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Preface

THIS BOOK IS ABOUT an amazing intellectual “collaboration’’ between
two men who never met. The Englishman George Boole lived his

entire life within the nineteenth century, while the American Claude
Shannon was born in the twentieth and died at the beginning of the
twenty-first. Boole, of course, never knew Shannon, but he was one
of Shannon’s heroes. It is because of Shannon that Boole is rightfully
famous today, but it is because of Boole that Shannon first gained the
attention of the scientific community.

What makes the cross-time relationship of these two remarkable
men particularly interesting is that Boole was a pure mathematician,
a man who lived in the rarefied, abstract world of the academic, while
Shannon was primarily a practical, “get your hands dirty’’ electrical
engineer. Despite this extreme difference in their worldviews, it is
simply impossible to think of one of these men without thinking of
the other. So many of the well-known scientific theories of our day are
attached—rightfully or not—to a single name (it is Einstein’s theory
of special and general relativity, it is Newton’s theory of gravity, it is
Maxwell’s theory of electrodynamics, it is Darwin’s theory of evolution,
it is Schrödinger’s theory of quantum wave mechanics, it is Heisenberg’s
theory of quantum matrix mechanics, and so on), but when one hears
of Boolean algebra one immediately thinks also of Shannon’s switching
theory. And vice versa. The two names are intimately entangled.

Later in his life Shannon’s name did become uniquely attached
to the new science of information theory, but even then you’ll see
as you read this book how the mathematics of information theory—
probability theory—was a deep, parallel interest of Boole’s as well.

What Boole and Shannon created, together, even though separated
by nearly a century, was without exaggeration nothing less than the
fundamental foundation for our modern world of computers and
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information technology. Bill Gates, the late Steve Jobs, and other
present-day business geniuses are the people most commonly thought
of when the world of computer science is discussed in the popular
press, but knowledgeable students of history know who were the real
technical minds behind it all—Boole and Shannon (and Shannon’s
friend, the English genius Alan Turing, who appears in the following
pages, too).

Read this book and you’ll understand why.
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1
What You Need To Know to Read This Book

If a little knowledge is dangerous, where is the man who has

so much as to be out of danger?

—Thomas Huxley (1877)

Claude Shannon’s very technical understanding of

information . . . is boring—it’s dry.

—James Gleick, in a 2011 interview about his book

The Information, expressing a view common among those who

think glib cocktail conversation is equivalent to analytic

reasoning and true understanding

TO READ THIS BOOK you don’t have to be an electronics genius, a
computer geek, or a quantum mechanics whiz. But that doesn’t

mean I’m assuming you are a high school dropout, either. I will,
in fact, be assuming some knowledge of mathematics and electrical
physics and an appreciation for the value of analytical reasoning—but
no more than a technically minded college-prep high school junior
or senior would have. In particular, the math level is that of algebra
including knowing how matrices multiply. The electrical background
is simple: knowing (1) that electricity comes in two polarities (positive
and negative) and that electrical charges of like polarity repel and of
opposite polarity attract; and (2) understanding Ohm’s law for resistors
(that the voltage drop across a resistor in volts is the current through
the resistor in amperes times the resistance in ohms) and the circuit laws
of Kirchhoff (that the sum of the voltage drops around any closed
loop is zero, which is an expression of the conservation of energy; the
sum of all the currents into any node is zero, which is an expression
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Figure 1.1. A potentiometer is a three-terminal circuit element.

of the conservation of electric charge). No knowledge of electronics is
required.

That’s it.
That’s pretty brief, too, and so here is an example of the level

of math/physics I am going to assume on your part. As you read
through what follows, ask yourself if, at each step, you understand the
reasoning. If you can say “yes’’ all the way through, then you can be
sure there will be nothing in this book beyond your grasp. My example
is from a minor classic in electrical circuit theory, a problem studied
in a 1956 paper coauthored by the mathematical electrical engineer
Claude Shannon. (I specifically mention Shannon here because—
besides being mentioned by Gleick—he is a central character in this
book.) That paper opens with the following amusing words

As part of a computer, a rheostat having a resistance that was
a concave upward function of the shaft angle was needed. After
many attempts to approximate it with networks of linearly wound
potentiometers and fixed resistors, it became apparent that
either it was impossible or that we were singularly inept network
designers. Rather than accept the latter alternative, we have
proved the [impossibility of such a network].1

Now, first of all, a couple of explanations.
A potentiometer (or rheostat, a rather old-fashioned word) is simply

a variable resistor, with the variation produced by rotating an attached
shaft; a linear potentiometer is one whose variable resistance is a linear
function of the shaft rotation angle. Figure 1.1 shows a potentiometer
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Figure 1.2. Two potentiometers in parallel.

as a three-terminal element, with the fixed resistance R available
between the terminals marked a and c, the variable resistance αR
available between the terminals a and b (b is the output terminal on
a sliding contact—called the wiper arm—connected to a rotatable shaft
which is, in turn, connected to a control panel knob), and the variable
resistance (1 − α) R available between terminals b and c. We imagine
that the non-negative parameter α is directly proportional to the shaft
rotation angle, with α = 0 representing the shaft turned all the way
counterclockwise (b to the extreme left) and α = 1 representing the
shaft turned all the way clockwise ( b to the extreme right).

A concave upward function is one that, to invoke some easy imagery,
is a curve that can “hold water.’’ (Take an advance look at Figure 1.3
for an example of the opposite case, that is, a curve that can not “hold
water.’’) What Shannon and his coauthor proved, then, is that such
a “water-holding’’ function can not be realized by any combination of
linear potentiometers and fixed resistors. Their general proof is rather
subtle, and is far more sophisticated than anything we’ll do in this
book. But for any given, specific circuit, we can confirm their result
by direct calculation.

So, consider Figure 1.2, which shows two potentiometers wired in
parallel. The two potentiometers are mechanically “ganged,’’ which
means that the same shaft simultaneously varies the two wiper termi-
nals (b and b′). The two potentiometers have the same fixed resistance
R (between a and c, and between a′ and c′), but are electrically
connected so that the parallel resistances are αR and (1 − α)R. Since
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Figure 1.3. A resistance function that cannot ‘hold water’.

elementary circuit theory (stuff I’m expecting you to know at the
outset) tells us that the equivalent resistance of two parallel resistances
is their product divided by their sum, then we immediately have the
resistance of the circuit in Figure 1.2 as

Rin = αR(1 − α)R
αR+ (1 − α)R

= α(1 − α)R2

R

or,

Rin

R
= α(1 − α).

Figure 1.3 shows a plot of Rin
R for 0 ≤ α ≤ 1, and it is indeed a concave

downward function (a parabola, in fact), in agreement with the general
result of Shannon and Hagelbarger.

Okay, did all that make sense to you? It won’t to everyone. Shannon
was a jazz buff and, in a 1952 talk on analytic creativity he gave at Bell
Labs, he repeated jazz legend Fats Waller’s famous remark about who
could play swing music: “Either you got it or you ain’t.’’ If all the above
did make sense to you, then “you got it’’ for what it takes to read this
book.
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NOTES AND REFERENCES

1. C. E. Shannon and D. W. Hagelbarger, “Concavity of Resistance Func-
tions,’’ Journal of Applied Physics, January 1956, pp. 42–43. When the authors
write of their problem being inspired by the design of “part of a computer,’’
I’m assuming that means they were thinking of an analog computer and not
a digital machine. Shannon had, in fact, worked for a time (1936–38) on
the famous “differential analyzer’’ at MIT (where he received, at the same
commencement in the spring of 1940, a master’s in electrical engineering
and a doctorate in mathematics). The analyzer was the most advanced electro-
mechanical analog computer in the world. Analog computers are generally not
thought to be as “sexy’’ as digital computers, but I think that is quite wrong. To
see what an analog computer can do with a pretty complicated math problem,
see my book Number-Crunching, Princeton University Press 2011, pp. 253–
259. An alternative proof of the Shannon-Hagelbarger theorem is given in the
Journal of Applied Physics by H. M. Melvin, June 1956, pp. 658–659.
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Introduction

“Contrariwise,” continued Tweedledee, “if it was so, it

might be; and if it were so, it would be; but as it isn’t, it ain’t.

That’s logic.”

—Lewis Carroll, Through the Looking-Glass (1872)

IN 1859 THE ENGLISH NATURALIST Charles Darwin (1809–1882) pub-
lished his On the Origin of Species, a book that revolutionized how

humans view their place in the world. Just five years earlier a fellow
countryman, the mathematician George Boole (1815–1864), had pub-
lished his An Investigation of the Laws of Thought, a book that would
have an equally huge impact on humanity. Even earlier, in fact, Boole
had published his Mathematical Analysis of Logic (1847), which was, in
essence, a first draft of Laws of Thought. The importance of Boole’s
work was not as much appreciated at the time as was Darwin’s, however,
because it wasn’t enough by itself to have immediate influence. It
required one additional contribution, one that didn’t come about
until decades later, in 1938, with the work of the American electrical
engineer and mathematician Claude Shannon (1916–2001). That was
the year Shannon published a famous paper (based on his MIT
master’s thesis) on how to implement Boole’s mathematics in the form
of electrical relay switching circuits. Together, Boole’s and Shannon’s
ideas ushered in the digital age.

Boole’s mathematics, the basis for what is now called Boolean
algebra (although it is different in some significant details from what
Boole actually wrote), is the subject of this book. It is also called
mathematical logic, and today, because of Shannon, it is a routine
analytical tool of the logic-design engineers who create the electronic
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circuitry that each of us now can’t live without, from our computers
to our automobiles to our home appliances. Boolean algebra is not
traditional or classical Aristotelian logic, a subject generally taught in
college by the philosophy department. Boolean algebra, by contrast,
is generally in the hands of electrical engineering professors and/or
the mathematics faculty (although, of course, philosophers are familiar
with it, too)1

Aristotelian logic was created to develop correct thinking in those
who would serve in the legal profession, whose work often involves
the logical deduction of a conclusion (for example, guilty or innocent)
from a set of given conditions (that is, the evidence). When one starts
from given premises and then arrives at a conclusion logically implied
by those premises, Aristotelian logicians say we have constructed a
syllogism. A syllogism has the general form of a major premise and
a minor premise, linked together, from which inexorably follows a
conclusion. An example is

Major premise: “All physicists have studied mathematics.’’
Minor premise: “You are a physicist.’’
Conclusion: “You have studied mathematics.’’

A false syllogism is the slightly modified

Major premise: “All physicists have studied mathematics.’’
Minor premise: “You have studied mathematics.’’
Conclusion: “You are a physicist.’’

Whole books, indeed, libraries of books, have been written over
the centuries on this sort of logical reasoning. This book is not one
of them. Boolean algebra is an entirely different form of logical
reasoning, as you’ll soon see. Indeed, it was eventually realized that
the classical syllogism could not be the final step in logical reasoning.
Consider, for example, the two premises

“Most people have studied physics.’’
“Most people have studied mathematics.’’

Here “most’’ means “more than half.’’ Classic syllogistic logic doesn’t
say how to draw a definitive, inexorable conclusion from these two
premises. But, in fact, a perfectly valid conclusion is possible:
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“Some people have studied both mathematics and physics,’’
where “some’’ means “one or more.’’

Here’s another example of how classical logic can stumble. One of
the underlying principles of that subject is that of the excluded middle,
which postulates that every statement is either true or false. There is
no “middle ground.’’ So, consider the statement “I am lying.’’ The
principle of the excluded middle says this statement is either true or
false. So, suppose it’s true. That is, “I am lying’’ is true, and so I am
lying. But, since the statement is true, I’m not lying. Contradiction! On
the other hand, suppose “I am lying’’ is false. That is, the statement “I
am lying’’ is a lie. But that means the statement is true. Contradiction!
True or false, we fall into contradiction, and so the principle of the
excluded middle seems to have failed us here.

The point of these two examples is simply that classical logic isn’t
the absolute, final word in logic.

Now, before I dive into Boolean algebra I should be up-front with
you and admit that, while Boolean algebra is of immense importance—
otherwise, why this book!?—it has its limitations, too. To show you the
latter, consider the following two problems. The first is a curious puzzle
from classical logic for which Boolean algebra can offer us no help.
Here is how Lewis Carroll stated what is known today as the “Paradox
of the Court,’’ in Part 2 of his brilliantly eccentric book Symbolic
Logic:

Protagoras had agreed to train Euathius for the profession of a
barrister, on the condition that half his fee should be paid at once,
and that the second half should be paid, or not paid, according as
Euathius should win, or lose, his first case in Court. After a time,
Protagoras, becoming impatient [at Euathius’s delay at beginning
his career, presumably to avoid paying the second half], brought
an action against his pupil, to recover the second half of his fee.
It seems that Euathius decided to plead his own case. “Now, if
I win this action,’’ said Protagoras, “you will have to pay the the
money by the decision of the Court: if I lose it, you will have to pay
by our agreement. Therefore, in any case you must pay it.’’ “On
the contrary’’, retorted Eauthius, if you win this action, I shall be
released from payment by our agreement: if you lose it, I shall be
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released by the decision of the Court. Therefore, in any case, I
need not pay the money.2

Which man is right?
The appeal of this puzzle for the agile intellect of Lewis Carroll

(the pen name for the University of Oxford mathematics teacher
Charles Lutwidge Dodgson (1832–1898)) is clear. Dodgson loved the
play of words, and of double meanings, a claim made obvious by
reading his classics Alice’s Adventures in Wonderland and Through the
Looking-Glass. And that is just what the “paradox’’ of the Court is,
a play on words. It is only slightly more subtle than the old school-
boy question of “What happens when an irresistible force meets an
unmovable object?,’’ a question reduced to nonsense once it is realized
that it is self-contradictory. If there is an irresistible force, then by
definition there can be no unmovable object, and vice versa. To claim
both, simultaneously, is similar to saying something (for example) is
simultaneously dead and alive (or black and white, or, in general,
simultaneously possessing any two mutually exclusive properties) and
then to be puzzled at a resulting “paradox.’’

The answer to the Court paradox is that either man may prevail,
depending on the declaration by the Court, and the resulting “conun-
drum’’ occurs only after that declaration (at which point the puzzle is,
in fact, no longer a puzzle). Here’s how Lewis Carroll answered the
question (you’ll notice that Boolean algebra—which was fully available
when he wrote—makes no appearance), as well as explaining how
timing is crucial.

The best way out of this Paradox must seem to be to demand an
answer to the question “Which of the two things, the agreement
and the decision of the Court, is to over-ride the other, in case
they should come into collision?’’

(1) Let us suppose that the agreement is to be supreme. In this
case, if Protagoras wins his action, he loses the money; and
if he loses his action, he wins the money.

(2) Let us suppose the decision of the Court to be supreme. In
this case, if Protagoras wins his action, he wins the money;
and if he loses his action, he loses the money.
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The Data do not enable us to answer this question [of which of the
two things is to be supreme]. Protagoras naturally makes one, or
the other, supreme, as best suits his purpose and his docile pupil
follows his example [but, of course, with the opposite choice].

After writing the above Lewis Carroll goes on to offer additional
commentary that nicely explains how the timing of the Court’s decision
comes into play:

The right decision of the Court would obviously be against
Protagoras, seeing that the terms of the agreement were still
unfulfilled [because until the Court renders its decision Euathius
has not yet won his first case!]. And, when that decision has been
pronounced, the practical result would be that, if the agreement
was to be supreme, Euathius would have to pay the money: if the
decision of the Court was to be supreme, he would be released from
payment.

None of the modern presentations of this puzzle that I’ve seen on the
Internet are as penetrating as is this century-old explanation.

For my second illustration of a logic problem for which Boolean
algebra is of no use, let me show you an example of a logic problem
which—as far as I know—can’t be solved by any formal system of logic,
Aristotelian, Boolean, whatever. This is a logic problem that is, indeed,
“solvable,’’ but only by making an argument that at one point goes
beyond formal mathematics. That is, some additional human insight is
required. My example below is well known among mathematicians, but
seems not to be so well known to wider audiences. I’ll let you ponder
it for a while and, if you get stuck, the answer is in the last note of
this chapter. But don’t look until you’ve thought about it for at least a
while.

Two mathematicians (I’ll call them A and B), friends in college
who have not seen each other for forty years, meet at a confer-
ence. As they have lunch together in a local restaurant, A tells
B that he has three daughters and that the product of their
ages (all integers) is 36. A then challenges B to determine the
individual ages. B of course replies that the ages are not uniquely
determined. So, A gives B a second clue: the sum of the ages is
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equal to the number of people in the restaurant. B looks around
and then again replies that the ages are still not determined. So,
A provides a third hint: his oldest daughter loves to eat bananas.
“Ah, ah,’’ shouts B, immediately “now I have it’’ and he then
promptly and correctly gives the ages.

Okay, now you solve this problem in logical reasoning.
So, after presenting the last two examples the obvious question now

is: What sort of logic problem would suggest the application of Boolean
algebra? Consider, then, the following problem that I’ve called
Puzzle 1.

PUZZLE 1
On the table before you are three small boxes, labeled A, B , and C.

Inside each box is a colored plastic chip. One chip is red, one is white,
and one is blue. You do not know which chip is in which box. Then,
you are told that of the next three statements, exactly one is true:

(a) box A contains the red chip;

(b) box B does not contain the red chip;

(c) box C does not contain the blue chip.

You do not know which of the three statements is the true one. From
all this, determine the color of the chip in each box. Puzzle 1 can be
solved by some very careful reasoning that I’ll show you at the end of
this chapter (but don’t peek until you’ve given it a good try yourself); it
can also be solved through the routine application of Boolean algebra.

Now, just to really convince you that Boolean algebra is a most
powerful tool, let me ask you to consider the next three puzzles, ones
that I feel confident you will not be able to solve with simply “some very
careful reasoning’’ or, at least, not until you’ve expended considerable
mental effort. And yet, as we proceed through the book, I’ll show you
how they too will easily yield to routine Boolean algebraic analysis.3

PUZZLE 2
The local truant officer has six boys under suspicion for stealing

apples. He knows that only two are actually guilty (but not which two),



12 Chapter 2

and so he questions each boy individually.

(a) Harry said, “Charlie and George did it.’’

(b) James said, “Donald and Tom did it.’’

(c) Donald said, “Tom and Charlie did it.’’

(d) George said, “Harry and Charlie did it.’’

(e) Charlie said, “Donald and James did it.’’

(f) Tom couldn’t be found and didn’t say anything.

(g) Of the five boys interrogated, four of them each correctly named
one of the guilty.

(h) The remaining boy lied about both of the names he gave.

Who stole the apples?

PUZZLE 3
Alice, Brenda, Cissie, and Doreen competed for a scholarship.

“What luck have you had?’’ someone asked them.

(a) Said Alice: “Cissie was top. Brenda was second.’’

(b) Said Brenda: “No, Cissie was second, and Doreen was third.’’

(c) Said Cissie: “Doreen was bottom. Alice was second.’’

(d) Doreen said nothing.

Each of the three girls who replied made two assertions, of which
only one was true. Who won the scholarship? More generally, in what
position did each of the four girls finish?

PUZZLE 4
Four hunters, A, B, C, and D, occupied a camp for seven days.

(a) On days when A hunted, B did not.

(b) On days when B hunted, D also hunted, but C did not.
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(c) On days when D hunted, A or B hunted.

(d) No two days were identical in who hunted and who didn’t.

On how many days did D hunt, and with whom?

Okay, have you solved Puzzle 1? If not, here’s how to do it “with
reasoning.’’ (By the end of Chapter 4 we’ll have solved all four puzzles
with the techniques of Boolean algebra.) Since we are told only one of
the three statements is true, then we can attack the problem as follows:
Take each one of the statements, in turn, as the true one, and reverse
the other two. If we have selected the correct true statement, then we’ll
have three true statements. Since there are only three statements in
all, we only have to do this three times. For each group of “corrected’’
three statements we can then see if what they say, collectively, makes
sense. So,

Case 1:
Take (a) as true, and (b) and (c) as false. Then, with reversals, we

have

(a1) box A contains the red chip;

(b1) box B contains the red chip;

(c1) box C contains the blue chip.

This is, of course, obvious nonsense as (a1) and (b1) cannot both be
true.

Case 2:
Take (b) as true, and (a) and (c) as false. Then, with reversals, we

have

(a2) box A does not contain the red chip;

(b2) box B does not contain the red chip;

(c2) box C contains the blue chip.

Since box C has the blue chip, then the red and white chips are
in boxes A and B. In particular, one of those two boxes must have
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the red chip, but (a2) and (b2) deny that. Thus, Case 2 is also
nonsense.

Case 3:
Take (c) as true, and (a) and (b) as false. Then, with reversals, we

have

(a3) box A does not contain the red chip;

(b3) box B contains the red chip;

(c3) box C does not contain the blue chip.

This works. (b3) says B has the red chip. That leaves the blue and
white chips for A and C. (c3) says C does not have the blue chip, so C
must have the white chip. Thus, A must have the blue chip, which is
consistent with (a3).

The author of a well-known science fiction story, in which the narra-
tor is a college math major, opens his tale with the student complaining
about his courses.4 In particular, his class in logic generates the lament,
“If it seems to make sense it isn’t mathematical logic!’’ By the time you
finish this book I hope you’ll reject that sentiment and, instead, agree
with me that if mathematical logic is about anything, it is about making
sense.

Okay, have you solved the “two mathematicians’’ puzzle? If not, take
a look at the final note.5

NOTES AND REFERENCES

1. When I was an undergraduate electrical engineering major at Stanford
(1958-62), I took the first-year graduate course EE 266 in my senior year.
That course (“Digital Computers’’) was my one and only class in digital
combinatorial and sequential logic, and its core mathematics was Boolean
algebra. (The previous year I had taken Industrial Engineering 161 which
had a programming project on an IBM 650 computer with its famous rotating
magnetic drum memory, but that was really an engineering economics course,
not a logic design course.) When I taught the same material in EE 266 at
the University of New Hampshire some years later, at least half of every class
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were sophomores—an example of how concepts once thought difficult are now
thought to be not so difficult. At the time, I took EE 266 simply because it was
fun, with no idea that less than two years later I would be earning my living
as a digital logic design engineer. I had that job from mid-1963 to the end
of 1965 (see my book Number-Crunching, Princeton University Press, 2011 for
details) and must have written, or so it then seemed, fifty thousand Boolean
equations—much to the occasional irritation, I might add, of my wife, who
wondered why I was always scribbling long, alphabetic strings of symbols on
paper sheets strewn all over her otherwise immaculate home.

2. Part 1 of Symbolic Logic was published in 1896 but Part 2, in which the
“Paradox of the Court’’ appears, remained virtually unknown until 1977. I
have taken my quotation of Lewis Carroll’s explanation of the paradox from
William Warren Bartley III, Lewis Carroll’s Symbolic Logic, Clarkson N. Potter,
1977, pp. 426, 438.

3. Puzzle 1 is from T. J. Fletcher, “The Solution of Inferential Problems
by Boolean Algebra,’’ Mathematical Gazette, September 1952, pp. 183–188.
Puzzle 2 is from Hubert Phillips, Heptameron, Eye & Spottiswoode, 1945.
Puzzle 3 is from Hubert Phillips, Something to Think About, Max Parrish, 1958
(first published by Penguin in 1945). Phillips provides non-Boolean algebraic
solutions in his books. Puzzle 4 is taken from Martin Gardner, Logic Machines
and Diagrams, University of Chicago Press, 1982 (no solution was given by
Gardner, however).

4. Norman Kagan, “Four Brands of Impossible,’’ The Magazine of Fantasy &
Science Fiction, September 1964.

5. Writing down all the possible ways to form 36 as the product of three
integers, we have

Ages Sum of Ages

2 6 3 11
4 3 3 10
2 2 9 13
4 1 9 14
2 1 18 21
1 6 6 13
3 1 12 16
1 1 36 38

The second clue, about the sum of the ages, would have been sufficient to
uniquely determine the ages if the number of people in the restaurant had
been 10, 11, 14, 16, 21, or 38, since each of those sums occurs just once. Since
that clue was not sufficient, however, then the sum must have been 13, which is
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the one sum that occurs more than once. That is, the ages are either 2, 2, and
9, or 1, 6, and 6. The last clue, that the oldest girl (notice the singular) loves
bananas, says there is a single largest age, and so the ages must be 2, 2, and
9 (for the sequence of 1, 6, and 6, the third clue would be grammatically
incorrect). And so we see that the appearance of fruit in the third clue is
nothing more than a colorful fish (that is, a red herring). The crucial word
is oldest, not bananas. If, however, A had given as his third clue that the older
girls (notice the plural) love bananas, then the correct answer would (again,
by grammar, not math) be 1, 6, and 6.



3
George Boole and Claude Shannon

Two Mini-Biographies

3.1 THE MATHEMATICIAN1

"Oh please, we are playing at lions and we want a good lion

who can roar well. Do come and help!"

—The shouts of the adult George Boole’s neighborhood

youngsters, pleading with the friendly local man who they

almost surely didn’t realize was a brilliant mathematician in

addition to being a “capital lion.”

George Boole was born in Lincoln, a town in the north of England,
on November 2, 1815. The first of four children born to John
(1777–1848) and Mary Ann Boole (1780–1854)—his siblings, a sister
and two brothers, all outlived him by decades, with his youngest
brother surviving until 1902—he was particularly lucky with his father.
While a simple tradesman (a cobbler), he was also a kind, generous,
religious man who had a strong interest in both mathematics and the
construction of optical instruments. He provided emotional stability
and intellectual stimulation, if not wealth, to his family, and George was
a devoted son. Even at a young age he enjoyed working alongside his
father at optical crafting. One of John’s projects was the construction of
a telescope and, when it was finished, he placed the following invitation
in his shop window:

Anyone who wishes to observe the works of God in a spirit of
reverence is invited to come in and look through my telescope.
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George must have been impressed with what he saw of the heavens
through that instrument, and perhaps that was one of the influences
that propelled him toward his career as a profoundly creative mathe-
matician. A camera obscura was another of their joint projects.

John may, in fact, have spent too much time on optics and not
enough on repairing shoes. In 1956 Sir Geoffrey Taylor (1886–1975),
a mathematical physicist of some renown, a Fellow of the Royal
Society, and a grandson of George (his mother was the second of
Boole’s five daughters), wrote the following: “I have inherited from
my grandmother [Boole’s eventual wife, Mary Everest (1832–1916)], a
box made by John Boole to hold a microscope he had made. Inside the
lid is pasted a note in her handwriting [declaring], ‘He seems to have
been able to do anything well except his own business of managing the
shop.’’’

A disinterested shopkeeper John may have been, but he did the best
he could with limited resources for his children. He taught George
geometry and trigonometry, subjects John had found of great aid in
his optical studies. George was soon recognized as a highly intelligent
boy and was admired by his schoolmates early-on. One of them
remembered after Boole’s death that “he was not of my class, or indeed
of any class; for we had no boy in school equal to him, and perhaps the
master was not [either], though he professed to teach him. This George
Boole was a sort of prodigy among us, and we looked up to him as a star
of the first magnitude.’’ Child prodigies all too often fail—sometimes
quite spectacularly—to live-up to their early promise, but Boole would
be the happy exception. Indeed, he succeeded in his all-too-short life
at exceeding even his childhood friends’ great expectations.

As you’ll learn in the next mini-biography, the other hero in this
book, Claude Shannon, had an extensive, first-class formal education,
with graduate degrees in both electrical engineering and mathematics.
Boole, on the other hand, was essentially self-taught, with a formal
education that stopped at what today would be a junior in high school.
Eventually he became a master mathematician (who succeeded—where
all others had failed—in merging algebra with logic), one held in the
highest esteem by talented, highly educated men who had graduated
from Cambridge and Oxford. If such a thing happened today, it would
be as if a precocious but impoverished student dropped out of high
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school in his junior year and then, through years of intense self-study,
discovered a proof of the infinity of the twin primes (believed since
Euclid’s day, but still unproved to this day).

His formal education began at age seven in a primary school, and
then briefly at a commercial school concerned with business topics, and
he quickly absorbed all that they had to offer. He learned Latin from a
local bookseller, and taught himself Greek, French, and German from
borrowed books. All of this linguistic study was in preparation for what
Boole then thought would be his life’s work in the Church of England
as a clergyman.

In 1831, at age sixteen, Boole left school to become an assistant
teacher, of Latin and mathematics at a small Wesleyan boarding
school in Doncaster, forty miles from Lincoln. One of the boarders
remembered Boole as follows (in an 1884 letter to Boole’s widow):

During his residence in the school Mr. Boole was much respected
for his attainments and for the conscientious discharge of his
duty. But when the fact became known that he was a Unitarian
[he had grown unhappy with conventional Christian doctrine
through his extensive reading of other cultures, and there would
be no Holy Orders for Boole!], read mathematics on Sunday and
even did problems in Chapel, it marred both his happiness and
his usefulness. Complaints were made against him by [families
of the boys who reported Boole’s “sins’’]. The boys prayed for
his conversion in their prayer meetings, and this was one reason
why [the Headmaster] told him it was desirable his chief assistant
should be a Wesleyan.

Boole lost his job at the school in 1833, but perhaps not just for doing
math in Chapel. The same boarder also remembered that “with the
vast majority of boys, who have no application and require drilling
again and again in the same subject, he was the worst teacher I ever
met with. Instead of explaining he lost his temper. . . . This was the
second cause of his leaving.’’

His two years in Doncaster were important ones for Boole, as it
was there that he switched his intense self-study from languages to
mathematics. After a day of being a bad teacher to dull boys, he
would use the evening to plow through the pages of what he felt to
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be an indifferent French book on differential calculus (Lacroix’s Calcul
différentiel). He later proclaimed that effort to have been mostly a waste
of time, but it at least got him to the point where he could later
read Lagrange’s Calcul des fonctions and Mécanique analytique, Laplace’s
Mécanique céleste, Newton’s Principia, and Poisson’s Traité de mécanique.
Remember, all this was done by himself, with no fellow classmates
to work with in a formal course led by an instructor. As Boole later
explained to a friend, he managed it all by sheer force of will, just
reading and re-reading, over and over, until he understood.

After leaving Doncaster, Boole took up a similar teaching post
at a school in Waddington, a village much closer to Lincoln and
his aging parents. The growing dependence of his parents on his
support, however, made even the four miles between Lincoln and
Waddington burdensome, and Boole eventually found it necessary
to move back to Lincoln to start his own day school in 1835. The
year before, the Mechanics Institute (offering adult education for the
working class) had been founded in Lincoln and the president, a local
squire, deposited the publications of the Royal Society in the institute’s
reading room. Fortuitously, Boole’s father was made curator of the
institute—a ‘family connection’ that finally worked for his son!—and
George, while still in Waddington, had ready access to the reading
room and to all its mathematical treasures.

The arrangement in Lincoln lasted until 1838 when the authorities
in Waddington asked George to return, to replace the previous head-
master who had died. He accepted the offer and took his entire family
with him in the move, as he was now the sole provider. Apparently it
was a good move, as his financial affairs improved dramatically; just
two years later, in the summer of 1840, Boole was able to purchase
property back in Lincoln to start his own school once more. So once
again he moved his entire family, and he remained in Lincoln for the
next nine years.

All during these back-and-forth years, Boole’s studies of mathemat-
ics had continued. In 1838, while still in Waddington, he finally started
to put his own original work on paper, writing his first essay, “On Cer-
tain Theorems in the Calculus of Variations.’’2 He followed it with one
bearing the imposing title of “Researches on the Theory of Analytical
Transformations, with a Special Application to the Reduction of the
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General Equation of the Second Order.’’ So far, however, the only light-
of-day those two works had seen was that of the rays making their way
through the windows of Boole’s study. Who would actually publish the
writings of an obscure day school proprietor who had never even gone
to university, to say nothing of not having graduated with a degree?

Here Boole’s fortune received a dramatic, almost heaven-sent
blessing. It just so happened that at about the same time Boole
was faced with his “where do I send my papers?’’ question, a new
math journal was looking for manuscripts that might not be accepted
by the established journals, perhaps (for example) for being too
controversial.3 This was the Cambridge Mathematical Journal, which had
begun publication in October 1837. From the very start it published
papers from such talented people as Augustus De Morgan, Arthur
Cayley, James Sylvester, and George Stokes, all mathematicians whose
names are well known today. Perhaps, in fact, it was the appearance of
this new journal that caused Boole to begin writing.

The young editor of the Journal, less than three years older than
Boole, was the Scottish mathematician Duncan F. Gregory (1813–
1844), who had received a magnificent education that Boole could only
have dreamed about. The youngest son of a professor of medicine at
King’s College in Aberdeen, he had first attended Edinburgh Academy
(where James Clerk Maxwell would later study), then was sent off
to a private academy in Geneva, then brought back to Edinburgh
University and, finally, finished his studies at Newton’s school, Trinity
College, Cambridge. He graduated from Trinity with a B.A. in 1837
as an impressive fifth wrangler in the famously grueling Mathematical
Honors (or Tripos) examination (later, in 1841, he topped it all off with
a Cambridge Master’s degree).

Despite the disparity in their social backgrounds, there was not
the slightest bit of snobbish elitism in Gregory toward Boole. Indeed,
without Gregory’s almost incredibly generous aid to Boole it is not
unreasonable to imagine that Boole’s spirit would have been crushed
right at the start. Instead, he found a sympathetic reader, one who
recognized both the genius and the faults of Boole’s initial submission
(his second written paper, “Theory of Analytical Transformations’’) and
offered gentle suggestions on how Boole could improve his writing
style. Apparently Boole traveled to Trinity College and received those
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suggestions in person because, in a letter dated November 4, 1839,
Gregory in Cambridge wrote to Boole to say, “You spoke when I saw you
here [my emphasis] of some investigations in the Calculus of Variations,
which you were inclined to publish. If you still desire to do so I shall
be happy to give them a place in the journal.’’ And so it in fact
happened, with Boole’s second written paper appearing in print in
February 1840, and his first written paper prominently appearing in
the journal just three months later (along, as well, with yet another
paper, “On the Investigation of Linear Differential Equations with
Constant Coefficients’’). Those initial papers opened the floodgates,
and Boole would publish numerous more papers in Gregory’s journal.

Because of his success in achieving publication for his mathematics
in a Cambridge-based journal, it isn’t surprising that Boole began
to think of attending Cambridge University with the goal of earning
a degree. He discussed this possibility with Gregory who, while not
actually discouraging the then twenty four year-old Boole, was quite
candid (in a letter written in March 1840) about the difficulties that
such a move would entail. Gregory had some secondhand “experience’’
at the possibility of doing what Boole proposed, as finishing just ahead
of Gregory in the 1837 Tripos math exam, as fourth wrangler, had
been the 43-year-old George Green (1793–1841), the poor son of a
baker and, like Boole, self-educated.4 The most significant obstacle
for Boole would be the cost, with Gregory informing Boole that, at
minimum, expenses at Trinity would be 200 pounds per year (or, more
likely, 250 pounds per year). To get an idea of what that meant in
1840, 200 pounds would have paid the salary of the governor of the
Bank of England for six months. To attend Cambridge, Boole would
also have to close his school and, as he was the sole support of his
entire family, that was simply impossible. All thought of enrolling at
Cambridge vanished for good.

Writing and publishing continued unabated, however, with Boole’s
papers growing in both mathematical depth and length. Increasing
depth is always good in mathematical papers, of course, but from
a practical point of view that’s not the case with length. There is a
limited amount of space available in a journal, and Boole’s lengthening
submissions threatened to take it all. Finally, in June 1843, Gregory
wrote Boole about his latest effort to tell him that it was simply
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too elaborate for the Journal. But it wasn’t all bad news, because
Gregory also thought the paper was good enough for submission to
the Transactions of the Royal Society of London. Now that would be the big
leagues for Boole!

Gregory’s enthusiasm for this latest Boole paper (“On a General
Method in Analysis’’) was at least partly due to the particular topic—
the use of symbolic algebra to solve both differential and difference
equations (you’ll see a difference equation, solved with ordinary high
school algebra, in Chapter 7). Gregory had long had intense interest
in such an approach, and had himself already published a paper about
it. I won’t discuss Boole’s symbolic algebra for equation solving in this
book, as it’s his logical algebra that will be central for us, but the pub-
lication of this latest paper is important because its appearance would
change his life. It was with symbolic algebra that Boole began what
would develop into the centerpiece of his mathematical work, that of
treating operations (such as differentiation and differencing) as symbolic
operators ( d

dt and �, respectively) that could be manipulated as if they
were numbers. This resulted in the operators becoming detached from
their arguments and, in fact, symbolic algebra often went under the
alternative and descriptive name of “separation of symbols.’’

After some controversy at the Royal Society on whether to accept the
paper or not, it was published—and in November 1844 it earned Boole
a Royal Medal (established with the blessing of Queen Victoria) as the
best mathematics paper published in the Transactions between June
1841 and June 1844. Gregory, alas, never knew this, his tragically early
death (probably from cancer) having occurred some months earlier, in
February.5 Boole didn’t forget what he owed, however, as in his paper
he inserted a footnote saying of Gregory: “Few in so short a life have
done so much for science. The high sense which I entertain of his
merits as a mathematician, is mingled with feelings of gratitude for
much valuable assistance rendered to me in my earlier essays.’’

Gregory was gone, but Boole had flown the nest and, with his
now impressive publication record and a Royal Medal, was a known
and respected author. His writing continued to appear without inter-
ruption. In late 1847, for example, his interest in symbolic algebra
broadened from the purely mathematical to include logic, with the
publication of the pamphlet Mathematical Analysis of Logic.6 It would



24 Chapter 3

be, in retrospect, a first draft of his masterpiece An Investigation of the
Laws of Thought which would appear seven years later. Boole almost
immediately began the process of tinkering with Mathematical Analysis,
and in 1848 published a paper version (“The Calculus of Logic’’) in
the Cambridge and Dublin Mathematical Journal (the renamed Cambridge
Mathematical Journal), with William Thomson in the editor’s chair (since
1845) as the permanent replacement to Gregory.

In 1849 all of Boole’s hard work achieved for him what, as a
teenager teaching dull boys simple math at an obscure boarding school
in Doncaster, would have been just an outrageous day-dream fantasy.
That year he applied for the position of professor of mathematics
at the newly created Queen’s College (today’s University College) in
Cork, Ireland. No matter his lack of a university degree: his out-
standing publication record, his impressive reputation among fellow
mathematicians, and of course his Royal Medal, trumped everything
else. He was appointed and, at age 34, he was now Professor Boole.
His annual stipend was 250 pounds, plus 2 pounds per student per
academic term. To anyone who has read of Victorian society and its
rigid class system based on inherited wealth and intertwined family
connections (none of which Boole enjoyed), this was an absolutely
tremendous achievement. His was an appointment based solely on
merit, merit so bright and shining that it was simply impossible to
ignore. Boole had at last found a home, and he would spend the all-
too-few years left to him in Cork.

But before that, Boole had to move, and this time he was to do it by
himself. His father had died the year before, and his mother refused
to leave England. After making financial arrangements for her care,
he prepared to cross the Irish channel, alone, to his new life. Boole’s
elevated standing in Lincoln is illustrated by the fact that, just before
his departure, the city threw a grand public dinner in his honor, during
which he was presented with a silver inkstand and a valuable collection
of books. It was a happy send-off for the local boy who had succeeded
against all odds, and then Boole, for the last time, moved from Lincoln.
The town of Lincoln never forgot him, however, and when Boole died
fifteen years later the town installed a beautiful stained glass window
in the local cathedral in his memory.
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Figure 3.1.1. Boole was in London June and July of 1864, just months before
his death. While there, he stopped in at the famous London School of
Photography at 174 Regent Street, one of the pioneers in commercial Victo-
rian photography, and had this full-length portrait taken. Photo reproduced
by arrangement with the Boole Library, Special Collections and Archives,
University College, Cork, Ireland.
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After settling in at Cork and starting his teaching duties, Boole’s
mathematical studies added yet another dimension. In 1767 the
Reverend John Michell (1724–1793) had published a paper in the
Royal Society’s Philosophical Transactions titled “An Inquiry into the
Probable Magnitude and Parallax of the Fixed Stars, from the quantity
of light which they afford to us, and the particular circumstances of
their situations.’’7 This paper, which contains a number of probability
calculations, was brought to Boole’s attention—did he perhaps recall,
as he read it, what he had seen through his father’s telescope as a child?
In any case, Boole soon after began to publish on probability (“On the
Theory of Probabilities, and in Particular on Mitchell’s [sic] Problem of
the Distribution of Fixed Stars,’’ The Philosophical Magazine, June 1851),
and in Chapter 6 I’ll tell you more about this new interest. By 1858 his
continuing work in probability was of such a high caliber that it won
him the Keith Prize (a gold medal and 50 pounds) from the Royal
Society of Edinburgh for his paper the previous year in the Society’s
Transactions (“On the Application of the Theory of Probabilities to the
Question of the Combination of Testimonies or Judgements’’).

Boole’s personal life also experienced a dramatic alteration with
the move to Cork. In 1850 he met Mary Everest, who was visiting the
family of her uncle John Ryall, who was vice-president and professor
of Greek at Queen’s College, and a friend of Boole. Mary the niece
of Sir George Everest (the surveyor-general of India, after whom the
mountain is named), was at age 18 only a bit more than half his age. At
first cautious because of the difference in their ages and social class, by
1855 Boole had overcome both concerns and they married. The union
was, by all accounts, a happy one, and it produced five daughters for
the Booles between 1856 and 1864.

In 1956 Boole’s grandson Geoffrey Taylor, related a touching story
about what sort of family man Boole was, a story told to him in a letter
from Boole’s youngest daughter Ethel Voynich.

My aunt . . . wrote me that an old lady who had known Boole in
Cork in her youth told her of the following incident. “One day
in June, 1856, she went into the slum alley behind the College
to engage a chimney sweep for her flues. As she was walking
down the alley, she saw father ahead of her, knocking at one door
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after another. She came past him in time to see him passionately
shaking hands with a ragged and barefoot man, and saying, “I
had to come and tell you, dear friends: I’ve got a baby [his first
child], and she is such a beauty.’’8

To many that sort of episode was the reason why, as one historian
put it, “In general Boole’s reputation among the poorer people of the
neighborhood was that of an innocent who should not be cheated.
Among the higher classes he was admired as something of a saint,
but thought to be rather odd.’’ As an example of that second reaction,
when Mary Everest (not yet Mary Boole) asked a local Cork woman
where her children were, she was told that George had taken them
for a walk and that, while he was indeed a favorite with children, “He
is no favorite of mine . . . I don’t enjoy his society. I don’t care to be
with such very good people . . . he never shows you that he thinks you
wicked, but when you are near anyone so pure and holy, you can’t
help feeling how shocked he must be at you. He makes me feel very
wicked; but I am always at ease when the children are with him; I know
they are getting some good.’’ Being good with children, and making
mothers feel “wicked’’ by comparison, doesn’t mean that Boole should
be thought of as having been a shy, gentle person. He could be quite
forceful when he thought it was required. He had numerous public
battles in the newspapers, for example, with the chemist Sir Robert
Kane (1809–1890), the president of Queen’s College, over a variety of
issues that, like most issues in academic fights, were of a consequence
far less impressive than were the fireworks. Boole was hard for
Kane to ignore, however, as Boole was clearly one of the college’s
stars.

Almost from the start, Boole’s academic life in Cork was one of
moving from one honor and achievement to the next. In 1852 he
received an honorary doctorate from the University of Dublin, in 1854
An Investigation of the Laws of Thought was published, in 1857 he was
elected a Fellow of the Royal Society of London, and there was the
Keith Prize in 1858. In 1859 his A Treatise on Differential Equations
was published, and he received another honorary doctorate, this time
from Oxford. In 1860 another textbook was published, A Treatise on the
Calculus of Finite Differences.
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Boole had found heaven in Cork. He loved his teaching, his family,
and he was at the peak of his intellectual powers. His life was perfect.
Then, on November 24, 1864, Boole made a fatal mistake in judgment.
Walking the two miles from his home to the college to deliver a lecture,
he was caught in a sudden rainstorm and was drenched to the skin.
Rather than take time to dryout, to warmup, to change into dry clothes,
to do anything that would delay his class, he instead lectured in soaking
wet clothes. The result was first a bad cold, and then pneumonia. Mary,
a believer in homeopathic medicine (each human ailment should be
treated with something resembling the ailment’s cause), reasoned that
her husband was coughing his life away because he had gotten wet
and so put him to bed between cold, wet sheets. Some writers have
suggested that she went even beyond that and, in a scene that conjures
up any number of bad television comedies, dowsed him with buckets
of cold water.

On December 8, 1864, Boole died, not yet fifty years old. Some days
later, on December 17 a brief obituary notice appeared in the London
literary magazine Athenaeum that, after listing Laws of Thought as one
of Boole’s principal works, condescendingly called it a book “which
sought a very limited audience, and we believe, found it.’’ There might
actually have been some truth to that at the time, and Boole’s book
would continue to slumber quietly in library stacks and on scholars’
bookshelves for decades to come. In 1938, however, an event occurred
that changed everything. After that year, Boole’s name would shine
forever, while it is the Athenaeum that has vanished.

3.2 THE ELECTRICAL ENGINEER9

It is no exaggeration that Claude Shannon was the Father of

the Information Age and his intellectual achievement one of

the greatest of the 20th century.

—Notices of the American Mathematical Society

Claude Elwood Shannon was born April 30, 1916, in Petoskey,
Michigan, to Claude, Sr. (1862–1934), a business man and probate
judge, and Mabel Shannon (1880–1945). He was the second of two
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children. His sister, Catherine (1910–2008), earned a master’s degree
in mathematics at the University of Michigan and became a professor
of mathematics at the College of North Central Illinois. The first
sixteen years of Shannon’s youth were spent in the small town (3,000
people) of Gaylord, Michigan, where he graduated from Gaylord High
School in 1932. His mother was a language teacher at that school and,
for a time, principal. Shannon displayed an early interest in “how
things work,’’ building model airplanes, a radio-controlled boat, and
a telegraph system linking his house to a friend’s a half-mile distant
(with the help of a strategically located wire fence). He earned pocket
money during high school by delivering telegrams and fixing radios at
a local department store. (This was common among many youngsters
in the 1920s and 1930s who went on to technical careers; a similar
story is told by Richard Feynman in his famous 1985 autobiographical
Surely You’re Joking, Mr. Feynman!)

Following in the footsteps of his sister, he enrolled at the University
of Michigan, from which he graduated in 1936 with double bachelor’s
degrees in mathematics and electrical engineering. It was in a class
there that Shannon was introduced to Boole’s algebra of logic. You
can get an idea of Shannon’s growing mathematical abilities during
those undergraduate years by reading a little note in the American
Mathematical Monthly for January 1935 (p. 45). There you’ll find his
solution to an interesting challenge problem in Euclidean geometry,
posed the year before by another reader.

In Shannon’s senior year at the University of Michigan he began
to wonder about what to do next. It was the middle of the Great
Depression and, for a person with Shannon’s intellect, graduate school
was the obvious path. But where? Then he spotted an announcement
that the MIT Department of Electrical Engineering was looking for
a research assistant to work part-time on Vannevar Bush’s famous
differential analyzer. Shannon applied, got the job, and so scored a
double win. Shannon had, in fact, found an early mentor as every bit
as important to him as Gregory had been to Boole.

First, Bush (1890–1974) was a man with immense stature in Ameri-
can science, and Shannon would greatly benefit from having him as an
early champion. As a measure of Bush’s importance, during the Sec-
ond World War he served, at the direct request of President Roosevelt,
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first as chairman of the National Defense Research Committee and
then, from May 1941, as the director of the Office of Scientific Research
and Development, which oversaw such crucial military developments
as radar, the proximity fuze, and, until the Army Corps of Engineers
took over in May 1943, the construction of the American atomic bomb
(the Manhattan Project).

Second, the electromechanical differential analyzer was at that time
the world’s most advanced analog computer, able to numerically solve
very complicated differential equations, and it would be the spark
that ignited Shannon’s first technical triumph. A complex circuit of
over 100 relays controlled the analyzer, and it was part of Shannon’s
job to understand the controller and to maintain it. After initially
pondering this task, followed by spending the summer of 1937 at Bell
Labs (New York City), Shannon had his famous epiphany of marrying
Boolean algebra with electrical switching circuits. The final, polished
result was his MIT master’s thesis, “A Symbolic Analysis of Relay and
Switching Circuits,’’ which was published in 1938 in the Transactions of
the American Institute of Electrical Engineers. That work was of such power
that it has been labeled by many, in the decades since, as “the most
important master’s thesis ever written.’’ So impressed by it was Bush,
in any case, that he applied his considerable influence in support, and
Shannon received the 1940 Alfred Nobel Prize, awarded each year by
the combined engineering societies of the United States to the best
engineering paper by an author no older than 30.

In late 1938, with his switching thesis done, Shannon moved from
the EE department to the math department at MIT. He did that under
the advice of Bush, who was then president of the Carnegie Institution
in Washington, D.C. Bush made his suggestion because one of the
operations funded under his leadership was the genetics laboratory
at Cold Spring Harbor in Long Island, New York. Bush felt that
Shannon’s symbolic success in switching theory (he called it Shannon’s
“queer algebra’’) might have a similar payoff in genetics, and so
Shannon spent the summer of 1939 at Cold Spring Harbor, working
with the well-known researcher Barbara Stoddard Burks (1902–1943),
who was a member of the laboratory’s Eugenics Records Office.

Eugenics, the study of inherited human traits, would fall into
disrepute once it was learned how the Nazis had used it to justify
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their monstrous program of genocide. Bush was ahead of the world
on that score—he closed the eugenics research program at Cold
Spring Harbor in 1940 (an action which might have contributed to a
depression that caused Burks, at age 40, to commit suicide by jumping
200 feet to her death from the George Washington Bridge in New York
City). That work at Cold Spring Harbor led to Shannon’s doctoral
dissertation (“An Algebra for Theoretical Genetics’’), which was never
published until it appeared decades later in Shannon’s Collected Papers.
In his 1987 interview in Omni, Shannon described his thesis as follows:
“My theory has to do with what happens when you have all the genetic
facts. One could calculate, if one wanted to . . . the kind of population
you would have after a number of generations.’’10 Both Burks and Bush
strongly urged Shannon to publish, but he had lost interest in the topic,
and, besides, he had other, more urgent matters that demanded his
attention.

With his PhD in hand, and after spending the summer of 1940 back
at Bell Labs, Shannon used a National Research Council Fellowship
for a year’s stay at the Institute for Advanced Study in Princeton,
New Jersey, where he worked under the great mathematician Hermann
Weyl. Also there were such luminaries as John von Neumann and
Albert Einstein. He might even have bumped into Richard Feynman,
who was working on his PhD in physics at Princeton. Also there with
Shannon was his first wife, Norma Levor (born 1920), whom he had
married in 1939. Theirs was an intense, passionate, but ultimately
doomed brief marriage, and Norma left him in June 1941. With all
that going on in his life, it isn’t surprising that writing up his doctoral
dissertation wasn’t high on Shannon’s list of things to do. It is quite
curious (to me, at least) that Norma’s name appears in none of the
historical essays written by professional colleagues after Shannon’s
death (did they not know of her, or was it an attempt to protect
Shannon’s “image’’?), and he himself never mentions her in any of
the interviews he gave in later years.

Shannon’s failed first marriage is of more than prurient interest
because, I believe, it gives some insight into his personality then, and
perhaps even more insight into his later curious behavior that has
always been dismissed as simply being “charmingly odd.’’ The arrival
of the two in Princeton must have caused at least some discussion



32 Chapter 3

among those at the Institute; after all, the pretty young wife of the new
Fellow—who on at least one occasion poured tea for Einstein—was a
mere twenty-year-old who had just finished her junior year at Radcliffe
College.

After leaving Shannon in 1941, Norma didn’t simply fade into
history. She moved to Hollywood and became a screenwriter. In 1942
she married fellow screenwriter Ben Barzman (1911–1989), who wrote
the screen treatments for the John Wayne film Back to Baatan (1945),
Charleton Heston’s El Cid (1961), and George Peppard’s The Blue
Max (1966). She herself wrote the now classic The Locket (1946) with
its flashbacks within flashbacks, fled to France for nine years with her
husband after both were blacklisted in the 1950s by the House Un-
American Activities Committee, and became fast friends with actress
Sophia Loren (who had appeared in El Cid).

Norma was clearly a woman of depth. So, the obvious question:
why did she leave Shannon? In her 2003 book, The Red and the
Blacklist: The Intimate Memoir of a Hollywood Expatriate (which contains
a 1939 photograph, never before published, of Shannon sitting in
the cockpit of a small plane), she offers us a clue. In the summer of
1963 she was visiting in Cambridge (Shannon was by then a faculty
member at MIT) and the two got together for the first time since
1941. The first words Shannon spoke, she relates, were, “Why did
you leave me?’’ to which she replied, “You were sick and wouldn’t get
help.’’ That rather obscure exchange was clarified (she wasn’t referring
to a physical illness) years later, in a 2009 talk that you can watch
for yourself on www.youtube.com/watch?v=1gv7ywg1H0Q. There she
compares Shannon to John Nash of A Beautiful Mind fame, a clear
reference to a mental disturbance—a disturbance that she says was
so pronounced she decided she would not have any children with
Shannon. This comparison with Nash, who was clearly a disturbed
person, is almost certainly a gross exaggeration (remember, Norma was
a Hollywood screenwriter!), but it does illustrate the enormous tension
under which Shannon was operating during those years.

At the end of his year at Princeton, and once again alone, Shannon
accepted an offer to return to Bell Labs as a full-time member of
the technical staff in the mathematical research group. There he
would enjoy an astonishingly creative fifteen years, including the
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production of his masterpiece—what Scientific American called “the
Magna Carta of the information age’’—the 1948 “A Mathematical
Theory of Communication.’’ Initially his work at Bell Labs dealt with
anti-aircraft fire-control systems, the need for which had grown in
importance with the appearance of the 400 mph German pulse-jet V1
“flying robot bomb,’’ the world’s first cruise missile. (The German V2
rocket—the world’s first ballistic missile—is also often lumped in with
the V1 as driving fire-control system development during Shannon’s
day, but it would be quite difficult to shoot down a V2 today, during its
2,000 mph terminal atmospheric reentry phase, much less with 1940s
gun technology!)

Later work at Bell Labs took Shannon into the arcane world
of cryptography, during which he met the English mathematician
Alan Turing (1912–1954), who was a key player in the supersecret
British Ultra program (“Ultra’’ was the code-name for the intelligence
obtained from intercepted messages sent by German Enigma coding
machines that the Nazis incorrectly thought unbreakable). Turing’s
impact and influence on Shannon are discussed further in Chapter
9. In 1945 Shannon wrote a classified (“Confidental,’’ which really
isn’t very ’secret’) report, “A Mathematical Theory of Cryptography’’
which was declassified in 1949 when it appeared in The Bell System
Technical Journal under the new title of “Communication Theory of
Secrecy Systems.’’ Some historians of science have speculated that it
was his work in cryptography that led to Shannon’s 1948 masterpiece,
“A Mathematical Theory of Communication,’’ of which you’ll find a
(very ) brief discussion in Chapter 7. Shannon himself, however, was
always quite clear on this, crediting papers published in The Bell System
Technical Journal in the 1920s by Bell Labs scientists Ralph Hartley
(1888–1970) and Harry Nyquist (1890–1976); indeed, he specifically
credits both men in his “Mathematical Theory.’’ And even before the
war, Shannon wrote a letter, dated February 16, 1939, to Bush on “some
of the fundamental properties of general systems for the transmission
of intelligence’’ in which the work of Hartley is mentioned.

“A Mathematical Theory of Communication’’ stunned the engi-
neering world; it was written with such clarity and freedom from
obfuscating mathematics (much to the irritation of some pure
mathematicians!—see Chapter 6) that real engineers could actually



34 Chapter 3

read and understand it. It was simply a tour de force, simultaneously
founding the entirely new research field of information theory, posing
and solving some extremely difficult problems, and pointing its readers
toward other problems that remained unanswered. Einstein is famous
for many sayings, but one that particularly applies here is this: “I have
little patience with scientists who take a board of wood, look for its
thinnest part, and drill a great number of holes where drilling is easy.’’
With his “Mathematical Theory,’’ Shannon drilled a very big hole in a
very thick, very hard piece of wood.

If anything, Shannon’s Magna Carta was perhaps too successful in
gathering accolades. As one of his Bell Labs colleagues, E. N Gilbert,
later wrote in 1966 (see note 1 in Chapter 7):

Not all the attention came from communication engineers,
however . . . physicists were interested in the new interpretation
of entropy as information [see Chapter 7 for more on this].
Psychologists found that the new information measure gave a
convenient quantitative estimate of the difficulty of certain exper-
imental tasks. Other applications have been to linguistics, music,
cryptography, and gambling. The response to Shannon’s paper
was so great that by 1953 the Institute of Radio Engineers formed
a Professional Group on Information Theory with a journal of
its own [IRE Transactions on Information Theory]. . . . Information
theory was a glamor science for many years. It was popularly
supposed that information theory held the key to progress in
remote fields to which in fact it did not apply.

Shannon himself fully appreciated what he had wrought, and in
1956 he authored an editorial plea, “The Bandwagon,’’ in the new
IRE Transactions for a more restrained application of information
theory. It fell mostly on deaf ears and blind eyes, however, and it
took a second editorial by someone else to have an impact. Written
two years later by a young MIT electrical engineering professor, Peter
Elias (1923–2001), the hilarious “Two Famous Papers’’ mocked both
ends of the spectrum. The first (fictional) paper “Information Theory,
Photosynthesis and Religion,’’ was a laugh at those who thought
information theory was applicable to every imaginable problem. And
the second (fictional) paper, “The Optimum Linear Mean Square
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Filter for Separating Sinusoidally Modulated Triangular Signals from
Randomly Sampled Stationary Gaussian Noise, with Applications to a
Problem in Radar,’’ poked fun at those who used information theory
as simply an exotic way to solve problems already solved years earlier
by more traditional methods. Elias’s essay had immediate influence on
improving the quality of papers in the IRE Transactions, and it didn’t
hurt his reputation one bit—two years later he was appointed head of
MIT’s electrical engineering department.

In March 1949 Shannon married his second wife, Mary Elizabeth
Moore (born 1922), a mathematician he met at Bell Labs. They had
three children, two sons and a daughter.

It was during his years at Bell Labs that the first tales of Shannon’s
less mathematical interests took hold : the riding of a unicycle through
the corridors of Bell Labs while juggling balls is perhaps the best
known. Shannon was never shy in displaying his interest in toylike
gadgetry, with his maze-solving, relay-controlled robotic mouse (see
Figure 3.1.1) being nearly as well known as the unicycle/juggling tales.
Not so well known was his construction of what has become known as
the “Ultimate Machine.’’ Here is how science fiction writer Arthur C.
Clarke melodramatically described it in his 1958 nonfiction book Voice
across the Sea (p.159) when remembering a visit he made to Bell Labs
in Murray Hill, New Jersey:

I cannot leave Bell Labs without mentioning one more device
which I saw there, and which haunts me as it haunts everyone who
has ever seen it in action. It is the Ultimate Machine—the End of
the Line. Beyond it there is Nothing. It sits on Claude Shannon’s
desk driving people mad. Nothing could look simpler. It is merely
a small wooden casket the size and shape of a cigar box, with
a single switch on one face. When you throw the switch, there
is an angry, purposeful buzzing. The lid slowly rises, and from
beneath it emerges a hand. The hand reaches down, turns the
switch off, and retreats into the box. With the finality of a closing
coffin, the lid snaps shut, the buzzing ceases, and peace reigns
once more. The psychological effect, if you do not know what to
expect, is devastating. There is something unspeakably sinister
about a machine that does nothing—absolutely nothing—except
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switch itself off. Distinguished scientists and engineers have taken
days to get over it. Some have retired to professions which still
had a future, such as basket weaving, beekeeping, truffle hunting,
or water divining.

Those last two words, I think, we can all agree are just a bit over the
top. Still, it is the perfect illustration of a comment made by Shannon
in his Omni interview: “I am always building totally useless gadgets
. . . just because I think they’re fun to make.’’ During his visit at Bell
Labs, Clarke was so taken by Shannon’s fascination with games played
by machines that he inserted a throwaway mention of it in his 1956
short story “The Pacifist,’’ one of his “White Hart’’ English Pub tales.
At the start the narrator tells us that

“I got to the “White Hart’’ late that evening, and when I arrived
everyone was crowded into the corner under the dartboard. All
except Drew, that is; he had not deserted his post, but was sitting
behind the bar reading. . . . He broke off . . . long enough to hand
me a beer and to tell me what was going on.

“Eric’s brought in some kind of games machine—it’s beaten
everybody so far. Sam’s trying his luck with it now.’’

At that moment a roar of laughter announced that Sam had been
no luckier than the rest, and I pushed my way through the crowd
to see what was happening. On the table lay a flat metal box the
size of a checkerboard, and divided into squares in a similar way.
At the corner of each square was a two-way switch and a little neon
lamp; the whole affair was plugged into the light socket . . . and
Eric Rodgers was looking round for a new victim.

“What does the thing do?’’ I asked.

“It’s a modification of naughts and crosses—what the Amer-
icans call Tic-Tac-Toe. Shannon showed it to me when I was
over at Bell Labs.’’

Shannon’s fascination with games wasn’t all goofiness. His maze-
running mouse, for example, was actually a clever way of illustrating
the ability of a machine to explore a strange environment and learn
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Figure 3.2.1. This photograph, taken in 1952, shows Shannon with Theseus,
his maze-solving “mouse’’ built in 1950. The mouse was named in honor
of the character from Greek mythology who, after killing the Minotaur in
the monster’s maze (the Labyrinth), found his way back out because he had
unrolled a ball of string behind him on the way in. The mouse was moved
through a 5-by-5 square, reconfigurable maze by an electromagnet mounted
on wheels positioned beneath the floor of the maze. Electric motors powered
the wheels, and the motors in turn were controlled by a relay logic circuit (also
beneath the floor). The mouse could “explore’’ the maze according to a fixed
strategy that Shannon built into the relay logic, “learning’’ where the maze
walls were by bumping into them. Eventually, the mouse (that is, the relay
logic) learned to run, without bumping any walls, through the entire maze.
Photo reproduced by arrangement with the MIT Museum, Cambridge, MA.

from its experiences. Shannon was very much interested in machines
that were far from being pointless (unlike the so-called Ultimate
Machine), and wrote on the possibility of machines playing and
winning against humans in chess, a game that has come almost to
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define intelligence. Despite his own dismissal of games in Omni, he
made them the entire point of his talk, “Game Playing Machines’’
upon accepting a medal from the Franklin Institute in 1955, during
which he demonstrated some of his creations to the audience,
including the maze mouse.

In 1956 Shannon was invited by MIT to be a visiting professor, and
in 1958 he left Bell Labs to become the Donner Professor of Science,
with a joint appointment in mathematics and electrical engineering.
At MIT he did not teach regularly scheduled classes, but instead ran
frequent seminars open to all, and supervised a very small number of
graduate theses. His fascination with gadgets never waned at MIT, and
he did produce a few more results in information theory. Interestingly,
however, and in contradiction to his Omni declaration of “no interest in
money’’—a sentiment he repeated in a 1990 Scientific American profile
(“I’ve always pursued my interests without much regard to financial
value’’)—at MIT he did develop a strong interest in making money.

More technically, in what is called portfolio management, the sort of
activity that is the heart and soul of pension and mutual funds. At first
ignored by financial professionals, Shannon’s ideas (along with those
of his Bell Labs colleague John L. Kelly Jr. and the mathematician Ed
Thorpe) have today been enthusiastically embraced. The Transactions
on Information Theory began publishing papers on portfolio theory
in the 1980s, and many PhDs in information theory have since
found employment with Wall Street investment firms. Shannon himself
became wealthy by applying his ideas to his personal finances, a story
you can read at length in the 2005 book by William Poundstone,
Fortune’s Formula.

Shannon retired from MIT in 1978 and withdrew from academic
activity. He had received many honors in his life, including a 1966
National Medal of Science presented to him at the White House by
President Lyndon Johnson, and he had no ego-need for additional
recognition. He rarely attended meetings, and his absence only added
to his growing legend as a mysterious genius. One meeting he did
attend was the 1985 International Information Symposium held in
Brighton, England. At first no one paid any attention to the tall,
quiet, slender man who appeared to simply wander in and out of
the technical sessions. Word soon got out that Shannon was there,
however, and when he was eventually identified, the mob of excited
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engineers that crowded about Shannon, eager to get his autograph,
seemed to one observer to be “as if Newton had showed up at a physics
conference.’’

It was at that meeting, too, that some people began to notice that
all was not quite right with Shannon. In the years that followed he
had increasing difficulty with his memory, to the point of forgetting
where he was going or how to return home when out driving. By
1993 dementia had so impaired his ability to function that he was
placed in a Medford, Massachusetts, nursing home. There the years
passed and he remained unaware of the almost daily advances in
communications and computer technology in which his work was
fundamental. He completely missed, for example, the creation of the
World-Wide Web, a development he would surely have taken immense
pride in helping make possible. By all accounts, from those who visited
him, he remained a happy, cheerful man, but one who could not
recognize his own handwritten papers. And there, on February 24,
2001, just shy of his eighty-fifth birthday, Claude Shannon died a death
perhaps even more cruel than had been Boole’s. He had lived his life
blessed with a brain of rare magnificence, but in the end Alzheimer’s
disease had taken it all away.

But his work remains and continues to inspire. When you enter
the lobby of Bell Labs in Murray Hill, you pass between two busts
in honor of its two greatest men. One, as you might expect, is of
Alexander Graham Bell. The other—from an institution that has
produced numerous Nobel laureates in physics and so has its pick of
giants about which to boast—is of Claude Elwood Shannon.
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4
Boolean Algebra

They who are acquainted with the present state of the

theory of Symbolical Algebra, are aware that the validity of

the processes of analysis does not depend upon the

interpretation of the symbols which are employed, but solely

upon the laws of their combination.

—George Boole, in the opening to his Mathematical Analysis of

Logic (1847)

4.1 BOOLE’S EARLY INTEREST IN
SYMBOLIC ANALYSIS

As the above quotation shows, Boole was interested in symbolic analysis
years before he wrote his Laws of Thought. As mentioned in the previous
chapter, before even the Mathematical Analysis of Logic had appeared he
had published a paper on how to apply the symbolic manipulation
of the differentiation and difference operators to the solution of
differential and difference equations. The solution in that way of such
equations, while of immense importance in mathematical physics, is
both outside the scope and beyond the technical level of this book
and I won’t pursue that mathematics here. My point is simply that
the symbolic methods of Boole didn’t leap full-born from his head
with the Laws of Thought. Indeed, others before him—in particular, the
German mathematician Gottfried Wilhelm Leibniz (1646–1716)—had
pursued a similar goal of reducing logic to algebra, but it was Boole
who finally succeeded. What Boole described in his books is not exactly
what modern users call Boolean algebra, but nevertheless it is from
Boole that the modern presentation springs.1
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A but not B Not A and not B

A and B
A

B

Figure 4.2.1. Every element of B is an element of A.

4.2 VISUALIZING SETS

To understand the essence of what Boole did to cast logic into algebraic
form, it is very helpful to use the language of sets. I’ll discuss what
Boole did in the next section but, first, to lay the groundwork for that
I’ll say just a bit here on set terminology. A set is simply a collection
of things (the elements of the set), either physical or conceptual. For
example, we could talk of the set of all rocks (I’ll call that set A)
and we could talk of the set of all small rocks (I’ll call that set B).
Following the example of the Swiss-born mathematician Leonhard
Euler (1707–1783), we could then pictorially represent A and B as
shown in Figure 4.2.1 (Euler was drawing such diagrams before1770).
Every element of B is also an element of A because every small rock is a
rock, but the converse is not true (there are elements of A that are not
in B); all rocks are not small rocks. Notice, too, that there is a region in
the diagram that contains those elements that are not in either A or in
B; the elements in that region are all the things that are not rocks. Since
B is completely contained in A, there are just three distinct regions in
Figure 4.2.1. That is not the most general case, however: if A and B
are sets that partially overlap (intersect), then there is a fourth region,
as shown in Figure 4.2.2.
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A but not B

B but not A

Not A and not B

A and B

Figure 4.2.2. The four general regions of two sets.

4.3 BOOLE’S ALGEBRA OF SETS

To see how we can achieve Boole’s aim of arriving at the laws that
“combine’’ symbols in a logically consistent manner, independent of
what those symbols may actually represent, we’ll use some intuitive
visualizations of sets that I think you’ll find easy to accept. Specifically,
as one modern analyst wrote,

From a “universal’’ or fundamental set U, say the inhabitants of
London, we can symbolise sub-sets by means of selective opera-
tors. Thus x(U) may denote the set of blue-eyed inhabitants of
London, and y (U) the set of left-handed inhabitants of London,
so that x() and y () are selective operators. Then x(y (U)) will select
the blue-eyed left-handers, and y (x(U)) the left-handed blue-eyed
people. Since these two sets are composed of exactly the same
elements, we can write x(y (U)) = y (x(U)), or, since the “universe’’
U is understood, this can be abbreviated to xy = y x. If a third
operator z, say, is defined, as for instance, selecting all males, we
can show that the operations are associative, x(y z) = (xy )z.2

Notice, carefully, that while these examples have given specific inter-
pretations to the “universe,’’ and to the operators working in that
universe, we have already arrived at one of the general combination
laws for those operators. The same author then continues:
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It can also be observed that this symbolic product [that is, xy =
y x] plays the part of the logical connective “and’’, since xy
denotes those who are left-handed and blue-eyed. But already a
difference from the numerical product can be seen; the symbol
x(x(U)) denotes the selection of all the blue-eyed, followed by the
selection of all the blue-eyed, which merely selects all the blue-
eyed, or, in symbols, x(x(U)) = x(U), and, briefly, xx = x.

Now this law is a bit unsettling! In high-school algebra x2 = x is
perfectly fine, but what could it possibly mean in logic? Boole himself
thought x2 = x to be a central result of his symbolic logic. Here’s one
way, admittedly a bit off-the-wall, to arrive at a possible interpretation.
Write xx = x as x − xx = 0 or, x(1 − x) = 0. Then, rewrite 1 − x as U −
x(U), which we already know means “all the inhabitants of London, less
all the blue-eyed inhabitants of London,’’ which, in turn, means “all
the inhabitants of London who are not blue-eyed.’’ Thus, x(1 − x) = 0
means the set “all the people who are blueeyed and not blueeyed’’ is
the empty set, where we interpret 1 to mean the set of all people in
London (the “universe’’) and 0 to mean the so-called null set, which
has no elements in it. Since being blueeyed and not being blueeyed
are mutually exclusive properties, we shouldn’t be surprised to have
arrived at a set with no elements in it.

In logic, if x is a statement, then we will take x = 1 to mean the
statement is true and x = 0 to mean the statement is false. And this
makes sense on two levels: (1) x2 = x means “true and true gives true’’
(with x = 1), and “false and false gives false’’ (with x = 0), and (2) in
high-school algebra x2 = x is valid for just two particular numerical
values of x, x = 0 and x = 1. Be sure to note that we are using the
symbols 0 and 1 in two quite different ways: (1) as the so-called logical
0 and 1 for false and true, respectively, and (2) as the usual numerical
0 and 1 from arithmetic. The fact that (0)(0) = 0 and (1)(1) = 1
with either interpretation is a fortuitous “accident.’’ We’ll have yet a
third interpretation for 0 and 1, Shannon’s electrical one, in the next
chapter.

The use of the product xy to represent “x and y ’’ is the notation of
electrical engineers (and many mathematicians), and it is the notation
I am going to continue to use in this book. Philosophers (and many
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mathematicians) typically use the symbol ∩ to denote what is called
in set theory the intersection of sets A and B. That is, A ∩ B are those
elements that are in A and in B (the overlap region of A and B in
Figure 4.2.2). So, they would write x ∩ y to denote ‘x and y .’ I personally
don’t like the ∩ notation and, since I am the author, I get to choose!
But, just to say it here once,

xy = x ∩ y . (4.3.1)

Another logical connective of great use is or. There are, in fact,
two versions of this connective. I’ll use the arithmetic addition sign
to denote the so-called inclusive-or. For example, I’ll write x + y to
mean “all the blue-eyed people or all left-handed people or all blue-
eyed and left-handed people.’’ The exclusive-or, on the other hand,
will be written as x ⊕ y , which means “all the blue-eyed people or
all left-handed people but not people who are both blue-eyed and
left-handed.’’ (Boole, however, used our inclusive-or + symbol for
his exclusive-or!) Philosophers use the ∪ symbol (which I don’t like
either) to write the set operation of union (the entire shaded region
of Figure 4.2.2, which is the inclusive-or), and so, just to say it here
once,

x + y = x ∪ y . (4.3.2)

If we view 1 and 0 as representing statements that are true and false,
respectively—the view that will be central to the rest of this book—
then we can write the following for the and connective (where I’ve used
a dot (·)—which in fact I’ll usually not include when we use letters for
so-called Boolean variables in the next sections, to emphasize that we
are talking about a logical product):

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1,

(4.3.3)
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which looks, as observed before, just like ordinary arithmetic (but it
isn’t!). We get just a bit of a shock with the inclusive-or, however:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1.

(4.3.4)

The last line of (4.3.4) makes it very clear that we are not dealing with
ordinary arithmetic. And finally, for the exclusive-or, we have

0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0.

(4.3.5)

4.4 PROPOSITIONAL CALCULUS

The use of the historical phrase propositional calculus may seem quite
impressive, but the actual mathematics involved is simply that of the
previous section, that is, arithmetic (but not ordinary arithmetic). We
will use the symbols 1 and 0 to denote statements (propositions) that
are true and false, respectively, obeying the combination laws of (4.3.3),
(4.3.4), and (4.3.5). I’ll use capital letters to denote statements that are
either true or false, e.g., A = 1 and B = 0 mean statement A is true
and statement B is false. And finally, to complete our development of
the mathematics of modern Boolean algebra, there is one last logical
operation I need to introduce: the negation or not operation. It is pretty
simple. Whatever the condition of statement A may be (either true or
false), not-A (written as A) is the opposite or complement. So if A = 1
then Ā = 0, and if A = 0 then Ā = 1.

Now, perhaps to your surprise, that’s it. There is nothing more
to Boolean algebra than what I’ve already told you. All further
embellishments —of which there are just a few more to come—follow
from what you have already seen. For example, here are some useful
Boolean algebraic identities that may, at first glance, look exotic, but
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in fact you should be able to see their validity either by inspection or
after, perhaps, just a bit of pen-and-paper jotting. If A and B are any
two statements that are either true or false, then

AĀ = 0 (4.4.1)

AA = A, (4.4.2)

A + Ā = 1, (4.4.3)

A + 1 = 1, (4.4.4)

A + 0 = A, (4.4.5)

A + A = A, (4.4.6)

A + AB = A, (4.4.7)

AB = Ā + B̄, (4.4.8)

A + B = Ā B̄. (4.4.9)

All of these identities are easy to prove because in Boolean algebra,
unlike in the usual high school algebra where variables can potentially
have any value, Boolean variables can have just one of two values
(0 or 1). So, to confirm an identity, all we have to do is examine, one by
one, all the possible combinations of variable values (a finite number).
In (4.4.1), for example, we have 1 · 0 = 0 if A = 1, or 0 · 1 = 0 if A = 0,
and so we see that the right-hand side is 0 independent of A. In (4.4.6),
for another example, we have 0 + 0 = 0 if A = 0, and 1 + 1 = 1 if
A = 1, and so we see that the right-hand side is the same value as the
value A happens to have. The case of (4.4.7) is just a bit more involved
because now we have two Boolean variables. The method of proof is
unchanged, however, as again we simply evaluate the left-hand side
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and then the right-hand side of the claimed identity for all possible
values of A and B, to get

A B A + AB

0 0 0
0 1 0
1 0 1
1 1 1

and we see that the column for A + AB does indeed match the column
for A. Of course, we could also easily prove this identity by simply
writing A + AB = A(1 + B) or (because 1 + B = 1) = A · 1 = A.

This sort of table is called a truth table, and it is a common tool
for proving identities that involve multiple variables. Since Boolean
variables are binary-valued variables, there are 2n rows in such a table
if we have n variables. For n = 4 variables, for example, there are only
16 rows, and so evaluating the left-and right-hand sides of any claimed
identity is not really a burdensome task. The last two identities, (4.4.8)
and (4.4.9), are particularly nice examples of this technique:

A B AB Ā + B̄ A + B ĀB̄

0 0 1 1 1 1
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 0 0 0

and we see that the columns for AB and Ā + B̄ match, as do the
columns for A + B and Ā B̄. These two identities are useful in the
design of practical electronic logic circuits (something we’ll do in
Chapter 7); they are not due to Boole but rather to another English
mathematician, Augustus De Morgan (Professor of Mathematics at
University College, London), who formulated them in 1858.3 They are
known today as De Morgan’s theorems.

In the truth table I constructed to show that A + AB = A, the first
two columns listed all possible values for the Boolean variables A and
B, and the third column had the values for the combinatorial Boolean



Boolean Algebra 51

function F (A, B) = A + AB, where F itself is a Boolean variable, too.
Given the two variables A and B, this particular function is just one of
numerous possible functions connecting A and B. So, here is a natural
question to ask: how many functions of two variables are there? There
are 4 rows in the truth table for two input variables A and B, and for
each row the output function value F could be either a 0 or a 1. So,
there are 24 = 16 combinatorial functions of two variables.

Some of these 16 functions are more interesting than others. The
two functions F = 0 independent of A and B, and F = 1 independent
of A and B, are (I think) pretty obviously not very interesting! One func-
tion that is interesting is F = 1 when A = B = 0 and F = 0 otherwise.
That is, F = Ā B̄, which is sometimes called by its old-fashioned name
—the Pierce function—after the American logician and philosopher
Charles Pierce (1839–1914). From De Morgan’s theorem we see that
it is A + B. The Pierce function is known today as the not-or, or NOR.

Another interesting function is F = 0 when A = B = 1 and F = 1
otherwise. That is, F = Ā + B̄, which is sometimes called by its old-
fashioned name—the Sheffer stroke function—after the American logi-
cian and philosopher Henry Sheffer (1882–1964). (The word stroke was
used because philosophers once wrote it—and maybe some still do!—
with a stroke symbol, that is, as A/B. I think this notation, however, is
pretty much obsolete today.) From De Morgan’s theorem we see that it
is AB. The Sheffer function is known today as the not-and, or NAND.
We’ll return to both the NOR and the NAND functions in Chapter 5,
where you’ll see they have particularly important places in modern
digital circuitry.

More generally, there are 22n functions of n variables. This is an
expression that gets very big, very fast:

Number of Variables Number of Functions

1 4
2 16
3 256
4 65,536
5 4,294,967,296
6 1.84 · 1019
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To gain an appreciation for the last line, if one could build six-variable
Boolean functions at the rate of one billion per second, then it would
take more than 583 years to build them all.

4.5 SOME EXAMPLES OF BOOLEAN ANALYSIS

I think you are now ready to see how the mathematical machinery we
have developed can be put to good use. So, let’s use it to solve the four
puzzles I gave you in the introduction, starting with Puzzle 1. I’ll ask
you to look back there to refresh your memory of the details for each
puzzle.

PUZZLE 1 SOLUTION
Define the nine Boolean variables Xy , where X = A, B, or C and

y = red, blue, or white, such that Xy = 1 means the statement “box
X contains the chip with color y ’’ is true, and Xy = 0 means that
statement is false. For example, Ar = 1 means the statement “box A
contains the red chip’’ is true, while Ar = 0 means the statement is
false. There are numerous equations that we could now write using
this notation, but not all will be useful. One, in particular, however, is

Ar + Br + Cr = 1, (4.5.1)

which states the obvious: the red chip must be in one of the boxes. The
three statements (of which only one is true) given in the introduction
are, symbolically, denoted by the variables Ar , B̄r , and C̄ b . Now,
using the same “careful reasoning’’ used in the solution given in the
introduction, that is, let’s take each of the three statements, in turn, as
the true one and then reverse the other two, and we arrive at

Ar Br Cb + Ār B̄r Cb + Ār Br C̄ b = 1 (4.5.2)

since one of the three logical products will be 1. Obviously Ar Br = 0
since the red chip can’t be in both box A and box B, and so the first
term in (4.5.2) is 0, giving

Ār B̄r Cb + Ār Br C̄ b = 1. (4.5.3)
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From the logical product of (4.5.1) and (4.5.3) we get

(Ar + Br + Cr )( Ār B̄r Cb + Ār Br C̄ b ) = 1

or, expanding,

Ar Ār B̄r Cb + Ar Ār Br C̄ b + Br Ār B̄r Cb + Br Ār Br C̄ b + Cr Ār B̄r Cb

+Cr Ār Br C̄ b = 1. (4.5.4)

Since Ar Ār = Br B̄r = 0, and since Cr Cb = Cr Br = 0 (these conditions
should all now be obvious!), we are left with just one non-zero term
(the fourth one) on the left-hand side of (4.5.4):

Ār Br C̄ b = 1 (4.5.5)

because Br Br = Br . Now, for a logical product to be 1, each individual
factor must be 1, and so (4.5.5) immediately tells us that Ār = 1
(Ar = 0), Br = 1, and C̄ b = 1(Cb = 0). That is, box A does not have the
red chip, box B does have the red chip, and box C does not have the
blue chip. So, box C must have the white chip, leaving the blue chip
for box A.

PUZZLE 2 SOLUTION
Define the six Boolean variables H, J , D, G, C , and T as follows:

if H = 1 then the statement “Harry did it’’ is true, while if H = 0
that statement is false. And so on, in a similar way, for the other five
variables. Since for one of the pairs of statements both statements are
false, we have

(C + G)(D + T)(T + C )(H + C )(D + J ) = 0 (4.5.6)

because, while four of the factors must be 1 (those factors associated
with the pairs of statements in which one of statements is true), the
remaining factor—the one associated with the pair of statements that
are both false—must be 0. We, of course, have no idea (yet) which factor
is the “remaining factor.’’ If we start to expand (4.5.6), we have

(C D + G D + C T + GT)(TH + C H + TC + C )(D + J ) = 0. (4.5.7)
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Now, before continuing, here’s a crucial observation: since there are
only two boys who “did it,’’ then any logical product of three or more
different variables will necessarily be 0. This allows us to immediately
write as we expand (4.5.7), by inspection,

C DC (D + J ) = C DC D + C DC J = C D + C DJ = C D(1 + J ) = 0

and so

C D = 0. (4.5.8)

Next, as mentioned earlier we know that four of the five factors in
(4.5.6) are 1 and so, if we form the five possible logical products taking
four factors at a time, the logical sum of these products will be 1. Thus,

(C + G)(D + T)(T + C )(H + C ) + (C + G)(D + T)(T + C )(D + J )

+(C + G)(D + T)(H + C )(D + J ) + (C + G)(T + C )(H + C )(D + J )

+(D + T)(T + C )(H + C )(D + J ) = 1. (4.5.9)

If we begin to multiply-out the left-hand side of (4.5.9), we have

(C D + DG + C T + GT)(TH + C H + TC + C )

+(C D + G D + C T + GT)(TD + C D + T J + C J )

+(C D + G D + TC + GT)(HD + C D + HJ + C J )

+(C T + GT + C + GC )(HD + C D + HJ + C J )

+(DT + T + C D + TC )(HD + C D + HJ + C J ) = 1.

Using once again the observation that the logical product of more
than two different variables is always 0 in this problem, as well as our
earlier result of (4.5.8)—that C D = 0—we can now immediately write,
by inspection,

CC J = C J = 1,
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and so C = 1 and J = 1, and we have identified our two thieves as
Charlie and James. Without Boolean algebra, I think this problem
would reduce the brains of most people to mush!

PUZZLE 3 SOLUTION
Define the sixteen Boolean variables Xi , where X = A (for Alice),

B (for Brenda), C (for Cissie), or D (for Doreen), and i = 1, 2, 3, or4,
which means X was in i-th place in the scholarship competition. For
example, A1 = 1 means the statement “Alice was first’’ is true, while
B3 = 0 means the statement “Brenda was third’’ is false. From Alice’s
pair of statements we have

C1 B2 = 0 (4.5.10)

because one of her two statements is false. But, because one of her
statements is true we also have

C1 + B2 = 1. (4.5.11)

Using De Morgan’s theorem on (4.5.10) gives

C1 B2 = 0̄ = 1 = C̄ 1 + B̄2,

and if we logically multiply this result with (4.5.11) we get

(C̄1 + B̄2)(C1 + B2) = 1 · 1 = 1 = C̄ 1C1 + B̄2C1 + B2C̄ 1 + B̄2 B2,

or, since C̄ 1C1 = B̄2 B2 = 0, then

B̄2C1 + B2C̄ 1 = 1. (4.5.12)

In a similar fashion, from Brenda’s statements we have

C2 D3 = 0, C2 + D3 = 1,

from which it follows that

C̄ 2 D3 + C2 D̄3 = 1. (4.5.13)



56 Chapter 4

And from Cissie’s statements we have

D4 A2 = 0, D4 + A2 = 1,

from which it follows that

Ā2 D4 + A2 D̄4 = 1. (4.5.14)

Logically multiplying (4.5.12), (4.5.13), and (4.5.14) together, we have

(B̄2C1 + B2C̄ 1)(C̄2 D3 + C2 D̄3)( Ā2 D4 + A2 D̄4) =
(B̄2C1C̄2 D3 + B2C̄1C̄ 2 D3 + B̄2C1C2 D̄3 + B2C̄1C2 D̄3)

( Ā2 D4 + A2 D̄4) = 1.

Since C1C2 = B2C2 = 0—Cissie couldn’t have been both first and
second, and Brenda and Cissie can’t both be second—we have the
reduction to

(B̄2C1C̄ 2 D3 + B2C̄ 1C̄ 2 D3)( Ā2 D4 + A2 D̄4) = 1. (4.5.15)

Continuing with the expansion of (4.5.15),

Ā2 D4 B̄2C1C̄ 2 D3 + Ā2 D4 B2C̄ 1C̄ 2 D3 + A2 D̄4 B̄2C1C̄ 2 D3

+A2 D̄4 B2C̄1C̄ 2 D3 = 1.

Now, the first and second terms on the left are 0 (Doreen can’t be both
third and fourth), and the fourth term is 0 (Alice and Brenda can’t both
be second). That is, all but the third term are each 0, and so

A2 D̄4 B̄2C1C̄2 D3 = 1. (4.5.16)

Each and every factor in the logical product of (4.5.16) must be 1, and
that says A2 = 1 (Alice was second), C1 = 1 (Cissie was first, and this
is consistent with C̄ 2 = 1; Cissie was not second), D3 = 1 (Doreen was
third, and this is consistent with D̄4 = 1; Doreen was not fourth), and
so we are left with fourth place for Brenda, which is consistent with
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B̄2 = 1 (Brenda was not second). Clearly, this is yet another problem
where “your brain would be mush’’ without Boolean algebra.

PUZZLE 4 SOLUTION
This is actually the easiest of the four puzzles to solve, if you have the

idea of using a truth-tablelike tabulation of all possible cases for four
Boolean variables. That is, writing A = 0 to mean “A doesn’t hunt’’
and C = 1 to mean “C hunts,’’ and similarly for B and D, we can
write the following table of 16 rows listing all possible combinations
of hunting/no hunting for each of the four hunters on any given day.
Row 6, for example, says that B and D hunt, while A and C don’t.

Row A B C D

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0

10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 0 0
14 1 1 0 1
15 1 1 1 0
16 1 1 1 1

Now, condition (1) says that if A = 1 then B = 0. That eliminates
rows 13, 14, 15, and 16. Condition (2) says that if B = 1 then D = 1 and
C = 0. That further eliminates rows 5, 7, and 8. And condition (3) says
that if D = 1 then A = 1 or B = 1 (or both A and B = 1). That further
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eliminates rows 2 and 4. We are thus left with the following seven rows
that are each consistent with all three given conditions (you’ll notice
that seven rows is, itself, consistent with the condition that the hunters
occupied their camp for seven days, with one row for each day since we
were told that no two days were identical):

A B C D

0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

So, the answer to Puzzle 4 is immediately established: D hunted
on three days, once with B alone, once with A alone, and once with
both A and C . These seven rows also provide the answers to the same
questions for A, B, and C (for example, A hunted on four days, B
hunted on just one day, and C hunted on three days, and, you’ll notice,
there was one day—the row of all 0s—during which nobody hunted).

To finish my discussion of logic puzzles, let me show you one that
Shannon himself cited in one of his papers, a problem so hard that I
think it will turn your brain to mush. It did mine!

It is known that salesmen always tell the truth and engineers
always tell lies. B and E are salesmen. C states that D is an
engineer. A declares that B affirms that C asserts that D says that
E insists that F denies that G is a salesman. If A is an engineer,
how many engineers are there?4

There are seven Boolean variables here (A through G), and so there
are potentially a total of 27 = 128 salesman/engineer combinations.
Many are immediately eliminated, of course, because of the given
conditions. For example, since A is stated to be an engineer, half of
the 128 initial possibilities are eliminated and we are down to 64.
We eliminate even more using the facts that B and E are both given
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as salesmen. Each condition eliminates half again, and so we end-up
with just 16 combinations to consider. And finally, we can eliminate
half again using “C states D is an engineer.’’ After all, C is either an
engineer or a salesman. If an engineer, he lies, and so D is actually a
salesman. If a salesman, he tells the truth, and so D is an engineer. In
either case, C �= D, and imposing that requirement leaves us with just
8 combinations.

But, if you can wade through “A declares that B affirms that C
asserts . . .’’ then you have done better than I have been able to do.
Shannon doesn’t provide a solution, either, but the paper he got it
from does5. In fact, there are four combinations that are consistent
with all the given conditions. Using the notation A and Ā to denote “A
is an engineer’’ and “A is a salesman,’’ respectively, the given solutions
are: AB̄C̄ DĒ F̄ G, AB̄C̄ DĒ F Ḡ, AB̄C D̄Ē F̄ G, and AB̄C D̄Ē F Ḡ. In all
four solutions, there are exactly three uncomplemented variables, and
so that is the answer: there are three engineers. The authors, like
Shannon, also do not provide a paper derivation, but rather give the
circuit diagram of a relay computer that produced the four results.
They do provide one hint: they observe that “Y states {X}’’ is equivalent
to “A is an engineer or else {X} is true,’’ and they use that equivalence
to explain their computer circuit. How to use it in a paper derivation,
however, has escaped me. Perhaps a reader will have more success —if
so, please send me your derivation!

4.6 VISUALIZING BOOLEAN FUNCTIONS

At this point you have all the pure technical background you need
to understand the mathematics of combinatorial digital circuits. There
is, however, one last topic that, while it adds little or nothing to the
theory, tremendously adds to the engineering of combinatorial digital
circuit design. This innovation reached its modern form in present-day
textbooks at the relatively recent date of 1953, in an influential paper
published by the American physicist Maurice Karnaugh (born 1924)6.
Karnaugh’s so-called map method allows the pictorial representation
of a Boolean function, which, in turn, allows the easy construction
of alternative mathematical forms for the function—alternatives that
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may, in some way, be “better’’ in an engineering sense than other
forms. Karnaugh’s maps are intimately connected to the eighteenth-
century Euler diagrams (see Figure 4.2.1 again) and their nineteenth-
century descendent called Venn diagrams, named after the English
philosopher John Venn (1834–1923).

To start, consider the following truth table for the Boolean function
F (A, B):

A B F

0 0 1
0 1 0
1 0 1
1 1 1

Now, from any truth table we can write the combinatorial Boolean
function it represents by, for each 1 entry in the function column,
including a logical product term with each input variable represented if
we complement that is, negate an input variable if it has the value 0. Doing
that, we get the Boolean function in the form of a “sum of products’’—
the so-called SOP form. In particular,

F = Ā B̄ + AB̄ + AB. (4.6.1)

We can algebraically simplify this in a couple of ways:

F = ( Ā + A)B̄ + AB = B̄ + AB (4.6.2)

or

F = Ā B̄ + A(B̄ + B) = Ā B̄ + A. (4.6.3)

All three of our expressions for F are logically equivalent. The
Karnaugh map for F is shown in Figure 4.6.1, which plots a 1 in
each sub region that is “covered’’ by the terms in (4.6.1). The logical
equivalence of (4.6.2) and (4.6.3) is “visually proven’’ by observing that
the maps of each are the same as Figure 4.6.1.

But notice, carefully, that Figure 4.6.1 also shows that there is a
another way to write F that is not derivable algebraically with the ease
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Figure 4.6.1. The Karnaugh map for F

that we got (4.6.2) and (4.6.3):

F = A + B̄ (4.6.4)

The two terms of (4.6.4) “cover’’ one of the subsquares twice (the
AB̄ square), yes, but in Boolean algebra 1 + 1 = 1, and so multiple
coverings of a subregion can occur with no problem caused. All four
of our expressions for F look quite different from one another but yet
are logically equivalent.

Next, consider the following truth table for the Boolean function
G(A, B, C ):

A B C G

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

From the table we have

G = Ā B̄C̄ + Ā B̄C + AB̄C, (4.6.5)

which gives the three-variable Karnaugh map shown in Figure 4.6.2.
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Figure 4.6.2. The Karnaugh map for G

The map immediately shows the following alternative form for G:

G = Ā B̄ + B̄C . (4.6.6)

Perhaps even more interesting is that the map immediately allows
us to write an expression for Ḡ, by simply looking at the inverse
(complementary) map obtained by writing a 1 everywhere there isn’t
a 1 in the G-map, as shown in Figure 4.6.3. Thus,

Ḡ = AC̄ + B (4.6.7)

and, using De Morgan’s theorem,

G = (AC̄ + B) = AC̄ B̄,

or, again using De Morgan’s theorem,

G = ( Ā + C )B̄. (4.6.8)

Notice that (4.6.8) is in the form of a logical “product of sums’’ —
the so-called POS form—as opposed to the SOP form in (4.6.5) and
(4.6.6). Depending on circumstances, one form may be preferred over
the other for engineering reasons.

To finish this section, let me show you one last use of a Karnaugh
map that easily accomplishes what can be a very difficult task if
attempted analytically. Suppose one has the following truthtable for
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Figure 4.6.3. The Karnaugh map for Ḡ

the four-variable Boolean function H(A, B, C, D):

A B C D H

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0,1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0,1
1 0 0 0 0,1
1 0 0 1 1
1 0 1 0 0,1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

This truth table probably looks a bit odd to you; you may be asking,
“Why are there rows in the table where the entry for H is not just a 0
or just a 1, but rather both?’’ They are there because when the input
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Figure 4.6.4. The Karnaugh map for H

variables have the values shown in each of those particular rows, we
don’t care what the output function value is! Now, of course, once we
learn how to actually construct electronic circuits that realize Boolean
functions in hardware, then there will be a specific output value for
every possible combination of inputs. So, the output function H must
have just one or the other value (0 or 1, but not both!) for each and
every row, but we are free to pick, independently, either output value
for each of the “don’t care’’ rows. Our choice will be guided by what
makes the final expression for H the “simplest’’ by some criterion.

To do our analysis, I’ll first write the terms that give the value of 1
for H, and then (in parentheses) I’ll write the “don’t care’’ terms. Thus,

H = ĀBC̄ D + AB̄C̄ D + ABC̄ D̄ + ABC̄ D + ABC D (4.6.9)

+( Ā B̄C D̄ + ĀBC D + AB̄C̄ D̄ + AB̄C D̄).

Figure 4.6.4 is the Karnaugh map for H, with the “don’t care’’
terms plotted as d’s (Karnaugh’s original notation). With Figure 4.6.4
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displaying the interaction of the “don’t care’’ terms with the required
terms, I think the simple form of

H = AC̄ + BD (4.6.10)

figuratively jumps off the page, where I’ve taken just two of the d’s (the
two circled inside the dashed lines) as 1s.

What if we have Boolean functions of more than four input vari-
ables? Karnaugh had some suggestions for such cases, one involving
three-dimensional maps, but as far as I know none have caught on
with professional logic design engineers. Four variables are the most
I’ve ever seen people use with ease; beyond that, other techniques
(such as computer-aided algorithmic codes) are the simplification
tools of choice.7 At the end of his paper Karnaugh wrote, “Beyond
nine variables, the mental gymnastics required . . . will, in general, be
formidable.’’ I think that’s true, but also that experience has shown
that Karnaugh’s upper limit of nine variables was far too optimistic.
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actually designed for a paycheck and not for homework points.



5
Logic Switching Circuits

In his master’s thesis he showed how an algebra invented in

the mid-1800s by the British mathematician George

Boole—which deals with such concepts as “if X or Y

happens, and not Z, then Q results”—could represent the

workings of switches and relays in electronic circuits. The

implications of the paper were profound: engineers now

routinely design computer hardware and software,

telephone networks and other systems with the aid of

Boolean algebra. Shannon downplays the discovery. “It just

happened no one else was familiar with both those fields at

the same time,” he says. He adds, after a moment of

reflection, “I’ve always loved that word, Boolean.”

—In a profile of Claude Shannon,

Scientific American (January 1990)

5.1 DIGITAL TECHNOLOGY: RELAYS VERSUS
ELECTRONICS

Today’s digital circuitry is built with electronic technology that the
telephone engineers of the 1930s and the pioneer computer designers
of the 1940s would have thought to be magic. And I mean that
literally: to quote science fiction writer Arthur C. Clarke’s famous
third law: “Any sufficiently advanced technology is indistinguishable
from magic.’’1 An example of this is the ordinary radio, which while
commonplace to us (modern kids probably find AM radio just a
bit boring!) would have been magic to the greatest of the Victorian
scientists, including James Clerk Maxwell, himself who first wrote the
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equations that give life to radio. In the Middle Ages such a gadget
would have gotten its owner burned at the stake —what else, after all,
could a “talking box’’ be but the work of the devil?

The first real digital technology took the form of electromagnetic
relays in telephone switching exchanges. Then came vacuum tube
digital circuitry (although the tube itself had been in radio circuits
since before 1910), and then discrete transistors, and then integrated
transistor circuits, and then . . . . The acronyms abound: DTL, TTL,
ECL, CMOS, I2L, and who knows what next year. The one thing that
remains the same is the math, the Boolean algebra that is the central
star of this book. As I stated in the introduction, we will not discuss
electronics—I am an electrical engineer and so I hope you appreciate
how much I am giving up here!—because any specific technology is
simply secondary (or even tertiary) to the spirit of this book.

But to really appreciate what Shannon did with Boole’s math,
we of course have to discuss electrical circuits in some form, and so
I’ve decided to go back to the beginning and use relays. These are
intuitively easy-to-understand devices, and historically they are the
technology that Shannon himself used in his switching analyses. To
my knowledge, Shannon always wrote, until the end of his career,
in terms of relays when discussing digital switching circuits. He of
course knew of vacuum-tube and solid-state electronics—he was at
Bell Labs when the transistor was invented there and was a friend
of John Pierce, the Bell Labs electrical engineer who gave the new
device its name (Shannon’s second wife was a mathematician in Pierce’s
group at Bell Labs when they met)—but the relay switch was always the
device of choice for Shannon. The brains of his 1950 maze-running
mouse (see the photograph in Figure 3.2.1 again) were built from
something like 75 relays. A note on the back of the original photograph
specifically says Shannon built the mouse to “illustrate the capabilities
of telephone relays.’’

5.2 SWITCHES AND THE LOGICAL CONNECTIVES

A switch is a mechanical device, either hand-operated (a toggle or a
push button) or electrically actuated (a relay, which I’ll discuss later
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5 volts

down
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0 (down)
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up

Figure 5.2.1. A hand-operated switch.

in this chapter, or electronic circuits, which I won’t discuss) that, in its
simplest form, we’ll represent as a movable contact that can be flipped
back and forth between two fixed contacts, as shown in Figure 5.2.1.
In the figure I’ve labeled the movable contact A, and A is a Boolean
variable. As the figure shows, the movable contact voltage is either +5
volts or 0 volts (ground), which I’ll take here to represent logical 1
or logical 0, respectively. When the movable contact A is touching the
upper fixed contact, we have A = 1, and when the movable contact A
is touching the lower fixed contact, we have A = 0.

It was Shannon’s insight to see that putting switches in series
or parallel allows one to construct logical and or logical inclusive-or
electrical circuits, respectively.2 And clever use of switch contacts allows
the construction of the not logical operation, too. For example, in
Figure 5.2.2 the lamp illuminates if switch A and switch B are logical
1, while in Figure 5.2.3 the lamp illuminates if switch A or switch B (or
both) are logical 1. You’ll notice that in Figure 5.2.3 the lower fixed
contacts of A and B (the Ā and B̄ contacts) are not connected to
ground. If they were, then it would be possible to short the +5 volt
power supply to ground, resulting in much pyrotechnics! 3

In many applications it is convenient to have both A and Ā available
at the same time, and the arrangement of Figure 5.2.4 provides that.
There the +5 volt power supply is connected to the movable contact,
and the two fixed contacts provide A and Ā. When the movable contact
touches either fixed contact, then that fixed contact voltage is, of
course, +5 volts (logical 1). The other fixed contact is connected to
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Figure 5.2.2. Series means and.
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B

Figure 5.2.3. Parallel means or.

ground (0 volts, or logical 0) through a resistor R. Without those
resistors the isolated contact would be electrically “floating,’’ and its
voltage with respect to ground would be undefined. The resistors
provide electrical paths to ground; they are called pull-down resistors
(they pull the voltage of an otherwise floating contact down to ground
potential). They also prevent the power supply from being shorted to
ground when the movable contact is at either fixed contact. The circuit
of Figure 5.2.5 shows how to wire two lamps so that lamp 1 illuminates
if A = 1 and B = 1, while lamp 2 illuminates if A = 1 and B = 0 (B̄ = 1),
or if A = 0 ( Ā = 1).
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Figure 5.2.4. One way to generate A and Ā.

5 volts
+

–

A

R

R

A

R

R

Lamp 1

Lamp 2

B

B

Figure 5.2.5. A two-lamp circuit.

5.3 A CLASSIC SWITCHING DESIGN PROBLEM

Imagine that there is a wall sconce lamp halfway down a staircase,
which can be controlled from either of two switches, one at the top
of the stairs and one at the bottom. How are the lamp and the switches
connected with the power supply? That is, one can turn the light on
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or off from either switch, independent of the setting of the other
switch. This is a situation that occurs in probably most homes in the
modern world and yet, when first encountered, most people have
trouble “seeing’’ how to do it. If we define the two switches by the
Boolean variables A and B, and if we define the lamp by the Boolean
variable L, with L = 1 meaning the lamp is on, and L = 0 meaning the
lamp is off, then a truth table for the circuit logic is

A B L

0 0 0
0 1 1
1 0 1
1 1 0

The explanation for this table is straightforward. We define the lamp
to be off when both switches are in their 0 positions. Then, changing
one of either of the two switches should turn the lamp on (that, in going
from the 0 0 row in the table to either of the rows 0 1 or 1 0). Then,
changing one of either of the two switches once more should turn the
lamp off (that is, in going from the 0 1 row to either of the rows 0 0 or
1 1, or going from the 1 0 row to either of the 0 0 or 1 1 rows). From
the table, then, we have

L = ĀB + AB̄. (5.3.1)

This is not the only solution, however, as you should be able to see that
the following truth table also satisfies the requirements of the problem
(the result of defining the lamp to be on when both switches are in
their 0 positions, rather than off):

A B L

0 0 1
0 1 0
1 0 0
1 1 1
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Figure 5.3.1. Two solutions to the staircase light problem.

and so now

L = Ā B̄ + AB. (5.3.2)

Figure 5.3.1 shows the resulting circuits (the top circuit for (5.3.1) and
the bottom circuit for (5.3.2)). You should be able to see that either
circuit solves our staircase problem. There is no reason to prefer one
circuit over the other and so, for a problem that often seems quite
puzzling on first encounter, we see that there are in fact two solutions,
and Boolean algebra easily shows us both of them.

5.4 THE ELECTROMAGNETIC RELAY
AND THE LOGICAL NOT

So far, our development of electrical circuits that implement the
various logical switching functions may seem a bit ad hoc to you.
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E
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a (normally closed)

b (normally open)

c

Movable arm

Figure 5.4.1. An electromagnetic relay.

Sometimes the fixed contacts are grounded, other times not, some-
times the power supply voltage is applied to the fixed contacts, other
times to the movable contact. Indeed, before Shannon, the design of
switching circuits was more of an art form than it was engineering
science. Each new problem demanded a new, distinct invention. What
is needed is a set of standard building block circuits—logic gates —that
one can routinely interconnect in a straightforward way to construct
any combinatorial logical switching circuit desired. What we need is the
logic equivalent of an erector set using many copies of a small number
of fundamental components. In this section, and in the next, I’ll show
you how that can be done with relays.

Today, of course, logic gates are electronic in nature, as I discussed
in the opening section of this chapter, but the relay hung on for quite a
while. With the invention of the transistor in 1948, and the consequent
tremendous reduction in size, speed, and power requirements of logic
gates, the days of the relay were clearly numbered. Nevertheless, once
could still find, as late as the mid-1950s, college-level texts devoted to
teaching switching circuit design using only large, slow, power-hungry
relay technology.4

To begin our development of relay logic gates, consider Figure 5.4.1,
which shows how simple a device is the electromagnetic relay switch.
It consists of a coil of wire around a piece of iron, with one end
of the coil grounded and the other end connected to a voltage E.
When the current-carrying coil is sufficiently energized (by E being
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+5 volts

Y = A
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Figure 5.4.2. The relay logical inverter (NOT gate).

sufficiently large), then the iron is an electromagnet with a magnetic
field strong enough to attract a spring-tensioned arm away from its
“normal’’ position to a new position. When the energizing current is
removed, the spring tension pulls the arm back to its normal position.

When the coil is carrying a current that exceeds some minimum
value the relay’s movable arm switches from the upper contact (a) to
the lower contact (b). Contact a is said to be the n.c. or normally closed
(coil not energized), or break contact. Contact b is said to be the n.o.
or normally open, or make contact. When the coil is not energized, we
have an electrical path through the break contact a and terminal c,
and when the coil is energized we have an electrical path through the
make contact b and terminal c .

To be specific, let’s assume our relay has a coil resistance of 1,000
ohms, and that the coil is energized when the coil current exceeds
0.004 amperes (that is, 4 milliamperes = 4 ma). Finally, let’s say a
voltage of zero volts (ground) is logical 0, and that +5 volts is logical
1. So, when we apply logical 0 (E = 0) to the relay coil, the coil current
is zero (<4 ma) and the relay is not energized, while when we apply
logical 1 (E = 5 volts) to the relay coil, the coil current is 5 ma (>4 ma)
and the coil is energized.

We can now easily build our first logic gate, the NOT (inverter)
gate shown in Figure 5.4.2. You should be able to see that Y = 5 volts
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v voltsu volts

i

Figure 5.5.1. The diode.

when A = 0 volts, and that Y = 0 volts when A = 5 volts. That is, A
and Y are each Boolean variables such that Y = Ā. Rather than having
to reproduce the intricate circuit details of the logical inverter over
and over when drawing complicated combinatorial logic diagrams, the
standard logic symbol for the inverter gate is shown directly below the
relay circuit in the figure.

5.5 THE IDEAL DIODE AND THE RELAY LOGICAL
AND and OR

To understand the operation of relay AND and OR gates, we need to
take a quick detour and bring the diode into the discussion. Diodes have
been a part of electrical engineering since the earliest days of radio,5

and even earlier, but for many years the physics behind what is often
called diode action was a mystery. To really get into what happens inside
a modern solid-state diode requires some discussion of electronics
and quantum mechanics, but for our purposes here some very simple
imagery will do.

A diode is what electrical engineers call a voltage-controlled switch,
and they use the symbol shown in Figure 5.5.1 when drawing circuits.
When the diode voltages u and v, are such that u > v, then the diode
presents a low resistance (in the ideal limit, zero resistance). The diode
is said to be forward biased, and the current in the diode (flowing in
the direction of the arrowhead) is determined by the circuitry that
surrounds the diode. The voltage drop across a forward-biased diode
is small (in the ideal limit, the drop is zero). When the diode voltages
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Figure 5.5.2. The pn-junction.

u and v are such that u<v, then the diode presents a high resistance
(in the ideal limit, infinite resistance). The diode is said to be reverse
biased, and the current in the diode is zero. (Think of the vertical line
in the diode symbol as a brick wall that stops any current flow opposite
the arrowhead!)

You can understand how diode action occurs as follows. Imagine that
there are two kinds of material, called p-stuff and n-stuff. Both kinds of
material can actually be made, in fact, by adding (in a delicate process
called doping) certain impurities to pure silicon. Exactly what occurs
when doping is done is where the quantum mechanics I mentioned
earlier comes in, but you can simply think of p-stuff as acting like
a conducting material in which the carriers of electrical charge are
positive (what physicists and electrical engineers call holes) and n-stuff
as acting like a conducting material in which the carriers of electrical
charge are negative (the well-known electrons). Now, imagine a slab of
p-stuff joined to a slab of n-stuff, as shown in Figure 5.5.2. The two
slabs form what is called a pn-junction, and it is the basis for all of
modern solid-state electronics. In his 1987 Omni interview, Shannon
declared the transistor to be “the most important thing discovered this
century.’’ We’ll be satisfied here, however, to see how the pn-junction
explains diode action.

Imagine that we apply a positive voltage u and a negative voltage
v to the pn-junction terminals. Then, because like polarities repel,
the positive u pushes the positive holes across the junction from the
p-stuff, into the n-stuff, and the negative v pushes the negative
electrons across the junction from the n-stuff into the p-stuff. The
result, from both pushes and resulting charge carrier motions, is a
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current i > 0 directed from p-stuff to n-stuff and we have a forward-
biased diode. More generally, it isn’t really necessary that u > 0 and
v < 0, just that u > v, (for example, u = −20 volts and v = −30 volts
would result in a forward-biased diode).6

If, on the other hand, u < 0 and v > 0, then, since unlike polarities
attract, the negative u pulls the positive holes away from the junction,
and the positive v pulls the negative electrons away from the junction.
The result, from both pulls, is that no charge carriers flow across
the junction, and so i = 0 and we have a reverse-biased diode. More
generally, it isn’t really necessary that u<0 and v>0, just that u<v

(again, see note 5).
You should now be able to understand how the relay circuits of

Figure 5.5.3 implement the logical inclusive-OR and the logical AND
operations. In the upper circuit (the inclusive-OR), if both A and B
are at ground potential (both are logical 0), then the coil voltage E is
obviously at ground potential as well, and so the relay is not energized.
Thus, the output Y is connected through the break contact to ground,
and so Y is logical 0. If, however, A is +5 volts (logical 1) while B
is at ground potential (logical 0), then diode D1 is forward-biased
and E becomes +5 volts which both energizes the relay and reverse
biases diode D2. (The presence of D2 is necessary to prevent A from
shorting directly to ground via B.) Thus, with the relay energized, Y
is connected through the make contact to +5 volts, and so Y is logical
1. The same argument applies to the case of A as logical 0 while B is
logical 1 (except now D2 is forward biased and D1 is reverse biased).
And finally, if both A and B are logical 1, then both diodes are forward
biased, and so Y , is logical 1. Thus, in summary,

Y = A + B.

The behavior of the lower circuit (the AND) is only slightly more
involved. If A and B are both at ground potential (both are logical
0), then current flows from the +5 volt power supply through the
resistor r (typically small, on the order of 100 ohms, and so negligible
compared to the resistance of the relay coil) to ground via A and B
because both D1 and D2 are forward biased. That is, E is at ground
potential, too, and so the relay is not energized. Thus, Y is connected
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Figure 5.5.3. The relay inclusive-OR and AND logic gates.

to ground (logical 0) through the break contact. If A is at +5 volts while
B is at ground, then D2 is forward biased and so the relay remains
unenergized. Similarly for A at ground and B at +5 volts. When both
A and B are at +5 volts (when both A and B are logical 1), then current
still flows from the +5 volt power supply, but now through the relay
coil; that’s because both diodes have +5 volts on their left terminal
and voltage E (which is less than +5 volts because of the voltage drop
across r ) on their right terminal, and so both diodes are reverse biased.
The relay coil is the only path left for the current. Thus, the relay is
energized and so Y is connected to +5 volts via the make contact. So,
Y is logical 1 only when A is logical 1 and B is logical 1, and so

Y = AB.
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Figure 5.5.4. The relay NOR logic gate.

With these three kinds of logic gates one can construct any combi-
natorial circuit. In actual practice, the three different gate types are
not generally present; in the interest of standardization and economy,
one finds that all combinatorial logic is built either from just not-AND
gates or from just not-Inclusive-OR gates (the NAND or the NOR,
respectively). To build either the NAND or the NOR with relays is now,
of course, trivial for us; the relay NOR is shown in Figure 5.5.4. In
Figure 5.5.5 you can see how easy it is to go the other way; that is,
to build the NOT, Inclusive-OR, and AND functions from just NOR
gates (the inputs with logic 0 are connected directly to ground). As an
exercise, you should try your hand at doing the same with just NAND
gates.

With standardization we have not only a single logic gate function
out of which everything is built, but also the reality that the standard
logic gate (here, the NOR) also has a fixed number of inputs. In the
circuits I’ve shown you so far, all logic gates have two inputs. But
suppose we need (for whatever reason) a three-input NOR? How can
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Figure 5.5.5. NOT, Inclusive-OR, and AND logic gates from just NOR gates.

A + B + C
0

B A

C

Figure 5.5.6. Building a 3-input NOR from 2-input NORs.

we do that? The circuit in Figure 5.5.6 shows how to make a 3-input
NOR using just 2-input NOR gates.

5.6 THE BI-STABLE RELAY LATCH

I’ll finish this chapter by giving you an example of how one can
use relays to build a new type of logic circuit that is a revolutionary
step beyond “mere’’ combinatorial circuitry. It is, in fact, central to
the construction of all modern digital machines. This new circuit will
respond to one or more inputs, just as do combinatorial circuits,
but it will have one additional capability: memory. After the inputs
are removed, this new circuit —called a latch—will remain in one of
two stable states, hence the name bi-stable, with each possible state
characteristic of the specific nature of the now (perhaps) long-gone
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Figure 5.6.1. The bi-stable relay latch.

input(s). The state of the circuit can be changed with new input(s), but,
until those new inputs arrive, the present state is remembered by the
circuit. More picturesquely, the circuit can flip from one state to the
other and then, later, flop back to the first state. The bi-stable latch is a
rudimentary form of what is called a flip-flop; a true flip-flop is a latch
with the additional input of a periodic clock signal that determines
when state changes can occur. I’ll say more about clocked latches in
Chapter 8.

The bi-stable latch consists of two cross-coupled relays, as shown
in Figure 5.6.1. These two relays (A and B) each have two sets of
independent make-break contacts. The latch has two complementary
outputs, denoted by Q and Q̄. For each relay, one of its two sets of
contacts is devoted to the actual operation of the circuit, and the other
set is used to generate an output (relay A generates Q̄ and relay B
generates Q). Here’s how the latch works.
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To start, fix your attention on the circuitry inside the gray outline.
Switches S and R are each normally closed push-buttons, as shown.
When power is first applied, the coils of both relays are energized.
However, no two relays are perfectly identical, not even if they come off
the same production line, one right after the other. One relay will be
faster than the other and respond to its energized coil first. For the sake
of argument, let’s say the faster of the two relays is B, although as you’ll
soon see our final conclusions will be independent of this arbitrary
assumption. So, the break contacts on B open before the break contacts
on A do, which breaks the coil current path to A, and so the break
contacts for A remains in place. That keeps B’s coil energized, and this
is a stable state until something new occurs.

That “something new’’ happens when we push (that is, open) switch
R (pushing switch S would have no impact because there already is
no current in A’s coil). That removes the coil current to B and that
causes the spring-tensioned arms to return to B’s break contacts, which
energizes A’s coil. That in turn causes A’s break contacts to open
and that further open-circuits the current path to B’s coil. (Note that
even with relays, a slow technology compared to electronics, this chain
of events occurs in a fraction of a second, certainly less than 100
milliseconds.) And that means, even when we remove our finger and let
push-button R return to its normally closed position, relay B remains
without coil current, and A’s coil current continues to flow through B’s
break contact, and so, again, we have a stable state until “something
new’’ occurs. That “something new’’ happens when we push switch S
(pushing switch R would have no impact) and the latch returns to the
other stable state.

You’ll notice that when A is energized (and so B is not) that the other
sets of contacts for A and B are such that Q̄ = 1 and Q = 0, while when
A is not energized (and so B is) we have Q̄ = 0 and Q = 1.

In summary, pushing R turns A on and B off, while pushing S turns
A off and B on. We call A on, B off the Reset state (Q = 0, Q̄ = 1), and A
off, B on the Set state (Q = 1, Q̄ = 0). Switches S and R do not have to
be push-buttons, but instead might be other relays whose coils are en-
ergized by the output voltages from other logical circuitry, that is, other
logic gates and/or other latches. As a final comment on the latch for
now, it realizes the smallest possible memory storage unit of a single bit.
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Now, to end this chapter on a cautionary note, there is a problem (in
addition to the ones of speed, size, and power that I mentioned earlier)
with using relays with their physically moving mechanical parts,
instead of using electronics. You’ll notice that in both Figure 5.5.4 (the
relay NOR) and Figure 5.6.1 (the relay latch) we have the coil current
of one relay flowing through the break contact of another relay. The
many turns of wire that are relay coils have the property of inductance,
which is the electrical analog of the mechanical property of all masses
that we call inertia. What that means is that if a current exists in a
relay coil, then that current “resists’’ any attempt at change; if you
try to suddenly stop a coil current by opening the break contact of
the relay that is carrying the current, a spark7 will appear across the
space between the break contact and the moveable contact. The spark
is the current’s attempt to continue to flow. Sparks are very intense,
and very hot, hot enough to cause tiny spots of melting (pitting) on
the contacts. (If you operate relay circuits in a dark room, you can
often see the tiny flashes of light from the contact sparking.) After
being subjected to repeated switching, relay contact sparking can cause
sufficient accumulated damage to destroy the relay.8 The result is what
Shannon called a “crummy’’ relay, and in the next chapter I’ll show
you that this problem was of enough concern that Shannon devoted
considerable effort to studying ways to counter it.

NOTES AND REFERENCES

1. For the curious, Clarke’s first two laws are: “When a distinguished but
elderly scientist states that something is possible, he is almost certainly right.
When he states something is impossible, he is probably wrong,’’ and (2) “The
only way of discovering the limits of the possible is to venture a little way past
them into the impossible.’’

2. Shannon’s remark in the opening quotation, that he was the only
one familiar in the late 1930s with both relay circuits and logical algebra,
needs some qualification. In fact, the Japanese electrical engineer Akira
Nakashima (1908–1978), while working for the Nippon Electric Company,
started publishing in 1936 a series of papers quite similar to Shannon’s work.
The Russian physicist Victor Shestakov (1907–1987), who spent his entire
career at Moscow State University, also made the relay switching interpretation
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of Boolean algebra even earlier, in 1935. His work didn’t appear until 1941,
however, and like Nakashima’s it passed unnoticed while Shannon’s had
immediate impact.

3. A 5-volt power supply might seem harmless—how could 5 volts electro-
cute anyone?—but that’s not necessarily so. In even just a moderately large
electrical machine the power supply may well be capable of providing a very
large current (2,000 watts at 5 volts means 400 amperes). For that reason it
was forbidden upon pain of being fired (when I was a logic designer many
years ago) to work on the wiring of a machine while wearing hand jewelry.
Accidentally shorting the power supply to ground through a ring or a watch
would result in a current that could almost instantaneously turn the metal red
hot, and you could easily lose a body part in the blink of an eye.

4. One such book was written in 1951 by three Bell Labs engineers,
William Keister, Alistair E. Ritchie, and Seth H. Washburn: The Design of
Switching Circuits (D. van Nostrand). It is my opinion that 99 out of 100
electrical engineers today (me included) would find 90% of its 556 pages
to be as legible as if they were written in Martian. And yet, when I was in
the electrical engineering program at Stanford in the late 1950s, I recall
being told, while working one summer at a Southern California aerospace
company, “Master this, son, and you’ll be set for life.’’ That from a senior
electrical engineer while he held a copy of Keister, Ritchie, and Washburn
in his hand. That was no doubt once true but, even as I heard those words
more than fifty years ago, relay logic technology was going down the path
into obsolescence that the typewriter, the slide rule, 8-track tape, 8 mm film,
and the floppy disk would later follow. In fact, by 1954 Bell Labs was already
finding it difficult to recruit young electrical engineers who could design relay
logic circuits. Shannon’s reaction that year was to coauthor an internal Bell
Labs memorandum in which was described a relay circuit teaching tool for
college laboratory instruction, with the goal of developing a pool of relay
circuit designers (“It is suggested that if such a [relay] kit were developed
and made available to colleges, it would materially aid our long-range policy
toward cultivating switching engineers’’). I don’t think anything came from
that suggestion. Relay logic books continued to appear for some years; for
example, the 1954 French text by Rene A. Higonnet and Rene A. Grea, Logical
Design of Electrical Circuits (translated into English and published by McGraw-
Hill in 1958). When I told these stories to the students in a digital logic course
I was teaching in 1972 at Harvey Mudd College, one of the students took my
tales as a personal challenge. A couple of weeks later he appeared in class
with a 4-bit relay counter (the input was provided by repeated operation of a
push-button mounted on the counter chassis), built from discarded relays he
found in various spare-parts bins in the Engineering Department basement.
There was no electronics—the entire counter was simply wire and relays. I was
suitably impressed, and I think Shannon would have been, too.
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5. For the early history of diodes in radio, see my book The Science of Radio,
Springer, 2001, pp. 53–65 and 102–106.

6. To understand this point, I need to introduce one additional concept—
one not absolutely necessary to read this book but, since it’s not really a
difficult concept to grasp, why not?—that of the electric field. If two points
separated by distance d have a voltage difference of �v volts, then we say there
is an electric field of E = �v

d volts/unit distance. The electric field has physical
significance as the explanation for the force F that appears on an electric
charge q when placed in the field: F = q E = q �v

d , a force in the direction of
the field E if q>0 and opposite to field if q<0. The electric field, like force,
is a vector field; it has a magnitude and a direction (from the larger voltage
to the smaller voltage). It is not the actual values of the two voltages, but
their difference, that determines the electric field. Thus, positive holes feel a
force in the direction of the field, and negative electrons feel a force opposite
to the direction of the field. Both kinds of charges move in the field, but in
opposite directions. Positive charges moving in one direction and negative
charges moving in the opposite direction both represent positive current in
the direction of the field. If the electric field in a pn-junction diode is from
p-stuff to n-stuff, the charges move across the junction and we have current
flow in a forward-biased diode; while if the electric field is from n-stuff to p-
stuff, the charges move away from the junction and we have no current in a
reverse-biased diode. Actually, there is a very small current because each of
the p and n stuffs contain very low densities of what are called minority charge
carriers (holes in p-stuff and electrons in n-stuff are majority charge carriers).
That is, there are some electrons in the p-stuff and some holes in the n-stuff
and they do move across the junction in a reverse-biased diode.

7. A spark is formed across an air gap when the electric field strength
(see the previous note) exceeds something like 75,000 volts/inch. You might
wonder how such a strong field can be created between the contacts in a relay
circuit in which the power supply voltage is a mere 5 volts; a more advanced
discussion than I’ve given here, of the mathematical physics behind what
happens in an inductive circuit that is suddenly switched, is in my book The
Science of Radio (see note 5), pp. 356–361.

8. Another completely different way that the contacts of a relay could fail
was if dirt or an insect got trapped in the spacing between contacts. If a fly
or a moth, for example, happened to be sitting on the make contact when
the coil was energized, then it could be squashed and, after its smashed little
body dried, the contacts would be covered with a very disgusting but quite
effective insulator. To clean up such a disabled relay was called debugging, a
term that has survived in the vocabulary of modern computer users trying
to fix their faulty programs. This is not a joke—I heard it as a quite serious
story in a lecture at the Naval Postgraduate School in 1982 from a legend
in computer science, Rear Admiral Grace Hopper (1906–1992), a Yale PhD
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mathematician who worked during the Second World War with Harvard’s
five ton, 800 cubic foot Mark I relay computer, which when operating was
described as sounding like a “roomful of ladies knitting.’’ To debug such a
machine must have been an “interesting’’ job for someone; the successor to
the Mark I—called, not surprisingly, the Mark II—had 13,000 relays. These
were not fast machines; representing numbers in the form of ±p · 10n (with the
decimal p given to ten significant digits and n varying from −15 to +15) the
Mark II’s add, multiply, and divide times were 0.2 seconds, 0.7 seconds, and
4.7 seconds, respectively. The “clicking’’ of the Mark machines, and of other
relay computers, remained a signature characteristic for all computers in the
minds of many, even long after vacuum-tube and solid-state electronics had
eliminated such sounds. In his 1956 story “The Last Question,’’ for example,
science fiction writer Isaac Asimov has the huge computer named Multivac—
specifically said to contain relays, even though “Multivac’’ is short for multiple
vacuum tubes, “clicking.’’ Years later he repeated this idea in “Starlight!’’, in
which Asimov has a computer on board an advanced interstellar spaceship of
the distant future “clicking busily.’’ That story was published in the October
1962 issue of Scientific American as part of an ad campaign for an electronics
company—which probably means that none of their engineers vetted the tale!



6
Boole, Shannon, and Probability

We shall consider relay circuits in which the only causes of

errors are of . . . two types—failure of contacts that should be

closed to be actually closed and of contacts that should be

open to be actually open. . . . A relay [with these faults] will

be called a crummy relay.

—Claude Shannon, in his 1956 paper, “Reliable Circuits Using

Less Reliable Relays”

6.1 A COMMON MATHEMATICAL INTEREST

Boole and Shannon shared a deep interest in the mathematics of
probability. Boole’s interest was, of course, not related to the theory
of computation—he was a century too early for that—while Shannon’s
mathematical theory of communication and information processing is
replete with probabilistic analyses. There is, nevertheless, an important
intersection between what the two men did, and that’s what I’ll show
you in this chapter. I will not go very deeply at all into what either
man did with the subject of probability, but rather my intent here is to
simply give you a flavor of how they reasoned and of the sort of prob-
abilistic problem that caught their attention. Once we have finished
with Boole’s problem, you’ll see that it uses mathematics that will play
a crucial role in answering Shannon’s concern about “crummy’’ relays.

Even though he had a doctorate in mathematics, Shannon was, at
heart, an electrical engineer who happened to be particularly good
with equations. Sometimes this dual interest got him into trouble with
pure mathematicians. In what has since become an infamous episode
in the lore of information theory, the University of Illinois probability
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expert J. L. Doob wrote a review (in a 1949 issue of Mathematical
Reviews) of Shannon’s Bell System Technical Journal paper from the
previous year, “A Mathematical Theory of Communication.’’ Doob’s
otherwise professional commentary was marred by the prissy remark,
“The discussion is suggestive throughout, rather than mathematical,
and it is not always clear that the author’s mathematical intentions
are honorable.’’ That unnecessary statement clearly bothered Shannon
and, nearly forty years later, he said of it (in his 1987 Omni interview):
“I didn’t like [Doob’s] review. He hadn’t read the paper carefully. You
can write mathematics line by line with each tiny inference indicated,
or you can assume the reader understands what you are talking about.
I was confident I was correct, not only in an intuitive way but in a
rigorous way. I knew exactly what I was doing, and it all came out
exactly right.’’

Doob outlived Shannon, and some modern writers have claimed
that before he died in 2004 he came to regret his 1949 words. Perhaps
so, but it took a long time for his change-of-heart because ten years
later he was on the attack again, now with an even harsher voice.
Writing a guest editorial in, of all places, the Institute of Radio Engineers
Transactions on Information Theory, he asked (after complaining about
the lack of “theoretical results’’), “Can it be that the existence of
a mathematical basis [to information theory] is irrelevant?’’ Talk
about bringing the camel inside the tent and having it continue
to aim in the wrong direction! In general, electrical engineers and
applied mathematicians have, since Doob posed this question in March
1959, dismissed him as someone who simply did not understand
the concerns of communication engineers. Modern engineers view
Shannon’s “Mathematical Theory’’ as his Principia, an achievement
even greater than his switching theory use of Boolean algebra, and
more than fifty years after Doob’s sneer the Transactions on Information
Theory is still in business.

6.2 SOME FUNDAMENTAL PROBABILITY CONCEPTS

This chapter will not make you a probability expert; indeed, the only
mathematical background in probability required on your part is my
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assumption that the following everyday idea makes intuitive sense to
you. Suppose we have a fair coin, where fair means that when we flip
such a coin the probability the coin lands heads equals the probability
it lands tails. (It isn’t, to use gambling lingo, loaded to make one side
more likely than the other.) Both probabilities are, of course, 1

2 , since
any coin (fair or otherwise) must land either heads or tails (we are
not allowing landing on edge!) and the sum of the face probabilities
is 1. I believe that my dependence on intuition here would, somewhat
paradoxically, be endorsed by the purist Doob. Indeed, in the same
editorial in which he suggested that there is no need in information
theory for a mathematical theory, he ended with “Can it be . . . that
there is a context in which the word ‘information’ is accepted by
general agreement and used in an intuitive way [my emphasis] and that
no more is needed?’’

Now, further suppose that we perform the repeatable experiment of
flipping our fair coin twice in a row, an experiment we do over and
over many times, observing what happens with each double-flip, and
so are able to construct the relative frequencies of occurrence for each
of the possible outcomes. For each double-flip, there are four possible
outcomes:

First Flip Second Flip

H H
H T
T H
T T

Mathematicians call this listing of all the possible outcomes the sample
space of the experiment, with each of the four outcomes called a sample
point in the sample space. If we imagine there is a probability associated
with each sample point, then

4∑
i=1

P(si ) = 1. (6.2.1)

In this notation, P(si ) is the probability of the sample point si , where
s1 = (H, H), s2 = (H, T), s3 = (T, H), and s4 = (T, T). Equation (6.2.1)
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holds because we know that every time we perform the experiment,
one of the four sample points is certain to occur. We just don’t know
which one.

We intuitively feel that each of the sample points in our double-flip
sample space are equally likely1—this is sometimes given the technical
name of the principle of indifference—and so P(si) = 1

4 for all four i .
This also fits nicely with our intuitive feeling that the probability of
a sample point in the experiment is the probability of H (or T) on
the first flip times the probability of H (or T) on the second flip, that
is, ( 1

2 ) ( 1
2 ) = 1

4 . The reason why we can multiply the individual flip
probabilities together is because we are assuming that the individual
flips are independent. That is, what happens on the first flip has no
influence on the second flip.2 And, of course, unless you believe in a
sort of time travel, it is impossible for the second flip to influence the
first flip!

We can take advantage of the idea of multiplying the probabilities
of individual, independent flip outcomes to construct the mythical fair
coin out of any real biased coin. I use the word mythical because it
should be clear that to make a coin with a probability of showing heads
that is exactly 1

2 is a most unlikely possibility; rather, the probability of
heads will be some unknown p (perhaps close to 1

2 , but not precisely 1
2 ),

and the probability of tails will be the equally unknown 1 − p. Now,
consider the following procedure. Flip the coin twice. It shows (H,H)
with probability p2, (T,T) with probability (1 − p)2, and either (T,H)
or (H,T) with equal probabilities of p(1 − p). So, if (T,H) appears,
call it “heads’’ and if (H,T) appears, call it “tails.’’ If either (H,H) or
(T,T) appears, ignore the result and flip twice again. Thus, no matter
what p is, with the uninteresting exceptions of p = 0 and p = 1, we
have a fair outcome, that is, exactly equal probabilities for heads and
tails!3

Here’s a useful thing we can do with the sample points of a sample
space: think of a collection or set of the points as defining an event that
occurs when the experiment is performed, as it is one of the sample
points in the defining set that is the one that occurs. The probability of
an event is the sum of the probabilities of the individual sample points
that define the event. For example, suppose we define the events A
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and B on the sample space of our double-flip experiment as

A = {
“at least one head (H) occurs’’

}

and

B = {
“both heads occur’’

}
.

Then,

P(A) = P(s1) + P(s2) + P(s3) = 3
4
, (6.2.2)

while

P(B) = P(s1) = 1
4
. (6.2.3)

Notice that

P(AB) = 1
4

(6.2.4)

because there is just one sample point, s1, that is common to both A
and B. P(AB) is not equal to P(A)P(B) = 3

16 because events A and B
are not independent.

Finally, the one remaining general concept we need before we
look in particular at Boole and Shannon is what is called conditional
probability. Suppose somebody performs the double-flip experiment
behind closed doors and so we don’t know what happened. Then,
they open the doors, stick their head out, and tell us that event
A happened. With that new, additional knowledge, what now is the
probability that B also happened? It is not 1

4 , the a priori (“before
the fact’’) probability of event B before the experiment was performed,
because our newly acquired knowledge tells us that sample point s4 did
not occur. What we are after now is the so-called a posteriori (“after
the fact’’) probability of event B conditioned on the given knowledge
that event A did indeed occur. Mathematicians write this conditional
probability as P(B | A). Before I show you how to calculate the value of
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P(B | A), I hope that the reverse conditional probability P(A | B), the
conditional probability event A occurred given that event B occurred,
is obvious to you: P(A | B) = 1 because if two heads occurred, then we
know with certainty that at least one head occurred!

To find P(B | A), let’s first generalize a bit beyond our double-flip
experiment. Imagine that when we perform any experiment, any one
of N different, equally likely outcomes is possible. If one of na of those
sample points is the one that actually occurs, then we say event A
occurred. If one of nb of those sample points is the one that actually
occurs, then we say event B occurred. We assume nab sample points are
common to A and B. That is, if the sample point that occurs is one of
the nab , then we say that both A and B occurred. (If, in fact, nab = 0
then A and B are mutually exclusive, which means P(AB) = 0.) Now,
from all this we can write

(a) P(AB) = nab

N
;

(b) P(A) = na

N
;

(c) P(B) = nb

N
;

(d) P(A | B) = nab

nb
;

(e) P(B | A) = nab

na
.

The probability in (d) has nb as the denominator because, given that
event B occurred, we know that whatever sample point occurred it had
to one of nb . Similarly for (e).

The total number of sample points in A or B, together, is na + nb −
nab , where we have to subtract nab because the first two terms each
include nab and so, together, they count nab twice. So,

P(A + B) = na + nb − nab

N
= na

N
+ nb

N
− nab

N
,

or

P(A + B) = P(A) + P(B) − P(AB). (6.2.5)
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A

B 1

A

B 1

1

Figure 6.2.1. The map of A + B covers AB twice.

Notice, carefully, that in (6.2.5) we are using the + symbol in two quite
different ways: on the left it is the logical sum (the inclusive-or), while
on the right it is the arithmetic sum. Also notice that only in the case of A
and B being mutually exclusive is it true that P(A + B) = P(A) + P(B).

We can interpret (6.2.5) in terms of a Karnaugh map, as shown
in Figure 6.2.1, which shows the map for A + B. We now take each
square covered as giving the probability of the square, and add the
probabilities arithmetically (not logically); we subtract a probability
that is covered more than once, which accounts for the third term
in (6.2.5). When we get to Shannon’s problem later in this chapter,
you’ll see how this probability interpretation of a Karnaugh map is
very helpful.4

Okay, let’s now calculate the conditional probabilities P(B | A) and
P(A | B). From arithmetic we have

P(B | A) = nab

na
= nab/N

na/N
= P(AB)

P(A)
(6.2.6)

and

P(A | B) = nab

nb
= nab/N

nb/N
= P(AB)

P(B)
. (6.2.7)
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So, putting (6.2.2) and (6.2.4) into (6.2.6), we have, for the double-flip
experiment,

P(B | A) = 1/4
3/4

= 1
3
,

which is significantly different from P(B) = 1
4 , the probability of B

before the experiment is performed. And putting (6.2.3) and (6.2.4)
into (6.2.7), we have

P(A | B) = 1/4
1/4

= 1,

which agrees with what I argued before should, in fact, be obvious for
the double-flip experiment.

Here’s another formula that is, I hope, equally obvious:

P(A | B) + P( Ā | B) = 1,

which simply says, “Given that B occurred, then A either did or did
not occur.’’

Finally, let’s derive one last result that is sufficiently useful that it has
its own name. The theorem of total probability says

P(A) = P(A | B)P(B) + P(A | B̄)P(B̄). (6.2.8)

All we need to show this is simple arithmetic, the observation that the
number of sample points in the event B̄ is N − nb , and the observation
that the number of potential sample points that can result in event A
given that event B has not occurred is na − nab . Then,

P(A | B̄) = na − nab

N − nb
.

And, of course,

P(B̄) = 1 − P(B) = 1 − nb

N
= N − nb

N
.
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So, substituting our earlier results for P(A | B) and for P(B), and
putting these last two results into the right-hand side of (6.2.8), we
have

nab

nb
· nb

N
+ na − nab

N − nb
· N − nb

N
= nab

N
+ na − nab

N
= na

N
= P(A),

the left-hand side of (6.2.8) and we are done.
And, of course, we could equally well write

P(B) = P(B | A)P(A) + P(B | Ā)P( Ā). (6.2.9)

6.3 BOOLE AND CONDITIONAL PROBABILITY

In the preface to his 1866 book, The Logic of Chance, John Venn
(whose Venn diagrams are ancestors to Karnaugh maps, as noted
for Chapter 4) wrote, “Probability has been very much abandoned to
mathematicians, who as mathematicians have generally been unwilling
to treat it thoroughly.’’ This rather surprising statement was soon soft-
ened with some qualifications and explanations by Venn, but Boole—
then dead for two years—would almost certainly have agreed with at
least the first part of Venn’s assertion. Boole wrote a good deal in the
1850s on conditional probability—what he called “the probability of
causes’’—and in particular about how shockingly ignorant so many of
his scientific colleagues were of that mathematical topic.

In particular, Boole commented on what he called the “general
doctrine . . . of the day’’ concerning the following situation. Suppose
we are given two events, X and Y , defined on the sample space of
some experiment, and are told that P(X̄ | Y ) = p. Boole said that
the “general doctrine’’ was that then P(Ȳ | X) = p, too. Interest in
this particular mathematical issue was high in the 1850s because it
appeared in a theological debate: was the existence of multiple star
systems due just to chance, or would such systems be so unlikely to
form by chance that their observed existence “proved’’ the intervention
of a “Creator’’? (As I mentioned back in Chapter 3, the initial spark to
this debate was a 1767 paper in the Transactions of the Royal Society by
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the Reverend John Michell.) Well, of course, this is not a book to learn
anything about theology, and I’ll not say anything more along that line,
but I do think you should know what brought Boole into such a debate
in the first place.5 Now, what of the math that Boole discussed?

The “general doctrine’’ does have a sort of plausibility to it: “if Y
then not X’’ when “reversed’’ could be thought to imply “if X then not
Y .’’ Boole argued that this is not so, using the ideas of the previous
section, and showed that P(Ȳ | X) is given by a considerably more
involved expression than simply “p.’’ What Boole did was not really
original, as conditional probability had been studied a century before
by the English philosopher and minister Thomas Bayes (1701–1761),
whose work was published posthumously in 1764 in the Philosophical
Transactions of the Royal Society of London, where it was then promptly
forgotten for twenty years until the great French mathematician Pierre-
Simon Laplace (1749–1827) endorsed Bayes’s results. What Boole did,
then, with the following analysis, was remind his readers what the
Reverend Bayes had done a hundred years before.

From the previous section—see (6.2.6) and (6.2.7)—we have

P(Ȳ | X) = P(XȲ )
P(X)

.

But

P(X | Ȳ ) = P(XȲ )
P(Ȳ )

and so

P(XȲ ) = P(X | Ȳ )P(Ȳ )

and so

P(Ȳ | X) = P(X | Ȳ )P(Ȳ )
P(X)

= P(X | Ȳ ) [1 − P(Y )]
P(X)

. (6.3.1)
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Or, from (6.2.8), we rewrite the denominator of (6.3.1) to get

P(Ȳ | X) = P(X | Ȳ ) [1 − P(Y )]
P(X | Y )P(Y ) + P(X | Ȳ )P(Ȳ )

= P(X | Ȳ ) [1 − P(Y )]
P(Y )

[
1 − P(X̄ | Y )

]+ P(X | Ȳ ) [1 − P(Y )]
,

or, at last, we arrive at Boole’s result (in our modern notation):

P(Ȳ | X) = P(X | Ȳ ) [1 − P(Y )]
(1 − p)P(Y ) + P(X | Ȳ ) [1 − P(Y )]

(6.3.2)

which is (most definitely!) not just “p.’’
Now, finally, I can’t end this section on the connection between

Boole and probability without saying a few words about Boole’s inequality
(even if it’s not conditional probability). I am not sure where in his
writings Boole shows this result (or even if he ever actually did),
but nonetheless his name has become attached to it. It is quite
straightforward, and often quite useful, too. If E1, E2, . . . , Ek are any
(not necessarily independent) k events defined on the same sample
space, then

P(E1 + E2 + · · · + Ek) ≤ P(E1) + P(E2) + · · · + P(Ek). (6.3.3)

We saw a special case of (6.3.3) in (6.2.5). With the sample point
concept in mind, (6.3.3) becomes what engineers and applied math-
ematicians call “trivially obvious’’ while textbooks written by pure
mathematicians typically present a formal proof. Usually they use
induction; (6.3.3) is an equality for the k = 1 case, and then if we
assume it’s true for k = n it follows that it’s true for k = n + 1. That’s not
really too awfully hard to understand, but even easier is the engineer’s
proof:

(1) The sample points in the superevent E1 + E2 + · · · + Ek are the
sample points in E1, plus the sample points in E2 that haven’t already
been counted (remember, a sample point can be in more than one
event), . . . , plus the sample points in Ek that haven’t already been
counted; each included sample point has been counted exactly once.
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(2) P(E1 + E2 + · · · + Ek) is the sum of the probabilities of all
the sample points in (1), with the probability of each sample point
appearing exactly once in the sum.

(3) Since a sample point can be in more than one event, then
P(E1) + P(E2) + · · · + P(Ek) is the sum of the probabilities of all the
sample points in each of the k events, with each sample point
appearing every time it occurs in any event. Then (6.3.3) immediately
follows, since probabilities are never negative.

6.4 SHANNON, CONDITIONAL PROBABILITY,
AND RELAY RELIABILITY

Conditional probabilities abound in Shannon’s 1948 “A Mathematical
Theory of Communication,’’ but what I’ll show you here is their use in
studying the reliability of relays. As discussed at the end of the previous
chapter, relays are not the most reliable of electrical components.
Shannon was particularly interested in how to reduce the probability
of failure of a relay—see the chapter opening quotation—and what I’ll
do in this section is show you just the very surface of how he studied
various schemes to do that.

Imagine that we have a supply of identical relays that each, with
probability p, actuate when their coils are energized and successfully
transition from their break contact to their make contact. Now, suppose
that the value of p isn’t good enough for some application, and we
need to increase p. We could, of course, simply try to make a better
relay, or we could (as did Shannon in 1956) try to see if it is possible
to connect several of the original (“crummy,’’ to use Shannon’s own
word)6 relays together to arrive at an electrically equivalent circuit
that has an increased effective value of p. For example, suppose we
simply connect two of the crummy relays, A and B, so that their make
contacts are in parallel, as shown in Figure 6.4.1 (the crosses represent
the relays). The coils of A and B are wired in parallel so that the two
relays are simultaneously energized; what then is the probability that
there is an electrical path between terminals a and b?

This is an easy question to answer. There is no electrical path
between a and b only if both A and B fail; that is, both A = 0 and B = 0.
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A

B

a b

Figure 6.4.1. Two “crummy’’ relays with their make contacts in parallel.

(If, on the other hand, relay A, for example, works, then A = 1.) If the
probability of a path through each relay is p, then the probability there
is no path through A is 1 − p, and similarly for B. If we assume A and
B are independent, then both fail together with probability (1 − p)2,
and the arrangement of Figure 6.4.1 fails with that probability. So, if
S1 is the event that there is a path between a and b , then

P(S1) = 1 − (1 − p)2. (6.4.1)

This is a useful thing to do if P(S1) > p. Is p(S1) > p? It is if

1 − (1 − p)2 > p

that is, if

1 − (1 − 2p + p2) > p,

that is, if

2p − p2 > p

that is, if (dividing by p, which means I am ignoring the possibility of
p = 0, the uninteresting case of broken relays)

2 − p > 1,

that is, if

1 > p.
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Figure 6.4.2. Four crummy relays in series/parallel.

And, of course, unless p = 1 (which means we started with perfect
relays that never fail, and so the whole point of this analysis is moot)
we always have 1 > p, and so the connection in Figure 6.4.1 of two
“crummy relays’’ is always more reliable than one crummy relay.

This result is probably not too surprising to you, but the arrange-
ment of Figure 6.4.1 will serve as our standard against which we’ll
compare other more complicated arrangements of crummy relays, and
so the result is worth demonstrating mathematically. Figure 6.4.2, for
example, is a more complicated arrangement that shows a possible
connection of four crummy relays that Shannon considered in his 1956
paper, and you should be able to see by inspection that the probability
of the event S2 (there is an electrical path between terminals a and b)
must be less, for all 0 < p < 1, than P(S1). That’s because two crummy
relays in series (either A and B, or C and D) is even crummier than a
single relay (because p2 < p for 0 < p < 1), and so Figure 6.4.2 is really
just Figure 6.4.1 again, only now with relays having a smaller p than
before. It will be useful to have an analytical expression for P(S2) in
just a bit, however, so I’ll now work that out.

Each of the two parallel paths has a probability of working (both
A and B work in the top path, or both C and D work in the bottom
path) of p2, and so each path has a probability of 1 − p2 of failing.
For there not to be a path between a and b , both paths must fail, with
aprobability of (1 − p2)2, and so

P(S2) = 1 − (1 − p2)2 = 2p2 − p4. (6.4.2)

By plotting P(S2) − P(S1) versus p I’ll let you verify that the result is
always negative, that is, P(S2) < P(S1) for all 0 < p < 1, as claimed.
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C

B
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D

Figure 6.4.3. A bridging arrangement.

And now we come to our ultimate question in this section. Even
though P(S2) < P(S1) for all 0 < p < 1, what if we now add a fifth
crummy relay E as a bridge connection in Figure 6.4.2, to give
Figure 6.4.3 (which we’ll say has probability P(S3) of working)? Does
that extra relay path sufficiently increase the probability of an electrical
path between a and b so that P(S3) > P(S1)? It isn’t, I think, now
quite so obvious as how to calculate P(S3) as it was for the connection
arrangements of Figures 6.4.1 and 6.4.2. Shannon gives the correct
expression for P(S3) in his 1956 paper, but he does not give its
derivation. What I’ll do now is show you a possible way to derive P(S3)
using conditional probability.

To start, fix your attention on the crummy bridging relay E, which
either works (E = 1) or fails (E = 0). We can write, using the theorem
of total probability—see (6.2.8)—P(S3) as

P(S3) = P(S3 | E = 1)P(E = 1) + P(S3 | E = 0)P(E = 0). (6.4.3)

There are four probabilities on the right-hand side of (6.4.3), and we
already know three of them:

(a)P(E = 1) = p

(b)P(E = 0) = 1 − p (6.4.4)

(c)P(S3 | E = 0) = 2p2−p4.

The reason for (6.4.4c) is that if E fails then the bridge connection
is not present and Figure 6.4.3 reduces to Figure 6.4.2, and so P(S3 |
E = 0) = P(S2). All we have left to do, then, is the calculation of
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Figure 6.4.4. The bridge arrangement when E = 1.

P(S3 | E = 1), which means we can redraw Figure 6.4.3 as Figure 6.4.4
in which relay E is replaced with a wire.

We can write directly from Figure 6.4.4 that

P(S3 | E = 1) = P(AB + C D + AD + C B). (6.4.5)

Notice, carefully, that we can not expand (6.4.5) as

P(S3 | E = 1) = P(AB) + P(C D) + P(AD) + P(C B)

because each of the four variables appears in more than one term, and
so the individual terms are not independent. What we can do, however,
is plot the Boolean expression AB + C D + AD + C B on a four-variable
Karnaugh map, as shown in Figure 6.4.5, and then use the probability
interpretation of the map—take a look back at how we did this for
(6.2.5)—to write P(S3 | E = 1) as 1 minus the probability of the inverse
map.7 That is, as

P(S3 | E = 1) = 1 − P( ĀC̄ ) − P(B̄D̄) + P( Ā B̄C̄ D̄). (6.4.6)

The fourth term on the right is there because the second and third
terms, each, subtract the probability of the Ā B̄C̄ D̄ map square and so
we have to add that probability back in once. Now we can write directly
from (6.4.6) that

P(S3 | E = 1) = 1 − (1 − p)2 − (1 − p)2 + (1 − p)4
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Figure 6.4.5. The Karnaugh map for P(S3 | E = 1).

or, after just a little simplification,

P(S3 | E = 1) = 4p2 − 4p3 + p4. (6.4.7)

All the hard work is now done. We simply plug the probabilities from
(6.4.4) and (6.4.7) into (6.4.3) to get

P(S3) = (4p2 − 4p3 + p4)p + (2p2 − p4)(1 − p)

which reduces to

P(S3) = 2p2 + 2p3 − 5p4 + 2p5, (6.4.8)

the result given by Shannon.
As I mentioned earlier, Shannon simply states (6.4.8) in his 1956

paper, without derivation, and so I don’t really know if he used the
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conditional probability analysis I’ve shown you here. There is, in fact,
another approach that he very well may have actually used, involving
the inclusion-exclusion theorem (see note 4). As given in note 7, we
have

P(S3) = P(AB + C D + AE D + C E B).

If we define the four events E1, E2, E3, and E4 as E1 = AB,
E2 = C D, E3 = AE D, and E4 = C E B—notice that these events are
not independent since A, B, C , and D each appear in multiple events,
but that does not invalidate the theorem—then we have

P(S3) = P(E1 + E2 + E3 + E4) = P(E1) + P(E2) + P(E3) + P(E4)

−P(E1 E2) − P(E1E3) − P(E1E4) − P(E2E3)

−P(E2 E4) − P(E3E4)

+P(E1 E2 E3) + P(E1E2E4) + P(E1E3 E4) + P(E2E3 E4)

−P(E1 E2 E3 E4)

= P(AB) + P(C D) + P(AE D) + P(C E B)

−P(ABC D) − P(ABE D) − P(ABC E) − P(AC DE)

−P(BC DE) − P(ABC DE)

+P(ABC DE) + P(ABC DE) + P(ABC DE)

+P(ABC DE) − P(ABC DE)

= p2 + p2 + p3 + p3 − p4 − p4 − p4 − p4 − p4 − p5

+p5 + p5 + p5 + p5 − p5

or,

P(S3) = 2p2 + 2p3 − 5p4 + 2p5

which is, again, just (6.4.8).
I didn’t show you this derivation straightaway because I wanted first

to show you some mathematics (conditional probability) used by Boole
and by Shannon (in his Mathematical Theory of Communication). Also,
I haven’t actually derived, here, the inclusion-exclusion theorem for
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Figure 6.4.6. Relay E doesn’t help.

the four-event case; in note 4 I left it up to you to fill in the (easy)
details, while I did earlier derive the theorem of total probability and
the conditional probability formulas that I used in the first derivation
of (6.4.8).

In any case, however we get it, with (6.4.8) we can now answer
our question of whether or not that additional bridging relay gives
us a more reliable equivalent relay than do two relays in parallel.
Figure 6.4.6 shows a plot of P(S3) − P(S1) versus p, and we see that
the result is always negative for 0 < p < 1. So, the answer is that the
additional relay E does not result in improved reliability.8

6.5 MAJORITY LOGIC

In this final section I’ll comment just a bit on what sparked Shannon’s
interest in building more reliable circuits out of less reliable compo-
nents. In 1956 Shannon was coeditor of an anthology of technical
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papers, one of which was authored by the great Hungarian-born
American mathematician John von Neumann (1903–1957). Titled
“Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components,’’ Shannon read that paper as an editor long
before the anthology appeared, and in his 1956 “crummy relay’’ paper
specifically cited von Neumann’s earlier work.9

Von Neumann’s paper is heavily oriented toward mimicking
the fundamental component of the human brain, the neuron cell
that “fires’’ (that is, produces an output) when its multiple inputs (the
outputs of other neurons) satisfy certain requirements. (A human brain
has something like ten billion neurons, each connected to perhaps
thousands of other neurons. There are, then, trillions of neural con-
nections in a human brain.) Von Neumann was particularly interested
in how a network of such cells could be constructed that would be
able to self-repair damage to part of the network, or even reproduce
itself from a large pool of “spare parts.’’ One particular kind of very
simple neuron of great interest to von Neumann was what he called a
“majority organ,’’ a cell with three inputs that fires when two or more
(a majority) of its inputs are active. Von Neumann never discussed his
majority organ in terms of specific hardware, but it is easy to build
using relay technology—an observation surely not missed by Shannon.

You’ll recall that a relay is energized when its coil current exceeds
a certain critical minimum value, a value sufficient to produce a
magnetic field large enough to physically move a spring-tensioned
arm. Imagine now that we build our relay with three separate coils
(each wound the same way so that each produces a magnetic field
with north and south poles aligned), each coil with a resistance large
enough so that when +5 volts is applied the coil current is only, say,
two-thirds of the critical minimum required for energizing the relay.
Thus, to energize the relay at least two of the three coils must receive
+5 volts; the relay is energized only when a majority of its inputs are
+5 volts. Alternatively, we could simply build a three-input majority
circuit directly from NAND or NOR logic gates (built themselves from
single-coil relays), and that should be an easy design task for you by
now.

The use of such a majority gate has not (yet) caught on in the world
of digital circuit design, although there is an active field of research
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in what are called neural nets (that is, networks of von Neumann’s
neuronlike “organs’’),10 and, if he had not died young, von Neumann
would surely have been one of its most enthusiastic researchers. At the
higher level of system design, however, the idea of a majority of inputs
producing an output has caught on. To end this chapter on probability,
then, let me show you an illustration of majority logic at the system
level that checks for errors in the complete, computed solution to a
problem that has been simultaneously solved by multiple machines.

My example of this can be found in the flight control computers
of modern high-performance aircraft. Such aircraft are not “simple’’
things like a 1930s plane that had direct mechanical linkages from the
pilot’s cockpit controls (rudder pedal and control stick) to the aircraft’s
flight surfaces on the wings, tail, and rudder. The operation of the
controls was fundamentally intuitive; for example, if you wanted to
dive the airplane you simply pushed the stick forward. With today’s
huge commercial jumbo airliners flying close to the speed of sound,
or a military combat jet flying at more than twice the speed of sound,
asking the plane to dive and bank might involve quite complicated
movements of the flight control surfaces (and the application of great
force far beyond human limits to generate), which in turn would
require nonintuitive physical motions of directly linked controls.

In modern aircraft the pilot’s hand motions are still intuitive, but
a digital flight control computer serves as a middle-man and takes
the pilot’s intentions from those hand motions and computes the
proper signals to actuate powerful motors that move the control
surfaces in such a way as to carry out those intentions. The computed
solution process (called “fly-by-wire’’) is, of course, being continuously
performed over and over, many times per second. If the flight control
computer should fail, then the plane would literally become unflyable
and we would have a virtually certain disaster.

To reduce the probability of such a disaster, suppose we install
multiple flight-control computers, with each receiving the same input
data, and so each solves the same control problem. These parallel
solutions are done independently (to the point of having each computer
with its own power supply and locating each computer far away
from all the others). We then demand that the solutions from these
independent computers agree. If one of the solutions suddenly starts
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Figure 6.5.1. Majority logic for improved system performance.

to disagree with the others, we’ll assume that solution is a rogue
solution and simply ignore that solution’s computer from then on.
The aircraft will use only the common solution from the remaining
computers that agree. We can continue to follow this procedure as
long as we have a majority of the solutions in agreement. For example,
if we initially have three independent computers, we’ll have a correct
solution as long as any two (or all three) solutions agree. If we start with
n independent computers, with n odd, we’ll have a correct solution as
long as at least n+1

2 solutions agree.
So, here’s our question: if p is the probability that a particular

solution is correct,11 what is the probability P the majority of n
independent solutions (n odd) are correct? The theoretical answer is

P(n, p) =
n∑

k= n+1
2

(
n
k

)
pk(1 − p)n−k, (6.5.1)
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where the notation
(n

k

) = n!
(n−k)!k! is the number of ways to select k correct

solutions from n solutions (the other n − k solutions are incorrect).12

Here’s why. The probability of each one of the possible cases of k
correct and n − k incorrect solutions is pk(1 − p)n−k, and so the total
probability for a given k is

(n
k

)
pk(1 − p)n−k. Summing over all relevant k,

as in (6.5.1), gives us the above formula for P.
Figure 6.5.1 shows P(n, p) versus p, as p runs from 0 to 1, for

several values of n (I’ll tell you what they are, soon). The dashed line
is for the n = 1 case, and is included simply for reference. For p < 0.5,
the majority logic curves are all below the n = 1 dashed line, and so in
that case majority logic actually makes things worse. Of course, p < 0.5
represents a pretty crummy individual flight control computer (see
note 11 again)! Suppose, however, that p > 0.5. Majority logic then
gives improved performance compared to n = 1. The curves proceed
upward from the dashed line for the cases of n = 3, n = 5, n = 7, n = 9,
and, finally (and unrealistically but just for fun), for n = 51. Whether
or not the increase of P over p is worth the increased cost of hardware
required to build both the additional flight control computers and the
circuitry to compare the multiple solutions is a management decision,
not an engineering one.

NOTES AND REFERENCES

1. My discussion of sample spaces makes the implicit assumption that
they are finite in size. All the formulas derived in the text are correct even
for infinite sample spaces, but the derivations have to become a bit more
sophisticated than those given here. In addition, pure mathematicians are
not at all happy with my talk of equally-likely sample points as the starting
point in the development, making the objection that equally-likely assumes
the concept of probability as the starting point to developing the concept of
probability. Circular argument, they shout—with some validity, too, I think—but
reread Section 6.1, with Shannon’s comment on Doob’s criticism.

2. Many gamblers believe that if one flips a coin and a run of either tails
or heads occurs, then the coin becomes “due’’ to show the other face. In fact,
given that the coin is fair, then even if 100 tails show in a row (a not very
likely occurrence, although not an impossible one), then on the 101st flip the
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probability of a head is still just 1
2 . To believe otherwise, that the coin has a

“memory’’ and keeps track of its past behavior, is called the “gambler’s fallacy’’
and it inevitably leads to bankruptcy.

3. The price we pay for this method of making a fair coin from an arbitrary
biased coin is time, because we have to flip the biased coin multiple times. In
my book Digital Dice (Princeton University Press, 2008, pp. 248–251) I show
that, on average, you have to double-flip the biased coin 1

2p(1−p) times to get
a single decision, that is, either a “heads’’ or a “tails.’’ If p = 0.3, for example,
then you’ll have to perform (on average) 1

2(0.3)(0.7) = 1
0.42 = 2.38 double-flips of

the biased coin. So, to get 100 decisions you should expect to double-flip 238
times, a total of 476 individual flips, compared to the 100 flips that would be
required by an actual fair coin.

4. Eq. (6.2.5) Eq.is actually the first, most elementary special case of a far
more general result called the inclusion-exclusion theorem of probability. If E1, E2,
. . . , En are any n events defined on the same sample space, then

P(E1 + E2 + · · ·+ En) =
n∑

i=1

P(Ei ) −
n∑

i=1

n∑
j=i+1

P(Ei E j )

+
n∑

i=1

n∑
j=i+1

n∑
k= j+1

P(Ei E j Ek) . . .

Notice, carefully, that the n events are not required to be independent. Eq.
(6.2.5) is the n = 2 case (with E1 = A and E2 = B), and the n = 3 and n = 4
cases follow easily (do it!) from the probability interpretation of the three and
four variable Karnaugh maps. You can find more on this theorem, including
a detailed example of its use, in my book Digital Dice (see the previous note),
pp. 237–243.

5. For a modern discussion on how binary star systems can be created
through a physical process that must be a common occurrence in the
universe—and so no supernatural intervention is required—see my book
Number-Crunching, Princeton University Press, 2011, pp. 184–195.

6. The original title of Shannon’s 1956 paper was “Reliable Circuits Using
Crummy Relays,’’ but that was changed at the request of the Bell Labs Public
Relations Department. Shannon’s sense of humor was not to be denied,
though, and he managed to keep crummy in the text. Speaking of Shannon’s
sense of humor, there is a very funny story that Shannon himself was fond
of telling that further illuminates his own lack of self-importance. When once
giving a talk at the Institute for Advanced Study at Princeton, Albert Einstein
came into the room and stayed at the back. After listening to Shannon speak
for a few minutes, he leaned over to whisper into the ear of a nearby man; the
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man whispered a reply and then Einstein quickly left. After the talk Shannon
hastened over to the man to ask what the Great Man had said. “He wanted to
know,’’ Shannon was told, “which way to the nearest men’s room.’’

7. We could, of course, have written directly from Figure 6.4.3 that
P(S3) = P(AB + C D + AE D + C E B), and then used a Karnaugh map to get
an expression for P(S3) that would let us directly write P(S3) in terms of p. This
would completely avoid the need for a conditional probability analysis. But it
would require us to use a complicated five-variable Karnaugh map, which I
haven’t discussed in this book.

8. Shannon analyzed several other interconnection schemes of crummy
relay switches in his 1956 paper, and you can find some further discussion
in my book Duelling Idiots and Other Probability Puzzlers. Princeton University
Press, 2000 (corrected paperback, 2002), pp. 22–23.

9. Automata Studies (edited by C. E. Shannon and J. McCarthy,) Princeton
University Press, 1956, pp. 329–378.

10. What might happen when a neural net becomes really large has
sparked the imaginations of science fiction writers as well as those of computer
scientists. Arthur C. Clarke made good use of the idea in his “Dial F for
Frankenstein.’’ Set in the then future of 1975 (the story originally appeared
in a 1964 issue of Playboy), the world’s first satellite network has at last
connected together all of the telephone exchanges on the planet. As one
character explains,“Until today [our telephone networks have] been largely
independent, autonomous. But now we’ve suddenly multiplied the connecting
links, the networks have all merged together, and we’ve reached criticality.’’
When another character asks what that means, the answer is chilling: “For
want of a better word—consciousness.’’ Since Clarke wrote his tale, satellites
have interconnected all of the world’s telephone networks, and nothing awful
has happened. At least, I don’t think so. Yet.

11. Initially, all n flight control computers are assumed to produce correct
solutions. The value of p is the probability an individual computer produces
correct solutions during the entire duration of the flight, from start to finish.
The value of 1 − p, then, is the probability a computer fails before the end
of the flight, and P is the probability that a majority of the n computers
work correctly during the entire flight. You should not think of p in the same
way as you do (for example) about the probability of heads occurring when
flipping a coin. A flight control computer doesn’t randomly switch back and
forth between correct and incorrect solutions. It continuously produces correct
solutions (that is, solutions that are part of the majority of solutions) one after
the other, until (if) it fails. With its first incorrect solution, it is disconnected
from the remaining computers and thereafter ignored when solutions are
compared.
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12. The notation
(n

k

)
is called a binomial coefficient because of its appearance

in the binomial theorem:

(x + y )n =
n∑

k=0

(
n
k

)
xn−k y k .

The interpretation of
(n

k

)
as the number of different ways to select k correct

solutions from n solutions is easy to establish. For the first correct solution
we have n possibilities, for the second we have n − 1 possibilities, for the
third we have n − 2 possibilities, . . . , for the kth correct solution we have
n − (k − 1) = n − k + 1 possibilities. So, the total number of possibilities where
the order of selection matters is

(n)(n − 1)(n − 2) · · · (n − k + 1)

= [(n)(n − 1)(n − 2) · · · (n − k + 1)] [(n − k)(n − k − 1) · · · (2)(1)]
[(n − k)(n − k − 1) · · · (2)(1)]

or, using factorial notation, = n!
(n−k)! . But we don’t care, in our discussion in the

text, about the order of the selection for the k correct solutions, only that there
are k correct solutions. Since there are (k)(k − 1) · · · (2)(1) = k! ways to order
the k selections, then the total number of ways for selecting the k correct
solutions from n solutions where order of selection is irrelevant is n!

(n−k)!k! = (n
k

)
.

Binomial coefficients occur all through mathematics, physics, and engineering
(for some specific examples in physics, see my Mrs. Perkins’s Electric Quilt,
Princeton University Press, 2009, pp. 261–298), and whole books have been
written on them. One such book, which has been in my personal library for
decades, was written by one of Shannon’s colleagues and collaborators at Bell
Labs, the mathematician John Riordan (1902–1988); Combinatorial Identities,
John Wiley 1968. One particularly beautiful identity comes immediately from
setting x = y = 1 in the binomial theorem, giving

2n =
n∑

k=0

(
n
k

)
.

It is with this identity that Riordan’s book begins (actually, on p. 4), and by the
time you reach the end (on p. 249) matters have gotten considerably more
involved.
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Some Combinatorial Logic Examples

If a computer can find out that there is an error, why can it

not find out where it is?

—Richard W. Hamming, in his book

Coding and Information Theory (1980)

7.1 CHANNEL CAPACITY, SHANNON’S THEOREM,
AND ERROR-DETECTION THEORY

The entire point of Shannon’s 1948 “A Mathematical Theory of Com-
munication’’ was to study the theoretical limits on the transmission of
information from point A (the source) to point B (the receiver) through
an intervening medium (the channel). The information (for example,
a human voice signal from a microphone or the output signals from
the buttons of a keyboard) is imagined first to be encoded in some
manner before being sent through the channel. In “Mathematical
Theory’’ Shannon considers two distinct types of channels: the so-
called continuous channel that would carry, for example, a continuous
signal like the human voice, and the so-called discrete channel that would
carry, again for example, a keyboard’s output in the form of a digital
stream of bits. For the rest of this chapter I’ll limit my discussion to this
second case. In a perfect world the digital stream would arrive at the
receiver exactly as it was sent, but in the real world the channel is noisy
and so, occasionally, a bit will arrive in error. That is, now and then a
transmitted 0 will arrive as a 1, and vice versa.

Before continuing, just a note about the word “bit’’ which we’ll
use a lot in this chapter. It first appeared in the technical literature
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in “Mathematical Theory,’’ with Shannon crediting its coining to the
mathematician (at Bell Labs and then later at Princeton University)
John W. Tukey (1915–2000). It’s a contraction of “binary digit,’’ and
we’ve already seen its use in this book in Chapter 5, in the discussion
on the “one-bit bi-stable relay latch.’’ When talking of digital systems
working with 1s and 0s, this is what most people, most of the time,
mean by the word. In “Mathematical Theory,’’ however, Shannon
presented a new interpretation when those 1s and 0s are used to
transmit information through a channel.

Imagine that you are sending a stream of bits through a channel
and that every one of them is the same. That is, you are sending either
all 1s or all 0s. Suppose you do this at, say, 1,000,000 bits/second.
Shannon argued that the information rate would nevertheless still be
zero! That’s because you always know, before you even receive it, what
the next bit will be: the same as the last bit. Shannon argued that to
transmit information there must be uncertainty in what each new bit
will be. For the case of a discrete channel carrying just 1s and 0s,
for example, define p = probability a received bit is a 0 and 1 − p =
probability a received bit is a 1. Then, after stating several intuitively
plausible properties that any useful measure of information should
possess, Shannon showed that the non-negative quantity

H = −[p log2(p) + (1 − p) log2(1 − p)] (7.1.1)

has those properties. This expression is the 2-symbol special case of
the more general n-symbol case that Shannon discusses:

H = −
n∑

i=1

pi log2(pi ),
n∑

i=1

pi = 1, pi ≥ 0. (7.1.2)

The formal resemblance of (7.1.2) to the entropy function in statistical
mechanics (thermodynamics) is why Shannon called H, measured in
bits, the information entropy function.

Now, to the central point here. In (7.1.1) if p = 1 (all 0s) or
if p = 0 (all 1s), then H = 0, just as Shannon argued on intuitive
grounds. The maximum H in (7.1.1) occurs if p = 1

2 , which also
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makes intuitive sense: maximum information occurs when maximum
uncertainty exists. Notice that H = 1 only if p = 1

2 , otherwise H < 1.
Receiving a binary digit does not necessarily mean you have received a
bit of information. For that reason there has been proposed, from time
to time, to call the information unit of H the shannon, where 1 shannon
≤ 1 bit with numerical equality only if 1s and 0s are equally likely.

One of the central concepts in Shannon’s “Mathematical Theory’’ is
that there are two numbers, C and R, called the channel capacity and
the source rate, respectively, with both measured in units of bits/second
(but keep in mind my comments about the “shannon’’). For discrete
channels Shannon showed that a reasonable definition for the channel
capacity is

C = lim
T→∞

log2 N(T)
T

bits/unit time, (7.1.3)

assuming, of course, that the limit actually does exist, where N(T)
is the total number of different possible sequences of symbols (dots,
dashes, and spaces, for example, in a telegraph channel) that can be
sent in the time interval T. In “Mathematical Theory,’’ Shannon gives
a brief specific example of how to compute C , and I’ll show you here
in more detail how to do it. What makes this doubly interesting for us
is that Boole’s approach for solving a so-called difference equation with
symbolic algebra can be used. (You’ll recall from Chapter 3 that it was
for his symbolic algebra to solve differential and difference equations
that Boole received the Royal Society of London’s 1844 Royal Medal
in mathematics.) I won’t use Boole’s symbolic algebra to analyze the
difference equation we’ll encounter—it will be so elementary that using
Boole’s algebra on it would be like killing a fly with a cannonball—but
I do think it curious that we now have a second example (along with
probability) of how the mathematical interests of Shannon and Boole
ran along parallel paths. The math I’ll use requires no familiarity with
calculus, but only with high school algebra, as I promised at the start
of the book.

Suppose all messages to be sent over a telegraph channel are
constrained to using a three-symbol alphabet: a dot occupying 2 units of
time (telegraph key closed for one unit then open for one unit), a dash
occupying 3 units of time (key closed for two units then open for one
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unit), and a space occupying 4 units of time (key open for four units).
In terms of bits, a dot is 10, a dash is 110, and a space is 0000. All
possible messages of duration T are all the possible different ways of
stringing these three symbols together to form sequences of duration
T. In this problem it should be clear that only integer values of T are of
interest. So, for example, N(0) = 0, N(1) = 0, N(2) = 1, and N(3) = 1
because there are no sequences of durations 0 and 1, and just one
sequence each of durations 2 (a dot) and 3 (a dash). Can you see that
N(4) = 2 and N(5) = 2, because there are two distinct symbol sequences
of duration 4—(dot, dot) and (space), and there are two distinct symbol
sequences of duration 5—(dot, dash) and (dash, dot). Also N(6) = 4
with the symbol sequences being (dot, dot, dot), (dot, space), (space,
dot), and (dash, dash).

Now, make the following simple observation: for all messages of
duration T > 4, every one of them ends either with a dot, or a dash, or
a space. That’s because every sequence has to end with something! The
number of messages ending with a dot must be N(T − 2) since only a
dot can be added to a message of duration T − 2 to make a message of
duration T. Similarly, the number of messages of duration T ending
with a space must be N(T − 4), and N(T − 3) must be the number of
such messages ending with a dash. Thus, we arrive at the difference
equation

N(T) = N(T − 2) + N(T − 3) + N(T − 4), T ≥ 5. (7.1.4)

Before I show you how to solve (7.1.4) and use the result to evaluate
C in (7.1.3), let me first admit that we really don’t need to use an
analytical approach at all. We could, instead, simply use (7.1.4) directly
to calculate N(T) and thus C. For example,

N(7) = N(5) + N(4) + N(3) = 2 + 2 + 1 = 5

N(8) = N(6) + N(5) + N(4) = 4 + 2 + 2 = 8

N(9) = N(7) + N(6) + N(5) = 5 + 4 + 2 = 11

and so on. From these and additional values of N(T) we can easily
determine C in the limit as T → ∞. This process is easy to do by hand
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Figure 7.1.1. Channel capacity.

for small values of T, but a computer is much faster in general (the
value of N(T) increases very rapidly with increasing T; for example,
N(50) = 72, 581, 632). Figure 7.1.1 shows a semilog plot of (7.1.3) over
the interval 1 ≤ T ≤ 1,000. As the plot suggests, it does appear as
though the limit indeed exists, with a value of approximately C = 0.55
bits/unit time. If the unit of time (the time to send one bit) is 10
microseconds, then our telegraph channel has a capacity of about
C = 55, 000 bits/second.

We can solve (7.1.4) exactly—and thus both prove that the limit in
(7.1.3) exists and calculate its precise value—as follows. Suppose we
try (that is, guess—a perfectly respectable way to solve equations!) a
solution to (7.1.4) of the form

N(T) = KaT, (7.1.5)

where K and a are constants. We can confirm that this guess is a good
one by simply substituting (7.1.5) into (7.1.4) and observing that it
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works. Doing that,

KaT = Ka(T−2) + Ka(T−3) + Ka(T−4),

or, remembering how exponentials work, and canceling the K ’s (which
means that the actual value of K isn’t important), we have

aT = aTa−2 + aTa−3 + aTa−4.

Or, since aT cancels away (which means the specific value of T isn’t
important) we have

1 = a−2 + a−3 + a−4

or, with a little rearrangement of terms,

a4 − a2 − a − 1 = 0. (7.1.6)

If you look at (7.1.6) for just a bit, you can see that one solution is
a = −1. There are three other solutions, too, of course, and they are
not so easy to see. Using either a computer (which is what I did) or the
well-known formula for the solutions to a cubic (what (7.1.6) reduces
to after removing the −1 solution), you’ll find that all the solutions to
(7.1.6) are

a1 = −1

a2 = 1.46557 · · ·
a3 = −0.23278 · · · + i0.79255 · · ·
a4 = −0.23278 · · · − i0.79255 · · · ,

where i = √−1. Since each of these values gives a valid solution to
(7.1.4)—as defined in (7.1.5)— the most general solution is the sum of
them all (with each term having an arbitrary value of K ). That is, the
general solution to (7.1.4) is

N(T) = K1(−1)T + K2(1.46557)T + K3(−0.23278 + i0.79255)T

+K4(−0.23278 − i0.79255)T. (7.1.7)
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The four K ’s, as you’ll see, do not have to be determined to compute C .
That’s because all we need in calculating C is an expression for N(T) as
T → ∞, and in (7.1.7) there is just one term that grows without bound
as T → ∞, the second term. The first term simply oscillates between
±K1 as T takes on successive integer values. And since the complex
conjugate solutions for a have an absolute value less than one, then
the third and fourth terms in (7.1.7) actually go to zero as T → ∞. So,
in the limit,

C = lim
T→∞

log2 N(T)
T

= lim
T→∞

log2

{
K2(1.46557)T

}
T

= lim
T→∞

log2 K2

T
+ lim

T→∞
T log2(1.46557)

T
= log2(1.46557) = 0.55146 bits/unit time,

in excellent agreement with Figure 7.1.1. Our derivation has also
shown that the limit in (7.1.3) does actually exist.

Now, against all intuition, Shannon showed that if the source rate
R ≤ C then there exists at least one source encoding procedure such
that, no matter what the channel noise may be, the error rate at the receiver
can be made arbitrarily small.1 But, even with an arbitrarily small error
rate it isn’t zero, and thus there will still be errors. So, at the very least,
the receiver would find it useful to be alerted when an error does occur
(perhaps, if it’s possible, to request a retransmission). That is, our first
question here is: how can we encode the source information to allow
error detection at the receiver? That can be done quite easily with what
is called parity.

Imagine that when the source encoder is preparing the binary data
stream for transmission through the channel, the encoder works with
m information or message bits at a time. To these m bits the encoder
appends one additional bit so that this new bit—called a parity bit—
makes the total number of 1s even. We’ll call these m + 1 bits a block .
For example, if m = 3, then the message bits 011 would have a parity
bit of 0 appended to give the 4-bit block 0110, while the message bits
100 would have a parity bit of 1 appended to give the 4-bit block 1001.

When the encoded m + 1 bit block arrives at the receiver, the
m-received message bits are used to generate a new parity bit, which
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Figure 7.1.2. Error detection via parity.

is then compared to the received parity bit. If zero errors occurred
in the message bits during transmission, then the two parity bits will
obviously agree. If, however, one of the received message bits is in error
(more generally, if an odd number of errors has occurred), then the
two parity bits will not agree, and that disagreement can be used to
trigger some sort of alert, as shown in Figure 7.1.2.

This approach to error detection is not without its problems, as there
are two ways it can stumble. First, there may, in fact, be no errors at
all in the received message bits, but the parity bit comparison at the
receiver will still fail because it was the transmitted parity bit itself that was
received incorrectly. And second, if there were actually two errors in
the received bits (or more generally any even number of errors), then
the parity bit comparison at the receiver will incorrectly say all is okay.
A diagram like Figure 7.1.2 is very nice for a high-level, slide-show
management meeting (I call it a Jobs-diagram, in honor of Apple’s late
marketing genius Steve Jobs, who sold a good line, but who I suspect
might have been more than just a little vague on what is actually
inside an Apple computer or iPad). For engineers who are tasked with
building real hardware, however, it really won’t do. What we need to
do now is show precisely how to build both the parity bit generator
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logic at the source end of the channel, and the parity bit checking
logic at the receiver end of the channel. What we are aiming for is
a Wozniak-diagram (in honor of Apple’s Steve Wozniak, the technical
brains behind the original Apple computer).

7.2 THE EXCLUSIVE-OR GATE (XOR)

To lay the groundwork for parity logic, this section introduces a “new’’
logic gate, the exclusive-OR (written as XOR). It isn’t actually really
new, since it can be built from either NOR or NAND gates, but the
XOR is such a useful function that it is usually treated as deserving a
basic logic gate in its own right. If A and B are Boolean variables, then
f = A ⊕ B is the exclusive-OR of A and B—take a look back at (4.3.5)
—and its logic circuit symbol is shown in Figure 7.2.1. Unlike the other
logic gates we’ve discussed, the XOR always has just two inputs. The
construction of the XOR of A and B using just NOR gates is shown,
and the circuit should make sense if you write (recall De Morgan)

f = A ⊕ B = AB̄ + ĀB = Ā + B + A + B̄ = Ā + B + A + B̄.

How to build the XOR from AND, OR, and NOT gates should be
obvious.

Before continuing with the parity discussion of the last section and
how the XOR comes into play, let me digress for just a bit here and
show you a fundamental application of the XOR in a completely
different setting. The XOR is the basic circuit for what is called a half-
adder, used in a computer’s arithmetic circuitry. In binary arithmetic,
0 + 0, 0 + 1, and 1 + 0 are the same as in logic (that is, 0, 1, and 1,
respectively). However, 1 + 1 = 1 in logic, but in binary arithmetic 1 +
1 is 0 as well as a carry-out of 1 to be added in the next most significant
bit position. For example, in binary arithmetic we have

0 0 1

1 0 0

1 0 1
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Figure 7.2.1. The XOR logic gate and how to build it with NORs.

(that is, 1 + 4 = 5 in decimal) in which no carry is produced in any of
the bit positions, while

0 0 1

1 0 1

1 1 0

(that is, 1 + 5 = 6) in which there is a carry produced in the addition
of the two least significant (right-most) bits. And finally, consider

1 1 1

1 1 1

1 1 1 0

(that is, 7 + 7 = 14) in which there is a carry produced in every bit
position; notice that this also illustrates how adding two n-bit numbers
can produce an n + 1-bit sum because of a carry-out in the most
significant (left-most) bit position.

To develop the logic circuitry to perform binary addition, let’s start
with the half-adder I mentioned earlier. A half-adder will generate as
outputs the sum of its two input bits and a carry-out, but it does not
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Figure 7.2.2. The half-adder.

accept a carry-out from the adjacent, lower significant bit position as a
third input. A full-adder does accept a carry-out as a third input, and
as you’ll soon see we can make the obviously useful full-adder from
two half-adders (which is why we start with the obviously limited half-
adder!). The truth table for the half-adder, with inputs A and B and
outputs S (for the sum) and Co (the carry-out), is Thus,

A B S Co

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

S = ĀB + AB̄ = A ⊕ B, (7.2.1)

and

Co = AB. (7.2.2)

The logic circuit for the half-adder, using one XOR and one AND, is
shown in Figure 7.2.2.

The full-adder has the following truth table, where now, in addition
to the inputs A and B, there is Ci , the carry-in which is the carry-out
from the adjacent, lower significant bit position. The two outputs are,
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as before, S and Co .

A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The carry-out equation is

Co = ĀBCi + AB̄Ci + ABC̄i + ABCi = ( ĀB + AB̄)Ci + AB(C̄i + Ci ),

or,

Co = (A ⊕ B)Ci + AB. (7.2.3)

The equation for S is

S = Ā B̄Ci + ĀBC̄i + AB̄C̄i + ABCi = ( Ā B̄ + AB)Ci + ( ĀB + AB̄)C̄i ,

or,

S = ( Ā B̄ + AB)Ci + (A ⊕ B)C̄i . (7.2.4)

If you construct the Karnaugh maps for Ā B̄ + AB and A ⊕ B, you’ll see
that they are inverses. That is,

Ā B̄ + AB = A ⊕ B,

and so (7.2.4) becomes

S = (A ⊕ B)Ci + (A ⊕ B)C̄i . (7.2.5)

To make our next step transparent, write W = A ⊕ B. Then we can
write (7.2.5) as

S = W̄Ci + WCi = W ⊕ Ci ,
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Figure 7.2.4. The full-adder (part 2).

or, finally,

S = (A ⊕ B) ⊕ Ci . (7.2.6)

We can now draw, in Figure 7.2.3, the logic circuit for the full-
adder directly from (7.2.3) and (7.2.6), using 2 XORs, 2 ANDs, and
an OR. Each of the dashed boxes in that figure is a half-adder, as you
can see if you look back at Figure 7.2.2. To make the two half-adder
interconnections more obvious, take a look at Figure 7.2.4. We can now
add (for example) two 4-bit numbers as shown in Figure 7.2.5, where
in the least significant bit position the Ci input is hard wired to 0 (that
is, is grounded) since, in that position, there is no carry-in from an
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Figure 7.2.5. Adding two, 4-bit numbers.

earlier addition. To add numbers with even more bits, just use more
full-adders.

Okay, now back to continue our error-detection discussion from
Section 7.1 and how the XOR comes into play in that application.

7.3 ERROR-DETECTION LOGIC

There really is actually not much left to do, and this will be a (very!)
short section. The XOR logic gate has an output of logical 1 only
if its two inputs are different, and that is precisely what is needed
to generate the parity bit from an odd number of 1 message bit
inputs to give an even total of 1s in the transmitted block. That is,
to generate the parity bit for any set of message bits, we simply XOR
all the message bits as shown in Figure 7.3.1 for the case of three
message bits (since the XOR gate always has just two inputs, we have to
cascade XORs to handle three or more inputs). You should try various
combinations of 0 and 1 inputs for m1, m2, and m3 to convince yourself
that the parity bit p will always be just what is required to give an even
total number of 1s in the 4-bit block.

At the receiving end of the channel, we repeat the parity generator
circuit using the received message bits as inputs, and then compare
the newly generated parity bit with the received parity bit using one
more XOR gate, as shown in Figure 7.3.2. If the two parity calculations
disagree, we’ll get an alarm. Notice that we’ll get an alarm, even
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Figure 7.3.2. A parity-checking circuit (at receiver).

if the message bits are okay, if it is the parity bit that is received
incorrectly.2

7.4 ERROR-CORRECTION THEORY

Generating an alert signal that indicates something is not quite right is
good, but wouldn’t it be even better if our digital logic could fix errors?
Of course it would! Still, that seems at first glance to be as wonderful
(and as fanciful) as it would be if you could levitate by simply pulling
upward on your own feet. In fact, however, error correction is possible
and, indeed, it’s not even particularly hard to achieve. To see how to
do it, suppose we have m message bits that we wish to send through a
channel. To these m bits we’ll append k additional bits, to arrive at a
block of n = m + k bits. (How these additional k bits are determined will
be discussed in the next section.) There then are, of course, 2n = 2m+k

possible blocks. Not all of these blocks, however, can represent an
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error-free transmission through the channel if we wish to correct errors.
After all, if every possible block is associated with a legitimate message,
how could we say any particular block is in error? What we need to do
is to select a finite number—call it M—of the 2n possible blocks and say
just those particular M blocks (let’s call them, from now on, codewords)
are associated with legitimate messages. If anything other than one of
the M codewords appears at the output of the channel, then we can
say the transmission has been corrupted.

Now, one final definition before I pull the error-correcting rabbit
out of the hat. Given two n-bit blocks, let’s compare them bit by
bit and call the number of times the comparison fails (that is, the
number of bit positions that are different) the distance between the
two blocks. The minimum distance is of course zero (the two blocks
are identical), and the maximum distance is n (the two blocks differ in
each and every bit position). This is often called the Hamming distance—
after Shannon’s colleague at Bell Labs, the mathematician Richard W.
Hamming (1915–1998). We’ll hear from Hamming again in the next
section.

The central idea behind error correction is to pick the M codewords
so that if no more than a given maximum number of errors occurs in
an n-bit block—call that maximum t—then the distance d between any
two codewords satisfies the inequality

d ≥ 2t + 1. (7.4.1)

Therefore, if no more than t errors occurs in a block during its journey
through the channel, then the received corrupted version of the block
will be closer to (that is, have a smaller Hamming distance from) the
original codeword block than it will have from any other codeword.
That means digital logic at the receiver can reset the corrupted block
back to the original codeword sent by the source and, thus, the up to t
errors will be corrected.

Achieving the required distance between codewords is the purpose
of the k additional bits appended to the m message bits. There are
2m different possibilities for the message bits, but 2m+k possibilities
from which to choose M of them to be codewords. If k = 3, for
example, there are 23 = 8 times as many possibilities from which to
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select the M codewords as there are 2m message possibilities, and so
the M codewords can be “spread sufficiently apart’’ from each other to
achieve the required Hamming distance. Be quite careful to appreciate
that this discussion does not tell us how to actually pick the special M
codewords from the 2m+k possibilities.

Before we discuss the selection of the M codewords, let’s first
calculate how big M can be. To do this, we need to first determine
how many different ways a codeword can be corrupted into an “illegal’’
n-bit block by suffering exactly one error, exactly two errors, exactly
three errors, up to exactly t errors. If we denote that value by S(n, t),
then

S(n, t) =
(

n
1

)
+

(
n
2

)
+

(
n
3

)
+ · · · +

(
n
t

)
(7.4.2)

where the notation
(n

k

) = n!
(n−k)!k! is the binomial coefficient we encoun-

tered in the previous chapter.
We can now use a geometrical argument called sphere-packing to

compute an upper bound on M. To do that, consider each n-bit
block to be the coordinates of a point in n-dimensional space. That
may sound very exotic, but let’s start in our minds with the n = 2
and n = 3 cases. All 2-bit blocks are the four vertices of a square (a
two-dimensional “cube’’): (0,0), (0,1), (1,0), and (1,1). All 3-bit blocks
are the vertices of a three-dimensional cube: (0,0,0), (0,0,1), (0,1,0),
(0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1). So, by analogy all 4-bit
blocks are the vertices of a four-dimensional cube and, despite the
science fiction sound of that, I’ll bet you can now write down all sixteen
of them. And so on for n > 4. Now, imagine that around each point
associated with a codeword block we construct a surface of constant
radius t; that is, a spherical surface that contains all the points that
are no further than Hamming distance t from the center point (the
codeword point) of the sphere. Since we have M codewords, we have
M n-dimensional spheres.

If the channel delivers to the receiver an n-bit block that does not
correspond to one of the M codewords, then the receiver looks to see
which sphere the corrupted block belongs to (that is, which sphere
the corrupted block’s point is inside of) and then assumes that the
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codeword at the center of that sphere is what was actually sent by the
source. To achieve error correction of up to t errors, we geometrically
require that the spheres not intersect, a condition ensuring that for
every received block there is a unique nearest codeword. Since there
are S(n, t) points inside each sphere plus one more (the codeword
itself), and since there are M spheres, and since the total number of
enclosed points can not exceed 2n, we must then have M[1 + S(n, t)] ≤
2n or, using (7.4.2),

M ≤ 2n

1 + (n
1

) + (n
2

) + (n
3

) + · · · + (n
t

) . (7.4.3)

For the simplest case of being able to correct a single error, we have
t = 1 and so

M ≤ 2n

1 + n
= 2m+k

1 + m + k
.

For example, suppose m = 4 message bits. Then

M ≤ 2k+4

k + 5
.

If k = 2, then M ≤ 26

7 = 64
7 , or, since M is an integer, M ≤ 9. But with

m = 4 message bits there are a total of 16 possible messages that could
be sent and so we see that, with k = 2, there simply aren’t enough
codewords separated widely enough to do the job. But, if we use k = 3
then M ≤ 27

8 = 128
8 = 16, equal to the number of possible messages.

With k = 3, then, it is not a priori impossible to imagine that those
three additional bits appended in some way to our m = 4 message bits
might be sufficient to achieve single-error correction. Sufficient, that
is, if we can find 16 different 7-bit blocks out of the 128 total of 7-bit
blocks, such that each codeword has a Hamming distance of at least
3—see (7.4.1) again, with t = 1—from all the other codewords.

Now, before I show you such a selection of 16 blocks—yes, that
is possible to do, so you have not been the victim here of a
pathetic shaggy dog story!—let’s consider in just a bit more depth
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how the receiver logic might actually perform error correction. A quite
straightforward way would be to have the M codewords permanently
stored in the receiver, that is, the M codewords would be literally
wired right into the receiver circuitry when the receiver is constructed.
Then, every time an n-bit block comes through the channel, the
receiver compares that block with each stored codeword and selects
the codeword closest in Hamming distance to the received block.
While that is certainly a possible approach, it is not the historical
development of error correction. Rather, engineers have searched for
codes in which there is sufficient internal structure that the received
block itself—even if corrupted—contains all that is needed to calculate
the nearest codeword. Such codes are called systematic codes.

7.5 ERROR-CORRECTION LOGIC

Probably the best known of the systematic codes are the Hamming
codes, which Hamming published in 1950. Hamming had developed
his codes years before, but the legal department at Bell Labs held
up publication until the patent lawyers had finished their work.
And so it must have been an interesting time in Hamming’s private
thoughts when the simplest of the Hamming error-correcting codes
first appeared in print, not in Hamming’s paper but two years earlier,
in Shannon’s “Mathematical Theory.’’ Here’s how Shannon described
Hamming’s code:

There are two channel symbols, 0 and 1, and noise affects them
in blocks of seven symbols. A block is either transmitted without
error, or exactly one symbol of the seven is incorrect. . . . An
efficient code, allowing complete correction of errors . . . is the
following (found by a method due to R. Hamming): Let a block
of seven symbols be X1, X2, . . ., X7. Of these X3, X5, X6 and X7

are message symbols and chosen arbitrarily by the source. The
other three are redundant3 and calculated as follows:

X4 is chosen to make α = X4 + X5 + X6 + X7 even4

X2 is chosen to make β = X2 + X3 + X6 + X7 even
X1 is chosen to make γ = X1 + X3 + X5 + X7 even
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X1 X2 X3 X4 X5 X6 X7

X3X3 X5

X5
X6 X7X7

Figure 7.5.1. Single-error correcting Hamming encoder.

When a block of seven is received α, β and γ are calculated and if
even called zero, if odd called one. The binary number αβγ then
gives the subscript of the Xi that is incorrect (if 0 there was no
error).5

So, now we know what those k appended bits that we discussed in
the previous section are; they are parity bits. Imagine that we write
in binary the subscript i in Xi . Then, X1 is the parity bit for the
bit positions that have a 1 in the first position (least significant bit
position). That is, X1 is generated (at the source) from X3, X5, and X7

(at the source, of course, we could equally well use m-notation for the
message bits). X2 is the parity bit for the bit positions that have a 1 in
the second position; that is, X2 is generated (at the source) from X3,
X6, and X7. And X4 is the parity bit for the bit positions that have a 1
in the third position; that is, X4 is generated (at the source) from X5,
X6, and X7.

To see how all this works, suppose the source wishes to send the four
message bits X3, X5, X6, and X7 of 1011. The parity bits X1, X2, X4

are calculated at the source as given above to be X1 = 0, X2 = 1, X4 = 0,
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Figure 7.5.2. Syndrome generator (at receiver).

giving as the block to be transmitted 0110011. Now, imagine first that
this block travels through the channel with no errors and arrives at the
receiver just as sent. Then the binary number αβγ (called the syndrome,
a word borrowed from the language of medical diagnosis) is calculated
to be 000, the indication that indeed no error occurred. If, however, X4

(for example) was received incorrectly, then the received block would
be 0111011, and the calculated values of α, β, and γ would be α = 3
(that is, odd, and so we set α = 1), β = 4 (that is, even, and so we
set β = 0), and γ = 2 (that is, even, and so we set γ = 0). Thus, the
syndrome αβγ is calculated to be the binary number 100 which is 4,
correctly indicating X4 as the incorrect bit. Notice that this procedure
can correct a single error in the parity bits just as easily as in the
message bits (although, of course, correcting a parity bit once the block
is through the channel is not of much practical interest).

The Hamming code described by Shannon corrects a single error
in m = 4 message bits, but, in fact, if we are willing to append even
more than k = 3 parity bits we can implement Hamming codes that
can correct a single error in any number of message bits. Since the k
parity bits can represent a total of 2k binary numbers—a number that
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Figure 7.5.3. Syndrome decoder (at receiver).

has to be large enough to select one of the m + k + 1 positions for the
error location (the +1 term is for the “no error happened’’ indication,
represented by the k-bit all-zeros binary number)—then we must have

2k ≥ m + k + 1. (7.5.1)

For the Hamming code in Shannon’s paper, with m = 4, (7.5.1)
becomes the requirement 2k ≥ k + 5, which fails for k = 2 (22 = 4�
2 + 5 = 7), but which does work for k = 3 (23 = 8 ≥ 3 + 5 = 8). For
m = 12 message bits (for example), however, we’d need more than
three parity bits. See if you can convince yourself that then k = 5 parity
bits are necessary for single-error correction.

Figure 7.5.1 shows how to build the logic circuitry that implements
the generation (at the source) of the 7-bit block (4 message bits plus 3
parity bits) using single-error correcting Hamming encoding.

At the other end of the channel (at the receiver), Figure 7.5.2 shows
the syndrome generator that accepts the received 7-bit block of Xi as
inputs and generates as outputs the Boolean variables of α, β, and γ .
The α, β, and γ outputs are the inputs to the syndrome decoder, whose
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Figure 7.5.4. Corrected (if necessary) message bits (at receiver).

circuit is shown in Figure 7.5.3. The decoder has four output lines, one
each only for the four interesting possibilities of the single error (if
any) being in X3, X5, X6, or X7. So, if αβγ decodes as 3, 5, 6, or 7,
then one of the output lines E3, E5, E6, or E7, respectively, is logic 1
and the other three lines are logic 0. If αβγ decodes as 0, 1, 2, or 4
(no error, or a parity bit error, and both cases mean the all-important
message bits are okay), then all four output lines from the syndrome
decoder are logic 0.

Figure 7.5.4 shows how the received message bits are processed to
flip the bit (if any) that is in error. If none of the four output lines from
the syndrome decoder are logic 1, then each of the four XOR gates in
Figure 7.5.4 simply reproduces its input which is, of course, the correct
thing to do since there was no error! If one of the decoder output
lines is logic 1, however, then the corresponding XOR gate outputs the
complement of its input,6 which corrects an erroneous 0 back to 1, or
an erroneous 1 back to 0.

NOTES AND REFERENCES

1. Shannon constructed his amazing proof without specifying any particular
coding procedure. His ingenious demonstration went to the other extreme,
in fact, in that he calculated the error rate averaged over all possible coding
procedures. Since at least one member of any collection (or, to use the
information-theoretic term, ensemble) being averaged must be less than the
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average, then at least one of all possible ways to encode must have an error
rate less than the average error rate. (A denial of this mathematical fact
is, of course, the joke behind Garrison Keillor’s claim—on his radio show
A Prairie Home Companion—that the town of Lake Woebegone is “where all the
children are above average.’’) Shannon’s proof is what mathematicians call an
existence proof. He left the detailed discovery of particular coding procedures
with good (that is, small) error rates to others. In fact, Shannon created a
cottage industry in code hunting! An older but still quite nice tutorial essay
on this part of Shannon’s work is by one of his Bell Labs colleagues, E. N.
Gilbert, “Information Theory after 18 Years,’’ Science, April 15, 1966, pp. 320–
326. Coding procedures have, in the more than sixty years since Shannon’s
“Mathematical Theory’’ appeared, been developed that achieve error rates
very close to his theoretical performance limits. There are many such codes
in use today, going under such names as Reed-Solomon codes, convolutional
codes, turbo codes, Hamming codes, BCH codes, . . . . These different codes
are applicable in different situations. For example, one code is most useful
when errors are rare and occur independently at random (caused, say, by a
transient voltage spike), while another code may be capable of correcting what
are called burst errors (dependent errors that occur one after the other because
of, say, a scratch on a CD).

2. When I was a digital system designer back in the early 1960s, such a
parity checking system was used on a machine I designed (for the data my
machine received through a floor cable from another machine). All the parity
error-alert signal did was turn on a push-button light on the control panel,
which could then be turned off by pushing the button. If the light illuminated
only infrequently, say once every half-hour or so (with a data transfer rate of
a 22-bit block every 10 microseconds, that was a bit error rate of one error
every four billion bits), we didn’t worry about it. But, if the light came back
on almost as soon as we had turned it off, then we knew something more
serious was probably occurring (usually that someone had accidentally kicked
the cable—because we weren’t using a false floor—and loosened a connection).

3. The concept of redundancy is central in Shannon’s “Mathematical
Theory.’’ Without redundancy you can’t have error detection or correction
(recall the text discussion in Section 7.4 on how, without the k-appended
parity bits, all possible blocks would be associated with legitimate messages).
Shannon’s favorite example of redundancy was the English language, which
he estimated to be 50% redundant (as he put it, “This means that when we
write English half of what we write is determined by the structure of the
language [that’s the redundancy] and half is chosen freely.’’) It is redundancy
that makes it possible for nearly anybody to correct the errors in the following
sentence, which has been corrupted by deleting all the vowels:

MST PPL HV LTTL DFFCLTY N RDNG THS SNTNC
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Redundancy is what makes it so easy for authors to miss typos when reading
page proofs; the automatic error-correction of the eye/brain “computer’’ just
reads right through them.

4. The + signs in the equations for α, β, and γ are arithmetic addition
signs, and not inclusive-OR logic operations.

5. Claude E. Shannon and Warren Weaver, The Mathematical Theory of
Communication, University of Illinois Press, 1949, p. 80. This book is sim-
ply Shannon’s original paper plus an introductory expository essay by the
mathematician Warren Weaver (1894–1978), then an administrator at the
Rockefeller Foundation. The publisher apparently had so little confidence
in Shannon as an author of clear prose that Weaver’s essay was included to
“clarify’’ Shannon. Weaver’s contribution is questionable on two levels. First,
it assumes the reader is the quite curiously odd person who both understands
probability but still needs to be told (as Weaver actually does at one point)
that the logarithm of a positive number less than one is negative! On an even
more puzzling level, Weaver actually argues against Shannon’s fundamental
premise that the information content of a message has nothing to do with
semantics. Weaver not only rejects that, he deplores it, and suggests ways to
bring semantics back into consideration. Shannon must have ground his teeth
at that when he read Weaver’s essay. Weaver’s conceptual roadblock survives
today (see James Gleick’s 2011 book The Information). It is, however, precisely
because of Shannon’s discarding of the romantic, emotional, false notion that
messages somehow contain semantic meaning that is “beyond mathematics’’
that today we have codes that give us crystal-clear images from deep-space,
and that let you watch streaming video on the Web at megabit/second speeds.
Poets may decry this, but it isn’t poetry that makes your e-mail possible; it’s
Shannon’s “boring’’ (Gleick’s word) mathematical information theory.

6. When used this way, the XOR is often called a controlled-NOT (CNOT)
gate, and we’ll see it and a more sophisticated version (a controlled-controlled-
NOT) in Chapter 10.
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Sequential-State Digital Circuits

Every body continues in its state of rest, or of uniform

motion in a right line, unless it is compelled to change that

state by forces impressed upon it.

—From Isaac Newton’s Principia (1687), showing that the idea of

a physical system changing state long predates the invention of

digital circuitry

8.1 TWO SEQUENTIAL-STATE PROBLEMS

What is a sequential-state problem? This is a question that is most
directly answered by giving some specific examples. One can, I should
admit, formulate a theoretical, mathematical definition, but examples
are both more illuminating and, even more importantly, I think, more
fun. My first example will drive home the point made by the opening
quotation, that the concept of a physical system changing state with
time predates Shannon and Boole by centuries. In fact, you’ll see how
the state concept predates Newton by even more centuries. This first
example of the state concept comes from a late ninth century A D.
manuscript of recreational math problems attributed to the English
Catholic monk and scholar/educator Alcuin of York (735–804), who in
781 became head of Charlemagne’s Palace School at Aachen, France.

Alcuin’s math text—Propositiones ad acuendos juvenes (Problems to
Sharpen the Young)—includes the following puzzle. On one side of a
very wide river are two adults of equal weight, their two children who
each weigh half as much as an adult, and one small boat. The boat is
so small, in fact, that it can carry only the weight of one adult. Each of
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the four individuals can row the boat. How can the entire family get to
the other side of the river?

We can answer Alcuin’s question by defining a state to be a descrip-
tion of who (including the boat) is located where. To do this, I’ll use
the notation

state = [(who is on the starting side), (who is on the ending side)].

Writing A, C, and B to denote adult, child, and boat, respectively, we
then have the given

initial state = [(A,A,C,C,B),()]

and the desired

final state = [(), (A,A,C,C,B)].

Notice that the empty parentheses () mean “nobody here’’. As the
boat moves back and forth across the river, the state changes, with each
crossing triggering a transition to the next state, all the while obeying
the boat’s weight constraint. The solution to Alcuin’s puzzle, then,
takes the form of a sequence of state transitions. Specifically, starting
at the top with the initial state, the successive states are given by the
following list:

[(A,A,C,C,B), ()]
[(A,A), (C,C,B)]
[(A,A,C,B), (C)]
[(A,C), (A,C,B)]
[(A,C,C,B), (A)]
[(A), (A,C,C,B)]
[(A,C,B), (A,C)]
[(C), (A,A,C,B)]
[(C,C,B), (A,A)]
[(), (A,A,C,C,B)].

We have a total (including the initial and final states) of ten states, with
nine state transitions.

A variation of this puzzle has the two children wishing to finish being
back on the original side of the river (with the boat, of course!), and the
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two adults on the other side. In this version the children are unrelated
to the adults and, in fact, are simply running a transportation business.
So, the initial state is as before, but now the final state is [(C,C,B),
(A,A)]. The solution now is the original solution, plus one more state
in which the two children return together to the original side of the
river. This solution has eleven states with ten state transitions.

Notice that in Alcuin’s puzzle we never revisit a state. The solution
is a steady, unidirectional transition of states from the initial to the
final. Many quite interesting problems do not have that property, and
my second example illustrates that. In this second example I’ll use a
more modern situation that just about everyone of driving age has
encountered: the automated parking garage. Suppose a garage has N
parking spaces and two portals: an entrance and an exit, with each
blocked by a movable guard arm. As you pull up to the entrance portal
there is an electric sign that displays one of two messages: SPACE
AVAILABLE, or FULL. If you see the second message you are out of
luck and off you go. If you see the first message, however, you can pull
up over a pressure pad that causes a conveniently placed dispenser
to present you with a time-stamped card. Upon pulling the card out of
the dispenser the blocking arm rises and you can then enter the garage
to find an empty space (which you know must be someplace since the
electric sign said so and, of course, electric signs never lie!).

The raising of the entrance portal blocking arm increments (by one)
an automatic counter that was initialized to zero when the garage first
opened. Similarly, when a car leaves the garage it approaches the exit
portal (blocked by its arm), and the driver inserts the time-stamped
card into an automatic reader, which then computes the bill. Once
the driver inserts the proper amount of money into a conveniently
located slot (or swipes a credit card), the blocking arm is raised and
the automatic counter is decremented (by one). When (if) the counter
reaches N, the FULL message is displayed. Otherwise, the SPACE
AVAILABLE message is displayed.

The state of the garage is simply the number of cars in it (the number
in the counter); the state can be any integer from 0 to N, and it
changes, up or down, by 1 unless the garage is in state 0 (and then
it can only go up by 1) or the garage is in state N (and then it can only
go down by 1).
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Figure 8.2.1. The NOR bi-stable latch.

The key element to building state-changing digital machines like
our garage—or a modern digital computer—is the crude bi-stable
latch that we first discussed back in Chapter 5. Since a latch has two
stable states, then the totality of states that n latches can represent is at
most 2n. The design of a sequential state digital machine is simply that
of determining how to interconnect these individual latches so as to
transition from state to state with the goal of accomplishing a desired
task. In the rest of this chapter I’ll first show you how the latch can
be modified in several important ways to arrive at the practical logic
element called the clocked, edge-triggered flip-flop. Then we’ll finish the
chapter with the design of a specific machine, a machine that we’ll
see again in the next chapter when we discuss the famous Turing
machine model for an arbitrarily powerful (but not infinitely powerful)
computer.

8.2 THE NOR LATCH

A major problem with the bi-stable latch of Figure 5.6.1 is that its
inputs are produced by push-buttons. What we’ll need for useful
sequential-state circuits is a latch with logic value inputs (+5 volts and
ground for logic 1 and 0, respectively) that come from the outputs
of other latches and/or logic gates. Such a latch is shown in Figure 8.2.1,
made from two cross-coupled 2-input NOR gates. As in the relay latch
of Figure 5.6.1, there are two inputs (S for set and R for reset) and two
outputs (X and Y ).
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Here’s how the NOR latch works. Let’s start with R = S = 0. Then,
the output of the upper NOR is

X = R+ Y = 0 + Y = Y ,

and the output of the lower NOR is

Y = S + X = 0 + X = X,

and these two results are obviously consistent. Thus, either X = 0 and
Y = 1 (what I’ll call state 1) or X = 1 and Y = 0 (what I’ll call state 2).
When the latch is first powered up, it will enter one of these two stable
states, although which state is entered is indeterminate, depending
on the relative speed of the particular components used to make
each NOR. (When used in a real digital machine, latches should be
initialized immediately after being powered up.) Let’s now see what
happens, starting with each state, as we change S and R.

Assume the latch is in state 1(X = 0, Y = 1) and that R = 0 as before.
Then, let S = 1. So,

Y = S + X = 1 + 0 = 1 = 0,

and

X = R+ Y = 0 + 0 = 0 = 1.

That is, the latch has transitioned to state 2. This is a stable transition,
too, because if we do the calculations again with the new X and Y
values, we get

Y = S + X = 1 + 1 = 1 = 0

and

X = R+ Y = 0 + 0 = 0 = 1,

just as before. The latch stays in state 2, too, even when S returns to 0.
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Notice that in these calculations I found Y first and then X. If we do
the calculations in reverse order, we get

X = R+ Y = 0 + 1 = 1 = 0

Y = S + X = 1 + 0 = 1 = 0,

and then do them again,

X = R+ Y = 0 + 0 = 0 = 1

Y = S + X = 1 + 1 = 1 = 0,

and then do them yet again,

X = R+ Y = 0 + 0 = 0 = 1

Y = S + X = 1 + 1 = 1 = 0,

just as we got when I calculated Y first and then X. That is, we see that
X = 1, Y = 0 (that is, state 2) is a stable condition and, in the end, the
order in which we calculate X and Y doesn’t matter. Okay, now that we
have the latch in state 2, we could ask what happens when R = 1 and
S = 0. I’ll let you repeat the above analysis, which, if you do, it correctly
should lead you to the conclusion that the latch will transition back to
state 1, and that the transition is a stable one even when R returns to 0.

What happens if we start in state 1 and then assume that both R and
S are 1? Our equations tell us that

X = 1 + 1 = 1 = 0

Y = 1 + 0 = 1 = 0,

which is neither state 1 nor state 2. If we do the calculations again,

X = 1 + 0 = 1 = 0

Y = 1 + 0 = 1 = 0,

and so X = 0, Y = 0 as long as R = S = 1. We have lost the complemen-
tary relationship between X and Y . And matters don’t get any better if
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we let S and R return to 0, because what happens depends on which
logic signal returns to 0 first (and in any real-life machine it is certain
that R and S will not be perfectly synchronized in time). To see this,
suppose we first let R = 0. Then,

X = 0 + Y = Y = 0 = 1,

and then, immediately after, we let S = 0 and so

Y = 0 + X = X = 1 = 0,

which puts the latch in state 2. On the other hand, suppose we first let
S = 0. Then,

Y = 0 + X = X = 0 = 1,

and then, immediately after, we let R = 0 and so

X = 0 + Y = Y = 1 = 0,

which puts the latch in state 1. The “solution’’ to this uncertain state
transition situation is simplicity itself — we just avoid it! That is, we
declare the R = S = 1 condition to be forbidden. (Just remember the
old joke about how to make your head stop hurting because you’ve
been repeatedly banging it into the wall —stop banging your head into
the wall.)

Now, instead of drawing the detailed latch circuit diagram of
Figure 8.2.1 over and over in our logic diagrams, I’ll follow convention
and use the simple logic symbol of Figure 8.2.2, with its inputs still as
S and R, but (by convention) with its outputs as Q and Q (instead of
X and Y , with the understanding that X = Y ). We’ll call the (Q = 1,
Q = 0) state the set state, and the (Q = 0, Q = 1) state the reset state.
The input condition RS = 1 is forbidden, and it can occur only if the
designer has “made a mistake.’’ We call the end result the RS latch.
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S Q
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RS ≠ 1

Figure 8.2.2. The RS latch.

8.3 THE CLOCKED RS FLIP-FLOP

The RS latch looks pretty simple, but it already can perform (before
we soon embellish it with even more sophistication) some pretty neat
tricks. Consider, for example, the following problem that a beginning
digital circuit designer (your author, about fifty years ago) all too
quickly thought easier to solve than it actually proved to be. Imagine
that you have designed a digital machine that has a start push-button
on its control panel. Until you push it, nothing happens. Push it,
however, and your machine goes.1 The “logical output’’ start signal
produced by the button is to normally be 0 until you push the button,
and then the logical output is to be 1 for a “brief’’ period of time (I’ll
say more about just what “brief’’ means, soon) and then return to 0.
A very naive design to do this might be what I’ve drawn in Figure 8.3.1.

When P B is at its normal, lower position (on contact 1, which isn’t
connected to anything) the upper contact 2 is connected through
the pull-up resistor r to +5 volts (logical 1), which means the logical
output signal (the inverter output) is, as desired, logical 0. Then, when
we push P B, contact 2 is directly connected to ground (logical 0),
and so the logical output is 1 and it remains 1 until we release P B.
(Without r , you should notice that when contact 2 is connected to
ground, the +5 volt signal would be short-circuited—not good!) To
achieve the “brief’’ period of time during which the logical output is 1,
we’ll simply punch the button! This indeed works—on paper but not in
real life!

I learned that painful lesson on the very first logic design assign-
ment I received after leaving graduate school in 1963. I remember a
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Figure 8.3.1. One way to generate the start signal for a digital machine.

more experienced colleague (of course, at that time everybody was more
experienced than I was) patiently explaining to me that switches bounce
on their contacts. That means that when P B is pushed to contact 2,
it bounces on and off that contact several times over an interval
of a few milliseconds before finally coming to permanent rest on
contact 2. That means that rather than getting a single transition from 0
to 1 at the inverter output (logic designers call it a clean transition), we
instead get multiple transitions from 0 to 1 to 0 to 1 to . . . to, finally, 1.
This stutter-start signal might well cause problems in the circuitry that
the start button is supposed to activate. And when we release P B,
the switch will again bounce for a while, now off contact 1, although
that generally doesn’t cause any problems unless PB is such a crummy
switch that it bounces all the way back to contact 2. A decent switch
won’t do that.2

One nonlogic way to eliminate switch bounce is to use a mercury
switch. When the switch first hits contact 2 it lands in a pool of mercury;
when bouncing occurs, surface tension pulls a filament of mercury up
out of the pool, and so the electrical path is never broken. This solution
works—but only if the switch never turns upside-down and is not
subject to high vibration levels, events that often occur in cars driving
on bumpy roads, in airplanes, in ships at sea, and on spacecraft.
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Figure 8.3.2. Switch debouncing with the RS latch.

Alternatively, and far better, we can logically eliminate switch bounce
with the RS latch circuit of Figure 8.3.2. Called a debouncer, it works
as follows. As before, P B is a push-button that is normally on contact
1, and so S = 0 and R = 1 and the latch is forced to be in the reset
state (Q = 0). Then, we push P B and the switch starts its journey to
contact 2. At the instant the switch leaves contact 1, the input to the
lower inverter is connected to +5 volts (through the lower pull-up
resistor r ) and so R = 0. As soon as the switch arrives at contact 2
for the first time (remember, it will subsequently bounce for a bit), the
input to the upper inverter is connected directly to ground (logic 0)
and so S = 1 (and R = 0) and the latch sets (Q = 1), and nothing more
happens after that until we release PB even though PB bounces on contact 2.
As the switch bounces, the value of S will alternate between 1 and 0,
but, since the latch is already set, a fluctuating S is irrelevant. When we
release P B, the switch moves back to contact 1, causing first S = 0 and
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then R = 1 when the switch first hits contact 1, and so the latch resets
(Q = 0). The switch bounces on contact 1, too, but that has no further
influence on Q. We have a clean transition of Q from 0 to 1 when we
push P B, Q stays at 1 until we release P B, and when we do release
P B we have a clean transition of Q from 1 to 0. Notice that neither
the physical orientation of the switch or vibrations will impact in the
circuit of Figure 8.3.2.

Still, while the circuit of Figure 8.3.2 gives us a clean, bounce-free
transition from 0 to 1, it is also a “long’’ duration signal. Even if
you “punch’’ the push-button, the resulting start signal will spend a
significant fraction of a second at logic 1. Our original description of
the problem said we wanted a brief start signal and, to be specific,
suppose we say it should be a pulse just one microsecond in duration.
Nobody’s finger is that fast! If you ask why so brief, let me remind you
that when a race is started at a track meet it is with the single, brief
report of a pistol shot, not by the sustained roar of a machine gun with
the trigger held down. The start signal in a digital machine is used
(among several tasks) to initialize the machine’s starting state (that is,
all latches are immediately either set or reset, as required), and we want
to do that just once, not over and over as would happen with a “long’’
start signal. If this “explanation’’ leaves you still a bit unhappy—and
perhaps that is actually a reasonable feeling at this point—then let me
assure you that the solution to getting a one-microsecond pulse out of a
mechanical push-button (you’ll see how by the end of this section) will
bring along with it the solution to another major problem in building
digital machines that I haven’t yet told you about.

This new, key idea is that of introducing what is called a clock.
All modern digital machines I am aware of are sequential-state,
synchronous machines. The “synchronous’’ adjective is there because all
such machines require a periodic, pulselike timing signal (generated,
usually, by a very stable, high-frequency crystal-controlled oscillator
about whose electronic design we, as digital designers, need know
nothing). Everything that happens in these machines is synchronized
to this signal; in particular, latches can change state only at instants of
time that are in step with the clock (a clock-synchronized latch is called
a flip-flop). The clock signal is the heartbeat of a synchronous digital
machine.
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A metaphor for the clock that I would often use when teaching
sequential-state design was that of the officer who beat the drum
for the slave oarsmen on ancient Roman warships. His generic title
was pausarius, Latin for “the timekeeper.’’ It is easy to appreciate
the chaos that would result if the rowers powering a ship became
unsynchronized, and the same turmoil could similarly occur in a digital
machine without a clock. Now, let me admit that a digital machine
does not actually have to be synchronous, and in fact nonsynchronous
(or asynchronous) machines have indeed been built. The theoretical
appeal for asynchronous machines is that their circuitry doesn’t have to
repeatedly wait for the next clock pulse. Instead, everything just happens
as fast as possible. The appeal of that potential speedup is undeniable,
but the reality is less happy. Asynchronous machines have not met with
much practical success, as they are extremely difficult to design, and
even more temperamental in their operation. The sequential-state,
clock-synchronized digital machine is going to be the realistic design
model for a very long time to come.

Just because the state of a latch (that is, a flip-flop) can change only
when a clock pulse occurs doesn’t mean nothing is happening between
clock pulses. In fact, the outputs of all the logic gates and latches in a
synchronous digital machine are settling into their new values during
that time interval, and then, at the next clock instant, those values
are used to determine what the next state of the machine should be
and the machine enters that state. And then the process repeats. Any
particular logic signal may have to propagate both through several
layers of logic gates before getting to one or more latches (with each
gate having a very short but not zero delay, typically five nanoseconds
or so—take a look back at Figure 7.2.1, for example, a circuit with
four layers), as well as along various conduction paths (at the speed of
light it takes one nanosecond to travel one foot, and electrical signals
on wire travel slower than the speed of light). Once all these delays
(determined by both the details of the electronic technology used
and the logical complexity of the machine) are known, the minimum
time interval between consecutive clock pulses (that is, the maximum
clock frequency) can be calculated that allows enough time for all logic
signals to stabilize. The actual clock frequency used is usually less than
the maximum, to increase reliability, but some enthusiastic users (I’m
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Figure 8.3.3. A clock signal.

thinking of video gamers) have been known to tweak the clock rates
of their machines upward a bit to increase speed, a technique called
overclocking.

A typical clock signal appears in Figure 8.3.3, which I’ve shown as
periodically switching between logic 0 and logic 1. When the clock
pulse transitions from 0 to 1, we call that instant the leading edge of
the clock pulse, and the transition instant from 1 to 0 is called the
trailing edge. For example, a 1 MHz (megahertz) clock would have a
one-microsecond (1,000 nanoseconds) spacing between consecutive
leading (trailing) edges, with (perhaps) a 20 to 50 nanosecond spacing
between the leading and trailing edges of a given clock pulse. My 1963
machine (see note 1 again) had a clock frequency of 250 KHz (that’s
right, just 1

4 MHz!). A fast commercial mainframe computer of that
day probably had a 3 to 5 MHz clock. The 1970s CRAY-1, one of the
early supercomputers, had an 80 MHz clock. By 1998, when I wrote
my first book for Princeton, my everyday word processing laptop (an
IBM ThinkPad 365ED) was nearly as fast, with a 75 MHz clock. The
four-year-old (in 2011) PC I am typing this book on (a Dell Dimension
5150) has a 3 GHz clock (that is, 3,000 MHz). The fastest commercial
mainframe computer in 2011 (the IBM zEnterprise 196) has a 5.2 GHz
clock. That’s nearly 21,000 times faster (more than fourteen doublings
in speed!) than my 1963 machine.
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Figure 8.3.4. The RS flip-flop.

To synchronize an RS latch with the clock signal (CLK) to create an
RS flip-flop, all we do is add two AND gates, as shown in Figure 8.3.4,
with each AND gate having the signal ENABLE as an input. In the
simplest case, ENABLE is CLK itself. Notice that in this circuit the
inputs to the latch are present throughout the duration of the clock
pulse and, as brief as that is, if S or R (or perhaps both) should
change (for whatever reason) during the pulse duration, then the state
of the latch might also change. To further minimize the likelihood of
that rare occurrence, one last embellishment that is added to make a
very predictable flip-flop is what is called edge-triggering. That is, when
(if) a flip-flop changes state, it will do so only at the near instant of
either the leadingedge or the trailingedge of the clock pulse. Both
types of triggering are used (but I believe the more common choice
is trailingedge). Figure 8.3.5 shows how leading-edge detection can
be done by generating the ENABLE signal as the logical AND of CLK
and an inverted and slightly delayed version of CLK—delayed because
of the several nanoseconds of propagation time through the inverter.
Beneath the circuit are timing diagrams showing a typical clock pulse,
its delayed (and inverted) form, and, finally, the logical AND of those
two signals. The output of the AND gate is a very brief pulse that is now
the ENABLE signal in Figure 8.3.4. (This pulse will itself, of course,
also experience a propagation delay through the AND gate, a delay
that I’ve not shown in Figure 8.3.5 to keep the diagram simple.)

How does one do trailing-edge detection? With almost the same
circuit as with leading-edge. If you think about what the leading-edge
detector actually does, you’ll see that it is detecting 0 to 1 transitions.
So, if we first invert the CLK signal to convert the trailing-edge
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Figure 8.3.6. Trailing-edge detector.

1 to 0 transitions to 0 to 1 transitions, then we can use the circuit of
Figure 8.3.5, with the result shown in Figure 8.3.6 (I’ll let you sketch the
diagrams to see how this works in detail). In any case, we’ll now assume
that edge detection, clock synchronized circuitry is part of every flip-
flop and we’ll use the logic symbol shown in Figure 8.3.7 to represent
a clocked, edge-triggered RS latch (that is, an RS flip-flop) rather than
the more detailed circuit of Figure 8.3.4. From now on, to be specific,
I’ll always assume trailing-edge detection.

The circuit of Figure 8.3.7 (compare to Figure 8.3.1) is, in fact, the
solution to our original problem of getting a very brief start pulse out
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Figure 8.3.7. How to generate the start signal for a digital machine.

of a mechanical, finger-actuated push-button. The two flip-flops both
automatically enter their reset states (Q1 = 0, Q2 = 0) as soon as power
is turned on. The output of the AND gate, with its inputs Q1 and Q2,
is logic 0. Once PB is switched from contact 1 to contact 2, then at
the very next clock pulse the left flip-flop sets (Q1 = 1), and, since Q2
is still 1, the AND gate output is 1. Then, on the next clock pulse
the right flip-flop is set (Q2 = 1) by the now set left flip-flop and the
AND gate output goes to 0; that is, the AND gate output is a pulse
that lasts precisely one period of the clock signal, from trailing edge
to trailing edge (a one-microsecond long pulse for a 1 MHz clock).
Contact bouncing has no effect, nor does how long we hold the push-
button down, and the entire circuit automatically resets once the push-
button is released and the switch returns to contact 1.

8.4 MORE FLIP-FLOPS

Before bringing this entire book to its technical end in the next section
(the final two chapters are mostly philosophical) with a design example
of a digital machine that actually does something of computational
interest, let me make some final comments on flip-flops. With the
addition of the RS flip-flop to our combinatorial logic gates, we now
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have all the hardware we need to build any sequential-state machine
that can be built that has a finite number of states. The RS, however, is
hardly ever used in practice, but rather other logically equivalent flip-
flops are preferred. Those flip-flops are constructed by adding just a
bit more embellishment to the RS. The three most common flip-flop
variations on the RS are the so-called T, D, and JK flip-flops.

The definition of the T is simple. This flip-flop has the usual two
outputs (Q and Q̄), but only one input (T). Given the state the flip-flop
is in after the trailing-edge of clock pulse n is over (that is, Q(n)), then
if T(n) = 0 at the trailingedge of clock pulse n + 1 the flip-flop remains
in that state, but if T(n) = 1 at the trailingedge of clock pulse n + 1 the
flip-flop changes to the other state. We can understand how to make a
T from an RS by using the following truth table:

T(n) Q(n) Q(n+1) R(n) S(n)

0 0 0 0,1 0
1 0 1 0 1
0 1 1 0 0,1
1 1 0 1 0

Concentrate your attention, first, on the two left-most columns (T(n)

and Q(n)). They show all possible combinations (four) for T(n) and Q(n).
The third column shows, according to the definition of a T flip-flop,
what Q(n+1) would be for each possibility. Since we are building the
T out of an RS, then of course Q (and Q̄) are the outputs of an RS.
The final two columns of the truth table show what R(n) and S(n) must
be (keeping the prohibition of RS = 1 in mind) to give the Q(n)-to-
Q(n+1) state transitions that we determined in the second and third
columns. Notice, in particular, that both R(n) and S(n) have a row where
I’ve indicated there are two possible values, what we called “don’t- care’’
terms back at the end of Chapter 4. Writing these don’t-care terms in
parentheses, as we did in Chapter 4, we can write the following Boolean
equations for R(n) and S(n) in terms of T(n) and Q(n):

R(n) = T(n) Q(n) +
(

T(n) Q(n)
)

(8.4.1)
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and

S(n) = T(n) Q(n) +
(

T(n) Q(n)
)

. (8.4.2)

A quick plotting of (8.4.1) and (8.4.2) on two-variable Karnaugh maps
should convince you that the don’t care terms don’t result in any
simplification. The final result, then, on how to build a T flip-flop from
an RS flip-flop and two AND gates is shown in Figure 8.4.1.

The D flip-flop, like the T, is a one-input device. Its logical
description is even simpler than is the T’s: whatever D(n) and Q(n) are,
Q(n+1) = D(n); that is, the next state is the present input (the D stands for
delay). We can build the D from the RS just as we did the T. We first
create a truth table showing all possible combinations of D(n) and Q(n)

in the first two columns:

D(n) Q(n) Q(n+1) R(n) S(n)

0 0 0 0,1 0
1 0 1 0 1
0 1 0 1 0
1 1 1 0 0,1

The third column for Q(n+1) follows from the definition of the D
flip-flop, and from the Q(n) and Q(n+1) columns we can determine what
R(n) and S(n) must be (remember, RS �= 1). Writing the don’t-care terms
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in parentheses as before, we have

R(n) = D(n) Q(n) +
(

D(n) Q(n)
)

(8.4.3)

and

S(n) = D(n) Q(n) + (
D(n) Q(n)) . (8.4.4)

By inspection you should see that now, unlike in the case of the T, the
don’t-care terms do help, and so

R(n) = D(n) (8.4.5)

and

S(n) = D(n). (8.4.6)

To make a D from an RS, all we need to do is add one inverter, as
shown in Figure 8.4.2.

And finally, the JK flip-flop is much like the RS (with J playing the
role of S, and K the role of R—I don’t believe the J and K stand for
anything in particular), but without a J K �= 1 restriction. If J K = 1
occurs, then the flip-flop changes state. Following the same process
that we used for the T and D flip-flops, you should now be able to
derive the circuit that converts an RS into a JK (try it!); the JK is,
I believe, the most commonly used flip-flop.
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8.5 A SYNCHRONOUS, SEQUENTIAL-STATE
DIGITAL MACHINE DESIGN EXAMPLE

Now, to end this chapter, let’s design a real machine that does
something. For us, here, it will appear to be an arbitrary gadget, but
you’ll see it again in the next chapter where you’ll discover that it
is actually computing an interesting mathematical function. All that
would be a distraction here, however, so for the time being just trust
me that it is not an arbitrary gadget. Our machine has four states (that
I’ll number 0 to 3), one input (X), and two outputs (Y and Z). When
we first turn power on, the machine is to start in state 1. A detailed
description of what our machine is to do next, as a function of its
input and state, is given by the following so-called state-transition table.
State 0 is to be a halting state, and that’s why there is no row for that
state.

Machine Machine
State at Clock n X(n) Y (n) Z(n) State at Clock n + 1

1 0 1 1 2
1 1 1 1 0
2 0 1 0 2
2 1 0 1 3
3 0 1 0 3
3 1 1 0 1

It will take 2 flip-flops to build this machine, since it takes 2 flip-
flops to represent four machine states. Let’s agree to use T flip-flops,
which I’ll call Q1 and Q2, and to let the present machine state (at clock
pulse n) be represented by the binary number Q1Q2. For example,
if Q1 is set (Q1 = 1) and Q2 is reset (Q2 = 0), the machine is in
state 10 = machine state 2. What we need to do, then, is to find
Boolean equations for T1 and T2, the inputs to the Q1 and Q2 flip-
flops, respectively. From the state-transition table we can construct the
following truth table, where the first five columns show how the states
of the individual flip-flops change as a function of the input and the



Sequential-State Digital Circuits 159

present state. By comparing Q1(n) and Q2(n) to Q1(n+1) and Q2(n+1),
respectively, and knowing how a T flip-flop works (a 1 input changes
the state), we can then fill in the columns for T1(n) and T2(n). The final
two columns simply repeat the values of the outputs Y and Z.

Q1(n) Q2(n) X Q1(n+1) Q2(n+1) T1(n) T2(n) Y Z

0 1 0 1 0 1 1 1 1
0 1 1 0 0 0 1 1 1
1 0 0 1 0 0 0 1 0
1 0 1 1 1 0 1 0 1
1 1 0 1 1 0 0 1 0
1 1 1 0 1 1 0 1 0

From this table we can write the T1 and T2 equations as

T1(n) = Q1(n) Q2(n) X(n) + Q1(n) Q2(n) X(n) (8.5.1)

and

T2(n) = Q1(n) Q2(n) X(n) + Q1(n) Q2(n) X(n) + Q1(n) Q2(n) X(n),

or,

T2(n) = Q1(n) Q2(n) + Q1(n) Q2(n) X(n), (8.5.2)

Also, the output equations are

Y (n) = Q1(n) Q2(n) X(n)(that is, Y (n) = Q1(n) Q̄2(n) X(n), (8.5.3)

and, as the table shows by inspection,

Z(n) = T2(n). (8.5.4)

That’s it!3 You are now (theoretically) able to design any synchronous
digital machine that can be built.
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NOTES AND REFERENCES

1. In the construction of a digital machine, the end-product from the design
engineer is what is called the wire-list. That is a detailed description of what
is connected to what, to be used by the technicians on the production floor
who are the people that actually put the machine together. To prepare a wire-
list it is necessary to give every wire a name, and in particular the wire out of
the start-button circuit (what is called the “start pulse’’ in Figure 8.3.7) will
have a name. In a 1963 machine, the first I designed, I named that wire
GBG, for Go Baby Go—not particularly imaginative, but certainly descriptive
of what I prayerfully remember hoping would happen when I first pushed the
start button! (For the historical record, the first time I pushed that button the
machine did go, for a while. Then it stumbled all over its “feet’’ and came to a
temporarily discouraging halt. There then followed a fairly lengthy debugging
phase until, at last, the machine ran flawlessly. Or anyway, that’s my story of
how those long-ago events evolved, and I’m not budging from it!)

2. When I was a student at Stanford in EE 266 (see note 1 in Chapter 2),
I don’t recall hearing any mention of bouncing switches. All the switches that
appeared on homework and exam problems were perfect switches. I think
realistic, bouncing switches are, today, routinely discussed even in introductory
logic circuit courses.

3. Well, not quite. We are not completely done until we make sure that
our machine starts in state 1. Before the machine begins to look at the input
X, we need to reset Q1 (Q1 = 0) and to set Q2 (Q2 = 1), which could be
done by applying the output signal from Figure 8.3.7 directly to R1 and S2,
respectively, of the RS flip-flops from which we built the T flip-flops used in
our machine.
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one neutron is] produced [the famous chain-reaction].

Turing says this is something like ideas in the human brain.1
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9.1 THE FIRST MODERN COMPUTER

A Turing machine is the combination of a sequential, finite-state ma-
chine plus an external read/write memory storage medium called the
tape (think of a ribbon of magnetic tape). The tape is a linear sequence
of squares, with each square holding one of several possible symbols.
Most generally, a Turing machine can have any number of different
symbols it can recognize, but I’ll assume here that we are discussing
the 2-symbol case (0 or 1). In 1956, Shannon showed that this in no
way limits the power of what a Turing machine can do.

The tape is arbitrarily long in at least one, perhaps both, directions.
The finite-state machine is connected to a read/write head, which at each
machine cycle (I’ll define what that is in just a moment) is located over
a square on the tape. The head does three distinct operations during
a cycle (these three operations, in fact, together with a final, fourth
operation, define a machine cycle): first, the head reads the symbol on
the square it is over, then it overwrites that symbol (perhaps with the
same symbol), and then the head moves at most one square (that is, to
either the left or to the right neighbor square, or it doesn’t move and so
remains over the current square). Depending both on its present state
and the symbol just read, the fourth and final operation of a machine
cycle occurs when the finite-state machine transitions to a new state
(which may, in fact, be the present state). Then a new machine cycle
begins. Figure 9.1.1 shows the connection of a finite-state machine, the
read/write head, and the tape. The entire arrangement, all together, is
what we call a Turing machine.

When placed into operation we’ll imagine that the tape is initially
blank (that is, the symbol 0 is on all of the tape’s squares)—except for
some finite number of squares that have 1s. By convention, we’ll always
take the finite-state machine as initially in state 1. And finally, we must
specify over which square on the tape the read/write head is initially
placed. The finite-state machine and the read/write head then move
along the tape (we imagine the tape is motionless) according to the
internal details of the finite-state machine and the particular sequence
of symbols encountered on the tape. At some time after we turn the
Turing machine on, it presumably completes its task (whatever that
might be), and the finite-state machine enters state 0 (called the halting
state) and stops.
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Figure 9.1.1. A Turing machine.

As far as I know, nobody has ever actually constructed a Turing
machine. It is a purely theoretical concept. Described in 1936 by the
English mathematician Alan Turing (see Shannon’s mini-biography
in Chapter 3)— that is, ten years before the first actual electronic
computers began to be constructed—Turing’s machines are neverthe-
less as powerful as any modern machine in what they can compute.
Compared to a modern, electronic-speed computer, a Turing machine
is really, really slow (think of a race between a snail and a photon), but
time is irrelevant. There is an infinity of it yet to come. Given enough
time, a Turing machine can compute anything that can be computed.2

A Turing machine’s power to compute comes not from super
technology, but from its tape, for two reasons. First, Turing was the
first to conceive of the idea of a stored program that could be changed by
the operation of the machine itself. The program, and its input data, exist
together on the tape as sequences of symbols. And second, because
of the arbitrarily long length of the tape, a Turing machine has the
ability to “remember’’ what has happened in the arbitrarily distant
past.

In developing this view of a computing machine, Turing was not
suggesting it as a practical design for an actual machine. Rather, as
a mathematician he used his machines as a conceptual framework
in which to study the limits on just what mechanistic devices can
actually compute. Indeed, the title of his 1936 paper, “On Computable
Numbers, with an Application to the Entscheidungsproblem’’—that
final tongue-twister translates as “the decision problem’’—clearly
shows Turing’s intent. His great accomplishment was to show that
not all the numbers we can imagine are in fact actually computable.
That is, Turing showed there are limits to what a computer—any
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computer—can do. I’ll return to the concept of a computable number
in the final section of this chapter.

9.2 TWO TURING MACHINES

As my first specific example of a Turing machine, consider the
following state-transition table for a Turing machine that adds any two
non-negative integers m and n that are placed on the tape, leaves their
sum on the tape, and then halts. Our convention for representing m
and n is to write m + 1 consecutive 1s for m, then a 0, and then n + 1
consecutive 1s for n. All the rest of the tape squares, initially, have the
symbol 0. (This representation for m and n is called unary notation.)
The reason for using one additional 1 for each value of m and n is
to allow either (or both) of m and n to be zero (which is represented
by a single 1). This Turing machine is said to compute the function
f (m, n) = m + n. Notice that in this machine the read/write head either
doesn’t move during a machine cycle or, if it does move, it does so
always to the right. Since this Turing machine has six states (including
the halting state), it would take three flip-flops to build the finite-state
machine portion. The first row of the table can be read as: if in state 1
and reading a 0, then write a 0, move right (R), and enter state 1. The
second row can be read as: if in state 1 and reading a 1, then write a 0,
don’t move (−), and enter state 2. And so on.

Present State Tape Symbol Operation Next State

1 0 0/R 1
1 1 0/- 2
2 0 0/R 2
2 1 0/- 3
3 0 0/R 3
3 1 1/R 4
4 0 1/- 5
4 1 1/R 4
5 0 halt 0
5 1 1/R 5
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1 2

0/0/R 0/0/R 0/0/R

1/1/R

1/1/R

0/1

1/0 1/0

0

1/1/R

3

4 5

0

Figure 9.2.1. The state-transition diagram for a Turing machine adder.

It may not be at all obvious from the state-transition table how the
machine works, but using the table to draw the state-transition diagram
of Figure 9.2.1 should make the operation a lot more transparent.
The circles with numbers inside are the states, and the curved lines
with arrowheads represent the transitions from state to state, with
each directed line marked with the conditions causing that transition.
For example, 0/0/R means “read 0, write 0, move right.’’ State 0 is a
halting state. This machine is so simple that, starting in state 1 with
the read/write head over any tape square to the left of the first 1, you
should be able to follow the state-transition diagram step by step, with
pen and paper, to confirm the following three test cases:

0 + 2 = · · · 0101110 · · · which should give · · · 01110 · · ·
2 + 0 = · · · 0111010 · · · which should give · · · 01110 · · ·
2 + 3 = · · · 0111011110 · · · which should give · · · 01111110 · · · .
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0 ∕ 1 ∕ L 0 ∕ 1 ∕ L

0 ∕ 1 ∕ R 1 ∕ 0 ∕ R

1 ∕ 1 ∕ R 1 ∕ 1 ∕ L

1

0

2 3

Figure 9.2.2. Radó’s Busy Beaver Turing machine.

Computer scientists can be as playful as anybody, and for my second
example (which I think supports that claim) consider the Turing
machine with the state-transition diagram of Figure 9.2.2. (The “L’’
means, of course, “move left.’’) This machine was “invented’’ by the
Hungarian-born American mathematician Tibor Radó (1895–1965)
in 1962 to illustrate what he called the “Busy Beaver Game.’’ For a
given number of states k (not counting the halting state), the “game’’
is to find the state-transition diagram that results in the production of
a tape with the most 1s on it when the machine halts, starting with
an initial tape of all 0s. Another condition set by Radó is that the
read/write head must move on each machine cycle, that is, the option
of remaining over the tape square just scanned is not available to a
potential Busy Beaver. There is no rest for a Busy Beaver!

If you look closely at Figure 9.2.2, and compare it with the state-
transition table of the machine we designed with T flip-flops at the
end of the last chapter, you should notice that they are one and the
same. In that machine, the input X is the symbol read, the output Y is
the symbol written, and the output Z is the read/write head’s motion
control (Z = 1 is R and Z = 0 is L).

Radó called a “maximum-production of 1s’’ machine the k-state,
2-symbol Busy Beaver. Writing

∑
(k) to denote the number of 1s on

its tape when the k-state, 2-symbol Busy Beaver halts, it is known today
that

∑
(3) = 6 (when he wrote in 1962 Radó didn’t know the value

of
∑

(3)—and his machine in Figure 9.2.2 doesn’t achieve it—and he

felt that the discovery of the value of
∑

(4) to be “entirely hopeless
at present’’). With the challenge thrown down, however, it didn’t take
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long (1966) for it to be shown that
∑

(4) = 13. Radó also defined the
function S(k) as the number of moves (or steps) made by the read/write
head of a k-state, 2-symbol Busy Beaver Turing machine from start to
finish. Can you figure out how many moves Radó’s machine makes, as
well as how many 1s it writes on its tape before it halts? If not, or to
check your answers, see the notes.3

The values of
∑

(k) and S(k) for all k ≥ 5 Busy Beavers are
still unknown, although lower bounds have been determined. For
example, as I write (in 2011) it is known that

∑
(5) ≥ 4,098 and

S(5) ≥ 47,176,870, and that
∑

(6) ≥ 1010,566 and S(6) ≥ 1021,132. And,
to really give you pause for stupified wonder,

∑
(10) ≥ 333···

3

where there are 327(= 7,625,597,484,987) 3s in the exponential stack!
As you can see, Radó’s

∑
(k) and S(k) are functions that grow at

stupendously fantastic rates as k increases. It is known, in fact, that
both

∑
(k) and S(k) are what computer scientists and mathematicians

call noncomputable functions. The concept of computability is a very deep
one, and I’ll simply brush the surface of it in the next section.

But, before we get to that, a couple of final comments on Turing
machines. First, Shannon suggested that a reasonable measure of the
“complexity’’ of a Turing machine is the product of the number of
different symbols that can appear on the tape, and the number of states
for the finite-state machine portion. That is, symbols and states can
be traded-off against each other. In 1956, in fact, Shannon took this
trade-off to the limit and proved the remarkable result that if one uses
enough symbols, then, given any computable function, there exists a
Turing machine with just two states that can evaluate that function.
A companion demonstration shows that if one uses enough states,
then, for any computable function, there exists a Turing machine using
just two symbols.

And second, one of the most astonishing results in Turing’s 1936
paper is that we do not have to build a different Turing machine for
every new function we wish to compute. He showed that there exists
a so-called Universal Turing Machine (UTM) that accepts as its input
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(that is, what’s initially written on its tape) a description of any other
specific Turing machine (that description includes the state-transition
table and the initial tape of the specific Turing machine) and then
the UTM simulates the specific machine. That is, the details of each
new function can be completely absorbed by the UTM tape, with
the finite state portion of the UTM unchanging. You might suspect
that a UTM would be very complicated, but that’s not so. It can be
realized, for example, as a 6-symbol, 21-state (plus a halting state)
machine.4

9.3 NUMBERS WE CAN’T COMPUTE

This book has been pretty “engineery’’ up through the first eight
chapters, with this chapter being the first to get “philosophical.’’ What
else, after all, would you call any discussion about a fantastic gadget like
a Turing machine with its infinite memory! Well, in this final section of
a philosophical chapter we’ll really go extreme in the philosophizing
department. You may, at first, wonder where I’m going with it, but
just stick with me and I think you’ll find it worth your time. What I’m
going to show you is that, given any computer of finite size, even if it
is of absolutely gargantuan size (say 10100 flip-flops and a memory of
1010100

bits, that is, a googol of flip-flops and a googelplex of bits), there
is an uncountable infinity of numbers our computer can not compute.
And that will be true even if you run the computer at a clock frequency
of a thousand, million, trillion gigahertz (a value that will never be
achieved, and in the final chapter I’ll show you why not) for a thousand,
million, billion, trillion centuries.

First, a few observations about the concept of infinity. We all know
it’s “big,’’ but that doesn’t even begin to get at the mathematics
of what it means to say something is infinite in size. Most people,
when asked to give an example of an infinite number of things will
reply “All the integers.’’ That’s correct, too, as the integers form what
mathematicians call a countably infinite set. We can literally count the
integers, one, two, three, . . . , up to a billion, a trillion, and on and
on. If we count off one integer each second, then I can tell you
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precisely when in the future I’ll have counted up to any specific integer
you name. The integers are infinite in number, yes, but they can
be counted. This is probably not so surprising to you, but there are
other countable infinities, and they are surprising. For example, all
the rational numbers (that is, all the numbers that are the ratios of
integers) from zero to infinity are a countable infinity. Why is that a
surprising statement?

It is surprising because, unlike the integers, the rationals are dense.
What a mathematician means by that is that if you take any two
fractions, no matter how close together they may be, there is an infinity
of rationals between them. And between any two of that infinity of
rationals there is yet another infinity of rationals. And so on, forever.
The integers are not dense because there is a minimum separation
between them of—of course!—one. There is no minimum separation
between the rationals.5 Nevertheless, despite their denseness, the
rationals are still a countable infinity. In other words, the rationals
and the integers are infinite sets of the same size, even though the set
of the integers is included in the set of rationals. This astonishing
result, totally at odds with intuition (what is often called “common
sense’’), was discovered by the Russian-born German mathematician
Georg Cantor (1845–1918) in 1874. Most mathematicians of his day
thought Cantor was crazy, but it was they (not him) who were wrong
(although, ironically, Cantor died in a mental institution).

To show how the rationals are countably infinite, Cantor had two
brilliant ideas. First, he showed how to systematically write down all
the rationals so as not to overlook even one. He did that in the form
of an infinitely large two-dimensional matrix array. Second, he showed
how to count through that infinite matrix in such a way as to be able
to tell you precisely when he would reach any specific rational number
you might name. Figure 9.3.1 illustrates both of Cantor’s ideas.

The first (infinitely long) row in Figure 9.3.1 gives all the rationals
with a denominator of 1, that is, all the integers. The second (infinitely
long) row gives all the rationals with a denominator of 2, the third
(infinitely long) row gives all the rationals with a denominator of 3,
and so on. There is a lot of repetition in the matrix (indeed, every
entry along the main diagonal is 1), but that’s okay — the point is that
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Figure 9.3.1. Cantor’s infinite matrix of the rationals.

the matrix includes every rational number between zero and infinity.
This was Cantor’s brilliant first idea. If we now make the mistake of
counting-off the rationals along the rows, however, we’ll never get off
of the first row! The same problem occurs if we try to count down
columns. Cantor’s second brilliant idea was to count along diagonal
paths that weave back-and-forth through the matrix, as shown by the
dashed line with the arrow heads in Figure 9.3.1. Then we will arrive,
in finite time, at any rational in the matrix that you care to specify.
For example, the first rational is 1

1 , the third rational is 1
2 , the ninth

rational is 2
3 , and so on. The rationals are, therefore, a countable

infinity.
You might now be wondering if all infinite sets are countable. The

answer is no, there are indeed infinite sets that can’t be counted. The
easiest to understand is the set of all real numbers and, again, it was
Cantor with a brilliant third idea who showed this. Once we have
this result in hand, we’ll have all we need to show the existence of
noncomputable numbers. Cantor accomplished his proof by the classic
approach of assuming the opposite of what he wanted to show and then
deriving a contradiction. That is, Cantor’s proof begins by assuming
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the real numbers from zero to one are a countable infinity, which means
we can list them, one after the other, in some order. So, suppose that
list is, in decimal notation,




d1 = 0. d11 d12 d13 d14 · · ·
d2= 0. d21 d22 d23 d24 · · ·
d3= 0. d31 d32 d33 d34 · · ·
d4= 0. d41 d42 d43 d44 · · ·
· · · · ·
· · · · ·
· · · · ·




where di j is the j th decimal digit of di , the i th real number. Cantor’s
brilliant third idea was how to show that there exists a number, n =
0.n1n2n3n4 . . . , where ni is a decimal digit of n, which is not on this
supposed list, and so the list is not complete, and so we have in fact
failed to count all the real numbers.

There are various versions of Cantor’s idea (which is, again, a
diagonal argument), but here’s the essential nature of it. Starting with
the first number on the supposed list, d1, ask if d11 = 5? If so, write
n1 = 4, and if not write n1 = 5. Then, moving to the next number on
the supposed list, d2, ask if d22 = 5? If so, write n2 = 4, and if not write
n2 = 5. Then, moving to the next number on the supposed list, d3,
ask if d33 = 5? If so, write n3 = 4, and if not write n3 = 5. And so on.
The number n that we get from all this, 0.n1n2n3n4 · · · , can not be in
the list because n �= d1 since their first decimal digits are different
(by construction), and n �= d2 since their second decimal digits are
different (by construction), and n �= d3 since their third decimal digits
are different (by construction), and so on. End of proof! The real
numbers are the elements of an uncountable infinite set, an infinity
that Cantor called the continuum.

In a 1905 summer lecture at the University of Göttingen, the
great German mathematician David Hilbert (1862–1943) proclaimed
Cantor’s two results to be the basis for “one of the most beautiful
proofs in set theory.’’ And after Cantor’s death Hilbert wrote (in a letter
to a colleague) that “for originality and boldness of thought, there is
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no mathematician in history—from Euclid to Einstein—who surpassed
him.’’

Now, if we combine Cantor’s two results, the countable infinity of
the rationals and the uncountable infinity of the reals, the inexorable
conclusion we are forced to make is that there is an uncountable
infinity of real numbers that are not rational. We (of course) call
that uncountable infinite set the irrationals (numbers that include, for
example,

√
2 and π ). It is amusing to note that while the irrationals are

“nearly all’’ of the reals, it is generally not at all easy to prove that any
particular irrational actually is irrational! And now, at last, we are ready
to prove the result I promised you, the existence of noncomputable
numbers.

We start by imagining our huge computer being programmed
to compute numbers using various algorithms, the details of which
are unimportant. The programming is done in any language you
wish (to understand this argument you don’t even have to know a
programming language!), with the only requirement being that the
language uses a finite set of symbols. For example, the twenty-six letters
of the English alphabet, the ten digits from 0 to 9, and a few extra
special symbols like >, <, =, ^, (, ), and so on. We suppose each new
program we write computes a new number.

Let’s now list all of these programs by length. That is, the first
program on our list will have one symbol to it. If there is more than
one program of length one, we’ll list them in alphabetical order. (The
number of programs of a given, fixed length is, of course, finite, since
we have a finite set of symbols at our disposal.) Then come all the
programs of length 2 (sorted alphabetically), then all those programs
of length 3 (sorted alphabetically), and so on. Clearly, all possible
programs will form a countable infinity. But there is also an uncountable
infinity of numbers, and so there must be an uncountable infinity of
numbers left uncomputed, numbers we simply can’t compute because
there simply aren’t enough programs. Notice, carefully, that we have
not identified any particular number that can’t be computed, just
that there are an infinity of them. Further, this argument does not
necessarily associate the countable infinity of computable numbers
with the countable infinity of the rationals. All we have established is
that each set is a countable infinity, not that they are the same set.



Turing Machines 173

One possible objection to this argument might be to the limitation of
one computed number to a program. What if we instead imagine that
each of our countably infinite programs could somehow calculate more
than one number, perhaps hundreds or even millions of numbers.
Would that make a difference? No. In fact, if each program could
somehow calculate a countable infinity of numbers, the total number
of computed numbers would still be “just’’ a countable infinity. That’s
because

(countable infinity) times (countable infinity) = countable infinity.

For example, what do you get if you multiply all the rational
fractions by all the rational fractions? Why, nothing more or less than
just all the rational fractions back again!6

NOTES AND REFERENCES

1. The reference to Turing is almost certainly due to Shannon having
read Turing’s famous paper “Computing Machinery and Intelligence,’’ Mind,
October 1950, pp. 433–460. It was in this paper that Turing put forth
what was to become famous in computer science as the Turing test, an
experimental procedure to unemotionally decide if a machine possessed
artificial intelligence. For Turing’s comparison of ideas to neutrons, see in
particular, p. 454.

2. MIT electrical engineering professor Marvin Minsky refers to this issue
in his beautiful book Computation: Finite and Infinite Machines, Prentice Hall,
1967, p. 128. Despite what he writes as the “staggering inefficiency’’ of a
Turing machine, Minsky goes on to say, “It is possible to execute the most
elaborate possible computational procedures with Turing machines whose
fixed structures [that is, the finite-state machine and the read/write head]
contain only dozens of parts [this excludes the arbitrarily long tape if we
count each writable/erasable square as a distinct ‘part’]. One can imagine an
interstellar robot, for whom reliability is the prime consideration, performing
its computations in such a leisurely manner, over eons of spare time.’’
Historical note: It was Minsky, while working at Bell Labs in the summer
of 1952, who gave Shannon the idea for the “Ultimate Machine’’ that so
fascinated Arthur C. Clarke in Chapter 3.

3. Radó’s machine puts 5 1s on its tape in 21 moves before halting.
You can confirm this with the simple-minded (but also very tedious) method
of following along with pen and paper as the state-transition diagram of
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Figure 9.2.2 bounces back and forth among its three states. Far easier on
your brain, however, is to write a computer simulation program to generate
what the tape looks like at the end of each machine cycle time. That’s
what I did, with the following code called rado.m. It’s in MATLAB, but the
program is so elementary I think it would be trivial to rewrite it in any of the
common programming languages; for/end and if/elseif/end loops work the same,
independent of language. The only MATLAB functions that may need some
explanation are zeros (which sets each of the 50 elements of the row vector tape
equal to zero, initially), and sum (which adds the 50 elements of tape, giving
the number of elements of tape equal to 1). Both operations can easily be
implemented as for/end loops in other languages. The very last line of rado.m
prints the final values of shift and the number of 1’s in tape.

rado.m
state=1;tape=zeros(1,50);location=25;shift=0;
while state>0

symbol=tape(location);
if state==1

if symbol==0
tape(location)=1;location=location+1;state=2;

else
tape(location)=1;location=location+1;state=0;

end
elseif state==2

if symbol==0
tape(location)=1;location=location-1;state=2;

else
tape(location)=0;location=location+1;state=3;

end
else

if symbol==0
tape(location)=1;location=location-1;state=3;

else
tape(location)=1;location=location-1;state=1;

end
end
shift=shift+1;

end
sum(tape),shift

4. See Minsky’s book (note 1), Chapter 7, pp. 132–145, and in particular
Figure 7.2-9 on p. 142, for the state-transition diagram of a UTM. The symbols
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are 0, 1, X, Y , A, and B (the figure shows two additional symbols, M and S,
but in a later note Minsky says each can be replaced with an X).

5. For example, suppose we start with the two rational fractions 1
6 and 1

7 .
The fraction halfway between them is

1
7

+ 1
2

(
1
6

− 1
7

)
= 1

7
+ 1

84
= 13

84
,

another rational fraction. We can continue this bisecting process as long as we
wish, finding ever more rational fractions as close together as we wish.

6. What I’ve discussed here concerning infinity is just the beginning. Cantor
also showed that there are “as many’’ points (numbers) in the interval 0 to
1 as in the entire real line from minus infinity to plus infinity. Indeed, the
continuum is the same uncountable infinity as the number of points in a
space of any finite or countably infinite dimension: in particular, the points
in the interiors of the unit square or the unit cube can be put into a one-
to-one correspondence with the points in the unit interval. Even Cantor
himself was astonished at that discovery. In a June 1877 letter to the German
mathematician Richard Dedekind (1831–1916) he wrote of it, “I see it, but I
don’t believe it!’’ (Cantor and Dedekind had an extensive correspondence on
infinity, and you can find more on their interaction in Fernando Q. Gouvêa,
“Was Cantor Surprised?’’ American Mathematical Monthly, March 2011, pp.
198-209.) There is an infinite number of ever larger infinities beyond the
continuum, too, the so-called power sets of Cantor (the set of all subsets of an
infinite set). That is all beyond the scope of this book, but if you’re interested
in reading more I can recommend Theodore G. Faticoni, The Mathematics
of Infinity, Wiley-Interscience, 2006; and Eli Maor, To Infinity and Beyond,
Birkhäuser, 1987 (reprinted in 1991 by Princeton University Press).



10
Beyond Boole and Shannon

Since the output is implicit in the input, no computation ever

generates information.

—Charles Bennett and Rolf Landauer, pioneers in the realization

that classical Boolean logic gates actually destroy information

10.1 COMPUTATION AND FUNDAMENTAL PHYSICS

In a previous book, I opened the first section (“The Limits of
Computation’’) of the final chapter with these words:

The speed of any computer is fundamentally limited by how fast
its various component parts can send and receive signals among
themselves—that is, by the speed of light and by how far those
signals have to travel. We can’t do anything about the speed
of light, but one way to increase the speed of a computer is
simply to make it smaller. That means the computer’s volume
decreases. Suppose, just to be specific, a computer has the shape
of a sphere with radius r . As r → 0, the volume decreases as r3.
If the energy required to power our shrinking computer doesn’t
decrease at least as fast, then the dissipated heat energy density in
the computer will increase and the temperature of the computer
will rise. Eventually, the computer will melt. That’s one sort of
limitation on computers, of a physical nature, one that can be
gotten around—at least for a while—by various means (the most
obvious being to add a cooling system to the computer). There
are other limitations, however, of a far more profound nature.1
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In that book I discussed one of those “other limitations,’’ of a
mathematical nature, the famous “halting problem.’’2 (The issue of
computability that we discussed in the last chapter is also one of pure
mathematics.) I did not, however, discuss in that previous book any
physical limitations on computers, other than the one above; so, in
this final chapter of this book I want to briefly touch on how funda-
mental physics—the uncertainty principle from quantum mechanics,
and thermodynamics, for example—constrain what is possible, in
principle, for the computers of the far future. The general conclusion
will be that while there are indeed finite limitations, present-day
technology falls so far short of those limits that there will be good
employment for computer technologists for a very long time to
come.

Certainly Boole, and as far as I know Shannon, too, never studied
the physics of computation. Obviously Boole simply couldn’t have,
as none of the required physics was even known in his day, and
Shannon was nearing the end of his career when such considerations
were just beginning. And yet, you’ll see that we will use both Boole’s
algebra and Shannon’s information concepts to make many of our
calculations. Both men would, I think, have found what we’ll do next
fascinating.

The very concepts of quantum mechanics would have seemed to
be mumbo-jumbo to Boole, but thermodynamics was well on its way
to becoming a mathematical science when Boole was still a child.
In 1824 the French engineer Sadi Carnot (1796–1832) published
his groundbreaking book Reflections on the Motive Power of Fire, in
which he studied how a heat engine (for example, a steam engine)
could achieve maximum efficiency. If he had been interested in such
matters (I suspect not, but who really knows?), Boole could surely have
mastered Carnot’s book. But the last thing he would have thought to do
was to apply Carnot’s engineering arguments to mathematical logic. As
one writer put it so nicely. “In the nineteenth century, despite the vision
of Babbage,3 computation was thought of as a mental process, not
a mechanical one. Accordingly, the thermodynamics of computation,
if anyone had stopped to wonder about it, would probably have
seemed no more urgent as a topic of scientific inquiry than, say, the
thermodynamics of love.’’4
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10.2 ENERGY AND INFORMATION

In a classic paper by two pioneers in the physics of computa-
tion, the American physicists Charles Bennett (born 1943) and
the German-born Rolf Landauer (1927–1999), we read “Informa-
tion is destroyed whenever two previously distinct situations become
indistinguishable.’’5 Their first example of what is meant by that comes
from an everyday observation we’ve all made at some time. Two rubber
balls dropped from different heights are, by definition, in two initially
distinct states, but after a time they both end up in the same state;
after perhaps numerous bounces, each will come to rest on the ground.
The reason for that is, of course, energy is dissipated at each bounce.
Observation of the final state does not allow us to determine the initial
states, and so we conclude that the energy dissipation has resulted in a
loss of information. As a second example of a loss of information, this
time in a situation obviously computational, Bennett and Landauer
ask us to imagine that we are told that the result of adding two non-
negative integers is 8. That’s information, yes, but not as much as
knowing what those two integers were (was it 6 + 2, or 4 + 4, or 5 + 3,
or . . . ?) That is, there was a certain amount of information going into
the adder, but less information coming out. This is called an irreversible
computation, in that we cannot reconstruct the inputs from knowledge
of the output.

A similar loss of information occurs in digital circuits constructed
with Boolean logic gates. To be specific, consider the truth table for a
two-input (A and B) NAND gate, with the output F :

A B F

0 0 1

0 1 1

1 0 1

1 1 0

Let’s suppose the two logical inputs are each equally likely to be 0 or 1.
I probably could safely assume that you’d believe me, without proof,



Beyond Boole and Shannon 179

that this represents an information input to the NAND gate of 2 bits,
but let’s calculate it anyway using Shannon’s formula (7.1.2).

For the inputs, we have four possibilities (00, 01,10, and 11), each
with probability 1

4 . Thus, the input information entropy, Hin, is given by

Hin = 4
[
−1

4
log2

(
1
4

)]
= −log2

(
1
4

)
= log2 (4) = log2

(
22) = 2bits,

just as expected. There are just two possibilities for the output F,
however (0 and 1), and they are not equally-likely. That’s because the 0
output occurs only for one of the four possible inputs (and so F = 0
has probability 1

4 ), while the 1 output occurs for each of the other
three possible inputs (and so F = 1 has probability 3

4 ). Thus, the output
information entropy, Hout , is given by

Hout = −3
4

log2

(
3
4

)
− 1

4
log2

(
1
4

)
= 3

4
log2

(
4
3

)
+ 1

4
log2 (4)

= 3
4

[
log2 (4) − log2 (3)

]+ 1
4

log2 (4) = log2 (4) − 3
4

log2 (3)

= 2 − 3
4

log2 (3) bits = Hin − 3
4

log2 (3) bits.

We thus see that Hout<Hin by the amount of

3
4

log2 (3) bits = 1.189 bits.

The NAND gate has destroyed more than half of the input infor-
mation! Similar calculations for the AND, OR, and XOR gates will
show information losses, as well. Only the NOT gate will preserve
information, and you’ll notice that with the NOT function we can
reconstruct the input from the output. The NAND, OR, AND, and
XOR gates are logically irreversible gates, while the NOT gate is a logically
reversible gate.
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10.3 LOGICALLY REVERSIBLE GATES

To build logically reversible gates that allow any Boolean function to
be built, not just the NOT, is not at all difficult. A key observation
is that there must be as many output lines as there are input lines
(a condition satisfied by the NOT). A little reflection should make
this obvious; if there are more inputs than outputs, then the same
output must occur for more than one combination of inputs—and
that’s the cause of information loss! (If there are fewer inputs than
outputs, then the same input combination would have to cause more
than one output, and now we talking about an unpredictable gate!) One
such logically reversible gate is the Toffoli gate, named after its inventor,
Tommaso Toffoli (born in Italy in 1943 and now professor of electrical
and computer engineering at Boston University). Put forth in 1980, it
has three inputs (A, B, C) and three outputs (A, B, C′) with the following
truth table:

A B C A B C ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

The two input variables A and B are called control inputs because
their values determine the value of the output variable C ′. (The values
of the two control variables A and B never change from input to
output.) In a Toffoli gate, C ′ = C̄ if A = B = 1. Otherwise, C ′ = C . For
this reason a Toffoli gate is often called a controlled-controlled-NOT (or
CCN) gate. (Recall the controlled-NOT, or CN gate, otherwise known
as the XOR, which was used in the Hamming code error correction
logic of Figure 7.5.4.) Notice, in particular, that if C = 1 then C ′ = AB
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and so this special case of the Toffoli gate is a NAND gate. Since we
know we can build any Boolean function from NANDs, we also know
we can build any Boolean function from Toffoli gates. From the truth
table for the Toffoli gate we can write

C ′ = Ā B̄C + ĀBC + AB̄C + ABC̄ ,

which, when plotted on a three-variable Karnaugh map, immediately
shows us that

C ′ = ABC̄ + B̄C + ĀC = ABC̄ + ( Ā + B̄)C

= ABC̄ + ABC = AB ⊕ C,

which means we can logically realize a Toffoli gate from an AND and
an XOR.

There is a mathematically nice way, using matrix notation, to
express the operation of a Toffoli gate. (I’m doing this with the
understanding that simple matrix ideas are now taught in high
school.) We can write the gate’s truth table as follows, with the 8 by
3 output matrix on the right in (10.3.1) as the result of an 8 by 8
matrix T “operating on’’ the 8 by 3 matrix on the left in (10.3.1).
That is, if

T =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



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then

T




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




=




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 1

1 1 0




(10.3.1)

There is more to this than just mathematical notation, however,
because T has a deep physical property that I’ll tell you about when
we get to quantum logic in the final section of this chapter.

Another quite interesting logically reversible gate is the Fredkin
gate, proposed in 1982 by Toffoli and Edward Fredkin (born in 1934,
Fredkin is now at Carnegie Mellon University). As with the Toffoli gate,
there are three inputs (A, B, and C ) and three outputs (A, B′, and C′).
Now, however, there is just one control input (A)—the value of A never
changes from input to output—and the way the gate works is shown in
the following truth table. When A = 0, B and C pass straight though
to the outputs B′ and C ′, respectively. That is, if A = 0 then B′ = B and
C ′ = C . But if A = 1, then B and C are swapped, that is, if A = 1 then
B′ = C and C ′ = B. The Fredkin gate is also called a controlled-swap gate.

A B C A B′ C ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1
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From the truth table (and Karnaugh maps) we can write

B′ = ĀBC̄ + ĀBC + AB̄C + ABC = AC + ĀB,
and

C ′ = Ā B̄C + ĀBC + ABC̄ + ABC = AB + ĀC .

These equations immediately tell us that if B = 0 then B′ = AC (we
have an AND gate), and that if B = 1 and C = 0 then B′ = Ā (we have
a NOT gate). You can, of course, also see these relations from a direct
inspection of the truth table, but I think the Boolean equations make
them more obvious. (If B = 0 and C = 1 then C ′ = Ā and we also have
a NOT.) Since we know we can build any Boolean function from ANDs
and NOTs, then we know we can build any Boolean function from
Fredkin gates.

As with the Toffoli gate, we can write the Fredkin gate in matrix
notation as an 8 by 8 F “operating on’’ an 8 by 3 input to give an 8 by
3 output. That is, if

F =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1




then

F




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




=




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 1 0

1 0 1

1 1 1




(10.3.2)
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Like T, F has the deep physical property I alluded to earlier that I’ll
discuss in the final section of this chapter.

A final observation: an important property of the Fredkin gate,
a property not shared by the Toffoli gate, is the preservation of parity.
That is, the outputs of a Fredkin gate always have the same number of
1s and 0s as do the inputs.6

10.4 THERMODYNAMICS OF LOGIC

The reason for our interest in logically reversible computation becomes
clear once we ask the following question: for the logically irreversible
gates, where does the destroyed information “go’’? It appears as
heat! An implicit recognition of this can be found as long ago as
1929, in an important thermodynamics paper by the Hungarian
physicist Leo Szilard (1898–1964).7 The explicit tying together of
information, energy, and computation in analysts’ minds is, however,
almost certainly due to a remark made by the Institute for Advanced
Study mathematician John von Neumann (1903–1957) in a December
1949 lecture at the University of Illinois.8 In that lecture he asserted
that the minimum energy Emin associated with manipulating a bit to be
kT ln(2) joules (J), where T is the temperature on the Kelvin scale and k
is Boltzmann’s constant (k = 1.38 · 10−23 J

K ).9 (Power is energy per unit
time and so, just to keep the scale of this in mind, 1 joule

second = 1J
s = 1 watt)

At “room temperature,’’ that is, at T = 300 K , this minimum energy is
2.87 · 10−21 J, a very tiny amount of energy. As a comparison, every
time one of the neurons in your brain “fires’’ (see the “majority logic’’
discussion in Chapter 6), the energy involved is a hundred billion (1011)
times larger than von Neumann’s Emin!10

The existence of logically reversible computation, which doesn’t
destroy information and so avoids the fundamental cause of heat,
makes it plausible that it might be possible to build computers that
could operate below von Neumann’s Emin. This is of great practical
interest because, while Emin may be very tiny, in a modern VLSI (Very
Large-Scale Integrated) computer circuit chip running at a high clock
rate, the amount of heat energy produced can result in substantial
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power levels. The observation that computers get hot seems to be
obvious, if not actually trivial. After all, computers run on electricity,
and every other electrical gadget we are familiar with (toasters, vacuum
cleaners, television sets, light bulbs) gets hot. Why should computers
be any different?

To be specific, imagine we have a VLSI chip with N transistors on
it, operating at a clock frequency of f .11 The workhorse technology in
VLSI is—and has been for the last 20 years—CMOS (Complementary
Metal-Oxide Semiconductors). I promised at the very start of the book
that there would be no electronics required, and so I am not going
to delve into the mathematical physics of a CMOS transistor. For
our purposes here, we can simply imagine a CMOS transistor as a
capacitor C that has either been charged to V volts (logic 1) or has
been discharged to the ground voltage of zero volts (logic 0).

If we imagine C being charged to V volts by connecting C to a
source voltage V through a path of resistance R, then it is a simple
problem in first-year calculus and differential equations to show (which
I am not going to do here) that the energy stored in C is 1

2C V 2.
Also, the charging current from the source that deposits that energy
in C dissipates an additional 1

2C V 2 of heat energy in R (notice that
this dissipated energy is independent of R). So, it takes 1

2C V 2 of
energy to store a bit in a CMOS transistor. Sometime later, when that
CMOS transistor is reset to logic 0, the stored energy is converted to
more heat when the capacitor dumps its stored charge (as a current
through some resistance path) to ground. So, we have 1

2C V 2 of stored
energy dissipated when the previously stored bit is destroyed. The total
dissipated energy is therefore C V 2 when a CMOS transistor cycles from
0 to 1 to 0.

For a “typical’’ CMOS transistor, C = 5 femtofarads (that is, C =
5 · 10−15 farads). This value might vary in different CMOS devices, one
way or the other, by a factor of 2, 5, or even more, but our final result
will be “typical.’’ If V is our usual 5 volts, then to place a 1 bit in our
CMOS transistor requires the stored energy

1
2

· 5 · 10−15 · (5)2 J = 6.25 · 10−14 J.
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To store this energy in C requires the same amount in dissipated energy,
as mentioned above. The same amount of energy is also dissipated
as heat when the stored bit is destroyed by dumping C ’s charge to
ground. So, a total of 1.25 · 10−13 J is dissipated as heat every time
a CMOS transistor cycles from 0 to 1 to 0. This is nearly 22 million
times larger(!) than Emin, and so we are today a long, long way from von
Neumann’s limit.

Now, suppose, on average, that at any given clock cycle 1
2 N

of the transistors on our VLSI chip are each storing a bit, and
1
2 N of the transistors are each dumping their charge. That means
with every clock cycle the total amount of dissipated energy is
given by

N
1
2

C V 2 = 6.25 · 10−14N J.

Since the chip runs at clock frequency f, then the chip’s total heat
energy per second is 6.25 · 10−14Nf J or, with N = 107 transistors, this
is 6.25 · 10−7 f J. If the clock rate is f = 1 GHz, a pretty ordinary value
today, then our chip dissipates energy at the rate of 6.25 · 10−7 · 109 J

s =
625 watts. This chip is going to need a lot of cooling to keep it from
melting! This calculation makes the cause of the curious medical
condition called “lap burn’’—commonly suffered by airline passengers
balancing their laptop computers on their knees while sitting in airport
lounges—easy to understand.

One obvious way to reduce such a large power level is to simply
reduce the spread in logic values. For example, if we use 1 volt for
logic 1, rather than 5 volts, then we reduce the rate of energy lost
as heat by a factor of

(5
1

)2 = 25, which brings that 625 watts down
to a more reasonable 25 watts. Another approach to achieving power
reduction is to reduce the clock frequency. If we reduce f by a factor
of 10, for example, then the power level drops by the same factor.
(This works the other way, too—the power level increases as we increase
f —which is why the use of overclocking to speed up a digital machine
can be risky.) Of course, our computer now runs one-tenth as fast as
before, and so this seems to be counterproductive. But, not to make
too awful a pun, not so fast!
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The famous Moore’s law (named after Gordon Moore, the cofounder
of Intel, who stated it in the mid-1960s) says that the packing density
of transistors on a chip has historically grown exponentially with time;
that is, the packing density has a constant doubling time (which is just
about two years). So, if we wait just 3.33 doubling times (23.33 ≈ 10),
that is, 7 years, we should be able to pack ten of our original chips into
the same space as today. And if we were clever enough to discover
how to use that factor of 10 increase in transistor count to balance
that speed decrease by a factor of 10, then we could do the same
computation (as a so-called parallel computation) in the same time as
it takes today with our original chip. Well, okay, you say to that,
but what you might also ask is: what have we really gained? After
all, even though each of our densely packed ten chips is running
at one-tenth the power level, there are ten chips where there used
to be one, and so we seem to have the same total power level as
before.

It turns out, surprisingly I think, that’s not the case. Since the
transistor packing density has increased, then the dimensions of each
transistor must decrease, and that means the energy per transistor 0-to-
1-to-0 cycle decreases,12 and that means we’ll actually need less total
energy to do the same computation in the same time as today. That is,
there will be a decrease in the total power level.

There is a limit to how far we can go with all this, however, as it
will eventually become impossible to distinguish the energy of the 0-
bit state of the transistor from the energy of the 1-bit state. If we use
the von Neumann energy of Emin at T = 300 K for the 1-bit state and
zero for the 0-bit state (and ignore all other difficulties!), then the
famous uncertainty principle from quantum mechanics tells us that, if�t
is the time it takes to determine which energy state the transistor is in,
then

�t Emin ≥ h
2
π

where h is Planck’s constant (6.63 · 10−34 J · s). That is,

�t ≥ h
2πEmin

.
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Since a clock period must be at least �t , we have an upper bound on
the clock frequency f as

f ≤ 1
�t

= 2πEmin

h
= 2π · 2.87 · 10−21

6.63 · 10−34 s−1 = 27,200 GHz.

Again, we are today a long, long way from such an incredible clock
frequency!

10.5 A PEEK INTO THE TWILIGHT ZONE:
QUANTUM COMPUTERS

In the final two sections of this book I’ll sketch ideas from quantum me-
chanics that will make the fantastic calculations of the previous section
look like mere childplay. To start, let me ask you the following question:
if I give you a positive integer N, can you factor N? For example, what
are all the factors of N = 147,573,952,589,676,412,927? In fact, there
are two,13 and one way to determine the answer for an arbitrary N is
to simply divide N by all the integers from 2 to the largest integer no
larger than

√
N and check each division for a remainder. If a divisor

doesn’t generate a remainder, then the divisor is a factor of N. If a
divisor does generate a remainder, that divisor is not a factor of N.
If all possible divisors generate remainders, then N is prime (that is,
N is not composite). This algorithm does work, but a mathematician
would say it isn’t efficient because it doesn’t execute in what is called
polynomial time.

The concept of an efficient algorithm is central to the theory of
computing. An algorithm is efficient if, with input N, the time required
to run to completion is bounded from above by some polynomial
function of the size of N. The size of N is defined to be the number
of bits needed to describe N, that is, log2(N). So, just for example, if
the time to execute for an algorithm is proportional to 3 {log2(N)}10 +
7{log2(N)}3, then that algorithm would be declared to be efficient. If,
on the other hand, the run-time increases faster than any finite power
of log2(N), then the algorithm would not be efficient. For the case
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of our factoring algorithm, its operation is essentially that of
√

N − 1
divisions, which is essentially

√
N divisions for any reasonably large N.

That is, the run-time increases as

√
N = N1/2 = 2log2(N

1
2 ) = 2

1
2 log2(N)

which is an exponentially increasing function in log2(N). This exponen-
tial increases faster than any polynomial with a finite maximum power
term, and so, while our factoring algorithm is simple to understand, it
is not efficient.

Being polynomial time doesn’t mean a problem is trivial. An
example of a challenging polynomial time problem is the dating
problem. Given two lists of names, one of n men and one of n women,
with the first list giving for each man the names of all the women he
would be willing to date, and the second list giving for each woman
the names of all the men she would be willing to date, is it possible
to match each man and woman with an acceptable date? There is
an efficient algorithm for doing that, but it may not be immediately
obvious—I’ll let you think about it!

Now, consider the reverse to the factoring problem. If I claim N
is the product of two primes p and q , the values of which I tell you,
can you check my claim? Sure you can, simply by multiplying p and q
and seeing if you get N. The ease of multiplication and the difficulty
of factoring is the key idea behind the supposed “unbreakability’’ of
the now commonly used public-key cryptosystems. It is interesting
to note that the importance of being able to factor was evident
long before cryptosystems, with the great German mathematician
Karl Gauss (1777–1855) writing in his 1801 masterpiece Disquisitiones
Arithmeticae: “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their prime factors
is known to be one of the most important and useful in arithmetic.’’

To give you a specific illustration of what a difficult problem
factoring is, imagine you have a computer that can execute a million
instructions per second (MIPS). If the computer runs day and night for
a year, it will execute a total of 31.5 · 1012 instructions = 31.5 tr illion
instructions, an impressively large number computer scientists call a
MIPS-year. In 1994 a 129 digit N formed by multiplying two large
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primes p and q (and used in one popular public-key cryptosystem)
required 5,000 MIPS-years of computer effort to discover p and q .
So, such systems are actually breakable, but only with the expenditure
of enormous computational resources. And if someone, someday does
factor the N in some cryptosystem, one could just pick larger p and q
and generate a new N with lots more digits.

All the above comments are valid for what are called “classical’’
computers, computers made from the irreversible logic gates and flip-
flops (made, in turn, from either relays or silicon transistors) we have
discussed all through this book. But what if there were a new kind of
computer, one with computational powers beyond the classical? What if
we could make a “quantum computer’’? Then it “theoretically’’ appears
(on paper, anyway) that one could do almost supernaturally better with
the factoring problem. For example, in 1994 Peter Shor (born 1959), a
mathematician then at AT&T Bell Labs and now on the faculty at MIT,
showed how such a computer (assuming it could ever be constructed)
could efficiently, in polynomial time, factor an arbitrary N.14 That
naturally got the immediate attention of national security agencies all
around the world who hope to keep their secret messages secret (and
to break the codes of their rivals), as well as all the civilian users of
public-key cryptosystems (credit card issuers and banks, for example).

As Shor himself amusingly expressed the implications of his discov-
ery (in rhyme, no less):

If computers that you build are quantum,
Then spies everywhere will all want ’em.

Our codes will all fail,
And they’ll read our email,

Till we get crypto that’s quantum and daunt ’em.15

A completely different problem, that of searching a data file that is
unstructured with respect to a search parameter (such as, for example,
looking for the name of a person when all you have is their telephone
number), can also be done faster on a quantum computer as compared
to a classical computer. Suppose the telephone book has N names. On
a classical computer a random search is the best you can do, so, in fact,
you might just as well start at the beginning and proceed alphabetically.
That means you will have to examine at least 1, and perhaps as many
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as all N, entries. On average, your search will take 1
2 N attempts. In

1996, however, Lov Grover (born 1961) at Bell Labs found a quantum
search algorithm that requires only

√
N attempts. So, if N = 1,000,000

names, then on a classical computer you can expect to take 500,000
attempts to complete your search, while Grover’s quantum computer
will finish in just 1,000 attempts.

Okay, what’s a “quantum computer’’? This is not an easy question
to answer, at the level of this book, but I think I can at least give
you a feeling for why a quantum computer could potentially perform
computations in polynomial time, computations that are beyond a
classical computer’s abilities to do efficiently. Don’t, however, fall into the
fallacy of thinking this means a quantum computer could do anything.
Even a quantum computer couldn’t solve the halting problem—see
note 2 again. I put the efficiency caveat in because it is possible to
simulate any quantum computer on a classical computer, and so a
classical computer could, given enough time, do anything a quantum
computer can do—the rub is that the classical computer may take
a vastly longer time to do it! A classical computer is to a quantum
computer as a Turing machine is to a classical computer (although
that comparison might give the classical computer more than it
deserves).

Before going any further I should tell you that not everybody
is convinced quantum computation is the ultimate pot of gold at
the end of the computer rainbow. One such healthy skeptic is Scott
Aaronson (born 1981), a professor of electrical engineering and com-
puter science at MIT. He has described problems that would remain
beyond the power of even a quantum computer to solve efficiently.16

One such problem is the following: given an arbitrary planar map,
can it be colored with just three colors so that no two countries
that share a common border have the same color? Since the 1976
computer-based proof that, in general, it requires four colors to color
a planar map, we know that there are maps for which three colors
would not be sufficient. But, nevertheless, there are particular maps
for which three colors are enough. There is, alas, no efficient algo-
rithm known that can distinguish between three-color and four-color
maps, and so having a quantum computer available would be of no
help.
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And even when a quantum algorithm is known, it may not result in a
polynomial time computation. Grover’s search algorithm is such a case
because, while

√
N is indeed faster than N, we know from our earlier

discussion of the factoring problem that
√

N is still exponential and
not polynomial.

A quantum computer makes direct use of one of numerous available
quantum mechanical phenomenan to manipulate information. Classi-
cal computers manipulate bits that are each in one of two definite states
(0 or 1)—for example, a closed (or open) relay contact, or stored charge
(or not) in a CMOS transistor. A quantum computer also manipulates
bits—called quantum bits or qubits—but qubits are not restricted to being
in one of just two states. For a single qubit there are indeed two pure
states, written as |0〉 and |1〉, where |0〉 and |1〉 are short-hand for the
column vectors

[
1

0

]
and

[
0

1

]
,

respectively. These two pure quantum states are analogous to the two
classical bit states, but in quantum mechanics each qubit most generally
exists as a linear combination or superposition of all the pure states.
This is not intuitive, so don’t worry if it seems odd, because it’s odd to
everybody! Indeed, even the great Einstein found quantum mechanics
hard to fully accept, and he left this world thinking the theory to be
at best incomplete (his word) in its description of reality. In the next
section I’ll show you why he felt that way.

In the early 1960s, just a few years after Einstein’s death, the Irish
physicist John Bell (1928–1990) developed a mathematical theory
that showed how in principle one could perform experimental tests
to determine the truth or not of quantum mechanics. In the early
1980s those experiments were finally definitively performed, and the
results fully supported quantum mechanics. The superposition of pure
states idea—odd as it is—is accepted today because it results in the
prediction of effects that are verifiable effects. Quantum mechanics
is the most successful scientific theory ever developed, with every
one of its predictions that have been tested by experiment being
confirmed.
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If we are talking about a single qubit system named ψ , then the
so-called state-vector of that system is written as

|ψ〉 = c1 |0〉 + c2 |1〉 = c1

[
1

0

]
+ c2

[
0

1

]
=

[
c1

0

]
+

[
0

c2

]
=

[
c1

c2

]
, (10.5.1)

where c1 and c2 are complex numbers (about which I’ll tell you more
in just a moment). The physical significance of the pure states of an
individual qubit could come from any number of possibilities; the
polarization of a photon is a common example.17 Thus, one polar-
ization state would be |0〉 and the other polarization state would be
|1〉. Whether an orbital electron in an atom is in its ground state or in
a higher-energy “excited’’ state (induced, for example, by shining laser
light on the atom) is another possibility, and yet another is the spin of
atomic nuclei (that measures something called the magnetic moment of
the nuclei). Spin is a quantized quantity, and it can be switched from
one allowed value to another by illuminating the nuclei with microwave
radiation of the proper frequency (called the resonant frequency). This
process, called nuclear magnetic resonance (or NMR), was the quantum
mechanical phenomenon used, in late 2001, to factor 15 using Shor’s
algorithm.18 A fourth possible technology is the so-called ion trap,
in which positive ions (atoms missing orbital electrons) that act like
tiny magnets are suspended in a vacuum by electric fields produced
by nearby tiny electrodes. The magnetic states of the ions can be
manipulated by targeting them with ultrathin, threadlike laser beams.

The state-vector |ψ〉 is in its superposition form until we measure
it, and then the state-vector collapses from ghostly superposition
to one of its definite pure states. This collapse is probabilistic, a
feature of quantum mechanics that gives it its nonintuitive behavior.19

The probability a single qubit system collapses to |0〉 is |c1 |2 (that is, the
product of c1 and c∗

1 where c∗
1 is the complex conjugate of c1), and the

probability it collapses to |1〉 is |c2 |2. Since the observed qubit has to be
one or the other of the pure states, we thus have the so-called probability
constraint |c1 |2 + |c2 |2= 1. Why is all this so? Nobody knows. Does that
bother you? Well, why is nothing able to go faster than the speed of
light? Nobody knows that, either. That probably doesn’t bother you, but
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0 + 1

0
1

Figure 10.5.1. An optical illusion illustrating both state superposition and
measurement collapse.

that’s only because you’ve heard it all your life and are just used to it.
People will get used to quantum mechanics, too, if quantum computers
become commonplace.

The ideas of superposition of states and state-vector collapse can be illus-
trated by the well-known optical illusion shown in Figure 10.5.1. When
you look at the two-dimensional rendition of a three-dimensional cube,
you can alternately “see’’ two different spatial orientations for the cube,
which are labeled 0 and 1. When we see either specific orientation, we
have “collapsed’’ the cube into one or the other “measured’’ state, but
until we do that the cube is simultaneously in both states.

If ψ is a two-qubit system we would write the four possible pure
states as |00〉, |01〉, |10〉, and |11〉, and the state-vector of ψ as the
superposition

|ψ〉 = c1 |00〉 + c2 |01〉 + c3 |10〉 + c4 |11〉,

where |c1 |2 +|c2 |2 + |c3 |2 + |c4 |2 = 1. In general, a system of n qubits
has a state-vector of the form

|ψ〉 = c1 |00 . . . 00〉 + c2 |00 . . . 01〉 + c3 |00 . . . 10〉 + · · · + c2n |11 . . . 11〉.

You can probably now see our first astonishing departure of a
quantum computer from a classical computer. In a classical computer,
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the description of a collection of n bits requires just n discrete numbers
(each either 0 or 1). In a quantum computer, the description of the
state-vector of n qubits requires 2n numbers, each of which takes
its value from a lot more than just two possibilities, with that huge
collection of numbers obeying the probability constraint

2n∑
k=1

|ck |2 = 1.

An n qubit quantum system obviously has a lot more information
packed into it than does an n bit classical system (for n = 500, for
example, 2500 ≈ 3.24 · 10150, a number larger than the total number
of elementary particles in the entire universe).

How Nature keeps track of all those numbers is another of the
deep mysteries of quantum mechanics, but it certainly makes plausible
the claim that processing qubits is far different from processing
classical bits. It is this phenomenal ability to process an enormous
number of numbers that gives a quantum computer its power. When
a quantum computer processes an n qubit system, it is simultaneously
operating on all possible 2n pure states, not just one as does a classical
computer. That is, a quantum computer actually follows a multitude of
superimposed, parallel computational paths (a process called quantum
interference) to arrive at its final result. Such massive parallelism is the
fundamental origin of the quantum computer’s phenomenal speed.

A class of famous, easy-to-understand problems (quite different from
the factoring and search problems) that could also benefit from the
massive parallelism of a quantum computer are the so-called knapsack
problems. They are old problems, dating back at least to 1897, but
they have modern applications, including cryptography. One knapsack
problem asks the following question: given a stretchable knapsack that
can hold a maximum weight of W, and n objects of individual weights
w1, w2, . . . , wn, is there a subset of these objects that can be put into
the knapsack that just achieves the knapsack’s weight capacity? That
is, is there a solution for the xi in the equation

W = w1x1 +w2x2 + · · · +wnxn,

where xi = 0 or 1 for 1 ≤ i ≤ n?
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For example, W = 22 and w1 = 3, w2 = 7, w3 = 9, w4 = 11, and
w5 = 20 has no solution, while W = 27 for the same wi has two
solutions (x1 = x5 = 0 and x2 = x3 = x4 = 1, and x1 = x3 = x4 = 0 and
x2 = x5 = 1). For certain special cases of the wi there are algorithms
for quickly finding solutions (if they exist), but in the general
case the only way to attack the problem is the elementary one
of trying, one after the other, each of the 2n possibilities for the
n xi . For a present-day classical computer this becomes more and
more impractical once n grows beyond 100 or so. With a quan-
tum computer, all 2n possibilities could conceivably be examined
simultaneously.

The probabilistic nature of quantum interference and state-vector
collapse means that the final output of a quantum computer is
probabilistic and may, in fact, actually be wrong! Shor’s factoring
algorithm, in particular, has that characteristic. It is, however, not a
particularly troublesome problem, an observation that usually puzzles
people when they first hear it. To see this, suppose we have the output
from a quantum computer execution of Shor’s algorithm. That is, it
has declared F to be a factor of N. It’s duck soup to simply check
F by dividing N by F and then see if we have a remainder. If there
isn’t one, then F is correct. If there is a remainder, then F is wrong
and so just run Shor’s algorithm again. If the probability is 1 − ε that
the algorithm gives a valid F (that is, ε is the probability that F is
wrong), then, if we run the algorithm k times, the probability that we
get wrong answers all k times is εk , which means we’ll get a correct
answer at least once with probability 1 − εk . And all we need is to
get a correct answer once. As long as ε < 1, then we can make the
probability of a correct answer as close to 1 as we wish just by making
k big enough. We can afford to do all this because Shor’s algorithm is
efficient.

This sort of nonclassical behavior may be what Australian science
fiction writer Greg Egan had in mind in his 1992 novel Quarantine:
A Novel of Quantum Catastrophe when at one point he has his protagonist
muse, “Computerized information is as evanescent as the quantum
vacuum, with virtual truths and falsehoods endlessly popping in and
out of existence.’’
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10.6 QUANTUM LOGIC—AND TIME TRAVEL, TOO!

How do we process qubits? We do that with what are called quantum
logic gates. If we look at just the simplest such gate, the quantum
inverter for a single qubit, we’ll see that even in that most elementary
case there are profound differences between the quantum gate and
its classical analogue (the NOT). The mathematics of the quantum
inverter is actually not difficult, which perhaps makes the surprising
results even more surprising!

It seems reasonable to argue that, given the state-vector |ψ〉 in
(10.5.1), a quantum inverter would simply swap the |0〉 and |1〉 pure
states. That is, after inversion we should have the new state-vector:

|ψ ′〉 = c1 |1〉 + c2 |0〉. (10.6.1)

It may not be immediately apparent from (10.5.1) and (10.6.1), but this
behavior has a particularly nice mathematical form if we express the
two state-vectors in matrix form. That is, if we write the pure states |0〉
and |1〉 in their column vector form, then the state-vector in (10.6.1),
at the output of the inverter, is

|ψ ′〉 =
[

c2

c1

]
. (10.6.2)

If we represent the quantum inverter gate by the symbol N, then N
“operating on’’ |ψ〉 should give |ψ ′〉. That is,

N

[
c1

c2

]
=

[
c2

c1

]
. (10.6.3)

What “operating on’’ a two-element column vector gives another two-
element column vector? A 2 by 2 matrix! That is, if we write

N

[
c1

c2

]
=

[
a b

d e

][
c1

c2

]
=

[
c2

c1

]
.
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then performing the matrix multiplication gives us the two equations

ac1 + bc2 = c2

dc1 + ec2 = c1,

which, by inspection, say a = 0, b = 1, and d = 1, e = 0. That is, the
quantum logic inverter gate is, mathematically, the matrix

N =
[

0 1

1 0

]
. (10.6.4)

Our result in (10.6.4) makes sense, too, when you ask yourself the
question: what should happen to |ψ〉 if we run it through two quantum
inverters in series? The answer seems clear: you should get |ψ〉 back.
Do we? Yes, because

N {N|ψ〉} = N

{
N

[
c1

c2

]}
= N

[
c2

c1

]
=

[
0 1

1 0

][
c2

c1

]
=

[
c1

c2

]
= |ψ〉

And, in fact,

NN =
[

0 1

1 0

] [
0 1

1 0

]
=

[
1 0

0 1

]
= I

where I is the 2 by 2 identity matrix and (of course!) I |ψ〉 =|ψ〉.
Unlike the classical NOT, which is the only nontrivial logical

function of a single bit, the quantum inverter is just one of many
possible quantum operations that can be usefully performed on a
single qubit. This is yet another indication of how quantum computers
are quite different from classical ones. To see this, let’s write a general
2 by 2 matrix M and let it operate on the state-vector | ψ〉 to give

M |ψ〉 =|ψ ′〉 =
[

a b

d e

] [
c1

c2

]
=

[
ac1 + bc2

dc1 + ec2

]

= (ac1 + bc2) |0〉 + (dc1 + ec2) |1〉.
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Now, let’s write M† as the adjoint of M, which means M† is the
conjugated transpose of M. That is,

M† =
[

a∗ d∗

b∗ e∗

]

And suppose further that we require M†M = I. That is,

[
a∗ d∗

b∗ e∗

][
a b

d e

]
=

[
1 0

0 1

]

Then,

|a |2 + |d |2 = 1

ab∗ + e∗d = 0

a∗b + d∗e = 0

|b |2 + |e |2 = 1.

(10.6.5)

If M has all these mathematical properties, then it has a wonderful
physical property as well, which I’ll explain next.

Since all state-vectors must satisfy the probability constraint, then in
particular |ψ ′〉 must as well, and so we have

(ac1 + bc2)(ac1 + bc2)∗ + (dc1 + ec2)(dc1 + ec2)∗ = 1,

or, as the conjugate of a sum (product) is the sum (product) of the
conjugates,

(ac1 + bc2)(a∗c∗
1 + b∗c∗

2) + (dc1 + ec2)(d∗c∗
1 + e∗c∗

2) = 1,

or,

|a |2|c1 |2 +ba∗c2c∗
1 + ab∗c1c∗

2+ |b |2|c2 |2

+ |d |2|c1 |2 +de∗c1c∗
2 + ed∗c2c∗

1+ |e |2|c2 |2 = 1
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or,

{|a |2 + |d |2} |c1 |2 + {|b |2 + |e |2} |c2 |2

+ {
a∗b + d∗e

}
c2c∗

1 + {
ab∗ + de∗} c1c∗

2 = 1.

But, from (10.6.5) we see that the last two terms on the left are zero,
and that the coefficients of |c1|2 and |c2 |2 are each 1, and so we are left
with

|c1 |2 + |c2 |2 = 1,

which is certainly true as it is the probability constraint on the original
state-vector |ψ〉.

That is, if M is any 2 by 2 matrix with an adjoint such that
M†M = I, then the probability constraint will automatically be satisfied
by M’s output state-vector M |ψ〉 =|ψ ′〉. Quantum physicists say such M
matrices preserve probability and call them unitary. Our quantum inverter
gate N is unitary, but it is not the only such gate. Another particularly
interesting one is

H = 1√
2

[
1 1

1 −1

]
.

Notice that H is its own adjoint (H is self-adjoint); mathematicians say H
is Hermitian, after the French mathematician Charles Hermite (1822–
1901). But that’s not the reason we use the symbol H—I’ll tell you why
in just a moment. If H operates on |0〉 and |1〉, then

H |0〉 = 1√
2

[
1 1

1 −1

][
1

0

]
= 1√

2

[
1

1

]
(10.6.6)

= 1√
2

[
1

0

]
+ 1√

2

[
0

1

]
= |0〉+ |1〉√

2
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and

H |1〉 = 1√
2

[
1 1

1 −1

] [
0

1

]
= 1√

2

[
1

−1

]

= 1√
2

[
1

0

]
− 1√

2

[
0

1

]
= |0〉− |1〉√

2
. (10.6.7)

Since one could argue—very loosely!—that the right-hand side of
(10.6.6) is “halfway’’ between turning |0〉 into |1〉, and the right-hand
side of (10.6.7) is also “halfway’’ between turning |1〉 into |0〉, then H
is “sorta like’’ a square-root of NOT!20 Some writers have even written
the intriguing identity

H =
√

N =
√

NOT,

but more conservative types generally call H the Hadamard quantum
gate (after the French mathematician Jacques Hadamard (1865–
1963)—that’s where the H comes from!—who studied matrices with
similar mathematical structures in the 19th century, long before their
appearance in quantum mechanics). If H really was

√
N then we’d

expect H2 = N, but it’s easy to confirm that H2 = I 
= N.
H is easily verified to be unitary, and in fact all quantum logic gates

have unitary matrices. If you look back at T and F in Section 10.3,
for example, you should be able to quickly verify that both the Toffoli
and Fredkin quantum logic gates are unitary (that’s the “deep physical
property’’ I mentioned back there). And as a fun exercise, you should
confirm for yourself that the matrix for the quantum controlled-NOT
gate (the XOR in classical computers—see note 6 in Chapter 7) is also
unitary. (See the hint at the end of the notes, p. 209.)

In the previous section I mentioned Einstein’s unhappiness with
quantum mechanics. Now, with the Hadamard quantum logic gate in
hand, I can tell you why he felt that way. Imagine that we start with
two individual ions, with both having the pure state-vector |0〉. One
of these ions is then operated on by a Hadamard gate, as defined in
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(10.6.6), giving the ion the output superposition state-vector

1√
2

|0〉 + 1√
2

|1〉.

This output is then used as the control input to a quantum CNOT
gate, while the other input (the controlled input) is the other original
ion with the pure state-vector |0〉. Since a control input in state 0 leaves
the controlled input state unchanged, while a control input in state 1
flips the controlled input state, the CNOT output state-vector of the
two-ion system is

1√
2

|00〉 + 1√
2

|11〉.

This means the two ions are now in the same state (either both 0 or both
1), but we don’t know which of these two equally-likely possibilities it
is since the output state-vector is a superposition state-vector. The two
ions are said to have entangled states.

Now, here’s where the puzzle that so bothered Einstein comes into
play. Suppose Alice puts one of the ions in her suitcase, and Bob puts
the other ion in his suitcase, and then both hop into separate rockets
and fly away from each other with their suitcases until they are both in
the orbit of Mars (on opposite sides of the Sun). That is, they are so
far apart that a light-speed signal would take quite some time to travel
from one to the other. Also in orbit around the Sun is a satellite with
a radio transmitter, positioned so that it has direct line-of-sight paths
of equal lengths to Alice and Bob. Once Alice and Bob are in Mars’s
orbit, the satellite transmits a radio pulse, which arrives at Alice and
Bob at the same instant.

Upon receiving the radio pulse, Alice opens her suitcase, removes
her ion, and measures the ion’s state. This collapses the state-vector of
the two-ion system, and Alice gets either 0 or 1 with equal probability.
One minute after receiving the radio pulse (and so after Alice’s
measurement), Bob opens his suitcase and measures the state of his
ion. Now there is nothing probabilistic about his result, because it must
be the same as Alice’s result (you’ll recall that the two ions were forced
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to be in the same state). Since Alice could have gotten either a 0 or a 1,
then somehow that random outcome showed up at Bob’s location, in
far less time than a light-speed signal would take to make the trip from
Alice to Bob, to give the certain, identical result for Bob’s measurement.

Some philosophers claim this situation violates special relativity’s
claim that “nothing can go faster than light,’’ but that’s not true
and physicist Einstein knew that. Special relativity says mass-energy-
information cannot go faster than light; but since Alice’s measurement
result was a random result and not under her control, she couldn’t
use the result to send information to Bob. Special relativity isn’t
bothered by this, and neither was Einstein. What bothered Einstein
was how Alice’s random result could instantly determine Bob’s certain
result, something Einstein called a “spooky action-at-a-distance.’’ All
this is still a matter of some controversy in physics, and is yet another
indication of the extreme nonintuitive nature of quantum mechanics.

We could go on and on with quantum logic gate mathematics but
of course the monster question lurking under the bed is: how do
we actually build a quantum computer as opposed to just writing
lots of matrix equations? Well, as I write there are only the most
rudimentary ideas of how to do that. In the case of a photon quantum
computer, where polarized photons provide the underlying quantum
mechanism, the hardware would (not surprisingly) be optical in nature,
utilizing mirrors, beamsplitters, interferometers, photodetectors, and
such. Using such devices, the construction details for a Fredkin
quantum logic gate were described in the literature as long ago
as 1989.21 A quantum computer built from such a building block
would be very different from a classical computer built from silicon
transistors on integrated circuit chips. A photon quantum computer
would literally “do it with mirrors.’’ (A few years later, in 1995,
a controlled-NOT quantum logic gate using a nonphoton technology
was actually demonstrated, and there have already been experiments
done on building quantum logic gates on a chip using ion trap
technology.22) And how to easily program a quantum computer as we
can with a classical computer has not, I believe, received much (if any)
attention at all.

None of these enormous practical issues has stopped some highly
adventurous physicists from going to even more extreme heights of
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imagination. Suppose, goes their wildest speculations, just suppose—
that we could combine a quantum computer with a time machine! Such
a wondrous-squared machine (Professor Aaronson—see note 16—says
such a combination would make ordinary quantum computers “look
as pedestrian as vending machines’’) could send qubits into the past
and so produce answers in zero time. With a time machine it would
seem that you don’t really need a quantum computer at all. Just let
a classical computer grind away for however long it takes (perhaps
years or decades or more) to finally get an answer, and then use the
time machine to send the answer back in time to one nanosecond after
you turned the computer on! Actually, matters aren’t quite that simple,
because of potential paradoxes. For example, suppose we turned the
computer off one nanosecond after we get the answer from the far
future. How then was the answer ever computed? Philosophers call
this a bilking paradox.23

I am not joking with all this, and you can find such time travel
possibilities discussed in the quite serious physics literature going back
to 1991.24 Even those whose enthusiasm for time traveling quantum
computers is apparently unbounded know, however, that they have to
show some restraint to avoid appearing merely goofy. As one writer
ended his paper, “We would not be honest if we did not end this paper
with the caveat that this work is at best a creature of eager speculation,’’
and with the admission that “practical considerations are humorous at
best.’’25 Indeed.

Still, one has to be careful in pooh-poohing future scientific discov-
eries that might, no matter how unlikely they may seem, just barely
be possible. The cautionary example of the Victorian scientist William
Thomson (better known today as Lord Kelvin) should be kept in mind;
as the nineteenth century became the twentieth, he declared there was
nothing left in physics to be discovered, that there was no future for
radio, that heavier-than-air flying machines were impossible, and that
X-rays would prove to be a fraud. Those awful missteps ought to be
a warning to all who indulge in predicting the future. So, having said
that, let me now ignore my own warning.

I do think quantum computers will some day come to pass. As the
authors of one paper (see note 14) so nicely put it, “The history of
computer technology has involved a sequence of changes from one
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type of physical realization to another—from gears to relays to valves
[that is, vacuum tubes] to transistors to integrated circuits and so on.
The step to the molecular scale—the quantum level—will be next.’’
That was written more than fifteen years ago, and we are still waiting,
but I do think it will happen. On the other hand, I do not think we’ll
ever couple a quantum computer with a time machine, but I’ll admit
there is a very tiny chance I could be wrong (but even if I am wrong,
I think it will be a very long time coming). So, that’s what I think. What
would Boole or Shannon have thought?

Shannon would surely have embraced quantum computation. How,
indeed, could a brain like his have resisted the intellectual challenges?
So would have Boole, once he had taken a crash course in modern
physics and learned the jargon. As for the time travel part, however,
well of course the only way we could ever know about that is if we could
somehow travel back to their times and ask them. But if we could do
that, well, what then would there be for them to doubt?
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Books 1998, pp. 20–26. I’ll let you look it up if you want to read the details,
and I’ll simply take it as fact that it does make sense to talk about polarization
states for photons and that the state can be “measured’’ through the well-
known use of optical filters.

18. Lieven M. K. Vandersypen et al., “Experimental Realization of Shor’s
Quantum Factoring Algorithm Using Nuclear Magnetic Resonance,’’ Nature,
December 20, 2001, pp. 883–887. The choice of the number N = 15 to factor
was not arbitrary. It is the smallest possible value for N = pq , where p and
q are both prime. Here’s why. The first three primes are 2, 3, and 5. Since
neither p nor q can be 2 (see note 14), and since p = q is not allowed, then
p = 3 and q = 5 are the smallest allowed values for the prime factors of N.
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19. We don’t want state-vector collapse to occur until the computation is
completed, and the only way to achieve that is to keep a quantum computer
decoupled from its surrounding environment. Any coupling is equivalent to
observing the qubits, causing premature collapse, a phenomenon called de-
coherence. All realistic quantum computer technologies eventually succumb to
this degradation. The trick is to get the computation done in a time less than
the decoherence time (which varies from microseconds to minutes, depending
on what quantum technology is used).The collapse of a measured (observed)
quantum state-vector is the origin of the famous paradox of Schrödinger’s
dead/alive cat. The mystery of state-vector collapse with observation is what was
behind Einstein’s famous skeptical question: “Do you really believe the Moon
exists only when you look at it?’’

20. This curious name was probably motivated by the following geometric
imagery. The numbers −1 and +1 are vectors on the horizontal axis of a
rectangular coordinate system, to the left and to the right, respectively.

√−1
is a vector on the vertical axis (upward). That is, the vector

√−1 is −1 rotated
clockwise 90◦ from the horizontal axis to lie “halfway’’ between −1 and +1.
Since −1 is a negation, as is NOT, then associating the square-root (of −1)
with the square root (of NOT)—since both do something “half-way’’—seems
a natural one to make. You can find more on this imagery in my book An
Imaginary Tale: The Story of

√−1, Princeton University Press, 2010.
21. G. J. Milburn, “Quantum Optical Fredkin Gate,’’ Physical Review Letters,

May 1, 1989, pp. 2124–2127. Fredkin gates preserve parity, you’ll recall, which
means there is no “loss’’ of photons from input to output. That’s good, because
to “lose’’ a photon means its was absorbed, which generates heat, the fatal
signature flaw of irreversible computation.

22. C. Munroe et al., “Demonstration of a Fundamental Quantum Logic
Gate,’’ Physical Review Letters, December 18, 1995, pp. 4714–4718. See also
Monroe and David J. Wineland, “Quantum Computing with Ions,’’ Scientific
American, August 2008, pp. 64–71.

23. For more on time travel paradoxes in general, and bilking paradoxes
in particular, see my book Time Machines, Springer, 1999, pp. 245–353. The
first discussion in the physics literature that I know of, concerning a time
travel bilking paradox, was due (perhaps not surprisingly) to Feynman and
his Princeton University doctoral dissertation adviser John Wheeler (1911–
2008), in a 1949 paper in Reviews of Modern Physics. I discuss the details of the
Feynman-Wheeler bilking paradox in Time Machines on pp. 332–336.

24. David Deutsch, “Quantum Mechanics Near Closed Timelike Lines,’’
Physical Review D, November 15, 1991, pp. 3197–3217, which develops a
paradox-free way of using time travel for computation. The term “closed
timelike lines’’ (or “curves’’) is physicist-lingo for time machine. Deutsch (born
1953), presently at the University of Oxford, has long been a champion of the
“many-worlds’’ idea (every time a decision is made the entire universe splits to
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accommodate every possible outcome), a staple in science fiction long before
(some) physicists adopted it; see Time Machines (previous note), pp. 214–
303. This concept explains, according to Deutsch, the power of a quantum
computer. As he writes in his 1997 book The Fabric of Reality (p. 217): “To those
who still cling to a single-universe world-view, I issue the following challenge:
explain how Shor’s algorithm works. I do not merely mean predict that it will work,
which is merely a matter of solving a few uncontroversial equations. I mean
provide an explanation. When Shor’s algorithm has factorized a number,
using 10500 or so times the computational resources that can be seen to be
present, where was the number factorized? There are only about 1080 atoms
in the entire visible universe, an utterly minuscule number compared with
10500. So if the visible universe were the extent of physical reality, physical
reality would not even remotely contain the resources required to factorize
such a large number. Who did factorize it, then? How, and where, was the
computation performed?’’ Many physicists, not surprisingly, find the many-
worlds idea of splitting universes outrageous.

25. Dave Bacon, “Quantum Computational Complexity in the Presence
of Closed Timelike Curves,’’ Physical Review A, September 2004 (available
online). Bacon is now a research professor at the University of Washington, but
wrote this paper while at the Institute for Quantum Information at Caltech.

Hint: the matrix for the quantum controlled-NOT (CNOT) gate is




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




To see this, pre-multiply the input state matrix




0 0
0 1
1 0
1 1




by the quantum CNOT gate matrix and observe the result.
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For the Future: The Anti-Amphibological Machine

To end this book on a math-free note, what follows is a personal
vision of the sort of logical problem that may soon be one that
even a quantum computer would find a struggle to deal with—the
decipherment of entangled legalese, the sort of monstrous gobblede-
gook one finds, for example, in the increasingly convoluted IRS tax
code (without TurboTax R©, your author would long ago have gone
quietly insane trying to file a Federal 1040 that didn’t have at least
73 “errors’’ in it). In the form of a short story, that vision is “The
Language Clarifier,’’ which first appeared in the May 1979 issue
of Omni Magazine. The original title was “The Anti-Amphibological
Machine,’’ but Omni’s fiction editor thought that a tad too mystifying
for readers and “suggested’’ the change. Now, at last, I can use my
original title for the final section of this book.

I think that both Boole and Shannon would have been sympathetic
to the story’s underpinnings in the law; after all, you’ll recall that Boole
won his 1858 Keith Prize for a paper applying probability to legal
testimony, and Shannon’s father was a judge. A “language clarifier’’
is still an imaginary invention, but I think the world really could
use such a gadget. Perhaps a reader will rise to the challenge? Now,
two historical notes before the story. First, the hero of my little tale,
physics professor Sam Sklansky, got his name in honor of my doctoral
dissertation advisor Jack Sklansky, professor emeritus of electrical
engineering and computer science at the University of California at
Irvine. I hope Jack will forgive me for transplanting him from EE
to physics. And second, my sister Kaylyn is married to a trial lawyer



Epilogue 211

(a wonderful guy at weekend barbecues but a shark in the court room),
and her husband Kent is definitely not a “fathead.’’

The Language Clarifier

The idea for the invention came during the divorce. He knew he
was going to be screwed, but with the legal mumbo jumbo of the
separation agreements, he couldn’t figure out how he was going
to be screwed. Janet’s damn fathead lawyer had drawn them up—
he’d even given the go-ahead for that, as he hadn’t planned to
contest her. After all, he had been caught in a rather blatant,
clear-cut position of adultery. At the time, he had thought the
wild-passioned honey-blonde had been worth it, but now he was
beginning to have doubts.
He had a doctorate in semantics and was the author of two schol-
arly tomes on the meaning and structure of words, but Professor
Willard Watson still couldn’t understand what in hell was going
on. Did he or didn’t he get to keep the car? How about the
house, the savings account, the cat and dog, the antique hutch,
the silver, the ski equipment, the home library, the television
sets, and all the rest of the earthly possessions collected over
twenty-five years of marriage? And what about alimony? Asking
Janet’s fathead lawyer led merely to the receipt of additional
incomprehensible letters, notices, and other horrible documents.
Just what the heck did it mean to receive a letter saying:

Notice is hereby granted to Willard Watson, the first party of

aggravation with respect to the aggravated second party,

Janet Watson, of an action for divorce, in the County of

Orange of the State of California. Actions involved include

but may not be fully delimited by their listing here: the

exposure of the second party to loathsome disease by

the first party due to participation in perverted crimes

against the order of nature; public embarrassment of

the second party due to the wanton, unrestrained,

lascivious behavior of the first party; other acts committed

by the first party of various horrid natures, to be specified

at a later time, as needed, to describe the untenable position
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of the second party with respect to the first party. The second

party maintains total freedom in the question of complicity

of action, and, except in those cases where litigation

proves contrariwise, sues for all common hereditaments,

past, present, or future, to revert to the second party,

except for the sole ownership of items, things, or other

states of being in possession of the first party, prior to the

initial date of marriage between the first party and the

second party, except for such entities excluded by prior

agreements in force at that time, or at other times not

mentioned in this action.

Professor Watson was somewhat perplexed by all this. So he hired
his own fathead lawyer.
What Professor Watson ended up with then was twice as much
paper that he couldn’t understand. Willard learned the truth
of the old New England saying: “A man between two lawyers
is like a fish between two cats.’’ So he fired his fathead lawyer.
And he stayed up for three straight nights, mulling over his
desperate situation until the idea for the invention came to him.
He quickly made an appointment to see his old friend at the
college, Professor Sam Sklansky of the Physics Department.
It was a cold, windy, and rainy day in early October as Willard ran
from the parking lot to Sklansky’s office. His shoes soon filled
with water, and he squished his way up the steps into the Physics
Building. Even Nature was dumping on him now.
Sklansky’s door was open, and he walked in, dripping, sloppy wet,
with water slushing out his hat brim onto the floor. “Hi, Sam.
Thanks for seeing me so early in the morning.’’ He stood there,
looking like a lone, forlorn weed in the middle of a growing pool
of water.
Sklansky, a brilliant, very direct sort of fellow, looked quizzically
back. “So what’s the problem, Willard? And by the way, umbrellas,
raincoats, and boots have been invented. You some kind of health
nut, running around in the rain like nature boy?’’
“Look, Sam, I’m desperate, and I’ve had a lot of things on my
mind besides the weather. I need your help, and I need it fast.
Janet’s going to rake my behind over the coals, but good, if I
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don’t get someone to tell me what the divorce settlement she’s
serving on me means!’’
“Willard, you want to see Professor Shyster over in the Law
School. I deal in physical facts, mathematical validity, in cosmic
truth, not the mental hash–mish-mash of lawyers!’’
“No, Sam, another fathead lawyer isn’t what I need. I need you.
I want you to tell me if my idea is possible.’’
So, good friend that he was, Sam listened. At first he laughed
hysterically, then he wrote a few Boolean equations, and seeing
a little hope, he wrote some more. Then he became quietly
excited, and finally, as Willard wrapped up his arguments, Sam
became hysterical again, but this time it was with excitement. It
could be done. The two old friends shook hands and agreed to
begin construction that very weekend. Willard would provide the
description of the necessary syntactical transformations, along
with a complete table look-up dictionary of all the required
synonyms, antonyms, and transitive verbs with irregular conju-
gations. Sam would provide the electronic expertise, produce the
wiring schematics, order the parts, and do all the soldering.
It was just two weeks later that they stood in Sam’s laboratory,
looking at their gleaming creation. A cubical box, precisely 119
centimeters on an edge, it had a smooth, featureless appearance,
with the double exception of two horizontal slots. One was
marked INPUT and the other OUTPUT. It was ready for testing.
“Okay, Sam, you designed it, you can have the honor of the first
test.’’
“No, it was your idea, so you go ahead.’’
“Please, Sam, I insist.’’
“Well—all right, I do just happen to have a test problem ready.’’
So saying, Sam walked over to his desk, rolled a fresh piece of
heavy white bond paper into his typewriter, and quickly snapped
out in bold pica letters:

Liquid precipitation fell from the heights, followed by

the spherical solid version, with the process terminated

by the reverse transport in the gaseous state.

Sam took the sheet over to the machine, and with an expression
that was a mixture of glee and apprehension, held it up to the
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INPUT slot. “Ready, Willard?’’ At the nod of his friend’s head,
Sam pushed the paper in. After only a few seconds, another piece
of paper shot from the OUTPUT slot. Both men grabbed it in
midair, and together read:
First it rained, then it hailed, and finally the water evaporated.
“Well, I’ll be damned!’’ they exclaimed in unison. The Language
Clarifier worked.
“Hey, hey, hey, Sam, it looks good, it looks good!’’ Willard began
to paw through his briefcase, looking for his divorce papers. “Now
I’ll find out just what that scheming wife of mine is up to!’’
“Wait, Willard,’’ said Sam, as he placed a restraining hand on his
friend’s shoulder. “Let’s not be hasty. We should really test it some
more. Look here, I have a copy of today’s campus newspaper
carrying an interview with the Undergraduate Dean. Listen to
this, will you, the perfect test!’’ He read aloud:

Even in institutions like our college, which may

be expected to have rather homogeneous

populations, one encounters a tremendous

diversity in the family subcultures that students

come from, in addition to the idiosyncratic mix

of assets and liabilities that characterize them.

“Wow, Sam—do we dare put that into it? It could blow the
circuits!’’
“Might as well find out if the Language Clarifier really works,
Willard.’’ Sam soon had the dean’s words typed in clear, crisp,
sharp letters. He shoved them into the INPUT slot, and the
machine responded in seconds with:

No two students are alike.

“Son of a gun, Sam, look at that! The translation actually makes
sense. Try something else on it.’’
“Okay, Willard. Take a look at this—another quote from the
Dean’’:

We thus encounter students whose educational

aims are crystal clear, as well as others whose

purposes have all the clarity of an amorphous
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mist emanating from a thick cloud of existential

miasma.

Quickly they typed this out and inserted it into their machine,
and they were soon in possession of the machine’s response:

Some students know what they want, and others don’t.

“That’s enough for me, Sam—it works! Now, where the heck are
those damn lawyer’s papers!’’

* * * * * * * *

The rest is history. Willard found out what the divorce was
going to cost him. He still got screwed, of course, but with the
Language Clarifier deciphering the papers from Janet’s fathead
lawyer, he knew precisely how he was being screwed. Actually,
Willard was really unconcerned, as he and Sam expected to make
a bundle selling their machine to business, higher education,
and government. Their need for extreme clarification was well
established. Let Janet have everything—secretly, Willard was happy
to be rid of the damn cat and dog. He would recoup it all, and
more, with the royalties from the Clarifier.
Willard let Sam handle the business end of the Language Clari-
fier, and it was with some greedy anticipation that he dropped in
on him after the divorce was settled. Willard was flat broke.
“Okay, Sam, give me the news. How are we doing with the
Clarifier?’’
Sam opened his desk drawer, pulled out a piece of paper, and
handed it across to Willard. It was a cashier’s check for fifty
thousand dollars. “There you are, Willard, your share of the
proceeds from our first three sales. And more to come!’’
“Hot damn, Sam. I knew it! Who bought the first three
machines—businessmen dealing with government regulatory
agencies?’’
Sam grinned at Willard. “Professor Shyster, over at the Law
School, bought all three.’’
“Of course,’’ exclaimed Willard, slapping his forehead with a
hand. “Lawyers would be the prime users of the Clarifier, wouldn’t
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they? Why, with all the ritual chants they produce, they’ll be in the
market for Clarifiers for the next fifty years. What’s old Shyster
going to do with them, anyway?’’
“Actually, Willard, you’ve got it backward. Shyster is writing a law
book, and he’s found that his early drafts weren’t really up to
par as far as the publisher is concerned. Not scholarly-sounding
enough, or something like that. So the Clarifier is just what he
needed.’’
“I don’t get it, Sam,’’ said Willard, with a puzzled look on his face.
“If Shyster’s book isn’t impressively complex enough, how’s the
Clarifier going to help?’’
Sam leaned back in his chair with a pleased look on his face.
“Willard, my boy, there’s an old rule of thumb in physics that says
if a process works in one direction, it will almost always be true
that it can go the other way, too.’’
Then Willard understood. “You don’t mean, you couldn’t possibly
mean—’’
“Yep, that’s right. I just moved a couple of wires around, and
now old Shyster just stuffs his clearly written book draft into
the OUTPUT slot, and the most incomprehensible muddle you
could possibly imagine emerges from the INPUT slot. Should be
a legal best-seller. Shyster thinks the Harvard Law dean will soon
come calling with the offer of a tenured appointment.’’
Willard was stunned. The irony of it was mind-boggling. As he
stared at Sam, his friend chuckled. “Look at it this way, Willard,
how many of the lawyers who’ll read it will really know, or even
give a damn, whether they understand it or not?’’
Before Willard could respond, Sam’s secretary put her head into
the office.
“Excuse me, Professor Sklansky, but this large envelope, from
Washington, just came for you registered, special delivery. It looks
important, so I thought I should give it to you right away.’’
“Yes, good, thank you, Susan.’’ As the pretty young lady left,
Willard found himself admiring her slender ankles, the motion
of her firm thighs under a snug dress, her really spectacular bot-
tom. “Careful, Willard,’’ cautioned Sklansky, the always observant
physicist. “As I recall, it was a blonde who did you in last time,
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and besides, she’s the best damned secretary I’ve ever had. So
stay away from her!’’
“Ah, I suppose you’re right, Sam, but she is a nifty-looking gal.’’
“Hmmph,’’ grunted Sam, who had been reading the just-
delivered mail. A slight frown was forming on his mouth. “Listen
to this, Willard, it’s from the Chief Legal Officer of Defense
Research and Engineering in the Pentagon. Remember, I wrote
to them about the Language Clarifier—pointed out how they
could use it to decipher the thousands of proposals they get from
industrial contractors every year?’’
He read:

Replying to your communication of 28 October, we have, after

analysis of the broad ramifications of and pertaining to, in all

its present and future forms, the Language Clarifier, found it

to present a less than superior hold on the financial,

economic, reputational, and any other forms of gain, physical

or otherwise, of its inventors. In view of the willingness

of said inventors to receive and accept a yearly stipend,

in perpetuity, or for life, whichever terminates first, of one

million dollars, they shall also accept the impact and import

of the Military Secrecy Act of 1947, Title 12, Section 19.321 (see

attached forms). Return of this document, with said inventors’

signatures, will constitute a mutually satisfactory agreement.

Otherwise, not, with all applicable consequences to follow

(see attached forms).

Sam put the letter down on his desk and drummed his fingers
on the hard wooden surface. “Well, Willard, what do you make
of that?’’ He idly flipped through the fifty-three single-spaced
onionskin pages of the 1947 Military Secrecy Act. “Frankly,
Willard, it sounds to me like the bastards are afraid to have the
Clarifier around! You know, if the military boys can use it to blow
away the industrial proposal-writer’s crap, I suppose industry
could use it to dig through all the government’s crud, too. Why,
both sides would have to make sense. Imagine that! And just think
of the heart attacks in Congress when all the blowhards on Capitol
Hill realized their speeches would be run through the Clarifier!’’
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“Christ, Sam, how the hell should I know? Look, let’s run this
letter and the Secrecy Act through the Language Clarifier—you
still have our prototype unit in your lab, right?’’
“Right, Willard. Let’s go!’’
A few minutes later the INPUT slot gobbled up the Pentagon
letter. Then the 53 pages of the Military Secrecy Act of 1947
followed. A full forty-three seconds ticked by as the Clarifier
mulled over its latest task. Deep in its bowels a few transistors
grew hot, an amplifier oscillated violently with feedback but
recovered before vaporizing, and a mechanical gear-train drive
almost ground off a tooth or two. Then, finally, the Clarifier
finished. It ejected its response.

Sign the agreement, forget you ever heard of the

Language Clarifier, and you get a megabuck a

year for life. Don’t sign the agreement, and they

toss you in the slammer (with one 60-second

cold-water, low-pressure shower every 10 days)

and throw away the key.

* * * * * * * *

Sam lives in Hawaii now, retired from teaching, and is writing a
book on the physics of hanging ten. Willard quit teaching, too,
married Susan, and it would be indelicate to discuss what they
are doing. Once a year they meet in San Francisco, split the
million bucks, have a few drinks at Fisherman’s Wharf, and ride
the cablecar.
Oh, yes, Sam was right. Old Shyster’s book was a best-seller, and
he’s now being hotly pursued by both Harvard and Yale Law, thus
proving you don’t have to be smart to get paid a million bucks a
year for forgetting what you know and doing nothing.
Quite often, merely being a fathead lawyer is sufficient.
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Fundamental Electric Circuit Concepts

In this brief appendix I’ll give you a superquick review of all you
need to know—and nothing beyond that!—to understand the electrical
circuits in this book.

All of our logic circuits use only resistors. Diodes and relay coils
appear, too, but how they work is discussed in the text. So, let’s start with
how a resistor—a component with two terminals — is mathematically
defined. The definition will tell us how the current (i ) in a resistor (R)
is related to the voltage drop (v) across the terminals, with Figure A1 in
mind. But of course we are immediately faced now with the questions
of what do we mean by current and voltage drop?

Current is the motion of electric charge, that is, the motion of
electrons, subatomic particles each of which possess the negative elec-
tric charge of 1.6 · 10−19 coulombs (named after the French physicist
Charles-Augustin de Coulomb (1736–1806)). The current i at any
point in a circuit is defined to be the rate at which positive charge moves
past that point; 1 ampere of current is equal to 1 coulomb per second.
Since electrons carry negative charge, their motion is equivalent to
positive charge moving in the opposite direction; that is, the actual
physical motion of the electrons is opposite to the direction of i . The
ampere is named after the French physicist André Marie Ampère (1775–
1836), who showed that an electric current generates magnetic effects.

Voltage is defined as the energy per unit charge; a common source
of voltage is the ordinary 1.5 volt battery. The voltage drop (from
plus to minus) across a resistor is the energy expended (appearing as
heat) in transporting a unit charge through the resistor. If a battery
is connected to a network of resistors, the electrons at the negative
terminal of the battery move through that network and return to the
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Figure A1. The resistor.

positive terminal of the battery, and there is a 1.5 volt drop across the
network. The volt is named after the Italian physicist Alessandro Volta
(1745–1827), who constructed the first battery in 1800.

Now we can define how resistors work. They obey Ohm’s law, namely,

v = i R,

where R is measured in ohms (named after the German physicist
Georg Ohm [1780–1854], and, again, take a look at Figure A1, where
the symbol for our voltage source (a battery) is the standard one of two
parallel lines (the long line is the positive terminal and the short line
is the negative terminal).

In the analysis of resistor circuits, two incredibly useful laws are used,
called Kirchhoff’s laws, after the German physicist Gustav Robert Kirch-
hoff (1824–1887). They are actually the fundamental conservation laws
of energy and electric charge. In words:

Kirchhoff’s voltage law: the sum of the voltage drops around
a closed path in any circuit is always zero (this is true in any
circuit, not just resistor circuits). This physically says that the net
energy change for a unit charge that travels completely around a
closed path is zero. If it were not zero, then we could repeatedly
transport the charge around the closed path in the direction in
which the net energy change is positive (there are of course two
ways to go around a closed path; and if the change isn’t zero, then
one way it will be positive and the other way it will be negative)
and so we could become rich selling the excess energy to the
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Figure A2. Resistors in series (top) and in parallel (bottom).

local power company! Conservation of energy says we can’t do
this (recall perpetual motion machines).
Kirchhoff’s current law: the sum of all the currents into any
point in any circuit is always zero (this is true in any circuit,
not just resistor circuits). If this weren’t so, then at the point
there must at each instant be either charge being created or
being destroyed, which the conservation of electric charge denies.
Whatever charge is transported “into’’ a point by some currents
must be transported “out’’ by other currents.

To see how useful these two laws can be, let’s derive the rules for
how two resistors (R1 and R2) combine when connected in series and
in parallel, as illustrated in Figure A2. When in series, the two resistors
carry the same current i , but in general have different voltage drops
(v1 and v2). When in parallel, the two resistors have the same voltage
drop v, but in general have different currents (i1 and i2). In each case,
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let’s write Re for the single equivalent resistor that replaces the two
original resistors.

In the series case, we have

v = i Re ,

v1 = i R1,

v2 = i R2,

and

v = v1 + v2,

where the last equation follows from Kirchhoff’s voltage law. So,

v = i Re = i R1 + i R2,

and our result is that

Re = R1 + R2.

In the parallel case, we have

v = i Re ,

v = i1 R1,

v = i2 R2,

and

i = i1 + i2,

where the last equation follows from Kirchhoff’s current law. So,

i1 + i2 = v

R1
+ v

R2
= i = v

Re

or,

1
Re

= 1
R1

+ 1
R2

and our result is that

Re = R1 R2

R1 + R2
.
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