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Introduction

For the past one hundred years, the Mathematical Association of America has been publishing

high-quality articles on the history of mathematics, some written by distinguished historians such as

Florian Cajori, Julian Lowell Coolidge, Max Dehn, David Eugene Smith, Carl Boyer, and others.

Many well-known historians of the present day also contribute to the MAA's journals. Some

years ago, Robin Wilson and Marlow Anderson, along with the late John Fauvel, a distinguished

and sorely missed historian of mathematics, decided that it would be useful to reprint a selection

of these papers and to set them in the context of modern historical research, so that current

mathematicians can continue to enjoy them and so that newer articles can be easily compared

with older ones. After John's untimely death, Victor Katz was asked to fill in and help bring this

project to completion.

A careful reading of some of the older papers in particular shows that although modern research

has introduced some new information or has fostered some new interpretations, in large measure

they are neither dated nor obsolete. Nevertheless, we have sometimes decided to include two

or more papers on a single topic, written years apart, to show the progress in the history of

mathematics.

The editors hope that you will enjoy this collection covering nearly four thousand years of

history, from ancient Babylonia up to the time of Euler in the eighteenth century. We wish to

thank Don Albers, Director of Publication at the MAA, and Gerald Alexanderson, chair of the

publications committee of the MAA, for their support for the history of mathematics at the MAA

in general, and for this project in particular. We also want to thank Beverly Ruedi for her technical

expertise in preparing this volume for publication.

vii
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Foreword

The twentieth century saw great strides in our understanding of the mathematics of ancient times.

This was often achieved through the combined work of archaeologists, philologists, and historians

of mathematics.

We especially see how this understanding has grown in the study of the mathematics of

Mesopotamia. Although the clay tablets on which this mathematics was written were excavated

beginning in the nineteenth century, it was not until early in the twentieth century that a careful

study of the mathematics on some of these tablets was undertaken. In particular, the tablet known

as Plimpton 322 was first published by Neugebauer and Sachs in 1945, who determined that the

numbers in each row of the tablet always included two out of the three numbers of a Pythagorean

triple. Since that time, there has been a great scholarly debate on how those numbers were found,

as well as the general purpose of the tablet. In our opening papers, we present two discussions

of this issue, one by R. Creighton Buck and a second by Eleanor Robson. Both of these papers

illustrate the necessity of applying ideas from several disciplines to help us make sense of the past.

Greek mathematics has, of course, been studied ever since the demise of Greek civilization. A

survey of the history of Greek mathematics, as it was understood in the 1940s, is presented here by

Max Dehn, a prominent mathematician in his own right|he solved one of the Hilbert problems.

Dehn's article originally appeared in four parts in the Monthly, each part dealing with a different

chronological period. The first part considers the work of Pythagoras and his school; the second

deals with Euclid; the third considers Apollonius and Archimedes; while the fourth gives us a

summary of the mathematics in Greek culture under the domination of the Roman empire.

Two of the mathematicians mentioned by Dehn are dealt with in more detail in the following

articles, one on Diophantus and two on Hypatia. J. D. Swift examines several problems posed

by Diophantus and explains some of his ingenious solutions. A. W. Richeson discusses the life

of Hypatia through a detailed analysis of the sources available to him in 1940. In a more recent

article, Michael Deakin considers the latest research on the work of Hypatia. He explains how

we know what we do know, especially in regard to her mathematical work, and what remains as

speculation.

Frank Swetz presents a detailed survey of what we know about mathematics in ancient China.

Not only does he explain in detail certain mathematical techniques of the Chinese, but he also

presents a detailed bibliography so that the reader may explore further. Swetz briefly mentions the

third-century mathematician Liu Hui, whose work is explored in greater detail by Philip Straffin

in the next article. There we learn not only about Liu Hui's commentaries and extensions of

the Chinese classic Nine Chapters on the Mathematical Art, but also about Liu's use of a limit
argument to determine the volume of a pyramid. Although Liu used what is now called Cavalieri's

principle to determine certain volumes, he could not figure out how to determine the volume of

3
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4 Ancient Mathematics

a sphere. Straffin shows us how a later mathematician, Zu Gengzhi, ultimately determined the

correct formula for that volume through a creative use of the same principle.

This section concludes with three discussions of mathematics in the Americas. First, W. C. Eells

reports on the data from many years of linguistic study and analyzes the structure of the number

systems in numerous groups of North American Indians. Next, A. W. Richeson looks at the number

system of Mayas, displaying both the head-variant form of the monuments as well as the more

familiar written form in the codices. Marcia Ascher, in an article written to commemorate the 500th

anniversary of Columbus's first visit to the western hemisphere, then discusses the mathematics

of two of the civilizations living there at the time. She explains the quipus of the Incas of Peru

and Ecuador and then deals anew with the Mayans, concentrating in particular on the types of

mathematical problems that they could solve in their number system.
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Sherlock Holmes in Babylon

R. CREIGHTON BUCK

American Mathematical Monthly 87 (1980), 335{345

Let me begin by clarifying the title \Sherlock

Holmes in Babylon." Lest some members of the

Baker Street Irregulars be misled, my topic is the ar-

chaeology of mathematics, and my objective is to re-

trace a small portion of the research of two scholars:

Otto Neugebauer, who is a recipient of the Distin-

guished Service Award, given to him by the Mathe-

matical Association of America in 1979, and his col-

league and long-time collaborator, Abraham Sachs.

It is also a chance for me to repay both of them a

personal debt. I went to Brown University in 1947,

and as a new Assistant Professor I was welcomed

as a regular visitor to the Seminar in the History of

Mathematics and Astronomy. There, with a handful

of others, I was privileged to watch experts engaged

in the intellectual challenge of reconstructing pieces

of a culture from random fragments of the past. (See

[4], [5].)

This experience left its mark upon me. While I do

not regard myself as a historian in any sense, I have

always remained a \friend of the history of math-

ematics"; and it is in this role that I come to you

today. Let me begin with a sample of the raw mate-

rials. Figure 1 is a copy of a cuneiform tablet mea-

suring perhaps 3 inches by 5. The markings can be

made by pressing the end of a cut reed into wet clay.

Dating such a tablet is seldom easy. The appearance

of this tablet suggests that it may have been made

in Akkad in the city of Nippur in the year −1700,
about 3700 years ago.

Confronted with an artifact from an ancient cul-

ture, one asks several questions:

(i) What is this and what are its properties?

(ii) What was its original purpose?

(iii) What does this tell me about the culture that

produced it?

In the History of Science, one expects neither theo-

rems nor rigorous proofs. The subject is replete with

conjectures and even speculations; and in place of

proof, one often finds mere confirmation: \I believe

P implies Q; and because I also believe Q, I there-
fore also believe P ."
In Figure 1, we draw a vertical line to separate the

first two columns. In the first column, we recognize

what seem to be counting symbols for the numbers

from 1 through 9. Paired with these in the second

column we see 9, then 1 and 8, then 2 and 7, and

then 3 and 6. This suggests that what we have is a

\table of 9's", a multiplication table for the factor

9. Checking further, we see 5 and 4 across from the

Figure 1.

5
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6 Ancient Mathematics

counting symbol for 6, which confirms the conjec-

ture. However, in the next line we see 7 and then

across from it what seems to be a 1 and a 3.

We modify our conjecture; instead of an ordinary

decimal system, we are dealing with a hybrid. There

is a decimal substratum, using one type of wedge for

units and another for tens but the system is base 60 in

the large. The 1 and 3 in fact represent 60+3 = 63.
We then immediately conjecture that the same wedge

symbol will be used for 1, for 60, for (60)2, (60)3,
and so on, while the digits will be given in a decimal

form.

Thus from a single tablet we might have conjec-

tured a complete sexagesimal numeral system. We

would then seek confirmation of this by examin-

ing other tablets, hoping to see the same patterns

there. Indeed, this was done in the last century, and

among the thousands of Babylonian tablets many

were found that bear multiplication tables of the

same general type as that given in Figure 1, gen-

erated by various multiplication factors. There are a

great many duplicates.

We find the Babylonian numeral system cumber-

some to write. In this paper, base 60 numerals will
be written by putting the digits (0 through 59) in or-
dinary Arabic base ten, separating consecutive digits

by the symbol \/". The \units place" will be on the

right as usual. Thus

7/13/28 represents 28+13(60)+7(60)2 = 26, 008.

Addition is easy:

14/28/31

3/35/45

18/4/16

If the tablets that bear multiplication tables are

catalogued, something strange is seen. Many tables

of 9's, 12's, etc., are found; but there are also multi-
plication tables for unlikely factors, while many ta-

bles we would have expected never appear. In Figure

2, we list those that occur frequently.

We are left with three puzzles:

(i) Why are some tables missing? (For example, 7,

11, 13, 14, etc.?)

(ii) Why are there tables with factors such as 3/45,

7/12, 7/30, and 44/26/40?

(iii) Why are there so many tablets with exactly the

same multiplication tables on them?

Some clues are found; for example, there are tablets

that contain two versions of the same multiplication

2 18 1/15 = 75 7/12 = 432

3 20 1/20 = 80 7/30 = 450

4 24 1/30 = 90 8/20 = 500

5 25 1/40 = 100 12/30 = 750

6 30 2/15 = 135 16/40 = 1000

8 36 2/24 = 144 22/30 = 1350

9 40 2/30 = 150 44/26/40 = 160,000

10 45 3/20 = 200

12 48 3/45 = 225 and a scattering of others

15 50 4/30 = 270

16 6/40 = 400

Figure 2. Factors Used for Multiplication Tables

table, one done neatly and one less neatly and per-

haps with an error or two. I am sure that a familiar

picture comes immediately to your mind: a cluster

of students, all engaged in copying a model table

provided by the teacher who will shortly be grad-

ing their efforts. Are we not correct to infer that in

Nippur there was probably an extensive school for

scribes who were in training to become bureaucrats

or priests?

To help answer the first two questions, let us ex-

amine another tablet, which for convenience I have

transcribed into the slash notation. (See Figure 3.)

This again fits the pattern of two matched columns,

and we look for an explanation. We note at once that

in the first few rows the product of the adjacent col-

umn numbers is always 60. There seem to be some
exceptions, however. With the pair 9 and 6/40, this
product is

(9) × (6/40) = (9) × (400) = 3600

2 30 16 3/45 45 1/20

3 20 18 3/20 48 1/15

4 15 20 3 50 1/12

5 12 24 2/30 54 1/6/40

6 10 25 2/24 1/4 56/15

8 7/30 27 2/13/20 1/12 50

9 6/40 30 2 1/15 48

10 6 32 1/52/30 1/20 45

12 5 36 1/40 1/21 44/26/40

15 4 40 1/30

Figure 3.
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and again

(16) × (3/45) = (16) × (225) = 3600

while still further down, we see

(27) × (2/13/20) = (27) × (8000) = 216,000.

The solution becomes obvious if we write these

products in Babylonian form; since 60 is 1/0, 3600
is 1/0/0, and 216,000 is 1/0/0/0. For confirmation,
look at the last entry in the table:

(1/21) × (44/26/40) = (81) × (160,000)

= 12,960,000

= 1/0/0/0/0.

If we now follow the Babylonian practice of omit-

ting terminal zeros, we see that Figure 3 is merely

a table of reciprocals, written in \sexagesimal float-

ing point." If A is an integer in the first column,

the integer paired with it in the second column,

AR, is one chosen so that their product would be

written as \1," meaning any suitable power of 60.
The integers that appear in the table will always be

factorable into powers of 2, 3, and 5, since these
have terminating reciprocals in base 60. The term
\floating-point arithmetic" is today a computer con-

cept but is also understandable to anyone who has

used a slide rule or worked with logarithms; the con-

cept would also have been familiar to medieval as-

tronomers who multiplied large numbers by the de-

vice called \prosthaphaeresis."

Now that Figure 3 is understood, we can answer

the two puzzles left hanging on the previous page.

Observe that the integers used to generate multi-

plication tables, as seen in Figure 2, mostly come

from the standard reciprocal table. (There are also

tablets that contain nonstandard reciprocals, recip-

rocals of such numbers as 7, 11, etc., of necessity
given in terminating approximate form.) In floating

point, B ÷ A = B × AR. Thus the combination of

a set of multiplication tables and a reciprocal table

makes it easy to carry out floating-point division,

provided that the divisor is one of the \nice" num-

bers in base 60, of the form 2α3β5γ . For example,

let us divide 417 by 24; in base 60, this will be
6/57÷ 24 = 17/22/30.

Method:

6/57÷ 24 = (6/57) × (24)R = (6/57)× (2/30) :

6/57× 2 = 12 + 1/54 = 13/54

6/57× 30 = 3 + 28/30 = 3/28/30

answer = 17/22/30

Figure 4.

The last steps in this calculation are easier if one

recalls that 30 = 2R, so that multiplication by 30
is the same as halving. (Of course the scribe must

be sure to keep track of the actual magnitudes and

place values.)

That common calculations were made in this fash-

ion becomes even more plausible in the light of one

remarkable discovery. This is an inscribed cylinder,

carrying on its curved face a copy of the standard

reciprocal table and each of the standard multiplica-

tion tables. (In Figure 4, we show this restored, with

each multiplication table indicated by its generator.)

With the help of this cylinder, perhaps mounted on

a stand, a scribe could easily keep track of taxes and

calculate wages; perhaps we have here the Babylo-

nian version of a slide rule or desk calculator!

With this brief introduction to the arithmetic of the

Babylonians, we turn to another tablet whose mathe-

matical nature had been overlooked until the work of

Neugebauer and Sachs. It is in the George A. Plimp-

ton Collection, Rare Book and Manuscript Library,

at Columbia University, and usually called Plimpton

322. (See Figure 5, which is reproduced here by per-

mission of the Library.) The left side of this tablet

has some erosion; traces of modern glue on the left

edge suggest that a portion that had originally been

attached there has since been lost or stolen. Since it

was bought in a marketplace, one may only conjec-

ture about its true origin and date, although the style

suggests about −1600 for the latter. As with most
such tablets, this had been assumed to be a commer-

cial account or inventory report. We will attempt to

show why one can be led to believe otherwise.
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8 Ancient Mathematics

Figure 5. Plimpton 322

Column A Column B Column C

15 1/59 2/49

58/14/50/6/15 56/7 3/12/1

1/15/33/45 1/16/41 1/50/49

5 29/32/52/16 3/31/49 5/9/1

48/54/ 1/40 1/5 1/37

47/ 6/41/40 5/19 8/1

43/11/56/28/26/40 38/11 59/1

41/33/59/ 3/45 13/19 20/49

38/33/36/36 9/1 12/49

35/10/2/28/27/24/26/40 1/22/41 2/16/1

33/45 45 1/15

29/21/54/ 2/15 27/9 48/49

27/ 3/45 7/12/1 4/49

25/48/51/35/6/40 29/31 53/49

23/13/46/40 56 53

Figure 6. Plimpton 322

First, let us transcribe it into the slash notation,

as seen in Figure 6. We have reproduced the three

main columns, which we have labeled A, B, and
C . We note that there are gaps in column A, due
to the erosion. However, it seems apparent that the

numbers there are steadily decreasing. We note that

some of the numerals there are short and some long,

apparently at random. In contrast with this, all the

numerals in columns B and C are rather short, and
we do not see any evidence of general monotonicity.

Since it is easier for us to work with Arabic nu-

merals, let us translate columns B and C into these
numerals and look for patterns. (See Figure 7.) We

see at once that B is smaller than C , with only
two exceptions. Also, playing with these numbers,

we find that column B contains exactly one prime,

namely, 541, while column C contains eight num-

bers that are prime.

In the first 20,000 integers, there are about 2,300

primes, which is about 10 percent; among 15 inte-

B C B C

119 169 541 769

3367 11521 4961 8161

4601 6649 45 75

12709 18541 1679 2929

65 97 25921 289

319 481 1771 3229

2291 3541 56 53

799 1249

Figure 7.
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C + B C −B
288 50

14888 8154

11250 2048

31250 5832

162 32

800 162

5832 1250

2048 450

1310 228

13132 3200

120 30

4608 1250

26210 -25632

5000 1458

109 -3

Figure 8.

gers, selected at random from this interval, we might,

then, expect to see one or two primes, but certainly

not eight! This at once tells us that the tablet is math-

ematical and not merely arithmetical. (Imagine your

feelings if you were to find a Babylonian tablet with

a list of the orders of the first few sporadic simple

groups.)

Encouraged, one attempts to find further visible

patterns, for example, by combining the entries in

columns B and C in various ways. One of the ear-
liest tries is immediately successful. In Figure 8, we

show the results of calculating C + B and C − B.
If you are sensitive to arithmetic you will note that,

in almost every case, the numbers are each twice a

perfect square.

If C + B = 2a2 and C − B = 2b2, then
B = a2 − b2 and C = a2 + b2. Thus the entries
in these columns could have been generated from

integer pairs (a, b). In passing, we note that B, be-
ing (a−b)(a+b), is not apt to be prime; on the other
hand, when a and b are relatively prime, every prime
of the form 4N + 1 can be expressed as a2 + b2.
In Figure 9, we have recopied columns B and

C , together with the appropriate pairs (a, b) in the
cases where this representation is possible. As a fur-

ther confirmation that we are on the right track, we

note that in every such pair the numbers a and b
are both \nice", that is, factorable in terms of 2, 3,

and 5. In five cases, the pattern breaks down and no

pair exists. It will be a further confirmation if we

can explain these discrepancies as errors made by

the scribe who produced the tablet. We make a sim-

ple hypothesis and assume that B and C were each

B C (a, b)
119 169 12,5

3367 11521 ?

4601 6649 75,32

12709 18541 125,54

65 97 9, 4

319 481 20,9

2291 3541 54,25

799 1249 32,15

541 769 ?

4961 8161 81,40

45 75 ?

1679 2929 48,25

25921 289 ?

1771 3229 50,27

56 53 ?

Figure 9.

computed independently from the pair (a, b) and that
a few errors were made but each affected only one

number in each row. Thus in each vacant place we

will assume that either B or C is correct and the

other wrong, and attempt to restore the correct en-

try. Since we do not know the correct pair (a, b) we
must find it; because of the evidence in the rest of

the table, we insist that an acceptable pair must be

composed of \nice" sexagesimals.

We start with line 9; here, B = 541, which hap-
pens to be the only prime in ColumnB. We therefore
assume B is wrong and C is correct, and thus write
C = 769 = a2 + b2. This has a single solution,
the pair (25, 12). (We also note that both happen
to be nice sexagesimals.) If this is correct, then B
should have been (25)2 − (12)2 = 481, instead of
541 as given. Is there an obvious explanation for
this mistake? Yes, for in slash notation, 541 = 9/1
and 481 = 8/1. The anomaly in line 9 seems to be
merely a copy error.

Turn now to line 13; here, B is far larger than C ,
which is contrary to the pattern. Assume that B is

in error and C is correct, and again try C = 289 =
a2 + b2. There is a \nice" unique solution, (15, 8),
and using these, we are led to conjecture that the

correct value of B is (15)2−(8)2 = 161. Again, we
ask if there is an obvious explanation for arriving at

the incorrect value given, 25921. A partial answer is

immediate: (161)2 = 25921; so that for some reason
the scribe recorded the square of the correct value
for B.
Continuing, consider line 15. Since B = 56 and

C = 53, we have B > C , which does not match the
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10 Ancient Mathematics

general pattern. However, it is not clear whetherB is
too large or C too small. Trying the first, we assume
C is correct and solve 53 = a2 + b2, obtaining the
unique answer (7, 2). We reject this, since 7 is not
a nice sexagesimal. Now assume that B is correct,

and write 56 = a2 − b2 = (a + b)(a− b). This has
two solutions, (15, 13) and (9, 5). We reject the first
and use the second, obtaining 92 + 52 = 106 as the
correct value of C . Seeking an explanation, we note
that the value given by the scribe, 53, is exactly half

of the correct value.

Turning now to line 2 of Figure 9, we have B =
3367 and C = 11521, either of which might be
correct. Assume that C = a2 + b2 and find two
solutions (100, 39) and (89, 60). While 100 and 60
are nice, 39 and 89 are not, so we reject both pairs
and assume that B is correct. Writing 3367 = (a−b)
(a+ b) and factoring 3367 in all ways, we find four
pairs: (1684, 1683), (244, 237), (136, 123), (64, 27),
of which we can accept only the last. This yields

(64)2 + (27)2 = 4825 as the correct C . Comparing
this with the number 11521 that appeared on the
tablet, we see no immediate naive explanation for

the error. For example, since 4825 = 1/20/25 and
11521 = 3/12/1, it does not seem to be a copy

error. Without an explanation, we may have a little

less confidence in this reconstruction of the entries

in line 2.

The last misfit in the table is line 11, where

we have B = 45 and C = 75. This is unusual
also because this is the only case where B and C
have a common factor. The sums-and-differences-of-

squares pattern failed because neither C +B = 120
nor C − B = 30 is twice a square. However, ev-
erything becomes clearer if we go back to base 60
notation and remember that we use floating point;

for 120 = 2/0, which is twice 1/0 and which we
can also write as 1, clearly a perfect square. In the
same way, 30 is twice 15, which is also 4R and

which is the square of 2R. The pattern is preserved

and no corrections need be made in the entries: with

a = 1 = 1/0 and b = 1
2 = 2R = 30 = 0/30, we

have a2 = 1/0 and b2 = 0/15, and

C = a2 + b2 = 1/0 + 0/15 = 1/15 = 75

B = a2 − b2 = 1/0 − 0/15 = 0/45 = 45.

(Another aspect of the line 11 entries will appear

later.)

With this, we have completed the work of editing

the original tablet. In Figure 10, we give a corrected

table for columns B and C , together with the appro-
priate pairs (a, b) from which they can be calculated.

B C (a, b)

119 169 12, 5

3367 4825 64, 27

4601 6649 75, 32

12709 1854 125, 54

65 97 9, 4

319 481 20, 9

2291 3541 54, 25

799 1249 32, 15

481 769 25, 12

4961 8161 81, 40

45 75 1, 1
2 = 30

1679 2929 48, 25

161 289 15, 8

1771 3229 50, 27

56 106 9, 5

Figure 10. Corrected Version

It is now the time to raise the second canonical

question: What was the purpose behind this tablet?

Speculation in this direction is less restricted, since

the road is not as well marked. We can begin by ask-

ing if numbers of the form a2− b2 and a2 + b2 have
any special properties. In doing so, we run the risk

of looking at ancient Babylonia from the twentieth

century, rather than trying to adopt an autochthonous

viewpoint. Nevertheless, one relation is extremely

suggestive, involving both algebra and geometry. For

any numbers (integers) a and b,

(a2 − b2)2 + (2ab)2 = (a2 + b2)2. (1)

In addition, if we introduce D = 2ab, then B,
C , and D can form a right-angled triangle with

B2 +D2 = C2. And finally, these formulas generate

all Pythagorean triplets (triangles) from the integer

parameters (a, b). (See Figure 11.)
There is no independent information showing that

these facts were known to the Babylonians at the

time we conjecture that this tablet was inscribed, al-

though, as will appear later, their algebra had already

D

B
C

q

Figure 11. B = a2 − b2, D = 2ab, C = a2 + b2
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BUCK: Sherlock Holmes in Babylon 11

mastered the solution of quadratic equations. If the

tablet indeed is connected with this observation, then

the unknown column A numbers ought to be con-

nected in some way with the same triangle. The next

step is, then, to proceed as before and try many dif-

ferent combinations of B, C , and D, in hopes that
one of these will approximate the entries in column

A. Slopes and ratios are an obvious starting point,
so one calculates C ÷B,C ÷D,B ÷D, etc. After
discarding many failures, one arrives at the combi-

nation (B ÷ D)2. In Figure 12, we give the values
of this expression, calculated from the corrected val-

ues of B and using the hypothetical values of (a, b)
to find D. (We remark that it was very helpful to
have a programmable pocket calculator that could

be trained to work in sexagesimal arithmetic!)

If we now return to Figure 6 and compare the

numerals given there in column A with those that

appear in Figure 12, we see that there is almost total

agreement. For example, in line 10 we have exact

duplication of an eight-digit sexagesimal! On proba-

bilistic grounds alone, this is an overwhelming con-

firmation. Of course, at the top of the tablet where

there were gaps due to erosion, Figures 6 and 12

are not the same, but it is evident that the calculated

data in Figure 12 can be regarded as filling in the

gaps. There are two minor disagreements in the two

tables. In line 13, the tablet does not show an inter-

nal \0" that is present in Figure 12. This could have
been the custom of the scribe in dealing with such

line value

1 59/0/15

2 56/56/58/14/50/6/15

3 55/7/41/15/33/45

4 53/10/29/32/52/16

5 48/54/l/40

6 47/6/41/40

7 43/11/56/28/26/40

8 41/33/45/14/3/45

9 38/33/36/36

10 35/10/2/28/27/24/26/40

11 33/45

12 29/21/54/2/15

13 27/0/3/45

14 25/48/51/35/6/40

15 23/13/46/40

Figure 12. Calculated Values of (B ÷ D)2

an event. In line 8, the scribe has written a digit \59"
where there should have been a consecutive pair of

digits, \45/14". Since 59 = 45 + 14, it is not dif-
ficult to invent several different ways in which an

error of this sort could have been made.

It should be remarked that Neugebauer and Sachs

did not use (B ÷ D)2 as a source for column A
but rather (C ÷ D)2. Because of the relationship
between B and C , and formula (1), one sees that
(C÷D)2 = (B÷D)2+1. Thus, the only effect of the
change would be to introduce an initial \1/" before
all the sexagesimals that appear in Figure 12, and the

reason for their choice was that they believed that

this was true for column A on the Plimpton tablet.
Others who have examined the tablet do not agree.

(I have not seen the tablet, and I do not believe it

matters which alternative is used.)

We now know the relationship of columns A, B,
and C . Referring to Figure 11, C is the hypotenuse,
B the vertical side, and A is the square of the slope
of the triangle; thus, in modern notation A = tan2 θ.
It is interesting to observe that the anomalous case

of line 11, with B = 45 and C = 75, turns out to be
the familiar 3, 4, 5 triangle; in the Babylonian case,
this would seem to have been the 3

4 , 1,
5
4 triangle,

since 45 = 3 × 4R and 75 = 1/15 = 5 × 4R. Of

course the triangle, the side D, and the parameters
(a, b) are all constructs of ours and not immediately
visible in the original tablet. All that we can assert

without controversy is that A = B2 ÷ (C2 − B2).
Let us reexamine some of our reasoning. In lines

2, 9, 13, and 15, the scribe recorded correct values

for A but incorrect values for C,B,B, and C , re-
spectively. This suggests strongly that A was not cal-
culated directly from the values of B and C , but that
A,B, and C were all calculated independently from
data that do not appear on the tablet; our hypothetical

pair (a, b) gains life. (Of course there is the possi-
bility that the tablet before us is merely a copy from

another master tablet.) In either case, it seems odd

that column A should be error free while columns

B and C , involving simpler numbers, should have
four errors.

Other questions can be raised. If, as argued by

Neugebauer, the purpose of the tablet was to record

a collection of integral-sided Pythagorean triangles

(triplets), why do we not see the values of D, or at
least the useful parameters (a, b)? And why would
one want the values in column A which are squares
of the slope? And why should the entries be ar-

ranged in an order that makes the numbers A de-

crease monotonically?
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12 Ancient Mathematics

Variants of this explanation have been proposed.

If one computes the values of the angle θ for each
line of the tablet, they are seen to decrease steadily

from about 45◦ to about 30◦, in steps of about 1◦.
Is this an accident? Could this tablet be a primitive

trigonometric table, intended for engineering or as-

tronomic use? But again, why is tan2 θ useful [3],
[6]?

Additional confirmation of such a hypothesis

could be given by an outline of a computational

procedure leading to the tablet, which makes all of

the errors plausible and also shows why they would

have occurred preferentially in columns B and C .
(See [1], [4], [7].)

Building upon an earlier suggestion of Bruins, an

intriguing explanation has been recently proposed by

Voils. In Nippur, a large number of \school texts"

have been found, many containing arithmetic exer-

cises. Among these, a standard puzzle problem is

quite common. The student is given the difference

(or sum) of an unknown number and its recipro-

cal and asked to find the number. If x is the num-
ber (called \igi") and xR is its reciprocal (called

\igibi"), then the student is to solve the equation

x− xR = d. Thus, the \igi and igibi" problems are
quadratic equations of a standard variety.

The school texts teach a specific solution algo-

rithm: \Find half of d, square it, add 1, take the
square root, and then add and subtract half of d."
This is easily seen to be nothing more than a ver-

sion of the quadratic formula, tailored to the \igi and

igibi" problems. Voils connects this class of prob-

lems, and the algorithm above, with the Plimpton

tablet as follows.

First, assume with Bruins that the tablet was com-

puted not from the pair (a, b) but from a single pa-
rameter, the number x = a ÷ b. Since a and b are
both \nice", the number x and its reciprocal xR can

each be calculated easily. Indeed, x = a × bR and

xR = b × aR, and aR and bR each appear in a

standard reciprocal table. Next observe that

B = a2 − b2 = (ab)(x− xR)

C = a2 + b2 = (ab)(x+ xR)

A =

(
B

D

)2

=

{
1

2
(x− xR)

}2

.

This shows that the entries A,B, C in the Plimpton
tablet could have been easily calculated from a spe-

cial reciprocal table that listed the paired values x
and xR. Indeed, the numbers B and C can be ob-

tained from x ± xR merely by multiplying these by

integers chosen to simplify the result and shorten the

digit representation. (See [1], [2], [7].)

Voils adds to this suggestion of Bruins the obser-

vation that the numbers A are exactly the results ob-
tained at the end of the second step in the solution

algorithm, (d/2)2, applied to an igi-igibi problem
whose solution is x and xR. Furthermore, the num-

bers B and C can be used to produce other problems
of the same type but having the same intermediate

results in the solution algorithm. Thus Voils pro-

poses that the Plimpton tablet has nothing to do with

Pythagorean triplets or trigonometry but, instead, is

a pedagogical tool intended to help a mathematics

teacher of the period make up a large number of igi-

igibi quadratic equation exercises having known so-

lutions and intermediate solution steps that are easily

checked [7].

It is possible to point to another weak confirma-

tion of this last approach. Suppose that we want a

graduated table of numbers x and their reciprocals
xR. We start with the class of all pairs (a, b) of rel-
atively prime integers such that b < a < 100 and
each integer a and b is \nice", factorable into powers
of 2, 3, and 5. It is then easy to find the terminating
Babylonian representation for both x = a ÷ b and
for xR = b÷a. Make a table of these, arranged with
x decreasing. Impose one further restriction:

√
3 < x < 1 +

√
2.

(This corresponds to the limitation 30◦ < θ < 45◦,
where θ is the base angle in the triangle in Figure
11.)

Then, the resulting list of pairs will coincide with

that given in Figure 10, the corrected Plimpton ta-

ble, except for three minor points. The pair (16, 9)
does not appear, the pair (125, 54) does appear, and
instead of the pair (2, 1) we have the pair (1, 1

2 ); in
passing, we recall that the last pair yields the stan-

dard 3, 4, 5 Pythagorean triangle.
Unlike Doyle's stories, this has no final resolu-

tion. Any of these reconstructions, if correct, throws

light upon the degree of sophistication of the Babylo-

nian mathematician and breathes life into what was

otherwise dull arithmetic. For other vistas into the

past, especially those that show us the beginnings

of computational astronomy, I refer the reader to the

bibliography. I can do no better than to close with

an analogy used by Neugebauer:

In the \Cloisters" of the Metropolitan Museum

in New York there hangs a magnificent tapestry

which tells the tale of the Unicorn. At the end
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BUCK: Sherlock Holmes in Babylon 13

we see the miraculous animal captured, grace-

fully resigned to his fate, standing in an en-

closure surrounded by a neat little fence. This

picture may serve as a simile for what we have

attempted here. We have artfully erected from

small bits of evidence the fence inside which

we hope to have enclosed what may appear

as a possible living creature. Reality, however,

may be vastly different from the product of our

imagination; perhaps it is vain to hope for any-

thing more than a picture which is pleasing to

the constructive mind, when we try to restore

the past.

| The Exact Sciences in Antiquity (p. 177)
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Words and Pictures: New Light on Plimpton 322

ELEANOR ROBSON

American Mathematical Monthly 109 (2002), 105{120

1 Introduction

In this paper I shall discuss Plimpton 322, one of

the world's most famous ancient mathematical arte-

facts [Figure 1]. But I also want to explore the

ways in which studying ancient mathematics is, or

should be, different from researching modern math-

ematics. One of the most cited analyses of Plimpton

322, published some twenty years ago, was called

\Sherlock Holmes in Babylon" [4]. This enticing ti-

tle gave out the message that deciphering historical

documents was rather like solving a fictional murder

Figure 1. Plimpton 322 (obverse). Drawing by the author.

mystery: the amateur detective-historian need only

pit his razor-sharp intellect against the clues pro-

vided by the self-contained story that is the piece of

mathematics he is studying. Not only will he solve

the puzzle, but he will outwit the well-meaning but

incompetent professional history-police every time.

In real life, the past isn't like an old-fashioned who-

dunnit: historical documents can only be understood
in their historical context.

Let's start with a small experiment: ask a friend

or colleague to draw a triangle. The chances are that

he or she will draw an equilateral triangle with a

14
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54

57; 30

25 52; 30

Figure 2. UM 29-15-709 (obverse). Drawing by the author [26, p. 29].

horizontal base. That is our culturally determined

concept of an archetypal, perfect triangle. However,

if we look at triangles drawn on ancient cuneiform

tablets like Plimpton 322, we see that they all point

right and are much longer than they are tall: very

like a cuneiform wedge in fact. A typical example

is UM 29-15-709, a scribal student's exercise, from

ancient Nippur, in calculating the area of a triangle

[Figure 2]. The scale drawing next to it shows how

elongated the sketch is.

We tend to think of mathematics as relatively

culture-free; i.e., as something that is out there, wait-
ing to be discovered, rather than a set of socially

agreed conventions. If a simple triangle can vary

so much from culture to culture, though, what hope

have we in relying on our modern mathematical sen-

sibilities to interpret more complex ancient mathe-

matics? Unlike Sherlock Holmes we cannot depend

solely on our own intuitions and deductive pow-

ers, and we cannot interrogate the ancient authors

or scrutinise their other writings for clues. We there-

fore have to exploit all possible available resources:

language, history and archaeology, social context, as

well as the network of mathematical concepts within

which the artefact was created. In the case of Plimp-

ton 322, for instance, there are three competing in-

terpretations, all equally valid mathematically. As I

shall show, it is these contextualising tools that en-

able us to choose between them.

Plimpton 322 is just one of several thousand

mathematical documents surviving from ancient Iraq

(also called Mesopotamia). In its current state,

it comprises a four-column, fifteen-row table of

Pythagorean triples, written in cuneiform (wedge-

shaped) script on a clay tablet measuring about 13

by 9 by 2 cm [20, Text A, pp. 38{41]. The hand-

writing of the headings is typical of documents from

southern Iraq of 4000{3500 years ago. Its second and

third columns list the smallest and largest member of

each triple|wecan think of them as the shortest side

s and the hypotenuse d of a right-angled triangle|
while the final column contains a line-count from 1

to 15. Part of the tablet has broken away at the begin-

ning of the first column but, depending on whether

you believe the column has fully survived or not,

it holds the square of either the hypotenuse or the
shortest side of the triangle divided by the square

of the longer side l. Whether it lists d2/l2 or s2/l2,
this column is in descending numerical order. The

numbers are written in the base 60, or sexagesimal,

place value system. I shall transliterate them with

a semicolon marking the boundary between integers

and fractions, and spaces in between the other sex-

agesimal places [Figure 3].

There have been three major interpretations of the

tablet's function since it was first published [Figure

4]:1

1. Some have seen Plimpton 322 as a form of

trigonometric table (e.g., [15]): if Columns II and

1Incidentally, we can dismiss immediately any suspicion that

Plimpton 322 might be connected with observational astronomy.

Although some simple records of the movements of the moon

and Venus may have been made for divination in the early sec-
ond millennium BCE, the accurate and detailed programme of

astronomical observations for which Mesopotamia is rightly fa-

mous began a thousand years later, at the court of the Assyrian

kings in the eighth century BCE [3].
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16 Ancient Mathematics

[ta]-ki-il-ti s.i-li-ip-tim
[sa 1 in]-na-as-s �a-hu-ma SAG i-il-lu- �u �IB.SI8 SAG �IB.SI8 s.i-li-ip-tim MU.BI.IM

[(1) 59] 00 15 1 59 2 49 KI.1

[(1) 56 56] 58 14 50 06 15 56 07 1 20 25 KI.2

[(1) 55 07] 41 15 33 45 1 16 41 1 50 49 KI.3

(1) 53 10 29 32 52 16 3 31 49 5 09 01 KI.4

(1) 48 54 01 40 1 05 1 37 KI.[5]

(1) 47 06 41 40 5 19 8 01 [KI.6]

(1) 43 11 56 28 26 40 38 11 59 01 KI.7

(1) 41 33 45 14 3 45 13 19 20 49 KI.8

(1) 38 33 36 36 8 01 12 49 KI.9

(1) 35 10 02 28 27 24 26 40 1 22 41 2 16 01 KI.10

(1) 33 45 45 1 15 KI.11

(1) 29 21 54 2 15 27 59 48 49 KI.12

(1) 27 00 03 45 2 41 4 49 KI.13

(1) 25 48 51 35 6 40 29 31 53 49 KI.14

(1) 23 13 46 40 28 53 KI.15

Figure 3. Transliteration of Plimpton 322.

line α p q x 1/x
1 44.76◦ 12 5 2 24 25

2 44.25◦ 1 04 27 2 22 13 20 25 18 45

3 43.79◦ 1 15 32 2 20 37 30 25 36

4 43.27◦ 2 05 54 2 18 53 20 25 55 12

5 42.08◦ 9 4 2 15 26 40

6 41.54◦ 20 9 2 13 20 27

7 40.32◦ 54 25 2 09 36 27 46 40

8 39.77◦ 32 15 2 08 28 07 30

9 38.72◦ 25 12 2 05 28 48

10 37.44◦ 1 21 40 2 01 30 29 37 46 40

11 36.87◦ 2 1 2 30

12 34.98◦ 48 25 1 55 12 31 15

13 33.86◦ 15 8 1 52 30 32

14 33.26◦ 50 27 1 51 06 40 32 24

15 31.89◦ 9 5 1 48 33 20

Figure 4. The proposed restorations at the beginning of the tablet according

to the trigonometric, generating function, and reciprocal pair theories.

III contain the short sides and diagonals of right-

angled triangles, then the values in the first col-

umn are tan2 or 1/ cos2|and the table is ar-
ranged so that the acute angles of the triangles

decrease by approximately 1◦ from line to line.

2. Neugebauer [19], and Aaboe following him, ar-

gued that the table was generated like this:

If p and q take on all whole values subject
only to the conditions

(1) p > q > 0,
(2) p and q have no common divisor (save

1),

(3) p and q are not both odd,

then the expressions

x = p2 − q2 [our s],

y = 2pq [our l],

z = p2 + q2 [our d],

will produce all reduced Pythagorean num-

ber triples, and each triple only once [1, pp.

30{31].

The quest has then been to find how p and q were
chosen.
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Figure 5. Map of the archaeological sites mentioned in the text. Drawing by the author.

3. Finally, the interpretation first put forward by

Bruins [5], [6] and repeated in a cluster of inde-

pendent publications about twenty years ago [4],

[9], [30] is that the entries in the table are de-

rived from reciprocal pairs x and 1/x, running in
descending numerical order from 2;24 ∼ 0;25 to

1;48∼ 0;33 20 (where∼ marks sexagesimal reci-
procity). From these pairs the following \reduced

triples" can be derived:

s′ = s/l = (x− 1/x)/2,

l′ = l/l = 1,

d′ = d/l = (x+ 1/x)/2.

The values given on the tablet, according to this

theory, are all scaled up or down by common fac-

tors 2, 3, and 5 until the coprime values s and d
are reached.

How are we to choose between the three theories?

Internal mathematical evidence alone clearly isn't

enough. We need to develop some criteria for as-

sessing their historical merit. In general, we can say

that the successful theory should not only be mathe-

matically valid but historically, archaeologically, and

linguistically sensitive too.

A great deal of emphasis has been laid on the

uniqueness of Plimpton 322; how nothing remotely

like it has been found in the corpus of Mesopotamian

mathematics. Indeed, this has been an implicit argu-

ment for treating Plimpton 322 in historical isolation.

Admittedly we know of no other ancient table of
Pythagorean triples, but Pythagorean triangles were

a common subject for school mathematics problems

in ancient Mesopotamia. This point has been made

before (e.g., by Friberg [9]) but hasn't yet proved

particularly helpful in deciding between the three

interpretations of Plimpton 322. What we shall do

instead is to make some new comparisons. None of
the comparative material itself is new though: all but

one of the documents I have chosen were published

at the same time as Plimpton 322 or decades earlier.

First, Plimpton 322 is a table. Hundreds of

other tables, both mathematical and nonmathemat-

ical, have been excavated from Mesopotamian ar-

chaeological sites. What can we learn from them?

Second, if Plimpton 322 is a trigonometry table,
then there should be other evidence of measured an-

gle from Mesopotamia. We shall go in search of this.

Third, Plimpton 322 contains words as well as

numbers: the headings at the top of each column

should tell us what the tablet is about. Some of the

more difficult words also appear on other mathemat-

ical documents from Mesopotamia. Can they help us

to understand their function on Plimpton 322?

Finally, Plimpton 322 was written by an individ-
ual. What, if anything, can we say about him or her,
and why the tablet was made?



\master" | 2011/4/5 | 12:53 | page 18 | #28
i

i

i

i

i

i

i

i

18 Ancient Mathematics

2 Turning the tables on

generating functions

Let's start with some very general contextualisation.

We can learn a lot about any tablet simply from its

size, shape, and handwriting.

Plimpton 322 is named after its first Western

owner, the New York publisher George A. Plimp-

ton (see Donoghue [8]). He bequeathed his whole

collection of historical mathematical books and arte-

facts to Columbia University in the mid-1930s along

with a large number of personal effects. Surviving

correspondence shows that he bought the tablet for

$10 from a well-known dealer called Edgar J. Banks

in about 1922 [2]. Banks told him it came from an

archaeological site called Senkereh in southern Iraq,

whose ancient name was Larsa [Figure 5].

Vast numbers of cuneiform tablets were being il-

licitly excavated from Larsa at that time. Several

big museums, such as the Louvre in Paris, Oxford's

Ashmolean Museum, and the Yale Babylonian Col-

lection bought thousands of them. Although Plimp-

ton 322 doesn't look much like other mathematical
tablets from Larsa, its format is strikingly similar

to administrative tables from the area, first attested

from the late 1820s BCE. The tablet YBC 4721 [12,

no. 103], for example, is an account of grain des-

tined for various cities within the kingdom of Larsa

[Figure 6]. It was written in the city of Ur, then un-

der Larsa's political control, in 1822 BCE and is now

housed at Yale.

Like Plimpton 322 it is written on a \landscape"

format tablet (that is, the writing runs along the

longer axis) with a heading at the top of each col-

umn. Entries in the first column are sorted into de-

scending numerical order. Calculations run from left

to right across the table, while the final column lists

the names of the officials responsible for each trans-

action. Although the scribes of Larsa mostly used the

cuneiform script to write a Semitic language called

Akkadian, they often used monosyllabic words from

a much older language, Sumerian, as a kind of short-

hand. Like the final column of Plimpton 322, the last

heading on YBC 4721 carries the Sumerian writing

MU.BI.IM for Akkadian sumsu (\its name"). Unlike
Plimpton 322 though, the text is dated in the final

line. There are about half a dozen published tables

from the Larsa area with these same characteristics:

all of them are dated to the short period 1822{1784

BCE and so, therefore, is Plimpton 322.

So we can already say that Plimpton 322 was

written by someone familiar with the temple admin-

istration in the city of Larsa around 1800 BCE, at

least twenty years before its conquest by Babylon in

1762. Sherlock Holmes, if he ever made it to Baby-

lon, would have been over 100 miles away from the

action: no ancient mathematics has ever been found

there.

And the fact that Plimpton 322 follows the same

formatting rules as all other tables from ancient

Larsa leads us to dismiss Neugebauer's theory of

generating functions. If the missing columns at the

left of the tablet had listed p and q, they would not
have been in descending numerical order and would

thus have violated those formatting rules. Nor, under

this theory, has anyone satisfactorily explained the

presence of Column I in the table. There are other

good reasons to eliminate the generating function

theory; I deal with them in [29]. The trigonometry

table and the reciprocal pairs remain.

3 Circling round trigonometry

We saw at the beginning of this article how differ-

ently from us the people of ancient Mesopotamia

thought about triangles; that contrast with modern

concepts runs right through their plane geometry.

For instance, YBC 7302 [20, p. 44] is roughly

contemporary with Plimpton 322 [Figure 7]. From

its circular shape and size (about 8 cm across) we

know the tablet was used by a trainee scribe for

school rough work. It shows a picture of a circle

with three numbers inscribed in and around it in

cuneiform writing: 3 on the top of the circle, 9 to
the right of it, and 45 in the centre. Now 9 is clearly
the square of 3, but what is the relationship of these
numbers to 45? The answer lies in the spatial ar-
rangement of the diagram. Looking closely, we can

see that the 3 lies directly on the circumference of
the circle, while the 45 is contained within it. The
9, on the other hand, has no physical connection to
the rest of the picture. If on this basis we guess that

3 represents the length of the circumference and 45
the area of the circle, we should be looking for the

relationship A = c2/4π. We have the c2|that's the
9|and if we use the usual Mesopotamian school
approximation π ≈ 3, we get A = 9/12. This trans-
lates in base 60 to 45/60, namely, the 45 written in
the circle.

When we teach geometry in school we have our

students use the relationship A = πr2; none of us,

I would guess, would use A = c2/4π as a formula
for the area of a circle. In modern mathematics the
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Grain debit For Ur For Mar-. . . For . . . . . . Total Its name
301 <gur> 301 <gur> 301 <gur> Lipit-Suen
301 <gur> 214 gur, 285 sila 86 gur 15 sila 301 <gur> Nur-Dagan
296 <gur> 180 gur [60 gur] 56 <gur> 296 gur Ili-eriba
277 gur 200 sila [ ] 277 <gur> 200 sila 277 <gur> 200 sila Samas-kima-ilisu
From 23 gur 40 sila of [Samas-. . . -aplu's] troops/workers.

1176 gur 20 sila 481 <gur> 274 <gur> 485 sila 420 gur 95 sila 1176 gur 20 sila
From the grain of Lu-am-. . .
And from 23 gur 40 sila of Samas-. . . -aplu's troops/workers.
Month 1, day 7,

Year that Rim-Sin became king (1822 BCE).

Figure 6. YBC 4721, after Grice [12, pl. XL]. 1 gur = 300 sila ≈ 300 litres.

3

945

Figure 7. YBC 7302 (obverse). Drawing by the author.
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20 Ancient Mathematics

circle is conceptualised as the area generated by a

rotating line, the radius. In ancient Mesopotamia, by

contrast, a circle was the shape contained within an

equidistant circumference: note that there is no ra-

dius drawn on YBC 7302. There are many more

examples of circle calculations from the early sec-

ond millennium, and none of them involves a ra-

dius. Even when the diameter of a circle was known,

its area was calculated by means of the circum-

ference. We also see this conceptualisation in the

language used: the word kippatum, literally \thing
that curves," means both the two-dimensional disc

and the one-dimensional circumference that defines

it. The conceptual and linguistic identification of a

plane figure and one of its external lines is a key

feature of Mesopotamian mathematics. For instance,

the word mithartum (\thing that is equal and op-

posite to itself") means both \square" and \side of

square." We run into big interpretational problems

if we ignore these crucial terminological differences

between ancient Mesopotamian and our own math-

ematics.

What does this tell us about Plimpton 322? That

if plane figures were conceptualised, named, and de-

fined from the inside out, then the centre of the circle

and the idea of the rotating radius could not have

played an important part in Mesopotamian mathe-

matics. And if the rotating radius did not feature

in the mathematical idea of the circle, then there

was no conceptual framework for measured angle

or trigonometry. In short, Plimpton 322 cannot have

been a trigonometric table.

This should have been our intuition on later his-

torical grounds anyway. Nearly two millennia after

Plimpton 322 was written, Ptolemy conceptualised

the circle as a diameter rotating about its centre in

order to simplify his calculations of chords of arc|

but those chords were functions of arc, not of an-

gle (Toomer [31, p. 47]). (Ptolemy, working in Ro-

man Egypt in the second century CE, was heavily re-

liant on Mesopotamian traditions: he used astronom-

ical data from first millennium Assyria and Babylo-

nia, adapted Mesopotamian mathematical methods,

and even calculated in base 60.) Over the following

millennium several generations of Indian and Iraqi

scholars compiled tables of half-chords, but the con-

ceptual transition from arc to angle was slow and

halting.

Returning to the early second millennium BCE, I

should emphasise two points. First, I do not mean

that the ancient Mesopotamians did not know that

circles could be generated by rotating radii. There is

Figure 8. BM 15285 (detail). Drawing by the author [25,

p. 214].

a great deal of visual evidence to show that they did.

For example, BM 15285, a compilation of plane ge-

ometry problems from Larsa, depicts several circles

whose deeply impressed centres reveal that they were

drawn by means of rotating compasses [Figure 8].

But Mesopotamian mathematical concepts were as

socially bounded as ours are: although we often draw

circles free-hand without radii, even in mathematics

classes, it would rarely cross our minds to teach our

students A = c2/4π. Equally, radii were known and
used in ancient Mesopotamia, but played little part

in the dominant outside-in conceptualisation of plane

geometry. Second, neither do I mean that there was

no concept of angle at all in ancient Mesopotamia.
Gradients were used to measure the external slope

of walls and ramps in formulations like \for every

1 cubit depth the slope (of the canal) is 1/2 cubit"

(YBC 4666, rev. 25; [20. text K]). There was also

a rough distinction made between right angles and

what we might call \wrong angles," namely, those

configurations for which the Pythagorean rule held

true or not, with probably a 10◦ to 15◦ leeway (see

Robson [24]).

To sum up so far: the theory of generating

functions is organisationally implausible, while the

trigonometric theory is conceptually anachronistic.

We are left with the theory of reciprocal pairs|how

does it measure up to our historical expectations?

4 Words count too:

reciprocal pairs

We can start by recognising that reciprocal pairs|

unlike generating functions or trigonometry|played

a key role in ancient Mesopotamian mathematics.

Our best evidence is from the scribal schools of
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Two thirds of 1 is 0;40. The reciprocal of 24 is 0;02 30.

Its half is 0;30. The reciprocal of 25 is 0;02 24.

The reciprocal of 2 is 0;30. The reciprocal of 27 is 0;02 13 20.

The reciprocal of 3 is 0;20. The reciprocal of 30 is 0;02.

The reciprocal of 4 is 0;15. The reciprocal of 32 is 0;01 52 30.

The reciprocal of 5 is 0;12. The reciprocal of 36 is 0;01 40.

The reciprocal of 6 is 0;10. The reciprocal of 40 is 0;01 30.

The reciprocal of 8 is 0;07 30. The reciprocal of 45 is 0;01 20.

The reciprocal of 9 is 0;06 40. The reciprocal of 48 is 0;01 15.

The reciprocal of 10 is 0;06. The reciprocal of 50 is 0;01 12.

The reciprocal of 12 is 0;05. The reciprocal of 54 is 0;01 06 40.

The reciprocal of 15 is 0;04. The reciprocal of 1 00 is 0;01.

The reciprocal of 16 is 0;03 45. The reciprocal of 1 04 is 0;00 56 15.

The reciprocal of 18 is 0;03 20. The reciprocal of 1 21 is 0;00 44 26 40.

The reciprocal of 20 is 0;03. <Its half>

Figure 9. MLC 1670, after Clay [7, 37].

nineteenth and eighteenth century Larsa, Ur, and

Nippur, where thousands of surviving practice copies

show that scribal students had to learn their sexages-

imal multiplication tables in the correct order and by

heart. The first part of the series was the set of thirty

standard reciprocal pairs encompassing all the sex-

agesimally regular integers from 2 to 81 (thereby

including the squares of the integers 1 to 9) [Fig-

ure 9]. The trainees also learned how to calculate the

reciprocals of regular numbers that were not in the

standard list and practised division by means of find-

ing reciprocals, as this was how all Mesopotamian

divisions were carried out (see Robson [26, pp. 19{

23].

Looking at the reciprocals proposed as the start-

ing point for Plimpton 322 [Figure 4], it turns out

that although only five pairs occur in the standard

list, the other ten are widely in evidence elsewhere

in Mesopotamian mathematics (as constants, for in-

stance), or could be calculated trivially using meth-

ods known to have been taught in scribal schools.

None of them is more than four sexagesimal places

long, and they are listed in decreasing numerical or-

der, thereby fulfilling our tabular expectations. But

we haven't yet explained the purpose of the first sur-

viving column: what are all those s2/l2 (or d2/l2)
doing there?

The headings at the top of the table ought to tell

us: that, after all, is their function. We have already

seen that the last column, which contains only a line-

count, is headed like the other tables from Larsa with

the signs MU.BI.IM meaning šumšu (\its name").
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The two columns immediately preceding that, we

remember, contain what we can conveniently think

of as the shortest sides and diagonals of right-angled

triangles. They are headed �IB.SI8 SAG and �IB.SI8 s.i-
li-ip-tim for mith

˘
arti pūtim and mith

˘
arti s. iliptim

(\square of the short side" and \square of the di-

agonal," respectively). This contradiction disappears

when we recall that Mesopotamian plane figures are

defined and named for their key external lines. We

can thus adjust our translations to read \square-side"

of the short side and diagonal, respectively. (I am us-

ing the translation \diagonal" here rather than \hy-

potenuse" to indicate that this is a general word for

the transversal of a figure, not restricted to triangles.)

Last and by far the most difficult, the heading of

the first surviving column reads

[ta]-ki-il-ti s.i-li-ip-tim
[sa 1 in]-na-as-s �a-h

˘
u-�u-ma SAG i-il-lu- �u

(for Akkadian takilti s. iliptim sa istēn
innassah

˘
ûma pūtum illû),

where square brackets mark missing cuneiform signs

that I have restored. Surprisingly, no one has been

able to improve convincingly on the translation made

by Neugebauer and Sachs when they first published

Plimpton 322 [20, p. 40]. They were uncertain about

the first word and the last word, as well as what was

missing at the beginning of the second line. In fact

the last word is legible, if a little squashed. The

breaks at the beginnings of the lines can be filled in,

and the whole understood, through comparison with

other mathematical documents that use the same ter-

minology. We end up with something like this:

The takiltum-square of the diagonal from which
1 is torn out, so that the short side comes up.

To understand what exactly that means, and how it

relates to the reciprocal pairs, we need to look at one

more mathematical tablet, YBC 6967 [20, text Ua].

This tablet is almost certainly from late nineteenth

to early eighteenth century Larsa, like Plimpton 322.

It contains instructions for solving a school problem

about reciprocal pairs. As Jens H�yrup has shown,

we can best understand this sort of mathematics not

as algebra but as a very concrete cut-and-paste geom-

etry [13, pp. 262{266]. Once again square brackets

show restorations of missing text.

[A reciprocal] exceeds its reciprocal by 7. What

are [the reciprocal] and its reciprocal?

The product of the mystery reciprocals is by def-

inition 1 (or any power of 60). The fact that their

difference is an integer suggests that we should think

of them as integers too. We can thus conceptualise

them as the unknown lengths of a rectangle with

area 60 [Figure 10].

You: break in half the 7 by which the reciprocal

exceeds its reciprocal, and 3;30 (will come up).

Multiply 3;30 by 3;30 and 12;15 (will come

up).

Following the instructions, we can move the broken

piece of the rectangle to form an L-shaped figure,

still of area 60, around an imaginary square of area

12 1/4.

Append [1 00, the area,] to the 12;15 which

came up for you and 1 12;15 (will come up).

What is [the square-side of 1] 12;15? 8;30.

Together, therefore, they comprise a large square of

area 72 1/4 and side 8 1/2.

Put down [8;30 and] 8;30, its equivalent, and

subtract 3;30, the takiltum-square, from one (of
them); append (3;30) to one (of them). One is

12, the other is 5. The reciprocal is 12, its re-

ciprocal 5.

We remove the vertical side of the imaginary small

square from that of the large composite square, re-

verting to the smaller side of the original rectangle,

a side whose length is 5. We find the longer side

of the rectangle by adding the horizontal side of the

imaginary square onto that of the large composite

square and arrive at the answer 12.

If instead we choose a reciprocal pair whose prod-

uct is not 60 but 1, their product can be imagined

as a much longer, narrower rectangle than in Fig-

ure 10. But the semidifference of the reciprocals,

(x − 1/x)/2, can still be found and the rectangle
rearranged to form an L-shaped gnomon, still of

area 1. Its outer edges will still be the lengths of

a large square, and its inner edges the lengths of

a small square. That is, we will have a composite

large square that is the sum of 1 (itself a square)

and an imaginary small square. This set of three

squares, all generated by a pair of reciprocals, obeys

the Pythagorean rule d2 = s2 + l2. Their sides, in
other words, are the Pythagorean triple we have been

looking for.

Let us look again at the heading of Column I:

The takiltum-square of the diagonal from which
1 is torn out, so that the short side comes up.

It describes the area of the large square, composed of

1 plus the small square|the verb ilûm (\come up"),
we have seen, is the standard term for \to result."

Our restoration dilemma is now solved: we should
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7

60

12¼

3½

60

[A reciprocal] exceeds its reciprocal by 7.
What are [the reciprocal] and its reciprocal?
You: break in half the 7 by which the reciprocal
exceeds its reciprocal, and 3;30 (will come up).
Multiply 3;30 by 3;30 and 12;15 (will come up).
Append [1 00, the area,] to the 12;15 which came up
for you and 1 12;15 (will come up).
What is [the square-side of 1] 12;15? 8;30.
Put down [8;30 and] 8;30, its equivalent, and subtract
3;30, the -square, from one (of them); append
(3;30) to one (of them).
One is 12, the other is 5.
The reciprocal is 12, its reciprocal 5.

takiltum

3
½

Figure 10. YBC 6967, after Neugebauer and Sachs [20, pl. 17].

put 1s at the beginning of every entry. There is one

small terminological discrepancy left to deal with: in

Plimpton 322 takiltum refers to the area of the large
composite square, while in YBC 6967 it means the

side of the small imaginary square. We know by now

to expect squares and their sides to be named iden-

tically so that is not a problem. The word itself, a

technical derivative of the verb kullum (\to multiply
lengths together into areas") does not suggest that

its meaning should be restricted to either the little

square or the big square but that its pattern of at-

testation is restricted to exactly these cut-and-paste

geometrical scenarios.

We have found, then, the most historically, cul-

turally, and linguistically convincing of our three in-

terpretations of Plimpton 322: a list of regular re-

ciprocal pairs, each four places long or shorter, was

drawn up in the usual decreasing numerical order on

the missing part of the tablet. They were used to find

the short sides s and diagonals d of triangles with
long sides of length l = 1 by the method of complet-
ing the square. One of the intermediate results was

recorded in the first extant column. Then common

factors were eliminated from the triples produced to

give the coprime short sides and diagonals listed in

Columns II and III.

All we need to know now is who wrote Plimp-

ton 322 and for what purpose|but that is easier said

than done!

5 In search of an author

Ancient Mesopotamia was a culture that prized

anonymised tradition over individual creativity. Even

the greatest works of literature were attributed

to deities or to long-dead historical figures (see

Michalowski [17]). It is very unlikely that we will

ever be able to put a name to our author, let alone

outline his or her personality or life history. We can

find out a great deal of more general information

though. For instance, it is virtually certain that our

author was male: all the known female scribes from

ancient Mesopotamia lived and worked much further

north, in central and northern Iraq. We can also rule

out the possibility that our author was a mathemati-

cian in either of the senses we normally mean. He
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[If each] square side is […], what is the area?
[If each] square side is […], what is the area?
[If] each square side is 20, what is the diagonal?
[If] each square side is 10, what is the border?
If the area is 8 20, what is the circumference?
If the area is 2 13 20, what is the circumference?
If the area is 3 28 20, what is the circumference?
If the area is 5, what is the circumference?
To the area of the circle add 1/2 a length: 8 25.
From the area of the circle take 1/2 a length: 8 15.
To the area of the circle add 1 length: 8 30.
From the area of the circle take 1 length: 8 10.
To the area of the circle add 1 1/3 lengths: 8 33 20.
From the area of the circle take 1 1/3 lengths: 8 06 40.
To the area of the circle add 1 1/2 lengths: 8 35.
[From] the area of the circle take 1 1/2 lengths: 8 05.
[To] the area of the circle add 1 2/3 lengths: 8 36 [40].

Figure 11. BM 80209 (obverse). Drawing by the author.

cannot have been a professionalmathematician|the
professionalisation of academic disciplines is a phe-

nomenon of the very recent past. Nor was he likely

to have been an amateur mathematician like those
of Classical Antiquity and the Middle Ages, i.e., an

educated member of the merchant classes or ruling

elite for whom wealth, high status, or royal patronage

provided enough leisure time to indulge his mathe-

matical inclinations [18, ch. 7]. There is not one

example of this type of individual in the whole of

Mesopotamia's three-thousand year history. Rather,

he must have been someone who used literacy, arith-

metic, and mathematical skills in the course of his

working life.

We can say something more positive about the au-

thor's identity by recalling some of our earlier con-

clusions. First, the methods used to construct Plimp-

ton 322|reciprocal pairs, cut-and-paste geometry,

completing the square, dividing by regular common

factors|were all simple techniques taught in scribal

schools. Our author could have been a trainee scribe

or a teacher. Second, he was familiar with the for-

mat of documents used by the temple and palace

administrators of Larsa. That rules out the option

that he was a student, but indicates instead that he

was a professional bureaucratic scribe. In that case

he would have been highly numerate, for the vast

majority of ancient administrative documents related

to quantity surveying or accountancy. If the author

of Plimpton 322 was a teacher, then he was almost

certainly a bureaucrat too: we know the names and

primary professions of about half a dozen ancient

Mesopotamian teachers, and all of them had careers

in temple administration.

It is highly unlikely, however, that Plimpton 322

was written for the temple bureaucracy: its organ-

isational structure most closely resembles a class

of school mathematics documents that we might

call \teachers' problem lists." A good example is

BM 80209, originally from ancient Sippar near mod-

ern Baghdad but now housed in the British Museum

[10]. It repeats a few school mathematics problems

over and over, each time giving a different set of

numerical data that will yield a tidy integer answer

[Figure 11]. Plimpton 322 is also a repetition of the

same mathematical set-up fifteen times, each with a

different group of well-behaved regular numbers. It

would have enabled a teacher to set his students re-

peated exercises on the same mathematical problem,

and to check their intermediate and final answers

without repeating the calculations himself.

6 Conclusions

I stated at the beginning that this paper would

be both about Plimpton 322 and about historical
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methods more generally. A great deal of the history

of mathematics concerns periods, languages, and set-

tings that we know a lot about and share common

ground with: we are already more or less familiar

with Galois's cultural background, for instance, or

Newton's. We are also helped enormously by know-

ing their identities, their life histories, other writings

by them and their contemporaries. This allows us to

contextualise the mathematical content of their work,

helping us to understand it as they did. But when we

start to study mathematics from cultures whose lan-

guages, social practices, and common knowledge we

do not share, we have to work considerably harder

at positioning it within a historically and mathemat-

ically plausible framework.2

Plimpton 322, analysed solely as a piece of math-

ematics, looked very modern, although it was im-

possible to say which branch of modern mathemat-

ics it most closely resembled: trigonometry, num-

ber theory, or algebra. It seemed millennia ahead

of its time, incomparably more sophisticated than

other ancient mathematical documents. But if we

treat Plimpton 322 as a cuneiform tablet that just

happens to have mathematics on it, a very different

picture emerges. We see that it is a product of a very

particular place and time, heavily dependent on the

ancient scribal environment for its physical layout

as a table, its mathematical content, and its func-

tion as a teacher's aid. All the techniques it uses are

widely attested elsewhere in the corpus of ancient

Mesopotamian school mathematics. In this light we

can admire the organisational and arithmetical skills

of its ancient author but can no longer treat him as

a far-sighted genius. Any resemblance Plimpton 322

might bear to modern mathematics is in our minds,

not his.
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1 600 B.C.–400 B.C.
1.1 Introduction

Isolated arithmetical and geometrical facts were,
without doubt, known in prehistoric times much as
such facts are now known among the most prim-
itive tribes. Rather advanced mathematical knowl-
edge appears in ancient Egyptian papyri (for instance
in the Rhind Papyrus of the 14th century B.C.) and on
numerous Babylonian cuneiform texts dating from
2000 B.C. onwards. Certainly the Greeks learned
many of the algebraic methods and the techniques of
geometric measurements from these ancient peoples
through the lively commerce of the Eastern Mediter-
ranean. Our reports begin with Greek mathematics
after 600 B.C.

1.2 Sources

The sources for the history of mathematics in Greece
during the period from 600 B.C. to 400 B.C. are very
scarce and unreliable. We have a fragment of math-
ematical history by Eudemus (ca. 320 B.C.) in an
excerpt of the sixth century A.D. This fragment itself
is in a bad state, corrupted by later changes. There
are, however, scattered among the works of Greek
authors, enough passages concerned with the math-
ematics and mathematicians of Ancient Greece, for
us to derive a fairly clear idea of this early period.

1.3 Early Greeks

While there is no mathematician known from ancient
Egypt or Babylon, we do know the names of famous
Greek mathematicians.

Thales (ca. 600 B.C.) of Miletus (see map), who
was probably of Phoenician origin, is known as the
father of Greek mathematics. He had many disciples.
It may be that there is a direct connection between
him and Pythagoras (ca. 550 B.C.) from Samos. The
latter, who was the head of an aristocratic brother-
hood, a school of wisdom and science, was a polit-
ical and philosophical leader in Southern Italy. He
emphasized the importance of mathematics in the
higher or liberal education, and for many centuries
his name invoked an aura of mysticism. After his
death, his school flourished for more than a hundred
years, and numbered several famous mathematicians
among its members. They will be mentioned in the
second section.
Hippocrates of Chios (ca. 450 B.C.) was proba-

bly not connected with the Pythagoreans. He taught
mathematics at Athens. We have a fragment of his
mathematical work transmitted by Eudemus. This
is the first published mathematical investigation
known. Hippocrates is probably also the author of
the first manual of geometry.
Hippias of Elis (ca. 430 B.C.) was a famous

Sophist, a man with vast knowledge in mathematics
and astronomy. An outstanding teacher, he was paid
for his courses, which he gave mainly at Athens,
where teaching and research in mathematics were
concentrated at the end of the period with which the
present report is concerned.
Even in this early period we begin to see many of

the features of modern scientific activity: authors fa-
mous for their achievements, ambitious to find new
results; renowned teachers; pupils eager to learn;
books where results are collected, digested, and pre-
sented in such a way that the reader understands

27
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the facts and proofs, and is inspired to do research

himself.

1.4 Achievements

What is left to us of Babylonian and Egyptian math-

ematics shows only prescriptions for computations

or for solutions of particular problems. But we find

in the old Greek mathematics, proofs of the given

solutions of problems and of the various theorems;

we find convincing explanations. Great problems are

proposed and treated. Problems of construction are

solved with the help of ruler and compass. Among

such problems are the conversion of areas into each

other (see Figure 1), the most important case being

the squaring of the rectangle; and the construction of

the regular pentagon by means of the golden ratio.

Figure 1.

Also propounded at this period were three clas-

sical problems of construction: the squaring of the

circle, the trisection of an angle, and the duplica-

tion of the cube. The first two problems stimulated

the construction of the first curve apart from the

\naturally" given circle. This curve, which was in-

vented by Hippias, is the quadratrix, whose equa-

tion in rectangular coordinates is y = x cot(πx/2r).
The construction of points on this curve, approach-

ing the y-axis at the level y = 2r/π, corresponds
to the Archimedean computation of the perimeters

of regular polygons approaching the circumference

of a circle. In the construction of Hippias, the lim-

iting process is visualized by the continuous curve

approaching the y-axis.
The problems of trisecting an angle and of dupli-

cating the cube led to new mechanical devices other

than the compass, and finally, at the beginning of the

next period, resulted in the discovery of the conics.

1.5 Theorems

Probably the first theorems, found by the Greeks,

were propositions about angles. The Pythagorean
theorem, as a relation between the lengths of the
sides of a right triangle, was in all likelihood al-

ready known to the Babylonians; as a theorem about
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areas it is perhaps a Greek achievement. At all
events, the knowledge of this theorem which was
always attributed to Pythagoras himself, was a mat-
ter of great moment to all educated Greeks.
Endeavoring to square the circle, Hippocrates dis-

covered areas bounded by two circular arcs which
could be constructed by compass and rule. The sim-
plest case is indicated in Figure 1, in which the two
shaded areas are equal.
To this period belongs the discovery and the con-

struction of the five regular solids.
The greatest achievement of this epoch was the

discovery and proof of the existence of irrational
ratios in the incommensurability of side and diag-
onal of a square. Whether the original proof was
given by arithmetical or geometrical methods is un-
known. This was the first example of a mathematical
truth contrary to naively simplifying intuition. The
necessity for a strict proof became apparent, and this
influenced the whole development of mathematics in
the direction of rigor.
Further, we have the discovery of the projection

of the infinite process of counting into arithmetical,
geometrical, and kinematic ideas. These phenomena
were found and discussed by the Eleates (Elea, a
city of Southern Italy). The finite sum of an infinite
geometric progression, the indefinite subdivision of
a finite line or of a finite movement were all in con-
tradiction to naive intuition and provoked profound
problems as well as new constructions in Philosophy.

2 400 B.C.–300 B.C.
2.1 Survey of the century

The most important men of this period are Plato
and Aristotle. They clarified the aims and methods
of scientific work. Not only did they dominate the
spiritual life of this era, but they have remained to
the present day—at different times one more than the
other—the leaders of all people struggling to find the
truth and to order the world of phenomena.
We owe to this period the outstanding system-

atic work on mathematics by Euclid (ca. 300 B.C.).
It was used as a textbook soon after it was writ-
ten, superseding all other textbooks written before
it. Euclid’s work was the only textbook for the ele-
ments of mathematics everywhere until about one
hundred and fifty years ago and is even used in some
countries today (for example, England).
A little older than Euclid’s Elements is the old-

est mathematical treatise preserved in its original

form—a work of Autolycus belonging to the domain
of applied mathematics which describes the simplest
phenomena of the movement of the stars as phenom-
ena in the geometry of the sphere.
The Academy founded by Plato about 380 B.C.

at Athens favored the study of mathematics. Im-
portant progress was made at the Academy in
both mathematical method and mathematical knowl-
edge. Typical scholarly work was done in the Peri-
patetic School founded by Aristotle about 350 B.C.
at Athens. Eudemus, a member of this school, was
the author of the first history of mathematics. For
the larger part of this century Athens was the center
of mathematics. However, at the end of the period,
in line with political developments, Alexandria, the
city founded in Egypt in 331 B.C. by Alexander the
Great, became an important cultural and especially
mathematical center. Euclid taught here.

2.2 Mathematical reasoning

The philosophical discussions of this period led the
mathematician to a higher level of consciousness of
what he was doing. He became aware that the objects
of his geometrical research had no existence in the
outer reality appearing to our senses. They are some-
thing between this reality and the realm of ideas to
which such concepts as that of the integers belong.
Further he was taught that it was his duty to for-

mulate the foundations of his deductions, the defini-
tions as well as the basic suppositions (the axioms).
Also the form of the deduction itself was strongly
influenced by the philosophical discussions.
The analytical method was introduced. This

method starts with the assumption that the required
construction has been carried out, and so leads to
simpler figures easier to construct. Thereafter, one
returns to the original problem of construction.
Connected with this method is the method of indi-

rect proofs of theorems, which was probably already
used in the first period, but now was in a certain
sense the fashion in mathematical works. Aristotle
laid the logical foundations upon which this method
rests, the axiom of contradiction and the axiom of the
excluded third. Both devices have turned out to be
of great importance in modern discussions of mathe-
matical methods.
A special case of the indirect proof appears in the

method of exhaustion, indispensable for the proofs of
theorems concerning areas not bounded by straight
lines or volumes of general polyhedra (for example,
pyramids).
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2.3 Various achievements

A great achievement was the invention of a sound

method of handling irrational ratios: this was accom-

plished by embedding them in the set of the rational

ratios. This method is developed to a high degree of

perfection in the Fifth Book of Euclid's Elements.
The two mathematicians Theatetus of Athens and

Eudoxus of Cnidos, both intimately connected with

Plato, certainly contributed a great deal to this de-

velopment.

To this time belongs, so far as we know, the

discovery of the simplest properties of the conics.

Menaechmus, also a follower of Plato, is believed to

be the discoverer of all three types of conics, regard-

ing them as the loci consisting of the intersection of

a cone with a plane perpendicular to the generating

line of the cone. Menaechmus used the hyperbola

and the parabola simultaneously for the solution of

the problem of doubling the cube, that is to construct
3
√

2.
A little older than Menaechmus, Archytas of Tar-

entum used a three-dimensional construction for the

duplication of the cube. He must have been a man

of extraordinary scientific renown. The Roman poet

Horace wrote a poem about him, but unfortunately

associated his name incorrectly with the achieve-

ments of Archimedes.

Menaechmus' brother, Dinostratus, in squaring

the circle by Hippias' quadratrix, proved

limx cot
xπ

2r
=

2r

π
.

His proof is exact in the modern sense under the

assumption that the quadratrix is a continuous curve.

2.4 Euclid's Elements

It is to the end of this period that we must assign

the Elements of Euclid, probably written in Alexan-
dria. We find there the greatest part of what nowa-

days is called elementary geometry. Some important

elementary theorems, such as those concerning the

intersection of the medians or the altitudes of a tri-

angle, are not to be found there.

Euclid's final aim was obviously the metric the-

ory of the regular solids. In this theory occur various

irrational ratios. This gave Euclid the opportunity to

build on a broad basis the theory of the domain of

irrationals which contains as special cases the irra-

tionals associated with the regular solids. Thus he

first developed the theory of the whole numbers.
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Here is found the process for determining the great-
est common divisor of two whole numbers. This
process, called the Euclidean algorithm, dominates
under many different guises both the elementary and
the advanced theories of arithmetic and algebra. He
developed also other theories of purely arithmetical
interest. We cite as an example the theory of per-
fect numbers, which are defined by the property that
each is equal to the sum of its divisors (e.g. 6, 28,
496). This theory has not made much progress since
the time of Euclid.
Then follows the comprehensive theory of those

irrationals which are generated by using, apart from
addition and multiplication, the single or double ex-
traction of a square root. Such irrationals occur in the
metric theory of the regular solids. An example of
this occurrence is found in the fact that the side of a
regular pentagon is equal to

p
10− 2√5r/2, where

r is the radius of the circumscribed circle. We find
here no attempt to determine rational approximants
to these irrationals; Euclid’s main concern was to
determine algebraic relations between the occurring
irrationals.
Of great importance is the introduction of the pos-

tulate of parallels in the beginning of Euclid’s work.
It is known from remarks of Aristotle that the theory
of parallels worried mathematicians. The introduc-
tion of a theorem about parallels as a postulate was
an audacious device. It made possible the rigorous
construction of this geometry, but caused much trou-
ble to mathematicians through the ages until modern
times.
Beside the Elements, Euclid wrote other works

which are for the greatest part only preserved in
fragments. Of importance for this review is his book
on Porisms, some fragments of which we find with
Pappus’ work. (Pappus lived more than five hundred
years after Euclid.) In this work, Euclid probably ap-
proached problems concerning functions, especially
linear functions and their geometrical equivalents as
embodied in straight lines, circles, and pencils of
straight lines passing through a common point.

3 300 B.C.–200 B.C.
3.1 The life of Archimedes

The third century before Christ was dominated by
the achievements of two men, Archimedes and Apol-
lonius.
Archimedes has been considered, during his life

and since his death up to this very day, the best

known mathematician. He died in the year 212 B.C.
when the Roman army conquered Syracuse. About
fifty years later, the Greek historian Polybius, living
in Rome and writing on Roman history, related how
Archimedes, by his mechanical inventions, became
a formidable adversary to the Roman general who
besieged Archimedes’ native city. “The soul of one
man,” writes Polybius, “created almost insurmount-
able obstacles for the Roman army.”
Archimedes saw the mathematical structure of sta-

tic phenomena. This insight enabled him to do im-
portant engineering work in war and peace, and to
bring to light the basic principles of the statics of
rigid bodies and ideal fluids. He does not seem,
however, to have attached too high a value to these
achievements, since he wanted on his own tomb-
stone a figure symbolic of his measurement of the
sphere: a sphere with the circumscribed cylinder.
He was of noble birth, a kinsman and friend of

Hiero, king of Syracuse. Syracuse had been for many
centuries a center of commerce and culture, a point
where Greeks and Phoenicians met. It is very proba-
ble that Archimedes went to Alexandria and studied
there with the successors of Euclid.
A great part of his works is extant. There are no

textbooks among them; many of them are concerned
with theories or single problems. He was well aware
of the value of discoveries and claimed the priority
for his own. To show his superiority, he proposed
to his Alexandrian competitors certain problems to
be solved and certain theorems to be proved, inten-
tionally including among the theorems some wrong
ones. To take pride in one’s own discoveries is per-
haps not the sign of a philosophical mind, but it is
certainly characteristic of times of great scientific
progress. Archimedes was primarily a research man.
He founded no school and had, as far as we know,
no personal followers.
Archimedes died in the year 212 B.C. at the hand

of a common Roman soldier. His tomb was found
and restored by Cicero one hundred and fifty years
later, when the latter was governor of Sicily. The
Roman statesman did not share our reverent feeling
for the unique genius of Archimedes, but spoke with
condescending pity of the “modest man operating
with sand and writing stylus” (paper and pen).

3.2 The achievements of Archimedes

Foundations of mathematics. He was probably the
first to emphasize the axiomatic foundation of conti-
nuity, stating the following postulate of basic impor-
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tance for all non-algebraic operations: the difference

of two unequal quantities of the same kind, when

added to itself a sufficient number of times, will

exceed any other quantity of the same kind. This

postulate was called, in the nineteenth century, the

postulate of Archimedes. But Archimedes himself

did not call it an axiom. He says only that he had to

assume it for his deductions and that the mathemati-

cians before him, by tacitly using it, had achieved

results universally acknowledged as right. This at-

titude again shows Archimedes' non-philosophical

trend of mind. He did not concern himself with eter-

nal truths and ideas; he preferred to reach his aim

by assuming the obvious as true.

Of similar character was the other assumption en-

abling him to assign to a plane (convex) curve a

length, and to a curved (convex) surface an area. We

may formulate the assumption this way: if one closed

convex surface (curve) is completely inside another

closed convex surface (curve), then the former has

a smaller area (length) than the latter. It would be

interesting to know how he would have assigned a

length to a non-plane curve or an area to a surface

of negative Gaussian curvature; for example, to the

hyperboloid of one sheet.

An application of the \Archimedean" axiom is the

computation of the number of grains of sand suffi-

cient to fill the \universe" in the sense of the as-

tronomers of his time. He generated this number by

means of exponential operations. This semi-popular

work, addressed to Hiero's son Gelo, shows the sur-

prising power of mathematical symbols.

An application of the assumption concerning the

length of a plane curve was the approximation of

π, the ratio of the circumference of a circle to the
diameter. We have seen that, in Euclid, there are no

approximations of irrational numbers.

Archimedes computed the length of the perimeter

of the regular polygons of 6 × 2n sides, and in this

manner obtained (in modern notation)

2nan

bn
>
π

6
> 2n−1an, (n = 1, 2, · · ·),

where

bn =
√

2 + bn−1,

an =
√

2 − bn−1,

with

b0 =
√

3.

Archimedes gives approximate values for the re-

sulting algebraic numbers for n = 1, 2, 3, 4 and ob-
tains

22

7
> π >

223

71
.
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The history of the measurement of the circle

goes back to very ancient times. The number 3 as

an approximate value of π is used by people of
low scientific standing. The comparison between the

simple experiment yielding this approximation and

Archimedes' procedure enabling us to determine π
to any degree of accuracy demonstrates the wide dis-

tance between two levels of human thinking.

Problems of tangents and arcs. The major part of

the mathematical work of Archimedes is related to

what we now call Calculus. For example, the de-

termination of the tangents to the \Archimedean"
spirals is related to the differential calculus. In the

work preserved by Eutokius (500 A.D.) we find the

solution of the problem of determining the maximum

of the function x(s−x)2. This is done by determin-
ing a hyperbola of the type xy = c which touches
the parabola y = (s− x)2. We see that Archimedes
solved the problem of finding the maximum through

the use of tangents as we do it now.

Much more important are the problems connected

with the process of integration. We have already
mentioned the determination of the area of the sur-

face of a sphere with given radius, and the deter-

mination of its volume. Archimedes started with the

computation of the area of the surface and, for this

purpose, had to compute the integral of sinx. He
achieved this integration by establishing the identity

sin
π

2n
+ sin

2π

2n
+ sin

3π

2n
+ · · ·+ sin

(2n− 1)π

2n

= cot
π

4n
.

Characteristic for the trend of Greek mathematics

is the formulation of this problem: it is required to

construct a plane figure having the same area as the

surface of a sphere with given radius. The answer

is: the plane figure is a circle with radius twice that

of the given sphere. Having found the area of the

surface, Archimedes determined the volume.

Further we find Archimedes dealing with the con-

struction of a square with area equal to that of a

plane figure bounded by arcs of a parabola and by

straight lines. For the squaring of the parabola, he

had to determine the asymptotic value of the sum

12 + 22 + · · ·+ n2

n3
.

In another solution of the problem, Archimedes

makes use of mechanical notions, primarily of the

center of gravity and its obvious properties. (Inci-

dentally, it is not easy to take the existence of the

center of gravity of an arbitrary body for granted.)

He uses these properties to evaluate, as we shall say,

an integral.

This is also the method he uses in a work writ-

ten for Eratosthenes, an outstanding astronomer and

mathematician of his time. This work was found

only recently in Istanbul, written on parchment that

was later used for a liturgical text. Here Archimedes

combines the mechanical method with the device of

taking areas or volumes as if these were aggregates

of lines or surfaces. Everywhere else in his works

he uses the exact method of exhaustion. In this lat-

ter one, dedicated to a fellow master of mathematics,

he does not hesitate to bring into play the relations

between properties of areas and properties of a sum

of lines. In this work he finds the volume of a sphere
directly (thereby avoiding the integration of the sine

function), reducing the problem to that of the men-

suration of the cone.

There are probably extant in Arabic translation

some other works of Archimedes. Not long ago there

was discovered in the work of an Arabic author a

remarkable construction of the regular heptagon by

Archimedes (see Figure 2). It is as follows: ABCD
is a square. A line AEFG is so constructed that it
meets the diagonal DB in E, the side BC in F , the
side DC in G, so that the triangles AEB and FCG
have the same area. H is a point on DC such that

EH is parallel to CB. Then HC is the side of the
regular polygon with 14 sides in the circle with the

radius CG.
Such constructions with a moving ruler meeting

two given lines in a prescribed way were often used

in Greek mathematics.

Figure 2.
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3.3 The achievements of Apollonius

Apollonius, some forty years younger than

Archimedes, was born in Pergamum, about 250

B.C. Pergamum was, at this time, beginning to be a

center of culture. There are still extant great works

of art produced there at the time of Apollonius.

It is probable that he lived a part of his life in

Alexandria, but he was closely connected with at

least one of the rulers of Pergamum, Attalus, to

whom he dedicated one book of his great Treatise
on conics.
Whereas Archimedes made his investigations in

regions hitherto untrodden and used new methods,

Apollonius uncovered in his principal work, the trea-

tise on conics, a field of geometry already partially

known as a grand structure of admirable wealth and

beauty. Through the theory of conics the astonishing

fecundity of mathematical thought became apparent,

perhaps for the first time. One simple notion, in this

particular case, that of the plane sections of a cone,

produces a wealth of problems and theorems.

One aim of Apollonius was to cover in a system-

atic treatment all that was already known about con-

ics. Originally, the conics were considered as spatial

phenomena. But we find Archimedes already using

a definition of the conics as plane loci. The points

of these loci are defined by a pair of lines which are

different from our common rectangular coordinates

only in so far as they are not a pair of proportions (or

numbers) obtained through the introduction of unit

lines. In Archimedes the \equation" of the conic has

the form

y2 = kx(d− x),

where k is a proportion (or a number) (see Figure 3).
For k > 0 and k 6= 1 we get the ellipse immediately
as the projection of the circle for which k = 1. In
Apollonius, the equation for the conics, the basis for

all his investigations, is in oblique coordinates

y2 = px± px2

a
,

Figure 3.

where the + sign gives the hyperbola (y2 is \sur-
passing" px), the − sign characterizes the ellipse

(y2 is \deficient" with regard to px); for infinitely
great a we get the parabola (y2 \equals" px). These
names for the different conics are probably Apollo-

nius' own.

Apollonius had to solve many problems to achieve

a systematic theory of the conics. In the original

equation for the conic, there are three parameters: p,
a, and the angle between the x-line and the y-line.
From these data one had to find the position and the

length of the axes. Further, to have theorems valid

for both ellipse and hyperbola, it was necessary to

take the two branches of the hyperbola together as

one curve, a difficult abstraction since it seems to

contradict the appearances. This abstraction became

easy only after the introduction of infinitely distant

points in the seventeenth century.

In the work of Apollonius there are found the ele-

mentary construction of tangents to a given conic

through a given point or in a given direction, the dis-

cussion of the problems of normals through a given

point, and geometric constructions carried out with

the help of conics. These problems are related to

problems of maxima and minima and to the discus-

sion of the intersection of conics. This latter prob-

lem is equivalent to the determination of the number

of real roots for an equation of the fourth degree

by means of certain inequalities between the coeffi-

cients.

The problem of determining a conic by five of

its points is not considered, in spite of the solution

of equivalent problems. Probably the obstacle was

that the problem could not be easily enunciated, be-

cause it was necessary to determine at the same time

whether one could construct an ellipse, hyperbola, or

parabola going through the five given points (the as-

sumption being that no three of them are collinear).

It seems quite impossible to find out who it was

that determined the foci. One wonders in what way

the old mathematicians came to discover these char-

acteristic points. Probably Euclid already knew that

the conics were loci of points for which the distances

from a fixed point and from a fixed line have a fixed

ratio. Apollonius knew the most important properties

of the foci of the ellipse and hyperbola, namely, that

they are the centers of the orthogonal involutions,

that the tangents make equal angles with the lines

through the foci, and finally the theorem concerning

the sum or difference of the focal distances.

We conclude our report on Archimedes and Apol-

lonius with a remark by Leibnitz: He who under-
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stands Archimedes and Apollonius will admire less
the achievements of the foremost men of later times.

4 200 B.C.–600 A.D.
4.1 Trigonometry

It is in this period that we find Greek mathematics
strongly influenced for the first time by phenomena
outside the world of mathematical ideal entities. The
astronomer observes the positions of the sun, moon,
planets and fixed stars at different places and at dif-
ferent times. He measures a number of angles which
are not independent variables. To establish their rela-
tions, to determine other, not observable, angles, for
instance the angle measuring the arc between the
annual circular path of the sun and the pole of the
daily circles of the fixed stars, requires new math-
ematical investigations. All these problems pertain
to the geometry of the sphere and the solution of
these problems constitute what is now called spher-
ical trigonometry.
Furthermore, we find plane trigonometry devel-

oped. The investigation of relations between the
sides and the angles of a plane triangle was perhaps
inspired by spherical trigonometry.
Now, in the case of spherical trigonometry, as in

that of plane trigonometry, the relations are not alge-
braic if one measures the angles as fractional parts of
a full angle, which is always the case in astronomical
observations. One needs to introduce non-algebraic
functions of the fractions determining the angles in
order to obtain algebraic relations. It is sufficient to
introduce one function of this kind: One may take
the angle as an angle between the radii of a circle,
then this function can be chosen as the ratio of the
chord subtending the angle to the diameter of the
circle.
Thus we have two problems for spherical and

plane trigonometry:

1. One has to find the (algebraic) relations be-
tween the chord function of the angles and the
arcs in a spherical triangle and the (algebraic)
relations between the chord function of the an-
gles and the sides of a plane triangle.

2. One has to investigate the chord function,
which again may be divided into three parts:
(a) the determination of the algebraic functional
relations;
(b) the numerical computations of the function,
which in turn implies

(c) the finding of certain inequalities determin-
ing the behavior of the function in the neigh-
borhood of certain points.

We note in passing that the chord function of an
angle is double the sine function of the half of the
angle.

4.2 The seeds of the notion of function and
of transformation

In trigonometry the mathematicians came closer to
the notion of function than in the older theory of
“locus”. But the general idea of function did not ap-
pear at all, still less the idea of transformation. A
transformation is, one may say, nothing else than a
materialized function: the transformed geometrical
element, for instance a new point, is a function of
the old one. But this embodiment of a function is not
so easily visualized as the locus. We shall see below
that the main difficulties confronting the foundation
of projective geometry are overcome in this period.
But still we do not find the beginning of a system-
atic development of projective geometry. We do not
even find a systematic use of the fact that the conics
are generated by the projective transformation of a
circle.

4.3 Commentaries

In this period we find several valuable commen-
taries on the works of the mathematicians Euclid,
Archimedes, and Apollonius.

4.4 Other peoples

The disturbances of the old world by the expeditions
of Alexander had also an effect on the state of math-
ematics. The Greeks came into closer contact with
the Egyptians and with the people of Mesopotamia.
The inhabitants of India came in contact with Greek
art and Greek mathematics, also in closer contact
with the culture of Asia Minor. Although Greek
mathematics during its first period was certainly
under Babylonian influence, its peculiar and vigor-
ous development obscured that influence for many
centuries. At this time, however, the characteris-
tics of Babylonian mathematics became quite appar-
ent. Mathematical exercises, to be seen in cuneiform
texts from 2000 B.C., appear in Greek textbooks. In
India, we see a flourishing of mathematics under
Greek influence, especially arithmetic which, per-
haps, was reflected back to the Greeks. For the first
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time after Euclid we find in this period new arith-

metical problems and new methods for their solution.

These were again seeds which, 1500 years later, were

developed into full growth.

Important new symbols for numbers were intro-

duced in India and were transmitted to the Near East

and Europe where we shall encounter them in the

next period.

4.5 General significance of this period

The time covered by this article is very long, 800

years, in comparison with the periods covered by ear-

lier sections. In it no mathematician of such glorious

fame as Euclid, Archimedes, or Apollonius appears.

But it is not easy to call it a period of decadence

if one recognizes the many seeds to be developed

later. One mathematician of this time, Pappus (about

300 A.D.), even expressed his feeling that mathemat-

ics up to his time was only in the beginning of its

development. He says: \I saw that all (mathemati-

cians) move about only in the beginnings of pure

and applied mathematics; and I had a feeling of awe

(because I was aware) that I could show much bet-

ter and much more useful things." Perhaps Pappus

was afraid to enter alone into the vast and unknown

realm of that science the existence of which he di-

vined. Already in Pappus' time the best minds were

more interested in mystical or theological problems

than in scientific ones.

The great treatise of Ptolemy of Alexandria (about

150 A.D.) on astronomy stood for more than 1500

years by the side of Euclid's Elements as a book of
indisputable authority.

4.6 The foundations of trigonometry

This treatise of Ptolemy is commonly called Al-
magest into which word the Arabs changed the orig-
inal title, ὴ µεγάλη σύνταξις, The Great Com-
position. In this book Ptolemy collected, enlarged
and systematized the results of preceding astronomi-

cal investigations, both practical and theoretical, es-

pecially those of the great Greek astronomer Hip-

parchus (about 200 B.C.). Most famous is his sys-

tematization of the movement of the planets by us-

ing combinations of circular movements. But this

part of his work is of minor interest for the history

of mathematics.

The trigonometry of the Almagest is based on
two theorems. The first is called the theorem

of Menelaus, who lived about fifty years before

Ptolemy in Alexandria. His work is extant only in

Arabic and Hebrew translations. Figure 4 represents

the theorem of Menelaus for plane figures, where we
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A¢ B C
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Figure 4.

have the relation

A′B

A′C
· B

′C

B′A
· C

′A

C ′B
= 1.

This theorem is also valid for the sine function of

the arcs on the sides of a spherical triangle and in

this form is used by Ptolemy to prove the relations

between the arcs and angles of a spherical trian-

gle. It is interesting to see why the theorem for the

plane figures is so easily changed into a theorem for

spherical figures: the theorem in the plane is easy

to generalize for the plane of projective geometry by

taking cross ratios instead of ratios. Then we obtain

immediately the corresponding theorem about planes

and lines through a point which we take as center

of the sphere. The cross ratio of points on a line in

the plane corresponds to the cross ratio of lines in a

plane through the central point. And this latter cross

ratio is expressed by the sine function of the angles

between the lines; hence the advantage of our sine

function in comparison with the original chord func-

tion. Menelaus, of course, as well as Ptolemy, does

not go the way of projective geometry to prove the

spherical theorem by the plane theorem.

The second theorem is used to find the functional

relations for the chord function. This theorem is

called after Ptolemy and states a relation between the

six distances of four points on a circle. The proof of

Ptolemy is probably the shortest possible, and is to

be found in all textbooks on geometry. The analysis

of the theorem shows the following elements: first,

an identity between two cross ratios, determined by

the same four points, an identity known as Euler's

identity for four points on a line; second, the alge-

braic identity expressing the invariance of the cross

ratio under a linear transformation; third, the geo-

metric fact that a linear transformation in the plane

of a complex variable transforms lines into circles.

The theorem is used in the special case where two of

the four points are on one diameter. To go, by way

of this theorem, to the addition theorem for the sine

function is certainly not the simplest possible way.

For the numerical evaluation of the chord function

Ptolemy needs the addition theorem and further the

fact that the function (sinx)/x is decreasing with in-
creasing x for 0 < x < π/2. The fact that (tanx)/x
is increasing with increasing x for 0 < x < π/2 is
already proved in a very simple way in Euclid's Op-
tics. One may prove in a similar and quite as simple
way that (sinx)/x is decreasing with increasing x
for the same range. Ptolemy gives a rather compli-

cated proof. The fact itself had already been used by

Aristarchus of Samos more than three hundred years

before Ptolemy when he discussed the appearance of

the sphere of the moon. Tables for the chord func-

tion were given long before Ptolemy by Hipparchus

but these have not been handed down to us.

4.7 Achievements in geometry

The most remarkable achievements of this period in

geometry are due to Pappus. In the seventh book

of his Mathematical Collections he proved the the-
orem that the cross ratio of four points on a line

(AC/AD) : (BC/BD) is not altered by perspective
projection. With the help of this theorem he proves

several other propositions. By far the most important

is the following: Let A,B, C be three points on one
line, A′, B′, C ′ three points on another line; then the

lines AB′ and BA′, BC ′ and CB′, CA′ and AC ′,

respectively, meet in three points lying on one line.

Figure 5.

This theorem marks an event in the history of ge-

ometry. From the beginning geometry was concerned

with measures: lengths of lines, areas of plane fig-

ures, volumes of bodies. Here we have for the first

time a theorem which is established by the ordinary

theory of measures but is itself free of all elements

of measurement; it states the existence of a figure

which is determined through the incidence of lines

and points only. It is the first \configuration" of pro-

jective geometry, and it was shown more than 1500

years later that this configuration alone is sufficient

to build up projective geometry in the plane. The
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mathematicians who pointed out the important role

of this theorem were unjust toward Pappus in nam-

ing the theorem after Pascal.

4.8 Practical mathematics

After Euclid's Elements and Ptolemy's Almagest
there is perhaps no ancient work on mathematical

methods and natural science which had such a last-

ing, uninterrupted influence as that of Heron. About

Heron's life we know scarcely anything. For a long

time scholars tried to find out when he lived through

a study of his works, and made guesses ranging from

150 B.C. to 200 A.D. For the moment it seems to

them most probable that he lived in Alexandria in

the first century A.D. There are books bearing his

name which probably have not been written by him.

In this whole collection we find little pure mathemat-

ics. It is only incidentally that, teaching all sorts of

practical methods of measuring, he states and proves

rigorously how to express the area of a triangle in

a symmetrical way in terms of the sides. He also

shows himself as a resourceful mathematician in the

proof of the theorem that the three auxiliary lines

in Euclid's proof of the Pythagorean theorem meet

in one point. But the main tendency of Heron is

to make mathematics bear fruit in the treatment of

practical problems. He shows many ways of finding

approximate measures.

He also treats problems of surveying, for instance

the problem of finding the direction of the line join-

ing two points, if one of the points is not visible from

the other point. He solved this problem by measur-

ing the rectangular coordinates of auxiliary points

between the two given points. This is in symbols:

x0, y0 and xn, yn may be the coordinates of the two

given points, xi, yi (i = 1, · · · , n − 1) the coordi-
nates of the auxiliary points; then the direction is

given by

yn − y0
xn − x0

=

∑n
i=1 (yi − yi−1)∑n
i=1 (xi − xi−1)

.

The idea of determining the position of different

points on a surface, especially the earth, by two coor-

dinates is much older than its appearance in Heron's

work. Coordinates were quite indispensable to the

astronomer in determining the relative positions of

the places of observation. Thus we find already Hip-

parchus determining the points on the globe through

the two angles of latitude and longitude.

In many of the problems of Heron concerned with

measuring we find similarities with Egyptian meth-

ods. There are other aspects of his work which are

obviously connected with the mathematics of the

Babylonians. Thus we find an example of a quadratic

equation for the radius of a circle given through the

sum of the number measuring the area of the cir-

cle and of the number measuring the circumference.

Such problems as this have scarcely any practical

value; furthermore, they are very remote from the

problems of classical Greek mathematics. Similar

problems, however, are to be found in very old col-

lections of Babylonian exercises.

Heron also tries to compute the volume of a trun-

cated pyramid whose linear measures as they are

given are impossible. Out of these data he gets

for the volume an expression corresponding to the

square root of a negative number. He takes instead

of this expression the square root of the number with

positive sign, which magnitude, within the given

problem, has no significance whatsoever.

We may say that there are in Heron's works char-

acteristics of the Greek, Egyptian, and Babylonian

mathematics, and even a premonition of develop-

ments of much later times.

Heron was not only an ingenious mathematician.

He observed the forces of nature and used them to

build all sorts of machines, most of them of very

little practical use. He was probably the first to use

the power of expanding steam to set heavy bodies in

motion, for instance to make a sphere rotate about

an axis. His manifold inventions were well known to

the Renaissance physicists, among others, to Galileo.

4.9 Algebra and theory of numbers

There is a fourth mathematician in this period whose

name still lives in the work of modern mathemati-

cians, Diophantus. In the first book of his Arithmetic
we find many problems not very different from old

Babylonian problems. But the form of his treatment

of these problems is very important: as the prob-

lems never lead to an irrational quantity, Diophantus

is able to present a theory of equations in a seem-

ingly modern form. All the difficulties in operations

with irrational quantities, which can only be over-

come by an at least partially developed theory of lim-

its, do not appear here. Thus we find here symbols

and methods of solution of equations quite similar

or equivalent to modern symbols and methods. The

form of Diophantus' work has undoubtedly influ-

enced the further development of algebra. However,

he was probably not the first to give this form to

arithmetical operations.
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We know nothing of the life of Diophantus. Those

scholars may be right who suppose that Diophan-

tus lived at Alexandria in the time of Ptolemy and

Heron.

Beginning with the second book of Diophantus'

Arithmeticwe find a new type of problem, belonging
to the theory of numbers. In the first problem of this

type one has to find two rational numbers which

squared and added are equal to a given square, a2.
The method of the solution is quite general. He puts

one number equal to x, the other equal to rx − a.
Then he finds

x =
2ar

r2 + 1
.

He indicates the general solution but takes special

values for a and r. This problem is, of course, not
different from the old problem of finding two ra-

tional numbers x and y so that x2 + y2 = 1. But
already the next problem is something new: to di-

vide the sum of two squares a2 + b2 into two other
squares. He puts one number equal to x+ a and the
other number equal to rx− b and finds

x =
2rb− 2a

r2 + 1
.

Again he indicates a general solution but takes spe-

cial values for a, b, and the parameter r. This pro-
cedure is nothing else than the rationalization of the

equation u2 + v2 = a2 + b2.
In the same way the next example is to be con-

sidered as a rationalization of the algebraic relation

y2 − z2 = d. In general we may characterize the
problems of Diophantus as problems of rationaliza-

tion of algebraic relations, i.e., of the finding of a

representation of an algebraic relation through ratio-

nal functions of a parameter. Diophantus does not

try to find solutions in integers.

These problems and their solutions made a great

impression on mathematicians of the sixteenth and

the seventeenth centuries and were certainly one of

the reasons for a new flowering of that noble science,

the theory of numbers.

4.10 Commentaries

The most famous of the ancient commentators is

doubtless Proclus, who lived in the middle of the

fifth century A.D. But he was much more a philoso-

pher than a mathematician. He was head of the Neo-

Platonic school at Athens. His contributions to math-

ematics are certainly very slight, but his commentary

on the first book of Euclid is an invaluable source for

the history of Greek mathematics. The commentary

is also typical of his time, which considered meta-

physical speculations, mostly of a mystical charac-

ter, as the most important task for lovers of wisdom.

These people looked down on mathematics because

it made use of hypotheses whereas pure speculation

was nonhypothetical.

Heron, too, made additions to, and commentaries

on, the work of Euclid. Pappus wrote about Euclid,

Apollonius and other mathematicians. Of the later

commentators we mention Eutocius, who lived in the

sixth century A.D. and came from Ascalon in Syria.

He showed himself a very able mathematician and

gave us an excellent commentary on Archimedes,

where we find the most valuable report on the dif-

ferent solutions of problems of the third degree. He

was even able to restore an old corrupted manuscript,

probably of Archimedes, where we find the solution

of a maximum problem, mentioned in our third sec-

tion.

Here we make an end to our necessarily incom-

plete report on Greek mathematics.

4.11 The Romans

We mention only one Roman, Boethius, who was

executed by Theodoric, King of the Goths, in 524.

His mathematical importance lies in his role as trans-

lator. In his time Greek was no longer known by

all who were interested in science. Boethius trans-

lated, along with Plato and Aristotle, also Euclid,

Ptolemy, and Archimedes, but these translations are

not extant. He is the first author where we find the

quadruple of the four sciences, arithmetic, music,

geometry, and astronomy, as constituting the math-

ematical branch of the liberal arts, the quadrivium.

We do not owe to the old Romans any significant

contribution to mathematical science.

4.12 Mathematics in India

We can give only a very short review of mathemat-

ical activities in India during this period. The out-

standing mathematicians of this country were pri-

marily astronomers; we mention only Aryabhatta

(about 500 A.D.) and Brahmagupta (about 600 A.D.).

Whereas Diophantus treated problems of finding ra-

tional values for algebraic relations of second and

higher degree, the mathematicians of India treated

the problem of finding integers satisfying linear rela-

tions. One recognizes that such problems are indeed

of interest in astronomical investigations. It is prob-
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able that the Indians were depending on the research

work of Babylonian astronomers.

Probably the Indians, in their development of a

new symbolism for the writing of integers, were also

indebted to the Babylonians. They determined the

integer by expanding it into a power series with 10
as basic number:

n =

m∑

i=0

ai10i, ai < 10.

Then they represented the integer by the symbol

am · · ·a2a1a0. The old Babylonians had already rep-

resented integers in this way, using 60 as the basic
number. But their representation was ambiguous be-

cause they did not use symbols for those coefficients

which are equal to zero.

We find our sign 0 already in the astronomical

tables of Ptolemy, and we also find it used as an

abbreviation for \nothing" in Heron's writings. But

the systematic use of the symbol 0 came from India

to the Arabs and through them to Europe, and had

an inestimable influence upon all kinds of scientific

and practical computations.
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Diophantus of Alexandria

J. D. SWIFT

American Mathematical Monthly 63 (1956), 163{170

1 Introduction

The name of Diophantus of Alexandria is immor-

talized in the designation of indeterminate equations

and the theory of approximation. As is perhaps more

often the rule than the exception in such cases, the

attribution of the name may readily be questioned.

Diophantus certainly did not invent indeterminate

equations. Pythagoras was credited with the solution

(2n+ 1, 2n2 + 2n, 2n2 + 2n+ 1)

of the equation x2 + y2 = z2; the famous Cattle

Problem of Archimedes is far more difficult than

anything in Diophantus, and a large number of other

ancient indeterminate problems are known. Further,

Diophantus did not even consider the most common

type of problem called by his name, the linear equa-

tion or system of equations to be solved in integers.

Nevertheless, on at least three grounds the place

of Diophantus in the development of mathematics

is secure. On all the available data he was the first

to introduce systematic algebraic procedures to the

solution of non-linear indeterminate equations and

the first to introduce extensive and consistent alge-

braic notation representing a tremendous improve-

ment over the purely verbal styles of his predeces-

sors (and many successors). Finally, the rediscov-

ery of the book through Byzantine sources greatly

aided the renaissance of mathematics in western Eu-

rope and stimulated many mathematicians, of whom

the greatest was Fermat. (Much of Fermat's work is

known from notes written in his copy of Diophantus

[1].)

Of Diophantus as an individual we have essen-

tially no information. A famous problem in the

Greek Anthology indicates that he died at the age
of 84, but in what year or even in which century we

have no definite knowledge. He quotes Hypsicles

and is quoted by Theon, the father of Hypatia. Now

Hypsicles, in the introduction to his book, the so-

called Book XIV of Euclid, places himself within a
generation or so of Apollonius of Perga whose time

is definitely established by the rulers to whom he

dedicates his works. Thus we may put Hypsicles in

the early or middle part of the second century B.C.

with reasonable accuracy [17]. Theon, on the other

hand, definitely saw the eclipse of 364 A.D. [10].

Within this gap of five hundred years, historians are

at liberty to place Diophantus wherever he best fits

their theories of historical development [10, 14]. The

majority follow [2] and, on the basis of a dubious

reference by the Byzantine Psellus (c. 1050), assign

him to the third century A.D.

2 The Arithmetic
The surviving work of Diophantus consists of six

books (sometimes divided into seven) of the Arith-
metic and a fragment of a work on polygonal num-
bers. The introduction to the Arithmetic promises
thirteen books. The position and content of the miss-

ing six or seven books is a matter of conjecture. (The

reader is reminded that a \book" is a single scroll

and represents the material contained in twenty to

fifty pages of ordinary type.)

These books may be summarized as follows: Book
I: Determinate systems of equations involving lin-
ear or quadratic methods. Books II to V: Equations
and systems of equations, the majority of which

are quadratic indeterminate although Books IV and
V contain a selection of cubic equations, determi-
nate and indeterminate. Book VI: Equations involv-
ing right triangles. All books consist of individual

problems and their solutions in positive rationals. In

41
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42 Ancient Mathematics

the ordering of the problems some consideration has

been given to relative difficulty and interrelation of

material, but the over-all impression is of a discon-

nected assortment.

3 Notation

The numerical notation used by Diophantus is, of

course, the standard Hellenistic notation which uses

the letters of the Greek alphabet with three archaic

letters added to give 27 different symbols [6, 7]; the

first nine stand for units, the second for tens and

the last for hundreds. Thus, for any further nota-

tion, either non-alphabetic symbols or monogram-

matic characters were required.

There is a single symbol for the unknown quantity.

This may be a monogram for αριθµoς. The symbol
for \minus" is apparently a monogram for the root of

λειψις [5]. Addition is indicated by juxtaposition.
The powers of the unknown are designated by eas-

ily recognizable monograms, the square by ∆υ for

δυναµις, the cube by Kυ for κυβoς. Higher pow-
ers are formed from these by addition, i.e., the fifth

power is considered as square-cube. To avoid am-

biguity it is necessary to have a special symbol for

the zero-order terms also, a monogram for µoναδoς,
and to write all the negative terms together. Thus, if

we adopt an equivalent set of conventions in En-

glish, retaining Arabic numerals and the letter x for
the indeterminate, the expression

6x4 + 23x3 − 2x2 + x− 5

would appear as

SqSq6Cu23X1MSq2Un5.

Fractions were represented either in the inverse

position to the present day or by inserting the word

for \divided by" between the numerical expressions

on the same line. Reciprocals of integers and neg-

ative powers of the unknown are designated by a

special symbol placed after the number or power.

The most important limitation of this notation is

the restriction to one unknown. Since practically all

the problems require the determination of several

quantities, a considerable part of Diophantus' work

lies in the reduction to a single quantity. Further, no

general solution in expressed parameters is possible.

Even if a general method is indicated, it must be

restricted in its presentation to a specific numerical

case.

A particular problem will illustrate the situation.

In problem 1, Book IV, it is desired, in modern terms,

to solve the system:

x3 + y3 = a, x+ y = b.

Essentially the method is to let

x = z + b/2, y = b/2− z.

Substitution in the first equation now yields a bi-

nomial quadratic. Let us look at this problem in a

translation as bald as possible:

To partition a given number into two cubes of

which the sum of the sides is given: Let the number

to be partitioned be 370 and the sum of the sides

Un10. Let the side of the first cube be x1Un5, the
latter term of which is half the sum of the sides.

Therefore, subtracting, the side of the other cube

is Un5Mx. Then the sum of the cubes will be

Sq30Un250. This is equal to Un370 as is given
and x becomes Un2. As to the original numbers,
the first side will be U n7 and the second, Un3. The
first cube, 343; the second, 27.

4 Diophantine algebra

With this problem in mind let us turn to some aspects

of Greek and Babylonian mathematics. A number of

tablets [15, 16], both old Babylonian (1800{1600

B.C.) and Seleucid (300 B.C. and later), exist which

teach the solution of equations which can be reduced

to the forms

x+ y = a; xy = b

[10, 12, 13]. Again Euclid's Elements II, 5, 6 can
best be viewed as giving solutions to these problems

[12]. In modern notation, the procedure in both cases

is to write

x = a/2 + z, y = ±(a/2 − z);

xy = b = ±(a2/4 − z2); z =
√
a2/4 ± b.

Now Diophantus in I (27, 30) considers the same

equations, solves them the same way and applies

the basic idea repeatedly as in the quoted problem.

Other examples can be followed in a similar way,

e.g.,

x2 + y2 = a, xy = b.

(See [13] for a complete discussion of quadratic

equations in antiquity.)
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Let us now compare the treatment in the three

cases. The tablets consist of lists of problems of

varying complexity each framed in specific numbers

and quantities. The problems are not \practical" nor

in any sense rigorously geometrical; men are added

to days, lengths to areas, areas are multiplied, etc. It

is clear that the basic thought is purely algebraic. The

problems are so set that the solutions are positive in-

tegers or terminating sexagesimal fractions such that

the roots can be obtained from tables of squares,

but from other tablets we learn of approximations to

non-terminating rationals like 1/7 or irrationals like√
2.
The Euclidean problems are cast in the form of

propositions about line segments, squares and rect-

angles. Their generalizations in II, 28, 29, concern

parallelograms. The propositions are general and the

result is deduced rigorously from the postulational

basis. The results are line segments which may well

be incommensurable with the original segments; i.e.,

\irrational" answers are acceptable.

In Diophantus the problems are formulated in

terms of abstract numbers but a \number" is always

positive rational. The solutions are worked out in

terms of particular numerical examples. This proce-

dure may be considered analogous to carrying out a

geometrical construction in terms of particular line

segments and, indeed, Diophantus probably intended

that his problems should be read in this manner.

There is, however, no pretense at postulational de-

velopment. No general propositions are stated even

where the solution implies them. Restrictions on the

choice of initial values are not always given; in the

case of I, 27, we are informed that a2/4 − b must
be a square but in the problem in the previous sec-

tion no restriction is mentioned. The most reasonable

conclusion is that he did not know the form of the

restriction or did not know how to express numbers

that satisfied the restriction. The authors of [5] and

[4] disagree but on the naive ground that since he

did come up with workable numbers 370 and 10, he

must have had some way of generating them. The

answer is obvious; he generated them from the an-

swer.

Like the Babylonians, Diophantus had no qualms

about adding areas and lengths (see VI, 19 in [5])
although, to be precise, he says that he adds \the

number in the area" to \the number in the length".

His algebraic technique is tremendously advanced

beyond anything we possess of the Babylonians. The

complicated cubic and higher degree equations and

the indefinite equations are not even suggested in

Babylonian algebra. The latter had examples of bi-

nary cubics and a few other higher degree equa-

tions soluble by tables; they also knew general forms

for Pythagorean numbers and obtained solutions of

x2 − 2y2 = 1, but this is as far as our present evi-
dence takes them. Even in the quadratic case there

may be a difference [13]. When a quadratic is to

be solved, Diophantus makes some effort to choose

the variable so that a binomial equation results, but

if this is not practicable, the general quadratic for-

mula (positive sign before the radical) is used with-

out further comment. The question is still at issue

whether the Babylonians ever solve a quadratic with-

out bringing it into some normal form involving a

known sum or difference and product.

It is useless even to try to guess what proportion of

the advanced problems and methods are Diophantus'

own. Most modern historians postulate a continuous

underlying tradition of oriental algebraic methods in

Greek mathematics rather than a sudden invasion in

the Roman period. If this be so, texts and problem

lists would certainly have existed. It is probable that

the Arithmetic was in good part a compilation of
such a quality that the predecessors were no longer

held in repute. There are traces of the Diophantine

notation elsewhere; Heron (60 A.D.) used the same

minus sign for example, but no evidence exists that

the semi-algebraic notation or the general methods

it permitted were used before the publication of the

Arithmetic.
To sum up, the basic algebraic approach in Dio-

phantus is Babylonian. The generality and abstrac-

tion is Greek. The work may be viewed as an episode

in the decline of Greek mathematics [12] or as the

finest flowering of Babylonian algebra [10].

5 Indeterminate problems

In giving translations of several illustrative prob-

lems, I have avoided the usual practice of direct

translation. Instead, I adhere carefully to the method

of the original while replacing the particular num-

bers used by parameters. The rationale may thus be

conveyed with less verbal explanation than if the

presentation were given in its original special form.

At the same time, the full power of the method is

apparent.

II. 9: If n = a2 + b2, find other representations of n
as the sum of two squares.

Modify a to x+a. The corresponding modification
of b may be written (rx−b). Here x is the unknown,
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a, b and r were assigned specific values.

n = a2 + b2 = (x+ a)2 + (rx− b)2

= (r2 + 1)x2 + (2a− 2br)x+ a2 + b2.

Thus, x = (2br−2a)/(r2 +1), where r may be any
rational such that the required quantities are positive.

Note the clever choice of the unknown; fixing x
and solving for r would leave a condition on x still
to be met; b2 − x2 − 2ax would have to be made a
square. Again, if a is increased by a fixed amount
and the unknown is taken as the corresponding de-

crease in b, the result does not come out at once. The
choice of rx−b instead of b−rx was dictated solely
by the numerical values selected which happened to

make b− rx negative. (But see V, 24, below.) Euler
wrote

a2 + b2 = (a + rx)2 + (b − qy)2

which results in a more symmetric solution but this

concept is foreign to Diophantus' notation and the

solution above is quite general.

Here would be a perfect opportunity to state a

proposition instead of a problem. A proof of the the-

orem: \Any number which is the sum of two squares

can be represented as such in an infinite number of

ways", is contained in the solution above.

III. 6: Find three numbers whose sum is a square

and such that the sum of any two is a square:

x+ y + z = t2

x+ y = u2, y + z = v2, x+ z = w2.

Here Diophantus assigns a definite value to w, or,
in modern notation, lets it play the role of the pa-

rameter. He then chooses an unknown, r, restricting
it as follows: Let t = r + 1, u = r, v = r − 1. Then
z = 2r + 1, y = r2 − 4r, x = 4r and w2 = 6r+ 1.
Thus r = (w2−1)/6 where w is an arbitrary rational
exceeding 5 (so that y is positive). So

x = (2w2 − 2)/3;

y = (w2 − 1)(w2 − 25)/36;

z = (w2 + 2)/3.

This problem was chosen to illustrate two points.

First, Diophantus is not interested in generality ex-

cept as an incidental by-product. A considerable in-

crease in generality can be obtained merely by re-

placing r±1 by r±s in the solution and this possi-
bility could easily have been indicated by the addi-

tion of a single phrase. Second, the choice of word-

ing of the problems is often peculiar from a modern

viewpoint. This problem is clearly equivalent to the

single equation:

u2 + v2 +w2 = 2t2.

Incidentally, using methods available to Diophan-

tus but probably exceeding his control of notation, a

much more general solution of this equation is avail-

able than the system

(u, v, w, t) = ((w2−1)/6, (w2−7)/6, w, (w2+5)/6)

given above. The equation being homogeneous, it

will be more convenient to solve in integers. Let

w = rs, u = s2 − p, v = s2 − q, then

s4 + (r2/2 − p − q)s2 + (p2 + q2)/2 = t2.

The left-hand side is a perfect square if

p2 + q2 = 2k2, r2/2 − p− q = 2k.

The first of these is the problem of finding three

squares in arithmetic progression. It does not occur

specifically in the Arithmetic, probably because it is
too simple in the rational case, reducing essentially

to a = b = 1 in the problem above. It will be more
convenient to take a solution derived from the solu-

tion given to the Pythagorean equation by Euclid. If

X2 + Y 2 = Z2,

(X + Y )2 + (X − Y )2 = 2Z2.

Thus

p = −m2 + 2mn+ n2, q = m2 + 2mn− n2,
k = m2 + n2, r2 = 4(m+ n)2,

and r = 2(m+ n).

Thus

(u, v, w, t) = (s2 +m2 − 2mn− n2,

s2 −m2 − 2mn+ n2,

2(m+ n)s, s2 +m2 + n2).

The previous solution is obtained by setting m = 2,
n = 1 and dividing by 6.

V. 24: Find a solution of x4 + y4 + z4 = t2.
If t2 = (x2−m)2 , then x2 = (m2−y4−z4)/2m.

Thus an integer m must be found so that

(m2 − y4 − z4)/2m

is a square. Let m = y2 + z2 so

x2 = y2z2/(y2 + z2).
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Thus y2 + z2 must be a square, say (y + r)2. Then
y = (z2 − r2)/2r. Thus

(x, y, z, t)

=

(
z3 − r2z

z2 + r2
,
z2 − r2

2r
, z,

z8 + 14z4r4 + r8

4r2(z2 + r2)2

)
.

This example has been chosen for three reasons.

First, it is of great historical interest. To this problem

Fermat appended a note: \Why does Diophantus not

ask for the sum of two biquadrates to be a square?
This is, indeed, impossible. . . ." Later, Euler conjec-

tured that it was also impossible to find three fourth

powers whose sum was a fourth power; i.e., to re-

place t2 by t4. This question remains unsolved.
Second, the problem indicates what happens when

the notation is insufficient. First, the chosen un-

known is x; m, y, z are assigned specific values to
indicate that they play the role of parameters. But the

problem cannot be completed, so the author turns to

a sub-problem in which y is the unknown.
Finally, the problem contains a curious case of

indifference to sign. The quantity x2−m is, in fact,

the negative root of t2 = (x2 − m)2. Since only
the square is used, no harm is done but we must

remember that, to Diophantus, the quantity x2 −m,
which he used, did not exist. The reader may find it

interesting to see why x2+m was not used by trying
it. Why m − x2, which is positive and produces

the same result, was not preferred is a matter for

conjecture.

VI. 19: Find a right triangle such that its area added
to one of its legs is a square while the perimeter is

a cube.

First form the triangle

(2x+ 1, 2x2 + 2x, 2x2 + 2x+ 1).

The perimeter is 4x2 +6x+2 = (4x+2)(x+1).
Since it is difficult to make a quadratic a cube, con-

sider in turn the triangle

((2x+ 1)/(x+ 1), 2x, 2x+ 1/(x+ 1)),

obtained by dividing through by x+1. The perimeter
is 4x+2 and the area is (2x2 +x)/(x+1). Adding
(2x+1)/(x+1) to the latter we have 2x+1. Thus
4x+2 is required to be a cube and 2x+1 a square.
The obvious value for 2x + 1 is 4. Thus x = 3/2
and the triangle is (8/5, 3, 17/5).
It is not clear whether or not Diophantus implies

the more general solution

2x+ 1 = 4r6, x = (4r6 − 1)/2;

probably not.

This problem is illustrative of the rather peculiar

problems considered throughout Book VI and of the
complete freedom from geometrical considerations.

To Euclid such phrases as \the sum of one side and

the area" would have been shocking nonsense.

6 An approximation problem

In V. 9 it is required as a sub-problem to find two
squares, both exceeding 6, whose sum is 13. Since

we have, in the first example of the preceding sec-

tion, a general method of partitioning a number into

two squares when one such partition is given, it is

merely necessary to set the two values equal, solve

for the parameter and approximate this solution in

rationals. If this is done with a = 2 and b = 3, we
find r = 5 +

√
26. Approximating by r = 10,

13 = (258/101)2 + (257/101)2

and it is readily seen that the conditions are met.

Of course, Diophantus could not do this since the

parameters were not expressed. He first finds a num-

ber slightly greater than
√

13/2. 13/2 = 26/4; if√
26 < 5 + 1/x, x2 < 10x + 1; let x = 10, then√
13/2 ∼ 51/20. Now

51/20 = 3 − 9/20 = 2 + 11/20.

Thus we wish to find a number near 1/20 such that

(3 − 9y)2 + (2 + 11y)2 = 13.

Then y = 5/101 and the squares are precisely those
obtained above.

The problem is typical of the approximate meth-

ods used. To approximate the nth root of a rational,
first write it in the form p/qn by multiplying nu-

merator and denominator by the necessary integer

to make the denominator a perfect nth power. Then
multiply p by the nth powers of successive integers
until pan is sufficiently close to a perfect nth power,
say bn. The approximation is then b/aq. To improve
an approximation a1 to

√
a, set (a1 + 1/x)2 = a

and approximate x.

7 Transmission of Diophantus

When the Arabs overran the Southeastern Mediter-

ranean in the 7th century, they came into possession

of manuscripts of works which had been published
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in sufficiently large editions to survive the wars at-

tendant on the breakup of the Roman Empire and

the lack of interest in learning of the early Chris-

tians. Among these was the Arithmetic or at least
a portion of it. Translations and commentaries were

published in Arabic. These have all been lost; their

only trace is in bibliographers' references. When the

Arabs formulated their own algebra, they apparently

appealed directly to the basic Oriental tradition pre-

viously cited. The beginnings of an algebraic nota-

tion and the abstract numbers are nowhere to be seen.

With the sole exception of the problems mentioned

in Section 3 as common to the whole ancient world

(Diophantus I, 27{30) not one problem from the

Arithmetic is found in the algebra of Al-Khwarizmi
or, as far as is known, in any other basic Oriental

text [13]. Probably the Arabs found Diophantus too

impractical for their utilitarian mathematics and the

Hindus, if they ever saw the Arithmetic, were inter-
ested in other problems such as the theory of linear

indeterminate problems.

In the other reservoir of learning, Byzantium, the

manuscripts of Diophantus lay almost unnoticed for

eight centuries. We do not know when the missing

books were lost but the part which we now possess

escaped the sack of Constantinople by the Crusaders

in 1204 and later in the same century M. Planudes

and G. Pachymeres wrote commentaries on the first

part of the Arithmetic. At some time, probably in the
course of the emigration of the Byzantine scholars

during the Turkish conquests, copies were brought

to Italy and Regiomontanus saw one there between

1461 and 1464.

The first translation to Latin was made by W.

Holzmann, who wrote under the Greek version of

his name, Xylander. This translation was published

in 1575. Meanwhile, Bombelli, in 1572, distributed

all the problems in the first four books among prob-

lems of his own in a text on algebra. Bachet, bor-

rowing liberally from Bombelli and Holzmann, made

another translation in 1621 and a second edition

was published in 1670 including Fermat's marginal

notes. In the next two centuries various translations

were made into modern languages which were based

primarily on the editions just mentioned by Holz-

mann and Bachet. Finally, in 1890, P. Tannery pre-

pared a definitive edition of the Greek text with

a translation into simple mathematical Latin using

modern numerical and algebraic notation. From this

work the three excellent translations listed in the bib-

liography have been prepared. The references to the

last two paragraphs are the commentaries in [2] and

[6], particularly the latter which has been followed

rather closely.

Bibliography

A. Greek Text with Latin Translation:

1. C. G. Bachet, Diophanti Alexandrini Arithmeticorum
libri sex, etc. Paris, second edition, 1670.

2. P. Tannery, Diophanti Alexandrini opera omnia cum
Graecis commentariis, Teubner, vol. i, 1893, vol. ii,
1895.

B. Modern translations based on [2]:

3. A. Czwalina, Arithmetik des Diophantos aus Alexan-
dria, G�ottingen, Vandenhoek, 1952.

4. P. ver Eeke, Diophante d'Alexandrie. Les six livres
arithmetiques et le livre des nombres polygones.
Bruges, Desc�ee, 1926.

5. T. L. Heath, Diophantus of Alexandria, Cambridge,
1910.

C. Histories and Compilations

of Ancient Mathematics:

6. T. L. Heath, History of Greek Mathematics (two vol-
umes), Oxford, 1921.

7. ||, A Manual of Greek Mathematics, Oxford,
1931.

8. G. Loria, Le Scienze esatte nell' antica Grecia, 2nd
edition, Milan, Hoepli, 1914.

9. G. H. F. Nesselmann, Die Algebra der Griechen,
Reimer, Berlin, 1842.

10. O. Neugebauer, The Exact Sciences in Antiquity,
Princeton, 1952.

11. I. Thomas, Selections Illustrating the History of
Greek Mathematics, Harvard and Cambridge (Loeb
Classics) 1939.

12. B. L. van der Waerden, Science Awakening, P. No-
ordhoff, Groningen, 1954 (English translation by A.

Dresden).

D. Miscellaneous References:

13. S. Gandz, \The Origin and Development of the

Quadratic Equations in Babylonian, Greek and Early

Arabic Algebra", Osiris, vol. 3 (1938) pp. 405{557.

14. J. Klein, \Die griechische Logistik und die Entste-

hung der Algebra", Quellen and Studien zur Ges. der
Math. Abt. B, vol. 3, 1934{6, pp. 18{105; 122{235.

15. O. Neugebauer, Mathematische Keilschrift-Texte, 3
Vols., Springer, 1935{7 = Quellen und Studien zur

Ges. der Math. Abt. A, vol. 2.

16. O. Neugebauer and A. Sachs, Mathematical
Cuneiform Texts, American Oriental Society, New
Haven, 1945 = Am. Oriental Series, vol. 29.

17. Paulys Real Encyclop �adie der ClassischenAltertums
Wissenschaft, Stuttgart, 1893.



\master" | 2011/4/5 | 12:53 | page 47 | #57
i

i

i

i

i

i

i

i

Hypatia of Alexandria

A. W. RICHESON

National Mathematics Magazine 15 (1940), 74{82

The first woman mathematician regarding whom

we have positive knowledge is the celebrated

mathematician-philosopher Hypatia. The exact date

of her birth is not known, but recent studies indi-

cate that she was born about A.D. 370 in Alexandria.

This would make her about 45 years of age at her

death. Hypatia, it seems, was known by two different

names, or at least by two different spellings of the

same name; the one, Hypatia; the other, Hyptachia.

According to Meyer [6], there were two women with

the same name living at about this time; Hypatia,

the daughter of Theon of Alexandria; the other, the

daughter of Erythrios. Hypatia's father was the well-

known mathematician and astronomer Theon, a con-

temporary of Pappus, who lived at Alexandria during

the reign of Emperor Theodosius I. Theon, the di-

rector of the Museum or University at Alexandria,

is usually considered as a philosopher by his biog-

raphers.

Hypatia's biographers have given us but little of

her early personal history. We know that she was

reared in close touch with the Museum in Alexan-

dria, and we are probably safe in assuming that she

received the greater part of her early education from

her father. If we are to judge from the records which

the historians have left us, we would conclude that

her early life was uneventful. It would seem that

she spent the greater part of her time in study and

reading with her father in the Museum.

Suidas [9] and Socrates [8], as well as others who

lived at the same time, lead us to believe that Hypa-

tia possessed a body of rare beauty and grace. They

attest not only to her beauty of form and coloring,

but each and every one speaks just as highly of the

beauty of her character. In the absence of a life paint-

ing of Hypatia we must depend upon the conception

of others for a picture of the philosopher. In the intro-

duction to his edition of Theon's Commentary [3]
Halma has given us a short biography of Hypatia.

On the title-page there is a medallion which gives

his conception of the philosopher [see the next ar-

ticle]. Meyer feels that this drawing is unfortunate,

as he does not believe it gives a true impression of

the woman Hypatia. Charles Kingsley, on the other

hand, in his novel Hypatia, has written a vivid de-

scription of his impression of the philosopher.

If we are to believe the historians as to her beauty,

we would expect that she was eagerly sought af-

ter in marriage. This apparently was the case: her

suitors included not only outsiders, but many of her

students as well. The question of her marriage, how-

ever, leads us to one of the controversial points of her

life. Suidas states she was the wife of the philoso-

pher Isidorus; then 25 lines later, he states she died

a virgin. This apparent contradiction has been ex-

plained in several ways by later writers.

Toland [11] believes she was engaged to Isidorus

before she was murdered, but was never married.

Hoche [4] is of the opinion that the mistake arose

from Suidas' abstract of the works of Damascius, a

conclusion which Meyer does not believe to be true,

pointing out that he found on the margin of one

of Photius' works the statement, \Hypatia, Isidore

uxor." Since Photius transcribed Hesychius' works,

it is possible that the error arose in this manner. The

evidence against such a marriage is further substan-

tiated by the fact that Damascius states that Isidorus

was married to a woman named Danna and had a

child by this wife. Another fact which should be

taken into consideration is that Proclus was much

older than Isidorus: it has been pretty definitely es-

tablished that Proclus was born about 412, and, since

Hypatia's death occurred in the year 415, it would

be impossible for Hypatia to have been the wife of

47
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Isidorus. The present writer is inclined to agree with

Meyer that the mistake arose in Photius' transcrip-

tion of Hesychius' work and that Hypatia was not

married at any time in her life.

The second controversial point is the question of

her death. In studying the statements made by many

of the historians in regard to her death it seems de-

sirable to review the murder in relation to the events

which had happened previously. It is necessary for us

to investigate not only Hypatia's relation to pagan-

ism, but also the relation between Cyril, the Christian

bishop at Alexandria at this time, Orestes, the Ro-

man Governor at Alexandria, and Hypatia. In view

of the triangular relationship, we shall recall briefly

some of the important events just prior to and during

the episcopate of Cyril and their relationship to the

authority of the Roman Governor.

On October 12, 412, Theophilus, the Bishop at

Alexandria, died, and six days later his nephew Cyril

was elevated to the episcopate of Alexandria. From

the outset the new bishop began to enforce with

zeal the edicts of Theodosius I, the Roman Emperor,

against the pagans, along with restrictions which he

himself promulgated against the Jews and unortho-

dox Christians. He further began to encroach upon

the jurisdiction which belonged to the civil authori-

ties; that is, to the Roman Governor. It must be re-

membered that the population of the city of Alexan-

dria in the fourth and fifth centuries of the Christian

era consisted of a conglomeration of nationalities,

creeds, and opinions, and that nowhere in the Em-

pire did the Romans find a city so difficult to rule

as Alexandria. The people were quick-witted and

quick-tempered, and we read of numerous clashes,

street fights, and tumults, not only between the citi-

zenry and the soldiers, but also between the different

classes of citizens themselves. There were frequent

riots between the Jews and the Christians on the one

hand and the pagans and the Christians on the other.

The Christian population did little or nothing to quiet

these people, but even added one more controversial

topic for them to quarrel about. Consequently we

find that the edicts and promulgations of Cyril not

only caused strife among the people but aroused the

anger of the Roman Governor, Orestes, the one per-

son who stood in the way of the complete usurpation

of the civil authority by Bishop Cyril. Friction con-

tinued between these two until there was a definite

break in their relations.

Because of her intimacy with Orestes, many of

the Christians charged that Hypatia was to blame,

at least in part, for the lack of a reconciliation be-

tween Orestes and Cyril. Socrates states that some of

them, whose ringleader was named Peter, a reader,

driven on by a fierce and bigoted zeal, entered into

a conspiracy against her. They followed her as she

was returning home, dragged her from her carriage,

and carried her to the church Caesareum, where they

stripped her and then murdered her with shells. They

tore her body to pieces, took the mangled limbs to

a place called Cinaron, and burned them with rice

straws. This brutal murder happened, he says, un-

der the tenth consulate of Honorius and the sixth of

Theodosius in the month of March during Lent, so

that the year of her death may be set as 415.

Socrates' report of Hypatia's death is corrobo-

rated not only by Suidas, but also by other histori-

ans such as Callistus [1], the ecclesiastical historian,

Philistorgus [12], Hesychius [2] the Illustrious, and

Malalus [5]. Damascius says that Cyril had vowed

Hypatia's destruction, while Hesychius states that

his envy was caused by her extraordinary wisdom

and skill in astronomy. Damascius also relates that at

one time Cyril, passing by the house of Hypatia, saw

a great multitude, both men and women, some com-

ing, some going, while others stayed. When he was

told that this was Hypatia's house and the purpose

of the crowd of persons was to pay their respects to

her, he vowed her destruction.

When we compare these statements, it would seem

that Hypatia's death, or at least the occasion of it,

was due to her friendship with Orestes. This friend-

ship enraged the Christian populace because they

felt that she prevented a reconciliation between Cyril

and Orestes. We are also led to believe that the more

sober-minded of the Christians yearned for a recon-

ciliation between these two and that no doubt her

death was ordered by Cyril.

Among the later writers on the subject there is a

divergence of opinion. Toland lays the death of Hy-

patia directly at the feet of Cyril. Wolf [13], on the

other hand, is inclined to believe that Cyril knew

beforehand that the murder was being plotted but

did nothing to prevent it. As to the causes of the

murder, Wolf mentions her belief in paganism and

her teaching of Neoplatonism, along with the prac-

tice of treating the mentally diseased with music, all

of which might be considered as coming under the

pale of the edicts of Theodosius I regarding pagan

worship.

The present writer is inclined to followMeyer part

of the way in the interpretation of these events; that

is, Hypatia was used as a sacrifice for a political or

personal vengeance, possibly a political vengeance.
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Cyril and Orestes were at odds; both had made var-

ious reports to the Emperor, each one attempting to

show that his actions were justified. On the other

hand, Orestes was the one person who stood in the

way of the complete assumption of the civil power

by Cyril, and naturally Cyril was eager to use ev-

ery incident which would embarrass Orestes. In the

case of Hypatia's death it would seem that its un-

derlying cause was not so much a struggle for the

assumption of the civil authority, but rather a strug-

gle of the Christian church against the pagan society

of Alexandria. It must be remembered that although

Orestes professed Christianity, the fact still remained

that this profession was more one of policy than of

faith. In all justice it would certainly seem that Cyril

should be held at least indirectly responsible for her

death. Certainly he could have prevented the mob's

violence, if he had made the slightest effort.

Meyer feels the relation between Cyril and Syne-

sius should be considered in investigating Hypatia's

death. He is of the opinion that possibly there was

an old difference between these two, and that her

death was brought about by Cyril in order to set-

tle this difference with Synesius. Meyer bases his

conclusions on the contents of Epistle 12 [10] of

Synesius, in which he exhorts Cyril to go back to

the Mother Church, from which he had been sepa-

rated for a period of time for the expiation of sin.

The present writer is of the opinion that Meyer has

no justification for this assumption. Although we do

not know the exact date of Synesius' death, it was

probably between 412 and 414, and it must be re-

membered Cyril was not raised to the bishopric until

late in the year 412. It is very probable that Epis-

tle 12 was written before Cyril was made Bishop

at Alexandria, though as a matter of fact we have

no convincing evidence that the letter was written

to Saint Cyril. Furthermore, there is no evidence to

support the belief there ever existed any difference

between Cyril and Synesius.

It has been stated above that little is known con-

cerning Hypatia's early life. Consequently there is

little on which to base our conclusions regarding her

early education. It goes without saying that her father

taught her in mathematics, astronomy, and science.

Beyond this we do not know who her teachers were,

but we rest assured that, with an intellect as fertile

as hers, she was not long satisfied with the narrow

training in mathematics and astronomy. In order to

understand the possible trend of her education it is

necessary to take a look at the working of the Mu-

seum at Alexandria. The Museum had its origin in

the efforts of Ptolemy Soter about 300 B.C., when

he brought to the city of Alexandria all the philoso-

phers and writers it was possible for him to obtain.

To these he gave every encouragement possible, not

only financial aid, but also in books and manuscripts

from Greece. The later rulers of Egypt continued

their support until the country came under Roman

authority in 30 B.C. This ended the first period of

intellectual activity, which is characterized as purely

literary and scientific in nature. With the conquest

of the country by the Romans, intellectual activity

was again in the ascendancy and Roman, Greek, and

Jewish scholars were again attracted to the city. This

second school of thought was somewhat different

from the first. We have an intermingling of nationali-

ties with their varying philosophies and personalities,

all of which developed into the speculative philos-

ophy of the Neoplatonists, the religious philosophy

of the early Christian fathers, and the gnosticism of

the Oriental philosophers. This second period of in-

tellectual activity continued until about 642, when

the city was destroyed by the Arabs. Considered as

a whole, the Alexandrian School stood for learn-

ing and cosmopolitanism, for erudition rather than

originality, and for a marked interest in all literary

and scientific techniques. It was at the Museum that

these philosophers, writers, and scientists gathered

to lecture to their students and to converse with one

another. Theon, Hypatia's father, was director or fel-

low in the Museum, and it is reasonable to infer that

Hypatia came into close contact with the leading ed-

ucators and philosophers of Alexandria.

The question is frequently asked whether or not

Hypatia studied at Athens. Here again we come to a

point which has not been definitely decided. Suidas

says she obtained part of her education there, or at

least the passage has been so interpreted, for both

Meyer and Hoche are of the opinion that Suidas has

been misinterpreted on this point. Wolf states that

Hypatia studied at Athens under Plutarch but Meyer

again points out that this was highly improbable, as

at the time Plutarch was lecturing at Athens, Hypatia

was probably 30 years of age and was herself lec-

turing at Alexandria. Suidas also makes mention of

the fact that she studied under another philosopher at

Alexandria, but he does not identify this philosopher

except to say that it was not Theon. Meyer thinks

it might have been Plotinus. Regardless of how or

where she received her education, we do know that

she received a thorough training in arts, literature,

science, and philosophy under the most competent

teachers of the time.
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It was with this training that she succeeded to

the leadership of the Neoplatonic School at Alexan-

dria. The exact date at which she assumed control of

the school is not known, but Suidas informs us that

she flourished under Arcadius, who was Emperor

of the Eastern Roman Empire from 395 to 408. We

are naturally led to ask two questions regarding her

teaching: first, what was her ability as a teacher?

second, what was the nature of her teaching? The

first question is much simpler than the second, al-

though there are sufficient facts relating to the nature

of her teaching to enable us to draw a fairly definite

conclusion.

All the contemporary and later writers on this pe-

riod testify to the high reputation of her work as

a teacher. Each one attributes an extraordinary elo-

quence and an agreeable discourse to her lectures.

Suidas speaks highly of her teaching methods, while

Synesius in one letter praises her voice and in an-

other mentions that her philosophy was carried to

other lands. Socrates and Philistorgius tell us that

not only the Egyptians, but students from other quar-

ters of Europe, Asia, and Africa came to her classes

until there was in reality a friendly traffic in intel-

lectual subjects. Suidas states that, on account of

her ability as a teacher and her personality, Orestes

sought out her house to be trained in the art of public

manners. Damascius states she far surpassed Isidorus

as a philosopher, and it should be remembered that

Damascius was a friend and pupil of Isidorus.

Among her disciples there are many well-known

men other than Synesius. The names of these in-

clude Troillius, the teacher of the ecclesiastical his-

torian Socrates, Euoptius, the brother of Synesius

and probably the Bishop of Tolemais after the death

of Synesius, Herculianus, Olympius, Hesychius, and

finally Herocles, the successor of Hypatia in the Pla-

tonic School at Alexandria.

From her teaching position she expounded the phi-

losophy of the Neoplatonic School and her fame rests

primarily upon the manner in which she conducted

this school. In her teaching she no doubt lectured

not only on philosophy as we know it today, but

also included the scientific subjects of mathematics,

astronomy, and the subject of physics as known at

the time. She was apparently well versed in astron-

omy, since Suidas tells us that she excelled her father

in this field. We may also assume that she taught the

rudiments of mechanics, since there is a reference in

one of Synesius' letters to an astrolabe which she

constructed, and in another letter Synesius requests

Hypatia to make a hydroscope for him.

Neoplatonism, as a philosophic system of thought,

had its inception during the second century of the

Christian era. It was built up from the remains

of many of the systems of philosophies of ancient

Greece and became a religion for many of the hea-

thens, who could no longer believe in the old gods

of Olympus. The Neoplatonist believed in a supreme

being or power, which was the Absolute or One of

the system. This supreme power was mystic, remote,

and unapproachable in a direct fashion by finite be-

ings. Hence there existed between man and the Ab-

solute lesser gods or agencies. The first in this series

was Nous or Thought, which was emanated by the

Absolute as an image of itself. Below Nous, there

existed the triad of Souls, which pervaded all of the

material universe, and all of those beings with which

it is peopled are a direct emanation from the triad

of Souls. Matter or material things were thought of

as belonging to an evil category, while the triad of

Souls belonged to a pure category. Man, a mixture

of the material and the spiritual, has the power by

indulging in self-discipline and subjugation of the

senses, to lift himself to a level where he may re-

ceive from the Absolute a revelation of divine real-

ities. Once man has caught a glimpse of this vision,

he is able to free himself entirely from the thralldom

of matter.

It should be noted that the development was from

a higher to a lower or descending series. Since each

series participated in the one above it, there was also

a turning back, where the soul by an ascending pro-

cess was able to return to the Absolute. The object

of life, when the soul was perfectly free, was to rise

by the practice of virtue from the category of matter

to the higher category of intelligible realities. There

were purifying virtues, which disciplined the soul

till it became capable of union with the Absolute.

We have no writings of Hypatia, but we may rest

assured that she at least subscribed to the general

principles of Neoplatonism. Plotinus' works show

that he succeeded in contempt of bodily cares and

needs, and we find the same thing to be true with Hy-

patia. No doubt Hypatia's use of logic, mathematics,

and the exact sciences gave her a discipline which

kept her and her pupils from going too far in the su-

perstitions and speculations of some members of this

group of thinkers. Synesius in his speech before the

Arcadians, acknowledges the purely subjective char-

acter of the different attributes which are conceived

of by man as belonging to the divine nature. He also

felt a wholesome reticence in his attempts to reach

towards the Incomprehensible. He believed in the
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Trinity of Plotinus, but did not assign to the World-

soul the creating or animating of the entire universe.

He thought occasional supernatural communications

between God and the human soul were possible, and

he also believed that man was able to purify his soul

to such an extent that he would be able to elevate

the imagination to a point where it would be pos-

sible for him to share in the ecstacy of the upper

light. He believed that the final goal aimed at in life

was a pure and tranquil state of mind, undistracted

by fierce passions, gross appetites, or the demands

of worldly affairs. It would be reasonable to assume

that these tenets of Synesius' faith were inculcated

in him by his beloved teacher Hypatia.

In considering the writings of Hypatia we have

but little information to fall back on. Suidas is the

only historian to give us any information concern-

ing her writings. He gives us the names of three:

a commentary on the Arithmetica of Diophantus of
Alexandria, a commentary on the Conics of Apollo-
nius of Pergassus, and a commentary on the Astro-
nomical Canon of Ptolemy. None of these are extant
at the present time.

We are naturally led to the question of why Hypa-

tia, a student of philosophy, a teacher of renown, and

the leader of the Neoplatonic School at Alexandria,

left only three works and those three purely mathe-

matical or astronomical. The answer is probably that

Suidas quoted the writings of Hypatia as given by

Hesychius, who for some reason gives an account

only of the Astro-Mathematical works of Hypatia. It

is rather difficult for us to believe that with approx-

imately twenty years of teaching she would produce

not more than three works, and those three commen-

taries. So we are led to the conclusion that Hypatia

did leave other writings, which were probably lost in

the destruction of the library at Alexandria, and that

these works were principally philosophic in nature.

It is true that both Halma and Montucla [7] make

mention of other works of Hypatia; Halma in par-

ticular says she left behind \beaucoup d'ecrits." At

the present time it is impossible to determine from

what source Halma obtained this information, and it

is more than probable this is only a conjecture on

his part.

With the passing of Hypatia we have no other

woman mathematician of importance until late in the

Middle Ages. Although we have no definite infor-

mation to indicate that she exerted any great influ-

ence on the development of mathematics or science

in general, nevertheless she certainly passed on to

her scholars and followers a discipline and restraint

which were carried over to a later period. It is pos-

sible that the effects of her teachings have been lost

sight of, since any works she might have left be-

hind were certainly lost when the Arabs destroyed

the Library at Alexandria in 640.
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Hypatia and Her Mathematics

MICHAEL A. B. DEAKIN
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1 Introduction

The first woman mathematician of whom we have

reasonably secure and detailed knowledge is Hypa-

tia of Alexandria. Although there is a considerable

amount of material available about her, very much

of that is fanciful, tendentious, unreferenced or plain

wrong. These limitations are to be found even in

works that we might hope to be authoritative; for

example, the entry in the Dictionary of Scientific Bi-
ography (DSB) [11]. Even where the account given
is more careful and accurate [14, 19, 20], one is

disappointed to be told so little of Hypatia's Math-
ematics.
This article will direct the reader's attention to

the best accessible sources and will describe what is

known about her mathematical activities.

2 The historical background

In about 330 B.C., Alexander the Great conquered

northern Egypt and, via a deputy (Ptolemy I Soter),

founded a city (Alexandria) in the Nile delta. This

almost immediately became home to the Alexandrian

Museum, an institution of higher learning, rather

akin to the medieval universities of some 1500 years

later. Euclid was an early (probably the first) \pro-

fessor" of mathematics.

The Museum continued for many centuries. In 30

B.C., Cleopatra's suicide allowed the Roman Empire

to occupy Alexandria, but this event destroyed nei-

ther the city's Greek heritage nor its intellectual tra-

dition. In the years that followed, two of the great-

est of the late Greek mathematicians flourished in

Alexandria. Diophantus was active around A.D. 250

and produced in particular his Arithmetica at this
time. Several generations later, Pappus (c. 300{c.

350) also worked there.

A later mathematician, Theon of Alexandria, was

the last person definitely known to have been asso-

ciated with the Museum. Because he recorded two

eclipses (one of the sun and one of the moon) and

because he is also credited with achievements during

the reign of Theodosius I, it is thought that he was

at the height of his powers in the decade 360{370.

Theon may well have been the last \president" of the

Museum. His daughter, Hypatia, was associated with

the Neo-platonic School | a different institution.

Alexandria, in the years around A.D. 400, was

a turbulent mix of cultures. Christians were in the

majority, but they were divided among themselves.

Gasparo's portrait of Hypatia

52
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There were also persons whom the Christians re-

garded as \pagans"; these could be anything from

believers in the Olympian pantheon to adherents of

various schools of \Neoplatonic" thought. Beyond

these there were also Jews and Gnostics.

The Roman Empire, of which Alexandria was a

part, was under external pressure from the Huns

and the Visigoths. It split in 395 into the Western

Empire (ruled from Rome) and the Eastern Empire

(ruled from Constantinople). The official religion

was Christianity: it had been established under Con-

stantine. But there had been relapses; in particular,

Julian the Apostate had reigned over the combined

empire from 361 to 363.

At the time of Hypatia's death, the local gover-

nor was Orestes, a Christian not unsympathetic to

other views, but whose authority was under chal-

lenge from that of the less tolerant Cyril (St. Cyril

of Alexandria) who acceded to the bishopric in 412.

The divisions that beset the city were prone to erupt

into sectarian violence; the great libraries associated

with the Museum were one by one destroyed, the

last going up in smoke in 392 when the temple of

Serapis was put to the torch during a riot. Another

such disturbance was to claim Hypatia's life in the

second decade of the fifth century. She died, bru-

tally hacked to pieces, at the hands of a Christian

lynch-mob.

Following this, very possibly in part because of

it, the thrust of Neoplatonist thought and education

moved from Alexandria to Athens. Three names re-

quire mention. Proclus (410?{485) was the last of

the great mathematicians of antiquity. He frequented

the Neoplatonic School at Athens and is best re-

membered for a commentary on Book I of Euclid's

Elements. After Proclus came Isidorus and his pupil
Damascius (philosophers both of them rather than

mathematicians, although the latter may have some

claim on a place in mathematical history [6, pp.

312{313]). In 529, the emperor Justinian, enforcing

Christianity as the state religion, closed the Neo-

platonic School and Damascius went into exile in

Persia.

3 The primary sources

The oldest accounts of Hypatia come to us from ei-

ther the Suda (or Suidae) Lexicon or from the writ-
ings of the early Christian Church. For an accessible

account of them, giving more detail than I provide

here, see Mueller [14].

Medallion of Hypatia in the Introduction to Halma's

edition of Theon's Commentary on the Almageste.
(Artist Unknown)

Briefly, the Suda was a 10th-century encyclope-
dia, alphabetically arranged, and drawing on earlier

sources. In the case of Hypatia, these are in part

known. (One is a now lost work, a life of Isidorus

by Damascius.) The relevant entry is unusually long,

but is not seen as reliable in all its aspects (see [25]);

indeed in places it contradicts itself.

The other sources are to be found in the main in a

compilation known as the Patrologiae Graecae [13],
or PG for short. This gives earlier accounts (partic-

ularly of her death) than are available in the Suda
and also preserves letters to her and about her from

the hand of one of her pupils, Synesius of Cyrene.

Also by Synesius is a letter published as a separate

document included with the others in FitzGerald's

translation [4].

4 Life and legend

The best-recorded event in Hypatia's life is her death

and the manner of it. The fullest account tells us

that a crowd of Christian zealots led by one Peter

the Reader seized her, stripped her and proceeded to

dismember her and burn the pieces of her corpse.

Another says she was burned alive, but this would

seem to be a less accurate version.

The political background to this action has been

the cause of much speculation. Gibbon [5] is by

no means alone in attributing the guilt for the mur-

der to Cyril, but Rist [20] disputes this, which does

mean taking issue with the Suda. Rist's account,
in essence, has it that, like victims of violence in

Belfast or Beirut today, she was seized not with any

great selectivity at all, but rather because she was

a well-known public figure, prominent on the other

side of a religious divide. This to my mind is quite

compatible with the statement quoted by Gibbon to

the effect that she was killed because of her outstand-
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ing ability. We need not posit any specific jealousy

to say this, and Rist thinks it is unlikely that precise

differences of doctrine led to her death. Rist does toy

with the idea that her mathematical activities were a

partial cause, hypothesizing that these included as-

trology. This, to me, sets us on a path we have no

reason to travel.

The date of her death is now generally accepted to
have been 415, although others have been suggested.

See Mueller [14] for details.

The date of her birth is much less certain. (This is

to be expected | people are not, generally speaking,

famous when they are born.) The eclipses described

by Theon, Hypatia's father, have been dated to 364.

So, from the eclipses to the time of her death is an

interval of 51 years. Valesius, an early commentator

on the PG who had the wrong date for the eclipses,

reckoned this interval at 47 years; rounding this to

45 produces a date of c. 370, which is the generally-

stated figure. Of course, astrology aside, we have no

real reason to suppose that her birth coincided with

the eclipses; nor have we any idea how old Theon

(or more importantly his wife) was in 364. (I tend

to agree with Mueller that a date of c. 350 is more

plausible.)

As to her life between these uncertain dates, we

may readily summarize. She was a respected and em-

inent teacher, charismatic even, and beloved of her

pupils (e.g., Synesius). We have evidence that she

was regarded as physically beautiful, that she wore

distinctive academic garb, that she taught not only

Mathematics but also Philosophy, that she gave pub-

lic lectures and may have held some kind of public

office.

She seems to have been determinedly celibate, in-

deed repelling one ardent suitor by confronting him

with one of her used menstrual pads and lecturing

him on the shameful and unclean nature of what he

thought beautiful (the vagina).

Although almost all the primary sources are Chris-

tian and tell of the life and death (at Christian hands)

of a prominent advocate of a rival philosophy, they

do so in such a way that we are left with a favorable

impression of her. My reading of this is that the of-

ficial discouragement of her teachings on the part of

the Church authorities and of their (Christian) civic

counterparts was far from complete.

Certainly that favorable impression has informed

various works of literature of which the best-known

in English are Kingsley's novel [10] and the passage

from Gibbon. Also fiction is Hubbard's telling of

Hypatia's story [9]. It formed a chapter in a popular

reader early this century and has given us the most

widely disseminated \portrait" of Hypatia, attributed

to an artist called Gasparo, of whom I am able to

learn nothing. (Of course such \portraits" have ex-

actly the same validity as (e.g.) Dor�e's illustrations

of the Bible.)

5 Hypatia's Philosophy

The Philosophy expounded by Hypatia is known to

have been Neoplatonist. There were various versions

of Neoplatonism, all endowing Plato's Theory of

Forms with an explicitly religious dimension. Rich-

eson [19] describes one such system; Rist [20] sug-

gests that Hypatia actually preached another.

Richeson does however make a particularly in-

sightful remark on the connection between Neopla-

tonist Philosophy and Mathematics. The nature of

Mathematics is to abstract | to derive ideas from
material things. Thus Geometry, although it has its

origin in the practical world of land surveyors and
inspectors of weights and measures, transcends these

beginnings. The Elements deals with a world that is
no longer the world of the practical but rather the

world of ideas. Thus Mathematics could be seen as

a paradigm of that transcendence over the material

that Neoplatonism enjoined.

6 Hypatia's Mathematics

That Hypatia was a mathematician is beyond doubt.
The PG tell us that she learned her Mathematics

from her father Theon and went on to excel him in

the subject and to teach it to numerous students. An-

other such source is more critical: \Isidorus greatly

outshone Hypatia, not just because he was a man and

she a woman, but in the way a genuine philosopher

will over a mere geometer." This opinion, which will

earn no praise from either women or mathematicians,

is thought to derive from Damascius' life of Isidorus,

the lost work that in part informed the Suda. (Marrou
[12], following Tannery [25], supplies the following

delightful gloss: \[it] means in plain language that

Isidorus knew nothing of mathematics.")

However, the Suda itself gives the most explicit
account of Hypatia's mathematical works. It at-

tributes to her the authorship of three works. The

only things she is known to have written all deal with

Mathematics or Astronomy. The books that many

feel she must have authored on Neoplatonist Philos-

ophy receive no mention. Others (e.g., Kramer [11])
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have credited her with further works of Mathematics.

For this there is no evidence, except in one specific

instance to be described below. The relevant passage

in the Suda is precisely twelve words long. And even
this short excerpt is the subject of various alternative

and disputed readings. However, there is a general

consensus that Tannery [25] is correct in rendering it

thus: \She wrote a Commentary on Diophantus, [one

on] the astronomical Canon, and a Commentary on

Apollonius's Conics."
\Commentaries" were what we would now refer

to as \Editions" (with the obvious difference that

they needed to be copied by hand), and the au-

thor of a \Commentary" is perhaps better referred

to as an \Editor." Such \Editors" or \Commenta-

tors" did, however (to a greater or lesser extent,

and with greater or lesser care to distinguish their

own contributions from the original), provide new

material of various sorts (witness Fermat's famous

marginal note to Diophantus). It should be noted that

in many cases the original text has come down to

us only through Commentaries or translations (often

into Arabic).

Theon, Hypatia's father, was a prolific author

of Commentaries. He wrote one on the Elements
(which, in places, still provides our present text),

on two other works by Euclid, the Data and the Op-
tics, and on two works by Ptolemy, the Almagest
and the Handy Tables. There were also works now
lost or partly so; particularly germane to our story

is a work on the astrolabe. For this and more, see

Toomer [28].

The picture that emerges of Theon is one of an

editor, teacher and textbook-writer rather than a re-

search mathematician. So is he judged, often with

more than a hint of disapproval. But this should not

mean that his was a wasted life. His works were

preserved, presumably because they were perceived

as having lasting value. It is all too understandable,

given the politics of late 4th-century Alexandria and

the decay of the Museum, that the emphasis on

research (possible in Pappus's time) should be re-

placed by the priority of conserving knowledge.

After considering her works seriatim, I shall offer
the hypothesis that in her scholarly priorities Hypatia

was very much her father's daughter. This, as I hope

I have just made clear, is not to denigrate her.

7 Apollonius' Conics
Apollonius lived around 200 B.C. and the Conics
is the most important of his surviving works. See,

for more detail, Toomer's account [27]. There are

very few sources for our present text and Hypatia's

Commentary is not one of them. Of the eight books
that make up the Conics, the first four survive via
a Commentary by Eutocius while three of the re-
maining four have come down to us via the Arabic.

The other is lost, as is also, we must conclude, Hy-

patia's Commentary, unless it is the lost original of
Eutocius' work.

8 The Astronomical Canon

In the case of the \Astronomical Canon", we are

much better placed. It is now generally assumed

that Tannery's interpolation (the words in brackets in

Section 6) in the Suda entry is correct. This means
that this work also was a commentary. The most

likely original is one of the works of Ptolemy, either

the Almagest or the Handy Tables. It will be remem-
bered that Theon wrote commentaries on both these

works.

Theon's commentary on the Almagest has been
printed in various editions. The best and most recent

is by A. Rome [21, 22]. (But see also [23].) It com-

prises separate commentaries on the thirteen books

that go to make up the Almagest. The titular inscrip-
tions (as described by Rome from his study of the

manuscripts) of the first and second books ascribe

these works to Theon himself. Books 4{13 contain

no inscriptions. Only the very best manuscripts con-

tain the Commentary on Book Three, and here the
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inscription tells us that the work is Theon's \in the

recension of my philosopher-daughter Hypatia."

Heath [8], reviewing Rome's work, thus ascribed

this chapter of the commentary to Hypatia, with the

inference that it was also the work alluded to in the

Suda, and that Theon (recognizing his daughter's
work as superior to his own) had suppressed his ear-

lier effort in favor of hers. (The pity, from our point

of view, is that we don't have both versions before

us; so we cannot see for ourselves where or how or

to what extent Hypatia's commentary differed from

Theon's.) Rome himself discusses the matter at con-

siderable length in his later work [22], but in such

a way as not to rule out a possibility that has been

canvassed: that father and daughter collaborated.

Neugebauer [16, p. 838] accepts this as likely.

However, he regards it as probable that what the

Suda refers to is a commentary not on the Almagest
at all, but on the Handy Tables. This is because the
same word (Canon) is used for both works. (Delam-
bre [2] had earlier noted this same concordance of

wording, but as his work predates Tannery's sug-

gested interpolation, he credits Hypatia with a set of

Astronomical Tables.) If the Suda were referring to a
commentary on the Almagest, so the argument goes,
then it would speak of the Syntaxis, rather than the
Canon. (Syntaxis is the Greek name for the work we
now know by its Arabic designation.) Against this,

however, is the Canon of Parsimony and the fact

that Book 3 of the Almagest has a strongly tabular
character.

9 Diophantus' Arithmetic

We may also have some of Hypatia's own writing

from the commentary on Diophantus. Diophantus'

major work is the Arithmetic, originally comprising
thirteen books. Of these only six now survive from

the Greek, and possibly part of another, now listed as

separate, the Polygonal Numbers. Tannery [26] sug-
gested that all existing manuscripts known to him de-

rived from a common source and that that source was

Hypatia's commentary. His careful \family tree" of

the manuscripts was later modified in one detail and

made available in the amended form in Heath's Edi-

tion [7]. The presumption was that Books 7{13 are

lost because Hypatia's commentary did not include

them, much as Eutocius' commentary extended only

to the first four books of the Conics. This hypothe-
sis enjoyed a deal of support, and Vogel's article on

Diophantus in the DSB simply accepts it.

The basis for this theory was the Greek text and

the fact that the Suda reference to Hypatia's com-
mentary is the only mention of so ancient an edi-

tion. Sesiano [24, pp. 71{75] however queries this

account. This is a matter of great controversy. The

old theory will be presented first, but see the remarks

at the end of this section.

On the old story, the mathematical world of today

owes Hypatia a great debt, for without her we would

have much less of the works of Diophantus. But

there is an obvious corollary. If what survives for us

is Hypatia's commentary, then some of her work may

appear there. It may be possible to see what is hers.

One complication is that a later scribe was thought to

have attempted to reconstruct Diophantus' original

text and thus to have systematically omitted material

he judged to be interpolated. But \the distinction

between text and scholia being sometimes difficult

to draw, he included a good deal which should have

been left out" [7, p. 14].

On this account, the most likely of the supposed

interpolations to have come from Hypatia's hand are

two \student exercises" at the start of Book II. The

first asks for the solution of the pair of simultaneous

equations:

x− y = a, x2 − y2 = (x− y) + b,

where a, b are known. The next is a minor general-
ization. It requires the solution of the pair of simul-

taneous equations:

x− y = a, x2 − y2 = m(x− y) + b,

where a,m and b are known. There is some evi-
dence to link this problem to Hypatia: a nine-word

phrase in the original Greek is identical with one

from Euclid's Data, which her father had edited.
Recent work by Roshdi Rashed, Sesiano and oth-

ers has suggested that some of the lost books of

Diophantus in fact survive in Arabic translations.

This has led to very great and indeed bitter contro-

versy. What is at issue (apart from the personal ri-

valries involved) is whether Diophantus or someone

else wrote the newly discovered works and where

they might fit into the fragment previously published.

Sesiano and others are inclined to the view that if

anything of Hypatia's commentary survives then it

survives in the Arabic. There are no clear indications

of what might be by her and what by Diophantus or

by other scholiasts. Many of Sesiano's conclusions

are hotly disputed by Rashed [18]. However, tenta-

tive attributions of material to Hypatia all tend to
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accept the overall assessment reached above | that

her contributions to mathematical knowledge itself

were slight or non-existent.

10 The astrolabe

The other source for information about Hypatia's

mathematical activities is the correspondence of

Synesius.

There is a brief but telling reference to Hypatia in

Synesius' essay-letterDe Dono Astrolabii. The name
\astrolabe" was a term applied to a variety of instru-

ments. For a good overview of later developments,

see [17]; earlier ones are discussed by Neugebauer

[15]. A simple attempt to replicate the motions of the

heavens in a mechanical model produces the device

known as an \armillary sphere." Such an object is

necessarily 3-dimensional and unwieldly, more suit-

able for display purposes than for use as a practical

instrument of observation or computation.

However, once we have a theory of stereographic

projection, the way is open for the construction of a

more practical two-dimensional device. This theory

was given by Ptolemy in his Planisphaerium, which
even includes tabular material. Whether Ptolemy

went on to develop the \little astrolabe" (i.e., the

practical instrument) has been argued. Neugebauer

regards it as probable that he did.

The next figure is Theon. Ptolemy died in about

170 A.D., about two centuries before Theon's active

period. Theon wrote, as we have seen, commentaries

on the Almagest and the Handy Tables. The Suda
also credits him with a treatise on the little astrolabe,

and Arab sources refer in addition to a work of his

on the armillary sphere. This set corresponds exactly

to the set of works assigned to Ptolemy by the Arabs.

There is thus considerable evidence that Theon

was familiar with the theory of the little astrolabe.

We might speculate that he invented it, but the pic-

ture of Theon that has come down to us is one of

Theon as a disseminator and conserver of knowl-

edge, rather than an innovator. Moreover, Neuge-

bauer has given us grounds to believe Ptolemy to

have been the inventor.

Although Theon's work on the astrolabe is now

regarded as lost, Neugebauer finds such similari-

ties between later works that they must derive from

a common source. This source he believes to be

Theon. He further argues (because of the exact corre-

spondence described above) that what Theon wrote

was a Commentary on an earlier book by Ptolemy.

This gives us the background to Synesius' De
Dono Astrolabii. Writing to Paionos, he states that
he designed the astrolabe himself with help from

Hypatia and had it crafted by the very best of silver-

smiths. The inference is that the theory of the astro-

labe and the details of its construction were passed

down from Ptolemy, via Theon, to Hypatia, who in

her turn taught Synesius.

11 The Hydroscope

Letter 15 of Synesius begins: \I am reduced to this,

that I have to have a hydroscope." The letter then

goes on to ask her to make him one, to quite detailed

specifications. The question of what he needed is

puzzling. The general presumption is that he was

ill.

The term \hydroscope" usually implies a clepsy-
dra or water-clock, but this seems inappropriate as
a translation in this case. Why should he be, even if

brought so low, in such urgent need of a water-clock?

FitzGerald believes that Fermat (yes, the Fermat) [3]
is right in suggesting that what Synesius needed was

a hydrometer, that is to say, a densimeter. This makes

much more sense of the specifications, which refer

to the need to measure the weight of the water (the
clepsydra measures the volume), and describe an in-
strument that sounds very like a hydrometer.

The suggestion is that Synesius needed it in his

illness somehow to measure a medicine he was tak-

ing (or less plausibly the salinity of his drinking wa-

ter). Hydrometers are now used, as they well may

then have been, to measure the alcoholic contents

of fermented or distilled liquors. Possibly Synesius

was making his own medicine by some such means.

My friend and colleague Charles Hunter (Depart-

ment of Anatomy, Monash University) however of-

fers a novel suggestion| that the \hydroscope" was

in fact a urinometer and that the dosage of some di-

uretic was calculated by reference to the specific

gravity of the urine.

12 Assessment

What we know of Hypatia is little enough; what we

know of her Mathematics is only a small subset of

that little. There is evidence that she was greatly

regarded as a teacher and a scholar. The range of

her acknowledged expertise was considerable. She

edited works of Geometry, Algebra and Astronomy,

knew how to make astrolabes and \hydroscopes",
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and did a lot else besides. One cannot but be im-

pressed with this breadth of interest. Moreover, at the

time of her death (assuming with Toomer [28] that

Theon pre-deceased her) she was in fact the great-

est mathematician then living in the Greco-Roman

world, very likely the world as a whole.

She is variously described as a philosopher, a

teacher of Philosophy, a mathematician and as-

tronomer, a learned woman and a geometer.

We can understand the term \philosopher" in two

senses: it has the technical sense that it retains to this

day, but it also has a generic meaning of \thinker".

Theon also is described in the sources as a philoso-

pher. But this is surely in the second sense; Theon

clearly emerges as a specialist mathematician and

astronomer | the Suda goes on to say as much.
Hypatia does not (unless one accords weight to the

quote in Section 6 above); the Suda is at some pains
to make this clear. \She also took up other [non-

mathematical] branches of philosophy and though

a woman she cast [an academic robe] around her-

self and appeared in the centre of the city" (Rist's

translation) | the Suda then proceeds to describe
the Philosophy she taught, mentioning the work of

Plato and Aristotle, in particular.

However, if we restrict consideration to Mathe-

matics alone, we may well query the usual judgment

that Hypatia outclassed her father. It comes from the

PG and modern sources regularly repeat it uncriti-

cally. We may also deduce it from Theon's heading

to his Commentary of Book 3 of the Almagest.
We may still however dispute this opinion and

indeed argue the opposite. That a fond father might

recognise and promote his daughter's improvement

of one of his own works is understandable enough.

That ecclesiastical historians, of whom we have no

evidence of mathematical ability, might use fame or

even notoriety as an index of talent is equally so.

But this does not end the matter.

While it is of course too much to posit a universal

theory of natural selection of scholarly works (it be-

ing by no means always true that the best works are
the survivors) nonetheless scholars of earlier times

preserved, translated and taught from those works

they adjudged as valuable, much as we do today. In

fact, we do know something of the principle of nat-

ural selection that operated. Because the focus had

moved from research to conservation, those works

were preserved that were well regarded as textbooks
[29]. Many research works from the period are lost.

We have no evidence of research Mathematics on

the part of either father or daughter. What we can

reconstruct of their Mathematics suggests to us that

they edited, preserved, taught from and supplied mi-

nor addenda to the works of others. A great deal

of Theon's work survives and at most a small part

of Hypatia's. In other words Theon was seen as the

better text-writer, even if he himself generously de-

murred in one case.

Where Hypatia does quite clearly outshine Theon
is in her reputation as a teacher. She was revered as

such and no similar endorsement of Theon has come

down to us. (It is perfectly possible that this is the

basis of the original statement.) We are left with a

well-attested account of a popular, charismatic and

versatile teacher. And that, I suggest, is the best pic-

ture we can form of her.

Addendum: Too late for mention in the main ar-

ticle, I was made aware of the lengthy discussion

of Hypatia by W. R. Knorr [Textual Studies in An-
cient and Medieval Geometry (Boston: Birkhauser,
1989)]. Beginning from a stylistic analysis of Book

Three of Theon's Commentary on the Almagest,
Knorr builds an elaborate and detailed, though spec-

ulative, argument to attribute several other lost works

to Hypatia. In particular, he suggests that Eutocius'

Commentary on Apollonius' Conics in fact derives
from Hypatia's earlier Commentary, the one men-

tioned in the Suda.
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The Evolution of Mathematics in Ancient China

FRANK SWETZ

Mathematics Magazine 52 (1979), 10{19

A popular survey book on the development of math-

ematics has its text prefaced by the following re-

marks:

Only a few ancient civilizations, Egypt, Baby-

lonia, India and China, possessed what may be

called the rudiments of mathematics. The his-

tory of mathematics and indeed the history of

western civilization begins with what occurred

in the first of these civilizations. The role of

India will emerge later, whereas that of China

may be ignored because it was not extensive

and moreover has no influence on the subse-

quent development of mathematics [1].

Even most contemporary works on the history of

mathematics reinforce this impression, either by ne-

glecting or depreciating Chinese contributions to the

development of mathematics [2]. Whether by igno-

rance or design, such omissions limit the perspec-

tive one might obtain concerning both the evolution

of mathematical ideas and the place of mathematics

in early societies. In remedying this situation, west-

ern historians of mathematics may well take heed of

Whittier's admonition [3]:

We lack but open eye and ear

To find the Orient's marvels here.

Language barriers may limit this quest for informa-

tion; however, a search of English language sources

will reveal that there are many \marvels" in Chinese

mathematics to be considered.

1 Legend and fact

The origins of mathematical activity in early China

are clouded by mysticism and legend. Mythological

Emperor Y�u is credited with receiving a divine gift

from a Lo river tortoise. The gift in the form of a

diagram called the Lo shu is believed to contain the
principles of Chinese mathematics, and pictures of

Y�u's reception of the Lo shu have adorned Chinese
mathematics books for centuries. This fantasy in it-

self provides some valuable impressions about early

Chinese science and mathematics. Y�u was the pa-

tron of hydraulic engineers; his mission was to con-

trol the flood-prone waters of China and provide a

safe setting in which a water-dependent civilization

could flourish. The users of science and mathematics

in China were initially involved with hydraulic en-

gineering projects, the construction of dikes, canals,

etc., and with the mundane tasks of logistically sup-

porting such projects. A close inspection of the con-

tents of the Lo shu reveals a number configuration
(Figure 1) which would be known later in the West

as a magic square. For Chinese soothsayers and geo-

mancers from the Warring State period of Chinese

history (403{221 B.C.) onward, this square, com-

prised of numbers, possessed real magical qualities

because in it they saw a plan of universal harmony

based on a cosmology predicated on the dualistic

theory of the Yin and the Yang [4].

Figure 1.

60
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When stripped of ritualistic significance, the prin-

ciples used in constructing this first known magic

square are quite simple and can best be described

by use of diagrams as shown as follows:

1. Construct a natural square.

7 4 1

8 5 2

9 6 3

2. Distort it into a diamond.

1

4 2

7 5 3

8 6

9

3. Exchange corner elements.

9

4 2

3 5 7

8 6

1

4. Compress back into a square.

4 9 2

3 5 7

8 1 6

The construction and manipulation of magic

squares became an art in China even before the con-

cept was known in the West [5]. Variations of the

Lo shu technique were used in constructing magic
squares of higher order with perhaps the most im-

pressive square being that of order nine:

1. Start with a natural square

1 10 19 28 37 46 55 64 73

2 11 ·
3 12 ·
4 13 ·
5 14 ·
6 15 ·
7 16 ·
8 17 ·
9 18 81

2. Then fold each row into a square

of order 3 (example using row 1)

55 28 1

64 37 10

73 46 19

3. Apply the Lo shu technique

28 73 10

19 37 55

64 1 46

4. The nine resulting magic squares of order 3

are then positionally ordered according to the

correspondence of the central element in their

bottom rows with the numbers of the Lo shu:
4,9,2; 3,5,7; 8,1,6.

31 76 13 36 81 18 29 74 11

22 40 58 27 45 63 20 38 56

67 4 49 72 9 54 65 2 47

30 75 12 32 77 14 34 79 16

21 39 57 23 41 59 25 43 61

66 3 48 68 5 50 70 7 52

35 80 17 28 73 10 33 78 15

26 44 62 19 37 55 24 42 60

71 8 53 64 1 46 69 6 51

While the Lo shu provides some intriguing in-
sights into early mathematical thinking, its signifi-

cance in terms of potential scientific or technological

achievement is negligible. Historically, the first true

evidence of mathematical activity can be found in

numeration symbols on oracle bones dated from the

Shang dynasty (14th century B.C.). Their numerical

inscriptions contain both tally and code symbols, are

clearly decimal in their conception, and employ a

positional value system. The Shang numerals for the

numbers one through nine are illustrated in Figure

2.

Figure 2.

By the time of the Han Dynasty (2nd century B.C.{

4th century A.D.), the system had evolved into a cod-

ified notation that lent itself to computational algo-

rithms carried out with a counting board and set of

rods. The numerals and their computing-rod config-

urations are illustrated in Figure 3.

Figure 3.
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Figure 4.

Thus in this system 4716 would be represented as

in Figure 4 [6]. Occasionally the symbol × was used
as an alternative symbol for 5, in the even power

places.

Counting boards were divided into columns desig-

nating positional groupings by 10. The resulting fa-

cility with which the ancient computers could carry

out algorithms attests to their full understanding of

decimal numeration and computation. As an exam-

ple, consider the counting board method of multiply-

ing 2 three-digit numbers, as illustrated in Figure 5.

Figure 5.

The continual indexing of partial products to the

right as one multiplies by smaller powers of ten tes-

tifies to a thorough understanding of decimal no-

tation. In light of such evidence, it would seem

that the Chinese were the first society to understand

and efficiently utilize a decimal numeration system

[7]. If one views a popular schematic of the evo-

lution of our modern system of numeration (Figure

6) and places the Chinese system in the appropri-

ate chronological position, an interesting hypothesis

arises, namely that the numeration system commonly

used in the modern world had its origins 34 centuries

ago in Shang China!

16th century (Dürer)15th century

11th century (apices)

East Arabic (still used
in Turkey)

West Arabic (gubar)

Sanskrit-Devanagari (Indian)

Indian (Gvalior)

Brahmi numerals

Shang numerals (1300 )BC

(300 )BC

Figure 6.

2 The systematization of early

Chinese mathematics

The oldest extant Chinese text containing formal

mathematical theories is the Arithmetic Classic of
the Gnomon and the Circular Paths of Heaven,
[Chou pei suan ching]. Its contents date before the
third century B.C. and reveal that mathematicians of

the time could perform basic operations with frac-

tions according to modern principles employing the

concept of common denominator. They were knowl-

edgeable in the principles of an empirical geometry

and made use of the \Pythagorean theorem". A di-

agram (see Figure 7) in the Chou pei presents the
oldest known demonstration of the validity of this

theorem. This diagram, called the hsuan-thu in Chi-
nese, illustrates the arithmetic-geometric methodol-

ogy that predominates in early Chinese mathemati-

cal thinking and shows how arithmetic and geome-

try could be merged to develop algebraic processes

and procedures. If the oblique square of the hsuan-
thu is dissected and the pieces rearranged so that
two of the four congruent right triangles are joined

with the remaining two to form two rectangles, then

the resulting figure comprised of two rectangles and
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Figure 7.

one small square have the same area as their parent

square. Further, since the new configuration can also

be viewed as being comprised of two squares whose

sides are the legs of the right triangles, this figure

demonstrates that the sum of the squares of the legs

of a right triangle is equal to the square of the hy-

potenuse [8]. The processs involved in this intuitive,

geometric approach to obtain algebraic results was

called chi-ch�u or \the piling up of squares" [9].
The next historical text known to us is also a Han

work of about the third century B.C. It is the Nine
Chapters on the Mathematical Art [Chiu chang suan
shu], and its influence on oriental mathematics may
be likened to that of Euclid's Elements on western
mathematical thought. The Chiu chang's chapters
bear such titles as surveying of land, consultations

on engineering works, and impartial taxation, and

confirm the impression that the Chinese mathemat-

ics of this period centered on the engineering and

bureaucratic needs of the state. Two hundred and

forty-six problem situations are considered, reveal-

ing in their contents the fact that the Chinese had ac-

cumulated a variety of formulas for determining the

areas and volumes of basic geometric shapes. Linear

equations in one unknown were solved by a rule of

false position. Systems of equations in two or three

unknowns were solved simultaneously by computing

board techniques that are strikingly similar to mod-

ern matrix methods. While algebraists of the ancient

world such as Diophantus or Brahmagupta used var-

ious criteria to distinguish between the variables in

a linear equation [10], the Chinese relied on the or-

ganizational proficiency of their counting board to

assist them in this chore. Using a counting board to

work a system of equations allowed the Chinese to

easily distinguish between different variables.

Consider the following problem from the Chiu
chang and the counting board approach to its so-
lution.

Of three classes of cereal plants, 3 bundles of

the first, 2 of the second and 1 of the third

will produce 39 tou of corn after threshing; 2
bundles of the first, 3 of the second and 1 of the

third will produce 34 tou; while 1 of the first,
2 of the second and 3 of the third will produce

26 tou. Find the measure of corn contained in
one bundle of each class [11]. [1 tou = 10.3
liters]

This problem would be set up on the counting

board as:

1 2 3 1st class grain

2 3 2 2nd class grain

3 1 1 3rd class grain

26 34 39 Number of tou

Using familiar notation this matrix of numbers is

equivalent to the set of equations

3x + 2y + z = 39
2x + 3y + z = 34
x + 2y + 3z = 26

which are reduced in their tabular form by appropri-

ate multiplications and subtraction to

3x + 2y + z = 30
36y = 153

36z = 99

and

36x = 333

36y = 153

36z = 99.

Thus x = 333/36, y = 153/36 and z = 99/36.
A companion problem from the Chiu chang in-

volves payment for livestock and results in the sys-

tem of simultaneous equations:

−2x + 5y − 13z = 1000
3x − 9y + 3z = 0

−5x + 6y + 8z = −600.
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Rules provided for the solution treat the addition and

subtraction of negative numbers in a modern fash-

ion; however, procedures for the multiplication and

division of negative numbers are not found in a Chi-

nese work until the Sung dynasty (+1299). Negative

numbers were represented in the computing scheme

by the use of red rods, while black computing rods

represented positive numbers. Zero was indicated by

a blank space on the counting board. This evidence

qualifies the Chinese as being the first society known

to use negative numbers in mathematical calcula-

tions.

The Chou pei contains an accurate process of ex-
tracting square roots of numbers. The ancient Chi-

nese did not consider root extraction a separate pro-

cess of mathematics but rather merely a form of divi-

sion [12]. Let us examine the algorithm for division

and its square root variant. The division algorithm is

illustrated in Figure 8 for the problem 166536÷648.

The Chinese technique of root extraction depends

on the algebraic proposition

(a+ b+ c)2 = a2 + 2ab+ b2 + 2(a+ b)c+ c2

= a2+(2a+b)b+(2[a+b]+c)c (1)

which is geometrically substantiated by the diagram

given in Figure 9. This proposition is incorporated

directly into a form of division where
√
N = a +

b+ c. The counting board process for extracting the
square root of 55225 is briefly outlined in Figure 10.
Root extraction was not limited to three digit results,

for the Chinese were able to continue the process to

several decimal places as needed. Decimal fractions

were known and used in China as far back as the

Figure 8. 166536 ÷ 648

Figure 9. A geometric proof of Equation (1)

Figure 10. The calculation of
√

55225 = 235. The 1 in

the upper box represents an indexing rod that determines

the decimal value of the divisors used. At the beginning

of the process, it is moved to the left in jumps of two

decimal places until it establishes the largest power of

ten that can be divided into the designated number. After

each successful division, the rod is indexed two positional

places to the right.
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5th century B.C. Where a root was to be extracted

to several decimal places, the computers achieved

greater accuracy by use of the formulae [13]

n
√
m =

n
√
m10kn

10k
.

Cube root extraction was conceived on a similar

geometric-algebraic basis and performed with equal

facility.

Historians of mathematics often devote special

consideration to the results obtained by ancient soci-

eties in determining a numerical value for π as they
believe that the degree of accuracy achieved sup-

plies a comparative measure for gauging the level

of mathematical skill present in the society. On the

basis of such comparisons, the ancient Chinese were

far superior to their contemporaries in computational

mathematical ability. Aided by a number system that

included the decimalization of fractions and the pos-

session of an accurate root extraction process the

Chinese had obtained by the first century a value of

π of 3.15147. The scholar Liu Hui in a third century
commentary on the Chiu chang employed a \cutting
of the circle method" | determining the area of a

circle with known radius by polygonal approxima-

tions | to determine π as 3.141024. A successor,
Tsu Chung-chih, refined the method in the fifth cen-

tury to derive the value of π as 355/113 or 3.1415929
[14]. This accuracy was not to be arrived at in Eu-

rope until the 16th century.

3 Trends in Chinese algebraic

thought

While the Chinese computational ability was indeed

impressive for the times, their greatest accomplish-

ments and contributions to the history of mathemat-

ics lay in algebra. During the Han period, the square

and cube root extraction processes were being built

upon to obtain methods for solving quadratic and

other higher order numerical equations. The strat-

egy for extending the square root process to solve

quadratic equations was based on the following line

of reasoning. If x2 = 289, 10 would be chosen as a
first entry approximation to the root, then

289 − (10)2 = 189.

Let the second entry of the root be represented by

y; thus, x = 10 + y or (10 + y)2 = 289 which, if
expanded, gives the quadratic equation

y2 + 20y − 189 = 0.

By proceeding to find the second entry of the square

root of 289, 7, we obtain the positive root for the
quadratic y2 + 20y − 189 = 0 [15].
By the time of the Sung Dynasty in the 13th

century, mathematicians were applying their craft to

solve such challenging problems as:

This is a round town of which we do not know

the circumference or diameter. There are four

gates (in the wall). Three li from the northern
(gate) is a high tree. When we go outside of the

southern gate and turn east, we must walk 9 li
before we see the tree. Find the circumference

and the diameter of the town. [1 li = 0.644
kilometers]

If the diameter of the town is allowed to be rep-

resented by x2, the distance of the tree from the

northern gate, a, and the distance walked eastward,
b, the following equation results.

x10 + 5ax8 + 8a2x6 − 4a(b2 − a2)x4

− 16a2b2x2 − 16a3b2 = 0.

For the particular case cited above, the equation be-

comes

x10+15x8 +72x6−864x4−11604x2−34992 = 0.

Sung algebraists found the diameter of the town to

be 9 li [16].
The earliest recorded instance of work with in-

determinate equations in China can be found in a

problem situation of the Chiu chang where a system
of four equations in five unknowns results [17]. A

particular solution is supplied. A problem in the third

century Mathematical Classic of Sun Tzu [Sun Tzu
suan ching] concerns linear congruence and supplies
a truer example of indeterminate analysis.

We have things of which we do not know the

number; if we count by threes, the remainder is

2; if we count by fives, the remainder is 3; if
we count by sevens, the remainder is 2. How
many things are there? [l8]

In modern form, the problem would be represented

as:

N ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7).

Sun's solution is given by the expression

(70 × 2) + (21 × 3) + (15 × 2) ≡ 23 (mod 105)

which when analysed gives us the first application

of the Chinese Remainder Theorem.
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If m1, . . . , mk are relatively prime in pairs, there

exist integers x for which simultaneously

x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk).

All such integers x are congruent modulo m =
m1m2 · · ·mk . The existence of the Chinese Re-

mainder Theorem was communicated to the west by

Alexander Wylie, an English translator and math-

ematician in the employ of the nineteenth century

Chinese court. Wylie recorded his findings in a series

of articles, \Jottings on the Science of the Chinese;

Arithmetic" which appeared in theNorth China Her-
ald (Aug.{Nov.) 1852. The validity of the theorem
was questioned until it was recognized as a variant

of a formula developed by Gauss [19].

Perhaps the most famous Chinese problem in in-

determinate analysis, in the sense of its transmission

to other societies, was the problem of the \hundred

fowls" (ca. 468).

A cock is worth 5 ch'ien, a hen 3 ch'ien, and
3 chicks 1 ch'ien. With 100 ch'ien we buy 100
fowls. How many cocks, hens, and chicks are

there? [ch'ien, a small copper coin]

The development of algebra reached its peak dur-

ing the later part of the Sung and the early part of the

following Yuan dynasty (13th and 14th centuries).

Work with indeterminate equations and higher or-

der numerical equations was perfected. Solutions of

systems of equations were found by using methods

that approximate an application of determinants, but

it wasn't until 1683 that the Japanese Seki Kowa,

building upon Chinese theories, developed a true

concept of determinants.

Work with higher numerical equations is facili-

tated by a knowledge of the binomial theorem. The

testimony of the Chiu chang indicates that its early

authors were familiar with the binomial expansion

(a + b)3, but Chinese knowledge of this theorem is
truly confirmed by a diagram (Figure 11) appear-

ing in the 13th century text Detailed Analysis of the
Mathematical Rules in the Nine Chapters. [Hsiang
chieh chiu chang suan fa.] It seems that \Pascal's
Triangle" was known in China long before Pascal

was even born.

While mathematical activity continued in the post-

Sung period, its contributions were minor as com-

pared with those that had come before. By the time

of the Ming emperors in the 17th century, west-

ern mathematical influence was finding its way into

China and the period of indigenous mathematical

accomplishment had come to an end.

Figure 11.

4 Conclusions

Thus, if comparisons must be made among the so-

cieties of the pre-Christian world, the quality of

China's mathematical accomplishments stands in

contention with those of Greece and Babylonia, and

during the period designated in the West as pre-

Renaissance, the sequence and scope of mathemati-

cal concepts and techniques originating in China far

exceeds that of any other contemporary society. The

impact of this knowledge on the subsequent devel-

opment of western mathematical thought is an issue

that should not be ignored and can only be resolved

by further research.

In part, such research will have to explore the

strength and vitality of Arabic-Hindu avenues of

transmission of Chinese knowledge westward. The

fact that western mathematical traditions are osten-

sibly based on the logico-deductive foundations of

early Greek thought should not detract from consid-

ering the merits of the inductively-conceived math-

ematics of the Chinese. After all, deductive system-

ization is a luxury afforded only after inductive and

empirical experimentation has established a founda-

tion from which theoretical considerations can pro-

ceed. Mathematics, in its primary state, is a tool
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for societal survival; once that survival is assured,

the discipline can then become more of an intellec-

tual and aesthetic pursuit. Unfortunately, this second

stage of mathematical development never occurred

in China. This phenomenon | the fact that math-

ematics in China, although developed to a high art,

was never elevated further to the status of an abstract

deductive science | is yet another fascinating aspect

of Chinese mathematics waiting to be explained.
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Root Extraction Procedures of the Han Dynasty,

T'oung Pao 43 (1955), 345{88; Lam Lay Yong, The
Geometrical Basis of the Ancient Chinese Square-

Root Method, Isis (Fall, 1970), pp. 92{101.

13. A lengthy discussion of the use of this formula in Eu-

rope is given in D. E. Smith, History of Mathematics
(New York: Dover Publishing Co., 1958 reprint) vol.

II, p. 236.

14. The evolution of π in China is traced out in Lee

Kiong-Pong, \Development of π in China", Bulletin
of the Malaysian Mathematical Society 6 (1975), 40{
47.

15. An actual computational procedure used in solving

quadratics can be found in Ho Peng Yoke, The Lost

Problems of the Chang Ch'iu-chien Sua Ching, a

Fifth Century Chinese Mathematical Manual, Oriens
Extremus (1965), 12.

16. For a detailed discussion of the solution of this prob-

lem see Ulrich Libbrecht, Chinese Mathematics in
the Thirteenth Century (Cambridge, Mass.: The MIT
Press, 1973) pp. 134{40.

17. Chiu chang suan shu, chapter 8, problem 13:

There is a common well belonging to five families;

(if we take) 2 lengths of rope of family X , the re-
maining part equals 1 length of rope of family Y ;
the remaining part from 3 ropes of Y equals 1 rope

of Z; the remaining part from 4 ropes of Z equals 1

rope of V ; the lacking part remaining from 5 ropes
of V equals 1 rope of U ; the remaining part from
6 ropes of U equals 1 rope of X . In all instances
if one gets the missing length of rope, the combined

lengths will reach (the water). Find the depth of the

well and the length of the ropes.
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If we letW equal the depth of the well, the following

system of equations result:

2X + Y = W

3Y + Z = W

4Z + V = W

5V + U = W

6U + X = W

which are readily reduced to:

2X − 2Y − Z = 0

2X + Y − 4Z − V = 0

2X + Y − 5V − U = 0

X + Y − 6U = 0.

18. Sun Tzu suan ching, chapter 3, problem 10.

19. See the discussion of the Chinese Remainder Theo-

rem in Oystein Ore, Number Theory and its History
(New York: McGraw-Hill Inc., 1948) pp. 245{49.
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Liu Hui and the First

Golden Age of Chinese Mathematics

PHILIP D. STRAFFIN, JR.

Mathematics Magazine 71 (1998), 163{181

1 Introduction

Very little is known of the life of Liu Hui, except

that he lived in the Kingdom of Wei in the third cen-

tury A.D., when China was divided into three king-

doms at continual war with one another. What is

known is that Liu was a mathematician of great

power and creativity. Liu's ideas are preserved in

two works which survived and became classics in

Chinese mathematics. The most important of these

is his commentary, dated 263 A.D., on the Jiuzhang
suanshu, the great problem book known in the West
as the Nine Chapters on the Mathematical Art. The
second is an independent work on mathematics for

surveying, the Haidao suanjing, known as the Sea
Island Mathematical Manual.
In this paper I would like to tell you about some

of the remarkable results and methods in these two

works. I think they should be more widely known,

for several reasons. First, we and our students should

know more about mathematics in other cultures, and

we are probably less familiar with Chinese math-

ematics than with the Greek, Indian and Islamic

traditions more directly linked to the historical de-

velopment of modern mathematics. Second, Western

mathematicians who do know something about the

Chinese tradition often characterize Chinese math-

ematics as calculational and utilitarian rather than

theoretical. Chinese mathematicians, it is said, devel-

oped clever methods, but did not care about mathe-

matical justification of those methods. For example,

Mathematics was overwhelmingly concerned

with practical matters that were important

to a bureaucratic government: land measure-

ment and surveying, taxation, the making of

canals and dikes, granary dimensions, and so

on. . . Little mathematics was undertaken for its

own sake in China. [2, p. 26]

While there is justice in this generalization, Liu

Hui and his successors Zu Chongzhi and Zu Gengzhi

were clearcut exceptions. Their methods were dif-

ferent from those of the Greeks, but they gave argu-

ments of cogency and clarity which we can honor

today, and some of those arguments involved infi-

nite processes which we recognize as underlying the

integral calculus.

My final reason is that I think mathematical genius

should be honored wherever it is found. I hope you

will agree that Liu Hui is deserving of our honor.

To understand the context of Liu's work, we must

first consider the state of Chinese mathematical com-

putation in the third century A.D. We will then look

at the general nature of the Nine Chapters and Liu's
commentary on it, and at Liu's Sea Island Mathe-
matical Manual. I will then focus on three of Liu's
most remarkable achievements in geometry | his

calculation of π, his derivation of the volume of
pyramidal solids, and his work on the volume of

a sphere and its completion by Zu Gengzhi.

2 Chinese calculation in the

first century A.D.

From at least the period of the Warring States (475{

221 B.C.) a base ten positional number system was in

common use in China [12]. Calculations were done

using rods made from bone or bamboo, on a count-

ing board marked off into squares. The numerals

from 1 to 9 were represented by rods as in Figure 1.

69
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Figure 1. Numerals and the division algorithm

Their placement in squares, from left to right, repre-

sented decreasing powers of ten. Rods representing

odd powers of ten were rotated 90◦ for clarity in
distinguishing the powers. A zero was represented

simply by a blank square, called a kong, where the
marking into squares prevented the ambiguity some-

times present in, say, the Babylonian number system.

There were efficient algorithms for addition, sub-

traction, multiplication and division. For example,

the division algorithm is shown in Figure 1, except

that you should imagine the operations being done

rapidly with actual sticks. Notice the close relation-

ship to our modern long division algorithm, although

subtraction is easier because sticks are physically re-

moved. In fact, it is identical to the division algo-

rithm given by al-Khwarizmi in the ninth century

and later transmitted to Europe, raising the compli-

cated problem of possible transmission through India

to the West [12]. (See [17] for a conservative dis-

cussion.)

Notice how the answer 7264
9
ends up with 726

in the top row, and then 4 above 9. This led Chi-
nese calculators to represent fractions by placing

the numerator above the denominator on the count-

ing board. By the time of the Nine Chapters there
was a completely developed arithmetic of fractions:

they could be multiplied, divided, compared by cross

multiplication, and reduced to lowest form using the

\Euclidean algorithm" to find the largest common

factor of the numerator and denominator. Addition

was performed as a
b + c

d = ad+bc
bd , and then the frac-

tion was reduced if necessary. In the Nine Chapters,
160 of the 246 problems involve computations with

fractions [11].

We will see that Chapter Eight of the Nine Chap-
ters solves systems of linear equations by the method

known in the West as \Gaussian Elimination" after

C. F. Gauss (1777{1855), which, of course, involves

subtracting one row of numbers from another. In the

course of such calculations, it is inevitable that neg-

ative numbers will arise. This presented no prob-

lems to Chinese calculators: two colors of rods were

used, and correct rules were given for manipulating

the colors. Liu Hui suggested in his commentary on

the Nine Chapters that negative numbers be treated
abstractly:

When a number is said to be negative, it does

not necessarily mean that there is a deficit.

Similarly, a positive number does not necessar-

ily mean that there is a gain. Therefore, even

though there are red (positive) and black (neg-

ative) numerals in each column, a change in

their colors resulting from the operations will

not jeopardize the calculation. [17, pp. 201{

202]

Perhaps most remarkably, Chinese mathemati-

cians had developed by the time of the Nine Chap-
ters efficient algorithms for computing square roots
and cube roots of arbitrarily large numbers. The al-

gorithm for the square root computed the root digit

by digit, by the same method which used to be taught

in American schools before the coming of the cal-

culator. Martzloff [17] works through an example,

and Lam [11] shows how it would look on a count-

ing board. The algorithm for finding cube roots was

similar, although, of course, more complicated.

In other words, by the time of the Nine Chapters
the Chinese had developed a number system and

a collection of calculational algorithms essentially

equivalent to our modern system, with the exception

of decimal fractions.
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3 Nine Chapters on the

Mathematical Art

Nine Chapters on the Mathematical Art is a compi-
lation of 246 mathematical problems loosely grouped

in nine chapters. Some of its material predates the

great book-burning and burial-alive of scholars of

213 B.C., ordered by emperor Shih Huang-ti of the

Qin dynasty. Indeed, Liu Hui writes in the preface

of his commentary

In the past, the tyrant Qin burnt written docu-

ments, which led to the destruction of classical

knowledge . . . Because of the state of deterio-

ration of the ancient texts, Zhang Cang and his

team produced a new version . . . filling in what

was missing. [17, p. 129]

It is believed that the Nine Chapterswere put in their
final form sometime before 100 A.D. It \became, in

the Chinese tradition, the mandatory reference, the

classic of classics." [17, p. 14] At the time of this

writing there is no complete English translation of

the Nine Chapters, although there are many schol-
arly Chinese editions, and translations into Japanese,

German and Russian. An English translation by J.

N. Crossley and Shen Kangsheng is in preparation,

to be published by Springer Verlag. For summaries,

see [11], [17], [18], [21].

The format of the Nine Chapters is terse: a prob-
lem, its answer, and a recipe for obtaining the an-

swer. Usually no justification is given for the method

of solution. Just the facts.

Chapter One has many problems on the arithmetic

of fractions, and a section on computing areas of

planar figures, with correct formulas for rectangles,

triangles and trapezoids. Here's a problem on the

area of a circle:

1.32: There is a circular field, circumference

181 bu and diameter 60 1
3 bu. Find the area of

the field.

Answer: 11 mu 90 1
12

bu. (1 mu = 240 bu)
Method: Mutually multiply half of the cir-

cumference and half of the diameter to obtain

the area in bu. Or multiply the diameter by it-
self, then by 3 and divide by 4. Or multiply the

circumference by itself and divide by 12. [11,

p.13]

The first method is correct, but the data of the prob-

lem and the other two methods assume that the ra-

tio of the circumference of a circle to its diameter,

which we call π, is three. This assumption is made
throughout the Nine Chapters.

Chapter Two is a series of commodity exchange

problems involving proportions. Chapter Three con-

cerns problems of \fair division." The solutions

given may not seem very fair to us:

3.8: There are five persons: Dai Fu, Bu Geng,

Zan Niao, Shang Zao and Gong Shi. They pay

a total of 100 qian. A command desired that the
highest rank pays the least, and the successive

ones gradually more. Find the amount each has

to pay.

Answer: Dai Fu pays 8104
137

qian; Bu Geng
pays 10130

137 qian; Zan Niao pays 14 82
137 qian;

Shang Zao pays 21123
137 qian; Gong Shi pays

43 109
137 qian. [11, p. 21]

The method calls for dividing the cost in proportions
1
5 : 1

4 : 1
3 : 1

2 : 1, which gives practice in adding
fractions, but badly exploits the lowest rank person!

Chapter Four contains problems asking for the

calculation of square roots and cube roots. The last

problem of Chapter Four is

4.24: There is a sphere of volume

16441866437500 chi. Find the diameter.
Answer: 14300 chi.
Method: Put down the volume in chi, multi-

ply by 16 and divide by 9. Extract the cube root

of the result to get the diameter of the sphere.

[11, p. 23]

This gives the formula V = 9
16d

3 for the volume of

a sphere in terms of its diameter, which isn't correct

even if we take π = 3.
Chapter Five asks for the volumes of a number of

solids, including several different kinds of pyramids,

frustrums of pyramids, cones and their frustrums,

and a wedge with a trapezoidal base. The given for-

mulas are all correct, but no hint is given of how

they were derived.

Chapter Six deals with fair division in a much

more realistic way than the problems in Chapter

Three. There are problems on transporting grain, tax-

ation and irrigation. There are also some less realis-

tic problems which make one wonder how Chinese

students must have felt about \word problems":

6.14: There is a rabbit which walks 100 bu
before it is chased by a dog. When the dog has

gone 250 bu, it stops and is 30 bu behind the
rabbit. If the dog did not stop, find how many

more bu it would have to go before it reaches
the rabbit.

Answer: 107 1
7 bu. [11, p. 28]

Chapter Seven has a number of problems involv-

ing two linear equations in two unkowns, usually
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solved by the method of \false position." Problems

in Chapter Eight involve solving n linear equations
in n unknowns for n up to 5. The method of solu-
tion, described in detail, is Gaussian elimination on

the appropriate matrix represented on the counting

board. The Chinese called this method fangcheng.
See [17] for an extended example. Perhaps the most

interesting problem is

8.13: There are five families which share a well.

2 of A's ropes are short of the well's depth by

1 of B's ropes. 3 of B's ropes are short of the

depth by 1 of C's ropes. 4 of C's ropes are short

by 1 of D's ropes. 5 of D's ropes are short by

1 of E's ropes. 6 of E's ropes are short by 1 of

A's ropes. Find the depth of the well and the

length of each rope.

Answer: The well is 721 cun deep. A's rope
is 265 cun long. B's rope is 191 cun long. C's
rope is 148 cun long. D's rope is 129 cun long.
E's rope is 76 cun long. [11, p. 37]

Notice that this problem involves five equations

and six unknowns, and thus is indeterminate. Liu

Hui pointed out that the solution gives only the

necessary proportions for the lengths. It is also the

smallest solution in integer lengths.

The problems in Chapter Nine involve right trian-

gles and the \Pythagorean" theorem, which had long

been independently known in China, where it was

called the gou-gu theorem [26]. No proof is given
of this theorem, or of a correct formula for the diam-

eter of the inscribed circle in a right triangle. Similar

right triangles are used to solve surveying problems

involving one unknown distance or length.

4 Liu Hui's commentary

The Nine Chapters presents its solution methods
without justification. Liu Hui in his commentary set

himself the goal of justifying those methods. One

reason was practical, as Liu wrote about the Nine
Chapter's use of 3 for the ratio of the circumference
of a circle to its diameter:

Those who transmit this method of calculation

to the next generation never bother to exam-

ine it thoroughly but merely repeat what they

learned from their predecessors, thus passing

on the error. Without a clear explanation and

definite justification it is very difficult to sepa-

rate truth from fallacy. [20, p. 349]

Another reason has to do with seeing and appreciat-

ing the logical structure of mathematics:

Things are related to each other through logical

reasons so that like branches of a tree, diver-

sified as they are, they nevertheless come out

of a single trunk. If we elucidate by prose and

illustrate by pictures, then we may be able to at-

tain conciseness as well as comprehensiveness,

clarity as well as rigor. [20, p. 355]

In this section, we'll begin our examination of Liu's

attempt to attain \clarity as well as rigor" by looking

at five of his contributions.

Problems in Chapter Four of the Nine Chapters
require taking square roots using the square root al-

gorithm. To take the square root of a 2k + 1 or
2k + 2 digit number N , the algorithm begins by

finding the largest number A0 = a0 × 10k, where

a0 is a digit, such that A
2
0 ≤ N . Then compute

N1 = N−A2
0. Now find the largestA1 = a1×10k−1

such that A1(2A0 + A1) ≤ N1, and form N2 =
N1 − A1(2A0 + A1). Continue in this manner. If
N is a perfect square, its square root will be the

(k + 1)-digit number S = a0a1 · · ·ak.

Liu Hui first gives a geometric argument, similar

to arguments used in Greek geometric algebra, to

explain why the algorithm works. Consider Figure

2, which is not to scale. (Liu's original figures were

all lost, but most of them are easy to reconstruct

from his verbal descriptions.) From a square of area

N , we first subtract a square of side A0, then the L-

shaped figure of width A1, which the Greeks called

a gnomon, then a gnomon of width A2, and so on

until we exhaust the square.

Well, at least we exhaust the square if N is a per-

fect square, as it is in many of the Nine Chapters
problems. (Some of the problems involve rational

perfect squares, for instance N = 5647521
4 in prob-

lem 4.15.) But Liu also asks what happens if N is

not a perfect square: \In this case it is not sufficient

N

A0 A1 A2 …

Figure 2. Geometry of the square root algorithm
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to say what the square root is about by simply ignor-

ing the [remaining] gnomon."[7, p. 211] For integral

but non-square N , the square root algorithm yields
N = S2 +R, where 0 < R < 2S+1. Liu gives two
ways of approximating the square root. The first is

to take a rational approximation using

S +
R

2S + 1
<

√
N < S +

R

S
. [17]

The second is even more interesting. If we continue

the algorithm on the counting board past the last

digit of N , we get

√
n ≈ a0a1 . . . ak +

ak+1

10
+
ak+2

100
+ . . . .

The ancient Chinese had names for the fractions

1/10k for k up to five. Liu suggests continuing
the calculation down to \those small numbers for

which the units do not have a name," and if neces-

sary adding a fraction to ak+5 to get even greater

accuracy [11]. In other words, it is not stretching

very much to say that Liu Hui invented decimals; he

certainly invented their calculational equivalent. We

will see that he needed this kind of accuracy for his

calculation of π. Liu also gave a justification for the
cube root algorithm using a three-dimensional figure

similar to Figure 2.

Chapter Eight of the Nine Chapters solved sys-
tems of linear equations using the fangchengmethod
on a counting board matrix: multiples of rows (ac-

tually columns, since the equations were set up ver-

tically on the counting board) were systematically

subtracted from other rows to reduce the matrix to

triangular form. Liu Hui explains that the goal of

this method is to reduce to a minimum the number

of computations needed to find the solution: \gener-

ally, the more economic a method is, the better it is."

In fact, Liu compares two different fangcheng meth-
ods for solving problem 8.18 by counting the number

of counting board operations needed in each method

[17]. Surely this is the first example in history of an

operation count to compare the computational effi-

ciency of two algorithms.

Finally, Chapter Nine of the Nine Chapters pre-
sented, without justification, solutions to a number

of problems involving right triangles. Liu Hui justi-

fied these solutions by a series of ingenious \dissec-

tion" arguments, based on the principles that con-

gruent figures have the same area, and that if we

dissect a figure into a finite number of pieces, its

area is the sum of the areas of the pieces. I'll give

two examples.

a

b
c

´ 4 =

c

b

a

d

Figure 3. Diameter of a circle inscribed in a right triangle

The solution to problem 9.16 finds the diameter

d of a circle inscribed in a right triangle with legs a
and b and hypotenuse c by

d =
2ab

a+ b+ c
.

Liu's dissection proof of this result can be recon-

structed as in Figure 3 [20]. See it?

For the second example, consider the famous gou-
gu theorem that for a right triangle as above, a2 +
b2 = c2. For this theorem, Liu's verbal description
of his proof is

The shorter leg multiplied by itself is the red

square, and the longer leg multiplied by itself

is the blue square. Let them be moved about

so as to patch each other, each according to

its type. Because the differences are completed,

there is no instability. They form together the

area of the square on the hypotenuse. [31, p.

71]

Clearly Liu had a dissection proof of the gou-gu
theorem. Just as clearly, the verbal description does

not enable us to reconstruct Liu's diagram. Figure 4

shows two proposed constructions. The first, where

the square on the hypotenuse is allowed to overlap

the squares on the legs, is due to Gu Guanguang in
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Figure 4. Dissection proofs of the gou-gu theorem

1892, reported in [17]. The second, less straightfor-

ward but without overlapping squares, is from [31].

5 The Sea Island Mathematical

Manual

Chapter Nine of the Nine Chapters included sur-
veying problems involving one unknown distance

or length. However, most real surveying problems

involve several such unknowns. For example, we

might wish to determine the height of, and distance

to, a mountain which is inaccessible, perhaps be-

cause it is on an island we cannot reach. Liu Hui

pointed out that we can do this by making two ob-

servations, and worked out the geometry of how to

make two observations yield the unknown distances.

If we wish also to know the height of a pine tree on

top of that inaccessible mountain, we can do it with

three observations. His compilation of solutions to

nine illustrative surveying problems became the Sea
Island Mathematical Manual. The mountain on the
sea island is the first problem; the pine tree is the

second. [1] and [24] include complete translations

with commentary.

Here is the sea island problem:

For looking at a sea island, erect two poles of

the same height, 30 chi, the distance between
the front and rear pole being 6000 chi. Assume
that the rear pole is aligned with the front pole.

Move away 738 chi from the front pole and ob-
serve the peak of the island from ground level;

it is seen that the tip of the front pole coincides

with the peak. Move backward 762 chi from
the rear pole and observe the peak from ground

level again; the tip of the rear pole also coin-

cides with the peak. What is the height of the

island and how far is it from the front pole?

Answer: The height of the island is 7530 chi.
It is 184500 chi from the front pole. [24, p. 20]

The extant version of the Sea Island Manual con-
tains only the problems, answers, and recipes for

obtaining the answers, exactly as in the Nine Chap-
ters. Liu Hui also gave proofs for the correctness of
his methods, but these proofs and the accompanying

diagrams were not preserved, and the best we can do

is offer plausible reconstructions. Using the notation

of Figure 5, Liu's method for solution corresponds

to the formulas

h = x+ b =
bd

a1 − a2
+ b, y =

a2d

a1 − a2
.

We must obtain these formulas using only similar

A

B

x

b
y

y

C D

E F G
H

b
d

b

a2 a1

Figure 5. The height of a sea island
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Figure 6.

right triangles, since there was no concept of an-

gle, much less any trigonometry, in ancient Chinese

mathematics, nor was there any use of similar trian-

gles other than right triangles. Here is one method.

Since ∆ABD ∼ ∆DGH ,

x

y + d
=

b

a1
, so xa1 = by + bd. (1)

Since ∆ABC ∼ ∆CEF ,

x

y
=

b

a2
, so xa2 = by. (2)

Subtracting these equations gives x(a1 − a2) = bd
which leads to the expression for the height, and

then substitution gives the distance.

Swetz [24] gives a very plausible alternate deriva-

tion which avoids the use of similar triangles com-

pletely. It is based on a lemma about rectangles

which is illustrated in Figure 6a: if we divide a rect-

angle into four smaller rectangles at any point on

its diagonal, then the two rectangles shaded in the

figure must have the same area. This follows from a

dissection argument. The diagonal divides the rect-

angle into two congruent triangles. From these tri-

angles, subtracting the congruent triangles labeled A
and B yields the given rectangles. If we apply this

result twice to Figure 6b, the equal \\\ rectangles

give equation (1), and the equal /// rectangles give

equation (2). This method is also discussed in [9].

The Sea Island Manual was certainly not the
deepest mathematics which Liu Hui did, but it prob-

ably had the greatest immediate impact. Recall that

the kingdom of Wei was continually at war during

the time of Liu's work. Surveying was important

for maps which supported war, as well as the ad-

ministrative bureaucracy. Needham reports that the

Wei general Deng Ai always \estimated the heights

and distances, measuring by finger breadths before

drawing a plan of the place and fixing the position

of his camp." [24, p. 15] There is an interesting par-

allel in the West. Swetz notes that Greek armies had

a specific reason for wanting to calculate unknown

height at an inaccessible distance, quoting Heron of

Alexandria:

How many times in the attack of a stronghold

have we arrived at the foot of the ramparts and

found that we made our ladders and other nec-

essary implements for the assault too short, and

have consequently been defeated simply for not

knowing how to use the Dioptera for measur-

ing the heights of walls; such heights have to be

measured out of the range of enemy missiles.

[24, p. 28]

6 The calculation of π

Recall that problem 1.32 of the Nine Chapters gave
the correct formula for the area of a circle, but used

a value of three for π. Liu points out that for a cir-
cle of radius one, the area of a regular dodecagon

inscribed in the circle is three, so the area of the cir-

cle must be greater than three. He then proceeds to

estimate the area of the circle more exactly by calcu-

lating the areas of inscribed 3 · 2n-gons as follows.

In a circle of radius r, let cn be the length of the
side of an inscribed n-gon, an be the length of the

perpendicular from the center of the circle to the side

of of the n-gon, and Sn be the area of the n-gon.
See Figure 7. Then we can calculate inductively

c6 = r,

an =
√
r2 − (cn/2)2,

c2n =
√

(cn/2)2 + (r − an)2,

S2n = 1
2
nrcn.
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r

an

cn/2

c2n

Figure 7. The calculation of π

The last formula is clever, and follows from noticing

that each of the 2n triangles making up the 2n-gon
can be thought of as having base r and height cn/2.
Moreover, Figure 7 shows that the area S of the

circle satisfies

S2n < S < Sn + 2(S2n − Sn) = 2S2n − Sn.

Liu considers what happens when we take n larger
and larger: \the finer one cuts, the smaller the left-

over; cut after cut until no more cut is possible;

then it coincides with the circle and there is no left-

over."[20, p. 347] As n gets large, S2n approaches

the area of the circle and ncn approaches the cir-
cumference, so we have justified the Nine Chapters
claim that the area of a circle is one-half the product

of its radius and circumference.

Taking r = 10, Liu Hui carries out the calcula-
tions, keeping 6-place accuracy, up to n = 96, hence
approximating the circle by a 192-gon. He concludes

that

3.1410< π < 3.1427,

and suggests that for practical calculations it should

be enough to use π ≈ 3.14. Either Liu or some inter-
polating later commentator carried the computation

as far as n = 1536 and obtained the approximation
π = 3.1416. See [13] and [28] for treatments of the
intricacies of this kind of calculation. [13] gives a

translation of Liu Hui's text.

If we compare this treatment to Archimedes' in

Measurement of a Circle, the similarities are strik-
ing, although the differences are also interesting.

Archimedes, of course, included a formal proof by

the method of exhaustion required by the conven-

tions of Greek geometry. However, the subdivision

method and the inductive calculation are essentially

the same. Archimedes obtained his upper bound

by considering circumscribed polygons, instead of

Liu's clever method of using only inscribed poly-

gons. Archimedes used 96-gons to obtain his famous

estimate

3 10
71
< π < 3 1

7
, or 3.1409 < π < 3.1428.

Two centuries later Zu Chongzhi (429{500 A.D.)

carried Liu Hui's approach farther. Using a poly-

gon of 24576 sides, Zu obtained the bounds

3.1415926 < π < 3.1415927. See [13] and,
for a different view, [28]. In addition, Zu rec-

ommended two rational approximations for π,
Archimedes' value of 22/7, and the remarkably ac-

curate 355/113 ≈ 3.1415929.
Zu's method for arriving at his rational approxi-

mation 355
113 for π is not known. One line of reasoning

would be to start with Zu's value of 3.1415926 and

the approximation 22
7 = 3 1

7 ≈ 3.1428571, which is
slightly too large, and ask for a fraction which, when

added to 3, would give a better approximation than
1
7 does. It is easy to see that the fractions we should

check are those of the form k
7k+1 . We then try to

find k so that

1

7
− k

7k + 1
≈ .1428571− .1415926 = .0012645,

1

49k+ 7
≈ .0012645, 49k+ 7 ≈ 791.

The solution k = 16 gives the rational approxima-
tion 3 16

113 = 355
113 . For another possible approach, see

[17].

Zu Chongzhi's approximation of π was not bet-
tered until al-Kashi of Samarkand computed π to 14
decimal places in the early 15th century. The ratio-

nal approximation 355/113 was not discovered in
Europe until the late 16th century.

7 The volume of pyramids

Chapter Five of the Nine Chapters gives correct for-
mulas for the volumes of a number of pyramidal

solids. For example, the volume of the chu-tung, a
truncated rectangular pyramid illustrated in Figure

11, is correctly given as

h

6
(2ab+ ad+ bc+ 2cd).

Did you know that formula? From it follows the

volume of a rectangular pyramid (put c = d = 0), a
truncated square pyramid (put a = b, c = d), and a
rectangular wedge (put d = 0).
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Figure 8. Dissecting a cube and a qiandu

Liu Hui gives justifications for these formulas

based on dissection arguments and a remarkable

limit argument. I will mostly follow the translation

and discussion in [30]. Liu's argument uses three

special solids: a qiandu, which is a triangular prism,
a yangma, which is a rectangular pyramid whose
vertex is above one corner of its base, and a bienao,
which is a tetrahedron with three successive perpen-

dicular edges. See Figures 8, 9 and 10.

Liu starts with the case of a cube, which he dis-

sects into three congruent yangma, to conclude that
the volume of a regular yangma is 1/3 the volume
of the cube. See Figure 8. Since a yangma and a bi-
enao fit together to make a qiandu, which is 1/2 of
the cube, the volume of the bienao must be 1/6 the
volume of the cube. Alternatively, we could get this

result by dissecting the yangma into two congruent
bienao.
Now suppose that instead of a cube, we start with

an a× b× c rectangular box. We can still dissect it

a

b

c

c

b

a
Yc

b

ac

Yb

Ya

a

b

c

a

b

c
Ba

Bb

a

b

c

b

c

a
Bc

Figure 9. Three types of yangma and bienai

into three yangma, but now these yangma will have
3 different shapes, so it is not clear that their vol-

umes are equal. We can also dissect a yangma into
two bienao, or assemble a bienao and a yangma to
make a qiandu, but again, the bienao have 3 dif-
ferent shapes, and it is not clear that their volumes

are equal. Using the notation in Figure 9, what the

dissections do show is that

Ya + Yb + Yc = abc

Ya + Ba = abc/2 Ya = Bb +Bc

Yb +Bb = abc/2 Yb = Ba +Bc

Yc + Bc = abc/2 Yc = Ba + Bb.

However, this does not give enough information to

evaluate the volumes.

Figure 10. Dissecting a yangma and a bienao

Liu proceeds to prove that Yb = 2Bb (and simi-

larly Ya = 2Ba, Yc = 2Bc), which does allow us to

conclude that the volume of each yangma is abc/3
and that of each bienao is abc/6. His method is
shown in Figure 10. Dissect Yb at the midpoints of

its sides into a rectangular box, 2 qiandu, and two
half-size copies of Yb (call them Y ′

b ). Similarly, dis-

sect Bb into 2 qiandu and 2 half-size copies of Bb

(call them B′
b). Since the box and 2 qiandu have

twice the volume of 2 qiandu, we only need to show
that Y ′

b = 2B′
b. Liu notes that these new figures to-

gether have 1/4 the volume of the original figures,

since the two small yangma and bienao fit together
to form two qiandu whose total volume is abc/8.
Repeat the dissection on each of the new figures,

and continue. At each stage the volume we have not

yet accounted for is 1/4 that of the previous stage.

Liu expresses what happens in the limit as follows:

The smaller they are halved, the finer are the

remaining dimensions. The extreme of fineness

is called minute. That which is minute is with-

out form. When it is explained in this way,

why concern oneself with the remainder? [30,

p. 173]



\master" | 2011/4/5 | 12:53 | page 78 | #88
i

i

i

i

i

i

i

i

78 Ancient Mathematics

Figure 11. The volume of a chu-tung

This is not a modern limit argument, of course.

Liu seems to be saying that if we cut the figures

into smaller and smaller pieces, we will come to

a point where the pieces are so small that they no

longer have form or volume. (The terms translated

as `minute' and `form' are philosophical terms from

the Tao Te Ching.) Still, we recognize the limit idea,
and the recursive dissection argument has a delight-

ful elegance. For some of the philosophical issues,

see [7], [16] and [30]. For a comparison to the Greek

proof in Euclid's Elements, see [4].
Knowing the volume of a yangma, we can now

derive the volumes of the other solids by dissection.

For example, let's verify the formula for the volume

of the chu-tung. Dissect it as in Figure 11 into a box
L, four qiandu of two different shapes Qa and Qb,

and four yangma Y . If we do this to six copies of
the chu-tung, we have

6L + 12Qa + 12Qb + 24Y.

Now reassemble these, as in Figure 12, into

two boxes of volume hcd: 2L

one box of volume had: L + 4Qb

one box of volume hbc: L + 4Qa

two boxes of volume hab: 2L+ 8Qa + 8Qb + 24Y .

Notice that for the last step we need to replace

some of the Yh yangma with yangma of other

shapes, but this is allowable since we have shown

that these yangma all have the same volume.
Finally, Liu derives the volume of a cone from

the volume of a square pyramid, and the volume

of a truncated cone from the volume of a truncated

square pyramid, by using what we know as \Cava-

lieri's principle," after Bonaventura Cavalieri (1598{

1647). We can state this principle as

The volumes of two solids of the same height

are equal if their planar cross-sections at equal

heights always have equal areas; if the areas

of the planar cross-sections at equal heights al-

ways have the same ratio, then the volumes of

the solids also have this ratio.

Liu inscribes the truncated cone, for example, in

a truncated square pyramid of the same height, and
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then says that since each cross-section consists of a

circle inscribed in a square, the ratio of the volumes

of the truncated cone to the truncated pyramid must

be in the same ratio as the area of a circle to its

circumscribed square, i.e., π/4 [7].

8 The volume of a sphere

Recall that problem 4.24 of the Nine Chapters gave
the volume of a sphere as 9

16
d3. Liu points out that

this is incorrect, even using the inaccurate value of 3
for π. He explains the error as follows. Let a cylin-
der be inscribed in a cube of side d, and consider
the cross-section of this figure by any plane perpen-

dicular to the axis of the cylinder. The plane will cut

the cylinder in a circle of diameter d, inscribed in
a square of side d. The ratio of these areas is π/4.
Since this is true for each cross-section, the same

ratio must hold for the volumes, so that the volume

of the cylinder is π
4
d3. Now consider the sphere of

diameter d inscribed in the cylinder. If we assume,
incorrectly, that the ratio of the volume of the sphere

to the volume of the cylinder is also π/4, then we

get that the volume of the sphere is π2

16 d
3, which is

the Nine Chapters result (using π = 3).
How do we know that the ratio of the volumes

of the sphere and cylinder cannot be π/4? Liu's
ingenious argument is as follows. Inscribe a second

cylinder in the cube, with axis orthogonal to that

of the first cylinder, and consider the intersection

of these two cylinders. Liu called this intersection

a \double box-lid." See Figure 12. Since the sphere

is contained in both cylinders, it is contained in the

box-lid. Moreover, consider any cross-section of this

Figure 12. Cross sections of a sphere in a double box-lid

in a cube

figure by a plane perpendicular to the axis of the box-

lid. The cross-section of the sphere will be a circle,

inscribed in the square which is the cross-section of

the box-lid, so again the ratio of the areas is π/4, and
since this is true for all cross-sections, the ratio of

the volumes of the sphere and the box-lid must also

be π/4. Now the box-lid is certainly smaller than
the original cylinder, so the ratio of the volumes of

the sphere and the cylinder must be strictly less than

π/4.
This lovely argument using Cavalieri's principle

shows that the Nine Chapters formula is wrong, but
in order to use it to find the correct volume of the

sphere, we would need to be able to find the volume

of the double box-lid. Liu tried to do this, but could

not. He recorded his failure in a poem, translated by

D. B. Wagner as \The Geometer's Frustration:"

Look inside the cube

And outside the box-lid;

Though the diminution increases,

It doesn't quite fit.

The marriage preparations are complete;

But square and circle wrangle,

Thick and thin make treacherous plots,

They are incompatible.

I wish to give my humble reflections,

But fear that I will miss the correct principle;

I dare to let the doubtful points stand,

Waiting for one who can expound them.

[29, p. 72]

The wait turned out to be two centuries, and the

person Liu waited for was Zu Gengzhi, the son of

Zu Chongzhi. Stories associated with Zu Gengzhi

are reminiscent of those told about Archimedes and

many mathematicians since then. For instance, \he

studied so hard when he was still very young that he

did not even notice when it thundered; when he was

thinking about problems while walking he bumped

into people." [15, p. 82]

Zu Gengzhi argues as follows. Consider one

eighth of the double box-lid inscribed in the cube

of side r = d/2. See Figure 13. If a plane is passed
through this figure at height h, it intersects the cube
in a square of side r, and the box-lid in a square of
side s. By the gou-gu theorem, r2−s2 = h2. Hence

the area of the gnomon outside the box-lid is h2.

Now Zu Gengzhi considers another solid of height

r whose cross-section at height h is h2: an inverted

yangma cut from a cube of side r. See Figure 13.
The part of the cube outside the box-lid, and this

yangma, have all their corresponding cross-sections
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h
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r
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h

r

r
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Figure 13. The volume outside a box-lid is Cavalieri-equivalent to a yangma

of the same area. Zu then states his version of Cav-

alieri's principle in verse:

If volumes are constructed of piled up blocks [areas],

And corresponding areas are equal,

Then the volumes cannot be unequal. [29, p. 75]

Since the volume of the yangma is 1
3
r3, and the

volume outside the box-lid must be the same, the

volume inside the box-lid must be 2
3r

3. Putting the

eight pieces together, we get that the volume of the

complete double box-lid must be two-thirds of the

cube containing it, 2
3
d3. Remembering Liu Hui's re-

sult that the sphere takes up π/4 of the double box-
lid, we finally get the correct formula for the volume

of a sphere of diameter d:

V =
π

4

2

3
d3 =

π

6
d3.

Following Liu, Zu ends his discussion with a

poem, \The Geometer's Triumph:"

The proportions are extremely precise,

And my heart shines.

Chang Heng copied the ancient,

Smiling on posterity;

Liu Hui followed the ancient,

Having no time to revise it.

Now what is so difficult about it?

One need only think. [29, pp. 76{77]

One could argue that Liu Hui did not use the full

power of Cavalieri's principle, since he only applied

it to the situation of one figure inside another, where

the cross-sections were circles inscribed in squares.

But certainly Zu Gengzhi gave a clear statement of

the principle and used its power more than a millen-

nium before Cavalieri [14].

There was another precursor, of course.

Archimedes had calculated the volume of a

sphere, and in Proposition 15 of The Method,
he calculated the volume of the perpendicular

intersection of two cylinders of the same radius.

The argument for Proposition 15 is in the part of

The Method which has not survived, but it is not
difficult to reconstruct the reasoning from other

demonstrations earlier in the book. Archimedes

thought of volumes as made up of planar slices and

balanced them on a lever against the slices of other

volumes. It is an extension of Cavalieri's principle.

For a general discussion of the use of versions of

Cavalieri's principle in Greek geometry, see [10].

9 Conclusion

After the theoretical phase of Chinese mathemat-

ics in the 3rd through 5th centuries, represented by

Liu Hui, Zu Chongzhi and Zu Gengzhi, proofs and

justifications began to be less important. Although

the work of Liu Hui was still taught in the official

School for the Sons of the State, instruction began

to emphasize rote learning of methods rather than

justifications. Liu's diagrams from the commentary

on the Nine Chapters and arguments from the Sea
Island Manual, and Zu Chongzhi's work, were lost.
The next, brief flowering of creative mathematics in

China did not happen until the 13th century, with

mathematicians like Qin Jiushao, Li Zhi, Zhu Shijie

and Yang Hui. After the thirteenth century, Chinese

mathematics declined again until the period of con-

tact with the West.

It is interesting to speculate why Chinese math-

ematics, with such a powerful calculational base
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and such a strong theoretical start, did not develop

a coherent, ongoing mathematical tradition. Mart-

zloff [17] and Swetz [25] review a number of possi-

ble reasons: emphasis on practical applications, rote

learning and reverence for established ideas which

stifled creativity, uneven state support, and low so-

cial status accorded to mathematicians compared to

scholars in the humanities.

Nevertheless, the remarkable achievements of

Chinese mathematics in its first golden age are wor-

thy of our interest and admiration.
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Number Systems of the North American Indians

W. C. EELLS

American Mathematical Monthly 20 (1913), 263{272, 293{299

The linguistic diversity of the Indians inhabiting the

North American continent is one of the most re-

markable features of world ethnology. The late direc-

tor of the Bureau of American Ethnology says: \In

philology, North America presents the richest field

in the world, for here is found the greatest number

of languages distributed among the greatest number

of stocks." [16, p. 78] The Bureau recognizes al-

most three score distinct linguistic families having

no lexical resemblance, no apparent unity of origin,

no relation to European or Asiatic languages. These

\families" are further subdivided linguistically into

750 \tribes" or languages. [17, p. 1]

These languages differ as widely in number words
and number systems as they do in other features.
This is in marked contrast with the languages of

the great Indo-European family where, even in lan-

guages which are mutually unintelligible, the same

root words appear with great uniformity in the nu-

merals. The very remarkable differences in the form

and use of the numerals of the American Indians

afford a fruitful field for study of the evolution of

the concept of number among hundreds of distinct,

uncivilized peoples. This paper is based upon an ex-

amination of the number systems of more than three

hundred of these languages in North America. We

will discuss the origin of number words and their

principles of formation, the way in which they were

built up into number systems, and some of the vari-

ations of these systems in actual use.

1 Principles of formation

1.1 Digital origin

The child's most natural counters are his fingers;

to them he turns almost instinctively when wishing

to count. What evidence is there that primitive peo-

ples, races in the childhood state, have also turned to

their digits for assistance? The answer to this ques-

tion will throw much light on the origin of number

words and their development into systems. We shall

consider three kinds of evidence.

Evidence from systems used. The almost univer-

sal prevalence of decimal, quinary, or vigesimal sys-

tems of numeration on the North American continent

is perhaps the strongest general evidence that count-

ing in its origin is digital. But the octonary, quater-

nary and ternary systems mentioned later will show

that such evidence is neither universal nor conclu-

sive. To this indirect evidence, based on the systems

used, can be added direct proof from observation and

from the ascertained meaning of number words.

Observational evidence. Many observers report

that Indians in various parts of the continent use

their fingers, or fingers and toes, in counting, at

the same time speaking the corresponding number

words. With some tribes the use of the fingers is the
important thing, the accompanying vocal utterance

being of secondary importance; e.g., some of the Es-

kimo tribes use the same words for 6, 7, 8, 9, 10 as
for 1, 2, 3, 4, 5 but count them on the second hand.

In others the language development has led to in-

dependent numerals which often preserve evidence

of their digital origin. Examples are given in the

next section. In widely separated tribes all over the

continent actual finger counting has been observed

and the rather remarkable fact noted that the order

of counting is almost always uniform, commencing

with the little finger of one hand and counting to the

thumb, thence to the thumb of the other hand and to

the little finger again. Usually the fingers are bent

83
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as the counting continues, but sometimes the hand

is first clenched and the fingers then extended one

at a time. [1, vol. 1, pp. 6{7] This general unifor-

mity of order gives considerable aid in the linguistic

discussion of the next paragraph.

Linguistic evidence. The German philologist

Grimm in speaking of the Old World languages,

says, \All number words come from the fingers of

the hand." [9, p. 167] Is this observation true for the

New World? In the languages of civilized nations the

numerals are so ground down from long usage that

it is difficult to detect in their form their possible

digital origin. While this is also the case in some

Indian languages, in many there are striking simi-

larities, while in others digital words and number

words are almost or quite identical. Following the

observed order of counting, the little fingers would

be used for 1 and 10, the fourth fingers for 2 and 9,

etc. Only a few typical examples of the many noted

will be given with reference to each number.

The number ONE. Some of the names given the lit-

tle finger are \the smallest," \the last of the hand,"

\little daughter of the hand." While we do not ex-

pect to find the word for one always or even usually
connected with that for little finger (since the con-

cepts of unity doubtless preceded formal counting)

yet some instances are known; e.g., Massachusetts:

pasuk from piasuk, \very small"; Montagnais: in-
lare, \end is bent"; Zuni: topinte, \taken to start
with."

TWO is sometimes derived from finger; e.g., Mon-

tagnais: nake, \another bent in"; Dakota: nonpa, \to
bend down"; Zuni: kwillin, \that (finger) put down
with its like." But more often it is connected with

the word for \hand," probably because there are two

hands.

THREE. The third finger is often named \the mid-

dle"; e.g., Massachusetts: nishwe, from nashaue,
\half way"; Zuni: hain \equally dividing one."
FIVE is counted on the thumb and we have

Karankawan: natsa behema, from natsa, \one," be-
hema, \finger." But more prominent is the idea
that the hand is completed, variously expressed

as \finished," \fingers finished," \all fingers," \all

done," etc.; e.g., Ojibwa: nanan, \gone," \spent,"
and similarly in several Eastern languages. Hidatsa:

kichu, from ki, \completely," chu, \turned down";
Ute: munugi, from manoku, \all." In most instances
however it is connected with \hand," or \whole

hand"; e.g., Kaniagmiut: talgamen, from talega,
\hand"; Comanche: mowaka, from mowa, \hand";

Klamath: tunep, from tu, \away," nep, \hand," i.e.,
\hand-away."

From six to nine the numerals are expressed (a)
from the names of the fingers used; (b) by \hand" +
1, 2, 3, 4; (c) by 1, 2, 3, 4, + \again" or \besides"
(most frequent); or by (d) by 1, 2, 3, 4 repeated with-
out change. This last method is found only among

the Eskimo and is probably always accompanied by

the actual use of the second hand.

SIX. The Point Barrow six well illustrates the

evolution of a number word. We are given the

three forms atautyimin-akbinigin-tudlimut, literally,
\once-on next- (and) five," atautyimin-akbinigin,
\once-on next," akbinigin, \on next." Other exam-
ples of six are Tano: manli, from man, \hand," li,
\piece,", i.e., \hand and piece of next"; Klamath:

nadshk-shapta, \one I have bent over"; Takelma:
maimis, \finger one in."
SEVEN falls on the index finger or \pointer," e.g.,

Zuni: tserucek from tserverc, \to point"; Greenland:
arfinek-mardluk, \on the other hand-two"; Omaha:
penompa, from pe, \finger," nompa, \ two."
For EIGHT, Hudson's Bay: kittukleemot, \mid-

dle finger"; Omaha: pethatbathi, \finger-three"; Kla-
math: ndan-kshapta, \three I have bent over."
For NINE the subtractive principle comes into

use and we have the additional forms \one left,"

\only one," etc. We also have the forms, Greenland:

mikkelerak, \fourth finger"; Zuni: tenalikya, \all but
one held up with rest."

TEN is counted on the little finger, e.g., Hudson's

Bay: eerkitkoka, \little finger." But more promi-
nent is the fact \two hands completed," \man fin-

ished," or \man." Thus Zuni: astemthla, \all of
the fingers"; Wintun: pampa-sempta from pampu-ta,
\two," sem, \hand"; Konkau: machoko, from mar,
\hand," choko, \double."
Above ten, various combinations of the first ten

numerals occur in which of course these digital

names reappear. A few other examples of interest

will be given.

ELEVEN. Unalit: atkhakhtok, \it goes down" re-
ferring to change from hands to feet).

THIRTEEN. Greenland: arkanenpingasut, \on the
first foot, three," etc.

SIXTEEN. Unalit: gukhtok, \it goes over" (to toes
of other foot).

NINETEEN. Maidu: tsoi-ni-maiduk, from maidu,
\man," tsoi, \four"|\four with man," i.e., after 15,
4 on toward 20 (man); and similarly for 16, 17, 18.

TWENTY. In decimal-system languages twenty is

usually but not always \two tens." In the viges-
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imal it is quite commonly \man," \Indian," \all

hands and feet"; e.g., Navaho: natin, from tine,
\man"; Greenland: inuk-mavdlugo, \man come to an
end," or inup-avatai-navdlugit, \man's outer mem-
bers completed"; Kaniagmiut: swinuk, from suke, in-
nuk, \man"; Wintun: ketet-wintun, from ketet, \one,"
wintun, \Indian"; Tuolomne: renge mewoom, \one
man"; Maidu: kom maiduk, from maidu, \Indian,"
and kom, possibly \whole"; Shasta: tsec, from tsec,
\man"; Tlingit: tlekha, from tle, \one," hka, \man."

Extent and distribution. Clear linguistic digital

evidence similar to the examples given above has

been found in about 40 per cent of the languages

examined, uniformly distributed over the continent.

Doubtless further study will reveal similar evidence

in other languages especially where adequate vocab-

ularies have not been available.

Non-digital evidence. We turn now to a consider-

ation of the evidence that the origin of number words

was non-digital in some languages. There are four

phases to be considered.

(1) First Four Numerals. The concepts of unity and
duality are so fundamental that in many instances

we may be sure they were named before formal

finger counting gave names to the corresponding

words. One has a connection with the first personal
pronoun in some languages. Two seems often to
come from roots denoting separation, \that" as dis-

tinguished from \this," or from ideas of pairs, being

frequently related to the words for hands, feet, eyes,

wings, husband and wife. Three is more frequently
digital, but it seems sometimes to have a mean-

ing of \more," \many," a plural as distinguished

from a dual. Compare Micmac: tchicht, \three," with
the cognate Delaware tchitch, \still more." Four
is sometimes expressed by a word meaning \com-

plete," \right," \perfect." Its frequency as a sacred

number among the North American Indians and its

use in some cases as the base of a quaternary sys-

tem indicate that it is a unique word of non-digital

origin.

(2) Arithmetical Operations. Numbers higher than
ten and in many cases those higher than five are

expressed by arithmetical operations, and the digi-

tal meaning, even if present in the beginning, usu-

ally sinks into the background. The process of such

combination begins earlier than the English in many

Indian languages. We have numerous examples of

3 = 2 + 1, 4 = 2 × 2, 4 = 2 + 2, 6 = 3 × 2,
8 = 4 × 2, 10 = 5 × 2, 12 = 6 × 2, 9 = 3 × 3

and other rarer combinations. Thus there are many

cases in which words for numerals above three are

derived by purely arithmetical processes. Of course

there are the higher numerals, hundred, thousand,

million, where they exist, in which we should rarely

expect digital evidence.

(3) Marks of Completion. When the Indian has
counted ten or twenty he may use some reminder

of the fact, such as a pebble, stick, arrow, grain of

corn, etc. For example, Huchnom: 20, pualya, \one-
stick-stand" and similarly for 40 and 60; in the same

language 100 is pual, \one-stick" and similarly for
200; Maidu: 20, penim nokom \two arrow"; Galli-
nomero: 100, tcacuto-hai, \ten-stick."
(4) Superlative and Indefinite. When a simple arith-
metical combination is not used, especially for the

expression of higher units, a superlative principle is

sometimes found. Hundred is often expressed, \big

ten," and thousand as \old hundred," \big hundred"

or \too many to count"; e.g., Delaware: 1,000, ngutti
kittapachkei, \the great hundred"; Choctaw: 1000,
tahlepa siponki, \old hundred"; Kwakiutl: 1,000,000
tlinhi, \number which cannot be counted"; compare
the Greek \myriad."

We conclude that in North American Indian lan-

guages it is by no means true that number words,

even as far as ten, always \come from the fingers,"

although they probably do in a large majority of

cases and the close connection can be traced in many

instances. There is little uniformity as to method of

formation, considerable diversity being found even

in adjacent languages of the same family. This would

indicate that their separation into tribes preceded the

development of formal counting.

1.2 Additive principle

Cantor says that addition and multiplication are two

methods of counting as old as the formation of num-

ber words. [1, vol. 1, p. 8] The additive principle is

found of course in all numeral systems. Three phases

of it are of interest in the American Indian languages.

Repetition. This is the simplest form of the addi-

tive principle. If \one" is given, either as a symbol

or as a word, \two" may be expressed \one-one,"

\three" as \one-one-one," etc., or by symbols as in

the Roman numerals from one to four. In the ges-

ture language of the Indians this is the method used,

the fingers being the counters. In spoken languages

no instance has been found of \two" as \one-one,"

but there are several of \four" as \two-two"; e.g.,



\master" | 2011/4/5 | 12:53 | page 86 | #96
i

i

i

i

i

i

i

i

86 Ancient Mathematics

Catawba: 2, purra, 4, purrapurra. In the Indian pic-
tographs or hieroglyphics the simple repetition of

strokes or notches is used, even for numbers up to a

hundred. Sometimes these are grouped into tens by

longer strokes or larger notches.

Addition in a base. English does not begin to use

the additive principle until ten is reached, but many

Indian languages begin much earlier. The earliest in-

stance found is in the Coahuiltecan: 1, pil, 2, ajtic,
3, ajtic-pil. In other languages we find such expres-
sions as \6-2 added" for 8, \8+1" for 9, \12+3" for

15, and of course very often \5+1, 2, 3, 4," for 6, 7,

8, 9 and \10+1, 2, . . . , 9" as in English for 11, 12,

. . . , 19. Those from 15 to 19 are also represented by

\15+1, 2, 3, 4." An interesting variation is shown by

the Maidu numerals from 16 to 19 which in trans-

lation are \one with man" for 16, \two with man"

for 17 and similarly for 18 and 19 to 20 \man," the

thought being \15 and one more on toward entire

man."

Precedence. Hankel and Fink call attention to a

general law by which the written representation of

numbers, when not confined to the mere rudiments,

shows a tendency for higher numerals to precede the

lower to represent addition. [10, p. 32; 6, p. 8] Is

there a similar tendency for the spoken order of nu-

merals among the Indian languages? Does the lower

precede the higher or vice versa? In about 150 lan-

guages sufficient facts were available for study of

the method of formation of compound numerals by

the additive principle. The groups from 5 to 10, from

10 to 20, and above 20 have been considered sepa-

rately. Using the notation \G + L" to indicate \the
greater is followed by the less" and \L+G" for the
opposite, \5+1," \1+5," etc., to stand for pure num-
ber combinations in the order given, and \1 + X,"
\X + 1," for the indefinite cases of an unknown
element (probably non-numerical such as \again,"

\besides," etc.) combined with the known numbers,

we may summarize the results of an examination of

these languages as follows.

In the 5{10 group for the pure number combina-

tions, L+G and G+L occur with about equal fre-
quency. But if we include the unknown compounds

X+1 and 1+X with G+L and L+G respectively,
L +G predominates about 2:1. In the 10{20 group
for pure number combinations G+ L predominates
strongly, 8:1, a reversal of the order of the first group.

But forX+1 and 1+X, L+G predominates slightly,
the ratio being 4:3, so that G + L predominates in
the group 2:1. In the group of higher combinations

G + L predominates 16:1. Combining these results
G+ L predominates altogether about 2:1. If the in-
definite cases of 1+X and X+1 are excluded, only
pure number combinations remaining, we approach

close to a definite law. G + L then predominates
about 8:1. G+L and L+G both occur in the same
language in fully half the cases examined. In this

particular a marked contrast with the multiplicative

principle will be observed. It may be mentioned that

our own (oral) system is mixed, L +G from 10 to

20, and G+ L for higher numbers.

1.3 Subtractive principle

Fink says: \In the verbal formation of a number sys-

tem very rarely does subtraction come into use." [6,

p. 8] This statement is scarcely warranted for the

systems of the American Indians for the principle

has been found in 40 per cent of the languages ex-

amined. It occurs most frequently in expressions for

\nine"; e.g., \one finger left," \one from ten," \one

from finished," etc., but also in the cases of 4, 7,

8, 14, 17, 18, 19 and the odd tens, 30, 50, etc.

It is widely but not uniformly distributed over the

continent. It occurs most frequently in the northern,

eastern and central sections of the continent, less on

the Pacific coast and least of all about the Gulf of

Mexico. As is to be expected, \one subtracted" is

most usual, occurring in about 30 per cent of the

languages, \two subtracted" in about 5 per cent and

\three subtracted" and \ten subtracted" in about 2

percent each. The use of the principle is found in

some languages but not in closely related ones of

the same family.

One subtracted. As examples we may give

for nine, Unalit: keka-mitatet, \nearly ten," or

payuk-ostau, from payuk, \one," ostau, \less?";
Uinta: suromatampsuin, \near-ten"; Haida: klath-
skwanson, from klath, \one," and skwansin, \ten."
For four we have Takhtam: voatcham, from mah-
atcham, \five"; Zuni: awiten, \all fingers all
but done." For fourteen, Point Barrow: akimiax-
otaityuna, \I have not quite 15." For nineteen,
Alaska: enuenok-otalia, \twenty less one." Thirty-
nine, Kulanapo: pitikunanu-akhokaki, \forty, one
not." Arikara expresses both 7 and 9 from 8 and

10 respectively by means of a diminutive particle,

\little ten," \little eight."

Two subtracted. Onondaga: 8, teg-ueron, from
tegni, \2"; Crow: 8, nupa-pik, from nupa, \2," and
pirake, \10"; Kwakiutl: matl-gwanatl, from matl,
\2."
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Three subtracted. This occurs but rarely. Pawnee

is noteworthy. In it, 17, 18, 19 are tauit-kaki, pitkus-
kaki, usku-kaki from usku, \1," pitkus, \2" tauit, \3,"
and kaki, \less."

Ten subtracted. This is quite common among

some of the California families, where the odd tens,

30, 50, 70, 90 are expressed as 40, 60, 80, 100 com-

bined with ten, with the thought \60 lacking 10." In

some cases however the thought may be \(40) and

10 on the way to 60," a variation of the additive

principle not uncommon among these tribes.

1.4 Multiplicative principle

This principle, like the additive, is of universal use

in Indian as well as in all other languages for the for-

mation of higher numerals. It seems to begin in the

Indian languages with the expression of 4 as \2×2."
It is constantly used in the formation of \secondary

bases" in the ternary, quaternary, quinary, decimal,

and vigesimal systems. Our chief interest in study-

ing this principle is in the question of precedence.

A much more decisive law of precedence than in

the case of the additive principle is found. About

200 languages afford data for the conclusion that

the marked tendency in the formation of higher nu-

merals by multiplication is for the lesser number to

precede the greater. This coincides with both the oral

and written English forms. In every group the type

L×G predominates over the typeG×L to a marked
degree. For the formation of the tens, form of the

type 2× 10 predominate over the type 10× 2 in the
ratio 5:1; for the hundreds, 2:1; for the thousands,

2:1; for others (e.g., 8 = 2×4), 17:1. Or altogether a
predominance of L×G, 4:1. Almost all the instances
of G×L are found in the languages about the Gulf
of Mexico and in the single but large Siouan fam-

ily of the plains. If the Siouan languages alone were

left out of consideration the predominance of L×G
would be about 8:1. In only five languages do we

find L × G and G × L both occurring in the same
system, a decided contrast to the results noted in the

study of the additive principle.

1.5 Duplicative principle

A striking feature of the Indian numeral systems is

the frequency of occurrence of a duplicative or pair-

ing principle. In some instances 6 is expressed as

\2× 3," \again 3," \3,3," \threes" and similarly for
4, 8, 10, and even 12. The large number of natural

pairs, such as the eyes, hands, arms, wings, etc., sug-

gests that counting by pairs might be the course of

evolution followed by some languages. The standard

histories of mathematics make little reference to such

a principle as of any importance in the numeral sys-

tems of primitive people. [1, vol. 1, p. 5] We do find

Hankel, however, making the rather surprising state-

ment in discussing the number words of uncivilized

people, that ten is never expressed as two times five,

but always by a simple number word. [10, p. 20]

This is not the case in American Indian languages;

e.g., Gabrieleno: wehes-mahar, from wehe, \2," and
mahar, \5"; Serranos: wor-maharte, from maharte,
\5" wor, \2"; Patwin: pampa-semta, from eti-semta,
\5," pampet, \2." Examples of its use for 4, 6, 8, 12
are Kutchin: 6, neckh-kiethei, 8, nakhei-etanna, from
nackhai, \2," kiethai, \3," etanna, \4"; Kansas: 8,
kiya-tuba, from tuba, \4," kiya, `again"; Shoshone:
4, what-sowit, from what, \2"; Cehiga: 12, cape-
nanba, from cape, \6," nanba, \2"; Chwachamaju:
8, kom-tca, from mitca, \4," ko, \2."
In languages of the same family and even dialects

of the same language there is variation in the use

of this principle. And many examples can be given

where the principle is not used at all in languages

closely related to those in which it is. One feature

is rather surprising; namely, of the approximately

125 cases of the probable use of this principle, it is

far more common in the formation of four, six, eight

than in the case of ten, even though ten is represented

so commonly by the two hands. Fifty instances of its

use for the formation of \8" are found, thirty-five for

\4" (although some of these are somewhat obscure),

twenty-five for \6," only ten for \10" and two for

\12." Several languages seem to use it regularly in

the formation of the even numbers to ten.

1.6 Divisive principle

Historians of mathematics agree on the rarity of the

use of this principle in the formation of numerals

the world over. [6, p. 8; 10, p. 21] Only two or

three possible instances have been found in Indian

languages. Thus we have Unalit: 10, kolin, and the
literal meaning of the word, \upper half of the body";

Point Barrow: 10, kodlin, \upper part (of body),"
and similarly in other Eskimo languages. One other

example has been found, Pawnee: 5, sihuks, `hands
half" from ishu, \hand," and huks, \half," i.e., \half
of the two hands."

1.7 Fractions

Although many tribes had numeral systems of inte-

gers running into the thousands and even to millions,
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very few of them had any idea of fractions. Where

we do find such ideas they are of the most rudimen-

tary sort. \One half" occurs most frequently, but only

in about a dozen cases as far as noted, while exam-

ples of the other fractions are almost negligible. It

is worth mentioning that the few instances we find

are all of \unit fractions." Onondaga shows the best

development of fractions, but how meager for a lan-

guage whose numerals are given to one million. Its

fractions are: 1
2 , sat wachenonk, meaning uncertain;

1
3 , achen-na-degayagui, from achen, \3," meaning
\thrice divided"; 1

4
, gayeri-degayagui, from gayeri,

\4," \four times divided."

1.8 Notation

As already mentioned, few symbols for number other

than the spoken words are found. But on grave posts,

buffalo robes, tattooing and other mnenomic pic-

tographs there are a few pictured symbols. The usual

method used for indicating numbers is by the repeti-

tion of single strokes, i.e., the additive principle in its

simplest form. Sometimes the strokes are arranged in

rows of ten or every tenth stroke is made longer than

the others. Instances of this kind are found for the ex-

pression of numbers as high as thirty. They are found

among the more highly civilized Indians of the mid-

dle west, especially among the Dakotas. On the other

hand the Comanches are said to have been \ignorant

of the elements of figures, even of a perpendicular

stroke for one." [5, p. 416] Pure numeral notation is

not always found. Frequently the number of objects

is expressed by the repetition of the symbol for the

object the desired number of times, especially in the

case of men or tepees. Another method is by dots.

A man's head with eight dots above it in one case

means nine men, the head itself counting for one.

Another picture gives a head over which are thirty

black dots in three lines of ten each. This is said to

mean thirty men, not thirty-one. Thus the usage is

not fixed. The use of notches cut on sticks was fre-

quent, not only in the middle west but in California

and on Puget Sound in western Washington. At the

San Gabriel mission in California every tenth notch

was cut entirely across the stick instead of only in

the corner.

2 Systems of numeration

Counting cannot be carried far by the use of suc-

cessive unrelated terms of symbols for each number.

For higher terms some system of compounding is

necessary, the usual method being by reference to

some stopping point or base which is thought of
as a new starting point. The choice of this base is

of fundamental importance in the development of a

true number system as distinguished from a mere

series of numbers. The choice of this base seems
usually to be related to primitive finger counting.

One hand, two hands, or all the fingers and toes,

are the three most natural stopping points, leading

respectively to quinary, decimal, and vigesimal sys-

tems as illustrated below. There is much variation in

the choice of these bases and in the way in which

they are built up into systems for actual use after the

base has been established. Thus a pure quinary sys-

tem is rare, usually merging into a decimal or viges-

imal one for the higher numbers. Accordingly in the

list given below of the number of instances of each

system found, quinary and quinary-decimal systems

have been classed together, and similarly vigesimal

and quinary-vigesimal. The numbers found are: dec-

imal 146, quinary and quinary-decimal 106, vigesi-

mal and quinary-vigesimal 35, quaternary 15, ternary

3, octonary 1 (binary 81). The binary instances given

in parentheses refer simply to languages in which

the duplicative principle (already discussed) occurs.

These may be thought of as traces of a binary sys-

tem. But there are no binary systems in the true sense

of the word.

2.1 Decimal systems

Many of the American Indian systems have deci-

mal scales as regular and as complete as our own,

extending to quite high limits. Many others, while

predominantly decimal, are combined with other sys-

tems, decimal-quinary and decimal-vigesimal being

most frequent. The decimal system appears exclu-

sively (i.e., no elements of other systems have been

found) in only eleven families, all of which are small

ones totaling only 19 languages of those examined.

Thus in only a comparatively few cases do the lan-

guages of a single family use the decimal system

consistently.

As illustrations we find \one hundred" expressed

by a unique word or by such forms as \completed,"

\stock of tens," \10×10"; \thousand" by \10×10×
10," \10×100," \big hundred," \old man hundred,"
\large stock of tens"; \million" by \1,000× 1,000,"
\big thousand," \too many to count." While there

are many variations, intermediate numbers as a rule

are formed as in English.
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2.2 Quinary and quinary-decimal systems

As already mentioned a pure quinary system is very

rare, if indeed one exists. The pure form would re-

quire only five elements and is of course 1, 2, 3,
4, 5, 5 + 1, 5 + 2, 5 + 3, 5 + 4, 2 × 5, and so on
to 3 × 5, 4 × 5, and 5 × 5 as a new primary base.
There are various approximations to such a system.

Even 10 as \2 × 5" is uncommon although several
instances of this have already been given. We have

as variations for the numbers from 6 to 9, 6 = X+1
(\X" standing for some descriptive, non-numerical
word), 7 = X + 2, etc., arising from such forms

of thought as \again 1," \second 1," \1 more," \on
the other, 1," the numerals of the second quintate
repeating without the use of the expressed base five.
One or more of these forms may be entirely lack-

ing, 8 being expressed \2 × 4" and similarly. But
only in case at least two of the numbers between 5
and 10 show such a formation have we classed it
as quinary. Nine is a frequent variation, since it is
so often expressed by the subtractive principle. With

these explanations we may state that quinary systems

occur in about one third of the languages examined,

appearing most frequently in the region around the

Gulf of Mexico and least in the languages along the

Northwest Coast.

Space will not permit illustrative systems to be

given in full. Luiseno is purely quinary to ten, [4, p.

681] Gallinomero has only a few variant forms until

it reaches forty where it changes to decimal, [4, p.

676] while most of the quinary systems are of the

general type, 1, 2, 3, 4, 5, X + 1, X + 2, X + 3,
X + 4 and a new word for ten, e.g. Delaware [19,
p. 65] or Shawnee. [13, p. 269]

2.3 Vigesimal and

quinary-vigesimal systems

Vigesimal systems more or less complete occur in

about one tenth of the languages examined. With

the exception of the Caddoan family in the middle

west they all appear along the Pacific Coast or in the

far north. The obvious explanation of this system is

in the digital origin of counting. The well known

ethnologist Gatschet says that \tribes living in trop-

ical and hot climates mostly possess the vigesimal

system of the notation, which is rather infrequent

among the Indians of the United States." [8, p. 210]

He finds the explanation in the fact that they live

barefoot as contrasted with the moccasined northern

Indians. But this \barefoot" explanation, also given

by other writers (especially to account for the unusu-

ally well developed vigesimal systems of the Mexi-

cans and Aztecs) [2], rather breaks down in the case

of the Eskimo and tribes of the north Pacific Coast

where the climate is scarcely adapted to the bare-

foot stage. And yet among the Eskimo the vigesimal

system has found its fullest development north of

Mexico. The use of fingers and toes for the develop-

ment of a vigesimal system seems to be independent

of climate.

Twenty is the primary basis of the vigesimal sys-

tem and is usually expressed as \man," \Indian,"

\man completed"; the multiples of twenty being ex-

pressed as \two men," \three Indians," etc. Pawnee

carries this to 1,000 which is \50 persons." [3] The

vigesimal system usually occurs in connection with

some other system. Three types of combination may

be noted.

Quinary-vigesimal. This is most frequent. The

Greenland Eskimo says \other hand two" for 7, \first

foot two" for 12, \other foot two" for 17 and simi-

lar combinations to 20, \man ended." The Unalit is

also quinary to twenty which is \man completed."

But 40 is \two sets of animals' paws," 60 \three sets

of animals' paws" and so on regularly to 400 where

there is an interesting change in the formation of this

primary base (20 × 20) from animals back to man,
for 400 is \20 sets of man's paws." [14, p. 238]

Decimal-vigesimal. Systems in which no quinary

elements are found are comparatively rare. Wintun is

alternately decimal and vigesimal, 20, 40, 60, being

\one Indian," \two Indian," \three Indian," while

30, 50 are \3×10," \5×10." [4, p. 675] Others are
similar.

Quinary-decimal-vigesimal. Several systems show

a combination of the three digital bases in their for-

mation. Kopiagmiut is quinary to ten, decimal for

the formation of the odd tens and vigesimal for the

even ones. [15] Amador is purely decimal to ten,

quinary from ten to twenty, and then vigesimal, the

odd tens being formed by addition of ten to the pre-

ceding even ones, e.g., 50 − 40 + 10. [4, p. 680]
Haida is quinary-decimal and quinary-vigesimal al-

ternately to a hundred, then pure vigesimal, 400 be-
ing 20× 20× 1 and 800 being 20 × 20 × 2. [11, p.
123]

2.4 Quaternary systems

Fairly well-defined quaternary systems reaching to

eight may be found among the Montagnais of the
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far north, the Foxes of Wisconsin, the Iowas and

Missouris of the Plains | but they find their best

and fullest development into true systems in various

California tribes. Usually they are mixed with other

systems, but one or two cases are found of practically

pure quaternary systems.

It is not easy to account for the origin of such a

system. Two possibilities may be suggested.

(a) Digital. Perhaps a few tribes, for reasons best
known to themselves, did not use their thumbs in

counting. This is possible but there is little if any lin-

guistic or observational evidence to support it. Most

frequently these systems show the words, \stick,"

\middle," \body." \Body" might be considered dig-

ital.

(b) Sacred Number Theory. Four was the sacred
number of many widely separated tribes of Indi-

ans. The four cardinal points of the compass and the

four seasons were recognized by the Indians. Among

several tribes the literal meaning of \four" is \com-

plete," \right," \perfect." However the systems of

these tribes are not quaternary ones. A chart for the

sacred rites of the Ojibwas shows four degrees of

initiation for medicine men. The swastika, with its

four arms, originated with the Indians of the South-

west and was much used in basketry. There is a

widespread \four worlds" of Indian mythology. In

the various languages spoken on Puget Sound the

same word for four, with minor variations, is seen

most frequently, and it is the only number word com-

mon to about a dozen of these languages which have

been most carefully studied by a missionary among

them. All these data are suggestive of the origin of

a quaternary system, although the fact remains that

most of the instances given above are from tribes

which do not actually possess such systems.

Santa Barbara as far as sixteen is as follows: 1, 2,
3, 4,X+1,X+2, X+3, 8, 9,X+2, 11, 3×4,X+1,
X + 2, X + 3, 16. For 20 and above it is decimal,
probably due to contact with civilization. San Luis

Obisbo has X+2, X+3, for 6, 7; 8+1 for 9; 12+1,
12 +2, 12 + 3 for 13, 14, 15. [4, p. 682] Numerous
other languages have many quaternary forms.

2.5 Ternary system

A ternary system is much rarer than a quaternary and

nowhere occurs in a pure form. Two well-developed

ones are given below. It is even more difficult than

in the case of the quaternary system to account

for its origin. It is possible that to some primitive

minds it seemed natural to count one, two, three,

and then by groups of threes. In some languages

there is a similarity between the words for \this,"

\that," \that (remote)" or \here," \there," \yonder"

and the first three numerals. A number of instances

of 6 expressed as 2×3 have already been given and
some writers have mentioned them as examples of

a ternary system. But for reasons already explained

they are better considered as formed by the Duplica-

tive principle, unless occurring in connection with

nine or twelve similarly formed. The Cuchan nu-

merals for 3, 6, 9, are ha-mook, hum-hook, hum-ha-
mook. [18, p. 41] In San Antonio 4 is related to 1,
6 is derived from 3, and 12 is directly 4 × 3, 15 is
5 × 3, and 13 is 12 + 1. [4, pp. 683, 690]
But Coahuiltecan of Texas is the most interest-

ing example found. It has binary, ternary, quaternary,

quinary, decimal and vigesimal features, [7, p. 1] but

seems to be prevailingly ternary. Its system as far as

50 is as follows:

1 4 7 = 4 + 3 10 = 5 × 2
2 5 8 = 4 × 2 11 = 10 + 1
3 = 2 + 1 6 = 3 × 2 9 = 4 + 5 12 = 4 × 3

13 = 12 + 1 16 = 15 + 1 19 = 18 + 1 30 = 20 + 10
14 = 12 + 2 17 = 15 + 2 20 40 = 20 × 2
15 = 5 × 3 18 = 6 × 3 50 = 40 + 10

2.6 Octonary system

A single system with a base eight is known, the Yuki

of California. This interesting system in translation

is: [4, pp. 677, 685]

1 9 = beyond-1-hang 17 = 1-middle-project

2 10 = beyond-2-body 18 = 2-middle-project

3 11 = -3-body 19 = 3-middle-project

4 12 = -4-body 20 = 4-middle-project

5 13 = -5-body

6 14 = -6-body

7 15 = -7-body

8 16 = middle-none

2.7 Traces of other systems

Only traces of the use of other bases are found.

(a) Binary. If we include the large number of exam-
ples of the duplicative principle already discussed,

we have many instances of binary elements. But

these are only in the multiplicative principle and re-

fer simply to doubling. The only place where we

have found the additive principle used is in the

Coahuiltecan (just given) where 3 = 2 + 1. We may
also notice Chutsinni: 2, stunga; 4, stung-sung; 8,
stun-sunga. Yokaia: 2, ko; 4, duo-ko; 8, ko-ko-dol.
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(b) Sexanary. Aside from the instances of twelve

expressed as 2 × 6 mentioned under the duplicative
principle, we have Wimunche Ute: 7 = 6+1, Rum-
sen: 7 = X + 6, 8 = 2 + 6.
(c) Base of Nine. Trinity: 10 = 9 + 1, 11 = 9 + 2.
(d) Base of Forty. Chwachamaju: 40, ku-hai, \1-
stick"; 80, ko-hai, \2-stick."
(e) Base of Sixty. Achomawi: 70 = 60 + 10, 80 =
60 + 20.

2.8 Conclusions

The most striking feature of the systems which have

been studied is their diversity, even in languages of

the same family, and much more marked when the

country as a whole is considered. For instance, in

the closely related languages of the Yukian family

in California, although the numerals from one to

four are quite similar, yet two of the systems are

quinary-decimal, a third is quinary-vigesimal, while

the fourth is octonary; or in the Pujunan family in

which one system is decimal, eight quinary-decimal

and two quinary-vigesimal.

How many unique abstract number words are nec-

essary for building up a number system? We recall

that in English ten are used and all up to one hun-

dred are but combinations of these ten. Of course

two are sufficient | in a binary system. Many of

the Eskimo tribes manage quite well with five. The

Luiseno of California has but five abstract number

words, but it has higher units which are chiefly de-

scriptive phrases indicating various combinations of

hands and feet. Many languages which have a deci-

mal system get along easily without the full quota of

ten as used in English. This is accomplished by the

use of such combinations as 8 = 2×4, 6 = 2×3, 7,
8, 9 as 3, 2, 1 respectively subtracted from 10, and

others which have already been given. The Coahuil-

tecan (given under the ternary system) forms all the

numbers up to twenty with only four unique words,

those for 1, 2, 4, 5 | a very remarkable instance.

3 Miscellaneous points

3.1 Limits in use

The numerals in some languages are given as high

as a million and in many others to a thousand or

more. We are naturally led to inquire whether such

high numbers were actually in use by primitive peo-

ple. The evidence found on this point cannot be

here given in detail. Only a few conclusions may

be stated. The Eskimo seem to be poorest in ability

to count, being low in comparison with the tribes

of the United States. Most of them in ordinary con-

versation do not use above five or six, referring to

higher numbers as \many," but the more intelligent

of them can count to 400. The Indians of the east-

ern United States who stand comparatively high in-

tellectually, could use their numerals to 10,000 and

their systems were such as to admit of indefinite ex-

pansion, one billion for instance being expressed as

1, 000×1, 000×1, 000. The Crees could count cor-
rectly as far as 1,000. The Winnebagoes are said to

use their numerals as high as one million. Indefinite

and countless numbers they represent by the terms

\leaves on the trees," \stars of the heavens," \blades

of grass on the prairie," \sand on the lake shore."

The Crows do not count above a thousand, as they

say honest people have no use for higher numerals!

The Apaches cannot use numbers beyond 100,000.

Any of the California tribes of which positive state-

ments can be made can count into the hundreds. As

a definite upper limit to counting ability we find that

the Tuolomne are credited with the ability \to count

with great rapidity almost to infinity"! [12, p. 406]

Speaking in general terms, we may say that the

rather highly developed Siouan tribes of the Plains,

the Iroquoian and Algonquian families of the east,

and the Muskogean tribes of the South | all rather

high in the scale of civilization | could count intel-

ligently at least into hundreds of thousands and had

words for even higher numbers; that most of the

other Indians of the country had little actual knowl-

edge of forms for numbers higher than thousands;

while the Eskimo of the far north were limited to

hundreds and in many cases to twenty or even ten.

It is probable that before coming in contact with Eu-

ropean civilization the Indians had little occasion to

use numbers beyond a thousand. But the systems of

many of them were such as to admit of indefinite

and easy extension when needed.

3.2 Numeral classifiers

Some tribes use different sets of numerals for count-

ing different classes of objects. The Tsimsian lan-

guage has quite distinct forms for counting men
and for counting things. More frequently the number
stem is modified by a prefix or suffix which is in

the nature of a classifier to denote the class of ob-

jects counted. The Haida has no less than 15 of these

classifiers. Others seem to have an even larger num-

ber. This usage is found very generally among the
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languages of the north Pacific coast and but rarely in

other parts of the country. The Tsimsian mentioned

above has different forms for abstract counting, for

counting flat objects or animals, for round objects

or time, for men, for long objects, for canoes, for

measures.

3.3 Verbal nature

In a few languages the numerals are true verbs

instead of adjectives, and as such are conjugated

through all the variations of mood, tense, person and

number. As far as found this peculiarity is limited

to three languages, Cree, Crow, Micmac.

3.4 Derivative numerals

The formation of ordinals, adverbials and distribu-

tives from the cardinal numerals is more properly a

grammatical than a numerical process and as such

need receive only slight notice here.

(a) Ordinals are found most frequently, usually be-
ing formed from the cardinals by a suffix or other

terminal modification, occasionally by a prefix. In

the Creek an unusual method is found, the ordinal

being formed from the cardinal in the same way that

the superlative of the adjective is formed from the

comparative.

(b) Distributives are also frequently found. They are
formed from the cardinals by prefixes, suffixes, or

reduplication.

(c) Adverbials, as far as noted, are formed by suf-
fixes.

3.5 Arithmetical operations

We shall close our discussion of the varied, inter-

esting, and intricate number systems of the North

American Indians with a reference to their ability to

perform arithmetical operations. In our study of the

principles of formation of number words we found

an extensive use of addition and multiplication, a

less use of subtraction, and very slight use of division

in the formation of number systems. But aside from

these instances (all operations on only the bases of
the systems) the calculative ability of the American

Indians was very slight and of the most elementary

sort. Addition, subtraction or multiplication was ac-

complished only with the aid of the fingers, sticks,

pebbles or other convenient counters. It is probably

that the native Indian mind had practically no idea of

mental arithmetic, being unable to multiply or divide

numbers mentally, or even to add or subtract any ex-

cept the smallest. His need for such operations was

probably as slight as his knowledge.

4 Notes

4.1 Bibliographical note

It is impossible to give a comprehensive bibliography

of this subject in a small space. Most of the mate-

rial is in hundreds of separate vocabularies, gram-

mars, dictionaries and discussions of the various lan-

guages of the American Indians. Considerable infor-

mation may be found in the reports of the Bureau

of American Ethnology, Washington, D.C. Pilling's

Bibliographies, published by this Bureau from 1887
to 1894, contain references to most of the literature

up to the date of their publication for the nine most

important linguistic families. In addition, [2], [4],

[17], and [18] may be mentioned as especially im-

portant. Full credit can scarcely be given for each

statement made in this paper. The above mentioned

sources have been used freely, but even more the

numerous dictionaries and grammars mentioned at

the beginning of this note. A bibliography of about

300 titles prepared by the author is on file in the

library of the University of Chicago, the Newberry

Library, Chicago, and the library of the University

of Wisconsin.

4.2 Nature of sources

Before the arrival of the white man the Indian had

no written language, except a system of rude hiero-

glyphics among some of the more intelligent tribes.

Reproductions of many of these are given by Mallery

in the 4th and 10th Reports of the Bureau of Eth-

nology. They have but little of mathematical interest.

The oral number systems of the Indians are the im-

portant sources available. But these have been com-

mitted to writing by hundreds of different men, of

varying reliability and familiarity with the languages,

of different nationalities, using various systems of

spelling, at different dates, and extending to various

limits. Aside from this is the fact that the same Indi-

ans are often known by a dozen or twenty different

names, or the same name is applied to several dis-

tinct tribes speaking different languages. Such con-

fusion in the sources makes it extremely difficult to

classify them satisfactorily for the purposes of com-

parative study. Many errors in detail must have been

made which can only be corrected by further study
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and reference to experts in American linguistics in

various parts of the country. But it is hoped that such

errors as have been made are not serious enough to

affect much, if at all, the general results and state-

ments made in this paper.

4.3 Nature of conclusions

The conclusions stated in this paper are usually

based entirely on the relative number of the 324 ex-
amined. Little effort has been made to indicate the

amount of territory covered or the number of Indians

involved. Some of the languages were used by only

a few people, others by many thousands. But for the

purposes of this paper a small tribe with peculiar-

ities in its number system is as interesting and as

important as a much larger one.
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The Number System of the Mayas

A. W. RICHESON

American Mathematical Monthly 40 (1933), 542{546

The number systems of the North American Indians

have recently been discussed in detail in two papers

in this Monthly [2]. The system of numbers devel-
oped by the semi-civilized Maya Indians of Central

America is probably the most interesting of all sys-

tems developed by the early inhabitants of this con-

tinent.

The examples of the number system of the Mayas

that have been found, or at least that have been deci-

phered, deal with the counting of time events or peri-

ods, and many authorities are of the opinion that the

recording of time series was the sole purpose of their

numbers. The records of their chronicles are found

as glyphs on the monuments and as written in the

codices. These records present two methods of writ-

ing numerals, the normal form and the head-variant

form. Both forms are essentially the same, and the

Mayas were able to express a number as easily by

one method as by the other. The head-variant form is

found with few exceptions on the monuments, while

the normal form is found exclusively in the codices.

In the head-variant form there are distinctive head

forms for each of the numbers from 0 to 12 inclu-

sive, while from 13 to 19 inclusive the numbers are

written by using the head form for 10 plus the form

for whatever unit is needed to make up the desired

number. Each number is characterized by a distinc-

tive type of head, by means of which it can be distin-

guished from any other number. In the case of three

numbers, 2, 11, and 12, however, the characteristic

elements have not been determined with certainty.

The forms for these numerals occur very rarely on

the inscriptions, and consequently, the data are not

sufficient to justify a statement as to the character-

istic elements.

Figures 1-3 illustrate the head forms for 6, 10, and

16 respectively. Figure 4 shows the head form for 16

Figure 1. Figure 2. Figure 3.

Figure 4.

used as a multiplier with the kin or day sign to the

right. It should be noted that the head form for 16

is made up of the fleshless jaws of the character for

10 with the \hatchet" eye for 6. The characteristic

elements for the numbers from 0 to 19 are given in

the table on the next page.

In the normal form the number combinations from

1 to 19 inclusive are formed by dots and bars. Each

dot has the numerical value of 1 and each bar repre-

sents five. Generally the dots are placed horizontally

over the bars or to the side of a vertical arrangement

of the bars; for example, 4 and 17 were written re-

spectively as follows.

On the inscriptions the number forms were fre-

quently decorated to give them symmetry and a bal-

anced form; this has often been a source of error in

deciphering the inscriptions. Since the Mayas used a

vigesimal system of numeration, there was no need

of a symbol for twenty, since 20 units of the first

94
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Head form Characteristic element
0 Clasped hands across

lower part of face

1 Forehead ornament composed

of more than one part

2 Undetermined

3 Banded head dress

4 Bulging eye with square irid,

snag tooth, curling fangs

from back of mouth

5 \Tun" sign for head dress

6 Hatchet eye

7 Large scroll passing under eye

and curling under forehead

8 Forehead ornament

composed of one part

9 Dots on lower cheek

or around mouth

10 Fleshless lower and upper jaws

11 Undetermined

12 Undetermined|type of head known

13 to 19 Head for 3, 4, 5, 6, 7, 8, 9

with fleshless lower jaw for 10

order gave one unit of the second. However, a sym-

bol for zero was absolutely indispensable, and this

symbol, which somewhat resembled the shape of a

shell, is found on the inscriptions and in the codices.

The symbol was first recognized by Dr. F�orstemann

[4].

1 Methods of numeration

The Mayas developed two systems of numeration;

the multiplication method and the \numeration by

position". Although different in form, both methods

are essentially vigesimal.

The first method, which is rarely found except on

the inscriptions, makes use of both the normal and

head-variant forms. The numbers are formed by us-

ing the bar and dot characters or the desired head

form to build up the multipliers from 0 to 19 in-

clusive, with the time period signs as multiplicands.

Until recently most authorities have stated that the

Maya time count was one of days or kins and that

the count was not strictly vigesimal. The following

table will show the count under this assumption:

1 kin = 1 day

20 kins = 1 uinal = 20 days

18 uinals = 1 tun = 360 days

20 tuns = 1 katun = 7,200 days

20 katuns = 1 baktun = 144,000 days

etc.

On the other hand, Dr. Teeple of the Carnegie

Institute and Mr Wm. E. Gates of The Johns Hopkins

University have advanced the opinion that the tun is

the correct unit of time used by the Mayas, and that

the time count is vigesimal throughout. They argue

that the division of the tun or year into 18 and 20

parts is nothing more than fractional parts of the

Maya time unit [10].

Figure 5 illustrates the formation of the number

75,550 on the basis of the above table by employing

the dot and bar characters for the multipliers with

the kin, uinal, tun, and katun signs as multiplicands.

Reading from the top down, we have 10 katuns =

72,000 kins, 9 tuns = 3,240 kins, 15 uinals = 300

kins and 10 kins = 10 kins. The sum of the four

products is 75,550 kins. This number could be ex-

pressed also by the head forms for the multipliers 10,

9, 15, and 10, in place of the dot and bar characters.

The second method of numeration, namely that by

position, is very similar to the Hindu-Arabic decimal

system as used today. Although the system is vigesi-

mal and thus required 19 different combinations for

the units, it was built up by the three simple charac-

ters: the dot, the bar, and the zero. With this method

the Mayas were forced to fix arbitrarily a starting

point and to confine themselves to one series only, or

else the positional value of the nineteen digits would

be useless. They accordingly adopted an ascending

Figure 5.
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Figure 6.

series which corresponds to our decimal series from

right to left.

We illustrate in Figure 6 the method by the number

12,489,781. This is the largest number yet found in

the codices.

2 Discussion of the numbers

The Maya numbers were no doubt written as they

were spoken. The names of the numbers from 1 to 20

inclusive are given below as they appear in Beltran's

Arte del Idioma Maya.

1 hun 11 buluc

2 ca 12 lahca

3 ox 13 oxlahun

4 can 14 canlahun

5 ho 15 lolahun

6 uac 16 uaclahun

7 uuc 17 uuclahun

8 uaxac 18 uaxaclahun

9 bolon 19 bolonlahun

10 lahun 20 hunkal or kal

Very little seems to be known concerning the ori-

gin of the number words from 1 to 5 inclusive. Dr.

Brinton [1] is of the opinion that the Maya proper

and the neighboring Mayan dialects were derived

from one common archaic form of speech and not

from one another. In the case of the smaller num-

bers, this opinion seems to be justified, as they were

no doubt formed before the beginning of their his-

tory. A number of arguments have been advanced

for the derivation of the numbers from 5 to 9. Dr.

Thomas [11] believes that the hand was not used in

the count until 5 was reached and that the numbers

from 6 to 8 inclusive were composite. He suggests

that uaxac is the answer to the whole question, that
the x of ox = 3 has been combined by u with some
form of 5 to give eight and that the forms for 6 and

7 are formed in a similar manner. Pio Perez on the

other hand gives as a signification of the verb uac

or uach \to take out one thing which is placed in
another and united with it." This would seem to in-

dicate counting on the fingers and turning them in

for the first five and then opening them out while

counting the second five. Bolon = 9 seems to have
the meaning \on the way to 10", while lahun = 10
is lah hun; \it finishes one man," i.e., counting on
the fingers.

The numbers from 12 to 19 inclusive are without

doubt composite numbers, i.e., 12 = 10 + 2, 13 =
10+3, etc. As we should expect in a vigesimal sys-
tem, there is a definite number for 20, kal or hunkal.
Henderson gives for kal \to close, to shut" or as a
substantive \a fastening together", i.e., a fastening

together of both hands and feet.

The count from 21 to 40 inclusive is by addition

to the first 20, e.g., 21 is hun-tu-kal = 1 + 20 or 1
to the 20. Forty is ca-kal or 2×20. From 41 on, the
count is regular, but is different from 21 to 40. Here

the count is by subtraction from the next 20 [8].

Dr. Brinton states that the Maya's use of numbers

was somewhat different from ours [1]. The num-

bers are rarely used except with a numeral particle,

which is suffixed to the numeral and indicates the

character or class of the objects which are about to

be enumerated. With the aid of these particles Dr.

Brinton gives another method which was frequently

employed to express their numbers. For eighty-one

years they did not write hun tu yox kal haab, as we
would expect, but can kal haab catac hunpl haab,
i.e., four score years and one year.

3 Conclusion

It is quite evident that the Mayas had developed a

number system with a place value for their charac-

ters many years before the advent of the white man.

Dr. Teeple is of the opinion that the Mayan viges-

imal system of numbers was a distinct part of an

American civilization [10].

The records also indicate that the Mayas were un-

able to handle fractions as we do today, but on the

other hand they were able to and did perform long

numerical computations involving multiplication and

division. Just how these computations were carried

out we do not know. Dr. F�orstemann in his work

gives an instance from the inscriptions where the

calculation runs into the millions [3].

It is impossible to give complete references for

many of the statements, but the material has been

drawn largely from the following sources.
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Before The Conquest

MARCIA ASCHER

Mathematics Magazine 65 (1992), 211{218

1 Introduction

In the late 15th century, through their explorers,

Europeans \discovered" the New World. Although

the discovery would cause drastic change, the New

World was, of course, not new to its inhabitants.

When the Europeans arrived, there were at least 9

million people in about 800 different cultures living

in the Western Hemisphere. Because of the vast dis-

ruptions that eventually took place, what we know

about them and their mathematical ideas is limited.

Most of the cultures had no writing as we commonly

use the term and so there are no writings by them in

their own words. For the cultures that did not sur-

vive, we have primarily what can be learned from

archaeology and from the writings of the Europeans

of the time, who had little understanding and little

respect for these cultures so different from their own.

For those that did survive, we also have their oral

traditions.

We focus here on the mathematical ideas of two

sizable groups, the Incas and the Maya. The regions

the groups inhabited, their cultures, and their his-

tories are quite distinct, as are their mathematical

ideas. Fortunately, for both groups, there is suffi-

cient information for us to gain some understanding

of their rich and complex ideas. Here we present an

abbreviated introduction to the content and context

of the sophisticated data handling system of the In-

cas and the intricate calendric system of the Maya.

2 The Incas

The Incas comprised a complex state of about 5 mil-

lion people that existed from about 1400 C.E. to 1560

C.E. in what is now Peru, and also parts of modern

Ecuador, Bolivia, Chile, and Argentina. There were

many different peoples in the region, but, starting

about 1400, the Incas forcibly consolidated the oth-

ers into a single bureaucratic entity. The consoli-

dation was achieved by the overlay of a common

state religion and a common language, relocation of

groups of people, extensive systems of roads and

irrigation, and a system of taxation involving, for

example, agricultural products, labor, and cloth. The

Incas also built a network of storehouses to hold and

redistribute goods as well as to feed the army as it

moved. The Inca bureaucracy can be characterized

as methodical, highly organized, and intensive data

users. Although the Incas did not have what we call

writing, they did keep extensive records. These were

encoded via a logical-numerical system on spatial ar-

rays of colored, knotted cords called quipus.

A few selected people from each region that the

Incas occupied were trained to serve in the Inca ad-

ministration and, in particular, to be responsible for

gathering, and then encoding and decoding a wide

variety of information on the quipus. Believing the

quipus to be works of the Devil, the Spanish de-

stroyed thousands of them. Only about 500 remain.

These were recovered from graves, probably buried

with those who made them. Only rarely can we read

the quipus in the sense that specific meaning can be

assigned. However, we can reconstruct something of

their logical-numerical system and, as a result, see

the interrelationships of some of the data they con-

tain.

A photograph of a quipu is in Figure 1. Figure 2

is a schematic. In general, a quipu has a main cord

from which other cords are suspended. Most of the

suspended cords are attached such that they fall in

one direction (pendant cords); some few fall in the
opposite direction (top cords). Subsidiary cords are
often suspended from the pendant or top cords. And

98
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Figure 1. A quipu in the collection of the Museo Nacional

y Arquelogia, Lima, Peru. (Photo by Marcia and Robert

Ascher.)

there can be subsidiaries of subsidiaries, and so on.

(Notice that in Figure 2 the first pendant has two

subsidiaries on the same level while the fourth pen-

dant has two levels of subsidiaries.) Some pendant

cords have as many as 18 subsidiaries on one level,

and some have as many as 10 levels of subsidiaries.

Sometimes a single cord (dangle end cord) is at-
tached to the end of the main cord in a way that sets

it apart from the pendant and top cords. All cord at-

tachments are tight so that the spacing between the

cords is fixed and serves to group or separate the

cords. Overall, a quipu can be made up of as few as

three cords or as many as 2000.

Color is also a feature of the logical system. It

is used primarily to associate or differentiate cords

within a single quipu. Thus, color as well as space

can create cord groupings. For example, eight pen-

dants can be formed into two groups by having four

white pendants followed by four green pendants, or

by a four-color sequence repeated twice. In the lat-

ter case, each cord is not only associated with its

group, but also with the like-colored cord in the other

} }

} }

Subsidiary
cords

Pendant
cords

Pendant cords

Dangle
end
cord

Main
cord

Top cord

Subsidiary cord

Figure 2. A schematic of a quipu.

group. Similarly, subsidiaries are associated or dif-

ferentiated by color as well as by level and relative

position on the given level.

Spaced clusters of knots on the cords represent

numbers. No matter what the cord placement, only

three types of knots appear (single knots, long knots,

and figure-8 knots). Depending on the knot types

and relative cluster positions, each cord can be in-

terpreted as one number or as multiple numbers. If

it is one number, it is an integer in the base 10 po-

sitional system. Each knot cluster is read as a digit

and each consecutive cluster, starting from the free

end of the cord, is valued at one higher power of 10.

The units position is always a long-knot cluster or a

figure-8 knot, while all other positions are clusters of

single knots. When, instead, the cord carries multi-

ple numbers, long-knot clusters or figure-8 knots are

interspersed with single-knot clusters thereby signal-

ing the start of a new number. The color coding of

the cords also helps in the interpretation of values by

enabling the distinction between a numerical value

of zero and an intentional omission or blank.

Knot types and knot positions, cord directions,

cord levels, color, and spacing are all structural in-

dicators that were combined together in sufficiently

standardized ways to be read and interpreted by

the community of quipumakers. That is, the quipus

served for communication, not as ad hoc personal

mnemonic devices. Top cords, for example, gener-

ally carry the sum of the pendant cords with which

they are grouped on the main cord. Another aspect of

the system that is crucial to its general applicability

is that numbers were used as labels as well as mag-

nitudes. Particularly with the advent of computers,
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this usage is now very prevalent in our own culture.

For example, the composite number 202-387-5200

is a label identifying a geographic region, a locale

within that region, and a specific telephone within

that locale.

The quipus, then, are logically structured arrays

of magnitudes and labels. Let us translate three of

them into notation that is familiar but preserves their

logical structure. Then we can delve into some of

their internal data relationships.

The quipu shown in Figure 1 contains solely quan-

titative data. Analysis of the pendant cord colors and

spacing shows that there are six ordered sets of 18

values each. We will call the jth value in the ith set
aij , where i = 1, . . . , 6; j = 1, . . . , 18. When the
knots are interpreted as magnitudes, we find that,

for all j,
a1j = a2j + a3j

and, in turn,

a2j =

6∑

i=4

aij.

Hence, the relationship

a1j =

6∑

i=3

aij

also holds. Additionally, there are subsidiary cords

on the pendants in five of the six cord groups. Thus,

for each aij , for i = 2, . . . , 6; j = 1, . . . , 18, there
are as many as 11 ordered subsidiary values. Call
them

aijk, with k = 1, . . . , 11.

Here, too, consistent summation relationships exist:

a2jk =

6∑

i=3

aijk for k = 1, . . . , 11; j = 1, . . . , 18.

A modern analogy of data with sums of sums and

sets of sums, as is seen in this example, is an ac-

counting scheme for a company, broken down to

reflect that it is made up of several departments and

producing a variety of products.

In our second example, the arrangement of values

and their sums is analogous to a matrix that has, as

a subset, the transpose of the sum of two other ma-

trices. Specifically, this quipu's data can be thought

of as two 3× 3 matrices, each preceded by a single
value, and a 3 × 5 matrix. Calling the elements of
the matrices

aijk i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,

and

bij i = 1, 2, 3; j = 1, 2, 3, 4, 5,

the relationship is

bi,2j−1 =

2∑

k=1

ajik for i = 1, 2, 3; j = 1, 2, 3.

And, continuing the analogy to matrices, the single

value preceding each of the 3 × 3's would be the
sum of its first row; that is,

ck =
2∑

j=1

a1jk for k = 1, 2.

Some of the data structures remind us of spread-

sheets, matrices, and tree diagrams. Other quipus

have other layouts, non-quantitative as well as quan-

titative data, other kinds of internal data relation-

ships, or even relationships with data on other qui-

pus. Many remain fascinating puzzles. One of these,

our final example, is from a pair of quipus that were

found together.

The specific numbers on these two quipus are dif-

ferent, but the quipus share several internal data rela-

tionships, including what we commonly call a differ-

ence table. While both appear to be expressions of

the same algorithm, a concise unifying description

escapes me. Translated into tabular form, they are

compared in Figure 3. I have superimposed arrows

and heavy lines on the tables to indicate the sim-

ilarities that I see. Perhaps you can find additional

similarities or, perhaps, you can find a generalization

that unites the data sets.

Figure 3. Data excerpted from a pair of quipus found

together. Arrows and heavy lines highlight some of their

similarities. In both, for example, all values are the same

in the first column and in row 2, column 3. Also, in both,

the third column contains the differences of consecutive

values in the second column. (The quipus are described

by C. Radicati di Primeglio in \La `seriaci�on' como posi-

ble clave para descifrar los quipus extranumerales", Doc-
umenta: Revista de La Sociedad Pemana de Historia 4
(1965), 112{215.)
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Reference [1] contains more details, examples,

and discussion of the context, contents, and inter-

pretation of quipus. Although we lack the cultural

associations needed to know what a specific quipu

means, the quipus surely are records of human and

material resources and calendric information. But

they contain much more | possibly information as

diverse as construction plans, dance patterns, and

even aspects of Inca history. Overall, the logical-

numerical system embedded in these spatial arrays

of colored, knotted cords was sufficiently general to
serve the needs of the Inca bureaucracy. Their use

was terminated soon after the destruction of the Inca

state in 1560 C.E.

3 The Maya

The Mayan peoples have a complex cultural tradi-

tion extending over a long period of time and encom-

passing different groups speaking about 25 different

languages. They shared much in the way of culture

but, spread through time and space, they had dif-

ferent centers and political organizations, some dif-

ferent ideas, and some different practices. Discus-

sions of their history usually begin sometime before

1000 B.C.E. The period 200{1000 C.E. is referred to

as the Classic period and is marked by ceremonial

centers with monumental architecture, a system of

writing, an elaborate astrological science, and nu-

merous centers of social, religious, economic, and

political activities interrelated by marriage and trade

networks. During the Classic period, the Maya in-

habited what are now the eastern Mexican states of

Chiapas, Tabasco, Campeche, Quintano Roo, and

Yucatan; Belize; Guatemala; and the western por-

tions of Honduras and El Salvador. On the eve of the

Spanish conquest, there were spread out in this area,

many independent yet culturally interrelated states,

none as grandiose as earlier. Because they were dis-

persed and independent, they did not succumb to

the Spanish as quickly and easily as did the Incas.

Today, primarily in Chiapas and the highlands of

Guatemala, some Maya traditions continue.

Christopher Columbus, in 1502, is said to have

been the first European to encounter the Maya, and

his brother, Bartholomew, was the first to record the

name of the group. By that time, however, remains of

the Classic Maya period were already covered over,

and so another \discovery" | this time archeolog-

ical | took place beginning in the mid-1800s. In

addition to some ongoing traditions, what we know

of the Maya, and in particular of their mathematical

ideas, comes from archeological materials, including

thousands of inscribed stone monuments (stelae) and
four post-Classic books (codices), the only ones re-
maining of the thousands that were burned by the
Spanish.

We will concentrate on the idea of time as it per-
meates the Mayan culture. Time is considered to be

cyclic. Supernatural forces and beings are associ-

ated with and influence units of time. Events of the

past, present, and future are related through the re-

currence of named time units. There are, however,

not just one, but several, overlapping cycles that all

must be taken into consideration to give meaning

to any particular time unit. Although their calendric

concerns extend to the incorporation of astronomi-

cal phenomena, the Maya were preoccupied with the

interrelationship of the arbitrary cycles they created

and imposed on time. For this reason, the Maya are

said to have \mathematized" time and, through it,

their religion and cosmology.

There is, first of all, a 260-day ritual almanac.
Each day within it is identified by a number in a cy-

cle of 13 and a named deity in a cycle of 20. (Each of
the 13 numbers also has an associated deity.) There
is a vague year of 365 days (called \vague" because
it does not keep in alignment with the seasons). It

results from a cycle of 20 numbers within a cycle of
18 named deities plus five unnamed days. (The cy-
cle of 20 is now referred to as a month but does not
have a lunar correspondence.) One calendar round
is 18,980 days (52 vague years, 78 almanac cycles)
since that is the least common multiple of 365 and
260. A date within this, made up of an almanac

date and a vague year date, reads, for example, 4
Ahau 8 Cumku where Ahau and Cumku are names
of deities.

In the ceremonial centers of the Classic period,

there were temples atop large, stepped pyramid frusta

as high as 213 feet. Hundreds of stelae, some as
tall as 32 feet, were erected around them to com-

memorate different events. To mark an event, what

was needed was to accurately and fully identify it
in time and, sometimes, to state how many days it

was from another event. In addition to the calendar

round date, another significant identifier was a Long
Count: the number of days from the beginning of the
then current Great Cycle. A Great Cycle is based on
a 360-day period (a tun) consisting of 18 uinals of
20 days each; 20 tuns are a katun, 20 katuns are a
baktun, and 13 baktuns are a Great Cycle. An exam-
ple of a Long Count transcribed into our numerals is
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9.0.19.2.4. From left to right this reads \9 baktuns,
0 katuns, 19 tuns, 2 uinals, and 4 days." To convert
to our system, starting at the right, each position|

with the exception of the third | is multiplied by

one higher power of 20. In the third position, an
18 is used instead. Hence, the Long Count date of
9.0.19.2.4 is interpreted as:

9 · 18 · 203 + 0 · 18 · 202 + 19 · 18 · 20 + 2 · 20 + 4

= 1, 302, 884 days

from the beginning of the Great Cycle that started

on the calendar round date of 4 Ahau 8 Cumku. The
exact correlation of this date with the Gregorian cal-

endar is not known. However, by one commonly ac-

cepted correlation, the beginning of the Great Cycle

was in 3114 B.C.E. and the date given by the Long

Count above is, thus, in 454 C.E.

This Long Count date appeared on a stela that

also was dated in the calendar round as 2 Kan 2
Yax. But, as with most stelae, it had dates placing

it within still more cycles. There was a 9-day cycle
of Lords of the Night, each associated with one of
the nine levels of the underworld. Hence, a specific

Lord of the Night also dates the day being marked.

And, in addition, the day is placed within a lunar
cycle. Lunar years and half-years are made up of

29- and 30-day lunar months. The stela contains the
moon number within the lunar half-year, the age of

the moon, and whether it is a 29- or 30-day month.
Just as there are nine levels below the earth, there

are 13 levels in the heavens above. There are four
cardinal directions and each of the quadrants they

define is associated with a different color. Uniting

time and space, the days of the 260-day ritual al-
manac move in a counterclockwise direction through

the four quadrants. Hence, not only are time and

space related, but the ritual almanac has within it

a four-color cycle. In some cases, where dates also

identify days within a 819-day cycle associated with
the rain god, the use of four colors effectively makes

that cycle 819 · 4 = 3276 days.
Many of the Maya computations are projections

into the past or into the future that require dovetail-

ing the cycles. For instance, one inscription, com-

memorating the enthronement of a ruler, gives the

calendar round dates of his birth and his enthrone-

ment, as well as of the enthronement of an ear-

lier, somehow related ruler or deity. The number of

days between these events is also included in Long

Count form. For example, the time elapsed since the

enthronement of the deity is 7.18.2.9.2.12.1 days.

Hence, given one calendar round date, a calendar

round date some 11
4
million years earlier was calcu-

lated or, given two calendar round dates, their Long

Count difference (number of days between them)

was calculated.

To more fully savor the calculation, you might

try to do such a problem. First, recall that each of

the 260 days in the ritual almanac is identified by a
number in a cycle of 1 to 13 and a named deity in
a cycle of 20. For simplicity, let us call the deities
D1, . . . , D20. In the 365-day vague year, five days
are unnamed while, for the rest, each day is identi-

fied by a number in a cycle of 1 to 20 within each
of 18 months named for deities. Call these deities
d1, . . . , d18 and assume that the five unnamed days

follow 20d18. The calendar round date is the al-

manac date followed by the vague year date. What,

then, is the calendar round date that is 2.3.5.10 days
after 8D1013d10? And, what is the Long Count Dif-

ference between 12D86d2 and the next 5D4l2d17?

(Answers at the end of the article.)

The Dresden Codex, attributed to the eleventh

century in Yucatan is the most mathematical of the

codices. It is constructed as a long strip of paper

made from tree bark, folded into pages, coated with

white plaster, and painted. Perhaps as aids to compu-

tation, the codex includes several tables of multiples;

for example, there are tables of multiples of 5.1.0
(that is, of 1820 that equals 7 · 260 and 5 · 364) up
to 1.0.4.8.0. But, even more important, other tables
in the codex combine backward and forward cal-

endar projections with evidence of keen astronom-

ical knowledge. One set of tables correlates lunar

cycles with ritual almanac dates. These tables cover

405 lunations and are interpreted as prediction tables
for possible eclipses. Another set of tables in this

codex correlates Venus visibility events with ritual

almanac and vague year dates. Covering 65 Venus
cycles, which is 146 almanac cycles and 104 vague
years, it includes corrections reflecting the fact that

the mean synodic year of Venus is not an integral

number of days. (The mean synodic year of Venus

is 583.92 days.) The corrections are such that the er-
ror between real and tabulated times of the positions

of Venus would be off by just two hours in about

500 years!
We know that much is unknown about the knowl-

edge and mathematical ideas of the Maya. Dates

and numbers, written in a variety of symbolic forms,

have been recognized and deciphered. But the Maya

writings contain much more. The writing system is

complex because it contains about 1000 symbols and
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both phonetic and non-phonetic elements. A great

deal of recent activity in decipherment raises the

hope that more will become known about Maya ideas

and the Maya culture in general. (For more details

on number representation, the tables in the Dresden

Codex, and possible algorithms for the date differ-

ence calculations, see [2] and [5]. Reference [3] dis-

cusses the importance of the Maya scribes including

evidence that they were both women and men. Also,

[4] is an excellent comprehensive overview of the

Maya.)

4 Conclusion

The Inca and Maya are two substantial examples of

cultures whose mathematical ideas were both sophis-

ticated and independent of those of Western culture.

We can never know about all of the mathematical

ideas they had and, what is more, we cannot know

what they might have developed had they continued

to thrive.

Answers to Exercises: 11D208d5; 1.19.6.16.
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Afterword

The two standard accounts of Mesopotamian mathematics (as well as the mathematics of other

ancient civilizations) are Otto Neugebauer's The Exact Sciences in Antiquity [14] and B. L. Van
der Waerden's Science Awakening I [16]. Although they are both still useful, they have been
superseded in some of their technical accounts of the mathematics by the results of new research.

Among the newer surveys of Mesopotamian mathematics are articles by Jens H�yrup [7] and J�oran

Friberg [5]. Høyrup also has a book-length treatment of the technical aspects of the Mesopotamian

tablets: Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin [9] as well
as a series of more general essays on ancient and medieval mathematics: In Measure, Number,
and Weight: Studies in Mathematics and Culture [8].
The standard, and still useful, history of Greek mathematics is Thomas Heath's A History of

Greek Mathematics [6]. But many aspects of Heath's analysis have been challenged in recent
years. The two best reevaluations of some central parts of the story of Greek mathematics are

Wilbur Knorr's The Ancient Tradition of Geometric Problems [10], which argues that geometric
problem solving was the motivating factor for much of Greek mathematics, and David Fowler's

The Mathematics of Plato's Academy: A New Reconstruction [4], which claims that the idea of
anthyphairesis (reciprocal subtraction) provides much of the impetus for the Greek development

of the ideas of ratio and proportion. A newer work, Serafina Cuomo's Ancient Mathematics [3],
is an excellent survey of Greek mathematics, aimed particularly at non-specialists.

There are now two good surveys of the history of Chinese mathematics available in English:

Chinese Mathematics: A Concise History [11], by Li Yan and Du Shiran and A History of Chi-
nese Mathematics [13] by Jean-Claude Martzloff. In addition, there is now a complete English
translation, with commentary, of the classic Nine Chapters on the Mathematical Art [15].
For more information on Peruvian quipus, the best source is Mathematics of the Incas: Code of

the Quipu [1] by Marcia and Robert Ascher. This book provides a mathematical analysis of various
techniques of quipu making and also provides exercises for students. A good survey of Mayan
mathematics is Floyd Lounsbury's article [2] in the Dictionary of Scientific Biography. Finally,
Native American Mathematics [2], edited by Michael Closs, provides more up-to-date information
on the number systems of North American Indians, as well as material on the mathematics of other

Native American civilizations.
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Foreword

Although the Middle Ages are often thought of as a period of little progress in mathematics, the

statement is true only of Europe; much progress was made in other parts of the world. The first

three papers in this section deal with the contributions of medieval south Indian mathematicians

to the development of the power series representation of the sine, cosine, and arctangent series;

these power series first occur in a work by Nilakantha in the early sixteenth century. A detailed

derivation of the series appeared later in that century in a work of Jyesthadeva, who attributed

the series to the fourteenth-century mathematician Madhava. This Indian work was first brought

to the attention of western scholars by C. M. Whish in 1835, but his work had no effect. They

were reintroduced to Europe in a series of articles by C. Rajagopal and his associates beginning

in 1949.

The article by Ranjan Roy discusses the derivation of the arctangent formula and its application

to finding a series approximation to π. Roy also discusses the analogous work by Gottfried Leibniz

around 1675 and by James Gregory a few years earlier. Victor Katz's article concentrates on the

derivation of the sine and cosine series. Since it was necessary for the derivation of all three series

for the Indian mathematicians to have some knowledge of formulas for the sum of integral powers,

Katz discusses one particular derivation of such formulas. This was the work of Ibn al-Haytham,

known to the West as Alhazen, a mathematician who worked in Egypt around the year 1000.

Finally, David Bressoud looks at the question of finite differences and how the Indian knowledge

of these helped lead to the sine series. He also outlines Narayana's fourteenth-century derivation

of the sum formula for integral powers. Both Katz and Bressoud consider the question of how

close Islamic and Indian mathematicians came to inventing the calculus.

In another article dealing with an Islamic mathematician, Farhad Riahi considers al-Kashi's

derivation of the formula for the sine of a triple angle and its use in determining the sine of 1

degree to an arbitrary level of accuracy. This work was one of many in Islam in which polynomial

equations were solved numerically.

The next two articles in this section deal with mathematics in medieval Europe. The most impor-

tant European mathematician of medieval times was Leonardo of Pisa (now known as Fibonacci).

Although he is most famous for his major work on arithmetic and algebra, R. B. McClenon de-

scribes in some detail his Book of Squares, a treatise on some aspects of number theory which was
unequaled until the time of Euler. Leonardo was also one of the first to introduce the Hindu-Arabic

decimal place-value system to Europe. Barbara Reynolds discusses the controversies surrounding

the introduction of this system and the conflict between the `modern' users of paper-and-pencil

algorithms and the `traditional' users of the abacus for calculation.

We next move to the Renaissance. The basic story of the discovery of the cubic formula in

sixteenth-century Italy is well known. Martin Nordgaard discusses some of the delightful details
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behind this story, based on his examination of the series of challenges and responses between

Niccolo Tartaglia and Ludovico Ferrari. As we see from this article, progress in mathematics is

sometimes accompanied by intrigue and conflict. To provide additional insight into Renaissance

mathematics, Abraham Arcavi and Maxim Bruckheimer take you through a section of Rafael

Bombelli's Algebra, in which they extract a square root. The authors show the relationship of
Bombelli's method to the method of continued fractions.

Finally, David Eugene Smith presents some of the mathematical ideas present in the first math-

ematics book published in the western hemisphere, the Sumario Compendioso of 1556, written by
Juan Diez. Not only did this book provide an introduction to arithmetical methods, but it also dis-

cussed the solution of quadratic equations, where the methods were evidently taken from European

algebras of the same century.
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The Discovery of the Series Formula for π by

Leibniz, Gregory and Nilakantha

RANJAN ROY

Mathematics Magazine 63 (1990), 291{306

1 Introduction

The formula for π mentioned in the title of this ar-
ticle is

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · . (1)

One simple and well-known modern proof goes as

follows:

arctan x =

∫ x

0

1

1 + t2
dt

= x− x3

3
+
x5

5
− · · ·+ (−1)n x

2n+1

2n+ 1

+(−1)n+1

∫ x

0

t2n+2

1 + t2
dt.

The last integral tends to zero if |x| ≤ 1, for

∣∣∣∣
∫ x

0

t2n+2

1 + t2
dt

∣∣∣∣ ≤
∣∣∣∣
∫ x

0

t2n+2 dt

∣∣∣∣

=
|x|2n+3

2n+ 3
→ 0 as n → ∞.

Thus, arctan x has an infinite series representation
for |x| ≤ 1:

arctanx = x− x

3
+
x

5
− x

7
+ · · · (2)

The series for π/4 is obtained by setting x = 1
in (2). The series (2) was obtained independently by

Gottfried Wilhelm Leibniz (1646{1716), James Gre-

gory (1638{1675) and an Indian mathematician of

the fourteenth century or probably the fifteenth cen-

tury whose identity is not definitely known. Usually

ascribed to Nilakantha, the Indian proof of (2) ap-

pears to date from the mid-fifteenth century and was

a consequence of an effort to rectify the circle. The

details of the circumstances and ideas leading to the

discovery of the series by Leibniz and Gregory are

known. It is interesting to go into these details for

several reasons. The infinite series began to play a

role in mathematics only in the second half of the

seventeenth century. Prior to that, particular cases of

the infinite geometric series were the only ones to be

used. The arctan series was obtained by Leibniz and

Gregory early in their study of infinite series and, in

fact, before the methods and algorithms of calculus

were fully developed. The history of the arctan se-

ries is, therefore, important because it reveals early

ideas on series and their relationship with quadrature

or the process of finding the area under a curve. In

the case of Leibniz, it is possible to see how he used

and transformed older ideas on quadrature to develop

his methods. Leibniz's work, in fact, was primarily

concerned with quadrature; the π/4 series resulted
(in 1673) when he applied his method to the circle.

Gregory, by comparison, was interested in finding

an infinite series representation of any given func-

tion and discovered the relationship between this and

the successive derivatives of the given function. Gre-

gory's discovery, made in 1671, is none other than

the Taylor series; note that Taylor was not born un-

til 1685. The ideas of calculus, such as integration

by parts, change of variables, and higher derivatives,

were not completely understood in the early 1670s.

Some particular cases were known, usually garbed

in geometric language. For example, the fundamental

theorem of calculus was stated as a geometric theo-

rem in a work of Gregory's written in 1668. Similar

examples can also be seen in a book by Isaac Barrow,

Newton's mentor, published in 1670. Of course, very
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soon after this transitional period, Leibniz began to
create the techniques, algorithms and notations of
calculus as they are now known. He had been pre-
ceded by Newton, at least as far as the techniques
go, but Newton did not publish anything until con-
siderably later. It is, therefore, possible to see how
the work on arctan was at once dependent on earlier
concepts and a transitional step toward later ideas.
Finally, although the proofs of (2) by Leibniz,

Gregory and Nilakantha are very different in ap-
proach and motivation, they all bear a relation to
the modern proof given above.

2 Gottfried Wilhelm Leibniz
(1646–1716)

Leibniz’s mathematical background [1] at the time
he found the π/4 formula can be quickly described.
He had earned a doctor’s degree in law in February
1667, but had studied mathematics on his own. In
1672, he was a mere amateur in mathematics. That
year, he visited Paris and met Christiaan Huygens
(1629–1695), the foremost physicist and mathemati-
cian in continental Europe. Leibniz told the story of
this meeting in a 1679 letter to the mathematician
Tschirnhaus, “at that time . . . I did not know the
correct definition of the center of gravity. For, when
by chance I spoke of it to Huygens, I let him know
that I thought that a straight line drawn through the
center of gravity always cut a figure into two equal
parts. . . . Huygens laughed when he heard this, and
told me that nothing was further from the truth. So
I, excited by this stimulus, began to apply myself to
the study of the more intricate geometry, although as
a matter of fact I had not at that time really stud-
ied the Elements [Euclid] . . . Huygens, who thought
me a better geometer than I was, gave me to read
the letters of Pascal, published under the name of
Dettonville; and from these I gathered the method
of indivisibles and centers of gravity, that is to say
the well-known methods of Cavalieri and Guldinus.”
[2]
The study of Pascal played an important role in

Leibniz’s development as a mathematician. It was
from Pascal that he learned the ideas of the “char-
acteristic triangle” and “transmutation.” In order to
understand the concept of transmutation, suppose A
and B are two areas (or volumes) which have been
divided up into indivisibles usually taken to be in-
finitesimal rectangles (or prisms). If there is a one-
to-one correspondence between the indivisibles of

R

M

O a C D b

dx

z

B
A

L

S

T

z

p

z = g x( )

P
ds Q

Figure 1.

A and B and if these indivisibles have equal areas
(or volumes), then B is said to be obtained from A
by transmutation and it follows that A and B have
equal areas (or volumes). Pascal had also consid-
ered infinitesimal triangles and shown their use in
finding, among other things, the area of the surface
of a sphere. Leibniz was struck by the idea of an
infinitesimal triangle and its possibilities. He was
able to derive an interesting transmutation formula,
which he then applied to the quadrature of a circle
and thereby discovered the series for π. To obtain
the transmutation formula, consider two neighboring
points P (x, y), and Q(x + dx, y + dy) on a curve
y = f(x). First Leibniz shows that area(∆OPQ) =
(1/2) area (rectangle(ABCD)). See Figure 1. Here
PT is tangent to y = f(x) at P and OS is perpen-
dicular to PT . Let p denote the length of OS and z
that of AC = BD = ordinate of T .
Since ∆OST is similar to the characteristic

∆PQR,
dx

p
=
ds

z
,

where ds is the length of PQ. Thus,

area (OPQ) =
1

2
pds =

1

2
zdx. (3)

Now, observe that for each point P on y = f(x)
there is a corresponding point A. Thus, as P moves
from L to M , the points A form a curve, say
Z = g(x). If sector OLM denotes the closed re-
gion formed by y = f(x) and the straight lines OL
and OM , then (3) implies that

area (sector OLM) =
1

2

Z b

a

g(x) dx. (4)
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This is the transmutation formula of Leibniz. From

(4), it follows that the area under y = f(x) is

∫ b

a

y dx =
b

2
f(b) − a

2
f(a) + area (sector OLM)

=
1

2

(
[xy]ba +

∫ b

a

z dx

)
. (5)

This is none other than a particular case of the for-

mula for integration by parts. For it is easily seen

from Figure 1 that

z = y − x
dy

dx
. (6)

Substituting this value of z in (5), it follows that

∫ b

a

y dx = [xy]ba −
∫ f(b)

f(a)

x dy,

which is what one gets on integration by parts.

Now consider a circle of radius 1 and center

(1, 0). Its equation is y2 = 2x − x2. In this case,

(6) implies that

z =
√

2x− x2 − x(1 − x)√
2x− x2

=

√
x

2 − x
=
x

y
, (7)

so that

x =
2z2

1 + z2
. (8)

In Figure 2, let ∠AOB = 2θ. Then the area of
the sector AOB = θ and

θ = area (4AOB) (9)

+ area (region between arc AB and line AB).

By the transmutation formula (4), the second area is
1
2

∫ x

0
zdt where z is given by (7). Now, from Figure

B x, y( )

A C O

(1, 0)2q

q

Figure 2.

z

z = g x( )

x

Figure 3.

3 it is seen that

1

2

∫ x

0

z dt =
1

2

(
xz −

∫ z

0

x du

)
. (10)

Using (8) and (10), it is now possible to rewrite (9)

as

θ =
1

2
y +

1

2
xz −

∫ z

0

t2

1 + t2
dt

=
1

2
[z(2 − x) + xz]−

∫ z

0

t2

1 + t2
dt

(since y = z(2 − x))

= z −
∫ z

0

t2

1 + t2
dt.

At this point, Leibniz was able to use a technique

employed by Nicolaus Mercator (1620{1687). The

latter had considered the problem of the quadrature

of the hyperbola y(1 + x) = 1. Since it was already
known that

∫ a

0

xndx =
an+1

n+ 1
,

he solved the problem by expanding 1/(1 + x) as
an infinite series and integrating term by term. He

simultaneously had the expansion for log(1 + x).
Mercator published this result in 1668, though he

probably had obtained it a few years earlier. A year

later, John Wallis (1616{1703) determined the val-

ues of x for which the series is valid. Thus Leibniz
found that

θ = z − z3

3
+
z5

5
− · · · . (11)

In Figure 2, ∠ABC = θ and z = x/y = tan θ.
Therefore, (11) is the series for arctan z.
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Of course, Leibniz did not invent the notation for
the integral and differential used above until 1675,
and his description of the procedures is geometrical
but the ideas are the same.
The discovery of the infinite series for π was Leib-

niz’s first great achievement. He communicated his
result to Huygens, who congratulated him, saying
that this remarkable property of the circle will be cel-
ebrated among mathematicians forever. Even Isaac
Newton (1642–1727) praised Leibniz’s discovery. In
a letter of October 24, 1676, to Henry Oldenburg,
secretary of the Royal Society of London, he writes,
“Leibniz’s method for obtaining convergent series is
certainly very elegant, and it would have sufficiently
revealed the genius of its author, even if he had writ-
ten nothing else.” [3] Of course, for Leibniz this was
only a first step to greater things as he himself says
in his “Historia et origo calculi differentialis.”

3 James Gregory (1638–1675)
Leibniz had been anticipated in the discovery of
the series for arctan by the Scottish mathematician,
James Gregory, though the latter did not note the
particular case for π/4 [4]. Since Gregory did not
publish most of his work on infinite series and also
because he died early and worked in isolation dur-
ing the last seven years of his life, his work did not
have the influence it deserved. Gregory’s early sci-
entific interest was in optics about which he wrote
a masterly book at the age of twenty-four. His book,
the Optica Promota, contains the earliest descrip-
tion of a reflecting telescope. It was in the hope,
which ultimately remained unfulfilled, of construct-
ing such an instrument that he traveled to London
in 1663 and made the acquaintance of John Collins
(1624–1683), an accountant and amateur mathemati-
cian. This friendship with Collins was to prove very
important for Gregory when the latter was working
alone at St. Andrews University in Scotland. Collins
kept him abreast of the work of the English math-
ematicians such as Isaac Newton, John Pell (1611–
1685) and others with whom Collins was in con-
tact. [5]
Gregory spent the years 1664–1668 in Italy and

came under the influence of the Italian school of
geometry founded by Cavalieri. It was from Stefano
degli Angeli (1623–1697), a student of Cavalieri,
that Gregory learned about the work of Pierre de Fer-
mat (1601–1665), Cavalieri, Evangelista Torricelli
(1608–1647) and others. While in Italy, he wrote

two books: Vera Circuli et Hyperbolae Quadratura
in 1667, and Geometriae Pars Universalis in 1668.
The first book contains some highly original ideas.
Gregory attempted to show that the area of a general
sector of an ellipse, circle or hyperbola could not be
expressed in terms of the areas of the inscribed and
circumscribed triangle and quadrilateral using arith-
metical operations and root extraction. The attempt
failed but Gregory introduced a number of impor-
tant ideas such as convergence and algebraic and
transcendental functions. The second book contains
the first published statement and proof of the funda-
mental theorem of calculus in geometrical form. It
is known that Newton had discovered this result not
later than 1666, although he did not make it public
until later.
Gregory returned to London in the summer of

1668; Collins then informed him of the latest dis-
coveries of mathematicians working in England, in-
cluding Mercator’s recently published proof of

log(1 + x) = x− x
2

2
+
x3

3
− · · · .

Meditation on these discoveries led Gregory to pub-
lish his next book, Exercitationes Geometricae, in
the winter of 1668. This is a sequel to the Pars Uni-
versalis and is mainly about the logarithmic function
and its applications. It contains, for example, the first
evaluations of the indefinite integrals of secx and
tanx. [6] The results are stated in geometric form.
In the autumn of 1668, Gregory was appointed to

the chair in St. Andrews and he took up his duties
in the winter of 1668/1669. He began regular cor-
respondence with Collins soon after this, communi-
cating to him his latest mathematical discoveries and
requesting Collins to keep him informed of the lat-
est activities of the English mathematicians. Thus,
in a letter of March 24, 1670, Collins writes, “Mr.
Newtone of Cambridge sent the following series for
finding the Area of a Zone of a Circle to Mr. Dary,
to compare with the said Dary’s approaches, putting
R the radius and B the parallel distance of a Chord
from the Diameter the Area of the space or Zone
between them is =

2RB − B
3

3R
− B5

20R3
− B7

56R5
− 5B9

576R7
.” [7]

This is all Collins writes about the series but it is, in
fact, the value of the integral 2

R B
0
(R2−x2)1/2dx af-

ter expanding by the binomial theorem and term by
term integration. Newton had discovered the bino-
mial expansion for fractional exponents in the win-
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ter of 1664/1665, but it was first made public in the

aforementioned letter of 1676 to Oldenburg.

There is evidence that Gregory had rediscovered

the binomial theorem by 1668 [8]. However, it

should be noted that the expansion for (1 − x)1/2

does not necessarily imply a knowledge of the bino-

mial theorem. Newton himself had proved the expan-

sion by applying the well-known method for finding

square roots of numbers to the algebraic expression

1 − x. Moreover, it appears that the expansion of
(1 − x)1/2 was discovered by Henry Briggs (1556-

1630) in the 1620's, while he was constructing the

log tables [9]. But there is no indication that Gre-

gory or Newton knew of this. In any case, for reasons

unknown, Gregory was unable to make anything of

the series { as evidenced by his reply of April 20, \I

cannot understand the series you sent me of the cir-

cle, if this be the original, I take it to be no series."

[10] However, by September 5, 1670, he had discov-

ered the general interpolation formula, now called

the Gregory-Newton interpolation formula, and had

made from it a number of remarkable deductions.

He now knew how \to find the sinus having the arc

and to find the number having the logarithm." The

latter result is precisely the binomial expansion for

arbitrary exponents. For, if we take x as the loga-
rithm of y to the base 1 + d, then y = (1 + d)x and

Gregory gives the solution as

(1 + d)x = 1 + dx+
x(x− 1)

1 · 2 d2

+
x(x− 1)(x− 2)

1 · 2 · 3 d3 + · · · [11]

It is possible that Newton's series in Collins' letter

had set Gregory off on the course of these discov-

eries, but he did not even at this point see that he

could deduce Newton's result. Soon after, he did

observe this and wrote on December 19, 1670, \I

admire much my own dullness, that in such a con-

siderable time I had not taken notice of this." [12]

All this time, he was very eager to learn about New-

ton's results on series and particularly the meth-

ods he had used. Finally on December 24, 1670,

Collins sent him Newton's series for sinx, cos x,
sin−1 x, and x cotx, adding that Newton had a
universal method which could be applied to any

function. Gregory then made a concentrated effort

to discover a general method for himself. He suc-

ceeded. In a famous letter of February 15, 1671

to Collins he writes, \As for Mr. Newton's univer-

sal method, I imagine I have some knowledge of it,

both as to geometrick and mechanick curves, how-

ever I thank you for the series ye sent me and send

you these following in requital."[13] Gregory then

gives the series for arctan x, tanx, sec x, log sec x,
log tanx, sec−1(

√
2ex) and 2 arctan tanhx/2.

However, what he had found was not Newton's

method but rather the Taylor expansion more than

forty years before Brook Taylor (1685{1731). New-

ton's method consisted of reversion of series, expan-

sion by the binomial theorem, long division by series

and term by term integration [14]. Thinking that he

had rediscovered Newton's method, Gregory did not

publish his results. It is only from notes that he made

on the back of a letter from Gedeon Shaw, an Ed-

inburgh stationer, dated January 29, 1671, that it is

possible to conclude that Gregory had the idea of

the Taylor series. These notes contain the successive

derivatives of tanx, secx, and the other functions
whose expansions he sent to Collins. The following

extract from the notes gives the successive deriva-

tives of tan θ; herem is successively y, dy
dθ
, d2y

dθ2 , etc.,
and q = r tan θ. Gregory writes [15]:

1st: m = q

2nd: m = r +
q2

r

3rd: m = 2q +
2q3

r2

4th: m = 2r +
8q2

r
+

6q4

r3

5th: m = 16q +
40q3

r2
+

24q5

r4

6th: m = 16r +
136q2

r
+

240q4

r3
+

120q6

r5

7th: m = 272q + 987
q3

r2
+ 1680

q5

r4
+ 720

q7

r6

8th: m = 272r + 3233
q2

r
+ 11361

q4

r3

+13440
q6

r5
+ 5040

q8

r7
.

It is clear from the form in which the successive

derivatives are written that each one is formed by

multiplying the derivative with respect to q of the
preceding term by r + q2/r. Now writing a = rθ,
Gregory gives the series in the letter to Collins as

follows:

r tan θ = a+
a3

3r2
+

2a5

15r4
+

17a7

315r6

+
3233a9

181440r8
+ · · ·

The reasons for supposing that these notes were writ-
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ten not much before he wrote to Collins and were
used to construct the series are (i) the date of Gedeon
Shaw’s letter and (ii) Gregory’s error in computing
the coefficient of q3 in the 7th m, which should
be 1232 instead of 987 and which, in turn, leads
to the error in the 8th m, where the coefficient of
q2/r should be 3968 instead of 3233. This error
is then repeated in the series showing the origin of
the series. Moreover, in the early parts of the notes,
Gregory is unsure about how he should write the
successive derivatives. For example, he attempts to
write the derivative of sec θ as a function of sec θ
but then abandons the idea. He comes back to it later
and sees that it is easier to work with m2 instead of
m since the m2’s can be expressed as polynomi-
als in tan θ. This is, of course, sufficient to give
him the series for sec θ. The series for log sec θ and
log tan(π/4 + θ) he then obtains by term by term
integration of the series for tan θ and sec θ respec-
tively. Naturally, the 3233 error is repeated. He must
have obtained the series for arctanx from the 2nd
m which can be written as

da

dq
=

r2

r2 + q2
= 1− q

2

r2
+
q4

r4
− · · · .

The arctan series follows after term by term inte-
gration. Clearly, Gregory had made great progress in
the study of infinite series and the calculus and, had
he lived longer and published his work, he might
have been classed with Newton and Leibniz as a
co-discoverer of the calculus. Unfortunately, he was
struck by a sudden illness, accompanied with blind-
ness, as he was showing some students the satellites
of Jupiter. He did not recover and died soon after in
October, 1675, at the age of thirty-seven.

4 Kerala Gargya Nilakantha
(c. 1450–c. 1550)

Another independent discovery of the series for
arctanx and other trigonometric functions was
made by mathematicians in South India during the
fifteenth century. The series are given in Sanskrit
verse in a book by Nilakantha called Tantrasan-
graha and a commentary on this work called
Tantrasangraha-vakhya of unknown authorship. The
theorems are stated without proof but a proof of the
arctangent, cosine and sine series can be found in
a later work called Yuktibhasa. This was written
in Malayalam, the language spoken in Kerala, the
southwest coast of India, by Jyesthadeva (c. 1500–

c. 1610) and is also a commentary on the Tantrasan-
graha. These works were first brought to the notice
of the western world by an Englishman named C.
M. Whish in 1835. Unfortunately, his paper on the
subject had almost no impact and went unnoticed
for almost a century when C. Rajagopal [16] and
his associates began publishing their findings from
a study of these manuscripts. The contributions of
medieval Indian mathematicians are now beginning
to be recognized and discussed by authorities in the
field of the history of mathematics [17].
It appears from the astronomical data contained

in the Tantrasangraha that it was composed around
the year 1500. The Yuktibhasa was written about
a century later. It is not completely clear who the
discoverer of these series was. In the Aryabhatiya-
bhasya, a work on astronomy, Nilakantha attributes
the series for sine to Madhava. This mathematician
lived between the years 1340–1425. It is not known
whether Madhava found the other series as well or
whether they are somewhat later discoveries.
Little is known about these mathematicians. Mad-

hava lived near Cochin in the very southern part of
India (Kerala) and some of his astronomical work
still survives. Nilakantha was a versatile genius who
wrote not only on astronomy and mathematics but
also on philosophy and grammar. His erudite expo-
sitions on the latter subjects were well known and
studied until recently. He attracted several gifted stu-
dents, including Tuncath Ramantijan Ezuthassan, an
early and important figure in Kerala literature. About
Jyesthadeva, nothing is known except that he was a
Brahmin of the house of Parakroda.
In the Tantrasangraha-vakhya, the series for arc-

tan, sine and cosine are given in verse which, when
converted to mathematical symbols may be written
as follows (see Figure 4):

r arctan
y

x
=
1

1
· ry
x
− 1
3
· ry

3

x3
+
1

5
· ry

5

x5
− · · · ,

where
y

x
≤ 1,

y = s− s · s2

(22 + 2)r2

+ s · s2

(22 + 2)r2
· s2

(42 + 4)r2
− · · · (sine)

r − x = r · s2

(22 − 2)r2 − r ·
s2

(22 − 2)r2

· s2

(42 − 4)r2 + · · · (cosine)
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r
y

s

x r – x

Figure 4.

There are also some special features in the

Tantrasangraha's treatment of the series for π/4
which were not considered by Leibniz and Gregory.

Nilakantha states some rational approximations for

the error incurred on taking only the first n terms of
the series. The expression for the approximation is

then used to transform the series for π/4 into one
which converges more rapidly. The errors are given

as follows:

π

4
≈ 1 − 1

3
+

1

5
− · · · ∓ 1

n
(12)

±fi(n+ 1) i = 1, 2, 3,

where

f1(n) =
1

2n
, f2(n) =

n/2

n2 + 1
, and

f3(n) =
(n/2)2 + 1

(n2 + 5)n/2
.

The transformed series are as follows:

π

4
=

3

4
+

1

32 − 3
− 1

53 − 5
+

1

73 − 7
− · · · (13)

and

π

4
=

4

15 + 4 · 1 − 4

35 + 4 · 3 +
4

55 + 4 · 5 − · · · .

Leibniz's proof of the formula for π/4 was

found by the quadrature of a circle. The proof in

Jyesthadeva's book is by a direct rectification of an

arc of a circle. In Figure 5, the arc AC is a quarter
circle of radius one with center O and OABC is a

square. The side AB is divided into n equal parts
of length δ so that nδ = 1, Pr−1Pr = δ. EF and

Pr−1D are perpendicular to OPr. Now, the triangles

OEF and OPr−1D are similar, which gives

ER

OE
=
Pr−1D

OPr−1
, that is EF =

Pr−1D

OPr−1
.

O

C B = Pn

Pr

Pr – 1

A = P0

F

G
D

E

Figure 5.

The similarity of the triangles Pr−1PrD and

OAPr gives

Pr−1Pr

OPr
=
Pr−1D

OA
or Pr−1D =

Pr−1Pr

OPr
.

Thus

EF =
Pr−1Pr

OPr−1OPr
≈ Pr−1Pr

OP 2
r

=
δ

1 +AP 2
r

=
δ

1 + r2δ2
.

Since arc EG ≈ EF ≈ δ/(1+r2δ2), 1
8 arc of circle

is

π/4 = lim
n→∞

n∑

r=1

δ

1 + r2δ2
. (14)

Of course, a clear idea of limits did not exist at that

time so that the relation was understood in an intu-

itive sense only. To evaluate the limit, Jyesthadeva

uses two lemmas. One is the geometric series

1

1 + x
= 1 − x+ x2 − x3 + · · · .

Jyesthadeva says that the expansion is obtained on

iterating the following procedure:

1

1 + x
= 1 − x

(
1

1 + x

)

= 1 − x

(
1 − x

(
1

1 + x

))
.

The other result is that

S(p)
n ≡ 1p + 2p + · · ·+ np

∼ np+1

p+ 1
for large n. (15)
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A sketch of a proof is given by Jyesthadeva. He

notes first that

nS(p−1)
n = S(p)

n + S
(p−1)
1 + S

(p−1)
2 + · · ·+ S

(p−1)
n−1 .
(16)

This is easy to verify. Relation (16) is also contained

in the work of the tenth century Arab mathematician

Alhazen, who gives a geometrical proof in the Greek

tradition [18]. He uses it to evaluate S
(3)
n and S

(4)
n

which occur in a problem about the volume of cer-

tain solid of revolution. Yuktibhasa shows that for
p = 2, 3

S
(p−1)
1 + S

(p−1)
2 + · · ·+ S

(p−1)
n−1 ∼ S

(p)
n

p
, (17)

and then suggests that by induction the result will

be true for all values of p. Once this is granted, it
follows that if

S(p−1)
n ∼ np

p
,

then by (16) and (17),

nS(p−1)
n ∼ S(p)

n +
S

(p)
n

p
or S(p)

n ∼ np+1

p+ 1
,

and (15) is inductively proved.

We now note that (14) can be rewritten, after ex-

panding 1/(1 + r2δ2) into a geometric series, as

π

4
= lim

n→∞

[
δ

n∑

r=1

1 − δ3
n∑

r=1

r2 + δ5
n∑

r=1

r4 − · · ·
]

= lim
n→∞

[
1 − 1

n3

n∑

r=1

r2 +
1

n5

n∑

r=1

r4 − · · ·
]

= 1 − 1

3
+

1

5
− 1

7
+ · · · ,

where we have used relation (15) and the fact that

δ = 1/n. Now consider the approximation (12) and
its application to the transformation of series. Sup-

pose that

σn = 1− 1

3
+

1

5
− 1

7
+ · · · ± 1

n
∓ f(n + 1),

where f(n+1) is a rational function of n which will
make σn a better approximation of π/4 than the nth
partial sum Sn. Changing n to n− 2 we get

σn−2 = 1 − 1

3
+

1

5
− · · · ∓ 1

n− 2
± f(n − 1).

Subtracting the second relation from the first,

±un = σn − σn−2 = ± 1

n
∓ f(n + 1) ∓ f(n − 1).

(18)

Then

σn = σn−2 ± un

= σn−4 ∓ un−2 ± un

= · · ·
= σ1 − u3 + u5 − u7 + · · · ± un

= 1 − f(2) − u3 + u5 − u7 + · · · ± un.

It is clear that

lim
n→∞

σn =
π

4

and therefore

π

4
= 1 − f(2) − u3 + u5 − u7 + · · · . (19)

Thus, we have a new series for π/4 which depends
on how the function f(n) is chosen. Naturally, the
aim is to choose f(n) in such a way that (19) is
more rapidly convergent than (1). This is the idea

behind the series (13). Now equation (18) implies

that

f(n + 1) + f(n − 1) =
1

n
− un. (20)

For (19) to be more rapidly convergent than (1),

un should be o(1/n), that is negligible compared
to 1/n. It is reasonable to assume f(n + 1) ≈
f(n − 1) ≈ f(n). These observations together with
(20) imply that f(n) = 1/2n is a possible rational
approximation in equation (12). With this f(n), the
value of un is given by (20) to be

un =
1

n
− 1

2(n+ 1)
− 1

2(n− 1)
= − 1

n3 − n
.

Substituting this in (19) gives us (13), which is

π

4
= 1 − 1

4
+

1

33 − 3
− 1

53 − 5
+

1

73 − 7
− · · · .

The other series

π

4
=

4

15 + 4 · 1 − 4

35 + 4 · 3 +
4

55 + 4 · 5 − · · ·

is obtained by taking f(n) = (n/2)/(n2 + 1) in
(19).

It should be mentioned that Newton was aware

of the correction f1(n) = 1/2n. For in the letter to
Oldenburg, referred to earlier, he says, \By the series

of Leibniz also if half the term in the last place be
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added and some other like devices be employed, the

computation can be carried to many figures." How-

ever, he says nothing about transforming the series

by means of this correction.

It appears that Nilakantha was aware of the impos-

sibility of finding a finite series of rational numbers

to represent π. In the Aryabhatiya-bhasya he writes,
\If the diameter, measured using some unit of mea-

sure, were commensurable with that unit, then the

circumference would not likewise allow itself to be

measured by means of the same unit; so likewise

in the case where the circumference is measurable

by some unit, then the diameter cannot be measured

using the same unit." [19]

The Yuktibhasa contains a proof of the arctan se-
ries also and it is obtained in exactly the same way

except that one rectifies only a part of the 1/8 circle.

It can be shown that if π/4 = Sn + f(n), where
Sn is the nth partial sum, then f(n) has the contin-
ued fraction representation

f(n) =
1

2

[
1

n+

12

n+

22

n+

32

n+
· · ·
]
. (21)

Moreover, the first three convergents are

f1(n) =
1

2n
, f2(n) =

n/2

n2 + 1
, and

f3(n) =
(n/2)2 + 1

(n2 + 5)n/2
,

which are the values quoted in (13). Clearly, Ni-

lakantha was using some procedure which gave the

successive convergents of the continued fraction (21)

but the text contains no suggestion that (20) was ac-

tually known to him. This continued fraction implies

that
2

4 − π
= 2 +

12

2+

32

2+

52

2+
· · · ,

which may be compared with the continued fraction

of the seventeenth-century English mathematician,

William Brouncker (1620-1684), who gave the result

4

π
= 1 +

12

2+

32

2+

52

2+
· · · .

The third approximation

f3(n) =
(n/2)2 + 1

(n2 + 5)n/2

is very effective in obtaining good numerical values

for π without much calculation. For example

1 − 1

3
+ · · · − 1

19
+ f3(20)

gives the value of π correct up to eight decimal
places [20]. Nilakantha himself gives 104348/33215

which is correct up to nine places. It is interesting

that the Arab mathematician Jamshid-al-Kasi, who

also lived in the fifteenth century, had obtained the

same approximation by a different method.

5 Independence of these

discoveries

The question naturally arises of the possibility of

mutual influence between or among the discover-

ers of power series, in particular the series for the

trigonometric functions. Because of the lively trade

relations between the Arabs and the west coast of

India over the centuries, it is generally accepted that

mathematical ideas were also exchanged. However,

there is no evidence in any existing mathematical

works of the Arabs that they were aware of the con-

cept of a power series. Therefore, we may grant

the Indians priority in the discovery of the series

for sine, cosine and arctangent. Moreover, historians

of mathematics are in agreement that the European

mathematicians were unaware of the Indian discov-

ery of infinite series [21]. Thus, we may conclude

that Newton, Gregory and Leibniz made their dis-

coveries independently of the Indian work. In fact,

it appears that yet another independent discovery of

an infinite series giving the value of π was made by
the Japanese mathematician Takebe Kenko (1664{

1739) in 1722. His series is

π2 = 4

[
1 +

∞∑

n=1

22n+1(n!)2

(2n+ 1)!

]
. [22]

This series was not obtained from the arctan series

and its discussion is therefore not included. How-

ever, the independent discovery of the infinite series

by different persons living in different environments

and cultures gives us insight into the character of

mathematics as a universal discipline.
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Ideas of Calculus in Islam and India
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Mathematics Magazine 68 (1995), 163{174

1 Introduction

Isaac Newton created his version of the calculus dur-

ing the years from about 1665 to 1670. One of New-

ton's central ideas was that of a power series, an

idea he believed he had invented out of the anal-

ogy with the infinite decimal expansions of arith-

metic [9, Vol. III, p. 33]. Newton, of course, was

aware of earlier work done in solving the area prob-

lem, one of the central ideas of what was to be the

calculus, and he knew well that the area under the

curve y = xn between x = 0 and x = b was given
by bn+1/(n + 1). (This rule had been developed
by several mathematicians in the 1630s, including

Bonaventura Cavalieri, Gilles Persone de Roberval,

and Pierre de Fermat.) By developing power series to

represent various functions, Newton was able to use

this basic rule to find the areas under a wide variety

of curves. Conversely, the use of the area formula

enabled him to develop power series. For example,

Newton developed the power series for y = arcsinx,
in effect by defining it in terms of an area and using

the area formula. He then produced the power series

for the sine by solving the equation y = arcsinx
for x = sin y by inversion of the series. What New-
ton did not know, however, was that both the area

formula | which he believed had been developed

some 35 years earlier | and the power series for

the sine had been known for hundreds of years else-
where in the world. In particular, the area formula

had been developed in Egypt around the year A.D.

1000 and the power series for the sine, as well as

for the cosine and the arctangent, had been devel-

oped in India, probably in the fourteenth century. It

is the development of these two ideas that will be

discussed in this article.

Before going back to eleventh-century Egypt,

however, we will first review the argument used both

by Fermat and Roberval in working out their version

of the area formula in 1636. In a letter to Fermat in

October of that year, Roberval wrote that he had

been able to find the area under curves of the form

y = xk by using a formula | whose history in the

Islamic world we will trace | for the sums of pow-

ers of the natural numbers: \The sum of the square

numbers is always greater than the third part of the

cube which has for its root the root of the greatest

square, and the same sum of the squares with the

greatest square removed is less than the third part

of the same cube; the sum of the cubes is greater

than the fourth part of the fourth power and with

the greatest cube removed, less than the fourth part,

etc." [5, p. 221]. In other words, finding the area of

the desired region depends on the formula

n−1∑

i=1

ik <
nk+1

k + 1
<

n∑

i=1

ik.

Fermat wrote back that he already knew this result

and, like Roberval, had used it to determine the area

under the graph of y = xk over the interval [0, x0].
Both men saw that if the base interval was divided

into n equal subintervals, each of length x0/n, and
if over each subinterval a rectangle whose height is

the y-coordinate of the right endpoint was erected
(see Figure 1), then the sum of the areas of these

circumscribed rectangles is

xk
0

nk

x0

n
+

(2x0)
k

nk

x0

n
+ · · ·+ (nx0)

k

nk

x0

n

=
xk+1

0

nk+1
(1k + 2k + · · ·+ nk).

Similarly, they could calculate the sum of the ar-

eas of the inscribed rectangles, those whose height

is the y-coordinate of the left endpoint of the corre-
sponding subinterval. In fact, if A is the area under

122
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the curve between 0 and x0, then

xk+1
0

nk+1
(1k + 2k + · · ·+ (n− 1)k) < A

<
xk+1

0

nk+1
(1k + 2k + · · ·+ nk).

The difference between the outer expressions of this

inequality is simply the area of the rightmost cir-

cumscribed rectangle. Because x0 and y0 = xk
0 are

fixed, Fermat knew that the difference could be made

less than any assigned value simply by taking n suf-
ficiently large. It follows from the inequality cited

by Roberval that both the area A and the value

xk+1
0 /(k + 1) = x0y0/(k + 1) are squeezed be-
tween two values whose difference approaches 0.
Thus Fermat and Roberval found that the desired

area was x0y0/(k + 1).
The obvious question is how either of these two

men discovered formulas for sums of powers. But at

present, there is no answer to this question. There is

nothing extant on this formula in the works of Rober-

val other than the letter cited, and all we have from

Fermat on this topic, in letters to Marin Mersenne

and Roberval, is a general statement in terms of tri-

angular numbers, pyramidal numbers, and the other

numbers that occur as columns of Pascal's trian-

gle. (We note that Fermat's work was done some

twenty years before Pascal published his material

on the arithmetical triangle; the triangle had, how-

ever, been published in many versions in China, the

Middle East, North Africa, and Europe over the pre-

vious 600 years. See [4], pp. 191{192; 241{242,

324{325.) Here is what Fermat says: \The last side

multiplied by the next greater makes twice the tri-

angle. The last side multiplied by the triangle of

the next greater side makes three times the pyramid.

The last side multiplied by the pyramid of the next

greater side makes four times the triangulotriangle.

And so on by the same progression in infinitum" [5,

p. 230]. Fermat's statement can be written using the

modern notation for binomial coefficients as

n

(
n+ k

k

)
= (k + 1)

(
n+ k

k + 1

)
.

We can derive from this formula for each k in turn,
beginning with k = 1, an explicit formula for the
sum of the kth powers by using the properties of the
Pascal triangle. For example, if k = 2, we have

n

(
n+ 2

2

)
= 3

(
n+ 2

3

)

= 3
n+1∑

j=2

(
j

2

)
= 3

n+1∑

j=2

j(j − 1)

2

= 3
n∑

i=1

i(i+ 1)

2
= 3

n∑

i=1

i2 + i

2
.

Therefore,

2
n

3

(n+ 2)(n+ 1)

2
−

n∑

i−1

i =

n∑

i=1

i2

and

n∑

i=1

i2 =
n3 + 3n2 + 2n

3
− n2 + n

2

=
2n3 + 3n2 + n

6
=
n3

3
+
n2

2
+
n

6
.

In general, the sum formula is of the form

n∑

i=1

ik =
nk+1

k + 1
+
nk

2
+ p(n),

where p(n) is a polynomial in n of degree less than
k, and Roberval's inequality can be proved for each
k. We do not know if Fermat's derivation was like
that above, however, because he only states a sum

formula explicitly for the case k = 4 and gives no
other indication of his procedure.

2 Sums of integer powers in

eleventh-century Egypt

The formulas for the sums of the kth powers, how-
ever, at least through k = 4, as well as a version
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of Roberval's inequality, were developed some 650

years before the mid-seventeenth century by Abu Ali

al-Hasan ibn al-Hasan ibn al-Haytham (965{1039),

known in Europe as Alhazen. The formulas for the

sums of the squares and cubes were stated even ear-

lier. The one for squares was stated by Archimedes

around 250 B.C. in connection with his quadrature

of the parabola, while the one for cubes, although

it was probably known to the Greeks, was first ex-

plicitly written down by Aryabhata in India around

500 [2, pp. 37{38]. The formula for the squares is

not difficult to discover, and the one for cubes is

virtually obvious, given some experimentation. By

contrast, the formula for the sum of the fourth pow-

ers is not obvious. If one can discover a method for

determining this formula, one can discover a method

for determining the formula for the sum of any inte-

gral powers. Ibn al-Haytham showed in fact how to

develop the formula for the kth powers from k = 1
to k = 4; all his proofs were similar in nature and
easily generalizable to the discovery and proof of

formulas for the sum of any given powers of the in-

tegers. That he did not state any such generalization

is probably due to his needing only the formulas for

the second and fourth powers to solve the problem

in which he was interested: computing the volume

of a certain paraboloid.

Before discussing ibn al-Haytham's work, it is

good to briefly describe the world of Islamic science.

(See [1] for more details.) During the ninth century,

the Caliph al-Ma'mun established a research insti-

tute, the House of Wisdom, in Baghdad and invited

scholars from all parts of the caliphate to partici-

pate in the development of a scientific tradition in

Islam. These scientists included not only Moslem

Arabs, but also Christians, Jews, and Zoroastrians,

among others. Their goals were, first, to translate

into Arabic the best mathematical and scientific

works from Greece and India, and, second, by build-

ing on this base, to create new mathematical and sci-

entific ideas. Although the House of Wisdom disap-

peared after about two centuries, many of the rulers

of the Islamic states continued to support scientists

in their quest for knowledge, because they felt that

the research would be of value in practical applica-

tions.

Thus it was that ibn al-Haytham, born in Basra,

now in Iraq, was called to Egypt by the Caliph al-

Hakim to work on a Nile control project. Although

the project never came to fruition, ibn al-Haytham

did produce in Egypt his most important scientific

work, the Optics in seven books. The Optics was

translated into Latin in the early thirteenth century

and was studied and commented on in Europe for

several centuries thereafter. Ibn al-Haytham's fame

as a mathematician from the medieval period to the

present chiefly rests on his treatment of \Alhazen's

problem," the problem of finding the point or points

on some reflecting surface at which the light from

one of two points outside that surface is reflected to

the other. In the fifth book of the Optics he set out
his solutions to this problem for a variety of surfaces,

spherical, cylindrical, and conical, concave and con-

vex. His results, based on six separately proved lem-

mas on geometrical constructions, show that he was

in full command of both the elementary and ad-

vanced geometry of the Greeks.

The central idea in ibn al-Haytham's proof of the

sum formulas was the derivation of the equation

(n+ 1)

n∑

i=1

ik =

n∑

i=1

ik+1 +

n∑

p=1

(
p∑

i=1

ik

)
. (*)

Naturally, he did not state this result in general form.

He only stated it for particular integers, namely n =
4 and k = 1, 2, 3, but his proof for each of those k is
by induction on n and is immediately generalizable
to any value of k. (See [7] for details.) We consider
his proof for k = 3 and n = 4:

(4 + 1)(13 + 23 + 33 + 43)

= 4(13 + 23 + 33 + 43) + 13 + 23 + 33 + 43

= 4 · 43 + 4(13 + 23 + 33) + 13 + 23 + 33 + 43

= 44 + (3 + 1)(13 + 23 + 33) + 13 + 23 + 33 + 43.

Because equation (*) is assumed true for n = 3,

(3 + 1)(13 + 23 + 33)

= 14 + 24 + 34 + (13 + 23 + 33) + (13 + 23) + 13.

Equation (*) is therefore proved for n = 4. One
can easily formulate ibn al-Haytham's argument in

modern terminology to give a proof for any k by
induction on n.
Ibn al-Haytham now uses his result to derive for-

mulas for the sums of integral powers. First, he

proves the sum formulas for squares and cubes:

n∑

i=1

i2 =

(
n

3
+

1

3

)
n

(
n+

1

2

)

=
n3

3
+
n2

2
+
n

6



\master" | 2011/4/5 | 12:53 | page 125 | #135
i

i

i

i

i

i

i

i

KATZ: Ideas of Calculus in Islam and India 125

n∑

i=1

i3 =

(
n

4
+

1

4

)
n(n+ 1)n

=
n4

4
+
n3

2
+
n2

4
.

We will not deal with these proofs here, but only

with the derivation of the analogous result for the

fourth powers. Although ibn al-Haytham himself de-

rives this result only for n = 4, he asserts it for ar-
bitrary n. We will therefore use modern techniques
modeled on ibn al-Haytham's method to derive it

for that case. We begin by using the formulas for

the sums of squares and cubes to rewrite equation

(*) in the form

(n + 1)

n∑

i=1

i3 =

n∑

i=1

i4 +

n∑

p=1

(
p4

4
+
p3

2
+
p2

4

)

=

n∑

i=1

i4 +
1

4

n∑

i=1

i4

+
1

2

n∑

i=1

i3 +
1

4

n∑

i=1

i2.

It then follows that

(n+ 1)

n∑

i=1

i3 =
5

4

n∑

i=1

i4 +
1

2

n∑

i=1

i3 +
1

4

n∑

i=1

i2

5

4

n∑

i=1

i4 =

(
n+ 1 − 1

2

) n∑

i=1

i3 − 1

4

n∑

i=1

i2

n∑

i=1

i4 =
4

5

(
n+

1

2

) n∑

i=1

i3 − 1

5

n∑

i=1

i2

=
4

5

(
n+

1

2

)(
n

4
+

1

4

)
n(n+ 1)n

−1

5

(
n

3
+

1

3

)
n

(
n+

1

2

)

=

(
n

5
+

1

5

)(
n+

1

2

)
n(n+ 1)n

−
(
n

5
+

1

5

)(
n+

1

2

)
n · 1

3
.

Ibn al-Haytham stated his result verbally in a form

we translate into modern notation as
n∑

i=1

i4 =

(
n

5
+

1

5

)
n

(
n+

1

2

)[
(n+ 1)n− 1

3

]
.

The result can also be written as a polynomial:

n∑

i=1

i4 =
n5

5
+
n4

2
+
n3

3
− n

30
.

x = ky2

x = kb2

ih
( – 1)i h

b

kb k ih2 2– ( )

Figure 2.

It is clear that this formula can be used as Fermat and

Roberval used Roberval's inequality to show that

lim
n→∞

∑n
i=1 i

4

n5
=

1

5
.

Ibn al-Haytham used his result on sums of inte-

gral powers to perform what we would call an inte-

gration. In particular, he applied his result to deter-

mine the volume of the solid formed by rotating the

parabola x = ky2 around the line x = kb2 perpen-
dicular to the axis of the parabola, and showed that

this volume is 8/15 of the volume of the cylinder of
radius kb2 and height b. (See Figure 2.) His formal
argument was a typical Greek-style exhaustion argu-

ment using a double reductio ad absurdum, but in
essence his method involved slicing the cylinder and

paraboloid into n disks, each of thickness h = b/n,
and then adding up the disks. The ith disk in the
paraboloid has radius kb2 − k(ih)2 and therefore
has volume

πh(kh2n2 − ki2h2)2 = πk2h5(n2 − i2)2.

The total volume of the paraboloid is therefore ap-

proximated by

πk2h5
n−1∑

i=1

(
n2 − i2

)2
= πk2h5

n−1∑

i=1

(n4−2n2i2+i4).

But since ibn al-Haytham knew the formulas for the

sums of integral squares and fourth powers, he could

calculate that

n−1∑

i=1

(n4 − 2n2i2 + i4) =
8

15
(n− 1)n4 +

1

30
n

=
8

15
n · n4 − 1

2
n4 − 1

30
n

and therefore that

8

15
(n− 1)n4 <

n−1∑

i=1

(
n2 − i2

)2
<

8

15
n · n4.
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But the volume of a typical slice of the circumscrib-

ing cylinder is πh((kb)2)2 = πk2h5n4, and there-
fore the total volume of the cylinder is

πk2h5(n − 1)n5,

while the volume of the cylinder less its \top slice"

is πk2h5(n − 1)n4. The inequality then shows that

the volume of the paraboloid is bounded between

8/15 of the cylinder less its top slice and 8/15 of
the entire cylinder. Because the top slice can be made

as small as desired by taking n sufficiently large, it
follows that the volume of the paraboloid is exactly

8/15 of the volume of the cylinder as asserted.
Ibn al-Haytham's formula for the sum of fourth

powers shows up in other places in the Islamic world

over the next few centuries. It appears in the work

of Abu-l-Hasan ibn Haydur (d. 1413), who lived

in what is now Morocco, and in the work of Abu

Abdallah ibn Ghazi (1437{1514), who also lived in

Morocco. (See [3] for details.) Furthermore, one also

finds the formula in The Calculator's Key of Ghiyath
al-Din Jamshid al-Kashi (d. 1429), a mathematician

and astronomer whose most productive years were

spent in Samarkand, now in Uzbekistan, in the court

of Ulugh Beg. We do not know, however, how these

mathematicians learned of the formula or for what

purpose they used it.

3 Trigonometric series in

sixteenth-century India

The sum formulas for integral powers surface in

sixteenth-century India and they are used to develop

the power series for the sine, cosine, and arctan-

gent. These power series appear in Sanskrit verse

in the Tantrasangraha-vyakhya (of about 1530), a
commentary on a work by Kerala Gargya Nilakan-

tha (1445{1545) of some 30 years earlier. Unlike

the situation for many results of Indian mathemat-

ics, however, detailed derivation of these power se-

ries exists, in the Yuktibhasa, a work in Malayalam,
the language of Kerala, the southwestern region of

India. This latter work was written by Jyesthadeva

(1500{1610), who credits these series to Madhava,

an Indian mathematician of the fourteenth century.

Even though we do not know for sure whether

Madhava was the first discoverer of the series, it

is clear that the series were known in India long

before the time of Newton. But why were the In-

dians interested in these matters? India had a long

tradition of astronomical research, dating back to at

least the middle of the first millennium B.C. The In-

dians had also absorbed Greek astronomical work

and its associated mathematics during and after the

conquest of northern India by Alexander the Great

in 327 B.C. Hence the Indians became familiar with

Greek trigonometry, based on the chord function, and

then gradually improved it by introducing our sine,

cosine, and tangent. Islamic mathematicians learned

trigonometry from India, introduced their own im-

provements, and, after the conquest of northern India

by a Moslem army in the twelfth century, brought the

improved version back to India. (See [4] for more

details.)

The interaction of astronomy with trigonometry

brings an increasing demand for accuracy. Thus In-

dian astronomers wanted an accurate value for π
(which comes from knowing the arctangent power

series) and also accurate values for the sine and co-

sine (which comes from their power series) so they

could use these values in determining planetary po-

sitions. Because a recent article [8] in Mathematics
Magazine discussed the arctangent power series, we
will here consider only the sine and cosine series.

The statement of the Indian rule for determin-

ing these series is as follows: \Obtain the results

of repeatedly multiplying the arc [s] by itself and
then dividing by 2, 3, 4, . . . multiplied by the ra-
dius [ρ]. Write down, below the radius (in a col-
umn) the even results [i.e., results corresponding to

n = 2, 4, 6, . . . in sn/n!ρn−1], and below the radius

(in another column) the odd results [corresponding to

n = 3, 5, 7, . . . in sn/n!ρn−1]. After writing down

a number of terms in each column, subtract the last

term of either column from the one next above it,

the remainder from the term next above, and so on,

until the last subtraction is made from the radius in

the first column and from the arc in the second. The

two final remainders are respectively the cosine and

the sine, to a certain degree of approximation." [6,

p. 3] These words can easily be translated into the

formulas:

x = cos s = ρ− s2

2!ρ
+

s4

4!ρ3
− · · ·

+(−1)n s2n

(2n)!ρ2n−1
+ · · ·

y = sin s = s− s3

3!ρ2
+

s5

5!ρ4
− · · ·

+(−1)n s2n+1

(2n+ 1)!ρ2n
+ · · ·

(These formulas reduce to the standard power series

when ρ is taken to be 1.)
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The Indian derivations of these results begin with

the obvious approximations to the cosine and sine for

small arcs and then use a \pull yourself up by your

own bootstraps" approach to improve the approxi-

mation step by step. The derivations all make use

of the notion of differences, a notion used in other

aspects of Indian mathematics as well. In our discus-

sion of the Indian method, we will use modern no-

tation to enable the reader to follow these sixteenth-

century Indian ideas.

We first consider the circle of Figure 3 with a

small arc α = ÂC ≈ AC . From the similarity of

triangles AGC and OEB, we get

x1 − x2

α
=
y

ρ
and

y2 − y1
α

=
x

ρ

or
α

ρ
=
x1 − x2

y
=
y2 − y1
x

.

In modern terms, if ∠BOF = θ and ∠BOC =
∠AOB = dθ, these equations amount to

sin(θ + dθ) − sin(θ − dθ) =
y2 − y1
ρ

=
αx

ρ2

=
2ρ dθ

ρ
cos θ

= 2 cos θ dθ

and

cos(θ + dθ) − cos(θ − dθ) =
x2 − x1

ρ
= −αy

ρ2

= −2ρ dθ

ρ
sin θ

= −2 sin θ dθ.

x

y
y4

y3

y2

y1

x4x5 x3 x2 x1

Figure 4.

Now, suppose we have a small arc s divided into n
equal subarcs, with α = s/n. For simplicity we take
ρ = 1, although the Indian mathematicians did not.
By applying the previous results repeatedly, we get

the following sets of differences for the y's (Figure
4) (where yn = y = sin s):

∆ny = yn − yn−1 = αxn

∆n−1y = yn−1 − yn−2 = αxn−1

· · ·
∆2y = y2 − y1 = αx2

∆1y = y1 − y0 = αx1.

Similarly, the differences for the x's can be written

∆n−1x = xn − xn−1 = −αyn−1

· · ·
∆2x = x3 − x2 = −αy2
∆1x = x2 − x1 = −αy1.

We next consider the second differences on the y's:

∆2y − ∆1y = y2 − y1 − y1 + y0

= α(x2 − x1) = −α2y1.

In other words, the second difference of the sines is

proportional to the negative of the sine. But since

∆1y = y1, we can write this result as

∆2y = y1 − α2y1.

Similarly, since

∆3y − ∆2y = y3 − y2 − y2 + y1

= α(x3 − x2) = −α2y2,
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it follows that

∆3y = ∆2y − α2y2 = y1 − α2y1 − α2y2,

and, in general, that

∆ny = y1 − α2y1 − α2y2 − · · · − α2yn−1.

But the sine equals the sum of its differences:

y = yn = ∆1y + ∆2y + · · ·∆ny

= ny1 − [y1 + (y1 + y2) + (y1 + y2 + y3)

+ · · ·+ (y1 + y2 + · · ·+ yn−1)]α
2.

Also, s/n ≈ y1 ≈ α, or ny1 ≈ s. Naturally, the
larger the value of n, the better each of these ap-
proximations is. Therefore,

y ≈ s− lim
n→∞

( s
n

)2

[y1 + (y1 + y2) + · · ·
+(y1 + y2 + · · ·+ yn−1)].

Next we add the differences of the x's. We get

xn − x1 = −α(y1 + y2 + · · ·+ yn−1).

But xn ≈ x = cos s and x1 ≈ 1. It then follows that

x ≈ 1 − lim
n→∞

( s
n

)
(y1 + y2 + · · ·+ yn−1).

To continue the calculation, the Indian mathemati-

cians needed to approximate each yi and use these
approximations to get approximations for x = cos s
and y = sin s. Each new approximation in turn is
placed back in the expressions for x and y and leads
to a better approximation. Note first that if y is small,
yi can be approximated by is/n. It follows that

x ≈ 1 − lim
n→∞

( s
n

) [ s
n

+
2s

n
+ · · ·+ (n− 1)s

n

]

= 1 − lim
n→∞

( s
n

)2

[1 + 2 + · · ·+ (n − 1)]

= 1 − lim
n→∞

s2

n2

[
n(n− 1)

2

]

= 1 − s2

2
.

Similarly,

y ≈ s− lim
n→∞

( s
n

)2
[
s

n
+

(
s

n
+

2s

n

)
+ · · ·

+

(
s

n
+

2s

n
+ · · ·+ (n − 1)s

n

)]

= s− lim
n→∞

s3

n3
[1 + (1 + 2) + (1 + 2 + 3)

+ · · ·+ (1 + 2 + · · ·+ (n− 1))]

= s− lim
n→∞

s3

n3
[n(1 + 2 + · · ·+ (n− 1))

− (12 + 22 + · · ·+ (n− 1)2)
]

= s− s3 lim
n→∞

[∑n−1
i=1 i

n2
−
∑n−1

i=1 i
2

n3

]

= s− s3
(

1

2
− 1

3

)

= s− s3

6
,

and there is a new approximation for y and there-
fore for each yi. Note that in the transition from
the second to the third lines of this calculation the

Indians used ibn al-Haytham's equation (*) for the

case k = 1. Although the Indian mathematicians did
not refer to ibn al-Haytham or any other predecessor,

they did explicitly sketch a proof of this result in the

general case and used it to show that, for any k, the
sum of the kth powers of the first n integers is ap-
proximately equal to nk+1/(k+ 1). This result was
used in the penultimate line of the above calculation

in the cases k = 1 and k = 2 and in the derivation
of the power series for the arctangent as discussed

in [8].

To improve the approximation for sine and cosine,

we now assume that yi ≈ (is/n) − (is)3/(6n3) in
the expression for x = cos s and use the sum formula
in the case k = 3 to get

x ≈ 1 − lim
n→∞

s

n

[
s

n
− s3

6n3
+

2s

n
− (2s)3

6n3
+ · · ·

+
(n − 1)s

n
− ((n− 1)s)3

6n3

]

= 1 − s2

2
+ lim

n→∞

s4

6n4

[
13 + 23 +· · ·+ (n− 1)3

]

= 1 − s2

2
+
s4

6
lim

n→∞

∑n−1
i=1 i

3

n4

= 1 − s2

2
+
s4

6
· 1

4

= 1 − s2

2
+
s4

24
.
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Similarly, ibn al-Haytham's formula for the case

j = 3 and the sum formula for the cases j = 3 and
j = 4 lead to a new approximation for y = sin s:

y ≈ s− s3

6
+ lim

n→∞

( s
n

)2
[
s3

6n3
+

(
s3

6n3
+

(2s)3

6n3

)

+ · · ·+
(
s3

6n3
+

(2s)3

6n3
+ · · ·+ ((n − 1)s)3

6n3

)]

= s− s3

6
+ lim

n→∞

s5

6n5

[
13 + (13 + 23)

+ · · ·+ (13 + 23 + · · ·+ (n− 1)3)
]

= s− s3

6

+ lim
n→∞

s5

6n5

[
n
(
13 + 23 + · · ·+ (n− 1)3

)

−
(
14 + 24 + · · ·+ (n− 1)4

)]

= s− s3

6
+
s5

6
lim

n→∞

[∑n−1
i=1 i

3

n4
−
∑n−1

i=1 i
4

n5

]

= s− s3

6
+
s5

6

(
1

4
− 1

5

)
= s− s3

6
+

s5

120
.

Because Jyesthadeva considers each new term in

these polynomials as a correction to the previous

value, he understood that the more terms taken, the

more closely the polynomials approach the true val-

ues for the sine and cosine. The polynomial approxi-

mations can thus be continued as far as necessary to

achieve any desired approximation. The Indian au-

thors had therefore discovered the sine and cosine

power series!

4 Conclusion

How close did Islamic and Indian scholars come to

inventing the calculus? Islamic scholars nearly de-

veloped a general formula for finding integrals of

polynomials by A.D. 1000 | and evidently could

find such a formula for any polynomial in which

they were interested. But, it appears, they were not

interested in any polynomial of degree higher than

four, at least in any of the material which has so

far come down to us. Indian scholars, on the other

hand, were by 1600 able to use ibn al-Haytham's

sum formula for arbitrary integral powers in calcu-

lating power series for the functions in which they

were interested. By the same time, they also knew

how to calculate the differentials of these functions.

So some of the basic ideas of calculus were known

in Egypt and India many centuries before Newton. It

does not appear, however, that either Islamic or In-

dian mathematicians saw the necessity of connecting

some of the disparate ideas that we include under the

name calculus. There were apparently only specific

cases in which these ideas were needed.

There is no danger, therefore, that we will have

to rewrite the history texts to remove the statement

that Newton and Leibniz invented the calculus. They

were certainly the ones who were able to combine

many differing ideas under the two unifying themes

of the derivative and the integral, show the connec-

tion between them, and turn the calculus into the

great problem-solving tool we have today. But what

we do not know is whether the immediate prede-

cessors of Newton and Leibniz, including in par-

ticular Fermat and Roberval, learned of some of

the ideas of the Islamic or Indian mathematicians

through sources of which we are not now aware.

The entire question of the transmission of math-

ematical knowledge from one culture to another is

a matter of current research and debate. In partic-

ular, with more medieval Arabic manuscripts being

discovered and translated into European languages,

the route of some mathematical ideas can be better

traced from Iraq and Iran into Egypt, then to Mo-

rocco and on into Spain. (See [3] for more details.)

Medieval Spain was one of the meeting points be-

tween the older Islamic and Jewish cultures and the

emerging Latin-Christian culture of Europe. Many

Arabic works were translated there into Latin in the

twelfth century, sometimes by Jewish scholars who

also wrote works in Hebrew. But although there is

no record, for example, of ibn al-Haytham's work on

sums of integral powers being translated at that time,

certain ideas he used do appear in both Hebrew and

Latin works of the thirteenth century. And since the

central ideas of his work occur in the Indian mate-

rial, there seems a good chance that transmission to

India did occur. Answers to the questions of trans-

mission will require much more work in manuscript

collections in Spain and the Maghreb, work that is

currently being done by scholars at the Centre Na-

tional de Recherche Scientifique in Paris. Perhaps in

a decade or two, we will have evidence that some of

the central ideas of calculus did reach Europe from

Africa or Asia.
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Was Calculus Invented in India?

DAVID BRESSOUD

College Mathematics Journal 33 (2002), 2{13

1 Introduction

No. Calculus was not invented in India. But two

hundred years before Newton or Leibniz, Indian

astronomers came very close to creating what we

would call calculus. Sometime before 1500, they had

advanced to the point where they could apply ideas

from both integral and differential calculus to derive

the infinite series expansions of the sine, cosine, and

arctangent functions:

sinx = x− x3

3!
+
x5

5!
− x7

7!
− · · · ,

cos x = 1 − x2

2!
+
x4

4!
− x6

6!
− · · · ,

arctanx = x− x2

2
+
x3

3
− x4

4
− · · · .

Roy [13] and Katz [7, 8] have given excellent ex-

positions of the Indian derivation of these infinite

summations. I will give a slightly different expla-

nation of how Indian astronomers obtained the sine

and cosine expansions, with an emphasis on the suc-

cession of problems and insights that ultimately led

to these series.

This story provides illuminations of calculus that

may have pedagogical implications. The traditional

introduction of calculus is as a collection of al-

gebraic techniques that solve essentially geometric

problems: calculation of areas and construction of

tangents. This was not the case in India. There, ideas

of calculus were discovered as solutions to essen-

tially algebraic problems: evaluating sums and in-

terpolating tables of sines.

Geometry was well developed in pre-1500 India.

As we will see, it played a role. But it was, at best,

a bit player. The story of calculus in India shows

us how calculus can emerge in the absence of the

traditional geometric context. This story should also

serve as a cautionary tale, for what did emerge was

sterile. These mathematical discoveries led nowhere.

Ultimately, they were forgotten, saved from oblivion

only by modern scholars.

2 Greek origins of trigonometry

Trigonometry arose from, and for over fifteen hun-

dred years was used exclusively for, the study of

astronomy/astrology. Hipparchus of Nic�a (ca. 161{
126 BC) is considered the greatest astronomer of an-

tiquity and the originator of trigonometry. Trigonom-

etry was born in response to a scientific crisis. The

Greek attempt to cast astronomy in the language

of geometry was running up against the disturbing

fact that the heavens are lop-sided. New tools were

needed for analyzing astronomical phenomena.

Let me paint the background to this crisis. It be-

gins with the assumption that the earth is stationary.

While this was debated in early Greek science|

does the earth go around the sun or the sun around

the earth?|the simple fact that we perceive no

sense of motion is a powerful indication that the

earth does not move. In fact, when in the early seven-

teenth century it became clear that the earth revolves

about the sun, it created a tremendous problem for

scientists: How to explain how this was possible?

How could it be that we were spinning at thou-

sands of miles per hour and hurtling through space

at even greater speeds without experiencing any of

this? Surely if the earth did move, we would have

been flung off long ago. Newton's great accomplish-

ment in the Principia was to solve this problem. He
created inertial mechanics for this purpose, building

it with the then nascent tools of calculus.

So we begin with a fixed and immovable earth.

131
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Above it is the great dome of the night sky, rotat-

ing once in every 24 hours. In far antiquity it was

realized that the stars do not actually disappear dur-

ing the day. They are present, but impossible to see

against the glare of the sun. The position of the sun

in this dome is not fixed. During the year, it travels

in its own circle, called the ecliptic, through the con-
stellations. One can tell the season by locating the

position of the sun in its annual journey around this

great circle. This is what the zodiac does. The sign

of the zodiac describes the location of the sun by

pinpointing the constellation in which it is located.

Most stars are fixed in the rotating dome of the

sky, but a few, called the wanderers or, in Greek, the
planetes (hence our word planets), also move across
the dome following this same ecliptic circle. If the

position of the sun is so important in determining

seasons of heat and cold, rain and drought, it ap-

pears self-evident that the positions of the wanderers

should have important|if more subtle|influences

on our lives. Astronomy/astrology was born.

Aristotle, in the 4th century BC, inherited a world-

view that saw the earth as the fixed center of the uni-

verse with the moon, sun, and planets embedded in

concentric, ethereal spheres that rotated with perfect

regularity around us. It became the basis for a com-

prehensive world-view that was tight and consistent

and would last for almost two millenia. But its first

cracks appeared in less than two hundred years.

The four cardinal points of the great circle tra-

versed by the sun mark the boundaries of the sea-

sons: winter solstice, spring equinox, summer sol-

stice, and autumnal equinox. If the sun travels the

Spring
equinox

Autumnal
equinox

89
days

89.875
days

earth

center

93.625
days

92.75
days

Winter
solstice

Summer
solstice

Figure 1. The unequal seasons, rounded to nearest 1/8

day.

ecliptic at constant speed, the four seasons should be

of equal length. They are not (see Figure 1). Winter

solstice to spring equinox is a short 89 days. Spring

is almost 90 days. Summer, the longest season, is

over 931
2 days. And fall comes close to 93 days. If,

in fact, the sun moves at a constant speed, this can

only mean that the earth is off-center. Hipparchus

tackled the problem of calculating the position of

the earth.

The basic problem of trigonometry as understood

by Hipparchus and his contemporaries is the follow-

ing: Given an arc of a circle, find the length of the

chord that connects the endpoints of that arc (see

Figure 2). This chord length depends on both the

length of the arc and the radius of the circle. For the

Greeks, as for all scientists right through Newton,

90◦ was not the measure of a right angle, but of the

distance around one quarter of the circumference of

a circle. Degrees were a measure of distance. Given

a circle of circumference 360◦, it would be natural

to take the radius to be 360/2π = 57.2957795 . . .
For greater accuracy, the circumference of this stan-

dard circle could be measured in minutes. The cir-

cumference is then 21,600 minutes and the radius is

3437.74677 . . . It would become common in Indian
trigonometry to use a radius of 3438. There is some
evidence that Hipparchus, whose trigonometric ta-

bles no longer survive, also may have used a radius

of 3438.
Hipparchus was probably the first to construct

a table of values of the length of the chord for a

given arc, what is sometimes called crdα. In modern
trigonometric notation, the chord is twice the sine of

3438

3438 *
sin /2a

a
crd a

crd = 2 * 3438 sin /2a a

Figure 2. The relationship between crd α and sin α.



\master" | 2011/4/5 | 12:53 | page 133 | #143
i

i

i

i

i

i

i

i

BRESSOUD: Was Calculus Invented in India? 133

half the angle, multiplied by the radius of the circle

which we will take to be 3438 (see Figure 2):

crdα = 3438 · 2 sin(α/2).

For the problem of the position of the earth, the

arc from the winter solstice to the summer solstice

is approximately 176◦18′. Assuming that we know

that crd 176◦18′ = 6872′, it follows that half of the
chord is 3436′. We can now use the Pythagorean

theorem to find the distance from the center of the

circle to this chord:

distance =
√

34382 − 34362 ≈ 117′.

This chord is 117 minutes, almost two full degrees,
off center.

Over succeeding centuries, as astronomical obser-

vations became more accurate, the model for the

movement of sun and planets became more compli-

cated. Planets will seem to pause and reverse direc-

tion.1 This was explained by putting small spheres

inside each crystal ring, epicycles on which each

planet would rotate around a point which itself trav-

eled around the earth. Even with an off-centered

earth, it was necessary to vary the speed of the

spheres. This was often accomplished by adding an

equant, a point from which the angular velocity of

the center of the small circle appears constant (see

Figure 3). All of the workings of this model relied

on trigonometric calculations, and these calculations

relied on an accurate table of chords.

earth equant

epicycle

Figure 3. An epicycle combined with an equant. The

planet circles the center of the epicycle. The center of the

epicycle moves so that its angular velocity relative to the

equant is constant.

1See http://alpha.lasalle.edu/~smithsc/Astronomy/

retrograd.html for an illustration and explanation of retro-

grade motion.

By the end of the first century AD, Menelaus of

Alexandria knew the formulas for the chords of sums

and differences of angles, double and half angles.

With these, he was able to construct an accurate ta-

ble of chords. In the second century, Ptolemy, also of

Alexandria, published his system of the heavens, in-

cluding a table of chords for angles in increments of

half a degree, equivalent to a table of sines in incre-

ments of a quarter-degree. It is important to our story

to look at how this table was constructed. While it

was given as a table of chords, I will explain it in

terms of more familiar sines.

Beginning with the fact that sin 30◦ = 1
2
and us-

ing the half-angle formula

sinα =

√
1 − cos(2α)

2
,

one can calculate the sines of 15◦, 7◦30′, and 3◦45′.

Going back at least to Archimedes, it was known

that

sin 36◦ =
1

2

√
5 −

√
5

2
,

and so we get the sine of 18◦. Using the sines of

15◦ and 18◦and the difference of angles formula,

sin(α− β) = sinα cosβ − cosα sinβ,

we get the sine of 3◦. Now we can calculate the

sines of 1◦30′ and 45′.

We are down to a very small angle. The Greeks

knew that for very small angles, we have the ap-

proximation
sinα

sinβ
≈ α

β
.

It follows that

sin 1◦ ≈ 4

3
sin

3

4

◦

.

This is not a bad approximation. The error is of

the same order of magnitude as that introduced by

using 3438 as the radius of a circle of circumference

21600, less than 1 part in 10000. Two more iterations

of the half angle formula, and we are down to the

sine of 15′. Now we can use the sum and difference

of angles formulas to fill in the missing values in

the table.

Ptolemy's Almagest was the last great scientific
achievement of the Gr�co-Roman world. Fortu-

nately, India was just coming into its high classical

period. Indian astronomers learned of the Greek ac-

complishments and began to incorporate them into



\master" | 2011/4/5 | 12:53 | page 134 | #144
i

i

i

i

i

i

i

i

134 Medieval and Renaissance Mathematics

their own science.2 They did not stop with bor-

rowing Greek ideas. They began to improve on

what the Greeks had accomplished. Among their

improvements would be conceptual breakthroughs

that would allow them to reduce the errors to 1 part
in 1012.

3 Trigonometry in classical India

One of the first innovations was to work with the

half-chord rather than the Greek chord, what was

called the ardha-jyā or \half bowstring," eventually
simplified to just jyā (bowstring) or j̄ıvā. Islamic
astronomers learned much of their trigonometry from

India; Europe would learn it from North Africa. That

is why today we use sines instead of chords.3 But

the greatest contribution to trigonometry to come out

of India was the analysis of how to interpolate the

tables of sines. From this would come the power

series for the sine and cosine.

Āryabhat.a, born in 476, analyzed a fourth century

Sanskrit table of sines and described an interesting

pattern when he took differences of consecutive en-

tries, and then differences of those differences:

α 3438 1st 2nd

sinα difference difference

3◦45′ 225

7◦30′ 449 224 −2
11◦15′ 671 222 −3
15◦ 890 219 −4
18◦45′ 1105 215 −5
22◦30′ 1315 210 −5
26◦15′ 1520 205 −6
30◦ 1719 199

Āryabhat.a observed that these second differences

are very close to the value in the second column

divided by 225:

[
sin(x+ 225′) − sinx

]
−
[
sinx− sin(x − 225′)

]

≈ − sinx

225
.

2According to Neugebauer and Pingree [9], the Paulisa-

siddhanta and the Romaka-siddhanta (4th century or earlier) are

based on Greek astronomical works. Similarities in terminology,

calculations, and choices of constants|as well as the names of

these works|argue for the importation of Greek astronomical

techniques.
3According to Datta and Singh [3], Arab mathematicians used

the term jiba, clearly derived from the Sanskrit j̄ıva. When Gher-
ardo of Cremona (ca. 1150) translated this into Latin, he misread
it as jaib which is Arabic for \bosom" or \bay," and translated it
as sinus from which we get sine.

Datta and Singh [3, pp. 75{77] argue that this

could have been derived from the trigonometric iden-

tity

[
sin(x+ α) − sinx

]
−
[
sinx− sin(x− α)

]

= − sinx

(
2 sin(α/2)

3438

)2

, (1)

in which the argument of the sine is measured in

minutes. This derivation is pure speculation, but it

does illustrate how Āryabhat.a's successors might

have come to discover the second derivative for-

mula for the sine. The sum of angles and half-

angle formulas that are needed to derive (1) were

certainly known by 1200 and probably long before

that. Ever since the inception of trigonometry, it had

been known that 2 sin(α/2)/α is approximately 1
for small values of α. When the argument of the sine
function is measured in minutes, it follows from (1)

that

lim
α→0

sin(x+ α) − 2 sinx+ sin(x− α)

α2

=
− sinx

34382
lim
α→0

(
2 sin(α/2)

α

)2

=
− sinx

34382
.

By 665, Brahmagupta of Bhillamāla (modern

Bhinmal) in Rajasthan had found the formula that

showed how to use the second differences to approx-

imate interpolated values. We assume that we want

to find the value of sin(x+ε) where x is the nearest
angle for which we know sinx. We also assume that
α is the common difference between angles in our
table, so that we also know the sines of x+ α and
x − α. These can be used to approximate the first
and second derivatives of sinx:

d

dx
sinx ≈ sin(x+ α) − sin(x− α)

2α
,

d2

dx2
sinx ≈ sin(x+ α) − 2 sinx+ sin(x − α)

α2
.

Brahmagupta stated that

sin(x+ ε)

≈ sinx+ ε
sin(x + α) − sin(x− α)

2α

+
ε2

2

sin(x + α) − 2 sinx+ sin(x− α)

α2
.

It is worth noting that this formula is valid no matter

what units|degrees, minutes, or radians|we use

to measure ε and α. We do, however, have to use
the same units for both.
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What Brahmagupta had discovered is the

quadratic case of the Newton interpolation formula.4

The right side is the unique quadratic polynomial

that agrees with the sine at x − α, x, and x + α.
Note that if α and ε are measured in radians and we
take the limit as α → 0, then we get the familiar
Taylor polynomial in ε:

sin(x+ ε) ≈ sinx+ ε cos x− ε2

2
sinx.

In the early ninth century, Govindasvāmin of Ker-

ala showed how to extend Brahmagupta's quadratic

formula to interpolation formulas for higher powers.

By the twelfth century, Bhāskara II was using the

fact that the first difference of the sine, sin(x+ ε)−
sinx, is close to ε cos x in the sense that their ra-
tio approaches 1 as ε approaches 0. He also used
(− sinx)ε2 to approximate the second difference of
the sine. Around 1400 in a commentary on the work

of Govindasvāmin, Parame�svara used the limits of

the first, second, and third differences to give a cubic

approximation for sin(x+ ε) when sinx is known:

sin(x+ε) = sinx+
ε

R
cosx− ε2

2R2
sinx− ε3

4R3
cosx,

where the arguments of the trigonometric functions

are measured in units equal to R−1 radians. This

formula is not quite correct. The last denominator

should be 6R3. But the Indian astronomers were on

their way to the general Maclaurin expansions of the

sine and cosine.

The exact date and attribution of the series

for sine, cosine, and arctangent are uncertain.

The earliest unquestioned appearance of these se-

ries is in the Yuktibhās.ā written by Jyes.t.hadeva
in the early 1500s. Jyes.t.hadeva based his work

on the Tantrasam. graha of N̄ılakan. t.ha, written in
1501. A commentary on the Tantrasam. graha by
one of Jyes.t.hadeva's students, the Tantrasam. graha-
vyākhyā, written prior to 1550, has led Rajagopal
and Rangachari [11] to argue that N̄ılakan. t.ha was
familiar with these series and that they were part of

the oral tradition that accompanied his work. The se-

ries for the sine does appear in one of N̄ılakan. t.ha's
later works, the Āryabhat̄ıya-bhāsya, written prior to
1545, where he attributes it to Mādhava who lived

approximately 1349{1425. There is additional evi-

dence from the results that Mādhava is known to

have authored that he probably did know these se-

4Newton's interpolation formula appears in his Principia Math-
ematica. Brook Taylor used it to derive the Taylor series.

ries.5 What this all means is that the date of dis-

covery of these series cannot be pinned down any

more accurately than after 1350 and before 1550,

with evidence suggesting the earlier rather than the

later part of this window. In any event, they were

discovered in India well over a century before their

rediscovery in Europe.

4 The power series expansion

for sine

Up to this point, I have translated the Indian for-

mulas into more familiar sines and cosines, but to

do proper justice to the Indian derivation of the sine

series, I need to state and follow the proof in some-

thing closer to the original notation. I will use jyā α
and koj α (for kotijyā) to denote, respectively, the
half-chord of the arclength α and the half-chord of
the complementary angle. Note that these are also

dependent on the radius, R. If the sine and cosine
are functions of angles measured in radians, then

jyā α = R sin(α/R),

koj α = R cos(α/R).

We will present Jyes.t.hadeva's proof that

jyā α = α− α3

R2 3!
+

α5

R4 5!
− α7

R6 7!
+ · · · .

The first step is to find the limiting formulas for

the first difference of the jyā and kotijyā. In Fig-

ure 4, we let P̂X be the arclength α and P̂R be

∆α, the change in α. The problem is to estimate

RS = ∆(jyā α) = jyā (α + ∆α) − jyā α and
PS = ∆(koj α). We mark Q, the midpoint of arc

P̂R, and note that OQ is the perpendicular bisector
of chord PR.
For a small change in arclength, the chord PR is

a very good approximation to the arc P̂R, and so we
will not distinguish between them. Also, BQ equals
jyā (α + 1

2
∆α) which we will identify with jyā α.

Similarly, we treat OB as equal to koj α. Triangle
RSP is similar to triangle OBQ, and therefore

RS

PR
=
OB

OQ
=⇒ ∆(jyā α) =

(∆α) koj α

R
, (2)

PS

PR
=
BQ

OQ
=⇒ ∆(koj α) =

−(∆α) jyā α

R
. (3)

5See the analyses by Pingree [10] and Sarma [15].
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S
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Figure 4. RS = ∆(jyā α) and PS = ∆(koj α).

In modern terms, Jyes.t.hadeva's next step is to ob-

serve that

sinα =

∫ α

0

cosx dx,

and

cosα = 1 −
∫ α

0

sinx dx.

Using these equalities, a polynomial approximation

to the sine can be turned into an approximation of

the cosine with degree one higher. A polynomial ap-

proximation of the cosine can be turned into an ap-

proximation of the sine with degree one higher. We

then iterate this process to generate the infinite se-

ries.

Let me put the preceding paragraph into nota-

tion that is still modern but closer to the spirit of

Jyes.t.hadeva's construction. He sets α = n∆α and
observes that the sum of small differences is equal

to the large difference:

koj α− koj 0 =

n−1∑

i=0

∆(koj (i∆α)).

He uses (3) and the approximation jyā α ≈ α to
simplify this:

koj α− koj 0 =

n−1∑

i=0

−(∆α)jyā (i∆α)

R

=
−(∆α)2

R

n−1∑

i=0

i

=
−(∆α)2(n2 − n)

2R
. (4)

We know that koj 0 = R, n∆α = α, and (∆α)2n
can be made arbitrarily small by taking ∆α suffi-

ciently small. Taken with (4), this implies that

koj α ≈ R− α2

2R
. (5)

We now use this approximation and the result

given in (4) to improve the approximation to jyā α:

jyā α− jyā 0 =

n−1∑

i=0

∆(jyā (i∆α))

=
n−1∑

i=0

∆α

R

(
R− (i∆α)2

2R

)

= n∆α− (∆α)3

2R2

n−1∑

i=0

i2. (6)

We use the fact that
∑n−1

i=0 i
2 is n3/3 plus lower

order terms to get the improved approximation:

jyā α ≈ α− α3

2 · 3R2
. (7)

In the next iteration we need to know that∑n−1
i=0 i

3 is n4/4 plus lower order terms. For the
general iterative step, we need to know that

n−1∑

i=0

ik =
nk+1

k + 1
+ lower order terms. (8)

Today we recognize that
∑n−1

i=0 (i/n)k(1/n) is a

Riemann sum for
∫ 1

0
xk dx. In other words, what

we need to know is that
∫ α

0

xk dx =
αk+1

k + 1
.

Jyes.t.hadeva's argument for (8) is given by Roy [13].

Katz [8] describes al-Haytham's derivation of (8) for

k ≤ 4, an approach that is easily extended to any
value of k. Al-Haytham lived in eleventh century

Egypt, but knowledge of his results may have trav-

eled to India. In fact, this asymptotic estimate for the

summation of the kth powers became widely known
in the Middle East and India before the fifteenth cen-

tury. I shall describe the approach used by Nārāyan. a

in his Gan. itakaumud̄ı , written in 1356.
Nārāyan. a built on earlier observations that

n∑

i=1

(
i

1

)
=

(
n+ 1

2

)
,

n∑

i=1

(
i+ 1

2

)
=

(
n+ 2

3

)
,

n∑

i=1

(
i+ 2

3

)
=

(
n+ 3

4

)
.
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The first two of these are ancient and can be found

in both Greek and early Jain mathematics. They lend

themselves to geometric proofs. Nārāyan. a's greatest

accomplishment was to view these not as geometric,

but as formulaic or algebraic (though, of course, he

did not have the advantages of our notation). He

thought of them as iterated sums. This suggested the

following generalization:

n∑

i=1

(
i+ k − 1

k

)
=

(
n + k

k + 1

)
. (9)

Each iterated sum,
(

n+k−1
k

)
, is equal to

n(n+ 1)(n+ 2) · · · (n + k − 1)

k!

=
nk

k!
+ lower order terms.

It follows from (9) that

n∑

i=1

(
ik

k!
+ lower order terms

)

=
nk+1

(k + 1)!
+ lower order terms,

which implies (8). It is worth noting that Nārāyan. a

also showed how to use equation (9) to find sums of

other specific polynomials in i by first expressing the
polynomial as a linear combination of these binomial

coefficients.

5 Conclusion

There is no evidence that the Indian work on series

was known beyond India, or even outside Kerala,

until the nineteenth century. Gold and Pingree [4]

assert that by the time these series were rediscovered

in Europe, they had, for all practical purposes, been

lost to India. The expansions of the sine, cosine, and

arc tangent had been passed down through several

generations of disciples, but they remained sterile

observations for which no one could find much use.

No. Calculus was not discovered in India. I am

left wondering how much important mathematics is

today known but not yet discovered, passed among

a coterie of tightly knit disciples as an intriguing

yet seemingly useless insight, lacking the context,

the fertilizing connections, that would enable it to

blossom and produce its fruit.
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An Early Iterative Method

for the Determination of sin 1◦

FARHAD RIAHI

College Mathematics Journal 26 (1995), 16{21

1 Background

In his popularHistory of Mathematics, Carl B. Boyer
[5] dated the medieval period in Europe from 529

A.D. to 1436. It was in 529 that the Byzantine em-

peror Justinian, fearing a threat to orthodox Chris-

tianity, ordered all pagan philosophical schools at

Athens to be closed and the scholars dispersed.

Rome, then ruled by the Goths, was hardly a hos-

pitable home for the learned, but many found a haven

in Sassanide Persia. To Boyer the year 1436 marked

the dawn of a new mathematical era in Christian

Europe for two reasons. It saw the birth of the most

influential European mathematician of the fifteenth

century, Johann Mueller, better known as Regiomon-

tanus, and Boyer took 1436 as the probable year of

death of al-Kashi, the last in a long lineage of promi-

nent Muslim scholars (who actually died in 1429).

Until recently, historical accounts esteemed Mus-

lim scientists mainly for holding Greek learning

in cold storage until Europe was ready to accept

it, and indeed the decline of Muslim scholarship

did coincide with Europe's emergence from the

Middle Ages. But between 750 and 1450, Islamic

civilization in fact produced a series of remark-

able mathematicians who, among other accomplish-

ments, invented the decimal system (including dec-

imal fractions), created algebra, systematized plane

and spherical trigonometry, made important discov-

eries in these sciences, and developed ingenious

methods for solving algebraic equations. Only re-

cently have researchers in the history of mathemat-

ics begun to re-discover what medieval and renais-

sance scholars knew well, the intellectual legacy be-

queathed by Muslim scientists. One eminent math-

ematical historian has lamented this long neglect as

\unfortunate, not only from a scholarly point of view,

but from a pedagogical one as well, for Islam's con-

tributions include some gems of mathematical rea-

soning, accessible to anyone who has learned high

school mathematics" [3]. A recent general survey by

Victor Katz [10] gives proper weight to the achieve-

ments of medieval Muslim mathematicians.

Who was al-Kashi, this Janus-faced mathemati-

cian who looked back at the old and anticipated

the new? He was born in the second half of the

fourteenth century in the town of Kashan (Iran),

whence his name Kashani|or al-Kashi, as he is

better known in the West. How he learned mathe-

matics is obscure. By his own account, he first led

the precarious life of a wandering scholar, seeking

patronage at the courts of local lords and dedicating

scientific treatises in return. Then, around 1420, he

was invited to Samarkand (in present day Uzbek-

istan) by the Great Khan Ulugh Beg (1393{1449)

to help design and construct a state-of-the-art ob-

servatory. Al-Kashi remained in Samarkand as the

director of this observatory until his death on June

22, 1429.

The author of several important works in math-

ematics and astronomy, al-Kashi also invented as-

tronomical instruments, such as the planetary equa-

torium, and perfected existing ones. In the treatise

reviewed below, he calculated the value of sin 1◦ to
a high degree of accuracy by an iterative procedure.

In another work, he determined the value of π up to
17 correct decimal digits. His magnum opus, the Key
to Arithmetic (1427) is a magisterial compendium of
arithmetic and algebra which remained a standard

textbook in the Muslim world until the seventeenth

century, and was probably known in Europe as well.

138
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(Two Byzantine manuscripts on arithmetic exercises

brought to Vienna in 1562 refer to his text; see [8].)

Al-Kashi's book was the first complete treatment

of the theory and application of decimal fractions,

which he recommended in place of the sexagesimal

system [3], [10]| the standard scientific computa-

tional scheme since Ptolemy (second century A.D.)

2 Al-Kashi's determination of

sin 1◦

Al-Kashi's original treatise about chords and sines

is unfortunately lost. In the preface to his Key to
Arithmetic, he mentions having written \a treatise
on chords and sines for use in the calculation of

the chord and sine of the third of an arc whose

chord or sine is known,. . . one of the problems
that my predecessors have found difficult" to solve

[9]. Fortunately, his method survived in brief ac-

counts by a colleague at the Samarkand observatory

and by this astronomer's grandson. Their versions,

translated from Arabic (the former lingua franca of
the Muslim world) into French, English, and Rus-

sian, have prompted several scholarly studies [2].

Yet within a commentary in Persian written by an-

other colleague of al-Kashi named Abd-el Ali Bir-

jandi [4], there exists a more complete description of

al-Kashi's procedure, apparently unknown to West-

ern scholars. My article is based on Birjandi's ac-

count. Using modern symbols, I shall describe al-

Kashi's ingenious iterative method, establish the ex-

istence and uniqueness of a solution, and show the

convergence of this algorithm, since none of these is-

sues is rigorously addressed in the studies mentioned

above.

To appreciate the importance of al-Kashi's con-

tribution, bear in mind that trigonometry assumed

a central place in Muslim mathematics. It supplied

the tools for accurate astronomical calculations,

the elaboration of calendars, geographical measure-

ments, and navigation. Based on translations of the

Indian Surya Siddhanta (fourth or fifth century A.D.),
the Spherica of Menelaus (first century A.D.), and
especially Ptolemy's Almagest, Muslim mathemati-
cians developed plane and spherical trigonometry to

an advanced level. They promoted the use of the

modern trigonometric functions instead of the chord

functions; proved the half-angle formulas, the sine

law, and the addition theorem for sines; developed

linear and quadratic interpolation procedures; and

established tables for the values of the trigonometric

Figure 1. AA′ = crd 2α = 2R sin α

functions.

In this massive labor of computing trigonometric

tables, knowing the precise value of sin 1◦ is of fun-
damental importance. From the value of sin 1◦ and
the values of a few other basic sines, the trigonomet-

ric formulas generate sin p◦ for all integer values of
p. The half-angle formulas can then be used to com-
pute the sines in intervals of 1

2

◦
and 1

4

◦
. Finally,

interpolation algorithms yield values for finer sub-

divisions. Although Ptolemy's interpolation method

[1] for the approximate calculation of chords, in par-

ticular the chord of 1◦, had been refined and used
by Muslim mathematicians, they knew well the in-

herent limitations of this procedure, which quickly

grows cumbersome and whose accuracy is restricted

by the very inequalities from which it proceeds. To

find a simpler and rapidly converging method for

the evaluation of sin 1◦ was highly desirable, and
this became al-Kashi's goal. (See Figure 1 for the

relation between crd 2α, the chord of angle 2α, and
sinα.)
He begins by setting up an equation expressing

sin 1◦ in terms of sin 3◦. His method is purely ge-
ometrical and general, so that he can be justly con-

sidered the first to derive the well-known formula

sin 3φ = 3 sinφ− 4 sin3 φ

otherwise attributed to Vi�ete in the late sixteenth cen-

tury.

Consider a semicircle of radius R with center

O and diameter AE (see Figure 2). Let B,C,D
be points on this semicircle such that arc AB =
arc BC = arc CD. Ptolemy's theorem [1] applied
to the inscribed quadrilateral ABCD yields

AB · CD+ BC · AD = AC · BD.
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Figure 2.

Since AB = CD = BC and BD = AC , we have

AB2 +BC · AD = AC2. (1)

Now determine point F on AE such that EF = EC
and consider the similar isosceles triangles ABF
and ABO. We have

AB

AF
=
AO

AB
or AF =

AB2

R

so that EF = 2R − AF = 2R − AB2/R. On the
other hand, in the right triangle AEC ,

AC2 = AE2 − EC2 = 4R2 −EF 2,

so that

AC2 = 4R2 −
(

2R− AB2

R

)2

= 4AB2 − AB4

R2
. (2)

Equations (1) and (2) yield

AB2 +AB · AD = 4AB2 − AB4

R2
,

that is,

AD = 3AB − AB3

R2
. (3)

Clearly, if arc AB = 2α, then arc AD = 6α, and re-
calling that crd 2α = 2R sinα (see Figure 1), equa-
tion (3) yields

2R sin 3α = 6R sinα− 8R3 sin3 α

R2

or

sin 3α = 3 sinα− 4 sin3 α.

In particular, for α = 1◦ and setting sin 1◦ = x,
al-Kashi obtains the cubic equation

x =
4

3
x3 +

1

3
sin 3◦, (4)

one of whose roots is sin 1◦. Note that al-Kashi ig-
nored negative roots, since negative numbers had not

yet been introduced in his time.

Standard Euclidean constructions, along with ac-

curate algorithms for the extraction of square roots,

provide the value of sin 30◦ as half the length of
the side of a regular hexagon inscribed in the unit

circle, and the value of sin 36◦ as half the length of
the side of a similarly inscribed pentagon. Hence,

sin 3◦ = sin(18◦ − 15◦) can be calculated with any
desired accuracy.

To calculate the root of equation (4), al-Kashi de-

vised an iterative method known today as fixed point
iteration. He appears to have used the sexagesimal
system, but for clarity I shall render his argument

using decimal expansions. Being aware of the in-

equality sinφ > (1/n) sin(n ·φ), which implies that
sin 1◦ > 1

3
sin 3◦, he considers the cubic term in

equation (4) as a small correction to be added to
1
3 sin 3◦. He then argues as follows:
The root x cannot be substantially larger than

1
3 sin 3◦, so if one considers the decimal expansion
of x, the first two or even three digits after the deci-
mal point should be identical with those in the deci-

mal expansion of 1
3 sin 3◦. Al-Kashi uses the known

value of sin 3◦, so that 1
3 sin 3◦ = 0.0174453 . . . ,

and concludes that the root should have a decimal

expansion x = 0.01a1a2a2 . . . where the ak are

whole numbers between 0 and 9. Inserting this first

estimate into equation (4), he finds

0.010a1a2a3 . . . =
4

3
(0.01a1a2a3 . . . )

3

+
1

3
sin 3◦ (5)

or (subtracting 0.01 from both sides)

0.00a1a2a3 . . . =
4

3
(0.01a1a2a3 . . . )

3

+0.0074453 . . . .

The last equality should hold true digit by digit, and

since the cubic term in the right-hand side has its

first non-zero digit in the sixth decimal place, one

may safely conclude that a1 in the left-hand side
should be equal to the digit in the third decimal posi-

tion in the right-hand side, that is a1 = 7. Hence, al-
Kashi obtains for the first approximation x1 = 0.017
(the 0th approximation being x0 = 0.01). Then
again:

0.017a2a3 · · · =
4

3
(0.017a2a3 . . . )

3 +
1

3
sin 3◦
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or (subtracting 0.017 from both sides)

0.000a2a3 . . . =
4

3
(0.017a2a3 . . . )

3

+0.0004453 . . . .

He then reasons as before, comparing the fourth

decimal digit of the left-hand side to that of the

right-hand side, and concluding that a2 = 4, so
that the second approximation now reads x2 =
0.0174. In this fashion, al-Kashi computes the value
0.0174524064372835103712 for sin 1◦, which is
correct up to the first 17 decimal digits. In doing so,

he claims that the kth decimal digit of the value of
the right-hand side of equation (4) depends only on

the values of the first k−1 digits in the decimal ex-
pansion of x, and concludes that one can determine
the value of sin 1◦ with any degree of accuracy.
Let us now examine why al-Kashi's algorithm

does indeed produce a value as close to the true

value of sin 1◦ as one wishes. Denoting 1
3 sin 3◦ by

p, 4
3x

3 + p by f(x), and 0.01a1a2 · · ·an by xn, we

observe that the procedure described above amounts

to the iteration of f starting with x0:

x1 = f(x0),

x2 = f(x1) = f(f(x0)),

· · ·
xn = f(f(f(. . . f(x0) . . .))). (6)

Using a common scientific calculator and start-

ing with x0 = 0.01, one readily calculates x4 =
0.017452406437273 . . . , which provides an approx-
imate value for sin 1◦ that is correct up to the first
13 decimal digits.

We have to prove that the iteration equation (6)

does converge to sin 1◦, so that al-Kashi's algorithm
is an effective procedure. To see this, note that equa-

tion (4) can be reinterpreted as r = f(r), which
means that determining a root of equation (4) is

equivalent to finding a fixed point r of the func-
tion f . Now, the existence and uniqueness of such a
fixed point are guaranteed by the following general

theorem [6].

Theorem. Let f be a continuous function that maps
a closed interval I = [a, b] into itself, and for which
|f ′(x)| ≤ M < 1 for all x in I. Then, f has a
unique fixed point r in I. Moreover, for any x0 in
I, the sequence {xn} obtained by the iterations of
f starting with x0 converges to r, and |xn − r| ≤
Mn × |x0 − r| for all n ≥ 1. (See Figure 3.)

Figure 3.

To apply the above theorem to al-Kashi's cubic

f(x) = 4
3x

3 + p with p = 1
3 sin 3◦, first note that as

p is of the order of 0.01, we can choose the interval
I to be, say, [0.01, 0.02]. Then, f′(x) = 4x2 is pos-

itive on I, so that I is increasing on this interval,
and since f(0.01) > 0.01 while f(0.02) < 0.02,
it follows that f maps I into itself. Furthermore,
the derivative f ′, being increasing on I, assumes its
maximum at x = 0.02, so that |f′(x)| ≤ 1.6×10−3.

This justifies al-Kashi's claim that each iteration of

f yields (at least) one more correct decimal digit,
i.e., the error is reduced by a factor at least as small

as 1
10 | the theorem guarantees that, in fact, the

error is reduced by at least a factor of 1.6 × 10−3.

Hence, the iteration algorithm does converge to the

unique fixed point. The insensitivity of the iteration

to the choice of the 0th approximation x0, as long

as x0 is chosen in I, becomes evident too. At this
point, it is worth mentioning that the condition that

f be a \contraction mapping" in the vicinity of the
fixed point (i.e., |f ′(x)| < 1 for all x in I) is abso-
lutely crucial: If this condition is not satisfied, then

the iterative procedure described above may gener-

ate cyclic or even chaotic sequences, leading away

from the fixed point [7].

In conclusion, it is now apparent that besides con-

verging rapidly, al-Kashi's algorithm requires only a

few simple operations at each step: raising a number

to the third power, an addition, and a division. That

al-Kashi did not seem to concern himself with ques-

tions of existence and uniqueness should not be held

against him. He was primarily interested in devising

methods for accurately determining numerical solu-

tions to problems important in astronomy. The fore-

going should show how he acquitted himself with

deep insight and great elegance.
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Leonardo of Pisa and his Liber Quadratorum

R.B. McCLENON

American Mathematical Monthly 26 (1919), 1{8

The thirteenth century is a period of great fascina-

tion for the historian, whether his chief interest is

in political, social, or intellectual movements. Dur-

ing this century great and far-reaching changes were

taking place in all lines of human activity. It was

the century in which culminated the long struggle

between the Papacy and the Empire; it brought the

beginnings of civil liberty in England; it saw the

building of the great Gothic cathedrals, and the es-

tablishment and rapid growth of universities in Paris,

Bologna, Naples, Oxford, and many other centers.

The crusades had awakened the European peoples

out of their lethargy of previous centuries, and had

brought them face to face with the more advanced

intellectual development of the East. Countless trav-

elers passed back and forth between Italy and Egypt,

Asia Minor, Syria, and Bagdad; and not a few ad-

venturous and enterprising spirits dared to penetrate

as far as India and China. The name of Marco Polo

will occur to everyone, and he is only the most fa-

mous among many who in those stirring days truly

discovered new worlds.

Among the many valuable gifts which the Orient

transmitted to the Occident at this time, undoubtedly

the most precious was its scientific knowledge, and

in particular the Arabian and Hindu mathematics.

The transfer of knowledge and ideas from East to

West is one of the most interesting phenomena of

this interesting period, and accordingly it is worth

while to consider the work of one of the pioneers in

this movement.

Leonardo of Pisa, known also as Fibonacci1, in

the last years of the twelfth century made a tour of

the East, saw the great markets of Egypt and Asia

1This is probably a contraction for \Filiorum Bonacci," or pos-

sibly for \Filius Bonacci"; that is, \of the family of Bonacci" or

\Bonacci's son." See [3].

Minor, went as far as Syria, and returned through

Constantinople and Greece [8]. Unlike most travel-

ers, Leonardo was not content with giving a mere

glance at the strange and new sights that met him,

but he studied carefully the customs of the people,

and especially sought instruction in the arithmetic

system that was being found so advantageous by

the Oriental merchants. He recognized its superior-

ity over the clumsy Roman numeral system which

was used in the West, and accordingly decided to

study the Hindu-Arabic system thoroughly and to

write a book which should explain to the Italians its

use and applications. Thus the result of Leonardo's

travels was the monumental Liber Abaci (1202), the
greatest arithmetic of the middle ages, and the first

one to show by examples from every field the great

superiority of the Hindu-Arabic numeral system over

the Roman system exemplified by Boethius [2]. It is

true that Leonardo's Liber Abaci was not the first
book written in Italy in which the Hindu-Arabic nu-

merals were used and explained [10], but no work

had been previously produced which in either the

extent or the value of its contents could for a mo-

ment be compared with this. Even today it would be

thoroughly worthwhile for any teacher of mathemat-

ics to become familiar with many portions of this

great work. It is valuable reading both on account of

the mathematical insight and originality of the au-

thor, which constantly awaken our admiration, and

also on account of the concrete problems, which of-

ten give much interesting and significant information

about commercial customs and economic conditions

in the early thirteenth century.

Besides the Liber Abaci, Leonardo of Pisa wrote
an extensive work on geometry, which he called

Practica Geometriae. This contains a wide variety
of interesting theorems, and while it shows no such

143



\master" | 2011/4/5 | 12:53 | page 144 | #154
i

i

i

i

i

i

i

i

144 Medieval and Renaissance Mathematics

originality as to enable us to rank Leonardo among

the great geometers of history, it is excellently writ-

ten, and the rigor and elegance of the proofs are

deserving of high praise. A good idea of a small

portion of the Practica Geometriae can be obtained
from Archibald's very successful restoration of Eu-

clid's Divisions of Figures [1].
The other works of Leonardo of Pisa that are

known are Flos, a Letter to Magister Theodorus,
and the Liber Quadratorum. These three works are
so original and instructive, and show so well the re-

markable genius of this brilliant mathematician of

the thirteenth century, that it is highly desirable that

they be made available in English translation. It is

my intention to publish such a translation when con-

ditions are more favorable, but in the meantime a

short account of the Liber Quadratorum will bring
to those whose attention has not yet been called to it

some idea of the interesting and valuable character

of the book.

The Liber Quadratorum is dedicated to the Em-
peror Frederick II, who throughout his whole ca-

reer showed a lively and intelligent interest in art

and science, and who had taken favorable notice of

Leonardo's Liber Abaci. In the dedication, dated in
1225, Leonardo relates that he had been presented to

the Emperor at court in Pisa, and that Magister Jo-

hannes of Palermo had there proposed a problem2 as

a test of Leonardo's mathematical power. The prob-

lem was, to find a square number which when ei-

ther increased or diminished by 5 should still give a

square number as result. Leonardo gave a correct an-

swer, 11 97
144
. For 11 97

144
= (3 5

12
)2, 6 97

144
= (2 7

12
)2,

and 16 97
144

= (4 1
12

)2. Through considering this prob-
lem and others allied to it, Leonardo was led to write

the Liber Quadratorum [8]. It should be said that

this problem had been considered by Arab writers

with whose works Leonardo was unquestionably fa-

miliar; but his methods are original, and our admi-

ration for them is not diminished by careful study

of what had been done by his Arabian predecessors

[11].

In the Liber Quadratorum, Leonardo has given us
a well-arranged, brilliantly written collection of the-

orems from indeterminate analysis involving equa-

tions of the second degree. Many of the theorems

themselves are original, and in the case of many

others the proofs are so. The usual method of proof

employed is to reason upon general numbers, which

2In the introduction to Flos we are told that two other problems
were propounded at the same time.

Leonardo represents by line segments. He has, it is

scarcely necessary to say, no algebraic symbolism,

so that each result of a new operation (unless it be

a simple addition or subtraction) has to be repre-

sented by a new line. But for one who had studied

the \geometric algebra" of the Greeks, as Leonardo

had, in the form in which the Arabs used it [6], [12],

[7], this method offered some of the advantages of

our symbolism; and at any rate it is marvelous with

what ease Leonardo keeps in his mind the relation

between two lines and with what skill he chooses

the right road to bring him to the goal he is seeking.

To give some idea of the contents of this remark-

able work, there follows a list of the most important

results it contains. The numbering of the proposi-

tions is not found in the original.

PROPOSITION I. Theorem. Every square number3

can be formed as a sum of successive odd numbers

beginning with unity. That is,

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

PROPOSITION II. Problem. To find two square

numbers whose sum is a square number. \I take any

odd square I please, ... and find the other from the

sum of all the odd numbers from unity up to that odd

square itself."4 Thus, if 2n+ 1 is a square (= x2),

then

1 + 3 + 5 + · · ·+ (2n− 1) + x2 = n2 + (2n+ 1)

= a sum of two squares = (n + 1)2.

This is equivalent to Pythagoras's rule for obtaining

rational right triangles, as stated by Proclus [9], viz.,

(
x2 − 1

2

)2

+ x2 =

(
x2 + 1

2

)2

.

For, inasmuch as 2n+ 1 = x2, we have

n = (x2 − 1)/2 and n+ 1 = (x2 + 1)/2.

PROPOSITION III. Theorem.

(
n2

4
− 1

)2

+ n2 =

(
n2

4
+ 1

)2

.

This enables us to obtain rational right triangles in

which the hypotenuse exceeds one of the legs by 2. It

3Throughout this article, unless otherwise stated, the word

\number" is to be understood as meaning \positive integer."
4The use of quotation marks indicates a literal translation of

Leonardo's words; in other cases the exposition follows his

thought without adhering closely to his form of expression.
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is attributed by Proclus to Plato [9]. Leonardo also

gives the rule in case the hypotenuse is to exceed

one leg by 3, and indicates what the result would

be if the hypotenuse exceeds one leg by any number

whatever.

PROPOSITION IV. Theorem. \Any square exceeds

the square which immediately precedes it by the

amount of the sum of their roots." That is,

n2 − (n − 1)2 = n+ (n− 1).

It follows from this that when the sum of two con-

secutive numbers is a square number, then the square

of the greater will equal the sum of two squares. For,

if n + (n − 1) = u2, then n2 − (n − 1)2 = u2 or

n2 = u2 + (n− 1)2.

PROPOSITION V. Problem. Given a2 + b2 = c2,
to find two integral or fractional numbers x, y, such
that x2 + y2 = c2.
Solution: By Proposition II or Proposition III, find

two other numbersm and n such thatm2+n2 = q2.
If q2 6= c2, multiply the preceding equation by c2/q2,
obtaining

(
c

q
·m
)2

+

(
c

q
· n
)2

= c2

so that x = c/q ·m, y = c/q · n is a solution.
PROPOSITION VI. Theorem. \If four numbers not

in proportion are given, the first being less than the

second, and the third less than the fourth, and if

the sum of the squares of the first and second is

multiplied by the sum of the squares of the third and

fourth, there will result a number which will be equal

in two ways to the sum of two square numbers." That

is,

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

= (ad+ bc)2 + (ac− bd)2.

This very important theorem should be called

Leonardo's Theorem, for it is not found definitely

stated, to say nothing of being proved, in any ear-

lier work. Leonardo considers also the case where

a, b, c, and d are in proportion, and shows that then
(a2 + b2)(c2 + d2) is equal to a square and the sum
of two squares. This gives him still another way of

finding rational right triangles.5

5For instance, letting a = 6, b = 4, c = 3, d = 2, we have
(36 + 16)(9+ 4) = 676 = (6 · 3 + 4 · 2)2 = (6 · 2 + 4 · 3)2 +
(6 · 3 − 4 · 2)2 = 262 = 242 + 102.

PROPOSITION VII. Theorem.

(x2 − y2)2 + (2xy)2 = (x2 + y2)2

This is Euclid's general solution of the problem of

finding rational right triangles [6]; Leonardo proves

this very simply as a corollary of Proposition VI.

PROPOSITION VIII. Problem. \To find two num-

bers the sum of whose squares is a number, not

a square, formed from the addition of two given

squares." That is, to find x and y such that x2+y2 =
a2 + b2. Choose any two numbers c and d, such that
c2 + d2 is a square, and write (a2 + b2)(c2 + d2) as
a sum of two squares, let us say p2 + q2; this we
can do by Proposition VI. Construct the right trian-

gle whose legs are p and q; then the similar triangle
whose hypotenuse is equal to

√
c2 + d2 will have as

its legs the two required numbers x and y.

PROPOSITION IX. Theorem.

6(12 + 22 + 32 + · · ·+ n2) = n(n+ 1)(2n+ 1).

The proof of this is strikingly original, and proceeds

from the identity

n(n + 1)(2n+ 1) = n(n− 1)(2n− 1) + 6n2.

Hence

n(n − 1)(2n− 1) = (n− 1)(n− 2)(2n− 3)

+6(n− 1)2,

· · ·
(2)(3)(2 + 3) = (1)(2)(1 + 2) + 6(2)2,

(1)(2)(1 + 2) = 6(1)2.

It follows by addition that

n(n+ 1)(2n+ 1) = 6(12 + 22 + 32

+ · · ·+ (n− 1)2 + n2).

PROPOSITION X. Theorem.

12[12 + 32 + 52 + · · ·+ (2n− 1)2]

= (2n − 1)(2n+ 1)4n.

Leonardo gives a proof very similar to that of Propo-

sition IX.

PROPOSITION XI. Theorem.

12[22+42+62 +· · ·+(2n)2] = 2n(2n+2)(4n+2),

and likewise

18[32+62+92 +· · ·+(3n)2] = 3n(3n+3)(6n+3),
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and

24[42+82+122+· · ·+(4n)2] = 4n(4n+4)(8n+4),

and in general

6a[a2 + (2a)2 + (3a)2 + · · ·+ (na)2]

= na(na+ a)(2na+ a).

Here Leonardo has almost discovered the general

result

a2 + (a+ d)2 + (a+ 2d)2 + · · ·+ [a+ (n− 1)d]2

=
6na2 + 6n(n− 1)ad+ n(n− 1)(2n− 1)d2

6
.

His method needed no change at all, in fact.

PROPOSITION XII. Theorem. If x + y is even,
xy(x+y)(x−y) is divisible by 24; and in any case
4xy(x + y)(x − y) is divisible by 24. A number of
this form is called by Leonardo a congruum, and he
proceeds to show that it furnishes the solution to a

problem proposed by Johannes of Palermo.

PROPOSITION XIII. Problem. \To find a number

which, being added to, or subtracted from, a square

number, leaves in either case a square number."

Leonardo's solution of this, the problem which had

stimulated him to write the Liber Quadratorum, is
so very ingenious and original that it is a matter of

regret that its length prevents its inclusion here. It is

not too much to say that this is the finest piece of

reasoning in number theory of which we have any

record, before the time of Fermat. Leonardo obtains

his solution by establishing the identities

(x2 + y2)2 − 4xy(x2 − y2) = (y2 + 2xy − x2)2

and

(x2 + y2)2 + 4xy(x2 − y2) = (x2 + 2xy− y2)2.

PROPOSITION XIV. Problem. To find a number of

the form 4xy(x + y)(x − y) which is divisible by
5, the quotient being a square. Take x = 5, and y
equal to a square such that x+ y and x− y are also
squares. The least possible value for y is 4, in which
case

4xy(x+ y)(x − y) = (4)(5)(4)(9)(1) = 720.

PROPOSITION XV. Problem. \To find a square

number which, being increased or diminished by 5,

gives a square number. Let a congruum be taken

whose fifth part is a square, such as 720, whose fifth
part is 144; divide by this the squares congruent to
720,6 the first of which is 961, the second 1681, and
the third 2401. The root of the first square is 31, of
the second is 41, and of the third is 49. Thus there
results for the first square 6 97

144
, whose root is 2 7

12
,

which results from the division of 31 by the root of
144, that is, by 12; and for the second, that is, for
the required square, there will result 11 97

144 , whose

root is 3 5
12 , which results from the division of 41 by

12; and for the last square there will result 16 97
144
,

whose root is 4 1
12
."

PROPOSITION XVI. Theorem. When x > y, (x+
y)/(x − y) 6= x/y. It follows that x(x − y) is not
equal to y(x + y), and \from this," Leonardo says,
\it may be shown that no square number can be

a congruum." For if xy(x + y)(x − y) could be a
square, either x(x− y) must be equal to y(x + y),
which this proposition proves to be impossible, or

else the four factors must severally be squares, which

is also impossible. Leonardo to be sure overlooked

the necessity of proving this last assertion, which

remained unproved until the time of Fermat [4], [5].

PROPOSITION XVII. Problem. To solve in rational

numbers the pair of equations

x2 + x = u2, x2 − x = v2.

The solution is obtained by means of any set of three

squares in arithmetic progression, that is, by means

of Proposition XIII. Let us take x21, x
2
2, and x

2
3 for

the three squares, and let the common difference,

that is, the congruum, be d. Leonardo says that the
solution of the problem is obtained by giving x the
value x2

2/d. For then
7

x2 + x =
x4

2

d2
+
x2

2

d
=
x2

2(x
2
2 + d)

d2
=
x2

2x
2
3

d2
;

and

x2 − x =
x4

2

d2
− x2

2

d
=
x2

2(x
2
2 − d)

d2
=
x2

2x
2
1

d2
.

6That is, the three squares in arithmetic progression, whose com-

mon difference is the congruum 720. They are obtained by Propo-
sition XIII, thus: Taking x = 5 and y = 4, y2 +2xy−x2 = 31,
the root of the first square; x2 + y2 = 41, the root of the second
square; and x2 + 2xy − y2 = 49, the root of the third square.
7The simplest numerical example would be x21 = 1, x2

2 = 25,
x2
3

= 49, and this is the illustration given by Leonardo. It leads
to x = 25/24, from which we have x2 + x = 1225/576 =
(35/24)2 and x2 − x = 25/576 = (5/24)2.
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PROPOSITION XVIII. Problem. To solve in rational

numbers the pair of equations

x2 + 2x = u2, x2 − 2x = v2 .

The method is similar to that in Proposition XVII,

the value of x being found to be 2x2
2/d. Leonardo

adds, \You will understand how the result can be

obtained in the same way if three or more times the

root is to be added or subtracted."

PROPOSITION XIX. Problem. To solve (in inte-

gers) the pair of equations

x2 + y2 = u2, x2 + y2 + z2 = v2.

Take for x and y any two numbers that are prime to
each other and such that the sum of their squares is

a square, let us say u2. Adding all the odd numbers

from unity to u2 − 2, 8 the result is ((u2 − 1)/2)2.
Now

(
u2 − 1

2

)2

+ u2 =

(
u2 + 1

2

)2

.

Thus

z2 =

(
u2 − 1

2

)2

, and v2 =

(
u2 + 1

2

)2

.

PROPOSITION XX. Problem. To solve in rational

numbers the set of equations

x+ y + z + x2 = u2,

x+ y + z + x2 + y2 = v2,

x+ y + z + x2 + y2 + z2 = w2.

By an extension of the method used in Proposition

XIX Leonardo obtains the results x = 31
5 , y = 93

5 ,

z = 28 4
5
. He even goes farther and obtains the inte-

gral solutions x = 35, y = 144, z = 360. He con-
tinues, \And not only can three numbers be found in

many ways by this method but also four can be found

by means of four square numbers, two of which in

order, or three, or all four added together make a

square number . . . I found these four numbers, the

first of which is 1295, the second 4566 6
7 , the third

11417 1
7 , and the fourth 79920." In the midst of the

8Here u2 is odd, because it is the sum of the squares of two

numbers x and y which are prime to each other. It is not possible
that both x and y are odd, since (2m + 1)2 + (2n + 1)2 =
4m2 + 4m + 4n2 + 4n + 2, and this is divisible by 2 but not
by 4, and hence can not be a square. Thus, of the numbers x and
y, one must be even and the other odd, hence x2 + y2 is odd.

explanation of how these values were obtained, the

manuscript of the Liber Quadratorum breaks off

abruptly. It is probable, however, that the original

work included little more than what the one known

manuscript gives. At all events, considering both the

originality and power of his methods, and the impor-

tance of his results, we are abundantly justified in

ranking Leonardo of Pisa as the greatest genius in

the field of number theory who appeared between

the time of Diophantus and that of Fermat.
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The Algorists vs. the Abacists: An Ancient

Controversy on the Use of Calculators

BARBARA E. REYNOLDS

College Mathematics Journal 24 (1993), 218{223

In 1299 the bankers of Florence were forbidden to

use Arabic numerals and were obliged instead to

use Roman numerals. And in 1348 the University of

Padua directed that a list of books for sale should

have the prices marked \non per cifras, sed per lit-

eras clara" (not by figures, but by clear letters). [1],

[11], [15]

Our \modern" decimal system of notation actually

comes to us from ancient India. Some of the symbols

in use today were used as early as the third century

B.C. (The zero, however, did not appear until much

later | about A.D. 376.) The Arabs carried these nu-

merals into Western Europe at the time of the Moor-

ish invasions about A.D. 750. Gerbert, who became

Pope Sylvester II toward the end of the tenth cen-

tury, is the first European scholar who is definitely

known to have taught using the Hindu-Arabic nu-

meration system. Yet, three and four hundred years

later we find these numerals being outlawed! Hindu-

Arabic numerals seem so much more convenient to

use than Roman numerals, especially for represent-

ing large numbers in a small space, that we might

wonder why this system of notation was not readily

adopted as soon as it was known. [3], [7], [13]

Since the Greeks of the sixth and fifth centuries

B.C. are known to have traveled throughout the an-

cient world and would certainly have come into con-

tact with positional systems of numeration such as

that used by the Babylonians, it seems strange that

they did not generally recognize and adopt a numer-

ation system that was more efficient for computation

than their own non-positional system. Various con-

jectures have been offered: that they were more in-

terested in properties of the numbers themselves than

in theories of computation, or that they preferred to

guard knowledge of computation from common peo-

ple (and thus protect the hold the educated elite held

over the lower classes). In either case, the ancient

Greeks, who contributed much to the development

of other areas of mathematical thought, did little to

advance the use of a positional numeration system,

and thus little to advance the science of computa-

tion. [9]

The numerals used by the ancient Romans are fa-

miliar to us, as they are still used for such things

as numbering chapters in a book or representing

the date on a cornerstone. Suppose Roman numerals

were the only numerals we had, and that all com-

putations had to be done using them. The notation

is simple enough for small numbers when the cal-

culations can be easily done mentally, but it quickly

becomes cumbersome as the numbers get large.

How did the ancient Romans do their calcula-

tions? For instance, how would they have found the

sum CCVIII + DCXVII? Perhaps they first wrote

down all the symbols that appeared in the prob-

lem, thus: DCCCXVVIIIII, and then regrouped these

as: DCCCXXV. (See Figure 1.) However, there is

archeological evidence to suggest that normally they

would have used a calculating board or abacus.

Contemporary writers in ancient Greece and Rome

made frequent reference to the use of pebbles and

Figure 1.

148
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Figure 2. The abacist versus the algorist. (From Gregor Reisch, Margarita Philosophica, Strassbourg, 1504.)

other counters for reckoning. Although no wooden

boards have survived from those times, several stone

or marble Greek abaci have been found. At many

Roman sites, archeologists have found piles of small

smooth rounded stones which look like they may

have been made by dropping a hot molten substance

from several feet above a flat surface. These stones

would have been a convenient size to use in calcu-

lating on an abacus. A few bead-frame calculators,

small enough to be held in one hand, have been

found. Perhaps these were the portable pocket cal-

culators of that day. [11]

Now how would that same addition problem have

appeared if the Romans did the actual computation

on the abacus? Unlike paper and pencil algorithms,

all computations on the abacus are dynamic pro-

cesses. The first number is represented on the board

by appropriately placed stones or counters. To add

the second number to this, more stones are pushed

into place and the regrouping is done quickly |

almost \automatically" | so that when the compu-

tation is finished, the only number appearing on the

board is the final result.

In Figure 3, notice that V is represented by a stone

in the space between the I and the X, as if it were

an intermediate grouping. Similarly D is represented

by a stone in the space between C and M. The five

I-stones are replaced by one stone in the V-space,

and two V-stones are replaced by one stone on the

X-line. The final result would appear as in Figure

3b. This could easily be recorded as DCCCXXV by

glancing at the stones. In the notation which we use

today, those seven stones would be represented by

just three symbols as 825.
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Figure 3.

The examples of abacus representations and the

corresponding Roman and Arabic notations in Fig-

ure 4 suggest that Roman numerals are easier to

use in recording calculations that were done on the

counting board. An illiterate public may well have

been suspicious of this new notation which some-

times used one symbol to represent two, three, or

even four stones and | worse | sometimes used a

symbol where there was no stone at all! Although the

use of the zero symbol was sometimes understood in

medieval times, it was, for the most part, a confus-

ing concept which was not needed in the use of the

counter board or in the writing of Roman figures.

If the result was recorded in Roman numerals, you

would have exactly one symbol for each stone on

the counter board. Pen-reckoning, as it was called,

and even the figures themselves were treated with

suspicion. [7], [11]

The Italian laws referred to at the beginning of this

article hint of some kind of controversy. Generally

laws are not enacted unless the state feels the need

to protect one group of individuals from another.

Although the Hindu system of numeration had

been rejected by some, Italian merchants of the

twelfth century recognized its superiority for compu-

tational purposes. These merchants became noted for

their knowledge of arithmetic operations and devel-

oped methods of double-entry bookkeeping. How-

ever, the forms of the Hindu numerals were not

fixed, and the variety of forms gave rise to ambi-

guity and fraud. (Human nature hasn't changed ap-

preciably since the twelfth century!) Outside of Italy,

most European merchants kept accounts in Roman

numerals until at least 1550 (and most colleges and

monasteries until 1650!). [1], [4]

The struggle between the algorists, as the advo-

cates of pen-reckoning were called, and the abacists

continued into the sixteenth century. In manuscripts

from the twelfth century, there are striking differ-

ences between these two groups. Algorists calcu-

late with a zero, do not employ the abacus, teach

extraction of roots, and use Babylonian sexagesi-

Figure 4.

mal fractions; the abacists, on the other hand, make

no reference to Hindu-decimal notations, use aba-

cus methods (which make extraction of roots almost

unthinkable), and use Roman duodecimal fractions.

[4], [8]

In Germany, France, and England, Hindu numer-

als were scarcely used before the mid-fifteenth cen-

tury. The use of the abacus seems to have hung on

well into the seventeenth and eighteenth centuries.

Even after people finally began to trust the Arabic

numerals, they still preferred to use abacus methods

to do their calculations. Evidence of the widespread

popular use of abacus methods can be found in arith-

metic books published in the sixteenth through the

eighteenth centuries. [4], [10], [11]

Among the most popular English-language text-

books were those written by Robert Recorde. In his

Ground of Artes Teaching Works and Practice of
Arithmetik, first published in 1542, he included a
chapter showing the use of abacus methods for doing

calculations using Hindu-Arabic figures. This chap-

ter was retained in subsequent editions for more than

a hundred years! Numerous other arithmetics pub-

lished in the sixteenth through the eighteenth cen-

turies in French, Spanish, German, and even Latin

describe abacus methods for solving arithmetic prob-

lems. [10], [11]

A few tables have survived from the late Middle

Ages with lines carved into their tops and letters or

figures carved into them indicating that they may

have been used as counting tables. And there are

a large number of metal counters for use on these

tables. (These counters are called Rechen-pfennig|
literally, \reckoning penny" | in German, and jeton
in French, from jeter, to throw or to cast.) They were
minted in great quantities from the twelfth through

the eighteenth centuries. [11]

Rechen-pfennig were apparently made to order for
the customer and the variety of design is marvelous.

Many bear crests or seals of various kinds, or heads

of reigning monarchs in England and France. Many

carry a proverb or other common saying, such as:

HEUT ROT MORGEN TODT (Here today, gone to-
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morrow), GOTES SEGEN MACHET REICH (The

blessing of God makes it rich), DASWORT GOTES

BLEIBT EWIG (The word of God endures forever).

Some of the most interesting counters | and, from

the point of view of the history of arithmetic, the

most valuable | are those that show a merchant

sitting at a counting board. Others show an abacus

on the obverse and a problem worked in Arabic nu-

meral on the reverse, indicating that the two methods

of computation were in use at the same time. [11]

The thought process involved in working on the

counter board is different from that involved in pen-

reckoning. If I am solving a problem like 400−382,
I begin by saying, \Ten minus two is eight." This is

a fact that I have memorized and just use without

picturing in my mind a physical model that repre-

sents this fact. But if I make purchases at the drug-

store amounting to $3.82 and give the clerk four

one-dollar bills, I expect a dime, a nickel, and three

pennies in change. This process of seeing a simple

subtraction in concrete terms and of grouping the

result in convenient units | nickels, dimes, quar-

ters | is more like the thought process involved in

working on an abacus.

Today the abacus is commonly thought of as a

\Chinese calculator." But it did not appear in China

until rather late. In fact, the earliest mention of the

abacus in Chinese literature does not appear until

the twelfth century A.D.! [11] In places throughout

the world where the abacus is presently being used

| Japan, China, Russia, and other countries in the

Near and Far East | it generally takes the form

of beads sliding on fixed bamboo rods. There are

a fixed number of beads on each rod and there is

no possibility of \carrying" a bead from one rod to

the next. Usually the beads are arranged on each rod

with the unit-beads below a calculating bar and the

five-beads above the bar, as in Figure 5. When beads

are pushed against this bar, they are considered in

the calculation; when they are pushed away from the

bar, they are ignored. So the beads on the abacus

pictured in Figure 5 represent the value 71,536.

Figure 5.

The usual form of the Chinese abacus or suan-pan
has five unit-beads and two five-beads on each rod.

So it would be possible to represent a value of up

to 15 on each rod. Then in simplifying a result, two

five-beads on one rod are pushed away from the bar

while a unit-bead is pushed toward the bar on the

rod immediately to the left. Five unit-beads at the bar

are replaced in a similar manner by one five-bead on

the same rod. Thus, when the result is completely

simplified, the value in ordinary decimal notation

can be read from the abacus by simply reading the

value represented on each rod from left to right.

The Japanese have developed a form of the abacus

which allows faster operation by a skilled person.

The beads are smaller and each rod is shorter. (Thus

each bead is moved through a shorter distance than

on the Chinese model.) Also, the Japanese abacus or

soroban has only four unit-beads and one five-bead
on each rod. So it is possible to count up only to 9 on

each rod. In a manner very similar to ordinary deci-

mal notation, the regrouping must be done constantly

throughout the process of calculation. The final an-

swer is easily read without any need to simplify the

result.

A little reflection on the different numbers of

beads on each rod of the Chinese and Japanese abaci

gives us a method for doing calculations in various

bases. In general, in order to do calculations in base

n, we would need an abacus on which we could
count to at least n−1 on each rod. An ordinary Chi-
nese abacus can be used to work problems in base

16, or hexadecimal notation. Similarly, if we ignore

the five-beads and consider only the five unit-beads,

we could do calculations in base 6. And by ignor-

ing the five-beads on the Japanese soroban, we can
calculate in base 5. (In these lower bases, base 5 or

base 6, it really isn't necessary to have an interme-

diate grouping as we can quickly \see" three, four,

or five beads.)

The thought processes involved in using the aba-

cus are very closely related to the process of count-

ing, and are surprisingly similar to the arithmetic of

making change. For more than two thousand years,

the abacus has been used throughout the world to

do base-10 arithmetic. Yet the early historic roots of

the abacus are older than the common acceptance

of decimal notation. Roman numerals, awkward for

\pen-reckoning," seem to be a natural notation for

recording the results of calculations done on an aba-

cus. The abacus developed as a mechanical device

which operates on basic ideas about counting. In

contemporary America we no longer use counting
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boards; however, we are dependent upon other kinds

of calculating devices. Even modern electronic com-

puters operate on basic ideas about counting | al-

though, these usually count in base 2 at speeds so

fast that we easily overlook the underlying counting

process.
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Sidelights on the Cardan-Tartaglia Controversy

MARTIN A. NORDGAARD

National Mathematics Magazine 13 (1937{38), 327{346

1

There is quite a difference in the frame of mind

which comes with the answer to a problem only

vaguely defined and lying in an uncharted field, like

the invention of the differential calculus, or with a

discovery that comes undivined like a flash of light-

ning from some human mind, like the invention of

logarithms,|and the reaction that greets the answer

to a problem posed to the world for centuries when

that answer arrives, two thousand years in the com-

ing.

The solution of the cubic had presented itself

to the human mind as an intellectual problem al-

ready in the fifth century B.C.; it became a scientific

need in Archimedes' calculation on floating bod-

ies in the third century B.C.; it confronted the Arab

astronomers in the Middle Ages. And now it was

solved! The first of \the three unsolved problems of

antiquity" to be solved.

It produced a great impression. How great, one

can gauge from the fact that all respectable texts on

algebra for the next 200 years gave long chapters and

discussions to the cubic equation. The influence of

the discovery must be gauged not only by its mathe-

matical fruitfulness, which after all did not prove to

be so very great, but by the stimulus it gave to study,

the courage it gave the human mind to soar into the

unknown and \make the impossible possible".

The main events leading up to the discovery of a

general solution of the cubic equation and the en-

suing controversy are given in the various histories

of mathematics. But there are illuminating sidelights

in this unique controversy|documentary, anecdo-

tal, biographical| which do not lend themselves to

recording in a well-balanced history of mathematics

but which are of absorbing interest to the members

of the guild of mathematicians. There are the many

source materials, for one thing; from some of these

we shall quote extracts. There is the language and

symbolism, or lack of it, of the algebra prior to Vieta,

Stevin, and Descartes. And then there is the expo-

sition of the status of algebraic theory before the

monumental works of Cardan and Tartaglia.

The 16th-century custom of scientific \duels" and

public disputations were a joint inheritance from

the philosophical disputations of the Schoolmen and

the tournaments of the knights. A chief canon of

combat was that no one should propose a question

or problem that he himself could not solve. The

outward forms were modeled somewhat after the

contests of arms|challenge, response, witnesses,

judges, keeper of the stakes, etc.

Public challenges were given, not only for acquir-

ing glory and prestige, but also for making a liv-

ing. The vanquished, honor lost, had no more pupils;

while the victor, heralded and feted, would be called

to various cities to teach and lecture. Consequently,

many inventors guarded their secrets. There must

have been many discoveries lost to the world due to

this custom. Tartaglia himself died while still writ-

ing on his algebra and before reaching his contem-

plated climax on his solution of the cubic; and ex-

cept for the premature publication of it by Cardan

and Tartaglia's accusation in the Quesiti his solution
might have died with him.

2

The Dramatis Personae of the celebrated contro-
versy were five: Zuanne de Tonini da Coi, Antonio

Maria Fior, Girolamo Cardano, Nicolo Tartaglia, and

Ludovico Ferrari. The time: 1530 to 1548. Place:

Pavia, Padua, Bologna, Milano, Brescia, Venice, the

centers of art and learning in Renaissance Italy.

153
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The first two were minor characters and little is

known about them outside their connection with this

controversy; they were messengers, links, as it were,

to bring about action between the other three. Zuanne
da Coi (sometimes called Giovanni dal Colle) was a
teacher in Brescia interested in mathematics from the

standpoint of problem solving. Antonio Maria Fior
(sometimes written Floridus and Del Fiore) flitted

about from place to place, causing battle and distur-

bance; but History will thank him for it. He was an

arithmetician, having according to reports no theo-

retical knowledge in algebra. He had been a pupil

of Scipio Ferro, of whom more later.

Nicolo Tartagliawas born at Brescia in 1506, died
at Venice in 1557. He came from a very poor fam-

ily, was left fatherless at the age of six, and had only

two weeks of formal schooling; but by self educa-

tion his powerful mind mastered both the classics

and the then known mathematics. He taught mathe-

matics in Verona, Vicenza, Brescia, and, from 1534

or 1535 until his death in 1557, in Venice. His prin-

cipal mathematical works are: Nova Scienza (1557),
where he is the first one to discuss the problems of

gunnery and fortification mathematically; (2) Que-
siti ed invenzioni diverse (1546), in nine books, of
which the last one deals with algebra; (3) General
Trattato di numerie misure in two volumes (the first
published in 1556, the second in 1560) including an

arithmetic, a treatise on numbers, and his work on

algebra.

Girolamo Cardano (Hieronymus Cardanus or

Jerome Cardan) was born at Pavia in 1501, died

in Rome in 1576. He received a good university ed-

ucation in Pavia and Padua, having equal zest for

medicine and mathematics. Between 1524 and 1550

he taught and practiced medicine, much of the time

in Milano; in the same period he studied mathe-

matics assiduously and published many important

works. In 1562 he became a university professor at

Bologna and in 1570 he moved to Rome to become

astrologer to the Pope. He wrote voluminiously on

many subjects, but in mathematics we mention these:

(1) Practicae Arithmeticae (1539); (2) De Regula
Aliza (1540); (3) Ars Magna (1545), the first sys-
tematic work in algebra up to that time, a text that

helped to clarify the principles of algebra and lift the

subject out of mere equational problem solving into

a theory of equations.

Ludovico Ferrari was born at Bologna in 1522
and died there in 1565. His parents were poor, and

he came to Cardan's house as an errand boy. He was

later allowed to listen to his master's lectures, and

before long became Cardan's most brilliant pupil.

For all his moral lapses and irascible temper, Ferrari

was ever loyal to his protector; in fact, he looked

upon himself as owing his very being to Cardan, des-

ignating himself as \suo creato". As far as we know

he never published anything independently. What he

discovered he let Cardan encorporate into the Ars
Magna. One of his discoveries was a general solu-
tion of the biquadratic equation. For he was able, by

using the solution of a cubic already discovered by

Tartaglia, to solve the question proposed by Da Coi,

namely

x4 + 6x2 + 36 = 60x,

succeeding where both Tartaglia and Cardan had

failed. Ferrari was only twenty-three years old when

the Ars Magna was published.
In reading works on algebra from this period the

reader must learn to divorce from his conscious-

ness many of the ideas and forms he has associ-

ated with algebra. He will remember that in 1500

there were no imaginary numbers; they did at times

make unwelcomed appearances but were not legit-

imized. Negative numbers did not have operational

status and x3 = px+q had a different solution from
that of x3 + px = q, for instance. The symbols +,
−, =, in our sense, did not exist, and our words
\plus" and \minus" were not conventionalized. The

unknown was variously called thing, side, cos, res.
Thus Tartaglia's equation (\capitolo") x3 +3x2 = 5
was \a cube and three censi are equal to five".

Besides Cardan's Ars Magna and Tartaglia's

Questiti and General Trattato we have as source
material the six Cartelli (letters of challenge of Fer-
rari) and the six Risposti (responses) of Tartaglia.
These were sent as printed pamphlets to the mathe-

maticians of Italy.

Being literature of a day it is a wonder that all

the twelve bulletins have come down to us. As one

might expect, they have their own exciting history.

In 1844 Prof. Silvestro Gherhardi owned a volume

containing the six Cartelli of Ferrari and the first
five Risposti of Tartaglia. In 1848, after a four years'
search in all the libraries and old book-stores of the

various cities of Italy, Gherhardi finally laid hands

on the missing 6th Risposta in an old book shop in
Bologna; it is the only copy of this Risposta found
so far. Previously all that was known of Tartaglia's

6th letter were citations from Bombelli (1572) and

writers living later than Tartaglia by 200 years. In

1858 Gherhardi, meeting with political vicissitudes

and exile and in need of money, sold his copy to Libri
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of London, it being \clipped" on to the other eleven.

But first Gherardi was permitted to make an exact

copy of the letters \by the hand of Benaducci di

Foligno". And that was fortunate; for the copy sent to

Libri was lost. So it has been by a slender thread that

the last of the twelve letters has reached us. In 1876

the twelve letters were \collected, autographed, and

published" by Enrico Giordani in a limited edition of

212 copies under the title I sei cartelli di matematica
disfida di Ludovico Ferrari con sei controcartelli in
risposta di Nicolo Tartaglia.
An additional word concerning Tartaglia's Quesiti

ed invenzioni diverse. It consists of short, sprightly
accounts in dialogue form of problems he discussed

with or solved for various people, the first Quesiti
dated 1521, the last, 1541. Quoting conversations

and letters, citing dates, places, and names of inter-

locutors, many of whom were still living, the book

has strong documentary secureness. It is charmingly

written, besides. The last of the nine books, com-

prising 42 quesiti, deals with algebra.

3

The first to give a general solution for a cubic equa-

tion was neither Cardan nor Tartaglia. That honor

belongs to Scipio del Ferro, professor of mathemat-

ics at Bologna.

As late as 1494 Luca Pacioli in his authority-

carrying Summa had set forth these types of equa-
tions as not yet being solved:

n = ax+ bx3

n = ax2 + bx3

n = ax3 + bx4.

And he intimated that their solutions might not be

possible. However, the first of these was solved by

Ferro of Bologna.

About all we know of Scipio Ferro is that he was

born at Bologna about 1465 and died there in 1526,

that he was professor at the University of Bologna

from 1496 to 1526, that he had a general solution

for x3 + px = q, and that he confided his method
to his pupil Antonio Maria Fior. We do not know

whether he had derived it himself or found it in an

Arab work; whether it was an empirical formula or

was the product of a demonstration. What writings

he left must have come into the hands of his son-

in-law Annibale della Nave, who succeeded him in

his professorship (1526{1560). But no such writings

are extant. Both Cardan and Tartaglia refer to the

solution Fior received from Ferro, Tartaglia placing

it about 1506, Cardan placing it at about 1514. It

was probably even later.

4
Curiously enough, the one who seems to have set the

wheels in motion for the final onslaught on the cubic

equation was a man of meagre mathematical attain-

ment but of much physical mobility. It was Zuanne

de Tonini da Coi. Teaching in Brescia he had, of

course, heard of the work of Nicolo of Brescia, now

of Verona. In 1530, as one Brixellite to another, with

more courage than prudence he proposed to Tartaglia

two problems which reduced to solving the equations

x3 + 3x2 = 5 and x3 + 6x2 + 8x = 1000.

This, the opening chapter in the history of the

exciting discovery, is described by Tartaglia in his

Quesiti, namely in Quesito XIV. There for the first
time we learn that Tartaglia (at this time only 24

years of age) had been dabbling with the cubic.

It will give the reader a little of the flavor of the

period and give him a peek into one of the interesting

books of mathematics to read Tartaglia's own first

reference to the attack on the cubic equation.

\QUESITO XIV, which was proposed to me at

Verona by one Maestro Zuanne de Tonini da Coi,

who has a school in Brescia, and was brought to me

by Messer Antonio da Cellatico in the year 1530.

Maestro Zuanne| Find a number which multi-

plied by its root increased by three equals five. Sim-

ilarly find three numbers such that the second is

greater by two than the first and the third is greater

by two than the second and where the product of the

three is 1000.

N.| M. Zuanne, you have sent me these two

questions of yours as something impossible to solve

or at least as not being known by me; because, pro-

ceeding by algebra, the first leads to the operation

on a cube and 3 censi equal to 5, and the second

on a cube and 6 censi and 8 cose equal to 1000.

[That is, x3 +3x2 = 5; x3 +6x2 +8x = 1000.] By
F. Luca and others these equations have up to now

been considered to be impossible of solution by a

general rule. You believe that with such questions

you can place yourself above me, making it appear

that you are a great mathematician. I have heard that

you do this towards all the professors of this science

in Brescia, so that they for fear of these your ques-

tions do not dare to talk with you; and perhaps they

know more about this science than you.
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M. Z.| I understand as much as you have written

to me and that you think such cases are impossible.

N.| I do not say such cases are impossible. In

fact, for the first case, that of the cube and the censi

equal to a number, I am convinced I have found the

general rule, but for the present I want to keep it

secret for several reasons. For the second, however,

that of the cube and censi and cose equal to a num-

ber, I confess I have not up till now been able to find

a general rule; but with that I do not want to say it

is impossible to find one simply because it has not

been found to the present. However, I am willing to

wager you 10 ducats against 5 that you are not able

to solve with a general rule the two questions that

you have proposed to me. And that is something for

which you should blush, to propose to others what

you yourself do not understand, and to pretend to

understand in order to have the reputation of being

something great."

That ends the first encounter.

5
We now go back a ways to the aforementioned pupil

of Scipio del Ferro, Antonio Maria Fior, sometime

of Venice. He seems to have turned Ferro's for-

mula to account in the popular mathematical con-

tests then in vogue. Hearing of Tartaglia's claim to

solving some cubic, possibly publicized through Da

Coi, and thinking Tartaglia an impostor and himself

knowing Ferro's solution of x3 + px = q, he chal-
lenged the latter to a contest. It was set for Febru-

ary 22, 1535. Tartaglia, knowing Fior was only an

arithmetician, gave the contest little thought at first.

But when he heard that \a great master" \30 years

ago" had communicated to him the solution of a

cubic, he became worried and set himself to study

the equation x3 + px = q. (He already had solved
x3 + px2 = q.) On February 14, eight days before
the date set for delivering the solutions to the no-

tary who kept the stakes, he found the solution of

x3 + px = q; and on the next day he also found the
solution of x3 = px+ q.
Each had challenged the other with thirty ques-

tions. As Tartaglia had suspected, all Fior's prob-

lems reduced to the form x3+px = q, and he solved
them all in two hours. It almost seemed wicked of

Tartaglia, for he had constructed problems such that

most of them led to the solution of x3 + px2 = q
and Fior could not answer a one of them. \I waived

the stake and took the honor," says Tartaglia.

Thus ended the second encounter.

We read of these things in the histories. But our

modes of life and thinking, our physical environ-

ment, are so removed from 16th century Italy that it

is hard for us to reconstruct the tenseness and excite-

ment that accompanied these contests. Honor, gold,

and the instinct of game were powerfully present.

The questions themselves|the instruments of com-

bat|what did they look like? The histories tell us

about x3 + px = q. That seems so general and col-
orless. And then there were no x3 + px = q. There
were \cube and cose equal to a number" and simi-

lar expressions. The challenges did not come in that

form either|they came as problems. And since this

is a sidelight, we shall see what they are. And, gentle

reader, so as to be along in spirit with the tense par-

tisans of that February 22, 1535, solve one or two;

you are along in the opening skirmish of the famous

\Battle of the Cubic" of the 16th century.

These were the questions submitted by Fior for

February 22, 1535:

1. Find the number which added to its cube root

gives 6.

2. Find two numbers in double proportion [x, 2x]
such that if the square of the larger is multiplied

by the lesser and to the product is added the sum

of the numbers, the result is 40.

3. Find a number which added to its cube gives 5.

4. Find three numbers in triple proportion

[x, 3x, 9x] such that if the square of the small-
est is multiplied by the largest and the product

be added to the mean number, the result is 7.

5. Two men were in partnership, and between them

they invested a capital of 900 ducats, the capital

of the first being the cube root of the capital of

the second. What is the part of each?

6. Two men together gain 100 ducats. The gain

of the first is the cube root of the gain of the

second. What is the gain of each?

7. Find a number which added to twice its cube

root gives 13.

8. Find a number which added to three times its

cube root gives 15.

9. Find a number which added to four times its

cube root gives 17.

10. Divide fourteen into two parts such that one is

the cube root of the other.
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11. Divide twenty into two parts such that one is

the cube root of the other.

12. A jeweler buys a diamond and a ruby for 2000

ducats. The price of the ruby is the cube root of

the price of the diamond. Required the value of

the ruby.

13. A Jew furnishes capital on the condition that

at the end of the year he shall have as interest

the cube root of the capital. At the end of the

year the Jew receives 800 ducats, as capital and

interest. What is the capital?

14. Divide thirteen into two parts such that the prod-

uct of these parts shall equal the square of the

smallest part multiplied by the same.

15. A person buys a sapphire for 500 ducats and

gains the cube root of the capital invested. What

was his gain?

16{30 deal with lines, triangles, and various equi-

lateral polygons with sides so divided as to become

problems of dividing 7, 12, 9, 25, 26, 28, 27, 29,

34, 12, 100, 140, 300, 810, 700 each into two parts

such that one is the cube root of the other.

As we see, all these reduce to the form x3 +px =
q.

Of Tartaglia's 30 challenge questions to Fior we

have record of only the first four. These follow:

1. Find an irrational quantity such that when it is

multiplied by its square root augmented by 4, the

result is a given rational number.

2. Find an irrational quantity such that when it is

multiplied by its square root diminished by 30,

the result is a given rational number.

3. Find an irrational quantity such that when to it

is added four times its cube root, the result is

thirteen.

4. Find an irrational quantity such that when from

it one subtracts its cube root, the result is 10.

These problems resolve themselves into solving

for the irrational quantity x in

x3 +mx2 = n; m2x2 = x3 + n;

x3 +mx = n; x3 = mx+ n.

6

It is the ever-moving Da Coi again who brings in

the next important personage in these events, Giro-

lamo Cardano. For after his interview with Tartaglia

he leaves Brescia and moves to Milano. There he

meets Cardan who engages him to instruct one of

his classes. Da Coi tells him about Tartaglia and

his discovery. Cardan, at this time preparing mate-

rial for his ambitious work, Ars Magna, was much
interested in the mathematical duel of Tartaglia and

Fior. He therefore sends as messenger Zuan Anto-

nio de Bassano, a book seller, to Tartaglia to inquire

about his invention. The atmosphere of the time and

the temperament of the principals are well sketched

by Tartaglia, under the date of January 2, 1539, in

Quesito XXXI. Fatto da M. Zuanantonio libraro, per
nome d' un Messer Hieronimo Cardano, Medico et
delle Mathematice lettor publico in Milano, adi. 2.
Genaro, 1539.
Zuantonio|Messer Nicolo, I have been directed

to you by a certain man, a good physician in Milano

called Messer Hieronimo Cardano, who is a great

mathematician and gives public lectures on Euclid

in Milano; at present he has a work in press on the

art of arithmetic, geometry, and algebra, which will

be a beautiful thing. He has heard of the contest

you had with Maestro Antoniomaria Fiore and how

you agreed to prepare 30 cases or questions each,

and that you did that. And his Excellency has heard

that all the 30 questions proposed to you by Maestro

Antoniomaria led you by algebra to an equation of

the cosa and the cube equal to a number (che ui
conduceano in Algebra in un capitolo di cosa e cubo
equal a numero), and that you found a general rule
for such an equation and that by the power of this

invention you solved in the space of two hours all

the 30 cases he proposed to you. On this account

his Excellency begs that you would be so kind as to

send him this rule that you have invented; and if it

pleases you he will insert it in his forthcoming book

under your name.

N.| Tell his Excellency that he must pardon me;

that when my invention is to be published it will be

in my own work. His Excellency must excuse me.

Z.| If you do not want to impart your invention

to him, his Excellency ordered me to ask you at least

to let him have the 30 abovementioned cases which

were proposed to you together with their solutions

[meaning the results, not the rule obtaining them].

N.| Not even that can be. For whenever his Ex-

cellency observes one of these cases and its solution

he will get to understand the rule that I found. And

by means of this one rule many others dealing with

this subject can be derived."

So far, Tartaglia.
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After this second rebuff Zuanantonio proposes

seven problems leading to these equations:

2x3 + 2x2 + 2x+ 2 = 10 (1)

2x3 + 2x2 + 2x+ 2 = 10x (2)

2x3 + 2x = 10 (3)

2x3 + 2x2 = 10 (4)

2x3 + 2 = 10x (5)

x4 + 8x2 + 82 = 10x3 (6)

x3 + 3x2 = 21 (7)

Somewhat hotly Tartaglia rejoins: \These ques-

tions are from Messer Zuanne da Coi. And from no

one else, for I recognize the last two. Two years ago

he proposed to me a question like the sixth and I

made him own up that he neither understood the

problem nor knew the solution. He also proposed

one similar to the last one, which involves work-

ing in census and cubes equal to a number [that is,

x2 + px3 = q] and out of my kindness I gave him
the solution less than a year ago. For such solutions

I found a particular rule applicable to similar prob-

lems."

The bookseller maintains the questions are Car-

dan's, however. And to support his request he praises

Cardan's abilities and deftlymentions his connection

with a certain high and rich personage, the Marquis

del Vasto, a benefactor who was to publish Cardan's

book.

\I do not say his Excellency is not a very learned

and capable person", says Tartaglia. \But I say he

is not able to solve the seven problems which have

been proposed to me to be solved by a general rule."

When the messenger leaves he gives him a copy of

Fior's 30 questions but not the solutions.

Cardan's reply, February 12, 1539, is full of bitter

insult. You are not at the top of the mountain, you

are only at its foot, in the valley, he tells Tartaglia, in

substance. It is peculiar that you attribute the seven

problems to Da Coi, as if there were no one in Mi-

lano able to do such a thing. Da Coi is as young as he

says he is; I have known him since before he could

count to ten. You said if one of these problems is

solved, they all are solved. That is completely wrong.

I wager 100 ducats you are not able to reduce them

to one, nor to two, nor to three equations. (This is

the purest invention of Cardan: Tartaglia had said

nothing of the kind. Or else the bookseller had mis-

understood him.) Concluding, he proposes two prob-

lems. The first, taken from Pacioli but not solved by

him, requires to find four numbers in geometric pro-

gression whose sum is 10 and whose square sum

is 60. The second concerns two men in partnership

who gain the cube of the tenth part of their several

capitals.

To the first Tartaglia in his restrained reply of

February 18 gives an elegant solution. But he is not

cajoled into giving away his secret by solving the

second, still keeping to himself his solution of \the

cube and the cose equal to a number".

Neither tricks nor insults succeeding, Cardan turns

to flattery and praise. So in a letter dated March 13,

1539 he begins: \Messer Nicolo, mio carissimo."

Asks Tartaglia not take his former words up in bad

part. Blames it onto Da Coi who had given him a

wrong idea of Tartaglia. Now the ungrateful wretch

has left Milano unceremoniously and also left the

sixty pupils he had secured for him. He ends by

inviting Tartaglia to visit him in Milano and says

that the Marquis del Vasto is anxious to meet him.

(This was probably pure fiction.) He concludes the

letter with high praise for the nobleman and warm

feelings for \mio carissimo" Tartaglia:

\And so I urge you to come at once, and do not

deliberate; for the said Marquis is a remunerator of

all virtuosi, so liberal and magnanimous that no one

who serves his Excellency in any matter remains

unsatisfied. So do not hesitate to come, and come

and live in my house and no otherwheres. May Christ

keep you from harm. March 13, 1539. Hieronimo

Cardano, Physician."

This was the rift in the wall that made Tartaglia's

citadel crumble. He accepts the invitation and stays

a few days in Cardan's house. Their conversation is

recorded in Quesito XXXIV under date March 25,

1539.

C.| It is convenient for us that the Marquis has

just left for Vigevano so we can talk about our af-

fairs till he returns. You surely have not been any

too obliging in not showing me your solutions of

the cube and cose equal to a number that I have so

earnestly asked you to do.

T.| I tell you, I am niggardly in this matter, not

for the sake of this simple equation only and the

things that it has enabled me to find, but for the

sake of all the things this equation ought to help

me cover in the future. For it is a key that opens up

the investigation of a great many other equations. If I

were not now occupied with the translation of Euclid

(I am already on Book XIII) I would already have

discovered a general rule for many other equations.

[Then he discusses his plan for his book on algebra.]

If I now showed the solution to a speculative mind,
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like your Excellency, he could easily discover the

other solutions and publish them as his own, which

will completely spoil my project. [Notice all along

the distinction between solutions, answers, and the

formula or process that gives the solutions.] This is

the reason that has compelled me to be so discourte-

ous toward your Excellency; so much the more since

you are about to publish a work on a similar sub-

ject and in which work, you wrote you would like

to insert my invention under my name.

C.|But I wrote you that if that did not meet your

approval, I will promise to keep it a secret.

T.| As to that, I just can't believe you.

C.| Then I swear you by the holy Evangels of

God and as a man of honor that I will not only never

publish it, but I will write for myself in code so that

no one finding them after my death understand. If

you will now believe me, believe; if not, let it pass.

T.| If I did not believe such an oath, I should

certainly be regarded as a man without faith. But I

have decided to go to Vigevano to find the Marquis;

for I have already been here three days and am tired

of waiting. On my return I promise to reveal it all.

C.| If you wish to see the Marquis I will give

you a letter so that he may know who you are. But

before you go I wish you would show me the rule,

as you promised.

Then Tartaglia gives him the solution for x3 +
px = q and x3 +q = px. Instead of a code Tartaglia
gives it in twenty-five lines of poetry, seven tercets

followed by a quatrain. It must have been as good

as a code, for in a letter of April 9th Cardan has

trouble with this mathematical poetry. In his reply

Tartaglia says it is not ut = 1
3
p3, but ut = ( 1

3
p)3.

We will just give a taste of this mathematical po-

etry by quoting one tercet:

Quando che'l cubo con le cose appresso,

Se aggruaglia a qualche numero discreto

Trouan dui altri, differenti in esso.

Meaning: If x3 + px = q, let t− u = q.
The next few lines say: Also let ut = (1

3
p)3, then

x = 3
√
t− 3

√
u.

Tartaglia must already have begun to feel uneasy,

for on leaving Cardan he says to himself: \I will

not go to Vigevano. I will go back to Venice, come

what may." In the exchange of letters that follow it

becomes evident that Cardan is putting his powerful

mind to work on Tartaglia's formulae from every

angle and soon discerned implications that Tartaglia

himself had either not been able to see or was too

busy to follow up (he was busy with his translation

of Euclid).

The Irreducible Case came up in a letter from

Cardan in August 1539, when Cardan asks: How

about x3 = px+ q when

(p
3

)3

>
(q

2

)2

as in x3 = 9x+ 10?
Tartaglia saw that Cardan was now making his

own investigations and felt none too good about it.

He himself could not solve the difficulty, and his

answer to Tartaglia lacks frankness. \Has Tartaglia

lost spirit maybe from much studying and reading?"

banters Cardan in his next letter. \If he is sure of un-

derstanding the rule he will wager 100 ecus against

25 that he can solve x3 = 12x+ 20." Tartaglia did
not answer.

On January 5, 1540 came a noteworthy letter from

Cardan|noteworthy in the light of what followed.

Very friendly; not \mio carissimo" now, but \quanto

fratello". \That devil" Zuanne dal Colle (as Cardan

always spelled it) has returned to Milano and caused

him no end of grief. Both in his teaching and in other

matters. But, warns Cardan, he has your equation

x3 + px = q and px + q = x3, and he boasts that

during his sojourn in Venice he had a discussion with

Fior and so arrived at what he searched for. Then he

tells of various algebraic solutions that Zuanne had

solved, giving details. The whole letter looks like a

build-up for 1545, to show that the knowledge of

the cubic was not Tartaglia's only.

But Tartaglia does not catch the drift. \Cardan

has a mind more dull than I thought", he muses.

\Zuanne imposes on him when he says that he has

the solution of equations. But I do not want to reply.

I have no more affection for him than I have for

Messer Zuanne. I will leave them to one another.

But I can see that he has lost spirit and does not see

how things will turn out."

Then all correspondence between these two

ceases.

The next five years were quiet, seemingly.

Tartaglia, busy with his translations of Euclid and

Archimedes, holding in abeyance his future work

on algebra; Cardan, assisted by the brilliant Ferrari,

working on the Ars Magna. In 1545 this monumental
work appeared from the N�urnberg press of Petreius.

In it, with his consent and under his name, was Fer-

rari's solution of the biquadratic. In it, and with his

name, but not with his consent, was Tartaglia's so-

lution of x3 +px = q. The solution that was to have
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been written in code lest the world should get knowl-

edge of it was broadcast on the pages of Cardan's

most ambitious work.

It is given as Chapter XI of the Ars Magna, and
is prefaced by a statement that Scipio Ferro had first

found the solution, that later Tartaglia also invented

it and showed the solution, but not the demonstra-

tion, to Cardan. Tartaglia had told Cardan he was

jealous of the solution of x3 + px = q not so much
for the equation itself, but for the work to which it

was the key. And true enough, using this key, ten

additional chapters on the cubic besides Ferrari's

on the biquadratic, enrich the contents of the Ars
Magna. How Tartaglia felt when his eyes saw this,
we can imagine. Or can we?

Tartaglia's reply to the statement and the act is

given in his Quesiti|documented with names, cir-
cumstances, dates, places,|published the following

year. Cardan never satisfactorily met those accusa-

tions in writing, nor could Tartaglia entice him to

meet him in person for a mathematical combat.

7
Now comes a most unique spectacle in mathematical

history; not as mathematics but as human passions,

wickedness, and contrariness.

Cardan did not reply to the accusations of

Tartaglia. But Ludovico Ferrari, his grateful pupil,

\suo creato", took up the gauntlet for his master.

On February 10, 1547, he sent a public challenge

to Tartaglia at Venice: a pamphlet with four pages

of content and four (!) pages of names of mathe-

maticians in various universities and cities to whom

copies of the challenge had been sent, fifty in all.

Among these we notice the name of Ferro's succes-

sor, \Hannibal dalle Nave"; but neither Da Coi nor

Fior.

\Messer Nicolo Tartaglia", it begins, \there has

come into my hands a book by you called Quesiti
ed inventioni nuovi, in the last treatise of which you
mention his Excellency Signor Hieronimo Cardano,

a physician at Milano, who is at present a public lec-

turer in medicine at Pavia. And you are not ashamed

to say that he is ignorant in mathematics, that he

is a dull individual, deserving to have Messer Gio-

van da Coi placed before him ... I think you have

done this, knowing that Signor Hieronimo has such

a great genius that not only in medicine, which is

his profession, has he a reputation for ability, but

also in mathematics, in which he has at times in-

dulged as a game, to get recreation and enjoyment,

and in which he has become so widely successful

that without exaggeration he is considered one of

the great mathematicians."

Besides a multitude of errors, the challenge con-

tinues, Tartaglia has also plagiarized from Jordanus,

whose propositions he has placed in the 8th book

without citing his name. Tartaglia has blamed Car-

dan unjustly; he, who is not worthy to mention Car-

dan's name (il quale �a pena sete degno di nom-
inare). Thereupon he challenges Tartaglia to a pub-
lic disputation from ancient and modern authors on

\Geometry, Arithmetic, and all the disciplines that

depend on these, as Astronomy, Music, Cosmogra-

phy, Perspective, Architecture, and others, ... and not

only on what Latin, Greek and \vulgar" [vernacular,

modern] authors write on these subjects, but also on

your own inventions."

The time was thirty days; the stake, up to 200

scudi, to be decided by Tartaglia. \And in order that
this invitation shall not appear too private, I have

sent a copy of this writing to each of the gentlemen

named below."

Thus begins the fourth part of this celebrated con-

troversy.

Tartaglia replies on February 19, nine days later.

Also a printed pamphlet, equally formal: \From Ni-

colo Tartaglia of Brescia, Professor of mathematics

in Venice, to Messer Ludovico Ferraro, Public Lec-

turer of Mathematics in Milano." Six pages of com-

pact print, with four witness signatures. But instead

of an impressive list of mathematicians at the end,

he has a postscript:

\And in order that this reply of mine shall not

appear too private, I have had 1000 copies printed

to send them around Italy in general; since I am

not acquainted with the cities in Italy or with the

universities, where one can buy the friendship and

knowledge of experts and scholars, as you do (be-

cause, in truth, my experience and acquaintance are

limited to my study and to my students). For this

reason I do not only not have the friendship but not

even the acquaintance of these persons."

Therefore, he continues, he will not send his reply

to the persons Ferrari names; could not do it even

to a certain named person, \for he died two months

ago." (Ferrari's challenge had come nine days ago!)

As for a response, he will not meet Ferrari in

combat. It is with Cardan he has a quarrel, and when

that gentleman is ready, Tartaglia will accept. So he

sends a counter-challenge that Cardan and Ferrari on

one side and he on the other submit one to the other

a list of problems to solve.
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Six weeks later, on April 1, comes a second chal-

lenge from Ferrari| and this time in Latin. Why
change from Italian to Latin? Tartaglia thought he

knew.

In Cartello II Ferrari touches upon the solution of

the cubic equation. Tartaglia has taken umbrage at

Cardan for publishing his solution of the cubic. What

if the published solution was that of a third party?

Five years ago, declares Ferrari, in 1542, Cardan and

Ferrari were in Bologna and there visited Annibale

della Nave, Scipio Ferro's son-in-law, who showed

them books written by Scipio; and there was the

solution Cardan published. Annibale is alive today

and can be called as a witness anytime. (This would

be a serious argument, except it is not convincing.

Why, since there was no secrecy about it, had Cardan

in Ars Magna not mentioned Scipio's writings and
Annibale's part, instead of referring only to Scipio

and Fior?)

A large portion of Tartaglia's replies is sparring

for objectives. He regularly wants to get into combat

with Cardan himself; just as regularly the slippery

Ferrari turns him off. Another objective is to have the

contest be a list of challenge questions, to be solved

in a specific time; Ferrari wants a public disputation

in Rome, Florence, Pisa, or Bologna, to be chosen

by Tartaglia, and judges to be selected from persons

in the city chosen.

Two points taken up in Risposta II evoke our sym-

pathy:

The first concerns the mode of contest. Besides

considering the method of challenge lists a bet-

ter arbiter of ability than public disputations, the

sender may have had an added reason for his choice.

Tartaglia, \the stammerer", had an impediment of

speech ever since as a child he was cut by a French

soldier in the cathedral massacre at Brescia. In a

public disputation he would have a serious handicap

engaging the oily Cardan and the brilliant Ferrari.

The second dealt with where and with whom the

stake was to be deposited and if only gold was to be
used, or whether Tartaglia could, for part of the sum,
deposit printed copies of the Quesiti. Remembering
Tartaglia's worldly circumstances one can here read

much between the lines.

Replying to the charge of plagiarism, he says:

Though the statement of the propositions emanated

from Jordanus, the demonstrations and arrangement

were Tartaglia's. The statement of a proposition

without the proof is of no value. Answering Ferrari's

reference to the cubic: \It would be presumptuous

of me to give the impression that the result which

I discovered could not also have been discovered

at other times and by other persons, and that they

cannot likewise be discovered in the future and by

other persons: even when they will not be given to

the public by Signor Hieronimo or myself. But this

can I say with truth, that I never saw these things in

any author but discovered it myself."

He pokes a thrust at Cardan for not being willing

to enter the contest but sending Ferrari instead. And

then he dishes up this pretty one:

\You say that you have heard that in the past few

years I have made machines and invented several

types of instruments and that people think that by

my persistent knowledge I have succeeded in making

a machine with which I can shoot clear to Milano

while I am stationed in Venice.

\Regarding this particular, I answer they are not at

all wrong. For since the presentation of your Cartello

I have actually built one with which, while I am in

Venice, I can shoot, not only as far as Milano, but

even as far as Pavia [Cardan had left Milano and

was now located in Pavia], and shoot with such a

direct aim that I will not only scare you and Signor

Hieronimo but cause you great anguish."

Then he proposes a challenge of thirty-one ques-

tions. He states that he can solve them, adding: \I

am not like Signor Hieronimo who presents cases he

does not know how to solve himself."

Ferrari counters with 31 other questions in the

Cartello III (June 1) without answering Tartaglia's.

This letter is a highly insulting piece. \In response

to my reply," he says, \I have received your tartagli-
ata [a pun on the etymology of Tartaglia's name]:
which, though long and confused, contains nothing

but insults, refusals to admit defeat, and a fixed idea

of wanting to fight while running away."

In Risposta III (July 9) Tartaglia gives the solu-

tion to Ferrari's 31 questions and boasts he is the

victor. In Cartello V (October, 1547) Ferrari tears

Tartaglia's answers to pieces mercilessly and claims

only five are correct. This Cartello is almost a book

in size, all of 55 pages; 41 pages are mathematics

and contain Ferrari's solutions of Tartaglia's chal-

lenge list.

Eight months pass before the answer comes, the

longest time between any of these exchanges. And

then the unlooked-for happens: on June 1, 1548,

Tartaglia accepts the challenge to a public dispu-

tation and even to have it in Cardan's and Ferrari's

own bailiwick, Milano. How and why the change?

He may have become so exasperated with Ferrari's

manhandling of his solutions in Cartello V and of
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other provocative matters in the Cartello|and he

did want a duel with Cardan|that he was willing

to forego his preferred mode of question lists. Or

there may have been other reasons as insinuated by

Ferrari, necessitating \Brescia versus Milano". For
city pride and championships did not begin in the

20th century. Tartaglia had recently moved to Bres-

cia where some of its chief citizens had promised

him liberal remuneration for giving public lectures

on Euclid. Ferrari insinuates that his acceptance of

the challenge to Milano was one of the stipulations.

Tartaglia accepted the challenge. But let no one

think there was sportsman's etiquette there. Cartello

VI (July 14, 1548) and Risponta VI (July 24, 1548)

perforce takes up arrangements on the business el-

ement. But they have plenty of room for smarting

sentences, especially Ferrari's. He seems to have fed

on his own anger and vindictiveness.

For a year and a half these tirades had continued.

On August 10, 1548, the \disputation" took place,

and with what outcome we read in Tartaglia's own

account, written nine years later, in an article inter-

polated in his General Trattato.
It follows:

\In 1547 Cardan and his creature Ludovico Fer-

raro brought me a challenge in two printed pam-

phlets. I addressed to them 31 questions, with the

stipulation that they should be solved in 15 days

after receiving them. After that the solution should

be considered as not arrived. They let two months

pass without giving any sign of existence, and then

they sent me 31 questions without giving me the

solutions of any of mine; besides, the terms stip-

ulated had passed by more than 45 days. I found

the solution of 10 of them the same day, the next

day a few more, later all the rest, and, so as not

to let pass the interval of 15 days, I hurried to get

them printed and sent to Milano. In order to con-

ceal their slowness in answering my questions or at

least a few of them they took up my time with other

matters full of silly foolishness, and it was not till

the end of seven months that they sent me a public

reply where they boasted that they had solved my

questions. However, even had that been true, those

solutions given so long a time after the term fixed

would have been without any merit; but the greater

part of them were completely wrong. I desired to

proclaim publicly that they were wrong, so, being in

Brescia and hence in the neighborhood of Milano, I

sent to them both a printed challenge asking them to

meet me the following Friday, August 10, 1548 at

10 o'clock near the church called the Garden of the

Order of Zoccolante to argue publicly my refutation

of their pretended solutions. Cardan, so as not to be

at the examination, left Milano hurriedly.

\On the day set Ferraro came alone to the meeting-

place, accompanied by a crowd of friends and by

many others. I was alone with my brother whom

I had taken along from Brescia. I went before the

entire crowd and began by giving briefly an expo-

sition of the subject for discussion and the reason

for my arrival in Milano. When I wanted to take

up the refutations of the solutions I was interrupted

for a period of two hours by words and actions un-

der pretext that there should be chosen, at that very

place, a certain number of judges from the auditors

present, all friends of Ferraro and to me entirely un-

known. I would not consent to such a trick and said

that my understanding was that all the auditors were

judges, the same as those who read my refutation

when printed. Finally they let me speak, and in or-

der not to tire my audience I did not commence with

tedious topics from number theory and geometry, but

it seemed to me suitable to refute their solution of a

question in Chapter 24 in Ptolemy'sGeography; and
I constrained Ferraro publicly to own that he was in

error. When I wished to continue they all began to

shout that now I should discuss my own solutions

of the 31 questions that had been proposed to me

and which I had solved in 3 days. I objected that

they should let me finish what concerned my refu-

tations, then I would take up what they asked for.

Neither reasoning nor complaining could be heard.

They would not let me speak further and gave the

word to Ferraro. He began by saying I had not been

able to solve the fourth question in Vitruvius, and

he expatiated on this clear till the supper hour. Then

everybody left the church and went home."

So far Tartaglia. Seeing the temper of the crowd

and fearing violence, he did not wait to continue

his disputation the next day but hurriedly left for

Brescia by another road than that by which he had

come, glad to keep his life.

So ended this combat at the Church of Zoccolante,

original even for this age.

8
In 1556 (ten years after the appearance of Quesiti),
came the first two parts of Tartaglia's great life work,

for the contents of which he had reserved many dis-

coveries made even before the Inventioni of 1546.
It was the General Trattato di numeri, et misure,

a huge, ambitious and well-written work on arith-
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metic and algebra. It is said to be the best work on

arithmetic in the entire century. The third part, which

was not published till 1560, was left uncompleted;

for Tartaglia died in 1557. It was largely algebra and

it is thought the last division was to have included

his work on the cubic equation. As it is, we have

only so much of his work in this field as is found in

the Quesiti of 1546.
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Reading Bombelli's x-purgated Algebra

ABRAHAM ARCAVI and MAXIM BRUCKHEIMER

College Mathematics Journal 22 (1991), 212{219

Reading mathematics is hard work and reading a

four hundred year old mathematics text is four hun-

dred times harder. The language, notation and also

the spirit are different from ours. If the reader is not

already convinced from past experience, the follow-

ing extract should prove the point.

Let us first assume that if we wish to find the
approximate root of 13 that this will be 3 with 4 left
over. This remainder should be divided by 6 (double
the 3 given above) which gives 2

3 . This is the first
fraction which is to be added to the 3, making 3 2

3
which is the approximate root of 13. Since the square
of this number is 13 4

9 , it is
4
9 too large, and if one

wishes a closer approximation, the 6 which is the
double of the 3 should be added to the fraction 2

3 ,
giving 6 2

3
, and this number should be divided into

the 4 which is the difference between 13 and 9, . . .

If you understood|don't read on. If you didn't,

then in this article we illustrate in some detail how

a little perseverance can turn \obscurity" into a re-

warding experience for students.

1 Bombelli's method

The text quoted above was written by Rafael

Bombelli, a 16th century Italian mathematician. He

wrote an important textbook which appeared in two

editions, L'algebra parte maggiore dell'arithmetica
(1572) and L'algebra (1579). It includes Bombelli's
contributions to the solution of cubic and quartic

equations and many geometrical problems solved al-

gebraically (see, for example, [2] and [4]).

In this paper we reproduce from the 1579 edition

the algorithm he introduced to approximate square

roots, which is the subject of the obscure paragraph

quoted in our introduction. At the time Bombelli

wrote his Algebra, decimal fractions were not yet
in use; they were introduced by Simon Stevin in

his book La disme (\The tenth") in 1585. Bombelli
developed his method using common fractions. We

will follow in his footsteps. The chapter starts (the

English version from which we quote is [5, p. 81])

with a very human touch|not exactly in the style

Figure 1.

164
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of a modern textbook { serving precisely the purpose

of engaging and motivating readers.

Method of Forming Fractions in the Extraction

of Roots (Modo di formare il rotto nella estratione
delle Radici quadrate)
Many methods of forming fractions have been given
in the works of other authors; the one attacking and
accusing another without due cause (in my opinion)
for they are all looking to the same end. It is indeed
true that one method may be briefer than another,
but it is enough that all are at hand and the one that
is the most easy will without doubt be accepted by
men and be put in use without casting aspersions
on another method. . . . In short, I shall set forth the
method which is the most pleasing to me today and
it will rest in men's judgement to appraise what they
see: meanwhile I shall continue my discourse going
now to the discussion itself.

The above extract is followed by the text we

quoted in our introduction. Even if we translate the

\recipe" for extracting square roots described there

from its rhetorical form (see, for example, [6, pp.

378{379]) into modern symbols, and follow the cal-

culations, the procedure is still unmotivated. Why

should one divide the remainder by 6? Why should

one add the 6 to the 2
3? Why should one divide it

into 4? And so on.

Why did Bombelli find this method the most
pleasing? It would seem to be hard to agree with

him, at least when one reads it for the first time.

However, in a subsequent paragraph, Bombelli him-

self provides a fuller explanation of his method,

which we reproduce (the English version we quote

here is taken from [3, pp. 69{70].) followed by the

modern notation.

1. Let us suppose we are required to find the root
of 13. The nearest square is 9, which has root 3.
I let the approximate root of 13 be 3 plus 1 tanto
[unknown].

3 + x =
√

13

2. Its square is 9 plus 6 tanti p. 1 power. We set this
equal to 13.

(3 + x)2 = 9 + 6x+ x2 = 13

3. Subtracting 9 from either side of the equation we
are left with 4 equal to 6 tanti plus one power.

6x+ x2 = 4

4. Many people have neglected the power and
merely set 6 tanti, equal to 4. The tanto then comes

Figure 2.

to 2
3 . . .

6x = 4 =⇒ x =
2

3
5. . . . and the approximate value of the root is 3 2

3
since it has been set equal to 3 p. 1 tanto.

√
13 ≈ 3 + x ≈ 3

2

3
.

So far, Bombelli has found a first approximation by

\neglecting" (lasciato andare) the value of x2 and

thus obtaining x = 2
3 , the fraction that is to be added

to 3 to obtain an approximation to
√

13. The second
approximation is now found by taking into account

what was neglected in the first approximation.

6. However, taking the power into account, if the
tanto is equal to 2

3
, the power will be 2

3
of a tanto,

which, added to the 6 tanti, will give us 6 and 2
3

tanti, which are equal to 4.

6x+ x2 = 4
6x+ xx = 4

}
=⇒ 6x+

2

3
x = 4

7. So the tanto will be equal to 3
5 , and since the

approximate is 3 p. 1 tanto it comes to 3 3
5
.

=⇒ x =
4

6 + 2
3

=
3

5
=⇒ 3 + x = 3

3

5
.
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Note that Bombelli has taken the product x2 = xx,
and given one x the value previously obtained, and
the other becomes the new fraction that is to be

added to 3 to obtain the next approximation to
√

13.
He now uses this double-entendre for x recursively.

8. But if the tanto is equal to 3 3
5
, the power will be

3
5 of a tanto and we obtain 6 3

5 tanti equal to 4 . . .

6x+ x2 = 4
6x+ xx = 4

}
=⇒ 6x+

3

5
x = 4 . . .

Solving for x, Bombelli obtains a third approxima-
tion, 3 20

33
.

The process can be continued for as long as one

has patience. Or to put it in Bombelli's words: e
cosi procedendo si puo approssimare a una cosa
insensibile (and this process may be carried to within
an imperceptible difference [5]).

2 Bombelli's method and

continued fractions

Bombelli's algorithm can also be described in the

following way. We wish to find an x so that
√

13 =
3 + x. Squaring both sides, 13 = (3 + x)2. Whence
6x+x2 or x(6+x) = 4, and finally x = 4/(6+x).
Note that in the expression 4/(6+x), the x takes

the value obtained in the previous stage. However,

the x on the left takes a new value obtained in

the present stage. This corresponds to the double-
entendre noted above. In more precise modern nota-
tion we would write

xn+1 =
4

6 + xn
.

Using our notation we obtain the continued fractions

x2 =
4

6 + x1
,

x3 =
4

6 + x2
=

4

6 + 4
6+x1

,

x4 =
4

6 + x3
=

4

6 + 4
6+ 4

6+x1

.

One cannot assert that Bombelli invented continued

fractions, since this form|or anything that could

suggest it|does not appear in his text. However,

we read (in [6, pp. 419{420]) that:

Although the Greek use of continued fractions

in the case of greatest common measure was

well known in the Middle Ages, the modern

theory of the subject may be said to have begun

with Bombelli (1572). . .The next writer to con-
sider these fractions, and the first to write them

in substantially the modern form was Cataldi

(1613), and to him is commonly assigned the

invention of the theory. His method was sub-

stantially the same as Bombelli's, but he wrote

the result of the square root of 18 in the fol-

lowing form:
4.& 2

8 & 2

8 & 2

8

3 Bombelli's method in the

classroom

In this section we would like to suggest how

Bombelli's method can be used in the classroom.

\Dictionary" questions. This activity helps the stu-

dents to become acquainted with unknown notation,

symbols, names of concepts, or formulations in the

source. For example, the following dictionary is to

be completed by the student, as a first step in deci-

phering the text.

Rhetorical Language Modern Notation
p. or plus |

equal to |

one quantity (unknown) |

power (second, of unknown) |

| 3 + x
9 plus 6 tanti p. 1 power |

The translation process illustrates the immense

power which that little x, which we take so for
granted, gives us. This is further illustrated in the

next section.

\Redoing" and applying the mathematics. Once

the terminology is understood, we give students

the left side of the eight steps from the section

\Bombelli's Method" and ask them to translate each

step into modern notation. When the method is clear

from the algorithmic point of view, we ask students

to apply it to other numbers and thus give the experi-

ence some permanence. For example, the calculation

for
√

2 gives the continued fraction

1 +
1

2 + 1
2+ 1

2+···

.
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This activity can be integrated into one or more

places in the curriculum. The main subject is ob-

viously approximating square roots and Bombelli's

method can be compared to others. It can also be

discussed when dealing with fractions and continued

fractions, as part of a unit on irrational numbers, or

as a nice illustration of iteration.

Issues for discussion. We have overcome our per-

plexity when we first read Bombelli's \recipe". We

take the opportunity to point out to students the

moral learned from the exercise. Unlike reading in

many other areas, reading mathematics, even when

the notation is modern, also involves writing, re-

doing in other ways, drawing diagrams, and defi-

nitely rereading. But, the task is still incomplete.

Bombelli's text raises many mathematical issues for

the critical reader. We deal with some of them in the

classroom in the following way.

Compare the successive approximations of
√

13.
Resorting to calculators in order not to place the bur-

den of the activity on comparing common fractions,

we find that the first approximations in decimal form

are:

3 + x1 = 3.66666 . . . , 3 + x2 = 3.60,

3 + x3 = 3.606060 . . . ,

3 + x4 = 3.6055045 . . . .

Looking at the first four decimal digits of
√

13 =
3.6055513 . . . one notices that the even approxima-
tions are less than

√
13 and increasing, and the odd

approximations are greater than
√

13 and decreasing,
as illustrated in the following diagram.

3 3 + x2 3 + x3 3 + x1

even approximations odd approximations

3 + x4

Had Bombelli presented his method today, he would

immediately be required to prove that, if one contin-

ues the process indefinitely, the sequence will indeed

converge to the desired root. A sketch of the proof

follows.

The first approximation to
√

13 is greater than
√

13.

(
3 +

2

3

)2

= 9 + 4 +
4

9
> 13.

The second approximation to
√

13 is less than
√

13.

(
3 +

3

5

)2

= 9 +
18

5
+

9

25
< 13.

With mathematical induction, one can prove that ev-

ery odd approximation is greater than
√

13 and that
every even approximation is less than

√
13. The two

proofs are similar. We sketch the case for the odd

approximations. The induction starts with the step

1 above. Then we assume that x2n−1 >
√

13 − 3
and prove that x2n+1, the subsequent odd approxi-

mation, is also greater than
√

13− 3. In order to do
that, we express x2n+1 in terms of x2n−1,

x2n+1 =
4

6 + 4
6+x2n−1

>
4

6 + 4
6+

√
13−3

= −3 +
√

13.

Next we show that every odd (even) approximation

is less than (greater than) its predecessor. For exam-

ple, in the case of the odd approximations, we have

to show that

x2n−1 > x2n+1 or x2n−1 − x2n+1 > 0.

We again express x2n+1 in terms of x2n−1, and, as

before, the rest is algebra.

Finally, since the odd (even) approximations are

decreasing (increasing) and always greater (less)

than
√

13, as shown above, they must approach some
limit. We still need to show that the limit lo of the
sequence of odd approximations is the same as the

limit le of the sequence of even approximations.
One way to show that each limit is

√
13 is the

following. Since

x2n+1 =
4

6 + 4
6+x2n

we can take the limits of both sides to obtain

le =
4

6 + 4
6+le

.

Solving the equation we obtain le =
√

13 − 3. We
obtain an identical result for odd approximations,

and thus both limits coincide. Bombelli might have

provided this argument, making use of his technique

of double-entendre, had anyone in the 16th century
thought that these things needed proving.

4 Final comments

We used this activity with secondary mathematics

teachers as a part of a sequence of activities on the

historical development of irrational numbers [1]. We

found that original sources are a very appropriate
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way to convey the feeling of mathematics as a liv-

ing and developing human endeavor. The rhetori-

cal or quasi-rhetorical expositions, in which the au-

thor shows personal preferences (I shall set forth
the method which is the most pleasing to me today),
and presents some arguments in non-rigorous way

(Many people have neglected the power . . . ) were
very motivating. And the process of understanding

the original source, first at the algorithmic level and

then by discussing its mathematical validity as un-

derstood with modern eyes, was very enlightening.

The teachers found that reading mathematics can be

an engaging and enjoyable activity.
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The First Work on Mathematics

Printed in the New World

DAVID EUGENE SMITH

American Mathematical Monthly 28 (1921), 10{15

1 General description

If the student of the history of education were asked

to name the earliest work on mathematics published

by an American press, he might, after a little inves-

tigation, mention the anonymous arithmetic that was

printed in Boston in the year 1729. It is now known

that this was the work of Isaac Greenwood who held

for some years the chair of mathematics in what was

then Harvard College. If he should search the records

still further back, he might come upon the American

reprint of Hodder's well-known English arithmetic,

the first textbook on the subject, so far as known, to

appear in our language on this side of the Atlantic. If

he should look to the early Puritans in New England

for books of a mathematical nature, or to the Dutch

settlers in New Amsterdam, he would look in vain;

for, so far as known, all the colonists in what is now

the United States were content to depend upon Euro-

pean textbooks to supply the needs of the relatively

few schools that they maintained in the seventeenth

century.

The earliest mathematical work to appear in the

New World, however, antedated Hodder and Green-

wood by more than a century and a half. It was

published long before the Puritans had any idea of

migrating to another continent, and fifty years be-

fore Henry Hudson discovered the river that bears

his name. Of this work, known as the Sumario Com-
pendioso, there remain perhaps only four copies, and
it is desirable, not alone because of its rarity but be-

cause of its importance in the history of education

on the American continent, that some record of its

contents should be made known to scholars.

In order to understand the Sumario Compendioso
it is necessary to consider briefly the political and so-

cial situation in Mexico in the middle of the sixteenth

century. Cort�es entered the ancient city of Tenochtit-

lan, later known as Mexico, in the year 1519, but its

capture and destruction occurred two years later, in

1521. Thus, in the very year that Luther was attack-

ing certain ancient customs and privileges in the Old

World, the representatives of other ancient customs

and privileges were attacking and destroying a wor-

thy civilization in the newly discovered continent.

The first viceroy of New Spain, which included

the present Mexico, was a man of remarkable genius

and of prophetic vision|Don Antonio de Mendoza.

He assumed his office in 1535, and for fifteen years

administered the affairs of the colony with such suc-

cess as to win for himself the name of \the good

viceroy." He founded schools, established a mint,

ameliorated the condition of the natives, and encour-

aged the development of the arts. In his efforts at

improving the condition of the people he was ably

assisted by Juan de Zum�arraga, the first Bishop of

Mexico. Among the various activities of these lead-

ers was the arrangement made with the printing es-

tablishment of Juan Cromberger of Seville whereby

a branch should be set up in the capital of New

Spain.

As a result of this arrangement there was sent

over as Cromberger's representative one Juan Pab-

los, a Lombard printer, and so the \casa de Juan

Cromberger" was established, prepared to spread the

doctrines of the Church to the salvation of the souls

of the unbelievers. Cromberger himself never went

to Mexico, but his name appears either on the por-
tadas or in the colophons of all the early books. From
and after 1545, however, the name is no longer seen,

Cromberger having already died in 1540.

169
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Figure 1. Title Page of the First Work in Mathematics printed in the New World

The author of the Sumario was one Juan Diez, a
native of the Spanish province of Galicia, a compan-

ion of Cort�es in the conquest of New Spain, and the

editor of the works of Juan de Avila, \the apostle

of Andalusia," and of the Itinerario of the Spanish

fleet to Yucatan in 1518. He is sometimes confused

with another Juan Diaz (the name being spelled both

ways), a contemporary theologian and author. In a

letter written to Charles V in 1533 he is mentioned as

a \cl�erigo anciano y honrado," so that he must have

been advanced in years when the Sumario appeared.
That this was the case is also apparent from a record

of the expedition of 1518 in which it is stated that

\triximus vn clerigo que dezia joan diaz," doubtless

a young and adventurous apostle, full of zeal and

desire to make known the gospel in the New World.

Juan Diez undertook the work primarily for the

purpose of assisting those who were engaged in the

buying of the gold and silver which was already be-

ing taken from the mines of Peru and Mexico for the

further enriching of the moneyed class and the rulers

of Spain. He felt that he could best serve this purpose

by preparing such a set of tables as should relieve

these merchants as far as possible from any neces-

sity for computation. Apparently, however, he was

prompted by the further demand for a brief treat-

ment of arithmetic which should be suited to the

needs of apprentices in the counting houses of the

New World, and so he devotes eighteen pages to the

subject of computation and presents it in a manner

not unworthy of the European writers of the period.

The most interesting feature of the work, however,

is neither the tables nor the arithmetic; it consists of

six pages devoted to algebra, chiefly relating to the
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quadratic equation.

The book consists of one hundred and three folios,

generally numbered. After the dedication (folios i, v,
and ij, r) there is an elaborate set of tables, including
those relating to the purchase price of various grades

of silver (folio iij, v), to per cents (folio xlix, r), to
the purchase price of gold (folio lvii, v), to assays
(folio lxxxj, r), and to monetary affairs of various
kinds. The mathematical text (folio xcj, v) consists
of twenty-four pages besides the colophon (folio ciij,

v). As already stated, eighteen of these pages relate
chiefly to arithmetic, and six to algebra.

The book was printed in the City of Mexico in the

year 1556, being the first work on mathematics to

be printed outside the boundaries of Europe, except

for the ancient block books of China.

In order to give some idea of the general nature

of the work, a few of the problems will be set forth,

chiefly those which illustrate the application of al-

gebra as we understand the term today.

2 Typical problems not listed

under algebra

1. I bought 10 varas of velvet at 20 pesos less than

cost, for 34 pesos plus a vara of velvet. How much

did it cost a vara?

Rule: Add 20 pesos to 34 pesos, making 54 pesos,
which will be your dividend. Subtract one from 10

varas, leaving 9. Divide 54 by 9, giving 6, the price

per vara.

Proof: l0 varas at 6 pesos is 60 pesos. This minus
20 pesos is 40. You paid 34 pesos plus a vara costing

6 pesos, and this gives the result, 40 pesos.

2. I bought 9 varas of velvet for as much more

than 40 pesos as 13 varas at the same price is less

than 70 pesos. How much did a vara cost?

Rule: Add the pesos, 40 and 70, making 110. Add
the varas, 9 and 13, making 22. Dividing 110 by 22

the quotient is 5, the price of each vara.

Proof: 9 varas at 5 pesos is 45 pesos, which is 5
more than 40 pesos; and 13 varas at 5 pesos is 65,

which is 5 pesos less than 70, as you see.

3. Required a number which if 8 is added to it

will be a square, and if 8 is subtracted from it will

also be a square.

Take half of eight, which is 4; square it, making

16; add 1, making 17, and this is the number to

which if you add 8 you have 25, the root of which

is 5; and if 8 is taken from it there is left 9, the root

of which is 3; for 3 times 3 is 9, as you see.

4. Find 2 numbers the sum of the squares of which

will make a square number which has an integral

root.

The first numbers are 3 and 4, for their squares are

9 and 16, and these added together make 25, the root

of which is 5. Observe that you have 5 numbers; the

first are 2 and 3; the next are 3 and 4, the proposed

numbers; and there is also 5, which is their root.

Place these numbers as you see in the figure below.

Then use cross multiplication, saying \3 times 3 is 9,

and 2 times 4 is 8". Place these numbers at the right-

hand side, one under the other. Then multiply again

at the top, 2 times 3 is 6; and underneath, 3 times

4 is 12. Now subtract the less from the greater, that

is, 6 from 12, and there remains 6. Divide this by 5,

the root of the assumed numbers, and the quotient is

1 1
5 , one of the numbers required. Now add 8 and 9,

the products of the first multiplication, and the sum

is 17. Divide this by 5 and the quotient is 3 2
5 and

this is the second required number.

Proof: The square of 1 1
5 is 1 11

25 ; the square of 3 2
5

is 11 14
25 ; and these added together, as you see, make

13.

5                  17     17 | 3        6 | 1
2
5

1
5

6
2  6  3  9
3      4  8

12

02

5

1

5

3 Typical problems listed

under algebra

Although the above problems are solved by arith-

metical rules, they are essentially algebraic. Under

the title Arte Mayor the author gives a number of
examples generally involving quadratic equations, of

which the following are types:

1. Find a square from which if 15 3
4 is subtracted

the result is its own root.

Rule: Let the number be cosa (x). The square of
half a cosa is equal to 1

4 of a zenso (x
2). Adding 15

and 3
4
to 1

4
makes 16, of which the root is 4, and

this plus 1
2
is the root of the required number.

Proof: Square the square root of 16, plus half a
cosa, which is four and a half, giving 20 and 1

4 ,

which is the square number required. From 20 1
4 sub-

tract 15 3
4
and, and you have 4 and 1

2
, which is the

root of the number itself.
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2. A man takes passage in a ship and asks the

master what he has to pay. The master says that

it will not be any more than for the others. The

passenger on again asking how much it would be,

the master replies: \It will be the number of pesos

which, multiplied by itself and added to the number,

will give 1260." Required to know how much the

master asked.

Rule: Let the cost be a cosa of pesos. Then half of
a cosa squared makes 1

4 of a zenso, and this added
to 1260 makes 1260 and a quarter, the root of which
less 1

2
of a cosa is the number required. Reduce 1260

and 1
4
to fourths; this is equal to 5041

4
, the root of

which is 71 halves; subtract from it half of a cosa
and there remains 70 halves, which is equal to 35
pesos, and this is what was asked for the passage.

Proof: Multiply 35 by itself and you have 1225;
adding to it 35, you have 1260, the required number.

3. A man is selling goats. The number is unknown

except that it is stated that a merchant asked how

many there were and the seller replied: \There are so

many that, the number being squared and the product

quadrupled, the result will be 90,000." Required to

know how many goats he had.
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Afterword

Although there is much current research on medieval Indian mathematics, there are few books

or articles accessible to the non-specialist. The classic history of Indian mathematics is B. Datta

and A. N. Singh's History of Hindu Mathematics [2], but this book, written in the 1930s, does
not at all reflect modern research, such as the material on power series in the three articles on

India in this section. A more recent book, which has two chapters devoted to ancient and medieval

Indian mathematics, is Crest of the Peacock [6], by George Gheverghese Joseph. We understand,
however, that there are other works on Indian mathematics, now in the planning stage, which will

be both comprehensive and accessible.

Since there are still massive quantities of Islamic mathematical documents still unread in libraries

around the world, it is not yet possible to produce a comprehensive history of Islamic mathematics.

However, two recent books provide glimpses into various aspects of this history. The first is

Episodes in the Mathematics of Medieval Islam [1], by Len Berggren, which is designed to be
comprehensible to secondary students. The second, on a somewhat higher level, is Roshdi Rashed's

The Development of Arabic Mathematics: Between Arithmetic and Algebra [9]. This book is an
organized translation of a number of articles by Rashed, originally written in French, which provide

insights into the development of arithmetic and algebra in the Islamic tradition.

Probably the best general treatment of European mathematics in the medieval period is in

Chapters 5 and 7 of Science in the Middle Ages [8], edited by David Lindberg. Many individual
texts from that time period are available in English, including Leonardo of Pisa's Book of Squares
[5] and his Liber Abaci [12].
A good survey of Renaissance mathematics is found in The Italian Renaissance of Mathematics:

Studies on Humanists and Mathematicians from Petrarch to Galileo [10], by Paul Lawrence
Rose. Again, many of the important texts of that time period have been translated into English.

In particular, the interested reader may consult Cardano's The Great Art, or the Rules of Algebra
[3] and see exactly how Cardano described his solution of cubic equations. Other documents from

the history of the discovery of the cubic formula are available in The History of Mathematics: A
Reader [4], edited by John Fauvel and Jeremy Gray. More information on Bombelli's work can
be found in the article [7] of Federica La Nave and Barry Mazur.

Several researchers have recently been studying the Sumario Compendioso, trying to understand
more about the background of Juan Diez. A recent article discussing this work and related works

published in New Spain is by Edward Sandifer [11].
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Foreword

The seventeenth century saw a great acceleration in the development of mathematics. In particu-

lar, it witnessed the invention of analytic geometry and the calculus, achievements accomplished

through the work of numerous mathematicians. The articles in this section deal with many aspects

of these important ideas. In addition, several of the articles emphasize the relationship of history

to the teaching of mathematics.

The age of exploration in Europe required new and better maps. The most famous of these,

produced by Gerardus Mercator in 1569, enabled sailors to plot routes of fixed compass directions

as straight lines. To accomplish this, Mercator progressively increased the distances between par-

allels of latitude, the further they were from the equator. But Mercator himself did not explain the

mathematics behind this increase in distance. In their article, Fred Rickey and Philip Tuchinsky

provide this explanation, basing their work on Edward Wright's Certaine Errors in Navigation of
1599, and relate it to the computation of the integral of the secant.

In the next article, E. A. Whitman explores the history of the cycloid. This curve, first described

by Galileo, was used as a test case for the numerous new techniques being developed in the first

half of the seventeenth century. Thus, Roberval found the area under the curve; Roberval, Fermat,

and Descartes each found ways of drawing tangents to it; and Pascal found centers of gravity

of both the region bounded by the curve and the solid formed by revolving a part of the curve

around a line in the plane. Later on, it was shown that the curve was both an isochrone and a

brachistochrone.

In her first article, Judith Grabiner reconsiders the purpose of Descartes' Geometry, finding
in it a detailed guide to geometrical problem solving. She notes that to solve a problem meant,

for Descartes, not only finding a curve that satisfies the conditions of the problem, but also

finding its equation and the constructing the curve. In fact, much of the Geometry is devoted
to construction techniques, especially constructions through mechanical linkages. David Dennis

explores these techniques in his own article and shows how many of them can be replicated with

modern geometrical software. Dennis further emphasizes Descartes' role in testing explicitly the

ability of symbolic algebra to represent geometry. Today, in contrast, we usually regard the algebra

as given and use it to derive geometrical properties.

James Gregory was one of the premier mathematicians of the mid-seventeenth century, but

unfortunately much of his work was either neglected by his contemporaries or never published

because of his untimely death. Max Dehn and E. D. Hellinger attempt to correct this injustice by

discussing some of Gregory's most important ideas related to the development of calculus, including

his probable knowledge of the construction of Taylor series, a half-century before Taylor's own

work.

In her second article, Judith Grabiner takes us through the history of the derivative. As she notes,

177
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the derivative was first used, then discovered, then explored, and finally defined. With well-chosen

examples from the works of mathematicians from Fermat and Hudde to Cauchy and Weierstrass,

she shows how the history of the `concept of change' is exactly the reverse of the standard method

of teaching about the derivative in a calculus course. Teachers of calculus therefore need to be

aware of this history as they develop their courses.

Paul Wolfson's article begins with Roberval's method of finding the tangent to the cycloid, as

discussed by Whitman. But he then follows Roberval in using his kinematic method to determine

tangents to other curves and shows that, contrary to contemporary critics, Roberval was quite

aware of the limitations and difficulties of this method. Newton used the same basic kinematic

method in some of his earliest manuscripts. Wolfson enables us to follow Newton as he struggles

with these ideas through a number of writings in the mid-1660s.

Another concept that Newton dealt with in his earliest writing was the power series for the

logarithm. In fact, when Newton learned that Nicolas Mercator had published this series, he began

to worry that some of his other discoveries on series might also be known. J. E. Hofmann discusses

Mercator's work on the logarithmic series, as well as the work of Gregory, Newton, Cotes, and

others.

In the next four articles, we consider more aspects of Isaac Newton's thought. In an article

published in honor of the three-hundredth anniversary of Newton's Principia, Fred Rickey takes
us through the basic highlights of Newton's life and work. We learn about the mathematical books

Newton read before beginning his own work on calculus as well as aspects of Newton's own

work on the binomial theorem, optics, and gravity. Rickey also carefully dispels the myths that

Newton invented the calculus so he could apply it to the study of celestial mechanics and that he

originally developed the ideas in the Principia in algebraic form before translating them into the
classical geometry. He emphasizes further that Newton's genius was the result of his \stubborn

perseverance."

There is another `myth' about Newton, one which some historians believe to be true, that in the

Principia Newton never proved that the inverse-square law of gravitational attraction implies that
a body travels in a conic path with the center of attraction at a focus. Bruce Pourciau, in the next

article, shows that Newton's argument in his masterwork, admittedly very sketchy, can be expanded

into a quite rigorous proof of this theorem, one that Pourciau believes Newton had in mind.

Carl Boyer describes Newton's use of polar coordinates, compares them with Jakob Bernoulli's

use, and then shows that Euler systematized this use in 1748. In a final article on Newton, Chris

Christensen describes Newton's method for solving `affected equations' for y|that is, solving

equations in two variables for one of the variables as a power series in the other. This method

is based on Newton's original method for solving polynomial equations numerically, a recursive

method slightly different from what our textbooks normally call `Newton's method' today.

As the other inventor of the calculus, Leibniz also deserves some articles in this collection. In

the first, by R. B. McClenon, we see how Leibniz contributed to the notion that complex numbers

are a useful tool in solving equations. Leibniz showed that Cardano's formula is valid even in the

irreducible case where it produces a sum of cube roots of complex numbers. In the final selection

in this part, David Dennis and Jere Confrey discuss Leibniz's notion of a function of a curve and

show how these ideas, combined with Descartes' notion of creating a curve through mechanical

linkages, can help students understand the relationship between geometry and algebra.
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An Application of Geography to Mathematics:

History of the Integral of the Secant

V. FREDERICK RICKEY and PHILIP M. TUCHINSKY

Mathematics Magazine 53 (1980), 162{166

Every student of the integral calculus has done battle

with the formula∫
sec θ dθ = ln | sec θ + tan θ| + c. (1)

This formula can be checked by differentiation or

\derived" by using the substitutionu = sec θ+tan θ,
but these ad hoc methods do not make the formula
any more understandable. Experience has taught

us that this troublesome integral can be motivated

by presenting its history. Perhaps our title seems

twisted, but the tale to follow will show that this

integral should be presented not as an application of

mathematics to geography, but rather as an applica-

tion of geography to mathematics.

The secant integral arose from cartography and

navigation, and its evaluation was a central ques-

tion of mid-seventeenth century mathematics. The

first formula, discovered in 1645 before the work of

Newton and Leibniz, was
∫

sec θ dθ = ln | tan(θ/2 + π/4)|+ c, (2)

which is a trigonometric variant of (1). This was

discovered, not through any mathematician's clever-

ness, but by a serendipitous historical accident when

mathematicians and cartographers sought to under-

stand the Mercator map projection. To see how this

happened, we must first discuss sailing and early

maps so that we can explain why Mercator invented

his famous map projection.

From the time of Ptolemy (c. 150 A.D.) maps were

drawn on rectangular grids with one degree of lat-

itude equal in length to one degree of longitude.

When restricted to a small area, like the Mediter-

ranean, they were accurate enough for sailors. But

in the age of exploration, the Atlantic presented vast

distances and higher latitudes, and so the naviga-

tional errors due to using the \plain charts" became

apparent.

The magnetic compass was in widespread use af-

ter the thirteenth century, so directions were con-

veniently given by distance and compass bearing.

Lines of fixed compass direction were called rhumb
lines by sailors, and in 1624Willebrord Snell dubbed

them loxodromes. To plan a journey one laid a
straightedge on a map between origin and destina-

tion, then read off the compass bearing to follow.

But rhumb lines are spirals on the globe and curves

on a plain chart | facts sailors had difficulty under-

standing. They needed a chart where the loxodromes

were represented as straight lines.

It was Gerardus Mercator (1512{1594) who

solved this problem by designing a map where the

lines of latitude were more widely spaced when lo-

cated further from the equator. On his famous world

map of 1569 ([1], p. 46), Mercator wrote:

In making this representation of the world we

had . . . to spread on a plane the surface of the

sphere in such a way that the positions of places

shall correspond on all sides with each other

both in so far as true direction and distance are

concerned and as concerns correct longitudes

and latitudes . . .With this intention we have

had to employ a new proportion and a new ar-

rangement of the meridians with reference to

the parallels . . . It is for these reasons that we

have progressively increased the degrees of lat-

itude towards each pole in proportion to the

lengthening of the parallels with reference to

the equator.
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Mercator wished to map the sphere onto the plane

so that both angles and distances are preserved, but

he realized this was impossible. He opted for a con-

formal map (one which preserves angles) because,

as we shall see, it guaranteed that loxodromes would

appear on the map as straight lines.

Unfortunately, Mercator did not explain how he

\progressively increased" the distances between par-

allels of latitude. Thomas Harriot (c. 1560{1621)

gave a mathematical explanation in the late 1580s,

but neither published his results nor influenced later

work (see [6], [11]{[15]). In his Certaine Errors in
Navigation. . . [22] of 1599, Edward Wright (1561{
1615) finally gave a mathematical method for con-

structing an accurate Mercator map. The Mercator

map has its meridians of longitude placed verti-

cally and spaced equally. The parallels of latitude

are horizontal and unequally spaced. Wright's great

achievement was to show that the parallel at lati-

tude θ should be stretched by a factor of sec θ when
drawn on the map. Let us see why.

Figure 1 represents a wedge of the earth, where

AB is on the equator, C is the center of the earth,

and T is the north pole. The parallel at latitude θ is a
circle, with center P , that includes arcMN between

the meridians AT and BT . Thus BC and NP are
parallel and so angle PNC = θ. The \triangles"
ABC and MNP are similar figures, so

AB

MN
=
BC

NP
=
NC

NP
= sec θ,

or AB = MN sec θ. Thus when MN is placed on

the map it must be stretched horizontally by a factor

sec θ. (This argument is not the one used by Wright
[22]. His argument is two dimensional and shows

M

N
P

q

T

North Pole

B

C
q

center of earth
A

equator

Figure 1.

that BC = NP sec θ.)
Suppose we can construct a map where angles

are preserved, i.e., where the globe-to-map function

is conformal. Then a loxodrome, which makes the

same angle with each meridian, will appear on this

map as a curve which cuts all the map's meridians

(a family of parallel straight lines) at the same angle.

Since a curve that cuts a family of parallel straight

lines at a fixed angle is a straight line, loxodromes

on the globe will appear straight on the map. Con-

versely, if loxodromes are mapped to straight lines,

the globe-to-map function must be conformal.

In order for angles to be preserved, the map must

be stretched not only horizontally, but also vertically,

by sec θ; this, however, requires an argument by in-
finitesimals. Let D(θ) be the distance on the map
from the equator to the parallel of latitude θ, and
let dD be the infinitesimal change in D resulting

from an infinitesimal change dθ in θ. If we stretch
vertically by sec θ, i.e., if

dD = sec θ dθ,

then an infinitesimal region on the globe becomes

a similar region on the map, and so angles are pre-

served. Conversely, if the map is to be conformal the

vertical multiplier must be sec θ.
Finally, \by perpetuall addition of the Secantes",

to quote Wright, we see that the distance on the map

from the equator to the parallel at latitude θ is

D(θ) =

∫ θ

0

sec θ dθ.

Of course Wright did not express himself as we have

here. He said ([2], pp. 312{313):

the parts of the meridian at euery poynt of lat-

itude must needs increase with the same pro-

portion wherewith the Secantes or hypotenusae

of the arke, intercepted betweene those pointes

of latitude and the aequinoctiall [equator] do

increase . . . . For . . . by perpetuall addition of

the Secantes answerable to the latitudes of each

point or parallel vnto the summe compounded

of all former secantes,. . . we may make a ta-

ble which shall shew the sections and points of

latitude in the meridians of the nautical planis-

phaere: by which sections, the parallels are to

be drawne.

Wright published a table of \meridional parts" which

was obtained by taking dθ = 1′ and then comput-
ing the Riemann sums for latitudes below 75◦. Thus
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the methods of constructing Mercator's \true chart"

became available to cartographers.

Wright also offered an interesting physical model.

Consider a cylinder tangent to the earth's equator

and imagine the earth to \swal [swell] like a blad-

der". Then identify points on the earth with the

points on the cylinder that they come into contact

with. Finally unroll the cylinder; it will be a Merca-

tor map. This model has often been misinterpreted

as the cylindrical projection (where a light source

at the earth's center projects the unswollen sphere

onto its tangent cylinder), but this projection is not

conformal.

We have established half of our result, namely

that the distance on the map from the equator to the

parallel at latitude θ is given by the integral of the
secant. It remains to show that it is also given by

ln | tan( θ
2

+ π
4
)|.

In 1614 John Napier (1550{1617) published his

work on logarithms. Wright's authorized English

translation, A Description of the Admirable Table of
Logarithms, was published in 1616. This contained a
table of logarithms of sines, something much needed

by astronomers. In 1620 Edmund Gunter (1581{

1626) published a table of common logarithms of

tangents in his Canon triangulorum. In the next
twenty years numerous tables of logarithmic tangents

were published and so were widely available. (Not

even a table of secants was available in Mercator's

day.)

In the 1640s Henry Bond (c. 1600{1678), who

advertised himself as a \teacher of navigation, sur-

vey and other parts of the mathematics", compared

Wright's table of meridional parts with a log-tan ta-

ble and discovered a close agreement. This serendip-

itous accident led him to conjecture that

D(θ) = ln

∣∣∣∣tan

(
θ

2
+
π

4

)∣∣∣∣ .

He published this conjecture in 1645 in Norwood's

Epitome of Navigation. Mainly through the corre-
spondence of John Collins this conjecture became

widely known. In fact, it became one of the out-

standing open problems of the mid-seventeenth cen-

tury, and was attempted by such eminent mathemati-

cians as Collins, N. Mercator (no relation), Wilson,

Oughtred, and John Wallis. It is interesting to note

that young Newton was aware of it in 1665 [18],

[21].

The \Learned and Industrious Nicolaus Mercator"

in the very first volume of the Philosophical Trans-
actions of the Royal Society of London was \willing

to lay a Wager against any one or more persons that
have a mind to engage . . . Whether the Artificial
[logarithmic] Tangent-line be the true Meridian-line,
yea or no?" ([9], pp. 217{218). Nicolaus Mercator

is not, as the story is often told, wagering that he

knows more about logarithms than his contempo-

raries; rather, he is offering a prize for the solution

of an open problem.

The first to prove the conjecture was, to quote

Edmond Halley, \the excellent Mr. James Gre-

gory in his Exercitationes Geometricae, published
Anno 1668, which he did, not without a long train
of Consequences and Complication of Proportions,

whereby the evidence of the Demonstration is in a

great measure lost, and the Reader wearied before he

attain it" ([7], p. 203). Judging by Turnbull's modern

elucidation [19] of Gregory's proof, one would have

to agree with Halley. At any rate, Gregory's proof

could not be presented to today's calculus students,

and so we omit it here.

Isaac Barrow (1630{1677) in his Geometrical
Lectures (Lect. XII, App. I) gave the first \intel-
ligible" proof of the result, but it was couched in

the geometric idiom of the day. It is especially note-

worthy in that it is the earliest use of partial fractions

in integration. Thus we reproduce it here in modern

garb:
∫

sec θ dθ =

∫
1

cos θ
dθ =

∫
cos θ

cos2 θ
dθ

=

∫
cos θ

1 − sin2 θ
dθ

=

∫
cos θ

(1 − sin θ)(1 + sin θ)
dθ

=
1

2

∫
cos θ

1 − sin θ
+

cos θ

1 + sin θ
dθ

=
1

2
[− ln |1− sin θ| + ln |1 + sin θ|] + c

=
1

2
ln |(1 + sin θ)/(1 − sin θ)| + c

=
1

2
ln |(1 + sin θ)2/(1 − sin2 θ)| + c

=
1

2
ln |(1 + sin θ)2/ cos2 θ| + c

= ln |(1 + sin θ)/ cos θ| + c

= ln | sec θ + tan θ| + c.

We became interested in this topic after noting

one line of historical comment in Spivak's excellent

Calculus (p. 326). As we ferreted out the details and
shared them with our students, we found an ideal

soapbox for discussing the nature of mathematics,
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the process of mathematical discovery, and the role

that mathematics plays in the world. We found this

so useful in the classroom that we have prepared a

more detailed version for our students [17].
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1 Introduction

In this paper our interest is not in a renowned math-

ematician, a celebrated school, or a famous prob-

lem, but in a curve, the cycloid. More particularly,

our interest is to center around its relation to the

mathematics of the seventeenth century, one of the

great centuries in the history of the subject. This

curve had the good fortune to appear at a time when

mathematics was being developed very rapidly and

perhaps mathematicians were fortunate that so useful

a curve appeared at this time. A new and powerful

tool for the study of curves was furnished by the

analytic geometry, whose year of birth is commonly

given as 1637. New methods for finding tangents

to curves, the areas under curves, and the volumes

of solids bounded by curved surfaces were being

discovered at a rapid pace, and a new subject, the

calculus, was in the making. In these developments

the cycloid was the one curve used preeminently and

nearly every mathematician of the time used it in a

trial of some of his new theory, even to the extent

that much of the early histories of analytic geometry,

calculus, and the cycloid are closely interwoven.

In the history that follows we shall not be con-

cerned with historical minutiae, but only with the

broad outlines of the story of this curve.

2 Early history of the curve

The original discoverer of the cycloid appears to be

unknown. Paul Tannery has discussed a passage by

Iamblichus referring to double movement and has

remarked that it is difficult to see how the cycloid

could have escaped the notice of the ancients [3].

John Wallis in a letter of 1679, ascribed the discov-

ery to Nicolas Cusanus in 1450 and also mentioned

Bouelles as one who in 1500 advanced the study

of this curve. In the case of Cusanus, however, his-

torians are agreed that Wallis was mistaken unless,

says Cantor, he had access to some manuscript now

lost. Now Bouelles mentions that he had observed

a rolling wheel yet he seems to have considered the

generated arch as a part of a circle whose radius was

five-fourths that of the generating circle. The history

of the cycloid becomes more definite when we come

to Galileo. This scientist and teacher, famed for his

telescope and microscope and as the discoverer of

the isochronism of the vibrations of a pendulum, this

Galileo attempted the quadrature of a cycloidal arch

in 1599, at least so writes his pupil Torricelli in a

publication of 1644. We here learn that Galileo had

sought to measure its area and for this purpose used

a balance upon which he placed a material cycloidal

arch and a generating circle of like material. Always

the arch was about three times as heavy as the cir-

cle, wherefore Galileo had given up his experiment

since he believed that an incommensurable ratio was

in question. Cantor writes of Galileo that he was the

first to make this curve well known and that it was

he who gave it its name. The curve was also known

as a roulette and as a trochoid.

3 The work of Roberval

The scene now shifts to France, to the activities of

Gilles Persone de Roberval, and to the problem of

the quadrature of the cycloid. Going up to Paris in

1628, Roberval soon became a member of that small

group of scientists and mathematicians who were

wont to gather twice a week, generally at the home

of P�ere Marin Mersenne, to discuss matters of com-

mon interest. NowMersenne had brought the cycloid

to the attention of French mathematicians at various

183
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times and Roberval soon learned of this curve but

could not immediately effect the quadrature. How-

ever, a new method of finding the areas under curves

was made known in 1629 when Cavalieri submitted

his notes on the theory of indivisibles to show his
fitness for the chair of mathematics at the Univer-

sity of Bologna, where he was a candidate. This new

theory, and its extensions later, exerted an enormous

influence upon the subject of finding the areas under

curves, hence on the development of the calculus. In

this paper we are concerned only with one part of

this theory which is known as Cavalieri's Theorem

[1] and which says that if two areas are everywhere

of the same width one to the other, then the areas

are equal.

About 1634 Roberval effected the quadrature of

the cycloid, or trochoid as he called this curve. The

first publication of his proof seems to have been

in 1693 when his Trait �e des Indivisibles [2] ap-
peared. To explain the long delay in publication of

this important discovery, it may be noted that the

Chair of Ramus at the Coll�ege Royale which Rober-

val had won in 1634, automatically became vacant

every three years, to be filled again by open compe-

tition. As the incumbent set the questions it seems

plausible that Roberval should conceal his meth-

ods. In this way he would have a set of questions

whereby he should win the coming contests. Profes-

sor Walker states that the accident of occupying this

chair caused Roberval to lose credit for many of his

discoveries.

Roberval's quadrature depends upon a so-called

cycloid companion curve and an application of Cav-

alieri's Theorem. Professor Walker [2] gives a trans-

lation of this quadrature, but we shall describe it only

in a general way. This is among the very earliest of

the quadratures.

Let OABP be the area under the half arch of

the cycloid whose generating circle has the diame-

ter OC . Take P any point on the cycloid and take

PQ equal to DF . The locus of Q will be the com-
panion curve to the cycloid. This curve OQB is

A

BC

D

O

P F
Q

the sine curve y = a sin(x/a) where a is the ra-
dius of the generating circle, if we take the origin at

the midpoint of the arc OQB, and the x-axis paral-
lel to OA. Now by Cavalieri's Theorem, the curve
OQB divides the rectangle OABC into two equal

parts, since to each line as DQ in OQBC there

corresponds an equal line in OABQ. The rectangle
OABC has its base and altitude equal respectively

to the semicircumference and diameter of the gener-

ating circle, hence its area is twice that of the circle.

Thus OABQ has the same area as the generating

circle. Also the area between the cycloid OPB and
the curve OQB is equal to the area of the semicircle
OFC since these two areas are everywhere of the

same width one to the other. Hence the area under

the half arch is one and one-half times the area of

the generating circle, and the area under the arch is

three times that of the generating circle.

4 Construction of the tangent

Early in 1638, Mersenne wrote to Fermat and

Descartes presenting for their consideration the prob-

lem of the quadrature of the cycloid and the con-

struction of a tangent to the curve. For a year or

more previously Roberval and Fermat had been in

correspondence, with Senator Carcavy as intermedi-

ary. The subjects discussed included tangents, cu-

batures, and centers of gravity. Mersenne's letters,

however, brought to a focus the question of tangents

for in August of this year Roberval, Fermat, and

Descartes each gave Mersenne a method of drawing

a tangent and each had a different method. In the en-

suing dispute between Fermat and Descartes over the

relative merits of their constructions, Roberval sided

with Fermat. In turn Descartes wrote several letters

to Mersenne bitterly ridiculing some of Roberval's

tangent constructions which Mersenne had transmit-

ted to him.

The question of priority in the matter of tangents

we leave as unsettled and also unimportant, since

each could not have borrowed from the others, so

different were the methods. Part of the dispute over

the relative merits of the constructions arose from

different ideas as to the meaning of tangents to

curves other than circles. The definition of a tan-

gent as the limiting position of a secant had not yet

been generally accepted.

We proceed to describe each of the three tangent

constructions. Descartes' method is that which we

now call instantaneous centers of curvature.
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A F D

C

EB

H

Let B be any point on the half arch of the cycloid
ABC and let it be required to draw a tangent to the
cycloid at B.
Draw BE parallel to the base AD cutting the

circle at E. Draw BF parallel to ED and BH per-

pendicular to BF . BH is the required tangent.

The proof is based on the following considera-

tions:

If a polygon ABCD rolls on a straight line A′D′ ,

any point A will describe a number of segments of
circles whose centers will be at B′ , C ′, D′, etc. The

tangents to these segments will always be perpen-

dicular to the line joining the point of tangency to

the center of the circle. Consequently if the gener-

ating circle is considered as a polygon which has

an infinite number of sides, the tangent at a given

point will be the line perpendicular to the line join-

ing this point to the point where the generating circle

touches the base at the same instant it passes through

the point.

A¢ C¢B¢ D¢

D

C

B

A

Roberval's tangent construction makes use of the

composition of forces and is easily understood in

connection with his particular way of stating the def-

inition of the cycloid.

Let the diameter AD of the circle move always

parallel to its original position with A on the line

AB until it takes the position BO with AB equal to
a semicircumference. At the same time let the point

A move on the semicircle ACD in such a way that

the speed of AD along AB may be equal to the

speed of A along the semicircle, thus allowing A
to reach the point D at the same time AD reaches

BO. The point A is carried along by two motions,

its own on the semicircle and that of the diameter

AD. The path of A due to these two motions is the
half cycloid APO.
To construct a tangent at any point P on the cy-

cloid, draw PP ′ parallel to AB cutting the semicir-
cle at C . Then draw CF tangent to the semicircle

and draw PE parallel to CF . The bisector of the
angle EPP ′ is the required tangent since it is the

resultant of two equal motions.

A B

D

C

F

P

E O

P¢

While finding the two components may be diffi-

cult for many curves, yet the cycloid is said to be

the eleventh curve for which Roberval thus found

tangents.

Fermat's construction is not unlike that of

Descartes, but the proof appears to the casual reader

to be quite as complicated as that of Descartes is

simple. In the course of the proof a straight line is

replaced by the arc of a circle. This is equivalent to

assuming that an arc of a circle approaches coinci-

dence with a certain straight line, making the method

essentially one of limits. To one interested in the

early approaches to the calculus, Fermat's method

will be more interesting than that of Roberval or

Descartes. The methods of the latter show what can

be done in special cases and without the calculus. As

Fermat's proof is quite long and is readily available

elsewhere [4], [2], it will not be shown here.

With the area under the cycloidal arch and the

tangent construction well mastered by his fellow

Frenchmen, Mersenne announced these results to

Galileo in 1638. Galileo, now old and blind, passed

them on to his pupils Torricelli and Viviani, adding

the suggestion that this curve would give a graceful

form for the arch of the bridge that was projected

for the nearby Arno River at Pisa. These pupils re-

sponded with a quadrature and a tangent. The inter-

est thus kindled led Torricelli to a considerable study

of the curve. In 1644 he made public his quadrature

and a method of drawing a tangent. This was the

earliest printed article on the cycloid.

Roberval was angered at seeing another print

proofs that he considered his own discoveries. He

wrote a letter to Torricelli charging plagiarism. More
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specifically, Roberval charged that a certain French-

man had written out Fermat's method of maxima

and minima and Roberval's propositions on the cy-

cloid, that these papers had come into Torricelli's

hands after the death of Galileo, and that Torricelli

had published them as his own. This dispute was

cut short by Torricelli's early death in 1647, a death

caused, according to Cajori, by this charge of pla-

giarism.

5 Pascal's mathematical contest

Our next episode in this history centers around

Blaise Pascal, known for his Pens�ees and his Lettres
Provinciales as well as for his mathematical works.
After a brilliant early career in mathematics he had

turned to theology. But suddenly the old mathemati-

cal propensity reasserted itself. Ball writes that Pas-

cal was suffering from sleeplessness and toothache

when the idea of an essay on the cycloid occurred

to him. To his surprise the tooth ceased to ache. Re-

garding this as a divine intimation to proceed with

the problem, he worked incessantly at it for eight

days and completed a tolerably full account of the

geometry of the cycloid. As certain questions about

this curve had never been publicly answered, a prize

was now offered by Pascal under the nom de plume
of Amos Dettonville.

The year was 1658 when Newton was sixteen

years old. The prizes were two in number, forty

and twenty Spanish doubloons. The time allotted

was June first to October first. Senator Carcavy was

made recipient of the solutions offered and he, Pas-

cal, and Roberval were the judges. The problems

were as follows:

1. The area and the center of gravity of that part of

a cycloidal arch above a line parallel to the base.

2. The volume and center of gravity of the volume

generated when the above area is revolved about

its base and also about its axis of symmetry.

3. The center of gravity of the solids formed when

each body is cut by a plane parallel to its axis of

revolution.

Only two contestants, Wallis and Lalouv�ere, had

submitted offerings when time was called. Ball says

that Wallis did not submit solutions for the centers

of gravity, and Cajori says that Wallis made many

mistakes. Both historians agree that Lalouv�ere was

quite unequal to the task. The judges declared that

neither contestant was entitled to a prize.

At the time of this contest, Sir Christopher Wren

sent to Pascal his proposition on the rectification of

the cycloid, not, however, including any proof. When

Pascal showed this to Roberval the latter is said to

have proved the proposition immediately, claiming

to have known it for many years. To Wren goes

the credit for the first publication and its proof [4],

when Wallis published it as Wren's a year later in

his Tractatus duo.
While the contest was on, Pascal published his

L'Histoire de la Roulette and after the decision of
the judges, his solution of the problems. With Pas-

cal's and Wallis's publications at this time, the prob-

lems of quadrature, tangents, rectification, cubature,

and centers of gravity are substantially completed

in so far as the cycloid, or roulette as it was bet-

ter known to the Frenchmen, was concerned. All

this was accomplished in a period of about twenty-

five years and before Newton's work in the calculus.

The principle of indivisibles, or infinites, or what-
ever they had used, had in the hands of Roberval,

Fermat, Torricelli, Wren, and Wallis led to important

results. The cycloid curve was always being used; it

was the pre-eminent curve, and its importance was

to be seen later.

6 The brachistochrone problem

In another fifteen years, Huygens was using the

cyloidal pendulum in an attempt to get a better

chronometer and made use of the property that

the evolute of the cycloid is another equal cycloid.

This same Huygens discovered that a heavy particle

reached the bottom of an inverted cycloidal arch in

the same length of time no matter from what point

on the arch it began its descent. In 1686, Leibniz

wrote the equation for the curve, thus showing the

rapid progress that was being made in analytic ge-

ometry. This equation is given here as Leibniz wrote

it since his form shows interesting variations from

those employed at present:

y =
√

2x− xx+

∫
dx√

2x− xx
.

In the decade following the publication of this equa-

tion, the Bernoulli brothers, Jacques and Jean, pub-

lished several articles on the cycloid. But we shall

hurry on to one final episode in the history of the

curve.

In June, 1696, Jean Bernoulli proposed a new

problem which mathematicians were invited to
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solve: If two points A and B are given in a ver-

tical plane, to assign to a mobile particle M the

path AMB along which, descending under its own

weight, it passes from the point A to the point B
in the briefest time. In later amplifying the prob-

lem Bernoulli says to choose such a curve that if

the curve is replaced by a thin curve or groove

and a small sphere placed in it and released, then

this sphere will pass from one point to the other in

the shortest possible time. Thus the famous brachis-

tochrone problem appeared on the scene. The so-

lution is the inverted cycloidal arch. An elaborate

model of the brachistochrone formed a considerable

part of the mathematics exhibit at the Golden Gate

International Exposition in 1940, from which we

may conclude that there is still considerable inter-

est in the problem.

In giving out his solution [1], Jean Bernoulli wrote

that a new kind of maxima and minima is required.

In this solution we see that mathematics had ad-

vanced at this time as far as the calculus of vari-

ations. In a few more years there began to appear

articles on general methods for determining the na-

ture of curves formed by other rolling circles and on

curves of descent under activating forces other than

gravity. As the cycloid thus loses its pre-eminence,

this seems a proper place to close this recital of its

history.
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Descartes and Problem-Solving
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Mathematics Magazine 68 (1995), 83{97

Introduction

What does Descartes have to teach us about solv-

ing problems? At first glance it seems easy to re-

ply. Descartes says a lot about problem-solving. So

we could just quote what he says in the Discourse
on Method [12] and in his Rules for Direction of
the Mind ([2], pp. 9{11). Then we could illustrate
these methodological rules from Descartes' major

mathematical work, La G�eom�etrie [13]. After all,
Descartes claimed he did his mathematical work

by following his \method." And the most influen-

tial works in modern mathematics|calculus text-

books|all contain sets of rules for solving word

problems, rather like this:

1. Draw a figure.

2. Identify clearly what you are trying to find.

3. Give each quantity, unknown as well as known,

a name (e.g., x, y, . . .).

4. Write down all known relations between these

quantities symbolically.

5. Apply various techniques to these relations until

you have the unknown(s) in equations that you

can solve.

The calculus texts generally owe these schemes to

George P�o1ya's Mathematical Discovery, especially
Chapter 2, \The Cartesian Pattern," and P�o1ya him-

self credits them to Descartes' Rules for Direction
of the Mind ([32], pp. 22{23, 26{28, 55{59, 129ff).
So I studied those philosophical works as I began

to write about Descartes and problem-solving. But

the more I re-read Descartes' Geometry, the more
convinced I became that it is from this work that

his real lessons in problem-solving come. One could

claim that, just as the history of Western philosophy

has been viewed as a series of footnotes to Plato, so

the past 350 years of mathematics can be viewed as

a series of footnotes to Descartes' Geometry.
Now Descartes said in the Discourse on Method

that it didn't matter how smart you were; if you

didn't go about things in the right way|with the

right method|you would not discover anything.

Descartes' Geometry certainly demonstrates a suc-
cessful problem-solving method in action. Accord-

ingly, this article will bring what historians of math-

ematics know about Descartes' Geometry to bear on
the question, what can Descartes teach the math-

ematics community about problem-solving? To an-

swer this question, let us look at the major types

of problems addressed in the Geometry and at the
methods Descartes used to solve them.

A first look at Descartes'

Geometry
We have all heard that Descartes' Geometry con-
tains his invention of analytic geometry. So when

we look at the work, we may be quite surprised at

what is not there. We do not see Cartesian coordi-
nates. Nor do we see the analytic geometry of the

straight line, or of the circle, or of the conic sec-

tions. In fact we do not see any new curve plotted
from its equation. And what curves did Descartes al-

low? Not, as we might think, any curve that has an

equation; that is secondary. He allowed only curves

constructible by some mechanical device that draws

them according to specified rules. Finally, we do not

find the term \analytic geometry," nor the claim that

he had invented a new subject| just a new (and

revolutionary) method to deal with old problems.

188
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What we do see is a work that is problem-driven
throughout. Descartes' Geometry has a purpose. It
is to solve problems. Some are old, some are new;

all are hard. For all the lip service in Descartes'

Discourse on Method to mathematics as logical de-
duction from self-evident first principles ([12], pp.

12{13, 18{19), the Geometry is not like that at all. It
discovers; it does not present a finished logical struc-

ture. The specific purpose of the book is to answer

questions like \What is the locus of a point such that

a specified condition is satisfied?" And the answer

to these questions must be geometric. Not \it is such-

and-such a curve," or even \it has this equation," but

\it is this curve, it has this equation, and it can be

constructed in this way." Everything else in the Ge-
ometry|and that does include algebra, theory of

equations, classifying curves by degree, etc.| are

just means to this geometric end. To solve a prob-

lem in geometry, one must be able to construct the

curve that is its solution.

The background of Descartes'

Geometry
To appreciate how much Descartes accomplished,

we must first look at some achievements of the an-

cient Greeks. They solved a range of locus problems,

some quite complicated. To find their solutions, they

too had \methods." Greek mathematics recognized

two especially useful problem-solving strategies:

reduction and analysis ([25], pp. 23{24).
First, let us describe the method of reduction [in

Greek, apogōgē]. Given a problem, we observe that
we could solve it if only we could solve a second,

simpler problem, and so we attack the second one in-

stead. For instance, consider the famous problem of

duplicating the cube. In modern notation, the prob-

lem is, given a3, to find x such that x3 = 2a3. Hip-

pocrates of Chios showed that this problem could be

reduced to the problem of finding two mean propor-

tionals between a and 2a. That is, again in modern
notation, if we can find x and y such that:

a/x = x/y = y/2a, (1)

then, eliminating y, we obtain x3 = 2a3 as required

([25], p. 23). But more geometric knowledge led to

a further reduction ([25], p. 61). If we consider just

the first two terms of (1),

a/x = x/y,

A
C

B K

Figure 1.

we obtain x2 = ay, which represents a parabola.
The equation involving the first and third terms in

(1) yields

a/x = y/2a

or xy = 2a2, which represents a hyperbola. Thus the

problem of duplicating the cube is reducible to the

problem of finding the intersection of a parabola and

a hyperbola. This reduction promoted Greek interest

in the conic sections.

The other problem-solving strategy is what the

Greeks called \analysis"|literally, \solution back-

wards" (�arn�apalin l �ysin [20], Vol. ii, p. 400; [25],
p. 9; cp. pp. 354{360). The Greek \analysis" works

like this. Suppose we want to learn how to construct

an angle bisector, and suppose that we already know

how to bisect a line segment. We proceed by first

assuming that we have the problem solved. Then,

from the assumed existence of that angle bisector,

we work backward until we reach something we do

know. In Figure 1, take the angle A, and draw AK
bisecting it.

Then, mark off any length AB on one side of the
angle, and an equal length AC on the other side.

Connect B and C with the straight side BC , as in
Figure 2. Now let M be the intersection of the an-

gle bisector with the line BC . Since angle BAM =

A
C

B

M

K

Figure 2.
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angle MAC , AB = AC , and AM = AM , trian-
gle ABM is congruent to triangle ACM . Thus M
bisects BC . But wait. Recall that we already know
how to bisect a line segment. Thus, we can find such

an M . Now we can construct the angle bisector by
reversing the process we just went through. That

is, suppose we are given an angle A. To construct
the angle bisector, construct AB = AC , construct
the line BC , bisect it at M , and connect the points
A and M . AM bisects the angle. This method|

assuming that we have the thing we are looking for

and working backwards from that assumption until

we reach something we do know|was well-named

\solution backwards." Pappus of Alexandria, in the

early fourth century C.E., compiled a \treasury of

analysis" in which he gave the classic definition

of \analysis" as \solution backwards"; described 33

works, now mostly lost, by Euclid, Apollonius, Aris-

taeus, and Eratosthenes, which included substan-

tial problems solvable by the method of analysis;

and provided some lemmas that illustrate problem-

solving by analysis ([20], Vol. ii, pp. 399{427).

In our example of bisecting an angle, the math-

ematical knowledge needed was minimal. But the

Greeks knew all sorts of properties of other geomet-

ric figures, notably the conic sections, and so had an

extensive set of theorems to draw on in using \anal-

ysis" to solve problems in geometry ([6], pp. 21{39;

[10], pp. 43{58; [20] passim; [25]). (The best and

fullest account is that of Knorr [25].)

Thus we see that Descartes, though he champi-

oned these techniques, clearly did not invent the

method of analysis and the method of reduction.

Descartes' ideas on problem-solving, moreover, have

other antecedents besides the Greek mathematical

tradition. First, a preoccupation with finding a uni-

versal \method" to find truth appears in the work of

earlier philosophers, including the thirteenth-century

Raymond Lull, whose method was to list all possible

truths and select the right one, the sixteenth-century

Petrus Ramus, who saw method as the key to ef-

fective teaching and to allowing learners to make

their own discoveries ([29], pp. 148{149), and the

seventeenth-century philosopher of science Francis

Bacon, whose method to empirically discover natu-

ral laws was one of systematic induction and testing

[1]. All of these seekers for method suggested that

intellectual progress, unimpressive earlier in history,

could be achieved once the right method for finding

truth was employed. Descartes shared this view.

A second, more specific antecedent of Descartes'

work was the invention of symbolic algebra as a

problem-solving tool, a tool that was explicitly rec-

ognized as a kind of \analysis" in the Greek sense by

its discoverer, Vieta, in 1591 ([6], p. 65; cp pp. 23,

157{173). To say \let x =" the unknown, and then
calculate with x|square it, add it to itself, etc.,

as if it were known|is a powerful technique when
applied to word problems both in and outside of ge-

ometry. Vieta recognized that naming the unknown

and then treating it as if it were known was an ex-

ample of what the Greeks called \analysis," so he

called algebra \the analytic art." Incidentally, Vieta's

use of this term is the origin of the way we use the

word \analysis" in mathematics. In the seventeenth

and early eighteenth centuries, the term \analysis"

was often used interchangeably with the term \alge-

bra," until by the mid-eighteenth century \analysis"

became used for the algebra of infinite processes as

opposed to that of finite ones [4].

Descartes was quite impressed with the power of

symbolic algebra. But, although he had all these pre-

decessors, Descartes combined, extended, and then

exploited these earlier ideas in an unprecedented

way. To see how his new method worked, we need

to look at a specific problem.

Descartes' method in action

We begin with the first important problem Descartes

described solving with his new method ([13] pp.

309{314, 324{335). The problem is taken from Pap-

pus, who said in turn that it came from Euclid and

Apollonius ([13], p. 304). The problem is illustrated

in Figure 3 (from [13], p. 309).

Given four lines in a plane, and given four an-

gles. Take an arbitrary point C . Consider now the

F

x y

D

C

H

G

T

S
R

BAE

Figure 3.
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distances (dotted lines) from C to the various given
lines, where the distances are measured along lines

making the given angles with the given lines. (For

instance, the distance CD makes the given angle

CDA with the given line AD.) A further condition
on C is that the four distances CD,CF, CB, and
CH satisfy

(CD · CF )/(CB · CH) = a given constant. (2)

The problem is to find the locus of all such points

C . For Descartes, that means to discover what curve
it is, and then to construct that curve. (At this time,

any reader who does not already know the answer is

encouraged to conjecture what kind of curve it is|

or to imagine constructing even one such point C .)
Here is how Descartes attacked this problem. First

assume, as we must in order to draw Figure 3, that

we already have one point on the curve. We will then

work backwards, by the method of analysis. Draw

the point C , and draw the distances. Label the dis-
tance from C to the line EG as y, and the line seg-
ment between that distance and the given lineDA as
x. Given these labels x and y, we use them and look
for other relationships that can be derived in terms

of them. For instance, independent of the choice of

C , the angles in the triangle ABR are all known

(since angle CBG is one of the given angles in the
problem, we have angle ABR by vertical angles;

angle RAB is determined by the position of the two
given lines that include the segments DR and GE).
Thus the shape of triangle ABR is determined, so

the sideRB is a fixed multiple of x. Descartes there-
fore called that side (b/z) · x, where he took b/z to
be a known ratio. Thus CR = y + (b/z) · x ([13],
p. 310). Using his knowledge of geometry in this

fashion, Descartes found many more such relation-

ships, and was able to express each of the distances

CD,CF, CB, and CH as a different linear function

of the line segments x and y. For the case where
(CD · CF )/(CB · CH) = 1, those expressions let
him derive an equation between the unknowns x and
y and various constants he called m, n, z, o, and p:

y = m− (n/z) · x+
√
m2 + ox+ (p/m) · x2 (3)

([13], p. 326). Now perhaps the modern reader can

guess what type of curve that equation represents.

So could Descartes. From his studies of Greek ge-

ometry, Descartes knew quite a lot about the conic

sections, so he said, though he did not explain, that

if the coefficient of the x2 term is zero, the points C
lie on a parabola; if that coefficient is positive, on

a hyperbola; if negative, on an ellipse; etc. The po-

sitions, diameters, axes, centers, of these curves can

be determined also, and he briefly discussed how to

do this ([13], p. 329{332).

The reader will have observed that there is no

fixed coordinate system here. Descartes labeled as

x and y the lengths of line segments that arose in
this particular situation. Let us also make a com-

ment about his choice of notation. Vieta had used

uppercase vowels for the unknowns, consonants for

knowns. Since matters of notation are relatively ar-

bitrary, the fact that we use Descartes' lowercase

x and y, rather than Vieta's A and E, testifies to
the great influence of Descartes' work on our alge-

bra and geometry. Further, though Descartes himself

wrote mm and xx rather than m2 and x2 ([13], p.

326), he did use raised numbers, exponents, for in-

teger powers greater than two (e.g., [13], pp. 337,

344). Today we follow Descartes here too, using ex-

ponential notation for all powers.

The Greeks already knew that the Pappus four-

line locus was a conic section. Nonetheless, the way

Descartes derived this result is impressive. In line

with our overall purpose, let us reflect on the method

Descartes used. Why is \let x equal the first un-
known" so powerful here? Because the technique

of \reduction" was used by Descartes to effectively

reduce a problem in geometry to a problem in al-

gebra. Once he had done this, he could use the al-

gorithmic power and generality of algebra to solve

a formerly difficult problem with relative ease. It is

an old problem-solving method, to reduce a problem

to a simpler one, but because the simpler one is al-

gebraic, Descartes had something different in kind

from what had been done before. Algebra puts mus-

cles on the problem-solving methods of analysis and

reduction.

Beyond the Greeks

To fully exploit the power of algebra | to go beyond

the Greeks | Descartes had to make a major break

with the past. The earlier symbolic algebra of Vieta

was based on the theory of geometric magnitudes in-

herited from the Greeks. Because of this geometric

basis, the product of three magnitudes was spoken of

as a volume. This created a problem: What might the

product of five magnitudes be? Also, Greek geome-

try presupposed the Archimedean axiom: Quantities

cannot be compared unless some multiple of one can

exceed the other, so one cannot add a point to a line,
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192 The Seventeenth Century

or an area to a solid. How then could one write x2+x
([6], pp. 61, 84)? Descartes, like his predecessors,

did not envision pure numbers, but only geometrical

magnitudes. He too felt constrained to interpret all

algebraic operations in geometric terms. But he in-

vented a new geometric interpretation for algebraic

equations that freed algebraists from crippling re-

strictions like being unable to write x5 or x2 + x.
He freed himself, and therefore freed his successors,

including us. Here is how he did it.

He took a line that he called \unity," of length

one, which could be chosen arbitrarily. This let him

interpret the symbol x as the area of a rectangle
with one side of length x, the other of length one. He
could now write x2+x with a clear conscience, since
it could be thought of as the sum of two areas. Even

more important, he interpreted products as lengths of

lines, so that he could interpret an arbitrary power

as the length of a line. That is, the product of the

line segments a and b for Descartes did not have to
be the area ab, but could be another length such that
ab/a = b/1. And the length ab could be constructed,
as in Figure 4 ([13] p. 298).

In this example, the product of the lines BD and

BC is constructed, given a unit line AB. Let the
line segments AB and BD be laid off on the same

line originating at B, and let the segment BC be

laid off on a line intersecting BD. Extending BC
and constructing ED parallel to AC yields the pro-
portion BE/BD = BC/1, since AB = 1. Thus
BE is the required product BD · BC . Of course
this is an easy construction, but he had to give it ex-

plicitly. Descartes' philosophy of geometry did not

let him merely assert that there was a length equal

to the product of the two lines; he had to construct

it. Now there was no problem in writing such ex-

pressions as x5. This was just the length such that

x5/x3 = x2/1.

A
B

C

D

E

Figure 4.

By showing that all the basic algebraic opera-

tions had geometric counterparts, Descartes could

use them later at will. Furthermore, he had made

a major advance in writing general algebraic ex-

pressions. Because of Descartes' innovations, later

mathematicians came to consider algebra as a sci-

ence of numbers, not geometric magnitudes, even

though Descartes himself did not explicitly take this

step. Descartes took his notational step in the service

of solving geometric problems, in order to legitimize

the algebraic manipulations needed to solve these ge-

ometric problems. What became a major conceptual

breakthrough, then, was in the service of Descartes'

problem-solving.

Descartes could now go beyond the Greeks, ex-

tending the Pappus four-line problem to 5, 6, 12, 13,

or arbitrarily many lines. With these more elaborate

problems, he still followed the same method: La-

bel line segments, work out equations. But when he

found the final equation and it was not recognizable

as the equation of a conic, what then? To answer

this, let me give the simple example he gave, a spe-

cial case of the five-line problem. He considered four

parallel lines separated by a constant distance, with

the fifth line perpendicular to the other four ([13],

pp. 336{337). (See Figure 5.) What, he asked, is the

locus of all points C such that

CF · CD ·CH = CB ·CM · AI, (4)

where AI is the constant distance between the

equally spaced parallel lines and where the distances

are all measured at right angles?

Again, Descartes proceeded by analysis. Assum-

ing that he had such a point C , he labelled the appro-
priate line segments x and y (x = CM, y = CB),
designated the known distance AI as a, and wrote
down algebraic counterparts of all known geometric

relationships. For this problem they are simple ones.

For instance CD = a− y and CF = a+ (a− y) =

A

B

CD

E

F

G

H

IM

Figure 5.
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2a− y. Thus condition (4) becomes

(2a− y)(a − y)(y + a) = y − x− a,

which, multiplied out, yields the equation ([13], p.

337)

y3 − 2ay2 − a2y + 2a3 = axy. (5)

This is not a conic (it is now often called the cubical

parabola of Descartes), so the next question must be,

can the curve this represents be constructed? That is,

given x, can we find the corresponding value of y
and thus construct any point C on the curve? Until
these questions are answered affirmatively, Descartes

would not consider the five-line problem solved, be-

cause, for him, it is a problem in geometry. The

algebraic equation was just a means to the end for

Descartes; it was not in itself the solution.

So precisely what does \constructible" mean for

Descartes? Can the curve represented by that cubic

equation be constructed, and, if so, how?

Here another of Descartes' methodological com-

mitments helped him solve this problem: his com-

mitment to generality. The ancients allowed the con-

struction of straight lines and circles, said Descartes,

but classified more complex curves as \mechanical,

rather than geometrical" ([13], p. 315). Presumably

this was because instruments were needed to con-

struct them. (For instance, Nicomedes had generate

the conchoid by the motion of a linkage of rulers

([25], pp. 219{220), and then used the curve in du-

plicating the cube and trisecting the angle.) But even

the ruler and compass are machines, said Descartes,

so why should one exclude other instruments ([13],

p. 315; tr., p. 43)? Descartes decided to add to Eu-

clid's construction postulates that \two or more lines

can be moved, one upon the other, determining by

their intersections other curves" ([13], p. 316). The

curves must be generated according to a definite rule.

And for Descartes, such a rule, at least in princi-

ple, was given by the use of a mechanical device

that generated a continuous motion. Exactly what

this means is complex|for instance, the machine

is not allowed to convert an arc length to a straight

line|_but Bos has provided an enlightening discus-

sion ([3], pp. 304{322, esp. p. 314).

Figure 6 reproduces one of Descartes' curve-

constructing devices ([13], p. 320). The first curve

he generated using it was produced by the intersec-

tion of moving straight lines. The straight line KN
(extended as necessary) is at a fixed distance from

a ruler GL. The ruler is attached to the point G,
around which it can rotate. The point L can slide

A

B
L

K

N

C

I

E

G

Figure 6.

along the ruler GL. The segment KL moves up the
fixed line AB (extended as needed). As KL moves
up, the ruler, which has a \sleeve" attached to L,
rotates about G. Note that KL,KN , and the an-
gle between them are all fixed. Then the point at

which the ruler GL intersects the straight line KN
extended, namely C , will be a point on the curve
generated by this device.

To help the reader understand the operation of

this device, I show, in Figure 7, the construction of

a second point C′ by this device. KL has moved up;
KN thus has a new position; the ruler has rotated to

a new position. Where the ruler and KN extended

now intersect is another point C ′ on the curve. If

one continues moving KL up and down, the points
C,C ′, etc., trace a new curve.

A
G

B
L

E

I

C

N

K

L

K

N

C¢

Ruler

Figure 7.
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But what kind of curve is it? Descartes solved

this problem in his usual way. He labelled the key

line segments (he let the unknowns y = CB and

x = BA, and the knowns a = AG, b = KL, and
c = NL), and algebraically represented the geomet-
ric relationships between them. He then showed that

if KNC is, as it is in our diagram, a straight line,

the new curve generated by the points C,C′, etc., is
a hyperbola ([13], p. 322). (In fact AB is one of the
hyperbola's asymptotes, and the other asymptote is

parallel to KN , as was shown by Jan van Schooten
in his Latin edition of Descartes' Geometry ([13],
p. 55n).) If instead of the straight line KNC , one
uses a parabola whose axis is the straight line KB,
the new curve constructed by the device can again

be identified once its equation is found. In this case,

Descartes showed by his usual method that the curve

produced was precisely the cubic curve of (5) that he

got for the simple five-line problem! ([13], p. 322.)

This coincidence must have suggested to

Descartes that his construction method could obtain

any desired curve. Also, using algebra, Descartes

showed that his device would produce curves of

successively higher degrees ([13], p. 321{323). For

instance, when KN was a straight line, it pro-

duced a curve represented by a quadratic; whenKN
was a parabola, it produced a third-degree curve.

Descartes, struck by the generality of these results,

said that any algebraic curve could be defined as

a Pappus n-line locus ([13], p. 324), but here he
went too far. (For a proof that this is incorrect, see

[3], pp. 332{338; incidentally, Newton was the first

to try to prove that Descartes was in error on this

point ([3], p. 338).) Descartes also seems to have

believed that any curve with an algebraic equation

could be constructed by one of his devices. And here

he was right, as was shown in the nineteenth century

by A. B. Kempe ([22], cited in [3], p. 324). Thus

Descartes' methods really did yield results of the

generality he sought. We can now understand and

appreciate the claim with which Descartes' Geom-
etry begins: \Every problem in geometry can easily
[!] be reduced to such terms that a knowledge of the

lengths of certain straight lines is sufficient for its

construction." (See [13], p. 297.)

The power of Descartes'

methods: tangents and equations

Descartes held that curves were admissible in geom-

etry only if they could be constructed, but of course

he also had equations for them. Thus the study of the

curves, and of many of their properties, could be ad-

vanced by the study of the corresponding equations.

Let us briefly consider one example where Descartes

did this.

All properties of geometric curves he had not yet

discussed, he said, depend on the angles curves make

with other curves ([13], pp. 341{342). This problem

could be completely solved, he continued, if the nor-

mal to a curve at a given point could be found. The

reader will recognize that this is an example of the

reduction of one problem to another. And how does

one find the normal to a curve? Again, by a reduc-

tion. It is easy to find the normal to a circle, so we

can find the normal to a curve at a point by finding

the normal to the circle tangent to the curve at the

same point. Thus we must find such a tangent cir-

cle. And how did Descartes begin his search for that

circle? By yet another reduction, this time to alge-

bra: He sought an algebraic equation for the circle

tangent to the given curve at the given point.

He did this by starting with a circle that hit the

curve at two points, and then letting the two points

get closer and closer together. This required, first,

writing an algebraic equation for a circle that hit the

curve twice. The equation for the points of intersec-

tion of that circle and the original curve would have

two solutions. But \the nearer together the points

. . . are taken, the less difference there is between
the roots; and when the points coincide, the roots

are equal"| that is, the equation has only one so-

lution when the points coincide, and thus has only

one solution when the intersecting circle becomes

the tangent circle ([13], pp. 346{347). To find when

the two solutions of the algebraic equation became

one, Descartes in effect set the discriminant equal to

zero, providing another demonstration of the power

of algebraic methods to solve geometric problems.

Thus, the algebraic equation let him find the tan-

gent circle. Finally, the normal to that circle at the

point of tangency gave him the normal to the curve

([6], pp. 94{95). Quite a triumph for the method of

reduction!

Descartes applied this technique to find normals

to several curves. For instance, he did it for the so-

called ovals of Descartes ([13], pp. 360{362), whose

properties, including normals, he used in optics. He

also discussed finding the normal to the cubical

parabola whose equation is (5) ([13], pp. 343{344).

Descartes' method was the first treatment of a tan-

gent as the limiting position of a secant to appear in

print ([6], p. 95). Thus his method of normals was
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a step in the direction of the calculus, as was Fer-

mat's contemporary, independent, simpler, and more

elegant method of tangents ([6], pp. 80, 94{95; [30],

pp. 165{169; [5], pp. 166{169, 157{158).

There is one more important class of problems

taken up in Descartes' Geometry, the solution of al-
gebraic equations. As we have mentioned, classical

problems like duplicating the cube required solving

equations. So did constructing arbitrary points on the

curve that solved a locus problem. Descartes said in

fact that \all geometric problems reduce to a single

type, namely the question of finding the roots of an

equation." (See [13], p. 401.) Since this process was

so important, if one were given an equation, it would

be good to learn as much about the solutions as pos-

sible before trying to construct them geometrically.

In the last section of theGeometry, Descartes tried
to do just this, by developing a great deal of what

is now called the theory of equations. One example

will suffice to illustrate his approach:

(x− 2)(x− 3)(x− 4)(x+ 5) = 0. (6)

Using this numerical example and multiplying it out,

he obtained

x4 − 4x3 − 19x2 + 106x− 120 = 0. (7)

Descartes pointed out that one can see from the way

the polynomial in (7) is generated from (6) that it has

three positive roots and one negative one, and that

the number of positive roots is given by the num-

ber of changes of sign of the coefficients (this is

the principal case of what is now called Descartes'

Rule of Signs). Also, a polynomial with several roots

is divisible by x minus any root, and it can have as
many distinct roots as its degree ([13], pp. 372{374).

Descartes was not the first to have pointed out these

things, but his presentation was systematic and in-

fluential, and the context made clear the importance

of the results. The algebra was not an end in itself;

it was all done to solve geometric problems.

The last major class of problems addressed in the

Geometry was constructing the roots of equations
of degree higher than two. Going beyond the Greek

example of a cubic solved by intersecting conics,

Descartes solved fifth- and sixth-degree equations.

Why? They come up, he said, in geometry, if one

tries to divide an angle into five equal parts ([13],

pp. 412), or if one tries to solve the Pappus 12-

line problem ([13], p. 324). To illustrate his solution

method, he solved a sixth-degree equation with six

positive roots by using intersecting cubic curves. The
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Figure 8.

curve he used was not y = x3, which we might think

of as simple, but the cubics he had defined as the

intersections of moving conic sections and lines. In

Figure 8, the diagram for one such solution is shown

([13], p. 404). The cubic curve, a portion of which

is shown as NCQ, intersects the circle QNC at

the points that solve the sixth-degree equation. The

cubic curve involved in this construction, generated

by the motion of the parabola CDF , is the cubic
curve (5) once again.

Descartes said that he could construct the solution

to every problem in geometry. We can now see why

he thought that!

Conclusion

Now that we have seen Descartes in action, let us

assess his influence on problem-solving. First, con-

sider the mathematics that we now call \analysis."

Descartes' Geometry solved hard problems by novel
methods. There was, as an additional aid for his
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successors, the simultaneous and analogous work of

Fermat; though Fermat's work on analytic geometry,

tangents, and areas was not printed until the 1670s,

it was circulated among mathematicians in the 1630s

and 1640s and exerted great influence. Geometry
itself attracted many followers. Continental mathe-

maticians, especially Frans van Schooten and Flo-

rimond Debeaune, wrote commentaries and added

explanations for Descartes' often cryptic statements.

They also extended Descartes' methods to construct

other loci. The second edition of Schooten's com-

mentary on Descartes' Geometry (with a Latin trans-
lation) was published in 1659{1661 together with

several other influential works based on Descartes.

One was Jan de Witt's Elements of Curves, which
systematized analytic geometry, including a discus-

sion of constructing conic sections from their equa-

tions ([6], pp. 115{116); another was Hendrik van

Heuraet's work on finding arc lengths. Schooten's

collection helped inspire both John Wallis and Isaac

Newton. Wallis \seized upon the methods and aims

of Cartesian geometry" ([6], p. 109) and went even

further in replacing geometric concepts by algebraic

or arithmetic ones. Many mid-seventeenth-century

mathematicians, including Wallis, James Gregory,

and Christopher Wren, influenced both by Descartes

and by Fermat, used algebraic methods to make fur-

ther progress on the problem of tangents, and |

as Descartes had suggested, but did not do | to

find areas. Men like van Heuraet, William Neil, and

Wren also found arc lengths for some curves this

way ([5], p. 162), which Descartes, who couldn't

do it, had said couldn't be done ([13], p. 340). Wal-

lis also extended the algebraic approach of Descartes

to infinitesimals. In the 1660s, Isaac Newton care-

fully studied Schooten's edition of Descartes, using

it (together with the work of men like Barrow, Wal-

lis, and Gregory) as a key starting point in his inven-

tion of the calculus ([35], pp. 106{111, 128{130). In

1674, less than two years before his own invention

of the calculus, Gottfried Wilhelm Leibniz worked

his way through Descartes' Geometry; he was espe-
cially interested in the algebraic ideas ([21], p. 143).

He later even examined some of Descartes' unpub-

lished manuscripts ([21], pp. 182{183).

Some scholars have credited Descartes with bring-

ing about a revolution in analysis ([7], pp. 157{159,

506; [3], p. 304; for dissenting views, see [31], pp.

110{111; [21], pp. 202{210; [18], p. 55; [19], p.

164). But at the very least we may say of the Geom-
etry what Thomas Kuhn once said about Coperni-
cus' On the Revolution of the Celestial Orbs ([26],

p. 134); though it may not have been revolution-

ary, it was \a revolution-making text." The problem-

solving methods introduced in Descartes' Geometry
and developed in the commentaries on it were clearly

seminal throughout the seventeenth century, influ-

encing both Newton and Leibniz, whether or not

Descartes was the first inventor of these techniques.

And such influence continued through the eighteenth

century and beyond ([17], pp. 156{158, 505{507).

Incidentally, the systematic approach to ana-

lytic geometry we all learned in school is not in

either Descartes or Fermat (though Fermat, un-

like Descartes, did plot elementary curves from

their equations), but dates from various eighteenth-

century textbooks, especially those from the hands of

Euler, Monge, Lagrange, and Lacroix ([16], pp. 192{

224). Descartes, though, was not a textbook writer,

but a problem-solver. The essence of his influence

was in his new approach and his self-consciousness

about method. These highlight his achievement as a

problem-solver.

Second, then, let us look at his influence on

problem-solving in general. The problem-solving

methods we teach our students are the direct descen-

dants of Descartes' methods. This is not because

he passed them down to us in a set of rules (al-

though he did). Nor is it because his methods work

for the problems in elementary textbooks (although

they do). It is because his methods solved many out-

standing problems of his day. Descartes saw himself

as a problem-solver because he had a method. He

saw himself also as a teacher of problem-solving.

One can see this even in the way he left hard ques-

tions as exercises to the reader, as he put it at the end

of the Geometry, \to leave for others the pleasures of
discovery." (See [13], p. 413.) His Geometry teaches
us how to solve problems because it contains a set of

solved problems whose successful solutions validate

his methods. We may not care about the Pappus four-

line problem, but we certainly prize the problem-

solving power of a generalized algebra. Descartes'

methods have come to us indirectly | who reads

the Geometry nowadays? | but they have come to

us because they are embedded in the work of his

successors: In algebraic notation and equation the-

ory, in analytic geometry, in calculus, in Lagrange's

view that algebra is the study of general systems of

operations, and in the more abstract and general sub-

jects built upon these achievements. Because of his

influence on later mathematicians, Descartes' meth-

ods are embedded also in the way we teach mathe-

matics, in the standard collections of problems and
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solutions. In fact, for routine problems, the task of

applying Descartes' analytic methods is, as he in-

tended, fairly mechanical. Some of the Rules for Di-
rection of the Mind explicitly parallel the method
of the Geometry, ([2], pp. 177{178) and P�olya is
thus right to have made such rules explicit for mod-

ern students. Inventing new mathematical methods

| say, like analytic geometry | is, however, not a

routine task. Even here, for Descartes, \method" is

crucial.

Third, then, for those of us who want to in-

vent great and new things like analytic geometry,

to teachers and students of mathematics, Descartes

has something else he wants us to learn, and that is

his emphasis on method in general. Here he, together

with his great contemporary Sir Francis Bacon, have

inspired many. For instance, Leibniz saw his dif-

ferential calculus as a problem-solving method, ex-

plicitly comparing it with analytic geometry, saying

\From [my differential calculus] flow all the ad-

mirable theorems and problems of this kind with

such ease that there is no more need to teach and

retain them than for him who knows our present

algebra to memorize many theorems of ordinary ge-

ometry" ([27], excerpted in [34], p. 281). Or, in our

century, there is P�olya's sophisticated emphasis on

teaching about method. Let me put Descartes' lesson

this way: Raise problem-solving techniques to con-

sciousness. Reflect on the methods that are success-

ful and on their strengths and weaknesses. Then ap-

ply them systematically in attacking new problems.

That is how Descartes himself invented analytic ge-

ometry, as he said in the Discourse on Method: \I
took the best traits of geometrical analysis and al-

gebra, and corrected the faults of one by the other."

(See [12], pp. 13, 20.)

Fourth and last, let us briefly consider a key point

in Descartes' philosophy: that the methods of math-

ematics could solve the problems of science. Here,

Descartes the philosopher learned from Descartes the

mathematician that method was important, that the

right method could solve previously intractable prob-

lems. He used the ideas of reduction and analysis in

his philosophy of science. For instance, he argued

that all macroscopic phenomena could be explained

by analyzing nature into its component parts, bits of

matter in motion. (See [14], pp. 409{414 and [36],

pp. 32{38.) Descartes came to believe that the most

powerful methods were both general and mathemat-

ical. His Principles of Philosophy (1644) attempted
to deduce all the laws of nature from self-evident

first principles; his principles XXXVII and XXXIX

are equivalent to Newton's First Law of Motion

(1687) ([8], pp. 182{183). In fact, Descartes went so

far as to state that everything that could be known

could be found by a method modelled on that of

mathematics. He wrote,

Those long chains of reasoning, so simple and

easy, which enabled the geometers to reach the

most difficult demonstrations, had made me

wonder whether all things knowable to man

might not fall into a similar logical sequence. If

so, we need only refrain from accepting as true

that which is not true, and carefully follow the

order necessary to deduce each one from the

others, and there cannot be any propositions so

abstruse that we cannot prove them, not so re-

condite that we cannot discover them ([12], pp.

12{13, 19).

Descartes' vision is clearly echoed by what Leib-

niz wrote in 1677 about his own search for a gen-

eral symbolic method of finding truth: \If we could

find characters or signs appropriate for expressing

all our thoughts as definitely and as exactly as arith-

metic expresses numbers or geometric analysis ex-

presses lines, we could in all subjects in so far as

they are amenable to reasoning accomplish what is

done in Arithmetic and Geometry." (See [28], p. 15.)

Again, consider the prediction of the great prophet

of progress of the Enlightenment, the Marquis de

Condorcet, that Descartes' methods could solve all

problems. Although the \method" of algebra \is by

itself only an instrument pertaining to the science of

quantities," Condorcet wrote, \it contains within it

the principles of a universal instrument, applicable

to all combinations of ideas." This could make the

progress of \every subject embraced by human in-

telligence . . . as sure as that of mathematics." (See

[9], pp. 238, 278{279; quoted in [17], p. 222.)

Descartes has been attacked as a methodological

imperialist and a reductionist and lauded as an in-

tellectual liberator and one of the founders of mod-

ern thought (e.g., [11], [18], [24], [33]). For good

or ill, the power of Descartes' vision has shaped

Western thought since the seventeenth century, and

his mathematical work helped inspire his philoso-

phy. But whatever our assessment of Descartes the

philosopher may be, his importance for the mathe-

matician is clear. The history of the past 350 years

of mathematics can fruitfully be viewed as the story

of the triumph of Descartes' methods of problem-

solving.
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Experiments in the Relations Between

Mechanical Motion and Symbolic Language
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1 Introduction

By the beginning of the seventeenth century it had

become possible to represent a wide variety of

arithmetic concepts and relationships in the newly

evolved language of symbolic algebra [19]. Geome-

try, however, held a preeminent position as an older

and far more trusted form of mathematics. Through-

out the scientific revolution geometry continued to

be thought of as the primary and most reliable form

of mathematics, but a continuing series of investiga-

tions took place that examined the extent to which al-

gebra and geometry might be compatible. These ex-

periments in compatibility were quite opposite from

most of the ancient classics. Euclid, for example, de-

scribes in Books 8{10 of the Elements a number of
important theorems of number theory cloaked awk-

wardly in a geometrical representation1 [16]. The

experiments of the seventeenth century, conversely,

probed the possibilities of representing geometrical

concepts and constructions in the language of sym-

bolic algebra. To what extent could it be done?

Would contradictions emerge if one moved freely

back and forth between geometric and algebraic rep-

resentations?

Questions of appropriate forms of representation

dominated the intellectual activities of seventeenth

century Europe, not just in science and mathemat-

1See, for example, Book 10, Lemma 1 before Prop. 29,

where Euclid generates all Pythagorean triples geometrically even

though he violates the dimensional integrity of his argument. Ar-

eas, in the form of \similar plane numbers," are multiplied by

areas to yield areas. There seems to be no way to reconcile di-

mension and still obtain the result.

ics but perhaps even more pervasively in religious,

political, legal, and philosophical discussions [13,

24, 25]. Seen in the context of this social history

it is not surprising that mathematicians like Ren�e

Descartes and G. W. von Leibniz would have seen

their new symbolic mathematical representations in

the context of their extensive philosophical works.

Descartes' Geometry [11] was originally published
as an appendix to his large philosophical work, the

Discourse on Method. Conversely, political thinkers
like Thomas Hobbes commented extensively on the

latest developments in physics and mathematics [25,

4]. Questions of the appropriate forms of scientific

symbolism and discourse were seen as closely con-

nected to questions about the construction of the new

apparatuses of the modern state. This is particularly

evident, for example, in the work of the physicist

Robert Boyle [25].

This paper will investigate in detail two of the

curve-drawing constructions from the Geometry of
Descartes in such a way as to highlight the issue

of the coordination of multiple representations (see,

e.g., [6]). The profound impact of Descartes' math-

ematics was rooted in the bold and fluid ways in

which he shifted between geometrical and algebraic

forms of representation, demonstrating the compat-

ibility of these seemingly separate forms of expres-

sion. Descartes is touted to students today as the

originator of analytic geometry, but nowhere in the

Geometry did he ever graph an equation. Curves
were constructed from geometrical actions, many

of which were pictured as mechanical apparatuses.

After curves had been drawn Descartes introduced

199
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coordinates and then analyzed the curve-drawing ac-

tions in order to arrive at an equation that represented

the curve. Equations did not create curves; curves

gave rise to equations.2 Descartes used equations to

create a taxonomy of curves [20].

It can be difficult for a person well schooled in

modern mathematics to enter into and appreciate the

philosophical and linguistic issues involved in seven-

teenth century mathematics and science. We have all

been thoroughly trained in algebra and calculus and

have come to rely on this language and grammar as a

dominant form of mathematical representation. We

inherently trust that these symbolic manipulations

will give results that are compatible with geome-

try; a trust that did not fully emerge in mathematics

until the early works of Euler more than a century

after Descartes. Such trust became possible because

of an extensive set of representational experiments

conducted throughout the seventeenth century which

tested the ability of symbolic algebraic language to

represent geometry faithfully [5, 7]. Descartes' Ge-
ometry is one of the earliest and most notable of
these linguistic experiments. Because of our cultural

trust in the reliability of symbolic languages applied

to geometry, many of those schooled in mathematics

today have learned comparatively little about geom-

etry in its own right.

Descartes wrote for an audience with opposite pre-

dispositions. He assumed that his readers were thor-

oughly acquainted with geometry, in particular the

works of Apollonius (ca. 200 B.C.) on conic sections

[1, 15]. In order to appreciate the accomplishments

of Descartes one must be able to check back and

forth between representations and see that the re-

sults of symbolic algebraic manipulations are con-

sistent with independently established geometrical

results. The seventeenth century finessed an increas-

ingly subtle and persuasive series of such linguistic

experiments in the work of Roberval, Cavalieri, Pas-

cal, Wallis, and Newton [8, 9]. These led eventually

to Leibniz's creation of a general symbolic language

capable of fully representing all known geometry of

his day, that being his \calculus" [5, 7].

Because many of the most simple and beautiful

results of Apollonius are scarcely known to mod-

ern mathematicians, it can be difficult to recre-

ate one essential element of the linguistic achieve-

ments of Descartes | checking algebraic manipula-

2Descartes' contemporary, Fermat, did begin graphing equations

but his work did not have nearly the philosophical or scientific

impact of Descartes'. Fermat's original problematic contexts came

from financial work rather than engineering and mechanics.

tions against independently established geometrical

results. In this article I will ask the reader to become

a kind of intellectual Merlin and live history back-

wards. After we explore one of Descartes' curve-

drawing devices, we will use the resulting bridge be-

tween geometry and algebra to regain a compelling

result from Apollonius concerning hyperbolic tan-

gents. The reader can choose to regard the inves-

tigation either as a philosophical demonstration of

the consistency between algebra and geometry or as

a simple analytical demonstration of a powerful an-

cient result of Apollonius. By adopting both views

one gains a fully flexible cognitive feedback loop

of the sort that my students and I have found most

enlightening [6].

I was recently discussing my work on curve-

drawing devices and their possible educational im-

plications with a friend. His initial reaction was sur-

prise: \Surely you don't advocate the revival of geo-

metrical methods; progress in mathematics has been

made only to the extent to which geometry has been

eliminated." This claim has historical validity, espe-

cially since the eighteenth century, but my response

was that such progress was possible only after math-

ematicians had achieved a basic faith in the ability

of algebraic language to represent and model geom-

etry accurately. I argued that one cannot appreciate

the profundity of calculus unless one is aware of

the issue of coordination of independent representa-

tions. Many students seem to learn and even master

the manipulations of calculus without ever having

questioned or tested the language's ability to model

geometry precisely. Even Leibniz, no lover of geom-

etry, would feel that such a student had missed the

main point of his symbolic achievement [5]. On this

point my friend and I agreed.

Descartes' curve-drawing devices poignantly raise

the issue of technology and its relation to mathe-

matical investigation. During the seventeenth cen-

tury there was a distinct turning away from the clas-

sical Greek orientation that had been popular dur-

ing the Renaissance in favor of pragmatic and stoic

Roman philosophy. During much of the seventeenth

century a class in \Geometry" would concern itself

mainly with the design of fortifications, siege en-

gines, canals, water systems, and hoisting devices

| what we would call civil and mechanical engi-

neering. Descartes' Geometry was not about static
constructions and axiomatic proofs, but concerned

itself instead with mechanical motions and their pos-

sible representation by algebraic equations. Classical

problems were addressed, but they were all trans-
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formed into locus problems, through the use of a

wide variety of motions and devices that went far

beyond the classical restriction to straight-edge and

compass. Descartes sought to build a geometry that

included all curves whose construction he consid-

ered \clear and distinct" [11, 20]. An examination

of his work shows that what he meant by this was

any curve that could be drawn with a \linkage", i.e.,

a device made of hinged rigid rods. Descartes' work

indicates that he was well aware that this class of

curves is exactly the class of all algebraic curves,

although he gave no formal proof of this. This the-

orem is scarcely known among modern mathemati-

cians, although it can be proved straightforwardly

by looking at linkages that add, subtract, multiply,

divide, and generate integer powers [3]. Descartes'

linkage for generating any integer power was used

repeatedly in the Geometry and has many interesting
possibilities [10].

This transformation of geometry from classical

static constructions to problems involving motions

and their resultant loci has once again raised itself

in light of modern computer technology, specifically

the advent of dynamic geometry software such as

Cabri and Geometer's Sketchpad. Many new edu-
cational and research possibilities have emerged re-

cently in response to these technological develop-

ments [26]. It seems, indeed, that seventeenth cen-

tury mechanical geometry may yet rise from the

ashes of history and regain a new electronic life in

our mathematics classrooms. (It has always had a

life in our schools of engineering, where the finding

of equations that model motion has always been a

fundamental concern.) My own explorations of sev-

enteenth century dynamic geometry have been con-

ducted with a combination of physical models and

devices along with computer animations made using

Geometer's Sketchpad [18]. The first figure in this
paper is taken directly from Descartes, but all the

others were made using Geometer's Sketchpad. This
software allows a more authentic historical explo-

ration since curves are generated from geometrical

actions rather than as the graphs of equations. Static

figures cannot vividly convey the sense of motion

that is necessary for a complete understanding of

these devices. In the generation of the figures in this

paper no equations were typed into the computer.

Figure 1 is reproduced from the (original)

1637 edition of Descartes' Geometry [11, p. 50].
Descartes described the device as follows:

Suppose the curve EC to be described by the

intersection of the ruler GL and the rectilinear

A

BC

E

G

L

K

N

Figure 1. Descartes' Hyperbolic Device

plane figure NKL, whose side KN is pro-

duced indefinitely in the direction of C , and
which, being moved in the same plane in such

a way that its diameter KL always coincides
with some part of the line BA (produced in

both directions), imparts to the ruler GL a ro-
tary motion about G (the ruler being hinged to
the figure NKL at L). If I wish to find out
to what class this curve belongs, I choose a

straight line, as AB, to which to refer all its
points, and on AB I choose a point A at which
to begin the investigation. I say \choose this

and that", because we are free to choose what

we will, for, while it is necessary to use care

in the choice, in order to make the equation

as short and simple as possible, yet no matter

what line I should take instead of AB the curve
would always prove to be of the same class, a

fact easily demonstrated.

Descartes addressed here several of his main

points concerning the relations between geometri-

cal actions and their symbolic representations. His

\classes of curves" refer to the use of algebraic de-

grees to create a taxonomy of curves. He is asserting

that the algebraic degree of an equation representing

a curve is independent of how one chooses to impose

a coordinate system. Scale, starting point, and even

the angle between axes will not change the degree

of the equation, although this \fact easily demon-

strated" is never given anything like a formal proof

in the Geometry. Descartes also mentioned here the
issue of a judicious choice of coordinates, an impor-

tant scientific issue that goes largely unaddressed

in modern mathematics curricula until an advanced
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level, at which point geometry is scarcely mentioned.

Descartes went on to find the equation of the

curve in Figure 1 as follows. Introduce the variables

(Descartes used the term \unknown and indetermi-

nate quantities") AB = y, BC = x (in modern no-
tation, C = (x, y)), and then the constants (\known
quantities") GA = a,KL = b, and NL = c.
Descartes routinely used the lower case letters x, y,
and z as variables, and a, b, and c as constants; our
modern convention stems from his usage. Descartes,

however, had no convention about which variable

was used horizontally, or in which direction (right

or left) a variable was measured (here, x is mea-
sured to the left). There was, in general, no demand

that x and y be measured at right angles to each
other. The variables were tailored to the geometric

situation. There was a very hesitant use of negative

values (often called \false roots"), and in most geo-

metric situations they were avoided.

Continuing with the derivation, since the triangles

KLN andKBC are similar, we have c/b = x/BK,
hence BK = b

cx, hence BL = b
cx − b. From this

it follows that AL = y + BL = y + b
cx − b.

Since triangles LBC and LAG are similar, we have
BC/BL = AG/AL. This implies the following
chain of equations:

x
b
cx− b

=
a

y + b
cx− b

⇔ x

(
y +

b

c
x− b

)
= a

(
b

c
x− b

)

⇔ xy +
b

c
x2 − bx =

ab

c
x− ab

⇔ x2 = cx− c

b
xy + ax− ac. (1)

Descartes left the equation in this form because he

wished to emphasize its second degree. He con-

cluded that the curve is a hyperbola. How does this

follow? As we said before Descartes assumed that

his readers were well acquainted with Apollonius.

We will return to this issue shortly.

If one continues to let the triangleNLK rise along

the vertical line, and keeps tracing the locus of the

intersection of GL with NK, the lines will even-
tually become parallel (see Figure 2), and after that

the other branch of the hyperbola will appear (see

Figure 3).

These figures were made withGeometer's Sketch-
pad, although I have altered slightly the values of
the constants a, b, and c from those in Figure 1. In
Figure 2, the line KN is in the asymptotic posi-

tion, i.e., parallel to GL. I will hereafter refer to

AG

L

K

N

Figure 2. Descartes' Device in the Asymptotic Position

AG

Q

O

LN

K C

P

1

2

3

Figure 3. Geometric Display of the Terms in the Hyper-

bolic Equation

this particular position of the point K, as point O.
In this position triangles NLK and GAL are sim-
ilar, so AK = AO = ab

c + b (the y-intercept of
the asymptote). The slope of the asymptote is the

same as the fixed slope of KN , i.e., b/c. (Recall
that KL = b, NL = c, and GA = a.)
To rewrite Equation (1) using A as the origin in

the usual modern sense, with x measured positively
to the right, we can substitute −x for x. With this
substitution, solving Equation (1) for y yields

y = ab
1

x
+
b

c
x+

(
ab

c
+ b

)
. (2)

In Equation 2, the linear equation of the asymp-

tote appears as the last two terms. In Figure 3, I have

shown, to the right, the lengths that represent the val-

ues of the three terms in Equation 2, for the point
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G

A

O
N

K
C

L

Figure 4. Hyperbola in Skewed Coordinates

P . (The labels 1, 2, and 3 represent respectively,
the inverse term, the linear term, and the constant

term.) Term 3 accounts for the rise from the x-axis
to the level of point O (the intercept of the asymp-
tote). Adding term 2 raises one to the level of the

asymptote, and term 1 completes the ordinate to the

curve.

As a geometric construction, the hyperbola is

drawn from parameters that specify the angle be-

tween the asymptotes (∠NKL) and a point on the
curve (G). If one changes the position of the pointN
without changing the angle ∠NKL, the curve is un-
affected, as in Figure 4. The derivation of the equa-

tion depends only on similarity, and not on having

perpendicular coordinates. As long as GA (which

determines the coordinate system) is parallel to NL,
the derivation of the equation is the same except for

the values of the constants NL = c, and GA = a
(both have become larger in Figure 4). Of course this

equation is in the oblique coordinate system of the

lines GA (x-axis) and AK (y-axis). It is the same
curve geometrically, with the same form of equa-

tion, but with new constant values that refer to an

oblique coordinate system. As long as angle ∠NKL
remains the same, and G is taken at the same dis-

tance from the line KL, the device will draw the
same curve. This form of a hyperbolic equation, as

an inverse term plus linear terms, depends only on

using at least one of the asymptotes as an axis.

I have encountered many students who are well

acquainted with the function y = 1/x, and yet have
no idea that its graph is an hyperbola. Descartes'

construction can be adjusted to draw right hyper-

bolas. Consider the special case in which the line

KN is parallel to the x-axis (see Figure 5). The

AG

O

L

CKN

Figure 5. Device Adjusted to Draw Right Hyperbolas

point G is on the negative x-axis. Let KC = x, and
AK = y (i.e., C = (x, y)), AG = a, and KL = b.
Now AL = y − b, and since triangles LKC and

LAG are similar, we have KC/KL = AG/AL, or,
equivalently x

b
=

a

y − b
.

Hence the curve has equation

y = ab
1

x
+ b. (3)

A vertical translation by b would move the origin
to the point O, and letting a = b = 1, would put
G at the vertex (−1,−1), yielding the curve with
equation y = 1/x.
Equation 3 can be seen as a special case of Equa-

tion 2, obtained by substituting∞ for c, where c is
thought of as the horizontal distance from L to the
lineKN . All translations and rescalings of the mul-
tiplicative inverse function can be directly seen as

special members of the family of hyperbolas, using

this construction.

2 Apollonius regained

How do we know that these curves are, in fact,

hyperbolas? Descartes said that this is implied by

Equation 1. In his commentaries on Descartes, van

Schooten gives us more detail [11, p. 55, note 86].

Once again these mathematicians assumed that their

readers were familiar with a variety of ratio prop-

erties from Book 2 of the Conics of Apollonius [1,
15] that are equivalent to Equation 1. I will not give

a full set of formal proofs, but will instead suggest

means for exploring these relations.

Several beautiful theorems of Apollonius concern-

ing the relations between tangents and asymptotes
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T

S

R

O

M

N

P Q U

Figure 6. Hyperbola as a Family of Equal Area Triangles

are easily explored in this setting. Using the asymp-

totes of the curve in Figure 5 as edges to define rect-

angles, one sees that the points on the curve define

a family of rectangles, all with the same area (see

Figure 6). Indeed, if M and N are any two points

on the curve, Equation 3 implies that OPMS and
OQNR both have area equal to a · b, the product
of the constants used in drawing the curve. Another

interesting geometric property is that the triangles

TSM and NQU are always congruent. This con-

gruence provides one way to dissect and compare

these rectangles in a geometric manner [17].

Approaching these equations analytically, assume

that the curve in Figure 6 has the equation x · y = k
(using O as the origin). Let M = (m, k/m) and
N = (n, k/n), i.e., OP = m and OQ = n. The
line throughM and N has equation

y =
−k
mn

x+

(
k

m
+
k

n

)
.

Hence TO = k
m + k

n , and, since SO = k
m , this

implies that TS = k
n = NQ. Since triangles TSM

and NQU are clearly similar, TS = NQ implies

that they are congruent and that TM = NU . Now
let the pointsM and N get close to each other; then

the line MN gets close to a tangent line, and one

can perceive a theorem of Apollonius:

Given any tangent line to a hyperbola, the seg-

ment of the tangent contained between the two

asymptotes is always bisected by the point of

tangency to the curve [1, 15].

This property is a defining characteristic of hyperbo-

las. This simple and beautiful theorem immediately

implies, among other things, that the derivative of

1/x is −1/x2. (Look at the congruent triangles and

compute the rise over run for the tangent.) This gives

a student an independent geometrical check on the

validity of the calculus derivation.

This bisection property of hyperbolic tangents is

not restricted to the right hyperbola. Looking back

O O

P
Q

U

M
N

T

S
R

P

Q

U

N

MT

S

R

Figure 7. Bisection Property of Hyperbolic Tangents

at Figure 3 and Equation 2, one sees that any hy-

perbola coordinatized along both its asymptotes will

always have an equation of the form x · y = k for
some constant k. To see this, subtract off the linear
and constant terms from the y-coordinate, and then
rescale the x-coordinates by a constant factor that
projects them in the asymptotic direction (in Figure

7 the new x-coordinate in this skew system is OQ).
In the general case the curve can be seen as the set of

corners of a family of equiangular parallelograms, all

with the same area. In Figure 7, for any two points

M and N on the curve, the parallelograms OQNR
and OPMS have equal areas. Since the triangles
TSM and NQU are congruent, by letting M and

N get close together one sees that any tangent seg-

ment TU is bisected by the point of tangent (M or

N ).
An alternative view of the situations just described

is to imagine any line parallel to TU meeting the

asymptotes and the curve in corresponding points

T ′, M ′, and U ′. Then the product T ′M ′ ·M ′U ′ =
TM ·MU . That is to say, parallel chords between the
asymptotes of a hyperbola are divided by the curve

into pieces with a constant product. This follows

from our discussion, because the pieces are constant

projections of the sides of the parallelograms just

discussed. This form of the statement was most often

used by van Schooten, Newton, Euler and others in

the seventeenth century. This statement (from Book

2 of Apollonius [1, 15]) was traditionally used as

an identifying property of hyperbolas. This constant

product was given as a proof by van Schooten that

the curve drawn by Descartes' device was indeed

a hyperbola [11, p. 55]. Apollonius derived these

properties directly from sections of a general cone.

In this way it is possible to investigate hyperbolas,

using both geometric and algebraic representations,

to create a complete cognitive feedback loop. Nei-

ther representation is used as a foundation for proof;

instead, one is led to a belief in a relative consis-
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tency between certain aspects of geometry and alge-

bra through checking back and forth between alter-

native representations. A calculus derivation of the

derivative of y = 1/x becomes, in this setting, a
limited special case of the bisection property of hy-

perbolic tangents. It can be very satisfying to see

symbolic algebra arrange itself into answers that are

consistent with physical and geometric experience.

Students of calculus can then experience the elation

of Leibniz, as they build up a vocabulary of viable

notation, capable of being checked against indepen-

dently verifiable physical and geometric experience.

Mathematical language is then seen as a powerful

code for aspects of experience, rather than as the

sole dictator of truth.

3 Conchoids generalized from

hyperbolas

The hyperbolic device is only the beginning of what

appears in Descartes' Geometry. He discussed sev-
eral cases where curve-drawing constructions can be

progressively iterated to produce curves of higher

and higher algebraic degree [11, 10]. It is usually

mentioned in histories of mathematics that Descartes

was the first to classify curves according to the alge-

braic degree of their equations. This is not quite ac-

curate. Descartes classified curves according to pairs
of algebraic degrees; i.e., lines and conics form his

first class (he used the term genre), curves with third
or fourth degree equations form his second class,

etc. [11, p. 48]. This classification is quite natural if

one is working with mechanical linkages and loci.

With most examples of iterated linkage, each itera-

tion raises the degree of the curve's equation by two,

with some special cases that collapse back to an odd

algebraic degree [7]3. What follows is an example

of such an iteration based on the hyperbolic device.

3Descartes' linkages led directly to Newton's universal method

for drawing conics, which is essentially a projective method [7,

23]. This same classification by pairs of degrees is used in modern

topology in the definition of \genus". The \genus" of a non-

singular algebraic plane curve can be thought of topologically as

the number of \handles" on the curve when defined in complex

projective space. In complex projective space, linear and quadratic

non-singular curves have genus 0, and are topologically sphere-

like. Similarly, curves of degrees 3 and 4 are topologically torus-

like, and have genus 1. Curves of degrees 5 and 6 are topologically

double-holed and have genus 2, etc. In the real model, (i.e., when

considering only real solutions of one real equation in 2 variables)

the genus 0 curves consist of at most one oval when you join up

the asymptotes. The genus 1 curves will have two ovals, which is

what you'd expect when cutting through a torus by a plane, etc.

(This comment was made to me by Paul Pedersen.)

G

C

KLXO

a r>

axis

axis

a r=

axis

a r<

G

C

L K

G
C

L
C¢

K

C¢

C¢

Figure 8. Conchoids Drawn by Dragging a Circle along

a Line

Descartes generalized the previous hyperbola con-

struction method by replacing the triangle KLN
with any previously constructed curve. For exam-

ple, let a circle with center L be moved along one
axis and let the points C and C ′ be the intersections

of the circle with the line LG, where G is any fixed
point in the plane and LG is a ruler hinged at point
L just as in the hyperbolic device (see Figure 8).
Then C traces out a curve of degree four, known

in ancient times as a conchoid [11, p. 55]. The two
geometric parameters involved in the device are the

radius of the circle (r), and the distance (a) between
the point G and the axis along which L moves.
Figure 8 shows three examples of conchoids for

a > r, a = r, and a < r. If the curve is coordina-
tized along the path of L, and a perpendicular line
through G (OG), then its equation can be found by
looking at the similar triangles GOL and CXL (top
of Figure 8). Since GO = a, LC = r, CX = y,
OX = x, and XL =

√
r2 − y2 one obtains the

ratios of the legs of the triangles as follows:
√
r2 − y2

y
=

√
r2 − y2 + x

a
.

This is equivalent to

x2y2 = (r2 − y2)(a− y)2 ,

an equation of fourth degree, or of Descartes' second

class. (The squared form of the equation has both
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branches of the curve, above and below the axis, as

solutions.)

This example demonstrates Descartes' claim that,

as one uses previously constructed curves to draw

new curves, one gets chains of constructed curves

that go up by pairs of algebraic degrees. Descartes

called the conchoid a curve of the second class, i.e.,

of degree three or four. Dragging any rigid conic-

sectioned shape along the axis, and drawing a curve

in this manner will produce curves in the second

class. Dragging curves of the second class will pro-

duce curves of the third class (i.e., degree five or

six), etc. Descartes demonstrated this general prin-

ciple through many examples [11, 7, 10], but he

offered nothing like a formal proof, either geomet-

ric or algebraic. His definition of curve classes was

justified by his geometric experience.

Notice that when a ≤ r, the point G becomes a

cusp or a crossover point. When singularities like

cusps or crossover points occur, these tend to oc-

cur at important parts of the apparatus, like a pivot

point (such as G) or a point on an axis of motion.
Other important examples of this phenomena can

be found in Newton's notebooks [22, 23]. I am not

asserting any particular or explicit mathematical the-

orem here. This general observation is based upon

my own historical research and empirical experience

with curve-drawing devices. There are probably sev-

eral ways to make this observation into an explicit

mathematical statement, subject to proof (Newton

attempted several [23]). There are many open ques-

tions concerning these forms of curve iteration and

the relations between the parts of the physical de-

vices and the singularities of the curves [7]. Students

might benefit from such empirical experience | re-

gardless of the extent to which they eventually for-

malize that experience in strictly algebraic or logical

language. An instinctual sense of where curve singu-

larities might occur is fundamentally useful in many

sciences [2]. Modern computer software makes such

investigations routinely possible with a minimum of

technical expertise.

4 Conclusion

Descartes wrote his Rules for the Direction of the
Mind [12] in 1625, twelve years before he would
publish his famous Geometry. In this earlier work
he emphasized the importance of making strong con-

nections between physical actions and their possible

representations in diagrams and language. Here are

a few quotes:

Rule 13: If we understand a problem perfectly,
it should be considered apart from all super-

fluous concepts, reduced to its simplest form,

and divided by enumeration into the smallest

possible parts.

Rule 14: The same problem should be under-
stood as relating to the actual extension of bod-

ies and at the same time should be completely

represented by diagrams to the imagination, for

thus will it be much more distinctly perceived

by the intellect.

Rule 15: It is usually helpful, also, to draw these
diagrams and observe them through the external

senses, so that by this means our thought can

more easily remain attentive.

These lines from Descartes sound much like parts

of the hands-on, problem-solving educational phi-

losophy of mathematics put forth by the National

Council of Teachers of Mathematics [21]. Descartes'

entire approach to mathematics had problem solving

as its foundation [14], but we must not allow our-

selves to read into him too modern a perspective.

He was constructing a new method of mathematical

representation that responded to both the new sym-

bolic language of his time (algebra) and to the new

technology of his time (mechanical engineering). He

was not seeking the broad educational goals of the

NCTM. In fact, his Geometry was not widely read
in the seventeenth century until it was republished,

in 1657, with extensive commentaries by Franz van

Schooten.

Nonetheless, Descartes' approach to geometry

through curve-drawing devices and locus problems

has important implications for education. His work

connects important classical and Arabic traditions

with modern algebraic formalisms [7]. It provides

the missing linkages (pun intended). These linkage

and loci problems, combined with the new dynamic

geometry software, allow a new kind of exploration

of curves that could go far towards ending the isola-

tion of geometry in our mathematics curriculum. One

can use geometrical curve generation to recreate cal-

culus concepts such as tangents and areas in a much

more elementary and physical setting [7, 8, 10], as

well as to explore complicated questions about alge-

braic curves left open since the seventeenth century

[7, 23]. Computer graphic techniques have already

led to new branches of mathematics, such as fractals.

Perhaps a new phase of computer-assisted empirical

geometrical investigation of curves and surfaces has
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already begun. If this new beginning proves as rev-

olutionary as the century that began with Descartes'

Geometry, then we are in for some very exciting
times.
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Certain Mathematical Achievements of

James Gregory

MAX DEHN and E. D. HELLINGER

American Mathematical Monthly 50 (1943), 149{163

For a long time the light of James Gregory did not

shine as brightly as did that of John Wallis, Isaac

Barrow and Isaac Newton, the other three great

British mathematicians of the seventeenth century.

Only recently, through the endeavors of several Scot-

tish mathematicians, especially E. T. Whittaker, G.

A. Gibson and H. W. Turnbull, Gregory's genius is

revealed and fills with admiration all those interested

in the development of modern mathematics.

The James Gregory Tercentenary Memorial Vol-
ume, edited by H. W. Turnbull [1], contains Gre-
gory's momentous scientific correspondence, mostly

with J. Collins. An extremely important supplement

is the large number of Gregory's hitherto unpub-

lished notes, recording his mathematical ideas and

calculations. These notes were found in a collection

of documents in the University of St. Andrews Li-

brary, written on the blank spaces of letters to Gre-

gory. This material affords the possibility of studying

his achievements and ideas.

In this paper we shall discuss Gregory's expan-

sions of general and particular functions into series.

In addition, we shall exhibit the ideas which are set

forth in his first mathematical publication Vera cir-
culi et hyperbolae quadratura [2]. These ideas are
concerned, to some extent, with the associated prob-

lem of constructing by certain limiting processes the

functions which measure the areas of circles and

conics.

1 The ``Taylor's series''

In a letter of February 15, 1671 to J. Collins (see

Memorial [1], pp. 170 ff.) Gregory gives the power
series for seven important functions, each with 5 or 6

terms. These functions are, if for the sake of brevity

we may use modern notations,

arctan x, tanx, sec x,

log sec x, log tan
(x

2
+
π

4

)
,

arcsec
(√

2ex
)
, 2 arctan

(
tanh

x

2

)
.

He mentions without further explanation that he had

some knowledge of Newton's \universal method".

Hereby, he refers to some series which Newton had

discovered and which Collins had but recently com-

municated to him.

We may surmise that he obtained the arctangent

series in a way analogous to that by which three

years earlier N. Mercator [3] had found the series

for log(1+x). He may have considered arctanx as
the area under the curve y = (1+x2)−1, transformed

(1+x2)−1 by formal division into a power series and

finally integrated this infinite sum. However, there

is no possibility of obtaining the other series in a

similar way.

On the blank space of a letter to Gregory, dated

January 29, 1671, Turnbull found a group of com-

putations about just these seven functions [4]. The

comparison of these computations with Gregory's

expansions indicates the way of his thoughts. First,

they include almost without exception, as many of

the successive derivatives of the functions, as would

be needed in finding the 5 or 6 numerical coefficients

of the series by successive differentiation. Second,

all coefficients in Gregory's series are correct with

the exception of a single coefficient in both the ex-

pansions for tanx and for log sec x. (The second er-
ror is a consequence of the first since he obviously

obtained the log sec series by integrating the tangent

208
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series.) Finally, all derivatives in Gregory's notes are

correct with the exception of a single numerical er-

ror in the derivatives of tanx, which was probably
due to miscopying one number. However, using this

erroneous value one finds exactly the erroneous co-

efficients in the series for tanx and log sec x. From
these two facts, Turnbull argues conclusively that

Gregory used the tables of the derivatives for the

construction of his power series.

We see two possibilities for such a construction.

On the one hand, we may imagine that Gregory

applied in each particular case something like the

\method of undetermined coefficients" together with

successive differentiation. That he mentions \New-

ton's universal method" immediately before giving

his series may be considered as supporting this as-

sumption. In fact, if we look upon the whole of

Newton's work we are justified in assuming that

Gregory thought of this combined method as \New-

ton's universal method", even though the idea had

been sketched as early as 1637 by Descartes in his

G�eom�etrie, and had since been applied by many
other mathematicians. Nevertheless, Gregory's re-

mark must be considered as a mere guess based upon

the few results from Newton's still unpublished in-

vestigations which Collins had communicated to him

with no hint about Newton's method.

On the other hand, we may suppose that Gregory

could have applied the same process for an unspec-

ified function and could have obtained the general

expression for the nth coefficient of the expansion.
Thus he would have anticipated Taylor's classical

expansion by forty-four years. Neither the letters nor

the other material, so far as published, substantiate

the latter possibility. From all these facts, we may

conclude that Gregory possessed a method for find-

ing the Taylor expansion of any particular function,
but we cannot affirm that he possessed Taylor's for-

mula for an unspecified function.
It may be interesting that the second man, C.

Maclaurin, whose name is closely associated with

this series, deduced it seventy years later, in his Trea-
tise of Fluxions (1742) by a reasoning similar to that
of Gregory. Of course he applied it at once to an un-

specified function. He quotes Taylor's book for the

formula but could not have known Gregory's dis-

covery then buried in the correspondence.

2 The interpolation formula

For the independent discovery by Gregory of a fa-

mous interpolation formula, full evidence is given

in a letter of his published long ago. Nevertheless,

nobody seems to have realized this fact until E. T.

Whittaker brought it to general notice. In the letter to

Collins [5] of November 23, 1670, Gregory stated

explicitly a formula which interpolates for a func-

tion y = f(x) when its values at equidistant points
0, c, 2c, 3c, are given. This formula is identical with
the famous formula

f(x) = f(0) +
x

c
∆f(0) +

x(x− c)

c · 2c ∆2f(0)

+
x(x− c)(x− 2c)

c · 2c · 3c ∆3f(0) + · · · , (1)

which Newton made known some years later [6] and

which mostly bears his name. It is not essential that

Gregory assumes here f(0) = 0. Further, we may
note that, of course, he did not have for the dif-

ferences the notation ∆f(0),∆2f(0),∆3f(0), · · · .
This came into use much later under the influ-

ence of Leibniz's symbolism. He takes single let-

ters d, f, h, · · · for these values, carefully defined
by forming the sequences of the 1st, 2nd, 3rd, dif-

ferences. Newton uses almost the same notation as

Gregory.

In the correspondence on this formula between

Collins and Gregory [7], there is mentioned the pro-

cedure which Briggs had used in extending his ta-

ble of logarithms to subintervals. Briggs took differ-

ences, generalizing the older method of linear inter-

polation. His procedure can be considered in some

way as the predecessor of the interpolation formula.

However, Briggs does not state such a formula nor

does he give any motivation of this procedure. Gre-

gory's formula was given in answer to a question

raised by Collins for such a motivation.

Of course, Gregory also states his formula without

a proper proof, but it is obvious that he could and did

verify the formula for polynomials. The same is true

for Newton's first publications, although later, in the

methodus differentialis, he sketches a way to derive
the formula. It is interesting that the interpolation

of tables is only one aim of Gregory's statement;

he emphasizes strongly its use for the problem of

approximate quadrature of curves and gives various

formulas in this connection. Incidentally Newton [8]

makes the same application of the interpolation for-

mula.

The infinite process which is involved in this in-

terpolation formula implies a serious mathematical

difficulty which even its discoverers may have felt

semiconsciously. The polynomial Pn(x) of the nth
degree which is given by the first n + 1 terms of
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the formula (1) takes on the values of f(x) at the
equidistant points

0, c, 2c, · · · , nc,

and is determined by this property. This, obviously,

is the essential fact which was discovered and com-

municated by Gregory and Newton. Yet they tacitly

assumed that for other unspecified values of x the
successive polynomials Pn(x) yield an approxima-
tion to f(x) which can be improved by increasing
n. Apparently, they thought only of such values of
x which are located between 0, c, · · · , nc, that is to
say, they considered only the proper problem of in-
terpolation. Here the fact of the steadily improved
approximation looks rather evident although a pre-

cise formulation and an exact proof were not within

the range of these early developments. Things are

different if one turns to the problem of extrapola-
tion, considering values x outside the interval of the
multiples of c. The published material gives no ev-
idence that Gregory used his formula for extrapo-

lation. And Newton in the Philosophiae Naturalis
Principia [6] applies the interpolation formula, not
in order to find the place of a comet at any time

beyond the range of the observations, but only for

intermediate moments.

It is important to realize this situation since the

way from the interpolation formula to the Taylor se-

ries goes through a sort of extrapolation. Assuming

c infinitely small, one concentrates 0, c, 2c, · · · in an
arbitrarily small neighborhood of a fixed value and

one seeks an expression for f(x) at another fixed
value at a finite distance. This can be done formally

by applying the usual symbols of the difference and

differential calculus. One has only to replace, corre-

sponding to this limiting process, the nth difference
quotient∆ny/∆xn in Newton's formula by the nth
derivative dny/dxn. But in doing so one leaps over

a very serious difficulty, using the symbols without

regard to their original meaning. In fact, the higher

derivatives are defined originally by iteration of the

differentiation process (limit of first difference quo-

tient) and their connection with the higher difference

quotients is not trivial. And still more difficult for

a critical mathematician is the whole limiting pro-

cess from the interpolation formula to the infinite

series. Perhaps such difficulties make us understand

why Gregory did not state any connection between

his two great results and why Newton, so far as we

know, never formulated the Taylor series.

The first to dare to leap over these gaps was Brook

Taylor in 1715 [9]. He could do so, since he obvi-

ously knew not only Newton's methods but also the

concepts and notations introduced in the meantime

by Leibniz. He did not use the symbols of Leibniz,

but, adapting them to Newton's language, he devel-

oped a notation of his own which may, of course,

appear a little awkward to us. He applied this sym-

bolism without being influenced by the intrinsic dif-

ficulties mentioned above. Thus he came automat-

ically from the interpolation formula to his general

series by this purely formal procedure which later on

was often performed unscrupulously with the help of

the suggestive notation of Leibniz.

3 The binomial series

In an enclosure [10] with the letter to Collins of

November 23, 1670, Gregory deals with the problem

of finding the \number" of a given logarithm x; that
is to say, if we denote the base by 1 + d, of finding
y = (1 + d)x. For the sake of brevity, we again use

modern notations without changing anything else.

Gregory gives the solution as follows:

(1 + d)x = 1 + xd+
x(x− 1)

1 · 2 d2

+
x(x− 1)(x− 2)

1 · 2 · 3 d3 + · · · , (2)

which is of course the binomial series. The com-

parison of Gregory's formula and notation with the

statement of the interpolation theorem in the prin-

cipal part of the same letter [5] shows clearly that

he found his result by applying the theorem to the

function f(x) = (1+d)x using the known values at

x = 0, 1, 2, · · · . Indeed, since the first difference of
this function turns out to be

∆f(x) = f(x + 1) − f(x) (3)

= (1 + d)x+1 − (1 + d)x = d · f(x),

the values of its successive differences at x = 0
become

f(0) = 1, ∆f(0) = d,

∆2f(0) = d2, ∆3f(0) = d3, . . . .

Thus, the interpolation formula (1) yields immedi-

ately the binomial series (2).

The correspondence of Gregory and Collins gives

full evidence that this discovery of Gregory was en-

tirely independent of Newton's investigations in the

binomial theory. Gregory knew at this time only a

single one of Newton's results, namely the series
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for the \zone of the circle", i.e., the series for the

function ∫ x

0

(R2 − x2)1/2dx.

Collins had communicated the mere statement of the

latter to him seven months previously [11]. In fact,

Newton had found this series by integrating term by

term the expansion of the binomial

(R2 − x2)1/2.

Having Collins' communication, Gregory tried hard

but without success to prove the result directly. Ob-

viously, his discovery of the general binomial the-

orem was in no way influenced by this knowledge

and he did not guess any connection. Afterwards,

he recognized suddenly that Newton's series was a

simple consequence of his own theorem and, in a

letter of December 19 [12], complains much of \his

own dullness", not to have noticed the fact before.

Besides, Newton's binomial theorem did not become

generally known before 1676, when, about ten years

after he had found it, he communicated it to Old-

enburg in the two famous letters [13] (June 6 and

October 4).

It is interesting to compare the way in which New-

ton had discovered his theorem, as he describes it in

the second of these letters, with Gregory's deduc-

tion. We mention only the most important points,

simplifying the notation as before. Newton computes

first the powers (1 + d)n for the lowest integers

n = 2, 3, 4, · · · , and discusses how to find directly
the numerical coefficients of d, d2, d3, · · · in each
of these expressions. He then makes the important

remark that these coefficients in the expansion of

(1 + d)n can be generated by multiplication of the
numbers

n− 0

1
,

n− 1

2
,

n− 2

3
, · · · ,

that is to say, that the coefficient of dm in the ex-

pansion of (1 + d)n is equal to

n(n− 1) · · · (n−m+ 1)

1 · 2 · · ·m . (4)

Of course, equivalent multiplicative relations for ac-

tually the same integers had been discovered a few

years before by Pascal who defines them as elements

of his \arithmetical triangle", without reference to

the binomials.

From this statement Newton proceeds in an ex-

tremely audacious way. He got the idea from the

procedure by which J. Wallis had developed his fa-

mous product formula for π by considering the suc-
cessive integrals

∫ 1

0

(1 − x2)n/2dx

for n = 0, 1, 2, · · · . (As a matter of fact, Newton
starts in that letter with the consideration of these

integrals instead of with the binomial itself.) He ap-

plies the same formula (3) also for the intermediate

values n = 1/2, 3/2, 5/2, · · · in order to obtain ex-
pressions for (1+d)n with these fractional values of
the exponent, although he now has to write infinite

series instead of finite sums. Further generalizations

enable him to state the theorem for arbitrary values

of the exponent.

To be sure, neither Gregory's nor Newton's de-

duction is an exact proof in the modern sense. In

some respects, Gregory's way may seem to us more

satisfactory: he deduces the result from a general

theorem, the interpolation formula, and from a char-

acteristic property of the function (1 + d)x, namely

the difference equation (3). On the other hand, New-

ton makes this almost adventurous generalization of

a finite algebraic identity, deduced for integral ex-

ponents only, into an infinite series for fractional

exponents. Nevertheless, there is some internal con-

nection between the two procedures. In his investi-

gation, Newton considers the powers of a binomial

as a function of the exponent as does Gregory, and
not as a function of the second term d of the bi-
nomial. Thus, the procedures are not so different in

their essence as they are in their execution. If one

compares them with the usual modern proofs of the

binomial theorem, one may remark that the latter are

based on the consideration of (1 + d)x as a function
of d and that they use the successive derivatives
with respect to d and the Taylor series instead of
the successive differences with respect to x and the
interpolation formula.

Newton realized the necessity of showing the way

in which his consideration may be completed by

a proper proof. As an example, he verifies by di-

rect multiplication that the square of his series for

(1 + d)1/2 is equal to 1 + d. Neither Gregory nor
Newton tried to prove the convergence of the se-

ries. Such a proof was not, at this time, believed to

be necessary; but certainly they had the feeling that

these infinite sums determined definite numbers.

In this connection, it is interesting to find in a

somewhat later letter of Gregory, dated April 9, 1672

[14], an early attempt to estimate the remainder of an
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infinite series by comparing it with the geometrical

series. Here, he approximates the logarithmic series

x+
x3

3
+
x5

5
+
x7

7
+ · · ·

by expressions such as

x+
x3

3
+
x5

5
+

9x7

7 · 9 − 7 · 7x2

and emphasizes that the analogous expressions

formed by using more terms of the original series

will give a better approximation. Obviously, this es-

timate is obtained by comparison with the geometric

series

x+
x3

3
+
x5

5
+
x7

7

(
1 +

7x2

9
+

(
7x2

9

)2

+ · · ·
)
.

Thus, we see here the first step on the way which,

more than a century later, led Cauchy to his conver-

gence tests.

4 Gregory's Vera Quadratura
Gregory's Vera Circuli et Hyperbolae Quadratura
[2], a small volume, contains extremely interesting

and original ideas which are, to be sure, a little re-

mote from the mathematics of his time. Even if his

mathematical technique was not always sufficient to

get a complete solution of the problems he saw, even

if he sometimes makes incomplete deductions and

wrong conclusions, the investigations show an im-

mense creative power. He follows in some way the

classical procedure of Archimedes, but reveals the

algebraic content of the method. Besides, instead of

calculating the perimeter of the circle as Archimedes

did, he operates on areas. This enables him to deal

simultaneously with the sectors of the circle, ellipse

and hyperbola.

A

B

C

D

M

TU

V

LetM be the center of a conic ACB, let AT and
BT be the tangent lines at A and B, respectively,
and let the straight lineMT intersect AB at D and

the conic at C . Gregory concludes first from funda-
mental properties of the conics the relations [15]:

AD = DB, MC2 = MD ·MT. (5)

Now he draws the tangent line at C which intersects
AT at U and BT at V , and compares the following
pairs of polygonal areas which are inscribed in or

circumscribed about the sector MACB: on the one
hand he compares the inscribed triangle i0 = MAB
with the circumscribed quadrangle I0 = MATB, on
the other hand the inscribed polygon i1 = MACB
with the circumscribed polygon I1 = MAUCVB.
The polygon i1 is composed of two equal triangles
MAC and MCB; the polygon I1 of two equal
quadrangles MAUC and MCVB. Then, elemen-
tary properties of the conics, especially the relations

(5), enable him to deduce easily two equations be-

tween these four areas as follows:

i1 =
√
i0I0, I1 =

2i1I0
i1 + I0

.

Now, operating on the trianglesMAC andMCB,
and on the quadranglesMAUC andMCVB in the
same way as he had operated on the triangleMAB
and the quadrangle MATB, he gets four triangles
of equal areas i2/4, inscribed in the sectorMACB,
and four quadrangles of equal areas I2/4 circum-
scribed about the same sector. Obviously, he obtains:

i2 =
√
i1I1, I2 =

2i2I1
i2 + I1

.

Repeating the same operation n times, he constructs
for each successive n = 3, 4, . . . an inscribed poly-
gonal area in composed of 2n equal triangles, and a

circumscribed one In, composed of 2n equal quad-

rangles. The successive areas are given by:

in+1 =
√
inIn,

In+1 =
2in+1In
in+1 + In

=
2inIn

in +
√
inIn

(n = 0, 1, 2, . . .). (6)

Geometrically it is obvious that the area S of the
sector MACB lies between each pair in, In, and
that, if n increases indefinitely, these areas will ap-
proach S as closely as one desires, one sequence
increasing from below, the other decreasing from

above. But Gregory is not satisfied with this visual
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evidence. He recognizes in the successive construc-

tion of the in, In a new arithmetic operation which
yields the value S, and therefore he feels a neces-
sity to prove what we call the convergence of the
limiting processes

lim
n→∞

in = lim
n→∞

In = S. (7)

In fact, with that high degree of exactness which

we find in the classical Greek mathematics, he first

shows that

|In+1 − in+1| <
1

2
|In − in|

and then concludes that |In − in| becomes smaller
than any given number if n is sufficiently large.
To realize the mathematical importance of Gre-

gory's method we may state that, for the circle and

ellipse where I0 > i0, the area S can be expressed
as follows:

S = I0

√
i0

I0 − i0
arctan

√
I0 − i0
i0

. (8)

For the circle, the first factor is simply 1
2
MA2, the

second the angle θ = BMA. For the hyperbola
where I0 < i0, we have only to interchange I0 and
i0 and to replace the arctangent function by the in-
verse of the hyperbolic tangent function. If we use

imaginary numbers, we recognize that we have the

same analytic function, since tanh ix = i tanx. But
Gregory has discovered, without applying imaginary

numbers, that the same analytical process | the ap-

proximation by the formulas (7), (8) | yields the

area of the hyperbola as well as the area of the

ellipse. In other words, he has found, for the first

time in history, the analytical connection between

the quadrature of sectors of the ellipse (or of the cir-

cle) and the quadrature of sectors of the hyperbola.

The history of these quadratures is interesting.

We may assume that astronomical practice originally

suggested the introduction of the arc of a circle as

independent variable and the coordinates of the point

on the circumference as dependent variables, that is

to say, the introduction of the circular functions sine,

cosine, and so on. This development may be con-

nected with the fact that Archimedes investigated

primarily the rectification of the circle instead of the

quadrature. But the rectification of the general con-

ics is an entirely different and much more difficult

problem. In considering the area of the circular sec-
tors Gregory was able to find one single analytical

process for the quadrature of all conics.

Now, it has been known since the middle of the

17th century that the quadrature of the hyperbola

is connected with the logarithmic function. There-

fore, it was obvious to Gregory himself that he had

found one analytical process for getting from alge-
braic expressions to logarithmic functions as well as

to inverses of the circular functions.

This discovery is generally ascribed to Euler who,

some seventy years later, arrived at the connection

between the exponential function and the circular

functions by using formal operations in the field of

complex numbers. It is doubtful whether Euler con-

sidered hyperbolic functions as analogous to circular

functions and whether he used, in this respect, the

analytical analogy between the processes of quadra-

ture of circular and hyperbolic sectors.

The comparison of Euler's and Gregory's achieve-

ments may enhance our admiration for Gregory's ge-

nius. Indeed, it is not easy to connect in the field of

real numbers the two integrals

∫ √
1 − x2 dx and

∫ √
1 + x2 dx

or
∫

1√
1 + x2

dx and

∫
1√

1 − x2
dx.

As we have seen, this was achieved by Gregory.

In his Appendicula ad veram circuli et hyperbolae
quadraturam of 1668 [16] Gregory gives an array of
linear combinations of the first in and In with defi-
nite numerical coefficients which yield much better

approximations to the area S than do in and In them-
selves. Gregory was extremely offended that Huy-

gens did not acknowledge his work to be an essential

improvement over his older methods. Therefore he

tried to make obvious the strength of the new theory

by stating numerous new and surprising results with-

out revealing how he had found them. Turnbull [17]

has verified that, for the circle, one gets exactly Gre-

gory's approximations if one first expresses in and
In in terms of trigonometric functions of the angle
θ, then expands these expressions in power series
in θ, and finally forms such linear combinations of
them which begin with the term θ and contain af-
terwards as many vanishing coefficients as possible.

Analogous considerations are valid for the hyper-

bola. If Gregory operated in this manner he must

have known the first terms of the power series for

trigonometric and hyperbolic functions as early as

1668. Indeed, it is possible that he got this knowl-

edge without using differentiation, but the published
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material does not seem to contain anything to cor-

roborate this.

There are two other points in Gregory's specu-

lations which particularly reveal the range of his

mathematical ideas with respect to the actual later

development of our science. First, the recurrent con-

struction of the areas in, In is with him only one ex-
ample of a very general, new analytic process which

he coordinates as the \sixth" operation along with

the five traditional operations (addition, subtraction,

multiplication, division, and extraction of roots). In

the introduction, he proudly states \ut haec nostra
inventio addat arithmeticae aliam operationem et
geometriae aliam rationis speciem, ante incognitam
orbi geometrico." This operation is, as a matter of
fact, our modern limiting process. Clearly, his idea

is, if we formulate it in modern language without

changing the notions, to investigate two sequences

of quantities a1, a2, . . . and b1, b2 . . . defined by the
recurrent equations

an+1 = φ(an, bn), bn+1 = χ(an, bn) (9)

n = 1, 2, 3, . . . .

He uses the word \convergent" for these sequences,

very probably for the first time in history, if for each

n
0 < bn+1 − an+1 < bn − an.

Of course, this definition does not conform com-

pletely to our precise notion of convergence; but in

applying his notion he proves in most cases the cor-

rect and sufficient inequality

0 < bn+1 − an+1 < ρ(bn − an)

where ρ < 1 is independent of n. (In his original
problem, he has, as seen previously, ρ = 1

2 .) Then

he concludes that the \last convergent terms" of the

sequences an and bn are equal, and he calls them
terminatio of the sequences. In his original problem
this terminatio is the area S.
From his further examples we may mention the

following ones:

an+1 = an + α(bn − an),

bn+1 = bn + β(bn − an) (10)

and

an+1 =
2anbn
an + bn

, bn+1 =
an + bn

2
. (11)

Here he succeeds in finding the terminatio by an in-

genious and simple idea: he determines an invariant

expression F (an, bn) such that

F (an+1, bn+1) = F (an, bn); (12)

then, the terminatio t will satisfy the equation

F (a1, b1) = F (t, t), (13)

which gives the value t in terms of a1 and b1. For
the examples (10), (11) he can state immediately the

invariant expressions

F (an, bn) = βan + αbn and F (an, bn) = an · bn,

respectively, and he finds as the terminatio, using

(13):

t =
βa1 + αb1
β + α

and t =
√
a1b1,

respectively.

One may remark that Gregory investigated in (6)

and (11) different combinations of arithmetical, ge-

ometrical and harmonical means. One could imag-

ine that he tried to treat other combinations of these

means, but that he could not find out an algebraic

expression or a geometric interpretation. In the fol-

lowing century the relation between the arithmetical-

geometrical mean and the elliptic integrals was dis-

covered by Lagrange, Legendre and Gauss. We know

especially that Gauss studied these means in his early

youth before he had any knowledge of the calculus,

and that these means, later on, showed him the way

to the elliptic integrals [18]. We know moreover that

Pfaff, the teacher of Gauss, investigated sequences

closely related to Gregory's sequence (6) [19]. Thus,

we could guess that we have here an influence of

Gregory's work on one of the most important the-

ories of modern analysis, but we have no definite

evidence of such connections.

The second point may be still more momentous.

Gregory attempts to prove that the terminatio S of
the polygons in, In cannot be expressed by using the
traditional five \elementary" operations on i0 and I0.
In the preface he puts particular emphasis on this

phenomenon. From his exposition we may suppose

that he first had tried to \square the circle", i.e. to

find such an \elementary" expression for S. But he
was critical enough to recognize that the difficulties

in this search could not be overcome. And realiz-

ing that the task of algebra and analysis consists

as well in solving a problem as in proving, if nec-

essary, the \impossibility" of a certain solution, he

dared to try such a proof, although he did not find
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any pattern for doing it. He emphasizes that since

Euclid's classification of the usual irrationalities in

his tenth book, nothing of this kind has even been

attempted. Of course, Leonardo Pisano had shown

[20] about 1200 A.D., that a certain cubic equation

cannot be solved by Euclid's irrationalities. How-

ever, Gregory could not have had any knowledge of

this investigation since it was not published before

the nineteenth century. It is a testimony to Gregory's

surprising intuition that he mentions further as prob-

lems impossible in the same sense just these two: to

solve the general algebraic equation and to get an

nth root by solving quadratic equations.
To be sure, Gregory does not prove that it is im-

possible to square the circle, although this is in his

mind. He approaches only a much easier problem: to

prove that the area of an arbitrary circular sector S
cannot be expressed in terms of the areas i0 and I0
by the five elementary operations | or, in modern

language, that the arctangent function as given by

(8) and defined by the limiting process (6), (7), is

not a combination of such algebraic functions. The

foundation of his proof is the remark that two se-

quences (6) yield the same terminatio S whether we
begin the process with i0, I0 or with i1, I1; therefore
S depends upon i0 and I0 in the same way as upon
i1 and I1. To put it in modern language, the function
satisfies the algebraic functional equation:

S(i0 , I0) = S(i1 , I1) = S

(√
i0I0,

2i0I0

i0 +
√
i0I0

)
,

(14)

i.e., S(i0 , I0) can be transformed algebraically into
itself. He tries to prove that the identity (14) is im-

possible for any function formed only by the five el-

ementary operations. First he removes the irrational-

ity, introducing two suitable new variables u, v by
the equations

i0 = u2(u + v), I0 = v2(u+ v).

Then (6) shows that

i1 = uv(u+ v), I1 = 2uv2,

and the identity (14) becomes

S(u2(u+ v), v2(u+ v)) = S(uv(u + v), 2uv2).
(15)

Now he states two properties of this identity from

which he is going to deduce its impossibility for

functions S of the above described algebraic type:
l) The arguments of S on the left side contain u
up to the third power, while those on the right side

contain u only up to the second power.

2) On the left side, both arguments are binomial,

while on the right side the second one is only mono-

mial.

Of course, Gregory is able to prove correctly by

this procedure that the identity (15) cannot be sat-

isfied by a rational integral function S of its two
arguments, and even, with slightly more difficulty,

that it cannot be satisfied by any rational function.

However, we do not believe that the facts he offers

are sufficient to furnish the proof that S is not an ir-
rational function built up in using extraction of roots.

Indeed, the algebraic factor

I0
√
i0/
√
I0 − i0

of (8) satisfies, itself, an identity which differs from

(14) only by a factor 2 in the left member, and Gre-

gory's considerations could be applied equally well

to the modified identity. The point is that the identity

(14), used as basis for his proof, implies an intrinsic

difficulty: it is equivalent to the algebraic relation

between tan θ and tan 2θ and, moreover, Gregory
thinks of it only as valid in the restricted interval

0 < θ < 1
2π.

Today, we would conclude the transcendental

character of tan θ (and, simultaneously, of the in-
verse function arctangent) immediately from the pe-

riodicity of that function (tan θ = tan(θ + π)). Al-
though such a conclusion seems to us extremely sim-

ple, it may have been difficult and remote at Gre-

gory's time.

A modern mathematician will highly admire Gre-

gory's daring attempt of \proof of impossibility"

even if Gregory could not attain his aim. He will

consider it a first step into a new group of math-

ematical questions which became extremely impor-

tant in the l9th century. However, the contemporary

echoes of Gregory's undertaking were in no way

favorable. First of all, Huygens criticized [21] the

Vera Quadratura in an extremely unfavorable man-
ner. Gregory had sent him one of the first copies. He

expected his discoveries to be fully appreciated by

this great mathematician who himself had done very

important work on the problem of the quadrature of

conics and the circle. But, unfortunately, Huygens

was apparently angry that those earlier investigations

were not mentioned. Thus, he put more emphasis

on some claims of priority and on some objections

against Gregory's deductions than on the importance

of Gregory's new ideas and results. There is no need

to report here on the unpleasant discussion which

arose from this criticism [22]. We mention only the

single point of importance where Huygens showed
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a profounder insight. He says: even if the area of

an arbitrary circular sector cannot be expressed al-

gebraically in terms of the areas i0, I0, one can still
imagine such an expression to be possible for partic-

ular sectors, for example, for the whole circle itself.

Gregory, obviously, had overlooked this possibility

in his original publication. In his answer he tried

to deduce the result for the \particular case" from

that for the arbitrary sector. These endeavors could

not but fail; it took more than two centuries before

mathematics had developed the necessary means to

prove the transcendency of π.

5 Conclusion

Surveying the importance of all these discoveries and

ideas of Gregory, and realizing that the total range

of his scientific work is by no means covered by

our report, one may wonder why this great man did

not exert more influence on the actual development

of mathematics. The reason can be found in some

unfortunate, almost tragical facts, in Gregory's life

which hampered his activity as well as the effec-

tiveness of his work. After some short sojourns in

London (1663 and 1668), and several years of inspir-

ing studies in Italy (1664{1668), mostly in Padua, he

was appointed Professor of Mathematics at the Scot-

tish University of St. Andrews. At this old school,

still living entirely in medieval traditions, the young

scholar was rather isolated. There he was the only

one who knew of the new development of mathe-

matics. He himself abounded with new ideas, but

there was no possibility to discuss or to teach them.

Moreover, hardly any literature was available. Only

through his correspondence with Collins whom he

had met in London and who had become his close

friend, could he learn what the great mathematicians

in England and abroad were planning and complet-

ing.

Thus, his ideas could not find the response they

deserved and he himself did not develop them as

far as it might have been possible in closer contact

with mathematicians of equal rank. Still worse con-

sequences may have been involved in the lack of

appreciation of his first important publication, the

Vera Quadratura, and especially in the unkind and
unjust criticism of Huygens which we have men-

tioned above.

Apparently, these experiences impressed the proud

young Scotchman so deeply that he abandoned en-

tirely the trend of ideas he had started so success-

fully. We can imagine that otherwise he might have

applied his \convergent" pairs of sequences, as de-

fined by recurrence formulas, to various problems

and that he might have brought this important pro-

cess to greater prominence in the early analysis. In

fact, he afterwards used the infinite series, probably

influenced by the reports he got, scantily, on New-

ton's work. Yet, also here, fate did not favor him. For

he was not given time and opportunity to complete

and publish his investigations; and his great merits

were darkened by Newton's glory who, meanwhile,

could finish his work.

Besides, Gregory had inaugurated research on dif-

ferential and integral calculus without knowing what

his eminent competitors were doing simultaneously

in this field. He was even the first to publish, as early

as 1668, a proof [23] of the \fundamental theorem,"

that the two characteristic problems of the calculus,

namely, to determine the slopes and to determine the

areas, are inverse to one another. Also here he met

misfortune; immediately afterwards there appeared

Barrow's great work Lectiones Geometricae, which
went much farther and won all the fame. A few years

later, Newton's and Leibniz's momentous results on

the calculus became known and made obsolete the

work of all their predecessors.

Gregory did not live to see this development. He

had eventually taken over a professorship at the

University of Edinburgh, which granted him better

working opportunities. But only one year later, in

the fall of 1675, he suddenly fell ill and died in his

thirty-seventh year. Most of his discoveries and ideas

were buried in his letters and notes or lost through

his death.
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The Changing Concept of Change:

The Derivative from Fermat to Weierstrass

JUDITH V. GRABINER

Mathematics Magazine 56 (1983), 195{206

Some years ago while teaching the history of math-

ematics, I asked my students to read a discussion

of maxima and minima by the seventeenth-century

mathematician, Pierre Fermat. To start the discus-

sion, I asked them, \Would you please define a rela-

tive maximum?" They told me it was a place where

the derivative was zero. \If that's so," I asked, \then

what is the definition of a relative minimum?" They

told me, that's a place where the derivative is zero.

\Well, in that case," I asked, \what is the difference

between a maximum and a minimum?" They replied

that in the case of a maximum, the second derivative

is negative.

What can we learn from this apparent victory of

calculus over common sense?

I used to think that this story showed that these

students did not understand the calculus, but I have

come to think the opposite: they understood it very

well. The students' answers are a tribute to the power

of the calculus in general, and the power of the con-

cept of derivative in particular. Once one has been

initiated into the calculus, it is hard to remember

what it was like not to know what a derivative is

and how to use it, and to realize that people like

Fermat once had to cope with finding maxima and

minima without knowing about derivatives at all.

Historically speaking, there were four steps in the

development of today's concept of the derivative,

which I list here in chronological order. The deriva-

tive was first used; it was then discovered; it was
then explored and developed; and it was finally de-
fined. That is, examples of what we now recognize
as derivatives first were used on an ad hoc basis in

solving particular problems; then the general concept

lying behind these uses was identified (as part of the

invention of the calculus); then many properties of

the derivative were explained and developed in ap-

plications both to mathematics and to physics; and

finally, a rigorous definition was given and the con-

cept of derivative was embedded in a rigorous theory.

I will describe the steps, and give one detailed math-

ematical example from each. We will then reflect on

what it all means| for the teacher, for the historian,

and for the mathematician.

The seventeenth-century

background

Our story begins shortly after European mathemati-

cians had become familiar once more with Greek

mathematics, learned Islamic algebra, synthesized

the two traditions, and struck out on their own.

Franc�ois Vieta invented symbolic algebra in 1591;

Descartes and Fermat independently invented an-

alytic geometry in the 1630's. Analytic geometry

meant, first, that curves could be represented by

equations; conversely, it meant also that every equa-

tion determined a curve. The Greeks and Muslims

had studied curves, but not that many|principally

the circle and the conic sections plus a few more

defined as loci. Many problems had been solved

for these, including finding their tangents and areas.

But since any equation could now produce a new

curve, students of the geometry of curves in the early

seventeenth century were suddenly confronted with

an explosion of curves to consider. With these new

curves, the old Greek methods of synthetic geome-

try were no longer sufficient. The Greeks, of course,

had known how to find the tangents to circles, conic

218
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Figure 1.

Figure 2.

sections, and some more sophisticated curves such

as the spiral of Archimedes, using the methods of

synthetic geometry. But how could one describe the

properties of the tangent at an arbitrary point on a

curve defined by a ninety-sixth degree polynomial?

The Greeks had defined a tangent as a line which

touches a curve without cutting it, and usually ex-

pected it to have only one point in common with the

curve. How then was the tangent to be defined at the

point (0, 0) for a curve like y = x3 (Figure 1), or to

a point on a curve with many turning points (Figure

2)?

The same new curves presented new problems to

the student of areas and arc lengths. The Greeks

had also studied a few cases of what they called

\isoperimetric" problems. For example, they asked:

of all plane figures with the same perimeter, which

one has the greatest area? The circle, of course, but

the Greeks had no general method for solving all

such problems. Seventeenth-century mathematicians

hoped that the new symbolic algebra might somehow

help solve all problems of maxima and minima.

Thus, though a major part of the agenda for

seventeenth-century mathematicians| tangents, ar-

eas, extrema|came from the Greeks, the subject

matter had been vastly extended, and the solutions

would come from using the new tools: symbolic al-

gebra and analytic geometry.

Finding maxima, minima, and

tangents

We turn to the first of our four steps in the history

of the derivative: its use, and also illustrate some
of the general statements we have made. We shall

look at Pierre Fermat's method of finding maxima

and minima, which dates from the 1630's [8]. Fer-

mat illustrated his method first in solving a simple

problem, whose solution was well known: Given a
line, to divide it into two parts so that the product
of the parts will be a maximum. Let the length of
the line be designated B and the first part A (Figure
3). Then the second part is B − A and the product
of the two parts is

A(B − A) = AB − A2. (1)

A B A–

B

Figure 3.

Fermat had read in the writings of the Greek

mathematician Pappus of Alexandria that a problem

which has, in general, two solutions will have only

one solution in the case of a maximum. This remark

led him to his method of finding maxima and min-

ima. Suppose in the problem just stated there is a

second solution. For this solution, let the first part

of the line be designated as A+E; the second part
is then B− (A+E) = B−A−E. Multiplying the
two parts together, we obtain for the product

BA + BE − A2 −AE −EA −E2

= AB −A2 − 2AE +BE − E2. (2)

Following Pappus' principle for the maximum, in-

stead of two solutions, there is only one. So we set

the two products (1) and (2) \sort of" equal; that

is, we formulate what Fermat called the pseudo-

equality:

AB − A2 = AB −A2 − 2AE +BE − E2.

Simplifying, we obtain 2AE+E2 = BE and 2A+
E = B. Now Fermat said, with no justification and
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no ceremony, \suppress E." Thus he obtained A =
B/2, which indeed gives the maximum sought. He
concluded, \We can hardly expect a more general

method." And, of course, he was right.

Notice that Fermat did not call E infinitely small,
or vanishing, or a limit; he did not explain why he

could first divide by E (treating it as non-zero) and
then throw it out (treating it as zero). Furthermore,

he did not explain what he was doing as a special

case of a more general concept, be it derivative, rate

of change, or even slope of tangent. He did not even

understand the relationship between his maximum-

minimum method and the way one found tangents;

in fact he followed his treatment of maxima and

minima by saying that the same method| that is,

adding E, doing the algebra, then suppressing E|
could be used to find tangents [8, p. 223].

Though the considerations that led Fermat to his

method may seem surprising to us, he did devise a

method of finding extrema that worked, and it gave

results that were far from trivial. For instance, Fer-

mat applied his method to optics. Assuming that a

ray of light which goes from one medium to another

always takes the quickest path (what we now call

the Fermat least-time principle), he used his method

to compute the path taking minimal time. Thus he

showed that his least-time principle yields Snell's

law of refraction [7] [12, pp. 387{390].

Though Fermat did not publish his method of

maxima and minima, it became well known through

correspondence and was widely used. After math-

ematicians had become familiar with a variety of

examples, a pattern emerged from the solutions by

Fermat's method to maximum-minimum problems.

In 1659, Johann Hudde gave a general verbal formu-

lation of this pattern [3, p. 186], which, in modern

notation, states that, given a polynomial of the form

y =

n∑

k=0

akx
k

there is a maximum or minimum when

n∑

k=1

kakx
k−1 = 0.

Of even greater interest than the problem of ex-

trema in the seventeenth century was the finding of

tangents. Here the tangent was usually thought of as

a secant for which the two points came closer and

closer together until they coincided. Precisely what it

meant for a secant to \become" a tangent was never

x

( ( ))x, f x

( + ( + ))x h, f x h

h

y

Figure 4.

completely explained. Nevertheless, methods based

on this approach worked. Given the equation of a

curve y = f(x), Fermat, Descartes, John Wallis,
Isaac Barrow, and many other seventeenth-century

mathematicians were able to find the tangent. The

method involves considering, and computing, the

slope of the secant,

f(x + h) − f(x)

h
,

doing the algebra required by the formula for

f(x + h) in the numerator, then dividing by h. The
diagram in Figure 4 then suggests that when the

quantity h vanishes, the secant becomes the tangent,
so that neglecting h in the expression for the slope
of the secant gives the slope of the tangent. Again,

a general pattern for the equations of slopes of tan-

gents soon became apparent, and a rule analogous

to Hudde's rule for maxima and minima was stated

by several people, including Ren�e Sluse, Hudde, and

Christiaan Huygens [3, pp. 185{186].

By the year 1660, both the computational and the

geometric relationships between the problem of ex-

trema and the problem of tangents were clearly un-

derstood; that is, a maximum was found by comput-

ing the slope of the tangent, according to the rule,

and asking when it was zero. While in 1660 there

was not yet a general concept of derivative, there was

a general method for solving one type of geometric

problem. However, the relationship of the tangent to

other geometric concepts|area, for instance|was

not understood, and there was no completely satis-

factory definition of tangent. Nevertheless, there was

a wealth of methods for solving problems that we

now solve by using the calculus, and in retrospect, it

would seem to be possible to generalize those meth-

ods. Thus in this context it is natural to ask, how

did the derivative as we know it come to be?
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It is sometimes said that the idea of the deriva-

tive was motivated chiefly by physics. Newton, af-

ter all, invented both the calculus and a great deal of

the physics of motion. Indeed, already in the Mid-

dle Ages, physicists, following Aristotle who had

made \change" the central concept in his physics,

logically analyzed and classified the different ways

a variable could change. In particular, something

could change uniformly or non-uniformly; if non-

uniformly, it could change uniformly-non-uniformly

or non-uniformly-non-uniformly, etc. [3, pp. 73{74].

These medieval classifications of variation helped

to lead Galileo in 1638, without benefit of calcu-

lus, to his successful treatment of uniformly acceler-

ated motion. Motion, then, could be studied scientif-

ically. Were such studies the origin and purpose of

the calculus? The answer is no. However plausible

this suggestion may sound, and however important

physics was in the later development of the calculus,

physical questions were in fact neither the immediate

motivation nor the first application of the calculus.

Certainly they prepared people's thoughts for some

of the properties of the derivative, and for the intro-

duction into mathematics of the concept of change.

But the immediate motivation for the general con-

cept of derivative|as opposed to specific examples

like speed or slope of tangent|did not come from

physics. The first problems to be solved, as well as

the first applications, occurred in mathematics, es-

pecially geometry (see [1, chapter 7]; see also [3;

chapters 4{5], and, for Newton, [17]). The concept

of derivative then developed gradually, together with

the ideas of extrema, tangent, area, limit, continuity,

and function, and it interacted with these ideas in

some unexpected ways.

Tangents, areas, and rates of

change

In the latter third of the seventeenth century, Newton

and Leibniz, each independently, invented the calcu-

lus. By \inventing the calculus" I mean that they did

three things. First, they took the wealth of methods

that already existed for finding tangents, extrema,

and areas, and they subsumed all these methods un-

der the heading of two general concepts, the concepts

which we now call derivative and integral. Second,
Newton and Leibniz each worked out a notation

which made it easy, almost automatic, to use these

general concepts. (We still use Newton's ẋ and we
still use Leibniz's dy/dx and

∫
ydx.) Third, Newton

and Leibniz each gave an argument to prove what

we now call the Fundamental Theorem of Calculus:

the derivative and the integral are mutually inverse.

Newton called our \derivative" a fluxion|a rate of

flux or change; Leibniz saw the derivative as a ratio

of infinitesimal differences and called it the differ-
ential quotient. But whatever terms were used, the
concept of derivative was now embedded in a gen-

eral subject| the calculus|and its relationship to

the other basic concept, which Leibniz called the in-

tegral, was now understood. Thus we have reached

the stage I have called discovery.
Let us look at an early Newtonian version of the

Fundamental Theorem [13, sections 54-5, p. 23].

This will illustrate how Newton presented the calcu-

lus in 1669, and also illustrate both the strengths and

weaknesses of the understanding of the derivative in

this period.

Consider with Newton a curve under which the

area up to the point D = (x, y) is given by z (see
Figure 5). His argument is general: \Assume any

relation betwixt x and z that you please;" he then
proceeded to find y. The example he used is

z =
n

m+ n
ax(m+n)/n;

however, it will be sufficient to use z = x3 to illus-

trate his argument.

In the diagram in Figure 5, the auxiliary line bd is
chosen so that Bb = o, where o is not zero. Newton
then specified thatBK = v should be chosen so that
area BbHK = area BbdD. Thus ov = area BbdD.
Now, as x increases to x+ o, the change in the area
z is given by

z(x + o) − z(x) = x3 + 3x2o+ 3xo2 + o3 − x3

= 3x2o+ 3xo2 + o3,

x o
b

y
v

d

A B

D

K
H

Figure 5.
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which, by the definition of v, is equal to ov. Now
since

3x2o+ 3xo2 + o3 = ov,

dividing by o produces 3x2 + 3ox+ o2 = v. Now,
said Newton, \If we suppose Bb to be diminished
infinitely and to vanish, or o to be nothing, v and
y in that case will be equal and the terms which
are multiplied by o will vanish: so that there will
remain . . . " 3x2 = y.
What has he shown? Since

z(x+ o) − z(x)

o

is the rate at which the area z changes, that rate is
given by the ordinate y. Moreover, we recognize that
3x2 would be the slope of the tangent to the curve

z = x3. Newton went on to say that the argument

can be reversed; thus the converse holds too. We

see that derivatives are fundamentally involved in

areas as well as tangents, so the concept of derivative

helps us to see that these two problems are mutually

inverse. Leibniz gave analogous arguments on this

same point (see, e.g. [16, pp. 282-284]).

Newton and Leibniz did not, of course, have the

last word on the concept of derivative. Though each

man had the most useful properties of the concept,

there were still many unanswered questions. In par-

ticular, what, exactly, is a differential quotient? Some

disciples of Leibniz, notably Johann Bernoulli and

his pupil the Marquis de l'Hospital, said a differ-

ential quotient was a ratio of infinitesimals; after

all, that is the way it was calculated. But infinites-

imals, as seventeenth-century mathematicians were

well aware, do not obey the Archimedean axiom.

Since the Archimedean axiom was the basis for the

Greek theory of ratios, which was, in turn, the basis

of arithmetic, algebra, and geometry for seventeenth-

century mathematicians, non-Archimedean objects

were viewed with some suspicion. Again, what is a

fluxion? Though it can be understood intuitively as a

velocity, the proofs Newton gave in his 1671Method
of Fluxions all involved an \indefinitely small quan-
tity o", [14, pp. 32-33] which raises many of the
same problems that the o which \vanishes" raised
in the Newtonian example of 1669 we saw above.

In particular, what is the status of that little o? Is it
zero? If so, how can we divide by it? If it is not zero,

aren't we making an error when we throw it away?

These questions had already been posed in Newton's

and Leibniz's time. To avoid such problems, Newton

said in 1687 that quantities defined in the way that

3x2 was defined in our example were the limit of

the ratio of vanishing increments. This sounds good,

but Newton's understanding of the term \limit" was

not ours. Newton in his Principia (1687) described
limits as \ultimate ratios"|that is, the value of the

ratio of those vanishing quantities just when they

are vanishing. He said, \Those ultimate ratios with

which quantities vanish are not truly the ratios of

ultimate quantities, but limits towards which the ra-

tios of quantities decreasing without limit do always

converge; and to which they approach nearer than

by any given difference, but never go beyond, nor in

effect attain to, till the quantities are diminished in

infinitum" [15, Book I, Scholium to Lemma XI, p.

39].

Notice the phrase \but never go beyond"|so a

variable cannot oscillate about its limit. By \limit"

Newton seems to have had in mind \bound", and

mathematicians of his time often cite the particular

example of the circle as the limit of inscribed poly-

gons. Also, Newton said, \nor . . . attain to, till the

quantities are diminished in infinitum." This raises a

central issue: it was often asked whether a variable

quantity ever actually reached its limit. If it did not,

wasn't there an error? Newton did not help clarify

this when he stated as a theorem that \Quantities

and the ratios of quantities which in any finite time

converge continually to equality, and before the end

of that time approach nearer to each other than by

any given difference, become ultimately equal" [15,

Book I, Lemma I, p. 29]. What does \become ulti-

mately equal" mean? It was not really clear in the

eighteenth century, let alone the seventeenth.

In 1734, George Berkeley, Bishop of Cloyne, at-

tacked the calculus on precisely this point. Scientists,

he said, attack religion for being unreasonable; well,

let them improve their own reasoning first. A quan-

tity is either zero or not; there is nothing in between.

And Berkeley characterized the mathematicians of

his time as men \rather accustomed to compute, than

to think" [2].

Perhaps Berkeley was right, but most mathemati-

cians were not greatly concerned. The concepts of

differential quotient and integral, concepts made

more effective by Leibniz's notation and by the

Fundamental Theorem, had enormous power. For

eighteenth-century mathematicians, especially those

on the Continent where the greatest achievements

occurred, it was enough that the concepts of the cal-

culus were understood sufficiently well to be applied

to solve a large number of problems, both in math-

ematics and in physics. So, we come to our third

stage: exploration and development.
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Differential equations, Taylor

series, and functions

Newton had stated his three laws of motion in words,

and derived his physics from those laws by means

of synthetic geometry [15]. Newton's second law

stated: \The change of motion [our `momentum'] is
proportional to the motive force impressed, and is
made in the direction of the [straight] line in which
that force is impressed" [15, p. 13]. Once translated
into the language of the calculus, this law provided

physicists with an instrument of physical discovery

of tremendous power|because of the power of the

concept of the derivative.

To illustrate, if F is force and x distance (so mẋ
is momentum and, for constant mass, mẍ the rate of
change of momentum), then Newton's second law

takes the form F = mẍ. Hooke's law of elastic-

ity (when an elastic body is distorted the restoring

force is proportional to the distance [in the opposite

direction] of the distortion) takes the algebraic form

F = −kx. By equating these expressions for force,
Euler in 1739 could easily both state and solve the

differential equation mẍ + kx = 0 which describes
the motion of a vibrating spring [10, p. 482]. It was

mathematically surprising, and physically interest-

ing, that the solution to that differential equation in-

volves sines and cosines.

An analogous, but considerably more sophisti-

cated problem, was the statement and solution of the

partial differential equation for the vibrating string.

In modern notation, this is

∂2y

∂t2
=
T∂2y

µ∂x2
,

where T is the tension in the string and µ is its mass
per unit length. The question of how the solutions to

this partial differential equation behaved was investi-

gated by such men as d'Alembert, Daniel Bernoulli,

and Leonhard Euler, and led to extensive discussions

about the nature of continuity, and to an expansion

of the notion of function from formulas to more gen-

eral dependence relations [10, pp. 502{514], [16, pp.

367{368]. Discussions surrounding the problem of

the vibrating string illustrate the unexpected ways

that discoveries in mathematics and physics can in-

teract ([16, pp. 351{368] has good selections from

the original papers). Numerous other examples could

be cited, from the use of infinite-series approxima-

tions in celestial mechanics to the dynamics of rigid

bodies, to show that by the mid-eighteenth century

the differential equation had become the most useful

mathematical tool in the history of physics.

Another useful tool was the Taylor series, devel-

oped in part to help solve differential equations. In

1715, Brook Taylor, arguing from the properties of

finite differences, wrote an equation expressing what

we would write as f(x+h) in terms of f(x) and its
quotients of differences of various orders. He then

let the differences get small, passed to the limit, and

gave the formula that still bears his name: the Taylor

series. (Actually, James Gregory and Newton had an-

ticipated this discovery, but Taylor's work was more

directly influential.) The importance of this property

of derivatives was soon recognized, notably by Colin

Maclaurin (who has a special case of it named af-

ter him), by Euler, and by Joseph-Louis Lagrange.

In their hands, the Taylor series became a powerful

tool in studying functions and in approximating the

solution of equations.

But beyond this, the study of Taylor series pro-

vided new insights into the nature of the derivative.

In 1755, Euler, in his study of power series, had said

that for any power series,

a+ bx+ cx2 + dx3 + · · · ,

one could find x sufficiently small so that if one
broke off the series after some particular term|say

x2|the x2 term would exceed, in absolute value,

the sum of the entire remainder of the series [6,

section 122]. Though Euler did not prove this|

he must have thought it obvious since he usually

worked with series with finite coefficients|he ap-

plied it to great advantage. For instance, he could

use it to analyze the nature of maxima and minima.

Consider, for definiteness, the case of maxima. If

f(x) is a relative maximum, then by definition, for
small h,

f(x − h) < f(x) and f(x + h) < f(x).

Taylor's theorem gives, for these inequalities,

f(x − h) = f(x) − h
df(x)

dx
+ h2d

2f(x)

dx2
− · · ·

< f(x); (3)

f(x + h) = f(x) + h
df(x)

dx
+ h2d

2f(x)

dx2
+ · · ·

< f(x). (4)

Now if h is so small that hdf(x)/dx dominates the
rest of the terms, the only way that both of the in-

equalities (3) and (4) can be satisfied is for df(x)/dx
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to be zero. Thus the differential quotient is zero

for a relative maximum. Furthermore, Euler argued,

since h2 is always positive, if d2f(x)/dx2 6= 0,
the only way both inequalities can be satisfied is

for d2f(x)/dx2 to be negative. This is because the

h2 term dominates the rest of the series|unless

d2f(x)/dx2 is itself zero, in which case we must

go on and think about even higher-order differential

quotients. This analysis, first given and demonstrated

geometrically by Maclaurin, was worked out in full

analytic detail by Euler [6, sections 253{254], [9,

pp. 117{118]. It is typical of Euler's ability to choose

computations that produce insight into fundamental

concepts. It assumes, of course, that the function in

question has a Taylor series, an assumption which

Euler made without proof for many functions; it as-

sumes also that the function is uniquely the sum

of its Taylor series, which Euler took for granted.

Nevertheless, this analysis is a beautiful example of

the exploration and development of the concept of

the differential quotient of first, second, and nth or-
ders|a development which completely solves the

problem of characterizing maxima and minima, a

problem which goes back to the Greeks.

Lagrange and the

derivative as a function

Though Euler did a good job analyzing maxima and

minima, he brought little further understanding of

the nature of the differential quotient. The new im-

portance given to Taylor series meant that one had to

be concerned not only about first and second differ-

ential quotients, but about differential quotients of

any order.

The first person to take these questions seriously

was Lagrange. In the 1770's, Lagrange was im-

pressed with what Euler had been able to achieve

by Taylor-series manipulations with differential quo-

tients, but Lagrange soon became concerned about

the logical inadequacy of all the existing justifica-

tions for the calculus. In particular, Lagrange wrote

in 1797 that the Newtonian limit-concept was not

clear enough to be the foundation for a branch of

mathematics. Moreover, in not allowing variables

to surpass their limits, Lagrange thought the limit-

concept too restrictive. Instead, he said, the calcu-

lus should be reduced to algebra, a subject whose

foundations in the eighteenth century were generally

thought to be sound [11, pp. 15{16].

The algebra Lagrange had in mind was what he

called the algebra of infinite series, because La-

grange was convinced that infinite series were part

of algebra. Just as arithmetic deals with infinite

decimal fractions without ceasing to be arithmetic,

Lagrange thought, so algebra deals with infinite al-

gebraic expressions without ceasing to be algebra.

Lagrange believed that expanding f(x + h) into a
power series in h was always an algebraic process. It
is obviously algebraic when one turns 1/(1−x) into
a power series by dividing. And Euler had found, by

manipulating formulas, infinite power-series expan-

sions for functions like sinx, cosx, ex. If functions

like those have power-series expansions, perhaps ev-

erything could be reduced to algebra. Euler, in his

book Introduction to the analysis of the infinite (In-
troductio in analysin infinitorum, 1748), had studied
infinite series, infinite products, and infinite contin-

ued fractions by what he thought of as purely al-

gebraic methods. For instance, he converted infinite

series into infinite products by treating a series as a

very long polynomial. Euler thought that this work

was purely algebraic, and|what is crucial here|

Lagrange also thought Euler's methods were purely

algebraic. So Lagrange tried to make the calculus

rigorous by reducing it to the algebra of infinite se-

ries.

Lagrange stated in 1797, and thought he had

proved, that any function (that is, any analytic ex-

pression, finite or infinite) had a power-series ex-

pansion:

f(x + h) = f(x) + p(x)h+ q(x)h2

+ r(x)h3 + · · · , (5)

except, possibly, for a finite number of isolated val-

ues of x. He then defined a new function, the co-
efficient of the linear term in h (which is p(x) in
the expansion shown in (5)) and called it the first

derived function of f(x). Lagrange's term \derived
function" (fonction deriv�ee) is the origin of our term
\derivative." Lagrange introduced a new notation,

f ′(x), for that function. He defined f ′′(x) to be
the first derived function of f ′(x), and so on, re-
cursively. Finally, using these definitions, he proved

that, in the expansion (5) above,

q(x) = f ′′(x)/2, r(x) = f ′′′(x)/6,

and so on [11, chapter 2].

What was new about Lagrange's definition? The

concept of function|whether simply an algebraic

expression (possibly infinite) or, more generally,



\master" | 2011/4/5 | 12:53 | page 225 | #235
i

i

i

i

i

i

i

i

GRABINER: The Changing Concept of Change 225

any dependence relation|helps free the concept of

derivative from the earlier ill-defined notions. New-

ton's explanation of a fluxion as a rate of change

appeared to involve the concept of motion in mathe-

matics; moreover, a fluxion seemed to be a different

kind of object than the flowing quantity whose flux-

ion it was. For Leibniz, the differential quotient had

been the quotient of vanishingly small differences;

the second differential quotient, of even smaller dif-

ferences. Bishop Berkeley, in his attack on the calcu-

lus, had made fun of these earlier concepts, calling

vanishing increments \ghosts of departed quantities"

[2, section 35]. But since, for Lagrange, the deriva-

tive was a function, it was now the same sort of

object as the original function. The second deriva-

tive is precisely the same sort of object as the first

derivative; even the nth derivative is simply another
function, defined as the coefficient of h in the Taylor
series for f(n−1)(x+ h). Lagrange's notation f′(x)
was designed precisely to make this point.

We cannot fully accept Lagrange's definition of

the derivative, since it assumes that every differen-

tiable function is the sum of a Taylor series and thus

has infinitely many derivatives. Nevertheless, that

definition led Lagrange to a number of important

properties of the derivative. He used his definition

together with Euler's criterion for using truncated

power series in approximations to give a most use-

ful characterization of the derivative of a function

[9, p. 116, pp. 118{121]:

f(x + h) = f(x) + hf ′(x) + hH,

where H goes to zero with h. (I call this the
Lagrange property of the derivative.) Lagrange in-
terpreted the phrase \H goes to zero with h" in terms
of inequalities. That is, he wrote that,

Given D, h can be chosen so that f(x+ h)− f(x)
lies between h (f ′(x) −D) and h (f(x) +D). (6)

Formula (6) is recognizably close to the modern

delta-epsilon definition of the derivative.

Lagrange used inequality (6) to prove theorems.

For instance, he proved that a function with posi-

tive derivative on an interval is increasing there, and

used that theorem to derive the Lagrange remain-

der of the Taylor series [9, pp. 122{127], [11, pp.

78{85]. Furthermore, he said, considerations like in-

equality (6) are what make possible applications of

the differential calculus to a whole range of prob-

lems in mechanics, in geometry, and, as we have de-

scribed, the problem of maxima and minima (which

Lagrange solved using the Taylor series remainder

which bears his name [11, pp. 233{237]).

In Lagrange's 1797 work, then, the derivative is

defined by its position in the Taylor series |a

strange definition to us. But the derivative is also de-
scribed as satisfying what we recognize as the appro-
priate delta-epsilon inequality, and Lagrange applied

this inequality and its nth-order analogue, the La-
grange remainder, to solve problems about tangents,

orders of contact between curves, and extrema. Here

the derivative was clearly a function, rather than a

ratio or a speed.

Still, it is a lot to assume that a function has a

Taylor series if one wants to define only one deriva-

tive. Further, Lagrange was wrong about the algebra

of infinite series. As Cauchy pointed out in 1821, the

algebra of finite quantities cannot automatically be

extended to infinite processes. And, as Cauchy also

pointed out, manipulating Taylor series is not fool-

proof. For instance, e−1/x2

has a zero Taylor series

about x = 0, but the function is not identically zero.
For these reasons, Cauchy rejected Lagrange's defi-

nition of derivative and substituted his own.

Definitions, rigor, and proofs

Now we come to the last stage in our chronolog-

ical list: definition. In 1823, Cauchy defined the
derivative of f(x) as the limit, when it exists, of
the quotient of differences (f(x + h) − f(x))/h as
h goes to zero [4, pp. 22{23]. But Cauchy under-
stood \limit" differently than had his predecessors.

Cauchy entirely avoided the question of whether a

variable ever reached its limit; he just didn't dis-

cuss it. Also, knowing an absolute value when he

saw one, Cauchy followed Simon l'Huilier and S.-F.

Lacroix in abandoning the restriction that variables

never surpass their limits. Finally, though Cauchy,

like Newton and d'Alembert before him, gave his

definition of limit in words, Cauchy's understanding

of limit (most of the time, at least) was algebraic.

By this, I mean that when Cauchy needed a limit

property in a proof, he used the algebraic inequal-

ity characterization of limit. Cauchy's proof of the

mean value theorem for derivatives illustrates this.

First he proved a theorem which states: if f(x) is
continuous on [x, x+ a], then

min
[x,x+a]

f ′(x) ≤ f(x + a) − f(x)

a
≤ max

[x,x+a]
f ′(x).

The first step in his proof is [4, p. 44]:

Let δ, ε be two very small numbers; the first is cho-
sen so that for all [absolute] values of h less than δ
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and for any value of x [on the given interval], the
ratio (f(x + h) − f(x))/h will always be greater
than f ′(x) − ε and less than f ′(x) + ε.

(The notation in this quote is Cauchy's, except that

I have substituted h for the i he used for the incre-
ment.) Assuming the intermediate-value theorem for

continuous functions, which Cauchy had proved in

1821, the mean-value theorem is an easy corollary

of (7) [4, pp. 44{45], [9, pp. 168{170].

Cauchy took the inequality-characterization of the

derivative from Lagrange (possibly via an 1806 pa-

per of A.-M. Ampere [9, pp. 127{132]). But Cauchy

made that characterization into a definition of deriva-

tive. Cauchy also took from Lagrange the name

derivative and the notation f ′(x), emphasizing the
functional nature of the derivative. And, as I have

shown in detail elsewhere [9, chapter 5], Cauchy

adapted and improved Lagrange's inequality proof-

methods to prove results like the mean-value theo-

rem, proof-methods now justified by Cauchy's def-

inition of derivative.

But of course, with the new and more rigorous

definition, Cauchy went far beyond Lagrange. For

instance, using his concept of limit to define the in-

tegral as the limit of sums, Cauchy made a good

first approximation to a real proof of the Fundamen-

tal Theorem of Calculus [9, pp. 171{175], [4, pp.

122{125, 151{152]. And it was Cauchy who not

only raised the question, but gave the first proof, of

the existence of a solution to a differential equation

[9, pp. 158{159].

After Cauchy, the calculus itself was viewed dif-

ferently. It was seen as a rigorous subject, with good

definitions and with theorems whose proofs were

based on those definitions, rather than merely as a

set of powerful methods. Not only did Cauchy's new

rigor establish the earlier results on a firm founda-

tion, but it also provided a framework for a wealth

of new results, some of which could not even be

formulated before Cauchy's work.

Of course, Cauchy did not himself solve all the

problems occasioned by his work. In particular,

Cauchy's definition of the derivative suffers from

one deficiency of which he was unaware. Given an

ε, he chose a δ which he assumed would work for
any x. That is, he assumed that the quotient of differ-
ences converged uniformly to its limit. It was not un-

til the 1840's that G. G. Stokes, V. Seidel, K. Weier-

strass, and Cauchy himself worked out the distinc-

tion between convergence and uniform convergence.

After all, in order to make this distinction, one first

needs a clear and algebraic understanding of what

a limit is| the understanding Cauchy himself had

provided.

In the 1850's, Karl Weierstrass began to lecture at

the University of Berlin. In his lectures, Weierstrass

made algebraic inequalities replace words in theo-

rems in analysis, and used his own clear distinction

between pointwise and uniform convergence along

with Cauchy's delta-epsilon techniques to present

a systematic and thoroughly rigorous treatment of

the calculus. Though Weierstrass did not publish his

lectures, his students|H. A. Schwartz, G. Mittag-

Leffler, E. Heine, S. Pincherl�e, Sonya Kowalevsky,

Georg Cantor, to name a few|disseminated Weier-

strassian rigor to the mathematical centers of Europe.

Thus although our modern delta-epsilon definition

of derivative cannot be quoted from the works of

Weierstrass, it is in fact the work of Weierstrass [3,

pp. 284{287]. The rigorous understanding brought

to the concept of the derivative by Weierstrass is

signaled by his publication in 1872 of an example

of an everywhere continuous, nowhere differentiable

function. This is a far cry from merely acknowledg-

ing that derivatives might not always exist, and the

example shows a complete mastery of the concepts

of derivative, limit, and existence of limit [3, p. 285].

Historical development versus

textbook exposition

The span of time from Fermat to Weierstrass is over

two hundred years. How did the concept of deriva-

tive develop? Fermat implicitly used it; Newton and

Leibniz discovered it; Taylor, Euler, Maclaurin de-

veloped it; Lagrange named and characterized it; and

only at the end of this long period of development

did Cauchy and Weierstrass define it. This is cer-

tainly a complete reversal of the usual order of text-

book exposition in mathematics, where one starts

with a definition, then explores some results, and

only then suggests applications.

This point is important for the teacher of math-

ematics: the historical order of development of the

derivative is the reverse of the usual order of text-

book exposition. Knowing the history helps us as

we teach about derivatives. We should put our-

selves where mathematicians were before Fermat,

and where our beginning students are now|back

on the other side, before we had any concept of

derivative, and also before we knew the many uses

of derivatives. Seeing the historical origins of a con-

cept helps motivate the concept, which we|along
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with Newton and Leibniz|want for the problems

it helps to solve. Knowing the historical order also

helps to motivate the rigorous definition|which

we, like Cauchy and Weierstrass, want in order to

justify the uses of the derivative, and to show pre-

cisely when derivatives exist and when they do not.

We need to remember that the rigorous definition is

often the end, rather than the beginning, of a subject.

The real historical development of mathematics|

the order of discovery| reveals the creative mathe-

matician at work, and it is creation that makes doing

mathematics so exciting. The order of exposition,

on the other hand, is what gives mathematics its

characteristic logical structure and its incomparable

deductive certainty. Unfortunately, once the classic

exposition has been given, the order of discovery is

often forgotten. The task of the historian is to recap-

ture the order of discovery: not as we think it might

have been, not as we think it should have been, but

as it really was. And this is the purpose of the story

we have just told of the derivative from Fermat to

Weierstrass.
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The Crooked Made Straight:

Roberval and Newton on Tangents

PAUL R. WOLFSON

American Mathematical Monthly 108 (2001), 206{216

1 Introduction

In October 1665, about two years after he had

first read a mathematics book, Isaac Newton be-

gan investigating a method for finding the tangents

to \mechanical" curves. He can have known only

vaguely that he was following a path trod previ-

ously by several outstanding mathematicians, Torri-

celli, Descartes, Roberval, and Barrow among them.

In his ignorance of the details of their work, Newton

stumbled before setting himself firmly on the way to

his calculus. As he progressed, he overcame the in-

adequate mathematical language that had kept others

from expressing| sometimes from even thinking|

their ideas clearly.

Newton's method found tangents by regarding a

curve as the trajectory of a moving particle, so that

the velocity vector lies along the tangent. Sometimes

one can easily find the velocity vector, however,

by decomposing the given motion into simpler ones

with known velocity vectors. This method of finding

tangents to curves by decomposing the velocity vec-

tor is often called the kinematic method. Newton's
first manuscript on the kinematic method included

three examples of curves that had traditionally been

described by the composition of motions: the spi-

ral of Archimedes, the cycloid, and the quadratrix.

In addition to these mechanical curves, described as

trajectories, Newton also discussed the ellipse, a so-

called geometrical curve.

Newton had not been the first to consider compo-

sition of motions in general or any of these particular

examples. Of course, the general idea of composi-

tion of motions goes back to the ancient Greeks,

as the examples of the Archimedean spiral and the

quadratrix show. (The epicyclic paths of Ptolemaic

astronomy give other ancient examples of curves

generated by two or more motions.) In his Two New
Sciences (1638), Galileo decomposed a projectile's
motion into a uniform horizontal motion and a uni-

formly accelerated vertical motion in order to show

that the trajectory is a parabola. In his On the Mo-
tion of Heavy Bodies (1644), Torricelli reversed the
line of argument: by treating the parabola as a trajec-

tory formed from the composition of two motions, he

explained how to determine its tangent at any point.

Although the parabola was of special interest to him,

Torricelli also discussed the Archimedean spiral and

the cycloid in similar terms.

That same year, Descartes published his Prin-
ciples of Philosophy. There, he discussed the de-
composition of movements in a general way and

illustrated the idea with a description of the cy-

cloid. Descartes went beyond generalities, however:

in a fragment published posthumously, he actually

used the kinematic method to find the tangent to the

quadratrix. By this time, too, Roberval had lectured

on the kinematic method and had communicated it

to Fermat. He took an insight shared by a few lead-

ing mathematicians and made it into a successful

method.

2 What Roberval knew

Giles Personne de Roberval (1602{1675) expounded

his method at the Coll�ege Royal in Paris, where he

held the Ramus chair from 1643 until his death. One

of his students was Franc�ois de Verdus, whose notes

formed the basis for Roberval's presentation to the

Acad�emie Royale des Sciences. The Acad�emie pub-

228
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Figure 1.

lished it in 1693 as Observations on the composition
of Movements and on the means of finding Tangents
to curved lines [14]. The work begins with a discus-
sion of the nature of composite motions. Roberval

observed that uniform rectilinear motions combine

by the parallelogram law (vector addition). To find

tangents by decomposing motions, Roberval offered

the following

General Rule. By the specific properties of the

given curve, examine the divers motions of a point in

the place where you want the tangent, and compose

all the motions to a single one; draw the line of

direction of motion, and you have the tangent. [14,

p. 24]

To see what Roberval meant, we may begin with

an example. Like Torricelli and others, Roberval dis-

cussed the cycloid (Figure 1). He defined it in the

usual manner as the path traced by a point E on

a circle that rolls on a straight line. It follows, he

observed, that the instantaneous motion of E can

be decomposed into a linear motion parallel to the

base line and an instantaneous circular motion given

by the tangent to the circle. Therefore, to draw the

tangent to the cycloid at E, he used essentially the
following steps: draw EF ‖ AC and draw FG par-
allel to the tangent ED to the circle. On FG take

H so that

AC : circumference of the circle :: EF : FH.

Then EH is the tangent.

This example, considered again by Barrow and

Newton, does not yet make clear the subtlety of

Roberval's method. Consider, therefore, another of

Roberval's examples, the ellipse (Figure 2). From

its definition as the locus of points F for which

FB + FA = constant

B

M

A
D¢ F

CI¢

Figure 2.

it follows, he observed, that F moves so that either
it recedes from B in FC and approaches A in FA,
or vice versa. Since F recedes from one point as

much as it approaches the other, the motion of F
can be decomposed into two motions, represented

by lengths FC and FD′, for example, and the com-

posite motion is represented by the diagonal of the

parallelogram FCI′D′ . Therefore, the line I′FM
that bisects ∠AFC is the tangent line.
Here, as in the example of the cycloid, Roberval

was apparently recombining component velocities by

vector addition. More specific than Roberval's Gen-

eral Rule, this method has often been called the Par-

allelogram Rule, which we can state as follows.

Parallelogram Rule. To find the tangent to a

curve at a point F , first decompose the motion of
F along the curve into two or more independent

motions for which the instantaneous velocity can be

found; then, use the parallelogram law of velocities

to find the resultant, which lies along the tangent

line.

Unfortunately, it proved all too easy to apply

the Parallelogram Rule incorrectly. Many histori-

ans believe that Roberval himself did so. For ex-

ample, in The Historical Development of the Cal-
culus, C. H. Edwards discussed in detail the case
of the ellipse (as well as the parabola and the cy-

cloid) and concluded that \it was something of a
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stroke of good fortune that Roberval obtained the

correct tangent lines to the parabola and ellipse by

this method." [7, p. 137] More generally, Roberval's

biographer, L. Auger, remarked that

This method is far from being general and

. . . the cases where it does not succeed are more

numerous than those where it is crowned with

success . . . . As a matter of fact, the cases where

Roberval applied his method were not blem-

ished with error, whether he chose them or was

favored by luck . . . . [2, p. 63]

Criticism of this argument goes back to the

nineteenth-century mathematician J. Duhamel, who

stated that Roberval

gave false rules for the determination of tan-

gents to curves generated by radius vectors di-

rected toward fixed centers. He applied these

rules in particular cases where they suc-

ceeded. [6, pp. 257{258]

Duhamel's point was that the Parallelogram Rule

assumes the independence of the component mo-

tions. He specifically criticized its use for curves

given in bipolar coordinates, showing that the rule

is correct only if either the position vectors are or-

thogonal or the two velocity vectors are equal in

magnitude. In the ellipse, therefore, the Parallelo-

gram Rule does not correctly determine the tangent

vector, although the diagonal of the completed par-

allelogram happens to lie along the correct tangent

line.

But was Roberval unaware of the restrictions on

the Parallelogram Rule? Roberval's illustration for

the ellipse, unlike Figure 2, did not show a parallel-
ogram; the points D′ and I′ and the lines D′I′ and
CI′ have been added to the original diagram. Rober-
val's instructions were simply to bisect ∠AFC or

∠BFD by IFM .
Another \stroke of good fortune"? Before decid-

ing, consider a further example of his work, the

quadratrix (Figure 3). Roberval used the ancient def-

inition of this curve as the locus of points F of inter-
section of two lines, one (FI) descending with uni-
form speed through parallels to AB, the other (FA)
rotating with uniform speed about a center A. One
might be tempted to apply the Parallelogram Rule to

the vertical vector together with the vector tangent to

the circle with radius FA. In a manuscript published
posthumously [3], we can see Descartes using just

this construction. Roberval, however, saw that the

Parallelogram Rule would be misapplied here, be-

cause the motion of the point of intersection is not

A B

F
I

Figure 3.

determined by these two motions. He noted that in

addition to the two movements already mentioned,

the point F has a further one that obliges it to remain
in the intersection of FI with FA. He says

Because these two movements are not the only

ones, I do not draw from R a line parallel to

FI and equal to FK, to have at its other end
the point of the tangent, but rather look at all

the movements of F which describe the quadra-
trix. [14, p. 62]

Andersen [1, p. 298] suggests that Roberval,

aware of the limitations of the Parallelogram Rule,

had developed a new kinematic method. She has

rewritten Roberval's argument using the language

of vectors, a valuable service since it is hard to see

Roberval's method in the original turbid exposition.

Some of our difficulties in understanding Rober-

val's exact thoughts about the quadratrix and the

ellipse arise because the text of Roberval's Obser-
vations consists of the notes of his student de Verdus,
who evidently understood very little of what he was

writing. In discussing the Archimedean spiral, for

example, the text devotes a full page to saying that

at constant angular speed, the linear speed of rota-

tion varies from point to point with the instantaneous

radius. Yet Roberval was fully able to deal with a

variety of curves where the component motions are

not uniform. Again, Andersen remarks that, \Ver-

dus described Descartes's parabola incorrectly, but

nevertheless found the right tangent" [11, p. 179,

n. 8]. The notes, therefore, do not adequately rep-

resent the subtlety of Roberval's thought. We have

Roberval's word for this; he inserted several depre-

cating marginal notes in de Verdus's text. For exam-

ple, Roberval notes of one explanation: \badly ap-

plied, but easy to understand." Of the determination

of the tangent to the quadratrix, Roberval writes,

\This proposition is too long and embroiled." In-
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deed, it reads as if de Verdus, unsure where the argu-

ment lay, wrote down everything he could imagine to

be relevant. It seems safest, therefore, to assign any

infelicities and mistakes to de Verdus, as Roberval

always obtained the correct tangents.

To exculpate Roberval, however, is not to assert

that his lectures were ever expressed with perfect

clarity. We think of composition of motions in terms
of vectors from the start: both the position and the

velocity are given by vectors. Roberval, however,

was one of those who were just developing that lan-

guage. He was able to express clearly the vector sum

of two velocities, but not the sum of two position

vectors, themselves functions of time. Because of

this, the composition of motions might mean differ-

ent things in different cases. Thus Roberval could

not easily say why the quadratrix was composed

of more than just the circular and the vertical mo-

tion. Two decades later, Newton struggled with the

same difficulties and emerged triumphant. Thanks to

Whiteside's wonderful edition of Newton's mathe-

matical papers, we are able to trace his thoughts.

3 What Newton thought

Newton's investigations of the kinematic method of

tangents seem to echo those of Roberval. Did New-

ton know the latter's work? One possible conduit

might have been Isaac Barrow. Barrow himself had

investigated the kinematic method about a year and

a half before Newton. Then he wrote to Collins:

If you remember, Mersennus and Torricellius

do mention a general method of finding the tan-

gents to curve lines by composition of motions,

but do not tell it us. Such a one I have some-

thing found out. [sic] [13, p. 34]

He reported his own method in the first portions of

his Geometrical Lectures (published 1670), where

he used it principally not to find tangents but to prove
qualitative theorems about them. He did, however,

show, \by way of specimen," how his method could

be used to determine the tangents of \Cycloids, and

curves described like them."

We do not know how much Barrow influenced

Newton. We do know that, at the beginning of his

mathematical studies, Newton read an edition of

Descartes's Geometry that included a detailed com-
mentary by Schooten concerning the cycloid. This,

in addition to a more general passage in Descartes's

Principles of Philosophy, may have introduced New-
ton to the basic idea of composition of motions.

Whatever he may have read or heard, the records

show that Newton worked out the kinematic method

of tangents for himself.

We can trace his thoughts in a series of

manuscripts written between October 1665 and Oc-

tober 1666. These papers (all of which appear

in [16]) comprise

1. notes written in October 1665, entitled \How to

draw tangents to Mechanichall lines,"

2. a revision of the previous notes, given the same

title, dated 8 November 1665,

3. a more complete paper dated 13 November 1665,

4. two drafts of his revised thoughts on limit-motion,

14 and 16 May 1666,

5. the October 1666 tract on fluxions.

In them, Newton discussed the problem of finding

tangents to several of the same curves that Rober-

val had considered, including the cycloid, the el-

lipse, and the quadratrix. In the first paper, New-

ton used the Parallelogram Rule. His application of

this rule to the quadratrix incorrectly determined its

tangent (Figure 4) (and only fortuitously determined

the correct tangent line to the ellipse). Within a few

weeks, however, Newton had seen the error of ap-

plying the Parallelogram Rule in these cases, and he

corrected the examples in the succeeding papers. In

his November 13 paper, Newton first wrote:

Find . . . in wt proportion those two lines to wch

ye crooked line is cheifly related doe increase

g

c

m
n

f

a

h

k

p

b

Figure 4.
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c
ma
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p

b

e

d

l

Figure 5.

or decrease; produce ym in yt proportion from

ye given point in ye crooked line; at those ends

draw perpendiculars to ym, through whose in-

tersection ye tangent shall passe. [16, p. 386,

my italics]

This seems to describe Newton's treatment of the

curve (\crooked line") of the quadratrix (Figure 5)

and also of the ellipse (Figure 6). Why should one

look for the intersection of the perpendiculars to the

tangents to the component motions? Perhaps Newton

was still thinking of particular examples where the

two motions were instantaneously perpendicular. Or

maybe Newton's idea was that an infinitesimal mo-

tion displaced the point onto a small circle centered

on the original point.

Whatever his idea, he had second thoughts as

he wrote the manuscript, so that he replaced the

italicized words in the preceding quotation with

these: \lines in which those ends are inclined to

move." The change did not affect the examples of

the quadratrix or the ellipse, since in those cases,

the points are inclined to move along the perpen-

diculars. (Newton explicitly said this of the ellipse.)

Nevertheless, his correction is significant, because

it shows that by this time, Newton had obtained a

basic geometrical insight via kinematics: the figure
that determines the tangent vector is a quadrilateral,

but not necessarily a parallelogram. In the papers that

followed, he systematized this, his third method, and

incorporated it into more general settings.

a

b c

d

e

Figure 6.

Propositions Six and Seven from the May 14,

1666 manuscripts (Figures 7 and 8) show the prin-

ciples that Newton saw behind his method.

Prop 6t. If ye streight line ea doth rest &
da doth move: so yt ye point a fixed in ye line
da moveth towards it: Then from ye moveing
line da drawing de ‖ ab, & ye same way wch

ye point a moveth; These motions, viz[:] of ye

fixed point a towards b, of ye intersection point
a in ye line ad towards d, & of ye intersection
point a in ye line ae towards e, shall bee to one
another, as their correspondent lines de, ad, &
ae are.

Prop 7t. If ye streight lines adm, ane, doe
move, soe yt ye point a fixed in ye line amd
moveth towards b,& ye point a fixed in ye line

a

d

e

b

Figure 7.
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e
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c

Figure 8.

ae moveth towards c: Then from the line amd,
draw de ‖ ab & ye same way; & from ye line ae
draw nm ‖ ac, & ye contrary way, to make up
ye Trapezium denm. And if any two of these
foure lines de, mn, md, ne, bee to any corre-
spondent two of these foure motions, viz: of ye

points a (fixed in ye line dma) towards b, of
ye point a (fixed in ye line ane) towards c, of
ye intersection point a moveing in ye line dma
according to ye order of ye lettersm, d, & of ye

intersection point a in ye line ane according to
ye order of ye letters n, e: Also all ye foure lines
shall be one to another as those foure motions

are. [16, p. 391]

Proposition Six expresses a principle that we can

easily translate into vector language:
−→
ab = −→ae+

−→
af ,

where the three vectors represent the displacement

of the point a in the plane, the displacement of the
point of intersection in the fixed line ae, and the op-
posite of the displacement of the point of intersec-

tion in the moving line ad. Proposition 7 discusses
the situation when both lines move. It expresses the

movement of the point of intersection in two ways,

as movement in line md plus movement of line md,
and as movement in line ne plus movement of line
ne. If one knows the movements of the lines, one
can draw a quadrilateral, and its diagonal (from a)
represents the motion of the point a in the plane. Of
course, Newton was chiefly interested in the cases

where the lines are curved; in that case he used the

tangent lines to determine the infinitesimal motion.

When Newton rewrote the preceding principles two

days later, he stated explicitly that the lines might be

curved.

Here Newton articulated the basis for the quadri-

lateral construction that had first appeared in his

November 13 manuscript. A rationale for a correct

kinematic determination of tangents, inchoate in the

lecture notes of Roberval and unclear to Newton half

a year earlier, was now revealed. Newton's method

was not a simple vector decomposition of velocities,
but rather the inference drawn from such decompo-

sitions with respect to two different moving frames.

We begin to understand the significance of New-

ton's discovery when we look back at his paper.

Newton had begun with the problem of drawing tan-

gents to mechanical curves, but the quotation from
the November 13 paper actually refers to the problem

of determining tangents to \Geometricall lines"|

that is, to algebraic curves. Descartes, who had in-

troduced the distinction in his G�eom�etrie, had de-
fined geometric curves in terms of compositions of

simple motions. Thus a geometric curve is traced by

a point that moves in such a way that two distances,

x and y, measured from the point, are related al-

gebraically. Before writing the November 13 paper,

Newton had already shown how to calculate the cor-

responding algebraic relation between the velocities

(dx/dt and dy/dt, as we would say). In this way, he
could determine, at any point, the ratio of lengths of

the velocity vectors of the component motions. With

the kinematic method, he could then determine the

tangent vector to the curve traced by the two mo-

tions. For example, in an ellipse (Figure 6), he let

the distances from the foci be x and y, respectively.
Then x + y = c, a constant, and (as we would say)
dx/dt = −dy/dt. Newton therefore laid off equal
lengths along the two radii, but (since the veloci-

ties have opposite sign) one directed away from its

focus, the other toward its focus. He completed the

quadrilateral by drawing perpendiculars at the ends

of these vectors (because those lines represent the

directions of motion of the radii). The intersection

of these perpendiculars determined the fourth vertex

of a quadrilateral based at the point on the curve.

The diagonal through the point on the curve and the

fourth vertex was the tangent.

4 Conclusion

Since Newton's kinematic method is largely ignored

today, one might guess that it exerted little influence

on the development of the calculus. On the contrary,

Newton made it a major part of his new methods.

Any coordinate system in the plane, after all, de-

termines two families of coordinate curves, and the

intersection of a curve from each family determines

a point. Given a curve with an algebraic equation in

these coordinates, the technique of the preceding ex-

ample could be used to determine its tangents. New-

ton showed the general utility of the technique in his
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October 1666 tract on fluxions, a work that summa-

rized his researches up to that time. The kinematic

method had entered the mainstream of the develop-

ing calculus.
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On the Discovery of the Logarithmic Series and
Its Development in England up to Cotes

JOSEF EHRENFRIED HOFMANN

Mathematics Magazine 14 (1939), 37–45

To the expert of today the logarithmic series appears
to be a very non-essential detail. In its time it was a
very notable discovery as regards itself alone, as well
as in the framework of the general theory of series.
It was discovered circa 1667 by Newton and inde-
pendently by Mercator. Huygens and Gregory were
close to the same discovery but they were antici-
pated by the other two. Newton was then 24 years
old, Mercator 47. For Newton the logarithmic series
was a beginning, for Mercator the climax.

1 Nicolas Mercator
(1620–1687)

Mercator’s life work is almost forgotten today, cer-
tainly unjustly. Mercator was a distinguished mathe-
matician, physicist and astronomer. Shortly after his
arrival in London the much-traveled man was re-
ceived into the Royal Society. Products of that pe-
riod are his new astronomical theory [10], the edi-
tion of Euclid [11], the navigation problems [12]
and the calculation of logarithms [13]. We shall be
concerned here with the latter.
The Logarithmo-technia is divided into three very

unequal parts. The first two sections, which had al-
ready been published separately in 1667, are devoted
entirely to the calculation of a system of common
logarithms. In the presentation of logarithms Mer-
cator proceeds very intuitively and clearly accord-
ing to the then generally customary usage. He di-
vides the number domain between 1 and 10 by in-
sertion of geometric means (he calls them ratiuncu-
lae) into 10 million parts. Thus the logarithm of a
number between 1 and 10 is determined from the

number of ratiunculae between 1 and this number.
Mercator now develops his process for the calcu-
lation of the common logarithm of two bases (as
such he chooses, stated in modern form, 1.005 and
0.995). It is very carefully thought out and in con-
trast to the previously adopted methods of calcula-
tion has the great advantage that the calculation is
purely rational. By continued squaring Mercator gets
two successive second powers of the base, between
which is the number 10. Now the smaller of these
powers is multiplied by the descending series of the
previous squares until the new power exceeds 10.
Then the performance is repeated until one has the
two successive integral powers of the base, between
which lies the number 10. Now several further deci-
mal places of the power of the base are determined,
which becomes approximately equal to 10, by means
of the regula falsi. Hence there follows by division
the number of the ratiunculae which are referred to
the base, i.e., its logarithm.1
Now Mercator introduces the absolute value of the

logarithm from the ratio of two positive magnitudes
as its “proportional measure” and teaches calcula-
tion with these proportional measures. Then he forms
logarithms from the successive members of an arith-
metical series and shows that the terms of their dif-
ference series become smaller and smaller. He builds
up the logarithms themselves from the first terms of

1If we set, e.g. 1.005 = g, then Mercator forms g2, g4,
g8, g16, g32, g64, g128, g256, and finds that g512 > 10.
Hence he reckons further g256+128, g384+64, g448+32 > 10,
g448+16 > 10, g448+8, g456+4, g460+2 > 10, g460+1 < 10.
From g461 = 9.965774 and g462 = 10.015603 he finds
g461.6868 ≈ 10; therefore the number of ratiunculae pertain-
ing to g is ten million : 461.6868 = 21,659.7. Consequently the
common logarithm of g = 0.00216597 (instead of 0.00216606).
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the difference series. The logarithms of powers and
roots are approximated by means of the logarithms
of rational approximation values. There is attached
an excellent process for the gradual refinement of
the calculation. As a supplement several formulas
are given which serve convenience in calculation.
Then follow more exact directions for the practical
calculation of a complete table of logarithms.
In the third section the ordinate

y =
1

1 + x
= 1− x+ x2 − x3 · · ·

of the equilateral hyperbola is transformed, by di-
viding out, into a power series. The surface of the
hyperbola segment is built up entirely in the sense of
Cavalieri’s method of infinitesimals from the total-
ity of all parallel coordinates “contained” in it. How
one is to take and combine the sums over the single
powers of x is only briefly alluded to. [From the de-
tailed explanations, it seems to follow that Mercator
had not studied Cavalieri’s original works but had
learned from lectures heard in Rostock, Copenhagen
and Danzig.] Thus Mercator gets the hyperbolic seg-
ment in that form which we would today write thus:Z x

0

dt

1 + t
= x− x

2

2
+
x3

3
− x

4

4
· · ·

However he does not express his result by a formula,
but entirely in words. By means of an extremely
bold conclusion he finds that this series can also be
expressed by the logarithm of (1+x). The paper ends
with the calculation of the body which “consists” of
infinitely many hyperbolic segments. We would thus
write the result expressed again only in words:Z x

0

log(1 + t) dt =
x2

1 · 2 −
x3

2 · 3 +
x4

3 · 4 −
x5

4 · 5 · · ·

This third section of the Logarithmotechnia was
at once announced by John Wallis through a review
in the Phil. Trans. [17], in which the formal notation
is very much improved. Wallis calls attention to the
fact that Mercator’s development is admissible only
for x < 1 and adds the development ofZ x

0

dt

1− t = x+
x2

2
+
x3

3
+
x4

4
+ · · · (0 < x < 1)

In a note by Mercator himself [9, I, 227–232] the
logarithms determined from the hyperbolic segments
are expressly designated as “natural logarithms”.
Here the values of log 2, log 3, log 10, and log 11

are determined from the correctly combined series
for

log(1 + x) and log
1

1− x, with x = 0.1 and 0.2.

Next Mercator by means of multiplication with
0.43429 = 1/ log 10 transforms from the natural to
the common logarithms and vice versa.

2 James Gregory (1638–1675)
A few months later Gregory came before the public
with his Exercitationes geometricae (London, 1668),
whose interesting preliminary history I must briefly
go into. On account of his Vera circuli et hyperbo-
lae quadratura (Padua, 1667), in which he sought to
prove the algebraic impossibility of squaring a cir-
cle, Gregory had involved himself in a heated quar-
rel with Huygens. The very adverse, indeed unjust
criticism of Huygens in the Journal des Sçavans
(July, 1668) was followed by a rather irritable re-
ply by Gregory in the Phil. Trans. (July, 1668), then
a reply, unbearable for Gregory, by Huygens in the
Journal des Sçavans (Nov. 1668) and a brisk cor-
respondence between Huygens and the most influ-
ential members of the Royal Society, who would
gladly have smoothed out the affair and thus hin-
dered a further explanation by Gregory. The latter
fell into frightful excitement. He believed he was
persecuted, disliked and slighted on all sides. The
Exercitationes geometricae, on which he was just
then working and in which he took a stand on nu-
merous questions of the day, were misused in the
foreword for a huge counter-attack against Huygens
[9, II, 2–5]. Later the quarrel was put aside by the
Royal Society—one might almost say, by compul-
sion—and Gregory’s book was rather hushed up on
account of the malicious introduction. This fate was
undeserved; for the mathematical content of the Ex-
ercitationes is important.
For us only a small part of the little work is impor-

tant [7]. There Gregory, who depends on the geomet-
ric integration method of Gregoire de Saint Vincent
[4] and most probably was familiar with Fermat’s
essay De aequationem localium transmutatione, &
emendatione . . . [3], gives a completely impeccable
proof for the representation of the hyperbolic seg-
ment by means of the power series. Moreover he
combines two adjacent segments and forms that se-
ries which we represent today by

1

2
log

1 + x

1− x
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but everything is still expressed very ponderously.
The relation to logarithms is only cursorily touched
on and dismissed rather superficially. Meanwhile,
we have a letter of Gregory of a later date, which
gives us a better insight into his accomplishments
[15, 240]. [The letter is dated April 9, 1672 and ad-
dressed to the weights and measures officer Michael
Dary, who rated as a good algebraist and was
counted among the more intimate friends of John
Collins. Unfortunately the original is lost; we must
rely on a copy by Collins in which the nomenclature
was probably altered from that of the original.] In-
deed there a subdominant (Minorante) is set up for
the logarithmic series. It arises by setting from any
member of the series for

1

2
log

1 + x

1− x
on, instead of the correct terms of the series those
of a geometric series.

3 Isaac Newton (1642–1727)
The logarithmic series plays a great role in the earli-
est researches of Newton, concerning which we are
only very meagerly informed. Fortunately the evolu-
tion of this detail can be surveyed rather accurately.
Newton probably was occupied in the years 1665
and 1666 with the quadrature of the hyperbolic seg-
ment.
By a purely numerical attack which corresponds

to the series of Mercator and Wallis he arrived at
the surface segments. However, from the beginning
on he calculated this from half the sum and dif-
ference, and was thus in possession of Gregory’s
results. He also knew the relation to logarithms.
[Probably he learned it through his teacher Isaac
Barrow, who even at that time knew that the hyper-
bolic segment is proportional to the logarithm of the
quotient of the including ordinates.] In the Analysis
per aequationes numero terminorum infinitas [18,
3–28] and in the Methodus fluxionum et serierum
infinitarum cum ejusdem applicatione ad curvarum
geometriam [18, 29–140] the presentation gradually
becomes more general and in a letter of January 19,
1689 to Collins [15, 285–286] there appears not only
the series for the hyperbolic segment represented by

log
a+ x

a− x
but also the remark that this series converges twice
as rapidly as the original series of Mercator.

In the Analysis per aequationes the logarithmic
series moreover is cleverly gotten by reversion by
means of gradual approximation. In the first letter
to Oldenburg for Leibniz of June 13, 1676 [16, (2)
32–41], this reversion function is written in quite
general form and in the second letter to Oldenburg
for Leibniz of October 24, 1676 [16, (2) 130–149]
it is gotten out by a sort of comparison of powers.
Moreover Newton gives in the Methodus fluxionum
a process, not yet entirely mature, of finding the log-
arithm of a from the already known logarithms of
a± x and the given x.

4 The methodological
expansion

With these developments the formulation of the fun-
damental material, namely the setting up of the loga-
rithmic series and its reversion, is completely closed.
That which follows is refinements in details and
methodological improvements. They were not im-
mediately successful, indeed not until a full quar-
ter of a century after the first discoveries; at a time
therefore, when the new thoughts were no longer so
strange and unusual.
Foremost is Edmund Halley (1656–1742) with his

attempt to eliminate the hyperbolic surface — that
painful transition structure between the series and
the logarithm [5], [8].
He explains the logarithmic series and its rever-

sion from the binomial theorem for infinitely small
resp. infinitely large exponents. In modern terms his
process reduces to the change of limits:

log(1 + x) = y = lim
n→∞

(1 + x)1/n − 1
1/n

and
(1 + x) = lim

n→∞

³
1 +

y

n

´n
.

It is expressed however without the change of limits,
only with n =∞ and in very obscure form. Doubt-
less Halley first set n = ∞ in the binomial series,
then established the connection with the logarithmic
series and accordingly attempted to get it by rever-
sion. But this was only very slightly successful; it
remained in a changed dress with fine but obscure
words.
A few years later Abraham de Moivre (1667–

1754) explains in a short essay the attack on the
undetermined coefficients in the transformation of
series—at that time no longer much of which was
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new as to thought content [14]. In it the deduction

of the logarithmic series is also touched on. It occurs

thus:

If 1+z is a number and its logarithm is expressed
by the series az+bz2 +cz3+ · · · , then the logarithm
ay+by2 +cy3 +· · · belongs to 1+y. If now 1+z =
(1 + y)n, therefore

az + bz2 + cz3 + · · · = nay + nby2 + ncy3 + · · · ,

then one can develop and insert z = (1 + y)n − 1
according to the binomial theorem. Then the a, b, c,
etc. can be determined by comparison of coefficients

with the exception of the first a, which remains ar-
bitrary and characterizes the different kinds of log-

arithms. That is really remarkable enough; for the n
which remained arbitrary falls completely out of the

calculation. Unfortunately this is not expressly em-

phasized by de Moivre, although he doubtless knew

it. Fundamentally de Moivre attacked the problem as

it is done with a functional equation. The passage

under consideration is certainly one of the earliest

examples of it.

Twelve years later Roger Cotes (1682{1716)

again takes up the same thought. He recognizes its

deeper meaning and thinks it through clear to the

end [2].

The result is the new definition of the logarithm

from the functional equation f(ax) = xf(a). Cotes
doesn't yet have our functional signs. He replaces

it by a designation which he knew basically since

Mercator: f(a) means for him the measure of the re-
lationship ax. The functional equation is now solved

by an infinitesimalmethod which is equivalent to our

treatment by means of differential calculus. Hence

there follows

f

(
c+ x

c− x

)
= M

(
x

c
+
x3

3c3
+
x5

5c5
· · ·
)

and the modulus M characterizes the various loga-

rithmic systems which can be gotten in such a man-

ner. By reversion of the logarithmic series Cotes on

this occasion comes to a continued-fraction devel-

opment of e (doubtless based on direct dividing out
of his result calculated to twelve decimal places)

and finally gives the quadrature of the hyperbolic

segment and the hyperbolic sector by means of log-

arithms. These calculations of his we can designate

in modern style and very aptly as \logarithmic inte-

gration"; that is the essence of the Logometria. It is
a new method | we would designate it as an ex-

ample of the substitution method in the transforma-

tion of indefinite integrals| by means of which an

abundance of contemporary but apparently mutually

unrelated separate results could be explained from

a single guiding viewpoint. Cotes himself provided

for the best in this respect in the Logometria and
the fragments of the Harmonia mensurorum which

he completed; Smith added nothing new of his own.

If we look back then we recognize in this entire

development from Mercator to Cotes a coherent line.

The thought content becomes piecemeal richer and

richer, the form better and better, more and more

complete. Cotes stands as the last on the shoulders

of all his predecessors. He really gives something

finished and complete.

We must add that Leibniz in 1673 worked through

Mercator's Logarithmotechnia and at least after
1676 was in possession of the reversion of the log-

arithmic series. However the exact details cannot

be presented at the moment as long as the Leibniz

edition is not completed; for it will certainly bring

new material which remained hitherto inaccessible.

Meanwhile, the activity of Leibniz and his school

had no further influence on the development of the

logarithmic series in England; hence it could be ig-

nored without essential loss.

To the reader of today much in the conception

and mode of expression of that time appears strange

and unusual. Between us and the mathematicians of

the late seventeenth century stands Leonhard Euler

(1707-1783). He is the real founder of our modern

conception. However non-rigorous he may be in de-

tails, he ends and conquers the previous epoch of

direct geometric infinitesimal considerations and in-

troduces the period of mathematical analysis accord-

ing to form and content. Whatever was written after

him on the logarithmic series is necessarily based

no longer on the already obscured predecessors in

the receding mathematical Renaissance, but on Eu-

ler's Introductio in analysin infinitorum, Lausanne
1748, in which the entire seventh chapter treats of

logarithms.

References

1. Henry Briggs, Arithmetica logarithmica sive logarith-
morum chiliadis triginta, London, 1624.

2. Roger Cotes, Logometria, Philosophical Transactions
29 (1714), 5{45. Reprinted in Roger Cotes, Har-
monia mensurarum, sive Analysis et Synthesis per
raisonum et angulorum mensuras promotae; acce-
dunt alia Opuscula mathematica, Robert Smith, ed.
Cambridge, 1722, 1{41.

3. Pierre de Fermat, De aequationum localium transmu-

tatione, et emendatione ad multimodam curvilineorum



\master" | 2011/4/5 | 12:53 | page 239 | #249
i

i

i

i

i

i

i

i

HOFMANN: On the Discovery of the Logarithmic Series and Its Development in England up to Cotes 239

inter se vel cum rectilineis comparationem, cui annec-

titur proportionis geometricae in quadrandis infinitis

parabolis et hyperbolis usus, in Cl�ement-Samuel de

Fermat, Varia opera mathematica, Toulouse: Joannis
Pech, 1679, 44{57.

4. Gregory of St. Vincent, Opus geometricum quadrat-
urae circuli et sectionum coni, Antwerp, 1647.

5. Edmond Halley, A most compendious and facile

Method for constructing the Logarithms, exempli-

fied and demonstrated from the Nature of Numbers,

without any regard to the Hyperbola, with a speedy

Method for finding the Number from the Logarithm

given, Philosophical Transactions 19 (1695), 58{67.
Reprinted in [9, II, 84{91].

6. J. E. Hofmann, Nicolaus Mercators Logarithmotech-

nia (1668), Deutsche Mathematik 3 (1938), 445{466.

7. ||, Weiterbildung der logarithmischen Reihe Mer-

cators in England, I, Deutsche Mathematik 3 (1938),
598{605.

8. ||, Weiterbildung der logarithmischen Reihe Mer-

cators in England, II, Deutsche Mathematik 4, 1939.

9. Francis Mas�eres, Scriptores logarithmici, London,
1791.

10. Nicolas Mercator, Hypothesis Astronomica nova,
ejusque cum Observationibus consensus, London,
1664, extended in the Institutiones astronomicae,
London, 1676.

11. ||, Euclidis Elementa Geometrica, novo ordine ac
methodo fare demonstrata, London, 1665. The sec-
ond edition is augmented by an Introductio brevis in
Geometriam, London, 1678.

12. ||, Problemata quaedam, ad promotionem scientiae

navigatoriae facientia, Philosophical Transactions 2
(1666), 161{163.

13. ||, Logarithmo-technia; sive methodus constru-
endi logarithmos nova, accurata, et facilis; scripto
antehac communicata, anno sc. 1667, nonis Augusti.
Cui nunc accedit vera quadratura hyperbolae, et
inventio summae logarithmorum, London, 1668. A
reprint is in [9, I, 169{196]. See also [6].

14. Abraham de Moivre, A Method of extracting the Root

of an Infinite Equation, Philosophical Transactions
20 (1698), 190{192.

15. Stephen Jordan Rigaud, Correspondence of Scientific
Men of the XVIIth Century, Oxford, 1841.

16. H. W. Turnbull, et. al. (eds.) The Correspondence
of Isaac Newton. Cambridge: Cambridge University
Press, 1959{78. 7 volumes.

17. John Wallis, Review of [13], Philosophical Transac-
tions 3 (1668), 753{759; reprinted in [9, I, 219{226].

18. D. T. Whiteside, ed., The Mathematical Works of
Isaac Newton. New York: Johnson Reprint Co., 1964.
2 volumes.



\master" | 2011/4/5 | 12:53 | page 240 | #250
i

i

i

i

i

i

i

i

Isaac Newton: Man, Myth, and Mathematics

V. FREDERICK RICKEY

College Mathematics Journal 18 (1987), 362{389

Three hundred years ago, in 1687, the most fa-

mous scientific work of all time, the Philosophiae
Naturalis Principia Mathematica of Isaac Newton,
was published. Fifty years earlier, in 1637, a work

which had considerable influence on Newton, the

Discours de la M�ethode, with its famous appendix,
La G�eom�etrie, was published by Ren�e Descartes.
It is fitting that we celebrate these anniversaries by

sketching the lives and outlining the works of New-

ton and Descartes.

In the past several decades, historians of sci-

ence have arranged the chaotic bulk of Newton

manuscripts into a coherent whole and presented

it to us in numerous high quality books and pa-

pers. Foremost among these historians is Derek T.

Whiteside, of Cambridge, whose eight magnificent

volumes overflowing with erudite commentary have

brought Newton to life again.

By unanimous agreement, the Mathematical
Papers [of Isaac Newton] is the premier edi-
tion of scientific papers. It establishes a new

criterion of excellence. Every further edition of

scientific papers must now measure itself by its

standard. [26 p. 87]

Other purposes of this article are to dispel some

myths about Newton|for much of what we previ-

ously \knew" about him is myth|and to encourage

the reader to look inside these volumes and to read

Newton's own words, for that is the only way to

appreciate the majesty of his intellect.

1 Newton's education and

public life

Isaac Newton was born prematurely on Christmas

Day 1642 (O.S.), the \same" year Galileo (1564{

1642) died, in the family manor house at Wool-

sthorpe, some 90 km NNW of Cambridge. His illiter-

ate father|a \wild, extravagant, and weak man"|

had died the previous October. His barely liter-

ate mother, Hanna, married the Reverend Barnabas

Smith three years later, leaving Newton to be raised

by his aged grandmother Ayscough.

Newton attended local schools and then, at age 12,

traveled 11 km north to the town of Grantham, where

he lived with the local apothecary and his books

while attending grammar school. The town library

had two or three hundred books, some 85 of which

are still chained to the walls. Of course he stud-

ied Latin, also some Greek and Hebrew. Four years

later, in 1658, he returned home to help his now

twice-widowed mother manage the farm. Recogniz-

ing that Newton was an absent-minded farmer, his

uncle William Ayscough (M.A. Cambridge, 1637)

and former Grantham schoolmaster, Henry Stokes,

persuaded his mother to send him back to Grantham

to prepare for Cambridge. Judging by a mathemat-

ical copybook in use at Grantham in the 1650s,

Stokes was a most unusual schoolmaster. The copy-

book contained arithmetic through the extraction of

cube roots, surveying, elementarymensuration, plane

trigonometry, and elaborate geometric constructions,

including the Archimedean bounds for π. This went
far beyond anything taught in the universities of the

period; consequently, contrary to tradition, Newton

had a superior knowledge of mathematics before he

went to Cambridge [33, pp. 110{111; 34, p. 101;

updating 20, I, p. 3].

In 1661, eighteen-year-old Newton matriculated

at Trinity College, the foremost college at Cam-

bridge, as a subsizar (someone who earned his way

by performing simple domestic services). This po-

sition reflected his wealthy mother's reluctance to

240



\master" | 2011/4/5 | 12:53 | page 241 | #251
i

i

i

i

i

i

i

i

RICKEY: Isaac Newton: Man, Myth, and Mathematics 241

send him to the university. At that time, Cambridge

was little more than a degree mill. Lectures were

seldom given. Fellows tutored primarily to augment

their income. Although Newton did not finish any

of the books from the established curriculum, which

consisted mostly of Aristotelian philosophy, he did

learn the patterns of rigorous thought from Aristo-

tle's sophisticated philosophical system. A chance

encounter with astrology in 1663 led him to the more

enlightened \brisk part of the University" that was

interested in the work of Descartes [28, p. 90]. The

laxity of the university allowed him to spend the last

year and a half of his undergraduate studies in the

pursuit of mathematics. In 1665, Newton received

his B.A. \largely because the university no longer

believed in its own curriculum with enough convic-

tion to enforce it." [28, p. 141].

In the summer of 1665, virtually everyone left the

university because of the bubonic plague. The next

March the university invited its students and Fellows

to return for there had been no deaths in six weeks,

but by June it was clear that the plague had not left,

so the students who had returned left again. The

university was able to resume again in the spring of

1667. Newton had left by August 1665 for Wool-

sthorpe. He returned on 20 March 1666, probably

left again in June, but not until he had written his

famous May 1666 tract on the calculus. He did not

return to Cambridge until late April 1667, having re-

vised the May tract into the October 1666 tract while

back on the farm. \For whatever it is worth, the pa-

pers do not indicate that anything special happened

at Woolsthorpe." [27, p. 116]. Much has been writ-

ten about these plague years as the anni mirabiles of
Newton, but the record clearly shows that he wrote

the bulk of his mathematical manuscripts on the cal-

culus while he was at Cambridge.

Myth: At the Woolsthorpe farm, during the
plague years, Newton invented the calculus so
that he could apply it to celestial mechanics.

The primary source for the myth [27, p. 110] of

Newton's miracle years is this 1718 (unsent?) letter

from Newton to Pierre DesMaizeaux:

In the beginning of the year 1665 I found the

Method of approximating series & the Rule for

reducing any dignity [= power] of any Binomial

into such a series. The same year in May I found

the method of Tangents . . ., & in November

had the direct method of fluxions & the next

Year in January had the Theory of Colours &

in May following I had entrance into ye inverse

method of fluxions. And the same year I began

to think of gravity extending to ye orb of the

Moon & (having found out how to estimate the

force with wch globe revolving within a sphere

presses the surface of the sphere) from Keplers

rule . . . I deduced that the forces wch keep the

Planets in their Orbs must [be] reciprocally as

the squares of their distances from the centers

about wch they revolve: & thereby compared

the force requisite to keep the Moon in her Orb

with the force of gravity at the surface of the

earth, & found them answer pretty nearly. All

this was in the two plague years of 1665 &

1666. For in those days I was in the prime of

my age for invention & minded Mathematicks

& Philosophy [= Science] more then at any time

since. [27, p. 109]

Lucasian Professor. At Trinity College, Newton be-

came a Minor Fellow in 1667 and a Major Fellow

in 1668. On 29 October 1669, at the age of 26,

Newton became the second Lucasian Professor of

Mathematics at Cambridge, succeeding Isaac Bar-

row (1630{1677). This post gave him security, intel-

lectual independence, and a good salary. According

to the Lucasian statutes, Newton was to lecture once

a week during each of the three terms and to deposit

ten of the lectures in the library. Even though this

position had been designed by its founder Henry Lu-

cas as a teaching post, not a research position [20,

V, xiv], Barrow had already turned the position into

a sinecure and Newton did not work much harder

at the teaching aspects of the post. He deposited 3{

10 lectures per year for the first seventeen years as

Lucasian Professor, and none thereafter.

As a teacher, Newton left no mark whatsoever.

Years later, when he was duly famous, one would

expect that many people would have claimed to have

attended his lectures, yet we know of only three.

Perhaps the situation is best summed up by Newton's

amanuensis (a human wordprocessor), the unrelated

Humphrey Newton:

He seldom left his chamber except at term

time, when he read in the schools as being Lu-

casianus Professor, where so few went to hear

him, and fewer that understood him, that oft-

times he did in a manner, for want of hearers,

read to the walls. [6, X, 44]

London and Beyond. In 1696, Newton accepted the

post of Warden of the Mint (moving to London in
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Figure 1. Newton at age 82.

March or April of 1696) and four years later became

Master. In 1701, Newton resigned the Lucasian pro-

fessorship. In 1703, he was elected President of the

Royal Society, which he ruled with an iron hand until

his death. In 1705, Newton was knighted by Queen

Anne | not for his scientific advances, but for the

service he had rendered the Crown by running (un-

successfully) for Parliament in 1705 [28, p. 625]. For

the rest of his life, Newton looked after the Mint and

the Royal Society, twice revised his Principia (1713
and 1726), engaged in the infamous priority dispute

with Leibniz, and toiled on secret research in reli-

gion and church history. His creative scientific life

essentially ended when he left Cambridge.

Newton died 20 March 1727, at the age of 84,

having been ill with gout and inflamed lungs for

some time. He was buried in Westminister Abbey.

Newton's Nachlass. At the time of his death New-

ton was wealthy. Income from the Lucasian Chair

and farm rents brought £250 per year, sufficient for

a handsome living for a bachelor Don. When he be-

came Master of the Mint, his salary jumped to £600

and he also received the perquisite of a commis-

sion on the amount of coinage. This amounted to

some £1500 per year, thus bringing his income to

over £2000 per year, a very substantial figure at that

time. On his death his estate was valued at £30,000.

Newton left his library of some two thousand vol-

umes to his nieces and nephews. The books were

quickly sold to the Warden of Fleet Prison for £300

for his son Charles Huggins who was a cleric near

Oxford. On Huggins' death in 1750 they were sold

to his successor, James Musgrave, for £400. They

remained in the Musgrave family until 1920, when

some of them were sold at auction as part of a

\Library of miscellaneous literature", fetching only

£170. Although the family didn't know what they

had sold, the book dealers knew what they had

bought. Newton's annotated copy of Barrow's Eu-
clid, which sold for five shillings, was soon in a
bookseller's catalogue for £500. In 1927, the re-

maining 858 volumes were offered for £30,000 but

remained unsold until 1943 when they were pur-

chased for £5,500 and donated to the Wren Library

at Trinity College. Of the thousand or so that were

dispersed in 1920, some still show up unrecognized

in bookshops. As recently as 1975, one was pur-

chased in a Cambridge bookshop for £4. The books

are easily identified by Newton's peculiar method of

dog-earing by folding a page down to point to the

precise word that interested him.

From Newton's library, 1736 books have now

been located. Since his was a working library, a

subject classification of the non-duplicates provides

some information about Newton's interests. (For ad-

ditional details, see [10, p. 59], from which this table

is condensed.)

Subject No. of Titles Percentage

Mathematics 126 7.2

Physics/Astronomy 85 4.9

Alchemy 169 9.6

Theology 477 27.2

History 143 8.2

Other Science 158 9.0

Other 594 33.9

Newton also had access to the library of Barrow

until Barrow's death in 1677, and to the Cambridge

libraries until he moved to London in 1696.

Whiteside has tracked down every available scrap

of material on Newton's mathematics and published

it in The Mathematical Papers of Isaac Newton [20].
To really appreciate Newton's mathematical genius,

one must grapple with his mathematics as he wrote

it. The best place to gain an overview for this project

is in Whiteside's wonderful introductions to these

volumes and to the various papers in them. They

have been used extensively in preparing this paper.

This biographical sketch has been intentionally

kept short. For further details about Newton and his

work, see the article by I. B. Cohen in theDictionary
of Scientific Biography (DSB) [6, X, pp. 42{103].
This is the single most authoritative reference work

about the lives and contributions of deceased scien-

tists. To avoid frequent references to it, we give dates

after the first occurrence of an individual's name if

the DSB contains an article about him. Two excel-

lent biographies of Newton are Westfall's full sci-
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entific biography, Never at Rest [28], and Manuel's
psychobiography A Portrait of Isaac Newton [15],
some conclusions of which must be taken with care.

For mathematical details, consult the many papers

of Whiteside, only a few of which are cited here.

2 Newton's mathematical

readings

The year 1664 was a crucial period in Newton's de-

velopment as a mathematician and scientist, for it

was then that he began to extend his readings be-

yond the traditional Aristotelian texts of the mori-

bund curriculum to the new Cartesian ideas. (For

details of Newton's non-mathematical readings, see

McGuire [16].) According to Abraham De Moivre

(1667{1754), the expatriate French intimate of New-

ton during Newton's last years, the immediate im-

pulse for Newton taking up mathematics was:

In 63 [Newton] being at Sturbridge [interna-

tional trade] fair bought a book of Astrology,

out of a curiosity to see what there was in it.

Read in it till he came to a figure of the heav-

ens which he could not understand for want of

being acquainted with Trigonometry.

Bought a book of Trigonometry, but was not

able to understand the Demonstrations.

Got Euclid to fit himself for understanding

the ground of Trigonometry.

Read only the titles of the propositions,

which he found so easy to understand that he

wondered how any body would amuse them-

selves to write any demonstrations of them. Be-

gan to change his mind when he read that Par-

allelograms upon the same base & between the

same Parallels are equal, & that other proposi-

tion that in a right angled Triangle the square

of the Hypothenuse is equal to the squares of

the two other sides.

Began again to read Euclid with more atten-

tion than he had done before & went through

it.

Read Oughtreds [Clavis] which he under-

stood tho not entirely, he having some dif-

ficulties about what the Author called Scala

secundi & tertii gradus, relating to the solu-

tion of quadratick [&] Cubick Equations. Took

Descartes's Geometry in hand. tho he had been

told it would be very difficult, read some ten

pages in it, then stopt, began again, went a lit-

tle farther than the first time, stopt again, went

back again to the beginning, read on till by de-

grees he made himself master of the whole, to

that degree that he understood Descartes's Ge-

ometry better than he had done Euclid.

Read Euclid again & then Descartes's Geom-

etry for a second time. Read next Dr Wallis's

Arithmetica Infinitorum, & on the occasion of

a certain interpolation for the quadrature of the

circle, found that admirable Theorem for raising

a Binomial to a power given. But before that

time, a little after reading Descartes Geometry,

wrote many things concerning the vertices Axes

[&] diameters of curves, which afterwards gave

rise to that excellent tract de Curvis secundi

generis.

In 65 & 66 began to find the method of Flux-

ions, and writt several curious problems relat-

ing to that method bearing that date which were

seen by me above 25 years ago. [20, I, pp. 5{6]

These words of De Moivre, which agree with the

report of Conduitt [20, I, pp. 15{19], certainly have

an air of authenticity to them, and we know, based

on extant manuscripts, that they are substantially

correct (modulo Stokes's copybook). In the years

1664{1665, Newton made detailed notes on the fol-

lowing contemporary high level books, which influ-

enced him at the very beginning of his mathematical

studies.

• Barrow's Euclidis Elementorum (1655)
• Oughtred's Clavis Mathematicae (1631) in the
1652 edition

• Geometria, �a Renato des Cartes, 1659{1661 edi-
tion of Schooten

• Schooten's Exercitationum Mathematicarum
Libri Quinque (1657)

• Vi�ete's Opera Mathematica, 1646 edition of

Schooten

• Wallis's Arithmetica Infinitorum (1655)

• Wallis's Tractatus Duo (1659).
Let us look carefully at each of them to see what

Newton learned.

Euclid (fl. ca. 295 B.C.). As De Moivre indicated,

Newton read Euclid as a student, although he did

not develop any deep knowledge of the work then.

Recall the story [28, p. 102] that Barrow examined

Newton on Euclid and found him wanting. New-

ton was mainly influenced by books II (geometrical
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algebra), V (proportion), VII (number theory), and

X (irrationals). The primary thing that he learned

from Euclid was the traditional forms of mathemat-

ical proof [20, I, p. 12].

William Oughtred (1575{1660). At age fifteen,

Oughtred went to Cambridge where he studied math-

ematics diligently on his own, for there was then

hardly anyone there to teach him. He graduated B.A.

in 1596 and M.A. in 1600. In 1603, he became a

(pitiful) preacher and soon settled in as rector at Al-

bury where he remained until his death.

It was as a teacher that he was renowned. He

taught privately and for free. People came from the

continent to talk to him, so wide was his reputation

in mathematics. To instruct a young Earl, Oughtred

wrote a little book of 88 pages that contained the

essentials of arithmetic and algebra. Clavis Math-
ematicae (Key to Mathematics) published in 1631,
was \a guide for mountain-climbers, and woe unto

him who lacked nerve." [2, p. 29]. The style was

obscure, the rules so involved they were difficult

to comprehend. Oughtred carried symbolism to ex-

cess, a habit acquired by his most famous pupil, John

Wallis. Nonetheless, Clavis established Oughtred as
a capable mathematician and exerted a considerable

effect in England, for it was a widely studied book

in higher mathematics [32, p. 73].

Oughtred's Clavis, in the 1652 edition, was one
of the first mathematical books that Newton read.

From it he learned a very important lesson: Oughtred

taught that algebra was a tool for discovery that did
not need to be backed up by geometry [13, p. 408].

Newton held Oughtred in high regard, describing

him as \a Man whose judgment (if any man's) may

be safely relyed upon." [19, III, p. 364]

Ren�e Descartes (1596{1650). Ren�e du Perron

Descartes was born 31 March 1596 in La Haye (now

La Haye-Descartes), France, a small town 250 km

SSW of Paris. At the age of eight, he enrolled in the

new Jesuit coll�ege at La Fl�eche. There Descartes
received a modern education in mathematics and

physics | including the recent telescopic discover-

ies of Galileo | as well as more traditional school-

ing in the humanities, philosophy, and the classics.

It was there, because of his then delicate health, that

he developed the habit of lying abed in the morning

in contemplation. Descartes retained an admiration

for his teachers at La Fl�eche but later claimed that

he found little of substance in the course of instruc-

tion and that only mathematics had given him any

certain knowledge.

Descartes graduated in law from the University of

Poitiers in 1616, at age 20, but never practiced law as

his father wished. By this time, his health improved

and he enjoyed moderately good health for the rest

of his life. Because he decided that he could not

believe in what he had learned at school, he began a

ten-year period of wandering about Europe, spending

part of the time as a gentleman soldier. It was during

this period that Descartes had his first ideas about

the \marvelous science" that was to become analytic

geometry.

Although we have little detail about this period

of his life, we do know that he hoped to learn from

\the book of the world." Descartes reached two con-

clusions. First, if he was to discover true knowledge

he must carry out the whole program himself, just

as a perfect work of art is the work of one master.

Second, he must begin by methodically doubting ev-

erything taught in philosophy and looking for self-

evident, certain principles from which to reconstruct

all science.

In November 1628, Descartes had a public en-

counter with Chandoux, who felt that science was

founded only on probability. By using his method to

distinguish between true scientific knowledge and

mere probability, Descartes easily demolished Chan-

doux. Among those present was the influential Car-

dinal de B�erulle, who charged Descartes to devote

his life to working out the application of \his man-

ner of philosophizing . . . to medicine and mechan-
ics." To execute this design, Descartes moved to the

Netherlands in 1628, where he lived for the next

twenty years.

In Holland, Descartes worked at his system and,

by 1634, had completed a scientific work entitled

Le Monde. He immediately suppressed the book
when he heard about the recent condemnation of

Galileo by the inquisition. He learned this from

Marin Mersenne (1588{1648), a fellow student at La

Fl�eche and later the hub of the scientific correspon-

dence network in Europe. This reveals Descartes'

spirit of caution and conciliation toward author-

ity (he was a lifelong devout Catholic). Later he

took care to present his less orthodox views more

obliquely.

Three hundred and fifty years ago, in 1637, the

Discours de la M�ethode [Figure 2], with appendices
La Dioptrique, Les Meteores, and La G�eom�etrie,
appeared anonymously in Leyden, although it was

soon widely known that Descartes was the author.

The opening Discours is notable for its autobio-
graphical tone, compressed presentation, and elegant
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Figure 2. Discours de la Methode

French style. It was written in French since he in-

tended | as did Galileo | to aim over the heads

of the academic community to reach the educated

people. Today, it is this opening Discours, with its
problem-solving techniques that is read. (P�olya was

very much influenced by Descartes. [22, I, p. 56])

Descartes' Rules: The first was never to accept

anything as true that I did not know evidently to

be such; that is to say, carefully to avoid haste

and bias, and to include nothing more in my

judgements than that which presented itself to

my mind so clearly and so distinctly that I had

no occasion to place it in doubt.

The second was to divide each of the difficul-

ties that I examined into as many parts as pos-

sible, and according as such division would be

required for the better solution of the problems.

The third was to direct my thinking in an or-

derly way, by beginning with the objects that

were simplest and easiest to understand, in or-

der to climb little by little, gradually, to the

knowledge of the most complex; and even for

this purpose assuming an order among those ob-

jects which do not naturally precede each other.

And the last was at all times to make enumera-

tions so complete, and reviews so general, that

I would be sure of omitting nothing. [4, p. 16]

In 1644, Descartes published Principia Philo-
sophiae, a work in which he presented his views

Figure 3. Rene Descartes

on cosmology. He expounded a mechanical philoso-

phy in which a body could influence only those other

bodies that it touched. Thus, for example, Descartes

imagined space filled with \vortices" that moved

the planets. This world view quickly became dom-

inant in Europe. After the publication of Newton's

Philosophiae Naturalis Principia Mathematica, the
two scientific outlooks competed until well into the

eighteenth century. Significantly|and this is re-

flected in the titles|Newton made mathematics in-

dispensable for understanding the universe.

Queen Christiana of Sweden, ambitious patron of

the arts and collector of learned men for her court,

had seen the works of Descartes and pleaded with

him to join her and teach her philosophy. She sent a

man-of-war to fetch him but he was loath to go, in

his words, to the \land of bears between rock and

ice." But go he did. Being more of an athlete than a

scholar, the 23-year-old Queen wanted her lessons at

five in the morning in a cold library with windows

thrown wide open. This harsh land, where \men's

thoughts freeze during the winter months," was too

much for Descartes. A few months later he caught

pneumonia and died on 11 February 1650.

Contents of the Geometry. The Geometry of

Descartes is available to us in two English editions,

the well-known Smith-Latham translation [3] and

the only complete English translation of the whole

Discours de la M�ethode by Olscamp [4]. The latter
should be consulted since the appendix on Optics
contains much interesting material on the conics.
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Figure 4. From p. 303 of Descartes' G�eom�etrie

In the first book of the Geometry, Descartes gave
new geometric solutions of quadratic equations. For

example [Figure 4], to solve the equation z2 = az−
b2 (where a and b are both positive), Descartes drew
the base line LM of length b and a perpendicular
line LN of length a/2. Then he drew the circle

with center N and radius NL. This circle cut the
line perpendicular to LM at M in two points. The

line segmentsMR andMQ are the solutions of the
equation, as the reader can easily check. Descartes

was aware that if the circle misses (only touches) the

perpendicular to LM at M , then there is no (only
one) solution to the equation.

Observe [Figure 4] that we have adopted

Descartes' notation. In fact, his Geometry is the
oldest mathematics text that we can read without

having great difficulties with the algebraic notation.

Descartes introduced the use of x, y, z for vari-
ables and a, b, c for constants, and he also intro-
duced the exponential notation (except that he some-

times writes \aa" for our \a2"). The only significant

difference is that Descartes uses the symbol µfor

equality.

Another problem Descartes dealt with in the first

book was the problem of Pappus (fl. A.D. 300{350),
which he mistakenly believed was still open. The

problem asks for the locus of points such that the

product of the distances (measured at fixed angles)

to half of a fixed set of lines is equal to the product

Figure 5. Cartesian Parabola

of the distances to the other half (times a constant if

the number of lines is odd). If there are three or four

lines, Descartes showed that the locus is a conic. As

an example with five lines, Descartes considered one

horizontal line and four equally spaced vertical lines

[Figure 5].

He set the product of the distances to the first,

third, and fourth vertical lines equal to the prod-

uct of the constant distance a between the lines,
the distances to the second vertical line and the

horizontal line, and obtained the equation axy =
(x + a)(a − x)(2a − x). Newton later called this
curve the Cartesian Parabola. Since there were very

few curves in Descartes' day, each received its own
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fancy name. This curve was only the second cu-

bic (that is, a polynomial in two variables of degree

three) ever discussed. The first was the Cissoid of

Diocles (fl. ca. 190 B.C.). Descartes used his new
curve extensively in his third book to solve equa-

tions of the fifth and sixth degrees as intersections

of it and a circle.

Geometrical vs. Mechanical Curves. The second

book of Descartes' Geometry begins with a dis-
cussion of those curves which Descartes believed

should be admitted into geometry. He does not con-

sider the equation to be a sufficient representation of

a curve, for equations are clearly algebraic objects.

This forced him to always define curves by giving

some geometric criterion. Later he derived the equa-

tion.

Descartes made a strict distinction between the

curves that he called \geometrical" and those which

he called \mechanical", but his explanation was

none too clear. It has turned out that Descartes' ge-

ometrical (mechanical) curves are just the graphs of

our algebraic (transcendental) functions. See Bos [1]

for a full discussion. Descartes said that a curve is

geometrical if it \can be conceived of as described

by a continuous motion" [3, p. 43]. This excludes the

spiral and the quadratrix because \they must be con-

ceived of as described by two separate movements

whose relation does not admit of exact determina-

tion" [3, p. 44]. Descartes allowed the use of a loop

of thread to trace out a geometrical curve, as long

as the shape of the string remained polygonal [3, p.

91]. Thus, the ellipse is a geometrical curve since it

can be traced out using the familiar gardener's con-

struction using string and pegs. In La Dioptrique,
Descartes showed how to construct the hyperbola

using straightedge and string [4, p. 135]. However,

the curve generated by the moving end of a piece

of thread as it unwinds from a spool is a mechan-

ical curve, for the thread was curved while wound

around the spool and straight after it unwinds.

On the other hand, geometry should not in-

clude lines that are like strings, in that they are

sometimes straight and sometimes curved, since

the ratios between straight and curved lines are

not known, and I believe cannot be discovered

by human minds, and therefore no conclusion

based upon such ratios can be accepted as rig-

orous and exact. [3, p. 91]

That straight and curved lines cannot be compared

is an old dictum of Aristotle. Descartes' adoption of

Figure 6. The Cartesian Parabola is geometric

it was important for it set up the question of recti-

fication of curves|that is, the problem of finding

arc length of curves.

Let us now consider Descartes' argument for the

Cartesian Parabola being a geometrical curve. He

gave the following definition of a geometrical curve,

then found its equation. Since its equation is the

same as that of the Cartesian Parabola, the Cartesian

Parabola is a geometric curve.

I shall consider next the curve CEG [Figure 6],
which I imagine to be described by the inter-

section of the parabola CKN (which is made

to move so that its axis KL always lies along
the straight line AB) with the ruler GL (which
rotates about the point G in such a way that it
constantly lies in the plane of the parabola and

passes through the point L). [3, p. 84]

If we let AB be the y-axis and AG be the x-axis
(Descartes used the opposite convention), then the

Cartesian Parabola is the locus of all points C(x, y)
of intersection of the parabola that slides up and

down the y-axis and the ruler that pivots at the fixed
point G(2a, 0) and passes through the point L mov-
ing along the y-axis with the parabola. The parabola
has equation x2 = az, where a = KL and z = BK
(the focus of the parabola is one-fourth of the way

from K to L). Descartes found the equation of the
curve using classical geometry: Since the triangles

GMC and CBL are similar,GM/MC = CB/BL,
that is, (2a− x)/y = x/BL. Thus, we have

BK = a −BL = a− xy

2a− x
.

But the equation of the parabola CKN can be writ-

ten BK = x2/a. Equating these expressions for
BK, and simplifying, we obtain,

x3 − 2ax2 − a2x+ 2a3 = axy,
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which is the equation of the Cartesian Parabola.

(Note that the name comes from the fact that a

parabola is sliding up and down the line.)

Descartes' Subnormal Method. In our calculus

classes, one important problem is to find an equa-

tion of the tangent line to a curve at a given point

on the curve. Problems were not phrased this way in

the seventeenth century, because equations of lines

was not a well-developed topic. They asked (equiv-

alently) for the subnormal for a given point on the

curve, that is, the length of the segment on the x-
axis between the abscissa of a point on the curve

and the x-intercept of the normal line at that point.
The subtangent was defined analogously.

Descartes presented a method for finding the sub-

normal [Figure 7]. If we can find a circle, with center

P on the x-axis, that cuts a curve in precisely one
point C , then the radius at that point is normal to
the curve. But if the center of the circle through the

point C be moved \ever so little" along the x-axis,
the circle will cut the curve at two points. This idea

provided a means of finding the subnormal for any

point (x0, y0) on the curve. Starting with the equa-
tion of the curve and the equation of a variable circle

with center P = (v, 0), find the equation giving their
intersection. Then choose P so that the intersection
equation has a double root.

Let us consider the case of the parabola y2 = kx.
The circle having center P = (v, 0) and radius s
that passes through the point (x0, y0) has equation

(v − x0)
2 + y2

0 = s2.

Since (x0, y0) is on the parabola, y
2
0 = kx0, and we

obtain

x2
0 + (k − 2v)x0 + (v2 − s2) = 0.

This equation will have a double root if and only if

the discriminant is zero; in which case,

x0 = −(k − 2v)/2, or vx0 = k/2.

Figure 7. Finding the subnormal

This looks mysterious today, but any mathematically

literate contemporary of Descartes would know that

the parabola has constant subnormal. Perhaps we

should check this result using the new calculus: If

y2 = kx, then 2yy′ = k. So y′ = k/(2y). Thus,
the normal line at (x0, y0) has slope −y0/(k/2). To
plot the normal line, we go down y0 from the point
(x0, y0) to land on the x-axis, and then go right
the constant distance k/2. Thus, the subnormal for
any point on this parabola does indeed have constant

length, k/2. Descartes was justly proud of this work,
for he wrote:

I have given a general method of drawing a

straight line making right angles with a curve at

an arbitrarily chosen point upon it. And I dare

say that this is not only the most useful and

most general problem in geometry that I know,

but even that I have ever desired to know. [3,

p. 95].

There is one final quotation from Descartes that is

important here, for it deceived Newton in a positive

way:

When the relation between all points of a curve

and all points of a straight line is known [that

is, when we have the equation of the curve] . . .
it is easy to find . . . its diameters, axes, center
and other lines [e.g., tangent and normal lines]

or points which have especial significance for

this curve . . . By this method alone it is then
possible to find out all that can be determined

about the magnitude of their areas, and there is

no need for further explanation from me. [3, p.

92]

Newton believed Descartes' claim, that from the

equation of a curve one can tell everything about it.

This encouraged Newton to develop the variety of

ad hoc techniques which he learned from the works
of Descartes and Wallis into algorithms for solving

problems about all curves. This was just one of the

motivations that Newton had for inventing the cal-

culus.

For further information about Descartes, see the

DSB article by Crombie, Mahoney and Brown [6,

IV, pp. 51{65]. The book by Scott [23] contains a

detailed discussion of his mathematical work. Bos

[1] gives an interesting study of Descartes' concept

or curve. Of course, one should read the Geometry
itself [3], [4].

Frans van Schooten (1615{1660). Schooten en-

rolled at the University of Leiden at age 16, where
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he was carefully trained by his father in the Dutch

school of algebra. He met Descartes when the latter

was in Leiden to supervise the printing of the Dis-
cours de la M�ethode (1637). Schooten recognized
the value of the work but had difficulty mastering

its contents. So he went to Paris for further study,

where he was cordially welcomed by Mersenne.

While in Paris, Schooten read the manuscripts of

Pierre de Fermat (1601-1665) and Franc�oise Vi�ete

(1540{1603), and under commission of the famous

Leiden publishing house of Elsevier, gathered all

the printed works of Vi�ete. This included Vi�ete's

most famous work, In Artem Analyticam Isagoge
(Introduction to the Analytic Art) of 1591, which
dealt mainly with the theory of equations. Because

of this work, Vi�ete is known as the father of algebra.

Conscious of the great importance of the scattered

works of Vi�ete on algebra, geometry, and analysis,

which had been published separately from 1579 to

1615, Schooten republished them with commentary

as Francisci Vietae Opera Mathematica (1646). The
work quickly became an indispensable collection of

mathematical source materials, and Newton carefully

studied a copy from the Cambridge libraries [20, I,

p. 21].

Schooten returned to Leiden in 1643 and be-

gan working on a Latin translation of Descartes'

G�eom�etrie, which he published in 1649. Descartes
had been dissatisfied with the form and argument

of his G�eom�etrie from the very day of its publica-
tion, and therefore encouraged the writing of com-

mentaries clarifying its obscurities and developing

its approach. Because of its valuable commentary

and excellent figures, Schooten's edition was enthu-

siastically received. This success led him to prepare

a much enlarged second edition that appeared in two

volumes (1659{1661). It contained about 800 pages

of commentary and new work, in addition to the

100 page translation of Descartes' G�eom�etrie, and
included [20, I, pp. 19{20]:

• Schooten's extremely valuable commentaries.

Many of these details were derived directly from

Descartes' own criticisms made in correspondence

with Schooten.

• Florian Debeaune's (1601{1652) Notae Breves, a
work which Descartes welcomed as a perceptive

exposition of the more elementary aspects of his

work. Debeaune posed the first inverse tangent

problem.

• Jan Hudde's (1628{1704) studies on equations
and extreme values. His rule for locating dou-

ble roots of equations was useful in applying

Descartes' tangent method. It was an important

precursor of the derivative.

• Jan de Witt's (1629{1695) excellent tract on conic
sections.

• An example of Fermat's extreme value and tan-
gent method.

• Christiaan Huygens' (1629{1695) first publica-
tion, an improved method for finding the tangent

to the conchoid.

• Hendrik van Heuraet's (1633{ca. 1660) rectifica-
tion method, of which we shall say more below.

All of this shows the great effort that Schooten

devoted to the training of his students and to the

dissemination of their findings. Much of their work

is available only in correspondence, careful studies

of which are currently being made. It was from these

editions of Schooten that mathematicians learned of

the work of Descartes. It was the second Latin edi-

tion that Newton borrowed and annotated in the sum-

mer and autumn of 1664 (the copy he bought the fol-

lowing winter may have been the 1649 edition). It

had an immense impact on his mathematical devel-

opment; for after mastering it, he was current with

research in the new analysis.

John Wallis (1616{1703). Before attending Em-

manuel College, Cambridge, the only mathematics

Wallis knew was what he learned from his brother

who was preparing for a trade. At Cambridge, math-

ematics \were scarce looked upon." He took his

M.A. in 1640 and was ordained. In 1649, he was

appointed Savilian Professor of Geometry at Oxford,

an appointment that must have surprised those who

thought the only mathematics he had done was to

decode a few messages for the Parliamentarians.

This is not quite true, but, wrote Wallis \I had not

then [in 1648] seen Descartes' Geometry." [20, III,
p. xv]. In 1647 or 1648, he chanced upon Oughtred's

Clavis, mastering it in a few weeks, and then redis-
covered Cardano's formula for the cubic. In 1648,

at the request of Cambridge professor of mathemat-

ics John Smith, he reworked Descartes' treatment of

the fourth-degree equation by factoring it into two

quadratics. As soon as he was appointed Savilian

Professor at Oxford, he took up the study of mathe-

matics, with rare energy and perseverance, and soon

became one of the best mathematicians in Europe.

He held the post for 50 years.
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Wallis's Operum Mathematicorum Pars Altera
(Oxford, 1656) was a fat and rather motley two-part

collection of his early mathematical lectures, com-

mentaries, and researches [20, I, p. 23]. It contained

his De Sectionibus Conicis (dated 1655), a treatise
of 110 pages that was the first elementary text on

the conics treated from the Cartesian viewpoint. In

an appendix, Wallis tried to extend the approach to

higher plane curves, especially the cubical parabola

a2y = x3, where the constant a2 was used to pre-

serve dimensionality. He successfully found the sub-

tangent, but had trouble with the graph because he

did not feel comfortable with negative numbers. He

also introduced the semi-cubical parabola ay2 = x3,

a curve that played a very important role in the de-

velopment of the calculus [30, pp. 295{298]. Quite

suddenly the mathematical world had been presented

with a powerful analytic geometry, only to find that

there were few curves on which to practice it. The

new perspective of Wallis|which took some time

to be adopted by the mathematical community|

was that any algebraic equation in two variables de-

fines a curve [13, p. 238].

Together with his conic sections, Wallis published

the work on which his fame rests Arithmetica ln-
finitorum (dated 1656; printed 1655). This volume
developed from his study of the Opera Geometrica
(1644) of Torricelli (1608{1647). Wallis tried to ap-

ply these methods to the quadrature of the circle,

but not even the study of the voluminous Opus Geo-
metricum (1647) of Gregorius Saint Vincent (1584{
1667), helped. Out of the project of squaring the cir-

cle, he did get his famous infinite product for π/4.
The Arithmetica Infinitorum exerted a singularly

important influence on Newton when he studied it in

the winter of 1664{1665. From it, Newton learned of

the problem of quadratures, or, as we now say, find-

ing areas under curves. Newton probably also read

Wallis's Tractatus Duo (1659) that presented his re-
search on the cycloid, cissoid, and other geometrical

figures.

Rectification of Curves. By 1638, Descartes sus-

pected that the logarithmic spiral might be rectifi-

able; that is, the length of an arc of the curve could

be computed. Even if correct, this would not cause

him any difficulties because the spiral is a mechan-

ical curve, and Descartes only accepted Aristotle's

dictum that straight lines and curved lines could not

be compared for geometrical curves. In 1657, Huy-

gens found the length of an arc of a parabola; but

he used a mechanical curve in his solution, and thus

Descartes' version of Aristotle's dictum was still in-

tact. Also Huygens' method did not generalize.

The first geometrical curve to be rectified in a

geometric way was Wallis's semi-cubical parabola

ay2 = x3. As often happens, several people solved

the problem simultaneously: William Neil in 1657,

Hendrick van Heureat in 1659 [14], and Pierre de

Fermat in 1660. Of course, a priority dispute erupted.

Heureat's solution was the most influential because

it was published in Schooten's second Latin edition

of Descartes' Geometry. The proof used the new
classical geometry of the seventeenth century and

was fairly intricate (for details, see [8] or [13]). The

method of proof was to replace the problem of rec-

tification of the semi-cubical parabola by a simpler

problem, the quadrature of an ordinary parabola.

This transformation of the problem to a simpler

one shows up even when we do the problem today

with the calculus, but it is so slick that it is easy to

miss what happens. Starting with y2 = x3 (it is no

accident that we still do this first today), we obtain

(y′)2 = 9x/4. Thus, the arc length from, say, (0, 0)
to (4, 8), is

L =

∫ 4

0

√
1 + (9x/4)dx.

The substitution u = 1+(9x/4) transforms this into

L = (4/9)

∫ 10

1

√
u du.

The first of these integrals represents an arc length,

whereas the second stands for the area under a

parabola. Today, we just look at these as two simple

integration problems, but in the old days B(efore)

C(alculus), these were viewed as two separate kinds

of problems.

Heuraet's method was entirely general. When

Newton saw the proof, he realized the value of trans-

forming one type of problem into another. This is

one of the roots of the Fundamental Theorem of

Calculus. It is the biggest swap of all|we trade

integration for anti-differentiation. This is precisely

what Newton did soon after he read Heuraet's proof.

(For a full history of the rectification problem, see

Hofmann [11, Ch. 8].)

Concluding Remarks about Newton's Readings.

In order to do creative work, a mathematician \needs

an adequate notation, a competent knowledge of

mathematical structure and the nature of axiomatic

proof, an excellent grasp of the hard core of existing

mathematics and some sense of promising line for
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Figure 8. Newton's areas of activity

future advance." [20, I, p. 11]. The works that New-

ton chose to read in 1664 and 1665 magnificently

met these needs. He took his arithmetic symbolism

from Oughtred, his geometrical form from Descartes.

Of course, he grafted on new modifications of his

own while creating the calculus. He learned ele-

mentary scholastic logic in grammar school and tra-

ditional forms of mathematical proof from Euclid.

He learned the new analytic geometry of the sev-

enteenth century from Schooten and de Witt, topics

in algebra and the theory of equations from Vi�ete,

Oughtred, Schooten and Wallis. Most importantly, he

learned of the twin problems of infinitesimal anal-

ysis: From Descartes, the method of tangents; from

Wallis, quadrature. There were plenty of open prob-

lems for Newton to attack. Without doubt, the two

strongest influences on Newton were Descartes and

Wallis. [20, I, pp. 11{13]

It is of as much interest to note what Newton
did not read. We miss the names of Napier, Briggs,
Harriot, Desargues, Pascal, Fermat, Stevin, Kepler,

Cavalieri, and Torricelli. Among the Greeks there

is only Euclid, not Apollonius nor Archimedes. In

fact, Newton seemed to dislike the method of ex-

haustion. There is great significance in this lack of

knowledge of ancient mathematics and of the new

classical (as opposed to analytic) geometry of the

seventeenth century. He was not hampered by its

knowledge. Had Newton gained a deep knowledge

of classical geometry and the new classical geometry

of his century, I conjecture it would have hindered

his invention of the calculus (and similarily for Leib-

niz who was also ignorant of classical geometry).

As Westfall points out [28, p. 100] about New-

ton's readings:

In roughly a year, without benefit of instruc-

tion, he mastered the entire achievement of

seventeenth-century analysis and began to break

new ground.

In fact by mid-1665 Newton's urge to learn from

others seems to have abated [20, I, p. 15].

3 Newton's works

Newton was an extraordinary scientist because he

made so many fundamental contributions to different

fields:

• Mathematics, both pure and applied
• Optics and the theory of light and color
• Design of scientific instruments
• Synthesis and codification of dynamics
• Invention of the concept and law of universal

gravity.

In addition, we now know, and are willing to admit,

that he spent immense amounts of time working on:

• Alchemy
• Chronology, church history, and interpretation of
the Scriptures.

The range and depth of Newton's intellectual pur-

suits never ceases to amaze us.

As a first step in understanding Newton's contri-

butions, consider the chart above that indicates when

Newton was involved in various research areas. One

might think that Newton thought about everything

all of the time, but the manuscript record shows that

he worked on only a few areas at any one time, and

these were not necessarily| in his mind at least|

disjoint.

We begin with a synopsis of Newton's mathemat-

ics as presented in Whiteside's edition of Newton's

Papers [20]. This will be followed by a thumbnail
sketch of each of these areas of Newton's intellec-

tual efforts. Since it is impossible to discuss all of

his contributions here, only a few examples of New-

ton's mathematical work will be discussed in detail.

These were chosen with the teacher in mind, to pro-

vide examples that can be used in the classroom.

Volume I. (1664{1666). The volume begins with
Newton's annotations on the works of Oughtred,

Descartes, Schooten, Vi�ete, and Wallis. The bulk
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consists of research on analytic geometry and the

calculus. Newton turns Descartes' subnormal tech-

nique into the notion of curvature, and Hudde's rule

for double roots into fluxions (differentiation). We

see the calculus become an algorithm in mid-1665.

This early work on the calculus was summarized in

the October 1666 tract on fluxions. In a schematic

diagram, Whiteside [20, I, p. 154] shows how all of

these ideas came together to give birth to the calcu-

lus. The volume ends with miscellaneous work on

trigonometry, the theory of equations, and geometri-

cal optics.

Volume II. (1667{1670). Work on classification of
cubics begins here and was published as an appendix

to his Optics (1704). In this volume, we see Newton
struggling with the graphs. The most important work

on the calculus is the hastily composed 1669 tract De
Analysi that summarizes all of his work thus far. He
gave a copy of this to Barrow in 1669 to assert his

priority over Nicolaus Mercator (1619{1687) whose

Logarithmotechnia (1668), with its infinite series for
the logarithm, had just appeared. Half the volume

consists of his annotations on the Algebra of Kinck-
huysen. One piece of Newton's advice here is too

good not to pass on to our students:

After the novice has exercised himself some lit-

tle while in algebraic computation . . . I judge it

not unfitting that he test his intellectual pow-

ers in reducing easier problems to an equation,

even though perhaps he may not yet have at-

tained their resolution. Indeed, when he is mod-

erately well versed in this subject . . . then will
he with greater profit and enjoyment contem-

plate the nature and properties of equations and

learn their algebraic, geometrical and arithmeti-

cal resolutions. [pp. 423{425]

Volume III. (1670{1673). Although Barrow encour-
aged Newton to revise De Analysi for publication,
the booksellers were uninterested. But he did com-

bine the two earlier works on the calculus and many

new results in a 1671 tract, with an important foun-

dational change: he postulated a fluent variable of

time for his fluxions, that is, all his derivatives are

time derivatives. Also, here is an investigation of

Huygens' pendulum clock and more research on ge-

ometric optics.

Volume IV. (1674{1684). Research in theology and
alchemy kept him busy (Figure 8), though his work

on mathematics never entirely stopped. This vol-

ume contains some of Newton's research on alge-

bra, number theory, trigonometry, and analytical ge-

ometry. In the middle of this period, he became fas-

cinated with the classical geometry of the Greeks.

Only at the end of this period did Newton show

great interest in fluxions and infinite series.

Volume V. (1683{1684). The bulk of this volume
consists of Newton's ninety-seven self-styled \lec-

tures", deposited as his Lucasian lectures on algebra

for the period 1673{1683. The Arithmetica Univer-
salis given here is an incomplete revision of the al-
gebra lectures. Its published version was his most

read work, not the papers on calculus.

Volume VI. (1684{1691). Halley's visit in August
1684 turned Newton's interest to the geometry and

dynamics of motion, the subject of this entire vol-

ume. The work dates from the period 1684{1686,

and is arguably as creative as the miracle years of

1664{1666.

Volume VII. (1691{1695). In the early winter of
1691-1962, Newton wrote De Quadratura Cur-
varum, on the quadrature of curves. He also dealt
with classical geometry (1693), higher plane curves,

and finite-difference approximations (1695). As al-

ways, Whiteside has \taken care to preserve all the

significant idiosyncrasies, contractions, superscripts

and archaic spellings" of the \ink-blobbed, much-

cancelled and often rudely scrawled manuscripts."

[p. ix]

Volume VIII. (1697{1722). Most mathematicians
will find this the most interesting volume after the

first, for it contains Newton's solution (simply stated

without proof) of the brachistochrone problem as

well as documents related to the priority dispute.

(To see that this dispute involved much more than

mathematics, read Hall's Philosophers at War [9].)
We calculus teachers should refrain from telling

our students that Newton invented the calculus be-

cause he was motivated by physical considerations.

Although applications are an excellent reason for

studying the calculus, in Newton's case the record

is clear: first mathematics, then applications.

The Binomial Theorem. On the frontispiece of

the first volume of Newton's Papers we see the

manuscript where he took up the age old problem

of squaring the circle, or (to make the activity sound

more respectable) the quadrature of the circle. He

became interested in this problem after reading Wal-

lis's Arithmetica Infinitorum. Newton learned there
how to evaluate the integrals (here expressed in Leib-

niz's notation)
∫ x

0

(
1 − x2

)n/2
dx, where n is an
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n = −2 0 2 4 6 8 · · · times

1 1 1 1 1 1 · · · x
−1 0 1 2 3 4 · · · −x3/3
1 0 0 1 3 6 · · · x5/5

−1 0 0 0 1 4 · · · −x7/7
1 0 0 0 0 1 · · · x9/9

...
...

...
...

...
...

...
...

Table 1.

n = −3 −2 −1 0 1 2 3 4 5 6 7 8 · · · times

1 1 1 1 1 1 1 1 1 1 1 1 · · · x

−3
2 −1 −1

2 0 −1
2 1 3

2 2 5
2 3 7

2 4 · · · −x3/3
15
8 1 3

8 0 −1
8 0 3

8 1 15
8 3 35

8 6 · · · x5/5

−35
16

−1 5
16

0 1
16

0 − 1
16

0 5
16

1 35
16

4 · · · −x7/7
315
128 1 35

128 0 − 5
128 0 3

128 0 − 5
128 0 35

128 1 · · · x9/9

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 2.

even integer. Newton tabulated the values of these

integrals in his attempt to find the area of a circle

(n = 1). To see how he did this consider the case
when n = 6:

∫ x

0

(
1 − x2

)6/2
dx

= 1(x) + 3(−x3/3) + 3(x5/5) + 1(−x7/7).

The factors in parentheses are recorded in the

rightmost column of the table below. The coeffi-

cients, 1, 3, 3, 1, are recorded in the column labeled
n = 6. In general, to evaluate

∫ x

0
(1−x2)n/2dx, sum

the products of the values in the nth-column by the
corresponding terms in the rightmost column.

n = 0 2 4 6 8 · · · times

1 1 1 1 1 · · · x
1 2 3 4 · · · −x3/3

1 3 6 · · · x5/5
1 4 · · · −x7/7

1 · · · x9/9
...

...

Wallis had also tabulated these integrals, but since

he used 1 rather than x as an upper limit, he did
not see the pattern. But Newton recognized it as

\Oughtreds Analyticall table", from his readings of

Oughtred's Clavis [20, I, p. 452]. We, of course,
now call this Pascal's triangle. Newton knew that

each number in the table is the sum of the number

to its left and the one above that, so he decided to

extend the pattern backwards for all even values of

n. Thus he obtained Table 1.
To extend this table to odd values of n, New-

ton used a complicated proportionality argument (see

[31] for details). Later, in a letter to Leibniz [19, I,

pp. 130-131], Newton provided an easier explana-

tion for the extension. When n is even, say, n = 2m,
the kth entry in the nth column is given by the bi-
nomial coefficient

(
m

k − 1

)
= m!/k!(m− k)!.

Newton ignored the restriction that n must be even
and used the formula for binomial coefficients when

n was odd. For example, the fourth entry in the n =
1 column is given by

(
1
2

4 − 1

)
=

(
1
2

) (
1
2 − 1

) (
1
2 − 2

)

(1)(2)(3)
.

Thus, he obtained Table 2.

Now, from the n = 1 column, Newton was able
to draw the conclusion that he sought:

∫ x

0

(
1 − x2

)1/2
dx

= x+
1

2

(
−x

3

3

)
+ −1

8

(
x5

5

)
+

1

16

(
−x

7

7

)
+ · · ·
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Figure 9. First publication of the Binomial Theorem, 1685

For x = 1, this gives an infinite series for the
area of (a quadrant of) a circle. From this, New-

ton jumped to the conclusion that a similar \inter-

polation" could be done on curves (we would say,

on functions) as well as on their quadratures (inte-

grals), and then guessed the Binomial Theorem for

fractional exponents. He checked this result several

ways. First, he formally used the square root algo-

rithm to obtain the series

(1 − x2)1/2 = 1 − 1

2
x2 − 1

8
x4 − 1

16
x6 − · · · .

Then he checked that it agreed with the Binomial

Theorem. Next, he squared both sides of the above

equation to see that an equality resulted. As a further

check, he used formal long division to obtain an

infinite series for (1 + x)−1. Note the wonderful

research techniques he is using. Nonetheless,

The paradox remains that such Wallisian in-

terpolation procedures, however plausible, are

in no way a proof, and that a central tenet of

Newton's mathematical method lacked any sort

of rigorous justification . . . Of course, the bi-
nomial theorem worked marvellously, and that

was enough for the 17th century mathematician.

[31, p. 180]

Newton became tremendously excited with his

new tool, the Binomial Theorem, which became

a mainstay of his newly developing calculus. He

also did such bizarre computations as approximat-

ing log(1.2) to 57 decimal places.
The Binomial Theorem was Newton's first math-

ematical publication. It appeared in Wallis's Treatise
of Algebra (Figure 9) in a summary of Newton's two
famous letters to Leibniz in 1676 [24, pp. 330{331].

These letters are readily available, with ample com-

mentary, in Newton's Correspondence [19, II, pp.
20{47 and 110{161].

Optics. Newton's earliest work on optics was done

at Cambridge and the experiments continued at

Woolsthorpe during the plague, but was not put in

near final form until he was preparing his Lucasian

lectures for 1670{1672. It had long been known (see,

for example, Descartes [4, p. 335]) that when light

passed through a prism it was dispersed into a col-

orful spectrum. Newton was able to give a quanti-

tative analysis of this behavior and to devise a new

theory of light. In February 1671/72 (the slash date

was used because England had not yet adopted the

Gregorian calendar), this resulted in Newton's first

publication in optics, the lengthy title of which also

provides an abstract:

A Letter of Mr. Isaac Newton, Mathematick

Professor in the University of Cambridge; con-

taining his New Theory about Light and Col-

ors: Where Light is declared to be not Similar

or Homogeneal, but consisting of difform rays,

some of which are more refrangible than oth-

ers: And Colors are affirm'd to be not Qual-

ifications of Light, deriv'd from Refractions

of natural Bodies, (as 'tis generally believed;)

but Original and Connate properties, which in

divers rays are divers: Where several Observa-

tions and Experiments are alleged to prove the

said Theory. [18, p. 47]

This work engendered a controversy with Robert

Hooke (1635{1703), who claimed to have published

the ideas earlier. As a consequence, Newton became

extremely reluctant to publish. In fact, the Optics
was not published until 1704, the year after Hooke's

death.

In developing his theory of light, Newton real-

ized that lenses caused chromatic aberration. This

set him thinking about telescope design, and he con-

cluded that the problem could be avoided by using

mirrors instead of lenses. Consequently he designed
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Figure 10. Gregorian Telescope, 1663.

a reflecting telescope, built one himself, and then de-

scribed it in the March 25, 1672 issue of the Philo-
sophical Transactions. These first papers of New-
ton have been photoreproduced by I. B. Cohen [18],

along with a valuable introduction by Thomas Kuhn.

Rather than describe Newton's theory of light (which

has been done by Alan Shapiro in the first volume

of The Optical Papers of Isaac Newton [21]), we
shall briefly discuss telescope design. This provides

an interesting classroom example of the reflective

properties of the conics.

The first reflective telescope was designed by

James Gregory (1638{1675) and published in his

Optica Promota of 1663, a work which Newton did
not read until after he had invented his own tele-

scope. Gregory's telescope consists of a concave

primary mirror (on the right in Figure 10) that is

parabolic in shape, and a concave secondary mir-

ror that is elliptical (strictly speaking, the surfaces

generated by rotating these conics about the axis of

the telescope). The incoming rays of starlight bounce

off the parabolic mirror and are reflected through its

focus. Beyond that focus is an elliptical mirror that

shares a focus with the parabola and has its other fo-

cus behind a small hole in the primary mirror. Thus,

after the reflected rays of starlight pass through the

common focus of the parabola and ellipse, they are

reflected off the elliptical secondary mirror and con-

verge at the second focus of the ellipse. Gregory

tried to have a telescope built to his design, but the

opticians were unable to polish the mirrors properly.

In 1668, Newton placed a flat secondary mirror

between the primary parabolic mirror and its focus

Figure 11. Newtonian Telescope, 1668.

Figure 12. Cassegrain Telescope, 1672

[Figure 11]. The eyepiece was located at the side of

the telescope. Incoming rays of starlight reflect off

the parabolic mirror and head for its focus F . Before
they get there, they are reflected off the flat mirror.

Then they converge toward F ′, the point symmetric

to F with respect to the plane of the flat mirror. This
invention remained unknown until Newton made an-

other one (casting and polishing the mirrors himself)

and presented it to the Royal Society of London on

11 January 1672. This so impressed the members

that they elected him a Fellow of the Royal Society

at that very same meeting.

Later in 1672, another telescope design [Figure

12] was published by Guillaume Cassegrain (fl. ca.

1672) in France and abstracted in the Transactions
of the Royal Society. The concave primary mirror
is again a parabola with a hole in the center, and

the secondary is a convex hyperbolic mirror which

shares a focus with the parabola and has its other

focus behind the hole in the parabola. Rays of

starlight reflected from the primary parabolic mir-

ror head toward the focus of the parabola. Before

reaching that focus, they are reflected by the hyper-

bolic mirror toward the other focus of the hyperbola.

Cassegrain claimed that his design was superior to

Newton's. In what was to become his typical style,

Newton marshalled his evidence and attacked fu-

riously. He claimed that Cassegrain's idea was not

only a minor modification of Gregory's, but also op-

tically inferior. Cassegrain retreated into anonymity.

But Newton was wrong about the superiority of the

Gregorian telescope. In 1779, Jesse Ramsden (1735{

1800) showed that the combination of a concave

and a convex mirror partially corrects the spherical

aberrations, whereas in the Gregorian telescope, the

aberrations of the two concave mirrors are additive.

Today the Cassegrain model is used in most large

reflectors.

A mathematical result of Newton's work on optics

grew out of the problem of grinding a hyperbolic

mirror (although he did not use one, the possibility

of a hyperbolic lens was noted by Descartes [4, p.

139]). Newton, and independently Christopher Wren
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(1632{1723), discovered that the hyperboloid of one

sheet was a ruled surface. Newton used this result

to show how to make a hyperboloid of one sheet on

a lathe by holding the chisel obliquely to the axis of

the lathe.

Religion. Despite inheriting his stepfather's theo-

logical library and buying several theological books

when he came to Cambridge, Newton's serious study

of theology began only in the early 1670's. No doubt

this came about because the position of Fellow at

Trinity required that one had to be ordained in the

Anglican Church within seven years of receiving the

M.A. In Newton's case, this was by 1675. Not be-

ing one to do anything halfway, Newton became en-

gaged in an extensive reading program that took him

through all the early Church Fathers. As a result,

ordination became impossible for he had become a

heretic.

Newton became an Arian or Unitarian | he de-

nied the Trinity | of deep conviction and remained

so for the rest of his life. His argument was: \Though

Christ was the only begotten son of God, and hence

never merely a man, he was not equal to God, not

even after God exalted him to sit at his right side

as a reward for his obedience unto death." [29, p.

130]. Newton arrived at this position through a care-

ful analysis of Scripture. He believed that a deceitful

Roman Church had manipulated the Emperor Theo-

dosius to introduce the false doctrine of the Trinity

into the Scriptures in the fourth century. The Book
of Revelationwas crucial to Newton's interpretation.
He believed that the Roman Church was the \Great

Apostasy" and never ceased to hate and fear it [28,

p. 321].

By 1675, Newton was making plans to leave Cam-

bridge for he knew that as a Fellow at the College

of the Holy and Undivided Trinity he could not re-

veal his Arian views. To do so would be socially

unacceptable, and he never in his life did so, except

obliquely to a few people of similar persuasion. That

he read the situation correctly is indicated by the dis-

missal of William Whiston (1667{1752), Newton's

successor in the Lucasian Chair, for the uncompro-

mising expression of Unitarian views. But just at this

time, the Crown granted a special dispensation that

the occupant of the Lucasian Professorship was not

required to be ordained. Thus, Newton could stay at

Cambridge. Newton's theological studies continued

until work on the Principia interrupted [Figure 8].
In London, he was able to take up his theological

studies again, and they continued for the rest of his

life. (For further details, see [28, pp. 309{334] or

[29].)

Alchemy. Newton's interest in alchemy has long

been embarrassing to some scholars, while others de-

light in this trace of hermeticism and dub him a mys-

tic. But there is now no doubt that he was a serious

practitioner [Figure 8]. From 1669 (when he bought

his first chemicals) until 1684 (when work on the

Principia interrupted), Newton spent long hours in
the \elaboratory". Newton again practiced alchemy

from 1686 until 1696, but after he moved to Lon-

don he never took it up again seriously [27, p. 121].

Newton did plan on adding alchemical references to

the second edition of the Principia although he never
did so. (For details on his alchemical work, see [5].)

One benefit of this work was that he was able to

cast the speculum for his first telescope.

In 1693, Newton suffered a nervous breakdown

of uncertain duration and severity. There is no doubt

that he frequently tasted his chemicals, but whether

it was caused by mercury poisoning is debatable [7,

pp. 88{90]. When Newton wrote to Oldenburg in

1673 that he intended \to be no further sollicitous

about matters of Philosophy" [19, I, p. 294], and to

Hooke in 1679 that \I had for some years past been

endeavouring to bend my self from Philosophy to

other studies in so much yt I have long grutched the

time spent in ye study" [19, II, p. 300], we must

take him at his word. During most of the decade of

the 1670s, Newton preferred theology and alchemy

to physics and mathematics.

The Principia. In his old age, Newton liked to rem-
inisce and he himself started the story of the falling

apple. We have four independent accounts of the tale

[7, p. 29{31]. Here is Conduitt's [28, p. 154]:

In the year 1666 he retired again from Cam-

bridge . . . to his mother in Lincolnshire &
whilst he was musing in a garden it came

into his thought that the power of gravity (wch

brought an apple from the tree to the ground)

was not limited to a certain distance from the

earth but that this power must extend much far-

ther than was usually thought. Why not as high

as the moon.

So let us grant that a falling apple started New-

ton thinking about gravity during the plague years;

even if he made up the story it is harmless. But

his retelling of this event, in his 1718 letter to Des-

Maizeaux (which we quoted earlier), is not harm-

less. Newton attempted to push back the date of his
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Figure 13. The Principia

discovery of the law of universal gravitation to the

plague years. His papers tell quite a different story.

In late 1664, Newton learned Kepler's third law:

the square of the time that it takes a planet to make

one elliptical revolution around the sun is propor-

tional to the cube of the mean distance from the

sun, that is, T 2 ∼ R3. The following January, New-

ton discovered the Central Force Law (see the let-

ter to DesMaizeaux), which Huygens independently

discovered and first published without proof in his

Horologium Oscillatorium (1673) (see [12]). The

Central Force Law states that the centrifugal (cen-

ter fleeing) force acting on a body traveling about

a central point is proportional to the square of the

speed and inversely proportional to the radius of the

orbit: F = S2/R. Strictly speaking, this \force" is
an acceleration, but we shall follow Newton's usage.

Newton was able to discover that the gravitational

force between a planet and the sun must be inversely

proportional to the square of the distance between

them. If a planet travels with uniform speed around

a circular (not elliptical) orbit of radius R in time

T , then its speed S is 2πR/T . Thus,

F =
S2

R
=

(2πR/T )2

R
= 4π2

(
R3

T 2

)(
1

R2

)
.

By Kepler's third law, R3/T 2 is constant, and hence,

F ∼ 1/R2. Newton left off at this point, devoting

most of the next decade to alchemy and theology,

though he was never completely divorced from math-

ematics (Figure 8).

Hooke, Halley, and Wren were able to make this

same deduction by 1679, but the problem of explain-

ing the elliptical orbits remained. On 24 November

1679, Hooke wrote to Newton suggesting a private

\philosophical", that is, scientific, correspondence

on topics of mutual concern. In this letter, Hooke

mentioned his hypothesis of \compounding the ce-

lestiall motions of the planetts [out] of a direct mo-

tion by the tangent & an attractive motion towards

the centrall body." [19, II, p. 297]. This does not

seem to be much of a hint for proving that if the in-

verse square law holds, then the planets must move

in elliptical orbits. But it started Newton thinking

about the question again. Hooke gave further en-

couragement on January 17, when he wrote \I doubt

not but that by your excellent method you will easily

find out what that Curve must be." [19, II, p. 313].

Newton did succeed in finding the answer, but he

kept it to himself.

It was also in 1679 that Newton learned of Ke-

pler's second law: the radius from the sun to a planet

sweeps out equal areas in equal times. It seems

strange that Newton would have learned of the third

law as a student in 1664, but not about the second

until years later. The explanation is that the third law

was generally accepted in the scientific community

because it could be empirically verified, whereas the

second was much more of a conjecture.

In August 1684, Edmond Halley (1656{1743) vis-

ited the 41-year-old Lucasian Professor at Cam-

bridge. He asked the question that had been con-

suming him and his friends Hooke and Wren at the

Royal Society in London: What path would the plan-

ets describe if they were attracted to the sun with a

force varying inversely as the square of the distance

between them? Newton replied at once that the or-

bits would be ellipses. Since this was the expected

answer, Halley asked Newton how he knew. Newton

astonished him by answering that he had calculated

it. Halley asked to see Newton's computation, but

as Newton seemingly saved every scrap of paper he

ever wrote on, he (not surprisingly) could not find

it. Perhaps he did not want to find it; his desire to

be left alone to pursue his own interests, his fear of

controversy, and his reluctance to publish would all

make Newton want to carefully check his proof over

again before he showed it to anyone. In November

of 1684, Newton did send the computation to Hal-

ley in London, who was so excited that he prompted
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Figure 14. Isaac Newton at age 46, two years after the

Principia's publication

Newton to expand his work. (Weinstock [25] has

challenged the common view that this proof actually

appears in the Principia.)
Newton put aside his alchemical and theological

studies to work on what was to become the most sig-

nificant scientific treatise ever written: Philosophiae
Naturalis Principia Mathematica. It took Newton
eighteen months of intense intellectual effort to com-

pose his masterpiece, but the time was not just spent

in writing up results that he had completed long ago.

Many critical ideas in the Principia were not devel-
oped until the treatise was being written. In particu-

lar, Newton created the concept of universal gravity

during this period.

Myth: Though Newton used the notation of the
calculus in arriving at his results, he was care-
ful in the Principia to recast all the work in the
form of classical Greek geometry understand-
able by other mathematicians and astronomers.

Newton started this myth himself in the midst of the

priority dispute with Leibniz. If he could argue that

he had used his calculus in composing the Principia,
then he could claim that he did not steal the calculus

from Leibniz who published his first paper on the

(differential) calculus in 1684.

The method of fluxions [Newton's calculus] is

intrinsically algebraic rather than geometrical,

and there is not the slightest reason | in the

historical evidence or in logic | to suppose that

the argument of the Principia was ever cast in
an algebraic rather than the geometric mode in

which it was published. [9, p. 28]

The geometrical format of the Principia is explained
by the fact that around 1678, Newton became fasci-

nated with classical geometry [Figure 8]. The Prin-
cipia appears to be densely packed classical geom-
etry, but that is only a facade. One need only read

a bit to realize that it is packed with the informal

geometrical ideas of the new analysis, the calculus.

However, the formal machinery of the algebraic al-

gorithms of the calculus is not to be found there.

In order to make this point clear, it would help to

look at the proof of a proposition from the Principia.
Book I, Section II, Proposition I, Theorem I says:

The areas which revolving bodies describe by

radii drawn to an immovable centre of force

do lie in the same immovable planes, and are

proportional to the times in which they are de-

scribed. [17, p. 40].

That is, if the gravitational force (whatever it might

be) always acts toward a fixed point S, then Kepler's
equal area law holds.

Newton's proof begins with classical geometry

[Figure 15]. Suppose we consider equal time inter-

vals, and that the body moves from A to B in one of
those intervals. In the next interval it would move,

on the same straight line, from B to c if no exter-
nal force acts on it. The triangles SAB and SBc
that are swept out in these equal time intervals have

equal areas since the bases AB and Bc are equal,
and the triangles have the same altitude. However,

if at B \a centripetal [center seeking] force acts at

once with a great impulse", then the body moves to

Figure 15. Newton's Principia, p.37
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some other point C (in the same plane) in the next
time interval. The Parallelogram Law of Forces de-

termines the location of the pointC; the lines Cc and
SB are parallel. Triangles SBc and SBC also have
the same area, since they have a common base SB
and their altitudes are equal, namely, the distance be-

tween the parallel lines SB and Cc. By transitivity,
the triangles SAB and SBC have equal areas. Sim-
ilarly for other triangles in the diagram. So far the

proof was easy geometry. Next, Newton used an idea

from his calculus: \Now let the number of those tri-

angles be augmented, and their breadth diminished

in infinitum . . . their ultimate perimeter ADF will

be a curved line: and therefore the centripetal force,

by which the body is continually drawn back from

the tangent of this curve, will act continually" and

the areas traced out in equal times will be equal [17,

pp. 40{41].

So that was really quite easy. The geometric ideas

of the calculus are used constantly in the Principia,
but the algebraic notations are not.

4 Conclusion

On 5 February 1675/76, Newton wrote to Hooke

[19,1, p. 416]:

What Des-Cartes did was a good step. You have

added much . . . If I have seen further it is by
standing on ye sholders of Giants.

While it is important to realize that Newton recog-

nized the contributions of his predecessors, we must

by now feel that Newton was the greatest giant of all.

Just as Westfall, after twenty years of effort prepar-

ing Never at Rest, was more in awe of Newton when
he finished than when he began, we too may realize

that the closer we get to Newton, even when stand-

ing on the shoulders of Whiteside, the bigger the

giant becomes.

Yes, Newton was a genius. That is undeniable.

But he was not a Greek god. For all his faults, he

displayed characteristics that we should tell our stu-

dents about, for they are the keys to his, and their,

success:

• He built on the best work of the past
• He had brilliant insights
• He worked \by thinking continually"
• He had stubborn perseverance
• He steadily expanded his inquiries

• He made mistakes|and learned from them.

Newton's success was a synergistic combination

of innate genius and immense effort. This is the les-

son of history.
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Reading the Master: Newton and the Birth of

Celestial Mechanics

BRUCE POURCIAU

American Mathematical Monthly 104 (1997), 1{19

One factor that has remained constant through all

the twists and turns of the history of physical sci-

ence is the decisive importance of the mathematical

imagination. | Freeman J. Dyson

1

In January of 1684, the young astronomer Edmund

Halley travelled from Islington up to London for a

meeting of the Royal Society. Later, perhaps over tea

and chocolate at a nearby coffee house, he chatted

casually about natural philosophy and other topics

with Sir Christopher Wren and Robert Hooke. Talk

soon turned to celestial motions, and Halley later

reconstructed the conversation [22 p. 26]:

I, having from the consideration of the sesquial-

ter proportion of Kepler concluded that the cen-

tripetall force [to the Sun] decreased in the pro-

portion of the squares of the distances recipro-

cally, came one Wednesday to town, where I

met with Sr Christ. Wren and Mr Hook, and

falling in discourse about it, Mr Hook affirmed

that upon that principle all the Laws of the ce-

lestiall motions were to be demonstrated, and

that he himself had done it. I declared the ill

success of my attempts; and Sr Christopher to

encourage the Inquiry said that he would give

Mr Hook or me 2 months time to bring him a

convincing demonstration thereof, and besides

the honour, he of us that did it, should have

from him a present of a book of 40 shillings.

Mr Hook then said that he would conceale [his]

for some time that other triing and failing, might

know how to value it, when he should make it

publick.. . . I remember Sr Christopher was lit-

tle satisfied that he could do it, and though Mr

Hook then promised to show it him, I do not

yet find that in that particular he has been as

good as his word.

The two-month deadline passed. Wren and Halley

waited through the summer, but still the promised

proof from Hooke never came. Finally, in August,

Halley would wait on Hooke no longer. He carried

the question to Cambridge and the Lucasian Profes-

sor of Mathematics, Isaac Newton.

Newton's secretary and attendant has painted a

portrait, daubed with colorful and concrete detail, of

the eccentric Cambridge professor Halley had finally

decided to approach [12, p. xiii-xiv]:

I cannot say, I ever saw him laugh, but once

. . . I never knew him take an Recreation or Pas-

time, either in Riding out to take ye Air, Walk-

ing, Bowling or any other Exercise whatever,

thinking all Hours lost, yt was not spent in his

Studyes, to wch he kept so close . . . so intent, so

serious upon [them], yt he eat very sparingly,

nay, oft times he has forgot to eat at all, so yt

going into his Chamber I have found his Mess

untouch'd, of wch when I have reminded him,

[he] would reply, Have I; & then making to ye

Table, would eat a bit or two standing, for I

cannot say, I ever saw Him sit at Table by him-

self . . . He very rarely went to Dine in ye Hall

unless upon some Publick Dayes, & then, if He

has not been minded, would go very carelessly,

wth Shooes down at Heels, Stockins unty'd,

Suplice on, & his Head scarcely comb'd . . . At

some seldom Times when he design'd to dine

261
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in ye Hall [he] would turn to ye left hand, & go

out into ye street, where making a Stop, when

he found his mistake, [he] would hastily turn

back & then sometimes instead of going into ye

Hall, would return to his Chamber again . . .

. . . in his Garden, wch was never out of Or-

der, . . . he would, at some seldom Times, take a

short Walk or two, not enduring to see a Weed

in it . . .When he has some Times taken a turn

or two [he] has made a sudden Stand, turn'd

himself about, run up ye Stairs [&] like another

A[r]chimides, with an ευρηκα fall to write on
his Desk standing, without giving himself the

Leasure to draw a Chair to sit down on . . .

In a letter from 1727 [22, p. 27], Abraham de

Moivre set the scene as Halley, having arrived in

Cambridge, posed the crucial question to the reclu-

sive mathematician:

. . . after they had been some time together, the

Dr asked [Newton] what he thought the Curve

would be that would be described by the Plan-

ets supposing the force of attraction towards the

Sun to be reciprocal to the square of their dis-

tance from it. Sr Isaac replied immediately that

it would be an Ellipsis. The Doctor struck with

joy and amazement asked him how he knew it.

Why saith he I have calculated it . . .

Witness the birth of celestial mechanics: the embry-

onic question has been answered|

every orbital motion subject to an inverse-
square force lies on a conic having focus at
the force center

|not with a guess, but with a mathematical demon-
stration!
Semester after semester, at every college and uni-

versity, we give our students the same answer New-

ton gave to Halley, our demonstrations|so differ-

ent from Newton's|blessed by the glories of vec-

tor calculus, and in this way we honor Newton and

celebrate the emergence of celestial dynamics. In the

present article, we honor Newton in the way of Abel,

who counsels us to read the masters. We shall place

the original argument from Newton's Principia next
to a modern counterpart, delighting in the stark con-

trasts. One delightful difference: Newton's argument

requires that we first answer the converse to Halley's

question|

What force law maintains a conic motion or-
biting about the focus?

|and again, reading the master, we shall juxtapose

the Principia's very geometric proof of this reversal
with its demonstration by vector calculus. In this

mix of old and new, of geometry and analysis, some

insights and surprises make their way to the surface:

• The mathematics of the Principia is geometric
analysis, both analysis in the sense of `taking
apart' as well as analysis in the sense of calculus.
Newton's geometry is calculus| limits, deriva-

tives, integrals, acceleration, curvature|masked

as geometry.

• While less precise than their vector calculus de-
scendants, the Principia's definitions have a con-
crete, visceral character that informs our geomet-

ric and physical intuition.

• The first ten sections of the Principia (apart
from the statement of the Third Law) contain no

physics, only mathematics. Newton may write of

`forces,' but he calculates accelerations. His con-

centration on acceleration and shape reminds us

that force and mass take no part in the mathemat-

ics of the one-body problem, which occupies the

leading sections of the Principia.

• In contrast to force, curvature is deeply involved
with the Principia's orbital dynamics, yet apart
from rare oblique sightings, the dependence on

curvature remains hidden.

• Asked who should receive credit for answering
Halley's question with a demonstration rather than

a guess, historians of science bow to Newton.

Asked for evidence to back up their claim, the

historians open the Principia and point to a two-
sentence argument. We confirm that Newton's lit-
tle sketch, given air and sun, blossoms into a co-

gent proof.

• Reading the masters|Archimedes, Newton, Eu-

ler, Gauss, Riemann, . . .|can mean entering

a foreign paradigm, an unfamiliar mathematical

world where alien values, language, definitions,

tools, strategies, and assumptions frustrate our at-

tempts to understand. And so it is with the Prin-
cipia. But with persistence and prayer, even the
Principia sends up her secrets. As we slowly learn
to navigate in Newton's world, we deepen our un-

derstanding of the Principia's paradigm as well as
our own.

It may seem odd to have placed our conclusions here

in the introduction, but with these closing remarks



\master" | 2011/4/5 | 12:53 | page 263 | #273
i

i

i

i

i

i

i

i

POURCIAU: Reading the Master 263

now out of the way, we can read on unburdened by

the western need to fret and fuss about the point of it

all. As the Taoist philosopher Chuang Tzu suggests

[19, p. 126], we can now lean back and float with the

current, \going under with the swirls and coming out

with the eddies, following along the way the water

goes, and never thinking . . . "

2

We begin with Newton's generalized answer to Hal-

ley|that every orbit produced by an inverse-square

force must lie on a conic| in this section giving a

contemporary proof and in the next exploring the

Principia's original argument. But we should first
agree on some technical vocabulary, so that we can

be more precise. Any smooth map r = r(t) from an
open interval J into euclidean 3-space is a motion.
Every motion r has a velocity v = ṙ and an accel-

eration a = v̇. For the magnitude of a vector, we

choose the same letter in non-bold italic: thus, for

example, r = |r|, v = |v|, and a = |a|. (We tacitly
assume that r and v (the speed) never vanish.) We
say the motion r has an inverse-square acceleration
provided for some non-zero λ,

a =
−λ
r2

U

for all t in J . Here U stands for the unit direc-

tion vector r/r. More generally, whenever the cross-
product r × a vanishes identically, we call r an or-
bital motion. If the origin S has some significance|
it might be the focus of a conic or the pole of a spiral,

for instance|an orbital motion may be labelled a

motion about S. A sentence that would be typical
of the Principia, \A body is urged by a centripetal
force continually directed toward an immovable cen-

ter S," becomes briefer in our language: \Given a
motion about S."
Assuming that Mars traversed an ellipse with its

position vector sweeping out equal areas in equal

times, Kepler made predictions in his Astronomica
nova of 1609 that matched the careful observations
of Tycho Brahe. In Propositions I and II (Section

II, Book 1) of the Principia, Newton uses this area
principle to characterize orbital motions in general

[11, p. 40 and 42]:

Proposition I Theorem I

The areas which revolving bodies describe by
radii drawn to an immovable center of force
do lie in the same immovable planes, and are

proportional to the times in which they are de-
scribed.

Proposition II Theorem II

Every body that moves in any curved line de-
scribed in a plane, and by a radius drawn
to a point either immovable, or moving for-
wards with an uniform rectilinear motion, de-
scribes about that point areas proportional to
the times, urged by a centripetal force directed
to that point.

Today of course we translate these propositions

into the language of vectors:

Newton's Area Theorem. For any motion r = r(t),
the following are equivalent:
(a) r is orbital
(b) the (massless) angular momentum h = r × v is

constant.
(c) r is planar and sweeps out area at a constant

rate.

The proof is simple, especially once we agree that

the area swept out is

1

2

∫ t

t0

|r × v|dt,

the only slippery step being to show r is planar when

h vanishes everywhere, but in this case the derivative

U̇ vanishes everywhere (recallU = r/r), indicating
that the motion lies on a fixed ray from the origin.

That U̇ remains zero follows from a simple fact:

U̇ =
h × r

r3
(1)

Halley's question and Newton's answer involve

the relationship between the acceleration of the mo-

tion and the shape of the orbit. Moving from ac-

celeration to shape, we define the trajectory of a
motion r = r(t) to mean the subset {r(t) : t ∈ J}
of 3-space. An orbit is then just the trajectory of an
orbital motion. If a trajectory lies on a conic, say,

or a spiral, we would have a conic or spiral mo-
tion. The Principian sentence, \A body, urged by a
centripetal force continually directed toward an im-

movable center S, moves in a conic section with
focus at S," now turns into \Consider a conic mo-
tion about S." Of course conics hold some special
interest for us here, and we recall the following def-

inition: a conic is the locus of points whose distance
from a given point S (the focus) is some positive
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constant e (the eccentricity) times the distance from
a given line (the directrix). Perhaps we should put
this definition in vector dress, so it will feel more

comfortable when vector calculus comes to call. If

we let r be the position vector from the focus, d
the distance from the directrix to the focus, and e

(the eccentricity vector) a vector of length e which
points perpendicularly toward the directrix, then the

definition tells us that

r = e
(
d− r · e

e

)
,

and with the notation U = r/r and l = de, this
formula turns into the vector conic equation:

r · (e + U) = l. (2)

The constant l is called the semi-latus rectum of the
conic. Given a positive constant l and a non-zero
vector e, the vector conic equation defines a conic

with semi-latus rectum l, eccentricity e = |e|, axis
along e, and focus at the origin. When e = 0, then

(2) describes a circle of radius l about the origin,
and if l = 0, we have a ray from the origin.
At this point, we have the vocabulary and back-

ground to explore a contemporary version of New-

ton's answer to Halley. Suppose we have a motion

r = r(t) with an inverse-square acceleration, so that
for some non-zero number λ,

a(t) =
−λ
r2

U(t)

for all t in some open interval J . Crossing with the
angular momentum h = r × v, we have

a× h =
−λ
r2

U × h = −λr × h

r3

which becomes, using (1),

a × h = λU̇.

Now antidifferentiate, remembering that h is con-

stant because r is orbital:

v × h = λU + c = λ(U + e)

for some constant vectors c and e = (1/λ)c. If we
dot with r, we find

1

λ
r · (v × h) = r · (e + U),

and then permuting the entries in the scalar triple

product uncovers the vector conic equation (2):

h2

λ
= r · (e + U).

When the constant vector h vanishes, this reduces

to U = −e, and the motion must then lie on a

fixed ray from the origin. If h does not vanish, but

e does, we conclude r = h2/λ, so the orbit lies on
a circle centered at the origin. Supposing neither h

nor e vanishes, we have seen that the vector conic

equation (2) defines a conic with focus at the origin.

And that seals it:

Newton's Shape Theorem. Apart from motion on
a ray from the center, every motion with an inverse-
square acceleration must be a conic motion about
the focus.

A second proof of the Shape Theorem is quick

but sly. Assume again that

a(t) =
−λ
r2

U(t).

Then of course h remains constant, but (surprise!)

so does the vector

L =
1

λ
v × h −U.

To check, compute the derivative:

L̇ =
1

λ
a× h− h × r

r3

=
1

λ

(−λ
r2

U

)
× h− h ×U

r2
= 0.

Now just dot r with L + U,

r · (L + U) =
1

λ
r · (v × h) =

h2

λ
,

and we recognize the vector conic equation (2).

That's all there is to it.

The sly part of this proof is (un)clear: why would

one expect the vector 1
λ
v×h−U to be constant? The
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secret lies in a formula for the eccentricity vector e.

Given any conic motion r = r(t), if we differentiate
the vector conic equation,

r · (e + U) = l,

and solve for the (constant) eccentricity vector e, we

obtain the

Eccentricity Formula. For any motion r = r(t)
satisfying the vector conic equation (2),

e =
l

h2
v × h −U. (3)

Of course we began with an inverse-square motion,

not a conic motion, but if we had had a conic motion,

then the vector (l/h2)v × h − U, representing as

it does the eccentricity vector, would have been a
priori constant. Knowing that λ turns out to be h2/l
(see our first proof), it seems natural then to suspect

that L = (1/λ)v × h − U should be constant in

the case of inverse-square acceleration. If you do

not like this sneaky proof of the Shape Theorem,

blame Laplace. The vector L, sometimes called the

Laplace-Runge-Lenz vector, has the history of its

rediscoveries etched in its name.

Now that we have seen two contemporary proofs,

let us drift back in time, back to the 1680s, to exam-

ine Newton's original argument for the Shape The-

orem in the Principia.

3

Only with some nervousness, do we open Newton's

monumental work Philosophiae Naturalis Principia
Mathematica. It had a reputation in 1687; it has a
reputation still|a reputation for being impenetra-

ble. In the latter half of the eighteenth century and

on into the nineteenth, this reputation fed a cottage

industry of writing notes and commentaries devoted

entirely to `understanding' the Principia. (The indus-
try may have declined, but it still produces excellent

commentaries from time to time: witness [5] and [6],

just out in 1995.) Always formal, terse, and crabbed

in his scholarly work, Newton took these stylistic

tendencies to their limit in the Principia. Why? A
decade earlier, his theory of colors had been attacked

by Leibniz, Hooke, Linus, Lucas, as well as others,

and Newton had detested the controversy. In a shrill

letter to Henry Oldenburg, who was then Secretary

of the Royal Society, Newton despairs, \I see I have

made myself a slave to Philosophy, but if I get free

of Mr. Linus's business I will resolutely bid adew

to it eternally, excepting what I do for my private

satisfaction or leave to come out after me. For I see

a man must either resolve to put out nothing new or

become slave to defend it." [7, p. 198] Of course,

Newton did not \leave [the Principia] to come out
after [him]," but he did choose to limit his readership

and therefore his potential critics by composing in

an icy, mathematical style, ultimately producing 500

pages of dense Latin text|definitions, axioms, lem-

mas, theorems, propositions, demonstrations, scho-

lia, and figures, all fixed in place, a massive ordered

regiment of abstract formality. According to a close

friend of Newton's [2, p. 168] controversy of any

kind

made sr Is[aac] very uneasy; who abhorred

all Contests . . . And for this reason, mainly to

avoid being baited by little Smatterers in Math-

ematicks, he told me, he designedly made his

Principia abstruse; but yet so as to be under-

stood by able Mathematicians, who he imag-

ined, by comprehending his Demonstrations

would concurr with him in his Theory.

Yet even the most able mathematicians of the day

struggled with the Principia. The confident young
mathematician Abraham de Moivre happened to be

visiting the Duke of Devonshire when Newton ar-

rived to present the Duke with a copy of the new

work [21, p. 471]:

[de Moivre] opened the book and deceived by

its apparent simplicity persuaded himself that

he was going to understand it without diffi-

culty. But he was surprised to find it beyond

the range of his knowledge and to see him-

self obliged to admit that what he had taken

for mathematics was merely the beginning of a

long and difficult course that he had yet to un-

dertake. He purchased the book, however; and

since the lessons he had to give forced him to

travel about continually, he tore out the pages

in order to carry them in his pocket and to study

them during his free time.

Prepared by its scary reputation, we cannot con-

jure up the initial poise of de Moivre as we open

the Principia, but prepared for some hard work, let
us take a look at Newton's argument for the Shape

Theorem. Actually, to do this in the proper order, we

should close the Principia for the moment and begin
nearer the beginning, returning to Halley's call on

Newton in 1684. Earlier we have read de Moivre's

description of their meeting [22, p. 27]:
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. . . after they had been some time together, the

Dr asked him what he thought the Curve would

be that would be described by the Planets sup-

posing the force of attraction towards the Sun

to be reciprocal to the square of their distance

from it. Sr Isaac replied immediately that it

would be an Ellipsis. The Doctor struck with

joy and amazement asked him how he knew it.

Why saith he I have calculated it . . .

But stopping here is a rude interruption, for de

Moivre continues [7, p. 283],

. . . whereupon Dr Halley asked him for his cal-

culation without any farther delay, Sr Isaac

looked among his papers but could not find it,

but he promised him to renew it, & sent it.

It would be three months before Newton made good

his promise, but idleness had not caused the delay,

for he not only renewed his calculation for the el-

lipse, but embedded that calculation in a nine-page

tract, De motu Corporum in gyrum (On the Mo-
tion of Bodies in Orbit), which Halley received in
November.

It is in De motu then that we should look for
Newton's original demonstration of the Shape The-

orem, that an inverse-square force implies conic or-

bits. Thumbing through its pages, we pass a line

of definitions, hypotheses, theorems, corollaries, and

problems until we stop at a familiar-looking claim

[12, VI, 49]:

Scholium The major planets orbit, therefore,
in ellipses having a focus at the centre the Sun
. . . exactly as Kepler supposed.

The Shape Theorem (at least for ellipses)! Ea-

gerly we anticipate the proof | hunched over the

scholium, eyes narrowed, pencil poised | but then

the adrenaline seeps away as we scan down the page

to find . . . nothing. Newton has left the Shape The-

orem, his answer to Halley, as a bald claim, com-

pletely unsupported! Because the scholium directly

follows:

Problem 3 A body orbits in an ellipse: there is
required the law of centripetal force tending to
a focus of the ellipse.

we would guess that Newton must have viewed the

Shape Theorem as a trivial corollary of his solution

to Problem 3, or, more generally, of what we shall

call

Newton's Acceleration Theorem. Every conic mo-
tion about the focus has an inverse-square acceler-
ation.

Not understanding how the Shape Theorem would

follow trivially from the Acceleration Theorem, we

turn from De motu to the Principia, expecting the
fuller development there to enlighten us.

Halley's question in August of 1684 had reseeded

Newton's interest in celestial mechanics, and De
motu was just the first little sprout. In January of
1685, he wrote Flamsteed, the Astronomer Royal,

\Now that I am upon this subject, I would gladly

know ye bottom of it before I publish my papers."

[7, p. 286]. What understatement: between Novem-

ber of 1684 and April of 1687, Newton came to

\know ye bottom of it," and the nine-page treatise

exploded into a five hundred page masterpiece.

Now remember that De motu had left the Shape
Theorem unproved. And the 1687 Principia? No bet-
ter! In Section III of Book I, Newton demonstrates

Propositions XI-XIII, which, taken together, estab-

lish the Acceleration Theorem and then follows with

the Shape Theorem dressed as a corollary [11, p. 61]

to this trio of propositions:

Cor. I. From the three last Propositions it fol-
lows, that if a body P goes from place P with
any velocity in the direction of any right line
PR, and at the same time is urged by the ac-
tion of a centripetal force that is inversely pro-
portional to the square of the distance of the
places from the center, the body will move in
one of the conic sections, having its focus in
the center of force . . .

But again, no proof. Worse yet, no one com-

plained|not Halley, not Leibniz, not Huygens, not

de Moivre|until, in October of 1710, twenty-three

years after the publication of the Principia, Johann
Bernoulli finally pointed out the obvious: Corollary I

needed a demonstration. By this time, however, per-

haps getting an early wind of Bernoulli's criticism,

Newton had already decided to fill the gap, instruct-

ing his editor, in a letter dated 11 October 1709,

to slip the following argument [13, p. 5{6] into the

second edition (1713) of the Principia:

Nam datis umbilico et puncto contactus & po-
sitions tangentis, describi potest Sectio con-
ica quae curvaturam datam ad punctum illud
habebit. Datur autem curvature ex data vi cent-
tipeta: et Orbes duo se mutuo tangentes eadem
vi describi non ossunt.
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For the third edition (1726), Newton added to this

shockingly brief sketch the word `velocity� in two

places, resulting in [11, p. 61]

Newton's Argument for

the Shape Theorem

For the focus, the point of contact, and the
position of the tangent, being given, a conic
section may be described, which at that point
shall have a given curvature. But the curvature
is given from the centripetal force and velocity
of the body be given; and two orbits, touching
one the other, cannot be described by the same
centripetal force and the same velocity.

Brevity may be the soul of wit, but it may be

the seed of confusion as well. No one laughs when

a fundamental proposition of celestial mechanics is

followed by a two-sentence sketch which fails to per-

suade. At least Newton's plan, although strikingly
different from what we saw in Section 2, seems both

familiar and clear| to prove that every solution to

a given initial-value problem has a particular form,

we exhibit a solution of that form and then invoke

a uniqueness principle|but connecting all the dots

in the outline may be another story especially when

some of the dots themselves are missing.

Expanding Newton's sketch in a natural way, we

arrive at what we take as his intended strategy:

Newton's Strategy for Proving

the Shape Theorem

1. Suppose given any motion r̄ = r̄(t) with an
inverse-square acceleration. At some time t0, note
the position r0, velocity v0, and curvature κ0 of

the motion r̄.

2. Construct a conic C, having focus at the origin,
that passes through the tip of r0 with tangent par-

allel to v0 and curvature κ0.

3. On the conic C, put a motion r = r(t) about the
focus that leaves the tip of r0 with velocity v0.

(Newton never mentions this step, which involves

making sure the position vector sweeps out area

at a uniform rate, but it's a simple matter, and one

that he probably took for granted.)

4. From Propositions XI{XIII (the Acceleration The-

orem), infer that r = r(t), a conic motion about
the focus, must have an inverse-square accelera-

tion.

5. Thus both r and r̄ have inverse-square acceler-

ations, but even better, the matching of position,

velocity, and curvature in steps (2) and (3) forces

r and r̄ to share the same proportionality constant.

6. Finally, noting that r and r̄ now both solve the

same initial-value problem, invoke a uniqueness

principle to conclude that r = r̄, proving that our

given inverse-square motion r must be a conic

motion about the focus as desired.

As we begin to check whether this six-step strat-

egy unfolds further into a convincing proof, we can

see already that step (2) will block us, unless we

know a little about the curvature of conics. For a

motion r = r(t), the curvature κ is |Ṫ|/v and the
radius of curvature ρ is 1/κ, where T is the unit

tangent v/v. From the velocity and the acceleration,
we can easily find the curvature from a well-known

formula:

ρ =
v3

|a× v| . (4)

To calculate the radius of curvature for a conic,

we start with any motion r = r(t) satisfying the
vector conic equation (2),

r · (e + U) = l,

differentiate twice to get

a · (e + U) + v · h × r

r3
= 0,

and insert our formula (3) for the eccentricity vector

e to see that

l

h2
a · (v × h) + v · h × r

r3
= 0.

Sliding the entries in the scalar triple products gives

back

|a× v| =
1

l

(
h

r

)3

,

which leads to

ρ =
v3

|a× v| = l
(rv
h

)3

,

or, rephrasing, to the

Conic Curvature Lemma. For any conic motion
with semi-latus rectum l,

ρ =
l

|U× T|3 . (5)

Newton cast this lemma more elegantly [12, III

p. 159]: If the line perpendicular to the conic at P
meets the focal axis at N , then ρ varies as PN 3.
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(The equivalence to our lemma follows from a geo-

metric fact about conics: the projection of PN onto

SP is the semi-latus rectum.) This lovely property is
just one of several striking results on curvature ob-

tained by Newton in his 1671 tract on series and

fluxions. \The problem [of curvature]," he wrote

in this tract, \has the mark of exceptional elegance

and of being pre-eminently useful in the science of

curves." [12, III p. 151] From an insight in hisWaste
Book made around December of 1664 (over twenty
years before the Principia), we have evidence that
Newton also recognized the fundamental place of

curvature in the study of orbital motions: \If the

body b moved in an Ellipsis, then its force in each
point (if its motion in that point bee given) may

be found by a tangent circle of equall crookedness

[read curvature] with that point of the Ellipsis." [22,

p. 14] It is perhaps surprising then that curvature

plays no role in the 1687 Principia. However, in the
1690s Newton made radical plans for revising the

first edition, plans that would have made curvature

the centerpiece of his celestial mechanics. Sadly, this

radical revision never made it into print, and in the

end Newton contented himself with relatively minor

changes, squeezing some curvature methods into the

second (1713) and third (1726) editions as tacked-

on corollaries. For more on the role of curvature in

Newton's celestial mechanics, see [3, 4, 10, and 17].

Now that we know something about the curvature

of conics, we can begin to connect all the dots in a

proof of the Shape Theorem inspired by Newton's

two-sentence argument in the Principia. We follow
the six-step strategy above, for it seems to be the

one plausible interpretation of what Newton had in

mind.

Step 1: We give ourselves any motion r̄ = r̄(t) with
an inverse-square acceleration: for some nonzero λ,
suppose r̄ solves the initial-value problem

r̈(t) =
λ

r2
U(t), r(t0) = r0, ṙ(t0) = v0

on the open interval J . If r0 × v0 = 0, then the

motion lies on a fixed ray through the origin, but

apart from this special case, we need to prove that

r̄ is a conic motion about the focus. Since r̄ is an

orbital motion, the orbit lies in a fixed plane and the

angular momentum remains fixed at h0 = r0 × v0.

Step 2: In this fixed plane, we now construct a conic
that \fits" the orbit of r̄. Let ρ0 the radius of curva-
ture of r̄ at r̄(t0) = r0. Put

l = ρ0|U0 × t0|3, e =
l

h2
0

v0 × h0 − U0

whereU0 = r0/r0, T0 = v0/v0, and h0 = r0×v0 .

(As r0 and v0 are not parallel, h0 6= 0 and e is well-

defined.) The vector-conic equation (2)

r · (e + U) = l

now defines a particular conic C. One easily checks
that C has a focus at the origin, and that C passes
through the tip of r0 with its tangent parallel to v0

and its radius of curvature equal to ρ0.

Step 3: At this point, we would like to apply New-
ton's Acceleration Theorem to our constructed conic,

but the Acceleration Theorem applies only to conic

motions, indeed only to conic motions about the fo-
cus, not to mere conic loci. Therefore, on the conic

locus C we now place a motion about the focus. (To
put it differently, we must parameterize the conic

locus C in a way that keeps the acceleration vector
pointed at the focus.) By the Area Theorem, to make

a motion about the focus, we need only make a mo-

tion whose position vector from the focus sweeps out

area at a constant rate, and intuitively we can do this

by arranging for the area swept out to be our parame-

ter. More precisely: Using arc-length measured from

the tip of r0, let r1 = r1(s) be the unit-speed motion
on C having initial velocity T0. The real function

a(s) = t0 +

∫ s

0

1

h0
|r1(s) × ṙ1(s)|ds

is smooth and strictly increasing. (Note that h0 =
|r0 × v0| 6= 0 and |r1(s) × ṙ1(s)| 6= 0 for all s,
because tangents to C never pass through the focus.)
Take the (smooth) inverse a−1 = a−1(t), and use it
to define a motion r = r(t) on C by

r(t) = r1

[
a−1(t)

]
.

This constructed conic motion r is also a motion

about the focus S, for it has constant angular mo-
mentum h0 = r0 × v0. Moreover, r(t0) = r0 and

ṙ(t0) = v0.
We haven't done anything here, by the way, that

Newton couldn't do. You can find him geometrically

constructing motions about the focus, on given conic

loci, in the Principia, Book I, Section VI [11, p.
109{116]. Such constructions are even implicit in

Newton's proof of the Area Theorem in Propositions

I and II, at the very beginning of the Principia. In
his two-sentence argument for the Shape Theorem,

Newton fails to mention the problem of putting an

orbital motion on his constructed conic, but at the

Principia's level of rigor, this is a trivial omission.
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Refer to [15 and 16] for some discussion of this

point.

Step 4: We apply the Acceleration Theorem (Propo-
sitions XI{XIII, Section III, Book 1) to r = r(t),
our newly minted conic motion about the focus, and

conclude that r has an inverse-square acceleration:

for some nonzero µ,

r̈(t) =
µ

r2
U(t)

for all t.

Step 5: To prove that µ = λ, we return to the curva-
ture matching we did in Step 2. By design, both our

constructed motion r and our given motion r̄ share

the same radius of curvature at the tip of r0, namely

ρ0. For the conic motion r, by (4),

ρ0 =
v3
0

|a0 × v0|
=

v3
0∣∣∣ µ

r2
0

U0 × v0

∣∣∣
=

h2
0

µ|u0 × T0|3
.

Similarly, for the given motion r̄,

ρ0 =
h2

0

λ|U0 ×T0|3
.

It follows that µ = λ.

Step 6: We now have two solutions, the constructed
conic motion r and the given inverse-square motion

r̄ to the initial-value problem

r̈(t) =
λ

r2
U(t), r(t0) = r0, ṙ(t0) = v0

on the interval J . By standard uniqueness theorems
(equivalent to Propositions XLI and XLII, Section

VIII, Book I, Principia) for differential equations,
we conclude that r = r̄ on J , and it follows that our
given inverse-square motion must be a conic motion

about the focus, as expected.

This completes a \Newtonian" proof of the Shape

Theorem| that every motion having an inverse-
square acceleration is a conic motion about the
focus|a proof springing from Newton's two-

sentence argument in the Principia. Is this proof the
contemporary version of what Newton had in mind?

Probably, but the sheer brevity of his sketch leaves

room for other views. On this issue, read [15, 16,

20, and 23].

Of course, our \completed" Newtonian demon-

stration is really anything but complete, since in step

four, to ensure that our constructed conic motion had

an inverse-square acceleration, we called on the un-
proved reversal of the Shape Theorem:

Newton's Acceleration Theorem. Every conic mo-
tion about the focus has an inverse-square acceler-
ation.

We now intend to study the original argument for

the Acceleration Theorem and then contrast the orig-

inal with what we might do today, but as we return

with this intention to the Principia (and specifically
to Propositions XI, XII, and XIII in Book I), we must

first page back to Proposition VI in order to under-

stand how Newton measures orbital acceleration.

4

In May of 1686, just one month after the Principia
was presented to the Royal Society, Halley sent news

to Newton of the plans for printing and publication,

but his cheerful letter ended with a sour lemon [21,

p. 446]: \There is one thing more I ought to informe

you of," he wrote,

that Mr Hook has some pretensions upon the

invention of ye rule of the decrease of Grav-

ity, being reciprocally as the squares of the dis-

tances from the Center. He sais you had the

notion from him . . . how much of this is so,
you know best, as likewise what you have to

do in this matter, only Mr Hook seems to ex-

pect you should make some mention of him, in

the preface . . .

\Now is not this very fine?" sneered back Newton

[21, p. 448],

Mathematicians that find out, settle & do all

the business must content themselves with be-

ing nothing but dry calculators & drudges &

another that does nothing but pretend & grasp

at all things must carry away all the invention

. . . And why should I record a man for an In-
vention who founds his claim upon an error

therein & on that score gives me trouble? He

imagine he obliged me by telling me his The-

ory, but I thought myself disobliged by being

upon his own mistake corrected magisterially

& taught a Theory wch every body knew & I

had a truer notion of then himself.

In his fury at Hooke's pretensions, Newton struck

back with his pen, literally striking out almost every

reference to Hooke in the entire Principia.
Even so, Hooke did in fact make one significant

contribution to the Principia for he was the first to
see orbital motions as the geometric signature of a
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central attraction that pulls the orbiting body away

from its linear inertial path. In November of 1679

as the new Secretary of the Royal Society, Hooke

had asked Newton to [22, p. 22] \please . . . con-
tinue your former favors to the Society communicat-

ing what shall occur to you that is Philosophicall,"

and he added,

for my own part I shall take it as a great fa-

vor . . . if you will let me know your thoughts
of [my hypothesis] of compounding the celes-

tiall motions of the planets of a direct [straight]

motion by the tangent & an attractive motion

towards the centrall body.

Hooke had this hypothesis as early as 1670, a time

when Newton's eyes were still clouded by thoughts

of \outward endeavor" and \Cartesian vortices."

Still, Hooke's physical insight could take him only

so far. In his hands, the hypothesis remained just

that: a guess, a guess rooted in physical intuition

and mechanical experiment, yet still a guess. But in

Newton's hands, the hands of a soaring mathemati-

cal imagination, Hooke's hypothesis rose to an aerie

of definitions, lemmas, and propositions. Look, for

example, at the figure Newton draws to illustrate his

proof of Propositions I and II (Section II, Book I),

where we see, for the very first time, the mathemat-

ical equivalence of central attraction and the area

law, and you behold, in its central attraction and de-

viations from the tangent, the risen form of Hooke's

hypothesis.

Later, in Proposition VI, Newton fashions from

Hooke's inward deviation a formula for measuring

the acceleration of an orbital motion. (In the Prin-
cipia, accelerations for general motions are never
even defined.) If a particle in orbital motion falls

freely toward the acceleration center S, Newton may
have reasoned that the particle could be thought of

as instantaneously in free fall from the tangent down

to its position on the orbit. In a given time t, sup-
pose a particle moves along its orbit from P to Q.
If there had been no acceleration during this time

interval, the particle would have proceeded instead

along the tangent at constant speed v to a location L.
The deviation QL, nearly parallel to SP , would be
like the \distance fallen toward S," which we would
expect to be approximately 1

2
at2, where a gives the

acceleration at P . This suggests

QL

t2
→ 1

2
a

as t → 0. Sanding top and bottom, Newton could
now have shaped the measure QL/t2 to fit squarely

into his geometric approach. First nudge L just a
bit along the tangent to the position R, making the
deviation QR exactly parallel to SP .
Because time varies as the area in orbital motions,

replace t by the area of the \sector" PSQ, and the
sector in turn by the approximating triangle PSQ,
in the process turning t into the product SP · QT
| no need to keep tabs on constant factors, such as

the missing 1/2 here, for Newton works with propor-

tions, not equations | and the measure QL/t2 into
QR/(SP ·QT )2. The limit of this ratio, as Q→ P ,
gauges the acceleration at P . In the Principia, this
measure of acceleration appears as Corollary I to

Proposition VI (Section II, Book I) [11, p. 48]. With

this corollary, Newton later derives acceleration laws

from orbit shapes.

Cor 1. If a body P revolving about the center
S describes a curved line APQ, which a right
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line ZPR touches in any point P ; and from
any other pointQ the curve, QR is drawn par-
allel to the distance SP , meeting the tangent
in R; and QT is drawn perpendicular to the
distance SP ; the centripetal force will be in-
versely as the solid SP 2 ·QT 2/QR, if the solid
be taken of that magnitude which it ultimately
acquires when the points P and Q coincide.

Before we leave the topic of acceleration, we

should take a moment to discuss the role of force

and mass in the early sections of the Principia. The
word `force' appears, as it does above in Corollary

I, in many of the definitions, axioms, corollaries,

and propositions of the Principia, but in the first
ten sections, where Newton attends to the one-body

problem, force, and mass as well, exist literally in

name only, playing no part in the mathematics. He
may talk of `force,' but Newton calculates accelera-

tions. The Cartesians, Huygens and Leibniz among

them, claimed that Newton, by introducing grav-

ity, and therefore action at a distance, brought Aris-

totelian `occult qualities' back into physics. But he

should plead innocent to this charge. In the Prin-
cipia's work on orbital motions, `force' and `grav-
ity' become merely convenient words, as Newton

stresses the relations and laws, with no comment

on causes. The cause of gravity comes up only in

a General Scholium on the final pages of the Prin-
cipia [II, p. 547]: \But hitherto I have not been able
to discover the cause of those properties of gravity

from phenomena," wrote Newton,

and I frame no hypotheses; for whatever is

not deduced is to be called an hypothesis; and

hypotheses, whether metaphysical or physical,

whether of occult qualities or mechanical, have

no place in experimental philosophy . . . And to
us it is enough that gravity does really exist,

and act according to the laws which we have

explained, and abundantly serves to account for

all the motions of the celestial bodies, and of

our sea.

Wouldn't Newton, that lover of geometry and curva-

ture, have been delighted with Einstein's view that

geometry, indeed the curvature of spacetime, is the

very cause of gravity?

After this interlude on Newton's measure of ac-

celeration, we remain in the past, looking for the

original proof of the Acceleration Theorem in the

Principia.

5

Wasting no time after Corollary I to Proposition VI,

Newton attacks a series of problems with his new

measure of acceleration. In Propositions VII through

XIII, he calculates the acceleration law for circu-

lar motions about any given point, semicircular mo-

tions about a point infinitely remote, spiral motions

about the pole, elliptical motions about the center,

and then, in a stately section all their own, elliptical,

hyperbolic, and parabolic motions about the focus.

Taken together, this final triumphant trio of propo-

sitions (XI, XII, and XIII) establishes the Accelera-

tion Theorem: Every conic motion about the focus
has an inverse-square acceleration.
Newton could have proved the Acceleration The-

orem in a single proposition covering general conic

motions, but \ . . . because of the dignity of the Prob-
lem . . . ," he writes, \I shall confirm the . . . cases by
particular demonstrations." [11, p. 57] These \partic-

ular demonstrations" naturally offer the same argu-

ment with minor variations, so we may safely choose

one of the propositions to represent all three. Turn

then to the most celebrated page of the Principia and
to Newton's analysis for Proposition XI:

Proposition XI Problem VI

If a body revolves in an ellipse; it is required to find
the law of the centripetal force tending to the focus
of the ellipse.

In the ellipse, Newton draws conjugate diameters

DK and PG, withDK parallel to the tangentRPZ.
(The midpoints of parallel chords in an ellipse lie

on a line, called a diameter of the ellipse, and the
parallel chords are then called the ordinates of the
diameter. Two diameters with the property that each
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bisects every chord parallel to the other are said to be

conjugate diameters.) From Q he drops three lines:
QR parallel to the focal radius SP , QT perpendic-
ular to SP , and Qx completing the parallelogram
QxPR. He then extends Qx until it meets PG at v
and draws PF perpendicular to DK.
Newton's analysis requires the services of three

lemmas, one of his own and two well known to

Apollonius of Perga. (For the two Apollonian lem-

mas, see [1, I p. 15 and VII p. 31] or [18, pp. 151

and 169].)

Newton's Lemma. PE = AC

Lemma 1. All parallelograms circumscribed about
any conjugate diameters of an ellipse have equal
area.

Lemma 2. In an ellipse, the squares of the ordinates
of any conjugate diameter are proportional to the
rectangles under the segments which they make on
the diameter.

As we have seen in the previous section, Newton

measures the acceleration of an orbital motion by

computing the limit of the ratio

QR

(SP ·QT )2

as Q → P . To infer an inverse-square acceleration
for this case of elliptical motion about the focus, he

must therefore prove that QR/QT2 has a limit in-

dependent of P . In fact, as we now show, Newton's
argument reveals that QT2/QR tends to the latus
rectum of the ellipse.
Because QR is Px and (by Newton's Lemma)

PE is AC , the similarity of the triangles PxV and
PEC implies

QR =
Pv · AC
PC

.

On the other hand, Newton's Lemma (again) and the

similarity of the triangles QxT and PEF give

QT =
Qx · PF
AC

=
Qx ·BC
CD

,

where the second equality follows from Lemma 1,

which assures us that PF · CD = BC · AC . We
infer

QT 2

QR
=
Qx2 · BC2

CD2
· PC

Pv · AC =
1

2
L
Qx2 · PC
Pv · CD2

,

where we have replaced 2BC2/AC by L. (Follow-
ing Apollonius, Newton calls 2BC2/AC the latus

rectum.) If now Q→ P , this last expression has the
same limit as

1

2
L
vG

PC
,

for Qv/Qx tends to one and Lemma 2 implies

Qv2

Pv · vG =
CD2

PC2
.

But vG → 2PC , so that 1
2
L(vG/PC), and thus also

QT 2/QR, must tend to L. This completes Newton's
analysis for Proposition XI: Every elliptical motion
about the focus has an inverse-square acceleration.

6

We have been \going under with the swirls and com-

ing out with the eddies, following along the way the

water goes," but now just one quick swirl remains: to

return from the Principia to the present, from New-
ton's original work on the Acceleration Theorem to

the delightful contrast of a contemporary argument.

Any conic motion r = r(t) about the focus must
satisfy the vector-conic equation (2),

r · (e + U) = l,

for some positive constant l and constant vector e.

Since r is an orbital motion, h = r×v is a constant

vector. Since r is a conic motion,

L =
l

h2
v × h −U

is a second constant vector (equal to the eccentricity

vector e by (3)). Differentiating L yields

0 =
l

h2
a× h − h× r

r3
,

and taking lengths we uncover an inverse-square ac-

celeration

a =
h2

l

1

r2
,

proving again

Newton's Acceleration Theorem. Every conic mo-
tion about the focus has an inverse-square acceler-
ation.
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Newton as an Originator of Polar Coordinates

C. B. BOYER

American Mathematical Monthly 56 (1949), 73{78

The name of Newton, indissolubly linked with the

calculus, seldom is associated with analytic geome-

try, a field to which he nevertheless made important

contributions. Newton's use of polar coordinates, for

example, seems to have been overlooked completely

in the historiography of mathematics. The polar co-

ordinate system is ascribed generally [1] to Jacques

Bernoulli in 1691 and 1694, although it has been at-

tributed [2] to others as late as Fontana in 1784. It is

the purpose here to call attention to an application of

polar coordinates made by Newton probably a score

of years before the earliest publication of Bernoulli's

work.

In the Horsley edition of the Opera of New-
ton there appears a treatise entitled Artis analyti-
cae specimina vel Geometria analytica [3] which
is essentially the same as the Newtonian Method
of fluxions, published in 1736 by Colson. The dis-
crepancy in titles | Geometria analytica or Method
of fluxions | conveniently indicates that the work

treats of coordinate geometry as well as the calcu-

lus. In fact, its analytic form stands in marked con-

trast to the synthetic style of the Principia, which
also contained some elements of the calculus. The

Method of fluxions makes systematic use of coordi-
nates in problems on tangents, curvature, and recti-

fication. Moreover, Newton did not limit himself, as

had his predecessors, to a single type of coordinate

system. Having shown how to use fluxions in find-

ing tangents to curves given in terms of Cartesian

coordinates, oblique as well as rectangular, Newton

included some examples illustrating other types. In

connection with these he gave, informally, the equiv-

alent of equations of transformation for polar and

rectangular coordinates, xx + yy = tt and tv = y,
where t is the radius vector and v is a line repre-
senting the sine of the vectorial angle associated with

the point (x, y). Following these exercises, Newton
proceeded to give a more definitive account of non-

Cartesian systems:

However it may not be foreign from the pur-

pose, if I also shew how the problem may be

perform'd, when the curves are refer'd to right

lines, after any other manner whatever; so that

having the choice of several methods, the easi-

est and most simple may always be used [4].

To illustrate his point, Newton suggested eight new

types of coordinate system, made up of various com-

binations of pairs of distances measured radially

from given points, or obliquely to given fixed lines,

or curvilinearly along arcs of circles. One of the new

systems|Newton refers to it as the \Seventh Man-

ner; For Spirals"| is essentially that now known as

polar coordinates.

Let A be the center and AB a radius of the circle
BG (Figure 1), and let D be any point on the curve

A

T

t

B

D

Gd

Figure 1.
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ADd. Then, designating BG by x and AD by y, the
curve ADd is determined by a relationship between
x and y. Newton suggested

x3 − ax2 + axy − y3 = 0

as an illustration, and for this curve he determined,

from the proportion

ẏ : ẋ :: AD : At,

the polar subtangent AT for a point D. Similarly
Newton found the polar subtangents of y = ax/b,
\which is the equation to the spiral of Archimedes",

and the curve by = xx; and, he concluded, \thus
tangents may be easily drawn to any spirals what-

ever" [5].

Following the calculation of the radius of curva-

ture for rectangular Cartesian coordinates x and y,

r = 1 + zz
√

1 + zz/ż

where z = ẏ and fluxions of independent variables
are taken as unity, Newton again turned to the cor-

responding problem in polar coordinates. Using a

diagram and a notation similar to those applied in

connection with tangent problems | but with the

radius AB of the reference circle taken as unity |

he derived the result

r sinψ =
y + yzz

1 + zz − ż
,

where z = ẏ/y and ψ is the angle between the tan-
gent and the radius vector (fluxions of independent

variables again being taken as unity). Newton ap-

plied this formula, virtually the same as the modern

equivalent, to the spiral of Archimedes and to the

curves ax2 = y3 and ax2 − xy = y3. In conclu-

sion he added, \And thus you will easily determine

the curvature of any other spirals; or invent rules

for any other kinds of curves". That he realized the

significance of his use of polar coordinates seems

to be implied by his further comment that he here

had \made use of a method which is pretty different

from the common ways of operation" [6].

The comparison of the parabola with the spiral

was a favorite topic of the seventeenth century, and

in his treatment of this question, in the Method of
fluxions, Newton made use of a polar coordinate sys-
tem yet a third time. Here, however, his scheme dif-

fered from that previously presented. The notation,

too, was modified, but this may have been done in

order to avoid confusion in the simultaneous use of

d C
G

H K
D

A B b

h

Figure 2.

polar and Cartesian coordinates. If D is any point

on a curve ADd, Newton took the coordinates of D
as z and v, where z is the radius vector AD and v is
the circular arc BD (Figure 2). That is, whereas his

earlier coordinates were, in modern notation, (r, aθ),
Newton this time used (r, rθ). Then if the relation
between z and v is given \by means of any equa-
tion"; and if a new curve AHh, given in rectangular
coordinates AB = z and BH = y, is so determined
that, for all corresponding positions of D and H ,
the arc AD is equal to the arc AH ; then Newton
showed that

ẏ = v̇ − vż/z,

or, if ż is taken as unity, ẏ = v̇ − v/z. In par-
ticular, \if zz/a = v is given as the spiral of
Archimedes", then v̇ = 2z/a, and hence z/a = ẏ
and zz/(2a) = y. The lengths of the spirals z3 =
av2 and z

√
a + z = v

√
c are shown in like manner

[7] to correspond respectively to lengths measured

along the semi-cubical parabola z3/2 = 3a1/2y and
the curve

(z − 2a)
√
ac+ cz = 3cy.

Evidence indicates [8] that the Method of flux-
ions was composed by 1671, at which time Jacques
Bernoulli was in his teens; and there seems to be

no reason for suspecting the sections on polar co-

ordinates as later interpolations. The three pertinent

passages would appear to be a natural part of the

whole; and Horsley, after his editorial examination

of three different manuscript copies of the work, ap-

parently saw no reason to question the date or au-

thenticity of this material. It is surprising therefore
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that this contribution to coordinate geometry should

have gone unnoticed so completely that the use of

polar coordinates invariably is attributed to others

of later periods. Newton is not entitled to priority

of publication, for the work appeared posthumously

in 1736; but evidence indicates that he was the first

one to adopt a system of polar coordinates in strictly

analytic form [9]. Moreover, his work in this con-

nection is superior, in flexibility and generality, to

any similar proposal to appear during his lifetime.

Priority in the publication of polar coordinates

seems to go to Jacques Bernoulli who in the Acta
Eruditorum of 1691 proposed measuring abscissas

along the arc of a fixed circle and ordinates radi-

ally along the normals. Three years later, however,

he presented in the same journal a system identical,

both in conception and notation, with that first pro-

posed by Newton. He used the coordinates y and
x, where y is the length of the radius vector of the
point and x is the arc cut off by the sides of the vec-
torial angle on a circle of radius a described about
the pole as center. That is, Bernoulli too adopted

the coordinates (r, aθ), whereas in his earlier work
he had used a less convenient system equivalent to

(a − r, aθ). Bernoulli, like Newton, was interested
primarily in applications of his system to the calcu-

lus; and so he also derived a formula for radius of

curvature in polar coordinates [10] and applied it to

the spiral of Archimedes, y = ax : c.
The polar coordinates of Newton and Bernoulli in

1704 were applied by Varignon [11] to a comparison

of the higher parabolas and spirals of Fermat, but no

reference was made to Newton's work. Varignon as-

cribed the idea to Jean Bernoulli and gave to Jacques

Bernoulli only the credit for priority of publication.

His information in this connection was perhaps not

unbiased; and his treatise is tedious and unimagina-

tive in comparison with the work of Newton, at that

time still unpublished.

In 1729, two years after Newton's death, Hermann

approached polar coordinates from a new point of

view. He did not concern himself with spirals, as

had Newton, Bernoulli, and Varignon, nor was he

chiefly interested in the calculus. He proposed the

study of loci \through the relationship which vec-

torial radii bear to the sine or cosine of the angles

of projection, from the consideration of which the

properties of curves flow just as elegantly as they

are brought out in the usual manner" [12]. That is,

Hermann seems first to have thought of polar co-

ordinates as a part of analytic geometry proper. He

gave equations for transforming from Cartesian to

polar coordinates, and he applied his new system to

a number of algebraic curves, including the conics.

It should be noted, however, that he did not express

his equations specifically in modern form, but wrote

them in terms of z,m, and n, where z is the radius
vector and m and n are the sine and cosine respec-
tively of the vectorial angle. Moreover, where his

predecessors had applied the polar system to spirals

alone, Hermann inversely used the scheme exclu-

sively for algebraic curves.

Euler in 1748 seems to have been the first one to

combine the points of view of Newton and Hermann.

In the influential Introductio in analysin infinitorum
he devoted a large portion of each of two chapters to

polar coordinates, one dealing with algebraic curves

and the other with spirals. In the first case [13] he

gave the equations of transformation

x = z cosφ, y = z sinφ,

introducing modern trigonometric symbolism into

polar coordinates. He gave general consideration to

z as a function of sinφ and cos φ, and he noted in
more detail the limac�ons

z = b cos φ± c

and the conchoids

z =
b

cosφ± c
.

In the treatment of transcendental curves Euler

adopted a slightly different notion and notation for

the independent variable in polar coordinates [14].

Here he studied curves of the form z = f(s), where
the argument s is the arc of a unit circle which mea-
sures the angle φ, feeling, apparently, that coordi-
nates must of necessity denote lengths. In connection

with the spiral curves which he drew, Euler made

use of the general angle, allowing s to increase in-
definitely, both positively and negatively. The spiral

of Archimedes therefore appeared, perhaps for the

first time, in its dual form [15]. The work of Eu-

ler is so thorough and systematic that polar coordi-

nates frequently are attributed to him [16]. Certainly

no one after him deserves credit as the inventor of

the system. Fontana in 1784 did perhaps supply the

name \polar equation" of a curve [17], and he may

have been first [18] in studying analytically curves

of the form r = f(θ, sin θ, cos θ); but one gets the
very definite impression that his ideas and manner

of treatment were inspired by Euler. It is probably

not too much to say that although Newton probably
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originated polar coordinates, it was the work of Euler

which was the decisive factor in making the system

a traditional part of elementary analytic geometry.

Polar coordinates gradually achieved greater promi-

nence until in 1857 there appeared an entire volume

devoted to the analytic geometry of this system in

the plane and in space [19]. In 1874 the system was

generalized to include elliptic polar coordinates and

hyperbolic polar coordinates [20].

It may not be inappropriate to point out here

that bipolar coordinates, recently ascribed [21] to

Cournot in 1847, also were proposed by Newton.

Such a system appeared in the Method of fluxions
as the \Third Manner" of determining a curve. Here

Newton considered [22] the \ellipses of the second

order", now known as \ovals of Descartes". In La
g�eom�etrie [23] Descartes had proposed these curves
in connection with problems in refraction, but he

handled them, as Newton remarked, \in a very pro-

lix manner", without the application of coordinates.

Newton therefore seems to have been the originator

of bipolar coordinates in the strict sense. Represent-

ing by x and y the \subtenses" (or distances) of
a variable point from two fixed points (or poles),

Newton wrote \their relation" for the ovals as

a + ex/d− y = 0.

From this equation he found the ratio of the fluxions,

and hence the tangent line. Newton pointed out fur-

ther that for a − ex/d− y = 0, a contrary sense is
indicated in the construction; and he noted that if

d = e, the curve becomes a conic section. He closes
this topic with the remark that \it would be easy . . .

to give more Examples".

Newton's generalizations of the coordinate idea

may not be among his greatest contributions to math-

ematics, but they do entitle him to a larger place in

the history of analytic geometry. In this field, as well

as in infinitesimal analysis, one may appropriately

declare, Ex ungue leonem.
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Newton's Method for Resolving Affected

Equations

CHRIS CHRISTENSEN

College Mathematics Journal 27 (1996), 330{340

During the 300 years since Newton and Leibniz be-

gan disputing which of them had discovered the cal-

culus, debates have continued over the credit due to

Newton for various scientific and mathematical

achievements. Recent research by Nick Kollerstrom

[11] has led him to credit Thomas Simpson (1710{

1761) with the first discovery and publication in

1740 [18] of what is now called Newton's method.

William Dunham [8] has pointed out the irony

that Newton, who \bitterly resented people's getting

credit for results they did not originally discover,"
is credited with a method of approximation that \in

its full generality seems to be due to" Simpson.

The debate over priority for Newton's method

may now be settled, but almost forgotten in the dis-

cussion is that Newton presented his method for ap-

proximating real roots side by side with a similar

method for writing y in terms of x when y is im-
plicitly defined in terms of x by a polynomial equa-
tion|a so-called \affected equation." This second

\Newton's method" is an important tool in modern

algebraic geometry and, although it is more subtle

than his method for approximating roots, it can be

understood by precalculus students.

Richard S. Westfall [22] highlights how Newton

used his method for resolving affected equations to

integrate algebraic equations:

. . . in the mid-1660s, Newton was working
toward a general method of squaring curves,

as they put it then; let us say \integration"

for simplicity. Earlier mathematicians on whom

he drew had established the algorithm for in-

tegrating simple powers and had understood

that polynomials can be integrated by the same

procedure term by term. What was one to do

with curves such as y = (1 − x2)1/2 and

y = 1/(1 − x)? With the binomial theorem
Newton succeeded in expanding such curves

into infinite series that he could integrate term

by term and thus approximate the answer for

some value of x however close he chose. Later
he developed an iterative procedure by which

to expand \affected" equations . . . into infinite
power series in [fractional] powers of x. With
that he had a general method to integrate all of

the algebraic equations then known to mathe-

matics. No earlier mathematician had even ap-

proached a method of this power.

Though Newton's disciples Stirling and Taylor fully

appreciated his second method, it \seems to have

been lost sight of . . . after their time" [7, p. 396]. S.
Abhyankar [2] has sketched its subsequent history:

Newton's theorem was revived by Puiseux in

1850 [16], so it acquired the name \Puiseux

expansion" which is a misnomer. What's more

is that Puiseux's proof, being based upon

Cauchy's integral theorem, applies only to con-

vergent power series with complex coefficients.

On the other hand, Newton's proof, being al-

gorithmic, applies equally well to power series,

whether they converge or not. Moreover, and

that is the main point, Newton's algorithmic

proof leads to numerous other existence theo-

rems while Puiseux's existential proof does not

do so.

In what follows, I will first briefly examine New-

ton's method for approximating real roots and com-

pare it to the method of Raphson and the one found

in today's calculus texts. Then I will show how New-

279



\master" | 2011/4/5 | 12:53 | page 280 | #290
i

i

i

i

i

i

i

i

280 The Seventeenth Century

ton generalized his method for approximating real

roots to a method for resolving affected equations.

Both of Newton's methods appear in his Methods
of series and fluxions [13] (composed in 1671 but
first published in 1736), in his On analysis by infi-
nite equations [12] (1669), and in his two famous
letters to Leibniz in 1676 | the Epistola prior [14]
and the Epistola posterior [15]. In each, Newton
gives, as examples, approximating a real root of the

polynomial equation y3 − 2y− 5 = 0 and resolving
the affected equation y3+axy+a2y−x3−2a3 = 0.
I will refer to Newton's more compact exposition of

the methods in the two letters, relevant portions of

which are included here as Appendices I and II.

Leibniz, in 1674, wrote to Oldenburg, secretary of

the Royal Society, saying that he possessed \general

analytic methods depending on power series." Old-

enburg in reply told him that Newton and Gregory

had used such series in their work. In answer to a

request for information, Newton wrote the Epistola
prior on June 13, 1676, giving a brief account of his
method. He here enunciated the binomial theorem

along with his methods for approximating real roots

and resolving affected equations. Leibniz replied on

August 27 asking for fuller details, and Newton sent

through Oldenburg an account of the way in which

he had been led to some of his results, the Epistola
posterior of October 24, 1676.

Newton's method for

approximating roots

Newton, in the Epistola prior (see the first table in
Appendix I), exhibits his method of approximating

real roots by way of the cubic y3 − 2y − 5 = 0.
He first guesses that there is a root near y = 2. But
y = 2 is not a solution to the equation; so Newton
modifies his guess slightly by substituting y = 2+p
into the equation and obtains

p3 + 6p2 + 10p− 1 = 0. (1)

He neglects the non-linear terms \on account of their

smallness", so the linear portion of the polynomial

must vanish; that is, 10p+ 1 = 0. Thus p = 1/10,
and Newton's new approximation for the root is y =
2 + p = 2 + 0.1.
Because y = 2.1 is not a root, he repeats the

process by modifying p. He substitutes p = 0.1 + q
into the equation in p, which yields

q3 + 6.3q2 + 11.23q+ 0.061 = 0. (2)

Again neglecting higher-order terms, he selects q
so that 11.23q + 0.061 = 0. Therefore, q =
−0.061/11.23 = −0.0054, and Newton's approx-
imation for the root is now y = 2 + 0.1− 0.0054.
Similarly, q is modified. He substitutes q =

−0.0054 + r into the equation in q, getting

r3 + 6.2838r2 + 11.162r+ 0.000541551 = 0, (3)

and he selects r so that 11.162r+ 0.0005416 = 0.
So,

r = −0.0005416/11.162 = −0.00004852.

The example ends with y = 2 + 0.1 − 0.0054 −
0.00004852 as an approximation to the real root near
y = 2.

Raphson's method applied to Newton's cubic.

What if we apply Raphson's method to Newton's

cubic? We might begin, as Newton did, by guessing

that there is a root near y = 2, substituting y = 2+p
into the cubic to obtain (1). Like Newton, we would

let 10p− 1 = 0, solve to get p = 1/10, and obtain
y = 2 + 0.1 as the new approximation.
Here is where their methods differ. Newton lets

p = 0.1 + q and substitutes into the equation in
terms of p, whereas Raphson would let y = 2.1 + q
and would substitute this into the original cubic.
Raphson too obtains (2), which he would solve by

the same reasoning as Newton, making his next ap-

proximation for the root be y = 2.1 + q = 2.0946.
If Raphson continued, he would let y = 2.0946+r

and substitute this, again, into the original cubic,
where Newton substituted q = −0.0054+r into (2),
the expression for the original cubic in terms of the
variable q. Although the methods are algebraically
equivalent, essentially Newton expresses his algo-

rithm recursively where Raphson expresses it as a
simple iterative procedure.
Cajori [6] compares Newton's method and Raph-

son's method:

In 1690, Joseph Raphson (1648{1715), a Fel-

low of the Royal Society of London, published

a tract, Analysis aequationum universalis [17].
His method closely resembles that of Newton.

The only difference is this, that Newton de-

rives each successive step p, q, r, of approach
to the root, from a new equation, while Raph-

son finds it each time by substitution in the

original equation.. . . Raphson does not mention
Newton; he evidently considered the difference

sufficient for his method to be classed indepen-

dently.
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By returning at each step to the original polyno-

mial, Raphson expresses the procedure as iteration

of a function xn+1 = g(xn) where g(x) = x −
f(x)/f ′(x) (although he does not identify the de-
nominator as a derivative). To see the familiar form,

consider the general cubic equation

f(y) = c0y
3 + c1y

2 + c2y + c3 = 0.

Let y = x+ p where x is an initial guess for a root,
and expand:

c0(x + p)3 + c1(x+ p)2 + c2(x+ p) + c3 = 0

c0(x
3 + 3x2p+ 3xp2 + p3) + c1(x

2 + 2xp+ p2)

+ c2(x+ p) + c3 = 0

cop
3 + (3c0x+ c1)p

2 + (3c0x
2 + 2c1x+ c2)

+ (c0x
3 + c1x

2 + c2x+ c3) = 0.

Then discard all terms in p of degree greater than 1
and solve for p:

p = −c0x
3 + c1x

2 + c2x+ c3
3c0x2 + 2c1x+ c2

= − f(x)

f ′(x)
.

Raphson's approach may be conceptually sim-

pler, but note that Newton's recursive arrangement is

ideal for hand calculations. Also, the quadratic con-

vergence of the method is clear from Newton's cal-

culation| the approximate doubling of the number

of correct digits with each iteration. Newton rec-

ognized this [13, p. 47], for at each stage of the

calculation he omitted all terms whose contribution

would affect only the insignificant digits.

Kollerstrom [11] states that \What is today known
as `Newton's method of approximation' has two

vital characteristics: it is iterative, and it employs
differentials." He argues that because Newton did

not return to the original equation for his substitu-

tions his method fails to be iterative, and \it did not

employ any fluxional [differential] calculus." Raph-

son's method, though iterative, likewise made no

use of differential calculus. Only Simpson's version

\sufficiently resembles the modern formulation for

him to be credited . . . as inventor," Kollerstrom con-

cludes.

While not contesting the accuracy of Koller-

strom's analysis, I leave it to the reader to decide

how much credit Newton deserves for this method

of approximating roots.

Resolution of affected equations

Recall that one of Newton's goals was to be able to

integrate y when this variable is implicitly defined

as a function of x by a polynomial equation in x and
y. Once Newton was able to expand y in terms of
a (fractional) power series in terms of x, he could
integrate term by term. As we shall see, the key

to the method of expansion he used is a geometric

device, the Newton polygon. Otherwise, this method
is very similar to Newton's recurrence method for

approximating roots.

Newton begins with the affected equation

y3 + axy + a2y − x3 − 2a3 = 0,

containing a parameter a (see Appendix I, Epistola
prior). He wishes to expand y as a series in powers
of x. (Just as for Taylor series, the translation x →
x− x0 could be used to translate any point to 0, so

Newton's procedure could be used to expand y in
powers of x− x0.)

In the Epistola posterior (see Appendix II), New-
ton observes that if x = 0 then y3 + a2y− 2a3 = 0;
\hence y = a very nearly." But as y = a is not a
solution of the original equation, it must be modi-

fied. Newton modifies the root by adding p to it and
substitutes y = a+ p into the equation to obtain

p3 + 3ap2 + 4a2p+ axp+ a2x− x3 = 0. (4)

(See the second table in the Epistola prior. No-
tice that this table looks like the table that New-

ton obtained when he approximated a real root of

y3 − 2y − 5 = 0.)
Following his method for approximating real

roots, the next thing to be done would be to set equal

to zero the low degree terms of the polynomial in p
and x. But which ones should be considered the \low
degree terms"? Newton assigned a certain weight to

p and determined the total degrees of the terms of
the polynomial relative to this weight. He used the

Newton polygon to determine the weight assigned to

the dependent variable p.
To form this polygon, for each monomial cxjpk

present in the polynomial we plot the point in the

plane with cartesian coordinates (j, k). For exam-
ple, Figure 1 shows the points corresponding to the

terms of (4). (In Appendix II Newton plots the expo-

nent of x on the vertical axis, however.) We \apply a
ruler" (see Appendix II) to determine (together with

the half-lines on the x- and y-axes) a convex poly-
gonal path enclosing the points corresponding to the

terms of the polynomial. For equation (4), the poly-

gon consists of the line segment joining (0, 1) and
(1, 0), the half-line from (0, 1) to (0,∞), and the
half-line from (1, 0) to (∞, 0).
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Figure 1. Newton polygon for equation (4)

How does this Newton polygon help find p? New-
ton says \I pick out the terms of the equation dis-

tinguished by the parallelograms in contact with the

ruler, and thence get the quantity to be added to

the quotient." In algebraic form the procedure can

be described as follows: The line joining (0, 1) and
(1, 0) has slope −1, so let −1/µ = −1 and solve
to obtain µ = 1. Then p is given weight µ = 1 by
letting p = txµ = tx, where t is a constant to be
determined. Substituting p = tx into (4) yields

(t3 − 1)x3 + (3at2 + at)x2 + (4a2t+ a2)x = 0.

Newton, as in his root approximation method, ig-

nores all but the lowest-degree terms in x. Thus he
finds a value of t for which (4a2t + a2)x = 0,
namely t = −1

4
. (Notice that the terms of lowest

degree come from 4a2p and a2x, the terms in (4)
that correspond to the corner points on the Newton

polygon.) So p = −1
4x, and Newton's new approx-

imation for y is y = a− 1
4x.

Now substitution shows that y = a − 1
4x is not

a solution to the original equation; therefore p must
be modified. Newton substitutes p = − 1

4x+ q into
(4), the equation in terms of p and x, and obtains

q3 +

(
3

4
x+ 3a

)
+

(
3

16
x2 − a

2
x+ 4a2

)
q

−65

64
x3 − a

16
x2 = 0. (5)

He then plots the points corresponding to its terms

and forms the Newton polygon in Figure 2.

The line segment joining (0, 1) and (2, 0) is an
edge of the Newton polygon and has slope−1

2 . Solv-

ing − 1
µ = −1

2 , gives µ = 2, so q is given weight

µ = 2. If we substitute q = txµ = tx2 into (5), the

polynomial in terms of q and x, the terms of low-
est degree will be those corresponding to the points

Figure 2. Newton polygon for equation (5)

(0, 1) and (2, 0): 4a2q and − a
16
x2. Now we need

only substitute q = tx2 into 4a2q − a
16x

2, set the

result equal to 0, and solve for t:

4a2tx2 − a

16
x2 = 0, whence t =

1

64a
.

Newton's new approximation is y = a− 1
4x+ 1

64ax
2.

We now understand the final line in Appendix II.

The term in y = a + p + q coming from q results
\from dividing the terms involving the lowest power

of the variable x [in (5)] by the coefficient of the
root" q.
Again, y = a − 1

4x + 1
64ax

2 is not a solution to

the original equation; therefore q must be modified.
Newton substitutes q = 1

64a
x2 + r into the equation

in terms of q and x and obtains

r3 +
3

64a
x2r2 − 3

4
xr2 + 3ar2 +

3

4096a2
x4r

− 3

128a
x3r +

9

32
x2r − a

2
xr + 4a2r +

1

262144a3
x6

− 3

16384a2
x5 +

15

4096a
x4 − 131

128
x3 = 0. (6)

(I resorted to using Mathematica!) Figure 3 shows
the Newton polygon for this equation.

Figure 3. Newton polygon for equation (6)
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The line segment joining (0, 1) and (3, 0) has
slope −1

3
. So x is given weight 1 and r gets weight

3. Substituting r = txµ = tx3 into the polynomial

in terms of r and x, we find the terms of lowest de-
gree correspond to the points (0, 1) and (3, 0). That
is, 4a2tx3 − 131

128x
3 = 0, so t = 131

512a2 . Hence the

next approximation is

y = a− 1

4
x+

1

64a
x2 +

131

512a2
x3.

The process can be continued to find as many terms

of a power series expansion of y in terms of x as
desired. We can see in Appendix I how efficiently

Newton arranges the calculation and how closely it

parallels his earlier approximation of a root of his

cubic equation.

Fractional exponents are needed. Although New-

ton's cubic example is a good illustration of the

algorithm, it does not exhibit a key feature of the

series expansions, namely, the need for fractional ex-

ponents. The polynomial curve y2−x3 = 0 provides
an easy example of this. There are only two points

to plot to find the Newton polygon, (0, 2) and (3, 0).
The slope of the line segment joining these points is

−2
3 . So x has weight 1 and y has weight µ = 3

2 . To

make (
tx3/2

)2

− x3 = (t2 − 1)x3

equal to 0 we must have t = ±1, so y = ±x3/2.

Substituting, both y = x3/2 and y = −x3/2 satisfy

the equation y2 − x3 = 0, so the algorithm termi-
nates. The functions y = x3/2 and y = −x3/2 are

the two branches of the curve near the origin, where

it has a cusp; see Figure 4.

More generally, the various power series expan-

sions obtained by using the Newton polygon corre-

spond to the branches of a polynomial curve. That

is why algebraic geometers use these expansions to

Figure 4. The curve y2 − x2 = 0

describe the curve near a point. For example, graph-

ing polynomial approximations of the power series

expansions of the branches is one way to plot the

graph of y as a function of x near a point.

Extensions

For Newton's cubic the polygon has only a sin-

gle line segment (other than the half-lines on the

axes). For \irreducible" curves, the polygon always

has only one line segment. (The converse, however,

is not true [3, pp. 185, 186].) If the Newton poly-

gon has more than one line segment, we choose the

steepest negative slope (as Newton indicates in the

Epistola posterior).
Surprisingly, the denominators of the exponents do

not increase indefinitely; there is a positive integer

m that suffices for all denominators. Therefore, y
can be expressed as a power series in t (with integer
exponents) where t = x1/m.

Over a century ago Halphen [9] and Smith [19]

pointed out that a certain finite number of terms of

the series expansion of a branch are crucial. These

terms determine a finite set of pairs of positive inte-

gers called the characteristic (Puiseux) pairs of the
branch. Abhyankar [1] has shown the relationship

between the characteristic pairs determined by ex-

panding y in terms of x and those determined by
expanding x in terms of y.
More complete discussions of the Newton poly-

gon can be found in Chrystal's classic Textbook of
Algebra [7, ch. 30, sect. 18{24] and Walker's Al-
gebraic Curves [21, ch. 4, sect. 3]. More recently,
Abhyankar [3] offers a proof of \Newton's Theo-

rem" and some applications to algebraic geometry,

while Brieskorn and Knorrer [4] provide a proof of

the theorem, many examples, and details about char-

acteristic pairs and their applications.

Newton's method for resolving affected equations

can be a useful ingredient in undergraduate research

projects. For example, one of my students, Tate

Hilgefort, used Newton polygons to find a root of the

general quintic equation [10]. As Bring [5] showed

in 1786, a Tschirnhaus transformation can be found

that reduces any quintic to the form y5 +y+x = 0,
where x is a radical expression in the coefficients
of the original quintic [20]. Applying Newton's sec-

ond method (and assisted byMathematica) Hilgefort
found the series solution

y = x+ x5 − 5x9 + 35x13 − 285x17 + · · ·
due to Eisenstein [20]. Thus, although the roots of
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+2, 10000000

−0, 00544852

2, 09455148

2 + p = y y3 +8 + 12p+ 6pp+ p3

−2y −4 − 2p

−5 −5

summa −1 + 10p+ 6pp+ p3

+0, 1 + q = p +p3 +0, 001 + 0, 03q + 0, 3qq+ q3

6pp +0, 06 + 1, 2 + 6,

+10p +1 + 10,

−1 −1

summa 0, 061 + 11, 23q+ 6, 3qq+ q3

−0, 0054 + r = q +q3 −0, 0000001 + 0, 000r &c

+6, 3qq +0, 0001837− 0, 068

11, 23q −0, 060642 + 11, 23

+0, 061 +0, 061

summa 0, 0005416 + 11, 162r

−0, 00004852 + s = r

Table 1. Newton's First Diagram from the Epistola prior

the general quintic cannot be expressed as a finite

algebraic combination of the coefficients, if series

are permitted, the solutions can be found.

Appendix I. Portion of the

Epistola prior
Most worthy Sir,

Though the modesty of Mr Leibniz, in the extracts

from his letter which you have lately sent me, pays

great tribute to our countrymen for a certain theory

of infinite series, about which there now begins to

be some talk, yet I have no doubt that he has discov-

ered not only a method for reducing any quantities

whatever to such series, as he asserts, but also var-

ious shortened forms, perhaps like our own, if not

even better. Since, however, he very much wants to

know what has been discovered in this subject by

the English, and since I myself fell upon this theory

some years ago, I have sent you some of those things

which occurred to me in order to satisfy his wishes,

at any rate in part.. . .
The extractions of affected roots, of equations

with several literal terms, resemble in form their ex-

tractions in numbers, but the method of Vieta and

our fellow-countryman Oughtred is less suitable for

this purpose. Therefore I have been led to devise an-

other, an example of which the following diagrams

display, where the right-hand column exhibits the re-

sults of substituting in the middle column the values

of y, p, q, r, etc. shown in the left-hand column. The
first diagram displays the solution of this numerical

equation, y3 −2y−5 = 0; and here at the top of the
column the negative part of the root, subtracted from

the positive part, gives the actual root 2, 09455148;
and the second diagram displays the solution of this

literal equation, y3 + axy + a2y + x3 − 2a3 = 0.
In the first diagram the first term of the value of

p, q, r in the first column is found by dividing the
first term of the sum given in the line next above by

the coefficient of the second term of the same sum,

[as 1 by 10, or 0, 061 by 11, 23, and by changing
the sign of the quotient]; and the same term is found

in almost the same way in the second diagram. Here

to be sure the chief difficulty is in finding the first

term of the root; a general method by which this is

effected I pass over here for the sake of brevity, as

also some other things which tidy up the operation.

And as there is not time here to explain the ways of

abbreviating the process I shall merely say generally

that the root of any equation once extracted can be
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a− x
4 + xx

64a + 131x3

512aa + 509x4

16384a3 &c

a+ p = y y3 a3 + 3aap+ 3app+ p3

+axy +aax+ axp

+aay +a3 + aap

−x3 −x3

−2a3 −2a3

−1
4
x+ q = p p3 − 1

64
x3 + 3

16
xxq &c

+3app + 3
16axx− 3

2axq + 3aqq

+axp −1
4axx+ axq

+4aap −axx+ 4aaq

+aax +aax

−x3 −x3

+ xx
64a + r = q 3aqq + 3x4

4096a &c

+ 3
16xxq + 3x4

1024a &c

−1
2
axq − 1

128
x3 − 1

2
axr

+4aaq + 1
16axx+ 4aar

−65
64x

3 −65
64x

3

− 1
16axx − 1

16axx

+4aa− 1
2ax

)
+ 131

128x
3 − 15x4

4096a

(
+131x3

512aa + 509x4

16384a3 .

Table 2. Newton's Second Diagram from the Epistola prior

kept as a rule for solving similar equations; and that

from several such rules it is usually possible to form

a more general rule; and that all roots, whether they

be simple or affected, can be extracted in limitless

ways, and on that account the simpler of the ways

must always be considered.

Appendix II. Portion of the

Epistola posterior
Most worthy Sir,

I can hardly tell with what pleasure I have read the

letters of those very distinguished men Leibniz and

Tschirnhaus. Leibniz's method for obtaining conver-

gent series is certainly very elegant, and it would

have sufficiently revealed the genius of its author,

even if he had written nothing else. But what he

has scattered elsewhere throughout his letter is most

worthy of his reputation | it leads us also to hope

for very great things from him. The variety of ways

by which the same goal is approached has given me

the greater pleasure, because three methods of arriv-

ing at series of that kind had already become known

to me, so that I could scarcely expect a new one to he

communicated to us. One of mine I have described

before; I now add another, namely, that by which

I first chanced on these series| for I chanced on

them before I knew the divisions and extractions of

roots which I now use. And an explanation of this

will serve to lay bare, what Leibniz desires from me,

the basis of the theorem set forth near the beginning

of the former letter.. . .

What the celebrated Leibniz wants me to explain

I have partly described above. But as to finding the

terms p, q, r, in the extraction of an affected root,
first I get p thus. Having described the right angle
BAC , I divide its sides BA, AC into equal parts,

and then draw normals dividing the angular space

into equal parallelograms or squares, which I sup-

pose to be designated by the dimensions of two in-

definite kinds, say x and y, ascending in order from
the end A, as is seen inscribed in Figure 1; where
y denotes the root to be extracted and x the other
indefinite quantity, from powers of which a series is

to be constructed. Then, when some equation is pro-

posed, I distinguish the parallelograms correspond-

ing to each of its terms with some mark, and apply a
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ruler to two or perhaps more of the marked parallel-

ograms, of which one is the lowest in the left-hand

column next AB, and others situated to the right of
the ruler, while all the rest not touching the ruler lie

above it. I pick out the terms of the equation dis-

tinguished by the parallelograms in contact with the

ruler, and thence get the quantity to be added to the

quotient.

B

x4 x4y x4y2 x4y3 x4y4

x3 x3y x3y2 x3y3 x3y4

x2 x2y x2y2 x2y3 x2y4

x xy xy2 xy3 xy4

0 y y2 y3 y4

A C

Figure 1.

Thus to extract the root y from

y6−5xy5+
(
x3/a

)
y4−7a2x2y2+6a3x3+b2x4 = 0;

the parallelograms answering to the terms of this

equation I denote by some mark * as in Figure 2.

Then I apply the rulerDE to the lower of the places
marked in the left-hand column, and rotate it from

the lower to the higher to the right till it begins

to reach likewise another or perhaps several of the

remaining marked places. And I see that the places

x3, x2y2 and y6 are thus reached. And so from the

terms y6−7a2x2y2 +6a3x3 as though equal to zero

(and further reduced if desired to v6 − 7v2 + 6 = 0

Figure 2.

by putting y = v
√

(ax)), I seek the value of y, and
find four, namely

+
√

(ax), −
√

(ax), +
√

(2ax), −
√

(2ax),

of which any one may be taken as the first term

of the quotient, according as it has been decided to

extract one or other of the roots.

Thus the equation

y3 + axy + a2y − x3 − 2a3 = 0,

which I solved in my former letter, gives

2a3 + a2y + y3 = 0,

and hence y = a very nearly. And so since a is the
first term of the value of y, I put p for all the rest
to infinity, and substitute a + p for y. Here some
difficulties will sometimes arise, but Leibniz I think

will need no help to extricate himself from them.

But the ensuing terms q, r, s are obtained, from the
second and third equations and the rest, in the same

way as the first term p from the first equation, only
with less trouble, because the remaining terms of the

value of y commonly result from dividing the term
involving the lowest power of the variable x by the
coefficient of the root p, q, r or s. . . .
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A Contribution of Leibniz

to the History of Complex Numbers

R. B. McCLENON

American Mathematical Monthly 30 (1923), 369{374

One of the most important and fascinating chapters

in the history of mathematics is the development

of the concept of complex numbers. Certain parts

of this development have not yet been adequately

treated by writers on the history of mathematics, and

among these is to be mentioned the work of Leibniz.

It may be worth while to recall that neither the

Hindu nor the Arabian algebraists, nor the medieval

Europeans, had recognized any possibility of attach-

ing a meaning to a square root of a negative number;

indeed it was only the exceptional writer who recog-

nized even negative roots of equations (for example,
Leonardo of Pisa; see [5]). In the sixteenth century,

Tartaglia and Cardan, in the formula for the roots of

the cubic x3 + ax = b, viz.,

x =
3

√
b

2
+

√
b2

4
+
a3

27
+

3

√
b

2
−
√
b2

4
+
a3

27
,

noticed that in case (b2/4)+(a3/27) were negative,
the value of x would involve an \impossible" expres-
sion; and accordingly this case came to be known as

the \irreducible case", a term which persists down

to the present time. Vieta (1540{1603), the greatest

algebraist of his time, contented himself with work-

ing out a trigonometric solution for the cubic in this

case (see [8], [1], [6]). Descartes, in connection with

his \rule of signs", mentioned the existence of imag-

inary roots in an algebraic equation, but did not enter

upon any discussion of them [1].

It is now almost exactly 250 years since Leibniz,

then a young man of 25, first entered upon the se-

rious study of the possibility of getting some clear

meaning out of these so-called \impossible" quan-

tities. The inspiration for this work came to him

through the study of Bombelli's Algebra, a standard
work which had been published at Bologna in 1572

and reprinted in 1579. Leibniz was not at all sat-

isfied with Bombelli's discussion of the \Cardan"

formula for the solution of the cubic equation, espe-

cially in the irreducible case. In a letter to Huygens

[4], he expresses his dissatisfaction with Bombelli

for not accepting Cardan's formula as adequate in

this case; and proceeds to make these three asser-

tions: (1) that Cardan's formula is universally valid,

(2) that by means of this formula every cubic equa-

tion can be solved, and (3) that roots of all even

degrees can be formed which contain imaginaries

and yet which are themselves real. As an example

of this last, Leibniz mentions that

√
1 +

√
−3 +

√
1 −

√
−3 =

√
6 (1)

He also says in this same letter that he has found

\a method for extracting, either exactly or approx-

imately, the roots of binomials where imaginaries

enter" [4]. In reply to this communication, Huy-

gens expresses his astonishment at the relation (1)

in these words: \The remark which you make con-

cerning roots that can not be extracted, and contain-

ing imaginary quantities which when added together

give none the less a real quantity, is surprising and

entirely new. One would never have believed that

√
1 +

√
−3 +

√
1 −

√
−3

would make
√

6, and there is something hidden in
this which is incomprehensible to us." [4]

Leibniz evidently spent considerable time and ef-

fort on the question of the meaning of imaginary

288
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expressions, and the possibility of securing reliable

results by applying to them the ordinary laws of al-

gebra; for Gerhardt found among Leibniz's papers

a discussion of the solution of algebraic equations

which, although undated, bears every evidence of

having been written at about this time (1675). It is

published in the Briefwechsel, pp. 550{564, and al-
though it is one of the first significant documents in

the history of complex numbers, it has not hitherto,

so far as I know, been described by historians of

mathematics. A rather full description of this paper

will accordingly be worth while; and not alone be-

cause it has historical importance, but also because

the clear-cut way in which Leibniz presents many of

his points offers valuable suggestions to the teacher

of the present day.

After stating the condition under which a

quadratic equation will have real roots, Leibniz con-

tinues, \But if now a simple, that is, a linear equa-

tion, is multiplied by a quadratic, a cubic will result,

which will have three real roots if the quadratic is

possible, or two imaginary roots and only one real

one if the quadratic is impossible." He then points

out that it is exactly in the case where all three roots

of the cubic are real that the difficulty in the use of

Cardan's formula lies: the roots of

y3 + qy − r = 0

being

y =
3

√
r

2
+

√
r2

4
+
q3

27
+

3

√
r

2
−
√
r2

4
+
q3

27
.

\How can it be", he says, \that a real quantity, a root

of the proposed equation, is expressed by the inter-

vention of an imaginary? For this is the remarkable

thing, that, as calculation shows, such an imaginary

quantity is only observed to enter those cubic equa-

tions that have no imaginary root, all their roots be-

ing real or possible, as has been shown by trisection

of an angle, by Albert Girard and others [2], [6].

. . . This difficulty has been too much for all writers

on algebra up to the present, and they have all said

that in this case Cardan's rules fail."

Realizing clearly, then, the nature and difficulty of

the problem, involving as its solution did a decisive

step in advance of all his predecessors, Leibniz set

to work to get to the bottom of the matter. He was

led to the solution of the problem by an analogy in a

similar situation. \It will be useful to mention how

my mind was led to the solution of this problem. I

once came upon two equations of this kind:

x2 + y2 = b, xy = c,

whence x2 = c2/y2, and c2/y2 + y2 = b and

y4 − by2 + c2 = 0, or

y2 =
b

2
+

√
b2

4
− c2,

y =

√
b

2
+

√
b2

4
− c2.

Substituting therefore this value of y2 in x2+y2 = b,
I wrote

x2 − b

2
+

√
b2

4
− c2 = 0,

or

x =

√
b

2
−
√
b2

4
− c2.

But c was greater than b, and therefore
√
b2

4
− c2

was an imaginary quantity. However, I knew other-

wise that the sum of the unknowns x+ y was a real
quantity and equal to a certain line d, which puzzled
me greatly, for inasmuch as I had deduced from the

preceding calculation that

d = x+ y

=

√
b/2 +

√
b2/4 − c2 +

√
b/2 −

√
b2/4 − c2,

I did not understand how such a quantity could be

real, when imaginary or impossible numbers were

used to express it. I therefore began to retrace the

steps of my calculation, suspecting an error; but in

vain, for the result was always the same. At length

it occurred to me to try this operation: put

d =

√
b/2 +

√
b2/4 − c2 +

√
b/2−

√
b2/4 − c2

= A +B;

hence, squaring both sides,

d2 = A2 +B2 + 2AB

= b/2 +
√
b2/4− c2 + b/2 −

√
b2/4 − c2 + 2c.

Therefore d2 = b+2c, and d =
√
b+ 2c. Therefore,

equating the two values of d,

√
b+ 2c =

√
b/2 +

√
b2/4 − c2

+

√
b/2 −

√
b2/4 − c2.



\master" | 2011/4/5 | 12:53 | page 290 | #300
i

i

i

i

i

i

i

i

290 The Seventeenth Century

If we put b = 2 and also c = 2, there results

√
6 =

√
1 +

√
−3 +

√
1 −

√
−3.

I do not remember to have noted a more singular and

paradoxical fact in all analysis; for I think I am the

first one to have reduced irrational roots, imaginary

in form, to real values without extracting them."

Thus Leibniz was led to what he called a sixth
arithmetical operation, viz., the reduction of imag-
inary expressions to real form. He then proceeds to

apply this operation to the Cardan form of the roots

of a cubic equation. And first, he extends the princi-

ple of the preceding work with square roots to cube

roots, as follows:

\Let 2b be a certain quantity: it can be written
also in this way:

b+
√
−ac + b−

√
−ac.

For although
√
−ac is an imaginary quantity, yet

the sum is none the less real, since the imaginaries

are destroyed. Let this formula be divided into two

parts, the binomial b +
√−ac and the `apotome'1

b − √−ac, and let us investigate the cube of each
separately: the cube of b+

√−ac will be

b3 − ac
√
−ac− 3bac+ 3b2

√
−ac,

and the cube of b−√−ac will be

b3 + ac
√
−ac− 3bac− 3b2

√
−ac,

and therefore

2b =
3

√
b3 − ac

√
−ac− 3bac+ 3b2

√
−ac

+
3

√
b3 + ac

√
−ac − 3bac− 3b2

√
−ac,

or

3

√
b3 − 3bac+

√
−a3c3 + 6a2c2b2 − 9b4ac

+
3

√
b3 − 3bac−

√
−a3c3 + 6a2c2b2 − 9b4ac,

or

b+
√
−ac + b−

√
−ac.

\But if now from a binomial of this kind the cube

root can always be extracted, as it can from this

one, then certainly the imaginaries can always be

removed from a binomial and an `apotome' when

1This is the designation used by Euclid in Book X of the Ele-
ments.

they are joined together. But since it can not always

be extracted from a given expression in the form

3

√
r

2
+

√
r2

4
+
q3

27
+

3

√
r

2
−
√
r2

4
− q3

27
,

such as cubic equations give, that is, since the given

quantity r/2 can not always be separated into two,
b3 − 3bac, nor the given quantity (r2/4) − (q3/27)
into three, −a3c3+6a2c2b2−9b4ac, without another
equation, equally as difficult as the given one, there-

fore it happens that we can not always eliminate the

imaginaries from real quantities.

\But it will be useful to give examples in ratio-

nal numbers. Take the equation, which also Albert

Girard used [2]:

x3 − 13x− 12 = 0,

whose true root is 4. From the formulas of Scipio

Ferro or Cardan,

x =
3

√

6 +

√
−1225

27
+

3

√

6 −
√

−1225

27
.

I will prove that this expression is correct and real,

and must be admitted. Put

x = 2 +

√
−1

3
+ 2 −

√
−1

3
,

and certainly x will be equal to 4, as the equation
postulated. Now let us see if the Cardan formula

can be derived from this. Certainly by cubing and

applying the above formula

b+
√
−ac+ b−

√
−ac

to this, making b = 2, and ac = 1
3
, we shall have

for the cube of 2 +
√
−1

3 this formula:
2

+8 − 3 · 2 · 1

3
+

√
− 1

27
+ 6 · 1

9
· 4 − 9 · 16 · 1

3

or, adding up,

6 +

√
−1225

27
.

In the same way the cube of 2 −
√
−1

3
will be

6 −
√

−1225

27

2Leibniz actually uses commas to indicate multiplication; he

later introduced the dot which has been universally adopted. See

[7].
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and hence

3

√

6 +

√
−1225

27

will be 2 +
√

−1
3 and

3

√

6 −
√

−1225

27

will be 2 −
√
−1

3 and, by joining the binomial to

the `apotome' x, or

3

√

6 +

√
−1225

27
+

3

√

6 −
√

−1225

27

will be the same as

2 +

√
−1

3
+ 2 −

√
−1

3
,

that is, will be 4, as was proposed to show."

Leibniz adds an example where a negative number

(−6) is a root of the cubic, x3 − 48x− 72 = 0, and
establishes the fact that

3

√
36 +

√
−2800 +

3

√
36 −

√
−2800 = −6.

He finally takes the bull by the horns, substitutes in

the cubic equation x3 − qx− r = 0 the expression
for x given by the Cardan formula, and shows by
actually carrying out the algebraic reductions that

the equation is thus satisfied.

The rest of the memoir is devoted to a discussion

of the great difficulty of extending the methods of

solution to the 5th, 6th, and higher degree equations

with emphasis upon the necessity of doing this. The

concluding sentences are as follows [4]: \For this

evil I have found a remedy and obtained a method,

by which without experimentation the roots of such

binomials can be extracted, imaginaries being no

hindrance, and not only in the case of cubics but

also in higher equations. This invention rests upon

a certain peculiarity which I will explain later. Now

I will add certain rules derived from the considera-

tion of irrationals (although no mention is made of

irrationals), by which a rational root can easily be

extracted from them."

Here the manuscript breaks off; no doubt Leib-

niz became convinced that he could not carry his

\method" as far as he had at first supposed, and

thus the essay was left unfinished. But the influence

of this work of Leibniz is seen in the writings of

Tschirnhausen on the one hand and of John Bernoulli

on the other, each of whom received stimulation and

valuable assistance from Leibniz in the field of alge-

bra. Thus this particular memoir on complex num-

bers, although remaining unpublished for two cen-

turies, is an interesting and important document in

the history of mathematics.
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Functions of a Curve: Leibniz's Original Notion

of Functions and Its Meaning for the Parabola
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When the notion of a function evolved in the math-

ematics of the late seventeenth century, the meaning

of the term was quite different from our modern set

theoretic definition, and also different from the al-

gebraic notions of the nineteenth century. The main

conceptual difference was that curves were thought

of as having a primary existence apart from any anal-

ysis of their numeric or algebraic properties. Equa-

tions did not create curves, curves gave rise to equa-

tions. When Descartes published his Geometry [10]
in 1637, he derived for the first time the algebraic

equations of many curves, but never once did he

create a curve by plotting points from an equation.

Geometrical methods for drawing each curve were

always given first, and then by analyzing the geomet-

rical actions involved in the curve drawing apparatus

he would arrive at an equation that related pairs of

coordinates (not necessarily at right angles to each

other) [20]. Descartes used equations to create a tax-

onomy of curves [17].

This tradition of seeing curves as the result of ge-

ometrical actions continued in the work of Roberval,

Pascal, Newton, and Leibniz. Descartes used letters

to represent various lengths but did not create any

specific system of names. Leibniz, who introduced

the term function into mathematics [2], considered
six different functions associated with a curve, i.e.,

line segments or lengths that could be determined

from each point on a curve relating it to a given line

or axis. He gave them the names abscissa, ordinate,

tangent, subtangent, normal, and subnormal. These

six are shown in Figure 1 for the curve RP , rela-
tive to the axis AO. The line PO is perpendicular

to AO. The line PT is tangent to the curve at P ,
and the line PN is perpendicular to PT .

Figure 1. PO ordinate; AO abscissa; PT tangent; OT

subtangent; PN normal; ON subnormal

It is important to note here that the curve and

an axis must exist before these six functions can be

defined. In this definition, the abscissa and ordinate

may at first seem to be a parametric representation

of the curve, but this is not the case. No parameter,

such as time or arc length, is involved. The setting

is entirely geometric. From the geometric point P ,
the line segments (functions) are defined relative to

the axis AO. Abscissa is Latin for \that which is
cut off," i.e., a piece of the axis AO is cut off. By

cutting off successive pieces of the axis, the curve

gives us an ordered series of line segments PO as

P moves along the curve. Hence the term ordinate.
It should also be noted here that all of these func-

tions of a point P on a given curve are defined

without reference to any particular unit of measure-

ment. They are line segments. Leibniz, of course,

like Descartes, wanted to introduce quantification

and analyze the properties of curves algebraically,
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Figure 2.

but since the definition of the functions is geometric

he could postpone the choice of a unit until an ap-

propriate one could be found for the curve at hand.

The advantage of this will emerge in our discussion

of the parabola.

Since angles TPN , POT , and PON are right

angles, the triangles TOP , RON , and TPN are all

similar. This configuration will be familiar to geome-

ters as the construction of a geometric mean between

ON and OT , the mean being OP .
Inspired by the work of Pascal, Leibniz saw a

fourth triangle which was similar to the three men-

tioned above [2], [5], [11]. This was the infinites-
imal or characteristic triangle (see Figure 2), used
by Pascal to integrate the sine function [21]. Leibniz

viewed a geometric curve as made up of infinitely

small line segments which each had a particular di-

rection. He perceived the utility of this concept in

Pascal's work and it became one of the primary

notions in his development of a system of notation

for calculus. Although many modern mathematicians

avoid this conception, it is still used as an impor-

tant conceptual device by engineers. Figure 2 still

appears in calculus books because it conveys an im-

portant meaning, especially to those who use calcu-

lus for the analysis of physical or mechanical ac-

tions. (With the invention, early in this century, of

the calculus of differentials as linear functions on

the tangent lines to the curve, Leibniz's fundamen-

tal insight was made rigorous without recourse to

\infinitesimals" [18].)

Leibniz saw great significance in the triangles of

Figure 1 because they were large and visible yet sim-

ilar to the unseen characteristic triangle. This find-

ing of large triangles that are similar to infinitesimal

ones is a theme that runs through many of the most

important works of Leibniz [5], [8], [11]. From Fig-

ures 1 and 2, the similarity relations tell us that

dy

dx
=
PO

OT
=
ON

PO
.

Let us look at how this system works in the case

of the parabola. We must first have a way to draw

Figure 3.

a parabola. Everything begins with the existence of

a curve. Figure 3 shows a linkage that will draw

parabolic curves. This figure comes from the work

of Franz Van Schooten (1615{1660) [23, p. 359],

whose extensive commentaries on Descartes' Ge-
ometry were widely read in the seventeenth century
[22]. Because his works supplied many of the details

Descartes omitted they were in fact more popular

than the Geometry itself.
This apparatus constructs the parabola from

the familiar focus/directrix definition. That is, the

parabola is the set of points equidistant from a point

and a line. The ruler GE is the directrix and the

point B is the focus. Four equal-length links cre-

ate a movable rhombus BFGH which guarantees

that FH will always be the perpendicular bisector

of BG as G moves along the ruler. GI is a movable
ruler that is always perpendicular to the directrix

EG. The point D is the intersection of FH and

GI as the point G moves along the directrix. Hence
at all positions BD = GD, and hence D traces a

parabola with focus B and directrix EG.
This construction can be simulated on a computer

using the software Geometer's Sketchpad [14]. This
software allows one to define a perpendicular bisec-

tor so the rhombus is unnecessary. One can either

drag a point along the directrix or have the com-

puter animate such a motion. Figure 4 was made

using this software. The point F is the focus, and

the point S is moving along the directrix. BP is the
perpendicular bisector of FS, SP is always perpen-
dicular to the directrix, and the intersection point P
traces a parabola.
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Figure 4.

One consequence of this construction that is im-

mediately apparent to the eye is that, at each point,

BP is the tangent line to the curve at P . Curves can
often be drawn by constructing a series of tangents

to the curve, the curve being the \envelope" of its

family of tangent lines. This construction is often

done using strings or paper foldings [13], [19]. In

order to fold a parabola as in Figure 4, let one edge

of a sheet of paper be the directrix and mark any

point as the focus. Make a series of folds each of

which brings a point on the directrix onto the focus.

These folds will then be the perpendicular bisectors

of the segments between these pairs of points, hence

tangent lines to the parabola.

Using the axis of symmetry of the parabola as our

axis for abscissas and the vertex A, as our starting
point, we can investigate this curve using the six

functions of Leibniz (Figure 5). Since the tangent

line is part of the construction this can be readily

accomplished with Geometer's Sketchpad. Because
it is impossible to convey the feel of this moving con-

struction on paper, we strongly encourage the reader

Figure 5.

to experience it by dragging the point S up and down
the directrix and observing how the \Leibniz config-

uration" changes.

What can be seen by watching the six functions in

this dynamic setting? With the figure in motion and

using color to highlight the six functions, two invari-

ances become readily apparent. The first one most

people notice is that the subnormal ON has constant

length. The second is that the vertex A is always the
midpoint of the subtangent OT , for points O and T
can be seen to approach and recede from point A
symmetrically. These two invariances can be easily

deduced from the geometry of the construction, but

of greater significance is that they can be visually

experienced from the action of the construction. Ge-
ometer's Sketchpad allows for confirmation of one's
visual experience by turning on meters that monitor

these lengths empirically. Sure enough, ON has con-
stant length, and the length of AT is always equal
to the length of AO.
Postponing for a moment the geometrical proofs

of these two statements, let us first look at what

they tell us about the parabola. In the tradition

of Descartes, we introduce variables after we have

drawn the curve. Let x = AO, and let y = OP ; i.e.,
x is the length of the abscissa and y is the length
of the ordinate. Since triangles TOP and PON are

similar, we have that PO/OT = ON/PO. Since A
is the midpoint of OT , this becomes

y

2x
=
ON

y
, or (2 ·ON) · x = y2.

Since ON is constant, this yields the equation of

the parabola. The constant length (2 ·ON) is known
in geometry as the latus rectum, i.e., the rectangle
formed by x and the latus rectum is always equal in
area to the square on y. As we are free to choose
our unit, we could choose ON = 1

2
. The equation

then becomes x = y2.
Using the similarity between the characteristic tri-

angle and triangle TOP , we obtain

dx

dy
=
OT

PO
=

2x

y
= 2y.

Hence both the equation and the derivative can be

found from considering the invariant properties of

Leibniz's configuration under the actions that con-

structed the curve.

The choice of ON = 1
2 gave the equation and

derivative of the parabola in their best known form,

but this is perhaps a little artificial from the geomet-

ric standpoint. The subnormal ON is the primary
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invariant of this curve-drawing action and can be

seen as the natural choice of a unit for this curve.

As it turns out, the subnormal ON is always equal

to the distance between the focus and the directrix

of the parabola. Thus it is a natural unit. Using the

subnormal as a unit, the equation of the parabola be-

comes x = y2/2, i.e., the common integral form of
the parabola as the accumulated area under the line

x = y. It is in this form that the parabola most of-
ten appears in the table interpolations of John Wallis

and Isaac Newton [9].

One way to prove that the subnormal is constant

is to show that it always equals the distance between

the focus and the directrix. Looking at Figure 5, we

see that SF and PN are both perpendicular to BP ,
so triangles SCF and PON are congruent; hence

ON = CF .
In order to prove that the vertex A is always the

midpoint of the subtangent OT , one can establish
that triangles TBA and PBK are congruent. They

are clearly similar, but since B is the midpoint of SF
it is also the midpoint of AK, so they are congruent.
Hence TA = KP = AO.
Lastly, one might ask: How can we be sure that the

lineBP is always tangent to the parabola? That is to
say, how can we be sure that each instance of the line

BP intersects the parabola in only one point? Let

Q 6= P be a point on BP , and let R be the foot of
the perpendicular from Q to the directrix CS. Since
R is the closest point to Q on the directrix, QR <
QS. Since BP is the perpendicular bisector of SF ,
QS = QF . Hence QR < QF and Q cannot be on

the parabola, being closer to the directrix than to the

focus. One could also check the tangency of BP
analytically by writing the equation of the parabola

and the line BP using the same coordinate system

and then solving the two equations simultaneously,

arriving at a quadratic equation with one repeated

root. This is the method that Descartes developed for

finding tangents; i.e., tangency occurs when repeated

roots appear in the simultaneous solutions.

These two invariant properties of the parabola

were never mentioned (so far as we know) in the

published work of Leibniz. The fact that the vertex

is the midpoint of the subtangent was demonstrated

by Apollonius [1]. The fact that the subnormal is

constant is credited to L. Euler, who expanded and

popularized the ideas of Leibniz [7]. They both ap-

pear in Book 2 of Euler's most famous textbook, the

Introduction to Analysis of the Infinite [12]. This
book, published in 1748, was the first modern pre-

calculus textbook and, along with its sequels on dif-

ferential and integral calculus, did much to standard-

ize curriculum and notation. Nearly all of the topics

in our modern precalculus books are contained in

Euler's book, but what is missing from our modern

treatments is the bold empirical spirit of Euler's in-

vestigations, as well as most of his more advanced

geometry and infinite series. Euler says in the pref-

ace to his text that he presents many questions that

can be more quickly resolved using calculus. He in-

sists, however, that when students rush into calculus

too rapidly they become confused, because they lack

the experiential basis (both geometric and algebraic)

upon which calculus is built.

The parabola example demonstrates how much

can be found using only basic geometry combined

with empirical investigation. By letting the config-

uration move, we create a situation where algebra

evolves naturally from geometry. Too often in our

schools we find our geometry curriculum static and

isolated from other topics, especially algebra. Two-

column geometry proofs provide a shadow of Euclid,

but they cannot provide the dynamic experience that

leads to an understanding of functions and calcu-

lus. An important philosophical prerequisite for un-

derstanding calculus is the belief that geometry and

algebra are consistent with each other, and histori-

cally this belief did not come easily [4]. This belief

is too often tacitly assumed in our classrooms. In or-

der for students to comprehend and appreciate this

they must first be allowed to experience doubt as to

whether a geometric result will be confirmed by an

arithmetic result [8]. With modern software, comput-

ers can now readily simulate moving geometry, and

this experience can be very compelling. For some, an

empirical experience based on mechanical devices or

paper folding can be even more compelling.

For the reader who wishes to attempt this kind

of analysis on other curves, we offer the following

tantalizing tidbits. If the directrix in the above con-

struction is a circle instead of a line, then one can

draw both hyperbolas and ellipses with their tangents

[8], [23]. Paper folding also works [13], [19]. In the

case of the hyperbola, if a tangent line at a point

P is extended until it intersects the asymptotes at

points A and B, then P will always be the midpoint
of the segment AB. This little-known theorem is in
Euler [12] but goes back to Apollonius [1]. As an

empirical observation this can lead in many analytic

directions. For example, the derivative of y = 1/x
can immediately be seen to be −1/x2. Check it out!

(Similar methods can be applied to draw planetary

orbits; see the wonderful article by A. Lenard [16].)
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Exercise. We have shown that parabolas have

constant subnormals. What curves have constant

subtangents? (Answer precedes reference list.)

In order to have the kind of empirical experience

that Lakatos [15] suggests is fundamental to mathe-

matical discovery, people should be encouraged to

design, build, and explore their own devices and

computer simulations. Some experience with me-

chanical devices can greatly aid many students as

they attempt to master the use of software like Ge-
ometer's Sketchpad. All algebraic curves, for exam-
ple, can be drawn with linkages [3]; some are easily

built and others are best simulated. The border be-

tween mathematics, simulation, and mechanical en-

gineering can become quite fuzzy. In such a setting

geometry and algebra complement, validate, and em-

power one another without forming a hierarchy.

After many years of working in mathematics ed-

ucation at all levels, we have come to believe that

effective educational practice must involve people

in a balanced dialogue between \grounded activity"

and \systematic inquiry" [6]. This discussion of the

parabola provides an excellent example of such a

dialogue.

Answer to Exercise. Exponential curves y =
y0e

kt. For a discussion of this question and many

others like it, see [8].
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Afterword

Further information on the development of the calculus can be found in several good books.

Margaret Baron's The Origins of the Infinitesimal Calculus [2] deals with many of the methods of
the calculus up to the time of Newton and Leibniz. C. H. Edwards' The Historical Development
of the Calculus [7] also shows how mathematicians calculated solutions to problems, but covers
in more detail the work of Newton, Leibniz, and their successors. The classic work by Carl Boyer,

The History of the Calculus and its Conceptual Development [4], concentrates more on the central
ideas of the calculus rather than the technical details.

The mathematical work of Newton is available in English translation in the magnificent set,

The Mathematical Papers of Isaac Newton [14], edited by D. T. Whiteside. In addition, there
is a new English translation and commentary on Newton's Principia [10], by I. Bernard Cohen
and Anne Whitman. Among the many other books which help the reader understand Newton's

masterwork are Niccol�o Guicciardini's Reading the Principia [9] and Dana Densmore's Newton's
Principia: The Central Argument [6]. Both of these books deal further with the question that
Pourciau considers, along with much other material. Leibniz's works are unfortunately not all

available in English, but some of his early manuscripts have been collected and translated by J.

M. Child in The Early Mathematical Manuscripts of Leibniz [5]. For an introduction to either
man's work, it might be best to look through one of the standard biographies: Never at Rest [13]
by Richard Westfall for Newton, and Leibniz: A Biography [1] by Eric Aiton for Leibniz.
There are a number of more specialized works on the development of the ideas of the calculus

discussed in these articles. Judith Grabiner's The Origins of Cauchy's Rigorous Calculus [8]
expands on the ideas in her paper. Roberval's work can be seen in detail in A Study of the Trait �e
des Indivisibles of Gilles Persone de Roberval [12] by Evelyn Walker. Carl Boyer's History of
Analytic Geometry [3] gives lots of detail of various aspects of this history. More information on
Gregory can be found in the James Gregory Tercentenary Memorial Volume [11], edited by H. W.
Turnbull.
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Foreword

Newton and Leibniz invented calculus in the late seventeenth century. The following century saw

its continued development, so many of the articles in this section deal with aspects of the calculus.

But since the towering figure in the eighteenth century is Leonhard Euler, much of this section

deals with aspects of his work as well, both in analysis and in number theory.

The opening article of this section, however, deals with neither of these subjects. Although Brook

Taylor is best known for his 1715 work Methodus Incrementorum Directa et Inversa, in which
he discusses the Taylor series expansion of a function, in that same year he also published a book

entitled Linear Perspective, in which he teaches methods for artists to represent three-dimensional
objects on two-dimensional canvases. This work went through several editions and was translated

into French and Italian, but in general proved too abstract for the artists to whom it was addressed.

P. S. Jones analyzes several interesting ideas in the book, especially those that appeared in the first

edition but were removed in later editions.

Evidently, one of the reasons Taylor's work was not as well received on the Continent as it

might have been was that it was caught in the dispute between the followers of Newton and those

of Leibniz on the origins of the calculus. Another important British author who was caught in

that controversy was Colin Maclaurin. His massive Treatise on Fluxions, which aimed to justify
and extend Newton's version of the calculus, is generally thought to have had little influence on

the Continental developers of analysis. But as Judith Grabiner shows in the next article, this idea

is entirely mistaken; Maclaurin's work was read, understood, and used by such mathematicians

as Euler and Lagrange. In fact, many of Maclaurin's ideas in this work had direct influence on

the subsequent work of d'Alembert on limits, Euler and Lagrange on series, and Clairaut on the

gravitational attraction of ellipsoids, among much else.

One of the reasons that Maclaurin wrote his Treatise was to answer Bishop Berkeley's criticisms
of Newton's approach to the calculus. In the next article, Florian Cajori discusses Maclaurin's

answers to Berkeley and the responses of James Jurin, Benjamin Robins, and several others, con-

cluding with the work of Robert Woodhouse in 1805. Woodhouse was the immediate predecessor

of the group of young mathematicians at Cambridge who formed the Analytical Society, which

aimed to bring the Continental approach to calculus to Britain to replace the increasingly sterile

Newtonian version.

Among the most important developers of Leibniz's calculus on the European continent were

Jakob and Johann Bernoulli. In the next article, William Dunham deals with Jakob's proof of the

divergence of the harmonic series, a proof that Jakob attributes to his younger brother and which is

quite different from the standard proof dating back to Oresme in the fourteenth century. Dunham

mentions that Jakob attempted afterwards to sum the series of the reciprocals of the squares of the
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integers, without success. This sum was finally found by Leonhard Euler, to whom the remainder

of the articles in this section are devoted.

J. J. Burckhardt was one of the editors of the Euler memorial volume, published in Switzerland in

1983 to commemorate the two-hundredth anniversary of Euler's death. Here he summarizes some of

Euler's accomplishments. In particular, he deals with some of Euler's lesser-known contributions,

in the fields of physics and astronomy. These include the text, the Dioptrica, on the principles of
optics and their application to the construction of optical instruments, and his work on perturbation

theory, especially as applied to the movements of the planets.

Among Euler's numerous achievements was his analysis of the relationship between logarithms

and exponentials in his 1748 Introduction to Analysis of the Infinite. In the next article, Julian
Lowell Coolidge traces the history of this relationship before Euler, beginning with the Greek work

on the rectangular hyperbola, including material from Gregory of St. Vincent, Christiaan Huygens,

John Wallis, Isaac Newton, and Gottfried Leibniz. In particular, he notes that until the work of

Euler, most authors did not consider logarithms as exponents, so there was little consideration of

the base of a logarithmic system. It was Euler who gave us the modern definition and succeeded

in calculating e to numerous decimal places.

Another great achievement of Euler was his idea that all kinds of functions needed to be admitted

into analysis. Although initially Euler considered only functions that were `analytic expressions',

his work on the problem of the vibrating string led him to reconsider. Jesper L�utzen explains

Euler's vision of generalizing analysis to more general functions, especially to functions of two or

more variables, and how his vision was realized in the work of L. Schwartz on distributions in

the twentieth century.

The final three articles in this section deal with situations in which Euler was not completely

successful in solving problems he had set for himself. It is important for our students to see that even

the great Euler could fail, but in his failures there were always the seeds for the successful solution

of his problem by later mathematicians. William Dunham addresses one of Euler's `failures', his

unsuccessful attempt to prove the fundamental theorem of algebra. Yet, as Dunham shows, an

examination of the details of Euler's attempt allows even high-school students to grasp the meaning

of the theorem along with Euler's perfectly correct treatment of the fourth- and fifth-degree cases.

Anthony Ferzola then looks at Euler's definition and use of differentials. What are these mys-

terious dx's? Euler thinks of them as `zeros', but with the property that the ratio of any two of

them needs to be determined. Using this basic idea, we then follow Euler's determination of the

differentials of products and quotients, of logarithms, and of trigonometric functions. Ferzola also

discusses Euler's attempt to justify the change of variable formula in double integration by use of

differentials. It was not until Elie Cartan applied Grassmann's exterior product to the algebra of

differential forms that this formula was justified in the way that Euler desired.

Finally, Harold Edwards leads us through Euler's detailed computations with integers which ulti-

mately led to his statement, but not proof, of a result equivalent to the famous quadratic reciprocity

theorem. In this article, as in the previous one, we see Euler at work, doing lots of computations,

making conjectures, correcting errors, and finally coming up with accurate conclusions. But al-

though Euler did not succeed in proving his conjectures, his challenge was ultimately taken up by

Gauss, who was so enamored by the quadratic reciprocity theorem that he published six proofs of

it.
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Brook Taylor and the
Mathematical Theory of Linear Perspective

P. S. JONES

American Mathematical Monthly 58 (1951), 597{606

One can distinguish four overlapping and interre-

lated periods in the development of the mathematical

theory of linear perspective:

(l) the \prehistory" period in which, for example,

the Greeks are reported to have made some use

of perspective drawing in their theater,

(2) the 15th and 16th century period of the origin of

the theory with the artists-architects-engineers of

the Renaissance (Brunelleschi, Franceschi, Al-

berti, and da Vinci),

(3) a period of geometrical expositions typified by

the works of del Monte and Stevin in the 17th

century, and, finally,

(4) the period of a generalized, complete, and even

abstract theory.

This last period falls largely in the 18th cen-

tury and is typified by the work of William Jacob

Gravesand in Holland, Humphrey Ditton and Brook

Taylor in England, and of the Alsacian (he was born

in M�ulhausen in the period when it was allied with

Switzerland) mathematician Johann Heinrich Lam-

bert.

Of these, the work of Brook Taylor was certainly

the most widely translated and reproduced, although

the later work of Lambert rivals it in interest and

perhaps in its total effect [1].

Brook Taylor published only two books in his life-

time of 46 years. Both of these appeared in 1715

when he was 30, and both of them exerted wide in-

fluence. He is, of course, best known for his Metho-
dus Incrementorum Directa et Inversa in which ap-
pears the well known expansion of f(x + h) which
bears his name.

The other book was

LINEAR PERSPECTIVE OR, A
New METHOD

Of Representing justly all manner of
OBJECTS as they appear to the EYE

IN ALL
SITUATIONS.

A Work necessary for PAINTERS,
ARCHITECTS, & c. to Judge of, and

Regulate Designs by.

This work is today only rarely and sparingly re-

ferred to in histories of either mathematics or art.

This alone is of interest in view of a study which

shows that the original appeared in four editions (or

five, if Ware's revision be counted), the latest as re-

cent as 1811, that it appeared in three translations,

one French and two Italian, and that Taylor's En-

glish disciples in perspective number nine and were

responsible for twelve books and twenty-two edi-

tions from 1715 through 1888 [2]. By disciples I

here mean men who used Taylor's name in the ti-

tles or body of their own works which works in turn

followed more or less closely Taylor's sequence and

method.

One reason for this lack of recognition of Taylor's

Perspective is perhaps the same defect as that upon
which John Bernoulli is said to have seized when,

according to Taylor's grandson and biographer, he

called the book \abstruse to all and unintelligible to

artists for whom it was more especially written" [3].

I have not found these exact words but it is quite

likely both that Bernoulli said them and that one

must discount them a little because of the heated and

sharp nature of the controversy carried on by these
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two men in the pages of Acta Eruditorum and the
Philosophical Transactions, beginning with a letter
by Bernoulli in 1716 [4]. This controversy was over

priority and the proper recognition of sources used

in both Taylor's Methodus Incrementorum and also
in his publications on the vibrating string and on

an isoperimetric problem. More than this, however,

it was a part of the continuation by their partisans

of the Newton-Leibniz Controversy which was not

always conducted in a fair and rational vein.

Taylor himself, however, recognized the excessive

conciseness and abstractness of his first book on per-

spective when he expanded it from 42 pages to the

70 found in the second, or 1719 edition, and when

he added a few plates showing the application of his

method to actual drawings of physical objects in ad-

dition to the purely geometric diagrams of the first

edition.

A later evaluation by Monge and Lacroix is in-

teresting. In An 9 (1801) they recommended to the

Acad�emie des Sciences of the Institut de France that

it not sanction the publication of a French trans-

lation of the first edition by B. Lavite [5]. In the

introduction to their report, however, they remarked

that Taylor's work was \distinguished from a crowd

of others dealing with perspective by its originality

and the fruitfulness of the principle upon which it

was based." They also termed it \elegant", \expe-

ditious", and \not lacking in a sort of generality".

They explained that they did not favor printing it

in spite of this for two reasons; namely, that addi-

tional work or study of perspective was unnecessary

for those who already knew \St�er�eotomie", and that

Taylor's work was too geometrical for most artists

who were not versed in St�er�eotomie. This seems a

fair and rational evaluation when one recalls that it

was made by the founder of descriptive geometry

and one of his followers.

More recently Julian Coolidge has referred to Tay-

lor's work as the \capstone of the whole edifice" of

perspective [6]. In spite of this and the fact that Gino

Loria also has paid some attention to Taylor's work

[7], the tabulation of editions, translations and ex-

tensions which is noted above and detailed in the

notes has not been made before, nor is there a dis-

cussion of the first or 1715 edition available since

later writers on perspective used the second edition

and the historians have used either it or versions still

more remote from the original edition.

In this paper are presented only three of the items

of especial interest which appeared in the 1715 edi-

tion but not in later editions. First, however, it will

be helpful to note that Taylor found it necessary to,

as he said, \Consider this subject entirely anew."

To this end he gave new terms, four axioms (in the

1719 edition), and then developed his theory in a

formal and rigorous fashion with theorems, corol-

laries, problems, and proofs. He defined the \van-

ishing line" of any \original plane" to be the in-

tersection with the picture plane of a plane through

the eye of the beholder parallel to the original plane.

This means that his basic three dimensional diagram

as shown in Figure 1 (Plate 1 of Taylor's book)

consisted of four planes parallel in pairs, the pic-

ture plane, the \directing plane" through the eye of

the beholder and parallel to the picture, the original

plane, and the plane through the eye parallel to it.

The \vanishing point" of any \original line" is the

intersection with the picture of a line through the eye

parallel to the original line. Since the intersection of

any original line with the picture is its own perspec-

tive, it follows as \PROPOSITION I, THEOREM

1" that \The representation of a Line is Part of a
Line passing thro' the intersection and Vanishing
Point of the Original Line."
The above discussion of Taylor's terminology and

Theorem 1 indicates three things about his work;

namely, his formal, mathematical formulation, the

generality of his concepts and procedures (he has, for

example, no need to distinguish a special ground line

and horizon line), and the completely new concise

synthesis which he did achieve of procedures not all

of which were original with him.

The first of the three specific items which will be

discussed here is his construction for the perspec-

tive of a triangle ABC (see Figure 20 of Taylor's

Plate 7 as reproduced in our Figure 2). Consider the

plane of the drawing to represent the picture plane

with two other planes rotated into coincidence with

it. Below ED, the intersection of the original plane
and the picture, is the original plane itself, contain-

ing ABC (to be thought of as \behind" the picture

from the viewpoint of the observer) rotated about

ED into the picture. The plane through the eye par-

allel to the ground plane has been rotated upward

about FH . Above FH then is O, the eye point. Ex-
tend AB to meet ED in D, its \intersection". Draw
a line through O parallel to AB to meet FH in F ,
the vanishing point of AB. FD is then the indefi-

nite perspective of AB, i.e., the perspective of AB
produced. Join O to A and B. The intersections of
these lines with FD determine perspective points a
and b. A similar determination of c (c could also be
located as the intersection of EH and IG) would
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Figure 1.

give a diagram in which the corresponding sides of

the two triangles meet on ED and the lines joining

corresponding vertices concur in O. Although the
Desargues triangle theorem is neither mentioned nor

stated, note how completely it is implicit in this con-

struction and the accompanying diagram [8]. Both

the problem and the diagram were modified in the

second edition and the relationship, though still im-

plicit, became less obvious.

Also in the 1715 edition but omitted in the second

edition is the problem of finding the perspective of

the shadow of a triangle on a plane. Not only does

this associate with the three dimensional case of the

Desargues theorem, but of particular interest is Tay-

lor's second solution of the problem which is, as he

terms it, by putting the rules of perspective in per-

spective. In this same vein he elsewhere gives con-

structions for such things as the vanishing point of

lines perpendicular to a given plane for the specific

purpose of making it possible to draw directly in

perspective without first having an orthogonal pro-

jection. In this Taylor anticipated Lambert who took

this as one of the major objectives of his Freye Per-
spective (1759). Taylor's work with such problems
led him to make repeated use in the 1715 edition of

the idea of associating infinitely distant intersections

with parallel lines.

A second construction which is both unique to

the 1715 edition and which has for its purpose the

construction of drawings directly in perspective is

Taylor's solution of the problem of completing the

construction of the perspective of a circle, given the



\master" | 2011/4/5 | 12:53 | page 306 | #316
i

i

i

i

i

i

i

i

306 The Eighteenth Century

Figure 2.

perspective of its center and of one of its points.

The diagram for this is to be found in \Fig. 21" of

Taylor's Plate 7 which is our Figure 2. C is the per-
spective of the center of a circle, A the perspective
of a point on the circle, ED the vanishing line of

its plane, and O the eye rotated into the picture. CA
then represents a radius. Draw any line through C
to meet the vanishing line in E and extend CA to
intersect it in D. Bisect angle EOD to locate point

F on ED. The join of F and A meets EC in B,

another point of the perspective circle. Taylor's rea-

soning was based on the fact that since the angles at

A and B are perspectives of equal angles then CA
and CB are perspectives of the sides of an isosce-

les triangle and hence are the perspectives of equal

lines. CB must then represent a radius, and B is the
perspective of a point on the circle. This is another

example of Taylor's thinking and drawing directly in

perspective. It is also interesting to note that if the

construction were extended to determine the second
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Figure 3.

point on each radius by bisecting the supplement of

EOD we would have an harmonic set of points on

ED, and further that C and ED are pole and polar

with respect to the conic which represents the circle.

The first explicit use which the author has found

of the terms pole and polar in perspective is in

the work of Cousinery in 1828. However, John

Hamilton, one of Taylor's followers, had also read

LaHire's Sectiones Conicae (1685) in which much
use is made of harmonic sets. Book III of Hamil-

ton's Stereography or a Compleat Body of Perspec-
tive (1738) makes extensive use of harmonic sets and
some use of theorems on poles and polars although

without using the latter terms.

Our Figure 3 shows, for contrast with the above,

the two constructions for the perspective of a circle

which were given as Figure 13 in the 1719 edition

of Taylor's book. They are more conventional, use

the orthogonal projection of the original circle, and

are described in much more detail in the text.

Taylor gives no proof or explanation of the third

unique construction which is here presented from the

1715 edition. The construction we refer to is \n:2."

in Figure 32 of Taylor's Plate 12 which is shown

here as Figure 4. Both \n:l." and \n:2." are con-

structions for a line through a given point and the

inaccessible intersection of two other given lines.

Today, \n:2." would be regarded as an application

of harmonic sets related to complete quadrilaterals.

Knowing that he did use both the idea that lines

meeting on a vanishing line are parallel and its con-

verse, we can guess that Taylor might have proven

it quickly and easily by thinking in a \perspective"

geometry where ABCD and abcd would be paral-
lelograms rather than in a \Euclidean" geometry. In

any case, Taylor was the first writer on perspective

to treat this problem.

The only original work on perspective printed in

England prior to Taylor's was Humphrey Ditton's

A Treatise of Perspective of 1712, which deserves
more note than it has had in the past but which

is not comparable to Taylor's Linear Perspective in
generality or originality. Following Taylor in Eng-

land only Hamilton showed much originality while

on the continent Lambert's work was outstanding

in this century. Another feature which, though first

met in Guido Ubaldo Monte's Perspectivae Librix
Sex (Pisa, 1600), was developed by Taylor and then
carried much farther by Lambert was the solution

of the inverse problem of perspective. This problem,

namely, given data about a perspective drawing to

draw inferences about the original, is basic in the

modern science of photogrammetry.

This discussion represents only a portion of a

complete study which the author has made of the de-

velopment of the mathematical theory of perspective.

It shows that Brook Taylor contributed a mathemat-

ically clear, concise, and logical, but abstract, for-

mulation of extraordinary generality, including some

treatment of the inverse problem. The editions, trans-

lations, and sequels to his work noted here extended

his influence beyond both his homeland and his
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Figure 4.

chronological period.

In conclusion, we note for those who might won-

der at the interest of Taylor in this subject that not

only is this interest consistent with the mathematical

and cultural interests of the time (Desargues, Stevin,

Ozanam, were earlier mathematicians who wrote on

this topic), but also that Taylor grew up in a home

where music and art were popular diversions. Ac-

cording to his grandson, Taylor himself in his paint-

ing \favored landscapes and water colors. They have

a force of color, a freedom of touch, a varied disposi-

tion of planes of distance, and a learned use of aerial

as well as linear perspective which all professional

men who have seen these paintings have admired"

[9].

Notes

1. Max Steck, Johann Heinrich Lambert Schriften zur
Perspektive. (Berlin: 1943), p. 48 lists Jacquier's

French translation of Taylor's work, as among the

books in Lambert's library and adds parenthetically

that it was \von Lambert im II Teil des Hauptwerkes

ben�utzt."

2. Since the writer found no other at all complete enumer-

ation of these works, it seems appropriate to preserve

this data in detail for future reference. The books re-

ferred to are:

Editions:

Brook Taylor, Linear Perspective, London: 1715.

Brook Taylor, New Principles of Linear Perspec-
tive, London: 1719.

Brook Taylor, New Principles of Linear Perspec-
tive, third edition corrected by J. Colson. London:
1749.

Brook Taylor, Method of Perspective, 1766. The
Dictionary of National Biography (London: 1899
LIX, p. 359) lists this under Isaac Ware who, it

says, prepared the edition.

Brook Taylor, New Principles of Linear Perspec-
tive: The fourth edition, revised, London: 1811.

Translations:

Francois Jacquier, Elementi di perspectiva secondo
li principii di Brook Taylor, con varie aggiente,
Roma: 1753.

Antoine Rivoire, Nouveaux principes de la perspec-
tive lineaire, traduction de deux ouvrages, l'un An-
glois, due Docteur Brook Taylor, l'autre Latin, de
M. Patrice Murdoch, Amsterdam: 1759.
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Jacopo Stellini, Opere varie, Padova: 1781. Con-
tains in volume II Taylor's \Nuovi principij della

prospettiva lineare" according to Pietro Riccardi in

his Biblioteca Matematica Italiana.

Disciples:

John Hamilton, Stereography or a compleat body
of perspective, London: 1738, 1740, 1748.

John Joshua Kirby, Dr. Brook Taylor's method of
perspective made easy both in theory and practice,
Ipswich: 1754, 1755; London: 1765, 1768.

John Joshua Kirby, The perspective of architecture
| deduced from the principles of Dr. Brook Taylor,
London: 1761.

John Joshua Kirby, Dr. Brook Taylor's method of
perspective, compared with examples lately pub-
lished on this subject, as Sirigatti's by Isaac Ware,
London: 1767.

Daniel Fournier, A treatise of the theory and prac-
tice of perspective. Wherein the principles | laid
down by Dr. Brook Taylor are explained by move-
able schemes, London: 1761, 1762, 1763, 1764.

Joseph Highmore, Practice of perspective on the
principles of Dr. Brook Taylor, London: 1763.

Thomas Malton, A compleat treatise on perspective
in theory and practice on the true principles of Dr.
Brook Taylor, London: 1775, 1776, 1779.

Thomas Malton, An appendix or second part to the
compleat treatise on perspective containing a brief
history of perspective, London: 1783.

James Malton, The young painter's maulstick; be-
ing a practical treatise on perspective; | with the
theoretic principles of B. Taylor, London: 1800.

Edward Edwards, A practical treatise of perspec-
tive on the principles of Dr. Brook Taylor, London:
1803.

Joseph Jopling, Taylor's principles of linear per-
spective, new edition with additions by Joseph
Jopling, London: 1835.

George Blacker, John Heywood's second grade
perspective adapted from Dr. Brook Taylor, Manch-
ester: 1885{88.

3. Contemplatio Philosophica: A PosthumousWork of the
Late Brook Taylor, L.L.D., F.R.S. some time Secretary
of the Royal Society. To which is prefixed a life of
the author by his grandson, Sir William Young, Bart.
F.R.S., A.S.S. (London: Printed by W. Bulmer and Co.,
1793), p. 29. The title page of this book bears the

printed note Not Published. The book also includes
some letters to and from Taylor to which we will refer

later.

4. \Epistola Pro Eminente Mathematico Dn. Johanne

Bernoullio, contra quendam ex Anglia antagonistam

scripta" Acta Eruditorum, (July, 1716), pp. 296{
315. The article preceding this one in Acta was

\Methodus Incrementorum Directa & Inversa; Autore

Broock (sic!) Taylor, L.L.D. & Regiae Societatis Sec-

retario," a summary of the book with comments, refer-

ences to Leibniz and his procedures and to Collins'

Commercium Epistolicum. This \review" was prob-
ably written by Leibniz himself according to Hein-

rich Auchter, Brook Taylor der Mathematiker und
Philosoph, (Wurzburg: Konrad Triltsch, 1937), p. 79.

The Taylor-Bernoulli dispute as it appeared in Acta
and the Philosophical Transactions is somewhat ex-
panded in details and clarified by the letters printed

by Young in the Contemplatio Philosophica and in
Auchter, op. cit.

Taylor wrote on February 5, 1719 to Count Ray-

mond de Montmort in reply to a letter from Bernoulli

which Montmort had forwarded, \For if the book be so

very obscure, as he says it is, that the best artists, those

already acquainted with the subjects, cannot well un-

derstand it." This may be the source for Young's quo-

tation. Taylor, however, seems to have been referring

to his Methodus rather than his work on perspective.

5. Institut de France, Acad�emie des Sciences, Proc�es-
Verbaux des Seances de l'Acad �emie, Tome II, An VIII-
XI (1800{1804), 1912, pp. 360 ff.

6. Julian L. Coolidge, A History of Geometrical Methods,
(Oxford, 1940), p. 108.

7. Gino Loria, Storia della Geometria Descrittiva, (Mi-
lano, 1921), pp. 43{51.

8. The copy of Taylor's book used originally in this study

is in the Rare Book Room of the University of Michi-

gan. The author, happening recently to have purchased

a copy for himself, was startled to find lines OaA and

ObB in his copy to have been drawn in with ordi-

nary pen and ink after printing. Further comparison of

the two copies showed that a number of corrections to

the plates were made during the printing process, ap-

pearing inked in the author's copy and printed in the

library's copy. It should be remarked that practically

all of the original works cited are to be found in the

University of Michigan's collection built up by Pro-

fessor L. C. Karpinski whose suggestions and advice

aided significantly in the study of which this paper is

a partial report.

9. Sir W. Young, op. cit., pp. 28{29.
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Was Newton's Calculus a Dead End?
The Continental Influence of

Maclaurin's Treatise of Fluxions

JUDITH GRABINER

American Mathematical Monthly 104 (1997), 393{410

1 Introduction

Eighteenth-century Scotland was an internationally-

recognized center of knowledge, \a modern Athens

in the eyes of an enlightened world." [74, p. 40] [81]

The importance of science, of the city of Edinburgh,

and of the universities in the Scottish Enlightenment

has often been recounted. Yet a key figure, Colin

Maclaurin (1698{1746), has not been highly rated.

It has become a commonplace not only that Maclau-

rin did little to advance the calculus, but that he did

much to retard mathematics in Britain|although

he had (fortunately) no influence on the Continent.

Standard histories have viewed Maclaurin's ma-

jor mathematical work, the two-volume Treatise of
Fluxions of 1742, as an unread monument to ancient
geometry and as a roadblock to progress in analysis.

Nowadays, few people read the Treatise of Fluxions.
Much of the literature on the history of the calculus

in the eighteenth and nineteenth centuries implies

that few people read it in 1742 either, and that it

marked the end| the dead end|of the Newtonian

tradition in calculus. [9, p. 235], [49, p. 429], [10,

p. 187], [11, pp. 228{9], [43, pp. 246{7], [42, p.

78], [64, p. 144]

But can this all be true? Could nobody on the

Continent have cared to read the major work of the

leading mathematician in eighteenth-century Scot-

land? Or, if the work was read, could it truly have

been \of little use for the researcher" [42, p. 78]

and have had \no influence on the development of

mathematics"? [64, p. 144]

We will show that Maclaurin's Treatise of Flux-

ions did develop important ideas and techniques and
that it did influence the mainstream of mathematics.

The Newtonian tradition in calculus did not come to

an end in Maclaurin's Britain. Instead, Maclaurin's

Treatise served to transmit Newtonian ideas in cal-
culus, improved and expanded, to the Continent. We

will look at what these ideas were, what Maclaurin

did with them, and what happened to this work after-

wards. Then, we will ask what by then should be an

interesting question: why has Maclaurin's role been

so consistently underrated? These questions will in-

volve general matters of history and historical writ-

ing as well as the development of mathematics, and

will illustrate the inseparability of the external and

internal approaches in understanding the history of

science.

2 The standard picture

Let us begin by reviewing the standard story about

Maclaurin and his Treatise of Fluxions. The calculus
was invented independently by Newton and Leibniz

in the late seventeenth century. Newton and Leibniz

developed general concepts|differential and inte-

gral for Leibniz, fluxion and fluent for Newton|

and devised notation that made it easy to use these

concepts. Also, they found and proved what we now

call the Fundamental Theorem of Calculus, which

related the two main concepts. Last but not least,

they successfully applied their ideas and techniques

to a wide range of important problems. [9, p. 299]

It was not until the nineteenth century, however, that

the basic concepts were given a rigorous foundation.

310
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In 1734 George Berkeley, later Bishop of Cloyne,

attacked the logical validity of the calculus as part

of his general assault on Newtonianism. [12, p. 213]

Berkeley's criticisms of the rigor of the calculus

were witty, unkind, and|with respect to the math-

ematical practices he was criticizing|essentially

correct. [6, v. 4, pp. 65{102] [38, pp. 33{34] [82, pp.

332{338] Maclaurin's Treatise was supposedly in-
tended to refute Berkeley by showing that Newton's

calculus was rigorous because it could be reduced

to the methods of Greek geometry. [10, pp. 181{2,

187] [9, pp. 233, 235] Maclaurin himself said in his

preface that he began the book to answer Berkeley's

attack, [63, p. i] and also to rebut Berkeley's accu-

sation that mathematicians were hostile to religion.

[78, p. 50]

The majority of Maclaurin's Treatise is contained
in its first Book, which is called \The Elements

of the Method of Fluxions, Demonstrated after the

Manner of the Ancient Geometricians." That title

certainly sounds as though it looks backward to the

Greeks, not forward to modern analysis. And the

text is full of words| lots of words. So much time

is spent on preliminaries that it is not until page 162

that he can show that the fluxion of ay is a times
the fluxion of y. Florian Cajori, whose writings have
helped spread the standard story, compared Maclau-

rin to the German poet Klopstock who, Cajori said,

was praised by all, read by none. [10, p. 188] While

British mathematicians, bogged down with geomet-

ric baggage, studied and revered the work and nota-

tion of Newton and argued with Berkeley over foun-

dations, Continental mathematicians went onward

and upward analytically with the calculus of Leib-

niz. The powerful analytic results and techniques

in eighteenth-century Continental mathematics were

all that mathematicians like Cauchy, Riemann, and

Weierstrass needed for their nineteenth-century anal-

ysis with its even greater power, together with its im-

proved rigor and generality. [9, ch. 7] [49, p. 948]

This story became so well known that it was cited by

the literary critic Matthew Arnold, who wrote, \The

man of genius [Newton] was continued by . . . com-
pletely powerless and obscure followers . . . The man
of intelligence [Leibniz] was continued by succes-

sors like Bernoulli, Euler, Lagrange, and Laplace|

the greatest names in modern mathematics." [1, p.

54; cited by [61, p. 15]]

Now since I myself have contributed to the stan-

dard story, especially in delineating the links among

Euler, Lagrange, and Cauchy, [38, chs. 3{6] I have a

good deal of sympathy for it, but I now think that it

must be modified. Maclaurin's Treatise of Fluxions
is an important link between the calculus of Newton

and Continental analysis, and Maclaurin contributed

to key developments in the mathematics of his con-

temporaries. Let us examine the evidence for this

statement.

3 The nature of Maclaurin's

Treatise of Fluxions
Why| the standard story notwithstanding|might

Maclaurin's Treatise of Fluxions have been able
to transmit Newtonian calculus, improved and ex-

panded, to the Continent? First, because the Trea-
tise of Fluxions is not just one \Book," but two.
While Book I is largely, though not entirely, geomet-

ric, Book II has a different agenda. Its title is \On

the Computations in the Method of Fluxions." [my
italics] Maclaurin began Book II by championing the

power of symbolic notation in mathematics. [63, pp.

575{576] He explained, as Leibniz before him and

Lagrange after him would agree, that the usefulness

of symbolic notation arises from its generality. So,

Maclaurin continued, it is important to demonstrate

the rules of fluxions once again, this time from a

more algebraic point of view. Maclaurin's apprecia-

tion of the algorithmic power of algebraic and calcu-

lus notation expresses a common eighteenth-century

theme, one developed further by Euler and Lagrange

in their pursuit of pure analysis detached from any

kind of geometric intuition. To be sure, Maclaurin,

unlike Euler and Lagrange, did not wish to detach

the calculus from geometry. Nonetheless, Maclau-

rin's second Book in fact, as well as in rhetoric, has

an algorithmic character, and most of its results may

be read independently of their geometric underpin-

nings, even if Maclaurin did not so intend. (In his

Preface to Book I, he even urged readers to look at

Book II before the harder parts of Book I.) [63, p.

iii] The Treatise of Fluxions, then, was not foreign
to the Continental point of view, and may have been

written in part with a Continental audience in mind.

Nor was this algebraic character a secret open only

to the reader of English. There was a French trans-

lation in 1749 by the Jesuit R. P. P�ez�enas, includ-

ing an extensive table of contents. [62] Lagrange,

among others, seems to have used this French edi-

tion (since he cited it by the French title [58, p. 17]

though he cited other English works in English [58,

p. 18]). P�ez�enas' translation, moreover, was neither

isolated nor idiosyncratic, but part of the activity
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of a network of Jesuits interested in mathematics

and mathematical physics, especially work in En-

glish, with Maclaurin one of the authors of inter-

est to them. [84, pp. 33, 221, 278, 517, 655] For

instance, P�ez�enas himself translated other English

works, including those by Desaguliers, Gardiner's

logarithmic tables, and Seth Ward's Young Mathe-
matician's Guide. [83, pp. 571{2] Thus there was
a well-worn path connecting English-language work

with interested Continental readers. Furthermore, the

two-fold character of the Treatise of Fluxions was
noted, with special praise for Book II's treatment of

series, by Silvestre-Franc�ois Lacroix in the histori-

cal introduction to the second edition of his highly

influential three-volume calculus textbook. [52, p.

xxvii] Unfortunately, though, recognition of the two-

fold character has been absent from the literature al-

most completely from Lacroix's time until the recent

work by Sageng and Guicciardini. [42] [78] We shall

address the reasons for this neglect in due course.

4 The social context: The

Scottish Enlightenment

Another reason for doubting the standard picture

comes from the social context of Maclaurin's career.

Eighteenth-centuryScotland, Maclaurin's home, was

anything but an intellectual backwater. It was full

of first-rate thinkers who energetically pursued sci-

ence and philosophy and whose work was known

and respected throughout Europe. One would expect

Scotland's leading mathematician to share these con-

nections and this international renown, and he did.

Although Scotland had been deprived of its inde-

pendent national government by the Act of Union

of 1707, it still retained, besides its independent le-

gal system and its prevailing religion, its own ed-

ucational system. The strength and energy of Scot-

tish higher education in Maclaurin's time is owed

in large part to the Scottish ruling classes, landown-

ers and merchants alike, who saw science, mathe-

matics, and philosophy as keys to what they called

the \improvement" of their yet underdeveloped na-

tion. [65, p. 254] [80, pp. 7{8, 10{11] [17, pp. 127,

132{3] Eighteenth-century Scotland, with one-tenth

the population of England, had four major universi-

ties to England's two. [80, p. 116] Maclaurin, when

he wrote the Treatise of Fluxions, was Professor of
Mathematics at the University of Edinburgh. Edin-

burgh was about to become the heart of the Scot-

tish Enlightenment, and Maclaurin until his death in

1746 was a leading figure in that city's cultural life.

Mathematics played a major role in the Scottish

university curriculum. This was in part for engi-

neers; Scottish military engineers were highly in de-

mand even on the Continent. [17, p. 125] Maclaurin

himself was actively interested in the applications

of mathematics, and just before his untimely death

had planned to write a book on the subject. [36]

[68, p. xix] In addition, mathematics and Newto-

nian physics were part of the course of study for

prospective clergymen. [80, p. 20] The influential

\Moderate" party in the Church of Scotland appre-

ciated the Newtonian reconciliation of science and

religion. [16, pp. 53, 57]

Maclaurin's position in Edinburgh's cultural life

was not just that of a technically competent mathe-

matician. For instance, he was part of the Rankenian

society, which met at Ranken's Tavern in Edinburgh

to discuss such things as the philosophy of Bishop

Berkeley; the society introduced Berkeley's philos-

ophy to the Scottish university curriculum. [24, p.

222] [17, p. 133] [65, p. 197] Maclaurin and his

physician friend Alexander Monro were the founders

and moving spirits of the Edinburgh Philosophical

Society. [65, p. 198] With Newton's encouragement,

Maclaurin had become the chief spokesman in Scot-

land for the new Newtonian physics. His posthu-

mously published book, An Account of Sir Isaac
Newton's Philosophical Discoveries, was based on
material Maclaurin used in his classes at Edinburgh,

and the book was of great interest to philosophers.

[24, p. 137] That book became well known on the

Continent. It was translated into French almost as

soon as it appeared, by Louis-Anne Lavirotte in

1749, and the first part appeared in Italian in Venice

in 1762.

Another branch of Scottish science, namely

medicine, also had many links with the Continent

and was highly regarded there. Medical students

went back and forth between Scotland, Holland, and

France. [17, p. 135] [80, p. 7]

The best-known figures of eighteenth-century

Scotland had major interactions with, and influence

upon, Continental science and philosophy. [39] [81]

Let it suffice to mention the names of four: the

philosopher David Hume, who was a student at Ed-

inburgh in Maclaurin's time; the geologist James

Hutton, who attended and admired Maclaurin's lec-

tures; [34, pp. 577{8] and, a bit after Maclaurin's

time but still subject to his influence on Scottish

higher education, the chemist Joseph Black and the

economic and political philosopher Adam Smith.
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Maclaurin himself had twice won prizes from the

Académie des Sciences in Paris, once in 1724 for a

memoir on percussion, and then in 1740 (dividing

the prize with Daniel Bernoulli, P. Antoine Caval-

leri, and Leonhard Euler) for a memoir on the tides.

[79, p. 611] [39, pp. 400{401]

Scotland in the eighteenth century nurtured first-

rate intellectual work on mathematics, philosophy,

science, medicine, and engineering, and did it all

as part of a general European culture. [39, p. 412]

[81, passim] The Treatise of Fluxions was the ma-
jor mathematical work of a Scottish mathematician

of considerable reputation on the Continent, a ma-

jor work philosophically attuned to the enormously

influential Newtonian physics and the Continentally

popular algebraic symbolism. Such a work would

certainly be of interest to Continental thinkers. Social

considerations may not suffice to determine mathe-

matical ideas, but they certainly affect the mathe-

matician's ability to make a living, to get research

support, and to promote contact and communication

with other mathematicians and scientists at home

and abroad. And so it was with Maclaurin.

5 Maclaurin's Continental

reputation

An even better reason for not accepting the tradi-

tional view of Maclaurin is that his work demon-

strably was read in the eighteenth century, and was

read by the big names of Continental mathematics.

He had a Continental acquaintance through travel

and correspondence. Even before the Treatise of
Fluxions, his reputation had been enhanced by his
Acad�emie prizes and by his books on geometry. He

was thus a respected member of an international

network of mathematicians with interests in a wide

range of subjects, and the publication of the Treatise
of Fluxionswas eagerly anticipated on the Continent.
The Treatise of Fluxions of 1742 was Maclaurin's

major work on analysis, incorporating and some-

what dwarfing what he had done earlier. It con-

tains an exposition of the calculus, with old re-

sults explained and many new results introduced and

proved. Maclaurin seems to have included almost ev-

erything he had done in analysis and its applications

to Newtonian physics. In particular, the findings of

his Paris prize paper on the tides were included and

expanded. His other papers, the posthumous and rel-

atively elementary Algebra, and his works on ge-

ometry as such|though highly regarded|do not

concern us here, but his Continental reputation was

enhanced by these as well.

Let us turn now to some specific evidence for the

Continental reputation of Maclaurin's major work.

In 1741, Euler wrote to Clairaut that, though he had

not yet seen the Paris prize papers on the tides, \from

Mr. Maclaurin I expect only excellent ideas." [47, p.

87] Euler added that he had heard from England

(presumably from his correspondent James Stirling)

that Maclaurin was bringing out a book on \dif-

ferential calculus," and asked Clairaut to keep him

posted about this. In turn, Clairaut asked Maclaurin

later in 1741 about his plans for the book, [66, p.

348] which Clairaut wanted to see before publish-

ing his own work on the shape of the earth. [47,

p. 110] Euler did get the Treatise of Fluxions, and
read enough of it quickly to praise it in a letter to

Goldbach in 1743. [48, p. 179] Jean d'Alembert, in

his Trait�e de dynamique of 1743, [22, sec. 37, n.]
praised the rigor brought to calculus by the Treatise
of Fluxions. D'Alembert's most recent biographer,
Thomas Hankins, argues that Maclaurin's Treatise,
appearing at this time, helped persuade d'Alembert

that gravity could best be described as a continu-

ous acceleration rather than a series of infinitesimal

leaps. [44, p. 167] D'Alembert's general approach

to the foundations of the calculus in terms of limits

clearly was influenced by Newton's and Maclaurin's

championing of limits over infinitesimals, in partic-

ular by Maclaurin's clear description of limits in one

of the parts of his Treatise of Fluxions that explicitly
responds to Berkeley's objections (and which inci-

dentally may be the first explicit description of the

tangent as the limit of secant lines; see Section 7 be-

low). [44, p. 23] [63, pp. 422{3] Lagrange in his An-
alytical Mechanics [55, p. 243] said that Maclaurin,
in the Treatise of Fluxions, was the first to treat New-
ton's laws of motion in the language of the calculus

in a coordinate system fixed in space. Though C.

Truesdell [80, pp. 250{3] has shown that Lagrange

was wrong because Johann Bernoulli and Euler were

ahead of Maclaurin on this, the fact that Lagrange

believed this is one more piece of evidence of the

Continental reputation of Maclaurin as mathemati-

cian and physicist.

6 Maclaurin's mathematics and

its importance

The previous points show that Maclaurin could have

been influential, but not that he was. Five examples
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will reveal both the nature of Maclaurin's techniques

and the scope of his influence: a special case of

the Fundamental Theorem of Calculus; Maclaurin's

treatment of maxima and minima for functions of

one variable; the attraction of spheroids; what is now

called the Euler-Maclaurin summation formula; and

elliptic integrals.

a. Key methods in the calculus Two methods

were central to the study of real-variable calculus

in the eighteenth and nineteenth centuries. One of

these is studying real-valued functions by means of

power-series representations. This tradition is nor-

mally thought first to flower with Euler; it is then

most closely associated with Lagrange, and, later

for complex variables, with Weierstrass. The second

such method is that of basing the foundations of the

calculus on the algebra of inequalities|what we

now call delta-epsilon proof techniques|and using

algebraic inequalities to prove the major results of

the calculus; this tradition is most closely associ-

ated with the work of Cauchy in the 1820's. I have

traced these traditions back to Lagrange and Euler

in my work on the origins of Cauchy's calculus.

[38, chs. 3{6] It is surprising, at least if one accepts

the standard picture of the history of the calculus,

that both of these methods| studying functions by

power series, basing foundations on inequalities|

were materially advanced by Maclaurin in the Trea-
tise of Fluxions. It is especially striking that the
importance of Maclaurin's work on series|work

based, it is well to remember, on Newton's use of

infinite series|was recognized and praised in 1810

by Lacroix, who also linked it with the series-based

calculus of Lagrange. [52, p. xxxiii]

Maclaurin skillfully used algebraic inequalities in

his proof of a special case of the Fundamental The-

orem of Calculus. He showed, for a particular func-

tion, that if one takes the fluxion of the area under

the curve whose equation is y = f(x), one gets the
function f(x). In his proof, Maclaurin adapted the
intuition underlying Newton's argument for this fact

in De Analysi [69]| that the rate of change of the

area under a curve is measured by the height of the

curve|but Maclaurin's proof is more rigorous. Al-

though Maclaurin's argument proceeds algebraically,

the concepts involved resemble those of the Greek

\method of exhaustion" (more precisely termed by

Dijksterhuis \indirect passage to the limit"). [26, p.

130] A key step in this Greek work is first to as-

sume that two equal areas or expressions for areas

are unequal, and then to argue to a contradiction by

using inequalities that hold among various rectilin-

ear areas. Newton in the Principia had based proofs
of new results about areas and curves on methods

akin to those of the Greeks. Maclaurin carried this

much further. It was Maclaurin's \conservative" al-

legiance to Archimedean geometric methods that led

him to buttress the kinematic intuition of Newton's
calculus with algebraic inequality proofs.
What Maclaurin proved in the example under dis-

cussion is that, if the area under a curve up to x
is given by xn, the ordinate of the curve must be

y = nxn−1, which is known to be the fluxion of

xn. [63, pp. 752{754] Maclaurin's diagram for this

is much like the one Newton gave in the De Analysi.
[69, pp. 3{4] Maclaurin began by saying that, since

x and y increase together, the following inequality
holds between the areas shown:

xn − (x− h)n < yh < (x+ h)n − xn. (1)

(Maclaurin gave this inequality verbally; I have sup-

plied the \<" signs; also, I use \h" for the increment
where Maclaurin used \o".) Now Maclaurin recalled
an algebraic identity he had proved earlier: [63, p.

583; inequality notation added]

If E < F , then

nF n−1(E−F ) < En−F n < nEn−1(E−F ). (2)

(It may strike the modern reader that, since nxn−1 is

the derivative of xn, this second inequality is a spe-

cial case of the mean-value theorem for derivatives.

I shall return to this point later.)

Now, letting x− h play the role of F and x play
the role of E, E −F is h and the first inequality in
(2) yields

n(x− h)n−1h < xn − (x− h)n.

Similarly, if F = x and E = x+h, then E−F = h
and the second inequality in (2) becomes

(x+ h)n − xn < n(x+ h)nh.

m

M

A P pp

m

Figure 1.
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Combining these with inequality (1) about the areas,

Maclaurin obtained

n(x− h)n−1h < yh < n(x+ h)n−1h.

Dividing by h produces

n(x− h)n−1 < y < n(x+ h)n−1. (3)

Recall that, given that the area was xn, Maclaurin

was seeking an expression for y, the fluxion of that
area. A modern reader, having reached the inequal-

ity (3), might stop, perhaps saying \let h go to zero,
so that y becomes nxn−1," or perhaps justifying the

conclusion by appealing to the delta-epsilon charac-

terization of limit. What Maclaurin did instead was

what Archimedes might have done, a double reduc-
tio ad absurdum. But what Archimedes might have
done geometrically and verbally, Maclaurin did al-

gebraically. He assumed first that y is not equal to
nxn−1. Then, he said, it must be equal to nxn−1+r
for some r. First, he considered the case when this
r was positive. This will lead to a contradiction
if h is chosen so that y = n(x + h)n−1, since,

he observed, inequality (3) will be violated when

h = (xn−1 + r/n)1/(n−1). Similarly, he calculated

the h that produces a contradiction when r is as-
sumed to be negative. Thus there can be no such r,
and y = nxn−1. [63, p. 753]

Maclaurin introduced this proof by saying some-

thing surprising for a Treatise of Fluxions: that the
use of the inequalities makes the demonstration of

the value of y \independent of the notion of a flux-
ion." [63, p. 752] (Of course one would need the

notion of fluxion to interpret y as the fluxion of the
area function xn, but the proof itself is algebraic.)

This proof was presumably part of his agenda in

writing the more algebraic Book II of the Treatise
for an audience on the Continent, where fluxions

were suspect as involving the idea of motion. Later

Lagrange, in seeking his purely algebraic founda-

tion for the calculus, explicitly said he wanted to

free the calculus from fluxions and what he called

the \foreign idea" of motion. It is thus striking that

Lagrange's Th�eorie des fonctions analytiques (1797)
gives a more general version of the kind of argu-

ment Maclaurin had given, applying to any increas-

ing function that satisfies the geometric inequality

expressed in (1). In place of the algebraic inequality

(2), Lagrange used the mean-value theorem. [58, pp.

238{9] [38, pp. 156{158] The similarity of the two

arguments does not prove influence, of course, but it

certainly demonstrates that Maclaurin's work, which

we know Lagrange read (e.g., [58, p. 17]), uses the

algebra of inequalities in a way consistent with that

used by Lagrange and his successors.

Maclaurin's argument exemplifies the way his

Treatise reconciles the old and the new. The dou-
ble reductio ad absurdum reflects his Archimedean
agenda. Treating the area as generated by a mov-

ing vertical line, and then searching for the rela-

tionship between the area and its fluxion, are New-

tonian. Maclaurin did not have a general proof of

the Fundamental Theorem in this argument, but re-

lied on an inequality based on the specific proper-

ties of a specific function. Nonetheless, he had the

precise bounding inequalities for the area function

used later by Lagrange, and he used an algebraic in-

equality proof in a manner that would not disgrace

a nineteenth-century analyst.

Inequality-based arguments in the calculus as used

by Lagrange and Cauchy owe a lot to the eighteenth-

century study of algebraic approximations, and it

once seemed to me that this was their origin. But

the algebra of inequalities as used in Continen-

tal analysis, especially in d'Alembert's pioneering

treatment of the tangent as the limit of secants in

the article \Différentiel" in the Encyclop�edie, [19]
must owe something also to Maclaurin's transla-

tion of Archimedean geometry into algebraic dress

to justify results in calculus. Throughout the eigh-

teenth century, practitioners of the limit tradition on

the Continent use inequalities; a clear line of in-

fluence connects Maclaurin's admirer d'Alembert,

Simon L'Huilier (who was a foreign member of the

Royal Society), the textbook treatment of limits by

Lacroix, and, finally, Cauchy. [38, pp. 80{87]

Now let us turn to some of Maclaurin's work

on series. There is, of course, the Maclaurin series,

that is, the Taylor series expanded around zero. This

result Maclaurin himself credited to Taylor, and it

was known earlier to Newton and Gregory. It was

called the Maclaurin series by John. F. W. Herschel,

Charles Babbage, and George Peacock in 1816 [51,

pp. 620{21] and by Cauchy in 1823. [14, p. 257]

Since it was obvious that Maclaurin had not invented

it, the attribution shows appreciation by these later

mathematicians for the way Maclaurin used the se-

ries to study functions. A key application is Maclau-

rin's characterization of maxima, minima, and points

of inflection of an infinitely differentiable function

by means of its successive derivatives. When the first

derivative at a point is zero, there is a maximum if

the second derivative is negative there, a minimum

if it is positive. If the second derivative is zero, one
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looks at higher derivatives to tell whether the point is

a maximum, minimum, or point of inflection. These

results can be proved by looking at the Taylor se-

ries of the function near the point in question, and

arguing on the basis of the inequalities expressed in

the definition of maximum and minimum. For in-

stance (in modern [Lagrangian] notation), if f(x) is
a maximum, then

f(x) > f(x + h)

= f(x) + hf ′(x) + h2/2!f ′′(x) + · · · (4)

and

f(x) > f(x − h)

= f(x) − hf ′(x) + h2/2!f ′′(x) − · · ·

if h is small. If the derivatives are bounded, and
if h is taken sufficiently small so that the term in

h dominates the rest, the inequalities (4) can both
hold only if f ′(x) = 0. If f′(x) = 0, then the h2

term dominates, and the inequalities (4) hold only if

f ′′(x) is negative. And so on.
I have traced Cauchy's use of this technique back

to Lagrange, and from Lagrange back to Euler. [38,

pp. 117{118] [37, pp. 157{159] [58, pp. 235{6]

[29, Secs. 253{254] But this technique is explic-

itly worked out in Maclaurin's Treatise of Fluxions.
Indeed, it appears twice: once in geometric dress in

Book I, Chapter IX, and then more algebraically in

Book II. [63, pp. 694{696] Euler, in the version he

gave in his 1755 textbook, [20] does not refer to

Maclaurin on this point, but then he makes few ref-

erences in that book at all. Still we might suspect,

especially knowing that Stirling told Euler in a letter

of 16 April 1738 [91] that Maclaurin had some inter-

esting results on series, that Euler would have been

particularly interested in looking at Maclaurin's ap-

plications of the Taylor series. Certainly Lacroix's

praise for Maclaurin's work on series must have

taken this set of results into account. [52, p. xxvii]

Even more important, Lagrange, in unpublished lec-

tures on the calculus from Turin in the 1750's, after

giving a very elementary treatment of maxima and

minima, referred to volume II of Maclaurin's Trea-
tise of Fluxions as the chief source for more informa-
tion on the subject. [7, p. 154] Since Lagrange did

not mention Euler in this connection at all, Lagrange

could well not even have seen the Institutiones cal-
culi differentialis of 1755 when he made this ref-
erence. This Taylor-series approach to maxima and

minima (with the Lagrange remainder supplied for

the Taylor series) plays a major role in the work

of Lagrange, and later in the work of Cauchy. It is

because Maclaurin thought of maxima and minima,

and of convexity and concavity, in Archimedean ge-

ometrical terms that he was led to look at the rele-

vant inequalities, just as the geometry of Archimedes

helped Maclaurin formulate some of the inequalities

he used to prove his special case of the Fundamental

Theorem of Calculus.

b. Ellipsoids We now turn to work in applied

mathematics that constitutes one of Maclaurin's

great claims to fame: the gravitational attraction of

ellipsoids and the related problem of the shape of the

earth. Maclaurin is still often regarded as the creator

of the subject of attraction of ellipsoids. [85, pp. 175,

374] In the eighteenth century, the topic attracted se-

rious work from d'Alembert, A.-C. Clairaut, Euler,

Laplace, Lagrange, Legendre, Poisson, and Gauss. In

the twentieth century, Subramanyan Chandrasekhar

(later Nobel laureate in physics) devoted an entire

chapter of his classic Ellipsoidal Figures of Equi-
librium to the study of Maclaurin spheroids (fig-

ures that arise when homogeneous bodies rotate with

uniform angular velocity), the conditions of stabil-

ity of these spheroids and their harmonic modes

of oscillation, and their status as limiting cases of

more general figures of equilibrium. Such spheroids

are part of the modern study of classical dynam-

ics in the work of scientists like Chandrasekhar,

Laurence Rossner, Carl Rosenkilde, and Norman

Lebovitz. [15, pp. 77{100] Already in 1740 Maclau-

rin had given a \rigorously exact, geometrical the-

ory" of homogeneous ellipsoids subject to inverse-

square gravitational forces, and had shown that an

oblate spheroid is a possible figure of equilibrium

under Newtonian mutual gravitation, a result with

obvious relevance for the shape of the earth. [39, p.

172] [86 p. xix] [85, p. 374]

Of particular importance was Maclaurin's deci-

sive influence on Clairaut. Maclaurin and Clairaut

corresponded extensively, and Clairaut's seminal

1743 book La Figure de la Terre [18] frequently, ex-
plicitly, and substantively cites his debts to Maclau-

rin's work. [39, pp. 590{597] A key result, that the

attractions of two confocal ellipsoids at a point exter-

nal to both are proportional to their masses and are

in the same direction, was attributed to Maclaurin

by d'Alembert, an attribution repeated by Laplace,

Lagrange, and Legendre, then by Gauss, who went

back to Maclaurin's original paper, and finally by

Lord Kelvin, who called it \Maclaurin's splendid

theorem." [15, p. 38] [85, pp. 145, 409] Lagrange
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began his own memoir on the attraction of ellipsoids

by praising Maclaurin's treatment in the prize paper

of 1740 as a masterwork of geometry, comparing the

beauty and ingenuity of Maclaurin's work with that

of Archimedes, [57, p. 619] though Lagrange, typi-

cally, then treated the problem analytically. Maclau-

rin's eighteenth- and nineteenth-century successors

also credit him with some of the key methods used

in studying the equilibrium of fluids, such as the

method of balancing columns. [39, p. 597] Maclau-

rin's work on the attraction of ellipsoids shows how

his geometric insights fruitfully influenced a subject

that later became an analytic one.

c. The Euler-Maclaurin formula The Euler-

Maclaurin formula expresses the value of definite

integrals by means of infinite series whose coeffi-

cients involve what are now called the Bernoulli

numbers. The formula shows how to use integrals

to find the partial sums of series. Maclaurin's ver-

sion, in modern notation, is:

∞∑

h=0

F (a+ h) =

∫ a

0

F (x) dx+
1

2
F (a) +

1

2
F ′(a)

− 1

720
F ′′′(a) +

1

30240
F (v)(a) − · · ·

[35, pp. 84{86] James Stirling in 1738, congratu-

lating Euler on his publication of that formula, told

Euler that Maclaurin had already made it public in

the first part of the Treatise of Fluxions, which was
printed and circulating in Great Britain in 1737.

[47, p. 88n] [91, p. 178] (On this early publica-

tion, see also [63, p. iii, p. 691n].) P. L. Griffiths

has argued that this simultaneous discovery rests on

De Moivre's work on summing reciprocals, which

also involves the so-called Bernoulli numbers. [40]

[41, pp. 16{17] [25, p. 19] In any case, Euler and

Maclaurin derived the Euler-Maclaurin formula in

essentially the same way, from a similar geomet-

ric diagram and then by integrating various Tay-

lor series and performing appropriate substitutions

to find the coefficients. [31] [32] [33] Maclaurin's

approach is no more Archimedean or geometric than

Euler's; they are similar and independent. [63, pp.

289{293, 672{675] [35, pp. 84{93] [67] In subse-

quent work, Euler went on to extend and apply the

formula further to many other series, especially in

his Introductio in Analysin Infinitorum of 1748 and
Institutiones Calculi Differentialis of 1755. [35, p.
127] But Maclaurin, like Euler, had applied the for-

mula to solve many problems. [63, pp. 676{693]

For instance, Maclaurin used it to sum powers of

arithmetic progressions and to derive Stirling's for-

mula for factorials. He also derived what is now

called the Newton-Cotes numerical integration for-

mula, and obtained what is now called Simpson's

rule as a special case. It is possible that his work

helped stimulate Euler's later, fuller investigations

of these important ideas.

In 1772, Lagrange generalized the Euler-

Maclaurin formula, which he obtained as a conse-

quence of his new calculus of operators. [53] [35,

pp. 169, 261] In 1834, Jacobi provided the formula

with its remainder term, [46, p. 263, 265] in the same

paper in which he first introduced what are now

called the Bernoulli polynomials. Jacobi, who called

the result simply the Maclaurin summation formula,

cited it directly from the Treatise of Fluxions. [46,
p. 263] Later, Karl Pearson used the formula as an

important tool in his statistical work, especially in

analyzing frequency curves. [72, pp. 217, 262]

The Euler-Maclaurin formula, then, is an impor-

tant result in the mainstream of mathematics, with

many applications, for which Maclaurin, both in the

eighteenth century and later on, has rightly shared

the credit.

d. Elliptic integrals Some integrals (Maclaurin

used the Newtonian term \fluents"), are algebraic

functions, Maclaurin observed. Others are not, but

some of these can be reduced to finding circular arcs,

others to finding logarithms. By analogy, Maclaurin

suggested, perhaps a large class of integrals could be

studied by being reduced to finding the length of an

elliptical or hyperbolic arc. [63, p. 652] By means

of clever geometric transformations, Maclaurin was

able to reduce the integral that represented the length

of a hyperbolic arc to a `nice' form. Then, by alge-

braic manipulation, he could reduce some previously

intractable integrals to that same form. His work was

translated into analysis by d�Alembert and then gen-

eralized by Euler. [13, p. 846] [23] [27, p. 526] [28,

p. 258] In 1764, Euler found a much more elegant,

general, and analytic version of this approach, and

worked out many more examples, but cited the work

of Maclaurin and d'Alembert as the source of his

investigation. A.-M. Legendre, the key figure in the

eighteenth-century history of elliptic integrals, cred-

ited Euler with seeing that, by the aid of a good

notation, arcs of ellipses and other transcendental

curves could be as generally used in integration as

circular and logarithmic arcs. [45, p. 139] Legen-

dre was, of course, right that \elliptic integrals" en-
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compass a wide range of examples; this was exactly

Maclaurin's point. Thus, although his successors ac-

complished more, Maclaurin helped initiate a very

important investigation and was the first to appre-

ciate its generality. Maclaurin's geometric insight,

applied to a problem in analysis, again brought him

to a discovery.

7 Other examples of Maclaurin's

mathematical influence

The foregoing examples provide evidence of direct

influence of the Treatise of Fluxions on Continen-
tal mathematics. There is much more. For instance,

Lacroix, in his treatment of integrals by the method

of partial fractions, called it \the method of Maclau-

rin, followed by Euler." [52, Vol. II, p. 10] [63, pp.

634{644] Of interest too is Maclaurin's clear under-

standing of the use of limits in founding the calcu-

lus, especially in the light of his likely influence on

d'Alembert's treatment of the foundations of the cal-

culus by means of limits in the Encyclop�edie, which
in turn influenced the subsequent use of limits by

L�Huilier, Lacroix, and Cauchy, [38, ch. 3] (and on

Lagrange's acceptance of the limit approach in his

early work in the 1750's). [7] Although the largest

part of Maclaurin's reply to Berkeley was the exten-

sive proof of results in calculus using Greek meth-

ods, he was willing to explain important concepts

using limits also. In particular, Maclaurin wrote, \As

the tangent of an arch [arc] is the right line that limits

the position of all the secants that can pass through

the point of contact . . . though strictly speaking it be
no secant; so a ratio may limit the variable ratios of

the increments, though it cannot be said to be the ra-

tio of any real increments." [63, p. 423] Maclaurin's

statement answers Berkeley's chief objection| that

the increment in a function's value is first treated

as non-zero, then as zero, when one calculates the

limit of the ratio of increments or finds the tangent

to a curve. Maclaurin's statement is in the tradition

of Newton's Principia (Book I, Scholium to Lemma
XI), but is in a form much closer to the later work

of d�Alembert on secants and tangents. [20] Maclau-

rin pointed out that most of the propositions of the

calculus that he could prove by means of geome-

try \may be briefly demonstrated by this method [of
limits]." [63, p. 87, my italics]

In addition, Maclaurin had considerable influ-

ence in Britain, on mathematicians like John Landen

(whose work on series was praised by Lagrange),

Robert Woodhouse (who sparked the new British in-

terest in Continental work about 1800), and on Ed-

ward Waring and Thomas Simpson, whose names

are attached to results well known today. [42] Go-

ing beyond the calculus, Maclaurin's purely geomet-

ric treatises were read and used by French geome-

ters of the stature of Chasles and Poncelet. [90, p.

145] Thus, though Maclaurin may not have been the

towering figure Euler was, he was clearly a signif-

icant and respected mathematician, and the Treatise
of Fluxions was far more than an unread tome whose
weight served solely to crush Bishop Berkeley.

8 Why a Treatise of Fluxions?

The Treatise of Fluxions was not really intended as
a reply to Berkeley. Maclaurin could have refuted

Berkeley with a pamphlet. It was not a student hand-

book either; this work is far from elementary. Nor

was it merely written to glory in Greek geometry.

Maclaurin wrote several works on geometry per se.

But he was no antiquarian. Instead, the Treatise of
Fluxions was the major outlet for Maclaurin's solu-
tion of significant research problems in the field we

now call analysis. Geometry, as the examples I gave

illustrate, was for Maclaurin a source of motivation,

of insight, and of problem-solving power, as well as

being his model of rigor.

For Maclaurin, rigor was not an end in itself,

or a goal pursued for purely philosophical reasons.

It was motivated by his research goals in analy-

sis. For instance, Maclaurin developed his theory

of maxima, minima, points of inflection, convex-

ity and concavity, orders of contact, etc., because

he wanted to study curves of all types, including

those that cross over themselves, loop around and are

tangent to themselves, and so on. He needed a so-

phisticated theory to characterize the special points

of such curves. Again, in problems as different as

studying the attraction of ellipsoids and evaluating

integrals approximately, he needed to use infinite se-

ries and know how close he was to their sum. Thus,

rigor, to Maclaurin, was not merely a tool to defend

Newton's calculus against Berkeley|though it was

that|nor just a response to the needs of a professor

to present his students a finished subject| though

it may have been that as well. In many examples,

Maclaurin's rigor serves the needs of his research.

Moreover, the Treatise of Fluxions contains a
wealth of applications of fluxions, from standard

physical problems such as curves of quickest de-
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scent to mathematical problems like the summation

of power series| in the context of which, inciden-

tally, Maclaurin gave what may be the earliest clear

definition of the sum of an infinite series: \There

are progressions of fractions which may be contin-

ued at pleasure, and yet the sum of the terms be

always less than a certain finite number. If the dif-

ference betwixt their sum and this number decrease

in such a manner, that by continuing the progression

it may become less than any fraction how small so-

ever that can be assigned, this number is the limit
of the sum of the progression, and is what is un-
derstood by the value of the progression when it is

supposed to be continued indefinitely." [63, p. 289]

Thus, though eighteenth-century Continental math-

ematicians did not care passionately about founda-

tions, [38, pp. 18{24] they could still appreciate the

Treatise of Fluxions because they could mine it for
results and techniques.

9 Why the traditional view?

If the reader is convinced by now that the tradi-

tional view is wrong, that Maclaurin's Treatise did
not mark the end of the Newtonian tradition, and

that not all of modern analysis stems solely from the

work of Leibniz and his school, the question arises,

how did that traditional view come to be, and why

it has been so persistent?

Perhaps the traditional view could be explained

as follows. Consider the approach to mathematics

associated with Descartes: symbolic power, not de-

bates over foundations; problem-solving power, not

axioms or long proofs. The Cartesian approach to

mathematics is clearly reflected in the work and in

the rhetoric of Leibniz, Johann Bernoulli, Euler, La-

grange|especially in the historical prefaces to his

influential works|and even Cauchy. These men,

the giants of their time, are linked in a continu-

ous chain of teachers, close colleagues, and students.

Some topics, like partial differential equations and

the calculus of variations, were developed mostly on

the Continent. Moreover, the Newton-Leibniz con-

troversy helped drive English and Continental math-

ematicians apart. Thus the Continental tradition can

be viewed as self-contained, and the outsider sees no

need for eighteenth-century Continental mathemati-

cians to struggle through 750 pages of a Treatise
of Fluxions, which is at best in the Newtonian nota-
tion and at worst in the language of Greek geometry.

Lagrange's well-known boast that his Analytical

Mechanics [55] had (and needed) no diagrams, thus
opposing analysis to geometry at the latter's expense,

reinforced these tendencies and enshrined them in

historical discourse. But the explanation we have just

given does not suffice to explain the strength, and

persistence into the twentieth century, of the stan-

dard interpretation. The traditional view of Maclau-

rin's lack of importance has been reinforced by some

other historiographical tendencies that deserve our

critical attention.

The traditional picture of Maclaurin's Treatise of
Fluxions radically separates his work on founda-
tions, which it regards as geometric, sterile, and anti-

quarian, from his important individual results, which

often are mentioned in histories of mathematics but

are treated in isolation from the purpose of the Trea-
tise, in isolation from one another, and in isolation
from Maclaurin's overall approach to mathematics.

Strangely, both externalist and internalist historians,

each for different reasons, have reinforced this pic-

ture.

For instance, in the English-speaking world, view-

ing the Treatise as only about Maclaurin's founda-
tion for the calculus, and thus as a dead end, has been

perpetuated by the \decline of science in England"

school of the history of eighteenth-century science,

stemming from such early nineteenth-century figures

as John Playfair, and, especially, Charles Babbage.

[77] [2] [4] Babbage felt strongly about this because

he was a founder of the Cambridge Analytical Soci-

ety, which fought to introduce Continental analysis

into Cambridge in the early nineteenth century. This

group had an incentive to exaggerate the superior-

ity of Continental mathematics and downgrade the

British, as is exemplified by their oft-quoted remark

that the principles of \pure d-ism" should replace

what they called the \dot-age" of the University. [5,

ch. 7] [10, p. 274] The pun, playing on the Leib-

nizian and Newtonian notation in calculus, may be

found in [2, p. 26]. These views continued to be

used in the attempt by Babbage and others to reform

the Royal Society and to increase public support for

British science.

It is both amusing and symptomatic of the misun-

derstanding of Maclaurin's influence that Lacroix's

one-volume treatise on the calculus of 1802, [50]

translated into English by the Cambridge Analytical

Society with added notes on the method of series of

Lagrange, [51] was treated by them, and has been

considered since, as a purely \Continental" work.

But Lacroix's short treatise was based on the con-

cept of limit, which was Newtonian, elaborated by
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Maclaurin, adapted by d'Alembert and L'Huilier,

and finally systematized by Lacroix. [38, pp. 81{86]

Moreover, the translators� notes by Babbage, Her-

schel, and Peacock supplement the text by study-

ing functions by their Taylor series, thus using the

approach that Lacroix himself, in his multi-volume

treatise of 1810, had attributed to Maclaurin. This is,

of course, not to deny the overwhelming importance

of the contributions of Euler and Lagrange, both to

the mathematics taught by the Analytical Society and

to that included by Lacroix in his 1802 book, nor to

deny the Analytical Society's emphasis on a more

abstract and formal concept of function. But all the

same, Babbage, Herschel, and Peacock were teach-

ing some of Maclaurin's ideas without realizing this.

In any case, the views expressed by Babbage and

others have strongly influenced Cambridge-oriented

writers like W. W. Rouse Ball, who said that the

history of eighteenth-century English mathematics

\leads nowhere." [5, p. 98] H. W. Turnbull, though

he wrote sympathetically about Maclaurin's mathe-

matics on one occasion, [88] blamed Maclaurin on

another occasion for the decline: \When Maclaurin

produced a great geometrical work on fluxions, the

scale was so heavily loaded that it diverted Eng-

land from Continental habits of thought. During the

remainder of the century, British mathematics were

relatively undistinguished." [89, p. 115]

Historians of Scottish thought, working from

their central concerns, have also unintentionally

contributed to the standard picture. George Elder

Davie, arguing from social context to a judgment of

Maclaurin's mathematics, held that the Scots, unlike

the English, had an anti-specialist intellectual tradi-

tion, based in philosophy, and emphasizing \cultural

and liberal values." Wishing to place Maclaurin in

this context, Davie stressed what he called Maclau-

rin's \mathematical Hellenism," [24, p. 112] and

was thus led to circumscribe the achievement of the

Treatise of Fluxions as having based the calculus
\on the Euclidean foundations provided by [Robert]

Simson," [24, p. 111] who had made the study of

the writings of the classical Greek geometers the

\national norm" in Scotland. The \Maclaurin is a

geometer" interpretation among Scottish historians

has been further reinforced by a debate in 1838 over

who would fill the Edinburgh chair in mathemat-

ics. Phillip Kelland, a candidate from Cambridge,

was seen as the champion of Continental analysis,

while the partisans of Duncan Gregory argued for

a more geometrical approach. Wishing to enlist the

entire Scottish geometric tradition on the side of Gre-

gory, Sir William Hamilton wrote, \The great Scot-

tish mathematicians,. . . even Maclaurin, were decid-
edly averse from the application of the mechanical

procedures of algebra." [24, p. 155] Though Kelland

eventually won the chair, the dispute helped spread

the view that Maclaurin had been hostile to analy-

sis. More recently, Richard Olson has characterized

Scottish mathematics after Maclaurin as having been

conditioned by Scottish common-sense philosophy

to be geometric in the extreme. [70, pp. 4, 15] [71,

p. 29] But in emphasizing Maclaurin's influence on

this development, Olson, like Davie, has overstated

the degree to which Maclaurin's approach was geo-

metric.

By contrast, consider internalist historians. The

treatment of Maclaurin's results as isolated reflects

what Herbert Butterfield called the Whig approach

to history, viewing the development of eighteenth-

century mathematics as a linear progression toward

what we value today, the collection of results and

techniques which make up classical analysis. Thus,

mathematicians writing about the history of this pe-

riod, from Moritz Cantor in the nineteenth century to

Hermann Goldstine and Morris Kline in the twenti-

eth, tell us what Maclaurin did with specific results,

some named after him, for which they have mined

the Treatise of Fluxions. [13, pp. 655{663] [35, pp.
126ff, 167{168] [49, pp. 522{523, 452, 442] They

either neglect the apparently fruitless work on foun-

dations, or, viewing it as geometric, see it as a step

backward. It is of course true that many Continental

mathematicians used Maclaurin's results without ac-

cepting the geometrical and Newtonian insights that

Maclaurin used to produce them. But without those

points of view, Maclaurin would not have produced

those results.

Both externalist and internalist historians, then,

have treated Maclaurin's work in the same way: as

a throwback to the Greeks, with a few good results

that happen to be in there somewhat like currants in

a scone. Further, the fact that Maclaurin's book, es-

pecially its first hundred pages, is very hard to read,

especially for readers schooled in modern analysis,

has encouraged historians who focus on foundations

to read only the introductory parts. The fact that

there is so much material has encouraged those in-

terested in results to look only at the sections of

interest to them. And the fact that the first volume

is so overwhelmingly geometric serves to reinforce

the traditional picture once again whenever anybody

opens the Treatise. The recent Ph.D. dissertation by
Erik Sageng [78] is the first example of a modern
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scholarly study of Maclaurin's Treatise in any depth.
The standard picture has not yet been seriously chal-

lenged in print.

10 Some final reflections

Maclaurin's work had Continental influence, but

with an important exception|his geometric foun-

dation for the calculus. Mastering this is a major ef-

fort, and I know of no evidence that any eighteenth-

century Continental mathematician actually did so.

Lagrange perhaps came the closest. In the introduc-

tion to his Th�eorie des fonctions analytiques, La-
grange could say only, Maclaurin did a good job bas-

ing calculus on Greek geometry, so it can be done,

but it is very hard. [58, p. 17] In an unpublished

draft of this introduction, Lagrange said more point-

edly: \I appeal to the evidence of all those with the

courage to read the learned treatise of Maclaurin and

with enough knowledge to understand it: have they,

finally, had their doubts cleared up and their spirit

satisfied?" [73, p. 30]

Something else may have blunted people's views

of the mathematical quality of Maclaurin's Treatise.
The way the book is constructed partly reflects the

Scottish intellectual milieu. The Enlightenment in

Britain, compared with that on the Continent, was

marked less by violent contrast and breaks with the

past than by a spirit of bridging and evolution. [75,

pp. 7{8, 15] Similarly, Scottish reformers operated

less by revolution than by the refurbishment of ex-

isting institutions. [16, p. 8] These trends are con-

sistent with the two-fold character of the Treatise
of Fluxions: a synthesis of the old and the new, of
geometry and algebra, of foundations and of new re-

sults, a refurbishment of Newtonian fluxions to deal

with more modern problems. This contrasts with the

explicitly revolutionary philosophy of mathematics

of Descartes and Leibniz, and thus with the spirit of

the math�ematicien of the eighteenth century on the

Continent.

Of course Scotland was not unmarked by the con-

flicts of the century. During the Jacobite rebellion in

1745, Maclaurin took a major role in fortifying Ed-

inburgh against the forces of Bonnie Prince Char-

lie. When the city was surrendered to the rebels,

Maclaurin fled to York. Before his return, he be-

came ill, and apparently never really recovered. He

briefly resumed teaching, but died in 1746 at the

relatively young age of forty-eight. Nonetheless, the

Newtonian tradition in the calculus was not a dead

end. Maclaurin in his lifetime, and his Treatise of
Fluxions throughout the century, transmitted an ex-
panded and improved Newtonian calculus to Conti-

nental analysts. And Maclaurin's geometric insight

helped him advance analytic subjects.

We conclude with the words of an eighteenth-

century Continental mathematician whose achieve-

ments owe much to Maclaurin's work. [39, pp. 172,

412{425, 590{597] The quotation [66, p. 350] il-

lustrates Maclaurin's role in transmitting the New-

tonian tradition to the Continent, the respect in

which he was held, and the eighteenth-century so-

cial context essential to understanding the fate of

his work. In 1741, Alexis-Claude Clairaut wrote to

Colin Maclaurin, \If Edinburgh is, as you say, one

of the farthest corners of the world, you are bringing

it closer by the number of beautiful discoveries you

have made."
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Discussion of Fluxions:

from Berkeley to Woodhouse

FLORIAN CAJORI

American Mathematical Monthly 24 (1917), 145{154

The first direct statement of Newton's method and

notation of fluxions was printed in 1693 in Wallis's

Algebra. Here and in the Principia of 1687 New-
ton made use of infinitely small quantities, but in

his Quadrature of Curves of 1704 he declared that
\in the method of fluxions there is no necessity of

introducing figures infinitely small." No other pub-

lication of Newton, printed either before 1704 or

after, equalled the Quadrature of Curves in mathe-
matical rigor. Here Newton reached his high water

mark of rigidity in the exposition of fluxions. By

a fluxion, Newton always meant a finite velocity.

With one exception, all British writers on the new

calculus before the appearance of Berkeley's Ana-
lyst in 1734 used the Newtonian notation consisting
of dots or \prick'd letters," and also Newton's word

\fluxion." But strange to say, most of these writ-

ers did not use Newton's concepts. They applied

the term \fluxion" to the infinitely small quantities

of Leibniz| thus using a home label on goods of

foreign manufacture. Of sixteen or more writers in

Great Britain during the period of 1693{1734, nine

or more call a fluxion an infinitely small quantity;

three writers do not define their terms, while only

four follow Newton's exposition of 1687 or 1693, in-

volving fluxions as finite velocities and \moments"

as infinitely small quantities, or else follow New-

ton's exposition of 1704, involving fluxions as finite

velocities and avoiding infinitely small quantities al-

most entirely. The nine or more who used fluxions

in the sense of infinitely small quantities had no

hesitation in dropping quantities from an equation

when they were very small in comparison with the

other quantities. Altogether these writings contained

a medley of philosophical doctrine which presented

a great opportunity for destructive criticism on the

part of such a close reasoner and skilful debater as

Bishop Berkeley. Before this no mathematical sub-

ject, except Zeno's paradoxes on motion, had ever

offered itself as a topic for picturesque dialectics; be-

fore Berkeley only once was such expert and splen-

did dialectical energy brought to bear on a funda-

mental topic in mathematics.

Berkeley's Analyst marks a turning point in the
history of mathematical thought in Great Britain. His

criticisms were not openly accepted by mathemati-

cians of his day; nevertheless such effort was put

forth to avoid his objections that in eight years the

logical exposition of fluxions was immensely im-

proved.

In the library of Trinity College, Cambridge, there

is a marble bust of James Jurin, a noted physician, at

one time a student at Trinity. He undertook a defence

of Newton and the calculus. Under the pseudonym of

\Philalethes Cantabrigiensis," Jurin wrote two long

replies to Berkeley, full of noisy rhetoric and giving

little that was truly substantial. Berkeley found a sec-

ond antagonist in John Walton, a professor of math-

ematics in Dublin, who had a good intuitive grasp of

fluxions, but lacked deep philosophical insight and

showed himself inexperienced in the conduct of con-

troversies. Walton wrote two replies to Berkeley and

an augmentation of his second reply. Altogether this

discussion involved eight articles, three by Berkeley,

two by Jurin and three by Walton.

Berkeley made some mistakes. One was his failure

to see or admit that the Newton of 1704 was not the

Newton of 1687 or l693. Berkeley's contention that

no geometrical quantity can be exhausted by division

is in consonance with the claim made by Zeno in his

325
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Dichotomy or his Achilles.
In the Analyst Berkeley does not refer to Zeno, but

according to Berkeley's argument, Achilles could

not catch the tortoise. Nor can the modern reader

agree with Berkeley in the claim that second or third

fluxions are more mysterious than the first fluxion.

Berkeley experienced difficulty in conceiving

fluxions as being proportional to the nascent incre-

ments or to the evanescent increments. Newton, him-

self, in his Principia, gave expression to the philo-
sophical weakness of this explanation, for, strictly

speaking, there is no first or prime ratio, nor is

there a last or ultimate ratio. In his second reply

to Berkeley Jurin defines a \nascent increment" in

the Newtonian fashion as \less than any finite mag-

nitude," also as \an increment just beginning to exist

from nothing . . . but not yet arrived at any assignable

magnitude how small so ever." Lagrange in a letter

to Euler of November 24, 1759, said that he ex-

perienced trouble with Newton's exposition, since

it considered the ratio of two quantities at the mo-

ment when they ceased to be quantities. Lagrange

seems to have been convinced, says Jourdain, that

the use of infinitesimals was rigorous and used both

the infinitesimal method and the method of derived

functions side by side, during his whole life. The

question arises: did Berkeley believe that the calcu-

lus of fluxions was capable of rational exposition

or not? Two noted mathematicians have vouchsafed

opposite opinions on this point. Sir William Rowan

Hamilton of quaternion fame says: \On the whole,

I think that Berkeley persuaded himself that he was

in earnest against fluxions, especially of order higher

than the first, as well as against matter." To this De

Morgan replied: \I have no doubt Berkeley knew

that fluxions were sound enough." Berkeley himself

said: \I have no controversy about your conclusions,

but only about your logic and method." In view of

the further fact that Berkeley in the Analyst advanced
the theory of \Compensation of Errors" we incline

to the opinion of De Morgan. The theory of \Com-

pensation of Errors," we may add, was advanced

independently by Lagrange and L. N. M. Carnot.

According to Philip E. B. Jourdain this theory is

found also in Maclaurin's Fluxions.
There are four other points in Berkeley's Ana-

lyst to which we desire to direct attention. First, his
protestation against dropping quantities because they

are comparatively very small. Jurin in his first reply

argues in favor of the rejection of infinitesimals. In

his second reply, after having received a castigation

from Berkeley, Jurin says that this part of his ar-

gument was intended for popular consumption, for

men such as one meets in London, who, when told

that if Sir Isaac Newton were to measure the height

of St. Paul's Church by fluxions he would be out not

more than one tenth of a hair's breadth, and when

further told that two books had been written in this

controversy, would fly into a passion, would make

reflections about \somebody's being overpaid," and

would use expletives not fit for print.

Second, Berkeley's denial of the existence of in-

finitely small quantities is in conformity with the

tenets of the recent school of Weierstrass and Georg

Cantor.

Interesting is Berkeley's attack upon Newton's

derivation of the moment or increment of a rect-

angle AB, as it is given in the Principia. Newton
derives this moment by the difference

(
A+

1

2
a

)(
B +

1

2
b

)
−
(
A− 1

2
a

)(
B − 1

2
b

)

= Ab+ Ba,

where a and b are assumed to be the increments of
the sides. Berkeley argues with conviction that the

increment of the rectangle AB is bA + aB + ab.
Jurin takes the arithmetical mean of the increment

bA+aB+ab of the rectangle AB and of the decre-
ment bA+ aB − ab of AB and obtains the desired

true increment or \moment" as aB+bA. Sir William
Rowan Hamilton sided with Berkeley against New-

ton on this point, but no eighteenth-century mathe-

matician in England admitted the validity of Berke-

ley's criticism.

Last we come to the most fundamental of Berke-

ley's criticisms of Newton which centers upon what

is called Berkeley's lemma: If in a demonstration
an assumption is made, by virtue of which certain

conclusions follow, and if afterward that assump-

tion is destroyed or rejected, then all the conclu-

sions that had been reached by the first assumption

must also be destroyed or rejected. Berkeley applied

this lemma to Newton's mode of deriving the flux-

ion of xn as given in the Quadrature of Curves of
1704. Newton gives x a finite increment o, expands
(x+ o)n by the binomial formula, subtracts xn and

divides the remainder by o. He then lets o be zero
and obtains the fluxion nxn−1. Berkeley says that

this reasoning is not fair or conclusive. \For when

it is said, let the increment be nothing, the former

supposition that the increment be something is de-

stroyed and yet the expression got by that former

supposition is retained." By Berkeley's lemma, this
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is a false way of reasoning, \such as would not be

allowed of in Divinity."

It is interesting to observe that no British mathe-

matician of the eighteenth century acknowledged the

soundness of Berkeley's lemma and its application.
Jurin, in his second reply to Berkeley, argues

against the lemma thus: \You say that if one sup-
position be made, and be afterwards destroyed by a

contrary supposition, then everything that followed

from the first supposition is destroyed with it." Not

so, when the supposition and its contradiction are

made at different times. \Let us imagine yourself and

me to be debating this matter in an open field,. . . a

sudden violent rain falls. . . we are all wet to the

skin. . . it clears up. . . you endeavor to persuade me

I am not wet. The shower, you say, is vanished and

gone and consequently your wetness must have van-

ished with it." The first recognition in England of the

soundness of Berkeley's lemma came in 1803 from

Robert Woodhouse, who, in his Principles of Ana-
lytical Calculation, says that the methods of treating
the calculus \all are equally liable to the objection

of Berkeley, concerning the fallacia suppositionis, or
the shifting of the hypothesis." In finding the flux-
ion of xn, the binomial expansion is effected \on the

express supposition, that o is some quantity, if you
take o equal to zero, the hypothesis is, as Berkeley
says, shifted and there is a manifest sophism in the

process."

After Berkeley terminated his debate with the

mathematicians, two mathematicians started a quar-

rel among themselves. Thus arose the second con-

troversy on fluxions, which is comparatively little

known.

Benjamin Robins, a self-educated mathematician,

felt that Jurin had not entered a satisfactory defence

of Newton, so Robins himself in 1735 published

a tract entitled A Discourse Concerning the Na-
ture and Certainty of Sir Isaac Newton's Method of
Fluxions and of Prime and Ultimate Ratios. Robins
makes no reference to Berkeley or Jurin, or to their

controversy. He lays the foundation of the calculus

upon the concept of a limit. He speaks of a limit

as a magnitude \to which a varying magnitude can

approach within any degree of nearness whatever,

though it can never be made absolutely equal to it."

Here for the first time is the stand taken openly,

clearly, explicitly, that a variable can never reach its

limit. From the standpoint of debating, this stand

is a decided gain, but it is a gain made at the ex-

pense of generality. He descends to a very special

type of variation which is not the variation encoun-

tered in ordinary mechanics; it is an artificial vari-

ation which does not permit Achilles to catch the

tortoise. But this narrow concept of a limit never-

theless answers very well the needs of ordinary ge-

ometry. Robins's tract is remarkable for clearness

and soundness of exposition; it is a marked advance

in that respect. The use of infinitely small quan-

tities is rigidly excluded. The objections raised by

Berkeley against Fluxions did not apply to Robins's
exposition. A long account of Robins's Discourse,
prepared by Robins himself, was published in a Lon-

don monthly called The Present State of the Repub-
lick of Letters. In the next number of this monthly
appeared an article by Jurin, under the pseudonym

\Philalethes Cantabrigiensis," in which he says that

in his debate with Berkeley he adhered strictly to

Newton's language, but that some other defenders

of Newton (meaning Robins) were guilty of depart-

ing from it. Jurin argues that the words fiunt ultimo
aequales used by Newton in Lemma I of Book I
in the Principia, mean that the quantities (the in-
scribed and circumscribed polygons) \at last become

actually, perfectly, and absolutely equal"; in modern

phraseology, the limit is reached. Several passages

in the writings of Newton are examined and many

illustrations are given. Robins prepared a reply to

Jurin, and thus a controversy had gotten under way

which threatened at one time to become endless. For

two years there was a steady stream of articles in

the Republick of letters and its successor The Works
of the Learned. Pemberton entered the controversy
during the second year on the side of Robins, but

contributed nothing of value. About twenty articles

were written, one of which filled one hundred and

thirty-six pages. All articles taken together covered

over seven hundred printed pages. They were at-

tempts to ascertain what Newton's ideas of flux-

ions and moments were, and whether Newton meant

that a variable can reach its limit or cannot. And

a good part of this material has escaped the atten-

tion of mathematical historians until now. The first

few articles displayed care and ability, the later ar-

ticles suffered in scientific value from the excessive

heat of controversy. Jurin's articles against Robins

are superior to his articles against Berkeley. The de-

bate is the most thorough discussion of the theory of

limits carried on in England during the eighteenth

century. It constitutes a refinement of previous con-

ceptions. In my judgment Jurin's interpretation of

Newton was more nearly correct than that of Robins.

The two disputants examined and reexamined every

passage of Newton's printed papers bearing on flux-
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ions. Robins saw in Newton's condensed writings

only variables which do not reach their limits; Ju-

rin insisted that Newton permitted variables to reach

their limits. Jurin admitted the calculus could be con-

sistently founded upon Robins's idea of a limit, but

he also insisted that Robins misrepresented Newton.

Jurin's conceptions were quite broad for his time. He

said: \Now whether a quantity or a ratio shall arrive

at its limit or shall not arrive at it, depends entirely

upon the supposition we make of the time during

which the quantity or ratio is conceived constantly to

tend or approach towards its limit." In other words,

whether a variable reaches its limit or not is a mat-

ter of choice. We may impose conditions, so that the

variable reaches its limit, or conditions under which

it does not reach its limit. Thus Jurin was perhaps

the first consciously to modify and generalize the

limit concept. Modifications and generalizations of

this have been going on ever since and are still in

progress. A serious difficulty in permitting variables

of the kind ordinarily arising in geometry to reach

their limits lay in the fact that the imagination is

not able to follow the variable through an infinity

of steps that lead into the limit. The imagination ex-

hausts itself in the effort. It is right here that Robins's

variables which do not reach their limits had a great

advantage. Jurin took great pains to devise illustra-

tions of limit-reaching variables, intended to aid the

imagination, though, as he admits, incapable of ex-

hibiting the process \all the way." In one place Jurin

says: \Since Mr. Robins is pleased to talk so much

about straining our imagination, . . . let us see if we

cannot find some plain and easy way of representing

to the imagination that actual equality, at which the

inscribed and circumscribed figures will arrive with

each other, and with the curvilineal figure, at the ex-

piration of the finite time." His procedure amounts

to expressing the inscribed and circumscribed poly-

gons as functions of the time, such that the limit is

reached in a finite time.

It is interesting that toward the end of his long de-

bate with Robins, Jurin begins to disavow infinitely

small quantities. He brings out the difference be-

tween infinitesimals as variables, and infinitesimals

as constants. He rejects all quantity \fixed, deter-

minate, invariable, indivisible, less than any finite

quantity whatsoever," but he usually admits some-

what hazily a quantity \variable, divisible, that, by

a constant diminution, is conceived to become less

than any finite quantity whatever, and at last to van-

ish into nothing."

Soon after the Berkeley onslaught, there appeared

nine British texts on fluxions, only one of which was

of decidedly inferior type. None of these texts refer to

the Jurin-Robins dispute. The latter was not widely

noticed. The two thought-compelling publications

that were widely read were Newton's Quadrature
of Curves of 1704, and Berkeley's Analyst. The lat-
ter tract was always criticized by the mathemati-

cians, yet always held in awe. These two tracts,

together with Robins's Discourse, and Maclaurin's
celebrated work on Fluxions, which appeared in
1742, mark the highest point of logical precision

reached in England during the eighteenth century.

All three of the great sections of the British Isles

had contributed to this end: England through Newton

and Robins, Ireland through Berkeley, and Scotland

through Maclaurin. Maclaurin was familiar with

the writings of the other three. He took the Greek

demonstrative rigor as a model. In a biography of

Maclaurin it is stated that several years before the

publication of his fluxions, his demonstrations had

been communicated to Berkeley and \Mr. Maclau-

rin had treated him with the greatest personal respect

and civility; notwithstanding which, in his pamphlet

on tar-water, he (Berkeley) renews the charge, as

if nothing had been done" to remove the logical

difficulties. Maclaurin avoided the use of infinitely

small quantities, \an infinitely little magnitude be-

ing," as he expressed himself, \too bold a postula-

tum for such a science as geometry." He laid less

stress upon the concept of a limit than did Robins

and Jurin, and followed more closely the kinemati-

cal concepts of Newton. The term velocity had been

the subject of dispute between Berkeley and Walton.

Maclaurin perceived the difficulty of arguing that

variable velocity is a physical fact. He defined the

velocity of a variable motion as the space that would
be described if the motion had continued uniform.
He also quotes Barrow: Velocity is the \power by

which a certain space may be described in a certain

time" and then explains \power" by the considera-

tion of \cause" and \effect" in a way that sounds odd

in a work on fluxions. However, when we think of

the Thomson-Dirichlet Principle we must acknowl-

edge that the eighteenth century was not the only

time when physical concepts were brought to the

aid of mathematical theory. Apparently following

Robins, Maclaurin's explanations imply that he does

not encourage variables actually to reach their lim-

its. Maclaurin secured his rigor of demonstration at

a tremendous sacrifice. His work on Fluxions con-
sists of seven hundred sixty-three pages; the first five

hundred ninety pages do not contain the notation of
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fluxions at all; the mode of exposition is rhetori-

cal. This part deals with the derivation of the flux-

ions of different geometric figures, of logarithms, of

trigonometric functions, also with the discussion of

maxima and minima, asymptotes, curvature and me-

chanics, in a manner that the ancients might have

adopted and with a verbosity of which the ancients

are guilty. The consequence was that the work was

not attractive reading. It was much praised and much

neglected. Fifty-nine years elapsed before a second

edition appeared. As we shall see, the book did not

stop disputes on fluxions.

The middle and latter part of the eighteenth cen-

tury were periods of mediocrity. There appeared

a dozen books on fluxions, of which those of

William Emerson and Thomas Simpson were the

most noted. Both Emerson and Simpson were self-

educated mathematicians, possessing the strength

and the weakness usual with such preparation. Emer-

son returned to the use of infinitely small quantities,

but a fluxion was defined as a velocity. This return

to the use of infinitely small quantities is notice-

able in several English texts of the second half of

the century. An old lady once defended Calvinism

by saying that if you took away her total depravity

you took away her religion. There were mathemati-

cians who believed that if you took away infinitely

small quantities you took away all their mathematics.

Simpson, in his text of 1750, which is a thorough

revision of his text of 1737, avoids the use of in-

finitely small quantities. His definition of fluxion is

as follows: \The magnitude by which any flowing

quantity would be uniformly increased in a given
time, with the generating celerity at any proposed

position, or instant (was it from thence to continue

invariable), is the fluxion of the said quantity at that

position or instant." Substantially this definition of a

fluxion was adopted later by Charles Hutton. Simp-

son dodges the word velocity, and remarks: \If mo-

tion in (or at) a point be so difficult to conceive

that some have gone even so far as to dispute the

very existence of motion, how much more perplex-

ing must it be to form a conception, not only of the

velocity of a motion, but also infinite changes and

affections of it, in one and the same point, where all

the orders of fluxions have to be considered." Simp-

son's definition and treatment of fluxions avoided

the fictitious infinitesimals, as well as the perplex-

ing term \velocity." Nevertheless, it did not enjoy

security against attack, but was fiercely criticized in

the London Monthly Review. The critic claimed that
it is objectionable to define fluxion as the \magni-

tude by which any flowing quantity would be uni-

formly increased," for it was argued, that \in quan-

tities uniformly generated, the fluxion must be the
fluent itself, or else a part of it." It was claimed that
Simpson's endeavor to exclude velocity \cannot be

made intelligible without introducing velocity into

it." \Again he mistakes the effect for the cause; for
the thing generated must owe its existence to some-

thing, and this can only be the velocity of its motion,

but it can never be the cause itself, as his definition
would erroneously suggest." This obscure criticism

of obscure points in Simpson's exposition initiated a

third debate on fluxions which was carried on in the

Ladies Diary and in ephemeral journals called the
Palladium, the Lady's Philosopher, and the Mathe-
matical Exercises (edited by John Turner). The de-
bate was carried on between friends of Emerson on

one side and friends of Simpson on the other. Emer-

son and Simpson do not themselves appear in the

controversy. The friends of Emerson published in

1752 in London an anonymous pamphlet, entitled

Truth Triumphant or Fluxions for the Ladies, Show-
ing the Cause to be Before the Effect, etc., which
was criticized by the friends of Simpson as a \scur-

rilous pamphlet." It contains much that is foolish,

a few passages eulogizing the works of Emerson,

but also critical considerations which are of some

interest and disclose the need of a more satisfac-

tory arithmetical continuum. All in all this debate

was carried on upon a much lower scientific plane

than the former debates. The debaters represented

the rank and file of mathematicians.

In the second half of the century several abortive

attempts at arithmetization of the calculus were

made. The most worthy of these attempts is due

to John Landen, but his analysis is so complicated

as to be prohibitive. Towards the latter part of the

eighteenth century the efforts at rigorous exposition,

which were so conspicuous in the years 1735{1742,

slackened more and more. Colin Maclaurin was sel-

dom read and John Robins was altogether forgotten.

William Hales's discovery of Robins's Discourse in
1804 astonished him as would the discovery of a

new work of Archimedes. The first edition of the

Encyclopedia Britannica, 1771, permitted a \flux-
ion" to degenerate into an \increment" acquired in

\less than any assigned time." The same article on

fluxions appeared in the second edition (1779) and

in the third edition (1797). In 1801 there was pub-

lished in London Agnesi's Analytical Institutions,
which many years earlier had been translated by John

Colson from the Italian into English. How Colson's
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conscience must have troubled him, when a flux-

ion stood out in his translation as something \in-

finitely small," may be judged by the consideration

that in 1736 he brought out an English translation of

Newton's Method of Fluxions. With Newton a flux-
ion always meant a finite velocity. We wonder what

Robins and Maclaurin would have thought had they

been alive in 1797 and 1801 and read these defini-

tions. What horrible visions would these ghosts of

departed quantities have brought to Bishop Berkeley

had he been alive!

As we look back over the century we see that the

eight years immediately following Berkeley's Ana-
lyst were eight great years, during which Jurin, and
especially Robins and Maclaurin made wonderful

strides in the banishment of infinitely small quanti-

ties and the development of the concept of a limit.

Both before and after that period of eight years,

there existed in most writings of the eighteenth cen-

tury in Great Britain, a mixture of Continental and

British conceptions of the new calculus, a superpo-

sition of British symbols and phraseology upon the

older Continental concepts. The result was a sys-

tem, destitute of scientific interest. Newton's nota-

tion was poor and Leibniz's philosophy of the cal-

culus was poor. That result represents the temporary

survival of the least fit of both systems. The more

recent international course of events has been in a

diametrically opposite direction, namely, not to su-

perpose Newtonian symbols and phraseology upon

Leibnizian concepts, but, on the contrary, to super-

pose the Leibnizian notation and phraseology upon

the limit-concept, as developed by Newton, Jurin,

Robins, Maclaurin, d'Alembert and later writers.

About the opening of the nineteenth century more

recent continental authors began to attract the atten-

tion of the English. Extensive accounts appeared in

the London Monthly Review of Lagrange's Theory of
Functions, Lacroix's Differential Calculus, Carnot's
Reflexions on the Metaphysics of the Infinitesimal
Calculus. These texts were compared with English
publications in a way not altogether favoring the En-

glish. Finally in 1805 Robert Woodhouse of Caius

College, Cambridge, brought out his Principles of
Analytical Calculation which contained many keen
criticisms of both Continental and British mathe-

maticians. Woodhouse is the first English mathe-

matician who had a good word for Berkeley. He

said: \I cannot quit this part of my subject with-

out commenting on the Analyst and the subsequent
pieces, as forming the most satisfactory controver-

sial discussion in pure science that ever yet appeared:

into what perfection of perspicuity and logical pre-

cision the doctrine of fluxions may be advanced, is

no subject of consideration; but view the doctrine

as Berkeley found it, and its defects in metaphysics

and logic are clearly made out. If for the purpose of

habituating the mind to just reasoning . . . I were to

recommend a book, it would be the Analyst."
Woodhouse is the forerunner in Cambridge of

Babbage, Peacock, and the younger Herschel, in the

promotion of the principles of pure D-ism in oppo-
sition to the dot-age of the university.

As usually happens in reformations so here there

was discarded and lost not only what was antiquated,

but also what was meritorious. Robins's Discourse
of 1735, with its full and complete disavowal of in-

finitesimals and clear-cut, though narrow, conception

of a limit was quite forgotten and d'Alembert's def-

inition was recommended and widely used in Eng-

land. Now Robins and d'Alembert had the same con-

ception of a limit. Both held the view that variables

cannot reach their limits. However, there was one

difference: Robins embodied this restriction in his

definition of a limit; d'Alembert omitted it from his

definition, but referred to it in his explanatory re-

marks.

Some of the eighteenth-century British concep-

tions possessed great merit. Perhaps no intuitional

conceptions available in the study of the calculus are

clearer and sharper than motion and velocity. These
ideas offer even now great help in approaching the

first study of the calculus. A second point of merit

lay in the abandonment of the use of infinitely small

quantities. Not all English authors of the eighteenth

century broke away from infinitesimals, but those

who did were among the leaders: Robins, Maclaurin,

Simpson, Vince, and a few others. From the stand-

point of rigor, the treatment of the calculus by these

men was far in advance of the Continental. In Great

Britain there was achieved in the eighteenth century

in the geometrical treatment of fluxions that which

was not achieved in the algebraical treatment until

the nineteenth century. It was not until after the time

of Weierstrass that infinitesimals were cast aside by

mathematical writers on the Continent.

Judged by modern standards all eighteenth cen-

tury expositions of the calculus, even the best British

expositions, are defective. As pointed out by Lan-

den and Woodhouse, there was an unnaturalness

in founding the calculus upon motion and velocity.
These notions apply in a real way only to dynam-

ics. Moreover, not all continuous curves can be con-

ceived as traceable by the motion of a point. The
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notion of variable velocity is encumbered with dif-

ficulties. Then again, in all discussion of limits dur-

ing the eighteenth century, the question of the ex-
istence of a limit of a given sequence was never
raised. The word \quantity" was not defined; quanti-

ties were added, subtracted, multiplied and divided.

Were these quantities numbers, or were they con-

sidered without reference to number? Both methods

are possible. Which did British authors follow? No

explicit answer to this was given. Our understand-

ing of authors like Maclaurin, Rowe and others, is

that in initial discussions such phrases as \fluxion of

a curvilinear figure" are used in a non-arithmetical

sense; the idea is purely geometrical. When later

the finding of the fluxions of terms in the equa-

tions of curves is taken up, the arithmetical or al-

gebraical conception is predominant. Rarely does a

writer speak of the difference between the two. Per-

haps

His notions fitted things so well

That which was which he could not tell.

The theory of irrational number caused no great anx-

iety to eighteenth-century workers. Operations ap-

plicable to rational numbers were extended without

scruple to a domain of numbers which embraced

both rational and irrational. There was no careful

exposition of the number system used. The modern

theories of irrational number have brought about the

last stages of what is called the arithmetization of
mathematics. As now developed in books which aim

at rigor the notion of a limit makes no reference to

quantity and is a purely ordinal notion. Of this mode

of treatment the eighteenth century never dreamed.



\master" | 2011/4/5 | 12:53 | page 332 | #342
i

i

i

i

i

i

i

i

The Bernoullis and the Harmonic Series

WILLIAM DUNHAM

College Mathematics Journal 18 (1987), 18{23

Any introduction to the topic of infinite series soon

must address that first great counterexample of a di-

vergent series whose general term goes to zero| the

harmonic series
∑∞

k=1 1/k. Modern texts employ a
standard argument, traceable back to the great 14th-

century Frenchman Nicole Oresme (see [3], p. 92),

which establishes divergence by grouping the partial

sums:

1 +
1

2
>

1

2
+

1

2
=

2

2
,

1 +
1

2
+

„

1

3
+

1

4

«

>
2

2
+

„

1

4
+

1

4

«

=
3

2
,

1 +
1

2
+

1

3
+

1

4
+

„

1

5
+

1

6
+

1

7
+

1

8

«

>
3

2
+

„

1

8
+

1

8
+

1

8
+

1

8

«

=
4

2
,

and in general

1 +
1

2
+

1

3
+ · · ·+ 1

2n
>
n+ 1

2
,

from which it follows that the partial sums grow

arbitrarily large as n goes to infinity.
It is possible that seasoned mathematicians tend

to forget how surprising this phenomenon appears to

the uninitiated student| that, by adding ever more

negligible terms, we nonetheless reach a sum greater

than any preassigned quantity. Historian of mathe-

matics Morris Kline ([5], p. 443) reminds us that

this feature of the harmonic series seemed troubling,

if not pathological, when first discovered.

So unusual a series could not help but attract

the interest of the preeminent mathematical fam-

ily of the 17th century, the Bernoullis. Indeed, in

his 1689 treatise \Tractatus de Seriebus Infinitis,"

Jakob Bernoulli provided an entirely different, yet

equally ingenious proof of the divergence of the

harmonic series. In \Tractatus," which is now most

readily found as an appendix to his posthumous 1713

masterpiece Ars Conjectandi, Jakob generously at-
tributed the proof to his brother (\Id primus de-

prehendit Prater,") the reference being to his full-

time sibling and part-time rival Johann. While this

\Bernoullian" argument is sketched in such mathe-

matics history texts as Kline ([5], p. 444) and Struik

([6], p. 321), it is little enough known to warrant a

quick reexamination.

The proof rested, quite unexpectedly, upon the

convergent series

1

2
+

1

6
+

1

12
+

1

20
+ · · · =

∞∑

k=1

1

k(k + 1)
.
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The modern reader can easily establish, via mathe-

matical induction, that

n∑

k=1

1

k(k + 1)
=

n

n+ 1
,

and then let n go to infinity to conclude that

∞∑

k=1

1

k(k + 1)
= 1.

Jakob Bernoulli, however, approached the prob-

lem quite differently. In Section XV of Tractatus, he
considered the infinite series

N =
a

c
+

a

2c
+

a

3c
+

a

4c
+ · · · ,

then introduced

P = N − a

c
=

a

2c
+

a

3c
+

a

4c
+

a

5c
+ · · · ,

and subtracted termwise to get

a

c
= N − P

=
(a
c
− a

2c

)
+
( a

2c
− a

3c

)

+
( a

3c
− a

4c

)
+ · · ·

=
a

2c
+
a

6c
+

a

12c
+

a

20c
+ · · · . (1)

Thus, for a = c, he concluded that

1

2
+

1

6
+

1

12
+

1

20
+ · · · = 1

1
= 1. (2)

Unfortunately, Bernoulli's \proof" required the

subtraction of two divergent series, N and P . To
his credit, Bernoulli recognized the inherent dan-

gers in his argument, and he advised that this pro-

cedure must not be used without caution (\non sine

cautela"). To illustrate his point, he applied the pre-

vious reasoning to the series

S =
2a

c
+

3a

2c
+

4a

3c
+ · · ·

and

T = S − 2a

c
=

3a

2c
+

4a

3c
+

5a

4c
+ · · ·

Upon subtracting termwise, he got

2a

c
= S − T =

a

2c
+

a

6c
+

a

12c
+

a

20c
+ · · · , (3)

which provided a clear contradiction to (1).

Bernoulli analyzed and resolved this contradic-

tion as follows: the derivation of (1) was valid

since the \last" term of series N is zero (that is,

limk→∞ a/(kc) = 0), whereas the parallel deriva-
tion of (3) was invalid since the \last" term of series

S is non-zero (because limk→∞(k + 1)a/(kc) =
a/c 6= 0). In modern terms, he had correctly
recognized that, regardless of the convergence or

divergence of the series
∑∞

k=1 xk, the new se-

ries
∑∞

k=1(xk − xk+1) converges to x1 provided
limk→∞ xk = 0. Thus, he not only explained
the need for \caution" in his earlier discussion

but also exhibited a fairly penetrating insight, by

the standards of his day, into the general conver-

gence/divergence issue.

Having thus established (2) to his satisfaction,

Jakob addressed the harmonic series itself. Using

his brother's analysis of the harmonic series, he pro-

claimed in Section XVI of Tractatus:

XVI. Summa seriei infinita harmonice progression-
alium, 1

1 + 1
2 + 1

3 + 1
4 + 1

5&c est infinita.

He began the argument that \the sum of the infi-

nite harmonic series

1

1
+

1

2
+

1

3
+

1

4
+

1

5
etc.

is infinite" by introducing

A =
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+ · · · ,

which \transformed into fractions whose numerators

are 1, 2, 3, 4 etc" becomes

1

2
+

2

6
+

3

12
+

4

20
+

5

30
+

6

42
+ · · · .

Using (2), Jakob next evaluated:

C = 1
2

+ 1
6

+ 1
12

+ 1
20

+ · · · = 1

D = 1
6 + 1

12 + 1
20 + · · ·

= C − 1
2

= 1 − 1
2

= 1
2

E = 1
12 + 1

20 + · · ·
= D − 1

6 = 1
2 − 1

6 = 1
3

F = 1
20

+ · · ·
= E − 1

12 = 1
3 − 1

12 = 1
4

...
...

By adding this array columnwise, and again implic-

itly assuming that termwise addition of infinite series
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is permissible, he arrived at

C +D +E + F + · · ·

=
1

2
+

(
1

6
+

1

6

)
+

(
1

12
+

1

12
+

1

12

)
+ · · ·

=
1

2
+

2

6
+

3

12
+

4

20
+ · · · = A.

On the other hand, upon separately summing the

terms forming the extreme left and the extreme right

of the arrayed equations above, he got

C +D +E + F + · · · = 1 +
1

2
+

1

3
+

1

4
+ · · ·

= 1 + A.

Hence, A = 1+A. In Jakob's words, \The whole"
equals \the part"| that is, the harmonic series 1+A
equals its part A|which is impossible for a finite
quantity. From this, he concluded that 1 +A is infi-
nite.

Jakob Bernoulli was certainly convinced of the

importance of his brother's deduction and empha-

sized its salient point when he wrote:

The sum of an infinite series whose final term

vanishes perhaps is finite, perhaps infinite.

Obviously, this proof features a naive treatment

both of series manipulation and of the nature of \in-

finity." In addition, it attacks infinite series \holisti-

cally" as single entities, without recourse to the mod-

ern idea of partial sums. Before getting overly criti-

cal of its distinctly 17th-century flavor, however, we

must acknowledge that Bernoulli devised this proof

a century and a half before the appearance of a truly

rigorous theory of series. Further, we can not deny

the simplicity and cleverness of his reasoning nor

the fact that, if bolstered by the necessary supports

of modern analysis, it can serve as a suitable alter-

native to the standard proof.

Indeed, this argument provides us with an example

of the history of mathematics at its best|paying

homage to the past yet adding a note of freshness

and ingenuity to the modern classroom. Perhaps, in

contemplating this work, some of today's students

might even come to share a bit of the enthusiasm

and wonder that moved Jakob Bernoulli to close his

Tractatus with the verse [7]

So the soul of immensity dwells in minutia.
And in narrowest limits no limits inhere.
What joy to discern the minute in infinity!
The vast to perceive in the small, what divinity!

Remark. Jakob Bernoulli, eager to examine other
infinite series, soon turned his attention in section

XVII of Tractatus to

1 +
1

4
+

1

9
+

1

16
+ · · · =

∞∑

k=1

1

k2
, (4)

the evaluation of which \is more difficult than one

would expect" (\difficilior est quam quis expec-

taverit"), an observation that turned out to be quite

an understatement. He correctly established the con-

vergence of (4) by comparing it termwise with the

greater, yet convergent series

1 +
1

3
+

1

6
+

1

10
+ · · ·

= 2

(
1

2
+

1

6
+

1

12
+

1

20
+ · · ·

)
= 2(1) = 2.

But evaluating the sum in (4) was too much for

Jakob, who noted rather plaintively

If anyone finds and communicates to us that

which up to now has eluded our efforts, great

will be our gratitude.

The evaluation of (4), of course, resisted the at-

tempts of another generation of mathematicians until

1734, when the incomparable Leonhard Euler de-

vised an enormously clever argument to show that it

summed to π2/6. This result, which Jakob Bernoulli
unfortunately did not live to see, surely ranks among

the most unexpected and peculiar in all of mathe-

matics. For the original proof, see [4, pp. 83{85]).

A modern outline of Euler's reasoning can be found

in [2, pp. 486{487].
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Leonhard Euler 1707–1783

J. J. BURCKHARDT

Mathematics Magazine 56 (1983), 262–273

Born in 1707, Leonhard Euler grew up in the town of
Riehen, near Basel, Switzerland. Encouraged by his
father, Paulus, a minister, young Leonhard received
very early instruction from Johann I Bernoulli, who
immediately recognized Euler’s talents. Euler com-
pleted his work at the University of Basel at age 15,
and at age 19 won a prize in the competition orga-
nized by the Academy of Sciences in Paris. His pa-
per discussed the optimal arrangement of masts on
sailing ships (Meditationes super problemate nau-
tico...). In 1727 Euler attempted unsuccessfully to
obtain a professorship of physics in Basel by sub-
mitting a dissertation on sound (Dissertatio physica
de sono); however, this failure, in retrospect, was
fortunate. Encouraged by Nicholas and Daniel, sons
of his teacher Johann Bernoulli, he went to the St.

Figure 1.

Petersburg Academy in Russia, a field of action that
could accommodate his genius and energy.
In St. Petersburg Euler was met by compatriots

Jacob Hermann and Daniel Bernoulli and so be-
friended the diplomat and amateur mathematician
Christian Goldbach. During the years 1727–1741
spent there, Euler wrote over 100 scientific papers
and his fundamental work on mechanics. In 1741, at
the invitation of Fredrick the Great, he went to the
Akademie in Berlin. During his 25 years in Berlin,
his incredible mathematical productivity continued.
He created among other works, the calculus of vari-
ations, wrote the Introductio in analysin infinitorum
(see Fig. 1), and translated and rewrote the treatise
on artillery by Benjamin Robins.
Disputes with the Court led Euler in 1766 to ac-

336
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cept a very favorable invitation by Katherine II to

return to St. Petersburg. There he was received in

a princely manner, and he spent the rest of his life

in St. Petersburg. Although totally blind, he wrote,

with the help of his students, the famous Algebra
and over 400 scientific papers; he left many unpub-

lished manuscripts.

In recent decades, numerous important mate-

rials concerning Euler have been discovered in

the archives in the Academy of Sciences of the

USSR. It would seem that there is probably little

chance of now discovering an unknown manuscript

or something important about his life. Euler him-

self acknowledged the advantageous circumstances

he found at the Academy. Judith Kh. Kopelevic

notes, \Euler's tombstone, erected by the Academy;

his bust in the building of the Presidium of the

Academy; the two-centuries-long efforts of the

Academy to care for his enormous heritage and pub-

lish it|all these show clearly that Euler's encounter

with the Petersburg Academy of Sciences was a

happy one for both sides."

1 The legacy of Euler's writings

Euler's productivity is astonishing in its range of

content and in the sheer volume of written pages. He

wrote landmark books on the subjects of mathemat-

ical analysis, analytic and differential geometry, the

calculus of variations, mechanics, and algebra. He

published over 760 research papers, many of which

won awards in competitions, and at his death left

hundreds of unpublished works; even today there

remain unpublished over 3,000 pages in notebooks.

In view of this prodigious collection of written mate-

rial, it is not surprising that soon after Euler's death

the task of surveying and publishing his works en-

countered extraordinary difficulty.

N. I. Fuss made efforts to publish more writings

of the master, but only his son P.-H. Fuss succeeded

(with the help of C. G. J. Jacobi) to generate interest

among others, includingOstrogradskii. An enterprise

in this direction was undertaken in Belgium (1838{

1839), but failed after the publication of the fifth

volume. In 1844, the Petersburg Academy decided

on publication of the manuscripts, but this was not

carried out. However, in 1849 the Commentationes
arithmeticae collectae, edited by P.-H. and N. Fuss,
were published; this contains, among others, the im-

portant manuscript Tractatus de doctrina numero-
rum.

The centennial of Euler's death in 1883 rekin-

dled interest in Euler's works and in 1896 the

most valuable preliminary to any complete publi-

cation appeared|the Index operum Leonhardi Eu-
leri by J. G. Hagen. As the bicentennial of Euler's
birth neared, new life was infused into the project,

which was thoroughly discussed by the academies

of Petersburg and Berlin in 1903. Although the

project was abandoned at this time, the celebra-

tions of the bicentennial of Euler's birth provided the

needed impetus for the publication of the Opera om-
nia. The untiring efforts of Ferdinand Rudio led to
the decision by the Schweizerische Naturforschende

Gesellschaft [Swiss Academy of Sciences] in 1909

to undertake the publication, based on the list of Eu-

ler's writings prepared by Gustaf Enestr�om (1910{

1913). He lists 866 papers and books published by

then. The financial side appeared assured through

gifts and subscriptions. But the first World War led

to unforeseen difficulties. We are indebted to An-

dreas Speiser for his efforts, which made it possi-

ble to continue the publication, and who overcame

financial and publication difficulties so that at the

start of World War II about one half of the project

was completed. After the war, Speiser, succeeded

by Walter Habicht, completed the series 1 (29 vol-

umes), 2 (31 volumes) and 3 (12 volumes) of the

Opera omnia except for a few volumes.
In 1947{1948 the manuscripts which had been

loaned by the St. Petersburg Academy to the Swiss

Academy of Sciences were returned to the archives

of the Academy of Sciences of the USSR in

Leningrad. Their systematic study was started under

the supervision of the Academician V. I. Smirnov,

with the goal of publishing a fourth series of the

Opera omnia. As a first result, there appeared in
1965 a new edition of the correspondence between

Euler and Goldbach, edited by A. P. Juskevic and E.

Winter. In 1967, the Swiss Academy of Sciences and

the Academia Nauk of the USSR formed an Interna-

tional Committee, to which was entrusted the publi-

cation of Euler's correspondence in a series 4A, and

a critical publication of the remaining manuscripts

in a series 4B.

To mark the passage of 200 years since Euler's

death, a memorial volume has been produced by

the Canton of Basel, Leonhard Euler 1707{1783,
Beitr�age zu Leben und Werk, edited by J. J. Burck-
hardt, E. A. Fellmann, and W. Habicht (Birkh�auser

Verlag, Basel and Boston). From a contemporary

point of view, this volume presents the insights of

outstanding scientists on various aspects of Euler's
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achievements and their influence on later works. The

complete list of essays and their authors appears at

the end of this article. The memorial volume ends

with a list, compiled by J. J. Burckhardt, of over

700 papers which are devoted to the work of Euler.

It should be stressed that this is certainly an incom-

plete list, and it is hoped that it will lead to many

additional listings which will then be published in an

appropriate form. It is hoped that papers little known

till now will receive the attention they deserve, and

that this effort will lead to an improvement in the

collaboration of scientists of all countries.

In the present article, we give a brief overview of

the work of Euler. In order to include information

from recently discovered work as well as the ob-

servations and insights of mode scholars, we draw

freely from material found in the memorial volume.

2 Number theory

Euler had a passionate lifelong interest in the the-

ory of numbers. Approximately one-sixth of his pub-

lished work in pure mathematics is in this area; the

same is true of the manuscripts left unpublished at

his death. Although he had an active correspondence

with Goldbach, he complained about the lack of

response on the part of other contemporary math-

ematicians such as Huygens, Clairaut, and Daniel

Bernoulli, who considered number theory investiga-

tions a waste of time, and were even unaware of

Fermat's Theorem. (Forty years passed before Eu-

ler's investigations into Goldbach's problem were

followed up by Lagrange.) Andr�e Weil has com-

mented that if one were to distinguish between \the-

oretical" and \experimental" researchers, as is done

for physicists, then Euler's constant preoccupation

with number theory would place him among the

former. But in view of his insistence on the \in-

ductive" method of discovery of arithmetic truths,

carrying out a wealth of numerical calculations for

special cases before tackling the general question,

one could equally well call him an \experimental"

genius.

At the beginning of the eighteenth century|50

years after Fermat's death|the number-theoretical

work of Fermat was practically forgotten. In a let-

ter dated December 1, 1727, Christian Goldbach

brought to Euler's attention Fermat's assertion that

numbers of the form

22p−1

+ 1, p prime

(i.e., 3, 5, 17, 257, . . .) are also prime; this led Eu-

ler to a study of Fermat's works. His investigations

included Fermat's Theorem and its generalizations,

representations of numbers as sums of squares of

polygonal numbers, and elementary quadratic forms.

In the decade between 1740 and 1750, Euler cre-

ated the basis of a new theory which, until this

day, has not essentially changed its character. The

question which motivated this work was posed by

Naud�e on September 12, 1740, who asked Euler

the number of ways in which a given integer can

be represented as a sum of integers. For this prob-

lem, the \partitio numerorum," as well as for related

problems, Euler found solutions by associating with

a number-theoretic function its generating function,

which can be investigated by analytical methods. Eu-

ler clearly understood the importance of his discov-

ery. Although he had not found the proof of sev-

eral central theorems of his theory, he incorporated

the basic ideas and a few elementary but remark-

able special results in his fundamental text in analy-

sis, Introductio in analysin infinitorum. V. Scharlau
comments, \Even today it is hard to imagine a more

convincing and interesting introduction to this the-

ory."

Euler used this theory in attempting to find a for-

mula for prime numbers, where he considers the

function σ(n), the sum of all divisors of n. He ob-
tained the formula

σ
(
pk
)

=
pk+1 − 1

p− 1
, for p prime

from which the computation of σ(n) follows. Euler
also formulated the recursion rule for σ(n),

σ(n) = σ(n − 1) + σ(n − 2)

−σ(n − 5) − σ(n − 7) + · · ·

and observed its similarity to the one for p(n), the
number of partitions of n. In 1750, Euler brought
these investigations to a conclusion by formulating

the identity

∞∏

i=1

(1 − xi)

= 1 +

∞∑

m=1

(−1)m
(
x

1
2
(3m2−m) + x

1
2
(3m2+m)

)

which is a cornerstone for all his related results.

Another interesting application of generating

functions can be found in Euler's various investi-

gations of \population dynamics," which probably

originated in the years 1750{1755. Scharlau writes:



\master" | 2011/4/5 | 12:53 | page 339 | #349
i

i

i

i

i

i

i

i

BURCKHARDT: Leonhard Euler 1707{1783 339

From today's point of view it is possibly not

surprising that Euler found no additional results

on generating functions; indeed it took many

decades|almost a century|after the end of

his activity before his achievements were sub-

stantially surpassed. It is remarkable how lit-

tle attention was given to Euler's ideas by the

mathematicians of the 18th and 19th centuries

. . . There are very few mathematical theories
whose character has changed so little since Eu-

ler's time as the theory of generating functions

and the partitions of numbers.

Among the unpublished fragments of Euler's

work (a total of about 3,000 pages, mainly bound

in numbered notebooks) are over 1,000 pages which

are devoted to number theory, mostly from the years

1736{1744 and 1767{1783. Euler's technique of in-

vestigation emerges clearly from these. After lengthy

efforts which at times span many years, he reaches

his results based on observations, tables, and empir-

ically established facts.

G. P. Matvievskaja and E. P. Ozigova, who have

perused these fragments, note that \the handwritten

materials widen our views of Euler's activity in the

field of number theory. The same holds for other

directions of his research. The manuscripts enable

us to recognize the sources of his mathematical dis-

coveries." A few examples serve to illustrate these

points. On page 18 in notebook N131 is the problem

of deciding whether a given integer is prime. The

same notebook contains an entry about the origin

of the zeta function, as well as the first mention of

the theorem of four squares, to which Euler returns

in notebook N132 (1740{1744). A particularly in-

teresting entry in notebook N134 (1752{1755) con-

tains Euler's formulation, a hundred years before

Bertrand, of the \Bertrand postulate," that there is

at least one prime between any integer n and 2n.

3 Analysis

Euler was occupied throughout his life with the con-

cept of function; the treatises he produced in analysis

were fundamental to the development of the mod-

ern foundations of analysis. As early as 1727 Euler

had written a fifteen-page manuscript Calculus dif-
ferentialis; it's interesting to compare this fledgling
work with his later treatise Institutiones calculi dif-
ferentialis (1755). Here Euler explains the calculus
of finite differences of finite increments and consid-

ers calculations with infinitely small quantities. D.

Laugwitz, one of the contributors to the modern de-

velopment of analysis through the adjoining of an

infinity symbol Ω, remarks that anyone who reads
this work, or Euler's Introductio in analysin infini-
torum (1748), must be struck by the confidence with
which Euler utilizes the calculus of both infinitely

large and infinitely small magnitudes. Laugwitz in-

dicates that it is possible to formulate Euler's ideas

in the modern setting of nonstandard analysis, hence

Euler receives a belated justification of his unortho-

dox techniques.

The richness and diversity of Euler's work in anal-

ysis can be seen by a brief summary of the book In-
troductio in analysin infinitorum. The first chapter
discusses the definition of \function" which orig-

inated with Johann Bernoulli. In the second, Eu-

ler formulates the \fundamental theorem of algebra"

and sketches a proof; he presents results on real and

complex solutions of algebraic equations, a topic re-

sumed in chapter 12 which deals with the decom-

position of rational functions into partial fractions.

The third chapter contains the so-called \Euler sub-

stitution" and the important replacement of a non-

explicit functional dependence by a parametric rep-

resentation. Particularly remarkable is Euler's strict

theory of logarithms, and the consideration of the ex-

ponential function in chapter 6. Euler asserts that the

logarithms of rationals are either rational or transcen-

dental, a fact which was proved only two hundred

years later. Weakly convergent series are considered

in chapter 7, as well as the question of convergence

of series and the relation between a function and

its representation outside the circle of convergence.

Subsequent chapters deal with transcendental func-

tions and their representation as series or products.

The starting point of Bernhard Riemann's investiga-

tion of the distribution of primes is in chapter 15, in

the formula

∑

n

1

nx
=
∏

p

(
1

1 − 1/px

)

which the summation extends over all positive inte-

gers and the product over all primes (see Fig. 2, left).

In chapter 16 Euler turns to the new topic| rife with

algebraic ideas|of Partitione numerorum, the ad-
ditive decomposition of natural numbers (see Fig. 2,

right). The developments of power series into infinite

series found here were continued only by Ramanu-

jan, Hardy and Littlewood. The expressions found

here were later called theta functions, and used by

Jacobi in the general theory of elliptic functions. The
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Figure 2.

last chapter, 17, deals with the numerical solution of

algebraic equations, following Daniel Bernoulli.

A. O. Gelfond, whose essay in the memorial vol-

ume contains a deep analysis of the contents of Intro-
ductio. . . , interprets Euler's ideas in modern terms
and stresses the great relevance of this work, even

to this day.

Euler's interest in the theory of vibrating strings is

legendary. In 1747 d'Alembert formulated the theory

and the corresponding partial differential equation;

this prompted Euler in 1750 to develop a solution,

although restricted to the case in which the vibra-

tions satisfy certain conditions. Euler's friend Daniel

Bernoulli contributed (about 1753) two remarkable

articles, and presented the solution in the form of a

trigonometric series. The problem is fittingly illumi-

nated by Euler's question \what is the law of the

vibrating string if it starts with an arbitrary shape"

and d'Alembert's answer \in several cases it is not

possible to solve the problem, which transcends the

resources of the analysis available at this time."

Euler has sometimes been criticized for seeming to

ignore the concept of convergence in his freewheel-

ing calculations. Yet in 1740, Euler gave an incom-

plete formulation of the criterion of convergence that

later received Cauchy's name. Euler's last paper was

completed in 1783, the year of his death; it contained

the germ of the concept of uniform convergence. His

example was utilized by Abel in 1826.

After surveying the rich contributions to analysis

made in Euler's time, Pierre Dugac declares, \Euler

and d'Alembert were the instigators of the most im-

portant work on the foundations of analysis in the

nineteenth century."

4 ``Applied'' mathematics

(physics)

Euler's investigations and formulations of basic the-

ory in the areas of optics, electricity and mag-

netism, mechanics, hydrodynamics and hydraulics

are among the most fundamental contributions to the

development of physics as we know it today. Euler's

views on physics had an immediate influence on the

study of physics in Russia; this grew out of his close

relationshipwith the contemporary and most influen-

tial Russian scientist, M. V. Lomonosov, his several

Russian students, and the publication of a translation

(by S. J. Rumovskii) of his very popular \Letters to

a German Princess" (see Fig. 3). The \Letters. . . ,"

which had originated as lessons to the princess of

Anhalt-Dessau, niece of the King of Prussia, during

Euler's years in Berlin, served as the first encyclo-

pedia of physics in Russia. A. T. Grigorjan and V. S.
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Figure 3.

Kirsanov have noted that the physicist N. M. Sper-

anskii, a noted statesman and author of a physics

book (1797), used to read to his students sections

from Euler's \Letters. . . ."

B. L. van der Waerden, in discussing Euler's jus-

tification of the principles of mechanics, has asked,

\What did Euler mean by saying that in the com-

putation of the total moment of all forces, the inner

forces can be neglected because `les forces internes

se detruisent mutuellement'?" He points out that in

order to answer that question it is important to know

Euler's concept of solids, fluids, and gases. Are they

true continua, or aggregates of small particles? The

answer can be found in Euler's letters #69 and #70

to a German princess. He does not consider water,

wool and air as true continua, but assumes that they

consist of separate particles. However, in hydrody-

namics, Euler treats liquids and gases as if they were

continua. Euler is well aware that this is only an ap-

proximation.

A study of the published works of Daniel and

Johann Bernoulli, as well as Euler's unpublished

works (in particular, Euler's thick notebook from

1725{1727), by G. K. Mikhailov, gives some new

and surprising insights into Euler's contributions to

the development of theoretical hydraulics. Mikhailov

states:

It is generally known that the creation of the

foundations of modern hydrodynamics of ideal

fluids is one of the fruits of Euler's scientific

activity. Less well known is his role in the

development of theoretical hydraulics, that is,

as usually understood, the hydrodynamic the-

ory of fluid motion under a one-dimensional

flow model. Traditionally|and with good rea-

son| it is assumed that the foundations of

hydraulics were developed by Daniel and Jo-

hann Bernoulli in their works published be-

tween 1729 and 1743. In fact, during the second

quarter of the eighteenth century Euler did not

publish even a single paper on the elements of

hydraulics. The central theme of most of the

recent historical-critical studies on the state of

hydraulics in that period is the determination

of the respective contributions of Daniel and

of Johann Bernoulli. But Euler understood, all

this time, just beyond the curtain of the stage

on which the action was taking place, although

almost no contemporary was aware of that.

Euler's work on the theory of ships culminated

in the publication of Scientia navalis seu tractatus
de construendis ac dirigendis navibus, published in
1749. Walter Habicht notes the fundamental impor-

tance of this treatise:

Following the Mechanica sive motus scientia
analytice exposita which appeared in 1736, it
[the Scientia navalis. . . ] is the second mile-
stone in the development of rational mechan-

ics, and to this day has lost none of its impor-

tance. The principles of hydrostatics are pre-

sented here, for the first time, in complete clar-

ity; based on them is a scientific foundation of

the theory of shipbuilding. In fact, the topics

treated here permit insights into all the related

developments in mechanics during the eigh-

teenth century.

Although Euler's intense interest in the science of

optics appeared before he was 30 and remained with

him almost to his death, there is still no monographic

evaluation of his contributions to the wide field of

physical and geometrical optics. Part of Euler's work

is best described by Habicht:

In the second half of his life, from 1750 on and

throughout the sixties, Leonhard Euler worked

intensively on problems in geometric optics.

His goal was to improve in several ways op-

tical instruments, in particular, telescopes and

microscopes. Besides the determination of the

enlargement, the light intensity and the field of

view, he was primarily interested in the devi-
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ations from the point-by-point imaging of ob-

jects (caused by the diffraction of light pass-

ing through a system of lenses), and also in

the even less tractable deviations which arise

from the spherical shape of the lenses. To these

problems Euler devoted a long series of pa-

pers, mainly published by the Berlin academy.

He admitted that the computational solution of

these problems is very hard. As was his custom,

he collected his results in a grandly conceived

textbook, the Dioptrica (1769{1771) (see Fig.
4). This book deals with the determination of

the path of a ray of light through a system of

diffracting spherical surfaces, all of which have

their centers on a line, the optical axis of the

system. In a first approximation, Euler obtains

the familiar formulae of elementary optics. In a

second approximation he takes into account the

spherical and chromatic aberrations. After pass-

ing through a diffracting surface, a pencil of

rays issuing from a point on the optical axis is

spread out in an interval on the optical axis; this

is the so-called \longitudinal aberration." Euler

uses the expression \espace de diffusion." If

the light passes through several diffracting sur-

faces, the \espace de diffusion" is determined

using a principle of superposition.

Euler had great expectations for his theory,

and believed that using his recipes, the optical

instruments could be brought to \the highest

degree of perfection." Unfortunately, the prac-

tical realization of his systems of lenses did not

yield the hoped-for success. He searched for the

causes of failure in the poor quality of the lenses

on the one hand, and also in basic errors in the

laws of diffraction which were determined ex-

perimentally in a manner completely unsatisfac-

tory from a theoretical point of view. Because

of the failure of his predictions, Euler's Diop-
trica is often underrated.

Habicht notes that Euler's theory can be modi-

fied to obtain the general imaging theories devel-

oped in the nineteenth century. The crucial gap in

Euler's treatment consists in neglecting those aber-

rations which are caused by the distance of the object

and its images from the optical axis; with modifica-

tion it is possible to determine the spherical aberra-

tion errors of the third order directly from Euler's

formulas.

A responsible evaluation of Euler's contributions

to optics will be possible only after Euler's unpub-

lished letters and manuscripts are edited and made

Figure 4.

generally accessible. E. A. Fellmann provides an ex-

ample of Euler's method which helps to place Eu-

ler's contribution in a historic context. The problem

of diffraction in the atmosphere is one which was

first seriously considered by Euler:

He began by deriving a very general differential

equation; naturally, it turned out not to be inte-

grable|it would have been a miracle had that

not happened. Then he searched for conditions

which make a solution possible, and finally he

solved the problem in several cases under prac-

tically plausible assumptions.

Euler frequently expressed the opinion that

the phenomena in optics, electricity and mag-

netism are closely related (as states of the

ether), and that therefore they should receive si-

multaneous and equal treatment. This prophetic

dream of Euler concerning the unity of physics

could only be realized after the construction

of bridges (experimental as well as theoretical)

which were missing in Euler's time. These were

later built by Faraday, W. Weber and Maxwell.

Euler was deeply influenced by the work of sci-

entists who preceded him as well as by the work

of his contemporaries. This is perhaps best illus-

trated by his role in the development of potential

theory. He acknowledges the influence of the work of

Leibniz, the Bernoullis, and Jacob Hermann, whose
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work he had studied in his days in Basel to 1727.

In the decade 1730{1740, the contemporaries Euler,

Clairaut and Fontaine all were active in developing

the main ideas that would lead to potential theory:

the geometry of curves, the calculus of variations,

and the study of mechanics. By 1752 Euler's work

on fluid mechanics Principia motus fluidorum was
complete. A summary of his contributions to poten-

tial theory is given by Jim Cross:

He helped, with Fontaine and Clairaut, to de-

velop a logical, well-founded calculus of sev-

eral variables in a clear notation; he trans-

formed, with Daniel Bernoulli and Clairaut,

the Galileo-Leibniz energy equation for a par-

ticle falling under gravity, into a general prin-

ciple applicable to continuous bodies and gen-

eral forces (the principle of least action with

Daniel Bernoulli and Maupertuis forms part of

this); and he founded, after the attempts of the

Bernoullis, d'Alembert, and especially Clairaut,

the modern theory of fluid mechanics on com-

plete differentials for forces and velocities. His

work was fruitful: the theories of Lagrange

grew from his writings on extremization, fluids

and sound, and mechanics; the work of Laplace

followed.

5 Astronomy

Research by Nina I. Nevskaja based on newly

available original documents justifies calling Euler

a professional astronomer|and even an observer

and experimental scientist. Five hundred books and

manuscripts from the private library of Joseph

Nicholas Delisle have recently come to light and

from these one finds that this scientist found Eu-

ler a suitable collaborator and valued his knowledge

in spherical trigonometry, analysis and probability.

It was a surprise when the records of observa-

tions of the Petersburg observatory during its first 21

years|which were presumed lost|were discov-

ered in 1977 in the Leningrad branch of the archives

of the Academy of Sciences of the USSR. For almost

ten years, Euler was among those who were regularly

taking measurements twice daily. Based on these ob-

servations, Delisle and Euler computed the instant of

true noon, and the noon correction. Euler's entries

were so detailed and numerous that it is possible to

deduce from them how he gradually mastered the

methods of astronomical observations. Utilizing the

insights he obtained, Euler found a simple method

of computing tables for the meridional equation of

the sun; he presented it in the paper Methodus com-
putandi aequationem meridiei (1735).
Euler was fascinated by sunspots; his notes from

this period contain enthusiastic comments on his ob-

servations. The computation of the trajectories of the

sunspots by Delisle's method can be considered the

beginning of celestial mechanics. The archives also

disclose that Euler helped Delisle by working out an-

alytical methods for the determination of the paths

of comets.

A little-noted field of Euler's activities, the theory

of motion of celestial bodies, is documented by Otto

Volk. Euler's first paper, based on generally formu-

lated differential equations of mechanics, is entitled

Recherches sur le mouvement des corps c�elestes en
g�en�eral (1747). Using the tables of planets computed
by Thomas Street from the pure Keplerian motion of

planets around the sun, Euler discusses in Sections

1 to 17 the observed irregularities. In Section 18 he

formulates the differential equations of mechanics,

and obtains the solution

r = a(1 + e cos v) =
a(1 − e2)

1 − e cos φ

in which r is the radius, v is the eccentric anomaly
and φ is the true anomaly, while e and a are con-
stants. This is a regularization of the so-called in-

verse problem of Newton. Later, Euler obtains a

trigonometric series for φ; such Fourier series are
the basis of his computation of perturbations. This

is the topic treated in detail in the prize proposal to

the Paris Academy, Recherches sur la question des
in�egalit�es du mouvement de Saturne et de Jupiter,
sujet propos�e pour le prix de l'ann�ee 1748. In it Eu-
ler uses, for the first time, Newton's laws of gravita-

tion to compute the mutual perturbations of planets.

In his paper Considerationes de motu corporum
coelestium (1764), Euler is the first to begin consid-
ering the three-body problem, under certain restric-

tions. Euler notes the intractability of the problem:

There is no doubt that Kepler discovered the

laws according to which celestial bodies move

in their paths, and that Newton proved them|

to the greatest advantage of astronomy. But this

does not mean that the astronomical theory is at

the highest level of perfection. We are able to

deal completely with Newton's inverse-square

law for two bodies. But if a third body is in-

volved, so that each attracts both other bod-

ies, all the arts of analysis are insufficient . . .
Since the solution of the general problem of
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three bodies appears to be beyond the human

powers of the author, he tried to solve the re-

stricted problem in which the mass of the third

body is negligible compared to the other two.

Possibly, starting from special cases, the road

to the solution of the general problem may be

found. But even in the case of the restricted

problem the solution encounters difficulties so

great that the author has to admit to have spent

much effort in vain attempts at solution.

Euler's investigation of the three-body problem

was noted only at a later date; the linear solutions to

the equation of the fifth degree were (and sometimes

still are) called \Lagrange's solutions," without any

mention of Euler. But Euler achieved fame through

his theory of perturbations, presented in Nouvelle
m�ethode de d�eterminer les d�erangemens dans le
mouvement des corps c�elestes, caus�e par leur action
mutuelle. By iteration he determined, for the first
time, the perturbations of the elements of the ellipti-

cal paths, and then applied this method to determine

the motion of three mutually attracting bodies.

6 Correspondence

The circle of contemporary scholars who were in-

fluenced by and in turn, influenced, Euler's in-

vestigations was as wide as one could imagine in

the eighteenth century. His voluminous correspon-

dence testifies to the fruitful interaction between

scientists through queries, conjectures, critical com-

ments, and praise. Some of the correspondence has

been published previously in collected works; a

standard reference is the collection Correspondance
Math�ematique et Physique, edited by N. Fuss and
published in 1843 by the Imperial Academy of Sci-

ence, St. Petersburg. New discoveries and more com-

plete information have produced recently published

collections. The publication in 1965 of the corre-

spondence between Euler and Christian Goldbach

has been mentioned earlier.

It is significant that the first volume, A1, pub-

lished in the fourth series of Euler's Opera om-
nia, contains a complete list of all existing letters
to and from Euler (about 3,000), together with a

summary of their contents. Volume A5 of this series

(1980), edited by A. P. Juskevic and R. Taton, con-

tains Euler's correspondence with A. C. Clairaut, J.

d'Alembert, and J. L. Lagrange.

The correspondence between Euler and Lagrange

from 1754 to 1775 gives valuable testimony to the

development of personal relations between two of

the most important scientists of that time. The letter

exchange begins with a letter from the 18-year-old

Lagrange, who lived in Turin, containing a query in

which he mentions the analogy in the development

of the binomial (a+b)m and the differential dm(xy).
Mathematically isolated, Lagrange expresses his ad-

miration for Euler's work, particularly in mechanics.

Especially significant is the second letter to Euler

(1755). In it Lagrange announces, without details,

his new methods in the calculus of variations; Euler

at once notes the advantage of these methods over the

ones in hisMethodus inveniendi lines curvas maximi
minimive proprietate gaudentes (1744), and heartily
congratulates Lagrange. In 1756 Lagrange develops

the differential calculus for several variables and in-

vestigates, for the first time, minimal surfaces. After

an interruption of three years, Lagrange continues

the correspondence by sending his work La nature
et la propagation du son, and we find interesting dis-
cussions on the problem of vibrating strings, which

had been carried on since 1749 between d'Alembert,

Euler and Daniel Bernoulli.

After a lengthy pause, Euler resumes the corre-

spondence. The first letter (1765) concerns the dis-

cussion with d'Alembert on vibrating strings, and

the librations of the moon. In a second, Euler tells

Lagrange that he has been granted permission by

Friedrich II to return to Petersburg, and is attempt-

ing to have Lagrange come there. In later cor-

respondence, the emphasis is on questions in the

theory of numbers and in algebra. Pell's equation

x2−ay2 = b; and in particular p2−13q2 = 101, are
discussed. Other topics deal with arithmetic, ques-

tions concerning developable surfaces, and the mo-

tion of the moon.

In 1770 Lagrange writes of his plan to publish

Euler's Algebra in French, and to add to it an ap-
pendix; the published book is mailed on July 13,

1773. The last of Euler's letters, dated March 23,

1775, is remarkable by the exceptionally warm con-

gratulations for Lagrange's work, especially about

elliptic integrals. It may be conjectured that this was

not the end of the correspondence, but unfortunately

no additional letters have survived.

7 Postscript

This overview of Euler's life and work touches only

a small part of the wealth of material to be found in

the scholarly essays in the Basel memorial volume.



\master" | 2011/4/5 | 12:53 | page 345 | #355
i

i

i

i

i

i

i

i

BURCKHARDT: Leonhard Euler 1707{1783 345

In addition to careful and detailed analysis of many

of Euler's scientific and mathematical achievements,

these chapters contain new information on all aspects

of Euler's private and academic life, his family, his

philosophical and religious views, and the fabric of

his life and work at the St. Petersburg Academy. In

view of the overwhelming volume and diversity of

Euler's work, it may never be possible to produce

a comprehensive scientific biography of his genius.

It is to be hoped that these newest contributions to

the study of his life and work will provide impetus

for further study and publication of many of the yet

unpublished papers which are the unknown legacy

of this mathematical giant.
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The Number e

J. L. COOLIDGE

American Mathematical Monthly 57 (1950), 591{602

1 The Greek beginning

The distinguished American mathematician, Ben-

jamin Peirce, was wont to find all of analysis in

the equation

i−i =
√
eπ .

In fact, he had his picture taken in front of a black-

board on which this mystic formula, in somewhat

different shape, was inscribed. He would say to his

hearers, \Gentlemen, we have not the slightest idea

of what this equation means, but we may be sure

that it means something very important."

With regard to the symbols which appear in this

charm, there is a vast literature connected with π;
and i, when written

√
−1, leads into the broad field

of analysis in the complex domain; but it seems sur-

prisingly difficult to find a connected account of e.
I think we may make a fair beginning with the

twelfth proposition of the Second Book of Apollo-

nius' Conics, which tells us that if from a point on a
hyperbola lines be drawn in given directions to meet

the asymptotes, the product of the two distances is

independent of the position of the point chosen on

the curve. This theorem is more general than we shall

need to arrive at the number e and it is not origi-
nal with Apollonius. Let us confine ourselves to the

very special case where the hyperbola is rectangular,

and we draw to each asymptote a line parallel to the

other. When x and y are distances, we may write

xy = 1. (1)

It is intriguing to inquire who first discovered the

theorem which leads to this equation. In the com-

mentary of Eutocius on the Sphere and Cylinder of
Archimedes [1], we come to a discussion of the clas-
sical problem of inserting two mean proportionals

between two given lengths. In one solution, which

he labels \ut Menaechmus," we have what amounts

to the equations

a/x = x/y = y/b;

y2 = bx; xy = ab. (2)

He goes on to seek the intersection of a parabola and

a hyperbola.

Eutocius' statement would place the theorem very

early in the history of the conics, for Menaechmus

is usually regarded as the discoverer or inventor of

these curves, although this ascription is by no means

certain. Allman writes [2], \It is much to be regret-

ted that the two solutions of Menaechmus have not

been transmitted to us in their original form. That

they have been altered either by Eutocius or by some

author whom he followed appears not only in the

employment in these solutions of the terms parabola

and hyperbola, as has frequently been pointed out,

but more from the fact that the language used in

them is, in character, altogether that of Apollonius."

A similar doubt is shown in Loria [3]. On the other

hand, Heath is perfectly definite on this point; he

states, \This property in the particular case of the

rectangular hyperbola was known to Menaechmus"

[4].

But there is another reason for doubting the as-

cription to Menaechmus, aside from the linguistic

objection. The classical Greek discussion of the con-

ics always corresponds to our analysis when the axes

are a tangent and the diameter through the point of

contact, and with these data proofs are not simple.

Heath, following Zeuthen, shows the fact that the

hyperbola can be written immediately in the form

(1) if we start with a technique like ours, that is,

when the axes are a pair of conjugate diameters [5].

That is perfectly true, but the Greeks made surpris-

ingly little study of the conics when expressed in

346
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this form more familiar to us; Apollonius comes to

it quite late. It seems to me altogether doubtful that

the first discoverer of the curves should have been

able to make the transition.

2 Gr�egoire de St. Vincent

If we grant that the Greek mathematicians, perhaps

Menaechmus, were familiar with the fundamental

property of the rectangular hyperbola expressed in

(1), what has this to do with e? We must look ahead
some two thousand years to that original writer

whose name appears at the head of this paragraph. In

1647, he published his fundamental Prologomena a
Santo Vincento, Opus geometricum quadraturae cir-
cuit et sectionum coni. This I have not seen in its
original form, but the content is given at great length

by Bopp in [6]. Here is the general scheme. We take

the hyperbola

xy = 1. (3)

On the x-axis we take n equivalent rectangles whose
bases are

P0P1, P1P2, · · · , Pn−1Pn,

while each has an upper vertex on the curve Qi.

Then,

P0P1 ·P0Q0 = P1P2 ·P1Q1 = P2P3 ·P2Q2 = · · · ,

and

P0Q0

P1Q1
=
P1P2

P0P1
;

P1Q1

P2Q2
=
P2P3

P1P2
, (4)

but

OP0 · P0Q0 = OP1 · P1Q1 = OP2 · P2Q2 = · · · ,

so that

OP0

OP1
=
P1Q1

P0Q0
=
P0P1

P1P2
=
OP1

OP2
,

by composition. If

OP1 = ρOP0, then OPj = ρjOP0. (5)

St. Vincent even treats the case where OP0 and

OPj are incommensurable, but we need not follow

him here.

The importance of this equation was early rec-

ognized, because of its connection with logarithms

which were based on the relation of arithmetical and

geometrical series. There is a good deal to be said in

favor of the thesis that the credit for relating the rect-

angular hyperbola with logarithms is due to Sarasa.

I have not seen his work, but like Cantor, I rely

on K�astner. In 1649, Sarasa published Solutio prob-
lematis a R. P. MarinoMersenno propositi. This was
concerned with the problem: Given three positive

quantities and the logarithms of two of them, find

the logarithm of the third. K�astner writes [7], \Zu

ihrer Beanwortung brang Sarasa drey Saetze aus des

Gregorius Buche von der Hyperbel bey, die betreffen

Flaechen der Hyperbel an der Aysmptoten, Sarasa

erinnert wie das mit Logarithmen zusammenhangt."

Cantor's view is similar [8]; he states, \Mit andern

Worten, Gregorius hatte das Auftreten von Loga-

rithmen bei der erhahnten Flachenraumen erkannt,

wen auch nicht mit Namen genannt. Letzteres that

Sarasa, und darin liegt das wirkliche Verdienst seiner

Stratschrift."

A contrary view is expressed by Charles Hutton

[9] in the words, \As to the first remarks on the

analogy between logarithms and hyperbolic spaces,

it having been shown by Gregory St. Vincent . . . that

if an asymptote be divided into parts in geometrical

progression, and from the points of division ordi-

nates be drawn parallel to the other asymptote, they

will divide the space between the asymptote and the

curve into equal portions, from hence it was shown

by Mersenne, that by taking continual sums of these

parts there would be obtained areas in arithmetical

progression which therefore were analogous to a sys-

tem of logarithms."

This may be true, but I must point out that

whereas St. Vincent published the work referred

to above in 1647, Mersenne died in the middle

of 1648, and the dates of all of his mathemati-

cal writings which I have seen were much ear-

lier. However, St. Vincent's work was certainly

well observed. We find Wallis writing in 1658 to

Lord Brouncker [l0], \Sumptis (in Asymptoto) rec-

tis NH,NI,NK,NQ,NL,NM geometrice pro-

portionalibus, in punctis H, I,K,Q, L,M , ducantur
rectae parallelae alteri Asymptoto, spatium Hyper-

bolicum ABHM in quinque partes dividi ostendit

Gregor de Sancto Vincento (si memini) decimo."

3 The introduction of

logarithms

The actual word logarithm occurs again in an

account of Gregory's Vera circuli et hyperbolae
quadratura, which was published in Padua in 1667
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and laid before the Royal Society [11]. Here we read,

\And lastly by the same method he calculates both

the logarithm of any natural number, and, vice versa,

the natural number of any given logarithm." Perhaps

the wisest word on the subject has been pronounced

by the kindly old writer Montucla [12], \Au reste

la d�ecouverte de cette propri�et�e est revindiqu�ee par

divers autres g�eom�etres." Among these I surely must

mention Christian Huygens, who acknowledges the

work of St. Vincent, even though he does not claim

for himself the discovery of the relation between the

hyperbola and logarithms. This is admirably set forth

in [13], first in a French account, then Huygens'

own Latin. He finds the areas bounded by the x axis,
which is an asymptote, the curve and ordinates. Two

such areas terminating by the same ordinate of 1 are

area FGDE

area ABDE
=

loge FG

loge 10
= log10 FG.

Huygens divides numerator and denominator by 32,

which amounts to finding the 32nd root of each area,

but this has the effect of so far closing up the fig-

ure that we may safely replace the hyperbola by a

parabola whose outside area is known. He checks by

finding a very good value for log10 2.
In the same year, 1661, Huygens finds another

curve which he calls logarithmic but we should
probably call it exponential. This curve has the prop-
erty that the ordinate corresponding to the point

midway between two given points of the x-axis is
the mean proportional between their ordinates. The

equation of the curve is y = kax. Huygens takes

y = 2x/x0; x =
log y

log 2
x0. (6)

The constant subtangent is

ydx

dy
=

x0

loge 2
. (7)

Huygens takes

x0 = 10n log10 2.

This gives for the constant subtangent

log10 e = 0.43429448190325180,

\qualium logarithmus binarij est"

0.30102995663981195.

These numbers had long been known as they had

appeared, for instance, in Briggs' Arithmetica log-
arithmica of 1624, pages 10 and 14. As a matter

of fact, there appeared in 1618 a second edition

of Wright's translation of Napier's Mirifici Loga-
rithmorum Canonis Descriptio which contained an
appendix, probably written by Oughtred, giving the

natural logarithms of various numbers from 100,000

to 900,000. This is probably the earliest table of

natural logarithms, although a very similar table by

John Spidell appeared in 1619 [14].

The astonishing thing about all of those writers

who connected logarithms with hyperbolic areas is

their lack of interest in what we should call the base.

Napier began by considering the relation between an

arithmetical and a geometrical series. A geometrical

series consists in successive powers of one number.

What is that number? Or given a set of logarithms,

what number has the logarithm 1? I mentioned that

Briggs gave the logarithm of e, to the base 10 but
I find no mention of e itself. Of course, we might
write

10n log10

10n + ∆x

10n
= 10n loge

(
1 +

∆x

10n

)
log10 e

= ∆x log10 e+ · · · ,

but e itself does not appear. The fact is that there was
no comprehension that a logarithm was essentially

an exponent. Tropfke is very explicit in this point;

he writes, \Freilich d�urfen wir nicht an die mod-

erne Erkl�arung der Logarithmen denken, die in ih-

nen Potenzexponenten einer bestimmten Grundzahl

erkennt. Diese Auffassung machte sich erst um die

Mitte des achtenten Jahrhunderts geltend" [15]. This

is perhaps too strong a statement, for in a note on the

same page he quotes James Gregory (whom he calls

David Gregory) as saying in his Exercitationes Ge-
ometricae of 1684, p. 14, \Exponentes sunt ut log-
arithmi." I have not been able to verify this, but we

find in [16], \Si seriei Termonorum in Progressione

geometrica ab 1 continue proportionalium, puta

1, 2, 4, 8, 16, 32, 64, etc.

accomedetur series Indicum, sive Exponentium, in

progressione ab o continue procedentium, puta

0, 1, 2, 3, 4, 5, 6, etc.

Hos exponentes appelabant Logarithmos." We could

not well ask for anything clearer or more explicit.

If most writers did not look on logarithms as expo-

nents, how did they consider them? I think we find

the clue in St. Vincent's identification of logarithms

with hyperbolic areas, remembering that these were
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the days of Cavalieri and Roberval, when an area

was looked upon as the same thing as an infinite

number of line segments, a very helpful if danger-

ous definition. We find Halley writing [17], \They

may more properly be said to be numeri rationum
exponentes, wherein we consider ratio as a quantity
sui generis, beginning from the ratio of equality, or
1 to 1 = 0, · · · and the rationes we suppose to be
measured by the number of ratiunculae in each. Now
these ratiunculae are in a continued scale of propor-
tionals, infinite in number, between the two terms of

the ratio, which infinite number of mean proportion-

als is to that infinite number of the like and equal

ratiunculae between any other two terms as the log-
arithm of one ratio is to the logarithm of the other.

Thus if we suppose there to be between 1 and 10 an

infinite scale of mean proportionals whose number

is 100000 ad infinitum, between 1 and 2 there shall
be 30102 of said proportionals and between 1 and

3, 47712 of them which numbers therefore are the

logarithms of the ratio of 1 to 10, 1 to 2, and 1 to 3,

and so properly called the logarithms of 10, 2, and

3."

It is hard to see how there could be a much worse

explanation of logarithms for those who \make con-

stant use of logarithms without having an adequate

notion of them." The one certain thing seems to be

that a logarithm is an infinite number. I suppose we

might translate this into the form

b

a
=
a+ r1
a

· a+ r2
a+ r1

· a+ r3
a+ r2

· · · a+ rn

a+ rn−1
· b

a+ rn
.

If
a+ rj

a + rj−1
= r,

b

a
= rn,

then n would be the logarithm.

4 Mercator, Newton, Leibniz

It is fair to say that such a definition of a logarithm

was not original with Halley. We find Mercator writ-

ing in 1668, [18] \Est enim Logarithmus nihil aliud,

quam numerus ratiuncularum contentarum in ratione

quam absolutus quisque ad unitatem obtinet." I may

mention also that this seems the first place where

the words \logarithmus naturalis" are used. But the

real significance of the article comes from the fact

that instead of studying logx he takes up log(1+x),
which enables him to start from 0. The article is not

clearly written, so I follow the much clearer exposi-

tion in Wallis [19], which was published in the same

year.

We study the area under the curve (3) from x = 1
to x = 1 + X. We divide the length on the x-axis
into n equal parts, each of length∆x. The abscissas
are

1, 1 + ∆x, 1 + 2∆x, · · · , 1 +X

and the corresponding ordinates are

1,
1

1 + ∆x
,

1

1 + 2∆x
, · · · , 1

1 + (n− 1)∆x
.

The infinitesimal, rectangular areas are

∆x, ∆x[1− ∆x+ ∆x2 − ∆x3 + · · · ],

∆x[1− (2∆x) + (2∆x)2 − (2∆x)3 + · · · ], · · ·
Such infinite expansions were common in Wallis'

work. The sum of these rectangular areas may be

written

∆x[1 + 1 + 1 + · · · ]
−∆x[∆x+ 2∆x+ 3∆x+ · · · ]
+∆x[(∆x)2 + (2∆x)2 + (3∆x)3 + · · · ]− · · · .

Now n∆x = X, so we have

X − ∆x2[1 + 2 + 3 + · · · ]
+ ∆x3[12 + 22 + 32 + · · · ]− · · · . (8)

With regard to these sums, Wallis says [19, page

222], \quod ostendit ille prop XVI etque a me alibi

demonstratum." A reference he makes to Mercator

is not conclusive as the statement is sketchy; as to

his own work I will follow [20], as I shall need that

again. Here he is seeking the area under the curve

y = xn from x = 0 to x = X. His method is not
perfectly clear, as he seems merely to generalize by

analogy from cases worked out earlier, but what he

does is essentially the following:

We take N equal lengths from 0 to N∆x = X.
We have a set of rectangles whose combined areas

are

∆x[0m + (∆x)m + (2∆x)m + (3∆x)m + · · · ].

Let us assume that

0m + 1m + · · ·+ (N − 1)m

= αNm+1 + βNm + γNm−1 + · · · .

Replacing N by N + 1, and subtracting, we obtain

Nm = (m+ 1)αNm + bNm−1 + cNm−2 · · · ,
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so

α =
1

m+ 1
.

Substituting, and remembering that N∆x = X,
there results

area =
Xm+1

m+ 1
+ β∆xXm + γ∆x2Xm−1 .

The limit of this as N → ∞ is Xm+1/m+ 1, since
∆x → 0. We thus can substitute this result in (8),
when m = 1, 2, 3, · · · , to obtain Mercator's famous
formula:

log(1 +X) = X − X2

2
+
X3

3
− X4

4
+ · · · . (9)

A good deal has been written about this series, as

we see from Mazeres and elsewhere. The obvious

way to obtain the equation is to apply the calcu-

lus, so we now turn to see how this instrument was

brought to bear. In 1669, a year after Mercator had

published his work on logarithms [18], Newton sent

to Collins his article, De Analysi per aequationes
numero terminorum Infinitas [21]. This represents
his first studies of areas under curves, which he had

been working at for a year or two, but had not pub-

lished. In fact, publication did not occur for a goodly

number of years to come; there is, however, no ques-

tion of giving his results precedence over those of

Mercator. It begins as shown below:

Curvarum simplicium Quadratura

Reg. 1: Si am/n = y, erit
an

m + n
x(m+n)/n =

area ABD.

I must speak further of this. In [22] we read on

p. 176, \Dr. Wallis published in his Arithmetica in-
finitorum in the year 1655 and in the 59th Proposi-
tion of that Book, if the Abscissa of any curvilinear

figure be called x and m and n be two Numbers,
the ordinates erected at right Angles be xm/n the

area of the Figure shall be (n/(m + n))x(m+n)/n.

And this is assumed by Mr. Newton, upon which he

founds his Quadrature of Curves. Dr. Wallis demon-

strated this by steps in many particular Propositions

and then connected all the Propositions into one by

a Table of Cases. Mr. Newton reduced all Cases to

One, with an indefinite Index, and at the end of his

Compendium demonstrated it at once by his method

of moments, he being the first who introduced in-

definite Indices of Dignites into the Operations of

Analysis." This is Newton's own statement of the

case and must be taken as final. It is true that Wallis

worked out a number of special cases in a manner

not exactly like the method followed here, and did

not use a literal exponent. The greater generality of

Newton's formula is found by replacing x by x1/n.

Newton's proof by \the method of moments" we

should call differentiation, and consisted in showing

that

if z =
n

m+ n
x(m+n)/n, then

dz

dx
= xm/n.

It is fair to say also that although he gives Mer-

cator's formula, he gives it as the area under the

hyperbola, with no mention of Mercator or of loga-

rithms.

It is time to turn for a moment to the other inven-

tor of the calculus, Gottfried Leibniz. We find him

writing in 1677 or 1678 [23], \In Hyperbol sit

AB = 1, BM = x,ML =
1

1 + x
,

CBMLC =
1

1
x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · ."

This is proved by the straight expansion of 1/(1+x),
after which there is integration term by term. We find

something more interesting a dozen years later, when

he writes to Huygens, who is said never to have

understood Leibniz's calculus of differences [24],

\Soit donc x l'abscisse et y l'ordonn�ee de la courbe,
et l'�equation comme je vous ay dit

x3y

h
= b2xy.

Je d�esignerai le logarithme de x par logx et nous
aurons

3 logx+ log y − log h = 2xy

supposant que le log de l'unite soit 0 et le log b = 1.
Donc par la quadrature de l'hyperbole nous aurons

3

∫
dx

x
+

∫
dy

y
− logh = 2xy

3
dx

x
+
dy

y
= 2xdy+ 2ydx,

dx sera �a dy, on bien DB sera �a y comme 2x2y−x
est �a 3y− 2xy2 c'est �a dire DB sera

2x2y − xa2

3a2 − 2xy

comme vous le demand�ees, a estant l'unit�e."
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5 Leonhard Euler

It is now time to turn to the man who pulled all this

together and who put the number e definitely on the
map, Leonhard Euler. This he did in [25], beginning

in \Caput VII" with the base a. His argument is
outlined below:

Since a0 = 1, we may put

aw = 1 + kw; w = log(1 + kw).

Assume w to be very small, and write

aiw = (1 + kw)i

= 1 +
i

1
kw +

i(i− 1)

1 · 2 k2w2

+
i(i − 1)(i− 2)

1 · 2 · 3 k3w3 + · · · .

Since w is infinitesimally small, and i is infinitely
large, we write iw = z

az =

(
1 − kz

i

)i

= 1 + kz +
(i− 1)

i · 1 · 2k
2z2 +

(i− 1)(i− 2)

i · 1 · 2 · 3 k3z3 + · · · .

Since i is very large, we may assume (i−n)/i =
1, then

az = 1 + kz +
k2z2

1 · 2 +
k3z3

1 · 2 · 3 + · · · .

If z = 1,

a = 1 + k +
k2

1 · 2 +
k3

1 · 2 · 3 + · · · .

If we take a = 10, the base in the logarithm system
of Briggs, Euler gives k = 2.30238, approximately.
For a natural logarithm we take k = 1; a = e;

and

e = 1 +
1

1
+

1

1 · 2 +
1

1 · 2 · 3 + · · · . (10)

Euler gives this value to 18 places, without nam-

ing the source, namely,

e = lim
i→∞

(
1 +

1

i

)i

. (11)

With regard to the use of the letter e, Euler had
long employed it, for we find him writing [26], page

80, \scribitur pro numero cujus logarithmus est uni-

tas e, qui est 2.7182817 . . ." Note that this is Leib-
niz's b.

I pass to Ch. VII of the Introductio. Euler assumes
for small values of z,

sin z = z, cos z = 1.

He then, following DeMoivre, writes,

cosnz

=
(cos z +

√
−1 sin z)n + (cos z −

√
−1 sin z)n

2
,

sinnz

=
(cos z +

√
−1 sin z)n − (cos z −

√
−1 sin z)n

2
√
−1

.

Putting nz = v, and remembering that z is small,

cos v = 1 − v2

1 · 2 +
v4

1 · 2 · 3 · 4 − · · · ,

sin v = v − v3

1 · 2 · 3 +
v5

1 · 2 · 3 · 4 · 5 − · · · ,

Comparing these with the value given previously for

az , one obtains

cos v =
ev

√
−1 + e−v

√
−1

2
; (12)

sin v =
ev

√
−1 − e−v

√
−1

2
√
−1

; (13)

and

v
√
−1 = log[cos v +

√
−1 sin v]. (14)

This last formula was not, strictly speaking, original.

Roger Cotes in [27] sought the area of an ellipsoid

of revolution. When the rotation is about the mi-

nor axis there is no trouble, but when the motion is

about the major axis we find him writing \Posset

hujus etiam superficiei per Logometriam designari,

sed modo inexplicabili . . . arcus erit rationis inter

EX +XC
√
−1aCE mensura ducta in

√
−1.”

I will leave Euler for a moment to speak of the

numerical value of e. William Shanks, who, until

quite recently, held the world's record of 707 places

for π, had a try at e [28]. Glaisher found an er-
ror in this, but Shanks corrected it, and calculated

a value which he was sure was right to 205 places.

Glaisher verified 137 of them. Boorman [29] cal-

culated e to 346 places. He acknowledged that he
and Shanks agreed only up to 187 places. \One is

wrong, which one?" Boorman gives the impression

of being a rather amateurish mathematician. Adams

[30] calculated log10 e to 272 places, probably all
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correct. Many years ago I knew a youthful teacher

of mathematics who had the vaulting ambition to

calculate e by long-hand methods to 1,000 places. I
lost sight of him over fifty years ago, probably he

died early of heart failure.

I return to Euler. In Caput XVIII on De Fraction-
ibus continuis [25], he describes methods of expan-
sion into a continued fraction. When it is a question

of turning a rational fraction into a continued one,

the process is essentially that of finding a highest

common factor, and can be done in only one way.

Euler writes

e = 2.718281828459 · · · ,
e− 1

2
= −0.8591409142295.

He writes this in the form,

e− 1

2
=

1

1 +
1

6 +
1

10 +
1

14 +
1

18 +
1

etc.

and remarks [25], page 388, \Cuius fractio ex Cal-

culo infinitesimali dari potest."

Euler assumes that the quotients will increase by

4 each time, so that the fraction goes on indefinitely.

Hence e is not a rational fraction.
As for finding this \ex Calculo infinitesimali" he

returns to this very much later in life, \Summa-

tio fractionis continuae cujus indices progressionem

arithmeticam constituunt" in Vol. 23 of his Opera
mentioned in [25]. The method consists in estab-

lishing contact with a Riccati differential equation.

For a fuller discussion see [31]. Euler did not com-

plete all the details with modern rigor, but what I

have just shown is the first attempt to demonstrate

the irrationality of e.
We must wait a whole century for anything really

new and startling in this line. This came in 1874

with Hermite's proof that e is not an algebraic num-
ber [32], that is, not the root of any equation with

integral coefficients. A much simpler demonstration

is given by Klein in [33].

References

1. Archimedes, Opera omnia, 3rd ed. Heiberg, vol. III,
1915, p. 79.

2. G. J. Allman, Greek Geometry, Dublin, 1889.

3. G. Loria, Le Scienze esatte nella antica Grecia, 2nd
ed. Milan, 1914, p. 155

4. T. L. Heath, The Works of Archimedes, Cambridge,
1897, p. 1.

5. H. Zeuthen, Die Lehre von den Kegelschnitten,
Kopenhagen, 1886, p. 463.

6. Die Kegelschnitte des Gregorius a St. Vincento, Ab-
handlungen zur Geschichte der mathematische Wis-
senschaften, Vol. XIX, Part 2, Leipzig, 1907.

7. Abraham Gotthilf Kastner, Geschichte der Mathe-
matik, Vol. 3, G�ottingen, 1799.

8. G. Cantor, Geschichte der Mathematik, Vol. 2, 2nd
Ed., Leipzig, 1900, p. 715.

9. Charles Hutton, Mathematical Tables, London, 1804,
p. 80.

10. J. Wallis, Opera Mathematica, Oxford, 1693, Vol. 2.

11. Philosophical Transactions, Abridged, Vol. I, p. 232.

12. C. Montucla, Histoire des math�ematiques, Vol. 2,
Paris, 1800, p. 80.

13. C. Huygens, Oeuvres Compl�etes, Vol. 14, La Haye,
1920, pp. 433, 441, and 474.

14. Glaisher, The earliest use of the Radix Method for

calculating logarithms, Quarterly Journal of Mathe-
matics, Vol. 46, 1914{15, especially p. 174.

15. H. Tropfke, Geschichte der Elementarmathematik,
3rd Ed., Vol. 2, Berlin, 1933, p. 205.

16. J. Wallis, Algebra, Ch. XII, Opera, Vol. 2, Oxford,
1693, pp. 57, 58.

17. A most compendius and facile Method for construct-

ing Logarithms exemplified and demonstrated from

the Nature of Numbers, Philosophical Transactions,
abridged, Vol. IV. 1695-1702, London, 1809, p. 19.

18. Logarithmo-technica Auctore Nicolao Mercatore; see
Mazeres, Scriptores Logarithmici, Vol. 1, London,
1791, p. 169.

19. J. Wallis, Logarithmo-technica Nicola Mercatoris,

Philosophical Transactions, August, 1668. Mazeres
cit. in [18], p. 221.

20. ||, Arithmetica Infinitorum, Oxford, 1656. Espe-
cially Prop. 59.

21. I. Newton, Commercium Epistolicum Collinsii et alio-
rum, published by Biot and Leffort, Paris, 1856.

22. An Account of the Book entitled Commercium Epis-

tolicum Collinsii et aliorum, Anonymously by New-

ton, Philosophical Transactions, Vol. XXIX, London.

23. Leibnizens Mathematische Schriften, Gerhardt Ed.,
Part 2, Vol. 1. Halle, 1858.

24. Ibid., Part I, Vol. 2.



\master" | 2011/4/5 | 12:53 | page 353 | #363
i

i

i

i

i

i

i

i

COOLIDGE: The Number e 353

25. L. Euler, Introductio in Analysin infinitorum, Lau-
sanne, 1748, also his Opera Omnia seria prima,
Opera mathematica, Vol. 8.

26. ||, Meditatio in Experimenta explosione Opera
Postuma, Petropoli, 1862.

27. R. Cotes, Harmonia Mensurarum, Cambridge, 1722,
p. 28.

28. Proceedings of the Royal Society, Vol. 6, 1854.

29. Computation of the Naperian Base, Mathematical
Magazine, Vol. 1, 1884, p. 204.

30. Shanks, On the Modulus of Common Logarithms,

Proceedings of the Royal Society, Vol. 43, 1887.

31. Pringsheim, Ueber die ersten Beweise der Irra-

tionalit�at von e und π, Sitzungsberichte der K
Akademie der Wissenschaften zu M �unchen, Vol. 28,
1898.

32. Charles Hermite, Sur la fonction exponentielle, Paris,
1874; Oeuvres, Vol. III, Paris, 1912.

33. Klein, Ausgew�ahlte Fragen der Elementargeometrie,
Leipzig, 1895, pp. 47ff.



\master" | 2011/4/5 | 12:53 | page 354 | #364
i

i

i

i

i

i

i

i

Euler's Vision of a General Partial Differential

Calculus for a Generalized Kind of Function

JESPER L �UTZEN

Mathematics Magazine 56 (1983), 299{306

The vibrating string controversy involved most of

the analysts of the latter half of the 18th century.

The dispute concerned the type of functions which

could be allowed in analysis, particularly in the new

partial differential calculus. Leonhard Euler held the

bold opinion that all functions describing any curve,

however irregular, ought to be admitted in analy-

sis. He often stressed the importance of such an ex-

tended calculus, but did almost nothing to support

his point of view mathematically. After having been

abandoned during the introduction of rigor in the lat-

ter part of the 19th century, Euler's ideas began to

take more concrete form during the early part of the

20th century, and they have now been incorporated

into L. Schwartz's theory of distributions.

1 The algebraic function

concept

Euler's radical stand in the dispute over the vibrat-

ing string is surprising since he had canonized the

narrower range of analysis which his main oppo-

nent, J. B. R. d'Alembert (1717{1783), adhered to.

This was done in the influential book Introductio in
analysin infinitorum [12], in which Euler chose to
determine the relation between the variable quanti-

ties by way of functions instead of using curves, as

had been universally done earlier (cf. [22] and [7]).

He defined a function as follows (see photo on the

next page):

A function of a variable quantity is an analytical

expression composed in one way or another of

this variable quantity and numbers or constant

quantities [12, ch. 1, §4].

In forming the analytical expressions, Euler allowed

the use of the standard transcendental operations

such as log, exp, sin and cos in addition to alge-

braic operations. Still, all the rules in the theory of

functions were taken over from algebra, so that Eu-

ler's function concept was in essence entirely alge-

braic. Thus Introductio marked a shift in the setting
of analysis from geometry to algebra. Euler even ac-

cepted, and treated algebraically, infinite expressions

354
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such as infinite series, infinite products and contin-

ued fractions. Lebesgue [25] later showed that when

such infinite limit procedures are accepted, the class

of functions is very extensive, namely, equal to the

class of Borel Functions. However, Euler did not

realize the immense generality of his function con-

cept and in theoretical considerations he conferred

on them all the nice properties he needed such as

differentiability and even analyticity in the modem

sense. Still, it would be off the mark to identify Eu-

ler's functions with one of the modem classes of

functions such as differentiable functions or analyti-

cal functions because their definition involves topo-

logical (geometrical) ideas which are foreign to Eu-

ler's way of thinking.

Most important among the nice properties shared

by all Euler's functions was the possibility of ex-

panding them in a power series:

f(x + i) = f(x) + pi+ qi2 + ri3 + · · · ,

for in all differentiations actually carried out in Eu-

ler's second influential textbook Institutiones calculi
differentialis [16] the differential quotient is found
as the coefficient p of the first power term. Later in
the century J. L. Lagrange [24] defined the deriva-
tive of a function in this way and gave a \proof" that

the expansion always exists. In the mid-18th century,

however, power series were only used as a practical

tool whereas the metaphysical basis for the calcu-

lus was found elsewhere. For example, d'Alembert

defined the derivative using limits, and Euler's def-

inition of the differential rested on a theory of zeros

of different order. Yet, these foundational differences

were not reflected in the domain they assigned to the

ordinary calculus; both agreed that

. . . [calculus] as it has been treated until now
can only be applied to curves, whose nature can

be contained in one analytical equation [18, §7].

2 Euler's generalized functions

The discussion of the vibrating string brought an

end to this agreement. D'Alembert, who in 1747 [1]

found his famous solution

y = f(x, t) = φ(x+ t) + ψ(x − t)

of the wave equation

∂2f

∂x2
=
∂2f

∂t2

governing the displacement y of the string, required
that the \arbitrary" functions φ and ψ be analytical
expressions.

In all other cases the problem cannot be solved,

at least not with my method, and I do not even

know whether it will not be beyond the powers

of the known analysis. In fact, it seems to me

that one cannot express y analytically in a more
general way than supposing it to be a function

of x and t [2, p. 358].

Euler, on the other hand, pointed out that this re-

quirement restricted the initial displacement φ(x) +
ψ(x) of the string too much; for example, he be-
lieved that the plucked string (Figure 1) would be

excluded from d'Alembert's solution. (However, the

plucked string can be described analytically by a

slight modification of Cauchy's example:
√
x2 = |x|

[9].) Therefore he argued that one had to allow

the functions φ and ψ to represent arbitrarily given
curves. In this way physical reality led Euler to gen-

eralize the function concept so as to be in one to

one correspondence with the geometrical concept of

y

x

Figure 1.
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curve which he had earlier abandoned as the basic

concept in analysis.

It is surprising that Euler never provided a proper

definition of the more general notion of function.

His many papers on the vibrating string (particularly

[17]) made clear that a generalized function was

something corresponding to a general hand-drawn

curve, but he never explicitly stated what this some-

thing was supposed to be. To judge from the clas-

sification of the new functions he seems to have

had an algebraic definition in mind. He divided the

general functions into the continuous and the dis-

continuous. The former were identical with the func-

tions defined in Introductio, whereas the latter could
not be expressed by one analytical expression. Euler

was quite explicit about the continuity of a function

having nothing to do with the connectedness of the

curve; for example 1/x is continuous but its graph
is disconnected at x = 0. Thus Euler's concept of
continuity must be distinguished from the modem

concept, due to Cauchy [8], and so we shall term the

former E-continuity. In [17] Euler further divided
the E-discontinuous functions into mixed functions,
whose graph can be represented piecewise by finitely

many analytical expressions, and the functions cor-

responding to arbitrary hand-drawn curves, whose

analytical expressions may, so to speak, change from

point to point.

Thus Euler's division of functions into classes was

entirely algebraic and so was his distinction between

even and odd functions. For example, in his critique

[15] of D. Bernoulli's [6] description of the vibrating

string as a trigonometric series, Euler argued that an

E-discontinuous function of the form

{
f(x) for x > 0

−f(−x) for x < 0

is only odd if f is odd and by that he meant that
its power series contains only odd powers of x. To
conclude: even when the consequences were absurd,

Euler continued to think algebraically about his new

functions, which, implicitly, he defined as the col-

lection of the (possibly infinitely many) analytical

expressions describing the corresponding curve.

Strangely enough, Euler himself had introduced

a way of thinking about functions which he could

have used to define his E-discontinuous functions
as separate entities. In his second textbook on analy-

sis Institutiones calculi differentialis (1755) [16], he
defined functions in the following way (see photo

above):

If, therefore, x denotes a variable quantity,
all quantities which depend in some way on x
or are determined by it, are called functions of

this variable [16, Preface].

As it stands, this is almost the modem func-

tion definition and it clearly encompasses the E-
discontinuous functions. However, Euler did not re-

alize its generality. In Institutiones calculi differen-
tialis only E-continuous functions occur, and the
E-discontinuous functions are not even mentioned.
Neither did he refer to his 1755 definition in any

of his later papers on E-discontinuous functions.
This indicates that Euler thought of his 1755 func-

tion definition as being equivalent to the definition

given in Introductio. In fact, Euler's statement from
1765 (quoted earlier) that analysis until then had ex-

clusively been concerned with analytical expressions

only makes sense under this assumption. (This point

of view is different from the one put forward by

Youschkevich [34].)

3 Euler's vision of a

generalized calculus

The lack of a proper definition of the E-
discontinuous functions suggests that Euler's main

concern was not the foundation of the generalized

function concept itself but the analysis it made pos-

sible. We saw that initially Euler had introduced

his new functions for physical reasons. Later [17]

he stressed that the E-discontinuous functions were
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not forced onto analysis from outside but inevitably

emerged as arbitrary functions in the partial integral

calculus. For example [20, book 2, sect. 1, §33], the
solution of the partial differential equation

∂u(x, y)

∂x
= 0

is an arbitrary constant under the variation of x, but
the constant can vary as a function f of y. It does not
matter whether the constants for different values of

y are connected by an analytical expression or not;
therefore f must be allowed to be E-discontinuous.
Since the functions φ and ψ in the solution of the
wave equation arise in this way when x+t and x−t
are used as independent variables, these functions

are by their nature general functions.

Euler only used the E-discontinuous functions in
the calculus of functions of several variables, but

within that theory he would apparently blaze the

trail for their unrestricted application. In contrast to

the conservative d'Alembert, Euler argued that the

development of a calculus of E-discontinuous func-
tions is particularly desirable because all earlier cal-

culus had been restricted to analytic expressions:

But if the theory [of the vibrating string] leads

us to a solution so general that it extends to

all discontinuous as well as continuous figures,

one must admit that this research opens to us

a new road in analysis by enabling us to apply

the calculus to curves which are not subject to

any law of continuity, and if that has appeared

impossible until now the discovery is so much

more important [18, §8].
Euler's insistence that calculus should be applica-

ble within the whole new function domain instead

of being restricted to some|possibly varying|

subclass(es) (as is the case in modern analysis) was

supported not only by the mentioned physical rea-

sons. It was also in agreement with the fundamental

belief in the generality of mathematics. For algebraic

rules were considered universally valid because they

operated on abstract quantities, and since analysis

was just infinite algebra, its rules had to be gener-

ally applicable as well.

For, because this calculus applies to variable

quantities, that is, quantities considered gener-

ally, if it were not generally true. . . one could
never make use of this rule, since the truth of

the differential calculus is based on the gener-

ality of the rules of which it consists [14, 1.

Objection].

y

x

y

y¢

y¢¢

Figure 2.

This basic belief in the generality of mathe-

matics forced Euler to extend calculus to all E-
discontinuous functions as soon as he had allowed

them to enter his mathematical universe. Initially it

probably also made him believe that this extension

would come down to a simple admission of all the

well-known rules to the extended domain. However,

he soon had to realize that d'Alembert's exclusion

of E-discontinuous functions was not only due to
plain conservatism but was supported by mathemat-

ical arguments.

In many examples d'Alembert showed that the

mathematical analysis of the vibrating string broke

down at points where φ or ψ changed their analytical
expression. For example, d'Alembert [3, §7] proved
that if ψ is composed of two symmetric parabolas
as in Figure 2 and φ ≡ 0 then ψ(x − t) does not
satisfy the wave equation

∂2f

∂x2
=
∂2f

∂t2

at points where x−t = 0. This and other difficulties
can be explained in modern terminology by the fact

that φ or ψ are not twice differentiable. D'Alembert
came close to such an insight towards the end of his

life [4], but while the controversy was at its highest,

he believed that he had proved that φ and ψ must
be E-continuous.
Euler was not convinced by d'Alembert's argu-

ments and tried to refute them with a few counter-

arguments [19] of which I shall reproduce the most

convincing. He remarked that the trouble was due to

the sharp bend in the first derivative of ψ. Therefore,
one had only to smooth out ψ′ which could be done
by changing ψ infinitely little to ψ̃. Since ψ̃(x− t)
would then satisfy the wave equation, one also had

to admit ψ(x− t) as a solution since infinitely small
changes were always ignored in analysis.

In Eulerian calculus this argument is not com-

pletely off the mark, and even in modern analysis

it contains the germ of a good idea (cf. following

page). Still Euler seems to have realized that he had

not overcome all objections to his new general anal-
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ysis, and so he often encouraged the younger math-

ematicians to work on these problems.

This part of analysis [of two or more variables]

is essentially different from the former [of one

variable], and extends even to functions void

of all law of continuity. This part, of which we

so far know barely the first elements, certainly

deserves the united efforts of all geometers for

its investigation and development [19, §32].

4 The fate of Euler's vision

In order to follow how subsequent geometers cul-

tivated this new branch of analysis it is useful to

divide the complex of problems, seen by Euler as a

unity, into three separate parts:

(1) The generalization of the concept of function.

(2) The generalization of analysis.

(3) The development of the theory of partial dif-

ferential equations.

The last and most important point of this re-

search programme (3) was enthusiastically taken up

by most of the mathematical community and was

probably the most important mathematical discipline

during the following half century. However, a discus-

sion of it is far beyond the scope of this paper (see

[23, ch. 22, 28]).

The generalization of the function concept (1) was

also gradually accepted. In this process Euler's 1755

function definition was influential, regardless of his

own interpretation of it. For after 1755 it became

normal to reproduce this definition in textbooks on

analysis, and slowly mathematicians began to real-

ize its true generality. But this process took almost

a century. For example, Lagrange [24] and Cauchy

[8] defined functions generally as correspondences

between variables, but they both thought of them

as analytical expressions. It is natural in Lagrange's

case, because he carried Euler's algebraic approach

to its extreme, but it is surprising that the father

of modem analysis, Cauchy, had a similar way of

thinking. Still, this is evident from many remarks in

his famous Cours d'Analyse [8], for example, the
talk about \the constants or variables contained in a

given function" [8, ch. 8, §1].
In J. Fourier's works [21, §417], one can find

some comprehension of the generality of Euler's

1755 definition but the first mathematician who re-

ally took it seriously and understood the implications

of the permissible pathologies was J. P. G. Lejeune-

Dirichlet [11], after whom our function concept is

justly named.

The generalization of analysis (2) suffered the op-

posite fate. At first it gained widespread acceptance

but during the 19th century the idea was entirely

abandoned. It happened as follows. In 1787 the St.

Petersburg Academy officially terminated the con-

troversy over the vibrating string by awarding L.

Arbogast the first prize for a paper on the irregular-

ities of arbitrary functions in the solutions of partial

differential equations. Arbogast came out in favor of

Euler's point of view, but he added nothing new to

the foundational difficulties [5].

However, this official support of a general cal-

culus was brushed aside by Cauchy, whose partial

rigorization of analysis was a frontal attack on the

principle of the generality of algebraic and analyt-

ical rules which had philosophically supported Eu-

ler's point of view. Cauchy explicitly pointed out this

fundamental shift in the introduction to his famous

Cours d'Analyse [8]:

As for the methods, I have tried to give them

all the rigour that one demands in geometry, so

as never to have recourse to reasoning drawn

from the generality of algebra.

Therefore nothing in his philosophy prevented him

from confining calculus to a subclass of the class

of functions, and in essence he restricted its use to

the continuous functions (in the modem sense). In

some of his papers he realized the inadequacy of this

restriction, but a clear idea of the spaces Cn(R) as
the domain of dn/dxn did not crystalize until the

1870s in the Weierstrass school.

As a whole, mathematics benefited from this rig-

orization of analysis, but the corresponding restric-

tion in the allowable solutions to partial differen-

tial equations made life complicated for the applied

mathematician. Thus when irregular physical situa-

tions occurred (as, for example, a sharp bend in a

string), the differential equation could not be used

and a new mathematical model of the system had to

be found. Such alternative models were set up, for

example, by E. Christoffel [10].

However, in the beginning of the 20th century this

procedure was felt to be so cumbersome and unnat-

ural that several definitions of generalized solutions

to partial differential equations were suggested, be-

ginning in 1899 with H. Petrini's generalization of

Poisson's equation [28]. Of the many generalization

procedures I shall mention only the \sequence def-

inition" implicitly used by N. Wiener in 1926 [33]
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and explicitly introduced by Sobolev (1935) [32].

According to this definition, f is a generalized solu-
tion to a (partial) differential equation if there exists

a sequence of ordinary solutions {fn} converging,
in a suitable topology, to f . This definition is partic-
ularly interesting because it leads to a sensible inter-

pretation of Euler's argument against d'Alembert;

for, if instead of one smooth function ψ̃ infinitely
close to ψ, we think of a sequence ψn of such func-

tions, then Euler's argument shows that ψ(x − t) is
a generalized solution to the wave equation.

All the ad hoc definitions of generalized solutions

from the first half of this century were incorporated

in the theory of distributions created by L. Schwartz

during the period 1945-1950 [31] as a result of his

work with generalized solutions to the polyharmonic

equation [30]. The theory of distributions probably

constitutes the closest approximation to Euler's vi-

sion of a general calculus one can obtain, for in that

theory any generalized function is infinitely often

differentiable. However, in many respects the reality

has turned out to be different from the dream. In one

respect the reality is more satisfactory since it not

only generalizes partial differential calculus which

Euler had imagined but encompasses ordinary dif-

ferential calculus as well. In other respects it is less

perfect; for example, the general use of the algebraic

operations, such as multiplication of two generalized

functions, has been sacrificed in the theory of dis-

tributions. Moreover, the necessary generalization of

the function concept has turned out to be much more

extensive than the one Euler suggested.

5 Concluding remarks

Surely the realization of Euler's vision of a general

calculus was different from what he had imagined|

and more difficult. This can only increase our admi-

ration for his readiness to overthrow his own frame-

work of analysis when physical reality called for it.

His conduct reveals an undogmatic and flexible atti-

tude toward the foundational problems, from which

much could be learned by modern mathematicians.

On the other hand, it is worth noting that the cre-

ation of the theory of distributions made extensive

use of the classical theory of differential operators

created more in the spirit of d'Alembert; one can

even argue that the establishment of a secure foun-

dation for the more restricted classical calculus was

a necessary condition for the realization of Euler's

vision of a general calculus.

As further reading on the development of the con-

cept of function I can recommend [34], [29] and, for

those who want to brush up their Danish, [26]. The

book [27] contains more information on the history

of generalized solutions to partial differential equa-

tions and other aspects of the prehistory of the theory

of distributions.
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Euler and the Fundamental Theorem of Algebra

WILLIAM DUNHAM

College Mathematics Journal 22 (1991), 282{293

A watershed event for all students of mathematics is

the first course in basic high school algebra. In my

case, this provided an initial look at graphs, inequal-

ities, the quadratic formula, and many other critical

ideas. Somewhere near the term's end, as I remem-

ber, our teacher mentioned what sounded like the

most important result of them all| the fundamen-

tal theorem of algebra. Anything with a name like

that, I figured, must be (for want of a better term)

fundamental. Unfortunately, the teacher informed us
that this theorem was much too advanced to state,

let alone to investigate, at our current level of math-

ematical development.

Fine. I was willing to wait. However, second-year

algebra came and went, yet the fundamental theo-

rem occupied only an obscure footnote from which

I learned that it had something to do with factoring

polynomials and solving polynomial equations. My

semester in college algebra/precalculus the follow-

ing year went a bit further, and I emerged vaguely

aware that the fundamental theorem of algebra said

that nth-degree polynomials could be factored into
n (possibly complex) linear factors, and thus nth-
degree polynomial equations must have n (possibly
complex and possibly repeated) solutions. Of course,

to that point we had done little with complex num-

bers and less with complex solutions of polynomial

equations, so the whole business remained obscure

and mysterious. Even in those pre-Watergate days, I

began to sense that the mathematical establishment

was engaged in some kind of cover-up to keep us

ignorant of the true state of algebraic affairs.

\Oh well," I thought, \I'm off to college, where

surely I'll get the whole story." Four years later I

was still waiting. My undergraduate mathematics

training|particularly courses in linear and abstract

algebra|examined such concepts as groupoids,

eigenvalues, and integral domains, but none of my

algebra professors so much as mentioned the fun-

damental theorem. This was very unsatisfactory|a

bit like reading Moby Dick and never encountering
the whale. The cover-up had continued through col-

lege, and algebra's superstar theorem was as obscure

as ever.

It was finally in a graduate school course on com-

plex analysis that I saw a proof of this key result,

and I immediately realized the trouble: the theorem

really is a monster to prove in full generality, for it

requires some sophisticated preliminary results about

complex functions. Clearly a complete proof is be-

yond the reach of elementary mathematics.

So what does a faculty member do if an inquir-

ing student seeks information about the fundamental

theorem of algebra? It is hopeless to try to prove the

thing for any precalculus student whose I.Q. lies on

this side of Newton's; on the other hand, it would

more or less continue the cover-up to avoid answer-

ing the question|to treat an inquiry about the fun-

damental theorem of algebra as though the student

had asked something truly improper, delicate, or con-

troversial| like a question about one's religion, or

one's sex life, or even one's choice of personal com-

puter.

Let me, then, suggest an intermediate option|

something less rigorous than a grad school proof, yet

something more satisfying than simply telling our in-

quisitive student to get lost. My suggestion is that we

look back to the history of mathematics and to the

work of that most remarkable of eighteenth-century

mathematicians, Leonhard Euler (1707{1783). With

Euler's attempted proof of the fundamental theo-

rem of algebra from 1749, we find yet another ex-

ample of the history of mathematics serving as a

helpful ingredient in the successful teaching of the

361
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subject. The reasoning is not impossibly difficult;

it raises some interesting questions for further dis-

cussion; and while his is not a complete proof by

any means, it does establish the result for low de-

gree polynomials and suggests to students that this

sweeping theorem is indeed reasonable.

Before addressing the subject further, we state the

theorem in its modern form:

Any nth-degree polynomial with complex coef-
ficients can be factored into n complex linear
factors.
That is, if P (z) = cnz

n + cn−1z
n−1 + · · ·+

c2z
2 +c1z+c0, where cn, , cn−1, . . . , c2, c1, c0

are complex numbers, then there exist complex

numbers α1, α2, . . . , αn such that

P (z) = cn(z − α1)(z − α2) · · · (z − αn).

It may come as a surprise that, to mathematicians

of the mid-eighteenth century, the fundamental the-

orem appeared in the following guise:

Any polynomial with real coefficients can be
factored into the product of real linear and/or
real quadratic factors.

Note that there is no mention here of complex

numbers, either as the polynomial's coefficients nor

as parts of its factors. For mathematicians of the

day, the theorem described a phenomenon about real
polynomials and their real factors.
As an example, consider the factorization

3x4 + 5x3 + 10x2 + 20x− 8

= (3x− 1)(x+ 2)(x2 + 4).

Here the quartic has been shattered into the product

of two linear fragments and one irreducible quadratic

one, and all polynomials in sight are real. The theo-

rem stated that such a factorization was possible for

any real polynomial, no matter its degree.

Anticipating a bit, we see that we can further fac-

tor the quadratic expression|provided we allow

ourselves the luxury of complex numbers. That is,

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)

= a

(
x− −b+

√
b2 − 4ac

2a

)

×
(
x− −b−

√
b2 − 4ac

2a

)

factors the real quadratic ax2+bx+c into two, albeit
rather unsightly, linear pieces. Of course, there is no

guarantee these linear factors are composed of real
numbers, for if b2 − 4ac < 0, we venture into the
realm of imaginaries. In the specific example cited

above, for instance, we get the complete factoriza-

tion:

3x4 + 5x3 + 10x2 + 20x− 8

= (3x− 1)(x+ 2)(x− 2i)(x+ 2i).

This is \complete" in the sense that the real fourth-

degree polynomial with which we began has been

factored into the product of four linear complex fac-
tors, certainly as far as any factorization can hope to

proceed.

It was the Frenchman Jean d'Alembert (1717{

1783) who gave this theorem its first serious treat-

ment in 1746 [5, p. 99]. Interestingly, for d'Alembert

and his contemporaries the result had importance be-

yond the realm of algebra: its implications extended

to the relatively new subject of calculus and in par-

ticular to the integration technique we now know

as \partial fractions." As an illustration, suppose we

sought the indefinite integral

∫
28x3 − 4x2 + 69x− 14

3x4 + 5x3 + 10x2 + 20x− 8
dx.

To be sure, this looks like absolute agony, as all cal-

culus teachers will readily agree. (One would have

trouble finding it in the Table of Integrals of a calcu-

lus book's inside cover, unless the book is very thor-

ough or its cover is very large.) This problem even

gives a good workout to symbolic manipulators such

as Mathematica (which required 50 seconds to find
the antiderivative on my Mac II) and which were

not available to eighteenth century mathematicians

in any case.

But if, as d'Alembert claimed, the denominator

could be decomposed into real linear and/or real

quadratic factors, then the difficulties drop away.

Here, the integrand becomes

∫
28x3 − 4x2 + 69x− 14

(3x− 1)(x+ 2)(x2 + 4)
dx.

We then determine its partial fraction decomposition,

getting

∫
28x3 − 4x2 + 69x− 14

3x4 + 5x3 + 10x2 + 20x− 8
dx

=

∫
28x3 − 4x2 + 69x− 14

(3x− 1)(x+ 2)(x2 + 4)
dx
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=

∫
1

3x− 1
dx+

∫
7

x+ 2
dx+

∫
2x− 3

x2 + 4
dx

=
1

3
ln |3x− 1|+ 7 ln |x+ 2|+ ln(x2 + 4)

−3

2
tan−1(x/2) +C,

and the antiderivative is found.

Thus, if the fundamental theorem were proved in

general, we could conclude that for any P (x)/Q(x)
where P and Q are real polynomials, the indefinite
integral

∫
(P (x)/Q(x))dx would exist as a combi-

nation of fairly simple functions (at least theoreti-

cally). That is, we could first perform long division

to reduce this rational expression to one where the

degree of the numerator was less than the degree of

Q(x), next we consider Q(x) as the product of real
linear and/or real quadratic factors; then apply the

partial fraction technique to break the integral into

pieces of the form
∫

A

(ax+ b)n
dx

and/or ∫
Bx + C

(ax2 + bx+ c)n
dx;

and finally determine these indefinite integrals using

nothing worse than natural logarithms, inverse tan-

gents, or trigonometric substitution. Admittedly, the

fundamental theorem gives no process for finding the

denominator's explicit factors; but, just as the theo-

rem guarantees the existence of such a factorization,
so too will the existence of simple antiderivatives for
any rational function be established.

Unfortunately, d'Alembert's 1746 attempt to

prove his theorem was unsuccessful, for the diffi-

culties it presented were simply too great for him to

overcome (see [4, pp. 196{198]). In spite of this fail-

ure, the fundamental theorem of algebra has come to

be known as \d'Alembert's Theorem" (especially in

France). Attaching his name to this result may seem

a bit generous, given that he failed to prove it. This

is a bit like designating the Battle of Waterloo as

\Napoleon's Victory."

So matters stood when Euler turned his awesome

mathematical powers to the problem. At the time he

picked up the scent, there was not even universal

agreement that the theorem was true. In 1742, for

instance, Nicholas Bernoulli had expressed to Euler

his conviction that the real quartic polynomial

x4 − 4x3 + 2x2 + 4x+ 4

cannot be factored into the product of real linear

and/or real quadratic factors in any fashion whatever

[I, pp. 82{83]. If Bernoulli were correct, the game

was over; the fundamental theorem of algebra would

have been instantly disproved.

However, Bernoulli's skepticism was unfounded,

for Euler factored the quartic into the product of the

quadratics

x2−
(

2 +

√
4 + 2

√
7

)
x+

(
1 +

√
4 + 2

√
7 +

√
7

)

and

x2−
(

2 −
√

4 + 2
√

7

)
x+

(
1 −

√
4 + 2

√
7 +

√
7

)
.

Those with a taste for multiplying polynomials can

check that these complicated factors yield the fairly

innocent quartic above; far more challenging, of

course, is to figure out how Euler derived this factor-

ization in the first place. (Hint: it was not by guess-

ing.)

By 1742, Euler claimed he had proved the funda-

mental theorem of algebra for real polynomials up

through the sixth-degree [3, p. 598], and in a land-

mark 1749 article titled \Recherches sur les racines

imaginaires des �equations" [I, pp. 78{169], he pre-

sented his proof of the general result which we shall

now examine (see also [5, pp. 100{102]). We stress

again that his argument failed in its ultimate mission.

That is, Euler furnished only a partial proof which,

in its full generality, suffered logical shortcomings.

Nonetheless, even with these shortcomings, one can-

not fail to recognize the deftness of a master at work.

He began with an attack on the quartic:

Theorem. Any quartic polynomial x4+Ax3+Bx2+
Cx+D where A, B, C , and D are real can be de-
composed into two real factors of the second degree.

Proof. Euler first observed that the substitution
x = y − (A/4) reduces the original quartic into
one lacking a cubic term|a so-called \depressed

quartic." Depressing an nth-degree polynomial by
a clever substitution that eliminates its (n − 1)st-
degree term is a technique whose origin can be traced

to the sixteenth-century Italian mathematician Gero-

lamo Cardano in his successful attack on the cubic

equation [3, p. 265].

With this substitution, the quartic becomes

(
y − A

4

)4

+A

(
y − A

4

)3

+B

(
y − A

4

)2

+C

(
y − A

4

)
+D,
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and the only two sources of a y3 term are

(
y − A

4

)4

= y4 −Ay3 + · · ·

and

A

(
y − A

4

)3

= A(y3 − · · · ) = Ay3 − · · · ,

Upon simplifying, we find that the \y3" terms cancel

and there remains the promised depressed quartic in

y.
Not surprisingly, there are advantages to factoring

a depressed quartic rather than a full-blown one; yet

it is crucial to recognize that any factorization of the

depressed quartic yields a corresponding factoriza-

tion of the original. For instance, suppose we were

trying to factor x4 + 4x3 − 9x2 − 16x + 20 into
a product of two quadratics. The substitution x =
y− 4

4 = y−1 depresses this to y4−15y2 +10y+24,
and a quick check confirms the factorization:

y4 − 15y2 + 10y+24 = (y2 − y− 2)(y2 + y− 12).

Then, making the reverse substitution y = x + 1
yields

x4+4x3−9x2−16x+20 = (x2+x−2)(x2+3x−10),

and the original quartic is factored as claimed.

Having reduced the problem to that of factoring

depressed quartics, Euler noted that we need only

consider x4 + Bx2 + Cx+D, where B,C, and D
are real. At this point, two cases present themselves:

Case 1. C = 0.
This amounts to having a depressed quartic x4 +

Bx2 + D, which is just a quadratic in x2. (Euler

omitted discussion of this possibility, perhaps be-

cause it could be handled in two fairly easy subcases

by purely algebraic means.)

First of all, suppose B2 − 4D ≥ 0 and apply the
quadratic formula to get the decomposition into two

second-degree real factors as follows:

x4 +Bx2 +D =

(
x2 +

B −
√
B2 − 4D

2

)

×
(
x2 +

B +
√
B2 − 4D

2

)
.

For instance, x4 + x2 − 12 = (x2 − 3)(x2 + 4).
Less direct is the case where we try to factor

x4+Bx2+D under the condition thatB2−4D < 0.

The previous decomposition no longer works, since

the factors containing
√
B2 − 4D are not real. For-

tunately, a bit of algebra shows that the quartic can

be written as the difference of squares and thus fac-

tored into quadratics as follows:

x4 +Bx2 +D =
(
x2 +

√
D
)2

−
(
x

√
2
√
D −B

)2

=

(
x2 +

√
D − x

√
2
√
D− B

)

×
(
x2 +

√
D + x

√
2
√
D −B

)
.

A few points must be made about this factoriza-

tion. First, B2−4D < 0 implies that 4D > B2 ≥ 0,
and so the expression

√
D in the preceding factoriza-

tion is indeed real. Likewise, 4D > B2 guarantees

that
√

4D >
√
B2, or simply 2

√
D > |B| ≥ B, and

so the expression
√

2
√
D− B is likewise real. In

short, the factors above are two real quadratics, as

we hoped.

For example, when factoring x4 +x2 +4, we find
B2 − 4D = −15 < 0 and the formula yields x4 +
x2 + 4 = [x2 − x

√
3 + 2][x2 + x

√
3 + 2].

Case 2. C 6= 0.
Here Euler observed that a factorization of his de-

pressed quartic into real quadratics| if it exists|

must take the form

x4 + Bx2 +Cx+D

= (x2 + ux+ α)(x2 − ux+ β) (1)

for some real numbers u, α, and β yet to be deter-
mined. Of course, this form is necessary since the

\ux" in one factor must have a compensating \−ux"
in the other.

Euler multiplied out the right-hand side of (1) to

get:

x4 +Bx2 + Cx+D

= x4 + (α+ β − u2)x2 + (βu− αu)x+ αβ,

and then equated coefficients from the first and last

of these expressions to generate three equations:

B = α+ β − u2,

C = βu − αu = (β − α)u, and

D = αβ.

Note that B, C, and D are just the coefficients

of the original polynomial, whereas u, α, and β are
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unknown real numbers whose existence Euler had to
establish.

From the first two of these we conclude that

α+ β = B + u2 and β − α =
C

u
.

It may be worth noting that since

0 6= C = (β − α)u,

then u itself is non-zero, so its presence in the de-
nominator above is no cause for alarm.

If we both add and subtract these two equations,

we arrive at

2β = B + u2 +
C

u
and 2α = B + u2 − C

u
. (2)

Euler recalled that D = αβ and consequently:

4D = 4αβ = (2β)(2α)

=

(
B + u2 +

C

u

)(
B + u2 − C

u

)
.

In other words, 4D = u4 + 2Bu2 +B2 − (C2/u2),
and multiplying through by u2 gives us

u6 + 2Bu4 + (B2 − 4D)u2 −C2 = 0. (3)

It may appear that things have gotten worse, not

better, for we have traded a fourth-degree equation in

x for a sixth-degree equation in u. Admittedly, (3) is
also a cubic in u2, so we can properly conclude that

there is a real solution for u2; this, unfortunately,

does not guarantee the existence of a real value for
u, which was Euler's objective.
Undeterred, he noticed four critical properties of

(3):

(a) B, C , and D are known, so the only unknown

here is u.
(b) B, C , and D are real.

(c) the polynomial is even and thus its graph is sym-

metric about the y-axis.
(d) the constant term of this sixth-degree polynomial

is −C2.

Here Euler's mathematical agility becomes espe-

cially evident. He was considering a sixth-degree

real polynomial whose graph looks something like

that shown in Figure 1. This has a negative y-
intercept at (0,−C2) since C is a non-zero real

number. Additionally, since the polynomial is monic

of even degree, its graph climbs toward +∞ as u
becomes unbounded in either the positive or neg-

ative direction. By a result from analysis we now

Figure 1. y = u6 + 2Bu4 + (B2 − 4D)u2 − C2

call the intermediate value theorem|but which Eu-

ler took as intuitively clear|we are guaranteed the

existence of real numbers u0 > 0 and −u0 < 0
satisfying this sixth-degree equation.

Using the positive solution u0 and returning to

equations in (2), Euler solved for β and α, getting
real solutions

β0 =
1

2

(
B + u2

0 +
C

u0

)

and

α0 =
1

2

(
B + u2

0 −
C

u0

)

and, since u0 > 0, these fractions are well-defined.
In summary, under the case that C 6= 0, Euler had

established the existence of real numbers u0, α0, and
β0 such that

x4+Bx3+Cx+D = (x2+u0x+α0)(x
2−u0x+β0).

We thus see that any depressed quartic with real

coefficients|and by extension any real quartic at

all|does have a factorization into two real quadrat-

ics, whether or not C = 0. Q.E.D.
At this point, Euler immediately observed, \. . . it

is also evident that any equation of the fifth degree

is also resolvable into three real factors of which one

is linear and two are quadratic" [1, p. 95]. His rea-

soning was simple (see Figure 2). Any odd-degree
polynomial|and thus any fifth-degree polynomial

P (x)|is guaranteed by the intermediate value the-

orem to have at least one real x-intercept, say at
x = a. We then write P (x) = (x − a)Q(x), where
Q(x) is a polynomial of the fourth degree, and the
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Figure 2.

previous result allows us to decompose Q(x), in
turn, into two real quadratic factors.

By now, a general strategy was brewing in his

mind. He realized that if he could prove his decom-
position for real polynomials of degree 4, 8, 16, 32,

and in general of degree 2n, then he could prove it

for any real polynomials whatever.

Why is this? Suppose, for instance, we were trying

to establish that the polynomial

x12 − 3x9 + 5x8 + 3x3 − 2x+ 17

could be factored into real linear and/or real

quadratic factors. We would simply multiply it by

x4 to get

x16 − 3x13 + 52x12 + 3x7 − 2x5 + 17x4.

Assuming that Euler had proved the 16th-degree

case, he would know that this latter polynomial

would have such a factorization, obviously contain-

ing the four linear factors x, x, x, and x. If we
merely cancelled them out, we would of necessity

be left with the real linear and/or real quadratic fac-

tors for the original 12th-degree polynomial.

And so, with typical Eulerian cleverness, he re-

duced the entire issue to a few simpler cases. Having

disposed of the fourth-degree case, he next claimed,

\Any equation of the eighth degree is always re-

solvable into two real factors of the fourth degree"

[1, p. 99]. Since each of the fourth-degree factors

was itself decomposable into a pair of real quadrat-

ics, which themselves can be broken into (possibly

complex) linear factors, he would have succeeded

in shattering the eighth-degree polynomial into eight

linear pieces. From there he went to the 16th degree

before finally tackling the general situation, namely

showing that any real polynomial of degree 2n can

be factored into two real polynomials each of degree

2n−1 [I, p. 105].

It was a brilliant strategy. Unfortunately, the

proofs he furnished left something to be desired. As

we shall see, for the higher-degree cases the argu-

ments became hopelessly complicated, and his asser-

tions as to the existence of real numbers satisfying
certain equations were unconvincing. Consider, for

instance, the eighth-degree case. It began in a fashion

quite similar to its fourth-degree counterpart, namely

by first depressing the octic and imagining that it has

been factored into the two quartics:

x8 +Bx6 + Cx5 +Dx4 +Ex3 + Fx2 +Gx+H

= (x4 + ux3 + αx2 + βx + γ)

×(x4 − ux3 + δx2 + εx+ φ). (4)

One multiplies the quartics, equates the resulting co-

efficients with the known quantities B,C,D, . . . to
get seven equations in seven unknowns, and asserts

that there exist real values of u, α, β, γ, . . . satisfying
this system.

The parallels with what he had previously done

are evident. But what made this case so much less

successful was Euler's admission that for equations

of higher degree, \. . . it will be very difficult and
even impossible to find the equation by which the

unknown u is determined" [1, p. 97]. In short, he
was unwilling or unable to solve this system explic-

itly for u.
Ever resourceful, Euler decided to look again at

the depressed quartic in (1) for inspiration. As it

turned out, an entirely different line of reasoning

suggested itself, a line that he thought could be

extended naturally to the eighth and higher-degree

cases:

Assuming that the quartic in (1) has four roots
p, q, r, and s, Euler wrote:

(x2 + ux+ α)(x2 − ux+ β)

= x4 +Bx2 +Cx+D

= (x− p)(x− q)(x− r)(x− s), (5)

and from this factorization he drew three key con-

clusions.

First, upon multiplying the four linear factors on

the right of (5), we see immediately that the coeffi-

cient of x3 is −(p+q+r+s); hence p+q+r+s = 0
since the quartic is depressed.
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Second, the quadratic factor (x2 − ux+ β) must
arise as the product of two of the four linear factors.

Thus, (x2 − ux+ β) could be

(x− p)(x − r) = x2 − (p+ r)x+ pr;

it could just as well be

(x− q)(x− r) = x2 − (q + r)x+ qr;

and so on. This implies that, in the first case, u =
p + r, whereas in the second u = q + r. In fact, it
is clear that u can take any of the

(
4
2

)
= 6 values

R1 = p+ q, R2 = r + s, R3 = p+ r,

R4 = q + s, R5 = p+ s, R6 = q + r.

Since u is an unknown having these six possible
values, it must be determined by the sixth-degree

polynomial

(u−R1)(u−R2)(u−R3)(u−R4)(u−R5)(u−R6).

This conclusion, of course, is entirely consistent with

the explicit sixth-degree polynomial for u that Euler
had found in (3).

But Euler made one additional observation. Be-

cause p+ q+ r+ s = 0, it follows that R4 = −R1,

R5 = −R2, and R6 = −R3. Hence the sixth-degree
polynomial becomes

(u −R1)(u+ R1)(u− R2)

×(u+R2)(u−R3)(u+R3)

= (u2 −R2
1)(u

2 − R2
2)(u

2 − R2
3).

The constant term here|which is to say, this poly-

nomial's y-intercept| is simply

−R2
1R

2
2R

2
3 = −(R1R2R3)

2.

This constant, Euler stated, was a negative real num-

ber, again in complete agreement with his conclu-

sions from equation (3).

To summarize, Euler had provided an entirely dif-

ferent argument to establish that, in the quartic case,

u is determined by a
(
4
2

)
= 6th-degree polynomial

with a negative y-intercept. This was the critical
conclusion he had already drawn, but here he drew

it without explicitly finding the equation determin-
ing u.
The advantage of this alternate proof for the quar-

tic case was that it could be used to analyze the de-

pressed octic in (4). Assuming that the octic was de-
composed into eight linear factors, Euler mimicked

his reasoning above to deduce that for each different

combination of four of these eight factors, we would

get a different value of u. Thus, u would be deter-
mined by a polynomial of degree

(
8
4

)
= 70 having

a negative y-intercept. He then confidently applied
the intermediate value theorem to get his desired real
root u0, and from this he claimed that the other real

numbers α0, β0, γ0, δ0, ε0, and φ0 exist as well.

Euler reasoned similarly in the 16th-degree case,

claiming that \. . . the equation which determines the
values of the unknown u will necessarily be of the
12870th degree" [I, p. 103]. The degree of this (obvi-

ously unspecified) equation is simply
(
16
8

)
= 12870,

as his pattern suggested. By this time, Euler's com-

ment that it was \. . . very difficult and even impos-
sible . . ." to specify these polynomials had become
something of an understatement.

From there it was a short and entirely analogous

step to the general case: that any real polynomial

of degree 2n could be factored into two real poly-

nomials of degree 2n−1. With that, his proof was

finished.

Or was it? Unfortunately, his analyses of the 8th-

degree, 16th-degree, and general cases were flawed

and left significant questions unanswered. For in-

stance, if we look back at the quartic in (5), how

could Euler assert that it has four roots? How could

he assert that the octic in (4) has eight?

More significantly, what is the nature of these

supposed roots? Are they real? Are they complex?

Or are they an unspecified|and perhaps entirely

unimagined|new kind of number? If so, can they

be added and multiplied in the usual fashion?

These are not trivial questions. In the quartic case

above, for example, if we are uncertain about the

nature of the roots p, q, r, and s, then we are equally
uncertain about the nature of their sums R1, R2, R3.

Consequently, there is no guarantee whatever that

mysterious expressions such as −(R1R2R3)
2 are

negative real numbers. But if these y-intercepts are
not negative reals, then the intermediate value ar-

guments that Euler applied to the 8th-degree, 16th-

degree, and general cases fall apart completely.

It appears, then, that Euler had started down a

very promising path in his quest of the fundamen-

tal theorem. His first proof worked nicely in dealing

with fourth- and fifth-degree real polynomials. But

as he pursued this elusive theorem deeper into the

thicket, complications involving the existence of his

desired real factors became overwhelming. In a cer-

tain sense, he lost his way among the enormously

high degree polynomials that beckoned him on, and

his general proof vanished in the wilderness.
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So even Euler suffered setbacks, a fact from which

comfort may be drawn by lesser mathematicians (a

category that includes virtually everybody else in his-

tory). Yet, before the dust settles and his attempted

proof is consigned to the scrap heap, I think it de-

serves at least a modest round of applause, for it

certainly bears signs of his characteristic cleverness,

boldness, and mental agility as he leaps between the

polynomial's analytic and algebraic properties. More

to the point, the fourth- and fifth-degree arguments

are understandable by good precalculus students and

can give them not only a deeper look at this remark-

able theorem but also a glimpse of a mathematical

giant at work. For even when he stumbled, Leon-

hard Euler left behind signs of great insight. Such,

perhaps, is the mark of genius.

Epilogue

The fundamental theorem of algebra|the result

that established the complex numbers as the op-

timum realm for factoring polynomials or solving

polynomial equations|thus remained in a very pre-

carious state. D'Alembert had not proved it; Euler

had given an unsatisfactory proof. It was obviously

in need of major attention to resolve its validity once

and for all.

Such a resolution awaited the last year of the

eighteenth century and came at the hands of one

of history's most talented and revered mathemati-

cians. It was the 22-year old German Carl Friedrich

Gauss (1777{1855) who first presented a reasonably

complete proof of the fundamental theorem (see [4,

p. 196] for an interesting twist on this oft-repeated

statement). Gauss' argument appeared in his 1799

doctoral dissertation with the long and descriptive

title, \A New Proof of the Theorem That Every In-

tegral Rational Algebraic Function [i.e., every poly-

nomial with real coefficients] Can Be Decomposed

into Real Factors of the First or Second Degree" (see

[5, pp. 115{122]). He began by reviewing past at-

tempts at proof and giving criticisms of each. When

addressing Euler's \proof," Gauss raised the issues

cited above, designating Euler's mysterious, hypoth-

esized roots as \shadowy." To Gauss, Euler's at-

tempt lacked \. . . the clarity which is required in
mathematics" [2, p. 491]. This clarity he attempted

to provide, not only in the dissertation but in two

additional proofs from 1816 and another from 1848.

As indicated by his return to this result throughout

his illustrious career. Gauss viewed the fundamen-

tal theorem of algebra as a great and worthy project

indeed.

We noted previously that this crucial proposition

is seen today in somewhat greater generality than in

the early nineteenth century, for we now transfer the

theorem entirely into the realm of complex numbers

in this sense: the polynomial with which we begin

no longer is required to have real coefficients. In

general, we consider nth-degree polynomials having
complex coefficients, such as

z7 + 6iz6 − (2 + i)z2 + 19.

In spite of this apparent increase in difficulty, the

fundamental theorem nonetheless proves that it can

be factored into the product of (in this case seven)

linear terms having, of course, complex coefficients.

Interestingly, modern proofs of this result almost

never appear in algebra courses. Rather, today's

proofs rest upon a study of the calculus of com-
plex numbers and thus move quickly into the realm

of genuinely advanced mathematics (just as my high

school algebra teacher had so truthfully said).

And so, we reach the end of our story, a story that

can be a valuable tale for us and our students. It

addresses an oft-neglected theorem of much impor-

tance; it allows the likes of Jean d'Alembert, Leon-

hard Euler, and Carl Friedrich Gauss to cross the

stage; and it gives an intimate sense of the historical

development of great mathematics in the hands of

great mathematicians.
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Euler and Differentials

ANTHONY P. FERZOLA

College Mathematics Journal 25 (1994), 102{111

Two recent articles by Dunham [5] and Flusser [10]

have presented examples of Leonhard Euler's work

in algebra. Both papers are a joy to read; watching

Euler manipulate and calculate with incredible facil-

ity is a pleasure. A modern mathematician can see

the logical flaws in some of the arguments, yet at

the same time be aware that the mind behind it all

is that of a unique master.

These two articles reminded me how much fun

it is to read Euler. In researching the evolution of

the differential a few years ago, I found the work

of Euler refreshingly different from that of other

seventeenth- and eighteenth-centurymathematicians.

One can read about Euler's use and misuse of in-

finite series in most histories of mathematics (e.g.

[2, pp. 486{490]). This paper offers a glimpse at

how Euler used infinitesimals and infinite series to

compute differentials for the elementary functions

encountered in a typical undergraduate calculus se-

quence. I hope the reader of this brief survey of Eu-

ler's work with differentials will seek out original

sources such as [8] and [9]. As Harold Edwards [7]

has cogently argued, we have much to learn from

reading the masters.

Euler and the 18th century

Euler (1707{1783) was the most prolific and one of

the most influential mathematicians who ever lived.

He made major contributions to both pure and ap-

plied mathematics and his collected works amount

to over 70 volumes. So strong was his influence that

historians like Boyer [2] and Edwards [6] refer to

the eighteenth century as the Age of Euler.

Euler made the function concept fundamental in

analysis. He saw a function as both any quantity

depending on variables and also as any algebraic

combination of constants and variables (including

infinite sums or products). This is obviously not a

modern definition of a function. Still, Euler used

his function concept to maximal advantage. As we

examine some of Euler's computations, keep in mind

the immense insight and unity he achieved with the

function approach | a point of view we now take

for granted.

In his Introductio in analysin infinitorum (1748),
one sees the first systematic interpretation of loga-

rithms as exponents. Prior to Euler, logarithms were

typically viewed as terms of an arithmetic series in

one-to-one correspondence with terms of a geomet-

ric series [3]. Euler viewed trigonometric functions

as numerical ratios rather than as ratios of line seg-

ments. He also studied properties of the elementary

transcendental functions by the frequent use of their

infinite series expansions [6, p. 270]. Euler often

used infinite series indiscriminately, without regard

to questions of convergence.

Euler's understanding and use of differentials

within the framework of functions is the focus of

this paper. Before presenting his work, a word about

the differential before Euler.

For Leibniz (1646{1716) the differentials dx and
dy were, as the name suggests, (infinitesimal) differ-
ences in the abscissa x and the ordinate y, respec-
tively [4, pp. 70{76]. The infinitesimal was con-

sidered to be a number smaller than any positive

number. The omission of the \even smaller" higher-

order infinitesimals such as (dx)2 or dxdy, which
were deemed negligible relative to dx and dy, was
basic to his methods. So powerful were the notation

and methods that the differential calculus was truly

a differential calculus for nearly one and a half cen-
turies: The differential (and not the derivative) was

the main object of study.

369
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Leibniz gave other interpretations of the differ-

ential, but the mathematicians working in the early

eighteenth century tended to favor Leibniz's formu-

lation of a differential as an infinitesimal. It appears

in the work of Johann Bernoulli (1667{1748) and in

the first calculus textbook, Analyse des infiniment
petits pour l'intelligence des lignes courbes (1696),
which was written by L'Hôpital and which made

free use of Bernoulli's ideas (see [18, p. 315]). Eu-

ler was one of Bernoulli's pupils.

Many of Euler's results and infinite series dis-

cussed below were known to Newton, Leibniz,

Bernoulli, and others. Euler's work with differentials

is unique, however, in his definition of infinitesimals

as absolute zeros and in his heavy reliance on infinite

series to develop his differential calculus.

Differentials as absolute zeros

In his Institutiones calculi differentialis (1755), Eu-
ler stated: \To those who ask what the infinitely

small quantity in mathematics is, we answer it is ac-

tually equal to zero" [18, p. 384]. Euler felt that

the view of the infinitesimal as zero adequately

removed the mystery and ambiguity of statements

such as \The infinitesimal is smaller than any given

quantity" or the postulate of Johann Bernoulli that

\Adding an infinitesimal to a quantity leaves the

quantity unchanged." Euler then said that the quo-

tient 0/0 can actually take on any value because

n · 0 = 0

for all real n and therefore, he concluded,

n

1
=

0

0
, (1)

He noted that if two zeros can have an arbitrary

ratio, then different symbols should be used for the

zero in the numerator and the zero in the denomina-

tor of the fraction on the right-hand side of equation

(1). It is here that Euler introduced the Leibnizian

notation of differentials.

Euler denoted an infinitely small quantity by dx.
Here dx = 0 and adx = 0 for any finite quantity
a. But for Euler these two zeros are different zeros
that cannot be confused when the ratio adx/dx = a
is investigated [18, p. 385]. In a similar way dy/dx
can denote a finite ratio even though dx and dy
are zero. \Thus for Euler the calculus was simply

the determination of the ratios of evanescent incre-

ments|a heuristic procedure for finding the value

of the expression 0/0" [1].

The neglect of higher-order infinitesimals was

also explained employing quotients. Noting that

dx = 0 and (dx)2 = 0, where (dx)2 is a zero (or
infinitesimal) of second order, Euler reasoned that

dx+ (dx)2 = dx

because

dx+ (dx)2

dx
= 1 + dx = 1.

By the same reasoning, Euler established that

dx+ (dx)n+1 = dx

for all n > 0. The omission of higher-order differen-
tials was frequently utilized by Euler in finding the

differential dy, where y is a function of x.

Computations with elementary

functions

The computations discussed in this section are all

found in Euler's Institutiones calculi differentialis.
Their most noteworthy feature is the use of power

series expressions for functions from the outset,

with no mention of questions of convergence. Thus,

whereas in modern textbooks the justification of

such infinite series expansions is an advanced topic

in differential calculus, for Euler they were the foun-

dation for the calculation of derivatives.

To find dy if y = xn (n any real number), Eu-
ler used the binomial expansion [9, p. 99]. If x is
increased by an infinitesimal amount dx, then y ex-
periences a change of dy where

dy = (x+ dx)n − xn

= nxn−1dx+
n(n − 1)

1
xn−2(dx)2 + · · ·

= nxn−1dx

upon the omission of the higher-order infinitesimals

(dx)2, etc. Newton and Leibniz did similar compu-
tations for finding the derivative of y = xn, Leib-

niz using a comparable differential argument while

Newton worked with fluxions [6, p. 192]. Within

the rigorous context of

lim
∆x→0

(x + ∆x)n − xn

∆x

we all use the essence of this computation (for pos-

itive integer powers of x) in our first semester cal-
culus courses.
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Euler derived the product rule as follows:

d(pq) = (p+ dp)(q + dq) − pq

= pdq + qdp+ dpdq

= pdq + qdp

where the last step is due to the omission of the

higher-order infinitesimal dpdq.
Similar computations were done by Leibniz [4,

p. 143]. This argument is analogous to the proof

of the product rule still found in a few present-day

textbooks (e.g., [12]).

Euler's derivation of the quotient rule is unique

in its use of a geometric series [9, p. 103]:

1

q + dq
=

1

q

(
1

1 + dq/q

)

=
1

q

(
1 − dq

q
+
dq2

q2
− · · ·

)

=
1

q
− dq

q2
.

Then

d

(
p

q

)
=
p+ dp

q + dq
− p

q

= (p+ dp)
1

q + dq
− p

q

= (p+ dp)

(
1

q
− dq

q2

)
− p

q

=
dp

q
− pdq

q2

=
qdp− pdq

q2
.

In chapter 6, Euler found the differentials of tran-

scendental functions. For computing the differential

of the natural logarithm (which he denoted by the

single letter \`" but which we will denote by the
usual \log"), Euler used Mercator's series [9, p.
122]:

log(1 + z) = z − z2

2
+
z3

3
− · · · .

Given y = log(x) then

dy = log(x+ dx)− log(x)

= log

(
1 +

dx

x

)

=
dx

x
− (dx)2

2x2
+

(dx)3

3x3
− · · ·

=
dx

x
.

To illustrate the chain rule, Euler did many exam-

ples. For instance, if y = log(xn) then letting p =
xn yields y = log(p), which implies that dy = dp/p
where dp = nxn−1dx. Thus dy = ndx/x.
Euler's computation of dy for y = log(x) can

be found in a modern nonstandard analysis text [15,

p. 65]. This may seem unremarkable since nonstan-

dard analysis was developed by Abraham Robinson

in the mid-twentieth century to place the notion of

infinitesimals and their manipulation on solid logical

ground. In fact, it is rare to find nonstandard analy-

sis arguments that are exactly like Euler's, because

nonstandard analysis arguments are rarely done in

the context of infinite series (see [11] and [16]).

As an example of Euler's work with trigonometric

functions, consider the computation of dy for y =
sinx [9, p. 132]. For this purpose he explicitly used
the sine and cosine series

sinx = x− x3

3!
+
x5

5!
− · · · (2)

cosx = 1 − x2

2!
+
x4

4!
− · · · (3)

to show that sin(dx) = dx and cos(dx) = 1. He
obtained these results by substituting dx into (2) and
(3) and ignoring higher-order differentials. He also

employed the trigonometric identity

sin(a+ b) = sin a cos b+ sin b cos a. (4)

Thus, using (4):

dy = sin(x+ dx)− sinx

= sinx cos dx+ sin dx cosx− sinx

= sinx+ cos xdx− sinx

= cosxdx.

This is the most beautifully efficient computation

of all those presented, especially when compared to

the usual limit computation of the derivative of y =
sinx. There one needs to work as follows:

lim
∆x→0

sin(x+ ∆x)

∆x

= lim
∆x→0

sinx cos(∆x) + sin(∆x) cosx− sinx

∆x

= cosx lim
∆x→0

sin(∆x)

∆x
+ sinx lim

∆x→0

cos(∆x) − 1

∆x
.

Then y′ = cosx is obtained using two limits (which
must be proven):

lim
∆x→0

sinx

x
= 1 (5)
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and

lim
∆x→0

cos x− 1

x
= 0.

The first of these limits is captured in Euler's equa-

tion sin(dx) = dx. The second limit is comparable
to Euler's equation cos(dx) = 1 or cos(dx)−1 = 0.
Although Euler's derivation is computationally more

compact than the standard modern approach, the lat-

ter is logically sound. Any method for differentiat-

ing the sine function must deal in particular with

(5). This is proven geometrically, since in the stan-

dard modern approach one defines at the outset the

geometric meaning of the trigonometric functions

(i.e., cosine and sine parametrize the unit circle).

The proof of (5) is relatively easy when compared

to the difficulty involved in showing the geometric

meaning of the functions Euler defined (without re-

gard to questions of convergence) as the sums of the

power series (2) and (3).

In Euler's three-volume Institutiones calculi in-
tegralis (1768{1770), he defined integration, like
Leibniz and Johann Bernoulli, as the formal inverse

of the differential. He used the integral symbol and

wrote, for example.
∫
nxn−1 dx = xn,

∫
dx/x = log x,

∫
cos x dx = sinx,

all plus or minus an appropriate constant. The first

volume of this work reads like a modern calculus

textbook chapter on techniques of integration. Inte-

gration by substitution, by parts, by partial fractions,

and by trigonometric substitution are all illustrated in

a logical and systematic way. Undoubtedly, Euler's

well-organized and all-encompassing use of differ-

entials in a function context did much to solidify the

popularity of the differential and integral notations

on the Continent.

The total differential

Euler's Institutiones calculi differentialis was the
first systematic exposition of the calculus of func-

tions of several variables. He understood a function

of n variables to be any finite or infinite expression
involving these variables. As soon as he introduced

these functions, Euler addressed the question of the

relationship among the differentials of all the vari-

ables involved.

He obtained the result that if

V = f(x, y, z)

then

dV = pdx+ qdy + rdz,

where p, q, and r are all functions of x, y, and z
[9, pp. 144{145]. He arrived at this formula in an

interesting way. If X is a function of x alone and is
increased by an infinitesimal amount dx, then

dX = Pdx

by the usual one-variable argument. Similarly, if Y
and Z are functions of y alone and z alone respec-
tively, then

dY = Qdy and dZ = Rdz.

If V = X + Y + Z (i.e., a special function of

three variables), then

dV = dX + dY + dZ = Pdx+Qdy +Rdz.

If V = XY Z, then

dV = (X + Pdx)(Y +Qdy)(Z + Rdz) −XY Z.

This simplifies (upon omission of higher-order dif-

ferential terms such as ZPQdxdy) to

dV = Y ZPdx+XZQdy +XY Rdz.

From these two examples, Euler expected that any

algebraic expression of x, y, and z has differential

dV = pdx+ qdy + rdz (6)

because a function of three variables can be thought

of as a sum of products of these variables. He gen-

eralized the result for any number of variables [9,

p. 146]. Later in the same work, he addressed the

concept of partial differentiation [9, pp. 156{157].

If y and z are held constant, then by equation (6)

dV = pdx

as there is no change in y or z. (Notice how, for
Euler, no change in y is not the same as saying dy is
the infinitesimal change in y, even though he defined
infinitesimals as being zero.) He then wrote

p = (dV/dx),

where the parentheses about the quotient remind one

that p equals the differential of V (with only the
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x being variable) divided by dx. Similar meanings
apply to q = (dV/dy) and r = (dV/dz). This was
Euler's notation and understanding of the concept of

partial derivatives. The current symbol ∂ dates from
the 1840's [14]. Obviously, (6) becomes

dV = (dV/dx)dx+ (dV/dy)dy + (dV/dz)dz,

although Euler did not explicitly write this.

It is worth noting that Euler's exposition of differ-

entials for functions of several variables immediately

followed his work with differentials for functions of

one variable. Exploring the differential calculus for

both single and multivariable functions before pass-

ing on to integration is an old idea which I think

has merit. It gives the calculus sequence a stronger

focus and unity, by concentrating effort on one ba-

sic concept (the derivative) in various settings be-

fore moving on to its inverse. A recent textbook by

Small and Hosack [17] takes this approach. Perhaps

we will see more of this, especially since computer

algebra systems such as Derive, Maple, and Math-
ematica have taken the pain out of such tasks as
surface sketching.

Differentials in multiple integrals

Euler frequently let his readers in on his thought

processes, even when the procedures seemed fruit-

less. This was mathematics being done for all to see,

not a slick modern textbook treatment. There was no

taking down the scaffolding �a la Gauss.

Euler, in De formulis integralibus duplicatis
(1769), gave one of the first clear discussions of

double integrals. In the first half of the eighteenth

century,
∫∫

f(x, y) dxdy denoted the solution of
∂2z/∂x∂y = f(x, y) obtained by antidifferentia-
tion. Euler supplemented this by providing a (thor-

oughly modern) procedure for evaluating definite

double integrals over a bounded domain R enclosed
by arcs in the xy plane. Euler used iterated integrals:

∫∫

R

f(x, y) dxdy =

∫ b

a

dx

∫ f2(x)

f1(x)

z dy,

where z = f(x, y). For z > 0, Euler saw this as a
volume, since

∫
zdy gives the area of a \slice" (par-

allel to the y-axis) of the three-dimensional region
above R and under z = f(x, y), and the following
integration with respect to x \adds up the slices"
to yield the volume [8, p. 293]. This is perhaps

the first time Leibniz's powerful differential nota-

tion was used in tandem with a volume argument

employing Cavalieri's method of indivisibles [2, p.

361].

Euler also interpreted dxdy as an \area element"
of R. That is, R is made up of an infinite set of in-
finitesimal area elements dxdy. This is most clearly
seen when Euler attempted to change variables [8,

pp. 302{303]. And it was here that Euler ran into

difficulties.

He reasoned that if dxdy is an area element and
we change variables via the transformation

x = x(t, v) = a+mt+ v
√

1 −m2

y = y(t, v) = b+ t
√

1 −m2 −mv

(a translation by the vector (a, b), a clockwise ro-
tation through the angle α, where cosα = m, and
a reflection through the x-axis), then dxdy should
equal dtdv. But

dx = mdt+ dv
√

1 −m2,

dy = dt
√

1 −m2 −mdv,

and multiplication gives

dxdy = m
√

1 −m2 (dt)2

+(1 − 2m2)dtdv −m
√

1 −m2(dv)2.

Euler rejected this as wrong and meaningless. (How

many calculus students wonder, explicitly or implic-

itly, why we cannot just multiply the differential

forms for dx and dy?) Euler decided to attack the
problem in a formal non-geometric way, not using

area elements but rather by changing variables one at

a time (for details, see [13]). In this way he arrived

at the correct general result:

∫∫
f(x, y)dxdy

=

∫∫
f(x(t, v), y(t, v))

∣∣∣∣
∂(x, y)

∂(t, v)

∣∣∣∣ dtdv.

In 1899, another great mathematician with a com-

putational flair, �Elie Cartan, arrived at the straight-

forward multiplicative result Euler sought, by us-

ing Grassmann's exterior product with differential

forms. This is a formal product where the usual dis-

tributive laws hold but with the conditions that

dxdx = dydy = 0 and dxdy = −dydx

(see [17, p. 514], and [13]). Thus, for Euler's dif-
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ferentials

dxdy =
(
mdt+ dv

√
1 −m2

)

×
(
dt
√

1 −m2 −mdv
)

= dtdtm
√

1 −m2 −m2dtdv

+(1 −m2)dvdt− dvdvm
√

1 −m2

= −m2dtdv + dvdt(1 −m2)

= −m2dtdv − dtdv(1 −m2)

= −dtdv.

The minus sign appears because the transformation

(involving a reflection) does not preserve orientation.

In general, given any transformation from the tv-
plane to the xy-plane, the exterior product yields

dxdy =
∂(x, y)

∂(t, v)
dtdv.

Conclusion

Even in this rudimentary survey of Euler's work with

differentials in calculus, it is fascinating to watch

a genius grapple with an ambiguous concept (in-

finitesimal) and attempt to clarify it (absolute zero)

| however flawed the attempt. Reading Euler has

enriched my teaching of the calculus by keeping

me mindful that my students are tackling a subject

whose foundations humbled the greatest minds of

the past. Even the seemingly fruitless paths can be

instructive, as we have seen. It took mathematicians

about 150 years to come up with the exterior prod-

uct for differential forms that Euler needed for the

change of variables formula in multiple integrals.

How many other Eulerian dead ends may be worth

pursuing? Again, the advice of Harold Edwards [7]

points the way for the teacher and the researcher:

\Read the masters!"
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Euler and Quadratic Reciprocity

HAROLD M. EDWARDS

Mathematics Magazine 56 (1983), 285{291

In a letter to Goldbach bearing the date 28 August

1742, Euler described a property of positive whole

numbers that was to play a central role in the history

of the theory of numbers. (The original is a mixture

of Latin and German, which I have translated into

English as best I can. The letter can be found in [2]

or [3].)

Whether there are series of numbers which

either have no divisors of the form 4n + 1, or
which even are prime, I very much doubt. If

such series could be found, however, one could

use them to great advantage in finding prime

numbers.

By the way, the prime divisors of all series

of numbers which are given by the formula

αxx± βyy show a very orderly pattern which,
although I have no demonstration of it as yet,

seems to be completely correct. For this reason

I take the liberty of communicating to Your Ex-

cellency a few such theorems; from these, in-

finitely many others can be derived.

I. If x and y are relatively prime, the for-
mula xx+ yy has no prime divisors other than
those contained in the form 4n + 1, and these
prime numbers are themselves all contained in

the form xx+ yy. I put this known theorem at
the beginning in order to make the connection

of the others more apparent.

II. The formula 2xx + yy has no prime di-
visors other than those contained in the form

8n + 1 or 8n + 3. And whenever 8n + 1 or
8n+ 3 is prime, it is the sum of a square and
twice a square, that is, it is of the form 2xx+yy.

III. The formula 3xx+ yy has no prime di-
visors other than those contained in the forms

12n+1 and 12n+7 (or the single form 6n+1).

And whenever 6n+ 1 is a prime number it is
contained in the form 3xx+ yy.

IV. The formula 5xx+ yy has no prime di-
visors other than those contained in the forms

20n+ 1, 20n+ 3, 20n+7, 20n+9, and every
prime number contained in one of these four

forms is itself a number of the form 5xx+ yy.

V. The formula 6xx + yy has no prime di-
visors other than those contained in one of

the four forms 24n + 1, 24n + 5, 24n + 7,
24n + 11, and every prime number contained
in one of these forms is itself a number of the

form 6xx+ yy.

VI. The formula 7xx+ yy has no prime di-
visors other than those contained in one of the

6 forms 28n+1, 28n+9, 28n+11, 28n+15,
28n + 23, 28n + 25 (or in one of the three
14n+ 1, 14n+ 9, 14n+ 11), and every prime
number contained in one of these forms is itself

a number of the form 7xx+ yy.
· · ·

From this it is thus clear that the expression

pxx+yy can have no prime divisors other than
those contained in a certain number of forms

of the type 4pn + s, where s represents some
numbers which, although they appear to have

no particular order, actually proceed according

to a very beautiful rule, which is clarified by

these theorems:

VII. If a prime number of the form 4pn+s is
a divisor of the formula pxx+yy then likewise
every prime number contained in the general

form 4pn+ sk will be a divisor of the formula
pxx + yy and indeed will itself be a number
of the form pxx + yy. For example, because
a prime number 28n + 9 is a number of the
form 7xx + yy [37 = prime = 28 · 1 + 9 =

375
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7 · 4 + 9] prime numbers 28n+ 81 (28n+ 25)
and 28n + 729 (28n + 1) are indeed numbers
of the form 7xx+ yy [53 and 29].
VIII. If two prime numbers 4pn+s and 4pn+

t are divisors of the formula pxx+yy then every
prime number of the form 4pn+ sktj is also a
number of the form pxx+ yy.
Thus when one has found a few prime divi-

sors of such an expression pxx + yy one can
easily find all possible divisors using these the-

orems. For example, let 13xx+yy be the given
formula, which includes the numbers 14, 17,

22, 29, 38, 49, 62, etc. Thus 1, 7, 11, 17, 19,

29, 31 are prime numbers which divide the for-

mula 13xx+yy. Therefore all prime numbers of
the forms 52n+1, 52n+7, 52n+11 etc. can be
divisors of 13xx+yy. But the formula 52n+7
gives, by Theorem VII, also these 52n + 49,
52n + 343 (or 52n + 31), 52n + 7 · 31, or
52n+9, further 52n+7 ·9, or 52n+11, further
52n+7 ·11, or 52n+25, further 52n+7 ·25, or
52n+19, further 52n+7 ·19, or 52n+29, fur-
ther 52n+7·29, or 52n+47, further 52n+7·47,
or 52n+ 17, further 52n+7 · 17, or 52n+ 15,
further 52n+7 ·15, or 52n+1 and at this point
the numbers cease to be different which when

added to 52n give prime numbers of the form
13xx+yy. Thus from the single fact that 7 can
be a divisor of the form 13xx+yy the last two
theorems imply that all prime numbers of any

of the forms

52n+ 1; 52n+ 31; 52n+ 25; 52n+ 47
52n+ 7; 52n+ 9; 52n+ 19; 52n+ 17
52n+ 49; 52n+ 11; 52n+ 29; 52n+ 15

have the form 13xx+ yy and also can be divi-
sors of such numbers 13xx+yy, and also more
formulas can not be derived using the theorems.

From this it is known that no prime number can

be a divisor of the form 13xx+ yy other than
those contained in the 12 formulas that have

been found. Now every prime number of the

form 4pn + 1 can be a divisor of pxx + yy.
From this, beautiful properties can be derived,

as, for example, because 17 is prime and also

of the form 2xx+ yy it follows that whenever
17m ± 8n is prime it must also be of the form
2xx+ yy. And when 17m ± 8n is a number of
the form 2xx+yy which admits no divisors of
this form, it is certainly a prime number.

The same situation occurs with the divisors

of the forms pxx−yy or xx−pyy, which, when

they are prime, must be contained in the form

4np± s, where s represents certain determined
numbers. Namely, in a few cases, one will have

1. All prime divisors of the form xx − yy
contained in the form 4n± 1, which is clear.

2. All prime divisors of the form 2xx − yy
contained in the form 8n± 1.

Coroll. Therefore a prime number of the form
8n± 3 is not a number of the form 2xx− yy.

3. All prime divisors of the form 3xx − yy
contained in the form 12n± 1.

4. All prime divisors of the form 5xx − yy
contained in either the form 20n±1 or the form
20n± 9 (or in the single one 10n± 1).

etc.

And if a prime number 4pn + s divides the
form pxx− yy or xx− pyy, then ±4np ± sk

will itself be of the form pxx−yy or xx−pyy,
whenever it is prime. If two prime numbers s
and t are numbers of the form pxx− yy, then
whenever 4np± sµtν is prime it will also be a
number of the form pxx − yy. Thus, because
7 and 17 are prime numbers and of the form

2xx − yy, ±8n ± 7µ17ν will also be of this

form whenever it is prime. Let µ = 1, ν = 1,
so 7·17 = 119 and 119+8 = 127 = prime, and
consequently 127 = 2xx−yy = 2·64−1. From
this it is now clear that it is not possible to find

sequences of numbers of the type pxx ± qyy
which do not admit divisors of the form 4n+1.

But I am convinced that I have not exhausted

this material, rather, that there are countless

wonderful properties of numbers to be discov-

ered here, by means of which the theory of di-

visors could be brought to much greater per-

fection; and I am convinced that if Your Ex-

cellency were to consider this subject worthy

of some attention He would make very impor-

tant discoveries in it. The greatest advantage

would show itself, however, when one could

find proofs for these theorems.

This passage is vintage Euler in that the basic idea

is an insight so profound that it is crucial to much of

algebraic number theory, yet at the same time many

of the individual statements are patently false. The

last statement of Theorem IV, for example, is clearly

wrong. Not only is it not true that all prime numbers
of the form 20n+3 are of the form 5x2 +y2 , but no
prime numbers 20n+ 3 are 5x2 + y2. To prove this
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it suffices to note that, since p is to be odd, x and y
must have opposite parity, that is, either x = 2j+1,
y = 2k or x = 2c, y = 2d+ 1. In the first case

5x2 + y2 = (4 + 1)(4j2 + 4j + 1) + 4k2

= 4(4j2 + 4j + 1 + j2 + j + k2) + 1

and in the second case

5x2 + y2 = 4(5c2 + d2 + d) + 1,

so in either case p is 1 more than a multiple of 4
and cannot have the form 4n+3, much less the form
20n+ 3, or the form 20n+ 4 + 3.
Fortunately, the letter to Goldbach is only the first

of many passages in his known writings where Euler

deals with this subject, and in later versions the obvi-

ous mistakes are corrected. For example, in his main

exposition [2] of these ideas he corrects the second

part of Theorem IV to say that if p is a prime of the
form p = 20n + 1 or 20n + 9 then p = 5x2 + y2 ,

and if it is a prime of the form 20n+ 3 or 20n+ 7
then 2p = 5x2 + y2 . (Examples: 2 · 3 = 5 · 12 + 12,

2·7 = 5·12+32, 2·23 = 5·32+12, 2·43 = 5·12+92,

2·47 = 5·32+72.) As restated, the theorem is correct

and definitely not easy to prove.

The style of the corrected exposition [1] is

similar to the letter above in that Euler first states

a number of special theorems|covering the prime

divisors of a2 +Nb2 (a, b relatively prime) for N =
1, 2, 3, 5, 7, 11, 13, 17, 19, 6, 10, 14, 15, 21, 35, 30|
before he states general theorems. This style has

the advantage that the reader, far from having to

struggle with the meaning of the general theorem,

has probably become impatient with the special

cases and has already made considerable progress

toward guessing what the general theorem will be.

Such a style is not appropriate to the sort of short

note I am writing, however, and I will skip to the

general case. Moreover, I will state it much more

succinctly than Euler does.

Theorem. Let N be a given positive integer. Then
there is a list s1, s2, . . . , sm of positive integers less
than 4N and relatively prime to 4N with the fol-
lowing properties:

(1) Any odd prime number p which divides a num-
ber of the form a2 +Nb2 without dividing either a
or Nb is of the form p = 4Nn+ si, for some si in
the list.

(2) Every prime number of the form p = 4Nn+si

for some si in the list divides a number of the form
a2 +Nb2 without dividing either a or Nb.

(3) If si and sj are in the list and if sisj =
4Nn+ s, 0 < s < 4N , then s is in the list.

(4) If x is any integer less than 4N and relatively
prime to 4N then either x or 4N − x, but not both,
are in the list.

For example, when N = 13, the list contains the
12 numbers 1, 7, 49, 31, 9, 11, 25, 19, 29, 47, 17, 15,

that Euler gave in his letter to Goldbach. Property (4)

becomes clearer if one writes −x in place of 4N−x
when 2N < 4N − x < 4N and reorders the list in

order of the size of the absolute values of the entries.

In the case N = 13 this gives 1, −3, −5, 7, 9, 11, 15,
17, 19,−21, −23, 25, and in the general case it gives
(by (4)) a list of the positive integers x less than 2N
and relatively prime to 2N with a sign assigned to

each. To see that property (3) holds in the case N =
13 it suffices to note that Euler, in the letter, derived
his list 1, 7, 49, 31, . . . by repeatedly multiplying by
7 and removing multiples of 52. Thus, in the case

N = 13, the numbers si in the list are determined

by 7i = 52ni + si for i = 0, 1, . . . , 11, and 712 =
52n12 + 1, from which (3) follows. Here are the

lists described in the Theorem for a few values of

N (see Table 1). I have included N = 4, 8, 9, 12
just to show that the Theorem applies in these cases,

but Euler omits them for the simple reason that if

you have the list for any N then you can trivially

derive from it the list for Nk2 for any k. For if
p divides a2 + Nk2b2 without dividing either a or
Nk2b then it divides a2 +N(kb)2 without dividing
either a or Nkb, and on the other hand, if it divides
a2 +Nb2 and if it does not divide k then it divides
(ka)2 +Nk2b2 without dividing either ka or Nk2b.
A modern reader, after he sees the word Theorem,

expects to find the word Proof soon thereafter. How-
ever, customs were different in Euler's day and his

paper contains 59 theorems without a single proof.

He told Goldbach in his letter that \I have no demon-

stration of it as yet," and the fact is that he never

found a demonstration of it or even of a substantial

portion of it. His \theorems" were based on nothing

but empirical evidence.

In order to test the Theorem empirically one needs

to be able to test, given a prime number p and a
positive integer N not divisible by p, whether there
exist integers a and b not divisible by p such that
p divides a2 + Nb2. This at first looks impossi-
ble to test because it looks like one must test an

infinite number of values of a and b. However, a
moment's reflection shows that one need only test
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Table 1.
N list
1 1
2 1 3
3 1 −5
4 1 −3 5 −7
5 1 3 7 9
6 1 5 7 11
7 1 −3 −5 9 11 −13
8 1 3 −5 −7 9 11 −13 −15
9 1 5 −7 −11 13 17

10 1 −3 7 9 11 13 −17 19
11 1 3 5 −7 9 −13 15 −17 −19 −21
12 1 −5 7 −11 13 −17 19 −23
13 1 −3 −5 7 9 11 15 17 19 −21 −23 25

values of a and b that are positive and less than p,
because p divides a2 +Nb2 if and only if it divides
(a+p)2+Nb2 and the same holds for a2+N(b+p)2,
so multiples of p can be removed from a and b.
Using this observation, we can illustrate how one

can test the Theorem, for example, for N = 30.
Some numbers of the form a2 + 30b2 are

31, 34 = 2 · 17, 39 = 3 · 13, 46 = 2 · 23,

55 = 5 · 11, 66 = 2 · 3 · 11, 79, and 94 = 2 · 47.

Thus the list must contain 31, 17, 13, 23, 11, 79 ≡
−41, 47, where≡ indicates that 79 appears in the list
as −41 when multiples of 4N = 120 are removed to
put the number between −60 and 60. More entries
in the list can be found by using products of these.

For example, 31 · 17 = 527 ≡ 47 is already in the
list, 31 ·13 = 403 ≡ 43, 31 ·23 = 713 ≡ 7, 31 ·11 =
341 ≡ 19, 31 · (−41) = −1271 ≡ 49, and 31 · 47 =
1457 ≡ 17. A check shows that this assigns a sign
to each positive integer less than 60 and relatively
prime to 60 other than 1, 29, 37, 53, and 59. These
are resolved by 17 ·11 = 187 ≡ 53, 13 ·23 = 299 ≡
59, 23 · 47 = 1081 ≡ 1, 11 · (−41) − 451 ≡ 29,
and 31 · (−53) = −1643 ≡ 37. Thus the list for
N = 30 is 1, −7, 11, 13, 17, −19, 23, 29, 31,
37, −41, 43, 47, 49, −53, 59. For any prime p, the
Theorem now gives a prediction as to whether p does
or does not divide a number of the form a2 + 30b2

without dividing a or 30b, and this prediction can be
checked in a finite number of steps. For example, it

predicts that 37 does divide a number of this form,
and, indeed, 92+30 = 111 = 3·37. It predicts that 7
does not divide a number of this form, and, indeed,
a check of the 36 numbers a2 + 30b2, 0 < a < 7,
0 < b < 7, shows that none of them is divisible by 7.

It is a long test to determine in this straightforward

way whether a given p divides a2 +Nb2. The work
can be greatly reduced by showing that if p divides
any number of this type without dividing b then it
divides a number of this type in which b = 1 and
0 < a < p/2.1 Thus in the case p = 7, N =
30, one need only check that 7 does not divide 31,
34, or 39 in order to conclude that the prediction
of the Theorem is correct. Similarly, since 19 does
not divide 31, 34, 39, 46, 55, 66, 79, 94, 111, the
prediction for 19 is correct.
In a few hours one could verify in this way the

prediction of the Theorem in thousands of cases for

dozens of values of N . Because the Theorem is so
simple and general and withstands these tests so eas-

ily, one readily becomes convinced that it is true.

Certainly Euler was convinced, so much so that at

times he seems to have forgotten that the Theorem

was completely unproved.

For simplicity, the case of negative N , that is, of
prime divisors x2−Dy2 where D > 0, was omitted
from the statement of the Theorem. It is easy to see

that if D is a square then every prime p divides a
number of this form. (For if D = k2 then x = k+p
gives x2 − k2 = p(2k + p), and p divides x only if
it dividesD.) However, if D is not a square then, as

Euler already observed in his letter to Goldbach, a

similar Theorem holds, except that instead of never

1Here is the argument. Since p does not divide b and p is prime,
1 is the greatest common divisor of p and b. The Euclidean al-
gorithm can therefore be used to write 1 = Ap + Bb for in-
tegers A and B. If p divides a2 + Nb2 then it also divides
B2a2 + NB2b2 = c2 + N(1 − Ap)2 and therefore divides
c2 + N . Now c = qp + r where the remainder r can be taken
in the range −p/2 < r < p/2 and p divides r2 + N , as was to
be shown.
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containing both x and −x the list in these cases
always contains both whenever it contains either.

Theorem (continued). If N is negative and not
of the form −k2 then there is a list of integers s
in the range 0 < s < |4N | and relatively prime to
4N such that (1), (2), and (3) hold (with s < 4N
changed to s < |4N | in (3)). In this case (4) is
replaced by
(4′) Exactly half the positive integers less than

|2N | and relatively prime to 2N are in the list, and
x is in the list if and only if |4N | − x is in the list.

For example, here are the lists for a few negative

values of N written, as before, with −x in place of
|4N |−x. The first three are from Euler's letter (see
Table 2).

Table 2.

N list
−2 ±1
−3 ±1
−5 ±1 ±9
−6 ±1 ±5
−7 ±1 ±3 ±9
−10 ±1 ±3 ±9 ±13
−11 ±1 ±5 ±7 ±9 ±19
−13 ±1 ±3 ±9 ±17 ±23 ±25

Actually, there is a simple relation between the

lists for N and −N which can be summarized by

saying that a number x of the form 4n+1 is either in
both lists or it is in neither. For example, for N = 7,
the numbers 1, 9, −3 are in both lists and 5, 13, −11
are in neither. It is possible in this way to find either

list once the other is known. The relation is simple

to prove 2 and it was well known to Euler.

It would be difficult to exaggerate the importance

of this Theorem in the history of number theory.

The effort to prove it surely spurred much of Eu-

ler's own later work, and the other two great number

theorists of the 18th century, Lagrange and Legen-

dre, also worked on topics around and about the

Theorem without penetrating the Theorem itself. Fi-

nally, the young Gauss found a proof in 1796, and

2If p = 4n+1 then, by the case N = 1 of the Theorem (which
is one of the few cases that Euler later succeeded in proving) p
divides y2 + 1 for some y. If p also divides x2 + N for some x
not divisible by p|i.e., if p is in the list for N| then p divides
x2y2 + Ny2 = (xy)2 − N + N(y2 + 1), which shows that p
divides (xy)2 − N and therefore that p is in the list for −N .
Since N is not assumed to be positive in this argument, the same

argument shows that if p is in the list for −N it is also in the

list for N .

published two proofs in his great work, the Dis-
quisitiones Arithmeticae in 1801. Gauss claimed to
have discovered the Theorem on his own, but he

would have needed to be in a cocoon in order not to

have had some contact with work in this direction
by Euler, Lagrange, and Legendre in the preceding

half-century. I believe that Gauss was not being dis-

honest, but that he may have forgotten many subtle

influences.

Gauss's formulation of the Theorem was very dif-

ferent from Euler's. For Euler, the basic question

was whether, given N and p, the prime p divides a
number of the form x2 +N . It was noted above that
if one can answer this question for N then one can

easily deduce the answer for −N . A similar argu-
ment shows that if N is a product of two numbers

N = mn and if the question can be answered for
each factor m, n then it can be answered for N .
(This becomes clear when the question \Is p in the
list for N?" is restated \Is −N a square mod p?" as
below. If the answer is known for m and −n then
it is known for N = mn because a product is a
square if and only if both factors are squares or nei-
ther factor is a square.) Thus it suffices to be able to
answer the question for N = 1 and N a prime. The

cases N = 1 and N = 2 were resolved by Euler
and Lagrange, so the question was reduced to the

case where N is an odd prime. Thus the problem is

in essence to find the list in Euler's Theorem when

±N is an odd prime. One can find this list with-

out testing a single prime divisor of x2 +N if one

observes that the numbers common to the lists for
N and −N , when N is prime, are precisely those
numbers s, −2N < s < 2N , that can be written in
the form s = t2 − 4Nk where t is a positive odd
integer less than N . This is a simple consequence
of the fact that squares are necessarily in the list. 3

3To see this, note that if N is an odd prime then each list

has N − 1 entries and half that many are common to the two
lists. Therefore one need only show that all squares (reduced by

subtracting multiples of 4N to put them between −2N and 2N )
are in both lists, because this would account for all (N − 1)/2
common entries. For any of the 2N − 2 nonzero odd integers
x between −2N and 2N , multiplication by x and reduction by
removing multiples of 4N is a one-to-one map of this set with

2N −2 elements to itself. For either of the two lists, if x is in the
list then, by (3), multiplication by x carries elements of the list
to elements of the list. Therefore, by counting, it carries elements

not in the list to elements not in the list. In other words, if x
is in the list and y is not then the reduction of xy is not in the
list. Therefore multiplication by y carries elements of the list to
elements not in the list. Since the list and its complement both

have N − 1 elements, multiplication by y and reduction carries
elements in the list one-to-one onto elements not in the list. By

counting, then, it carries elements not in the list to elements of
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For example, whenN = 11, the numbers common
to the lists are

12 = 1, 32 = 9, 52 ≡ 19, 72 ≡ 5, 92 ≡ −7;

thus the list for −11 is ±1, ±9, ±19, ±5, ±7, and
the list for 11 is 1, 3, 5, −7, 9, −13, 15, −17, −19,
−21. When N = 13 the numbers in common are

12 = 1, 32 = 9, 52 = 25,

72 ≡ −3, 92 ≡ −23, 112 ≡ 17

so the lists are ±1, ±9, ±25, ±3, ±23, ±17 and 1,
−3, −5, 7, 9, 11, 15, 17, 19, −21, −23, 25.
Gauss approached the subject from a different

point of view, asking, for distinct odd primes p and
q, whether q is a square mod p, that is, whether there
is an integer x such that x2 − q is divisible by p.
His \fundamental theorem," now known as the law

of quadratic reciprocity because it describes a re-

ciprocal relationship between the questions \Is q a
square mod p?" and \Is p a square mod q?" states:

If p is of the form p = 4n+ 1 then q is a square
mod p if and only if p is a square mod q.

If p is of the form p = 4n− 1 then q is a square
mod p if and only if −p is a square mod q.
This is easy to deduce from the Theorem above 4,

easy enough that it is not stretching matters very far

to say that the law of quadratic reciprocity is a con-

sequence of Euler's theorems. However, for reasons

to be explained in a moment, it is not in Euler's

interest to stretch matters at all.

The law of quadratic reciprocity is the crowning

theorem of elementary number theory. One might al-

most say that it is the theorem with which elementary

number theory ceases to be elementary. Gauss, who

did not waste time with trivialities, was fascinated

by this theorem, so simple to state and so difficult to

prove, and he returned to it many times in his career,

giving six different proofs of it.

Gauss also studied higher reciprocity laws, which
deal, roughly speaking, with the prime divisors of

x3−N (cubic reciprocity), x4−N (biquadratic reci-

procity), etc. The study of higher reciprocity laws

the list. Therefore if y is not in the list, the reduction of y2 is.
Thus the reduction of y2 is in the list whether or not y is.
4Here is the argument. If p = 4n + 1 and p is a square mod q,
say p−z2 is divisible by q, then y = z or z+q is odd and p−y2

is divisible by both 4 and q. Therefore p is in the list for N = −q
(and also for N = q), which means that x2 − q is divisible by
p for some x, that is, q is a square mod p. Conversely, if q is a
square mod p then p is in the list for N = −q. Therefore, since
p = 4n + 1, p is in both lists and p = t24qk, which shows that
p is a square mod q. The proof in the case p = 4n − 1 is the
same with p replaced by −p.

was unquestionably the central question of 19th-

century number theory, engaging the best efforts of

Jacobi, Eisenstein, Kummer, Hilbert, and many oth-

ers, and leading to the creation of algebraic number

theory. Two developments in the subsequent history

of the subject give further testimony to Euler's ge-

nius and the importance of the theorems that he first

announced to Goldbach.

First, a manuscript of Euler published in 1849 (he

had died in 1783) showed that Gauss was not in fact

the first to study higher reciprocity laws, but that

Euler had already made some substantial progress

on cubic reciprocity as early as 1749, and had not

published his \theorems" in this field. For example,

he stated the following conjecture:

Let p be a prime of the form 3n+1. Then 5 is a
cube mod p if and only if the representation of
p in the form p = x2+3y2 satisfies one of the 4

conditions (1) y = 15m, (2) x = 5k, y = 3m,
(3) x± y = 15m, or (4) 2x± y = 15m.

(Theorem III of the letter to Goldbach may or may

not assert the existence of such a representation

p = x2 + 3y2 whenever p = 3n + 1, depending
on one's interpretation of the phrase \contained in

the form 3xx + yy." In any case, Euler later not
only asserted the existence of such a representation,

he proved it rigorously.) Euler gave no indication of

how he arrived at this astounding set of conditions,

and the fact that they are correct struck the editor

of the relevant volume of his collected works (Vol.

5 of the first series) as \bordering on the incompre-

hensible." However, the conjecture can be derived

by applying the ideas described above to \imagi-

nary primes" of the form x+y
√
−3 and finding the

classes of imaginary primes mod 3 · 5 for which 5 is
a cube.

The second testimony to Euler's genius in the his-

tory of the subject is that later research showed that

the \reciprocity law" approach to the subject was

something of a blind alley. Hilbert in the 1890's for-

mulated the quadratic and higher laws in terms of

a simple product formula which was generally re-

garded as a more natural way of describing the basic

phenomenon, and in which there is no \reciprocity"

but, rather, an explicit formula for determining (in

the quadratic cases) which classes mod 4N contain

prime divisors of x2 + Ny2. Later, in the 1920's,

the subject reached what is generally regarded as its

culmination in the form of the Artin Reciprocity

Law, which, again, has no element of \reciprocity"

in it. Moreover, in the quadratic case, Artin's Law is
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almost exactly the Theorem we have stated, which

was discovered by Euler nearly 200 years earlier.
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Afterword

For more information on Maclaurin, the reader can consult H. W. Turnbull, Bicentenary of the
Death of Colin Maclaurin [10], which contains numerous articles about aspects of his work.
Florian Cajori expanded his arguments in the article in this section into a book, A History of

the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse [3]. A more
recent treatment of much of the same material is Niccolò Guicciardini's The Development of
Newtonian Calculus in Britain, 1700{1800 [8], and a good survey article on calculus in the first
half of the eighteenth century is by H. J. M. Bos [1].

But the eighteenth century is the century of Euler. So to learn more about the mathematics of

that century, it is essential to study the works of the Swiss genius. One good way to begin is with

William Dunham's marvelous little book: Euler: The Master of Us All [4], which gives details
of a number of Euler's mathematical gems. One can also read Euler's Introduction to Analysis of
the Infinite [6], in an English translation by John Blanton. Although there is not yet a full-scale
scientific biography of Euler, one good sketch of a biography is by Clifford Truesdell in the English

translation of Euler's Elements of Algebra [9].
There are also histories of specific topics considered by Euler. For example, the history of

analysis is well treated in Umberto Bottazzini, The Higher Calculus: A History of Real and
Complex Analysis from Euler to Weierstrass [2] and Ivor Grattan-Guinness, The Development of
the Foundations of Mathematical Analysis from Euler to Riemann [7]. Euler's number theory is
a major topic in Andr�e Weil's Number Theory: An Approach through History from Hammurapi
to Legendre [12], and details on some of Euler's work on algebra are found in B. L. van der
Waerden's A History of Algebra [11]. Finally, Euler's complete works are still in the process
of being published, the process having started in 1911. There are currently about 80 volumes

available covering Euler's published works, with several more to come dealing with his letters and

unpublished manuscripts [5].
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