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Preface

Since its revival in the 1980s a variety of theories of categorial grammar
have come into being such as combinatory categorial grammar (Steedman
1987, 2000), type logical grammar (Morrill 1994, Moortgat 1997), pregroup
grammar (Lambek 1999, 2008), abstract categorial grammar (de Groote 2001,
Muskens 2001), and symmetric categorial grammar (Bernardi and Moortgat
2007). This book represents an appraisal of type logical categorial grammar
fifteen years after the publication of my first book. It aims to develop categorial
grammar in the spirit of the Lambek calculus of the 1950s but renewing it in
the light of linear logic and, especially, proof nets.

Alternative theories of categorial grammar have various merits but that pro-
pounded here is, I believe, both the closest to categorial grammar as originally
conceived and the closest to the modern paradigm of logic. The book is a
report on the efforts of many over several decades to provide logical syntax,
semantics, and processing. It presents research but provides exercises to facil-
itate its use as an advanced textbook. The raison d’être is to explain linguistic
theory which is articulated mathematically. The reader needs to be ready to
take on board this mathematical linguistics. Appendix A provides an overview
of the mathematical background assumed. A more complete preparation may
be obtained from Partee et al. (1990).

The reader should probably scan Appendix A first to get familiarized with
notations and so forth; the main chapters of the book are designed to be read
in sequence, although the first three chapters of Part III do not depend on
Part II. The exercises are intended to enhance the understanding of those who
are new to the field.
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Part I
Lambek Categorial Grammar



At the heart of what we call logical categorial grammar is the Lambek calculus.
The seminal paper is Lambek (1958). In the 1950s J. Lambek and N. Chomsky
were acquainted with each other and with each others’ work and both knew
about both mathematics and linguistics. Lambek went into the former and
Chomsky the latter. The Lambek paper was virtually lost for decades. The term
‘Lambek calculus’ appears to have been coined by J. van Benthem when the
paper was rediscovered in the 1980s.



1

Introduction

1.1 Formal grammar 3

1.2 Categorial syntax 4

1.3 Categorial semantics 7

1.4 Categorial processing 8

1.5 Outline of the book 8

‘The search for rigorous formulation in linguistics has a much more serious
motivation than mere concern for logical niceties or the desire to purify well-
established methods of linguistic analysis.’

Chomsky, 1957: 5

Some things are more than words can say, but astonishingly natural lan-
guage seems sufficient and efficient for expressing most of our experience
and serving most of our communicative purposes. This book develops a
way of analysing natural language syntax, semantics, and processing called
categorial grammar. Although we can only touch on a few of the better-
known landmarks in the immense scope and richness of language, insofar
as we do go we attempt to proceed with as much regard as possible for
mathematical desiderata. We try to broach a difficult problem by an exacting
methodology.

1.1 Formal grammar

Up until the nineteenth century the most comprehensive grammatical work
was the Ashtadhyayi (‘Eight Chapters’) of Panini (6th century bc) (Katre,
1987), which is also the oldest extant grammar in the world. It is an analysis
of Sanskrit as then spoken in the north-west region of India (now Pakistan).
It comprises just under 4,000 commented algebraic statements (context-
sensitive rewrite rules).

The founders of modern logic and linguistics were Gottlob Frege
(1848–1925) and Ferdinand de Saussure (1857–1913) respectively.

In his Begriffsschrift (‘idea/concept writing’ or ‘ideagraphy’) Frege (1879)
introduced quantificational predicate logic as if from nowhere, the greatest
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step forward in logic since Aristotle. He used a graphical notation,1 not the
textual notation that has since become standard. Frege was concerned to
try to provide a formal foundation to arithmetic and to this end he philos-
ophized carefully on semantics. In addition to introducing predicate logic,
contributions of his that are important to us here are the functorial analysis
of language (the origin of categorial grammar), compositionality or ‘Frege’s
Principle’ (the cornerstone of formal semantics; it was implicit, but not
explicit, in Frege’s writing), and the theory of sense and reference (Sinn and
Bedeutung).

Saussure (1915) cited the canonical use of language as the cycle of a speech-
circuit. A speaker expresses a psychological idea by means of a physiological
articulation. The signal is transmitted through the medium by a physical
process incident on a hearer who, from the consequent physiological impres-
sion, recovers the psychological idea. The hearer then replies, becoming the
speaker, and so the roles of speaker and hearer keep swapping, and the circuit
cycles. For the communication to be successful, speakers and hearers must
have shared associations between forms and meanings. De Saussure called
these signifiers and signifieds respectively and he called the pairing of a signifier
with a signified a sign. This relation in a language is both one-to-many (ambi-
guity) and many-to-one (paraphrase). We take it as a goal of formal grammar
to define (models of parts of) languages seen as such relations.

1.2 Categorial syntax

It appears that the first use of the term ‘categorial grammar’ is in the title
of Bar-Hillel et al. (1960), but categorial grammar began with Ajdukiewicz
(1935), two decades before Syntactic Structures. Ajdukiewicz (1935) classified
expressions by recursively defined non-directional fractional types, with basic
types name and sentence. A type B

A signified an expression which forms an
expression of type B when combined with an expression of type A. Thus there
is a cancellation schema:

(1) B
A A⇒ B

Ajdukiewicz defined a string of words as satisfying ‘syntactic connection’ if
and only if some ordering of its word types reduces to the distinguished type
by successive cancellations.

Let us assume basic types as shown in Table 1.1. The particular choice of
basic types in categorial grammar is something that the formalism leaves open.
For typographical ease, let us write a fractional type B

A as B |A. We may assign

1 Cf. the proof nets we shall see here.



introduction 5

Table 1.1. Basic categorial types

CN common noun
CP complementized sentence
N (referring) nominal; name
PP prepositional phrase
S (declarative) sentence; statement

Table 1.2. Non-directional lexical
type assignments

bow : CN
cloud : CN
have : (S|N)|(S|N)
I : N
in : PP|N
my : N|CN
set : ((S|N)|PP)|N
the : N|CN

have

(S|N)|(S|N)

set

((S|N)|PP)|N

my

N|CN

bow

CN

N

(S|N)|PP

in

PP|N

the

N|CN

cloud

CN

N

PP

S|N
S|N

I

N

S

Figure 1.1. Non-directional reduction of I have set my bow in the cloud

some non-directional lexical types as shown in Table 1.2. Then the words in
the sentence I have set my bow in the cloud (from Gen 9:13) reduce as shown
in Fig. 1.1. Ajdukiewicz intended such syntactic connectivity to be a necessary
condition for well-formedness, but obviously not a sufficient one, since it took
no account of word order.

Bar-Hillel (1950) and Bar-Hillel (1953) introduced a directional version of
the system of Ajdukiewicz (1935), known as the system AB after the initials of
its progenitors. We shall write A\B for the type of an expression which con-
catenates with an expression of type A on its left to form an expression of type
B , and we shall write B/A for the type of an expression which concatenates



6 lambek categorial grammar

with an expression of type A on its right to form an expression of type B . Thus
there are the cancellation schemata:

(2) a. A,A\B ⇒ B
b. B/A,A⇒ B

Then in AB we may assign directional lexical types as shown in Table 1.3. The
directional derivation of our expression is now represented in Fig. 1.2. It is this
system AB that Bar-Hillel et al. (1960) called categorial grammar and proved
to be equivalent in generative power to context-free grammar.

Lambek (1958) was an independent reinvention of categorial grammar. Bar-
Hillel (1953) saw categorial cancellation as analogous to the arithmetical law:

(3) B
A × A = B

But in Lambek (1958) cancellation is analogous to the logical law of modus
ponens:

(4) A → B, A⇒ B

Table 1.3. Directional lexi-
cal type assignments

bow : CN
cloud : CN
have : (N\S)/(N\S)
I : N
in : PP/N
my : N/CN
set : ((N\S)/PP)/N
the : N/CN

I

N

have

(N\S)/(N\S)

set

((N\S)/PP)/N

my

N/CN

bow

CN

N

(N\S)/PP

in

PP/N

the

N/CN

cloud

CN

N

PP

N\S

N\S

S

Figure 1.2. Directional derivation of I have set my bow in the cloud
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In what is the quintessence of logical categorial grammar, the Lambek calculus
has, just as much as the rules of use (modus ponens), the rules of proof
(conditionalization):

(5) A, √⇒ B

√⇒ A\B

√, A⇒ B

√⇒ B/A

Note that these are recursive rules. If the reader tries to think of categorial
grammar just in terms of phrase structure schemata the whole point of this
book will be missed. We work from the conception of categorial grammar
of Lambek (1958). Versions of categorial grammar like Head-Driven Phrase
Structure Grammar (Pollard and Sag 1987, 1994) and Combinatory Cate-
gorial Grammar (Steedman, 2000) extend AB minimally on a needs-driven
basis. But Type Logical (Categorial) Grammar (Morrill, 1994; Moortgat, 1997;
Oehrle, 1999) as here aspires that its formalism be a pure logic in the technical
sense of logic that has emerged in the course of the twentieth century.

1.3 Categorial semantics

The inspiration for Ajdukiewicz (1935) can be traced back to the semantic cate-
gories of his colleague Leśniewski and earlier work of Husserl, Russell’s theory
of types and ultimately Frege’s functorial analysis of language. Ajdukiewicz
called a B

A a ‘functor’ (and A the ‘argument’) and so from the beginning
there was the suggestion that a categorial functor is a function semantically,
which applies to its argument’s semantics. Hence, where Ù1 → Ù2 is the type
of functions mapping from the domain of Ù1 to the domain of Ù2, it is natural
to assume a type map T relating syntactic types to semantic types such that:

(6) T(A\B) = T(B/A) = T(A) → T(B)

Such a type map appears in Montague (1973) who used a categorial notation
for syntactic categories in compositional formal semantics using typed lambda
calculus and higher-order logic. But Montague made no real use of categorial
syntax. And Ajdukiewicz, Bar-Hillel, and Lambek had no categorial semantics,
even though typed lambda calculus and higher-order logic had been intro-
duced in Church (1940).

The lambda semantics (combinators) for individual categorial schemata
are self-evident, but van Benthem (1983) and Moortgat (1988) established the
systematic association of typed lambda calculus logical semantics with the
Lambek calculus (logical syntax) in its entirety. We shall see this categorial
semantics throughout the book.
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1.4 Categorial processing

We can address two kinds of processing: human language processing (compre-
hension and production) and algorithmic language processing (parsing and
generation); the latter may be interpreted as a model of the former, under the
construal of mental activity as computation (the computational metaphor).

When we consider how the speech cycle proceeds it is seen that human
language processing is incremental. Introspection indicates that we process
utterances in the course of their perception. Sometimes we (correctly or incor-
rectly) anticipate or finish utterances. Likewise, we develop our thoughts in the
course of production, usually beginning to speak without yet knowing how we
will finish. The incrementality of human language processing is confirmed and
analysed in detail in psycholinguistic experimentation.

A linguistic theory can gain psychological credibility if it can account
for incrementality and other performance phenomena. This can be done
by describing an algorithmic processing model of the theory and explain-
ing how properties of human language performance are shared or predicted
by the computational model. Combinatory Categorial Grammar (Steedman,
1987) can support left-branching and therefore compositionally incrementally
interpretable derivations, but manifests spurious ambiguity, whereby multiple
derivations assign the same semantics.

The Dependency Locality Theory of Gibson (1998) accounts for a range of
performance phenomena in terms of the incremental resolution of dependen-
cies, but dependency grammar does not assign logical semantics.

Morrill (2000) gives an account of incremental processing complexity and
acceptability in terms of logical categorial grammar proof nets which assign
semantics canonically (there is no spurious ambiguity).

The logical syntax, semantics, and processing of categorial grammar is the
topic of this book.

1.5 Outline of the book

After this chapter, the first part of the book studies Lambek categorial gram-
mar in detail: syntax (Chapter 2), semantics (Chapter 3), and processing
(Chapter 4). The logical theory and linguistic applications of Lambek calculus
are quite well-understood, and Part I aims to gather together and instate this
kernel of logical categorial grammar.

Part II deals with the extension of Lambek categorial grammar to logical
categorial grammar in general. Lambek categorial grammar is principled and
concise, but we need to extend its expressivity to expand the range of linguistic
coverage. Trying to preserve its spirit and good logical properties while widen-



introduction 9

ing its empirical scope, we survey four extensions with type-constructors that
observe the paradigms of logical connectives. In Chapter 5 we consider bracket
operators for structural inhibition and structural facilitation (for islands and
extraction); in Chapter 6, discontinuity operators for syntax/semantics mis-
match (for quantification and many other phenomena); in Chapter 7, lattice
operators (for polymorphism and coordination of unlike categories); and in
Chapter 8, (normal) modal operators (for intensionality).

Part III collates some further empirical and technical possibilities and issues
in Lambek categorial grammar processing. Chapter 9 considers the incre-
mental processing complexity metric in relation to aphasic comprehension.
Chapter 10 examines how representation of lexical semantics by proof nets can
enable preevaluation of the interaction of lexical and derivational semantics.
And Chapter 11 addresses chart parsing. We conclude in Chapter 12.
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In categorial grammar expressions are classified by types built out of basic
types by recursively applying type-constructors. In the system AB the type-
constructors are the binary (infix) operators ‘\’ which we shall call ‘under’
and ‘/’ which we shall call ‘over’. The system L of the (associative) Lambek
calculus adds a third type-constructor ‘•’ called ‘times’ or ‘product’. Where P
is a set of basic (or primitive or atomic) types, we may define the set F of types
of L in Backus-Naur Form as follows:

(1) F ::= P | F•F | F\F | F/F

We have already remarked that the slash operators of categorial grammar can
be compared to logical implications, but there is a difference from standard
logic. Standard logic deals with reasoning over propositions which are not like
material resources with multiplicity, weight, location, or size, etc., but which
are immaterial, weightless, locationless, or eternal.

In grammar, occurrences of words and positions of words matter. We can-
not in general delete, duplicate, or permute words or expressions and expect
properties like grammaticality and meaning to be preserved. We do not have
a freely applying law of idempotency (x + x = x) nor a freely applying law
of commutativity (x + y = y + x). Instead we have occurrence-sensitivity and
order-sensitivity.1

Hence, in the Lambek calculus the types of words and expressions over
which we reason are structured as lists (sequences). The slash operators

1 Technically, the Lambek calculus L is the multiplicative fragment of non-commutative intuition-
istic linear logic without empty antecedents.
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of functors are directional implications which indicate concatenation to the
immediate left or to the immediate right. And the resources are consumed in
the inference process so that neither the functor nor the argument remain
available after the inference, but are transformed, just as the reactants do not
remain after a chemical reaction, but are transformed.

In the same way that under and over are directional and resource-sensitive
implications, so the product operator of the Lambek calculus is an ordered
and resource-sensitive conjunction. A type A•B represents an expression of
type A (on the left) concatenated with an expression of type B (on the right).
For example, one of the types of the expression my bow in the cloud would be
N•PP since it can be analysed as the concatenation of the N my bow (on the
left) with the PP in the cloud (on the right). So the verb set from Chapter 1

could now be alternatively typed (N\S)/(N•PP).

2.1 Categorial logic

We have described A\B and B/A as the types of expressions which concate-
nate with an A on the left and right respectively to form a B . But if this is what
we mean then there are shortcomings in the calculus of AB. For example, since
an A concatenates with an A\B on the right to form a B , an expression of
type A is also of type B/(A\B), so we ought to have the law of type shift (the
Montague rule, type raising, or type lifting):

(2) A⇒ B/(A\B)

And likewise by symmetry:

(3) A⇒ (B/A)\B

Similarly, since an A\B concatenates with an A on the left to form a B ,
a B\C concatenates with an A\B on the left to form an expression which
concatenates with an A further on the left to form a C . So the following type
shift ought to be licensed (the Geach rule, or division):

(4) B\C ⇒ (A\B)\(A\C )

And by symmetry:

(5) C/B ⇒ (C/A)/(B/A)

The calculus AB lacks these type shifts, and any number of others since type
lifting and division should be taken into account not just at the outermost
level but also recursively within subtypes. So we want to augment AB. But
how could we know for sure when we have a calculus that captures exactly
what we think we mean by the type-constructors?
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Logic as it has come to be established in the twentieth century provides a
particular paradigm for saying just what we mean. On the one hand (model
theory) it defines a formal interpretation of connectives which determines the
true laws or validities of a system. On the other hand (proof theory) it defines
a calculus which is a formal system determining the derivable theorems of the
system. Ideally, the semantically defined validities of the model theory and the
syntactically defined theorems of the proof theory should coincide.

The property that every theorem is valid is called soundness. The property
that every validity is a theorem is called completeness. To have both soundness
and completeness is to have a perfect match: everything that is said is true,
and everything that is true is said. But to achieve the ideal of logically proven
soundness and completeness we need in the first place to have given mathe-
maticized model theory and proof theory.

There is a tension between model theory and proof theory. On the one hand
we seek proof theory which is mathematically and computationally natural
and elegant. On the other hand we seek model theory which is simple and
concrete. But to find a semantics for which a natural proof theory is complete
it may be easier or necessary to adopt an abstract model theory. And to find
a calculus which is complete for a simple model theory it may seem or be
necessary to adopt a less elegant proof theory.

This tension comes up in categorial logic. In the past the author has
favoured semantic simplicity on the grounds that simpler models make
claims about reality which are stronger ontologically, that is, which are more
refutable and therefore stronger scientifically. However, the more complex
proof theories that these require, which may not always be forthcoming, cor-
respondingly constitute weaker scientific claims when interpreted as theories
of mental/psychological structure/processes. In this book we opt for proof-
theoretic simplicity. We adopt model theory which is as concrete as seems
possible, but accept it at least provisionally as a theory of ontological reality
which is partially abstract.

2.2 Proof theory of categorial connectives

Let a sequent A1, . . . , An ⇒ A, n ≥ 1, comprise an (antecedent) configuration
A1, . . . , An which is a (finite, non-empty) list of types, together with a succe-
dent type A. Lambek (1958) defined the system for deriving sequents shown in
Fig. 2.1 for the connectives under, over, and product. This is called a Gentzen
sequent calculus. √ and ƒ range over configurations, and ƒ(√) signifies a
configuration ƒ with a distinguished subconfiguration √. Each rule has the
form ”1 ···”n

”0
, n ≥ 0 where the ”i are sequent schemata, and asserts that if the

(premises) ”1, . . . , ”n are derivable then the conclusion ”0 is derivable. The
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id
A⇒ A

√⇒ A ƒ(A)⇒ B
Cut

ƒ(√)⇒ B

√⇒ A ƒ(C )⇒ D
\L

ƒ(√, A\C )⇒ D

A, √⇒ C
\R

√⇒ A\C
√⇒ B ƒ(C )⇒ D

/L
ƒ(C/B, √)⇒ D

√, B ⇒ C
/R

√⇒ C/B

ƒ(A, B)⇒ D
•L

ƒ(A•B)⇒ D

√⇒ A ƒ⇒ B
•R

√, ƒ⇒ A•B

Figure 2.1. The Lambek sequent calculus

rules feed one another so that in a derivation the conclusion of one rule may
be a premise of the next. The rule id has no premises and simply asserts that
its conclusion is derivable. An example of a derivation is as follows:

(6) P ⇒ P Q ⇒ Q
\L

P , P\Q ⇒ Q

Q ⇒ Q R ⇒ R
\L

Q, Q\R ⇒ R
\L

P , P\Q, Q\R ⇒ R
\R

P\Q, Q\R ⇒ P\R

Observe how in this format a derivation is a tree each local tree of which is
an instantiation of a rule. The leaves are instances of the conclusion of id; the
root or endsequent is the overall conclusion derived.

Given a sequent √⇒ A, we write	L √⇒ A (it is a theorem of the Lambek
calculus) if and only if it is derivable in this calculus, that is, it is the endsequent
of some derivation; otherwise we write 
	L √⇒ A (it is not a theorem of the
Lambek calculus), that is it is not the endsequent of any derivation. We say that
the derivability relation ⇒ holds between √ and A if and only if 	L √⇒ A.
We give the schemata of some characteristic theorems of the Lambek calculus
in Fig. 2.2.

The rules divide into the identity rules id and Cut and the logical rules \L,
\R, /L, /R, •L, and •R.

Regarding the identity rules, the identity axiom id and the Cut rule establish
the reflexivity and transitivity respectively of the derivability relation, that is,
that it is a preorder.

The logical rules comprise a L(eft) and a R(ight) rule for each connective.
Each rule introduces the connective reading from premise(s) to conclusion: in
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B/A, A⇒ B forward application
A, A\B ⇒ B backward application

A⇒ (A•B)/B forward coapplication
B ⇒ A\(A•B) backward coapplication

A•(B•C ) ⇐⇒ (A•B)•C associativity

(A\B)/C ⇐⇒ A\(B/C ) switching

A/(B•C ) ⇐⇒ (A/C )/B currying and uncurrying
(A•B)\C ⇐⇒ B\(A\C ) currying and uncurrying

A⇒ B/(A\B) forward type lifting
A⇒ (B/A)\B backward type lifting

A/B ⇒ (A/C )/(B/C ) forward division
B\C ⇒ (A\B)\(A\C ) backward division

C/B, B/A⇒ C/A forward composition
A\B, B\C ⇒ A\C backward composition

Figure 2.2. Some laws of the Lambek calculus

the antecedent in the case of a L(eft) rule and in the succedent in the case of a
R(ight) rule. This is a characteristic property of Gentzen sequent calculus: the
rules deal with a single occurrence of a single connective, fully modularizing
the inferential properties of the connective with respect to the use of a single
connective (left rules) or the proof of a single connective (right rules). This is
to be contrasted with calculi in which rules are given involving multiple inter-
acting connectives or connective occurrences. The Lambek sequent calculus is
more pure, indeed perfectly pure, in this respect.

2.3 Model theory of categorial connectives

Došen (1985) provided partially ordered semigroup models for the Lambek
calculus and proved completeness for them. This notion of model is as follows.
A partially ordered (p.o.) semigroup (L , +;≤) is a structure comprising a set
L , a binary associative operation + on L , and a partial order ≤ on L which is
compatible with + (see Appendix A). We say that C ⊆ L is downward closed if
and only if for all s , s ′ ∈ L , if s ∈ C and s ′ ≤ s then s ′ ∈ C . An interpretation



syntax 15

for the Lambek calculus with primitive types P comprises a p.o. semigroup
(L , +;≤) and a valuation [[ · ]] which maps P into denotations which are
downward closed subsets of L . Then the valuation is extended to complex
types as follows:2

(7) [[A\C ]] = d f {s ∈ L | for all s ′ ∈ [[A]], s ′+s ∈ [[C ]]}
(8) [[C/B]] = d f {s ∈ L | for all s ′ ∈ [[B]], s +s ′ ∈ [[C ]]}
(9) [[A•B]] = d f {s ∈ L | there exist s 1 ∈ [[A]] & s 2 ∈ [[B]] such that s ≤

s 1+s 2}
We can now define a notion of validity. We define the denotation
[[A1, . . . , An]] = df [[A1• · · · •An]]. We read a sequent as asserting that in all
interpretations, the denotation of its antecedent is a subset of the denotation
of its succedent. Depending on the sequent this may or may not be true. We
call a sequent valid if and only if it is true:

(10) Definition (validity of a sequent).
We call a sequent A1, . . . , An ⇒ A valid if and only if in every interpre-
tation, [[A1, . . . , An]] ⊆ [[A]]; otherwise we call the sequent invalid.

The sequent calculus of Fig. 2.1 is sound with respect to these models. Con-
sider for example the rule of \L. The first premise tells us that by hypothesis
[[√]] ⊆ [[A]]. Therefore by the interpretation of under, [[√, A\C ]] ⊆ C . But
the second premise tells us that by hypothesis [[ƒ(C )]] ⊆ [[D]]. Therefore,
[[ƒ(√, A\C )]] ⊆ [[D]].

(11) Proposition (Soundness of L).
The Lambek calculus is sound with respect to p.o. semigroups.

Došen (1985) proves that the Lambek calculus is also complete with respect to
these p.o. semigroup models.

Buszkowski (1986) showed a stronger result, proving completeness with
respect to semigroups. In this notion of model an interpretation com-
prises a semigroup (L , +) and a valuation [[ · ]] of types as subsets of L
such that:3

(12) [[A\C ]] = d f {s ∈ L | for all s ′ ∈ [[A]], s ′+s ∈ [[C ]]}
(13) [[C/B]] = d f {s ∈ L | for all s ′ ∈ [[B]], s +s ′ ∈ [[C ]]}
(14) [[A•B]] = d f {s 1+s 2 ∈ L | s 1 ∈ [[A]] & s 2 ∈ [[B]]}

2 As a consequence the denotations of all types are downward closed subsets of L .
3 These models are a special case of the p.o. semigroup models in which the partial order is the

identity relation.
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A real-world speech stream can be seen as a sequence over some vocabulary:
as the succession in time of, for example, phonemes, syllables, morphemes, or
words, that is as (finite) strings over a (finite) vocabulary. The set of all such
strings over an alphabet forms a semigroup under the associative operation of
concatenation (see Appendix A). When we restrict the Buszkowski interpreta-
tion to these special cases we call them string-models or L(anguage)-models.
Algebraically they are (finitely generated) free semigroups, that is they satisfy
the simplification laws:

(15) if s +s ′ = s +s ′′ then s ′ = s ′′

if s ′+s = s ′′+s then s ′ = s ′′

Since language in time appears to satisfy the cancellation laws (15), the free
semigroup models seem to be the most ontologically committed and therefore
scientifically incisive models. Furthermore, Pentus (1995) proved complete-
ness for them. However, we do not see a way to maintain in extended Lambek
calculus only free algebraic models.

2.4 Lambek categorial grammar

Let us define a lexicon as a finite relation between non-empty expressions and
types. Thus complex expressions may receive lexical types, but not the empty
string, and expressions may receive multiple lexical types, but only a finite
number, and there are only a finite number of lexical expressions.

Given a Lambek categorial lexicon Lex and a distinguished type S, we
define the language L (Lex, S) generated as follows:

(16) L (Lex, S) = d f {s 1+ · · ·+s n| ∃A1, . . . , An, n ≥ 1, (s 1, A1), . . . ,(s n, An)
∈ Lex & 	L A1, . . . , An ⇒ S}

Pentus (1992) proved that the class of languages generated by Lambek categor-
ial grammars is the class of context-free languages (without the empty string).

Consider the sentence John loves Mary. Let the type of the proper names be
N, and that of the transitive verb, (N\S)/N. Then the sequent corresponding
to the sentence is:

(17) N, (N\S)/N, N ⇒ S

This has the following proof in the sequent calculus:

(18)

N ⇒ N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/N, N ⇒ S
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Next consider the sentence Today it rained amazingly. Let us treat it rained as
S and the modifiers as S/S and S\S, so that the sequent corresponding to the
sentence is:

(19) S/S, S, S\S ⇒ S

The sentence is ambiguous. It can be read as asserting that it rained today and
it is amazing that it did, or as asserting that it rained today and the manner of
raining was amazing. Accordingly, here are two derivations of (19):

(20)

S ⇒ S

S ⇒ S S ⇒ S
\L

S, S\S ⇒ S
/L

S/S, S, S\S ⇒ S

S ⇒ S

S ⇒ S S ⇒ S
/L

S/S, S ⇒ S
\L

S/S, S, S\S ⇒ S

But now consider the sentence The cat slept. With the obvious types, the
sequent corresponding to the sentence is:

(21) N/CN, CN, N\S ⇒ S

This also has two derivations in the sequent calculus:

(22)

CN ⇒ CN

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N/CN, CN, N\S ⇒ S

CN ⇒ CN N ⇒ N
/L

N/CN, CN ⇒ N S ⇒ S
\L

N/CN, CN, N\S ⇒ S

However the sentence is not ambiguous. This derivational ambiguity is spu-
rious: the two derivations do not correspond to different readings. Various
forms of categorial grammar suffer from spurious ambiguity, but in Chapter 4
we shall see proof nets, the canonical derivations/syntactic structures of logical
categorial grammar, and these have no spurious ambiguity.

Exercise 2.1. Can you find more derivations of (19)?

Let us recall the lexical assignments of Chapter 1, with a modification of the
type for the prepositional ditransitive verb:

(23) bow : CN
cloud : CN
have : (N\S)/(N\S)
I : N
in : PP/N
my : N/CN
set : (N\S)/(N•PP)
the : N/CN
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The sequent corresponding to the sentence I have set my bow in the cloud is
then:

(24) N, (N\S)/(N\S), (N\S)/(N•PP), N/CN, CN, PP/N, N/CN, CN⇒ S

This has the proof given in Fig. 2.3.

2.5 Cut-elimination

Every logical rule in the Lambek sequent calculus has the property that every
type in the premise(s) is a (sub)type of the conclusion: either the types are the
same in premise(s) and conclusion (these are called the side formulas/types) or
else the types in the premise(s) are the immediate subtypes of the type in the
conclusion with the main connective that is inferred (this is called the active
formula/type).

The Cut rule does not have this subformula property. The cut formula A
does not occur in the conclusion and can be any type.

Consider the following procedure to enquire whether a sequent is a theo-
rem: try each way of matching the sequent against the conclusion of a rule
and the possible corresponding premise(s) from which it could have been
derived by that rule; then explore whether these in turn are derivable, and
so on up to axiom links. We call this backward chaining proof search. The
unary logical rules only ever give rise to one premise subgoal. The binary
logical rules can give rise to multiple pairs of premise subgoals, but only a
finite number because there are only a finite number of ways of partitioning
finite configurations into subconfigurations. But the Cut rule confounds the
backward chaining procedure because the cut formula in the premises could
be any one of the infinite number of types—we cannot try them all. It is the
only rule that causes the problem.

When Gentzen (1934) introduced sequent calculus for standard logic, he
proved Cut-elimination: that every theorem can be proved without the use of
Cut. He called this his ‘Haupsatz’ (main clause/theorem) and Cut-elimination
is paramount in the philosophy and analytical techniques of proof theory and
their application to computation.4

Lambek (1958) proved that the Lambek sequent calculus enjoys Cut-
elimination:5

(25) Theorem (Cut-elimination for L).
In L, every theorem has a Cut-free proof.

4 We make an application of Cut-elimination to categorial processing in Chapter 11.
5 The proof is much easier than that for standard logic because of the absence of the structural rule

of contraction.



CN⇒ CN N ⇒ N
/L

N/CN, CN⇒ N

CN⇒ CN

N ⇒ N PP⇒ PP
/L

PP/N, N ⇒ PP
/L

PP/N, N/CN, CN⇒ PP
•R

N/CN, CN, PP/N, N/CN, CN⇒ N•PP

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
\R

N\S ⇒ N\S

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/(N\S), N\S ⇒ S
/L

N, (N\S)/(N\S), (N\S)/(N•PP), N/CN, CN, PP/N, N/CN, CN⇒ S

Figure 2.3. Sequent derivation for I have set my bow in the cloud
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In view of the observations made above, there then follow the subformula
property and decidability:

(26) Corollary (subformula property for L).
In L, every theorem has a proof containing only its subformulas.

Proof. By Cut-elimination every theorem has a Cut-free proof and all rules
other than Cut have the subformula property. �

(27) Corollary (decidability of L).
In L, it is decidable whether a sequent is a theorem.

Proof. Theoremhood is decided by backward-chaining in the finite Cut-free
sequent search-space. �

It follows furthermore that the problem of deciding whether a string s is
of type A according to a Lambek categorial grammar is also decidable. We
consider choices of lexical types s 1 : A1, . . . , s n : An such that s = s 1+ · · ·+s n.
Since the lexicon is finite and we do not have the empty string, there are
only a finite number of such choices. For each we test whether the sequent
A1, . . . , An ⇒ A is a theorem using the decision procedure above.

Given a grammar formalism, we define the time-complexity (see Appen-
dix A) of the fixed language recognition (FLR) problem as the time required, as
a function of string-length, to determine whether a given string belongs to the
language defined by a fixed grammar. By the context-freeness result of Pentus
(1992) the FLR complexity of Lambek categorial grammar is the same as that
of context-free grammar, namely n3.

Given a grammar formalism, we define the time-complexity of the universal
language recognition (ULR) problem as the time required, as a function of
both string-length and grammar size, to determine whether a given string
belongs to the language defined by a given grammar. Pentus (2006) proved
that the problem of deciding L-theoremhood is NP-complete; therefore the
ULR problem for Lambek categorial grammar is NP-complete. We consider
this in Chapter 12.
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Semantics is concerned with meaning. The eventual meaning (significance) of
an utterance in context may be indefinitely far-reaching; in grammar we try to
give characterizations of semantic properties abstracted over use and context.

The initial step is the attribution of readings to expressions. A reading of
an expression is a way in which it can be construed. An expression can have
more than one reading, and this is called ambiguity. For example, The boy
saw the girl with the telescope can be construed as readings in which the boy
had the telescope or the girl had the telescope. This ambiguity would usually
be analysed as a structural ambiguity between two syntactic structures in
which the prepositional phrase with a telescope is either an adverbial modifier
attached to saw or an adnominal modifier attached to girl. Another kind of
ambiguity is exhibited in the example I went to the bank, which can either
mean that I went to the place where they keep money, or that I went to the
place where the ground slopes markedly, perhaps beside a river. This ambigu-
ity would usually be analysed as a lexical ambiguity between two homonymous
nouns bank.

Different expressions can sometimes share a common reading, and this is
called paraphrase. For example, most people would agree that there is a level
at which John loves Mary and Mary is loved by John are paraphrases.
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In semantic judgements of readings, as in the data of any science, there may
be inconsistencies and uncertainties within and across sources, but we can
try to proceed on the basis of what is clearest: addressing first and primarily
the observations on which there is most consensus, and the data which are
most robust.

We have said that a reading is a construal of an expression, but how can
we substantiate construal? In the case of a declarative sentence, a construal
would seem to include a taking hold of how things would have to be in order
for the sentence to hold true. This involves considering how a reading of an
expression reaches out to, or is interpreted in, the world. In particular, we
need to connect a reading with entities in the world (reference) and with states
of affairs holding in the world (truth).

In truth-conditional semantics we attempt to characterize the readings of
declarative sentences in terms of their truth-conditions: in terms of how the
world would have to be in order for a reading to be true. This involves theoriz-
ing on how the world is, or is considered to be by language, across any number
of situations: the ontology and structure of the world, at least as seen by
language, and this makes truth-conditional natural language semantics a far-
reaching and highly ambitious discipline. But semantics does not undertake
to answer whether a reading is actually true in the real world, only how the
world would have to be, in terms of mathematical entities and structure, in
order for it to be true.

We think that positing mathematical entities and structures as models of
reality does not identify reality with those mathematical entities, in semantics
or any science, however successful: that is that of its nature, science, no matter
how mathematicized or comprehensive, never begins to substitute the being
of reality.

Readings of declarative sentences are related by entailment. We say that
one reading entails another if the truth of the first necessitates the truth of
the second. Again, we do not undertake to determine whether the readings
are true, but seek properties at a level of hypothetical abstraction: there is
entailment when if the first were true, then the second would have to be true.
For example, the meaning of John came in entails that of Someone came in.
Observe that entailment is reflexive and transitive.

Truth-conditional semantics characterizes entailment directly: one reading
entails another if the truth conditions of the first include those of the second,
where inclusion is formalized as set-theoretic containment of the class of
(satisfying) models. Such entailment inherits the properties of reflexivity and
transitivity from the set-containment relation.
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In our architecture, a syntactic derivation together with a choice of items
for lexical insertion determines the truth-conditions of a reading of the sen-
tence derived. We consider derivations in different formats: sequent calculus,
natural deduction, and proof nets. And we express the truth-conditional
semantics via translation of derivations into terms (‘semantic forms’) of
higher-order logic for which a recursive (compositional) interpretation is
defined.

If we wish, such machinery may be regarded as merely the technical means
of definition of a semantically interpreted natural language-like fragment: as
logical information engineering. However, it is tempting to interpret the for-
malism psychologically: as cognitive science. Different formats of derivation
and/or of the semantic forms can be presented as candidate mental structures:
the structures of psychological processes and/or representations. Chapter 4

campaigns for the candidature of proof nets as processing structures on the
basis of incrementality and acceptability and preferred readings in perfor-
mance phenomena. The terms of the higher-order logic may be posited as
a language of thoughts or ideas, but in Chapter 10 we consider how proof nets
may be proffered as candidates for this semantic structure also.

3.1 Intuitionistic implication and conjunction

Fregean semantics analyses meanings into functions, and the lambda calculus
is a notation for functions. The development of Fregean semantics in typed
lambda calculus is well-established, see for example Cann et al. (2009). The
connection of this with categorial logic comes via the so-called Curry–Howard
correspondence, the relation between typed lambda calculus and intuitionistic
logic, which we review here and in the next section.

Assuming a set P of atomic formulas, let us define the set X of formulas
thus:

(1) X ::= P | X ∧ X | X → X

We call ∧ ‘conjunction’ and it is to have a meaning like ‘and’. We call →
‘implication’ and it is to have a meaning like ‘if . . . then . . . ’. Gentzen (1934),
as well as introducing sequent calculus, introduced a format of reasoning
called ‘natural deduction’. In natural deduction proofs are essentially trees
(of formulas), but there is in addition some coindexing of leaves with dom-
inating nodes, to deal with hypothetical reasoning. The rules of natural
deduction for intuitionistic conjunction and implication are as shown in
Fig. 3.1.
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···
A

···
A → B

E →
B

Ai

···
B

I → i

A → B

···
A ∧ B

E ∧ 1

A

···
A ∧ B

E ∧ 2

B

···
A

···
B

I∧
A ∧ B

Figure 3.1. Natural deduction rules for {→,∧}-intuitionistic logic

Starting from single formulas as leaves, proofs are built up by extending and
joining smaller proofs at their roots according to the rules. For example:

(2) A Bi

I∧
A ∧ B (A ∧ B) → C

E →
C

I → i

B → C

There are two kinds of rule for each connective: the E(limination) rules which
eliminate the connective reading from premise(s) to conclusion, and the
I(ntroduction) rules which introduce the connective reading from premise(s)
to conclusion. The rule of implication introduction involves coindexing and is
called a rule of hypothetical reasoning. At the time the I→i inference is made
at the root, leaves dominated by the inference which are labelled with A may
be closed by marking them with a coindex i . Any number of such As may be
so closed: some, none, or all. The leaves which are not coindexed are called
open. A natural deduction proof asserts that its root formula is derivable from
its open leaf formulas; for example, (2) asserts that B → C is derivable from
{A, (A ∧ B) → C }, which we write as the sequent:

(3) A, (A ∧ B) → C 	 B → C

Fig. 3.2 shows another example of a proof, of A → (A → (B → C )) 	 B →
(A → C ).

Exercise 3.1. Give natural deduction proofs of the following sequents.

a. A ∧ B, A → C 	 C
b. A ∧ B, B → C 	 C
c. A 	 (A → B) → B



semantics 25

B j

Ai

Ai A → (A → (B → C ))
E →

A → (B → C )
E →

B → C
E →

C
I → i

A → C
I → j

B → (A → C )

Figure 3.2. A natural deduction proof

d. A → B, B → C 	 A → C
e. B → C 	 (A → B) → (A → C )
f. A → (B → C ), C → D 	 A → (B → D)
g. A → (A → B) 	 A → B
h. A → B, A → (B → C ) 	 A → C
i. B 	 A → B
j. A → (B → C ) 	 B → (A → C )
k. (A ∧ B) → C 	 A → (B → C )
l. A → (B → C ) 	 (A ∧ B) → C

3.2 Typed lambda calculus and the Curry–Howard
correspondence

The untyped lambda calculus was introduced as a model of computation by
Alonzo Church. It uses a variable binding operator (the Î) to name functions,
and forms the basis of functional programming languages such as LISP. It was
proved equivalent to Turing machines, hence the name Church–Turing Thesis
for the hypothesis that Turing machines (and untyped lambda calculus) cap-
ture the notion of algorithm. Untyped lambda calculus has the Church–Rosser
or diamond property (that normal forms are unique) but is not strongly
normalizing, that is, some terms do not have a normal form, corresponding
to the computation of partial functions.

Church (1940) defined the simply, that is just functionally, typed lambda
calculus, and by including logical constants, higher-order logic. Here we also
add Cartesian product types.

(4) Definition (types). The set T of types is defined on the basis of a set ‰ of
basic types as follows:

T ::= ‰ | T → T | T&T
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(5) Definition (type domains). The type domain DÙ of each type Ù is defined
on the basis of an assignment d of non-empty sets (basic type domains)
to ‰ as follows:

DÙ = d(Ù) for Ù ∈ ‰

DÙ1→Ù2
= DÙ2

DÙ1 functional exponentiation
i.e. the set of all functions from DÙ1

to DÙ2

DÙ1 &Ù2
= DÙ1

× DÙ2
Cartesian product
i.e. {〈m1, m2〉|m1 ∈ DÙ1 & m2 ∈ DÙ2}

(6) Definition (terms). The sets ÷Ù of terms of type Ù for each type Ù are
defined on the basis of a set C Ù of constants of type Ù and a denumerably
infinite set V Ù of variables of type Ù for each type Ù as follows:

÷Ù ::= C Ù | V Ù | (÷Ù′→Ù ÷Ù′) | 1÷Ù&Ù′ | 2÷Ù′&Ù

÷Ù→Ù′ ::= ÎV Ù÷Ù′

÷Ù&Ù′ ::= (÷Ù, ÷Ù′)

A term which does not contain constants is called pure.
Each term ˆ ∈ ÷Ù receives a semantic value [ˆ]g ∈ DÙ with respect to a

valuation f which is a mapping sending each constant in C Ù to an element in
DÙ, and an assignment g which is a mapping sending each variable in V Ù to
an element in DÙ, as shown in Fig. 3.3.

An occurrence of a variable x in a term is called free if and only if it does not
fall within any part of the term of the form Îx·; otherwise it is bound (by the
closest Îx within the scope of which it falls). A closed term is one which con-
tains no free variables. The result ˆ{¯1/x1, . . . , ¯n/xn} of substituting terms
¯1, . . . , ¯n (of types Ù1, . . . , Ùn) for variables x1, . . . , xn (of types Ù1, . . . , Ùn)
in a term ˆ is the result of simultaneously replacing by ¯i every free occurrence
of xi in ˆ, 1 ≤ i ≤ n. We say that ¯ is free for x in ˆ if and only if no free
variable in ¯ becomes bound in ˆ{¯/x}. Renaming of variables (·-conversion)
may be required to ensure that substitutions are free in this sense. The laws of
lambda conversion in Fig. 3.4 obtain.

[c]g = f (c) for c ∈ C Ù

[x]g = g (x) for x ∈ V Ù

[(ˆ ¯)]g = [ˆ]g ([¯]g ) functional application
[1ˆ]g = fst([ˆ]g ) first projection
[2ˆ]g = snd([ˆ]g ) second projection

[ÎxÙˆ]g = DÙ � d �→ [ˆ](g−{(x,g (x))})∪{(x,d)} functional abstraction
[(ˆ, ¯)]g = 〈[ˆ]g , [¯]g 〉 ordered pair formation

Figure 3.3. Semantics of typed lambda calculus
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Îyˆ = Îx(ˆ{x/y})
if x is not free in ˆ and x is free for y in ˆ

·-conversion

(Îxˆ ¯) = ˆ{¯/x}
if ¯ is free for x in ˆ

1(ˆ, ¯) = ˆ
2(ˆ, ¯) = ¯

‚-conversion

Îx(ˆ x) = ˆ
if x is not free in ˆ
(1ˆ, 2ˆ) = ˆ

Á-conversion

Figure 3.4. Laws of lambda-conversion

When we apply the laws of lambda-conversion from left to right we speak
of lambda-reduction, evaluation, or normalization. A term is in normal form
when (no part of) it can undergo ‚- or Á-reduction. In contrast to the untyped
lambda calculus, the normalization of terms (evaluation of ‘programs’) in the
typed lambda calculus is not only Church–Rosser, that is to say that normal
forms are unique (up to ·-conversion), but terminating: every term reduces to
a normal form in a finite number of steps.

Exercise 3.2. Normalize the following lambda terms (Carpenter, 1996).

a. (Îx(walk x) a)

b. Îx((love x) y)

c. Îx((love y) x)

d. (Îx((love y) x) a)

e. (Îx(love (sister x)) x)

f. (Îx((love x) y) y)

g. (Îx((love x) x) y)

h. (ÎxÎy((love x) y) y)

i. ((ÎxÎy((love x) y) a) b)

j. ((ÎxÎx(walk x) a) b)

k. (Îx(x b) walk)

l. (Îx(x b) (love a))

m. Îx(walk x)

n. (Îxwalk x)

o. (ÎyÎx((love y) x) a)

p. (Îy(y walk) Îx(x a))
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Exercise 3.3. Normalize the following lambda terms (Carpenter, 1996).

a. (Îx(walk 1(x, y)) a)
b. (Îx(walk 2(x, y)) a)
c. 12((w, x), (y, z))

The Curry–Howard correspondence (Girard et al., 1989) is that intuitionistic
natural deduction and typed lambda calculus are isomorphic. This formulas-
as-types and proofs-as-programs correspondence exists at the following three
levels:

(7) intuitionistic natural deduction typed lambda calculus

formulas: types:
A → B Ù1 → Ù2

A ∧ B Ù1&Ù2

proofs: terms:

E(limination of)→ functional application

I(introduction of)→ functional abstraction

E(limination of) ∧ projection

I(ntroduction of) ∧ ordered pair formation

normalization: computation:

elimination of detours lambda-reduction

Overall, the laws of lambda-reduction are the same laws as the natural deduc-
tion proof normalizations of Prawitz (1965). The ‚-reductions occur when
the conclusion of the introduction rule for a connective is a premise of the
elimination rule for that connective. The Á-reductions occur when the conclu-
sion of the elimination rule for a connective is a premise of the introduction
rule for that connective. The ‚- and Á-proof reductions for conjunction are as
shown in Figs. 3.5 and 3.6 respectively and the ‚- and Á-proof reductions for
implication are as shown in Figs. 3.7 and 3.8 respectively.

ˆ···
A

¯···
B

I∧
A ∧ B

E ∧ 1
A

�
ˆ···
A

ˆ···
A

¯···
B

I∧
A ∧ B

E ∧ 2
B

�
¯···
B

Figure 3.5. ‚-reduction for conjunction
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ˆ
···

A ∧ B
E ∧ 1

A

ˆ
···

A ∧ B
E ∧ 2

B
I∧

A ∧ B

�
ˆ
···

A ∧ B

Figure 3.6. Á-reduction for conjunction

Ai ˆ Ai

···
B

I → i

A → B

¯
···
A

E →
B

�

¯
···
A ˆ

¯
···
A

···
B

Figure 3.7. ‚-reduction for implication

︷︸︸︷
ˆ

no Ai

···
A → B Ai

E →
B

I → i

A → B

�
ˆ
···

A → B

Figure 3.8. Á-reduction for implication

3.3 Semantic readings of the Lambek calculus
(derivational semantics)

Let us call a (semantic) type map a mapping T from syntactic types to semantic
types satisfying:

(8) T(A\B) = T(A) → T(B)
T(B/A) = T(A) → T(B)
T(A•B) = T(A)&T(B)

The semantic reading of a Lambek derivation is its reading as an intuitionis-
tic proof under this homomorphism. We formulate this as a mapping from
Lambek sequent proofs to typed lambda terms. Given a type map T , a Lam-
bek sequent proof ‰ of A1, . . . , An ⇒ A, and variables x1, . . . , xn of types
T(A1), . . . , T(An) respectively, the function | · |x1,...,xn defined in Fig. 3.9
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|A⇒ A|ˆ = ˆ∣∣∣∣∣∣∣
‰1

√⇒ A
‰2

ƒ(C )⇒ D
\L

ƒ(√, A\C )⇒ D

∣∣∣∣∣∣∣
Ï(Ì, ˆ)

= |
‰2

ƒ(C )⇒ D |Ï((ˆ |‰1|Ì))

∣∣∣∣∣∣∣
‰

A, √⇒ C
\R

√⇒ A\C

∣∣∣∣∣∣∣
Ï

= Îx|
‰

A, √⇒ C |x,Ï where x is a new variable of type T(A)

∣∣∣∣∣∣∣
‰1

√⇒ B
‰2

ƒ(C )⇒ D
/L

ƒ(C/B, √ )⇒ D

∣∣∣∣∣∣∣
Ï(ˆ, Ì)

= |
‰2

ƒ(C )⇒ D |Ï((ˆ |‰1|Ì))

∣∣∣∣∣∣∣
‰

√, B ⇒ C
/R

√⇒ C/B

∣∣∣∣∣∣∣
Ï

= Îx|
‰

√, B ⇒ C |Ï,x where x is a new variable of type T(B)

∣∣∣∣∣∣∣
‰

√(A, B)⇒ D
•L

√(A•B)⇒ D

∣∣∣∣∣∣∣
Ï(ˆ)

= |
‰

√(A, B)⇒ D |Ï(1ˆ,2ˆ)

∣∣∣∣∣∣∣
‰1

√⇒ A
‰2

ƒ⇒ B
•R

√, ƒ⇒ A•B

∣∣∣∣∣∣∣
Ï, Ì

= (|
‰1

√⇒ A |Ï, |
‰2

ƒ⇒ B |Ì)

∣∣∣∣∣∣∣
‰1

√⇒ A
‰2

ƒ(A)⇒ B
Cut

ƒ(√ )⇒ B

∣∣∣∣∣∣∣
Ï(Ì)

= |
‰2

ƒ(A)⇒ B |
Ï(|

‰1
√⇒ A|Ì)

Figure 3.9. Semantic readings of the Lambek sequent calculus

maps ‰ into an intuitionistic natural deduction proof notated as a typed
lambda term under the Curry–Howard correspondence. When we write
in the same context a configuration ƒ(√ ) and a sequence of terms Ï(Ì)
it is to be understood that they are synchronized so that the distin-
guished subconfiguration √ and the distinguished subsequence Ì occur in
the same list positions. Note that the image intuitionistic proofs are linear,
always conditionalizing exactly one hypothesis, so that the lambda terms are
single-bind.

For instance, recalling the example derivations of Chapter 2:

(9)
∣∣∣∣∣∣∣N ⇒ N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/N, N ⇒ S

∣∣∣∣∣∣∣ x John, x loves, xMary

= ((x loves xMary) x John)
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(10)
∣∣∣∣∣∣∣S ⇒ S

S ⇒ S S ⇒ S
\L

S, S\S ⇒ S
/L

S/S, S, S\S ⇒ S

∣∣∣∣∣∣∣
x tod, x itrnd, xamaz

= (x tod (xamaz x itrnd))

∣∣∣∣∣∣∣S ⇒ S

S ⇒ S S ⇒ S
/L

S/S, S ⇒ S
\L

S/S, S, S\S ⇒ S

∣∣∣∣∣∣∣
x tod, x itrnd, xamaz

= (xamaz (x tod x itrnd))

(11)
∣∣∣∣∣∣∣CN⇒ CN

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N/CN, CN, N\S ⇒ S

∣∣∣∣∣∣∣
x the, xcat, x slept

=

∣∣∣∣∣∣∣
CN⇒ CN N ⇒ N

/L
N/CN, CN⇒ N S ⇒ S

\L
N/CN, CN, N\S ⇒ S

∣∣∣∣∣∣∣
x the, xcat, xslept

= (x slept (x the xcat))

And see Fig. 3.10.

3.4 Classical propositional logic

Derivational semantics is represented by a pure lambda term defining sentence
meaning in terms of word meanings, but we want in addition to represent
the logical properties (like entailment) of expressions of natural language. In
this section we start to define classical logic, in order to incorporate it later
into typed lambda calculus, and to use the resulting higher-order logic for
categorial logical semantics.

The units of propositional logic are complete thoughts: states of affairs
which may or may not hold. These correspond to declarative sentences in
natural language and we call them propositions. Propositions are combined
by sentential connectives like the unary connective ‘not’ and the binary con-
nectives ‘and’, ‘or’, and ‘if . . . then . . . ’.

Given a set P of propositional variables, let us define the set F of propositional
formulas by:

(12) F ::= P | ¬F | F ∧ F | F ∨ F | F → F

In the standard model-theoretic semantics of classical propositional logic
formulas are interpreted as one of the two truth values: true (which we math-
ematicize {∅} and write 1) or false (which we mathematicize ∅ and write 0). A
valuation v is a mapping from propositional variables into truth values. Then
the interpretation [[X]] of each formula X is given by:



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CN⇒ CN N ⇒ N
/L

N/CN, CN⇒ N

CN⇒ CN

N ⇒ N PP⇒ PP
/L

PP/N, N ⇒ PP
/L

PP/N, N/CN, CN⇒ PP
•R

N/CN, CN, PP/N, N/CN, CN⇒ N•PP

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
\R

N\S ⇒ N\S

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/(N\S), N\S ⇒ S
/L

N, (N\S)/(N\S), (N\S)/(N•PP), N/CN, CN, PP/N, N/CN, CN⇒ S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ xI, xhave, x set, xmy, xbow, x in, xthe, xcloud

= ((xhave Îx((xset ((xmy xbow), (x in (x the xcloud)))) x)) xI)

Figure 3.10. Derivational semantics for I have set my bow in the cloud
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(13) [[A]] = v(A) for A ∈ P

[[¬A]] = [[A]]
{∅}

negation
[[A ∧ B]] = [[A]] ∩ [[B]] conjunction
[[A ∨ B]] = [[A]] ∪ [[B]] disjunction

[[A → B]] = [[A]]
{∅} ∪ [[B]] implication

We see from the set-theoretic interpretation that the truth table of, for exam-
ple, the conjunction is:

(14) A B A ∧ B
0 0 0

0 1 0

1 0 0

1 1 1

Exercise 3.4. Compile the truth tables for negation, disjunction, and
implication.

A formula A entails a formula B if and only if [[A]] ⊆ [[B]] in every interpre-
tation, which is the case if and only if every line of the truth table of A → B
evaluates to true.

Gentzen (1934) gave a proof theory for classical logic in terms of sequent
calculus. Let us define a classical sequent √⇒ƒ as comprising an antecedent
√ and a succedent ƒ which are finite, possibly empty, sequences of formulas.
A sequent is read as asserting that the conjunction of the antecedent formulas
(where the empty sequence is the conjunctive unit true) entails the disjunction
of the succedent formulas (where the empty sequence is the disjunctive unit
false). A sequent is called valid if and only if this assertion is true; otherwise
it is called invalid. A sequent calculus for the propositional part of classical
logic is presented in Fig. 3.11. As was the case for the Lambek sequent calculus,
each rule has the form ”1 ... ”n

”0
, n ≥ 0 where the ”i are sequent schemata;

”1, . . . , ”n are referred to as the premises, and ”0 as the conclusion.
The identity axiom id and the Cut rule in the identity group reflect the

reflexivity and transitivity respectively of entailment as in the Lambek sequent
calculus, except that the Cut rule is now generalized for multiple succedents.
All the other rules are either left (L ) rules, introducing or manipulating the
active formula(s) on the left (antecedent) of the conclusion, or right (R)
introduction rules, introducing or manipulating the active formula(s) on the
right (succedent) of the conclusion.

The rules W (weakening), C (contraction), and P (permutation) are
referred to as structural rules; they apply to properties of all formulas
with respect to the metalinguistic comma (conjunction in the antecedent,
disjunction in the succedent). Weakening corresponds to the monotonicity
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id
A⇒ A

√1 ⇒ƒ1, A A, √2 ⇒ ƒ2

Cut
√1,√2 ⇒ƒ1, ƒ2

ƒ1, ƒ2 ⇒ƒ
WL

ƒ1, A, ƒ2 ⇒ƒ

ƒ⇒ ƒ1, ƒ2

W R
ƒ⇒ ƒ1, A,ƒ2

ƒ1, A, A,ƒ2 ⇒ƒ
C L

ƒ1, A,ƒ2 ⇒ƒ

ƒ⇒ ƒ1, A, A,ƒ2

C R
ƒ⇒ ƒ1, A, ƒ2

ƒ1, A, B, ƒ2 ⇒ ƒ
P L

ƒ1, B, A, ƒ2 ⇒ ƒ

ƒ⇒ ƒ1, A, B, ƒ2

P R
ƒ⇒ ƒ1, B, A, ƒ2

√⇒ A, ƒ
¬L

¬A, √⇒ƒ

ƒ, A⇒ √
¬R

ƒ⇒√,¬A

ƒ1, A, B, ƒ2 ⇒ ƒ
∧L

ƒ1, A ∧ B, ƒ2 ⇒ ƒ

ƒ⇒ ƒ1, A, ƒ2 ƒ⇒ ƒ1, B, ƒ2

∧R
ƒ⇒ ƒ1, A ∧ B,ƒ2

ƒ1, A, ƒ2 ⇒ ƒ ƒ1, B, ƒ2 ⇒ƒ
∨L

ƒ1, A ∨ B,ƒ2 ⇒ƒ

ƒ⇒ƒ1, A, B, ƒ2

∨R
ƒ⇒ƒ1, A ∨ B, ƒ2

√⇒ A ƒ1, B, ƒ2 ⇒ ƒ
→ L

ƒ1,√, A → B, ƒ2 ⇒ƒ

ƒ1, A, ƒ2 ⇒ √1, B, √2

→ R
ƒ1, ƒ2 ⇒ √1, A → B, √2

Figure 3.11. Sequent calculus for classical propositional logic

of classical logic: that conjoining antecedents, or disjoining succedents, pre-
serves validity. Together with Weakening, Contraction corresponds to the
idempotency (x + x = x) of conjunction in the antecedent and disjunction in
the succedent, and Permutation corresponds to the commutativity (x + y =
y + x) of conjunction in the antecedent and disjunction in the succedent. The
structural rules permit each side of a sequent to be read, if we wish, as a set
rather than a list, of formulas.

Then there are the logical rules, dealing with the connectives themselves.
As in the Lambek sequent calculus, for each connective there is a left rule
and a right rule introducing single principle connective occurrences in the
active formula in the antecedent (L ) or the succedent (R) of the conclusion
respectively.

A sequent which has a proof is a theorem. The sequent calculus is sound
(every theorem is a valid sequent) and complete (every valid sequent is a
theorem).

All the rules except Cut have the property that all the formulas in the
premises are either in the conclusion (the side-formulas in the contexts
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√(i)/ƒ(i), and the active formulas of structural rules), or else are the (imme-
diate) subformulas of the active formula (in the logical rules). In the Cut rule,
the Cut formula A is a new unknown reading from conclusion to premises.
As we remarked in Chapter 2, Gentzen proved as his Haupsatz that every
proof has a Cut-free equivalent (Cut-elimination). Gentzen’s Cut-elimination
theorem has as a corollary that every theorem has a proof containing only its
subformulas (the subformula property), namely any one of its Cut-free proofs.

Computationally, the Contraction rule is potentially problematic since it (as
well as Cut) introduces material in a backward-chaining proof search reading
from conclusion to premises. But such a Cut-free proof search becomes a
decision procedure for classical propositional logic when antecedents and
succedents are treated as sets.

3.5 Classical first-order logic

Whereas propositional logic deals only in complete thoughts or propositions,
first-order logic incorporates also individuals and quantification, with prop-
erties, relations, and (usually) operations.

(15) Definition (language of first-order logic). Let there be a set C of (individ-
ual) constants, a denumerably infinite set V of (individual) variables, a
set F i of function letters of arity i for each i > 0, and a set P i of predicate
letters of arity i for each i ≥ 0. The set T of first-order terms and the set F
of first-order formulas are defined recursively as follows:

T ::= C | V | F i (T1, . . . , Ti )
F ::= P i T1 . . . Ti | ¬F | F ∧ F | F ∨ F | F → F | ∀VF | ∃VF

The standard semantics of first-order logic was given by Tarski (1935). An
interpretation of first-order logic is a structure (D, F ) where domain D is a non-
empty set (of individuals) and valuation function F is a function mapping each
individual constant to an individual in D, each function letter of arity i > 0 to
an i-ary operation in D Di

, and each predicate letter of arity i ≥ 0 to an i-ary
relation in Di. An assignment function g is a function mapping each individual
variable to an individual in D. Each term or formula ˆ receives a semantic
value [ˆ]g relative to an interpretation (D, F ) and an assignment g as shown
in Fig. 3.12.

A formula A entails a formula B , or B is a logical consequence of A, if and
only if [A]g ⊆ [B]g in every interpretation and assignment. First-order logic
is semidecidable but not decidable: there exist algorithms that determine for
all pairs of formulas whether they stand in the entailment relation in the case
that they do, but there is no algorithm that does so and also always terminates
in the negative case.
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[c]g = F (c) for c ∈ C

[x]g = g (x) for x ∈ V

[ f (t1, . . . , ti )]g = F ( f )([t1]g , . . . , [ti ]g ) for f ∈ F i , i > 0

[P t1 . . . ti ]g =

{
{∅} if 〈[t1]g , . . . , [ti ]g 〉 ∈ F (P )

∅ otherwise
for P ∈ P i , i ≥ 0

[¬A]g = [A]g
{∅}

[A ∧ B]g = [A]g ∩ [B]g

[A ∨ B]g = [A]g ∪ [B]g

[A → B]g =

{
{∅} if [A]g ⊆ [B]g

∅ otherwise

[∀x A]g =
⋂

d∈D[A](g−{(x,g (x))})∪{(x,d)}

[∃x A]g =
⋃

d∈D[A](g−{(x,g (x))})∪{(x,d)}

Figure 3.12. Semantics of first-order logic

Second-order logic allows quantification not only over individuals (first-
order quantification) but also over propositions and predicates (second-order
quantification). For example, the principle of induction over the naturals can
be expressed by second-order universal quantification:

(16) ∀2 P ((P 0 ∧ ∀x(P x → P s ucc(x))) → ∀x P x)

Second-order logic is not even semidecidable. Hence also third-order logic
(allowing quantification over properties of sets) and all higher-order logics
are non-semidecidable.

3.6 Classical higher-order logic

We can express indefinitely high-order logic (˘-order logic) simply by adding
logical constants to typed lambda calculus (Church, 1940). Let us assume basic
types e for entities (d(e) a non-empty set) and t for truth values (d(t) =
{1, 0}). Logical constants are typed constants as usual, except that their deno-
tations are constrained. For example, we may assume a logical constant ∧
for conjunction of type t → (t → t). But as a constant which is logical,
rather than considering valuations in which it is interpreted as any function

of type ({1, 0}{1,0}){1,0}, we include only those valuations in which it is
interpreted specifically as the function [0 �→ [0 �→ 0, 1 �→ 0], 1 �→ [0 �→ 0,

1 �→ 1]].
Similarly, we may assume a logical constant È for definite descriptions of

type (e → t) → e for which we only consider valuations f such that when
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Table 3.1. Logical constants

constant type constraint

¬ t → t f (¬)(m) = m{∅}

∧ t → (t → t) f (∧)(m)(m′) = m ∩m′

∨ t → (t → t) f (∨)(m)(m′) = m ∪m′

→ t → (t → t) f (→)(m)(m′) = m{∅} ∪m′

= e → (e → t) f (=)(m)(m′) = {∅} if m = m′ else ∅
∀ (e → t) → t f (∀)(m) =

⋂
m′∈d(e)m(m′)

∃ (e → t) → t f (∃)(m) =
⋃

m′∈d(e)m(m′)
È (e → t) → e f (È)({m}) = m

|x| = x for individual variable x
|a| = a for individual constant a

| f (t0, . . . , tn)| = (· · · ( f |t0|) · · · |tn|)
|P t1 . . . tn| = (· · · (P |t1|) · · · |tn|)

|¬A| = (¬ A)
|A ∧ B | = ((∧ |A|) |B |)
|A ∨ B | = ((∨ |A|) |B |)
|A → B | = ((→ |A|) |B |)
|∀x A| = (∀ Îx|A|)
|∃x A| = (∃ Îx|A|)

Figure 3.13. Translation from first-order logic notation into higher-order logic

m ∈ De→t is the characteristic function of a singleton set, then f (È)(m) is the
unitary member of that set.1

Let us assume the logical constants in Table 3.1. There is the translation | · |
given in Fig. 3.13 from the first-order logic notation defined in (15) into our
higher-order logic.

3.7 Lexical semantics

We will represent a reading of an expression of syntactic type A by a closed
term of higher-order logic of semantic type T(A). We have already seen
in Section 3.3 how a derivation of a sequent A1, . . . , An ⇒ A is associ-
ated with a pure lambda term of type T(A) with free variables of types
T(A1), . . . , T(An): the derivational semantics. The lexicon will associate
closed terms of higher-order logic with basic expressions, the lexical semantics.
A lexical entry · : A : ˆ will comprise a syntactical semigroup term ·, a lexical

1 Cf. Carpenter (1996). Of course this does not capture the presuppositional nature of the definite
article whereby its use presupposes the unicity of the extension of its noun in the domain of discourse.
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syntactic type A, and a closed higher-order lexical semantic term ˆ of semantic
type T(A).

Sometimes lexical semantics will be unstructured, consisting simply of a
non-logical constant, for example:

(17) John : N : j
loves : (N\S)/N : love
Mary : N : m

A lexical selection for a derivation of A1, . . . , An ⇒ A is a choice of lexi-
cal entries, ·1 : A1 : ˆ1, . . . , ·n : An : ˆn. A derivation plus a lexical selection
determines the semantics that is the substitution of the lexical semantics into
the derivational semantics. For example, recall from above the derivation and
derivational semantics:

(18)
∣∣∣∣∣∣∣N ⇒ N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/N, N ⇒ S

∣∣∣∣∣∣∣
x John, x loves, xMary

= ((x loves xMary) x John)

Then substituting in the lexical semantics in (17), John loves Mary is assigned
semantics:

(19) ((x loves xMary) x John){j/x John, love/x loves, m/xMary} = ((love m) j)

In other cases lexical semantics will be represented by a structured term,
encoding denotational constraints and hence logical semantic properties of
the lexical expression. For example, the following lexical assignment to a
reflexive pronoun encodes its duplicating semantics:

(20) himself : ((N\S)/N)\(N\S) : ÎxÎy((x y) y)

For John loves himself there is the following derivation and derivational
semantics:

(21)
∣∣∣∣∣∣∣(N\S)/N ⇒ (N\S)/N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
\L

N, (N\S)/N, ((N\S)/N)\(N\S)⇒ S

∣∣∣∣∣∣∣
x John, x loves, xhimself

=

((xhimself x loves) x John)

Substituting in the lexical semantics and simplifying, we obtain:

(22) ((xhimself x loves) x John){ÎxÎy((x y) y)/xhimself, love/x loves, j/x John} =
((ÎxÎy((x y) y) love) j) = (Îy((love y) y) j) = ((love j) j)
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Finally, lexical semantics may be structured and/or contain constants which
can be logical, for example:

(23) and : (S\S)/S : ∧
bachelor : CN : Îx((∧ (man x)) (¬ (married x)))
the : N/CN : È

Exercise 3.5. Analyse the syntax and semantics of The bachelor loves himself
according to these lexical assignments.

3.8 Natural deduction for the Lambek calculus

A sequent is a simple arrangement of formulas, and we have noted how, in
sequent calculus, rules have a perfectly modular form, centred on a single
main connective occurrence in the antecedent or succedent of the conclusion.
Lambek sequent calculus, like that of classical and intuitionistic logic, enjoys
the Cut-elimination property.

Typically, proofs of Cut-elimination are constructive, meaning that they
not only show the existence of a Cut-free counterpart to a proof, but show
algorithmically how to transform proofs into Cut-free proofs, eliminating the
Cuts. This constructivity is of computational importance (Girard et al., 1989),
but even the dry fact of Cut-elimination alone has good consequences: the
subformula property and decidability. The latter follows from the finiteness
of the space of Cut-free backward chaining sequent proof-search. This same
finiteness also entails for Lambek categorial grammar the finite reading prop-
erty (van Benthem, 1991): that any sequent only ever has at most a finite num-
ber of semantic readings, because of the finiteness of the number of possible
Cut-free proofs together with semantic Cut-elimination (Hendriks, 1993): that
the Cut-elimination algorithm preserves semantic readings. The finite reading
property is consistent with the observation that natural language only ever
appears to be finitely ambiguous.

However, the sequent calculus notation for proofs, taken exactly as
it appears, is highly redundant because all side formulas are duplicated
in premises and conclusion at every inference step. And although Cut-
elimination provides a partial normalization, there are (as we have seen) still
multiple equivalent Cut-free proofs (spurious ambiguity). In the interests
of elegance, economy, and efficiency, we would like canonicality or unicity
whereby there is a unique (normal form) derivation for each reading. Further-
more, such a representation could be interpreted linguistically as the actual
syntactic structure or structural description corresponding to a sentence and
a reading. König (1989), Hepple (1990), and Hendriks (1993) present normal-
ization of the Cut-free Lambek calculus which succeeds in establishing unicity,
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···
A

···
A\B

E \
B

Ai

···
B

I\i

A\B

···
B/A

···
A

E /

B

Ai

···
B

I/i

B/A

···
A

···
B

I•
A•B

Figure 3.14. Natural deduction for the Lambek calculus

except for the rule of product on the left. However, this still suffers from the
redundancy of the representation of side-formulas in sequent calculus.

In sequent calculus proofs are trees with the nodes labelled by entire
sequents. We have seen how in natural deduction for intuitionistic logic
proofs are represented by trees (with some coindexing) the nodes of which
are labelled by just single formulas. This both removes the side formula
redundancy of sequent calculus, and provides a notation which is strongly
normalizing and Church–Rosser. So it is natural to seek a natural deduction
representation for the Lambek calculus (Barry et al., 1991; van Benthem, 1991;
Tiede, 1999).

Standard natural deduction is unordered, but in natural deduction for the
Lambek calculus it is straightforward to represent the order of the premises
by the order on the page. Then we can give the rules shown in Fig. 3.14.
In the rules of \ introduction and / introduction it is required that exactly
one hypothesis A be conditionalized (closed), and that it be the undischarged
assumption dominated by B which is leftmost in the case of \I and rightmost
in the case of /I . We disallow conditionalization of a last remaining assump-
tion because the Lambek calculus does not allow empty antecedents. Note that
we are lacking a • elimination rule (see below).

By way of illustration, forward type lifting and forward composition are
derived as follows:

(24) A A\B i

E \
B

I/i

B/(A\B)
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(25)

C/B

B/A Ai

E /
B

E /
C

I/i

C/A

We define normal forms in the same way as for intuitionistic natural deduc-
tion by normalizing detours comprising introduction and elimination, or
elimination and introduction, of the same connective.

In linguistic derivations represented by natural deduction we may write
lexical expressions above their open leaf types. For example, for John loves
Mary:

(26)

John

N

loves

(N\S)/N

Mary

N
E /

N\S
E \

S

For The cat slept we get one (normal form) natural deduction derivation, in
contrast to the two Cut-free sequent derivations:

(27) the

N/CN

cat

CN
E /

N

slept

N\S
E \

S

For I have set my bow in the cloud there is the natural deduction derivation
given in Fig. 3.15.

Exercise 3.6. Give natural deduction proofs of backward type lifting, back-
ward composition, forward and backward division, and associativity and
other laws such as those in Fig. 2.2.

Giving a • elimination rule in ordered natural deduction for the Lambek
calculus is problematic. It is tempting to write something like:

(28) ···
A•B

•E
A B

However this spoils the single-mother (tree) property of natural deduction
and would make it complicated to define correctly for all cases what would be
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I

N

have

(N\S)/(N\S)

set

(N\S)/(N•PP)

my

N/CN

bow

CN
E /

N

in

PP/N

the

N/CN

cloud

CN
E /

N
E /

PP
•I

N•PP
E /

N\S
E /

N\S
E \

S

Figure 3.15. Natural deduction derivation of I have set my bow in the cloud

meant by leftmost or rightmost undischarged assumption in order to regulate
the division introduction rules. Alternatively we might try something like:

(29) ···
A•B

•E
A B···

C

But this spoils the property whereby natural deduction proofs are only
adjoined and extended at the roots. The issue is not clear. But in any case,
we shall settle in Chaper 4 on a final proof syntax, proof nets, which on the
one hand is even deeper than natural deduction, and on the other hand treats
all the rules of inference, including the rule of use of product, in a uniform
way. Thus the question of how to treat product elimination in ordered natural
deduction does not seem to matter much in the end.

3.9 Natural deduction for the Lambek calculus with
semantic annotation

An ordered Lambek calculus natural deduction proof is annotated with
lambda terms representing the semantic reading as shown in Fig. 3.16.

For semantics with sequent calculus we had to first obtain the entire deriva-
tional semantics, then substitute in the lexical semantics, and then normalize.
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···
A : ˆ

···
A\B : ˜

E \
B : (˜ ˆ)

A : xi

···
B : ¯

I\i

A\B : Îx¯

···
B/A : ˜

···
A : ˆ

E /

B : (˜ ˆ)

A : xi

···
B : ¯

I/i

B/A : Îx¯
···

A : ˆ

···
B : ¯

I•
A•B : (ˆ, ¯)

Figure 3.16. Natural deduction for the Lambek calculus with semantic annotation

If we annotate natural deduction assumptions with (distinct) variables, the
semantic annotation built up at the root of a proof represents its derivational
semantics. However, in natural deduction we may annotate open assump-
tions with their lexical semantics and then build up (and possibly normalize)
semantics as we work from leaves to root. For example:

(30)

John

N : j

loves

(N\S)/N : love

Mary

N : m
E /

N\S : (love m)
E \

S : ((love m) j)

(31) the

N/CN : È

cat

CN : cat
E /

N : (È cat)

slept

N\S : slept
E \

S : (slept (È cat))

(32)

John

N : j

loves

(N\S)/N : love

himself

((N\S)/N)\(N\S) : ÎxÎy((x y) y)
E \

N\S : (ÎxÎy((x y) y) love) = Îy((love y) y)
E \

S : (Îy((love y) y) j) = ((love j) j)
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Categorial grammar handles subcategorization, that is the classification of
the categorial contexts in which expressions expect to find themselves, quite
naturally. In Part II of this book we look at extensions of Lambek calculus of
the kind that seem to be required to treat extraction, discontinuity, polymor-
phism, and intensionality. But in the final section of this chapter we look at a
phenomenon for which Lambek categorial grammar alone already provides a
notable treatment of both the syntax and semantics: coordination, including
the coordination of non-standard constituents.

3.10 Coordination of standard and non-standard
constituents

As is well known, Boolean coordination can be treated in categorial gram-
mar by assigning say or types of the form (X\X)/X with semantics
ÎxÎyÎz1 . . . Îzn[(y z1 . . . zn) ∨ (x z1 . . . zn)] where T(X) = Ù1 → · · · →
Ùn → t. Something further would be required for group readings of con-
junction, and there are complications with agreement in subject noun phrase
coordination in, for example, John (m) or Mary (f) arrived and John (sg) and
Mary (sg) are/*is arriving, but we leave these issues aside here.

As is also well-known, this generalized coordination extends automatically
in combinatory categorial grammar to coordination of non-standard con-
stituents as in right node raising (John likes and Mary dislikes linguistics) and
left node raising (John saw Bill yesterday and Mary today) (Steedman 1985;
1987; Dowty 1988). The same is true in type logical categorial grammar. Here
we survey the coordination in natural deduction Lambek categorial gram-
mar of standard and non-standard constituents by means of the assignment
schema above.

In derivations here and henceforth we allow ourselves to assume a conven-
tion of left-association of function application so that ((ˆ ¯) ˜) may be abbre-
viated (ˆ ¯ ˜), and so forth. Where ˆ is a binary logical operator such as ∧,
we also allow ourselves to write this in infix notation: [¯ ∧ ˜]. We abbreviate
(A\A)/A as 1

A . Fig. 3.17 shows the derivation of the verb phrase coordination

John

N : j

praises

(N\S)/N : praise

Mary

N : m
E /

N\S : (praise m)

and

1

N\S
: ÎxÎyÎz[(y z) ∧ (x z)]

laughs

N\S : laugh
E /

(N\S)\(N\S) : ÎyÎz[(y z) ∧ (laugh z)]
E \

N\S : Îz[(praise m z) ∧ (laugh z)]
E \

S : (praise m j) ∧ (laugh j)

Figure 3.17. Verb phrase coordination



John

N : j

likes

(N\S)/N : like

and

1

(N\S)/N
: Îxyzw[(y z w) ∧ (x z w)]

will

(N\S)/(N\S) : will

love

(N\S)/N : love
i

N : x
E /

N\S : (love x)
E /

N\S : (will (love x))
I/i

(N\S)/N : Îx(will (love x))
E /

((N\S)/N)\((N\S)/N) : Îyzw[(y z w) ∧ (will (love z) w)]
E \

(N\S)/N : Îzw[(like z w) ∧ (will (love z) w)]

London

N : l
E /

N\S : Îw[(like l w) ∧ (will (love l) w)]
E \

S : (like l j) ∧ (will (love l) j)

Figure 3.18. Transitive verb phrase coordination with non-standard constituent
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John

N : j

gave

(N\S)/(N•PP) :
Îx(give 2 x 1 x)

or

1
(N\S)/(N•PP) :

Îxyzw[(y z w) ∨ (x z w)]

sent

(N\S)/(N•PP) :
Îx(send 2 x 1 x)

E /((N\S)/(N•PP))\((N\S)/(N•PP)) :
Îyzw[(y z w) ∨ (send 2z 1z w)]

E \(N\S)/(N•PP) :
Îzw[(give 2 z 1z w) ∨ (send 2z 1z w)]

the book

N :
(È book)

to Mary

PP :
m

I•
N•PP :

((È book), m)

E /N\S :
Îw[(give m (È book) w) ∨ (send m (È book) w)]

E \
S :

(give m (È book) j) ∨ (send m (È book) j)

Figure 3.19. Coordination of prepositional ditransitive verbs

John

N : j

j

N\S : y

E \
S : (y j)

I/ j

S/(N\S) : Îy(y j)

or

1

S/(N\S)
: Îxyz[(y z) ∨ (x z)]

Mary

N : m

i

N\S : x

E \
S : (x m)

I/i

S/(N\S) : Îx(x m)

E /

(S/(N\S))\(S/(N\S)) : Îyz[(y z) ∨ (z m)]

E \
S/(N\S) : Îz[(z j) ∨ (z m)]

sings

N\S : sing

E /

S : (sing j) ∨ (sing m)

Figure 3.20. Subject coordination

John praises Mary and laughs. Fig. 3.18 shows the transitive verb phrase coor-
dination of likes with the non-standard constituent will love. Fig. 3.19 shows
coordination of prepositional ditransitive verbs.

Fig. 3.20 shows coordination of subjects. Observe the subject type lifting
necessary in order to predicate sings of both disjuncts. In the analysis of
John loves Mary and himself in Fig. 3.21 we see object coordination, which
also requires derivational type lifting in general, but in this case the second
conjunct is a reflexive pronoun which already has the lifted type lexically.
Fig. 3.22 shows right node raising, that is to say, coordination of non-standard
constituents in which a shared object of the conjuncts appears to the right
outside the coordinate structure.

Fig. 3.23 shows the derivation of a conjunct in a coordination such as John
gave the book and sent the record to Mary, which is coordination of a non-
standard constituent according to our prepositional ditransitive type. The



John

N : j

loves

(N\S)/N : love

i
(N\S)/N : x

Mary

N : m
E /

N\S : (x m)
I\i

((N\S)/N)\(N\S) : Îx(x m)

and

1

((N\S)/N)\(N\S)
: Îxyzw[(y z w) ∧ (x z w)]

himself

((N\S)/N)\(N\S) : Îxy(x y y)
E /

(((N\S)/N)\(N\S))\(((N\S)/N)\(N\S)) : Îyzw[(y z w) ∧ (z w w)]
E \

((N\S)/N)\(N\S) : Îzw[(z m w) ∧ (z w w)]
E \

N\S : Îw[(love m w) ∧ (love w w)]
E \

S : (love m j) ∧ (love j j)

Figure 3.21. Object coordination
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John

N : j

likes

(N\S)/N : like

i

N : x

E /

N\S : (like x)

E \
S : (like x j)

I/i

S/N : Îx(like x j)

and

1

S/N
: Îxyz[(y z) ∧ (x z)]

Mary

N : m

loves

(N\S)/N : love

j

N : y

E /

N\S : (love y)

E \
S : (love y m)

I/ j

S/N : Îy(love y m)

E /

(S/N)\(S/N) : Îyz[(y z) ∧ (love z m)]

E \
S/N : Îz[(like z j) ∧ (love z m)]

London

N : l

E /

S : (like l j) ∧ (love l m)

Figure 3.22. Right node raising

gave

(N\S)/(N•PP) : Îx(give 2x 1x)

the book

N : (È book)
i

PP : x
I•

N•PP : ((È book), x)
E /

N\S : (give x (È book))
I/i

(N\S)/PP : Îx(give x (È book))

Figure 3.23. Derivation of one conjunct in John gave the book and sent
the record to Mary

i
(N\S)/(N•PP) : x

the book

N : (È book)

to Mary

PP : m
I•

N•PP : ((È book), m)
E /

N\S : (x ((È book), m))
I\i

((N\S)/(N•PP))\(N\S) : Îx(x ((È book), m))

Figure 3.24. Derivation of one conjunct in John gave the book to Mary
and the record to Suzy



John

N : j

saw

N : see

j
TV : y

Mary

N : m
E /

VP : (y m)

today

VP\VP : today
E \

VP : (today (y m))
I\ j

TV\VP : Îy(today (y m))

and

1

TV\VP
: Îxyzw[(y z w) ∧ (x z w)]

i
TV : x

Bill

N : b
E /

VP : (x b)

yesterday

VP\VP : yesterday
E \

VP : (yesterday (x b))
I\i

TV\VP : Îx(yesterday (x b))
E /

(TV\VP)\(TV\VP) : Îyzw[(y z w) ∧ (yesterday (z b) w)]
E \

TV\VP : Îzw[(today (z m) w) ∧ (yesterday (z b) w)]
E \

VP : Îw[(today (see m) w) ∧ (yesterday (see b) w)]
E \

S : (today (see m) j) ∧ (yesterday (see b) j)]

Figure 3.25. Left node raising
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derivation of John gave the book to Mary and the record to Suzy on the
other hand is, according to our prepositional ditransitive type, constituent
coordination, but it requires lifting in order to distribute the verb; see Fig. 3.24.
Derivation of true left node raising, which we name by analogy with right
node raising, is shown in Fig. 3.25, where TV abbreviates (N\S)/N and VP
abbreviates N\S.



4

Processing

4.1 Introduction 52

4.2 Proof nets for the
Lambek calculus 53

4.3 The semantic trip and
the semantic reading
of a proof net 58

4.4 Incremental parsing
algorithm and
complexity metric 60

4.5 Predicting performance 66

‘Take complexity-based accounts. . . . Here, the idea is to establish a nonarbitrary
metric for complexity, one that makes reference to structure. These metrics are
rarely spelled out explicitly or motivated theoretically.’

Grodzinsky 2000: 56

‘. . . the complexity of the component processes in sentence processing does not
lend itself well to developing [computational] models that make close contact
with empirical data without making numerous ancillary assumptions.’

Tanenhaus 2003: 1145

Accounts of linguistic competence rest on abstractions and idealizations
which, however fruitful, must eventually be integrated in a full account of
language with human computational performance in language use. Here we
advocate the modelling of language processing on the basis of an incremental
synthesis of categorial proof nets, therein obtaining a wide-ranging complex-
ity metric which is nonarbitrary, simple, explicit, free of ancillary assump-
tions, and theoretically motivated.1

Centre embedding unacceptability is illustrated by the fact that while the
nested subject relativizations of (1) exhibit little variation in acceptability,

1 This chapter is a reworking of material from Morrill (2000) Incremental Processing and Accept-
ability. Computational Linguistics, 26(3), 319–338, used with permission of the Association for Compu-
tational Linguistics.
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the increasingly nested object relativizations (2) are increasingly unacceptable
(Chomsky 1965, ch. 1).

(1) a. The dog that chased the cat barked.
b. The dog that chased the cat that saw the rat barked.
c. The dog that chased the cat that saw the rat that ate the cheese barked.

(2) a. The cheese that the rat ate stank.
b. ?The cheese that the rat that the cat saw ate stank.
c. ??The cheese that the rat that the cat that the dog chased saw ate stank.

Gibson (1998) analyses such phenomena in terms of a dependency locality the-
ory according to which the resources required for storing a partially processed
structure are proportional to the number of incomplete syntactic dependen-
cies at that point in processing the structure. Taking inspiration from Gibson,
Johnson (1998) analyses centre embedding in terms of categorial proof nets,
relating the maximal nesting of axiom links to the degree of unacceptability.
Morrill (2000), on which this chapter is based, implements and rationalizes
these ideas in terms of syntactic structures as proof nets and a complexity
metric derived from the load on memory of an incremental algorithm of
language processing.

4.1 Introduction

Girard (1987) introduced linear logic. Linear logic preserves from standard
logic the freely applying structural rule of permutation, but not freely applying
structural rules of contraction and weakening. The Lambek calculus lacks all
three structural rules. Thus the Lambek calculus and linear logic are instances
of what has come to be known as substructural logic (Restall, 2000). Just as the
Lambek calculus is a sequence logic, linear logic is an occurrence logic.

Occurrence logics had been studied before under the rubric of BCI-logic.2

However, Girard’s linear logic established in a clear and unprecedented way
the concepts of additive, multiplicative, and exponential connective.3 We con-
sider additives in Chapter 7. Examples of multiplicative connectives are the

2 It is called ‘BCI’ after the names of the combinators (pure lambda terms) the type schemata of
which are the axiom schemata of a Hilbert-style presentation of the logic:

(i) Combinator Lambda term Type/axiom schema
B ÎxÎyÎz(x (y z)) (B → C ) → ((A → B) → (A → C ))
C ÎxÎyÎz((x z) y) (A → (B → C )) → (B → (A → C ))
I Îxx A → A

3 The arithmetic terms refer to the complexity of Cut-elimination of the connective classes.
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times and divisions of the Lambek calculus, which is a non-commutative
intuitionistic linear logic. Exponential connectives were entirely new kinds of
modalities licensing controlled use of structural rules. We consider a variation
in Chapter 5.

In addition, Girard (1987) introduced a new proof format, proof nets (for
multiplicative classical linear logic). Proof nets are a deeper representation
than both sequent calculus and natural deduction.4 They form a graphical
syntax which, as Girard et al. (1989) observe, captures the essence même of a
proof. Roorda (1991) adapted proof nets to multiplicative non-commutative
intuitionistic linear logic, that is, to the Lambek calculus. Proof nets are an
ideal proof format for categorial logic: they are the syntactic structures of
logical categorial grammar. The format of proof nets, unlike the format of
sequent calculus, exhibits no spurious ambiguity and proof nets play the
role in logical categorial grammar that parse trees play in phrase structure
grammar. In this chapter we present, in terms of proof net synthesis, a non-
deterministic incremental parsing algorithm for Lambek categorial grammar
which consists purely in lexical choice and the complementization of syntactic
valencies by shift/reduce syntactic choice. Furthermore, we associate with it a
simple metric of complexity, the maximum number of unresolved valencies at
any point in an analysis, that is the working memory stack-depth required for
analysis according to the algorithm. We discuss how this complexity metric
correctly predicts a wide variety of performance phenomena.

In Section 4.2 we define proof nets for the Lambek calculus. In Section 4.3
we define the extraction of semantics from a proof net analysis. In Section 4.4
we specify the natural nondeterministic incremental parsing algorithm and
complexity metric for the proof net syntactic structures. We illustrate by refer-
ence to garden-pathing. In Section 4.5 we compare with human performance
the predictions of logical categorial grammar and the complexity metric in
relation to centre embedding unacceptability, left to right quantifier scope
preference, preference for the lower attachment of adverbial phrases and of
possessive clitics, heavy noun phrase shift, and preference for the passivization
of nested sentential subjects.

4.2 Proof nets for the Lambek calculus

A proof net packs a proof into a minimal graphical structure. In sequent
calculus logical inference rules for each connective decompose formulas into
subformulas. Consider for example the following sequent proof:

4 Or rather, it is sometimes said that proof nets are the natural deduction of linear logic.



54 lambek categorial grammar

(3)

N ⇒ N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N, (N\S)/N, N ⇒ S

At the leaves, identity axioms relate antecedent and succedent atoms. In the
corresponding proof net types and subtypes, marked by • and ◦ for antecedent
and succedent respectively, are unfolded into formula trees and complemen-
tary atomic leaves are connected. First, we obtain a proof frame by unfolding
the endsequent types:

(4)

Each local tree in a proof frame corresponds to a sequent inference. We obtain
a proof structure by connecting each atomic leaf with another complementary
atomic leaf, corresponding to an identity axiom. Proof structures must satisfy
further correctness criteria in order to qualify as well-formed representations
of proofs, in which case they are called proof nets, so the proof nets are a proper
subset of the proof structures. Continuing our example, the proof structure in
Fig. 4.1 is also a proof net.

Exercise 4.1. The following two sequent proofs are represented by a single
proof net. What do you think it is?

CN⇒ CN

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
/L

N/CN, CN, N\S ⇒ S

CN⇒ CN N ⇒ N
/L

N/CN, CN⇒ N S ⇒ S
\L

N/CN, CN, N\S ⇒ S

Figure 4.1. Proof net for N, (N\S)/N, N ⇒ S
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A polar type Ap comprises a type A together with a polarity p = • (input) or
◦ (output). In relating proof nets to sequent calculus and natural deduction,
polarities indicate sequent sidedness: a type of input polarity corresponds to
an antecedent type, and a type of output polarity corresponds to a succedent
type.

The polar type tree |Ap| of a polar type Ap is the ordered tree defined by the
following polar translation function:

(5) |P P |=P P if P is atomic

We see that the polar type tree of a polar type is basically its parse tree/formula
tree decorated with polarities. Observe that the polar translation function
transmits polarity from a mother node to its daughters according to the
distribution in the corresponding sequent rule of the corresponding active
type and its subtypes in the conclusion and the premise(s). For example, the
translation of A•B• corresponds to the •L sequent rule. In that rule, both
the subtypes of the active type have antecedent occurrences in the premise.
Accordingly, the daughters in the image of the translation function are both
of input polarity.

Exercise 4.2. Check that in the other five clauses of the translation function,
the distributions of polarities also follow the sequent rules.

Let us recall that the sequents of the Lambek calculus are intuitionistic, having
always a single succedent type, and always have non-empty antecedents, so
that, for example, there is no inference from A⇒ A to ⇒ A\A (the latter is
not even well-formed as a sequent). We define the proof frame of a sequent
A0, . . . , An ⇒ A as the sequence of polar type trees 〈|A◦|, |A0

•|, . . . , |An
•|〉.

For example, the proof frame of the sequent (6) is given in Fig. 4.2, where we
have additionally numbered the leaves.

(6) S/(N\S), (N\S)/N, (S/N)\S ⇒ S
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Figure 4.2. Proof frame of S/(N\S), (N\S)/N, (S/N)\S ⇒ S

As we shall see, two proof nets can be built on this proof frame.
The local tree unfolded in a clause of the definition of the translation

function (2) is called a logical link. A logical link in a proof net corresponds
to a sequent inference rule, but it represents only the active types themselves.
In a non-commutative system we also need to take order into account. The
daughters of the logical links are ordered, but observe that in the unfoldings
of output types, the order of the subtypes is commuted in the daughters.
This is because polarities are read as affirmative or negative and in a non-
commutative logic negation commutes the subformulas in the de Morgan
laws. Philippe de Groote (p.c.) provides the following intuition. Consider
going from a to c via b: first from a to b and then from b to c. The reverse
(negation) of this is not to go from b to a and then from c to b, but to go
first from c to b (the negation of the second operand) and then from b to
a (the negation of the first operand). That is, the subformulas/operands are
commuted.5

We define the complement X of a polar type X by A• = A◦ and A◦ = A•.
Two polar types are complementary if and only if they are the complements of
each other. An axiom link on a proof frame is a pair of complementary leaves.
We draw one thus as a connecting line, corresponding to an id axiom instance
P ⇒ P in sequent calculus:

(7)

An axiom linking for a proof frame is a set of axiom links with at most one
axiom link per leaf and which is planar, that is there are no two axiom links
(i, k) and ( j, l) such that i < j < k < l . Geometrically, planarity means that
where the polar type trees are ordered on a line, the axiom links can be drawn
in the half-plane (on top) without crossing lines. Planarity corresponds to
non-commutative order.

A partial proof structure (PPS) is a proof frame with zero or more axiom
links. A proof structure is a (proof) frame together with an axiom linking that

5 By symmetry we could have chosen to commute the input unfoldings instead, but then our word
order would have appeared from right to left on the page.
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links every leaf. Thus an axiom linking of a proof structure is a partitioning of
its leaves into complementary pairs where the connections of paired leaves do
not cross. Not every proof structure represents a proof. To do so a proof struc-
ture must further satisfy certain proof net conditions, but these conditions are
not very transparent.

To take into account the arities of sequent rules, that is whether the active
subtypes go into the same subproof (unary rules) or different subproofs
(binary rules) we will need a global correctness condition on proof nets that
makes reference to the arities of rules. We define here the ℘-links as those
which are unary, that is those with mother ••, \◦or /◦.6

A switching of a PPS is a graph resulting from removing one of the edges
from each ℘-link. A proof net is a proof structure in which (i) every switching
is a connected and acyclic graph (Danos–Regnier acyclicity and connect-
edness; see Danos and Regnier 1989), and (ii) no axiom link connects the
leftmost and rightmost descendent leaves of an output division (we call this
Retoré no subtending; see de Groote and Retoré 2003). Danos–Regnier (DR)
connectedness and acyclicity takes care of rule arity. Retoré no subtending
prohibits empty antecedents.

(8) Theorem. A sequent is a theorem of (i.e., derivable in) the Lambek
sequent calculus if and only if there is an axiom linking which forms a
proof net on its frame.

Figs. 4.3 and 4.4 show the two proof nets that can be built on the frame of
Fig. 4.2.

Actually, DR connectedness can be omitted because Fadda and Morrill
(2005) show that in view of the intuitionistic nature of Lambek sequents
(that there is exactly one root of output polarity), every proof structure which
satisfies DR acyclicity also satisfies DR connectedness. Therefore we need only
check for DR acyclicity (and no subtending). We call a partial proof structure
correct if and only if it satisfies DR acyclicity and no subtending.

Figure 4.3. A proof net for S/(N\S), (N\S)/N, (S/N)\S ⇒ S

6 These are the cases which compile into linear multiplicative disjunction ℘ (‘par’), which has a
unary rule.
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Figure 4.4. Another proof net for S/(N\S), (N\S)/N, (S/N)\S ⇒ S

(9) Corollary. A sequent is a theorem of the Lambek calculus if and only
if there is an axiom linking which forms a correct proof structure on its
frame.

Therefore we can carry out Lambek theorem-proving by building up proof
nets incrementally, checking for correctness (DR acyclicity and no subtend-
ing) at each step. We have a Lambek theorem if and only if we succeed in
linking all the leaves while satisfying these criteria.

4.3 The semantic trip and the semantic reading
of a proof net

The semantics associated with a categorial proof net, that is the proof as
a lambda term (intuitionistic natural deduction proof, under the Curry–
Howard correspondence) is extracted by associating a distinct index with each
output division node and travelling as follows, starting by going up at the
unique output root (De Groote and Retoré, 1996):

(10) � travelling up at the mother of an output division link, perform the
lambda abstraction with respect to the associated index of the result
of travelling up at the daughter of output polarity;

� travelling up at the mother of an output product link, form the
ordered pair of the result of travelling up at the right daughter (first
component) and the left daughter (second component);

� travelling up at one end of an axiom link, continue down at the other
end;

� travelling down at an (input) daughter of an input division link,
perform the functional application of the result of travelling down
at the mother to the result of travelling up at the other (output)
daughter;
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� travelling down at the left (resp. right) daughter of an input product
link, take the first (resp. second) projection of the result of travelling
down at the mother;

� travelling down at the (input) daughter of an output division link,
return the associated index and bounce;

� travelling down at a root, return the associated lexical semantics and
bounce.

We call this special trip around the proof net by which the semantics is
extracted the ‘semantic trip’. The semantic trip begins at the unique root
of polarity output (the ‘origin’), starting by travelling upwards. Edges are
followed in a uniform direction until we come to logical links. Then the travel
instructions are followed, which we illustrate diagrammatically in Fig. 4.5.
The labels of edges taken generate the successive symbols of the semantic
form. Lambda variables are unique to their link. When we arrive down at an
input polarity root, the associated lexical semantics is inserted, and the trip
‘bounces’ back up. The trip visits each node twice, once travelling upwards
and once travelling downwards, and crosses each edge twice, once in each
direction. It ends when it arrives back down at the origin.

For example, where we associate with the three left-to-right input roots
of Fig. 4.1 the lexical semantics j, love, and m respectively, the semantic trip
yields ((love m) j). And where we associate with the three left-to-right roots of
Figs. 4.3 and 4.4 the lexical semantics someone, love, and everyone respectively,
the semantic trip yields for Fig. 4.3 (someone Îx(everyone Îy((love y) x))).

Exercise 4.3. What does the semantic trip yield for Fig. 4.4?

Figure 4.5. Semantic trip travel instructions
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4.4 Incremental parsing algorithm and complexity metric

4.4.1 Parsing algorithm

We present a stack-based incremental parsing algorithm for Lambek categorial
grammar. There is nondeterminism in respect of lexical choice (lexical ambi-
guity) and in respect of syntactic shift or reduce choice (syntactic ambiguity).

The algorithm works left-to-right through a buffer representing the suc-
cessive words in the input speech stream. There are two stacks, a global stack
and a local stack. When a next segment of the buffer is chosen as a lexical
expression, the leaves of the polar tree of its lexical type are put on the local
stack. Each such leaf L is then considered in turn, either reducing with a
complementary leaf on the top of the global stack (establishing an axiom link
ending at L ), or pushing it onto the global stack (meaning that an axiom link
will have to be established later starting at L ).

We present the algorithm as a state transition system. A state comprises five
components:

(11) � A global stack G . This is the main stack, containing unresolved syn-
tactic valencies. We define the complexity of a parse as the maximum
depth of the global stack.

� A local stack Ls . This is an auxiliary stack, containing the remain-
ing valencies of the lexical type most recently inserted by lexical
lookup.

� A buffer ·. The words remaining in the input speech stream.
� A frame F . The proof frame built by lexical choice so far.
� A set of axiom links X . The set of axiom links (syntactic dependencies)

established so far on the proof frame.

We represent a state:

(12) G, Ls , ·, F , X

The parsing algorithm is given in Fig. 4.6. We use Prolog notation for
lists/stacks, thus [] is the empty list and [H|T] is the list with head H and
tail T . ⊕ is list concatenation. #(F ) is the total number of atomic type
occurrences in the types of F ; this is for numbering the leaves of the proof
frame. |A•|n is like |A•| but in addition numbers the leaves of the polar type
tree from left to right starting from n. Where T is a (numbered) polar
type tree, fringe(T) is the list of its leaves from left to right (product or yield).
Note how the sideconditions on REDUCE incrementally ensure no subtending
and DR acyclicity, i.e. correctness.

4.4.2 Parsing examples (garden pathing) and complexity metric

By way of illustration of the parsing algorithm and the complexity metric we
consider garden pathing (Bever, 1970):
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Figure 4.6. Parsing algorithm for Lambek categorial grammar

(13) a. The horse raced past the barn.
b. ?The horse raced past the barn fell.

(14) a. The boat floated down the river.
b. ?The boat floated down the river sank.

(15) a. The dog that knew the cat disappeared.
b. ?The dog that knew the cat disappeared was rescued.

Typically, although the (b) sentences are perfectly well-formed they are per-
ceived of as being ungrammatical apparently due to a strong tendency to
interpret their initial segments as in the (a) sentences.

Let us assume the following lexical assignments:

(16) barn : CN : barn
horse : CN : horse
past : ((N\St)\(N\St))/N : ÎxÎyÎz(past x (y z))
raced : N\S+ : race
the : N/CN : the

The feature + on S marks the projection of a tensed verb form; a verb phrase
modified by ‘past’ need not be tensed and the feature is marked with a variable
t in that lexical entry. Let us consider the incremental processing of (13a) as
proof net construction. We assume initially that an S is expected; after percep-
tion of the word ‘the’ there is the following partial proof net (for simplicity we
omit features, included in lexical entries, from proof nets):
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(17)

Here there are three unmatched valencies/unresolved dependencies; no axiom
links can yet be placed, but after ‘horse’ we can build:

(18)

Now there are only two unmatched valencies. After ‘raced’ we have, on the
correct analysis, the following:

(19)

Note that linking the Ns is possible, but we are interested in the history of the
analysis which turns out to be correct, and in that analysis the verb valencies
are matched by the adverb that follows:

(20)
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Figure 4.7. the horse raced past the barn

Observe that a cycle is created, but as required it crosses both edges of a ℘-link.
At the penultimate step we have:

(21)

The final proof net analysis is given in Fig. 4.7. Carrying out the semantic trip
we obtain (22a), which is logically equivalent to (22b).

(22) a. (ÎxÎyÎz(past x (y z)) (the barn) Îw(race w) (the horse))
b. (past (the barn) (race (the horse)))

The analysis of (13b) is less straightforward. Whereas in (13a) ‘raced’
expresses a one-place predication (‘go quickly’), in (13b) it expresses a two-
place predication (there was some agent racing the horse); ‘horse’ is modified
by an agentless passive participle, but the adverbial ‘past the barn’ is modifying
‘race’. Within the confines of the Lambek calculus the characterization we offer
assumes the lexical assignment to the passive participle given in the following.7

7 In general grammar requires the expressivity of more powerful categorial logics than just Lambek
calculus (see Part II); however, so far as we are aware, the characterizations we offer within the
Lambek calculus bear the same properties with regard to our processing considerations as their more
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(23) fell : N\S+ : fall
raced : ((CN\CN)/(N\(N\S−)))•(N\(N\S−))

: (ÎxÎyÎz[(y z) ∧ ∃w(x z w)], race2)

Here ‘raced’ is classified as the product of an untensed transitive verbal type,
which can be modified by the adverbial ‘past the barn’ by composition, and
an adnominalizer of this transitive verbal type. According to this, (13b) has the
proof net analysis given in Fig. 4.8. The semantics extracted is (24a), equivalent
to (24b)

(24) a. (fall (the (1(ÎxÎyÎz[(y z) ∧ ∃w(x z w)], race2) ÎnÎo(ÎuÎvÎw(past u (v w))

(the barn) Îr (((2(ÎpÎs Ît[(s t) ∧ ∃q(p t q)], race2) n r ) o)horse))))
b. (fall (the Îx[(horse x) ∧ ∃y(past (the barn) (race2 x y))]))

Let us assign to each proof net analysis a complexity profile which indi-
cates, before and after each word, the number of unmatched literals, that is
unresolved valencies or dependencies, according to the processing up to that
point. This is a measure of the course of memory load in optimal incremental
processing. We are not concerned here with the resolution of lexical ambiguity
or serial backtracking: we are supposing sufficient resources that the non-
determinism of selection of lexical entries and their parallel consideration is
not the critical burden. Rather, the question is: which among parallel compet-
ing analyses places the least load on memory?

The complexity profile is easily read off a completed proof net: the complex-
ity in between two words is the number of axiom links bridging over at that
point. Thus for (13a) and (13b) analysed in Figs. 4.7 and 4.8 the complexity
profiles are as follows:

(25) 6 b
5
4 b a
3 ab b b
2 a a
1 ab a b
0 a b

a. the horse raced past the barn
b. the horse raced past the barn fell

We see that after the first words the complexity of the correct analysis of (13b) is
consistently higher than that of its garden path (13a), just as would be expected
on the assumption that in (13b) the less costly but incorrect analysis is salient.

sophisticated categorial logic refinements, because the latter concern principally generalizations of
word order, whereas the semantic dependencies on which our complexity metric depends remain the
same.



Figure 4.8. the horse raced past the barn fell
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4.5 Predicting performance

4.5.1 Centre embedding unacceptability

Turning now to the performance phenomenon mentioned at the beginning
of the chapter, for subject and object relativization we assume the relative
pronoun lexical assignments (26).

(26) that : (CN\CN)/(N\S+) : ÎxÎyÎz[(y z) ∧ (x z)]
that : (CN\CN)/(S+/N) : ÎxÎyÎz[(y z) ∧ (x z)]

Sentence (1b) is analysed in Fig. 4.9. Sentence (2b) is analysed in Fig. 4.10. Let
us compare the complexities:

(27) 9 b
8 b
7 b b
6 b
5 b
4 ab ab a a
3 ab a a a a
2 ab
1 ab
0 ab

a. the dog that chased the cat that saw the rat barked
b. the cheese that the rat that the cat saw ate stank

Again, the profile of (2b) is higher.8 We suggest that this is what causes the
unacceptability of centre embedding.

4.5.2 Left-to-right quantifier scope preference

Left-to-right quantifier scope preference is illustrated by:

(28) a. Someone loves everyone.
b. Everyone is loved by someone.

Both sentences exhibit both quantifier scopings:

(29) a. ∃x∀y(love y x)
b. ∀y∃x(love y x)

However, while the dominant reading of (28a) is (29a), that of (28b) is (29b),
that is, the preference is for the first quantifier to have wider scope. Note that
the same effect is observed when the quantifiers are swapped:

(30) a. Everyone loves someone.
b. Someone is loved by everyone.

8 Indeed it rises above 7–8, thus reaching what are usually taken to be the limits of short-term
memory.



Figure 4.9. the dog that chased the cat that saw the rat barked



Figure 4.10. the cheese that the rat that the cat saw ate stank
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While both sentences in (30) have both quantifier scopings, the preferred
readings give the first quantifier wide scope.

A rudimentary account of sentence-peripheral quantifier phrase scoping is
obtained in Lambek categorial grammar by means of lexical assignments such
as the following (for a more refined treatment, without lexical ambiguity, see
Chapter 6):

(31) everyone : St/(N\St) : Îx∀y(x y)
everyone : (St/N)\St : Îx∀y(x y)
someone : St/(N\St) : Îx∃y(x y)
someone : (St/N)\St : Îx∃y(x y)

Then one analysis of (28a) is that given in Fig. 4.11. This is the subject wide
scope analysis: its extracted and simplified semantics is as in (32).

(32) a. (Îx∃y(x y) Îu(Îx∀y(x y) Îv(love v u)))
b. ∃x∀y(love y x)

A second analysis is that given in Fig. 4.12. This is the object wide scope
analysis: its extracted and simplified semantics is as in (33).

Figure 4.11. someone loves everyone (∃∀)

Figure 4.12. someone loves everyone (∀∃)
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(33) a. (Îx∀y(x y) Îv(Îx∃y(x y) Îu(love v u)))
b. ∀y∃x(love y x)

Let us compare the complexity profiles of the two readings:

(34) 4 b
3 ab
2 a
1 ab
0 ab

a.
b.

someone loves everyone
∃∀ (subject wide scope, Fig. 4.11)
∀∃ (object wide scope, Fig. 4.12)

At the only point of difference the subject wide scope reading, the preferred
reading, has the lower complexity.

For the passive (28b) let there be assignments as in (35). The preposition
‘by’ projects an agentive adverbial phrase; ‘is’ is a functor over (post-)nominal
modifiers (the man outside, John is outside, etc.) and passive ‘loved’ is treated
exactly like passive ‘raced’ in (23).

(35) by : ((N\S−)\(N\S−))/N : ÎxÎyÎz[[z = x] ∧ (y z)]
is : (N\S+)/(CN\CN) : ÎxÎy(x Îz[z = y] y)
loved : ((CN\CN)/(N\(N\S−)))•(N\(N\S−))

: (ÎxÎyÎz[(y z) ∧ ∃w(x z w)], love)

A ∀∃ analysis of (28b) is given in Fig. 4.13. This has semantics, after some
simplification, as in (36), which is equivalent to (33).

(36) ∀x∃y∃z[[y = z] ∧ (love x y)]

An ∃∀ analysis of (28b) is given in Fig. 4.14. This has semantics, after some
simplification, as in (37), which is equivalent to (32).

(37) ∃y∀x∃z[[z = y] ∧ (love x z)]

Again, the preferred reading has the lower complexity profile:

(38) 6 b
5

4 b b a
3 ab
2 a a
1 ab
0 ab

a.
b.

everyone is loved by someone
∀∃ (Fig. 4.13)
∃∀ (Fig. 4.14)



Figure 4.13. everyone is loved by someone (∀∃)



Figure 4.14. everyone is loved by someone (∃∀)
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4.5.3 Preference for lower attachment

Kimball (1973: 27) observes that in a sentence such as (39), three ways ambigu-
ous according to the attachment of the adverb, the lower the attachment is, the
higher the preference (what he terms ‘Right Association’).

(39) Joe said that Martha believed that Ingrid fell today.

In Fig. 4.15 we give the analyses for the highest, the middle, and the lowest
attachments. (We now abbreviate proof nets by flattening formula trees into
their linear representations; since this conceals the order switching of output
links in this notation the axiom links may cross, belying the underlying pla-
narity.) The complexity profiles are:

(40) 6 c bc
5 c c bc bc
4 abc
3
2 abc ab a
1 abc ab ab a a
0 abc

a.
b.
c.

Joe said that Martha believed that Ingrid fell today
lowest attachment
middle attachment
highest attachment

The same effect occurs strongly in (41), where the preferred reading is the
one given by the lowest attachment, even though that one is the nonsensical
reading.

(41) the book that shocked Mary’s title

The analyses are given in Fig. 4.16. The complexities are thus:

(42) 4 a a
3 a a
2 b b ab
1 ab b b ab
0 ab

a.
b.

the book that shocked Mary ’s title
sensical
nonsensical

4.5.4 Heavy noun phrase shift

Our account appears to explain the preference for heavy noun phrases to
appear at the end of the verb phrase (heavy noun phrase shift). Of the fol-
lowing the second is more acceptable:



Figure 4.15. Joe said that Martha believed that Ingrid fell today



Figure 4.16. the book that shocked Mary’s title (sensical and nonsensical)



Figure 4.17. John gave the painting that Mary loved to Bill vs. John gave Bill the painting that Mary loved



Figure 4.18. that that two plus two equals four surprised Jack astonished Ingrid



Figure 4.19. Ingrid was astonished that Jack was surprised that two plus two equals four



Figure 4.20. Complexity profiles for active and passive nested sentential subjects
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(43) a. ?John gave the painting that Mary loved to Bill.
b. John gave Bill the painting that Mary loved.

The analyses are given in Fig. 4.17. The complexities are thus:

(44) 4 a
3 a a b
2 ab ab a b b
1 ab b b a a
0 b a
a. John gave the painting that Mary loved to Bill
b. John gave Bill the painting that Mary loved

4.5.5 Preference for passivization of nested sentential subjects

A final dramatic example of unacceptability is provided by the following:

(45) a. That two plus two equals four surprised Jack.
b. ?That that two plus two equals four surprised Jack astonished Ingrid.
c. ??That that that two plus two equals four surprised Jack astonished

Ingrid bothered Frank.

The passive paraphrases, however, seem more or less equally acceptable:

(46) a. Jack was surprised that two plus two equals four.
b. Ingrid was astonished that Jack was surprised that two plus two

equals four.
c. Frank was bothered that Ingrid was astonished that Jack was sur-

prised that two plus two equals four.

This is puzzling, since just about any theory of processing would expect pas-
sives to be no more acceptable than actives. For example, Clark and Clark
(1977: 144) cite such examples as reasons for the abandonment of the theory of
derivational complexity in transformational grammar.

Let us consider the predictions of our theory. In Fig. 4.18 we give the analysis
of (45b) and in Fig. 4.19 that of (46b). It is very interesting to observe that in
accordance with the actual acceptabilities the complexity profile of the latter
is in general lower even though the analysis has more than twice the total
number of links; the complexity profiles are given in Fig. 4.20.



Part II
Logical Categorial Grammar



The Lambek calculus is multiplicative non-commutative intuitionistic linear
logic without empty antecedents. As a logic it enjoys good properties, but its
range of linguistic application is restricted. Therefore we want to extend the
calculus whilst keeping its good properties. To increase the range of applica-
tion of categorial grammar, it is natural to enrich the Lambek calculus with
other non-commutative intuitionistic linear connectives. We call the result of
so doing logical categorial grammar.

In Chapter 5 we consider non-normal modalities (bracket operators) for
islands and extraction, including parasitic extraction. Chapter 6 presents
discontinuous Lambek calculus, containing discontinuity operators for syn-
tax/semantics mismatch. Chapter 7 presents additives for polymorphism.
Chapter 8 presents normal modalities for intensionality.
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The following examples illustrate subject relativization, right-peripheral
object relativization, and medial relativization, respectively:

(1) a. man who loves Mary
b. woman who John loves
c. man who Mary saw today

Relativization exemplifies extraction non-adjacency in grammar. The Lam-
bek calculus can handle cases of the kind in (1a) by assigning the relative
pronoun type (CN\CN)/(N\S) and cases of the kind in (1b) by assigning
the relative pronoun type (CN\CN)/(S/N). However, cases of the kind in
(1c) resist characterization in the unextended Lambek calculus. Still more
complex is parasitic extraction as follows, where the filler binds more than
one gap:

(2) paper which I filed without reading

Morrill (1992), Moortgat (1995), and Fadda and Morrill (2005) define what
we call here bracket operators for Lambek calculus.1 These are kinds of non-
normal modalities.2 In this chapter we present, in terms of bracket operators,
a general account of extraction as exemplified by relativization.

In Section 5.1 we outline the theory of bracket operators and in Section 5.2
we describe a first application of basic bracket operators, namely to defining

1 Moortgat (1995) corrects Morrill (1992) which erroneously invoked antibracket configurations for
[ ]−1 L .

2 ‘Non-normal’ because they do not obey distribution: �(A → B)⇒�A → �B .
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island constraints. In Section 5.3 we describe how a generalization to structural
bracket operators enables medial extraction. In Section 5.4 we discuss how a
grammar may be attuned to assign degrees of grammaticality in relation to
island constraints. In Section 5.5 we extend our account of relativization to
include parasitic extraction.

5.1 Theory

Let us extend the definition of types F with two unary modalities 〈 〉
(‘bracket’) and [ ]−1 (‘antibracket’); in terms of a set P of atomic type
formulas:

(3) F ::= P | F•F | F\F | F/F | 〈 〉F | [ ]−1F

We allow ourselves to omit parentheses under the convention that unary
connectives bind more tightly than binary connectives. Partially ordered alge-
braic models for the Lambek calculus were proposed in Došen (1985), which
proves completeness of L for partially ordered semigroups. Buszkowski (1986)
provides a simplified proof of the same result, (and a strengthening to the case
of plain semigroups). Here we shall consider such syntactical models for the
Lambek calculus with brackets.

(4) Definition (Partially ordered bracket semigroup). A partially ordered
bracket semigroup (p.o. b-semigroup) is a structure (L , +, b;≤) of arity
(2, 1; 2) such that:

� (L , +) is a semigroup, i.e.
s 1+(s 2+s 3) = (s 1+s 2)+s 3 associativity

� (L ;≤) is a partial order, i.e.

s ≤ s reflexivity

s 1 ≤ s 3 if s 1 ≤ s 2 and s 2 ≤ s 3 transitivity

s 1 = s 2 if s 1 ≤ s 2 and s 2 ≤ s 1 antisymmetry

� ≤ is compatible with + and b, i.e.
s 1+s 3 ≤ s 2+s 4 if s 1 ≤ s 2 and s 3 ≤ s 4

b(s 1) ≤ b(s 2) if s 1 ≤ s 2

We say that a subset D of the domain L is downward closed if and only if for
all s , s ′ ∈ L , if s ∈ D & s ′ ≤ s then s ′ ∈ D.

An interpretation comprises a p.o. b-semigroup (L , +, b;≤) and a valuation
F mapping from P into ≤-downward closed subsets of L . Then the value
[[A]]F induced for each type A is:
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(5) [[P ]]F = F (P ) for atomic P

[[A•B]]F = {s 3| ∃s 1 ∈ [[A]]F , s 2 ∈ [[B]]F , s 3 ≤ s 1+s 2}
[[A\C ]]F = {s 2| ∀s 1 ∈ [[A]]F , s 1+s 2 ∈ [[C ]]F }
[[C/B]]F = {s 1| ∀s 2 ∈ [[B]]F , s 1+s 2 ∈ [[C ]]F }
[[〈 〉A]]F = {s 2| ∃s 1 ∈ [[A]]F , s 2 ≤ b(s 1)}

[[[ ]−1 B]]F = {s 1| b(s 1) ∈ [[B]]F }
Let us extend the definition of antecedent configurations O to include
brackets:

(6) O ::= F | O, O | [O]

Then the Gentzen sequent calculus of the Lambek calculus with brackets
Lb is as shown in Fig. 5.1. Moortgat (1995) proves that this calculus enjoys
Cut-elimination. Just as the structure (F, \, •, /;⇒) of arity (2, 2, 2; 2) forms
a residuated triple (see Appendix A), the structure (F, 〈 〉, [ ]−1;⇒) of arity
(1, 1; 2) forms a residuated pair since it satifies the residuation property
A⇒ 〈 〉B if and only if [ ]−1 A⇒ B , or equivalently:

(7) 〈 〉[ ]−1 A⇒ A⇒ [ ]−1〈 〉A

id
A⇒ A

√⇒ A ƒ(A)⇒ B
Cut

ƒ(√)⇒ B

√⇒ A ƒ(C )⇒ D
\L

ƒ(√, A\C )⇒ D

A, √⇒ C
\R

√⇒ A\C

√⇒ B ƒ(C )⇒ D
/L

ƒ(C/B, √)⇒ D

√, B ⇒ C
/R

√⇒ C/B

ƒ(A, B)⇒ D
•L

ƒ(A•B)⇒ D

√⇒ A ƒ⇒ B
•R

√, ƒ⇒ A•B

ƒ([A])⇒ B
〈 〉L

ƒ(〈 〉A)⇒ B

√⇒ A
〈 〉R

[√]⇒ 〈 〉A
ƒ(A)⇒ B

[ ]−1 L
ƒ([[ ]−1 A])⇒ B

[√]⇒ A
[ ]−1 R

√⇒ [ ]−1 A

Figure 5.1. The Lambek calculus with brackets Lb
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Exercise 5.1. Prove the residuation triple and residuation pair laws in the
sequent calculus of Lb.

Kurtonina (1995) (cf. Morrill 1992) proves that the following translation
faithfully embeds the non-associative Lambek calculus NL of Lambek (1961)
into the Lambek calculus with brackets Lb, i.e. 	NL √⇒ A if and only if
	Lb |√| ⇒ |A|:
(8) |[√, ƒ]| = [|√|, |ƒ|]

|A\B | = |A|\[ ]−1|B |
|B/A| = [ ]−1|B |/|A|
|A•B | = 〈 〉(|A|•|B |)

The sequent calculus is sound with respect to the plain (and partially ordered)
syntactical models. Fadda and Morrill (2005) prove that it is complete with
respect to the partially ordered models. So far as we know, it is an open
question whether it is complete with respect to the plain syntactical models.

5.2 Application

Left extraction such as interrogativization, topicalization, and relativization is
unbounded in distance:

(9) a. man who Mary loves
b. man who John knows that Mary loves
c. man who Bill knows that John knows that Mary loves
d. man who John knows that Bill knows that John knows that Mary

loves . . .

The relative pronoun type (CN\CN)/(S/N) admits the unboundedness of
relativization.

Exercise 5.2. Derive (9b).

5.2.1 Island brackets

However, although left extraction such as relativization can take place over an
unboundedly long distance, it is not unconstrained. Certain constituents are
islands to extraction (Ross, 1967). For example, adverbial phrases (Adverbial
Island Constraint), coordinate structures (Coordinate Structure Constraint),
and relative clauses themselves (wh-Island Constraint) are islands:

(10) a. ?the paper thati John slept [without reading ei ]
b. ??the man thati [John laughed and Mary likes ei ]
c. ??the man thati Bill met the woman [who loves ei ]
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Adverbial phrases are referred to as weak islands, since extraction from them
is semi-acceptable. Coordinate structures and relative clauses are referred to
as strong islands, since extraction from them is distinctly still less accept-
able. Morrill (1992) proposed projecting islands using bracket operators. For
example:

(11) without : ((N\S)\(N\S))/〈 〉(N\S)
and : (S\[ ]−1[ ]−1 S)/S
who : (CN\CN)/〈 〉〈 〉(N\S)

Here, we encode weak islandhood and strong islandhood by projecting single
bracketing and double bracketing respectively. Thus, for example, to be gen-
erated, John walks without reading Ulysses must have the (single) bracketing as
follows:

(12) N ⇒ N N\S ⇒ N\S
/L

(N\S)/N, N ⇒ N\S
〈 〉R

[(N\S)/N, N]⇒ 〈 〉(N\S)

N\S ⇒ N\S

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
\L

N, N\S, (N\S)\(N\S)⇒ S
/L

N
John,

N\S

walks,
((N\S)\(N\S))/〈 〉(N\S)

without , [
(N\S)/N

reading,
N

Ulysses]⇒ S

But then (10a) is not generated because the island bracketing blocks the
associativity by which the hypothetical gap subtype projected by the relative
pronoun would have to position itself to be able to satisfy the valency within
the adverbial phrase; where R abbreviates CN\CN:

(13) N, N\S, ((N\S)\(N\S))/〈 〉(N\S), [(N\S)/N, N]⇒ S
*

N, N\S, ((N\S)\(N\S))/〈 〉(N\S), [(N\S)/N], N ⇒ S
/R

N, N\S, ((N\S)\(N\S))/〈 〉(N\S), [(N\S)/N]⇒ S/N R ⇒ R
/L

R/(S/N)

that ,
N

John,
N\S

slept,
((N\S)\(N\S))/〈 〉(N\S)

without , [
(N\S)/N

reading]⇒ R

5.3 Medial extraction

In the 1990s there was much interest within categorial grammar in the recourse
of ‘multimodality’ (Moortgat, 1997; Oehrle, 1999; Morrill, 1994). This tech-
nique consists in multiplying residuated families of (unary or binary) con-
nectives, perhaps with varying structural rules. In this section we adopt this
strategy in relation to bracket operators, obtaining a variant structural bracket
operator for medial extraction.
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The relative pronoun type (CN\CN)/(S/N) fails to generate non-
peripheral (medial) extraction:

(14) the man whoi John saw ei today

(15) N, (N\S)/N, N, (N\S)\(N\S)⇒ S
*

N, (N\S)/N, (N\S)\(N\S), N ⇒ S
/R

N, (N\S)/N, (N\S)\(N\S)⇒ S/N N/CN, CN, CN\CN⇒ N
/L

N/CN, CN, (CN\CN)/(S/N), N, (N\S)/N, (N\S)\(N\S)⇒ N

To obtain medial extraction we will assume another family {〈¡〉, [¡]−1}
of bracket operators, but this time with structural properties (Moort-
gat, 1999; cf. Barry et al., 1991). We now assume types and configurations as
follows:

(16) F ::= P | F•F | F\F | F/F | 〈 〉F | [ ]−1 F | 〈¡〉F | [¡]−1 F

(17) O ::= F | O, O | [O] | [¡O]

The two families of unary operators will be interpreted by unary resid-
uation with respect to the two unary functions in a syntactical frame
(L , +, b, i ;≤) of arity (2, 1, 1; 2). The new structural bracket operator has
the logical rules of bracket operators, conditioned on its own structural
connector [¡·]:

(18) ƒ([¡ A])⇒ B
〈¡〉L

ƒ(〈¡〉A)⇒ B

√⇒ A
〈¡〉R

[¡√]⇒ 〈¡〉A

ƒ(A)⇒ B
[¡]−1 L

ƒ([¡[¡]−1 A])⇒ B

[¡√]⇒ A
[¡]−1 R

√⇒ [¡]−1 A

However, in addition we have structural rules, corresponding to the frame
condition i(s 1)+s 2 = s 2+i(s 1):

(19) ƒ([¡√1], √2)⇒ A
P ¡

ƒ(√2, [¡√1])⇒ A

ƒ(√2, [¡√1])⇒ A
P ¡

ƒ([¡√1], √2)⇒ A

We now assign the relative pronoun type (CN\CN)/(S/〈¡〉[¡]−1 N). This con-
tinues to generate peripheral extraction:

(20) the son whoi the father loves ei
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(21) N/CN, CN, (N\S)/N, N ⇒ S
[¡]−1 L

N/CN, CN, (N\S)/N, [¡[¡]−1 N]⇒ S
〈¡〉L

N/CN, CN, (N\S)/N, 〈¡〉[¡]−1 N ⇒ S
/R

N/CN, CN, (N\S)/N ⇒ S/〈¡〉[¡]−1 N N/CN, CN, CN\CN⇒ N
/L

N/CN, CN, (CN\CN)/(S/〈¡〉[¡]−1 N), N/CN, CN, (N\S)/N ⇒ S

However, it now additionally generates medial extraction as in (14):

(22) N, (N\S)/N, N, (N\S)\(N\S) ⇒ S
〈¡〉L

N, (N\S)/N, [¡[¡]−1 N], (N\S)\(N\S) ⇒ S
P ¡

N, (N\S)/N, (N\S)\(N\S), [¡[¡]−1 N] ⇒ S
〈¡〉L

N, (N\S)/N, (N\S)\(N\S), 〈¡〉[¡]−1 N ⇒ S
/R

N, (N\S)/N, (N\S)\(N\S) ⇒ S/〈¡〉[¡]−1 N N/CN, CN, CN\CN ⇒ N
/L

N/CN, CN, (CN\CN)/(S/〈¡〉[¡]−1 N), N, (N\S)/N, (N\S)\(N\S) ⇒ N

5.4 Semigrammaticality

Ordinary subjects are weak islands (Subject Condition; Chomsky, 1973) and
sentential subjects are strong islands:

(23) a. ?the man whoi [the friends of ei ] went to Paris
b. ??the man whoi [that Mary loves ei ] surprises Bill

Thus we henceforth mark ordinary subjects with single island brackets and
sentential subjects with double island brackets:

(24) went : (〈 〉N\S)/PP
surprises : (〈 〉〈 〉CP)/N

To account for the semi-acceptability of extraction from weak islands, we
assume further structural semirules:

(25) ƒ([[¡√1], √2])⇒ A
?

ƒ([¡√1], [√2])⇒ A

ƒ([√1, [¡√2]])⇒ A
?

ƒ([√1], [¡√2])⇒ A

We assume that these rules are not strictly grammatical and that their use
incurs a cost in ungrammaticality. As we are defining weak islands with single
brackets, extraction from a weak island requires one structural semirule appli-
cation, but as we are defining strong islands with double brackets, extraction



90 logical categorial grammar

from a strong island requires two structural semirule applications, hence its
greater ungrammaticality.

Extraction from within two weak islands is similarly characterized as ??-:

(26) a. ??man whoi [the fact that [the friends of ei ] slept] annoys John
b. ??man whoi [the fact that Mary left [without meeting ei ]] annoys

John

Correspondingly, (27) are characterized as ???-:

(27) a. ???man whoi [that Mary slept [without meeting ei ]] annoys John
b. ???man whoi [that [the friends of ei ] slept] annoys John

And so forth.

5.4.1 Subject extraction

The projection of island brackets on subjects predicts the *that-trace effect
(Fixed Subject Constraint; Bresnan, 1972; Chomsky and Lasnik, 1977):

(28) a. *man whoi Mary believes that ei walks
b. CN, (CN\CN)/(S/〈¡〉[¡]−1 N), [N], (〈 〉N\S)/CP, CP/S, 〈 〉N\S ⇒ N

Because the entire embedded subject is missing, there is nowhere to put the
brackets required by the subordinate verb. The structural semirules do not
help since the problem is not one of penetrating island brackets, but of not
having anywhere to place them at all.3 Hence the total ungrammaticality of
extraction of the subject of a complementized clause. On the other hand,
extraction from the subject of a complementized clause is predicted to be
semigrammatical, by one application of a structural semirule:

(29) a. ?the man whoi Mary believes that [the friends of ei ] walk
b. N/CN, CN, (CN\CN)/(S/〈¡〉[¡]−1 N), [N], (〈 〉N\S)/CP, CP/S,

[N/CN, CN, (CN\CN)/N], 〈 〉N\S ⇒ N

Extraction of the subject of an uncomplementized embedded clause is gram-
matical:

(30) the man whoi Mary believes ei walks

To license this we assume that the lexical entry of an equi raising verb is as
follows:

(31) believes : (〈 〉N\S)/(N•(〈 〉N\S)) : Îx(believe (2x 1x))

3 We do not have empty configurations, so we cannot have ‘N/CN, CN, (CN\CN)/
(S/〈¡〉[¡]−1 N), [N], (〈 〉N\S)/CP, CP/S, [Â], 〈 〉N\S ⇒ N’.
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This predicts that extraction which is from the subject of an uncomplemen-
tized embedded clause is also fully grammatical:

(32) the man whoi Mary believes the friends of ei walk

5.5 Parasitic extraction

Extraction from weak islands can become fully acceptable when accompanied
by a cobound non-island extraction:

(33) a. the man thati [the friends of ei ] admire ei

b. the paper thati John filed ei [without reading ei ]

This is known as parasitic extraction (Ross, 1967; Taraldsen, 1979; Engdahl,
1983; Sag, 1983). The term comes from the idea that the gaps in the islands are
licensed by or dependent or parasitic on the non-island host gaps. Note that in
judging (10a) we even experience the pressure of parasiticy to force a transitive
reading on the intransitive verb.

We assume here that as the term ‘parasitic’ suggests, a parasitic gap must
fall within an island:

(34) *the slave thati John sold ei to ei

To obtain parasitic extraction we further assume the following two structural
rules (cf. Morrill, 2002a):

(35) ƒ([¡[¡√]], [¡√])⇒ A
C ¡

ƒ([¡√])⇒ A

ƒ([√1, [¡√2]])⇒ A
D¡

ƒ([[√1]], [¡[¡[√2]])⇒ A

These correspond to the frame conditions i(s ) ≤ i(i(s ))+i(s ) and
b(b(s 1))+i(i(s 2)) ≤ b(s 1+i(s 2)) respectively.

For example, (33a) is then generated as shown in Fig. 5.2. From root to leaf
in our analysis, the controlled structural rule of contraction C ¡ first generates
from a host gap subconfiguration [¡[¡]−1 N] a second parasitic gap subconfigu-
ration [¡[¡[¡]−1 N]], while preserving the host gap configuration. The parasitic
gap subconfiguration permutes to the periphery of a weak island, which must
be marked by double brackets, and then the structural rule of distribution
D¡ cancels an island bracket against a structural bracket of the parasitic gap
subconfiguration and in the process distributes the remaining island bracket
over the parasitic gap subconfiguration, which has now become another host
gap subconfiguration within the island. There it may satisfy a valency (as in
Fig. 5.2), but it also may itself undergo C ¡, so we predict that one parasitic gap
can in turn be host to another:
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[N/CN, CN, (CN\CN)/N, N], (〈 〉N\S)/N, N ⇒ S
[¡]−1 L

[N/CN, CN, (CN\CN)/N, N], (〈 〉N\S)/N, [¡[¡]−1 N]⇒ S
[¡]−1 L

[N/CN, CN, (CN\CN)/N, [¡[¡]−1 N], (〈 〉N\S)/N, [¡[¡]−1 N]⇒ S
D¡

[[N/CN, CN, (CN\CN)/N]], [¡[¡[¡]−1 N]], (〈 〉N\S)/N, [¡[¡]−1 N]⇒ S
P ¡

[[N/CN, CN, (CN\CN)/N]], (〈 〉N\S)/N, [¡[¡[¡]−1 N]], [¡[¡]−1 N]⇒ S
C ¡

[[N/CN, CN, (CN\CN)/N]], (〈 〉N\S)/N, [¡[¡]−1 N]⇒ S
〈¡〉L

[[N/CN, CN, (CN\CN)/N]], (〈 〉N\S)/N, 〈¡〉[¡]−1 N ⇒ S
/R

[[N/CN, CN, (CN\CN)/N]], (〈 〉N\S)/N ⇒ S/〈¡〉[¡]−1 N R ⇒ R
/L

R/(S/〈¡〉[¡]−1 N), [[N/CN, CN, (CN\CN)/N]], (〈 〉N\S)/N ⇒ R

Figure 5.2. Sequent derivation of parasitic extraction thati [the friends of ei ]
admire ei∣∣∣∣∣∣∣

...
ƒ([A])⇒ B

〈 〉L
ƒ(〈 〉A)⇒ B

∣∣∣∣∣∣∣
ˆ

= |
...

ƒ([A])⇒ B |ˆ

∣∣∣∣∣∣∣
...

√⇒ A
〈 〉R

[√]⇒ 〈 〉A

∣∣∣∣∣∣∣
ˆ

= |
...

√⇒ A |ˆ

∣∣∣∣∣∣∣
...

ƒ(A)⇒ B
[ ]−1 L

ƒ([[ ]−1 A])⇒ B

∣∣∣∣∣∣∣
ˆ

= |
...

ƒ(A)⇒ B |ˆ

∣∣∣∣∣∣∣
...

[√]⇒ A
[ ]−1 R

√⇒ [ ]−1 A

∣∣∣∣∣∣∣
ˆ

= |
...

[√]⇒ A |ˆ

Figure 5.3. Semantic readings of the island bracket proofs

(36) a. man whoi [the fact that [the friends of ei ] admire ei ] surprises ei

b. paper thati the editor published ei [without [the author of ei ] re-
checking ei ]

c. man whoi [the fact that [the friends of ei ] admire ei [without prais-
ing ei ]] surprises ei
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∣∣∣∣∣∣∣
...

ƒ([¡ A])⇒ B
〈¡〉L

ƒ(〈¡〉A)⇒ B

∣∣∣∣∣∣∣
ˆ

= |
...

ƒ([¡ A])⇒ B |ˆ

∣∣∣∣∣∣∣∣
...

√⇒ A
〈¡〉R

[¡√]⇒ 〈¡〉A

∣∣∣∣∣∣∣∣
ˆ

= |
...

√⇒ A |ˆ

∣∣∣∣∣∣∣∣
...

ƒ(A)⇒ B
[¡]−1 L

ƒ([¡[¡]−1 A])⇒ B

∣∣∣∣∣∣∣∣
ˆ

= |
...

ƒ(A)⇒ B |ˆ

∣∣∣∣∣∣∣
...

[¡√]⇒ A
[¡]−1 R

√⇒ [¡]−1 A

∣∣∣∣∣∣∣
ˆ

= |
...

[¡√]⇒ A |ˆ

∣∣∣∣∣∣∣∣
...

ƒ([¡√1], √2)⇒ A
P ¡

ƒ(√2, [¡√1])⇒ A

∣∣∣∣∣∣∣∣
ˆ(Ï, Ì)

= |
...

ƒ([¡√1], √2)⇒ A |ˆ(Ì,Ï)

∣∣∣∣∣∣∣∣
...

ƒ(√2, [¡√1])⇒ A
P ¡

ƒ([¡√1], √2)⇒ A

∣∣∣∣∣∣∣∣
ˆ(Ï, Ì)

= |
...

ƒ(√2, [¡√1])⇒ A |ˆ(Ì,Ï)

∣∣∣∣∣∣∣∣
...

ƒ([¡[¡√]], ¡[√])⇒ A
C ¡

ƒ([¡√])⇒ A

∣∣∣∣∣∣∣∣
ˆ(Ï)

= |
...

ƒ([¡[¡√]], ¡[√])⇒ A |ˆ(Ï,Ï)

∣∣∣∣∣∣∣∣
...

ƒ([√1, [¡√2]])⇒ A
D¡

ƒ([[√1]], [¡[¡√2]])⇒ A

∣∣∣∣∣∣∣∣
ˆ

= |
...

ƒ([√1, [¡√2]])⇒ A |ˆ

Figure 5.4. Semantic readings of the structural bracket proofs
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However, because of the resource-consciousness of the cancellation of the
structural rule of distribution D¡, according to our account successive par-
asitic gaps must each be within their own island, and cannot be within the
same island. This prediction appears to be correct:

(37) *slave whoi [the fact that John sold ei to ei ] surprised ei

We predict that strong islands do not allow parasitic gaps:

(38) ?man whoi [that Mary likes ei ] surprises ei

Postal (1993, (8a)) has an example of cobound traces where there does not
appear to be an island:

(39) man whoi Mary convinced ei that John wanted to visit ei

For such an example, we might assume an additional licensing lexical entry
convinced : [ ]−1((N\S)/CP)/N.4

5.5.1 Semantics

We assume that the bracket operators are semantically transparent, thus:

(40) T(〈 〉A) = T([ ]−1 A) = T(〈¡〉A) = T([¡]−1 A) = T(A)

We give the semantic readings of the bracket operators in Figs. 5.3 and 5.4.
For example, where – is the derivation of Fig. 5.2:

(41) |–|x that,x the,x friends,xof,xadmire = (x that Îx((xadmire x) (x the ((xof x) x friends))))

Substituting in lexical semantics and evaluating:

(42) (ÎxÎyÎz[(y z) ∧ (x z)] Îx((admire x) (the (of x) friends))) =
ÎyÎz[(y z) ∧ (admire z (the (of z) friends))]

4 Thanks to Tom Roeper (p.c.) for suggesting for this case that ‘although there need not be an island,
there could be one’.
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In this chapter we present a calculus for discontinuity, (˘-)DL: discontinuous
Lambek calculus. The calculus allows an unbounded number of points of dis-
continuity (hence the prefix ˘-) and includes both deterministic and nonde-
terministic discontinuous connectives. We believe that it constitutes a general
and natural extension of the Lambek calculus L. Like the Lambek calculus
it has a sequent calculus which is a sequence logic without structural rules,
and it enjoys such properties as Cut-elimination, the subformula property and
decidability.

By n-DL we refer to ˘-DL restricted to at most n points of discontinuity.
0-DL is the original Lambek calculus L. Of particular interest is 1-DL in
which the unicity of the point of discontinuity means that the deterministic
and nondeterministic discontinuous connectives coincide. We illustrate 1-DL
with linguistic applications to medial extraction, discontinuous idioms, par-
entheticals, gapping, VP ellipsis, reflexivization, quantification, pied-piping,
appositive relativization, comparative subdeletion, null operators, and right
extraposition.1 We further illustrate deterministic 2-DL with linguistic appli-
cation to anaphora, and nondeterministic 2-DL with linguistic application to
particle shift and complement alternation.

6.1 Introduction

A critical issue in natural grammar is ‘discontinuity’: syntax–semantics mis-
match. Lambek categorial grammar is continuous, as is reflected in the pla-
narity of its proof nets. Our aim here is to give a technically natural and

1 For cross-serial dependencies see Morrill et al. (2009).
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empirically wide-ranging adaptation of the continuous model of Lambek
categorial grammar to discontinuity.

Ojeda (2006) identifies two early approaches to discontinuity as being ‘per-
mutation’ (Chomsky, 1955: 405)2 and ‘wrapping’ (Yngve 1960: 448). We have
considered permutation via structural modalities in the previous chapter. In
this chapter we develop the wrapping approach to discontinuity in logical
categorial grammar. In Section 6.2 we present the theory of the discontinuous
Lambek calculus, and hypersequent calculus and labelled natural deduction
for DL. In Section 6.3 we present linguistic applications of discontinuous
Lambek calculus.

6.2 Theory of discontinuous Lambek calculus

The key to our treatment of discontinuity is the notion of a ‘separator’ (Mor-
rill, 2002b):

(1) Definition (graded syntactical algebra). A graded syntactical algebra is a
free algebra (L , +, 0, 1) of arity (2, 0, 0) such that (L , +, 0) is a monoid
and 1 is a prime. I.e. L is a set, 0, 1 ∈ L and + is a binary operation on L
such that for all s 1, s 2, s 3, s ∈ L ,

s 1+(s 2+s 3) = (s 1+s 2)+s 3 associativity
0+s = s = s +0

The distinguished constant 1 is called a separator.

(2) Definition (sorts). The sorts of discontinuous Lambek calculus are the
naturals 0, 1, . . . . The sort Û(s ) of an element s of a graded syntactical
algebra (L , +, 0, 1) is defined by the morphism of monoids Û to the
additive monoid of naturals defined thus:

Û(1) = 1
Û(a) = 0 for a prime a 
= 1

Û(s 1+s 2) = Û(s 1) + Û(s 2)

That is, the sort of a syntactical element is simply the number of separators it
contains; we require the separator 1 to be a prime and the graded syntactical
algebra to be free in order to ensure the well-definedness of this definition by
induction on the sort of syntactical objects. The fact that there is a homomor-
phism from a graded syntactical algebra to the additive monoid of naturals
means that a graded syntactical algebra is an instance of what is known as a
graded algebra, in particular a graded monoid.

2 Chomsky (1965) revoked permutation in favour of copying and deletion.
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(3) Definition (sorts). The sorts of discontinuous Lambek calculus are the
naturals 0, 1, . . ..

(4) Definition (sort domains). Where (L , +, 0, 1) is a graded syntactical
algebra, the sort domains L i of sort i of discontinuous Lambek calculus
are defined as follows:

L i = {s ∈ L |Û(s ) = i} i ≥ 0

(5) Definition (discontinuous syntactical structure). The discontinuous syn-
tactical structure defined by a graded syntactical algebra (L , +, 0, 1) is the
˘-sorted structure

({Li }i∈N, {U k}k∈Z+, +, {Wk}k∈Z+ ; U, W)

where:

operation or relation is such that

U k : L i+1 → L i
for all s ∈ L , U k(s ) is the result of erasing the
k-th separator from s

+ : L i × L j → L i+ j as in the graded syntactical algebra

Wk : L i+1 × L j → L i+ j
for all s , t ∈ L , Wk(s , t) is the result of replac-
ing the k-th separator in s by t

U : L i+1 × L i
it is the smallest relation such that for all
s 1, s 2 ∈ L , U (s 1+1+s 2, s 1+s 2)

W : L i+1 × L j × L i+ j
it is the smallest relation such that for all
s 1, s 2, s 3 ∈ L , W(s 1+1+s 3, s 2, s 1+s 2+s 3)

The types of discontinuous Lambek calculus are to be interpreted as subsets
of L according to a sorting discipline: a type of sort i will be interpreted as a
subset of L i . The connectives and their syntactical interpretations are shown
in Fig. 6.1.3 Note the constraints ensuring that no complex type contains the
empty element 0.4

The functionalities and relationalities of the operations and relations with
respect to which the connectives are defined fix the pattern between the types
and the sorts. Sets Fi of types of sort i for each sort i are defined on the
basis of sets Pi of primitive types of sort i for each sort i . Fig. 6.2 gives
both the grammar defining the sorted types by mutual recursion, and the
homomorphic syntactic sort map S sending types to their sorts. The syntactic

3 Modulo sorting, {ˇk , ˆk }, k > 0 and {ˇ, ˆ} are residuated pairs and {\, •, /}, {↓k,�k ,

↑k}, k > 0, and {↓,�,↑} are residuated triples.
4 A version of discontinuous type logical connectives was first proposed in Moortgat (1988). Ver-

sions of the unary operators ˆ (‘bridge’) and ˇ (‘split’) were introduced in Morrill and Merenciano
(1996). Generalized binary discontinuous connectives were given in Morrill (2002b) and Morrill et al.
(2007).
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[[ˆk A]] = {U k(s ) 
= 0| s ∈ [[A]]} k > 0
deterministic bridge

[[ˇk B]] = {s |U k(s ) ∈ [[B]]} k > 0
deterministic split

[[ˆA]] = {s 
= 0| ∃s 1 ∈ [[A]], U (s 1, s )}
nondeterministic bridge

[[ˇB]] = {s 1| ∀s , U (s 1, s ) ⇒ s ∈ [[B]]}
nondeterministic split

[[A•B]] = {s 1+s 2| s 1 ∈ [[A]] & s 2 ∈ [[B]]}
(continuous) product

[[A\C ]] = {s 2 
= 0| ∀s 1 ∈ [[A]], s 1+s 2 ∈ [[C ]]}
under

[[C/B]] = {s 1 
= 0| ∀s 2 ∈ [[B]], s 1+s 2 ∈ [[C ]]}
over

[[A�k B]] = {Wk(s 1, s 2)| s 1 ∈ [[A]] & s 2 ∈ [[B]]} k > 0
deterministic discontinuous product

[[A↓kC ]] = {s 2 
= 0| ∀s 1 ∈ [[A]], Wk(s 1, s 2) ∈ [[C ]]} k > 0
deterministic infix

[[C↑k B]] = {s 1| ∀s 2 ∈ [[B]], Wk(s 1, s 2) ∈ [[C ]]} k > 0
deterministic extract

[[A�B]] = {s | ∃s 1 ∈ [[A]] & ∃s 2 ∈ [[B]], W(s 1, s 2, s )}
nondeterministic discontinuous product

[[A↓C ]] = {s 2 
= 0| ∀s 1 ∈ [[A]],∀s , W(s 1, s 2, s ) ⇒ s ∈ [[C ]]}
nondeterministic infix

[[C↑B]] = {s 1| ∀s 2 ∈ [[B]],∀s , W(s 1, s 2, s ) ⇒ s ∈ [[C ]]}
nondeterministic extract

Figure 6.1. Syntactical interpretation of DL types

sort map is to syntax what the semantic type map is to semantics: both
homomorphisms mapping syntactic types to the datatypes of the respective
components of their inhabiting signs in the dimensions of language: syntactic
sort for form/signifier and semantic type for meaning/signified.

6.2.1 Hypersequent calculus for DL

We define the components of a syntactical object as its maximal sub-
parts not containing 1. Morrill (1997) introduced sequent calculus for
(sorted) discontinuity in which a single discontinuous type has multiple
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Fi ::= Pi S(A) = i for A ∈ Pi

Fi ::= ˆk Fi+1 S(ˆk A) = S(A)− 1 1 ≤ k ≤ i + 1
Fi+1 ::= ˇk Fi S(ˇk A) = S(A) + 1 1 ≤ k ≤ i + 1

Fi ::= ˆFi+1 S(ˆA) = S(A)− 1
Fi+1 ::= ˇFi S(ˇA) = S(A) + 1

Fi+ j ::= Fi•F j S(A•B) = S(A) + S(B)
F j ::= Fi\Fi+ j S(A\C ) = S(C )− S(A)
Fi ::= Fi+ j /F j S(C/B) = S(C )− S(B)

Fi+ j ::= Fi+1�k F j S(A�k B) = S(A) + S(B)− 1 1 ≤ k ≤ i + 1
F j ::= Fi+1↓k Fi+ j S(A↓k C ) = S(C ) + 1− S(A) 1 ≤ k ≤ i + 1

Fi+1 ::= Fi+ j↑k F j S(C↑k B) = S(C ) + 1− S(B) 1 ≤ k ≤ i + 1

Fi+ j ::= Fi+1�F j S(A�B) = S(A) + S(B)− 1
F j ::= Fi+1↓Fi+ j S(A↓C ) = S(C ) + 1− S(A)

Fi+1 ::= Fi+ j↑F j S(C↑B) = S(C ) + 1− S(B)

Figure 6.2. Sorted DL types and syntactic sort map for DL

manifestations at the loci of its expressions’ components, punctuated by
surds. This is called ‘hypersequent calculus’ in the appendix of Morrill (2003),
although in a usage of the term hypersequent calculus distinct from that
of Avron (1987). The spirit is to maintain everything in evaluated/spelt-out
linearized form.

The surd notation is meant to be suggestive of the (commutative) numeric
law:

(6) i
√

A× · · · × i
√

A︸ ︷︷ ︸ = A

i times

For us, non-commutatively:5

5 Since elements of graded syntactical algebras are in bijection with tuples, it could also be rea-
sonable to punctuate the components of discontinuous types in hypersequents with projections i A.
However, in logical categorial grammar with bracket operators for domains (Chapter 5), it seems that
eventually we will need to allow separators within bracketed domains (e.g. s 1+b(s 2+1+s 3)+s 4, e.g. for
quantifier phrases which outscope wh-islands). In this case, ‘components’ would not be projective since
they would not always correspond to elements of the (bracketed graded) syntactical algebra. It seems
we will need surded subparts of configurations which are not well-formed terms of the configuration
algebra and do not denote well-formed syntactical objects, but only ‘parts’ of them; for example,
containing the left boundary of a unary operation of bracketing, but not the right boundary. And
sorts themselves would seem to have to be extended to say bracketed sequences of 1’s to control for
when a separator is or is not within a bracketed domain and thus is not or is available to some mode
of discontinuity. Therefore we prefer to keep the surd notation, which does not seem to imply as much
as would a projective notation that there will always be projectivity, cf. that

√−1 is a number which is
imaginary although not a number which is real: in the complex number system a general nth degree
equation has exactly n roots; for us, a syntactical object of sort i has i + 1 components. It seems that for
brackets, which can perhaps be seen as a kind of negation, we could need a noncommutative monoidal
analogue of the complex numbers defining roots of negative numbers.
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(7) 0
√

A•{1} · · · {1}• S(A)
√

A = A

(8) Definition (figures, configurations and hypersequents of hypersequent cal-
culus). In hypersequent calculus the figures Qi of sort i for each sort i are
defined as follows ([] is our metalinguistic separator):

Q0 ::= A for S(A) = 0
QS(A) ::= 0

√
A, [], 1

√
A, . . . ,

S(A)−1
√

A, [], S(A)
√

A for S(A) > 0

By the vectorial notation
→
A we mean the figure of sorted type A, i.e.

→
A = d f.

{
A if S(A) = 0
0
√

A, [], 1
√

A, . . . ,
S(A)−1
√

A, [], S(A)
√

A if S(A) > 0

The configurations Oi of sort i for each sort i are defined unambiguously
by mutual recursion as follows, where À is the empty string:

O0 ::= À
Oi ::= A, Oi for S(A) = 0

Oi+1 ::= [], Oi

O” k=0
S(A) j k

::= 0
√

A, O j 0,
1
√

A, . . . ,
S(A)−1
√

A, O j S(A)−1 ,
S(A)
√

A, O j S(A)

for S(A) > 0

Note that figures are a particular case of configurations. Not every
substring of a configuration is a (well-formed) configuration because
a configuration must contain all the segments of discontinuous types.
We define the components of a configuration as its maximal substrings
not containing the metalinguistic separator [] (components indeed are
correct configurations).

The hypersequents ”i of sort i for each sort i are defined as follows:

”0 ::= O0 − {À} ⇒ Q0

”i ::= Oi ⇒ Qi i ≥ 0

Oi is called the antecedent configuration and Qi is called the succedent
figure. Note that we do not have empty antecedents in hypersequents.

Observe that the components of discontinuous types are well-nested in
configurations, that is that there are no crossing discontinuities, so that in con-
figurations the enumeration of components is sufficient to define their depen-
dencies. This corresponds to the fact that under wrapping, the infix is always
kept intact within the circumfix. With a ‘shuffle’ discontinuous operation this
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would no longer be true, and components which belong together would need
to be coindexed in some way, as in Morrill (2003).

(9) Definition (syntactical interpretation of configurations and validity of
sequents in hypersequent calculus). In hypersequent calculus we extend
the interpretation of types to include configurations, as follows:

[[À]] = {0}
[[A,√]] = {s 1+s 2| s 1 ∈ [[A]] & s 2 ∈ [[√]]}
[[[],√]] = {1+s | s ∈ [[√]]}

[[ 0
√

A, √0, . . . , √S(A)−1,
S(A)
√

A, √S(A)]] = {s 0+t0+ · · ·+t S(A)−1+s S(A)+t S(A)|
s 0+1+ · · ·+1+s S(A) ∈ [[A]]

& t j ∈ [[√ j ]], 0 ≤ j ≤ S(A)}
A hypersequent √⇒ X is valid iff in every interpretation, [[√]] ⊆ [[X]].

The hypersequent calculus for DL is given in Figs. 6.3 and 6.4. ƒ(√) means
a configuration ƒ in which in some distinguished positions the components
of √ appear in the given order and such that parts of ƒ appearing between
components of √ are well-formed configurations. ƒ|k√, k > 0 is the result of
replacing the k-th separator in ƒ by √. We require that the antecedent of the
conclusion be non-empty in ˆk R, ˆR, \R, /R,↓k R, and ↓R.

id→
A⇒→

A

√⇒→
A ƒ(

→
A)⇒→

B
Cut

ƒ(√)⇒→
B

ƒ(
→
B)⇒→

C
ˇk L

ƒ(
→̌

k B |kÀ)⇒→
C

ƒ|kÀ⇒→
B

ˇk R
ƒ⇒→̌

k B

ƒ(
→
A|kÀ)⇒→

C
ˆk L

ƒ(
→̂

k A)⇒→
C

ƒ⇒→
A

ˆk R
ƒ|kÀ⇒→̂

k A

ƒ(
→
B)⇒→

C
ˇL

ƒ(
→̌
B |kÀ)⇒→

C

ƒ|1À⇒→
B · · · ƒ|S(B)À⇒→

B
ˇR

ƒ⇒→̌
B

ƒ(
→
A|1À)⇒→

C . . . ƒ(
→
A|S(A)À)⇒→

C
ˆL

ƒ(
→̂
A)⇒→

C

ƒ⇒→
A

ˆR
ƒ|kÀ⇒→̂

A

Figure 6.3. Hypersequent calculus for DL, part I
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√⇒→
A ƒ(

→
C )⇒→

D
\L

ƒ(√,
−→
A\C )⇒→

D

→
A,√⇒→

C
\R

√⇒−→
A\C

√⇒→
B ƒ(

→
C )⇒→

D
/L

ƒ(
−→

C/B, √)⇒→
D

√,
→
B ⇒→

C
/R

√⇒ −→
C/B

ƒ(
→
A,
→
B)⇒→

D
•L

ƒ(
−→
A•B)⇒→

D

√1 ⇒→
A √2 ⇒→

B
•R

√1, √2 ⇒
−→
A•B

√⇒→
A ƒ(

→
C )⇒→

D
↓k L

ƒ(√|k
−−→
A↓k C )⇒→

D

→
A|k√⇒→

C
↓k R

√⇒ −−→
A↓k C

√⇒→
B ƒ(

→
C )⇒→

D
↑k L

ƒ(
−−→

C↑k B |k√)⇒→
D

√|k→B ⇒→
C
↑k R

√⇒ −−→
C↑k B

ƒ(
→
A|k→B)⇒→

D
�k L

ƒ(
−−→
A�k B)⇒→

D

√1 ⇒→
A √2 ⇒→

B
�k R

√1|k√2 ⇒
−−→
A�k B

√⇒→
A ƒ(

→
C )⇒→

D
↓L

ƒ(√|k
−→
A↓C )⇒→

D

→
A|1√⇒→

C . . .
→
A|S(A)√⇒→

C
↓R

√⇒ −→
A↓C

√⇒→
B ƒ(

→
C )⇒→

D
↑L

ƒ(
−→

C↑B |k√)⇒→
D

√|1→B ⇒→
C . . . √|S(√)

→
B ⇒→

C
↑R

√⇒ −→
C↑B

ƒ(
→
A|1→B)⇒→

D . . . ƒ(
→
A|S(A)

→
B)⇒→

D
�L

ƒ(
−→
A�B)⇒→

D

√1 ⇒→
A √2 ⇒→

B
�R

√1|k√2 ⇒
−→
A�B

Figure 6.4. Hypersequent calculus for DL, part II

Observe that the interpretation of our distinguished occurrence notation
is such that the rules for continuous connectives in hypersequent calculus
look just like those of the original Lambek calculus, but with the vectorial
notation on the active types. Observe also that the rules for the deterministic
discontinuous connectives in hypersequent calculus look just like the rules
for the continuous connectives, but with metalinguistic wrapping ‘|’ instead
of metalinguistic concatenation ‘,’. We consider that these symmetries give
some of the substance to our claim that discontinuous Lambek calculus is a
natural generalization of (continuous) Lambek calculus. But unlike the case
of deterministic discontinuity, the rules for nondeterministic discontinuity
no longer follow exactly the same pattern as those for continuity because
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nondeterministic wrapping is no longer functional but only relational. There
are an infinite number of rule schemata in the calculus since the number of
premises is unbounded in ↓R, ↑R, and �L , although every instance is finite,
and (Cut-free) only a finite number of instances can apply in derivations from
a given (finite) lexicon.

(10) Proposition (soundness of DL).
In DL, every theorem is valid.

Proof. By induction on the length of proofs. �

(11) Theorem (Cut-elimination for DL).
In DL, every theorem has a Cut-free hypersequent proof.

Proof. See the appendix of Morrill et al. (2008). �

(12) Corollary (subformula property for DL).
In DL, every theorem has a hypersequent proof containing only
its subformulas.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion (side formulas) or are the immediate subtypes of
the active formula, and Cut itself is eliminable. �

(13) Corollary (decidability of DL).
In DL, it is decidable whether a hypersequent is a theorem.

Proof. By backward-chaining in the finite Cut-free hypersequent search
space. �

The question of completeness of DL, that is whether every valid hypersequent
is a theorem, remains open. The question of the generative power of DL
also remains open. Valentín (2006) observes that 1-DL can generate the non-
context free but mildly context sensitive language anbnc n.

The semantic type map T for DL is given in Fig. 6.5. The unary connectives
are interpreted as semantically inert. The semantic type map sends derivations
into intuitionistic proofs so the usual Curry–Howard categorial type-logical
semantics comes for free.

M. Moortgat has placed much emphasis on the possibility of interpreting
type-logical connectives relationally (e.g. Moortgat 1997), as we do here for the
nondeterministic discontinuity operators. Such models can be rather austere,
as van Benthem (2005) puts it; being more general than functional models
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T(ˇk B) = T(B)

T(ˆk A) = T(A)

T(ˇB) = T(B)

T(ˆA) = T(A)

T(A\C ) = T(A) → T(C )

T(C/B) = T(B) → T(C )

T(A•B) = T(A)&T(B)

T(A↓kC ) = T(A) → T(C )

T(C↑k B) = T(B) → T(C )

T(A�k B) = T(A)&T(B)

T(A↓C ) = T(A) → T(C )

T(C↑B) = T(B) → T(C )

T(A�B) = T(A)&T(B)

Figure 6.5. Semantic type map for DL

they are less contentful ontologically: a scientific theory should make the
strongest claims possible which are not yet refuted. But in the present case we
think the nondeterministic wrapping relational interpretation of discontinuity
operators is motivated by its applicability to particle shift and complement
alternation (see later), and perhaps to other phenomena of semi-free word
order. Reape (1993) appears to have been the first to propose what is (in our
terms) a nondeterministic mode of discontinuous syntactical composition (a
kind of shuffle, for the German Mittelfeld), in the alternative categorial-like
approach of Head-driven Phrase Structure Grammar.6

6.2.2 Labelled natural deduction for DL

We can present type-logical calculi in a labelled deductive system (LDS) of
natural deduction in which syntactical terms · and semantic terms ˆ label
types A thus: · : A : ˆ; see Figs. 6.6, 6.7, and 6.8. As in the hypersequent
calculus, syntactic terms are kept in evaluated/spelt-out forms with atoms only
of sort 0. The vectorial notation

→
a means a0+1+a1+ · · ·+ai−1+1+ai where i

is the sort of a ; ·|k‚, k > 0 is the result of replacing the k-th separator in ·

by ‚.

6 The extension of the present proposals to some such shuffle is problematic in that the sort of the
output of the shuffle might not be deterministically fixed by the sorts of its inputs; e.g. the shuffles of
s 1+1+s 2+1+s 3 and t1+1+t2 could include s 1+t1+1+t2+s 2+1+s 3 and s 1+1+s 2+t1+1+t2+s 3 of sort
2, as well as s 1+t1+s 2+t2+s 3 of sort 0. Perhaps the ‘cards’ of the shuffle should not be divided by
separators, but just be the factors of continuous (bracketed) strings.
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···
· : ˇk B : ˆ

E ˇk

·|k 0 : B : ˆ

···
·|k 0 : B : ˆ

I ˇk

· : ˇk B : ˆ

···
‚ : ˆk A : ˆ

→
a : A : xi

···
„(
→
a|k 0) : C : ˜(x)

E ˆk i

„(‚) : C : ˜(ˆ)

···
· : A : ˆ

I ˆk

·|k 0 : ˆk A : ˆ

···
· : ˇB : ˆ

E ˇ
·|k 0 : B : ˆ

···
·|10 : B : ˆ · · ·

···
·|S(B)0 : B : ˆ

I ˇ
· : ˇB : ˆ

···
‚ : ˆA : ˆ

→
a : A : xi

···
„(
→
a|10) : C : ˜(x) · · ·

→
a : A : xi

···
„(
→
a|S(A)0) : C : ˜(x)

E ˆi

„(‚) : C : ˜(ˆ)

···
· : A : ˆ

I ˆ
·|k 0 : ˆA : ˆ

Figure 6.6. Labelled natural deduction for DL, part I

6.3 Applications of discontinuous Lambek calculus

6.3.1 Linguistic applications of BDLC

By Basic discontinuous Lambek calculus BDLC we mean DL in which the
discontinuous syntactical structure is restricted to just + : L 0 × L 0 → L 0 and
W : L 1 × L 0 → L 0. Therefore the only discontinuous connectives it contains
are sort non-polymorphic operators which we notate ↓, �, and ↑. In this
section we list accounts of linguistic phenomena falling within the scope of
this minimal discontinuity calculus.

6.3.1.1 Discontinuous idioms Idioms are complex expressions which have a
meaning not compositionally attributable to the meanings of their parts (e.g.
red herring). In grammar delivering logical semantics, they must be listed in
the lexicon, because there is no other place in which to specify their mean-
ing. In discontinuous idioms, the idiomatic material is interpolated by non-
idiomatic dependents, for example:

(14) Mary gave John/the man/. . . the cold shoulder.

Let there be the following lexical assignment:

(15) gave+1+the+cold+shoulder : shun : (N\S)↑N
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···
· : A : ˆ

···
„ : A\C : ˜

E \
·+„ : C : (˜ ˆ)

→a : A : xi

···→a+„ : C : ˜
I\i

„ : A\C : Îx˜

···
„ : C/B : ˜

···
‚ : B : ¯

E /
„+‚ : C : (˜ ¯)

→b : B : yi

···
„+→b : C : ˜

I/i

„ : C/B : Îy˜

···
„ : A•B : ˜

→a : A : xi →b : B : yi

···
‰(→a+→b) : D : ˘(x, y)

E •i

‰(„) : D : ˘(1˜, 2˜)

···
· : A : ˆ

···
‚ : B : ¯

I•
·+‚ : A•B : (ˆ, ¯)

···
· : A : ˆ

···
„ : A↓kC : ˜

E↓k
·|k„ : C : (˜ ˆ)

→a : A : xi

···→a|k„ : C : ˜
I↓k

i

„ : A↓kC : Îx˜

···
„ : C↑k B : ˜

···
‚ : B : ¯

E↑k
„|k‚ : C : (˜ ¯)

→b : B : yi

···
„|k→b : C : ˜

I↑k
i

„ : C↑k B : Îy˜

···
„ : A�k B : ˜

→a : A : xi →b : B : yi

···
‰(→a|k→b) : D : ˘(x, y)

E�k
i

‰(„) : D : ˘(1˜, 2˜)

···
· : A : ˆ

···
‚ : B : ¯

I�k
·|k‚ : A�k B : (ˆ, ¯)

Figure 6.7. Labelled natural deduction for DL, part II

Then our example is derived as follows in the hypersequent calculus and the
labelled natural deduction calculus respectively:

(16)

N ⇒ N

N ⇒ N S ⇒ S
\L

N, N\S ⇒ S
↑L

N, 0
√

(N\S)↑N, N, 1
√

(N\S)↑N ⇒ S
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···
· : A : ˆ

···
„ : A↓C : ˜

E↓
·|k„ : C : (˜ ˆ)

→
a : A : xi

···→
a|1„ : C : ˜ · · ·

→
a : A : xi

···→
a|S(A)„ : C : ˜

I↓i

„ : A↓C : Îx˜

···
„ : C↑B : ˜

···
‚ : B : ¯

E↑
„|i ‚ : C : (˜ ¯)

→
b : B : yi

···
„|1→b : C : ˜ · · ·

→
b : B : yi

···
„|S(C )

→
b : C : ˜

I↑ i

„ : C↑B : Îy˜

···
„ : A�B : ˜

→
a : A : xi →

b : B : yi

···
‰(
→
a|1→b) : D : ˘(x, y) · · ·

→
a : A : xi →

b : B : yi

···
‰(
→
a|S(A)

→
b) : D : ˘(x, y)

E�i

‰(„) : D : ˘(1˜, 2˜)

···
· : A : ˆ

···
‚ : B : ¯

I�
·|k‚ : A�B : (ˆ, ¯)

Figure 6.8. Labelled natural deduction for DL, part III

(17)

Mary

Mary : N : m

gave . . . the cold shoulder

gave+1+the+cold+shoulder : (N\S)↑N : shun

John

John : N : j
E↑

gave+John+the+cold+shoulder : N\S : (shun j)
E \

Mary+gave+John+the+cold+shoulder : S : (shun j m)

6.3.1.2 Quantification Quantification is a classical instance of disconti-
nuity, that is of syntactic–semantic mismatch: quantifier phrases occupy
nominal positions syntactically but take sentential scope semantically, for
example:

(18) a. John gave every book to Mary.
b. ∀x[(book x) → (give m x j )]

We treat quantification by type assignments such as the following:

(19) every : ((S↑N)↓S)/CN : ÎxÎy∀z[(x z) → (y z)]

Such a composite of extraction and infixation to treat quantification was
suggested in Moortgat (1991), but he did not have a calculus ensuring that
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the extraction and infixation points would be one and the same. The first
proposals to remedy this were those of Versmissen (1991) and Solias (1992).

An example like (18) is derived (with the right semantics) as follows, where
PTV abbreviates (N\S)/(N•PP).

(20)

CN⇒ CN

N, P T V, N, PP⇒ S
↑R

N, PTV, [], PP⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

N, PTV, (S↑N)↓S, PP⇒ S
/L

N, PTV, ((S↑N)↓S)/CN, CN, PP⇒ S

Montague (1973) (PTQ) presumably takes its title from its treatment of quan-
tifiers and it is interesting to compare our treatment with his rule of term-
insertion S14. Ignoring for the moment pronoun-binding aspects, S14 replaces
by a noun phrase a syntactic variable in a nominal position in a sentence and
semantically applies the noun phrase to the lambda abstraction of the sentence
meaning over that of the nominal position. Our analysis splits such a step into
two parts: conditionalization of the sentence over the nominal, semantically
interpreted by functional abstraction over the nominal meaning, and infixing
of the quantifier phrase into the conditionalized sentence, semantically inter-
preted by functional application of the infix to the circumfix.

Like that of Montague, our account allows quantifier phrases to take scope
at the level of any embedding sentence, a feature which must eventually be
constrained. However this successfully characterizes the de re/specific and de
dicto/nonspecific ambiguity of (21).

(21) Mary thinks someone left.

The de dicto reading, where the propositional attitude verb has wider scope
than the existential quantifier (Mary does not necessarily have a particular
person in mind), is generated by:

(22) N, N\S ⇒ S
↑R

[], N\S ⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

(S↑N)↓S, N\S ⇒ S N, N\S ⇒ S
/L

N, (N\S)/S, (S↑N)↓S, N\S ⇒ S

The de re reading, where the existential quantifier has wider scope than
the propositional attitude verb (Mary has a particular person in mind), is
generated by:
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(23) N, (N\S)/S, N, N\S ⇒ S
↑R

N, (N\S)/S, [], N\S ⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

N, (N\S)/S, (S↑N)↓S, N\S ⇒ S

Also like the account of Montague, ours allows multiple quantifiers to scope in
any order, another feature which must eventually be constrained (for example,
each appears to always take wider scope). But this successfully characterizes the
classical example of ambiguity:

(24) Everyone loves someone.

On the (dominant) subject wide scope reading, different people love, in gen-
eral, different people (as in when we all love our respective mothers). On the
(subordinate) object wide scope reading, different people love the same person
(as in when we all love one and the same queen). The subject wide scope (∀∃)
reading is generated by:

(25) N, (N\S)/N, N ⇒ S
↑R

N, (N\S)/N, []⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

N, (N\S)/N, (S↑N)↓S ⇒ S
↑R

[], (N\S)/N, (S↑N)↓S ⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N, (S↑N)↓S ⇒ S

The object wide scope (∃∀) reading is generated by:

(26) N, (N\S)/N, N ⇒ S
↑R

[], (N\S)/N, N ⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N, N ⇒ S
↑R

(S↑N)↓S, (N\S)/N, []⇒ 0
√

S↑N, [], 1
√

S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N, (S↑N)↓S ⇒ S

(The sooner processed, i.e. the nearer the root of the sequent proof, the
wider the scope of the quantifier). Note that even assuming nondeterministic
wrapping, in our account multiple quantifiers cannot get tangled up and
bind each others’ positions because the types driving the derivation ensure
that the quantifier separator positions are only ever opened up and closed off
one at a time, so that the only positions ever available are the unique correct
ones.
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In Chapter 4 we gave an account of left-to-right quantifier scope preference
in terms of incremental complexity. Grammatically, we assumed continuous
connectives and lexical ambiguity. Here we assume derivational ambiguity
with discontinuous connectives and no lexical ambiguity. However, the same
account of performance complexity carries over.

Exercise 6.1. Give the derivations for quantification with semantics in labelled
natural deduction.

6.3.1.3 VP ellipsis VP ellipsis refers to a class of constructions in which a
form of do (perhaps suffixed by too) takes its interpretation from a preceding
verb phrase, for example:

(27) a. John slept before Mary did.
b. John slept and Mary did too.

Let there be the following lexical type assignment to the auxiliary, where VP
abbreviates N\S:

(28) did : ((VP↑VP)/VP)\(VP↑VP) : ÎxÎy(x y y)

Then an example such as (27a) is derived as follows:

(29) VP, (VP\VP)/S, N, VP ⇒ VP

↑R

[], (VP\VP)/S, N, VP ⇒ 0
√

VP↑VP, [], 1
√

VP↑VP

/R

[], (VP\VP)/S, N ⇒ 0
√

(VP ↑ VP)/VP, [], 1
√

(VP ↑ VP)/VP

VP ⇒ VP N, VP ⇒ S

↑L
N, 0
√

VP ↑ VP, VP, 1
√

VP ↑ VP ⇒ S

\L

N, VP, (VP\VP)/S, N, ((VP ↑ VP)/VP)\(VP ↑ VP) ⇒ S

VP ellipsis can also occur intersententially, so an account must eventually be
set up at the level of discourse.

Exercise 6.2. Give the derivation for VP ellipsis with semantics in labelled
natural deduction.

6.3.2 Linguistic applications of 1-DL

By 1-DL we mean DL with only ever a single separator, in which case the deter-
ministic and nondeterministic connectives collapse into the same operators,
which we notate ˇ, ˆ, ↓,�, and ↑.

6.3.2.1 Medial extraction Extraction in which the gap is not at the periphery
such as

(30) dog that Mary saw today



discontinuity operators 111

can be modelled as follows:

(31) that : (CN\CN)/ˆ(S↑N) : ÎxÎyÎz[(x z) ∧ (y z)]

Example (30) is derived thus in the hypersequent calculus:

(32) N, (N\S)/N, N, (N\S)\(N\S)⇒ S
↑R

N, (N\S)/N, [], (N\S)\(N\S)⇒ 0
√

S↑N, [], 1
√

S↑N
ˆR

N, (N\S)/N, (N\S)\(N\S)⇒ ˆ(S↑N) CN, CN\CN⇒ CN
/L

CN, (CN\CN)/ˆ(S↑N), N, (N\S)/N, (N\S)\(N\S)⇒ CN

The derivation in labelled natural deduction is as shown in Fig. 6.9.7

6.3.2.2 Pied-piping Pied-piping is the embedding of a filler such as a relative
pronoun within accompanying material from the extraction site:

(33) mountain the painting of which by Cezanne John sold for $10,000,000

The depth of embedding is unbounded:

(34) thesis the height of the lettering on the first line of the second page of
the third chapter of . . . of which is 0.5cm

Pied-piping can be treated by assignment as follows (cf. Morrill 1994, ch. 4;
1995):

(35) which : (N↑N)↓((CN\CN)/ˆ(S↑N)) : ÎxÎyÎzÎw[(z w) ∧ (y (x w))]

Then (33) is derived as shown in Fig. 6.10, where PTV abbreviates
(N\S)/(N•PP). Note that (35) can also generate relativization in which
there is no pied-piping by deriving an empty pied-piping context as N↑N
([]⇒ N↑N is a theorem): once the assignment (35) is included, that of Sec-
tion 6.3.2.1 is no longer required: the assignment (31) is derivable from, and so
subsumed by, (35).

Exercise 6.3. Give the derivation for pied-piping with semantics in labelled
natural deduction.

7 This treatment captures the long-distanceness of left extraction, but we believe something like
the bracket modalities of Chapter 5 are needed to express island constraints and to generate parasitic
gaps. We do not see an extension of discontinuity to parasiticy because the unboundedness of the
number of parasitic gaps and of their depth of embedding within islands would seem to go against
the idea of finitude of a single rule of inference. We propose to treat parasiticy (and mediality) as in
Chapter 5. However we continue to use wrapping for left extraction in this chapter, to illustrate with
the machinery at hand.



dog

dog : CN : dog

that

that : (CN\CN)/ˆ(S↑N) : ÎxÎyÎz[(x z) ∧ (y z)]

Mary

Mary : N : m

saw

saw : (N\S)/N : see a : N : xi

E /

saw+a : N\S : (see x)

today

today : (N\S)\(N\S) : today

saw+a+today : N\S : (today (see x))
E \

Mary+saw+a+today : S : (today (see x) m)
I↑ i

Mary+saw+1+today : S↑N : Îx(today (see x) m)
I ˆ

Mary+saw+today : ˆ(S↑N) : Îx(today (see x) m)
E /

that+Mary+saw+today : CN\CN : ÎyÎz[(today (see z) m) ∧ (y z)]
E \

dog+that+Mary+saw+today : CN : Îz[(today (see z) m) ∧ (dog z)]

Figure 6.9. Labelled natural deduction derivation of medial extraction (30)



N/CN, CN/PP, PP/N, N, CN\CN ⇒ N
↑R

N/CN, CN/PP, PP/N, [], CN\CN ⇒ 0
√

N↑N, [], 1
√

N↑N

N, PTV, N, PP ⇒ S
↑R

N, PTV, [], PP ⇒ 0
√

S↑N, [], 1
√

S↑N
ˆR

N, PTV, PP ⇒ ˆ(S↑N) CN, CN\CN ⇒ CN
/L

CN, (CN\CN)/ˆ(S↑N), N, PTV, PP ⇒ CN
↓L

CN, N/CN, CN/PP, PP/N, (N↑N)↓((CN\CN)/ˆ(S↑N)), CN\CN, N, PTV, PP ⇒ CN

Figure 6.10. Hypersequent derivation of pied-piping (33)
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6.3.2.3 Appositive relativization Appositive (‘nonrestrictive’) relativization is
relativization in which the relative clause forms a lowered intonational phrase
marked off by commas in writing, and modifies a noun phrase:

(36) John, who jogs, sneezed.

Semantically, the predication of the body of the appositive relative clause to
the noun phrase modified is conjoined with the semantics of the embedding
sentence in which the noun phrase is (also) understood. This discontinuity
can be treated by the following assignment:

(37) which : (N\((S↑N)↓S))/ˆ(S↑N) : ÎxÎyÎz[(x y) ∧ (z y)]

Our example (36) is derived as follows:

(38)

N, N\S ⇒ S

↑R

[], N\S ⇒ 0√S↑N, [], 1√S↑N

ˆR

N\S ⇒ ˆ(S↑N)

N ⇒ N

N, N\S ⇒ S

↑R

[], N\S ⇒ 0√S↑N, [], 1√S↑N S ⇒ S

↓L

(S↑N)↓S, N\S ⇒ S

\L

N, N\((S↑N)↓S), N\S ⇒ S

/L

N, (N\((S↑N)↓S))/ˆ(S↑N), N\S, N\S ⇒ S

In a full type-logical treatment, bracket operators would be used to project
the lowered intonational phrase of an appositive relative clause, and the same
means as for restrictive relativization would be used to allow pied-piping, so
that the lexical assignment for an appositive relative pronoun would be:

(39) which : (N↑N)↓([l]−1(N\((S↑N)↓S))/ˆ(S↑N))
: ÎwÎxÎyÎz[(x (w y)) ∧ (z y)]

Exercise 6.4. Give the derivation for appositive relativization with semantics
in labelled natural deduction.

6.3.2.4 Parentheticals Parentheticals are adsentential modifiers such as for-
tunately which, to a very rough first approximation, can appear anywhere in
the sentence they modify:8

(40) a. Fortunately, John has perseverance.
b. John, fortunately, has perseverance.
c. John has, fortunately, perseverance.
d. John has perseverance, fortunately.

8 Of course, parentheticals cannot really occur anywhere, e.g. *The, fortunately, man left. In the end
there will have to be some kinds of domains which they cannot penetrate.
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Such a distribution is captured by the following type assignment, as in Morrill
and Merenciano (1996).

(41) fortunately : ˇS↓S : fortunately

For example, (40c) is derived as follows in the hypersequent calculus:

(42) N, (N\S)/N, N ⇒ S
ˇR

N, (N\S)/N, [], N ⇒ 0
√

ˇS, [], 1
√

ˇS S ⇒ S
↓L

N, (N\S)/N, ˇS↓S, N ⇒ S

In labelled natural deduction, example (40c) is derived as shown in Fig. 6.11.

6.3.2.5 Gapping Gapping is a coordinate construction in which, in English
in the simplest case, a verb missing medially in the second conjunct shares its
interpretation with one present in the first conjunct:

(43) John studies logic, and Charles, phonetics.

Coordinator types projecting such gapping were proposed in Solias (1992) and
Morrill and Solias (1993). P. Hendriks (1995) proposed a like-type coordination
assignment for gapping which we adapt as follows, where TV abbreviates
(N\S)/N.

(44) and : ((S↑TV)\(S↑TV))/ˆ(S↑TV) : ÎxÎyÎz[(y z) ∧ (x z)]

That the coordination is (almost) like-type is attractive, since it narrows the
distance between gapping and constituent coordination (cf. Steedman 1990).
Example (43) is derived as shown in Fig. 6.12.

Exercise 6.5. Give the derivation for gapping with semantics in labelled nat-
ural deduction.

6.3.2.6 Comparative subdeletion Comparative subdeletion refers to compar-
isons in which the than-clause is missing a determiner:

(45) John ate more doughnuts than Mary bought bagels.

Type-logical analyses were given in P. Hendriks (1995), see also Morrill and
Merenciano (1996). Here we assign separate types to the two comparative
elements:

(46) more : (S↑(((S↑N)↓S)/CN))↓(S/(CP↑ˆ(((S↑N)↓S)/CN)))
: ÎxÎy[|Îz(x ÎpÎq[(p z) ∧ (q z)])| > |Îz(y ÎpÎq[(p z) ∧ (q z)])|]

than : CP/S : Îxx



John

John : N : j

has

has : (N\S)/N : have

perseverance

perseverance : N : perseverance
E /

has+perseverance : N\S : (have perseverance)
E \

John+has+perseverance : S : (have perseverance j)
I ˇ

John+has+1+perseverance : ˇS : (have perseverance j)

fortunately

fortunately : ˇS↓S : fortunately
E↓

John+has+fortunately+perseverance : S : (fortunately (have perseverance j))

Figure 6.11. Labelled natural deduction derivation of parenthesization (40c)



N, TV, N ⇒ S
↑R

N, [], N ⇒ 0
√

S↑TV, [], 1
√

S↑TV
ˆR

N, N ⇒ ˆ(S↑TV)

N, TV, N ⇒ S
↑R

N, [], N ⇒ 0
√

S↑TV, [], 1
√

S↑TV

TV⇒ TV S ⇒ S
↑L

0
√

S↑TV, TV, 1
√

S↑TV⇒ S
\L

N, TV, N, (S↑TV)\(S↑TV)⇒ S
/L

N, TV, N, ((S↑TV)\(S↑TV))/ˆ(S↑TV), N, N ⇒ S

Figure 6.12. Hypersequent derivation of gapping (43)
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Then (45) is derived as shown in Fig. 6.13, where Q abbreviates ((S↑
N)↓S)/CN and TV abbreviates (N\S)/N.

Exercise 6.6. Give the derivation for comparative subdeletion with semantics
in labelled natural deduction.

6.3.2.7 Null operators Consider the following examples:

(47) a. Dogs run.
b. man Mary loves

In (47a) the subject consists of a bare plural common noun. The sentence has
a reading synonymous with Some dogs run.9 It is as if there is a null plural
indefinite with the same semantics as (plural) some. In (47b) there is a that-
less relative Mary loves synonymous with that Mary loves. It is as if there is a
null relative pronoun.

There are reasons to doubt the usual analysis of such examples in terms of
null elements. For example, suppose we assumed a null plural indefinite of
type ((S↑Npl)↓S)/CN pl . Then we would generate (47a). Also, however, in
exactly the same way that we generate Most or some dogs run with the overt
indefinite, we would also generate the ungrammatical *Most or dogs run with
the covert indefinite. But in fact a recourse to null elements is not even an
option for us here because we have assumed that the interpretation of functor
types does not include the null element.

Instead, we propose to treat apparent null operators uniformly by unit
assignment wrapping assignments to the separator. Thus for (47) we assume
the following:

(48) 1 : ((S↑Npl)↓S)↑CN pl : ÎxÎy∃2z[(x z) ∧ (y z)]
1 : (CN\CN)↑(S/N) : ÎxÎyÎz[(y z) ∧ (x z)]

Thus, for example, (47b) is derived as shown in Fig. 6.14.

Exercise 6.7. Give the derivation for that-less relativization in hypersequent
calculus.

Exercise 6.8. Give the derivations for (47a) in hypersequent calculus and
labelled natural deduction.

Although the calculus itself of DL is decidable, the admission of assignments
to the separator can challenge the decidability of recognition and parsing. For
example, an assignment 1 : S↑S : a loses the finite reading property since
every sentence with meaning ˆ will also have meanings a(ˆ), a(a(ˆ)), . . . .

9 There is also a generic reading, with which we do not concern ourselves here.



N, TV, Q, CN⇒ S
↑R

N, TV, [], CN⇒ 0
√

S↑Q, [], 1
√

S↑Q

CP/S, N, TV, Q, CN⇒ CP
↑R

CP/S, N, TV, [], CN⇒ 0
√

CP↑Q, [], 1
√

CP↑Q
ˆR

CP/S, N, TV, CN⇒ ˆ(CP↑Q) S ⇒ S
/L

S/ˆ(CP↑Q), CP/S, N, TV, CN⇒ S
↓L

N, TV, (S↑Q)↓(S/ˆ(CP↑Q)), CN, CP/S, N, TV, CN⇒ S

Figure 6.13. Hypersequent derivation of comparative subdeletion (45)



man

man : CN : man

1 : (CN\CN)↑(S/N) : ÎxÎyÎz[(y z) ∧ (x z)]

Mary

Mary : N : m

loves

loves : (N\S)/N : love a : N : xi

E /
loves+a : N\S : (love x)

E /
Mary+loves+a : S : (love x m)

I/i

Mary+loves : S/N : Îx(love x m)
E↑

Mary+loves : CN\CN : ÎyÎz[(y z) ∧ (love z m)]
E \

man+Mary+loves : CN : Îz[(man z) ∧ (love z m)]

Figure 6.14. Labelled natural deduction derivation of that-less relativization (47b)
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6.3.2.8 Right extraposition In right extraposition an adnominal modifier
appears clause-finally:

(49) a. A man ei sneezed [who jogs]i

b. Mary saw a man ei today [from Brazil]i

We propose to account for this by the following unit assignment:

(50) 1 : (ˆ(S↑(CN\CN))\S)↑(CN\CN) : ÎxÎy(y x)

Exercise 6.9. Give the hypersequent and labelled natural deduction deriva-
tions of (49a).

Exercise 6.10. Give the hypersequent and labelled natural deduction deriva-
tions of (49b).

6.3.3 Linguistic applications of deterministic 2-DL

Here we consider deterministic discontinuity allowing two separators.

6.3.3.1 Reflexivization Reflexive pronouns occupy nominal positions and
take their interpretation from an antecedent noun phrase. This antecedent is
usually clause-local (Principle A). The antecedent can be a subject as in (51a)
or an object as in (51b):

(51) a. Johni sent himselfi flowers.
b. Dorothy bet [the straw man]i half of himselfi that she would reach

Emerald City first.

In for example Norwegian, subject-oriented and object-oriented reflexives
have distinct forms; in English they are the same, but we treat them sepa-
rately. For the subject-oriented case we assume the following assignment (cf.
Moortgat 1991):

(52) himself : ((N\S)↑N)↓(N\S) : ÎxÎy(x y y)

Then (51a) is derived as follows:

(53) (N\S)/(N•N), N, N ⇒ N\S
↑R

(N\S)/(N•N), [], N ⇒ 0
√

(N\S)↑N, [], 1
√

(N\S)↑N N, N\S ⇒ S
↓L

N, (N\S)/(N•N), ((N\S)↑N)↓(N\S), N ⇒ S

Exercise 6.11. Give the semantics of this derivation and check that this account
of reflexivization interacts correctly with our account of quantification to
create binding of a reflexive by a quantified antecedent, as in: [Every man]i

loves himselfi .
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On its own, however, this account overgenerates, allowing long-distance
reflexivization in English:

(54) *Johni thinks Mary loves himselfi .

Chapter 8 modalizes categorial grammar so as to deliver intensional semantics
in such a way that the locality of reflexivization can be captured by a modal
type assignment suitably restricting the antecedent to lie within the local
intensional/temporal domain, that is, the same tensed clause as the reflexive.

In English, an object-oriented reflexive must be preceded by its antecedent:

(55) a. Mary talked to Johni about himselfi .
b. *Mary talked about himselfi to Johni

Such a feature can be captured using second-position deterministic wrapping
(VP abbreviates N\S):

(56) himself : ÎxÎy(x y y) : ((VP↑N)↑2 N)↓2(VP↑N)

(The unsubscripted operators can be considered the first-position determin-
istic wrapping varieties, or equally the nondeterministic operators, since the
sorting of the types ensures that the separator is always unique.) Then (51b) is
derived as shown in Fig. 6.15.

Exercise 6.12. Give the derivation with semantics in labelled natural deduc-
tion.

We assume that clause-locality can again be ensured by intensionalization as
before, but (56) additionally overgenerates in allowing an antecedent which
does not c-command the reflexive as in:

(57) *Mary talked to the friends of Johni about himselfi .

On the other hand, a requirement that the antecedent always c-command a
reflexive does not seem right either, since in (55a) the antecedent does not
do so. Chomskyan syntax salvages c-command by claiming that in such an
example, the preposition to is assimilated to the verb talked (‘reanalysis’), but
the issue remains a mystery to us. Likewise a mystery is the fact that a reflexive
can sometimes precede a (non c-commanding) antecedent, or even apparently
take its antecedent in another sentence:

(58) That photofit poster of himselfi hanging in every post office was really
beginning to worry Clydei .

(59) Clydei was really beginning to get worried. That photofit poster of
himselfi in every post office was making it harder and harder to get
around unnoticed.



(VP/CP)/(N•N), N, N/N, N, CP⇒ VP
↑R

(VP/CP)/(N•N), [], N/N, N, CP⇒ 0
√

VP↑N, [], 1
√

VP↑N
↑2 R

(VP/CP)/(N•N), [], N/N, [], CP⇒ 0
√

(VP↑N)↑2 N, [], 1
√

(VP↑N)↑2 N, [], 2
√

(VP↑N)↑2 N

N ⇒ N VP⇒ VP
↑L

0
√

VP↑N, N, 1
√

VP↑N ⇒ VP
↓2 L

(VP/CP)/(N•N), N, N/N, ((VP↑N)↑2 N)↓2(VP↑N), CP⇒ VP

Figure 6.15. Hypersequent derivation of VP medial object-oriented reflexivization (51b)
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Pollard and Sag (1994) claim that such ‘logophora’ is possible just when the
reflexive falls within the least ‘oblique’ complement of a verb. Note that an
antecedent can occur in an adverbial phrase, and even be split:

(60) When Bonnie met up with Clyde, they really began to get carried away
with themselves.

Finally, note that a reflexive can also take a deictic antecedent:

(61) Know yourself!

Our sketch of intrasentential reflexivization can only be a beginning.

6.3.3.2 Anaphora Of course the possibility of intersentential dependencies is
even more extensive with personal pronouns than with reflexive pronouns.
In the end, a theory of sentential syntax must be integrated with a theory of
discourse in this and other relations. But for the time-being we approximate
intrasentential anaphora.

Anaphora divides into backward anaphora or anaphora proper (antecedent
precedes pronoun) and forward anaphora or cataphora (pronoun precedes
‘antecedent’). At first blush it might seem that a single nondeterministic
wrapping pronoun type ((S↑N)↑N)↓(S↑N) would conveniently allow both
alternations, but reflection reveals that the very nondeterminism would make
it impossible not to violate case restrictions when these are different between
antecedent and pronoun positions:

(62) a. *The friends of Johni thought himi walked.
b. *Johni thought Mary liked hei .

Therefore we propose to treat (intrasentential) backward anaphora in the
same way that we did object-oriented reflexivization; cf. Morrill (2003). In
that source an attempt was made to treat (configurational) case by type-lifting,
but we now think that approach cannot be made to work;10 here we assume
features on N including case:

(63) him : ((S↑Ns g (3(m))C)↑2Ns g (3(m))acc)↓2(S↑Ns g (3(m))C)
: ÎxÎy(x y y)

This interacts with our treatment of quantification to produce essentially the
same characterization of quantification and bound anaphora that Montague’s
(1973) rule S14 of term-insertion gives in PTQ. But that rule is infinitary:

10 The lifting approach to case appears to flounder in the following respect. We would seem to want
to say that an accusative noun phrase is (VP↑N)↓VP. However thinks e walks has type VP↑N but
misses a noun phrase which is nominative.
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a term-inserted antecedent noun phrase looks to bind unboundedly many
following pronouns in one go; in that respect the rule is not computational in
the sense of being a finitary step. Our treatment is computationally finitary in
that it is the responsibility of each pronoun to find in turn its single preceding
antecedent, but unboundedly many pronouns can find the same antecedent,
so the effect is basically the same as in PTQ.

As a result, our account suffers the same limitations as Montague’s: it under-
generates in not producing any forward anaphora (cataphora), for example
Near himi , [every cowboy]i kept a gun, and it overgenerates with respect to
Principle B (antilocality), for example *Johni likes himi .11 Finally, the only
reason why there are no Principle C violations is that the account generates
no cataphora at all and English is right-branching. We could attempt to treat
cataphora by, say:

(64) he : ((S↑Ns g (3(m))nom)↑2 Ns g (3(m))C)↓1(S↑Ns g (3(m))C)
: ÎxÎy(x y y)

But then we would even overgenerate simultaneous Principle B and C viola-
tions like *Hei likes Johni .

Jacobson (1999) and Jäger (2001) both give accounts of anaphora invoking
a new binary type constructor such that B A (Jacobson’s notation) or B |A
(Jäger’s notation) is an expression of type B containing an unbound anaphor
of type A; the meaning is the functional abstraction of the expression meaning
over the anaphor meaning, that is, the semantic type is T(A) → T(B).

Although the introduction of new type-constructors is type-logical in spirit,
Jacobson’s account is couched in terms of combinatory categorial grammar,
that is the characterization of derivability by a small number of axiomatic
combinatory reduction schemata.12

The account of Jäger is type-logical in giving a sequent calculus, but
we know of no straightforward syntactical interpretation of the type-
constructor |. Like Jacobson’s account, it has the attractive feature that a
sentence with n free pronouns is simply of type (. . . (S|N(1)) . . .)|N(n) where
the semantics is the functional abstraction of the sentence meaning over the

11 Grodzinsky and Reinhart (1993) suggest that Principle B may be a pragmatic constraint rather
than a syntactic one: that if the local interpretation was intended, the less ambiguous reflexive form
would have been used. Morrill (2003) attempts to substantiate such an idea further by the principles
on the incremental complexity of proof nets of Chapter 4.

12 There is the following argument as to why combinatory categorial grammar is by definition
incomplete. The product-free Lambek calculus is complete with respect to free semigroups, i.e. con-
catenation (Buszkowski, 1982), but it is not finitely axiomatizable (Zielonka, 1981). So combinatory
categorial grammar qua a finite (‘small’) number of combinatory schemata cannot be complete with
respect to concatenation. The essence of Zielonka’s result is that the properties of recursively defined
types cannot be fully captured without recursive rules, which is not really surprising.
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meanings of the pronoun positions. This seems like a good point of departure
to interface syntax with discourse, but as we say, syntactical interpretation is
pending.

6.3.4 Linguistic applications of nondeterministic 2-DL

Here we consider nondeterministic discontinuity allowing two separators.

6.3.4.1 Complement alternation By complement alternation we mean the
free alternation in the order of the prepositional phrases in examples such as
the following:13

(65) a. John talked to Mary about Bill.
b. John talked about Bill to Mary.

The following single lexical assignment generates the alternation:

(66) talked+1+1 : ((N\S)↑PPto)↑PPabout : talk

The hypersequent derivations of (65a, 65b) are as follows, where VP abbrevi-
ates N\S.

(67)

PPabout ⇒ PPabout

PPto ⇒ PPto VP⇒ VP

↑L
0√VP ↑ PPto , PPto ,

1√VP ↑ PPto ⇒ VP

↑L
0
√

(VP ↑ PPto ) ↑ PPabout , PPabout ,
1
√

(VP ↑ PPto ) ↑ PPabout , PPto ,
2
√

(VP ↑ PPto ) ↑ PPabout ⇒ VP

(68)

PPabout ⇒ PPabout

PPto ⇒ PPto VP⇒ VP

↑L
0√VP ↑ PPto , PPto ,

1√VP ↑ PPto ⇒ VP

↑L
0
√

(VP ↑ PPto ) ↑ PPabout , PPto ,
1
√

(VP ↑ PPabout ) ↑ PPto , PPabout ,
2
√

(VP ↑ PPto ) ↑ PPabout ⇒ VP

Exercise 6.13. Give the semantically synonymous labelled natural deduction
derivations of (65a, 65b).

6.3.4.2 Particle shift Particle shift is the alternation in the order of a particle
verb’s object and its particle:14

13 We have no explanation for the discrepancy: John talked to Mary about herself/*John talked about
Mary to herself. Perhaps it has to do with an obliqueness ordering on the complement thematic roles
and that a reflexive must have a less oblique antecedent (Pollard and Sag, 1994).

14 We have no grammatical explanation of why the pronoun must be focused in John called up HER.
or why ?John called the very heavy man up is less acceptable. It seems that for the object to appear to the
right it is necessary and sufficient for it to be ‘informative’. This is the same issue as heavy noun phrase
shift.
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called (. . . ) up (. . . )

called+1+up+1 : ˇ(N\S)↑N : phone

Mary

Mary : N : m
E↑

called+1+up+Mary : ˇ(N\S) : (phone m)
E ˇ

called+up+Mary : N\S : (phone m)

called (. . . ) up (. . . )

called+1+up+1 : ˇ(N\S)↑N : phone

Mary

Mary : N : m
E↑

called+Mary+up+1 : ˇ(N\S) : (phone m)
E ˇ

called+Mary+up : N\S : (phone m)

Figure 6.16. Labelled natural deduction derivations of particle shift (69a, 69b).

(69) a. John called up Mary.
b. John called Mary up.

The alternation is generated by the following single lexical assignment:

(70) called+1+up+1 : ˇ(N\S)↑N : phone

The labelled natural deduction derivations of (69a, 69b) are given in Fig. 6.16.

Exercise 6.14. Give hypersequent derivations of (69a, 69b).
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7.2 Polymorphism 132
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types 134

Prepositional phrases can modify both nouns and verbs:

(1) a. man from Edinburgh
b. walks from Edinburgh

In phrase structure grammar this is characterized as a syntactic ambiguity by
classifying all prepositional phrases as PP and providing two rewrite rules:

(2) a. CN → CN PP
b. VP → VP PP

But in categorial grammar as we have seen it up until now, the alternation
must be reduced to a lexical ambiguity:

(3) a. from : (CN\CN)/N
b. from : ((N\S)\(N\S))/N

When a word or phrase can appear in more than one syntactic environment
this may really be because of lexical ambiguity, but in at least some cases, such
as prepositional phrases, we seem rather to want to be able to say that an
element is syntactically polymorphic, that is, flexible with respect to and adap-
tive to different types in its environment, as opposed to lexically ambiguous.
Categorial grammar restricted to multiplicative operators (in the terminology
of linear logic) has to reduce polymorphism to lexical ambiguity. But in this
chapter we see how additive operators (in the terminology of linear logic)
enable us to express polymorphism and capture generalizations better in some
cases, and in further cases enable coordination of unlike types which could not
otherwise be captured at all.
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id
A⇒ A

√⇒ A ƒ(A)⇒ B
Cut

ƒ(√)⇒ B

√⇒ A ƒ(C )⇒ D
\L

ƒ(√, A\C )⇒ D

A, √⇒ C
\R

√⇒ A\C
√⇒ B ƒ(C )⇒ D

/L
ƒ(C/B, √)⇒ D

√, B ⇒ C
/R

√⇒ C/B

ƒ(A, B)⇒ D
•L

ƒ(A•B)⇒ D

√⇒ A ƒ⇒ B
•R

√, ƒ⇒ A•B

√(A)⇒ C
&L 1

√(A&B)⇒ C

√(B)⇒ C
&L 2

√(A&B)⇒ C

√⇒ A √⇒ B
&R

√⇒ A&B

√(A)⇒ C √(B)⇒ C
+L

√(A+B)⇒ C

√⇒ A
+R1

√⇒ A+B

√⇒ B
+R2

√⇒ A+B

Figure 7.1. The Lambek calculus with additives

Morrill (1990a) proposed to enrich Lambek categorial grammar with the
additive conjunction & and disjunction + of linear logic. Then the set F of
type formulas is defined as follows in terms of a set P of atomic type formulas:

(4) F ::= P | F•F | F\F | F/F | F&F | F+F

The Gentzen sequent calculus of the Lambek calculus with additives is as
shown in Fig. 7.1.

As we shall see, this allows in the first place compression of some multiple
lexical entries (lexical ambiguity) into single polymorphic lexical entries. For
example, we will capture with a single polymorphic lexical entry the general-
ization that a preposition such as from can be both adnominal or adverbial.
Similarly, we will capture with a single polymorphic lexical entry the general-
ization that the copula is can be either identificational (nominal complement)
or predicational (e.g. with adjectival complement):
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(5) a. Bond is 007/a spy.
b. Bond is teetotal.

Consider in the second place coordination of unlike types (Sag et al., 1985)
such as:

(6) a. 007 is Bond and teetotal.
b. Bond is teetotal and a spy.

Our treatment of polymorphism predicts that such coordination is possible,
assimilating it to like-type coordination (Morrill, 1990a; Johnson and Bayer,
1995; Bayer, 1996).

7.1 Curry–Howard semantic interpretation

For Curry–Howard semantic interpretation of the Lambek calculus with addi-
tives we need a Cartesian product for the additive conjunction (as for the
multiplicative product) but also a disjoint union for the additive disjunction.

(7) Definition (types). The Ù set of types is defined on the basis of a set ‰ of
basic types as follows:

Ù ::= ‰ | Ù → Ù | Ù&Ù | Ù + Ù

(8) Definition (type domains). The type domain DÙ of each type Ù is defined
on the basis of an assignment d of non-empty sets (basic type domains)
to ‰ as follows:1

DÙ = d(Ù) for Ù ∈ ‰

DÙ1→Ù2 = DÙ2
DÙ1 i.e. the set of all functions from DÙ1 to DÙ2

DÙ1&Ù2 = DÙ1 × DÙ2 i.e. {〈m1, m2〉|m1 ∈ DÙ1 & m2 ∈ DÙ2}
DÙ1+Ù2 = DÙ2 � DÙ1 i.e. ({1} × DÙ1 ) ∪ ({2} × DÙ2 )

Our typed terms now include, in addition to pairing and projection for Carte-
sian product types, a case statement ˆ → x.¯; y.˜ where ˆ is of disjoint union
type. If ˆ is of the form È1ˆ

′ (first injection) this evaluates to ¯{ˆ′/x} and if ˆ

is of the form È2ˆ
′ (second injection) it evaluates to ˜{ˆ′/y}.

1 Note incidentally that where |Ù| signifies the cardinality of DÙ, the function | · | is a
homomorphism from the algebra (T, +, &,→) of semantic types to the arithmetic algebra
(N, +,×, (·)(·)):

(i) |Ù1 + Ù2| =|Ù1| + |Ù2|
|Ù1&Ù2| =|Ù1| × |Ù2|

|Ù1 → Ù2| =|Ù2||Ù1|



additive operators for polymorphism 131

(9) Definition (terms). The sets ÷Ù of terms of type Ù for each type Ù are
defined on the basis of a set C Ù of constants of type Ù and an enumerably
infinite set V Ù of variables of type Ù for each type Ù as follows:

÷Ù ::= C Ù | V Ù

| (÷Ù′→Ù ÷Ù′)
| 1÷Ù&Ù′ | 2÷Ù′&Ù

| (÷Ù1+Ù2 → V Ù1 .÷Ù; V Ù2 .÷Ù)
÷Ù→Ù′ ::= ÎV Ù÷Ù′

÷Ù&Ù′ ::= (÷Ù, ÷Ù′)
÷Ù+Ù′ ::= È1÷Ù

÷Ù′+Ù ::= È2÷Ù

Each term ˆ ∈ ÷Ù receives a semantic value [ˆ]g ∈ DÙ with respect to a val-
uation f which is a mapping sending each constant in C Ù to an element in
DÙ, and an assignment g sending each variable in V Ù to an element in DÙ, as
shown in Fig. 7.2.

An occurrence of a variable x in a term is called free iff it does not fall within
any part of the term of the form Îx· or x.·; otherwise it is bound (by the closest
variable binding operator within the scope of which it falls). The result ˆ{¯/x}
of substituting term ¯ (of type Ù) for variable x (of type Ù) in a term ˆ is
the result of replacing by ¯ every free occurrence of x in ˆ. We say that ¯ is
free for x in ˆ iff no variable in ¯ becomes bound in ˆ{¯/x}. Manipulations
can be pathological if substitution is not free. The laws of lambda conversion

[c]g = f (c) for c ∈ C Ù

[x]g = g (x) for x ∈ V Ù

[(ˆ ¯)]g = [ˆ]g ([¯]g )

[1ˆ]g = fst([ˆ]g )

[2ˆ]g = snd([ˆ]g )

[ˆ → y.¯; z.˜]g =

{
[¯](g−{(y,g (y))})∪{(y,d)} if [ˆ]g = 〈1, d〉
[˜](g−{(z,g (z))})∪{(z,d)} if [ˆ]g = 〈2, d〉

[ÎxÙˆ]g = DÙ � d �→ [ˆ](g−{(x,g (x))})∪{(x,d)}

[(ˆ, ¯)]g = 〈[ˆ]g , [¯]g 〉
[È1ˆ]g = 〈1, [ˆ]g 〉
[È2ˆ]g = 〈2, [ˆ]g 〉

Figure 7.2. Semantics of typed lambda calculus with Cartesian product and disjoint
union
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Îyˆ = Îx(ˆ{x/y})
if x is not free in ˆ and x is free for y in ˆ

ˆ → y.¯; z.˜ = ˆ → x.(¯{x/y}); z.˜
if x is not free in ¯ and x is free for y in ¯

ˆ → y.¯; z.˜ = ˆ → y.¯; x.(˜{x/y})
if x is not free in ˜ and x is free for z in ˜

·-conversion

(Îxˆ ¯) = ˆ{¯/x}
if ¯ is free for x in ˆ

1(ˆ, ¯) = ˆ

2(ˆ, ¯) = ¯

È1ˆ → y.¯; z.˜ = ¯{ˆ/y}
if ˆ is free for y in ¯

È2ˆ → y.¯; z.˜ = ˜{ˆ/z}
if ˆ is free for z in ˜

‚-conversion

Îx(ˆ x) = ˆ

if x is not free in ˆ

(1ˆ, 2ˆ) = ˆ

Á-conversion

Figure 7.3. Laws of lambda-conversion with Cartesian product and disjoint union

in Fig. 7.3 obtain (we omit the so-called commuting conversions for the case
statement · → x.·; y.·).

The semantic readings of sequent derivations with additives are as shown
in Fig. 7.4.

7.2 Polymorphism

To express the adnominal and adverbial polymorphism of prepositions and
the identificational and predicational polymorphism of the copula we may
have lexical entries such as the following:2

(10) a. from : ((CN\CN)&((N\S)\(N\S)))/N : Îx((fromadn x), (fromadv x))
b. is : (N\S)/(N+(CN/CN)) : ÎxÎyx → z.[y = z]; w.(w Îu[u = y] y)

Note how the embedding of the additives in the types captures the general-
izations that both adnominal and adverbial prepositions take objects and that
both identificational and predicational copulas form verb phrases.

2 The predicational part of the semantics of the copula is due to van Benthem (1991).
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...

√(A)⇒ C
&L 1

√(A&B)⇒ C
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Ï(ˆ)

= |
...

√(A)⇒ C |Ï(1ˆ)
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...

√(B)⇒ C
&L 2

√(A&B)⇒ C
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Ï(ˆ)
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√(B)⇒ C |Ï(2ˆ)
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...
√⇒ B

&R
√⇒ A&B
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Ï
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...

√⇒ B |Ï)
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...

√(A)⇒ C

...
√(B)⇒ C

+L
√(A+B)⇒ C

∣∣∣∣∣∣∣∣∣
Ï(ˆ)

= ˆ → x.|
...

√(A)⇒ C |Ï(x); y.|
...

√(B)⇒ C |Ï(y)

∣∣∣∣∣∣∣∣
...

√⇒ A
+R1

√⇒ A+B

∣∣∣∣∣∣∣∣
Ï

= È1|
...

√⇒ A |Ï

∣∣∣∣∣∣∣∣
...

√⇒ B
+R2

√⇒ A+B

∣∣∣∣∣∣∣∣
Ï

= È2|
...

√⇒ B |Ï

Figure 7.4. Semantic readings of sequent derivations with additives

In ordered natural deduction elimination of & and introduction of + are
represented as follows:3

(11) ···
A&B : ˜

E &1
A : 1˜

···
A&B : ˜

E &2
B : 2˜

···
A : ˆ

I +1
A+B : È1ˆ

···
B : ¯

I +2
A+B : È2¯

3 It is not straightforward to represent the introduction of & and the elimination of + in ordered
natural deduction, but these are not needed for our examples.
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Then given the polymorphic preposition assignment (10a), man from Edin-
burgh and walks from Edinburgh have the following derivations in ordered
natural deduction:

(12)

man

CN : man

from

((CN\CN)&((N\S)\(N\S)))/N : Îx((fromadn x), (fromadv x))

Edinburgh

N : e

E /

(CN\CN)&((N\S)\(N\S)) : ((fromadn e), (fromadv e))

E &1

CN\CN : (fromadn e)

E \
CN : (fromadn e man)

(13)

walks

CN : walk

from

((CN\CN)&((N\S)\(N\S)))/N : Îx((fromadn x), (fromadv x))

Edinburgh

N : e

E /

(CN\CN)&((N\S)\(N\S)) : ((fromadn e), (fromadv e))

E &2

(N\S)\(N\S) : (fromadv e)

E \
CN : (fromadv e walks)

Using the polymorphic copula assignment (10b), the sentence Tully is Cicero
is derived as follows:

(14)

Tully

N : t

is

(N\S)/(N+(CN/CN)) : ÎxÎyx → z.[y = z]; w.(w Îu[u = y] y)

Cicero

N : c

I +1

N+(CN/CN) : È1c

E /

N\S : Îy[y = c]

\L

S : [t = c]

The same assignment allows us to correctly analyse Cicero is a writer; we do
this in Fig. 7.5 using labelled natural deduction (since the indefinite uses dis-
continuous connectives). And the predicational Cicero is humanist is derived
as shown in Fig. 7.6 (in ordered natural deduction again).

7.3 Coordination of unlike types

Assuming our additive-polymorphic type assignment to the copula
(N\S)/(N+(CN/CN)), with the like-type coordinator assignment schema
we assumed in Chapter 3, the ‘unlike type’ coordination (15) is automati-
cally predicted because each conjunct can assume the lift of N+(CN/CN),
as shown in Fig. 7.7, where 1

A abbreviates (A\A)/A and X abbreviates
(N\S)/(N+(CN/CN)).



Cicero

Cicero : N : c

is

is : (N\S)/(N+(CN/CN)) : ÎxÎyx → z.[y = z]; w.(w Îu[u = y] y)

i

a : N : x

I +1

a : N+(CN/CN) : È1 x

E /

is+a : N\S : Îy[y = x]

E \
Cicero+is+a : S : [c = x]

I↑i

Cicero+is+1 : S↑N : Îx[c = x]

a

a : ((S↑N)↓S)/CN : ÎxÎy∃z[(x z) ∧ (y z)]

writer

writer : CN : writer

E /

a+writer : (S↑N)↓S : Îy∃z[(writer z) ∧ (y z)]

E↓
Cicero+is+a+writer : S : ∃z[(writer z) ∧ [c = z]]

Figure 7.5. Derivation of Cicero is a writer



Cicero

N : c

is

(N\S)/(N+(CN/CN)) : ÎxÎyx → z.[y = z]; w.(w Îu[u = y] y)

humanist

CN/CN : ÎxÎy[(x y) ∧ (humanist y)]
I +2

N+(CN/CN) : È2ÎxÎy[(x y) ∧ (humanist y)]
E /

N\S : Îy[[y = y] ∧ (humanist y)] = Îy(humanist y)
\L

S : (humanist c)

Figure 7.6. Derivation of Cicero is humanist



Tully

N : t

is

X : ÎxÎyx → z.[y = z]; w.(w Îu[u = y] y)

j

X : v

Cicero

N : c

I +1

N+(CN/CN) : È1c

E /

N\S : (v È1c)

I\ j

X\(N\S) : Îv(v È1c)

and

1

X\(N\S)
: ÎxÎyÎzÎw[(y z w) ∧ (x z w)]

i

X : u

humanist

CN/CN : ÎxÎy[(x y) ∧ (humanist y)]

I +2

N+(CN/CN) : È2ÎxÎy[(x y) ∧ (humanist y)]

E /

N\S : (u È2ÎxÎy[(x y) ∧ (humanist y)])

I\i

X\(N\S) : Îu(u È2ÎxÎy[(x y) ∧ (humanist y)])

E /

(X\(N\S))\(X\(N\S)) : ÎyÎzÎw[(y z w) ∧ (z È2ÎxÎy[(x y) ∧ (humanist y)] w)]

E \
X\(N\S) : ÎzÎw[(z È1c w) ∧ (z È2ÎxÎy[(x y) ∧ (humanist y)] w)]

E \
N\S : Îw[[w = c] ∧ [w = w] ∧ (humanist w)] = Îw[[w = c] ∧ (humanist w)]

E \
S : [[t = c] ∧ (humanist t)]

Figure 7.7. Derivation of unlike type coordination Tully is Cicero and humanist
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(15) Tully is Cicero and humanist.

Exercise 7.1. Derive Tully is Cicero and a writer and Tully is a writer and
humanist.

Observe that a verb may have two subcategorization frames which cannot
coordinate:

(16) a. John wants to walk.
b. John wants Mary to sing.
c. *John wants [to walk and Mary to sing]

The non-coordinability is captured by assuming, instead of a single polymor-
phic lexical entry, two homomorphic lexical entries:

(17) a. wants : (N\S)/(N\S) : ÎxÎy(want (x y) y)
b. wants : (N\S)/(N•(N\S)) : ÎxÎy(want (2x 1x) y)

Neither non-polymorphic type assignment can generate the ungrammatical
coordination.

Exercise 7.2. Test whether the verb become is ambiguous or polymorphic
according to these criteria.
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‘It was the best of times, it was the worst of times.’
Charles Dickens, A Tale of Two Cities: 1

Semantics, the study of the relation between language and the world, often
assumes that an expression has a unique denotation, extension, or reference.
But, in general, expressions have multiple references relative to different points
which are variously considered or termed worlds, times, states, situations,
contexts, or indices. We refer to this multiplicity as intensionality. Intension-
ality is a major challenge in semantics and the philosophy of language. We do
not offer a new theory of intensional semantics here, but we give a technical
refinement, a logical formalization, of Montague’s treatment of intensionality.
We give a type-driven intensional account in modal Lambek calculus, in the
same way that unadorned Lambek calculus renders a type-driven extensional
account.

So far, our semantic ontology has been based on entities and truth values.
Possible worlds semantics (see e.g. Dowty et al. 1981) assumes in addition (pos-
sible) worlds. A Fregean sense (manner of referring) or intension is formalized
as a function from possible worlds to its reference or extension in those worlds.

This is a rather declarative rendering of sense: manner of referring sounds
like it should be more procedural. And it is well-known that possible worlds
semantics does not afford a sufficiently fine-grained theory of intensions. For
example, according to possible worlds semantics all contradictions have the
same intension (the constant function from worlds to false) and all tautologies
have the same intension (the constant function from worlds to true). Thus if
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one believes or knows one tautology, one believes or knows them all (logical
omniscience). This omniscient competence is beyond human capacity, so
we regard our possible worlds semantics as a theory of God’s-eye idealized
competence.1

Morrill (1990b) introduced modalities to categorial grammar, for inten-
sionality; see also Morrill (1994, ch. 4, sect. 4, and ch. 5). Here we review this
proposal.

8.1 Modal Lambek calculus

The set F of type formulas of our modal Lambek calculus is defined as follows
in terms of a set P of atomic type formulas:

(1) F ::= P | F•F | F\F | F/F |�F

Then the Gentzen sequent calculus rules for the modality are as follows, where
�√ signifies a configuration √ all the types of which have � as the main
connective:

(2) √(A)⇒ B
�L

√(�A)⇒ B

�√⇒ A
�R

�√⇒�A

These are the sequent calculus rules of the normal modal logic S4.

Exercise 8.1. Prove:

a. �A⇒ A modal axiom T
b. �A⇒��A modal axiom 4

c. �(A\B)⇒�A\�B distribution (modal normality)

8.2 Intensional lambda calculus

Just as Lambek calculus proofs have a semantic reading as terms of the lambda
calculus, we define an intensional lambda calculus such that modal Lambek
calculus proofs have a semantic reading as terms of the intensional lambda
calculus.

(3) Definition (types). The set Ù of types is defined on the basis of a set ‰ of
basic types as follows:

Ù ::= ‰ | Ù → Ù | Ù&Ù | LÙ

1 For approaches to this problem see Fox and Lappin (2005) and Pollard (2008).
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(4) Definition (type domains). The type domain DÙ of each type Ù is defined
on the basis of an assignment d of non-empty sets (basic type domains)
to ‰ and a non-empty set W (of worlds) as follows:

DÙ = d(Ù) for Ù ∈ ‰

DÙ1→Ù2 = DÙ2
DÙ1 functional exponentiation

i.e. the set of all functions from DÙ1 to DÙ2

DÙ1&Ù2 = DÙ1 × DÙ2 Cartesian product
i.e. {〈m1, m2〉|m1 ∈ DÙ1 & m2 ∈ DÙ2}

DLÙ = DÙ
W

(5) Definition (terms). The sets ÷Ù of terms of type Ù for each type Ù are
defined on the basis of a set C Ù of constants of type Ù and a denumerably
infinite set V Ù of variables of type Ù for each type Ù as follows:

÷Ù ::= C Ù | V Ù | (÷Ù′→Ù ÷Ù′) | 1÷Ù&Ù′ | 2÷Ù′&Ù | ∨÷LÙ

÷Ù→Ù′ ::= ÎV Ù÷Ù′

÷Ù&Ù′ ::= (÷Ù, ÷Ù′)
÷LÙ ::= ∧÷Ù

Each term ˆ ∈ ÷Ù receives a semantic value [ˆ]g ,i ∈ DÙ with respect to a
valuation f which is a mapping sending each constant in C Ù to an element
in DÙ, an assignment g which is a mapping sending each variable in V Ù to an
element in DÙ, and a world i ∈ W as shown in Fig. 8.1.

As in the extensional lambda calculus, an occurrence of a variable x in a
term is called free if and only if it does not fall within any part of the term of
the form Îx·; otherwise it is bound (by the closest Îx within the scope of which
it falls). The result ˆ{¯/x} of substituting term ¯ (of type Ù) for variable x (of
type Ù) in a term ˆ is the result of replacing by ¯ every free occurrence of x in

[c]g ,i = f (c) for c ∈ C Ù

[x]g ,i = g (x) for x ∈ V Ù

[(ˆ ¯)]g ,i = [ˆ]g ,i ([¯]g ,i ) functional application

[1ˆ]g ,i = fst([ˆ]g ,i ) first projection

[2ˆ]g ,i = snd([ˆ]g ,i ) second projection

[∨ˆ]g ,i = [ˆ]g ,i (i) extensionalization

[ÎxÙˆ]g ,i = DÙ � d �→ [ˆ](g−{(x,g (x))})∪{(x,d)},i functional abstraction

[(ˆ, ¯)]g ,i = 〈[ˆ]g ,i , [¯]g ,i 〉 ordered pair formation

[∧ˆ]g ,i = W � j �→ [ˆ]g , j intensionalization

Figure 8.1. Semantics of intensional lambda calculus
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Îyˆ = Îx(ˆ{x/y})
if x is not free in ˆ and x is free for y in ˆ

·-conversion

(Îxˆ ¯) = ˆ{¯/x}
if ¯ is free for x in ˆ, and modally free for x in ˆ

1(ˆ, ¯) = ˆ

2(ˆ, ¯) = ¯
∨∧ˆ = ˆ

‚-conversion

Îx(ˆ x) = ˆ

if x is not free in ˆ

(1ˆ, 2ˆ) = ˆ
∧∨ˆ = ˆ

if ˆ is modally closed

Á-conversion

Figure 8.2. Laws of intensional lambda-conversion

ˆ. We say that ¯ is free for x in ˆ if and only if no variable in ¯ becomes bound
in ˆ{¯/x}.

Manipulations may be pathological if substitution is not free in this sense.
But we need additional definitions in relation to intensionality (cf. Mor-
rill, 1994: 139–40). We say that a term is modally closed if and only if every
occurrence of ∨ occurs within the scope of an ∧. A modally closed term is
denotationally invariant across worlds. We say that a term ¯ is modally free for
x in ˆ if and only if either ¯ is modally closed, or no free occurrence of x in
ˆ is within the scope of an ∧. The laws of intensional lambda conversion in
Fig. 8.2 obtain.

8.3 Curry–Howard semantic interpretation

The semantic readings of sequent derivations with the modality are as shown
in Fig. 8.3. Natural deduction is as follows:

(6) ···
�A : ¯

E �
A : ∨¯

···
A : ˆ

I�, if every path from root to open leaf contains a �-type
�A : ∧ˆ
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∣∣∣∣∣∣∣
...

√(A)⇒ B
�L

√(�A)⇒ B

∣∣∣∣∣∣∣
Ï(ˆ)

= |
...

√(A)⇒ B |
Ï(∨ˆ)

∣∣∣∣∣∣∣
...

�√⇒ A
�R

�√⇒�A

∣∣∣∣∣∣∣
Ï

= ∧|
...

�√⇒ A |Ï

Figure 8.3. Semantic readings of sequent derivations with modality for
intensionality

8.4 Example intensional fragment

Let there be the lexical entries of Fig. 8.4. Then John walks is analysed as
follows:

(7) John

�N : ∧j
E �

N : j

walks

�(N\S) : walk
E �

N\S : ∨walk
E \

S : (∨walk j)

Exercise 8.2. Analyse John loves Mary.

The sentence Necessarily John is John is analysed thus:

(8)

necessarily

�(S/�S) : ∧necessarily

E �
S/�S : necessarily

John

�N : ∧j

E �
N : j

is

�((N\S)/N) : ∧ÎxÎy[y = x]

E �
(N\S)/N : ÎxÎy[y = x]

John

�N : ∧j

E �
N : j

E /

N\S : Îy[y = j]

E \
S : [j = j]

I�
�S : ∧[j = j]

E /

S : (necessarily ∧[j = j])

Note how the I� is allowed because all the lexical types are modalized.
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alleged : �(CN/�CN) : alleged
intensional adjective

believes : �((N\S)/�S) : believe
for subject extraction cf. Chapter 5

blind : �(CN/CN) : ∧ÎxÎy[(x y) ∧ (∨blind y)]
intersective adjective

everyone : �((S↑N)↓S) : ∧Îx∀y[(∨person y) → (x y)]
father : �CN : father
finds : �((N\S)/N) : find

extensional transitive verb
for : �(PP/N) : ∧Îxx
good : �(CN/CN) : ∧ÎxÎy[(x y) ∧ (∨good y x)]

non-intersective extensional adjective
himself : �(((N\S)↑N)↓(N\S)) : ∧ÎxÎy(x y y)
is : �((N\S)/N) : ∧ÎxÎy[y = x]

for polymorphism cf. Chapter 7
John : �N : ∧j

rigid designator
king : �CN : king
loves : �((N\S)/N) : love

extensional transitive verb
man : �CN : man
Mary : �N : ∧m

rigid designator
necessarily : �(S/�S) : ∧necessarily
possibly : �(S/�S) : ∧possibly
prays : �((N\S)/PP) : pray_ for
seeks : �((N\S)/�(((N\S)/N)\(N\S))) : ∧ÎxÎy(∨try ∧(∨x ∨find y) y)

intensional transitive verb
someone : �((S↑�N)↓S) : ∧Îx∃y[(∨person y) ∧ (x ∧y)]
son : �CN : son
the : �(N/CN) : ∧È

to : �((N\S)/(N\S)) : ∧Îxx
tries : �((N\S)/�(N\S)) : ∧ÎxÎy(∨try ∧(∨x y) y)

equi control verb
walks : �(N\S) : walk
who : �((CN\CN)/(N\S)) : ∧ÎxÎyÎz[(y z) ∧ (x z)]
who : �((CN\CN)/(S/�N)) : ∧ÎxÎyÎz[(y z) ∧ (x ∧z)]

for extraction cf. Chapter 5

Figure 8.4. Intensional lexicon
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The sentence Everyone walks is analysed as follows:

(9)

i

a : N : x

walks

walks : �(N\S) : walk

E �
walks : N\S : ∨walk

E \
a+walks : S : (∨walk x)

I↑ i

1+walks : S↑N : Îx(∨walk x)

everyone

everyone : �((S↑N)↓S) : ∧Îx∀y[(∨person y) → (x y)]

E �
everyone : (S↑N)↓S : Îx∀y[(∨person y) → (x y)]

E↓
everyone+walks : S : ∀y[(∨person y) → (∨walk y)]

The de re analysis of John believes someone walks is shown in Fig. 8.5.
Note that the I� is allowed because the hypothetical subtype of someone is
modalized.

Exercise 8.3. Give the de dicto analysis of John believes someone walks.

Because the hypothetical subtype of everyone is not modalized, John believes
everyone walks has only a narrow-scope analysis.

Exercise 8.4. Analyse:

a. An alleged king walks.
b. A good king walks.
c. A blind king walks.

Which of these entail that there is a king?

Exercise 8.5. Analyse:

a. father who loves the son
b. son who John believes the father loves

Note how the extraction from an intensional domain is licensed because the
hypothetical subtype of the object relative pronoun who is modalized.

Exercise 8.6. Analyse:

a. John loves himself.
b. John prays for himself.
c. *John believes Mary loves himself.

Why is the long-distance reflexivization blocked?



John

�N : ∧j
E �

N : j

believes

believes : �((N\S)/�S) : believe
E �

believes : (N\S)/�S : ∨believe

i
a : �N : x

E �
a : N : ∨x

walks

walks : �(N\S) : walk
E �

walks : N\S : ∨walk
E \

a+walks : S : (∨walk ∨x)
I �

a+walks : �S : ∧(∨walk ∨x)
E /

believes+a+walks : N\S : (∨believe ∧(∨walk ∨x))
E \

John+believes+a+walks : S : (∨believe ∧(∨walk ∨x) j)
I↑ i

John+believes+1+walks : S↑�N : Îx(∨believe ∧(∨walk ∨x) j)

someone

someone : �((S↑�N)↓S) : ∧Îx∃y[(∨person y) ∧ (x ∧ y)]
E �

someone : (S↑�N)↓S : Îx∃y[(∨person y) ∧ (x ∧y)]
E↓

John+believes+someone+walks : S : ∃y[(∨person y) ∧ (∨believe ∧(∨walk y) j)]

Figure 8.5. De re analysis of John believes someone walks
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Exercise 8.7. Analyse:

a. John tries to find Mary.
b. John seeks Mary.
c. John tries to find himself.
d. John seeks himself.
e. John tries to find someone.
f. John seeks someone.

Note the synonymy of each sentence pair, even extending to the shared
specific/non-specific ambiguity of the last sentence pair.

Just as we have used one modality for worlds, we may introduce another
modality for times. Then we would have a bimodal Lambek calculus (Mor-
rill, 1994: 147–8), or, in general for multiple indices, polymodal Lambek calculi.
Such a tense modality can be used to define a tensed S locality constraint on
reflexivization by reference to temporal domains.
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Part III
Further Processing Issues



In this part we expand and develop on the application of proof nets to lan-
guage processing. In Chapter 9 we apply the processing theory of Chapter 4
to aphasic comprehension. So far we have considered how syntax may be
represented as proof nets; in Chapter 10 we consider how semantics may also
be represented as proof nets. In Chapter 11 we describe a method for chart
parsing with proof nets. We conclude in Chapter 12.
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Aphasic comprehension

9.1 Grammar of the
experiment sentence types 152

9.2 Sentences 152

9.3 Results 163

In this chapter we broaden the range of empirical application of categorial
grammar by considering aphasia.1 We add to the arguments for proof net
syntactic structures with a statistically significant account of aphasic compre-
hension in terms of the proof net complexity metric. We address the issue as to
whether aphasia is due to grammatical or processing impairment. A compar-
ison is made of complexity as measured by the categorial complexity metric
of Chapter 4 with the aphasic performance observed in a large study carried
out by Caplan and his colleagues. We find a significant negative linear cor-
relation, suggesting that notwithstanding other possible grammatical and/or
performance factors, aphasics suffer a deficit of working memory capacity in
the incremental comprehension of language.

Haarmann et al. (1997) describes a computational model of aphasic sen-
tence comprehension based on the premise that all aphasics share a common
deficit in the activation resources of working memory. They simulate the
data from Caplan et al. (1985) (see Caplan and Hildecrandt, 1988) of apha-
sic patients from all major syndrome types. In their system ‘As each word
comes in, the model attempts to incorporate it as much as possible into the
evolving syntactic and semantic representation. First, the word is perceptually
encoded. Then, lexical access makes available its meaning and syntactic class
and, in the case of verbs, also its argument structure. Based on its word class
and a grammar, the word is integrated into a parse tree representation. The
thematic role mapping component computes thematic-role bindings.’ (Haar-
mann et al., 1997: 88). ‘The hypothesized resource reduction in aphasia was
then induced by decreasing the model’s working memory capacity consider-
ably, reducing it by half to a level of fifteen activation units, to optimize the fit

1 This chapter is a reworking of Morrill and Gavarró (2004).
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with the Caplan et al. data.’ (Haarmann et al., 1997: 96). Our result echoes that
of Haarmann et al. (1997) but with the logical categorial grammar architecture.

We focus on experiment 2 reported in chapter 4 of Caplan and Hildecrandt
(1988). In this experiment the subjects were thirty-seven native English speaker
aphasics. The experimenter read a sentence with normal nonemphatic intona-
tion and the subjects were required to perform an object-manipulation task
using toys to demonstrate semantic features of the sentence. The types of
sentences used were as follows:

(1) Active A The rat hit the dog.
Dative D The rat gave the dog to the cow.
Conjoined C The rat hit the dog and kissed the cow.
Passive P The rat was hit by the dog.
Dative Passive DP The rat was given to the dog by the cow.
Object–Subject relative OS The rat hit the dog that kissed the cow.
Subject–Object relative SO The rat that the dog hit kissed the cow.
Cleft-Subject CS It was the rat that hit the dog.
Cleft-Object CO It was the rat that the dog hit.

The sentences are all unambiguous except the Object–Subject relative (OS)
type, which has a right extraposed reading in which the relative clause mod-
ifies the subject. This is presumably an unintended defect in experimental
design since apparent aphasic error could be the consequence of interference
from the grammatical extraposition reading. (Indeed, in only this case is the
error which is attributed much higher than that predicted by our model.)

9.1 Grammar of the experiment sentence types

Let there be the following basic types and type map and the lexicon in Fig. 9.1.

(2) Atomic syntactic type P T(P )
count noun CN e → t
proper name N e
expletive pronoun NPit t → t
prepositional phrase PP e
declarative sentence S t
abstract passive sentence S− t

Then the experiment sentence types are generated as shown in Fig. 9.2.

9.2 Sentences

In the following subsections we give the nets and semantics for each of the
sentence types. We also give the complexity profiles, these being a plot of the
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and : ((N\S)\(N\S))/(N\S) : ÎxÎyÎz(∧ (y z) (x z))
by : ((N\S−)\(N\S−))/N : ÎxÎyÎz(∧ (y z) (= x z))
cow : CN : cow
dog : CN : dog
gave : ((N\S)/PP)/N : give
given : ((CN\CN)/(N\(N\S−)))•(N\((N\S−)/PP)) : (ÎxÎyÎz(∧ (y z) (∃ (x z))), give)
hit : (N\S)/N : hit
hit : (((CN\CN)/(N\(N\S−)))•(N\(N\S−)) : (ÎxÎyÎz(∧ (y z) (∃ (x z))), hit)
it : NPit : Îxx
kissed : (N\S)/N : kiss
rat : CN : rat
that : (CN\CN)/(N\S) : ÎxÎyÎz(∧ (y z) (x z))
that : (CN\CN)/(S/N) : ÎxÎyÎz(∧ (y z) (x z))
the : N/CN : È
to : PP/N : Îxx
was : (N\S)/(CN\CN) : ÎxÎy(x (= y) y)
was : ((NPit\S)/(CN\CN))/N : ÎxÎyÎz(z (y (= x) x))

Figure 9.1. Type logical lexicon for the experiment sentence types

number of unresolved dependencies (overarching identity links) at each word
boundary. Following Johnson (1998) we refer to this number as the ‘cut’ and
we note maximal cuts and average cuts.

9.2.1 Active (A)

The net for a sentence of this type is given in Fig. 9.3. The result of the semantic
trip is the following:

(3) (hit (È dog) (È rat))

The complexity profile is thus:

(4) 3 a
2 a
1 a a a
0 a

The rat hit the dog.

The maximal cut is 3; the average cut is 1.33.

9.2.2 Dative (D)

The net for a sentence of this type is given in Fig. 9.4. The result of the semantic
trip is (5a) which normalizes to (5b).

(5) a. (give (È dog) (Îxx (È cow) (È rat)))
b. (give (È dog) (È cow) (È rat))



Figure 9.2. Experiment sentence types generated
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Figure 9.3. Net for an Active (A) sentence

Figure 9.4. Net for a Dative (D) sentence

The complexity profile is as follows:

(6) 3 a
2 a a a
1 a a a a
0 a

The rat gave the dog to the cow.

The maximal cut is 3; the average cut is 1.44.

9.2.3 Conjoined (C)

The net for a sentence of this type is given in Fig. 9.5. The normalized seman-
tics is as follows.

(7) (∧ (hit (È dog) (È rat)) (kiss (È cow) (È rat)))



Figure 9.5. Net for a Conjoined (C) sentence
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The complexity profile is thus:

(8) 5 a a
4 a
3 a
2 a a
1 a a a
0 a

The rat hit the dog and kissed the cow.

The maximal cut is 5; the average cut is 2.40.

9.2.4 Passive (P)

The net for a sentence of this type is given in Fig. 9.6; the analysis of passive
is that of Morrill (2000). The normalized semantics is (9a) which is logically
equivalent to (9b).

(9) a. (∧ (= (È rat) (È rat)) (∃ Îz(∧ (hit (È rat) z) (= (È dog) z))))
b. (hit (È rat) (È dog))

The complexity profile is as follows:

(10) 4 a
3 a
2 a a
1 a a a
0 a

The rat was hit by the dog.

The maximal cut is 4; the average cut is 1.75.

9.2.5 Dative passive (DP)

The net for a sentence of this type is given in Fig. 9.7; the analysis of dative pas-
sive is a generalization of that of passive from Morrill (2000). The normalized
semantics is (11a) which is logically equivalent to (11b).

(11) a. (∧ (= (È rat) (È rat)) (∃ Îz(∧ (give (È rat) (È dog) z) (= (È cow) z))))
b. (give (È rat) (È dog) (È cow))



Figure 9.6. Net for a Passive (P) sentence



Figure 9.7. Net for a Dative Passive (DP) sentence
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The complexity profile is as follows:

(12) 5 a a a
4 a
3 a
2 a a
1 a a a
0 a

The rat was given to the dog by the cow.

The maximal cut is 5; the average cut is 2.64.

9.2.6 Object–subject relative (OS)

The net for a sentence of this type is given in Fig. 9.8. The normalized seman-
tics is as follows:

(13) (hit (È Îz(∧ (dog z) (kiss (È cow) z))) (È rat))

The complexity profile is thus:

(14) 3 a
2 a a a
1 a a a a a
0 a

The rat hit the dog that kissed the cow.

The maximal cut is 3; the average cut is 1.40.

9.2.7 Subject–object relative (SO)

The net for a sentence of this type is given in Fig. 9.9. The normalized seman-
tics is as follows:

(15) (kiss (È cow) (È Îz(∧ (rat z) (hit z (È dog)))))

The complexity profile is thus:

(16) 6 a
5 a
4 a a
3 a
2 a
1 a a a
0 a

The rat that the dog hit kissed the cow.

The maximal cut is 6; the average cut is 2.70.



Figure 9.8. Net for an Object–Subject relative (OS) sentence



Figure 9.9. Net for a Subject–Object relative (SO) sentence
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9.2.8 Cleft-subject (CS)

The net for a sentence of this type is given in Fig. 9.10. Observe how our
analysis of the expletive subject of cleft constructions involves assigning the
identity function to the expletive, and lexically lifting the copula over it. This
avoids a treatment involving both vacuous abstraction and a dummy expletive
semantics. The normalized semantics is (17a) which is logically equivalent
to (17b).

(17) a. (∧ (= (È rat) (È rat)) (hit (È dog) (È rat)))
b. (hit (È dog) (È rat))

The complexity profile is as follows:

(18) 3 a a
2 a a a
1 a a a
0 a

It was the rat that hit the dog.

The maximal cut is 3; the average cut is 1.67.

9.2.9 Cleft-object (CO)

The net for a sentence of this type is given in Fig. 9.11. The normalized
semantics is (19a) which is logically equivalent to (19b).

(19) a. (∧ (= (È rat) (È rat)) (hit (È dog) (È rat)))
b. (hit (È dog) (È rat))

The complexity profile is as follows:

(20) 4 a
3 a a a
2 a a a
1 a
0 a

It was the rat that the dog hit.

The maximal cut is 4; the average cut is 2.22.

9.3 Results

The mean comprehension results on a scale of 0 (worst) to 5 (best) were as
follows (Caplan and Hildecrandt, 1988: 105), compared to the maximal cut
and average cut of the proof net analyses:



Figure 9.10. Net for a Cleft-Subject (CS) sentence



Figure 9.11. Net for a Cleft-Object (CO) sentence
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(21) Sentence type mean comprehension maximal cut average cut
A 4.4 3 1.33
CS 4.2 3 1.67
D 3.2 3 1.44
P 2.9 4 1.75
C 2.7 5 2.40
CO 2.6 4 2.22
OS 2.3 3 1.40
DP 2.0 5 2.64
SO 1.3 6 2.70

The maximal cut and average cut appear to correlate quite well with the mean
comprehension with the exception of the OS sentence type for which compre-
hension is lower than would be expected from the proof net complexity. As we
noted in the introduction, this sentence type is ambiguous, allowing a right
extraposed reading, so that the existence of this reading would be expected
to detract from the prescribed interpretation. Otherwise, in particular, the
A sentence type has the best comprehension and the lowest cut complexity
and the SO sentence type has the worst comprehension and the highest cut
complexity.

Statistically, even including the detractive data point, the Spearman corre-
lation coefficient shows a significant negative correlation between mean com-
prehension and both maximal cut (r = −0.720, p-value < 0.05) and average
cut (r = −0.717, p-value < 0.05).

We observe that the aphasic comprehension of the sentence types of the
Caplan et al. experiment has a negative linear correlation with the proof net
complexity of these sentence types, suggesting that aphasics suffer impairment
of the capacity of working memory for unresolved dependencies.
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Lexico-syntactic interaction
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Partial proof structures which can be extended into proof nets are called
modules.1 Lecomte and Retoré (1996) introduce the slogan ‘words as modules’
for the idea that what is associated with a word need not be seen as just a type,
but may be a partial proof net, or module. In de Groote and Retoré (1996) it
is shown how semantics as well as syntax can be represented in the formalism
of proof nets. They consider the following points: (i) the semantic reading of
proof nets (cf. Chapter 4), (ii) that lexical semantics may also be represented
by an (intuitionistic) proof net, (iii) that the substitution of lexical semantics
into derivational semantics corresponds to connecting, with a Cut link, the
output conclusion of the lexical semantics proof net, on the one hand, to
the root of the polar type tree of the lexical type, on the other, and (iv) that
semantic evaluation corresponds to elimination of Cuts from the resulting
proof net. By (geometry of) interaction, Girard (1989) means the geometry of
Cut-elimination, particularly as represented by graph-transformation in proof
nets.

Taking inspiration from these ideas, Morrill (1999a) proposes to preeval-
uate lexical and syntactic interaction by eliminating Cuts, so far as possible,
from lexical modules built by step (iii) above. This precompilation of the cate-
gorial lexicon allows partial execution of some, though not all, lexico-syntactic
interaction. Section 10.1 discusses the relevant notions of proof nets and illus-
trates the lexical preevaluation. Section 10.2 illustrates lexical words as mod-
ules and Section 10.3 illustrates with some sentence analyses according to this
method.

1 This chapter is a reworking of Morrill (2005) Copyright © 2005 CSLI Publications; material reused
by kind permission.
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10.1 Nets

The following subsections define respectively syntactic, semantic, and lexico-
syntactic proof nets for Lambek categorial grammar. We illustrate with refer-
ence to the following lexical assignments:

(1) bag+end : N : b
frodo : N : f
in : (S\S)/N : in
inhabits : (N\S)/N : ÎxÎy((in x) (live y))
lives : N\S : live

These define the following synonymy:

(2) a. frodo+lives+in+bag+end : S : ((in b) (live f ))
b. frodo+inhabits+bag+end : S : ((in b) (live f ))

10.1.1 Syntactic nets

We recall from Chapter 4 the definitions of (Cut-free) proof nets for the
Lambek calculus L, but here we label links slightly differently. A polar type
is a syntactic type together with a polarity input (•) or output (◦). Where p
is a polarity, p is the opposite polarity. Labels Ap and Ap are complementary.
A literal is a polar type the type of which is atomic.

A link has a list of premise labels (above) and a list of conclusion labels
(below) with some edges between them. An identity link is of the form:

(3)

A logical link is one of the local trees given in Fig. 10.1. A syntactic polar type tree
is a tree the leaves of which are literals and each local tree of which is a logical
link. Each polar type is the root of a unique syntactic polar type tree, which
is the result of unfolding the label upwards according to the logical links. For
example, the syntactic polar type tree for (CN\CN)/(S/N)• is:

(4)

A syntactic frame is a cyclic list of polar type trees exactly one of which has
an output root. For example, the following (read as a cyclic list) is a syntactic
frame:
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Figure 10.1. Logical links of the Lambek calculus

(5)

A syntactic net is the result of connecting by an identity link every leaf in a
syntactic frame with a unique complementary leaf such that:

(6) � (Acyclicity). Every cycle crosses both edges of some i-link.
� (Planarity). The identity links are planar in the cyclic ordering.
� (No subtending). No identity link connects the leftmost and rightmost

descendent leaves of an output division node.

For example, the following is a syntactic net:

(7)
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10.1.2 Semantic nets

By semantic nets we mean proof nets which represent not syntactic structure
but lexical semantics. Lexical semantics are (closed) typed lambda terms, that
is intuitionistic proofs, so we want proof nets which relax order (planarity)
and which allow multiple binding. We define partial proof structures for the
Lambek calculus with Permutation and Contraction with Cut (LPC+Cut). A
contraction link is of the form:

(8)

We define i- and ¡-links as 1-links. A Cut link is of the form:

(9)

A semantic polar type tree is a tree the leaves of which are literals and each
local tree of which is a logical link or a contraction link. Note that syntactic
polar type trees are semantic polar type trees—without contraction links.
A semantic frame is a bag of semantic polar type trees. Note that syntactic
frames are semantic frames where we forget about the cyclic order. A semantic
module is the result of (i) connecting, in a semantic frame, some leaves with
unique complementary leaves by an identity link, and some roots with unique
complementary roots by a Cut link, and (ii) associating semantic constants to
every open input root, such that:

(10) � (Orientation). There is a unique open output root.
� (Acyclicity). Every cycle crosses both edges of some 1-link.

A semantic net is a semantic module with no open leaves. For example, the
following is a semantic net:

(11)
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The semantic trip of a semantic net with each \◦ and /◦ logical link assigned
a distinct semantic variable is the trip which starts upwards at the unique open
output root and generates a textual form proceeding as follows and bouncing
with the associated semantic form at input roots:

(12)

(13)

(14)

(15)

The semantic trip ends when it returns to the unique open output root. The
reading of a semantic net is the textual form generated by its semantic trip. For
example, the semantic reading of (11) is

(16) ÎxÎy((in x) (live y))

The following conversions on semantic nets preserve equivalence of readings
(see de Groote and Retoré, 1996):

(17)

(18)
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10.1.3 Lexico-syntactic nets

Let us define a lexico-syntactic module as a semantic module with only input
roots and with a strict ordering on its open leaves. We define a lexico-syntactic
frame as a cyclic list of lexico-syntactic modules and exactly one output syn-
tactic polar type tree. And we define a lexico-syntactic net as the result of
connecting by an identity link every leaf in a lexico-syntactic frame with a
unique complementary leaf such that:

(19) (Acyclicity). Every cycle crosses both edges of some 1-link.
(Planarity). The identity links added are planar in the cyclic ordering.

Let an initial lexico-syntactic module for a lexical assignment · : A : ˆ be a
lexico-syntactic module which results from connecting by a Cut link the
syntactic polar type tree of A• with a semantic net the reading of which is
ˆ. A final lexico-syntactic module for a lexical assignment · : A : ˆ is a result
of normalizing according to (17) and (18) an initial lexico-syntactic module
for · : A : ˆ, with the reduction (18) required to preserve the order on open
leaves.

For example, for Frodo : N : f we have the initial lexico-syntactic
module:

(20)

Which simplifies to the final lexico-syntactic module:

(21)

Similarly, for bag+end : N : b we obtain the final lexico-syntactic module:

(22)

For lives : N\S : live we have the initial lexico-syntactic module, preevaluation
and final lexico-syntactic module:
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(23)

Similarly, for in : (S\S)/N : in we obtain the final lexico-syntactic module:

(24)

For inhabits : (N\S)/N : ÎxÎy((in x) (live y)) we have the initial lexico-
syntactic module in Fig. 10.2a, preevaluation in Figs. 10.2 and 10.3, and final



Figure 10.2. Preevaluation for inhabits : (N\S)/N : ÎxÎy((in x) (live y)), Part I



Figure 10.3. Preevaluation for inhabits : (N\S)/N : ÎxÎy((in x) (live y)), Part II
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lexico-syntactic module in Fig. 10.3f. So, for example, from the final lexico-
syntactic modules we have for the sentence Frodo lives in Bag End the lexico-
syntactic frame:

(25)

And the lexico-syntactic net:

(26)

And for Frodo inhabits Bag End from the final lexico-syntactic modules we
have the lexico-syntactic frame (27) and hence the same lexico-syntactic net
(26). The semantic reading of (26) is ((in b) (live f )), which is consistent with
the synonymy.

(27)

10.2 Words

In this section we illustrate final lexico-syntactic modules for sample lexical
assignments. The motivation is to give an idea of the kinds of form the
integrated representations take. It will be noted that the relation between the
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compiled modules and the lexical assignments which are their source is not
necessarily transparent to the eye, that is, over and above notational variation,
the work of Cut-elimination is performing significant computation.

10.2.1 a : ((S/N )\S)/CN : λxλy(∃ λz(∧ (x z) (y z)))

Indefinite article in subject.

(28)

10.2.2 alleged : CN/CN : alleged

Intensional adjective.

(29)

10.2.3 bachelor : CN : λx(∧ (¬ (married x)) (man x))

Count noun with built-in meaning postulate.
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(30)

10.2.4 consider : ((N\S)/(CN/CN))/N : λxλy(consider (y (= x) x))

Small-clause verb.

(31)
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10.2.5 every : (S/(N\S))/CN : λxλy(∀ λz(→ (x z) (y z)))

Universal quantifier in object.

(32)

10.2.6 everything : S/(N\S) : λx(∀ λy(→ (thing y) (x y)))

Universal quantifier phrase as subject.

(33)
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10.2.7 gives : ((N\S)/N )/N : give

Dative shifted ditransitive verb.

(34)

10.2.8 gives : ((N\S)/PP)/N : λxλy( give y x)

Ditransitive verb.

(35)

10.2.9 himself : ((N\S)/N )\(N\S) : λxλy(x y y)

Reflexive pronoun.

(36)

10.2.10 is : (N\S)/N : =

Copula of identification.

(37)
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10.2.11 is : (N\S)/(CN/CN) : λxλy(x (= y) y)

Copula of predication.

(38)

10.2.12 loves : (N\S)/N : love

Transitive verb.

(39)

10.2.13 man : CN : man

Count noun.

(40)

10.2.14 mortal : CN/CN : λxλy(∧ (mortal y) (x y))

Intersective adjective.
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(41)

10.2.15 no : S : �
Disaffirmative particle as logical falsehood.

(42)

10.2.16 runs : N\S : run

Intransitive verb.

(43)
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10.2.17 seems : (N\S)/(N\S) : λxλy(seem (x y))

Subject raising verb.

(44)

10.2.18 socrates : N : s

Proper name.

(45)

10.2.19 something : S/(N\S) : λx(∃ λy(∧ (thing y) (x y)))

Existential quantifier phrase as subject.

(46)

10.2.20 tries : (N\S)/(N\S) : λxλy(try (x y) y)

Subject equi verb.
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(47)

10.2.21 yes : S : �
Affirmative particle as logical truth.

(48)

10.3 Sentences

In this section we illustrate complete proof net derivations over lexico-
syntactic modules. We analyse the sentences of the classical syllogism: Socrates
is a man, Every man is mortal / Socrates is mortal.

10.3.1 Socrates is a man

The lexico-syntactic net is that given in Fig. 10.4. The semantic reading is:

(49) (∃ Îx((∧ (man x)) ((= x) s))))
=

(man s)

10.3.2 Every man is mortal

The lexico-syntactic net is shown in Figs. 10.5 and 10.6. The semantic read-
ing is:



Figure 10.4. Lexico-syntactic net for Socrates is a man



Figure 10.5. Lexico-syntactic net for Every man is mortal, Part I
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Figure 10.6. Lexico-syntactic net for Every man is mortal, Part II

(50) (∀ Îx((→ (man x)) ((∧ (mortal x)) ((= x) x))))
=

(∀ Îx(→ (man x) (mortal x)))

10.3.3 Socrates is mortal

The lexico-syntactic net is as shown in Fig. 10.7. The semantic reading is:

(51) (Îx((∧ (mortal x)) ((= s) x)) s)
=

(mortal s)

Indeed, according to our analyses the premises of the syllogism entail its
conclusion.



Figure 10.7. Lexico-syntactic net for Socrates is mortal
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Memoizing Lambek
theorem-proving

11.1 Background 190 11.2 Chart theorem-proving 191

Efficient (n3) parsing algorithms for context-free grammar employ memo-
ization of partial analyses in a chart, as in Early chart parsing or CYK chart
parsing. The chart is a data structure recording all the grammatical categories
of each substring of the string analysed, these being computed from smallest
to largest. Efficiency is gained by compacting in a single category for a given
span all the analyses under that category of the corresponding substring.

In Lambek categorial grammar grammaticality is equated with provability,
and hence parsing is theorem-proving. The problem of determining Lambek
theoremhood is NP-complete (Pentus 2006) even in the product-free case
(Savateev 2009), so we cannot expect worst-case polynomial-time algorithms
for Lambek categorial grammar parsing/theorem-proving. However, it is still
interesting to consider whether a memoization strategy can lead to improved
efficiency in some cases.

It is not straightforward to adapt chart parsing methods to Lambek sequent
calculus because we need to take into account the shifting of premises under
hypothetical reasoning; see, for example, König (1994) and Hepple (1992).

In an alternative approach, Morrill (1996) proposes CYK memoization of
proof nets for Lambek calculus. This avoids the problem of shifting premises
because all types are fixed in the global and unchanging proof frame; however
it is necessary to control for the correctness of (partial) proof nets. In that
paper a unification criterion was suggested in which chart cell entries are
most general unifiers of the corresponding span, but the graph-theoretical
framework of proof nets invites a purer geometrical approach. In this chapter
we provide such an approach in which the chart cell entries are simply the
planar axiom linkings (well-bracketings) of the corresponding span.

In Section 11.1 we repeat a version of the relevant technical background of
proof nets. In Section 11.2 we give the algorithm.
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11.1 Background

The following theory of proof nets for the calculus of Lambek (1958) is
repeated from earlier chapters; see principally Roorda (1991).

Given a set A of atomic types, we define the set F of types by:

(1) F ::= A | F•F | F\F | F/F

A polar type Ap comprises a type A together with a polarity p = • (input)
or ◦ (output). The polar type tree |Ap| of a polar type Ap is the ordered tree
defined by:

(2)

A sequent A0, . . . , An ⇒ A comprises a finite non-empty sequence
A0, . . . , An of antecedent types and a succedent type A. The (proof) frame of a
sequent A0, . . . , An ⇒ A is the sequence:

(3) 〈|A◦|, |A0
•|, . . . , |An

•|〉
For example, the proof frame for the sequent (4) is given in Fig. 11.1, where we
have numbered the leaves.

(4) S/(N\S), (N\S)/N, (S/N)\S ⇒ S

We define the complement X of a polar type X by A• = A◦ and A◦ = A•. Two
polar types are complementary if and only if they are the complements of each

Figure 11.1. Proof frame for S/(N\S), (N\S)/N, (S/N)\S ⇒ S
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other. An axiom link on a proof frame is a pair of complementary leaves. An
axiom linking for a proof frame is a set of axiom links with at most one axiom
link per leaf and which is planar, that is there are no two axiom links (i, k) and
( j, l) such that i < j < k < l . That an axiom linking is planar means that it
can be drawn in the half-plane without crossing lines. A partial proof structure
(PPS) is a frame together with an axiom linking. A proof structure is a frame
together with an axiom linking that links every leaf.

A switching of a PPS is a graph that results from removing one of the
immediate descendent edges of each ℘-node. A proof net is a proof structure
in which (i) every switching is a connected and acyclic graph (Danos–Regnier
acyclicity and connectedness); see Danos and Regnier (1989), and (ii) no
axiom link connects the leftmost and rightmost descendent leaves of the node
resulting from the unfolding of an output division (we call this Retoré no
subtending); see de Groote and Retoré (2003). No subtending prohibits empty
antecedents.

(5) Theorem (Correctness of proof nets).
A sequent is a theorem of the Lambek calculus if and only if there
is an axiom linking which forms a proof net on its frame.

Fadda and Morrill (2005) show that in view of the intuitionistic nature of
Lambek sequents (that there is exactly one root of output polarity), every
proof structure which satisfies Danos–Regnier (DR) acyclicity also satisfies
DR connectedness. Therefore we need only check for DR acyclicity (and no
subtending). We call a partial proof structure correct if and only if it satisfies
DR acyclicity and no subtending.

(6) Corollary (Correctness of proof nets).
A sequent is a theorem of the Lambek calculus if and only if there
is an axiom linking which forms a correct proof structure on its frame.

Therefore we can carry out Lambek theorem-proving by building up proof
nets incrementally, checking for correctness (DR acyclicity and Retoré no
subtending) at each step. We have a Lambek theorem if and only if we succeed
in linking all the leaves while satisfying these criteria.

11.2 Chart theorem-proving

Our algorithm is based on the observation in Morrill (1996) that the planar
linking of non-commutative proof nets is context-free, and so can be memo-
ized, for example as in CYK chart parsing (Cocke and Schwartz, 1970; Younger,
1967; Kasami, 1965).
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Planar linking is a Dyck language. Its grammar can be given as follows:

(7) S → A A | A S A | S S

We memoize continuous planar linkings, where a continuous planar linking
is a set of axiom links connecting contiguous leaves. The span of a continuous
planar linking is identified with the pair comprising the positions of the start
of its first axiom link and the end of its last axiom link. A CYK chart is a
triangular matrix with a cell for each span. These cells are filled bottom-up,
that is from smallest to largest, and from left to right. For our Dyck language
continuous planar linkings are always of even length. Hence, for a proof frame
of ten literals (as in Fig. 11.1), the cells of a checked triangular matrix are filled
in the order shown as follows:

(8)
9 9
8 8
7 7 16
6 6 15
5 5 14 21
4 4 13 20
3 3 12 19 24
2 2 11 18 23
1 1 10 17 22 25

2 3 4 5 6 7 8 9 10

We will notate a continuous planar linking as a well-parenthesized string of
brackets encoding textually the planar axiom linking over the span.

For a frame to be a candidate at all for a proof net it must contain an even
number of leaves; indeed, it must contain the same number of positive and
negative literals of each atomic type (van Benthem 1991), in order that they
may be matched by axiom links. So there may be a preprocessing filter on this
basis.

Given a frame with n =
.

2 leaves L 1, . . . , L n there is the CYK chart theorem-
proving algorithm defined in Fig. 11.2.

The first for-loop is for placing axiom links on adjacent complementary
literals (i.e. spans of length 2) by the production S → A A. By DR acyclicity,
for an axiom link to be placed between two such literals they must not be
the descendents of a common ⊗ -link (for then there would be a cycle in
switchings). Nor, by no subtending, can they be the premises of an output
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for i := 1 to n − 1 do
if L i = L i+1 and [] with span (i, i + 1) is a correct linking

then C (i, i + 1) := {[]}
else C (i, i + 1) := ∅;

for l := 4 to n in steps of 2 do
for i := 1 to n + 1− l do

begin
k := i + l − 1;
C (i, k) := ∅;
if L i = L k

then for each K ∈ C (i + 1, k − 1) do
if [K ] with span (i, k) is a correct linking

then C (i, k) := C (i, k) ∪ {[K ]};
for j := i + 2 to k − 1 in steps of 2 do

for each K 1 ∈ C (i, j − 1) and K 2 ∈ C ( j, k) do
if K 1 K 2 with span (i, k) is a correct linking

then C (i, k) := C (i, k) ∪ {K 1 K 2}
end;

if C (0, n) 
= ∅
then print “theorem”
else print “non-theorem”.

Figure 11.2. Lambek chart theorem-proving algorithm

division node (for then the node would be subtended). Therefore, a PPS built
by S → A A is a correct linking if and only if the complementary literals do
not share any ⊗ -ancestor and are not the premises of an output division.

The second for-loop is for building continuous planar linkings on spans of
length 4, 6, . . . by means of the remaining productions.

First, we consider extending continuous planar linkings between i + 1 and
k − 1 by placing an axiom link between L i and L k = L i with S → A S A. By
DR acyclicity, for the axiom link to be placed, every path from L i to L k must
cross both premises of some ℘-link (otherwise there would be a switching
with a cycle going through the new axiom link). By no subtending, L i and
L k must not be the leftmost and rightmost descendent leaves of an output
division. If these two conditions are satisfied, the resulting PPS is correct.

Let us consider in more detail the acyclicity check. Call a ℘-free path in a
PPS any path which does not cross the two premise edges of any ℘-link. Thus
℘-free paths are extended by connecting the extremities of any link except
for the two premises of a ℘-link. Therefore a PPS built by S → A S A is a
correct linking if and only if before the new link is placed there is no ℘-free
path between the complementary literals, and they are not the leftmost and
rightmost descendent leaves of an output division.

Second, we consider joining continuous planar linkings between i and
j − 1, and j and k with S → S S. This time, no new links are added so
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there is no need for any no subtending check. But the combined PPS might
violate DR acyclicity. Cycles always pass through some axiom link. Therefore
a PPS built by S → S S is a correct linking if and only if in the resulting PPS,
every pair of literals connected by an axiom link are connected by no ℘-free
path other than their direct axiom link itself.

Let us consider the chart computed for the frame in Fig. 11.1.
At the very first step we entertain the possibility of placing an axiom link

between S◦1 and S•2. The literals are complementary and do not share any
descendent, therefore the axiom link can be placed and the chart becomes:

(9)
9
8
7
6
5
4
3
2
1 {[]}

2 3 4 5 6 7 8 9 10

Next, we consider placing an axiom link between S•2 and S◦3. The literals
are complementary but they share a ⊗ -ancestor, therefore when a switching
conserves the edge between S◦3 and its mother there would be a cycle going
through the new axiom link. So the axiom link cannot be placed and the chart
becomes:

(10)
9
8
7
6
5
4
3
2 ∅
1 {[]}

2 3 4 5 6 7 8 9 10

An axiom link cannot be placed between S◦3 and N•
3 (they are not comple-

mentary), and so on. The completed first diagonal of the chart is as follows:
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(11)
9 ∅
8 ∅
7 {[]}
6 ∅
5 ∅
4 {[]}
3 ∅
2 ∅
1 {[]}

2 3 4 5 6 7 8 9 10

Continuing on the next even diagonal, cell C (1, 4) cannot be filled by S →
A S A because C (2, 3) is empty (and S◦1 and N•

4 are not complementary),
and it cannot be filled by S → S S because C (3, 4) is empty. Cell C (2, 5)
cannot be filled by S → A S A, nor can it be filled by S → S S because
C (2, 3) is empty. But cell C (3, 6) can be filled by S → A S A:

(12)
9 ∅
8 ∅
7 {[]}
6 ∅
5 ∅
4 {[]}
3 ∅ {[[]]}
2 ∅ ∅
1 {[]} ∅

2 3 4 5 6 7 8 9 10

Figure 11.3. Completed chart for the proof frame of Figure 11.1
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Exercise 11.1. Compute the completion of the chart.

At the very last step, two linkings are obtained: from C (2, 9) and an axiom
link from beginning to end by S → A S A, and from C (1, 2) and C (3, 10)
by S → S S. The full chart is given in Fig. 11.3.
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Symbolic grammar and formal semantics may not be quite the main fashion
in computational linguistics, but it does not seem that anyone has shown
that their methods are flawed or that the problems they address are any less
real. Rather, it is as if we have found them to be hard and slow, and have
been seduced by new methods that seem easier and quicker. This book is an
attempt to bring an old school of categorial grammar to its logical conclusion.
It remains to be seen where it can be taken from here.

Our categorial grammar is purely lexicalist. A grammar is just a lexi-
con: an assignment of types (and lexical semantics) to basic expressions.
The type calculus is universal and contains all the logical theorems and no
non-logical axioms. The formalism is non-commutative intuitionistic lin-
ear logic. In Part II we considered four kinds of connective with which the
basic calculus, the Lambek calculus, can be extended. The implicit even-
tual goal, extremely ambitious and long-term, is to integrate these and
whatever other connectives may be appropriate and necessary into a single
logic capable of expressing the syntax and semantics of all possible human
languages.

12.1 Grammar

Our rendering of grammar as logic entails that syntactic structures are proofs.
But what is a proof ? Proofs can be presented informally, semiformally, or
formally, and in many different formats. What is the essence of a proof ? With
what structure could we identify it? Of what could we say that it is the actual
structure of a proof ? In the case of categorial proofs there seems to be no better
answer to this question than to say that the proofs are proof nets. A major
thesis here is that syntactic structures are not just trees, but proof nets, which
are more complex graphical structures, and more sophisticated ones because
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Figure 12.1. Links for the Lambek calculus with brackets

they are not just static hierarchical structures, but dynamical processes which
tell a story.

As we have seen, proof nets for the Lambek calculus are well-understood.
But proof nets for the extensions in Part II are more topics for current research,
on which we now remark.

For proof nets for bracket operators (Chapter 5), see Fadda and Morrill
(2005). That article proposes unfolding bracketed and antibracketed types into
logical links containing polar bracket atoms as shown in Fig. 12.1.

It is an open question how to represent in proof nets bracket operators with
structural properties such as commutativity and so forth.

For attempts to formulate proof nets for discontinuity operators (Chap-
ter 6) see Morrill (1999b) and Morrill and Fadda (2008), although ‘theorem’
(25) has a counterexample when empty antecedents are allowed (Fadda 2010).
These advocate channel proof nets in which a discontinuous type of sort n will
have 2(n + 1) incident edges, representing the starting points and end points
of its n + 1 segments. When we consider the translation of discontinuous types
into (commutative) first-order intuitionistic logic (Moot and Piazza, 2001),
some edges correspond to positions bound by universal quantifiers and some
edges correspond to positions bound by existential quantifiers. These edges
are represented by continuous lines and dashed lines respectively in Figs. 12.2
and 12.3, which give the channel logical links for the continuous connectives
and the basic discontinuous connectives. In channel proof nets, edges come in
pairs (segment start/end) thus, for example, an axiom link is as follows where
P is an atomic type of sort 0:



conclusion 199

Figure 12.2. L channel logical links

(1)

Naturally, in the future it would be appropriate to define proof nets for the
additives of Chapter 7 and the normal modalities of Chapter 8 as well as for
whatever other new connectives may be introduced.

12.2 Processing

There is a dogma that natural language grammar formalisms should be
polynomial-time processable. On the one hand, people in general quickly find
the correct interpretations in the context of utterances: in most cases a hearer
has correctly comprehended a speaker by the time the speech stream has
ended. On the other hand, on the computational metaphor the mind, or at least
the language faculty, is considered to be (like) a computer. Thus the standard
position is that unless a formalism is polynomial-time recognizable, it fails
as a psychological model of real-time human language processing. But logical
categorial grammar is NP-hard, and there are three objections we would like
to raise against this standard position.
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Figure 12.3. BDLC channel discontinuous logical links

First, what would polynomial-time processability of a formalism prove
unless the formalism had been shown to be able to express an adequate
(‘all and only’) and elegant (descriptively satisfactory) account of natural
language(s)? For example, how does a formalism stand by linguistic criteria
if it invokes massive lexical ambiguity? Surely the first scientific priority is to
capture generalizations elegantly. Indeed, how can we even enquire as to how
efficient processing may be possible before we have a deep insight into the
structure of language, the object of computation?

Second, when we say polynomial-time, do we mean for the fixed language
recognition (FLR) problem or for the universal language recognition (ULR)
problem (Barton et al., 1987)? That is, are we talking about an upper bound on
time as a function of string-length for a language defined (FLR problem) or
as a function of both string-length and grammar size for each string and each
grammar expressible in the formalism (ULR problem)? For example, deciding
whether sequents of the Lambek calculus are theorems is an NP-complete
problem (Pentus, 2006), but Lambek categorial grammar is equivalent in
weak generative capacity to context-free grammar (Pentus, 1992), so the FLR
problem for Lambek categorial grammar is n3.
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Third, Gödel’s incompleteness theorem showed that even elementary arith-
metic is not semidecidable. He interpreted this result as showing that either
mathematics exists outside of the mind, or that the mind is not a machine.
There is a fact of the matter as to whether an arithmetic statement is true or not
but this fact of the matter is not attributable to mind as machine. Thus either
way, according to Gödel’s view, there is more to the world of mathematics than
the mind as mechanism.

Nobody asks of putative laws of physical science that they be such that
nature would be able to compute her behaviour fast. Gödel’s theorem already
refutes the computational metaphor of mind as machine embodying mathe-
matics. In a similar spirit, we would like to defend the position that although
language processing is automatic, the mind may be only like a computer under
the Church–Turing thesis, that is that the computational metaphor in relation
to the language faculty may indeed be just a metaphor: that there is more to
the world of language than mind as mechanism.

12.3 Open problems

To conclude, we list here a number of open research problems in type logical
categorial grammar.

� Logical categorial grammar as here operates within the traditional par-
adigm of sentential grammar whereby the meaning assigned to a sen-
tence is represented by a closed logical formula. But phenomena such
as anaphora and VP ellipsis include intersentential binding. Can the
type logical categorial architecture be adjusted to accommodate discourse
binding?

� How can we formulate proof nets for bracket operators including struc-
tural properties? And how can we carry out the associated processing?
In particular, if we assume that the inputs to the parsing process are
unbracketed strings, how can parsing/theorem-proving discover the exis-
tence of appropriate bracketings?

� How can we give proof nets for the discontinuous Lambek calculus in
general? Cf. Fadda (2010).

� How can we give give proof nets for the Lambek calculus with additives?
Cf. e.g. Hughes and van Glabbeck (2005). Can this account be improved
upon and/or simplified in the present context?

� Can we give simple proof nets for the Lambek calculus with normal
modalities? Cf. Restall (2007).

� For all accounts of proof nets for logical categorial grammar extending
those for Lambek categorial grammar, can we adapt and extend the
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shift-reduce parsing model of Chapter 4 to include them? In that model
correctness is maintained incrementally by only reducing (i.e. placing
an axiom link) once it has been checked that this would maintain well-
formedness: it is checked that a certain kind of path (a ℘-free path) does
not exist between the two literals to be connected. Can more general proof
net shift-reduce parsing models also operate on the basis of such negative
path constraints?

� How can we integrate bracket operators and discontinuity operators in a
single calculus? Would we allow wrapping into bracketed domains under
certain circumstances, and how would this be controlled, for example in
relation to sorting?

� Can the memoization of Lambek theorem-proving of Chapter 11 be devel-
oped so as to accommodate lexical ambiguity in a single chart? Can it be
extended to other logical categorial grammar proof nets? How can Early
deduction be formulated for categorial proof nets?

� How can categorial generation as opposed to parsing be formulated, in
relation to proof nets (cf. Merenciano and Morrill, 1997; Pogodalla, 2000).
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A.1 Naturals

The natural numbers are 0, 1, 2, . . . . There are the arithmetic operations of
addition (+), multiplication (×), and exponentiation ((·)·). These obey the
laws shown in Fig. A.1.

Consider the course of growth of n3 and 2n:

(1) n 0 1 2 3 4 5 6 7 8 9 10

n3 0 1 8 27 64 125 216 343 512 729 1000

2n 1 2 4 8 16 32 64 128 256 512 1024

We see that n3 < 2n for n < 2, then that n3 > 2n for 2 ≤ n ≤ 9, and then
that n3 < 2n for n = 10 (and above). When we compare the rate of growth of
functions it is the way the pattern eventually settles that we take into account.
We call this comparison ‘in the limit’. In the limit, 2n grows faster than n3.

x + (y + z) = (x + y) + z associativity
x × (y × z) = (x × y)× z

x + y = y + x commutativity
x × y = y × x

0 + x = x = x + 0 0 is an identity for +
1× x = x = x × 1 1 is an identity for×

x × (y + z) = (x × y) + (x × z) distributivity

Figure A.1. Some arithmetic laws
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Indeed, in the limit, all exponential functions grow faster than all polynomial
functions.

A.2 Sets

A set is a collection of distinct objects which are called the members or elements
of that set. For example, there is the set containing the natural numbers one,
two, and three, which we may write {1, 2, 3}. This is a finite set. The set N =
{0, 1, 2, . . .} of all natural numbers is an infinite set.

To say that an element a belongs to a set A, we write a ∈ A. For example,
1 ∈ {1, 2, 3}. To say that an element a does not belong to a set A, we write
a 
∈ A. For example, 0 
∈ {1, 2, 3}. The empty set {} is the set which contains
no elements; we sometimes write it ∅.

Where A is a set, the cardinality of A, |A|, is the number of elements it
contains. For example, |{1, 2, 3}| = 3. We name the cardinality of the set N of
natural numbers ˘ (or aleph zero).

Apart from defining sets by listing their members, a set may be defined
by stating a property necessary and sufficient for an element to qualify as a
member. For example:

(2) a. {x ∈ N| 1 ≤ x ≤ 3} = {1, 2, 3}
b. {x ∈ N| x mod 2 = 0} = {0, 2, 4, . . .}

A set X is a subset of a set Y , X ⊆ Y , if and only if (iff) every member of X is
also a member of Y . For example, {1, 2} ⊆ {1, 2, 3}. Note that every set X is a
subset of itself, X ⊆ X , and that for all sets X, Y , and Z, if X ⊆ Y and Y ⊆ Z
then X ⊆ Z. The empty set is a subset of every set.

The power set P(X) of a set X is the set of all subsets of X :

(3) P(X) = df {Y | Y ⊆ X}
The intersection X ∩ Y of two sets X and Y is the set of elements that belong
to both X and Y :

(4) X ∩ Y = df {x| x ∈ X and x ∈ Y }
The union of two sets X and Y is the set of elements that belong to either X or
Y (or both):

(5) X ∪ Y = df {x| x ∈ X or x ∈ Y }
The difference X − Y between a set X and a set Y is the set of elements of X
which are not elements of Y :

(6) X − Y = df {x| x ∈ X and x 
∈ Y }



mathematical background 205

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z associativity
X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z

X ∩ Y = Y ∩ X commutativity
X ∪ Y = Y ∪ X

X ∩ X = X idempotency
X ∪ X = X

X = X involution

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) distribution
X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)

∅ ∩ X = ∅ identity laws
∅ ∪ X = X

U ∩ X = X
U ∪ X = U

X ∩ Y = X ∪ Y de Morgan laws
X ∪ Y = X ∩ Y

Figure A.2. Set-theoretic laws

For example, {1, 2, 3} − {0, 1} = {2, 3}. In the context of a universal set U from
which all elements are drawn, the complement XU (or X if U is understood)
is the difference between U and X :

(7) X = df {x| x ∈ U and x 
∈ X}
The set-theoretic operations obey the laws shown in Fig. A.2.

A.3 Mappings

An ordered pair (x, y) comprises a first element x and a second element
y. We define the first projection fst((x, y)) = df x and the second projection
snd((x, y)) = df y. A mapping is a set A of ordered pairs such that for each
x there is at most one y such that (x, y) ∈ A; in the case that there is such
a y we say that the mapping A is defined for x and that the value of A
for the argument x is y: A(x) = y; otherwise we say that A is undefined
for x .

The domain of a mapping A is the set of arguments for which it is defined,
i.e. {x| (x, y) ∈ A for some y}. The codomain or range of a mapping A is the
set of its values, i.e. {y| (x, y) ∈ A for some x}. If a mapping has as domain
a subset of a set X and as range a subset of a set Y , we say that the mapping
is a partial function from X to Y ; if the domain is exactly X we say that the
mapping is a total function from X to Y .
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A.4 More operations on sets

Given sets X and Y , the functional exponentiation XY is the set of all total
functions from Y to X .

Exercise A.1. Show that |XY | = |X||Y |.
The Cartesian product X × Y is the set of all ordered pairs of elements from
X (first) and Y (second):

(8) X × Y = df {(x, y)| x ∈ X and y ∈ Y }

Exercise A.2. Show that |X × Y | = |X| × |Y |.
The disjoint union X � Y is defined as follows:

(9) X � Y = df ({1} × X) ∪ ({2} × Y )

Exercise A.3. Show that |X � Y | = |X| + |Y |.

A.5 Data structures and formal languages

Given a universal set U from which all elements are drawn, there is associated
with a set X a unique total function f from U to {0, 1} such that f (a) = 1 if
a ∈ X and f (a) = 0 if a 
∈ X ; this f is called the characteristic function of the
set X .

We define a multiset or bag as a total function from U into the set N of
natural numbers. Thus whereas all elements of a set are distinct, elements
of a multiset have a multiplicity of occurrence. But a multiset, like a set, is
unordered.

We define a (finite) sequence or list as a function from {1, 2, . . . , n} to
U for some natural n. Unlike the elements of sets and multisets (or bags)
the elements of sequences (or lists) are ordered. In sequence notation we
write the successive values in successive positions within angle brackets, for
example 〈a, b, a〉. In list notation we write the successive values in successive
positions with square brackets, for example [a, b, a]. We call n the length
l(Û) of the sequence or list Û. The length of the empty sequence 〈〉 or list []
is zero.

An alphabet is a finite non-empty set the members of which are called
symbols. Given an alphabet, a string is a finite sequence of symbols from the
alphabet. We write, for example, aba . In string notation the empty sequence
〈〉 is written Â. Where ” is an alphabet, ”∗ is the set of all strings over ”. We
define a (formal) language as a set of strings, i.e. a subset of ”∗.



mathematical background 207

A.6 Relations

Where n is a natural, the nth power of a set X , Xn, is the set of all sequences
of length n of elements of X . An n-ary relation on X is a set of sequences of
length n of elements of X , i.e. a subset of the nth power Xn of X . Where R is
a binary relation, we may abbreviate 〈x, y〉 ∈ R as x Ry.

A binary relation R on a set D is reflexive iff for all x ∈ D, x Rx . It is
irreflexive iff for all x ∈ D, it is not the case that x Rx . It is nonreflexive iff
it is neither reflexive nor irreflexive.

A binary relation R on a set D is symmetric iff for all x and y ∈ D, if x Ry
then y Rx . It is asymmetric iff for all x ∈ D, if x Ry then it is not the case that
y Rx . It is nonsymmetric iff it is neither symmetric nor asymmetric.

A binary relation R on a set D is transitive iff for all x , y, and z ∈ D, if x Ry
and y Rz then x Rz. It is intransitive iff for all x , y and z ∈ D, if x Ry and y Rz
then it is not the case that x Rz. It is nontransitive iff it is neither transitive nor
intransitive.

Note that every binary relation is exclusively reflexive, irreflexive, or nonre-
flexive, symmetric, asymmetric, or nonsymmetric, and transitive, intransitive,
or non-transitive.

A binary relation R on a set D is antisymmetric iff for all x and y ∈ D, if
x Ry and y Rx then x = y.

For example, we have already seen that the subset relation ⊆ is reflexive
and transitive. It is also nonsymmetric, and antisymmetric. The arithmetic
relation < is irreflexive, asymmetric (and, vacuously, antisymmetric), and
transitive. The arithmetic relation ≤ (like ⊆) is reflexive, nonsymmetric (and
antisymmetric), and transitive. The arithmetic relation = mod 4 is reflexive,
symmetric (but not antisymmetric), and transitive. The arithmetic relation =
is reflexive, symmetric (and antisymmetric), and transitive.

A.7 Operations

Where n is a natural, an n-ary operation on a set D is a mapping from Dn

to D.
A binary operation · on a set D is associative iff for all x , y, and z ∈ D,

(10) x·(y·z) = (x·y)·z
It is commutative iff for all x and y ∈ D,

(11) x·y = y·x
It is idempotent iff for all x ∈ D,

(12) x·x = x
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Two binary operations � and � on a set D have the property of absorption iff
for all x and y ∈ D,

(13) x � (y � x) = x = (x � y) � x

We say that � distributes over � iff

(14) x � (y � z) = (x � y) � (x � z)

We say that � distributes over � iff

(15) x � (y � z) = (x � y) � (x � z)

We say that a unary operation− on a set D distributes over a binary operation
· over the same set iff for all x and y ∈ D,

(16) −(x·y) = (−x)·(−y)

A unary operation− on a set D is involutive iff for all x ∈ D,

(17) −− x = x

An element 1 ∈ D is a left identity for a binary operation · on D iff for all
x ∈ D,

(18) 1·x = x

It is a right identity iff for all x ∈ D,

(19) x·1 = x

A.8 Algebras

We say that a set D is closed under an operation ◦ of arity m iff for all
x1, . . . , xm ∈ D, o(x1, . . . , xm) ∈ D. An algebra (D, ◦1, . . . , ◦n) comprises a
set (domain) D together with some operations ◦1, . . . , ◦n on this set. Since
we define the operations to be on the domain, an algebra is always closed
under its operations. By way of example, (N, +,×, (·)·) is an (arithmetic)
algebra. Where the operations ◦1, . . . , ◦n have arities m1, . . . , mn we say that
the algebra has arity (m1, . . . , mn).

We can classify algebras according to the properties of their operations.

� A semigroup is an algebra (D, ·) of arity (2) where · is associative.
� A monoid is an algebra (D, ·, 1) of arity (2, 0) where (D, ·) is a semigroup

and 1 is a (left and right) identity for ·.
� A lattice is an algebra (D, �, �) of arity (2, 2) where (D, �) and (D, �)

are semigroups and where in addition � and � are commutative and
idempotent, and have the property of absorption.
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� A Boolean algebra is an algebra (D, �, �,′ ,⊥,!) of arity (2, 2, 1, 0, 0)
where (D, �, �) is a lattice, � and � are distributive, ⊥ is an identity
for � and for all x ∈ D ⊥� x =⊥ and! is an identity for � and for all
x ∈ D !� x = !, and (complementarity):

(20) x ′ � x = ! and x ′ � x =⊥
For example, where ” is an alphabet and⊕ is the operation of string concate-
nation, (”∗,⊕, Â) is a monoid. And where U is a set, (P(U ),∪,∩, ·, ∅, U ) is
a Boolean algebra.

A.9 Structures

Structures are like algebras, but contain in addition relations. A structure
(D, ◦1, . . . , ◦i ; R1, . . . , R j ) comprises a set (domain) D, some operations
◦1, . . . , ◦i on D and some relations R1, . . . , R j on D. Where the arities of
◦1, . . . , ◦i and R1, . . . , R j are m1, . . . , mi and n1, . . . , n j respectively, we say
that the structure has arity (m1, . . . , mi ; n1, . . . , n j ).

We can classify structures according to their properties. We start with some
structures without any operations.

� A strict order is a structure (D; <) of arity (2) where < is irreflexive,
asymmetric, and transitive.

� A preorder is a structure (D;") of arity (2) where " is reflexive and
transitive.

� A partial order is a preorder (D;≤) where ≤ is antisymmetric.
� An equivalence is a preorder (D;≡) where≡ is symmetric.

For example, (N; <) is a strict order; (N;≤) is a partial order and, where U
is any set, so is (P(U ),⊆); and (N; = mod 4) is an equivalence but not a
partial order, and (N; =) is an equivalence and a partial order (as is the identity
relation {〈d, d〉|d ∈ D} on any set D).

Including now operations, a residuated pair is a structure (D,♦, �↓;") of
arity (1, 1; 2) where (D;") is a preorder, and for all x and y ∈ D ((unary)
residuation):

(21) ♦x " y iff x " �↓y

A residuated triple is a structure (D,→, ·,←;") of arity (2, 2, 2; 2) where
(D;") is a preorder, and for all x , y, and z ∈ D ((binary) residuation):

(22) x " z ← y iff x·y " z iff y " x → z
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A preordered/partially ordered semigroup is a structure (D, ·;") of arity
(2; 2) where (D, ·) is a semigroup, (D;") is a preorder/partial order, and for
all x , y, and z ∈ D (compatibility of · with"):

(23) if x " y then x·z " y·z and z·x " z·y
A residuated semigroup is a residuated triple (D,→, ·,←;") where (D, ·;")
is a preordered semigroup.

A.10 Homomorphisms

Where (D1, ◦1, . . . , ◦m) and (D2, •1, . . . , •n) are algebras, a mapping h from
D1 to D2 and from {◦1, . . . , ◦m} to {•1, . . . , •n} preserving arity is a homo-
morphism iff for all i, 1 ≤ i ≤ m, ◦i of arity j , for all x1, . . . , x j ∈ D1,

(24) h(◦i (x1, . . . , x j )) = h(◦i )(h(x1), . . . , h(x j ))

For example, where (”∗,⊕, Â) is the monoid of strings over an alphabet ”,
the function l of length is a homomorphism from the monoid of strings
(”∗,⊕, Â) to the additive monoid (N, +, 0) since for all x and y ∈ ”∗,

(25) l(x ⊕ y) = l(x) + l(y)
and l(Â) = 0

Again, let F be a set of sets which is closed under disjoint union, Cartesian
product, and functional exponentiation. Then (F ,�,×, (·)·) is an algebra.
The function | · | of cardinality is a homomorphism from (F ,�,×, (·)·) to
the arithmetic algebra (N, +,×, (·)·) since for all X , Y , and Z ∈ F :

(26) |X � Y | = |X| + |Y |
|X × Y | = |X| × |Y |
|XY | = |X||Y |

Two structures are isomorphic iff there is a homomorphism from each to the
other.

A.11 Decidability

The Turing machine (TM) is a model of computation due to Turing (1936).
The workspace of a TM is a tape divided into cells which is infinite to the left
and to the right (there is no first cell or last cell). Each cell contains a symbol
from an alphabet √ including a special blank symbol b. (It turns out that a
TM tape only ever has a finite number of non-blank cells.) At any one time, the
processor of a TM is in one of a finite set Q of states including an initial state q 0

and an acceptor state qF . The functioning of a TM is governed by a transition



mathematical background 211

function ‰ which is a partial function from Q × √ to Q ×√× {−, +}; the
transition function is such that ‰(qF, a) is undefined for all a ∈ √. The TM
has a head which at any given moment is over one cell. Thus at each point in
a computation a TM has a current state q ∈ Q and a current symbol a ∈ √
in the cell it is reading. If ‰(q , a) is undefined, the TM halts, but otherwise
where its value is (q ′, a ′, m) it changes state to q ′, writes a ′ in the current
cell, and moves its head one cell to the left or to the right according as m is
− or +.

Let ” = df √− {b}. The input for a TM is a string w ∈ ”∗. The initial
configuration for input w has the tape blank everywhere except for the string
w starting at the TM head. The execution of a TM for a given input w either
continues forever or else halts (when the transition function is undefined)
after a finite number of steps. A TM may be interpreted in two ways. It
may be interpreted as defining a language, the language it recognizes, and
it may be interpreted as defining a function, the function it computes. We
consider these in turn.

If a TM halts for a given input, it either halts in the acceptor state q F or in
another state. We say that a TM accepts a string w ∈ ”∗ iff the execution of
the TM starting from the initial configuration for w halts in q F . (If it halts in
another state, or does not halt, it does not accept w.) We call the set of strings
accepted by the TM the language recognized by the TM. We call a language
recursively enumerable iff it is recognized by some TM. We call a TM terminat-
ing iff it halts on all inputs. We call a language recursive iff it is recognized by
some terminating TM.

When we want to consider a TM as computing a function, we define its
output, for the initial configuration for w ∈ ”∗, when it halts, as the string
over ” compressed between the TM head and the first blank to its right. Thus
a TM computes a partial function from ”∗ to ”∗. The function is undefined
for inputs on which the TM does not halt. A terminating TM computes a total
function from ”∗ to ”∗.

The Church–Turing thesis is that the functions computed by TMs are
exactly the functions computable by mechanical means. This claim could
be falsified (if we found a mechanical procedure for computing a function
that cannot be implemented on a TM), but it cannot be verified (because we
cannot guarantee that there is no such counterexample). However, there are
grounds for confidence in the thesis because for decades alternative models of
computation consistently turn out to be equivalent to TMs.

We say that a language is decidable iff there exists a mechanical procedure
for determing whether or not a string belongs to the language (a decision
procedure). In view of the Church–Turing thesis, we equate a language being
decidable with the language being recursive, that is recognized by a terminating
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TM. A terminating TM that recognizes the language provides such a decision
procedure.

We say that a language is semidecidable iff there exists a mechanical proce-
dure which verifies that a string belongs to the language in the case that it does
(a semidecision procedure). Note that on a string that does not belong to the
language, a semidecision procedure may halt and report this, but it may also
simply fail to halt. In view of the Church–Turing thesis, we equate a language
being semidecidable with the language being recursively enumerable, that is,
recognized by a not necessarily terminating TM. A TM that recognizes the
language provides such a semidecision procedure.

A.12 Computational time complexity

Given a terminating TM M, we define the time of computation for input w,
as the number of steps until M halts on input w. We say that a language is
polynomially decidable (in class P) iff it is recognized by a terminating TM
the time of computation of which is bounded from above by some polynomial
function of the length of the input.

There is also a nondeterministic variant of Turing machines in which
the range of the transition function is not Q ×√× {−, +} but P(Q ×√×
{−, +}) so that a configuration can have multiple successor configurations. We
say that a language is nondeterministically polynomially decidable (in class
NP) iff it is decided by a nondeterministic TM, the time of computation of
which is bounded from above by some polynomial function of the length of
the input.

It is almost certain that P 
= NP, but proving this is the biggest open prob-
lem in theoretical computer science.
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Here we present a Prolog implementation of the shift-reduce parsing algo-
rithm for the Lambek categorial grammar of Chapter 4.

B.1 Program listing

:- dynamic(count/1).

:- dynamic(loglnk/4).

:- dynamic(axlnk/2).

:- dynamic(rootsem/2).

:- op(400, xfx, *).

:- op(400, xfx, \).

:- op(400, xfx, /).

t(?I) tests string I.

t(I) :- str(I, Str, A), clean,

nl, nl, write(I), write(’ ’), write(Str), write(’ ’), write(A),

unfold(out(A), 0, Fringe, []),

prs(Fringe, [], Str),

sem_trip_up(0, Phi),

eval(Phi, Phi2),

nl, nl, pp(Phi2),

fail.

t(_).

clean removes from dynamic memory the results of previous processing.

clean :- retractall(count(_)),

retractall(loglnk(_, _, _, _)),

retractall(axlnk(_, _)),

retractall(rootsem(_, _)),

assert(count(0)).

unfold(+PolA, +N, -Lits, -Lts) unfolds polar type PolA labelling
nodes starting from N and means that the fringe of the resulting polar type
tree is represented by the difference list Lits-Lts.

unfold(PolA, N, Lits, Lts) :-

unfold2(PolA, D1, M, D2), !,

gensymb(N1),
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gensymb(N2),

unfold(D1, N1, Lits, Lts2),

unfold(D2, N2, Lts2, Lts),

add(loglnk(M, N1, N, N2)).

unfold(inp(P), N, [inp(P, N)|Lts], Lts) :- !.

unfold(out(P), N, [out(P, N)|Lts], Lts).

unfold2(+PolA, -D1, -M, -D2) means that polar type PolA unfolds in
its logical link to left daughter D1 and right daughter D2, and that the link is
of type M.

unfold2(inp(A\C), out(A), inp_under, inp(C)) :- !.

unfold2(inp(C/B), inp(C), inp_over, out(B)) :- !.

unfold2(inp(A*B), inp(A), i(inp_prod), inp(B)) :- !.

unfold2(out(A\C), out(C), i(out_div(under)), inp(A)) :- !.

unfold2(out(C/B), inp(B), i(out_div(over)), out(C)) :- !.

unfold2(out(A*B), out(B), out_prod, out(A)).

gensymb(N1) :- retract(count(N)), !,

N1 is N+1,

assert(count(N1)).

add(C) :- assert(C).

add(C) :- retract(C), fail.

prs(+LS, +GS, +Str) parses buffer Str starting from local stack LS and
global stack GS.

prs([], [], Str) :- !, Str=[].

prs([], GS, [Word|Str]) :- !, lex(Word, A, Sem),

gensymb(N),

add(rootsem(N, Sem)),

unfold(inp(A), N, Fringe, []),

prs(Fringe, GS, Str).

prs([L2|LS], [L1|GS], Str) :- compl(L1, L2, N1, N2),

\+i_free_dn(N1, N2, []),

\+subtend(N1, N2),

add(axlnk(N1, N2)),

prs(LS, GS, Str).

prs([Lit|LS], GS, Str) :-

prs(LS, [Lit|GS], Str).

compl(+L1, +L2, -N1, -N2) means that literals L1 and L2 are comple-
mentary and that they are numbered N1 and N2 respectively.

compl(inp(P, N1), out(P, N2), N1, N2) :- !.

compl(out(P, N1), inp(P, N2), N1, N2).

i_free_up(+N, +L, +V) means that there is a i-free path to L starting by
travelling upwards from N without visiting the nodes in V. i_free_dn(+N,
+L, +V) means that there is a i-free path to L starting by travelling down-
wards from N without visiting the nodes in V.
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i_free_up(N, N, _).

i_free_up(N, L, V) :- loglnk(Kind, D1, N, D2), !,

i_free_up2(Kind, D1, N, D2, L, V).

i_free_up(N, L, V) :- (axlnk(N, M); axlnk(M, N)), !,

i_free_dn(M, L, V).

i_free_dn(N, L, V) :- (loglnk(Kind, N, M, D); loglnk(Kind, D, M, N)), !,

i_free_dn2(Kind, M, D, L, V).

i_free_up2(i(_), D1, N, D2, L, V) :- !, not_visited(V, N),

(i_free_up(D1, L, [N|V]); i_free_up(D2, L, [N|V])).

i_free_up2(_, D1, _, D2, L, V) :- i_free_up(D1, L, V); i_free_up(D2, L, V).

i_free_dn2(i(_), M, _, L, V) :- !, not_visited(V, M),

i_free_dn(M, L, [M|V]).

i_free_dn2(_, M, D, L, V) :- i_free_dn(M, L, V); i_free_up(D, L, V).

not_visited([], _).

not_visited([H|T], N) :- \+H=N,

not_visited(T, N).

subtend(+N, +L) means that N and L are the leftmost and rightmost
descendent leaves of an output division node.

subtend(N, L) :- loglnk(i(out_div(_)), N, _, D),

subtend2(D, L).

subtend(N, L) :- loglnk(_, N, M, _), !,

subtend(M, L).

subtend2(L, L) :- !.

subtend2(N, L) :- loglnk(_, _, N, D), !,

subtend2(D, L).

sem_trip_up(+N, -Phi) means that Phi is the semantic reading that
results from taking the semantic trip starting upwards on node N.
sem_trip_dn(+N, -Phi) means that Phi is the semantic reading that
results from taking the semantic trip starting downwards on node N.

sem_trip_up(N, Phi) :- (axlnk(N, M); axlnk(M, N)), !,

sem_trip_dn(M, Phi).

sem_trip_up(N, [lmd, N, Phi]) :-

(loglnk(i(out_div(under)), D, N, _); loglnk(i(out_div(over)), _, N, D)), !,

sem_trip_up(D, Phi).

sem_trip_up(N, [pair, Phi, Psi]) :- loglnk(prodout, D1, N, D2), !,

sem_trip_up(D1, Phi),

sem_trip_up(D2, Psi).

sem_trip_dn(N, Phi) :- rootsem(N, Phi), !.

sem_trip_dn(D, [app, Chi, Phi]) :-

(loglnk(inp_under, Arg, M, D); loglnk(inp_over, D, M, Arg)), !,
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sem_trip_dn(M, Chi),

sem_trip_up(Arg, Phi).

sem_trip_dn(D, N) :-

(loglnk(i(out_div(under)), _, N, D); loglnk(i(out_div(over)), D, N, _)), !.

sem_trip_dn(D, [pi1, Chi]) :- loglnk(i(inp_prod), D, M, _), !,

sem_trip_dn(M, Chi).

sem_trip_dn(D, [pi2, Chi]) :- loglnk(i(inp_prod), _, M, D), !,

sem_trip_dn(M, Chi).

eval(+Phi, -NF) means that lambda term Phi normalizes to NF.

eval(Phi, NF) :- !, numbervars(Phi, 0, _),

eval2(Phi, NF).

eval2(Phi, NF) :- contract(Phi, Phi2), !,

eval2(Phi2, NF).

eval2(Phi, Phi).

contract(+Phi, -Phi2) means that lambda term Phi contracts in one
step to Phi2.

contract([app, [lmd, X, Phi], Psi], Chi) :- !, subst(Phi, X, Psi, Chi).

contract([pi1, [pair, Phi, _]], Phi) :- !.

contract([pi2, [pair, _, Psi]], Psi) :- !.

contract([H|T], [H1|T]) :- contract(H, H1), !.

contract([H|T], [H|T1]) :- contract(T, T1).

contract([app, [app, eq, Phi], Phi], true).

contract([app, [app, and, true], Phi], Phi).

contract([app, [app, and, Phi], true], Phi).

subst(+Phi, +X, +Psi, -Chi) means that Chi is the result of substitut-
ing Phi for X in Psi.

subst(X, X, Phi, Phi) :- !.

subst([H|T], X, Phi, [H1|T1]) :- !, subst(H, X, Phi, H1),

subst(T, X, Phi, T1).

subst(X, _, _, X).

pp(+Phi) pretty prints lambda term Phi.

pp([lmd, X, Phi]) :- !, write(’L’), write(X), pp(Phi).

pp([app, Phi, Psi]) :- !, write(’(’), pp(Phi), write(’ ’), pp(Psi), write(’)’).

pp([pair, Phi, Psi]) :- !, write(’(’), pp(Phi), write(’, ’), pp(Psi), write(’)’).

pp([pi1, Phi]) :- !, write(pi1), pp(Phi).

pp([pi2, Phi]) :- !, write(pi2), pp(Phi).

pp(X) :- write(X).

member(+X, +L) means that X belongs to list L.
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member(X, [X|_]).

member(X, [_|T]) :-

member(X, T).

lex(+W, -A, -Phi) means that word W has lexical type A with semantics
Phi.

lex(and, ((((n\s)/n)\(n\s))\(((n\s)/n)\(n\s)))/(((n\s)/n)\(n\s)),

[lmd, X, [lmd, Y, [lmd, Z, [lmd, W, [app, [app, and, [app, [app, Y, Z], W]], [app,

[app, X, Z], W]]]]]]).

lex(beginning, cn, beginning).

lex(created, (n\s)/n, created).

lex(earth, cn, earth).

lex(’God’, n, ’God’).

lex(heavens, cn, heavens).

lex(in, (s/s)/n, in).

lex(the, n/cn, the).

str(?I, -Str, -A) means that I labels string Str to be analysed as type A.

str(gen(1, 1), [in, the, beginning, ’God’, created, the, heavens, and, the, earth], s).

B.2 Session log

Script started on Tue Apr 14 13:27:22 2009

[entropia] ~/SSR/Bible > sicstus

SICStus 2.1 #9: Thu Jun 19 13:03:29 MET DST 1997

| ?- [cgprs090414].

{consulting /usr/usuaris/ia/morrill/SSR/Bible/cgprs090414.pl...}

{/usr/usuaris/ia/morrill/SSR/Bible/cgprs090414.pl consulted, 50 msec 25024 bytes}

yes

| ?- t(_).

gen(1,1) [in,the,beginning,God,created,the,heavens,and,the,earth] s

((in (the beginning)) ((and ((created (the heavens)) God)) ((created (the earth)) God)))

yes

| ?- ^D

[entropia] ~/SSR/Bible > ^Dexit

script done on Tue Apr 14 13:28:04 2009
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