is zero. Also note that for§ < 1, «
may be small or negative since ¢ > a.

Since vi(s?,s";) is not sub-game perfect for the hawk-dove game the same
calulation does not make sense. To get some idea of the resistance of tit-for-tat
against the aggressive strategy of always playing hawk we could use the g positional
strategy.

The resistance of tit-for-tat against the g positional strategy is calculated using the
pay-offs in Figures 3.1(a) and 3.1(b). The expected values of this strategy will involve
permutations of the probabilities. For example

E[vi(s], s = (1 = &)lqqd; + (1 — e + 8> + .. )]+ (1 — @)qlbi(s + 6> + .. )]

+(1 — (1 — ai + qqqqd + 9991 — Plci(® + 8> + .. )] + .. ]

We can get some idea what is happening if these are simplified by disregarding high
powers of g and letting § — 1 as before. For q(1 —q) not too small this gives
approximate values®

vis?, s1) = (b + ci)g(1 — q), vi(st, s°) = vi(st, s7) = qdi + (1 — @)ay, vi(sk, s°) = ay.

Substituting these gives the approximation and using «’ for the resistance
a’ < q(a; — dp]/lai(2q — 1) + (bi + ci)g(1 — q) — 2q dj]

This gives

where x’ = 2q/[q(7 — 3q) — 1]

It follows that it may be more difficult for tit-for-tat to be sustained in the hawk-
dove game than in the prisoner’s dilemma for g(1 — q) not too small. For example if
q=0.5then x’ = 0.57.

3.4 A pirate retaliator game with different pay-offs

Struggles over property might sometimes involve individuals of different types
such as settlers and nomads or farmers and raiders. The mixed strategy
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equilibrium can be used to analyse this situation by interpreting it as an
equilibrium between different types of players, rather than between players of the
same type using different strategies. If players are thought of as different types,
then it is possible to extend the analysis beyond simple hawk-dove games to
study conflicts where different players may get different utilities from some course
of action. This also adds the possibility that players may be uncertain about the
type of their opponent.

Consider a variant of the one shot simultaneous move hawk-dove problem in
which there are two types of individuals, pirates and retaliators. Pirates enjoy blood
and danger and will always get a greater pay-off from fighting, no matter what the
opponent does. In the hawk-dove game the optimum strategy for a non-pirate
would be to play dove in a game with a pirate. To make the analysis more
interesting, assume that non- pirates are retaliators. Retaliators will get greater pay-
offs from not fighting if an opponent chooses to not fight. In response to aggression,
they will get a greater pay-off from fighting.®

The motivation behind these assumptions is less clear than that behind the
assumption in the Hobbesian game that all individuals are the same. It might be
justified as a way of testing the model if this assumption is relaxed. Alternatively,
it might be justified as a claim about the propensity of individuals to have
different degrees of passivity or aggressivity through causes that are not modelled,
or about the value of reputation for future games. This analysis could be adapted
to the prisoner’s dilemma game.

Assume that player 1 is a retaliator. A player does not know whether its opponent
is a pirate or a retaliator. It is also assumed that uncertainty causes some retaliators to
act out of fear that their opponent is a pirate. The probability that player 2 is a pirate
is p and the probability that player 2 is not a pirate is (1 — p). The probability that
player 2 will act out of fear of player 1 and fight is ¢q. This gives an aggregate
probability of

P+q9-pr9

that player 2 fights.” Let to fight be s" and not to fight be s7.
Since the pirate gets a greater pay-off from fighting

Va(sh, s1) > va(s3, 51).

The optimum strategies for the retaliator are to fight if the opponent fights and to
not fight if the opponent does not fight, that is

vi(s{, 53) = vi(sy, s3) and vi(s], s5) = vi(s{, s5).
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The pay-offs are those given in Figure 3.1(a). Note that a; > ¢; and d; > b;.
The expected pay-off for a retaliator in this game is

Evi(sD] = (p +q — pg) (b)) + (1 — p — q + pq) (a1)
Evi(s)] = (¢ +q — pa) (d1) + (1 = p+q = pg) (c1)
A strategy of fighting dominates a strategy of not fighting whenever
Evi(sp)] > Ei(s7)]-
Let the expected value of fighting be E[r1(s")] and define this as

E[ri(s})] = Ei(s)] — E[va(s7)]
Calculating this gives

Eln)] =@ +q—pg)(di +ar —b1 —c1)+c1 —a

Since the optimum strategy for the pirates is given, the equilibrium in the model is
determined by the optimum strategies for retaliators. Clearly if all players were
retaliators, then the outcome would be the Pareto efficient equilibrium

d o
@ = (57, 5%).

What is interesting is how the optimum strategies for retaliators change as
the percentage of pirates in the game increases for different values of gq.
Writing  E[r(s")]=r, a typical relationship is illustrated Figure 3.2.
k*=q(di+a1—by —c1)+c1 —a.

When 1 > 0, player one plays s". The straight line gives the value of r; for
variations in p with g = 0. The curved line gives r; for g > 0. Observe that since

P+a-pp=zp

r1 on the curved line is always greater than r; on the straight line. r1(q > 0) intersects
the line r; = 0 at a lower value of p than r(q = 0).

The probability of acting out of fear is g. Thus imperfect information increases the
probability that ¢ = (s", s1).



Security in a Lockean State 57

n
dy— by
rn(g>0)
rn(qg=0)
/ 1 P
k*
G—a

Figure 3.2 A pirate retaliator game

3.5 War of attrition games with continuous strategies and a fixed
treasure

The analysis of struggles over material possessions also raises the possibility that victory
might go to the player who spends the most on military or fighting capacity. Wars and
struggles between settlers and raiders are obvious examples. Another example is the
case discussed previously where players are concerned about reputation. This
introduced the possibility that each player might try to out-spend the others in order
to establish an equilibrium in future games in which it plays hawk. This type of game is
known as a war of attrition. The strategy of a player is an amount to spend on
aggression or hawkish behaviour. Each player wishes to out-spend the other while
spending less than the value of the prize for winning. Hence the strategy is to wear
down the other player as in military conflicts.

War of attrition games were originally developed by evolutionary biologists such
as John Maynard Smith to help explain animal behaviour. The story is set out in J.
M. Smith’s Evolution and the Theory of Games. In this case a stable Nash equilibrium
refers literally to the evolutionary stable strategy that the animals would develop
through a selection process that eliminated sub-optimal strategies. For present
purposes it is the Nash equilibrium in military conflicts that are of concern.
Evolutionary stable strategies are dealt with in more detail in Chapter 6.

3.5.1 Description of the game and informal analysis

The game is a contest between n players over a prize which has the same value for
each player. This might be thought of as some treasure, or some land, or a mine or a
pile of goods. It is assumes that the player that has spent most wins the conflict. The
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cost of the conflict is given by whatever its opponent has spent. This captures the
idea that the harder the opponent fights, the greater the costs to the winning side.
Each player loses the entire value of its military expenditure if it is defeated. This is
plausible and provides a ‘bigger they come the harder they fall penalty’. It would not
make any substantial difference to the model if these proportions were altered. For
example, it could be imagined that only half the military expenditure is lost, or a
third of the wealth captured.

A player’s expenditure might represent such things as the amount of time or
money spent on military hardware, or on defence, or on buying support. If it is
assumed that each player’s strategy is continuous. A strategy is represented by
si=x;€la,b] eRE
Remark i:  One difficulty in games with continuous strategies is that any point on an
interval has zero probability of selection. For this reason probabilities are thought of as
applying to some measurable distance, or interval, in [a, b].

Remark ii: It has already been seen that a game with a finite strategy space has a
Nash equilibrium in mixed strategies. Similar result can be proven for games with
infinite strategy spaces and pay-off functions that are not too badly behaved
(Fudenberg, 1992, pp. 487-9).

Consider the two player case. si = x; € [0, c0) and s, = y; € [0, 00). Let the value of
the prize be m. This gives the following pay-oft:

m—yj, if Xi > yj
vi(xi, yj) =|m/2 — x;, if x;i = y;
— Xi, l'fX,' <)

In other words, if player 1 spends more than player 2 on arms or military hardware,
the return is m less the cost of the fight. This is determined by what the opponent
spends and is given by m — y;. This may be greater or less than zero. If player 1
spends less on military hardware than player 2, the value of x; is lost.

The pay-offs for this game are illustrated by setting v; (x;, y) on the vertical axis and
looking at the pay-offs for two values of y;. These are yi1 <m, yiz > m. The value of x is
on the horizontal axis. This is given in Figure 3.3.

To get a feel for the model consider what happens when military expenditure
starts to escalate. Imagine that expenditure has gone up to the point where every
player has spent k > m. In this case the value of the pay-offs to the winner is
v; = m — k, which is less than zero. The loser gets —k. This means that the hawks
would exterminate each other.

It is clear from the diagram that there is no strategy in this game that is a best reply to
itself. Suppose both players use some strategy z. For player one this gives
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vi (%, y)
m-s}yf<m
O
m/2—y/-1
®
2
X:/ x—yj
‘ X
O > 2
m=yf,y7>m
®
m/2—yj2

Figure 3.3 Pay-offs for two values of y in a war of attrition

Wz,z)=m/2 —z
Let z < m. Then
W(z,z) <V(z+e,z)=m—2z.
Let z=m. Then

W(z,z) <Vv(z+e,z) =v(0,z) =0.
Thus it pays players to increase expenditure. Let z > m. Then
Wz, z) < v(0, 2).

Similarly for the n player case, there is no pure strategy for this game. If all, or a large
number of players were spending more than m, it would pay any one player to set x
at zero and thus get a greater pay-off over a series of rounds of the game. It might be
imagined, for example, that when the pirates are coming this group simply
abandons its holdings of wealth and flees with its current consumption goods.

3.5.2 Formal analysis

The mixed strategy equilibrium is calculated as follows. Since the probability that any
player spends exactly some amount, say x, is zero, are defined probabilities over a range.
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This is done by letting p(x) be the probability that any player has stopped increasing
military expenditure at some point k.? For k very large, for example, the probability p(x)
would be close to one since it would not be very likely that a player was still spending.
The probability that expenditure is between a and k is p(k) — p(a).

The integral of the derivative of this function is often convenient for calculation
purposes. The derivative is p’(x). The probability that expenditure is between a and k
is given by

k
/ p'(x)dx

which is p(k) — p(a) as required. This idea is used to get the probability that
expenditure has stopped between x and x + §. This is given by p'(x)/é.

Write the strategy of the player using p(x) as p*. It follows that the pay-off for any
player using a pure strategy k against p* is a summation of the expected pay-offs

k [}
E[v(k, p")] = /(m —x)p' (x)dx — / kp'(x)dx 3.iv)
0 k

Recall that the calculation of mixed strategies says that the pay-off for each of
the pure strategies against a mixed strategy is equal. Hence if k + § is some pure
strategy it must have the same pay-off as k. Therefore, E[v(k + 8, p*)] — E[v(k, p*)] = O.
This gives

k+68 =) k 00
/ (m—x)p’(x)dx — / (k+8)p'(x)dx — /(m —x)p'(x)dx + / kp'(x)dx =0
0 —k+8 0 k

Summing gives

k+38 %)
/ m—x+Kkp'(x)dx—§ / p'x)dx =0
k k45

If § is small x>k and [(m—x+kp'(x)dx tends to m [p'(x)dx evaluated
at k over the interval § which tends to smp'(k). [ p’(x)dx evaluated between k, co is
1 — p(k). Hence

P/ —=p=1/m
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Note that p’/(1 — p) = —d[1n(1 — p)]/dx. Taking integrals
1n(1 —p) = —/1/m:—x/m+c

for ¢ some arbitrary constant. Therefore

pr)=1—e" (3.v)

using the fact that p(0) = 0.

What equation (3.v) tells us is that, for any fixed value of material wealth, the
probability that a player selected at random has stopped spending on military
hardware increases as the level of expenditure increases. This can be interpreted as
follows. Each player would choose some function for its military expenditure. If
there are some players spending less than their optimum, it will pay at least one
player to increase its expenditure. If the other players are spending too much, it will
pay at least one player to decrease its expenditure.

The returns to each player will, of course, be the same in any equilibrium strategy. In
this game the returns are zero. To see this notice that, if any player gets a positive return,
there must be at least one other player getting a negative return. If so, it pays that player
to alter its expenditure.

The probability density function is illustrated in Figure 3.4. What the curve shows
is that as x increases the probability that a player has ceased spending on military
hardware approaches one. For a two player game the optimal strategy for each player
is the mixed strategy that says stop spending in any interval with probability p. For a
n player game, with n sufficiently large to be treated as a dense interval, an optimum
strategy for a player is a location on this curve.

p(x)

Figure 3.4 Probability that a player has stopped spending for any x
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It might be asked whether this equilibrium is stable. What happens, for example,
if the prize is worth more to some players than to others? Perhaps it has more
strategic value to some players, or they are more desperate, or the struggle is over the
wealth of the players and information is imperfect.

Some aspects of this problem will be considered.

3.6 War of attrition with unequal prizes

The analysis of the game with unequal prizes will be simplified by considering the
case where there are only two types of players. Type 1 players give the prize a higher
value than type 2 players. Type 1 occurs with probability g and type 2 with
probability (1 — g). This gives a probability distribution

p=qp1 +(1 —gp2

To analyse the effect of differences in the value of the prize observe that
differentiating equation (3.v) gives

ap/om; = —(e/™)/m* < 0

This means that, for a given x, the probability distribution function for type 1 is
below that of type 2.

What needs to be ascertained is whether these two distribution functions overlap.
If they overlap, p; would be below p, for some x. This would say that the probability
that type 1 had stopped spending for any value of x is less than that of type 2, but
type 2 may have spent more. If they do not overlap then type one would always
spend more.

To rule out overlap means showing that a value of k cannot have more than one
solution. An outcome like that in Figure 3.5 is not possible.!? This can be shown in
the following proposition adopted from Smith (1986, pp. 194-6).

Proposition: Suppose k € p;. Then k ¢ p,.
Proof: Lets = (p1,p2). s* is the Nash equilibrium p* € s*. The expected value for s
against s* is

E[(s, s9)] = qIif (k) — (K] + (1 — q)h (3.vi)

In the first half of the left-hand side of equation (3.iv) fis the probability that k wins
against p*, and g is the expected cost of choosing k against p*. The second half of
equation (3.iv) gives h as the pay-off of a type two player using s against s*.
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P1
k
Figure 3.5 Overlapping distribution functions
If k € p; then the pay-offs must be the same for all k giving
nif(k)—gk)=a (3.vii)

where a is some constant.

Since fis the probability that k wins against p* and g is the cost of using k, the
values of fand g do not depend on whether the player is type 1 or type 2 if k € p,.
Therefore

vof (k) —g(k)=b (3.viii)

where b is some constant.
Subtracting equation (3.viii) from equation (3.vii) gives

i —w)f=a-b (3.vii)

f is the probability that k defeats p, and is monotonically increasing
with k. Hence the solution to (3.vii) must be unique. But v; and v, are constant
because the cost of playing k are in the g(k) term. Thus

vi—v)f=a-b

is constant. Contradiction. Therefore p; and p, do not overlap. [ |

With some additional proof that the curves cannot have gaps or atoms of
probability the strategies in the two-type game are given by probability distribution
functions like those in Figure 3.6.

It can be shown that where there are n players that place different values on the
prize, there are n non-overlapping distribution functions with no gaps between
them.!! The player that places the higher value on the prize always spends more
than a player with the lower value.



64 State, Anarchy and Collective Decisions

P2

Py

k

Figure 3.6 Evolutionary stable strategies with different prizes



4

Struggles over Property with
Stealing, Production and Guarding —
Non-Co-Operative Games

4.1 Introduction

The problem of struggles over material possessions is analysed in more detail in this
chapter. The addition of material wealth to the state of nature opens up the
possibility that the strategies of individuals might go beyond simply stealing and
not stealing. For example, since individuals are concerned with material wealth, it is
natural to imagine that they will undertake wealth improving activities other than
stealing. Production and guarding whatever is produced are obvious possibilities.
Once these complications are allowed, a new set of questions emerges. These are
related to Friedman’s question, ‘what would happen if there were no systematic
restraints on theft?’ (Friedman, 1973, p. 207). For example, would such a system be
stable and produce orderly anarchy, as writers such as Taylor (1982) claim? If there is
stability, at what level? If stability is at a sufficiently high level of production it
might not be worthwhile extending the state to protect property. Alternatively,
would it be characterized by most efforts going to piracy and little to production?

In order to deal with these questions n-person games with continuous strategies
and continuous pay-offs will be analysed. I shall also look at the case of a dynamic
game in which players strategies change over time.

4.2 Struggles over material possessions with continuous
strategies

The problem of struggles over material goods with continuous strategies can most
easily be thought of as an extension of the hawk-dove and the war of attrition
games. The war of attrition framework is retained in that the return that players get
is a function of their expenditure and the expenditure of others. The additional

65
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feature is that the strategies are now continuous and each player wants to maximize
over some function which depends on how much other players are spending, but
also on the costs in terms of alternative uses of whatever resource is being spent. For
example, whatever is spent on stealing will affect the returns from stealing, and the
returns from any alternative use of resources that are available. This type of game is
analysed by applying the following generalization of the Nash equilibrium theorem
for continuous pay-offs.

Theorem 4.1: (Debreu, Glicksberg and Fan) (Fudenberg and Tirole, 1992, p. 34): A
strategic form game whose strategy spaces S are non-empty compact convex subsets
of Euclidean space and pay-offs v; are continuous in s and quasi- concave in s;, has a
pure strategy Nash equilibrium.

This can be translated roughly as follows. Euclidean space has the sort of
measure properties we are familiar with on a daily basis. Compact means that the
strategy set has some upper and lower limits and includes its end points. The
requirement that the pay-offs are quasi-concave for a continuous function means
that the function can monotonically increase, can monotonically decrease and
can increase and decrease like a familiar concave function. What it cannot do is
decrease then increase.

Discussion of proof: The proof here is the same as the finite game case. Essentially
it is to look for a strategy that is a best response to itself. If all players use this, then
there are no gains from deviating. This is the same as showing that an equilibrium
set of strategies exist such as that in Figure 1.1. In other words there must be some
strategy that is the best response to itself and rj(s*;) = s} and r_;(s}) = s*,. [ ]

4.3 The stealing and leisure game: Bush and Mayer

Bush and Mayer (1974) attempted to analyse what would happen in a state of nature
in which each player had the same amount of some material good and a choice
between stealing and leisure. They assume that the pay-off for players will be a
function of the expenditure of their energies on stealing and of the amount of
energy that others expend on stealing. The analysis is simplified by assuming that
holdings of wealth are fixed. In this case the problem is one of allocating energies to
stealing. They show that in this case there is an equilibrium, but, as would be
expected, it is at a much lower level of welfare than with some co-operative
arrangement. Their analysis is summarized as follows.

4.3.1 The model

Bush and Mayer assume that each day every individual is allocated one unit of
some all purpose good x. There are no barriers to stealing. The value of the game
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for any individual i will be given by v; where v; is quasi-concave and continuous
in all its arguments, i = 1,...,n. Let ¢ represent the level of effort that can be
used to generate income by theft. v; is concave in x; and ¢;. f; is the technology of
stealing and is the ability to take x from others. ¢; is the amount that i loses to
theft.

Vi = vi(x;, €)

41
xi:1+f,-e,-fc,~ @D

Bush and Mayer also assume that stealing is uniform so that each individual loses
the same amount of wealth given by

c=(Q_fig)/(n—1)
i=1

for i # j. Income is now given by
xi=1+fie;—c.

This assumption is not necessary in the proof of the existence of equilibrium below.

Since the good is desired and effort is costly the pay-off increases in x and
decreases in e. That is dv;/dx; > 0 and dv;/de; < 0. The players will set effort so that
utility is maximised. This means that for an internal solution

dv;/de; = dv;/de; + (3v;/0x;)(0x;/de;) = O.

This gives

f,-av,-/axi = —adv;/de; (411)

That is, to optimize a player sets the marginal rate at which utilities are lost through
effort equal to the marginal rate at which utilities are increased from the income that
effort produces.

4.3.2 Analysis of the stealing and leisure game

The first problem to be considered is whether there is an equilibrium for this game.
This can be dealt with more easily than in Bush and Mayer’s paper by using the
previous theorem.

Proposition 4.a: The stealing game has an equilibrium. Bush and Mayer call this
the natural equilibrium.
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Figure 4.1 Stealing equilibrium

Proof: The proof that there is a Nash equilibrium solution follows immediately
from the Debreu, Glicksberg, Fan theorem and the fact that the pay-off functions are
continuous and quasi-concave in a player’s own strategy. [ |

The nature of the equilibrium can be demonstrated by noting that as
¢; increases x; will decrease. In order to restore the equilibrium

avi/ox; = —(3vi/de;)/f,

e; must increase. The idea of reaction curves is again useful. These will have the
shape in Figure 4.1.

These curves show the desired level of effort for player 1 for each level of effort for
player 2. A point not on the intersection of the curves is not a Nash equilibrium
since r;(¢) # rj(¢)) and both players have an incentive to change their strategies. It
will also be noted that under a simple titonnement scheme the equilibrium is stable
and there would be convergence.

Assume that effort is not so unpleasant, or so ineffective, that a player would never
steal. It follows that the level of v; is less than it would be if co-operation were
possible and there is an allocation that must make all players better off than the best
they can do without rules of property. Bush and Mayer call this the orderly
anarchistic allocation. To see this observe that there is some level of income for
e; = 0 written (x¢,0) that i would prefer to (xf, ¢}), for ef > 0 and x{ < x; where
> x; =n since each player starts with one unit of the resource. Hence any final
distribution ((b1, 0), ..., (bs, 0)) is an orderly anarchy for b; < x{ and }_b; > n.

It must be noted, however, that the existence of a collectively optimal orderly
anarchistic allocation does not mean that this allocation would be reached by
players optimizing their returns. Would this be expected?
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Bush and Mayer call this orderly anarchistic allocation a ‘fragile equilibrium.’
(1974, p. 410). What they actually mean is that players would not reach this
equilibrium if they used their Nash equilibrium strategies, even though it is on the
Pareto frontier. Hence we have the problem set out in section 1.9. The term ‘orderly
allocation’ is rather misleading. This problem is dealt with in more detail when the
theory of the core is analysed in chapter six.

This is a fairly restricted model because the only strategy that players have is to
trade leisure for stealing. What happens when production is taken into account and
when players are allowed to steal and guard? This question is considered below.

4.4 The breakdown of anarchy: Hirshleifer

Hirshleifer (1995) analyses a model in which players can produce and fight over
resources. The idea that drives the model is that the resources available to the players
are determined by a continuous struggle. The amount produced depends on the
stock of resources and the stock of resources depends on the effort players put into
fighting. Effort put into fighting reduces the amount of effort available for
producing. These assumptions are used to consider the stability of an anarchistic
system.

The set up of the model, and two of its findings, is presented below. To avoid the
problems of solving a continuous game the players make a single strategy choice at
the beginning of the game. This is known as a steady state or open loop equilibrium.

4.4.1 The model

The resource available to player i is w; and this is divided between productive effort and
fighting. Transformation of these resources into the different types of activities has a
conversion cost. Let x; be productive effort and y; fighting effort with conversion costs
a; and b; respectively. Then

Wi = a;X; + biyi (4.iii)

It is also possible to deal with the intensities of productive and fighting effort by
defining e; = x;/w; and f; = y;/w;. This gives

ae; + b,fi =1

Hirshleifer assumes that players wish to optimize the amount of the good they
produce for consumption and that production depends on the amount of effort and
the resource. Let production be

m; = (x)" = (ewy)" (4.iv)
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Resource control depends on the probability that fighting is successful and is
defined by w; = p;w where p; is the probability of success and w is the total resource.
The success function for player 1 against player 2 is

=y +y2®)

with the analogous expression for p,.
This gives

P1/p2 = (1/y2)e
where « is an index of the decisiveness of conflict. The higher the value of & more

effective is an attack. In the First World War, for example, trench strategies gave « a
low value.

4.4.2 The sustainability of the system

Consider the problem of the sustainability of a two-player anarchistic system. From
the previous

wi/wa = (V1/y2)" = (fiw1/fawz)®

So
Frwi™ = frws ™!
and
pi/p2 = (h/f) (4.v)
from the identity
fafeapeen  _ fpotaatacat... _ fu/(l-a)

This gives the following straightforward proposition.

Proposition 4.b: The necessary conditions for an anarchistic system to be
stable are (a) the decisiveness parameter & < 1 and (b) a high value of m;.

Proof: Immediate. |

Condition (b) says that the players must be able to produce enough to stay alive.
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Figure 4.2 Success functions for different values of decisiveness

Condition (a) is more interesting. It can be understood as follows.
Examine equation (4.v). Note that for « — 1, ¢/(1 — @) - oo. This means for

filfe > L(A/R > oo

and for

filfs < L.(h/f)"" " — 0.

This is illustrated for « < 1 and & — 1 in Figure 4.2.
Observe that, at the limit p; /p, jumps at f1/f2 = 1. This means that player 1 wants
fi/f > 1 and player 2 wants f;/f> < 1. Hence the system is not stable for « — 1.

4.4.3 Optimization and equilibrium

The optimum strategies for the players in this system are those that maximize m;.
From the set up of the model it is obvious that there is a trade-off between fighting
for more of the resource and putting effort into production. In order to solve this
problem we need to solve

max m; = max (eipiw)" = [(ewf)/(f] + 1"

. (4.vi)
subject to a;e; + bif; = 1

where n = a/(1 — @).
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This is straightforward optimization problem and is solved by constructing the
Lagrangian. This is a standard method for constrained problems and is found in any
undergraduate mathematics text. The Lagrangian is written

L=[ewf)/(f + 0" + (1 — aiei = bify)
Solving for the first order conditions
oL/of; = 0,
aL/de; = 0
fori =1, 2 and dividing dL/df; by dL/de; eliminates the A term. g; is eliminated using
ai = (1 —bif))/ei

from the constraint term. The details are in Hirshleifer (1995, pp. 34-5).
It is now possible to write the optimum strategy of player 1 in terms of the strategy
of player 2 from the solution to equation (4.vi). It is

f/f; =n/bifi) -+ 1)

For the simple case where a; = a and b; = b for i = 1, 2 the strategies for both players
are the same and this reduces to

fi=f=a/b2—a) (4.vii)

This gives the following:

Proposition 4.c:  The larger the value of the decisiveness parameter, «, the more
resources devoted to fighting. The lower the cost of diverting resources to fighting, b,
the greater the resources devoted to fighting.

Proof: Immediate, from equation (4.vii). [ ]

4.5 Swords into plowshares: Grossman and Kim

Grossman and Kim (1995) analyse a model in which players can allocate
resources to defence, production and offence. They are concerned with the
conditions under which a non-aggressive equilibrium is possible. This is an
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equilibrium in which no resources are allocated to offensive weapons. In this
case resources are allocated to defence and production.

4.5.1 The model

The model is for two players and the game is set out in two stages. In stage one an

allocation of resources to defence is chosen. In stage two resources are allocated to

production and to offence. The optimum allocation of resources in stage one

depends on the response in stage two. Hence the game is solved for stage one by

backward induction from stage two. Since the mathematical details of the argument

can be obtained from the original I shall only provide a sketch of some of its features.
Total resources for player i are g;. This is allocated to meet the condition

ai=Xxi+yi+z

where x is resources allocated to production, y is resources allocated to offence and z
is resources allocated to defence. Since resources are allocated to defence in stage
one,

ai =27i =X +i

The production function is ax;. The security for property depends on allocation to
defence and offence. The fraction of the total endowment retained by an agent is

Pi = zi/(zi — 6y))

where 6 indicates the effectiveness of offence against defence.

It is assumed that fighting over resources is destructive. Hence agent i gains the
fraction of agent j’s endowmnent given by (1 — p;)(1 — ), where g measures the
losses through fighting.

The total pay-off to player i is

vi = ax; + piai + (1 — pj) (1 — B)a (4.viid)

which can easily be seen to be quasi-concave as required by theorem 4.1.

Since the model is in two steps it has the advantage of allowing y; to be calculated
in stage two under the assumption that a; and z; are fixed from stage one. Thus the
partial derivative dv;/dy; does not have to take the dz;/dy; into account.

4.5.2 Security of claims to property

The security of claims to property is calculated by differentiating equation (4.viii)
with respect to y; in stage two and then using this to calculate the optimum level of
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z;i in stage one. The derivatives are

dV,’/dy,' =—a—(1-p) (api/ayi) dj

and

dvj/dz; = [0pi/z; + (3p;/dy;)(yi/ 9zi)] aj —

Substitution from the equilibrium z; into the equilibrium y; from these two
equations gives

1-1/2(1 — B)9)laj/2x6 for 2(1 — B)6 > 1 .
This says that when 2(1 — )6 < 1 the optimum level of defence is such that there
is no fighting at all over property. It will be noted that this is a function of the
parameter that gives the effectiveness of offence against defence and the parameter
that gives the losses due to fighting. It is not a function of wealth endowments.
An interesting question is the relationship between the equilibrium allocation of
resources to offensive activities and the effectiveness of offence. It might be
expected that resources devoted to offence would increase. To test this, use equation
(4.vix) to get

3yi/90 = aj[1 — (1 — p)8]/26%a(1 — B)

This tells us that, in this model, resources devoted to offence begin to decrease at
some sufficiently high level of development of the relative capacity of offensive
technology. An example is given in Figure 4.3.

In other words at some high level of effectiveness of offence the players are better
off shifting the smaller amount of resources that remain after predation into other
activities such as production.

It might be thought that the two stage characteristic of this model imposes too
strong an assumption and that it is more reasonable to assume that players allocate
all resources simultaneously. Let us now consider this case.

4.6 Stealing production and guarding

Suppose that we have a system in which players attempt to maximize their holdings
of material goods by allocating resources between production, stealing and guarding
simultaneously. Stealing is anachronistic, but it has a stylistic advantage.? The main
problem in trying to analyse such a system is that, with three strategies the decision
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Figure 4.3 Resources devoted to offence

to devote resources to any one activity does not necessarily determine the resources
devoted to the remaining two. For example, if production goes up there would be
more to steal. Does stealing or guarding go up? This indeterminacy is itself
interesting because it is probably a feature of many real world outcomes.

4.6.1 The model

The model is constructed by imagining that there are two players and that each
player controls one units of some resource. This might be thought of as labour
time. A strategy for i,i = 1, 2 is a choice of the amount of this resource to devote
to production, stealing and guarding. These amounts are designated x;, y; and z;
respectively.

The goods that are produced and stolen can be thought of as a pile of possessions
which is to be guarded. Unlike the Hirshleifer (1995) and Grossman and Kim (1995)
models, it is assumed that theft is limited to produced goods rather than all
resources. That is, the players raid, but they do not struggle over territory. Players
derive monotone increasing utility from increases in the amount of material goods
held.

The game is played repeatedly with an infinite time horizon. Players have perfect
information at the start of the game and use an open loop strategy.

Returns to a player for stealing and guarding will depend on the amount of
resources devoted to stealing by player i and the amount of resource devoted to
guarding by player j, i #j. They will also depend on the amount there is to steal.
Returns to guarding will depend on the amount of resources devoted to this activity
and the amount of resources devoted to stealing by the other player, as well as the
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amount available to steal. Returns to production depend on the resources devoted to
production.
The production, stealing and guarding functions are written respectively

m; (X;)
hi (yi, i, Zi, X, Yj, Zj)
8i(zi, y))

where i#j. These functions preclude manna-from-heaven technologies where
goods are free.

The function h; takes into account the fact that what is stolen from player j depends
on j's produced goods and what j has stolen from i. I shall say more about this later.
Assume that these functions are continuously differentiable in their domains up to
the required order and concave in x;, y;, z; respectively. Define g € [0, 1].

The problem for player i is to maximize the amount of goods it holds. Since it was
assumed that each player guards the stock of goods that it has produced and stolen,
the problem can be written as follows.

y = maximizey; v; = gi(m; + h;) (4.x)
X
subjecttox; +yi+zi=1

In what follows I will drop the subscripts to ease the notation where the meaning is
clear.

4.6.1.1 Equilibrium properties of the general model

The equilibrium properties are again considered to see whether the game is stable, or
there is at least one player that is always better off changing its strategy, no matter
what strategies every other player has chosen. This means that the system is
unstable and probably cannot continue in its current form.

The conditions required for an internal equilibrium are:

v/ox = av/dy = dv/oz (4.xi)
where dv/dx = ga(m + h)/ox and dv/dy = goh/dy. dv/oz = (9v/dg) (3g/dz)(m + h) +gg—lz1.
It is also assumed that dv/dz is concave.

Proposition 4d: (Equilibrium) (a) The game has a Nash equilibrium in pure
strategies for sufficiently small values of k where 0 < 3h/dxdy < k. (b) If g is non
linear, and at least one of m and h is non-linear then s;(s;) is a one to one function.

Proof: (a) The proof depends on the Debreu, Glicksberg, Fan theorem in section
4.2. Continuity is obvious. Quasi-concavity is established from the properties of the



Struggles over Property with Stealing, Production and Guarding 77

Y

Y1 (¥2)

Y2 (%)

pZ1

Figure 4.4 Example of reaction functions with a specialized predator

bordered Hessian matrix for v.2 It is straightforward to show that the determinants
of this matrix will have the appropriate signs for 3*h/axdy sufficiently small.* (b) See
Appendix 4.8.1 below. [ |

Proposition 4d says that the system will only be stable if the production and/or the
stealing functions are constrained in some way. Where the constraints are not met
stability cannot be guaranteed.

The proof that the best response function is one to one in part (b) is important
because it narrows the range of possible responses to a single best reply.

It is easy to pick an example that violates concavity where best reply functions are
not unique. Consider v with increasing returns to scale from guarding.

The rest of the analysis concentrates on games that meet the conditions required
for an equilibrium. What is not clear is whether production and stealing both have
to be constrained, or only one of these. What is the nature of these constraints?

It is important to note the game analysed so far is consistent with a range of
equilibria, including the possibility that one player is a specialized predator.
Consider the best response functions given in Figure 4.4 for the case without an
internal equilibrium. The reaction for player 1 is always greater than, or equal to,
that of player 2. A trivial example of specialized predation is given by the case where
the technologies are such that dv;/dx; < dvi1/dy1 and dvy/dxp > dvo/dy, for the
domain of the problem.

4.6.1.2 Change in the technology of production

The forces of production have been seen as one of the main factors in historical
development by many social scientists, and in particular by Marxian political
economists. One way of thinking about this would be to consider the case where a
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general change in technology increases productive capacity in the long run, but
roughly balances stealing and guarding capacity. Wheeled vehicles can be used as
chariots to increase raiding, but also to help construct stockades to protect goods.
This case can be approximated by considering a change in productive technology
with stealing and raiding technology constant.

For changes in the technology of production, with the technology of stealing
constant, we might expect the allocation of resources to change with perhaps more
devoted to production. A surprise here is that this may not happen.

Define a separable equation as one that can be written

w(kx) = I(K)y(x)

for ¥ and I continuous injective functions. Examples are v = x, x2, /x. This is a
weaker condition than homogeneity, for example.

Let an increase in productive technology be represented by an increase in the
parameter k.

Proposition 4e: (Constant proportionality of stealing). The equilibrium
strategies are invariant to any increase in the productive technology that can
be represented by a parameter, k, where m = m(kx) and m is separable in k.

Proof: Immediate from the fact that strategies are invariant under multiplication
of pay-offs. Since stealing depends on production by player j the pay-off function is
v =g(l(k) + I(k)h) = I(K)v. [ |

Proposition 4e tells us that, for a specified class of production and stealing
functions, the strategies of the players will not alter with changes in the technology.
This can be illustrated by considering a situation where there are a number of bands
with an inefficient technology of production. Perhaps they can only gather nuts and
berries. These bands allocate their resources among production, stealing and
guarding. Suppose the technology of production increased to the level of modern
societies. Despite this change in production, the relative resource allocation remains
unchanged.

The prediction that a constant proportion of resources is devoted to stealing and
guarding throughout history is intriguing. There is a fairly simple intuition
underlying this result. It is that, as productivity increases the gains from stealing
and guarding both increase. These gains offset the tendency to shift resources out of
either of these activities.

The extent which the conditions assumed for the model hold for actual social
systems could, in principle, be empirically tested. Since the notion of stealing may
be too narrow for comparison across different societies it would be best to think of it
as non-productive acquisition. Such a test would also raise some interesting
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questions in measurement and classification. Should some of the activities of
lawyers in modern societies be treated as resources devoted to non-productive
acquisition, for example?

So far the model has been analysed in very general terms. Let us consider a specific
example.

4.6.2 A two player example with symmetric players and concave pay-off
functions

The example to be analysed is a symmetric game in which each player has the
same initial resources and pay-off functions. The assumption of symmetry is
interesting in itself and is used by Hobbes and Locke. It also allows us to avoid the
analytical difficulties of explicitly analysing a system in which three resources are
allocated simultaneously.

Since the game is symmetrical we know that there must be at least one Nash
equilibrium where both players use the same strategy. I will concentrate on this
equilibrium in what follows. I do not have a proof that this equilibrium is unique
although there is an argument that it is a focal point for the game.’

Stealing from produced goods is written in full as

hy = filma + fo(my + fi(mz +..)).

For m separable this gives the separability that was required in proposition 4e. Hence
the game in equation (4.x) has pay-offs

vi = &im; + fim; (4.xii)

at the symmetrical equilibrium.
Leta,b e R,a > 0,b > 0. Write the production stealing and guarding functions as
m; = X?
fi =2a/yi/(1+ z)
gi=1-2ayy/(1+z)

Note that the production function has been constructed so that it is non-separable
to give some new results.

This gives the conditions for a Nash equilibrium as gim;” = f;'m; = g;'m; where (.)’
is the derivative with respect to its own control. This means

[1—2ayy;/(1+ z)lbx; ™" = ax? //yi(1 + zj) = 2ax] \/y;/(1 + z)°
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Figure 4.5 Relation between technology of production and resources devoted to theft

From gim;’ = g;'m; and f;'m; = g;’m; and the assumption of symmetry we get

2y:1+Z

x=2b[y*/(ayy) —y] (4110

Consider changes in the technology of production.

4.6.2.1 Changes in the technology of production

The questions here are the effect of a change in the technology of production on the
amount of resources devoted to theft and the effect of these parameters on the
equilibrium of the system. From proposition 4d we are particularly concerned with
the question of whether it is constraints on the technology of production or on the
technology of stealing that is central to the existence of equilibria. Since the
consequence of a change in production depends on the technology of stealing these
have to be considered together.

The resource constraint x +y + z = 1 and equation (4.xiii) gives the equilibrium
condition

b=2-3wH2w? w/a—1) (4.xiv)

where /y = w.
Letting v represent a continuous function, equation (4.xiv) can be expressed as

b =y(w,a)
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¥ is injective and has a continuous inverse within the domain of acceptable values
of w for this problem, a is treated as a parameter. Hence

w=vy"1(b, a) = wb, a).

Write w(b, a’) = w(b)’. This is analysed to establish the following proposition.

Proposition 4f: (a) There is a k € R such that, for a > k an equilibrium only exists
for b = 0. This equilibrium is unique. (b) For a < k the amount of resources devoted to
stealing decreases as b increases for a constant. (c) For a > a’, w(b) > w(b)'.

Proof: Appendix 4.8.2. |

Proposition 4f is illustrated in Figure 4.5. It gives us the following additional bits of
information about the system.

4.6.2.1a The technology of stealing trumps the technology of production. A
solution exists for all b for a < k. For a > k, however, the only solution is the
trivial one where b = 0. This is a manna from heaven technology and there is
no production. For any situation where the amount of goods available is altered
by the resources devoted to production, there is no equilibrium and the system
is unstable.

4.6.2.1b The resources devoted to theft will decrease as the technology of
production improves for a given technology of stealing less than some critical
value k. This tells us that, at least for the symmetric game with a non-separable
technology of production, it is the absolute value of the stealing technology
that is important and not the ratio between stealing and production. This is
because the rate of decrease in stealing for an increase in production will be
reduced as the technology of stealing improves. At the limit an increase in the
technology of production will not reduce resources devoted to stealing.

This might be compared with the constancy of stealing hypothesis in proposition
4e. Although the resources devoted to stealing are not constant where the
technology of production is not separable, they cannot fall below some level that
increases with the technology of stealing. Hence we have a weaker hypothesis of a
minimal level of resources devoted to stealing for all levels of production.

4.6.2.2 Changes in the technology of stealing

The technology of stealing is now taken as a variable parameter. To analyse this we
get, from equation (4.xiii), and the resource constraint

a = 2bw?/[2 — w?(3 — 2b)] (4.xv)
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This gives
w=1vy""(a,b) = w(a),

where w is continuous and injective for

2—-w 3 -2b) £0.

It is immediate that the sign of dw/da remains the same for all b. From proposition
4g we also know that the resources devoted to stealing at each value of the stealing
parameter are reduced as the technology of production increases. That is, for any
b > b’ we have w(a) < w(a)’.

Consider the way in which the system responds to changes in the stealing
technology with b constant.

An analysis of equation (4.xv) establishes the following proposition.

Proposition 4g: (a) Resources devoted to stealing increase for an increase in the
technology of stealing; (b) the total amount stolen begins to decrease for some value
of a; (c) an improvement in the technology of stealing makes both players worse off.

Proof: Appendix 4.8.3. [ |

Proposition 4g (b) is illustrated in Figure 4.6. It is simple to show that as
technology of production increases the value of a at which the returns from stealing
start to reduce increases.

Part (a) of proposition 4g is what would be expected. Together with the second
and third part it shows that, even though an increase in stealing makes both players
worse off, the optimal strategy for each player is to attempt to steal more.

4.6.3 Summary of results

The main findings from the analysis of this model are summarized below.

4.6.3.1 Systems in which stealing production and guarding are possible will only
have an equilibrium if the level of stealing technology is low. This is consistent with
Hirshleifer’s (1995) findings on the break down of anarchy if stealing technology is
treated as decisiveness of conflict. This was shown to be true in both the case of the
general game and the symmetric game. In addition it was shown for the symmetric
game that increases in the technology of stealing could not be offset by increases in
the technology of production.

4.6.3.2 Resources devoted to stealing and guarding may be constant over a large
domain of change in the technology of production. This constancy hypothesis
should, in principle, be testable.
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Figure 4.6 Returns for an increase in the parameter of stealing

4.6.3.3 For the symmetrical game, increases in the technology of production
reduce resources devoted to stealing and increases in the technology of stealing
increase resources devoted to stealing. In the long run stealing overwhelms
production.

4.6.3.4 For the symmetrical game the returns for stealing first increase and then
decrease.

4.6.3.5 Everyone is worse off in the symmetrical game for an increase in stealing
technology. Conversely, everyone is better off for an increase in guarding
technology.

4.7 Comment on the models

What the models tend to show is that stability is not guaranteed in the quasi-
anarchistic state of nature. It may be necessary to impose strong restrictions on
the efficacy of theft or offence in order to produce any equilibrium at all. Even
where the state of nature is stable, resources will be wasted on stealing, fighting
and/or guarding activities.

One implication of this is that there may be gains from a central authority or
protection agency that reduces these deadweight costs. The extent of these gains
would depend on what assumptions were made about the guarding technology and
the level of losses as the result of stealing and guarding.
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4.8 Appendices

Appendix 4.8.1 Proof of Proposition 4d(b)

1
For h, m, and g non-linear equilibrium requires from (i) that a(m + h)/ox =
oh/dy = (dv/9z)/g. Suppose xf‘ > x;. Since h, m and g are concave y? > y; and zf < zj.
This means dv;/dx; is strictly decreasing and (dv;/9z;)/g is increasing. Contradiction.
Now let m; be linear. dv;/dx; = k. Hence dh;/dy; = k and y; is fixed. If x; increases z;
must decrease and (dv/dz)/g increases which violates the equality. Similarly if x;

decreases. Contradiction. The argument is similar for h; linear.

Let s; = s;’ and s; = (x4, yi, zi) and s}# = (x#, y?, zf) be best response strategies to s;’.

Appendix 4.8.2 Proof of proposition 4f

Assume that w/a — 1 > O for all w in the relevant domain for an equilibrium. The
derivative of equation (iv) gives

ab/ow = —[6y, (25 (W/a — 1)+ (2 — 22) (6,/a — 44)]/2%, (w/a — 1)

The sign of aw/ob = sgn (8b/ow)™! = sgn —[6w@2w*(w/a— 1))+ (2 — 3w?)
(6W2/a — 4w)].

(@) There is a k>0 such that for a <k,ow/9b <0 and for a > kaw/ob > O.
Numerical analysis gives k’ ~ 0.83 for b =0. At this value of b, production is a
constant x° = 1 for all x. The solution for the two move stealing and guarding game
isy =2/3. Hence w = 0.816. For k > k’ we have aw/db > 0. This is not possible since
2y =1+ z and the resource constraint is violated.

(b) For k < k” we have aw/dob < O.

(c) From (iv) b - oo as w/a — 1. Hence lim inf w is w = a. For a > a’ lim inf
w(b) > w(b)’ and w(b) > w(b)'. for all b.

The assumption that w/a — 1 > 0 is true if w > a for w < 0.816. This follows from
equation (vi).

Appendix 4.8.3 Proof of proposition 4g

(@) The inverse is defined so aw/da = (3a/ow)~! = (2 — w2)/2w2(6— w?) > 0 for all
admissible w. [ = a/w. This gives f /da = (w — adw/da) /w?. The sign of df /da = sgn
2w3(6 — w?) — a2 — w?). 3f /da > O for 2w3 (6 — w?)/(2 — w?) > a = 2w? /(2 — w?).
(b) The total amount stolen is given by fx = (a//y) [2(/*/a/y — )] = 2(W? — aw).
This gives dfx/da = 2(2wdow/da — w— adw/da). Substituting for ow/da gives sgn
afx/oa = sgn (2w—a) (2—w?? —2w3(6 —w?). Numerical evaluation gives
3(dofx/0a)/ow > O for a:w < 0.605 and 9(3fx/da)/ow > O for a:w > 0.605. These
values of a are permissible since w? = y 2 0.367 < y max = 0.67. d(3f x/da)/dw = max
at w ~ 0.34. Hence 9fx/da is increasing at an increasing rate for a : w < 0.34.
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(c) Total wealth is given by v=gx+fx.Sov=(1—-fx+fx=x=2 (*/a/y — )
in equilibrium. Hence v =2(w3/a—w?). This gives av/da= [(6w?dw/da)a—
2w3la — 4waw/da. Substituting for a and evaluating gives dv/da < O for all a and
#?v/9a® < 0.
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Problems of Reputation and Markets for
Protection — Non-Co-operative Games

5.1 Introduction

It would be necessary for the state to enforce rules of property only if protection for
property could not be provided as a market good or in some other manner. This
chapter investigates some aspects of this possibility. Nozick argues, for example,
that, in a state of nature without Hobbesian problems, something like a market for
protection could emerge and produce a solution to the general problem of security
for property.! In this case, if the state provided physical security, the market could
provide security for private property through a process of selling and buying
protection. The state would thus remain an ultra-minimal institution that only
protects life. The market could then be seen as a quasi-autonomous mechanism that
could operate without external support once physical security is provided. That is, it
could be seen as a self-sustaining mechanism that could produce its own inputs as
outputs. Nozick avoids the security problem by assuming that individuals have
rights in the state of nature and that these rights would be respected by others. It is
difficult to see how this assumption might be justified. This problem will be
disregarded for the sake of the argument. If a market for protection cannot plausibly
arise in the absence of security problems, then it would not be plausible under more
rigorous conditions.

This chapter investigates the question of whether repeated games can lead to self-
supporting markets. It also considers the characteristics of a market for security. As
might be expected, the main characteristic of markets for protection is that, with
sufficient information, the supplier can capture most of whatever is to be protected.

5.2 Promises and reputation

The first question to consider is whether any form of market could arise without rules of
property. Since many exchanges cannot be made simultaneously, why would traders

86
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keep their promises and deliver the good? If the game is played only once, the problem
is that individuals will only keep promises when this is an optimal move. As there is no
authority to enforce contracts, and the good costs something to provide, it is
immediately obvious that the trade has the structure of a game with defect as the single
dominant strategy. In this case individuals might hire another agency to enforce
contract keeping, but this duplicates the problem at a higher level.

From the analysis of prisoner’s dilemma games it is clear that the best possibility of
trade is for the interaction to be repeated without a known finite termination time.

Two sorts of games will be considered. In the first players are of the same type. In
the second the characteristics of the opponents vary.

5.2.1 Sub-game perfect equilibrium in a game of promises with similar
players

The problem of whether players can be expected to keep their promises over things
such as trades can be considered by looking at repeated games in which players are
able to punish for defection. Consider, for example, a number of players trading
goods. The traders can co-operate by providing the good or the money stipulated, or
they can defect. It was argued in Chapter 2 that trigger strategy mechanisms would
be unreliable in a repeated prisoner’s dilemma because the costs of co-operating
while the other player defected were large and because permanent defection is not a
sub-game perfect equilibrium. In a trading game the costs of co-operating against a
defector may not be so large. Is there any condition under which punishment
strategies could produce a sub-game perfect equilibrium?

The outcome of punishment strategies depends on what assumptions are made
about what the players are trying to optimize. A particularly strong assumption
which allows for a refinement of the folk theorem is given in the following example.
Assume that there is a repeated game of infinite length and that players apply a time
averaging criterion to their pay-offs rather than attempt to maximize any individual
series of pay-offs. That is, they seek to maximize the expected value of the sum of
their average pay-offs. This gives

E[si] =Y _vi(sf, s — i*)/n]
where the summation is for k between 1 and n — oo. It will be observed that the pay-
off is meaningful since the series converges rather than expands without limit. This
is because

E[silna/n = «

where o = max vk.
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In this case, players are not concerned about the timing of the pay-offs and they
are not concerned about any finite sequence of pay-offs. This is because a finite
sequence will have zero impact on a pay-off of infinite duration.

Let s¢ be co-operate and s¢ be defect. Assume the prisoner’s dilemma pay-off
relations v;(s?, s; > vi(s¢, s°;) and vi(s?, s7,) > vi(s§, s7,).

Theorem 5.1: (Aumann and Shapley, 1976). The infinitely repeated game with a
time averaging criterion has a sub-game perfect equilibrium ¢ = s* with v} > v,
where v is an attainable pay-off.2

Proof: The strategy s* is defined by a co-operation phase and a punishment
phase. In the co-operation phase, player i plays s{ on round t if j has played s; on
round t — 1. If player j plays s;i it is punished by playing the sequence s¢. This
punishment continues until the gains for j from the original move s;.i are
eliminated. Defections during punishment are ignored. Player i then returns to
the co-operative phase. [ |

Sub-game perfection is proven as follows. For the player who defects, the
punishment is such that

% o
18

vi(si. s < (s
For the player who punishes the cost of punishment is zero from the time averaging
criterion.

Since the punishment strategy is sub-game perfect, neither player has an
incentive to defect. This means that

o =(s7,s")

with outcome (s, s¢;). It will also be observed that the argument easily extends to
include punishment for those players who fail to carry out the task of punishing
defectors.

The idea of time averaging over an infinite series can also be applied to hawk-dove
games to allow players to do better than the dove, dove pay-off. Consider the pay-
offs for the hawk-dove game in Figure 3.1. If both players use s¢ the pay-off (1, 1) is
attainable. If players are able to communicate then they could make the Pareto
superior move into the shaded region to get v;1. For example, player i could play
sf= (sf’) on every odd move and (s;’) on every even move of the game with the
punishment strategies outlined above. If player j matches this with the sequence
;= (s7), (s then each player can get a pay-off (3 + 0)/2 = 1.5. This possibility is
illustrated in Figure 5.1.
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1.5, 15

-1, -1

Figure 5.1 Pay-offs for the hawk-dove game with punishment for non-co-operation

The difficulty with the sub-game perfect Nash equilibrium in these examples is
that the strong assumptions about the game having infinite length and time
averaging makes the conclusion weak. It says that players will co-operate because
there is nothing to be lost from carrying out any finite sequence of punishments. If
life is short and players do care about a finite series of sub-optimal pay-offs, then the
sub-game perfectness of this strategy is lost.

An alternative to relying on punishment for not keeping promises is to allow
players to build reputation on past performance.

5.2.2 Reputation

The optimum strategy for a player trying to build a reputation on past performance
will depend on the best response strategies to a player sending signals, or producing
a performance, of that type. The analysis of credible signals is the analogue of that of
credible threats. Hence there is a difficulty that past performance may not
necessarily be taken as a guide to future action if there is no means of committing
to continuing to behave in the same way. I will ignore this problem and assume
that, without guarantees, performance tends to cause other players to impute a
reputation.

Since we are now dealing with a situation in which a player may invest in
establishing a reputation because it provides future pay-offs it might be the case that
a player will take a loss at time t in order to establish a reputation that gives a greater
pay-off at time ¢ + k. In order to evaluate strategies for a pay-off stream the idea of
sequential rationality is used.
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Definition: A strategy s; is sequentially rational for player i in a game where i can
send signals about its type if s; maximises the sum of pay-offs for that game. W

Let k/ be the reputation of player i for all moves including the move on round j.
The optimal response function for i at round j is to setr/ to maximize the sum of pay-
offs for the game.

. . . n . . . .
s/ =rl:vir)) = argmava,-[k’, sl r(k=hY (5.0)

i i
j—1

where k/ = ki(k/ — 1, si’_l).

A strategy of only trading with players that have a good reputation might be
adopted if players interact frequently. If the numbers are small however, then it may
be optimal to trade with a player with a poor reputation if this player is the only
source of a desirable good. If the numbers are large, then it may be difficult to get
reliable information. In some cases it will pay players to give out information about
the reputation of a rival in a strategic manner.

One interesting example of a reputation game that avoids these problems is where
there are some large, or long-run players, and a number of smaller players. The
games have been studied by Kreps and Wilson and Miligrom and Roberts
(Fudenberg and Tirole, 1992, p. 369).

5.2.3 A reputation game with a long-run trader

The players in this game are a long-run trader 1, and a large number of customers
or short-run players. Let a short run player be in where m € N — 1. The long-run
player is concerned with pay-offs in a repeated game without a termination date
and wishes to establish a reputation that facilitates trade. One argument for the
existence of a firm, for example, is that it acts as a long-run trader with a
reputation and facilitates transactions. Similar arguments apply to brand name
products.

The short-run player moves first. It makes a decision whether to enter into a
transaction with the long-run player, such as buying a good, on the basis of this
reputation. If the long-run trader were to move first, the optimum strategy of the short-
run player would be to defect. Suppose the long-run player hands over the good. Since
the short-run player has nothing to gain from reputation, its optimum strategy would
be to not pay.

The short-run player has a best response that maps the reputation of the long-run
player into an optimum response strategy

T Tk, 1) € Spy.
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km.1, is the reputation that player m € N — 1 assigns to player 1. The reputation
operator can be seen as a mapping of past performance into a probability that the
long-run player will use some strategy s{ on the next round. Hence

i1 -1 qaj
km,l' (krn.l’sl )_)pml

where pf,’;yl is the probability assigned by m that player 1 uses strategy g on round
jji=1,... '

Assume that the long-run trader can be honest or cheat and that p}, is some
function of the number of times the trader has been honest in the past. For the
short-run player let s¢, be trade and s%, not trade. For the trader s§ is be honest and s¢
is cheat. The customers are uniform and each gets utility, a, from trading. For the
purpose of the exercise assume that the trader must sell at a purchase price of c. Both
players get zero from not trading. The trader can produce the good at a cost less than
¢ and wishes to maximize its profits.

Suppose the trader is long lived and plays a number of rounds without a known
termination date and the trades are sequential. From equation (5.i) the pay-off is
maximized by choosing s; to satisfy

v(s1) = argmax vy((sS, s5,), (4, SN + (55, s5, (%), (89,85, (20> + ...

where the superscripted numbers are the rounds of play and m is a player taken at
random from N — 1.

The game is considerably simplified, and there is no loss in its qualitative
properties, if we take the case where the probability is uniform. The long-run player
will maximize its profit if the customer pays ¢ and no good is provided. The
constraint is that it must choose s; such that all players co-operate. If not the pay-off
is zero. This gives

maxy V1 subject to vi(sy,) > Vin (sﬁ,)

The lower bound for p = p* is where v,,(sS,) = Vin(s%,). This requires the purchaser
with utility a and purchase price c sets

pa—o—(1-pH=0.
This gives

pf=c/a

For trade to be strictly worthwhile a > ¢ hence p* < 1.



92 State, Anarchy and Collective Decisions

Assume that p is a one-to-one function and that p < 1 if player 1 has always co-
operated. Let )" s{ be the number of co-operative moves in n games. It follows that
for a — c sufficiently high there is a unique equilibrium

¢ = (51,5

where

s’{:Zsﬁ :p=p*and Zsﬁ <n.

As a — c increases the value of p* decreases. This means that the optimum amount
of cheating by the trader increases as the value of the good to the purchaser
increases. In other words, the more sought after or vital the good, the less reliable
the supply.

Consider a life saving drug, for example. Essentially the trader is capturing some of
the difference between the price of the good and its value by setting an actual cost
that depends on the probability of supply. The trader would be indifferent between
doing this and increasing ¢ until p* = c/a for p = p max.

The pay-offs for this game are illustrated in Figure 5.2. v; is the total pay-offs to
some sequence of n games. )_ s{ is the numbers of games for which the trader has
cooperated and is represented as points on the horizontal axis and pay-offs as points
on the line v; =) v{.

V4

J
Vi =2V

3siip = p*

Figure 5.2 Pay-offs for the long run trader
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For a specific example, assume that the probability a customer assigns to the trader
being honest is the proportion of honest transactions in the past. Then

p=ks) =) si/n.

Pay-offs are given in Figure 5.3.
In this case the customer will trade if p > % Hence the trader uses the mixed
strategy

=G0

at each round of the game.
If we make the assumption that there is always some uncertainty in the game then
p < 1forall ) s. It will be noted that,

p—las(a—c)— 0.

This means that many trades that are Pareto superior will not be made. In other
words, even with an honest long-run trader, uncertainty may restrict trade to
exchanges in which gains relative to potential utility losses are large.

Similarly, governments may not be able to make welfare improving moves unless
gains relative to costs are large. It follows that one of the strategies of a welfare
maximizing government may be to create institutions that reduce uncertainty and
increase the potential for welfare improvement.

In what follows the problem of reputation will be ignored and it will be assumed
that protection agencies keep their promises. This still leaves the interesting
question of whether individuals with property rights would buy these services and
how the market will behave.

s§ s{
58 1, 1 -2, 2
sd 0,0 0, 0

Figure 5.3 Pay-offs in the one-shot trading game



94 State, Anarchy and Collective Decisions

5.3 A market for protection with benefits for non-contributors

Assume that there is a security company, individuals with holdings of material
goods, and pirates who steal. The security company punishes offenders and
pirates know that some individuals have security, but the pirates do not have
perfect information. If security is purchased by some individual i the probability
of being caught increases for the pirates and this will deter attempts to steal.
Hence individual j benefits from the purchase of security by individual i. It follows
that the optimum response for j is to purchase less security than it would if it did
not benefit from i’s action. Protection agencies might try to avoid this by
identifying those that it protects. One response to this would be a secondary
market in whatever identity stickers are used by the agency. An example is a
‘beware of the dog’ sign on houses without a dog. It follows that lack of
information will mean that some members of the population will benefit from
security without paying the costs.

The case where the purchase of security benefits some non-purchasers is a
straightforward problem of strategic interaction producing positive pay-offs
for a response of do not contribute. This is often referred to as a free-rider
problem.

Consider the case where the protection agency protects the rights of all its
members. If this protection is extended to everyone in the society then the
structure is the basic prisoner’s dilemma and the discussion in section 2.7
applies.

Here is a more interesting possibility. Assume that the protection agency only
protects those who pay. As the number of paying customers increases existing
members are made better off because the agency gets economies of scale, disputes
are lessened because it is easier to arbitrate between members and so on. Non-
members do not benefit when the membership of the agency is small. As the
membership increases non-members begin to benefit because pirates are not certain
who is protected.

The pay-off for each member is

vi = f(me) — ¢ > f(0)

since an individual benefits from joining even if no-one else joins. m is the total
number of members. The pay-off to a non-member is h[(m — 1)c].

f(mc) — ¢ > h{(m — 1)c]

for m small, since the probability that any individual is a member is small and there
is little deterrence for pirates.
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h[(m — 1)c] > f(mc) — ¢

for m large.

This gives a variant of the problem in section 2.5. Let join be s¢, and not join be s?.
The pay-offs are set out in Figure 5.4. The functions are illustrated in Figure 5.5.

Note that the pay-offs will depend on m. Hence the mixed strategy analysis used
for the hawk - dove game with constant pay-offs used in Chapter 3 will not work
because we do not have constant values to calculate the probabilities. We already
know that players cannot have a pure strategy in this game. Since all players are
equal they must all have the same mixed strategy. The proof uses the technique for
calculating equilibrium that was used for the war of attrition in Chapter 3. Let n be
the number of players.

Proposition: The solution for each player is ¢ = p* = (m*/n, 1 — m*/n) where p* is
a probability vector.

Proof: Suppose that players use a probability density function p’. The pay-off for
any pure strategy against the mixed strategy p must be equal. Therefore

1 1
E0] = [ v(O)p()'dx = E[1] = [ v(L)p(x)'dx
/ /

where v(0) and v(1) are the pay-offs from contributing with a probability 0 and 1
respectively. Letting a = v(0)p(x)'dx and b = v(1)p(x)'dx we can write the above as

u 1 u’ u 1 1 u'
/a+/a+/a=/b+/b+/b+/b
0 u’ u 0 u u u

whereu=y: yn=m*—¢c,u'=y: yn=m*+e¢.

s S_;
st fime) - ¢ f)y - ¢
s h[(m-1)c] 0

Figure 5.4 Pay-offs in the security market
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f, h

h[(m-1)cl

f(me)-c

Figure 5.5 Pay-offs for the security game

v(0) = h[(yn — 1)c] and v(1) = f(yn) — c. This means that

u u’
/u—> /base—>051ncev(0)—>v(1)
u

u

around yn = m*. Therefore

u 1 u 1

[or o= oo o

0 u’ 0 u’
Since h[(yn — 1)c] and f(yn) — c are in general not equal for all n > 0, this condition
can only be satisfied in general if the probability density function p’ =0 in the
stated intervals. This means that probability

O<y<y:yn=m"—z¢}
and the probability

{y:yn=m"+e<y<1j}
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must go to zero for ¢ — 0. Therefore
y=y:yn=m*ory=m"/n.

To check that this is a Nash equilibrium consider the optimum response of i to all
other players using s_; = p* = (m*/n, 1 — m*/n). We have v;(p*, p*) > vi(0), vi(1) by
definition. vi(p*, p*) > vi(p, p*) since s; = (p, p*) gives a pay-off in the straight line
avi(0) + (1 — ajvi(D). [ |

This tells us is that all players contribute to the scheme with some positive
probability and that the average level of protection is a proportion y = m*/n which
is less than full protection. Note that y decreases as m* decreases and as n increases, It
will also be noted that the outcome is not on the Pareto frontier since everyone
could be made better off with an average level of protection greater than m*/n.

Remark: The essential difference between this game and the conditional co-
operation games analysed in Chapter 2 is the nature of the pay-off structure around
m = 0. One implication for the free-rider problem is that, if it is worthwhile for each
player to co-operate if no-one else co-operates, then an equilibrium at some level
will result.

5.4 The basic enforcement problem in a Nozickean state of nature

Nozick assumes that protection agencies would provide security in a manner similar
to suppliers of other consumer goods and that the normal efficiency results for
markets could be expected. Is this plausible? One of the characteristics of security is
that there is an externally imposed penalty for not consuming the good. Nozick’s
assumption will be investigated by examining the strategies of a price setting
agency. It is asked whether it is possible for the agencies to manipulate the price, and
how consumer demand reacts to changes in wealth. I also briefly consider a price
taking agency

The market for protection would plausibly give rise to a single agency with a
natural monopoly because protection has increasing economies of scale. Nozick says
that this would be the case, for example, because a larger protection agency will
always have an advantage over a smaller agency and each individual will wish to
join the most effective service (Nozick, 1974, pp. 15-17). Assume this is the case.

It is easy to show that a monopoly profit setting agency that is free to set either
prices or the probability of enforcement can extract much of the available material
wealth from the population. Consider the price setting agency.
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5.4.1 The price setting agency

The protection agency is free to set any price for enforcement and there are n
individuals in the system. Individual i has wealth w;. The subscripts 1, ..., n index
the individuals in an ordered sequence of increasing wealth.

wi+1l—w;=¢.

In other words wealth increases uniformly by some increment e. It is assumed that
the agency knows the wealth of each individual. The individuals have two strategies.
Buying protection is strategy s/ and not buying is s;”.

Assume that the agency always enforces the claims of its clients. Since there are no
rules there is no basis for Nozick’s assumption that the agency will adjudicate
between just and unjust claims (Nozick, 1974, p. 13). An agency that enforces all
claims will be more attractive to clients than one that only enforces just claims.>

A player with protection beats one without with a probability p. A conflict
between individuals with protection results in no loss to each. For simplicity the
probability of enforcement and the proportion of wealth lost is set at one.

If player i gets into a dispute with another player at random, then the pay-oft is the
average wealth

a= Zw,-/n.

Let ¢; be the price charged to individual i for enforcement. The pay-offs for i are given
in Figure S5.5.
Suppose the protection agency has information on the wealth of every individual

Proposition 5.a: The agency t maximizes its profit by setting the following
schedule of prices.

wi—nif wi <a
Ci = ,
Wi —xe—nifw;>a

where x = (i — k)/2 and n,¢, > 0 and k is the index on the individual such that
Wy = d.

Proof: At price w; — n, all individuals with wealth w; < a have a dominant strategy
sf. The proportion of the population that buy at this price is 1 An individual with
wealth greater than a is now faced with the following pay-offs.

vish)  =Wi—a)/24+Wi+a—c)/2
visit) = (wi)/2
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It pays to buy protection provided vi(s}) > vi(s{*). This is true if
a/2 —ci+w)/2>0
Substituting w; = a + (i — k)¢, and ¢; = w; — xe¢, gives
xe —(i—k)e/2=0

At this point all individuals with w; > a are indifferent between buying and not
buying protection. Hence for ¢; = w; — xe — n everyone buys the service.
This gives the agency the pay-off to

n
v=> wi—ny—(n-kxe
1

which tends to Y w; as ¢,n— 0. It follows immediately that ¢; is the profit
maximizing price schedule.
Hence the agency gets almost the total wealth of the population. [ |

This analysis could easily be generalized by dropping the assumption that wealth
increases by some fixed increment e. Assume, for example, that w: i —> R is
approximated by a continuous function which increases with i and there is a small
interval Ai between individuals. Let the proportion of the total population who buy
at the initial price be «. In this case the problem is to set x such that
a—c—a(w;—a)=0 for wi = wyyi_1- d(Wkyi_1)Al.

5.4.2 Price taking and other agencies

It is fairly simple to analyse other forms of agency such as price taking agencies that
allow buyers to bid for services. These games will generally exhibit the characteristic,
mentioned in the introduction, that the agency can capture the surplus. For
example, it might be considered that the agency controls the quality of
enforcement. What is also characteristic of these cases is that the surplus tends
towards the entire wealth. This is because the outcome without protection is the loss
of most material wealth to those with protection.
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Evolutionary Stable Strategies

6.1 Introduction

The problem which is considered in this chapter is that of how the equilibria that
have been calculated for games of security and struggles over property might emerge
in a system of interaction where individuals follow some local optimization strategy,
such as trial and error. This is important for two reasons. The first is that the models
set out in the previous chapters depend on the assumption that agents can optimize
globally and calculate their optimum strategies. Although these models are
complete as descriptions of the equilibria that would be attained by optimizing
agents, they do not address all the issues that are of concern in discussions of order
and security. Where the games are straightforward, and the pay-offs sufficiently
high, it might be expected that players would calculate the equilibria directly.
Where things are more complicated it would take the players considerable effort and
technical skill to calculate the optimum strategies. The second is that the
assumption of global optimization may not be a completely adequate model of
decision makers in the context of much of the discussion of spontaneous order. The
implicit model that underlies much of this discussion seems to be of some sort of
unplanned outcome. In this case it is of interest to investigate the consequences of
treating individuals as following a local optimization rule. It might be the case, for
example, that individuals use a trial and error approach.

The outcomes of trial and error type approaches are best dealt with in game theory
under the heading of evolutionary stability. This idea is an extension of the notion
of stable strategies previously discussed.

This chapter considers the idea of evolutionary stable strategies in general. It is less
oriented to specific problems than previous chapters. This general treatment is
warranted because of the importance of evolutionary stability to the idea that co-
operation might emerge from interactions in large groups. The notion of evolution
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may also include the evolution of cultural traits that may be conducive to co-
operative outcomes. An example would be the emergence of a co-operative or a
retaliatory strategy in a mixed population of players.!

Evolutionary stability is also important for the problem of choosing between
candidates when several possible equilibria exist. It has so far been suggested that an
equilibrium should only be considered acceptable if it exhibits some sort of stability
properties.” So far stability has been explored using an updating process that
depended on assuming that all other players’ previous moves remained fixed. The
concept of evolutionary stability provides a more justifiable approach.

I will concentrate particularly on the case of games which tend to exhibit cycles or
spirals even though they may be stable under some definitions.® This illustrates
some of the consequences of allowing interactions to be dynamic. It also
demonstrates that the existence of a stable equilibrium is not sufficient to ensure
stable behaviour in the sense of behaviour that converges rapidly to a fixed set of
strategies. Such behaviour might oscillate over a wide range.

6.2 Evolutionary stable strategies

The main idea behind evolutionary stability is that a Nash equilibrium in a static
game would be stable if it could be explained as the outcome of the actions of players
following some process that starts at random and then only changes in a direction
that improves the outcome. Hence evolution is analogous to some sort of trial and
error process under incomplete information.

The parallels between evolutionary stability and Darwinian theory are not accidental.
The major early application of evolutionary stable strategies is Smith’s Evolution and the
Theory of Games, introduced in Chapter 3, where the war of attrition was analysed.
Animals do not calculate in the sense of consciously solving optimization problems. At
the same time they compete, or play a game, over resources. The blind process of
evolution should lead to some sort of local optimal strategy for each species in this
game. Roughly, it is argued that this results from the more successful strategies giving
greater pay-offs. This increases the ability of the carriers of these strategies to breed and
hence increases the proportion of these strategies in the next generation.

The parallel with strategies in games played by calculating agents is that there will
be a tendency for more successful strategies to be repeated or copied and the less
successful to be dropped. This process provides an analogue to breeding or
reproduction.

The analysis of struggles over material goods as a war of attrition in Chapter 3
serves as an illustration. The strategies of the other players may not be known or
information may be partial in such a game. When the game is played many times
there is some pressure to eliminate strategies that are sub-optimal, or to eliminate
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players that adopt a sub-optimal strategy. Since the outcome for the war of attrition
is an evolutionary stable strategy, there is an argument that players would converge
on this strategy through repeated plays of the game.

One of the characteristics of real evolution is that the strategies of all players are
evolving simultaneously and it may be the case that the environment is evolving as
well. Thus, in the evolution of grass eating animals the grass eating animals
themselves change as do their predators and the characteristics of the grass. In
struggles between settlers and pirates the strategies of each group change as do the
technologies of predation and defence, the technologies of production and some
environmental factors, such as forest cover.

An analysis of evolutionary stability can be set up in a number of ways. For
simplicity I shall concentrate on a standard approach in the literature known as
replicator dynamics.*

6.2.1 Replicator dynamics (Smith 1982, Weibull 1996, Samuelson, 1997)

The analysis is restricted to a single class of players in a static game. By a static game
is meant something like the prisoner’s dilemma or the hawk-dove game. This game
is played repeatedly but under the same conditions. It might be thought of as a case
where the game is played in a large population and the players do not repeat their
interactions sufficiently to use strategies based on retaliation. Repeated interaction
games could also be subjected to an analysis in terms of evolutionary stability.

Consider the situation where the players are only allowed to play their pure
strategies. In a population of players different pure strategies might be played by
different players. This would correspond to a mixed strategy.

Strategies are updated or reproduced continuously to give a smooth process of
change. Strategies are reproduced or changed according to some function of their
success or fitness. This updating or reproduction process is treated as an analogue of
the birth—death process. Since birth and death takes place, the total population will
change over time. This might be considered as an analogue to the total population
playing the game and revising its strategies, although this analogue may be
questionable. To avoid this problem I shall follow the literature and write in terms of
the birth and death process.

A pure strategy is written s¢ and the number of individuals using s* at time t is
mk(t) = 0. It is important to remember that everything that is not a constant
changes through time. Notation such as m(t) will usually be abbreviated to m once
the point is established. Let K be the set of pure strategies. Hence for k € K the
number of players using pure strategies at time t is

ka = m(t)

kek
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The proportion of the population using strategy s* at time t is

mk/m:xk

This gives a population state which is the proportions using the available pure
strategies. Let

r
x = (x', x%,...x") where Zxk =1
k=1

Hence x can be treated in the same way as a probability distribution over mixed
strategies.

The pay-off to i from a pure strategy s¥, if the population state is x, is vi(s¥, x). The
average pay-off is for an individual who plays s* with probability x* against a
population with distribution x. So

Vi(x,x) = ZXka(Sk, x)

Since the process of replication takes place continuously the number of
individuals programmed to use pure strategy s will change continuously. What
we need is a mapping from the success of s¥ to the proportion of s* users in the
population at each instant in time.

Assume that the rate of change, or the birth and death process, at time ¢ for players
programmed to use strategy s* is given by the function

a+visk,x)—b (6.0)

where a and b are constants and b is the death rate. We do not have to worry about
the values for the constants a and b since they disappear in the calculation.

The change in the number of players in the population using strategy s is
dm*/dt. A time derivative is usually written f .

Since expression (6.i) is the birth and death process the change in the total
number of players using s at any instant of time is simply the rate multiplied by
that proportion. Hence

m* = [a + vi(s¥, x) — bim*

6.2.3 Analysis

The previous definitions can be put together to calculate the dynamics of the

population shares. What is needed is the change in x¥. Since m* = x*m
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m* = x*km + x*m

From the fact that the growth rate of m depends on the average fitness of the
population and is given by [a + vi(x, x) — b]

ikm = [a +vi(sk, x) — bim* — [a + vi(x, x) — blx*m

k

Since m* = x¥m subtraction gives

X6 = vitsf, x) = vilx, 0 (6.ii)

This says that the rate of increase or decrease in the proportion of the population
playing strategy s¥ depends on the difference between the pay-off for sk and the pay-
off for the average strategy. If s gives a better than average pay-off, the proportion of
sk players would increase. If it is worse than average then the proportion of sk
players will decrease.

6.3 Applications of replicator dynamics to hawk-dove games

The two static games that are of most interest are the prisoner’s dilemma and the
chicken game. It is almost immediate that the prisoner’s dilemma will have an
evolutionary stable strategy in replicator dynamics

o =(s s

since v(s{, x) < vi(x, x) in equation (6.ii) and the proportion of players using s must
continuously decline. The only exception is if the starting point is x: x* =1 and
s = s for all players. In this case dx°/dt = 0 and there is no change in the replicator.
Hence the equation remains constant.

The fact that dx¢/dt = 0 gives a trivial equilibrium in the replicator dynamics does
not mean that ¢ = (s{, s°;) is an evolutionary stable strategy in a more general sense.
One of the characteristics of the replicator equation is that strategies that are not
being played cannot be introduced. If a more general concept of evolutionary
stability that allowed for perturbations were used we would get dx‘/dt <0 and
x¢ — 0.

Consider the hawk-dove game given in Figure 3.1, reproduced here for
convenience.

What gives the game (a) the hawk-dove structure is ¢; > a; and b; > d;. As
previously discussed, provided this structure is preserved, the characteristics of the
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game remain unchanged. The matrix in (a) can be replaced by (b) without changing
the nature of the game provided that z;, z; > 0.
This gives the rate of change in the proportion of players using s" as

A= (s, x) — vilx, "
The values are,

vi(sh, x) = x7z, and vi(x, x) = x¥'x"z; + x7x"'z,

Since x" = 1 — x¥ we have
i = [z, — x"zy]xx"

" will increase if [x?zy —x"z;]>0 and decrease if [x?z, —x"z;]<0. For

7 — x"z1] = 0. Hence (1 — x")z, — x"z; = 0 and

X
[x?

X = 25/(z1 + 22)

" increases if X" < z,/(z1 + z,) and decreases if X" > z,/(z1 + z»). This is set
out in Figure 6.2.

What the analysis says is that the proportion of the population playing the hawk
strategy and the proportion playing the dove strategy tends towards the Nash
equilibrium in the long run. Hence the mixed strategy is evolutionary stable.

These proportions never reach the Nash equilibrium for the static game, however,
as they can only tend towards it as t goes to infinity. This is because as

Hence x

Xz, — x"

71]— 0
the rate of change becomes slower and slower. This makes sense. It says that as the
differences between switching strategies become less and less the incentive to switch
also declines.

Where such numbers are meaningful, this analysis can be repeated using
numerical values in Figure 6.1(a) to get values for the proportions of hawks and
doves in the population.

6.4 Cyclic evolutionary dynamics in two move asymmetric games

Smith also suggests that some games might not converge to an equilibrium but may
have cyclical dynamics. What this would require is either that no Nash equilibrium
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d h h
s5 s; e s
d d
S1 a by S1 0 Z;
h
s1 ) d st 2, 0

@

Figure 6.1 The hawk-dove game

(b)

exists or that the Nash equilibrium is not evolutionary stable. Smith gives an
example of a game with two strategies and unequal pay-offs (1982, p. 201). So far
many of the games that have been analysed have been symmetric. There is no
reason that players should get equal pay-offs in general, however. Smith’s analysis
uses the same set of equations developed in equation (6.ii) above and gives either a

cyclical dynamic or spiral path that converges to an equilibrium.

The pay-off matrix for this game is set out in Figure 6.3. The pay-offs have been
normalized to 0, 1 in the same manner as the previous game. The strategies are

labelled s? and s.

This game has the same pay-offs as a hawk-dove for player 1. For player 2 the best

strategy is to mimic player 1.
Equation (6.ii) gives

vish, x) = y°

xh

Z, 1z + 2,

S
==

Figure 6.2 Evolutionary stable strategies in the hawk-dove game
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sa sb
sa 0, 1 1, 0
sb 1, 0 0 1

Figure 6.3 Pay-offs for the asymmetric two player game

and
Vi(x, X) = xyP 4+ xPy"
Using the similar calculation for player 2 this gives the dynamics as follows

X =[1—x+2x%" — 2y x*
)'/a — [zxa _ zxaytl +yll _ 1]ya

The problem is to find the signs for dx/dt and dy/dt. The stationary points for this
system of equations are given where x* = y* = 0.5 and x* = y* = 0. It is obvious that
the second stationary point is unstable. Hence it is not interesting for this exercise.

A standard way of analysing the equilibria around a stable point is to look at the
linear system around this point. Let x + 0.5 = x* and y 4+ 0.5 = y?. Then the system
becomes

k= —y/3—4x%y/3
7 =x/3—4y*x/3

Consider the non-linear terms

h=4x%y/3 and g = 4y*x/3
If h/x - Oasx — Oand g/y — 0 as x — O then the stability properties of the system
are given by the behaviour of the linear terms —y/3 and x/3. A solution to the linear

system is

x = cos(t/3) and y = sin(t/3)
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S

0.5 51

Figure 6.4 Evolutionary dynamics of the asymmetric game

omitting arbitrary constants. This gives a circle, or for the complete system, a series
of closed loops in the two dimensional space x%, y. This is illustrated in Figure 6.4.

This dynamic is particulalrly interesting because such loops require the special
property that all the real parts of the roots of the charactereistic equation for this
system be zero. It is usually considered that such dynamics are unstable and
cannot be maintained and that the only stable dynamic properties are for
systems to converge or diverge. It can be shown that this is also the case for the
system analysed here. For slight variations these closed loops form a spiral
towards the equilibrium point at (0.5, 0.5) (Smith, 1982, p. 201).%

6.5 Cycles in three move symmetric games

The case where there are three strategies might also be expected to produce cyclic
dynamics even when the pay-offs are the same for both players. Consider a situation
where each of the strategies dominates one of the others. Such three sided contests
often arise in the design of constitutions with the division of power between an
executive, legislative and judiciary, for example. It is also possible to imagine a
struggle in which the players have three strategies such as become a land power,
become a defensive power, become a sea power. In this case, sea power defeats
defensive power defeats land power defeats sea power. Alternatively, the choice may
be between different technologies.
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s’ ss sP
s’ 1 2+a 0
ss 0 1 2+a
sP 2+a 0 1

Figure 6.5 Pay-offs for the rock, scissors-paper-game

Three player games with this characteristic are generically know as rock-scissors-
paper games. Smith (1982, pp. 19-20) suggests that these games may cycle
indefinitely or have a stable equilibrium depending on the nature of the pay-offs.

Consider a game with the pay-offs in Figure 6.5 where s, s°, s have the obvious
meanings. This set up and solution follows Weibull (1996, p. 77). a is a constant
term introduced to allow the characteristics of the game to be analysed with
different payouts.®

Equation (6.ii) gives the following dynamics.

X = +Q2+ax —vilx, Ol
¥ =4+ 2+ax —vix, Y¥ (6.1i)
¥ =+ 2+ ax" —vix, )

To find out when dx/dt is greater or less than zero use the fact that dx/dt has the
same sign as dlnx/dt. Let f = In(x'x*x?). Then

f=XXx/x" + XXX |x° + X' X3P | xP
Substituting from equation (6.iii)

f:3+a—3v;(x,x)

Consider v;(x, x). This is the expected pay-off from playing s = (x", x°, x) against
itself. This is given by calculating

vi(x, X) = E[x"] + E[x*] + E[x"]
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From the matrix in Figure 6.5 we have
EX]= ) + 2+ ax'x*
and so on. Note that x" 4+ x> + x” = 1 and
A+ 4+x0)2 = || x|® + 2% + X% + x°x")
Summing gives
Vi, x) =14+ a'x* + xX°x* + x*x") =1 +a(1— | x ||?)/2
Hence
f=a@ | x|?-1)2

Note that || x ||> will be at a maximum if all the population plays any one strategy. If
more than one strategy is used || x [|>< 1. For X" = x* = x*

2 1P= )7 + () + () =4

and is at a minimum.

xr

xS xP

Figure 6.6 Inward spiral in rock-scissors-paper
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This is rather neat. It gives three trajectories.

[1] a=0.Then df/dt = 0 and x"x*x? is constant. Hence the system cycles.

[2] a> 0. Then df/dt > 0 and x"x*x” increase. Since x"x*x’ is the minimum for
X =0,i=r,s,p, the system spirals inward.

[3] a<0.Thendf/dt < 0and x"x*x” decreases. Hence the system spirals outward.

A trajectory for the game when a > O is illustrated in Figure 6.6. These paths are
unique. In other words, for any two starting points not on the same path, their
trajectories never cross. In this case the system has a stable equilibrium although
the equilibrium point 1,1, 1is never reached.
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Collective Decisions and the Core —
Co-operative Games

7.1 Introduction

The problems of collective decision-making are now considered. It is assumed that
individuals have solved the problems of non-co-operation and individual choice by
setting up some mechanism which allows them to make collective choices about
rules and outcomes, and to enforce those choices. It will be recalled from the
analysis of collective optimality in section 1.8 that this means, in principle, that
individuals could agree to move to an outcome on the Pareto frontier. This does not
mean that individual choice mechanisms are precluded. The collective choice over
production and distribution, for example, might be to have a central planner direct
the process, or it might be to set up rules of property and exchange and accept
whatever outcome results from individual choices. This analysis is concerned with
the criteria that might be used to make these decisions.

As part of this analysis some of the cases in which individuals might wish to co-
operate in the collective provision of goods are analysed. Such co-operation might
be worthwhile where rules that protect life and property and enforce contracts are
not sufficient to eliminate strategic considerations. In these cases, a move that
increases the total pay-off may not be the optimum strategy for every individual
player. Examples were encountered previously in the discussion of security and the
market for protection. Other goods with similar characteristics are pollution, public
health and basic research.

A characteristic of the analysis of collective choice is that it tends to be abstract. This is
because the focus is on the properties of choice mechanisms in general, rather than the
analysis of mechanisms under specific institutional constraints. Since it is the broader
applications of the theory that are most interesting, I shall concentrate on these.

In order to consider problems of collective choice it is necessary to extend the
analysis to co-operative game theory. This is done primarily through a study of the
theory of the core. This covers some of the material from the earlier chapters in a
different manner.

112
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7.2 The core and efficient outcomes: transferable utilities

The process of co-operative decision making with a number of players can be
thought of in terms of a number of offers or outcomes supported by different
coalitions. The problem for any one player is to choose the coalitions it wants to join
in order to get the specified outcome. The problem faced in an analysis of this is that
there is a very large number of potential coalitions that might be formed, and each
of these will affect the pay-off to all players. For n players the number of possibilities
is 2" — 1. It follows that it may not be practical to look at the strategies for bargaining
for every individual in, and between, every possible coalition. One way out of this
difficulty is to get a theory that makes the pay-off for every coalition depend on its
power in a bargaining game. This is done using the theory of the core.

The theory of the core is set out by starting with the simplest case. This is where
utilities are transferable. This means that utilities are measurable in some good, say
money, which can be transferred among the players. In this case it is only the total
value of each coalition which is of concern. This case is the most easy to analyse
because the only problem to be solved is that of maximizing the pay-off for each
coalition. Since utilities are transferable, coalitions are then free to make whatever
internal transfers they wish.

An advantage of transferable utilities is that it allows collective decisions in cases
where a move that increases the total pay-off may not benefit every individual player.
It was assumed, when discussing the Hobbesian problem, that a move from a state of
nature to a structure of authority could make all players better off. This is a special
case, however. Consider a choice between two points on the Pareto frontier such asa’
and a” in Figure 1.4. A move from a’ to a” makes at least one individual worse off.
Such a move may be acceptable to all players, however, if transfer payments are
possible.

The condition for an agreement to be in the core is that it makes each player at
least as well off as it would be in any alternative agreement. For example, the
argument that all players would be better off with an institution that gets them out
of the Hobbesian problem means that the arrangement is a core solution. It will be
observed that the core of a game has the appealing property that it is stable. Since
the core makes all players better off than they could be in any alternative
arrangement, no one would have an incentive to defect.

This condition can be set out formally by letting N be the all player coalition and B
be a sub-coalition of N. v(B) is the value of B and v(N) is the value of the all player
coalition. Then a pay-off g; is in the core of a game if and only if

n
> ai < v(N)
i=1
Zai >vB)forallie BandallBC N
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The first condition is a feasibility condition. It says that the sum of the pay-offs to all
players cannot exceed the total pay-offs available. For > a; <w(N), say
> a; =v(N) — ¢, the optimal strategy would be for players to agree to distribute ¢
to make some, or all better off. This would give }" a; = v(N) and the core would be on
the Pareto frontier.

What the second condition says is that the pay-off in the core must give a player at
least as much as it is possible to get in any possible sub-coalition B C N.

This immediately raises the question of how the alternative arrangements that
give v(B) are to be assessed. To see the problem consider the example of individuals
trying to get out of the Hobbesian state of nature in section 2.6. Let the strategies for
i be to join, or not join, the grand coalition N — 1. If all other players agree to co-
operate and i does not, then i is in a state of war with the grand coalition. This gives a
pay-off

V(B) = v(i) = vi(s{, sj_p) = vi(s{. s2)
in the previous state of nature since i will always lose against the coalition N —i. If
the alternative is that z does not enforce and no players co-operate, then

v(i) = vi(s?, s7,)

It follows that the values of the pay-offs to any sub-coalition may depend on the rule
used for assessing the strategies of other coalitions.

The usual way to solve this problem is the method proposed by von Neumann
and Morgenstern. v(B) is taken to be the best that the members of B can do acting
together against the strategy of the coalition of all other players that minimizes v(B).
In other words v(B) is no higher than the strategy that maximizes the minimum
return against a malevolent opponent.

One concern with this solution is whether malevolence is a credible
assumption. This problem was previously discussed in terms of sub-game perfect
strategies in Chapters 1 and 2. In the case above v(i) < vi(sf, s‘fi) is plausible. Now
imagine that n = 261 million and 260 million individuals form a coalition N — i
to provide defence against external threat or to reduce air pollution and i refuses.
Would it be credible for N —i to threaten to remain undefended or to continue
suffering lung damage? Alternatively, maybe N — i can ensure that i does not get
any more than the pay-off vi(s?, s?,) by expelling i. Would the rules of the game
allow this?!

It should also be noted that the necessary condition for a core to exist is that the
coalition of players can get more than the players could get acting in any sub-
coalition. If not, there would be no point in combining to make a collective choice.
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Such a game is superadditive. This means that the pay-offs for any two coalitions
add to an amount less than or equal to the pay-off for the combined coalition.

V(Bi) + v(Bj) < v(Bi UB))

for B; N Bi = ¢.

An example of a superadditive game might be a boss with capital and some
workers with labour power where the boss and the workers can produce more by co-
operating than each can produce alone. Another example is where there are
economies of scale in production.

The superadditivity condition ) v(B) < v(N) is specified for By, ..., B, a partition
of N. It is important to note that superadditivity is necessary but not sufficient for
> a; > v(B) for all i € Bwhere B C N.

To see why superadditivity is not sufficient for an outcome to be in the core,
imagine three players (i, j, k). Let

V(B1) + v(B2) = v(i, j) + v(k) < (N)
and
V(B3) + v(Bs) = v(i) + v(j, k) < v(N)

It is possible that the coalition (i, j) may give i amount b; and the coalition (j, k) may
give j amount b; and k amount by with

bi + bj 4 by > v(N)

This seems odd. The puzzle is resolved if it is noted that the coalitions B; = (i, j) and
B3 = (j, k) do not both enter into the inequality ) v(B) < v(N) where By, ..., B, isa
partition of N.

The core requires that players must be able to get more than they can get in any
coalition. This is not the same as the maximum each player can get in a coalition
that partitions the players.

Given the assumption of transferable utilities the problem of the existence of the
core and the pay-offs that are in the core can be solved as a maximization problem.
Consider the following example.

7.2.1 Example: core of agreements over property rules

The problems of struggles over possessions in Chapter 4 raises the question of
whether it would be in the interests of all players to reduce guarding costs by
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agreeing to enforce some set of property rights. One way to approach this might
be to consider that property rights take goods out of the no-ownership state of
nature where there is no collective barrier to everyone taking whatever they can.
These rights would be acceptable to all if they make everyone better off. Clearly it
will be the case that, under some circumstance, players that are efficient at
stealing will be worse off with such rules. If so, how much should they be
compensated for foregoing the right to take goods?

Suppose that there are three individuals i, j and k and the production stealing and
guarding equations in Chapter 4 give the following values:

v(i)=4, v(j) =3, v(k) =2, v(i,j) =9, v(i,k) =8, v(k,j) =7
and

v(i.j. k) = v(N) = 13

These values meet the condition that the game is superadditive.
The problem that has to be solved is to choose ay, az, a3 such that ) a; < v(N) and

a,-z4,a,-z3,ak22
(1,'-1—[1,'29
ai+ag>8
aj+ag>7

This is solved for

ay>5,a2>4,a3 >3

with " a; < 13. The solution is not unique since there is a surplus of one unit to be
distributed amongst the players.

One way to think of the core is to imagine that the previous inequalities take slices
from some pay-off space by ruling certain outcomes as ineligible. This is illustrated
in Figure 7.1. The line v(i U j) = 9, for example, gives a triangle that allocates 9 units
between i and j. Anything to the left of this line is not acceptable.

Observe that if v(IN) = 11 the core does not exist. There is no system of side
payments that would make all agree to form a coalition and stop stealing.?

7.2.2 Example: divide the dollar voting game

The divide the dollar game is a simple example of where the core does not exist
under a majoritarian voting rule. Despite its simple structure it has interesting
and much broader applications to distribution problems.

Imagine that three players have to make a collective decision about dividing some
amount of money. Take the case where there is one dollar to divide and it is
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v(iuj)=9
v(iuk) =8

v(juk) =7

13 13
K / N\ )

Figure 7.1 The core

allocated by majority vote. It is obvious that the condition of superadditivity is
met.

It is easy to show that, for this game, there is no distribution in the core. Consider
the following pay-offs, v(iUj)=1 with division (0.5, 0.5, 0), v(iuk) =1 with
division (0.75, 0, 0.25), v(k Uj) = (0, 0.5, 0.5) .. .. Observe that each coalition defeats
its predecessor. In this case the players must move to some other choice rule to get a
stable allocation.

7.3 Non-transferable utility games

The non-transferable utility case involves, as it says, pay-offs that cannot be
transferred between players. The Hobbesian problem gives a non-transferable utility
core with the pay-offs measured in security. It is obvious that the non-transferable
utility core is a subset of the transferable utility core. If a game has a core without any
transfers between players, then it will certainly have a core if transfers are possible.
On the other hand, a game may have a solution with transferable utilities but not
with non-transferable utilities.

The conditions for the existence of a non-transferable utility core are written by
letting b; be the pay-off for any individual i in any coalition B

iai < V(N)

i=1
a; > b; foreachi € Band all BC N
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It follows that to determine the existence of this core it is necessary to be able to
specify b;.

The non-existence of a core can again be illustrated with the stealing production
and guarding example from Chapter 4. The situation where all stop stealing is
obviously on the Pareto frontier. Now take a player with production function
m(x) = 0 for all x and b; = v(i) = gi(fi) > 0. In this case

a,~:0<b,~

Hence there will be no core without transfer payments.

More generally, consider the question in Chapter 1 of whether it would be
possible to get an allocation in the core as the result of individual choice without
a collective choice mechanism. The trivial example in Chapter 1 was where
players were strategically independent and dv_;(s*)/ds; = 0. An example of this
independence is a pure market with a large number of traders. This will be
considered first, since it gives some insight into the characteristics of the core
and into those cases where the core does not exist without a collective decision
mechanism.

7.3.1 Markets and the core

The core for a market with enforceable contracts and in which the number of traders
tends to infinity is the same as the set of outcomes in the Walvasian equilibrium
studied in neo-classical economics. This means that there are no further trades that
can satisfy all parties simultaneously. These trades satisfy the Pareto optimality
criterion and the economy is on the Pareto frontier. Such results can be made
intuitive by noting that if a trade that would improve the position of two parties
simultaneously could be made, then it would take place.

To illustrate the nature of the core solution in a trading game, consider the
following example.

There are two traders with bundles of goods (m, 0) and (0, ¢). The utility functions
are vi(my,c1) and vp(mg,cz2). These functions are continuous, monotonic and
concave in each good. Trades are Pareto efficient and will allocate

m-w,c—y)
and
w,y)

to traders 1 and 2 respectively.
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Figure 7.2 Intersection of core solutions

The coalition is N = (1 U 2) and a = (a1, az) is an allocation with free trade. Since
ap =vi(m—w,c—y)>vi(m,0)
and
az =va(w,y) > v2(0,¢)

we have a; > b;. Hence the condition for the existence of the core is not violated.

It is plausible that as the number of traders increases the set of trades that can
satisty a; > b; for i € B may decrease. By decrease is it meant that the same elements
that were previously in the set are lost. More formally there is the following.

Theorem 7.1: The set of distributions A : a; > b; cannot increase as the number of
traders increases.

Proof: Immediate.

Think of this in terms of an intersection of sets. As we keep adding sets for the
trades that will satisfy each trader the intersection of these sets, A, cannot increase.
See Figure 7.2.

Since there were only two traders any coalition which gives trader 1 and 2

(m—W/kvc_Y/g)
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and
(w/k.y/8)

for k, g > 11is in the core since it meets the condition a; > b;. Consider the addition
of a third trader with initial endowment (11, 0) and the same indifference curves as
trader one. This trader will benefit from increasing its holdings of ¢ up to the level
¢ —y. Hence the new core is

ar =vi(m—w/k,c/2 —y/q)
az =v2(2w/k, 2y/q)
az =vi(m—w/k,c/2 —y/q)

with 1<k <2 and g>2 and
ai > b,y ai=v(N)

as required.

The amount of good m in the system has increased, the gains from trade decrease as
m is exchanged for c until a new equilibrium is reached. A coalition B, = (1 U 2) that
offers player 1 and player 2 the old a; and a, values can be defeated by a coalition
B; = (1 U 2 U 3) that now offers to exchange m for c. This can be thought of in terms of
prices. Player 3 will pay more in m prices for the good c than player 1 if 3 is given an
amount of c less than ¢/2 — y/q. Hence it pays player 2 to join coalition B;.

This outcome is in the original core, since a; > v;(m, 0) and az > v,(0, ¢). Note
that it excludes the previous core solution and all other solutions that contain
amounts of ¢ > ¢/2 —y/q for traders 1 and 2. This is because, for an amount of
¢ > c/2 —y/g it pays to trade ¢ for m. Hence the core has shrunk.

Remark: Suppose that the rules of trade are given. A core containing any outcome
on the Pareto frontier can be generated under these rules by an appropriate initial
distribution of endowments.

This says that, given a set of rules and a core solution, it is possible to select an
initial endowment that will contain that solution. It follows that the choice of the
rules for a given initial endowment, or an initial endowment for given rules, is also
a choice of the set of final distributions if traders all follow their optimum
strategies. Hence decisions over rules and starting points are also decisions over
outcome sets in a deterministic system.

This observation can be illustrated by letting the initial distributions be altered so
that traders one and two start with (rm, qc) and [(1 — r)m, (1 — q)c], 1, q € [0, 1]. The
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feasible Pareto frontier for this starting point is not the same as that which improves
on (m, 0), (c, 0). Hence each different set of initial distributions may give a core in a
different region.

Since the core shrinks to a small set for a sufficiently large number of players, there
is a number of players and a set of initial endowments that map into an arbitrarily
small region on the Pareto frontier.3 In the extreme this region can be reduced to a
point by setting the initial endowments at the desired point on the frontier.

7.3.2 Games and the non-transferable utility core

Strategic interaction will also give a solution in the core with voluntary compliance
when the games have a structure of type [Ai] or [Aii] in Chapter 1. An obvious
example here would be a game in which each individual is decisive in co-operating
to procure some good such as safety, or the benefits of public health. Let s{ stand for
co-operate. Since none of the good will be produced unless all players co-operate
¢ = (sf,s%;) and no player can do better in any other coalition of non-co-operators.
Alternatively, it might be the case that deviation from the strategy that leads to an
optimal outcome gives a lesser pay-off for the individual that deviates. Examples
would be agreements among a number of players to standardize equipment to
reduce input costs, or among airline pilots to obey the directions of the traffic
control.

The core will exist in many games with non-transferable utilities in the trivial
sense that the coalition of all players gives each individual the same pay-off as the
single person coalition. That is

a; = bj = v{i}

The core will not exist when the addition of more players reduces v(N) by, say,
increasing conflict. In the case superadditivity is violated. For an illustration of a
game without a core consider the following example from Shapley and Shubik
(Shubik, 1984, p. 541).

7.3.3 Example: garbage game. Shapley and Shubik

Imagine there are n players who each own some land and one bag of garbage. There
is no free land and the pay-off from having a bag of garbage on a player’s land is — 1.
Let the number of players in a coalition B be m. Then the pay-off for any coalition is
given by the number of bags it gets dumped on its land. This gives.

B) — —(n-m)ifm<n
vB) = —nifm=n
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Observe that, if all the players gang up and decide to dump their garbage on the
remaining player, i, then i can retaliate by threatening to dump garbage on any
individual in the n — 1 player coalition B. In this case the threatened player may do
no worse than picking another victim. This gives reason to suspect that the game
might not have a core.

From the conditions given for the core, for B an n — 1 player coalition v(B) = —1.
Hence the core requires

n—1
> ai=vB)=-1
1

Note that there will be n coalitions of size n — 1. Hence there must be n pay-offs of
> a;. Adding these gives

n

YD) al=-n

k=1

iwillbeinn — 1 coalitions. So Y [>" aily = (n — 1) > a; = —n. Feasibility requires that
> a; = v(N). Therefore the core requires that

n—1)(-n)>-n

Which means that 2n > n2, or n < 2. Hence the core does not exist in this game if it
has more than two players.

7.4 Collective goods as specific examples of strategic interaction
problems

The case where a player benefits from the contribution of some other player to the
provision of a good is now considered. The optimum strategy for each individual i in
this case is to set its contribution, x;, such that x; is less than the Pareto optimal level.
This situation has already been discussed in 2.7 as a subset of strategic interaction.

To deal with the problem of interdependence let the wealth of i be w; and s’l: a
strategy of spending some amount xi on the good. A strategy of spending nothing is

A public good is a good that all players can consume. The quantity of the collective
good provided is y, where y = f(x).
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Definition: Pure collective good. y is a pure collective good if the value for player i
is
Vi =Vi(Wi — Xi, y)
Where v; is a utility function. That is y is a pure collective good if each individual
consumes the entire amount produced. [ |

The case where the contribution by player i always costs more than the gains in
the amount of the good provided for all levels of the good gives

V(Xé) < v(x{)

In this case the game will not have a core. The more interesting case is where the
strategies of each player have some influence on the value of y such that

v(si) > v(s7)

for some x; > 0. This continues the analysis in sections 2.5 and 5.3.

7.4.1 Comparison of central government and individual provision of the
good

The first case to be considered is where individuals get some benefit from
contributing to the good. How does this compare with the allocation by a central
government? The following theorem establishes that a central government can give
pay-offs that are at least as great as any alternative.

Theorem 7.2: (Sharkey, 1979) The central government can provide a Pareto
optimal solution where there is a single collective good, the production function is
continuous and increasing and utilities in the collective good are continuous and
strictly increasing.

Proof: The amount of collective good provided by a coalition B is f(3_x;), i € B.
Then v; = vi[w; — x;, f(OQ_xy)]. Fori € {B+k}
vi' = vilwi — xi, fzxi + x0)]
From the assumption of increasing utilities in the collective good, v;” > v;.
a; = vi(N). Therefore a; > v;(B) for all B C N. [}

This is the same as saying that the non transferable utility game has a core.
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Where the central government controls the allocation of every player it has to
solve the following optimization problem

max vi(wi — X, y) (7.9)

subject to in =c(y)

where c(y) is the cost of the good. It is assumed that the utility function is
continuously differentiable. Indifference curves have the usual characteristics. Form
the Lagrangian

L,' =V + )L(X,' — (X,’C)

where ¢; is the share of the cost to player i, ) o; = 1.
Solving this problem piecewise gives

v;/dy = raic’
and
avi/ox; = —A
Therefore
avi/dy/ | avi/ox; |= aic’
Summing

D Tovi/ay/ | avi/ox; ] = ¢’ (7.ii)
This result gives the Pareto optimal allocation in the previous theorem.

The Nash equilibrium strategy for the collective good game is for each player to
solve the equation holding the contribution of all other players constant. This gives:

max vi(Wi — X, Y—i, Vi)
subject to x; = c(y;)

Since y_; is given dL/dy = dL/dy;. This gives
ov;/dy = Ldc/ady

avi/ox; = —A
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Therefore
avi/dy/ | avi/ax; |=c’ (7.iii)

Hence dv;/dy/ | dv;/dx; | is greater in the Nash game than dv;/dy/ | dv;/dx; | in the
central government game for any value of y.

Since 9v;/dy is the same in equations (7.ii) and (7.iii) | dv;/dx; | is less in the Nash
game. Since v; is concave x; must be less in the Nash game in equilibrium. Therefore
each player contributes less towards the common good than they would under the
Pareto efficient allocation.*

7.4.2 The core with a continuous production function and no side
payments

The existence of a continuous production function and a positive utility for the good
does not mean that everyone will contribute. Consider the case of a good with a value
function v(y) = f(m) similar to that in Figure 2.5, reproduced here as Figure 7.3. m is
the number of contributors. Each individual must either contributes x such that v(x) =
1 or contribute nothing. n is sufficiently great to allow f to be approximated by a
smooth continuous curve. df /dm = 1 at m* and m**.

df/dm =1

df/dm <1

df/dm >1

*
m m n

Figure 7.3 Production function for a public good
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At a point with df /dm > 1 we have
f(m) ~ f(m—1)+ (df /dm)1
for df /dm = 1 + ¢. Hence
fm)—1 =~fm—-1)+¢
Therefore
fm)—1>fom—1)

for ¢ sufficiently small and it pays player m — 1 to contribute.

Assume that the population is greater than m™* but less than m*. As with the
previous analysis the game has a core because the optimum strategy for each
individual is to contribute.

Now assume that n > m*. df /dm < 1 is evaluated at m > m* and it does not pay
player m — 1 to contribute if m* others have contributed. This gives a core in
which the set M with m* members all of whom contribute one unit and M¢ with
n — m* members who contribute nothing. For i € M we have a; > b; since

fom)—1> fm—1)

Forj e M¢

aj=[=b;

This coalition structure meets the conditions for the existence of a core, but its
stability is questionable. Note that it is not consistent with the Nash equilibrium
strategies in the one shot game analysed in section 2.5. Each player would do strictly
better in M¢ provided that some other player would join M. One reason for these
different solutions is that the game in which players are allowed to keep promises
and the one shot non-co-operative game have different structures.

Part of the problem here is that there is not enough structure in the theory of the
core to tell us about the process of coalition forming. This would have to be
explicitly modelled. The coalition formation game might be similar to the hawk-
dove game, for example, where hawk does not contribute. If this were the case the
outcome would depend on the assumptions made about pre-play commitment.
Alternatively, players may choose a mixed strategy.
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7.5 Free rider problems

The free rider problem is a generalization of the case where it is not possible to block
consumption. The cost imposed by free riding is that less than the optimum
quantity of the good will be provided. The seriousness of this depends on the nature
of the goods that are susceptible to free riding and the extent of the activity. The
obvious loss is through non-contribution. It may also be the case that the optimum
strategy for the remaining contributors is to reduce their contribution. Consider the
following case.
Assume that the benefit from the good for an individual is given by

vi = vi(y, ci(y))

where v is concave and ¢;(y) is the cost to individual i. The good has increasing
economies of scale in the relevant range, so c is also concave. As an example of this,
imagine a public transport system. As expenditure is increased the greater the return
for each additional unit of expenditure because equipment can be used more
efficiently, trams and buses run more frequently and become more attractive.
Restoring the environment after damage may exhibit the same characteristics.

The Nash equilibrium strategy for an individual, where there is an internal
solution, is to contribute up to the point where

avy/dy =| ovi/dc; | (3ci/dy)

As the number of contributors decreases, the cost of each unit increases and dc;/dy
increases for each unit of y. To maintain the identity dv;/dy must increase. Hence less
y must be provided by the assumption of concavity. Hence the equality occurs at a
lower level of contribution for each of the remaining contributors than if all paid.

7.5.1 Example of free riding and the core

The case where some players get a psychological benefit from their own
contribution is now considered. Perhaps individuals wish to act as good citizens
or attach a value to participation. Let f(x) be the production function for the good.
Psychological benefit can be dealt with by introducing a function ¢;(f) which gives
the value that player i gets for any level of the good.

Let ) x; = x. Let x; be the contribution of player i and f is a continuous and
differentiable function of x. A player gets some benefit from contribution for some
level of x. Assume that v is linear in x so that the pay-off function looks like

vi(xi) = qilf (0] — x;
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where
aGlf )] = xi > qilf (x — x)]
The necessary condition for player i to make an additional contribution is
dvi/dx; = (9qi/9f ) (3f /0x;) =1 > O
which means
aqi/of > 1/(df /ax;)
This says that the rate of increase in the psychological benefits that player i gets from
its contribution to the collective good must exceed the inverse of the rate at which
the value of the collective good increases. This means that if player i’s next
contribution doubles the value of the good, the rate of psychological benefit that
player one receives must increase by one half.

Assume that g is concave. The optimum strategy for players with lower values for
q(f) is to stop contributing at low values of x. Hence the burden will be carried by
players with high values of q.

Take, for example, a two player game. Player 1 has q; = ,/f. Player 2 has
q2=2./f Let f=2,/x This gives

df /dx; = 1//x,
dqu/dfi = 2/4x,

dqe/dfz = JZ/ZX%,
Hence player 1 stops contributing at /2/4 < /x which gives
x1 ~0.27
Player 2 stops for
x ~ 0.64
Thus the Nash equilibrium strategies are

¢ = (0,0.64)
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Consider the problem of whether there is a core for this game. Proceed as follows.
Bi = {1} and B, = {2}. The maximum values for B; and B are calculated by using the
Nash equilibrium values for x = x; + x, = 0.64. Since both players consume the
good

b1 + by = v(1) + (2) = [2/(0.64)] — 0.64 = 3.15
by = f =126

For a coalition of all players, v(N) = max v(1 U 2). To get this calculate the x that
maximizes v = v1 + v2. dq/dx = O gives the first order condition

3(J/2/4x%) = 1
Thus x ~ 0.957. This gives
V(N) = 3[2(0.957)F — 0.957 = 3.24

It will be seen that if costs are shared between players and utilities are not
transferable there is no core. This is because the pay-off in the core is

a = —0957/2=0918 < b;
For the transferable utility game there is a core. This follows from the fact that
> ai>v(B)=by +b,

and ) a; < v(N) = 3.24 as required.

7.5.2 Club goods and assurance games

The term ‘club goods’ is meant to apply to the case where collective goods are
provided by some sub-set of individuals that form an association (Cornes and
Sandler, 1996). These associations are interesting examples of groups smaller than
the whole society that operate as sub-state collective decision making units.
Examples might be a tennis club or the Mafia. A general result for the analysis of
clubs where all individuals benefit equally from the good is given in 7.4. I now
consider some more specific cases with differential benefits.

M is a sub-set of N with m players, where m < n. Each member of M benefits from
the provision of the collective good more than the remaining n — m players. The m
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s s
st 3,3 2,1
s? 1,-2 0,0

Figure 7.4 Assurance game

players might, for example, have more intense problems caused by pollution or
unstable markets. Each of the members of M only benefits if all others contribute. If
only some contribute by, say, producing less acid, costs outweigh benefits. The core
of the game has m producers and n — m free riders. For the m players in M, such
games have the structure of an assurance game. They are of type [Aii] in Chapter 1.

Consider the example in Figure 7.4. s¢ is to provide the good and s is not provide.
iis an individual who may wish join M and —i is an individual from the M — 1 player
coalition.

It will be observed that there are two Nash equilibria

¢ =(s5,s°) and ¢ = (s¢, s,

and no dominant strategy. The outcome of this game depends on expectations. To
make it worthwhile playing s player one must assign a probability p > 1/2 that —i
will play s¢. For p < 1/2, i’s best response is to play s¢.

It is obvious that if pre-game communication is allowed players in the set B— 1
can promise to play s, if player i plays s{. Hence the game has a core in which the
pay-off for players i € M is

a; = vi(s§ $<;) > bi = vi(s{, s5) > vi(s{, s > vi(st, )

Unlike the chicken game, this game will have a Nash equilibrium in which the m
players contribute. The promise is credible because v;(s¢ s,) > v;(s¢, s¢) for all i € M.

1°%1

7.5.3 Example of a club good

Assume that the pay-off function for each of the m players who wish to form the
club is a function of the total expenditure on the good less the cost to that player. x;
is expenditure for player i. For simplicity, each player contributes the same amount.
Hence x = mx;.
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f(x) —x; for a member of the club
vi(x;) = .
0 otherwise

For a player to make a contribution
wv/ox; = mdf /ox;—1 >0
which means
of Jox; > 1/m
This inequality says that for a player to contribute to the club two conditions must
be met. The first is that f — x; > 0. The second is that the rate at which the benefit
increases is greater than the inverse of the number of members in the club.
There may not be any point which satisfies these two conditions simultaneously.
Consider, for example, a good with the production function f concave and
df /dx — 0 as x — qx;
Then for df /dx evaluated at
m: x> qx;
the required condition will not be met.
This parallels the analysis of the game in section 7.4.2. Strictly speaking the core
conditions are met for individuals with
m*: of Jox; = 1/m*
but there is no model of the process whereby the m players are selected from the n
candidates.
It is also obvious that, for any concave production function with

df(0)/dx > 1

there is some minimal number of potential members m for which the conditions
required for contribution will be met.
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Welfare and the Strategies of
Preference Revelation

8.1 Introduction

The purpose of this chapter is to consider the case where the state acts as a
benevolent dictator and attempts to maximize the welfare of the population. The
problem of finding the maximizing set of transfers would be easy to solve if the
utilities of each individual and the device for aggregating these utilities, were
known. All that would then be required is to specify the welfare operator and to pick
the outcomes that maximized the specified measure of aggregate utilities. This may
all seem straightforward. Why not simply ask each individual how much each
outcome is worth? The values they report could then be aggregated and the outcome
selected accordingly. It should be obvious from the previous analysis, however, that
the strategies of the individuals reporting their values are unlikely to bring about an
outcome on the Pareto frontier. This is because a strategy of lying cannot be
prohibited and the optimum strategy for each player will be to report whatever gives
the best chance of a favourable outcome. An outcome based on these reports is not
necessarily optimal. An example is a game where the prize is given to the individual
who reports the highest utility for some desirable outcome. Since it is optimal for
everyone to give the maximum number allowable the information content of the
reports is zero.

This chapter will investigate the problem of designing mechanisms that induce
individuals to report the true value of collective goods and will set out the most
important of these mechanisms. This problem can be seen as that of determining an
optimal set of rules in a collective decision game.

I concentrate on strategy-proof mechanisms for reporting preferences over the
outcomes of collective decisions. I have given these mechanisms a fairly extensive
explanation because the underlying principle of mechanism design is important for
thinking about collective choice and co-operative action. This is partly to offset the

132
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negative approach to collective decision problems generated by impossibility
theorems. It is also because the principle is somewhat opaque.

I only deal with one of a large class of mechanisms that come under the general
heading of mechanism design and principal agent problems. Other forms of
revelation mechanism include auction schemes that attempt to get buyers to reveal
the true value they place on the good and contracts that get principals to reveal their
true characteristics.!

8.2 The general problem and the revelation principle

The task of a benevolent dictator would be to maximize the welfare of the
population where the maximum welfare depends on some aggregating device called
a social welfare functional. The social welfare functional can be thought of as a
mapping from the set of values that individuals attach to states of the world to some
aggregate measure of welfare.

Let A be the set of states of the world with a’e A. The value individual i attaches to
some state of the world is v;. Let v;(a’) be the utility of individual i for outcome (a’).
Then

va') = (vi(d), ..., va(a)

The welfare functional » aggregates the values the individuals assign to each
possible outcome in some fashion to give a real number for each outcome.

w: Vv—>R

That is, for outcome a, w aggregates all the v;(a’) values into a single value, say 3. It
does the same for the w(@/) vector, and so on. The welfare mapping can be
represented as in Figure 8.1.
The problem is to choose an outcome a* that gives the highest value for w.
¢ =a*: a" maximizes o[v(a)]
The functional » could be specified in a number of ways. This specification is

exogenous to the mapping itself. In other words it is normative. Among the norms
that might be considered desirable are that:

[1] o must be sufficiently discriminating to allow a choice between different states
of the world.
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al

A V(A)

Figure 8.1 A social welfare mapping

[2] o increases if the value of an outcome to any one individual increases, all other
values held constant. If @ is a continuous and differentiable function of vand vis
infinitely divisible, this condition requires dw/dv; > O.

Condition [2] prevents aggregate welfare increasing as some individual is made
more miserable. For example the value for player i could not be entered into » such
that w = )" v; — v;. It also means that the outcome is on the Pareto frontier. This
follows immediately from the properties of ¢.

These conditions can be derived from more basic assumptions about desirable
properties of the choice mechanism, but they are simply stated here.

8.2.1 Examples of social welfare functions

[1] The utilitarian welfare functional is written

n
w = Z Vi
i=1

[2] The weighted utilitarian functional assigns non-negative weights to the pay-offs
for each player. For «; > 0, this is written

n
w = Z a;iVi
i=1

An example of a weighted functional of interest to political philosophers is
the Rawlsian welfare functional. John Rawls argues in A Theory of Justice that
inequalities are just only if they improve the position of the ‘least advantaged
members of society’ (1973, p. 15). This could be taken into account by letting M
be the set of least advantaged members. Then, for comparisons of two states of
the world, the relevant functional is w = }_ «;v; where o;; > 0 if i € M and o; = 0
otherwise.
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al a2 a3 at
v 13 2 11 7
v 6 17 15 9
V3 1 14 8 21

Figure 8.2 Example of values for different outcomes

[3] Itis also possible to aggregate the utilities of individuals in other ways, such as
by multiplication. In addition increasing or declining marginal utilities might
be taken into account. For example

o=1n1+1))An(v2 + 1)) ... (An(v, + 1))

If w is well specified it is straightforward to calculate a* for a given v. This raises the
problem of getting individuals to report their utilities truthfully. To investigate this
it will be assumed that the dictator tries to maximize the utilitarian welfare
functional.

Since the conditions imposed on » mean that the probability of an outcome being
chosen will increase as the value that is reported increases the optimum strategy is
not necessarily to report the true value. If so an outcome on the Pareto frontier
would not be expected. This is illustrated in Figure 8.2.

Figure 8.2 gives three individuals and four outcomes. The outcomes are along the
top and the utilities are written down the side. v; is the true value of an outcome for
an individual i. sf is a reported value. The social welfare function is w = Y _s;. In the
case of a tie between m outcomes a?,p =1, ..., m the choice procedure is

¢ = d with probability p; = 1/m

Assume that the players know the choice procedure. They are asked to report a
value v;(a¥) > 0 with " v¥ < g. They are not allowed to report values such that the
total is greater than q.

There are two different cases which depend on the information available to the
players:
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[1] No information on the utilities of others and no communication. The optimum
strategies are

$1=1(q,0,0,0),s2 =(0,4,0,0),s3 =(0,0,0, q)

The information the dictator gets is

w(a') = q = w(@*) = w(a*) and w(@®) = 0
¢ = (a') with possibility p; = 1

wherei=1,2,4.
[2] The players can communicate. In this case the game does not have an
equilibrium and there is no core. The strategy above gives payoffs

v =22/3,v, =32/3 and vz =12
This is dominated by
s2=53=1(0,4,0,0)
with v, = 17 and v3 = 14. This is dominated for player 1 and player 3 by
s1=53=1(0,0,0,9)

Similarly, this is dominated for players 1 and 2.

8.2.2 Strategy-proof mechanisms

The problem of getting players to report truthfully when they are not allowed to
form coalitions is the following. What sort of mechanism will ensure that the Nash
equilibrium strategies of the players is to give a truthful report of their utilities over
all states of the world? That is, for s; a strategy that gives a truthful report we need
Vi(SF, %) = vilsi, s%)).

The answer to this question involves two considerations.

[1] If players are to report truthfully, the pay-offs in Figure 8.2 have to be altered.
This can be done by adding some rewards or penalties to the values reported.

[2] It is only necessary to alter the pay-offs to individual i if i’s report changes the
outcome. If the report of an agent makes no difference to the outcome, it is not
of interest.

Regarding the design of the mechanism, it is possible to imagine any number of
reporting procedures. For example, move one might be to allocate a number of
points. Move two might be to buy out unfavourable outcomes by using whatever
points were not allocated on move one and so on. It turns out that such complicated
mechanisms are not required. This is because any mechanism in which agents
directly report their preferences can achieve the same outcome as an indirect
mechanism. This is known as the revelation principle.
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Let a general mechanism be any game in which the players participate. A direct
mechanism is one where players participate in the game and directly reveal their
preferences. Then

Theorem 8.1: (Revelation principle) Any strategy-proof Nash equilibrium that can
be obtained in a general mechanism can be obtained in a direct mechanism.

Proof: Suppose that the general mechanism has a Nash equilibrium set of
strategies

gi=s7=(s;", ... s
and st is tell the truth on move m. Assume that the Nash equilibrium in a one
move game is to report s¥ # st. The one move game can be treated as the last move in
the general mechanism. This means that there must be a path

k k1 k(m—1
(S} ,...,s,.('" D)

such that
Vi(s™) > vi(sp).
This establishes the contradiction.? [ |

Alternatively, suppose n players are engaged in a general game mechanism. If this
mechanism is strategy-proof the Nash equilibrium must be that they truthfully report
their preferences on the last move. This can be duplicated by a strategic form game in
which each path leading to this outcome is represented by one move. To see this,
consider the way in which extensive form games were collapsed into strategic form in
Chapter 1. The list of all responses to every possible response by another player that
leads to a particular outcome is represented by a single strategy. Since the mechanism
is strategy-proof this must be to follow the path that leads to a truthful report. Any one
move game is a direct mechanism.3

This proof can be generalized to show that any outcome a that is implementable
by an indirect mechanism is implementable by a direct mechanism.*

Although simple, the revelation principle is quite useful in that it allows us to
concentrate on a direct mechanism. Moreover, if no strategy-proof direct
mechanism exists, it follows that there is no strategy-proof mechanism.

A strategy-proof mechanism that altered the pay-offs to players by adding a
penalty or a tax to any player who changed the outcome by its presence was
proposed by Clark and Groves in the early 1970s.
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8.3 The pivot mechanism: Clarke-Groves

The idea behind a pivot mechanism is to impose a tax on an agent whose choice
changes the decision from what it would have been in the absence of that agent.
Consider the case where utilities are additively separable. To simplify the
exposition ignore the possibilty of a draw between outcomes. An agent that
changes a decision is pivotal. The true value for agent i is v/ and a report of v} for
agent i is s;. Let the tax for agent i in outcome a° be

__|ti(a®) where agent i is pivotal

0
' |0 otherwise

Since the preferences for the good and for the tax are additively separable the total
welfare of i at outcome a° will be

v =vi(a@’) + t;(a°)

where v; = v;(a°) if agent i is not pivotal. This gives the following definition of a
strategy-proof mechanism.

Definition: A mechanism will be strategy-proof if
vils) +t = vi(s) +t; (8.1)

where vi(s}) = vi(s], 57) and v;(s;) = v;(s;, 57). ]

This condition is met if every pivotal agent is taxed by an amount that equals
the total loss in welfare of all the other agents from the change in outcome from
the outcome they would most prefer without i’s report. This requires a little
demonstration. The idea of taxing an agent by an amount equal to the loss
inflicted on others has an intuitive appeal, and seems fair. It is not obvious,
however, that it would always pay the pivotal agent to tell the truth. Moreover,
since this agent does not know the welfare of others, it might be feared that truth
telling could lead to a change in the outcome and a large loss resulting from a
high tax.

8.3.1 Details of the strategy-proof pivot mechanism

In order to study the strategy-proof pivot mechanism, a more precise statement is
needed. Let the sum of the maximum total welfare for agents j € N_;,j # i, be
written
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n—1
max Z vi(a) = max w;
=1

The sum of the total welfare for j € N_; in the outcome with agent i reporting s is

n—1
k k
vi(si) = w;(s;)
=1

J

Note this sum excludes agent i. When everyone tells the truth w* = w(s*).

Definition: The strategy-proof pivotal (Spp) mechanism is such that

th = wi(s¥) — max w; (8.ii)
When agent i does not change the outcome max w;(sf) = max w; so the tax is
zero, as required. Notice also that X <0. This follows from the fact that
W,-(Sf) < max w;. |

Theorem 8.2: (Green and Laffont, 1979) The Spp mechanism is Pareto efficient
and meets the requirement of strategy-proofness.

Proof: The mechanism must be Pareto efficient at the truth telling equilibrium
since it selects the a* that maximizes w[v(a)]. The mechanism is strategy-proof if

vi(s7) + wj(s]) — maxw; > vi(sh) + wi(sf) — max w;
Cancelling the max w;, it must be shown that
VilsT) + wi(s7) = vi(sp) + wi(s)).-

This is immediate since v;(s}) 4+ wj(s}) = max w. [ ]

The way in which the tax schedule works is illustrated in Figure 8.3. The tax is the
difference between the utilities everyone else would get with and without i’s report.
This report is given value s{ = x. Observe that the tax does not change either side of
the point where x is pivotal. Hence all that has to be shown is that it pays i to make

an honest report if i is pivotal. Note that whether i is pivotal depends on x, but the
level of the tax is independent of x.
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[ & |
[t | =max wj—w;(s})
O
~ (o}
s$=x: w; (s7) = max w Si

Figure 8.3 taxation for a pivotal player

Assume that max w; = wj(ak). Write w;(ak) as w,l‘ for compactness. For i to report an
x that changes the outcome to a° with pay-offs to N — i of w} requires

si=x: x+wW > vi(ak)+w;<.

Hence

s7 > vi(d) +wi —wj.

For the mechanism to work when i tells the truth
vi(@®) > vi(@) + (wf —w?).
Consider the two possibilities.
(a) iprefers a® but it has value v{ < vi(a®) + (w;‘ - w;’). A dishonest report of v{ = x to
get outcome a” gives v — (W — wy) < v,(a"). Hence vi(x, s}) < vi(s], 5})-
(b) v/ >vi(@)+wf —wy) but i reports X <va)+ W} —w?). Then i gets

Vi < vi(@®) + (wf — w). Hence vi(x, s7) < vi(s;, 7).

As an example of this, consider the strategies for agent 1 in Figure 8.2.
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(@) Truthful report. Max wj, j=2,3 occurs for outcome a? max w; = 31. The
outcome if 1 reports truthfully is a*=a* to give wi =30. Hence
ti = w; —maxw; = —1. This gives vi(s}) = vi(@*) =7 — 1 =6.

(b) Dishonest report. Say player 1 wishes to get outcome a'. To get this requires
o[v(@")] > w[v(@)]. This is met if player 1 reports sk= (25,0,0,0).
wj(a') =7. max w; =31 as before t; =w/ —max w;=7- 31 =-24. Hence
v =13-24=-9 <6.

8.3.2 Example: public good with costs

The pivot mechanism can easily be generalized to the case of a public good with
costs. Suppose that there is some public good with a cost c. The only decision is
between producing a units and producing nothing. This gives two outcomes

aifa)iZO
0if w; <0

at =

The cost of the good is shared equally so that each individual pays ¢/n. In this case
the total welfare for each individual will be

vi(a) + ti(a) — c/n if the good is produced
t;(0) otherwise.

P =

Since the value of the good is now the utility from consumption less the cost of
production it is convenient to introduce a new measure for value. Define this as

Vi—c¢/n
0 if the good is not produced

u;

This means that ) u; > 0 since for v — ¢ < 0 the dictator sets a = 0.

By direct substitution of u; for v; in the definition of the Spp mechanism we get the
following.

The Spp mechanism for a public good with costs is given by

t= Z uj(a’) — max Z uj(a)

where @' is the decision with agent i’s contribution and a is the decision otherwise.
This can be expanded to give the following set of tax burdens for agent i. The cases
where agent i is not pivotal give
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0if max ) ui(a) >0,y u(a) >0

T10if Y w@) =0, Y wia) =0

since a = a' in these cases. Otherwise

Zu,(a ) if max ) wi(a) =0, u(a’) > 0
maxZu,(a) if max Zu,(a) >0, Zu,(a) =

Note that the tax is negative in both cases. In the first case

= Z u,(ai) — max Z u,-(a).

Since max Y uj(a) = O the value of )" u;(a) at a worse position Y u;(a’) must be less
than max )" u;(a).
This means that for max 3" u;(a) = 0 and max }_ u;(a’) > 0, i is given a tax

ti=> ua)="> va)—(n—1c/n.
For max Y uj(a) > 0, )" u;(a’) = 0 i is given tax

ti=— max[Z vi(a') — (n — 1)c/n].

8.4 The general class of strategy-proof mechanisms and minimal
utility

The results given so far can be extended to give the general form for the class of
strategy-proof mechanism for any case where the individuals have quasi-linear
utilities in the good and the tax. It can be shown that every such mechanism must
be of the form discussed above. The importance of this finding is that the
investigation of strategy-proof revelation can concentrate on the properties of this
class of mechanisms.

Theorem 8.3: (Green and Laffont)> Any strategy-proof direct revelation decision-
making mechanism chooses a* and is of the form

a* maximizes o[v(a)]

= wi(s°) — hivi(a)] (8.iii)
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where j # i and h;[v;(a)] is an arbitrary numerical function that does not depend on s;.

This generalizes equation (8.ii). Note that /; in equation (8.iii) is in the same place
as max w; in equation (8.ii) and w; does not depend on s;.

To prove this, all that is necessary is to show that, for the Spp mechanism, #; is
independent of the reported preferences of i as claimed. This means that, if i is
pivotal then the tax depends only on the cost imposed on others of switching the
outcome from a¥ to a°. That is

k 0 k 0
L=t = wp —w;
since

hil(sH)] = hil(s})]

by the independence of h; from the reported preferences of i.

Proof: Suppose the mechanism is strategy proof and assume that 4; depends on
the strategy of i. Let s¥ # s¢ and hy[(s))] — hi[(s5)] = & > 0.
-t =wi—w+e¢ (8.iv)

]

Construct a preference set for agent i with values

oi(d") = —wj(d")
0i(a’) = —wj(a®) +¢/2
oi(@™) = —c for m # k, 0 and ¢ > max w;(a)

This is possible because the preferences of agent i are unrestricted. The problem
max o;(a) 4+ wj(a) is solved at a° from the preference set.
Since i is pivotal, from equation (8.iv)
(@) — ti(a%) = wi(a") — wi(@’) + & = 0i(a’) — 01(a") + £/2
Therefore
0i(d) + ti(@") = oi(a”) + ti(a”)
It follows that, whenever the true value for player i is v{ = 0;(a®) it will pay to

announce a preference of s¥: g(a) =d*. This contradicts the fact that the
mechanism is strategy-proof.°
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When i is not pivotal, the report s; does not change the outcome. Hence wik =w
and, from equation (8.iv)

0=0+e=hl(sH] - hil(s)]
Contradiction. u

Remark: The Spp, or pivotal, mechanism set out in equation (8.ii) is a special case of
the more general revelation mechanism above. A question which arises is that of
whether the pivotal mechanism has any special qualities. One interesting feature
of the pivotal mechanism is that it guarantees the best minimum security level of all
strategy-proof mechanisms. The worst an agent can do under this mechanism is
better than the worst they can do under any other mechanism. This has some
attractiveness as an inducement to agents to enter into such a procedure. This is set
out as follows.

Theorem 8.4: (Moulin, 1991, p. 214) Let m; be the final utility of an agent in some
strategy-proof mechanism of the type set out in theorem 8.3. Then if

m; > min v; for profile v and agent i

the mechanism is the Spp mechanism.

Proof: Suppose m; > min v;. Since my; is the final utility of some strategy-proof
mechanism, m; = v; + t;. Theorem 8.3 gives

ti = wj(s) — hilvj(a)]
Adding v; to both sides gives
m; = max o[v(a)] — hj[vi(a)] (8.iii)
where j # i.
Since m; > min v;, h; < max @ —min v;. Let v; = —w;,j#i for v; fixed. Then
— min(—wj) = max w;. So h; < max w;, and
m; > max @ — max w; (8.iv)
max o — max w; is a solution to the pivotal mechanism for player i. This is because

vi = Vi +tf = max (v; + W) — max w; = max @ — max w;
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What is required is to show m; = v;. To do this fix v; and let a° be a decision where w; is
maximal. Now construct v; such that wy_; is maximal at @° for all i. That is, the
summation over all n — 1 agents is a maximum at a° no matter which agent is missing.
This can be done by setting v;(a®) large enough and v;(aX) = O for a* # a°. This means
no agent is pivotal. So at a’

max o — h;[vj(a)] = max o — max w;

Hence

hi[vj(a)] = max w;

This holds for all cases from theorem 7.3 since the special construction was on v; and
not on v;. Therefore

m; = max o — hj[vj(@)] = max o — maxw; = v;
as required. ]

Another interesting question is that of individual rationality. A requirement
imposed on all collective decision processes by the core is that it must be
individually rational, or Pareto superior, for an individual to participate. An
individual must be better off entering into the process than abstaining. Otherwise
the core constraint that v{i} < v; is violated. Do the revelation mechanisms so far
discussed have this property? It might be wondered whether the tax imposed might
make some individuals worse off than they would be if the abstained and accepted
the status quo without the decision.

It is easy to show that it is always rational for an individual to participate in any
mechanism that gives a transfer greater than or equal to the pivot mechanism.

Theorem 8.5: The requirement of individual rationality in participation is met for
any m; > v;, where v; is the final utility of an agent i in the Spp mechanism.

Proof: The Spp mechanism gives v; = v} + t with outcome a* where v; > max v;
with outcome a* where aX maximizes w; without i’s report. Hence participation is
rational for i for any m; > v;. [ ]

It can be seen that an Spp mechanism can be used to construct a choice procedure
that overcomes the problems associated with understating preferences for public
goods, provided that the value of the good and the taxes are additively separable.
These problems include those of free riding when this takes the form of understating
the value of the good.
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Does this mean that the dictator can maximize social welfare, or meet the weaker
criterion that the pay-off is on the Pareto frontier? Unfortunately the answer is ‘no’ to
both questions. To see this it is necessary to consider the surplus that is generated by
the Groves mechanism.

8.5 The budget surplus problem

It can be seen that, where at least one agent is pivotal, an Spp mechanism will generate
a tax. This means that, even though an efficient level of the public good is provided,
the outcome is not socially optimal because the private consumption of some agents is
reduced. It would be useful if this sub-optimality could be avoided by using some other
revelation mechanism that did not result in a surplus being generated. If this were the
case the decision would be both efficient and socially optimal. It turns out that this is
not possible, however. This is stated and proven in the following theorem. It is then
asked whether this negative result is a cause for concern.

Theorem 8.6: (Green and Laffont, 1979) There is no strategy-proof direct
revelation mechanism such that the sum of taxes collected is zero for all preference
profiles.

Proof: The proof has to show that there exists a set of preference profiles where
> t; # 0. This is done by induction. Suppose Y t; = 0. Begin by considering the case
for two players. Without loss of generality, assume that every report is honest.
Consider the case where there are two preference profiles. This means that players
have preferences of type one and then preferences of type two. Write these v{ where
i=1,2andj=1,2.v = (vi1 (a), vé(a)). Let the value of outcome a for player 2 be the
same in both preference profiles. That is v} = vZ. Let

1 1
Vi +v, >0 8.vi)
V2 +v3 <0 ®.
1 2

Since the mechanism produces none of the good for the second case, for > t; =0
we must have from equation (8.iii) that v; + f; = max o — h;. Adding gives

H+t} =vi +vi - h(vl) — hy(v}) = 0, when the good is produced

h1(v3) + ha(v3) = 0, where no good is produced

These two equations are added. Recalling that v} = v gives

vi— v + hp (V) = —v}
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Observe that the left hand side depends on v; and not on v,. But it is possible to
vary v} within the range required by equation (8.vi). Therefore the equality does not
hold. This contradicts the assumption that ) t; = 0. Thus the proof is established for
two players.

For the proof by induction, add another player to equation (8.vi) so that v} =3
and

Zvil >0
Zvi2<0

Performing the same addition as before

vi=Y D)+ Y mhH ==Y vi@) fori=23

since all the terms h;(v,) and h;(v3) cancel out as before. Remember that v% = v% and
v} = v2. Once more the left-hand side and the right-hand side are independent.
To complete the proof, assume that _ t; = O for k players with preferences defined
such that v} = v2 for all k — 1, and the preferences of player 1 as before. Now define
the preferences of the k + 1 player such that v, =v2,, and ) v? < 0. It is obvious

that addition will give
vi=> v+ Y h(vh) ==Y vil@fori=23,... k+1

as in the previous calculation. This establishes the contradiction for any k + 1, as
required. [ ]

Is the fact that any direct revelation strategy-proof decision mechanism will
generate a surplus a cause for concern? What would be the expected deviation from
the social optimum?

Green and Laffont have argued that the outcome produced by such a mechanism
will tend to converge on the social optimum for a very large number of agents (pp.
165-200). Their argument is roughly as follows. As the number of agents increases,
the surplus collected is small. Suppose that this surplus is distributed among the
population in order to eliminate the social inefficiency. In this case the amount
distributed to any particular agent will also be small.

Green and Laffont give the following example (p. 168). Consider a project with a
mean value of zero for which 95% of the population has a willingness to pay
between — $200 and + $200. Willingness to pay has the normal distribution around
the mean. For a population of 10,000, the expected per capita rebate would be 20
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cents. Where the mean is greater than zero the expected surplus goes to zero as n
increases.

It follows that this amount should not cause agents to deviate too far from their
honest report. If so, the mechanism produces a result near to the efficient provision
of the public good.

8.6 Note on strategy-proof mechanisms and preferences

The assumption that preferences between the public good and private goods such as
the tax are separable has been maintained throughout the discussion of the Spp
mechanism. That is, the problem has been to choose a strategy that maximizes

v=v(a)+t.

The bad news is that, if the assumption of separability is dropped, it is not possible to
ensure that a revelation mechanism gives a satisfactory result. This problem is not
eliminated when the number of decision makers becomes large, as with the budget
surplus problem.

It is shown by Green and Laffont (p. 201) that, when the project has a positive
income effect, the optimum strategy of agents will be to understate their net
willingness to pay. This suggests that the decision maker should be willing to adopt
public projects when the stated value is less than zero.
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Voting Rules and Strategic
Manipulation

9.1 Introduction

In democratic systems some form of voting or scoring method is used to get a
collective choice by mapping the preferences of individuals into a final outcome.
These methods differ from those used to maximize a social welfare function in
Chapter 8. They are simpler and less refined. The attempt to maximize welfare and
to make a direct link between utilities and outcomes is abandoned. Instead, the
welfare requirements of the choice procedure are much cruder and less demanding
and the choice is made on the basis of less information. The players are merely
required to order their preferences for outcomes, or for candidates offering a menu
of outcomes. Some choice procedure is designed to map this minimal information
into an outcome that meets a set of normative conditions. Among these conditions
might be that if more individuals prefer an outcome the probability of selection
increases, or that the process should not discriminate between individuals on the
basis of height or race. An example of such a procedure would be that the outcome
with the most first votes wins. Another scheme would be a series of binary
competitions between outcomes. The winners from one competition are again
paired until a single outcome remains as the social choice. Another would be a
scheme whereby each voter vetoes the most disliked candidates at each round.
The question which this gives rise to is, are such schemes strategy-proof? That is, is
it in the interests of each voter to report their preferences honestly? This problem
has generated a large literature. Most of this is negative and focuses on impossibility
results. The most important of these for strategic voting is the Gibbard-Satterthwaite
theorem. This says that when three or more candidates are to be compared, and
there are no restrictions on preferences, the only strategy-proof mechanism is a
dictatorial mechanism. Since a dictator might be considered undesirable, it is
worthwhile investigating this result. It is also worthwhile asking whether strategic

149
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manipulation might be of less concern than the possibility of a dictator or
restrictions on choice.

Another question that arises is whether voting procedures will be stable in the sense
that a given set of preferences always gives the same outcome. This is the same as asking
whether the voting procedure always has a unique core.

The question of stability has received a great deal of attention from political
scientists and seems to have been seen as desirable in the sense that equilibrium
results are desirable in a theory of markets. It is not clear, however, whether stability
is a desirable property. For example, a core in which n1/2 + 1 voters always get their
preference might be considered a form of tyranny over the remaining n/2 — 1. This
could conceivably lead to political instability.

It can be seen that different voting rules have different properties and may give
different final choices with the same distribution of preferences. Rather than focus on
impossibility theorems, the more interesting question is, what type, or mixture, of
voting rules is going to have the most attractive characteristics with respect to any
particular problem?! Strategic manipulation may be an acceptable property if it allows
other values, such as no restriction of preferences and no dictatorship, to be maintained.

This chapter deals with some aspects of the social choice theory attack on such
problems.? It uses both non-co-operative and co-operative game theory. I consider
the problems at a fairly general level. By this I mean that little is done by way of
specifying particular institutions.

9.2 The voting problem and strategic manipulation

The game theory analysis of voting procedures is concerned with those cases where
it pays voters to act strategically, rather than with the larger class of problems about
preference aggregation mechanisms. A voting mechanism is an ordering of
preferences or an allocation of points for different outcomes. It is not, in general,
a statement of the utilities of an outcome. These outcomes might also be candidates
in an election. The terms outcome and candidate will be treated as equivalents.

As with the utility reporting system dealt with in Chapter 8, the problem of strategic
interaction is that voters may not truthfully report their preferences. The fact that a
system is manipulable may mean that the Nash equilibrium strategy for all voters is to
give a dishonest report. If this happens, then voting will not give accurate information
about voters’ preferences. This can be expressed more formally as follows:

Definition: A voting mechanism or rule is a procedure for mapping a set of
orderings over possible states of the world, or outcomes, into some final ordering.
Let A be the set of m outcomes with a* € A. A" is the m x n matrix of orderings for n
voters over these outcomes. This gives A™ = (A1, Az, ...Ap). An ordering for voter i



Voting Rules and Strategic Manipulation 151

is Aj=o0A where o is a permutation of the m elements in the choice set.
A;=d,a*, ... with the kth member being at least as preferred as the k + 1th for
all k.

The voting rule ¢ is a mapping from the ordering of individual preferences A™" to
an outcome. This may be a ranking of states of the world or a selection of one or
more successful candidates.

p: A" > a

where a is the selected outcome or ranking.

9.2.1 The voting problem

The voting problem is to pick some rule that satisfies a set of desirable criteria. As
with the previous discussion of desirable criteria or axioms these are normative.
Among them might be

[1] Decisiveness. The rule should be able to make a selection between outcomes. This
is usually not considered to be sufficient. A decisive selection could be achieved
by using a roulette wheel, for example.

[2] Monotonicity. This means that if the support for a candidate increases, then the
chances of this candidate being elected cannot decrease.

[3] Neutrality. This says that candidates are treated equally.

[4] Anonymity. Anonymity says that voters are treated equally.

9.2.2 Voting methods

The two most frequently used methods of voting are scoring methods and
Condorcet voting. These will be used for the examples that follow. For all voting
mechanisms it will be assumed that a tie is broken by some fair random mechanism
such as tossing a coin.

9.2.2.1 Scoring method

This allocates a number of points to each candidate within some predetermined range.
The top candidate may get ten, the second nine and so on. The candidate that gets the
highest score is elected. This is often known as the Borda method. Note that first past
the post or simple plurality voting is a particular case of the scoring method. In this case
one point is allocated to the most favoured candidate and zero to all others.

9.2.2.2 Condorcet method

This involves matching the candidates in a pairwise comparison and determin-
ing the loser from each by a majority vote. A version of this, where candidates
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that lose are eliminated, is familiar to those who watch tennis championships.
The Condorcet winner is the candidate that defeats every other candidate in a
sequence of majority comparison.

The characteristics of these voting methods will often depend on the number of
candidates.

9.2.3 Two candidates or less

The problem of strategy-proof voting mechanisms only arises with three or
more possible outcomes. To see this consider the case where the number of
candidates is two. In this case the scoring method and the Condorcet method
meet monotonicity, neutrality and anonymity and are strategy-proof. This is
stated in a little theorem as follows. Let p be the probability of a candidate being
selected.

Theorem 9.1: Suppose there are no more than two outcomes for an election. Any
monotonic choice mechanism is strategy-proof.

Proof: Let s} be the strategy of reporting truthfully and sy the strategy of reporting
any other preference. Suppose vi(@') > vi(a*) and i supports a*. This gives

pp:s—>d >pp: s—>da
from monotonicity and
E[vi(s{, s-1] < E[vi(s}, s-i]
Contradiction. ]

This result meets the definition of a strategy-proof mechanism from Chapter 8. It
does not hold where the number of candidates exceeds two. Consider the following
examples.

9.2.4 More than two candidates

9.2.4a Scoring method

Suppose there is a plurality voting system and three candidates a, b, c. Let P; mean
preferred by i and I; mean indifferent. Fixed points are allocated to the first second

and third preferences. There are n voters. The rankings for voter i and all other voters
written —i are

i aPibPic
—i cP_ibP_;a
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Assume that the value of the points are such that the distance between the points
allocated to first and last for i is greater than the distance between the points
allocated for first and second for —i. For i,a=10, b=5,c=1 and for
—i,c=355,b =50 and a = 20.

st is to report true preferences. It is immediate that

V,'(S?, 5:') > Vi(sz‘k» 5:‘)
This is because
o(si, st =c

with 56 points, whereas for

we have
o(s7,s*) =D

with 60 points. Since v;(b) > vi(c), scoring is not strategy-proof.

9.2.4b Condorcet method

Assume a Condorcet voting method with the preferences for three voters i, j, k in
Figure 9.1. Preferences run from top to bottom with the higher outcome preferred to
the lower.

It will be observed that this ordering can be manipulated by voter i. Let the
pairwise comparison be between the winner of a vote between a and b and a vote for
¢. This gives

¢ =lp(a,b),c]

o |~
o

Figure 9.1 Cyclical preferences
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Then ¢(a, b) = a and ¢(a, ¢) = c. Since i has bP;c it pays to report bP;a in the first
round. Now

¢lp(a, b),cl=b

with v;(b) > v(a).

This method is not strategyproof since i’s stated preferences for b over a depends
on i’s preference for b over c.

These examples naturally lead to the question, are any methods of voting strategy-
proof? Since the number of possible voting methods is very large, this question
cannot be decided by examining each possibility.

One way to make a start on this problem is to note that strategic interaction can
only take place if the pay-offs for i are influenced by the actions of —i. This leads to
the following speculation.

Theorem 9.1 shows that, if there are only two outcomes, the optimum strategy is
to report truthfully. Moreover if two outcomes were independent, player i’s vote for
outcome a would not affect the result for any other outcome, say b. Hence it might
be thought that if any two outcomes were independent of a third, there would be no
point in not reporting the preferences truthfully. It turns out that this is correct. It is
given in the following theorem. Independence from irrelevant alternatives means
that a choice between any two outcomes, say {a, b}, is not influenced by preferences
for any other outcome.

Theorem 9.2: Suppose a voting mechanism is monotonic and allows a choice
from all subsets. If this mechanism satisfies independence from irrelevant
alternatives it is strategy-proof.

Proof: Immediate from the definition and theorem 9.1. ]

A corollary of these theorems is the following.

Corollary: If a unique Condorcet winner exists the voting mechanism is strategy-
proof.

Proof: Suppose a unique winner exists such that ¢ : (s*) — a. Let B be some coalition
of players that prefers b. (s*)=(sy_p.S5). From theorems 9.1 and 9.2
vB(Sn_g- S§) = VB(Sy_p. $%). Hence it does not pay B to lie. [ |

Theorems 9.1 and 9.2 are very simple, but they have some interesting
implications. To see the first of these it is necessary to consider Arrow’s famous
impossibility theorem.

Arrow’s theorem says that, if there are at least three alternatives, and the social
choice rules satisfies a number of conditions, including independence from
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irrelevant alternatives, there is a dictator. That is, there must be a single
individual whose preferences are decisive. The reason that Arrow’s theorem is not
of direct interest from a game theory perspective is that independence of
alternatives means that the voting mechanism cannot be manipulated. Hence
players do not have interesting strategies.

This leads to the following question. If independence from irrelevant alternatives
is required, is it possible to escape the condition that the choice mechanism has a
dictator?

9.3 The Gibbard-Satterthwaite theorem

The Gibbard-Satterthwaite theorem shows that, where there are more than two
outcomes, any choice mechanism, ¢, that is strategy-proof single valued and onto
must also be dictatorial. This means that there is a trade-off between truthful
reporting and the existence of a dictator. Single valued means that ¢ picks one and
only one outcome a € A. Onto means that there exists a set of preferences such that
every member of A can be selected.

Theorem 9.3: (Gibbard (1973), Satterthwaite (1975)) Suppose A contains at least
three outcomes and the domain of the preferences is unrestricted. The voting rule ¢
is strategy-proof if and only if there exists some agent i that is a dictator for all
profiles. This means that ¢(A™") = a the most preferred outcome for i.

Proof: The argument that if there is a dictator the mechanism is strategy-proof
is easy. Since the outcome is a it does not pay i to lie. It does not pay anyone else
to lie since their preferences do not affect the outcome. The argument that if the
mechanism is strategy-proof there is a dictator is more difficult. A demonstration
is to be found in Craven (1992, p. 78) and a proof in Moulin (1983, p. 65). A proof
that the dictator is the same in all preference profiles is simple. Let i be the
dictator under some preference profile u. Assume u;(a) > u;(b). Since i is the
dictator, aPb even though bP_;a for all other voters. Now assume some other
preference profile v = (u;, v_;). No more individuals can prefer b to a in v. Hence,
the preferences for b have remained the same or decreased. Hence, by
monotonicity if aPb in u it must be the case that aPb in v. Since aPb, then bPc
means aPc even if cP_;a. This establishes i is the dictator in v. [ ]

The intuition underlying the Gibbard-Satterthwaite theorem can be demon-
strated by turning to the illustrations in section 9.2.4 that scoring methods and the
Condorcet method are not strategy-proof.

Since the domain of the preferences is unrestricted it is legitimate to use the
preferences in Figure 9.1. A Condorcet method is not decisive with these preferences
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because the outcome cycles between a, b and c. To make it decisive, some order must
be imposed. Say it is aPbPc. Then i is the dictator. If some ordering is imposed that is
not in Figure 9.1 we simply take the new example that contains this ordering. This is
justified from unrestricted domain.

More generally, it follows from the proof of the first part that one way to make
these methods decisive and strategy-proof is to suppose that some voter, i, is a
dictator. The theorem shows that there is no other way to ensure strategy-proofness
for any possible single valued voting rule with an unrestricted domain.

The reason that there is a single individual who is the dictator for all preference
profiles is easy to understand. If the dictator changed with a change in the
preference profile, then it is easy to think of an example where it would pay some
voter, or coalition of voters, to change their stated preferences in order to alter the
identity of the dictator.

It might be thought that the Gibbard-Satterthwaite theorem means that the case
where a unique Condorcet winner exists also means that some player must be a
dictator. This is not correct. Consider the corollary to theorem 9.2. A voting rule
with a unique Condorcet winner is strategy-proof and need not have a dictator.
Consider a preference profile like

aPlelc, bPzaPZC, CP3bP3(1

In this case the winner is b. There is no dictator since player one can change to
cP1bP;a to give the winner c. What went wrong?

The Gibbard-Satterthwaite theorem says that there is a dictator only if preference
sets are unrestricted. The stipulation that a unique Condorcet winner must exist
places restrictions on the preference set. This violates the conditions of the theorem.

It must be remembered that theorems such as the Gibbard-Satterthwaite and Arrow
theorems are impossibility results. They say that no selection procedure of type ¢ can
satisfy some general set of criteria C. All that has to be done to prove them is to find a
set of preferences where the procedure fails for some ¢ € C. For example, consider the
statement that the function f = 1/x does not have a solution for all points in an
unrestricted domain of the real numbers. This is proven by considering x = 0.

It is a characteristic of impossibility theorems that they invoke unrestricted
domain savagely in the proofs. It is simple to show that this is an important
topological property. This is because unrestricted domain means that the space of
preferences cannot be continuously retracted or mapped into an outcome
represented by a single point. Impossibility problems might be avoided in many
specific choice procedures because preferences are restricted. For example, much of
the theory of markets assumes that utilities are positive. Preferences are also
restricted by institutional rules in many voting arrangements.
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9.4 Restricted domain solutions and strategy-proof rules

The most important and well known restriction on the preference set is that the
preferences are single peaked. This condition is defined as follows.

Definition: a* is the most preferred outcome in an array a',...,a™, with i, j
integers i, j > 0 and i # j and v(a’) # w(d). If the sequence is ...d’,...d ... thenj > i.
Preferences are single peaked if it is not possible that for r > k we have v(a™*!) > v(a")
or for r < k we have v(a") < v(a™!). |

Single peaked preferences are illustrated in Figure 9.2(a). The preference in Figure
9.2(b) is double peaked. Flat intervals are prevented by the stipulation that
v(a') # v(d).

The property of single peakedness means that the preferences can be set out in a
single dimension and the pay-off for an outcome declines monotonically with its
distance from the most preferred position. Alternatively, this can be taken as a
definition of single peakedness.

An important example of single peakedness is preferences over political parties or
programmes when these can be placed on a left-right scale. Another is preferences
over the location of a facility on a straight road where players wish to minimize the
distance travelled.

Single peaked preference schedules have some simple but important properties.
To investigate these put the preferences in an ordered sequence (al, ..., a™). Let the
number of voters at a' be a’. Without loss of generality, assume that the number of
peaks is odd to simplify the discussion. Let the median peak be a”. This is defined as

a b c a b c

(@) (b)

Figure 9.2 Single and double peaked preferences
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X n
m=x:Y a*>n+1)/2 and Y a* > n+1)/2
r=1

r=x

It is obvious that the voters at the median peak and the voters on one side or the other
can form a majority. Note that majorities will not form by jumping peaks. This gives a
lower pay-off than a continuous coalition because it moves the outcome further away
from the peak that could be attained with the continuous coalition. This means that
the peak a™ is in the intersection of both sets of peaks required for a majority.

Note that the voter, or voters, at the median peak is not a dictator. This voter’s
position simply coincides with the median outcome.

An example is given in Figure 9.3 for five outcomes and seven voters. A is a voter

with a peak at this preference. In this case a” = a*.

Theorem 9.4: There is always a unique Condorcet winner when preferences are
single peaked and there is an odd number of voters. The winner is at the median
peak.

Proof (1): The proof follows immediately from the fact that g(a™, @) = a™ from the
definition of the median peak. |

A similar theorem gives the median voter for continuous preferences. Where
preferences are discrete and the number of voters is not odd it is possible that ties will
occur. The uniqueness result can be preserved by adding a tie breaking procedure.

The proof of theorem 9.4 could also have been constructed using the theory of the
core. Suppose that the value of winning is 1 and losing is 0. Then a coalition with the
voters at a” is in the core and a coalition without these voters has no value.

Proof (2): Let B be a coalition of voters from the left or the right of the linear
ordering. Write a coalition B without k as B\ k. Then

v(B\a")=0and v(BUa™) >0 -

Any coalition that gives voters with a peak at m less than the value of the outcome
a™ is defeated by the alternative coalition made up by the voters with a peak at a™
defecting.

AA A A A A A
at a2 as at as

Figure 9.3 Median voter
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An interesting corollary of this concerns distribution games and political conflicts
where coalitions must form from the left or the right. Examples might be class
conflict or ethnic or religious politics. In these cases, the voters in the median
position can claim the entire value of the prize for winning.

This raises questions about the relation between the existence of strategy-proof
games and the core.

9.5 Core stability

The fact that many voting rules might be open to strategic manipulation and may
produce cycles or unstable outcomes is well known in the literature on spatial voting.
Some see this finding as the major theme of the public choice literature (Mueller,
1991, p. 88).> What instability means is that for any coalition of voters B that can
form under voting rule ¢ and express a preference for an outcome a* such that

o(B*, N\B¥) = a*

it is optimal for some member of B¥ to defect to join some other coalition so that
B*\ i, is losing and B’ = N \ (B \ i) is winning. This gives*

©(B°, N\B°) = a°

where a° # aX. In other words, if a* is the outcome available from some winning
coalition B¥, there is always some i that can join another winning coalition with
pay-off a° such that

vi(@®) > vi(a)

The way in which this violates the condition required for the existence of the non-
transferable utility core from Chapter 7 is demonstrated as follows. For the core let
the pay-off v(N) = v(a*). This is the value of the outcome chosen by the all voter
coalition and is the same as the value of the outcome chosen by some winning
coalition BX. Then for i

Vi(B) = vi(N) = vi(a")
But v;i(a®) > vi(a¥) in some alternative coalition. Hence the core condition is violated.

An example of cyclic instability for three voters i, j, kK with a majority voting
system is given in Figure 9.4(a). For simplicity it is assumed that preferences are on
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a2 a2

at at

(@) (b)

Figure 9.4 Cycling and the Plott condition

a continuous interval. They might be thought of as representing the amount to be
spent on some outcome a* such as health or defence. It is also assumed that utility
declines from the ideal point and that the rate of decline is the same in all
directions. Hence, preferences can be represented as circles in Euclidean space. Let
the outcomes be a! and a?.

It is easy to see that any winning coalition B° = (k, i) with ¢ = a can be defeated by
an alternative winning coalition BX = (i, j) with ¢ = b if i defects in order to get a
point nearer the preferred outcome. Similarly for (j, k) and ¢ = ¢ and so on.

A condition that will make this system stable is that there is a median in all
directions. This is usually referred to as the Plott condition. Intuitively, the
condition is that any line through the median point m must divide the voters into
two sets with equal numbers. In this case any move away from the point m must
reduce the pay-offs for n/2 + 1 voters. This is the same result as theorem 9.4 for more
than one dimension.

An example of a median in all directions is given in Figure 9.4(b) for five voters (i, j,
k, g, m) in two dimensions. Since preferences are circular, the contract lines are
straight. The same general story would hold for elliptical preferences or preferences
described on a different topology. In these cases the contract lines would have
different properties.

Is it possible to test for the conditions under which any voting rule will have a
stable core? This can be done using the Nakamura number.

9.5.1 Nakamura number

Definition: The Nakamura number of a simple game given by a voting rule ¢ is the
minimum number of winning coalitions with empty intersections. Write this
number as 7. |
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A simple game is a game in which coalitions are either winning, losing or tied.
Coalitions B* and B/ are said to have empty intersection when there does not exist
some individual x such that x is a member of B* and B/. This gives B* N B/ = ¢.

9.5.1a Example of the Nakamura number

The Condorcet voting rule says that a winning coalition must have a majority.
Consider three voters (i, j, k) and a Condorcet voting rule. In this case the
minimum winning coalitions are (i, j), (i, k), (j, k). Call these coalitions B!, B> and
B3. Note that

B'NnB’NB=¢
and
B'NB* =i

but i is not a member of B3, for example. Therefore n = 3.

Theorem 9.5: The minimum number of winning coalitions with an empty
intersection in a Condorcet majority voting system is three for n odd n > 3, and
three for n even, n > 6.

Proof: The case where n = 3 was proven above. Let n = 5.
B'=(1,2,3),B>=(3,4,5,B'nB* £ ¢
For an empty intersection we need B? = (1, 4, 5). Now,
B'nB’nB=¢
For n = 6 we have
B'=(1,2,3,4),B>=(3,4,5,6),B> =(1,2,5,6)
So the theorem is true for n = 5 and n = 6. Use induction to prove both the even and

the odd cases together. For an odd number a winning coalition has 1 + (n — 1)/2 and
for an even number 1 + n/2 votes.

Suppose the theorem is true for n even. Then it is true for three coalitions of size 1 + 4.
Adding an additional voter gives n + 1 voters. This means it must be true for three
coalitions 1 + (n+ 1 — 1)/2. This is true by definition. So it is true for n odd.
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The theorem is true for n odd. Observe that for n even B' N B> must contain two
voters. Add another voter i. Let the intersection for n even be B! N B? = {i,j}. For
B'NB2NB3 =¢ it must be the case that B3\i,j} is winning. This means that
(n+1)—2> 1+ (n+1)/2. This is true for n > 5 as required. ]

Theorem 9.5 says that if n is even, n > 6. Consider n = 4.
B'=(1,2,3),B> =(2,3,4), B> = (3,4, 1).

B'NB2NB3 +# ¢ . This means we need B* = (4, 1, 2). Hence 1 = 4.

This is used to produce the following elegant theorem. Write the number of
outcomes in the set A as a”. Assume that all voters have consistent preferences.

9.5.2 Nakamura’s theorem

Theorem 9.6: (Nakamura, 1979) A voting rule ¢ has a core if and only if 7 is strictly
greater than a”.

Proof: Suppose n > a” =k and there is no core. For some profile of preference
orderings there is a cycle

alPazP .. .PakPal
Since k < n it follows from the empty intersection property that, for some agent
i, alP,'azPi .. .PiakP,'al

because i is a member of every winning coalition. This contradicts the assumption
that preferences are consistent.

The second part of the proof is constructed by supposing the core exists and
n < a* = k. Let n = a* = k. Since preference profiles are not restricted, it is possible to
have a preference profile

ai1Pp1azPpy . . . Ppr_1axPpr
for the k winning coalitions B!, B2, ... B¥. From the assumption n = a” = k we have
B = ¢

and there is no i that is a member of every winning coalition. This contradicts the
assumption that there is a core for all acceptable preference profiles. [ |
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Here is an example. Suppose that n = a” = 3. The voting rule holds for any
distribution of preferences. Hence winning coalition B! can have aP;b and winning
coalitions B? and B3 can have bP,c and cPza. This assumption is legitimate because
the coalitions have no members in common. Assuming the complete ordering of
outcomes is the same as Figure 9.1 it is easy to see that there is at least one individual
who will do strictly better in an alternative coalition. This violates the condition
required for the existence of a core.

9.5.2a Applications of Nakamura’s theorem

The way in which Nakamura’s theorem can be used to explore the conditions under
which voting is cyclic is illustrated as follows. Assume a Condorcet voting system
with unrestricted domain of preferences. Theorem 9.5 shows that, for a Condorcet
system with the number of voters n > 5, n = 3. Therefore, for a” > 3, there is no core
with an unrestricted domain. Hence voting cycles can occur for any number of
outcomes greater than three.

To prevent cycling for any a” = k it is necessary to increase n to give n > k. This
might be done by making the voting rule more strict. For example, the rule might be
that a winning coalition has (n + x)/2 members where x > 1. Alternatively, it might
be possible to restrict the way in which coalitions can form. This might be done by
restricting preferences. Examples previously given were single peakedness and the
Plott condition.

For single peaked preferences and simple majority voting there is no minimal
number of winning coalitions with an empty intersection. For any winning
coalitions N B = m. Expressed as a Nakamura number, this means that for single
peaked preferences

Hence cycling cannot occur.

One way to ensure single peakedness is to only vote for one issue at a time. To see
how this operates, consider the two dimensional space in figure 9.4(a). A single issue
method would be to hold a' constant and pick the level for /. It will be noted that if,
say, a is held constant at a**, then the preferences along the single dimension a' are
single peaked, as required. This is obvious by drawing the horizontal line at a**.

Cycling can also be prevented by blocking an alternative winning coalition
reconsidering a candidate that has been eliminated by some previous winning
coalition. This gives a* = 2 at any round. This ensures the voting rule is stable for
any n > 3. This condition is met for any Condorcet compatible method, such as a
tennis championship.

Since a candidate is eliminated at each round, the method just discussed is an
example of voting by veto. This method probably deserves more attention than it
usually gets in the design of voting schemes.
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9.6 Voting by veto

The most attractive feature of voting by veto is that it endows a coalition of voters
that is not winning, but is over some minimum size, the power to eliminate the
most disliked candidates.® This may contribute to social stability where the game is
being played for high stakes. There may be different ethnic and racial groups, for
example, and fear of persecution or violence. Consider the following example of a
voting by veto process where candidates can be eliminated in proportion to the
number of votes. Write this rule ¢". There are three voters, i, j, kK with the following
preference orderings. (i, j) forms a majority coalition. Writing preferences from the
most to the least preferred from left to right

@,j)) a,b,c,d,ef.g
{k} d,cef,a,gb

In a Condorcet system

(A" =a

In a voting by veto system with elimination according to the portion of votes, (i, j)
eliminates two outcomes for each one eliminated by {k}. Continuing this process of
elimination with coalitions eliminating their least liked candidate gives

¢ =c

It might be thought that this system is strategy-proof because it would never
pay a coalition to eliminate an outcome it prefers more than one it prefers less.
This is not correct, even though it seems perverse. The example above is not
strategy-proof for example. In general a veto rule cannot be strategy-proof
whenever it selects a single outcome. This follows immediately from the Gibbard-
Satterthwaite theorem, and the fact that a veto process cannot have a dictator.

This raises the problem of the optimum design for voting by veto rule. Let the
veto power of a coalition be a function of the number of voters in that coalition.
Write this v(k’), where k' is the number of voters in coalition B'. Clearly, if voters
have too much power to veto there may be no outcome at all and the game will not
have a core. For example, assume that there are a* candidates and that each
coalition can veto a number which is equal to the same proportion of the
candidates as its proportion of the vote, taken up to the nearest integer. This is the
smallest integer

z>a" ki/n
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where n =Y ki In this case there is no outcome since all the candidates will be
vetoed.
The existence of the core requires that

Z u(k) < v(n) by superadditivity
kieB

u(n) < a’

These conditions are sufficient because a voting by veto rule prevents cycling.

If the veto power of coalitions is too small, the core may be large since insufficient
candidates have been eliminated. In this case the rule will also be unsatisfactory.

Moulin (1983, p. 122) suggests a proportional veto solution to the problem of
designing a suitable veto rule. It goes as follows.

Define an anonymous veto function as a function from the coalitions of voters to
a® — 1 outcomes.

@ :B—a—r

for some integer, r > 0, ¢" will be stable if there is at least one outcome that no
coalition of voters can block while guaranteeing an increased pay-off to all its
members. That is, the core is not empty.

Definition: The proportional veto voting rule is a rule ¢"* with a veto function v
defined as

vk =[x] -1

where [x] is the smallest integer bounded below by a' ki/n. This gives [x] — 1 as the
greatest integer strictly less than a” k'/n. For example if a” k'/n = 3.375, [x] = 4 and
[x]-1=3. [ |

Theorem 9.7: (Moulin, 1983) The proportional veto function has a non-empty
core and makes the set of stable outcomes as small as practicable.

Proof: The proof of this is given by Moulin (1983, pp. 126-35). It is intuitively
plausible and is omitted due to its length. [ |

The idea behind this theorem is easy to grasp. It says that coalitions of voters
should be allowed to veto a number of candidates slightly less than the proportion
of their votes. This obviously meets the two conditions Y v (k') < v(n) and v(n) < a
with v (1) as close to the lower integer bound of a* — 1 as practicable.
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Chapter 1

[y

* N

10.
11.
12.

See Friedman (1978) for a discussion of this possibility.

The papers collected in Barry and Hardin (1982) are a good introduction to this
question.

See Rousseau, ‘The Social Contract’ (1979) and Hegel (1976). Goodin (1989) gives an
interesting argument for the moral responsibilities of the state from a game theory
perspective.

Using the term state to cover collective decisions and actions of all kinds Nozick
makes the point as follows. The question that ‘precedes questions about how the
state should be organized, is whether there should be any state at all’ (Nozick, 1974,
p- 4).

It is worthwhile quoting Usher more fully. ‘It is a little noticed but nonetheless
remarkable fact about economic analysis that there is no role for violence at all. ...
This caricature can be maintained through the implicit assumption on traditional
welfare economics that property is secure ... each person’s entitlements are
protected by government. With the abandonment of that assumption comes a
recognition of the role of actual or threatened violence in the maintenance of the
social order ..." (1992, pp. xvi-xvii)

See, for example, de Jasay’s claim that ‘it is intuitively plausible’ that the
n-person prisoner’s dilemma can be solved when people ‘do not instantly club each
other to death’ (pp. 43-4). This is fun but it is not analysis and intuitions are
misleading. Once upon a time it may have been ‘intuitively plausible’ that prisoner’s
dilemmas did not exist.

See, for example, Auster and Silver (1979).

For recent advances in the theory of the firm see Tirole (1989).

Rationality should more usefully be reserved for maximizing the material pay-offs to
the specific player, if it is to have any substantive content. Nothing hinges on this
point here.

Weibull (1996) gives a recent introduction to evolutionary game theory.

See Myerson (1991) for a discussion of equilibrium concepts.

For an introduction to probability measures and probability spaces see Grimmett
and Stirzakev (1992, pp. 1-5).

Chapter 2

1.

2.

See Sylvan ‘Anarchism’ in Goodin and Pettit (1993) and Taylor (1982) for recent
discussions of the anarchist position on authority.

See Kavka (1986) and Hampton (1986) for recent discussions of the game theoretical
structure of Hobbes’s state of nature.
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3. Taylor (1987, p. 13), for example.

4. Rapoport (1968), for example, argues that the prisoner’s dilemma reflects a wide
variety of human interactions. Hardin (1971) argues that the logic of collective
action problems generally is that of the prisoner’s dilemma.

5. See, for example, Johansson (1991, p. 68).

6. One problem that is often overlooked is that such normative enforcement is not cost
free. Communities often buy co-operation at a price of xenophobia and moral
rigidity. Since the concern here is larger groups, these issues are not of interest.

7. See Taylor (1987, ch. 4) for elaborations on decisiveness. In his examples the decisive
groups is a sub set of the total number of players, but the general point is not altered.

8. This sometimes known as the chain store paradox (Selten, 1978).

9. Dense in R means roughly that if each player is a point on the straight line the gaps
between them are infinitely small.

10. Essentially the same solution is given by Hampton (1986, 147-88, 220-47), Kavka
(1986) and Okada et al. (1991).
Chapter 3

1. The classical work is Smith (1982).

2. This problem can also be solved by calculating the expected value of the game
for player 1. E(v1) = xy(1) + x(1 — y)(0) + (1 — x)y(3) + (1 — x)(1 — y)(—1). Optimizing,
dvi/dx =1 — 3y — 0. Hence, if two is optimizing against one y = 1/3.

3. For a discussion of this see Myerson (1991, pp. 117-22), Axelrod (1984) and
Harsanyi (1986).

4. To calculate this note that from the second round (1 —8§) Y s 1wk = (1 — 8)swr/
1-96).

5. For q(1 — q) small the approximation used breaks down and the strategy s is closer
to either s" or s%.

6. See Binmore (1992, pp. 429-33) and Smith (1986, pp. 188-91) for an analysis of this
type of game.

7. The term — pq takes account of those players who are hawks anyway. If this were not
taken out there would be double counting.

8. Restricting strategies to a choice on the real number line gives it some nice
mathematical properties. In particular, the strategy set is a compact metric space
with the Euclidean metric. See Myerson (1991, p. 140) for a discussion.

9. This is usually called the probability distribution function.

10. This follows Smith (1986).
11. Bishop and Canning (1978).
Chapter 4

1. Friedman (1978) speculates on an outcome, but does attempt to answer the
question in a systematic manner.

2. The term stealing is used throughout, even though it is inaccurate. Without rules of

property there can be no stealing properly, so-called.
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Takayama (1985, p. 127) for a discussion of this technique.

See Chaing (1984, pp. 387-96) for a discussion of applications of the Arrow
Enthoven conditions to quasi-concavity.

Schelling (1960).

Chapter 5

1.
2.
3.

Nozick (1974, pp. 12-17).
Mimeo. Reported in Fudenberg and Tirole (1992, p. 156) and Sorin (1992).
It is not even clear what justice means in the no rules state of nature.

Chapter 6

1.

2.

See Smith (1982, p. 172) for a discussion of the application of this idea to the
evolution of culture and norms.

The old way to sort out these equilibria was to refine the Nash equilibrium concept
in various ways. This is not very satisfactory. See Binmore (1992, p. 13).

The most common definition of stability is Liapunov stability. This roughly says that
if a system starts within a space of radius ¢ around an equilibrium it stays within a
space of radius § around the equilibrium. § may or may not be greater than ¢. The
system may converge to the equilibrium in various ways. Alternatively it may orbit
within the space §.

4. The approach loosely follows the discussion in Weibull (1996). Smith (1982)
provides a good introduction and should be read. Binmore (1992, pp. 422-34) is very
accessible. Samuelson (1997) covers much of the same material.

5. For a discussion of asymptotic stability in evolutionary games see Samuelson (1997,
pp- 68-75).

6. For a slightly different generalization of this game see Smith (1982, p. 19).

Chapter 7

1. This problem is discussed further in Myerson (1991, pp. 422-7).

2. The mathematical requirement is that the system must be consistent for a solution
to exist. There may, of course, be infinitely many solutions.

3. A more rigorous analysis would show how small the core would become.

4. This is the usual result for public goods. See Mueller (1991, pp. 18-19) for further
discussion of this point.

Chapter 8
1. Fudenbberg and Tirole (1992, pp. 243-318) give some of the abstract principles. For

a less abstract introduction see Binmore (1992, pp. 501-69). For an introduction to
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the general problem of asymetrical information and principal agent problems see
Rasmusen (1994).

2. Note that, by the principle of optimality, the path s* is determined by starting with
stkm and working backwards.

3. If this is unclear, see Binmore (1992, p. 531) or Kreps (1990, pp. 691-5).

4. Binmore (1992, p. 531).

5. See Green and Laffont (1979, 4.3).

6. See Green and Laffont (1979, p. 61). See Moulin (1991, p. 211) for a different version
of this proof.

Chapter 9

1. It may be more reasonable, for example, to allow voters to reject candidate b in order
to get a, rather than the least preferred candidate ¢, even thought this violates
independence of irrelevant alternatives.

2. See Mueller (1991) for a discussion of voting and Ordeshook (1986) for an
introduction to the application of game theory to voting problems. Moulin (1983) is
a mathematically more advanced analysis.

3. See Ordeshook (1986 pp. 144-202) for an introduction to instability.

4. B¢ is all the members of N such that i € N means i ¢ B. This is N or the complement
of B. In a simple game, if B is winning then its complement, that is the rest of the
voters, are losing.

5. This is set out in full in Moulin (1993, pp. 185-6). See also Moulin (1991,
pp- 296-7)

6. The idea of voting by veto was first discussed by Mueller. See Mueller (1991, pp. 139-44)

for a discussion.
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