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Foreword by Freeman Dyson

This is a book about a special kind of geometry that was invented and 
widely practiced in Japan during the centuries when Japan was isolated 
from Western infl uences. Japa nese geometry is a mixture of art and math-
ematics. The experts communicated with one another by means of sangaku, 
which are wooden tablets painted with geometrical fi gures and displayed 
in Shinto shrines and Buddhist temples. Each tablet states a theorem or a 
problem. It is a challenge to other experts to prove the theorem or to solve 
the problem. It is a work of art as well as a mathematical statement. Sangaku 
are perishable, and the majority of them have decayed and disappeared 
during the last two centuries, but enough of them have survived to fi ll a 
book with examples of this unique Japa nese blend of exact science and ex-
quisite artistry.

Each chapter of the book is full of interesting details, but for me the 
most novel and illuminating chapters are 1 and 7. Chapter 1 describes the 
historical development of sangaku, with emphasis on Japan’s “peculiar insti-
tution,” the samurai class who had originally been in de pen dent warriors 
but who settled down in the seventeenth century to become a local aristoc-
racy of  well- educated offi cials and administrators. It was the samurai class 
that supplied mathematicians to create the sangaku and work out the prob-
lems. It is remarkable that sangaku are found in all parts of Japan, including 
remote places far away from cities. The reason for this is that samurai  were 
spread out all over the country and maintained good communications even 
with remote regions. Samurai ran schools in which their children became 
literate and learned mathematics. Samurai combined the roles which in 
medieval Eu rope  were played separately by monks and feudal lords. They 
 were scholars and teachers as well as administrators.

Chapter 7 is my favorite chapter, the crown jewel of the book. It contains 
extracts from the travel diary of Yamaguchi Kanzan, a mathematician who 
made six long journeys through Japan between 1817 and 1828, recording 
details of the sangaku and their creators that he found on his travels. The 



diary has never been published, but the manuscript is preserved in the ar-
chives of the city of Agano. The manuscript runs to seven hundred pages, 
so that the brief extracts published  here give us only a taste of it. It is 
unique as a  fi rst- hand  eye- witness description of the sangaku world, written 
while that world was still at the height of its fl owering, long before the sud-
den irruption of Western culture and modernization that brought it to an 
end. I hope that the diary will one day be translated and published in full. 
Meanwhile, this book, and chapter 7 in par tic u lar, gives us a glimpse of 
Yamaguchi Kanzan as a mathematician and as a human being. Having 
been present at the creation, he brings the dead bones of sangaku to life.

I am lucky to have known two scholars who have devoted their lives to 
cultivating and teaching geometry. They are Daniel Pedoe in En gland and 
the United States, and Fukagawa Hidetoshi in Japan. Each of them had to 
swim against the tide of fashion. For the last fi fty years, both in art and 
mathematics, the fashionable style has been abstract: famous artists such as 
Jackson Pollock produce abstract patterns of paint on canvas; famous math-
ematicians such as Kurt Gödel construct abstract patterns of ideas detached 
from anything we can feel or touch. Geometry is like repre sen ta tional 
painting, concerned with concrete objects that have unique properties and 
exist in the real world. Fashionable artists despise repre sen ta tional paint-
ing, and fashionable mathematicians despise geometry. Repre sen ta tional 
painting and geometry are left for amateurs and eccentric enthusiasts to 
pursue. Pedoe and Fukagawa are two of the eccentric enthusiasts. Both of 
them fell in love with sangaku.

Fukagawa Hidetoshi has been a high-school teacher in Aichi, Japan, for 
most of his life. During school holidays he has spent his time visiting tem-
ples all over Japan, photographing sangaku as works of art and understand-
ing their meaning as mathematical problems. He knows more about sangaku 
than anyone  else in the world. Unfortunately, in the hierarchical academic 
system of Japan, a high-school teacher has a low rank and is not highly re-
spected. He was not able to interest  high- ranking professors in his proposal 
to publish a book about his fi ndings; without support from the academic 
establishment, his work remained unpublished and unknown. After many 
years he fi nally found a publisher outside Japan, with the help of Daniel 
Pedoe.

Daniel Pedoe was my teacher when I was studying mathematics as a boy in 
an En glish high-school long ago. He gave me my fi rst taste of mathematical 
research, asking me to work out a mapping of the circles in a Euclidean plane 
onto the points of a  three- dimensional Euclidean space. I found the mapping, 
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and my eyes  were opened to the power and beauty of geometry. Many of the 
properties of circles became intuitively obvious when I looked at the map. 
Later, I renewed my friendship with Pedoe after we both moved to America. 
Forty years later, Pedoe discovered sangaku. He was then a professor of math-
ematics in Minnesota, and there he received a letter from Fukagawa. Fu-
kagawa had written to six mathematicians known to be interested in 
geometry, informing them of the existence of sangaku and inviting them to 
collaborate in making sangaku known to the world outside Japan. Pedoe was 
the only one of the six who answered. He agreed to collaborate with Fu-
kagawa in producing the book Japa nese Temple Geometry Problems, which was 
published in En glish in 1989 by the Babbage Institute in Winnipeg, Canada. 
Pedoe paid for Fukagawa and his wife to come to Minnesota to work on the 
book, and he also visited Fukagawa in Japan. He remained a close friend of 
Fukagawa’s and a promoter of sangaku until his death in 1998.

In 1993 I was invited to Japan to give lectures at Japa nese universities, 
and I fi nally had a chance to meet Fukagawa in person. Dan Pedoe made 
the arrangements for our meeting. My academic hosts expressed surprise 
that I should wish to speak with a “lowly”  high- school teacher, and tried to 
cut my visit with him short. They allowed me only a few hours to spend with 
him, visiting a temple where some outstanding sangaku are preserved and 
an abacus museum where we could see other artifacts of indigenous Japa-
nese mathematics. I would happily have stayed longer, but my hosts  were 
infl exible. Since then I have stayed in touch with Fukagawa as he continued 
to make new discoveries and deepen his understanding of the historical 
context out of which the sangaku emerged.

This book contains far more than the book that was published in Win-
nipeg in 1989, which presented the sangaku as a gallery of isolated works of 
art, without any information about their historical context. Little or noth-
ing was said about the artists who created them or the connoisseurs for 
whom they  were made. This book supplies the missing background infor-
mation. One third of the book (chapters 1, 2, 3, and 7) is a narrative his-
tory of Japa nese mathematics, with a full account of the leading individual 
mathematicians and the society to which they belonged. The middle sec-
tion (chapters 4, 5, and 6) is an  up- to- date display of sangaku problems 
 arranged in increasing order of diffi culty. The fi nal section (chapters 8, 9, 
and 10) is a technical discussion of Japa nese mathematical methods, with a 
comparison of Japa nese and Western ways of solving geometrical problems.

In conclusion, I wish to thank my friend Tony Rothman for his big share 
in the writing of this book. I am responsible for introducing him to temple 
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geometry, and grateful to him for the long months of hard work that he put 
into the project. Although Fukagawa was the prime mover, it was Rothman 
who brought the task to a successful conclusion. Rothman translated and 
paraphrased Fukagawa’s notes into readable En glish, and contributed 
many explanatory passages to make the mathematical problems and solu-
tions understandable for  En glish- speaking readers. Those familiar with 
Rothman’s writing will recognize his work throughout. Without Rothman’s 
massive and unselfi sh help, the book could never have been published.

Institute for Advanced Study,
Princeton, New Jersey
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Preface by Fukagawa Hidetoshi

When I became a high school mathematics teacher forty years ago, 
I studied the history of Western mathematics and would present some of 
this historical material to my students. In those days, it was said that tradi-
tional Japa nese mathematics had no material of any value for high school 
students. In 1969, a teacher of traditional Japa nese literature showed me a 
traditional Japa nese mathematics book printed in 1815 from wooden blocks. 
He asked me to decipher the book since it was written in diffi cult old Japa-
nese. When I fi nished deciphering it, I found that traditional Japa nese 
mathematics of the seventeenth, eigh teenth, and nineteenth centuries had 
much good material for high school students. In those centuries Japan 
closed its doors to the outer world and many native cultures developed, one 
of which was traditional Japa nese mathematics. In Japan in that era, there 
was no offi cial academia, so mathematics was developed not only by schol-
ars but also by ordinary people. Lovers of mathematics dedicated to shrines 
and temples the wooden tablets on which mathematics problems  were writ-
ten. We call this mathematical world “Japa nese temple geometry.” The 
mathematics lovers who formed this world enjoyed solving geometry prob-
lems. The present authors hope that readers of this book will also fi nd en-
joyment in trying to solve some of those same problems.





Preface by Tony Rothman

I vividly remember the day if not the year: It was 1989 or 1990; I had 
stopped by Freeman Dyson’s offi ce for lunch at the Institute for Advanced 
Study in Princeton, New Jersey. No sooner had Freeman raised his hand in 
his customary salute than he said, “Take a look at this,” and placed into my 
own hand a small paperback book he’d received that very morning. The 
simple blue cover bore the title Japa nese Temple Geometry Problems, San Gaku, 
and nothing more. The words meant nothing to me, and the blank expres-
sion on my face surely conveyed as much to Freeman. Paging through the 
book, I saw that it was a collection of geometry problems, assembled by Hi-
detoshi Fukagawa and Freeman’s old math teacher from En gland, Dan Pe-
doe, who had sent it to him. Over the next few minutes, Freeman began to 
chuckle and then guffaw as he watched my expression change from baffl e-
ment to disbelief to open astonishment. For good reason. The fi rst thing 
that struck me about the problems was how different they  were from the 
those I’d studied in high school geometry. Nothing like this was ever pro-
duced in the West. The problems looked Japa nese. The second thing that 
struck me was how beautiful they  were, no less than miniature Japa nese 
works of art. The third thing that dawned on me in those confused mo-
ments was how diffi cult they  were. Without having attempted a single one 
of them, I understood quickly enough, standing there with dropped jaw, 
that I hadn’t the faintest idea of how to tackle the  majority—and I am sup-
posed to be a mathematically inclined physicist.

Through Freeman I had stumbled on the strange and wonderful tradi-
tion of Japa nese temple geometry. As readers will learn in the coming 
pages, for over two hundred years Japan was isolated by imperial decree 
from the West and had little, if any, access to Western developments in 
mathematics. Yet during that time Japa nese mathematicians from all walks 
of life created and solved astonishingly diffi cult problems, painted the solu-
tions on beautiful wooden tablets called sangaku, and hung the tablets in 
Buddhist temples and Shinto shrines.



Struck by this unique custom, I eventually wrote to Hidetoshi Fukagawa, 
the Japa nese author of the problem book, and asked whether there was 
enough known about sangaku to warrant an article for Scientifi c American. 
Fukagawa, a high school teacher in Aichi prefecture with a doctorate in 
mathematics, replied that probably enough was known about the custom’s 
origin for an article, and he generously supplied time and material. As it 
turned out, Hidetoshi was one of the world’s experts on Japa nese temple 
geometry, or more generally traditional Japa nese mathematics. He him-
self had stumbled on a mention of sangaku in an old book de cades earlier, 
decided they  were an excellent teaching tool, and had been studying them 
ever since. Hoping to interest Westerners in the tradition, he’d written ran-
domly to a number of Eu ro pe an and American mathematicians. Dan 
Pedoe, a noted educator, alone responded and the result was the book that 
Freeman had received. And so, with substantial help from Hidetoshi, I 
wrote a piece for Scientifi c American, which after languishing in editorial 
limbo for three or four years, eventually appeared in the May 1998 issue.

The present book is partially an outgrowth of the Scientifi c American arti-
cle and Hidetoshi’s earlier work. However, we did not want to publish 
merely another problem book. Rather, we decided to try to place the prob-
lems in the context of traditional Japa nese mathematics and, more gener-
ally, of the culture of the times. To set the stage, we have given a short 
introduction to Japa nese mathematics, especially in the seventeenth cen-
tury, when the tradition of temple geometry began, and we have also in-
cluded a chapter on traditional Chinese mathematics, which so profoundly 
infl uenced Japa nese developments. Throughout, we have attempted to 
maintain an historical fl avor, including discussions of the important Japa-
nese mathematicians and, along with the problems, vignettes about the 
creation and discovery of the tablets on which they are found.

Since the appearance of the Scientifi c American article, moreover, Hi-
detoshi and his colleagues have learned a great deal about the origins of 
traditional Japa nese mathematics, and we are able to present signifi cantly 
more material about the origin and purpose of sangaku. In par tic u lar, we 
are pleased to bring to a Western audience for the fi rst time a substantial 
excerpt from the travel diary of Yamaguchi Kanzan, an early nineteenth 
century mathematician who took several extended walking tours around 
Japan specifi cally to collect sangaku problems. Yamaguchi’s diary provides a 
“smoking gun” showing that Japa nese mathematicians often hung the tablets 
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as acts of worship, thanks to the gods for being able to solve a diffi cult prob-
lem. In this sense, temple geometry is indeed sacred mathematics.

Finally, in the years since the article appeared, Hidetoshi has succeeded 
in or ga niz ing a large exhibit of over 100 sangaku at the Nagoya Science Mu-
seum, which took place in 2005 under sponsorship of the daily newspaper 
Asahi Shinbun. We are fortunate to be able to publish  here some of the origi-
nal photographs from the exhibit cata log. Readers cannot but be struck by 
the beauty of the tablets and we are certain it will add to the artistic aspect 
of the book. To that end, we have attempted to include contemporary draw-
ings and illustrations that will put the mathematical art in the context of the 
prevailing art of the times. We have also included some of the original draw-
ings of temple geometry problems from rare  seventeenth- nineteenth cen-
tury  rice- paper books. We hope that they help make Sacred Mathematics as 
much an artistic creation as an historical and mathematical one.

The authors’ collaboration for this project has been unusual. To this day 
Hidetoshi and I have never met and the work has taken place entirely by 
email. Hidetoshi has been the primary author. His collection of rare books 
on traditional Japa nese mathematics, consisting of several hundred volumes, 
dwarfs anything available in Western libraries, and by now he has been study-
ing the subject for forty years. My role has been to a large degree editorial. 
Hidetoshi’s native language is far from En glish, and I speak no Japa nese. 
Fortunately, mathematics is universal. I have taken Hidetoshi’s drafts and at-
tempted to render them in reasonably fl uent En glish. I have also added sub-
stantial material, redrawn the diagrams, and gone through all the proofs, 
attempting to simplify them slightly. Hidetoshi’s solutions are those of a pro-
fessional mathematician, and I have frequently felt a few more steps and dia-
grams  were needed to make them accessible to American students (or at 
least their teachers!), who we certainly hope will try the problems. In the 
more diffi cult exercises I have added more explanation, in the easier ones 
less, sometimes none at all; one or two of the solutions are my own.

My only guide in this procedure has been my experience of having taught 
many university students, often freshmen, from whom I have learned that if 
I have diffi culty with a problem, they sometimes will. In Sacred Mathematics 
we often present traditional solutions. However, these are frequently transla-
tions from Kanbun to Japa nese to En glish with modern mathematical nota-
tion, whereas traditional solutions did not use trigonometric functions, 
lacked indications of angles, and so forth. The “traditional” proofs in this 
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book therefore should not be regarded in any sense as literal transcriptions. 
When we have been able to closely follow the original, I have put my com-
ments in brackets []; otherwise, I have edited the traditional proofs as I have 
all the others. Whether I have found a reasonable balance in all this, the 
audience will judge. I am certain only that professional mathematicians will 
be annoyed, but I hope they will indulge the lack of formality.

An ideal second author for this book would have been a mathematician 
fl uent in Japa nese as well as in Japa nese history. The present circumstance 
is not perfect, especially in the case of Yamaguchi’s diary, because I have no 
way of knowing how accurate my translation has been, except insofar as it 
has met with Hidetoshi’s approval. But, as they say, I wanted to get the job 
done, and will welcome a better translation in the future by a professional.

Among the hurdles in learning Oriental mathematics is the bewildering 
profusion of transliterations and translations for Chinese names and book 
titles, some almost unrecognizable as referring to the same person or work. 
For the Chinese I have usually gone with the transliterations from the St. 
Andrews University MacTutor website, merely on the assumption that most 
readers will follow up there on any statements made  here. Japa nese names 
present their own problem. In Japan, it is customary to refer to people by 
surname fi rst. Not only that, but Japa nese mathematicians often have two 
names, one used by Westerners and one used by Japa nese. In this book we 
follow the convention of surname fi rst, and also use the names most com-
mon among Japa nese. Thus the most famous Japa nese mathematician, 
known as Kowa Seki in the West, becomes Seki Takakazu and Hidetoshi Fu-
kagawa becomes Fukagawa Hidetoshi. After considerable discussion we have  
decided to use the Hepburn romanization system for the transliteration of 
Japanese words, which is not popular among the Japanese but is the most 
familiar to Western readers. We might also mention that we have, as consis-
tently as possible, spoken of Buddhist temples but Shinto shrines.

Finally, despite all vigilance, errors must inevitably creep into a book 
such as this. Readers should report any such discoveries to the publisher or 
authors.
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What Do I Need to Know to Read This Book?

We hope this book can be read in three ways: as an art book that de-
lights simply by the perusal of it, as a history book that provides a little in-
sight into an aspect of Japa nese culture rarely mentioned in standard 
surveys, and fi nally as a problem book that provides challenging exercises 
at both the high school and college levels.

Readers who intend to tackle the problems may wish to know at the out-
set the prerequisites. One requirement looms above all: patience. On fi rst 
encounter with a sangaku problem there is a considerable “choke” factor. At 
fi rst glance, Western students will fi nd many of the problems strange, un-
like those they have seen before, and one’s fi rst reaction tends to be, “I 
 can’t do that!”

Do not despair! Half the problems in Sacred Mathematics require no more 
than the most elementary methods, taught in any high school geometry 
course. The individual steps are no larger than in typical textbook prob-
lems. What is different is that sangaku problems are frequently far more in-
tricate than the usual exercises American students encounter. Instead of 
running four or fi ve lines, proofs may run four or fi ve  pages—if not ten. 
What is more, it is necessary to bring to bear everything you’ve learned from 
your geometry course. Sooner or later you will require virtually every theo-
rem about circles, quadrilaterals, triangles, and tangents that you have 
proved. Some of the more diffi cult exercises require a good deal more than 
that. You should not be surprised if you spend  hours—or  days—working 
the advanced problems.

Following patience, a number of specifi c tools are required to solve san-
gaku problems. Because Sacred Mathematics is not intended to be a textbook, 
however, for the most part we do not teach basic methods. If you do try the 
problems it is a good idea to have a standard geometry text handy as a refer-
ence. A few suggestions, ranging from the elementary to the advanced are 
offered in “For Further Reading” on page 337; nevertheless, by way of help-
ful hints we can be a bit more specifi c  here about what you will need.



A good drawing is indispensable. Many of the problems are fairly subtle, 
and it is not enough to make a rough sketch, which will deceive you; you 
need to make an accurate drawing that refl ects the true conditions of the 
problem. Often the route to a solution becomes obvious when you’ve drawn 
in the appropriate auxiliary lines.

The single most important mathematical tool will be the Pythagorean 
theorem. This basic theorem, which was known to the Japa nese through 
China, is used constantly throughout, and a large percentage of the prob-
lems can be solved with nothing more. If you are uncomfortable with the 
Pythagorean theorem, the problems in this book will be extremely dif-
fi cult.

Hand in hand with the Pythagorean theorem, many, if not most, of the 
problems require solving quadratic equations. Not only will you frequently 
need the quadratic formula, which was also known to the Japa nese, but it 
will often prove more con ve nient to solve the equation by “completing the 
square.” Nearly as often you will encounter quadratics in the square root of 
a quantity, usually the radius of a circle, r , and so you will need to know 
the basic methods for handling square roots, such as rationalizing denomi-
nators.

After the Pythagorean theorem and quadratics, the most frequently 
needed tool is probably properties of similar triangles, those theorems that 
go by names like AAA and SAS. You need all of them. Likewise, you will 
require virtually all the trigonometric identities involving sine, cosine, and 
tangent, that is, not only the basic Pythagorean identity, sin2 θ + cos2 θ = 1 
but every variation on it, as well as all the  half- angle and  double- angle for-
mulas.

The law of cosines also crops up often. This is the generalization of the 
Pythagorean theorem for nonright triangles that gives the third side of a 
triangle c in terms of the other two sides: c2 = a2 + b2 − 2ab cos θ , where θ is 
the included angle between sides a and b. The law of sines also fi gures oc-
casionally: a/ sin A = b/sin B = c/sin C, for triangles with vertex angles A, B, 
C and opposite sides a, b, c. Although traditional Japa nese mathematicians 
did not explicitly use trigonometric functions, they did employ the equiva-
lents and all these relationships  were understood by them. Solutions to 
problems in chapters 4 and 5 will give a better idea of how those mathema-
ticians operated.

Frequently, problems are solved by considering the area of triangles, 
rather than the lengths of the sides. In both this context and when employ-
ing the Pythagorean theorem, one basic fact crops up repeatedly: that two 
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tangent segments to a circle drawn from an external point P are equal in 
length. This is sometimes referred to as the “tangent segments theorem.” If 
you have not seen this proven in an elementary course, you may wish to 
prove it now; it is very easy. The “intersecting chords theorem” is also fre-
quently encountered: if two chords intersect in a circle, the product of the 
lengths of the segments of one chord equal the product of the lengths of 
the segments of the other chord (fi gure 0.1). Other theorems we introduce 
as needed.

What to Know to Read This Book  xxiii

For solving some of the more advanced problems, a “modern” technique 
that proves extremely useful is that of “inversion.” However, because inver-
sion is not generally taught in schools anymore, we include a chapter (10) to 
explain this powerful method.

A handful of problems requires calculus, but except for a very small 
number, this does not go beyond basic differentiation and integration.

c

d
a

b

Figure 0.1. The intersecting chords theorem: a × b = c × d





Notation

We have tried to keep the notation used throughout this book standard 
and simple, but, at the risk of annoying professionals, have also tried to obvi-
ate some terms that nonmathematicians may not regularly encounter, such 
as “circumcircle” and “perpendicular foot.” (Clearly, feudal Japa nese farm-
ers would not have used such terminology.) When avoidance of specialized 
terms has proven futile, if we do not defi ne them explicitly, we trust they are 
defi ned in context. For the record, “circumcircle” is merely the circle cir-
cumscribed around a given polygon, while “incircle” is the circle inscribed 
within a given polygon. “Circumcenter” and “incenter” refer to the centers 
of these circles. When many fi gures are contained in, for example, a circle 
and touch one another, we sometimes speak of the collection as being 
“inscribed,” although this may technically be a misuse of the term.

In dealing with triangles,  upper- case letters refer to vertices, while  lower-
 case letters refer to sides. The side opposite vertex A is usually labeled a. 
Sometimes we use the symbol for the vertex to refer to the angle itself, such 
as ∠A. All this is standard.

Although most American texts use radial lines or arrows to denote radii 
of circles, Japa nese problems typically involve multitudes of circles, and 
drawing so many radial lines becomes confusing. Thus, we often denote 
the radius of a circle simply by a dot in the center with the indicated radius 
r nearby. This takes a little getting used to, but proves very con ve nient. Just 
as important to note is that we frequently speak of a circle by its radius, that 
is, “circle r” refers to the circle of radius r.







Plate 1.1. This rare map of Japan “Iaponi nova description” (Amsterdam, 1647–1656) 
was drawn by the Dutch cartographer Jan Jansson (1588–1664). The original print is 
33 cm × 43 cm from copperplate. A modern map can be found on page 6. (Historic 
Maps Collection, Princeton University Library.)



Japan and Temple Geometry

Temple bells die out.
The fragrant blossoms remain.
A perfect eve ning!

—Bashō

Temples

No visitor to a foreign country has failed to experience the fascination and 
unease that accompanies an encounter with unknown traditions and cus-
toms. Some visitors attempt to overcome their fears, while the majority 
quickly retreats to familiar shores, and in this lies a distinction: Those who 
embrace culture shock are travelers; those who do not are tourists.

The most profound culture shock comes about when one is confronted 
by a different way of thinking. Most of us can hardly imagine walking into 
a Western church or cathedral to encounter stained glass windows covered 
by equations and geometrical fi gures. Even if we can conceive of it, the 
thought strikes us as alien, out of place, perhaps sacrilegious. Yet for well 
over two centuries, Japa nese  mathematicians—professionals, amateurs, 
women,  children—created what was essentially mathematical stained glass, 
wooden tablets adorned with beautiful geometric problems that  were si-
multaneously works of art, religious offerings, and a record of what we 
might call “folk mathematics.” The creators of these sangaku—a word that 
literally means “mathematical  tablet”—hung them by the thousands in 
Buddhist temples and Shinto shrines throughout Japan, and for that rea-
son the entire collection of sangaku problems has come to be known as 
“temple geometry,” sacred mathematics.

In this book you will be invited not only to encounter temple geometry 
but to appreciate it. There is a bit of culture shock to be overcome. A single 



glance at a sangaku is enough for one to realize that they  were created by 
a profoundly different esthetic than the  Greek- inspired designs found in 
Western geometry books. On a deeper level, one learns that the methods 
Japa nese geometers employed to solve such problems differed, sometimes 
signifi cantly, from those of their Western counterparts. Ask any profes-
sional mathematician whether the laws of mathematics would be the same 
in another universe and he or she will reply, of course. Real mathemati-
cians are  Pythagoreans—they cannot doubt that mathematics exists in de-
pen dently of the human mind. At the same time, during their off hours, 
mathematicians frequently speculate about how different mathematics 
could look from the way it is taught in Western schools.

Temple geometry provides a partial answer to both questions. Yes, the 
rules of mathematics are the same in East and West, but yes again, the tra-
ditional Japa nese geometers who created sangaku saw their mathematical 
world through different eyes and sometimes solved problems in distinctly 
 non- Western ways. To learn traditional Japa nese mathematics is to learn 
another way of thinking.

Traditional Japa nese mathematics, and with it temple geometry, arose 
in the seventeenth century under a nearly unique set of circumstances. In 
1603, three years after defeating his rival daimyo— warlords—at the battle 
of Sekigahara, Tokugawa Ieyasu became shogun of Japan, establishing the 
Tokugawa shogunate. (A contemporary depiction of the battle of Sekiga-
hara can be seen in the color plate 1.) The Tokugawa family ruled Japan 
for the better part of three hundred years, until 1868, when a de cade after 

Figure 1.1. Which diagram would you guess came from an American geometry text?

2 Chapter 1



Japan and Temple Geometry 3

Commodore Matthew C. Perry forcefully opened Japan to the West, the 
shogunate collapsed.

One of Ieyasu’s fi rst moves after Sekigahara was to establish his head-
quarters at a small fortress town in central Japan, a town that became 
known as Edo (pronounced “Yedo”)—today’s Tokyo. For that reason the 
rule of the Tokugawa is also known as the Edo period. During the fi rst 
years of the Tokugawa shogunate, Ieyasu (who, although living until 1616, 
offi cially remained shogun only until 1605) consolidated power by confi s-
cating the lands of other warlords, but nevertheless continued many of the 
foreign policies of his pre de ces sor, the great daimyo Toyotomi Hideyoshi 
(1537–1598). At the turn of the seventeenth century, Japan carried on 

Plate 1.2. An anonymous and undated woodblock print (probably mid-nineteenth 
century) shows Nagasaki harbor with the small fan-shaped island of Deshima in 
the foreground. Another view of Deshima can be seen in color plate 2. 
(© Nagasaki Museum of History and Culture.)



 substantial trade with foreign countries, both Eastern and Western. Naga-
saki on the island of Kyūshū had become the base for the “southern barbar-
ians” to import their goods, as well as to print translations of Western 
literature, much of it religious.

Foreign missionaries had by then been in Japan for over fi fty years. In au-
tumn of 1543, three Portuguese  were shipwrecked off Kyūshū. The misfor-
tune proved decisive in terms of Japan’s relations with outsiders, for the men 
 were carry ing arquebuses, which  were rapidly adopted by the Japa nese war-
lords. Of equal or greater importance was that, within a few years of the fate-
ful shipwreck, Portuguese merchants and Jesuit missionaries began to arrive, 
seeking both trade and converts. The Jesuits  were particularly successful, 
converting as many as two hundred thousand Japa nese over the next forty 
years and becoming de facto rulers of the Nagasaki  region.

All of this alarmed the proponents of Buddhism and raised the distrust 
of Hideyoshi himself; he in 1587 took direct control of Nagasaki and issued 
two edicts designed to curb the spread of Christianity. But the Spanish 
soon arrived, with Spanish merchants vying with Portuguese for trade and 
Franciscans vying with Jesuits for converts. In 1596, after a Spaniard sup-
posedly boasted that the missionaries  were merely the vanguard of an Ibe-
rian conquest, Hideyoshi ordered the execution of  twenty- six priests and 
converts. The warlord, though, had other affairs on his mind, in par tic u lar 
the conquest of China, and he failed to pursue a resolution of the growing 
tensions between the Japa nese and Westerners.

The tensions  were resolved, in a particularly decisive and brutal fashion, 
at the very end of Tokugawa Ieyasu’s life and in the two de cades that fol-
lowed. In 1614 Ieyasu reissued an earlier edict with which he summarily 
ordered that all Christian missionaries leave the country, that places of 
worship be torn down, and that the practice of Christianity be outlawed. 
But other internal affairs intervened and Ieyasu died in 1616 without hav-
ing taken much action. After his death, though, persecution of Christian 
converts began in earnest and by 1637, according to some estimates, three 
hundred thousand converts had apostasized or been killed. Throughout 
the 1630s Ieyasu’s grandson, Togukawa Iemitsu, issued a series of decrees 
that offered rewards for the identifi cation of kirishitan, forbade the sending 
of Japa nese ships overseas, and forbade any Japa nese from traveling abroad, 
on pain of death.

By 1641 the last of the Portuguese merchants had been expelled, leav-
ing only the Dutch. The Dutch had arrived comparatively late to Japan, 
in 1609, and had shown more interest in trade than mission. For that 
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reason they  were allowed to remain after the expulsion of the Iberians. 
The Japa nese, however, by now utterly suspicious of Westerners, put se-
vere strictures on the Dutch presence: The representatives of the Dutch 
East India Company  were forced to move onto a small,  man- made island 
called Deshima in Nagasaki harbor (see color plate 2 and plate 1.2). The 
 fan- shaped island, originally created for the Portuguese, mea sured only 
200 by 70 meters. A wall surrounded Deshima, posted with signs warning 
the Japa nese to keep away, and it was entirely cut off from the mainland 
except for a bamboo water pipe and a single, guarded bridge. On this 
oasis, twenty or so members of the East India Company lived among the 
few ware houses, sheep, pigs, and chickens, and awaited the summer ar-
rival of the Dutch ships. Upon making port, captains locked all Bibles 
and Christian literature into barrels, while Japa nese laborers unloaded 
cargo.

That, for the next two hundred years, constituted Japan’s trade with the 
West, and so began the policy of what would eventually become known as 
sakoku, “closed country.” It is impossible to claim that sakoku was one hun-
dred percent effective; certainly trade with Korea and China continued. 
Two Japa nese did escape to Holland around 1650 in order to study math-
ematics. We know the scholars only by their adopted names, Petrius Hart-
singius and Franciscus Carron, the former at least having achieved some 
distinction. Whether they ever returned to Japan we do not know. One 
doctor, Nakashima Chōzaburō, traveled abroad with a Dutch trader and 
risked beheading to come home. According to tradition, the local daimyo 
spared Nakashima’s life because he healed one of the warlord’s injured 
pigeons.

Such scraps of information do lead one to believe that by any ordinary 
standards the isolation from the West was nearly complete. In terms of 
mathematics, it is extremely unlikely that anyone in Japan learned about 
the creation of modern calculus by Newton and Leibnitz later in the seven-
teenth century, and there is certainly no evidence from sangaku problems 
and traditional Japa nese mathematics texts that its practitioners under-
stood the fundamental theorem of calculus.

One should not conclude from this state of affairs that sakoku had en-
tirely negative consequences. To the contrary, the policy was so successful 



Plate 1.3. The map shows Japan’s 47 administrative divisions, known as prefec-
tures, which are roughly akin to states or provinces, at least insofar as that each 
has a popularly elected government and  single- chamber parliament. Prefectures 
are further divided into cities (shi) and towns (machi). Because prefectures are 
usually named after the largest city within their borders, one often sees “Nagano 
city” to distinguish it from “Nagano prefecture.” The map also indicates some of 
the more important cities mentioned in the text.
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at eliminating foreign confl icts that the 250 years of the Edo period be-
came known as the “Great Peace.” Moreover, with the stability provided by 
the Tokugawa shogunate, Japa nese culture experienced a brilliant fl ower-
ing, so much so that the years of the late seventeenth century are referred 
to as Genroku, Re nais sance. At the time a gentleman was expected to culti-
vate skills in “medicine, poetry, the tea ceremony, music, the hand drum, 
the noh dance, etiquette, the appreciation of craft work, arithmetic and 
calculation . . . not to mention literary composition, reading and writing. 
There are other things as well . . .”1

We do not have space  here to delve into the riches of Genroku culture, 
but one should recognize that during this era many of the arts for which 
Japan is renowned attained their highest achievements: Noh dance fl our-
ished; the great dramatist Chikamatsu Monzaemon (1653–1725) produced 
plays for both the Kabuki and puppet theatres; tea ceremonies, fl ower ar-
ranging, and garden architecture  were on the ascendant, as well as paint-
ing in several schools, including the ubiquitous ukiyo- e, or “fl oating world” 
prints that illuminated the demimonde of courtesans and erotic love and 
fairly defi ned the entire epoch. Ukiyo- e prints  were made using wood blocks, 
not because the Japa nese lacked movable type, which had been imported 
from Korea during Hideyoshi’s day, but because printers preferred the cal-
ligraphic and artistic possibilities afforded by block printing. Poetry was 
not to be eclipsed, especially haiku, which achieved some of its greatest 
expression in the works of Matsuo Bashō (1644–1694), who long ago 
achieved worldwide renown.

What is strikingly absent in the standard reviews of Japa nese cultural 
achievements of the period is any mention of science or mathematics. And 
yet the isolation that produced such a distinctive esthetic in the arts cer-
tainly had no less an impact on these fi elds. The stylistic form of the impact 
on geometry will gradually become apparent to readers who delve into the 
mathematical aspects of this book, but it isn’t coincidental that many san-
gaku problems resemble origami designs, nor that the practice of hanging 
the tablets began precisely during the Genroku, for, as we will see shortly, it 
was in the  mid- to- late seventeenth century that traditional Japa nese math-
ematics began to fl ourish.

1 See Conrad Totman, Early Modern Japan p. 186 (“For Further Reading, Chapter 1,” 
p. 338).



Regardless of the formal developments in mathematics at the time, West-
ern readers invariably want to know how the strange custom of hanging 
tablets in shrines and temples arose. In the context of Japan, it was fairly 
natural. Shintoism, Japan’s native religion, is populated by “eight hundred 
myriads of gods,” the kami, whose spirits infuse everything from the sun 
and moon to rivers, mountains, and trees. For centuries before sangaku 
came into existence, worshippers would bring gifts to local shrines. The 
kami, it was said, love  horses, but  horses  were expensive, and a worshipper 
who  couldn’t afford to offer a living one might present a likeness drawn on 
a piece wood instead. In fact, many tablets from the fi fteenth century and 
earlier depict  horses.

Plate 1.4. This  ukiyo- e, or “fl oating world,” print is from the series “Thirty- Six 
views of Mt. Fuji” by Katsushika Hokusai (1760–1849), one of the most famous 
artists of the Edo period. The print shows a distant view of Mt. Fuji from the 
 Rakan- ji temple in Honjo. The original is in color. (© Nagoya  TV- Japan.)

8 Chapter 1



Japan and Temple Geometry 9

And so it would not have seemed extremely strange to the Japa nese to 
hang a mathematical tablet in a temple. We cannot say exactly in what year, 
or even de cade, the tradition began, but the oldest surviving sangaku has 
been found in Tochigi prefecture and dates from 1683, while the  nineteenth-
 century mathematician Yamaguchi Kanzan, whose travel diary we excerpt 
in chapter 7, mentions an even older tablet dating from 1668; that one is 
now lost. Over the next two centuries the tablets appeared all over Japan, 
about  two- thirds in Shinto shrines,  one- third in Buddhist temples. We do 
not know how many  were originally produced. From sangaku mentioned in 
contemporary mathematics texts, we are certain that at least 1,738 have 
been lost; moreover, only two percent of the tablets recorded in Yamagu-
chi’s diary survive. So it is reasonable to guess that there  were originally 
thousands more than the 900 tablets extant today. The practice of hanging 
sangaku gradually died out after the fall of the Tokugawa shogunate, but 
some devotees continued to post them as late as 1980, and sangaku con-
tinue to be discovered even now. In 2005, fi ve tablets  were found in the 
Toyama prefecture alone. The “newest” one was discovered by Mr. Hori Yoji 
at the Ubara shrine and dates from 1870. Two problems in chapter 4 are 
taken from the tablet and we present a photo of it in the color section, color 
plate 13.

Most sangaku contain only the fi nal answer to a problem, rarely a de-
tailed solution. (In Sacred Mathematics we usually give both answers and 
solutions, many drawn from traditional Japa nese texts.) Apart from con-
siderations of space, there seems to have been a certain bravado involved: 
Try this one if you dare! Nevertheless, as you will discover yourself from 
reading the inscriptions, the presenters of sangaku also took the spiritual, 
and even religious, aspect of the practice seriously, seeing nothing odd in 
offering a tablet to God in return for progress in mathematics. But just 
who  were the creators of sacred mathematics? Sangaku are inscribed in 
a language called Kanbun, which used Chinese characters and essen-
tially Chinese grammar, but included diacritical marks to indicate Japa-
nese meaning. Kanbun played a role similar to Latin in the West and its 
use on sangaku would indicate that whoever set down the problems was 
highly educated. The majority of the presenters, in fact, seem to have 
been members of the samurai class. During the Edo period most samu-
rai  were not charging around the countryside, sword in hand, but worked 
as government functionaries; many became mathematicians, some fa-
mous ones. Nevertheless, the inscriptions on the tablets make clear that 



 whole classes of students, children, and occasionally women dedicated 
sangaku. So the best answer to the question “Who created them?” seems 
to be “everybody.”

While contemplating this lesson, let us paint a fuller picture of the con-
text in which sangaku  were created by backing up as far as possible and 
briefl y exploring the development of Japa nese mathematics.

The Age of Arithmetic

The early history of Japan is inextricably bound up with that of China, 
from which it imported much of its culture, the Buddhist religion, as well as 
its system of government. This is true of Japa nese mathematics as well; how-
ever, our knowledge about the state of mathematics in Japan prior to the 
eighth century is almost non ex is tent. Perhaps the only defi nite piece of in-
formation from the earliest times is that the Japa nese had some system 
of exponential notation that could be used for writing high powers of ten, 
similar to what Archimedes employed in the Sand Reckoner. Traditionally, 
the system was in place before the legendary Jimmu founded Japan in the 
seventh century b.c., but the date and the exact nature of the system are 
open to dispute.

More concrete information dates only from the onset of the Nara pe-
riod (710–794), when a government was established at the city of Heijo, 
today’s Nara, near Osaka. By then the unifi cation of Japan had been in 
progress for four hundred years. Buddhism arrived from China in the 
 mid- sixth century and by the eighth century had becomes extremely pow-
erful, as evidenced by the “Great Eastern Temple” Todaiji that was built 
at Nara in 752. At the opening of the eighth century, the Nara rulers estab-
lished a university and prescribed nine Chinese mathematical texts, six of 
them from what became known as the Ten Classics. The most important of 
these would have been the Jiu zhang Suanshu, or Nine Chapters on the Mathe-
matical Art. The “mathematical art” of the Nine Chapters and the other 
books is for the most part arithmetic and elementary algebra; in Japan 
they  were introduced principally to aid in land surveying and tax collec-
tion. Although their full impact would not be evident for nearly one thou-
sand years, the Chinese texts provided the foundation for all Japa nese 
mathematics and their importance cannot be overstated. They also offer 
an illuminating window onto Chinese society of the time, and the reader 
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can get a taste of them by sampling the problems from the most infl uential 
classics in Chapter 2.

One impact of the Chinese texts was felt as early as 718. In that year 
the government passed the law yoryō ritsuryō, literally “law of the yoryō 
age,”2 by which it created the offi ce of San Hakase, meaning approximately 
“Arithmetic Intelligence.” The Department of Arithmetic Intelligence con-
sisted of about 70 midlevel functionaries whose job was apparently to mea-
sure the size of fi elds and levy taxes. According to the law, the members of 
Arithmetic Intelligence  were to learn only enough math from the Chinese 
books to calculate taxes, and so, although the Japa nese became profi cient 
in arithmetic operations, higher mathematics did not develop at that time.

Calculations of the period  were performed by a precursor to the abacus 
that consisted of a set of small bamboo sticks known as saunzi in Chinese, 
sangi in Japa nese. Certain confi gurations of the sticks represented num-
bers, not dissimilar to the simple strokes that represent roman numerals in 

2 Yoryō is a proper name that literally means “cherish aged people.”

Plate 1.5. The Great Eastern temple of Todaiji was built in a.d. 752 in Nara, 
near Osaka. Today it is one of the most pop u lar tourist destinations in Japan. 
(© Todaiji.)



the West. A member of the Department of Arithmetic Intelligence, intend-
ing to calculate some taxes, would place the sangi on a ruled piece of paper 
that resembed a chessboard, and with a series of prescribed operations he 
could carry out addition, subtraction, multiplication, division and extrac-
tion of roots, very much in the spirit that Western students performed long 
division before the advent of the calculator. (See color plate 3 for a photo 
of a sangi set.)

At the time, Japan’s two religions, the native Shintoism and the re-
cently imported Buddhism, coexisted in relative peace. Buddhist temples 
in  particular—as monasteries did during those centuries in the  West—be-
came repositories of learning. In chapter 7 you will have the opportunity to 
visit the major Shinto shrines Ise Jingū and Izumo Taisya with mathemati-
cian Yamaguchi Kanzan as he tours Japan collecting sangaku problems. Al-
though they are not mentioned in the part of the diary we excerpt, he also 
visited the two great Buddhist complexes of Hōryūji and Todaiji; at the lat-
ter Japan’s largest statue of the Buddha was constructed with the temple in 
752. Next to the temple is a wooden store house where a number of histori-
cal documents pertaining to tax collection in the Nara period reside.

These documents, which include maps drawn and signed by the mem-
bers of the Department of Arithmetic Intelligence, reveal some sophisti-
cated bookkeeping, for instance a rather involved expense account for an 
inspection of Suruga province3 in 738. The San Hakase staff consisted of 
two directors, nine subdirectors, six offi cers, ten clerks, and forty assistants. 
A fi rst group, made up of one director, one offi cer, one clerk, and six help-
ers, inspects one village in twelve days. A second group, made up of a direc-
tor, three subdirectors, three clerks, and twenty helpers, inspects seven 
villages and stays four days in each village. There are seven such groups, all 
of differing composition, and the total number of people involved is 1,330. 
Directors, subdirectors, and offi cers all get the same daily allocation of 
rice, salt, and sake, but clerks and helpers get less. It is a substantial arith-
metic calculation to determine the total expenditure of rice, salt, and sake, 
but the Department of Arithmetic Intelligence got it exactly right.

In order to quiet the various power struggles that plagued Japan during 
the Nara period, in 794 the seat of government was moved to  Heian- kyō, 
“the city of peace and  tranquility”—  present- day Kyoto.  Heian- kyō remained 

3 Now Shizuoka prefecture.
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the capital until 1192, and for that reason the period is known as the 
Heian era. During this relatively stable epoch, Japan began to develop a 
culture in de pen dent of China, and a writing system in de pen dent of Chi-
nese. The most signifi cant developments of the time  were in literature: 
The Tales of the Genji by Lady Murasaki Shikibu is considered the world’s 
fi rst novel, and Sei Shonagon’s diary of court life The Pillow Book has also 
achieved renown. Only a handful of names even tangentially connected 
with mathematics have come down to us, from the Nara period through 
to the seventeenth century, and there are almost no advances to report 
for nine hundred years. The Chinese texts written at the time may well 
have been imported into Japan but, as in the West, clergy  were little inter-
ested in science and mathematics, and as far as mathematics goes it was 
very much a dark age.

From the Kamakura period (1192–1333), when the Minamoto shogu-
nate established its government in Kamakura, far from Kyoto, there do 
survive a few literary references to sangi, which indicate that they  were still 
used for arithmetic calculation. For instance, in Kamo no Chōmei book 
Hosshinsyu (Stories about Buddhism), which was written around 1241 and con-
sisted of one hundred stories, there are two mentions of sangi. One is to 
count the number of repetitions of a Buddhist chant; in another story the 
author describes  houses destroyed by a fl ood as “like sangi,” because sangi 
are scattered on paper. In the anonymous Uji Syui (Stories Edited by the Uji 
Minister) from the beginning of the thirteenth century, one of the 197 hu-
morous stories concerns a man who wants to learn how to use the sangi.

Such meager scraps lead us to conclude that sangi continued to be used 
for arithmetic calculation, but there as yet appear to have been no develop-
ments in higher mathematics. This state of affairs continued through the 
Muromachi period, from 1338 to 1573, which takes its name from the Mu-
romachi area of Kyoto, where the Ashikaga family reestablished the gov-
ernment. During this era, the story goes, one could hardly fi nd in all Japan 
a person versed in the art of division. Nevertheless, not only was this an age 
when Japan carried out extensive trade with Southeast Asia and rich mer-
chants appeared, but it was also an age of burgeoning culture. At this time, 
contemporaneous to the Italian Re nais sance, Kanami Kiyotsugu (1333–
1384) invented Noh drama, while his son Zeami Motokiyo (1363–1443) 
brought it to the peak of its development. A few hundred years later, Sen no 
Rikyū perfected the tea ceremony, which concerns far more than the drink-
ing of tea; even today, millions of Japa nese study the ritual as a path toward 
perfecting Zen principles.



As in the West, the fi nal de cades of the sixteenth century in Japan  were 
far from peaceful. The Ashikaga shogunate came to an end in 1573 when 
warlord Oda Nobunaga (1534–1582) drove the last Ashikaga shogun from 
Kyoto. The following de cades saw Nobunaga’s successor, Toyotomi Hideyo-
shi, with the help of Tokugawa Ieyasu, conquer one province after another, 
until by 1590 Japan was fi nally unifi ed. As it happened, both Nobunaga 
and Hideyoshi  were great patrons of the arts and helped set the stage for 
the cultural blossoming that was shortly to come. Toward the end of his 
life, however, Hideyoshi appears to have begun behaving in an erratic 
and dangerous fashion, in 1591 forcing his friend and tea master Sen no 
Rikyū to commit ritual suicide. Not satisfi ed with the unifi cation of Japan, 
the following year he launched a massive invasion of Korea, which ulti-
mately failed. It did, however, have profound consequences for Japa nese 
mathematics.

One of Hideyoshi’s soldiers at the port of Hakata, which the warlord 
had established as his staging ground for the invasion, had in his posses-
sion an abacus, soroban in Japa nese, which evidently came from China. 
The soldier’s soroban is in fact the oldest surviving abacus in Japan (see 
plate 1.6 on page 15).

Whether or not the soldier’s was actually the fi rst abacus to reach Japa-
nese shores, Japan’s thriving trade at that time with other Asian countries 
made the importation of the Chinese suan phan, literally “calculating plate,” 
inevitable. We discuss the development of the suan phan in slightly more 
detail in the next chapter, but its appearance as the soroban around 1592 
revolutionized Japa nese mathematics; traditional Japa nese mathematics 
can be said to have begun with introduction of the calculating plate, aided 
by the peace of the Tokugawa shogunate.

The Ascendence of Traditional 
Japa nese Mathematics

The soroban’s advent in Japan also heralded the fi rst record of an identifi -
able Japa nese mathematician, Mōri Shigeyoshi,4 who fl ourished around 
1600. Little more is known about him, except that he lived in Osaka until 
the city was taken in 1615 by Tokugawa Ieyasu and thereafter lived in 

4 In the West usually referred to as Kambei Mōri.
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Plate 1.6.  Here is the oldest known abacus, or soroban, in Japan. It dates from 
about a.d. 1592 and was in the possession of one of Hideyoshi’s soldiers at the 
port of Hakata. (© Maeda Ikutokukai.)

Kyoto. There are stories, almost certainly untrue, that Mōri himself 
brought the soroban from China, but in any case he was an expert at its use 
and did more than anyone at the time to pop u lar ize numerical calcula-
tions. In 1622 Mori published a small primer Warizansyo, or Division Using 
the Soroban.5

Mōri himself was in possession of a Chinese book on the soroban, Cheng 
 Da- Wei’s famous Suanfa Tong Zong, or Systematic Treatise on Arithmetic, which 
was published in China in 1593 and made its way to Japan shortly after-
ward, in other words, at the same time as the soroban itself. Cheng’s book 
(see Chapter 2) had a great infl uence on the course of Japa nese mathemat-
ics in de pen dently of Mōri’s work. Not only was a Japa nese edition published 
in 1676 by Yuasa Ichirōzaemon (?–?), but already, in the 1620s, Yoshida 
Mitsuyoshi (1598–1672) studied the Suanfa Tong Zong closely, changing 
problems to suit Japan and adding many illustrations. Thus was born his 

5 The actual title of the booklet is uncertain because the title page is lost.



Jinkō- ki, or Large and Small Numbers, which appeared in 1627, becoming the 
fi rst complete mathematics book published in Japan.

The title Jinkō- ki originated from an old religious book of the twelfth 
century, Ryōjin Hishō, or Poems of Those Days. Yoshida’s Jinkō- ki mostly con-
cerned computational algorithms for which we use a calculator today, 
such as the extraction of square and cube roots. The book achieved im-
mediate and enduring popularity, running through about three hundred 
different versions over the next three centuries. There was the New Jinkō-
 ki, the Trea sure of Jinkō- ki, the The Concise Jinkō- ki, the The Riches of Jinkō-
 ki. . . . Of course, most  were ghost written, literally, but Yoshida did publish 
at least seven editions himself. In the 1641 version, he presented some 
open problems for readers to solve. When readers provided the answers, 
he published the next edition adding more open problems, and so on. In this 
way many Japa nese mathematics books  were published, the readers con-
tributing their solutions.

One of the problems treated in the Jinkō- ki concerned the calculation of 
π. In response, mathematician Muramatsu Shigekiyo (1608–1695) pub-
lished Sanso, or Stack of Mathematics, in which he uses a 215- or 32,768-sided 
polygon to obtain π = 3.14195264877. Nineteen hundred years earlier, Ar-
chimedes had arrived at his value of π by inscribing an n- sided polygon 
within a circle and approximating the circumference of the circle by the 
perimeter of the polygon. The more sides, the more accurate the approxi-
mation, and the better the value of π.6 Muramatsu used essentially the 
same technique, as did his contemporary Isomura Yoshinori (1640?–1710), 
who employed a 217 = 131,072–sided polygon inscribed in a circle of radius 1 
and obtained 3.141592664 for the perimeter. For some reason he wrote only 
π = 3.1416.

The most famous mathematician of the age, Seki Takakazu7 (1640?–
1708) also took up the challenge to calculate π. Using his own method, 
which was published posthumously by his disciples in the 1712 Katsuyō Sanpō, 
or Collection of Important Mathematical Results, he obtained π = 3.14159265359, 
which is correct to the eleven digits calculated. Seki’s disciple Takebe Kata-
hiro (1664–1739) succeeded in obtaining a value of π correct to 41 digits. 

6 More precisely, Archimedes bounded π by placing the circle between two polygons, 
knowing that the circumference of the circle was greater than the perimeter of the in-
scribed polygon and less than the perimeter of the circumscribed polygon. Employing 
96- sided polygons, he achieved a numerical value of 3 10/71 < π < 3 1/7.

7 Usually known in the West as Kowa Seki.
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Plate 1.7. From a 1715 edition of the Jinkō- ki, this woodblock print illustrates the 
advantages of using an abacus in business transactions. (Collection of Fukagawa 
Hidetoshi.)
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Plate 1.8. A soroban exercise from a later edition of the Jinkō- ki, c. 1818–1829. 
(Collection of Fukagawa Hidetoshi.)
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Because of their importance, we devote much of chapter 3 to the Jinkō- ki, 
Seki, and the various calculations of π.

The start of traditional Japa nese Mathematics is usually dated from the 
publication of the Jinkō- ki in 1627. The Nine Chapters, Cheng’s Treatise, and 
the other Chinese classics continued to exert their infl uence on Japa nese 
mathematics, either directly or through translations, but with the onset of 
sakoku the development of Japa nese mathematics rapidly became in de pen-
dent of China. Strangely, though, the Jinkō- ki did not herald the immediate 
death of the sangi. The soroban did quickly replace sangi in everyday busi-
ness calculations, but it was not so well suited for complex algebraic opera-
tions, in par tic u lar the solution of  high- degree equations, of which Japa nese 
mathematicians became very fond. As a result the sangi persisted side by 
side with the soroban well into the nineteenth century.

The samurai posed a major problem for the peace of the Edo era. Cen-
turies of warfare had turned them into barely literate brutes who needed 
to be pacifi ed and civilized. The Tokugawa expended much effort in this 
direction, with the result that within several generations the samurai 
 were transformed into a highly educated class, literate and versed in the 
fi ner things of life, as a Eu ro pe an noble of the time would be. Most of the 
warriors, having lost their jobs so to speak, became ordinary civil ser-
vants. For three or four days a week a samurai might go to the provincial 
castle to work, but the salary was so terrible that he often had to take on 
a side job.8 During the Edo period there  were no universities in Japan. 
Consequently, many samurai moonlighted as teachers in small private 
schools called juku, which  were devoted to the three R’s: reading, ’riting, 
and ’rithmetic, the last “r” standing for soroban. Whereas in previous ages 
samurai visited villages to levy soldiers, now their visits  were less frequent, 
and farmers found they had to calculate the area of their fi elds by them-
selves. As a result, they also began to attend the juku, which was made 
possible by a low attendance fee. With people from every  caste—from the 
rich to the poor, from samurai to  farmers—going to school, juku began 
to fl ourish. The roster at one school, the Yōken juku, shows that 2,144 
 students, including many adults, attended it over the course of fi fty years. 

8 The Tokugawa shogunate limited local warlords to one castle per domain and, with lit-
tle fi ghting during the entire Edo period, previous military strongholds, “castle towns,” be-
came administrative centers. Mathematician Yamaguchi Kanzan speaks of them frequently 
in his diary, chapter 7.



Their teacher was mathematician Sakuma Yōken (1819–1896), and the 
small wooden school room still stands. A recent study9 indicates that, by 
the nineteenth century, late in the Edo period, about 80,000 juku existed 
throughout Japan. Although, as in the West, children  were considered la-
borers, not students, the  home- grown schooling provided by the juku 
 resulted in a literacy level that was high compared to other countries at 
the time.

Many mathematicians, usually samurai who had received “Master of 
Mathematics” licenses, visited these rural schools to teach  mathematics—

9 Ohishi Manabu,  http:/library.u-gakugei.ac.jp (in Japa nese).

Plate 1.9. The Yōken juku, where mathematician Sakuma Yōken (1819–1896) 
taught 2,144 students over a  half- century. (Tamura city.)
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and evidently more than simple ’rithmetic. For it was from this milieu, iso-
lated from the Western world and increasingly divergent from China, that 
wasan, literally “Japa nese mathematics,” arose. Ordinary people at the 
juku, who could not afford to publish their own books, took up the ancient 
custom of bringing votive tablets to temples and began to hang sangaku, 
in this way both making a religious offering and advertising their results. 
Incidently, they created wonderful art.

Sangaku  were not the only medium for disseminating geometry. The Kore-
ans had been printing books with movable type 100 years prior to Guten-
berg,10 and both Korean and Eu ro pe an presses had found their way to Japan 
before the opening of the seventeenth century. As mentioned, however, 
printing by wooden blocks on rice paper became the favored method of pro-
ducing books in Japan, and, by the end of the seventeenth century, a plethora 
of mathematics texts had begun to appear, many of which contained prob-
lems from or identical to those found on sangaku. Sometimes these texts 
provide solutions not written on the tablets, and we often quote from them 
in the solution sections of our own book. Many of the illustrations found 
throughout Sacred Mathematics also come directly from  rice- paper books, 
originally printed in the seventeenth through nineteenth centuries.

Thus, by the end of the seventeenth century, wasan, traditional Japa nese 
mathematics, was fi rmly established. It would be over the next two hundred 
years, however, that traditional methods produced their most striking and 
original results.

The Flowering and Decline of Traditional 
Japa nese Mathematics

It was the eigh teenth and nineteenth centuries, as Japan’s isolation deep-
ened, that saw the greatest number of traditional Japa nese mathematics 
texts published, the most interesting theorems proved, and most of the san-
gaku problems created.

The majority of results obtained by traditional Japa nese mathemati-
cians  were not path breaking by Western standards, partly because Japan 

10 If, indeed, Gutenberg used movable type. See Tony Rothman, Everything’s Relative and 
Other Fables from Science and Technology (Wiley, Hoboken, N.J, 2003).



never developed a fully fl edged theory of calculus. Traditional Japa nese 
mathematicians found the areas and volumes of geometric fi gures in much 
the same way Eudoxus and Archimedes did in ancient Greece (and much 
as we do numerically today with computers). For example, one can divide 
up a circle into rectangular strips, as in plate 1.10. The narrower the strips, 
the more closely the area of the strips will approximate that of the circle. 
By letting the width of the strips go to zero, one can get an exact formula 
for the circle’s area. This idea served as the basis of the Enri (“Yenri”), a 
vague term meaning “circle principle,” but which amounts to what calcu-
lus students know as defi nite integration. And, as students know, there are 
any number of methods for computing the area of geometric fi gures by 
slicing up those fi gures in a con ve nient way and letting the width of the 
slices go to zero. One can do this informally for each situation, without 
proving the theorems about limits that students detest, but unless you 
have those theorems, in par tic u lar the fi rst and second fundamental theo-
rems of calculus, you are restricted to performing  so- called “defi nite” inte-
grals, and do not have a theory for doing integration in general, that is, for 
performing “indefi nite” integration. This was more or less the situation in 
traditional Japa nese mathematics. We discuss it more fully in chapter 9.

Despite such drawbacks, one cannot accuse the Japa nese mathemati-
cians of lacking ingenuity. Seki developed a theory of determinants before 
Leibnitz, and other Japa nese geometers proved a handful of famous theo-
rems prior to their Western counterparts, or at least in de pen dently of 
them. We’ll encounter some of these in chapter 8. They include the Des-
cartes circle theorem, the Malfatti problem, the Casey theorem, the Soddy 
hexlet, and a few others.

Additionally, the Japa nese  were extremely skilful at handling equations 
of high degree. We do mean high degree. In Yamaguchi’s diary, we will run 
across a famous problem, the Gion shrine problem, which involves an equa-
tion of the 1,024th degree. (And students fear quadratics!) The mathemati-
cian Ajima Naonobu11 (1732–1798) became famous for reducing the problem 
to one of the tenth degree, which was then solved numerically. Ajima 
proved a number of diffi cult theorems in geometry, which we discuss in 
chapter 3, and also came the closest of the Japa nese mathematicians to 
producing a full theory of defi nite integration.

Ajima’s work built on that of his pre de ces sor Matsunaga Yoshisuke (1692?–
1744), who studied infi nite series and their applicability to the calculation of 

11 Sometimes known as Chokuyen Ajima.
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Plate 1.10. From Sawaguchi Kazuyuki’s 1671 book Kokon Sanpōki, or Old and New 
Mathematics, this fi gure illustrates how to approximate the area of a circle by 
slicing it into rectangular strips. In a  fi rst- year calculus course one calculates the 
area of a circle in the same  way—by slicing up the circle, and adding up the area 
of the strips in the limit that their width goes to zero. (Aichi University of 
Education.)
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areas through integration. They  were followed by Wada Yasushi (1787–1840), 
who lived in poverty and produced a number of tables of defi nite integrals. 
Uchida Kyō (1805–1882) studied integration in Wada’s juku. He then pro-
duced a series of books that treat integration of solids, including areas formed 
by the intersection of cylinders, spheres, and so on. You will be challenged to 
try this sort of problem in chapters 5 and 6.

As we have said, many sangaku problems also appeared in traditional 
Japa nese texts. Fujita Sadasuke (1734–1807) published a book Seiyō Sanpō 
(Detailed Mathematics), and his son, Fujita Kagen (1772–1828), carried on 
the tradition by publishing Shinpeki Sanpō, rendered sometimes as Mathe-
matics of Shrines and Temples and sometimes as Sacred Mathematics, the fi rst 
collection of sangaku problems. (See color plate 14 for a portrait of Fujita 
Kagen.) A few famous problems appearing in the present Sacred Mathemat-
ics have been taken from those works.

As the centuries progressed, a few hints of Occidental mathematics 
seeped in to Japan via China and the Dutch at Nagasaki. For example, 
the Japa nese evidently learned of logarithms from a 1713 Chinese pub-
lication, the Su- li  Ching- Yin. Nevertheless, even in 1824, a Japa nese math-
ematician seemed surprised to learn of a drawing in a Dutch work that 
showed an  ellipsograph—a mechanism for drawing an ellipse known in 
the West at least since Leonardo da Vinci. By the  mid- nineteenth cen-
tury one does fi nd manuscripts containing both Eastern and Western 
notation.

But wasan held its ground until,  as a direct consequence of the opening 
of Japan to the West by Perry,  the Tokugawa family lost power in 1868. The 
new Meiji government decided that,  in order for Japan to be an equal part-
ner to foreign nations,  it must rapidly modernize. Their program included 
mathematics. Governmental schools  were established all over Japan and in 
the 1872 Gakurei,  or “Fundamental Code of Education, ” the Meiji leaders 
decreed that “wasan was not to be taught at school,  but Western mathemat-
ics only.”

Due to the juku, mathematics had been fl ourishing in Japan and West-
ern  mathematics—yosan—proved easy to introduce and was quickly ad-
opted. Of course, diehards fought back. One of the last samurai, Takaku 
Kenjirō (1821–1883), wrote, “Astronomy and the physical sciences as found 
in the West are truth eternal and unchangeable, and this we must learn; but 
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as to mathematics, there Japan is leader of the world.”12 In the end, re sis-
tance was futile. With the Meiji Fundamental Code, teachers of traditional 
mathematics lost their jobs and wasan was destined to perish. From a strictly 
mathematical point of view, its death is perhaps not to be mourned over-
much, but from an esthetic point of view we surely lost something when lov-
ers of traditional mathematics fi nally ceased creating their beautiful problems 
and the tablets that they offered to the world. We can only be grateful for 
what remains.

12 Smith and Mikami, p. 273 (“For Further Reading, Chapter 1,” p. 338).



Plate 2.1. This illustration of a man mea sur ing the height of a tree using basic 
trigonometry is from an edition of the Jinkō- ki published between 1818 and 1829, but, 
like most of the problems in the Jinkō- ki, it was passed down from Chinese sources. 
The problem asks for two ways a woodsman can use trigonometry and/or a stick of 
known length to mea sure the height of a tree. Compare problem 2- 3 in this chapter. 
(Collection of Fukagawa Hidetoshi.)



The Chinese Foundation of 
Japa nese Mathematics

I have heard that the Grand Prefect 
is Versed in the art of numbers, so let 
me ask you: In times of old  Fu- Hsi 
mea sured the heavens and regulated 
the calendar. But there are no steps 
by which one may ascend the heav-
ens, and the earth is not mea sur able 
with a  foot- rule. I should like to ask, 
what was the origin of these numbers?

—From the Zhou bi suan jing

To understand the development of Japa nese mathematics is to appreci-
ate the Chinese mathematics that so strongly infl uenced it. In this chapter 
we give a brief survey of ancient and medieval Chinese mathematics, and 
then present some problems from the classic Chinese texts. The problems 
are of interest not only because they give an idea of the state of Chinese 
mathematics of past ages, but because they offer a tantalizing glimpse into 
a society whose daily life revolved around rice,  horses, business, and the 
abacus. There are occasional tricks to these problems, but for the most part 
they should not be diffi cult for middle or high school students.

The earliest of the great books on mathematics is the Zhou bi suan jing, 
loosely The Arithmetical Classic of the Gnomon and the Circular Path of Heaven. 
The author and the date of the Zhou bi are unknown to us. All evidence in 
fact indicates that scholars added to the original as it passed through the 
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centuries. A famous dialogue at the start of the Zhou bi takes place between 
a prince,  Zhou- Kong, and his learned minister, Shang Kao.  Zhou- Kong 
died in the year 1105 b.c., but his appearance as one of the participants in 
the dialogue is less an indication of the date of its composition than of po-
etic license. Most scholars have believed the book reached completion by 
the second or third century b.c., although some recent investigations have 
suggested that it did not assume its fi nal form until the fi rst century a.d.1 
The Zhou bi is not a mathematics text that today’s students would recog-
nize. Mathematical notation was almost non ex is tent and most concepts are 
stated in words. There is some discussion of the gnomon, a vertical stake 
thrust into the ground whose shadows can be used to mea sure the height 
of the sun. Generally, the Zhou bi is much concerned with astronomy and 
calendar making, and it includes maps of the stars near the celestial Pole.

On the other hand, the Zhou bi does make use of fractions, discusses their 
multiplication and division, and, although the extraction of square roots is 
not explicitly worked out, the text makes it clear that square roots  were used. 
Of greatest interest for us is that, at the beginning of the book, in the dia-
logue between  Zhou- Kong and Shang Kao, one fi nds a discussion of the 
3- 4- 5 right triangle. Although couched in diffi cult language, it is clear that 
the Chinese understood the Pythagorean theorem, that the sum of the 
squares of two sides of a right triangle equals the square of the hypotenuse. 
But there is no general proof of the theorem. This part of the Zhou bi is 
thought to be the oldest and dates from about the sixth century b.c.—roughly 
the same time Pythagoras is said to have discovered the theorem in Greece.

From our perspective a more substantial work is the Jiu zhang Suanshu, or 
Nine Chapters on the Mathematical Art. Once again, the date and author are 
unknown, although most experts seem to believe it was fi nished by the late 
second or early third century a.d. The nine chapters of the Jiu zhang chapters 
contain a total of 246 problems concerning surveying, engineering, and tax-
ation, among other things, which employ fractions, “geometrical” and “arith-
metic” progressions, and the solution of simultaneous equations. The eighth 
chapter, depending on the date, may contain the fi rst mention of negative 
numbers, and the fi nal chapter is “Gou Gu,” or the “Width and Height of 
 Right- Angled Triangles,” in which  twenty- four problems on the Pythagorean 

1 See “Further Reading,” this chapter, Ronan, Science and Civilization, chap. 1; Cullen, 
 Astronomy and Mathematics, chap. 3 (“For Further Reading, Chapter 2,” p. 338).
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theorem are introduced. We give a few of these below. In this chapter is also 
an early statement of the quadratic equation and the quadratic formula for 
solving them. It may not be the earliest, because according to some histori-
ans the Egyptians began studying quadratics prior to 2000 b.c.

It is worth mentioning that, although we speak of the the Nine Chapters 
as a “book,” its contents  were evidently recorded on bamboo sticks, each 
about 2 cm wide and 25 cm long. In July 2002 Japa nese newspapers re-
ported the excavation of about twenty thousand wooden and bamboo sticks 
dating from 221–206 b.c., on some of which  were inscribed multiplication 
tables. The date makes them contemporaneous with the older Zhou bi suan 
jing. Nevertheless, although paper came into use in China after about a.d. 
105, the later Nine Chapters also seems to have been “printed” on bamboo.

The Jiu zhang Suanshu was the most infl uential of the ancient Chinese 
texts, leading to a number of other books that acquired their own renown 
over the centuries. One of these was the Sun- Tsu Suanjing, or Arithmetic Clas-
sic of  Sun- Tsu. (This  Sun- Tsu (often  Sun- Zi) is sometimes confused with the 
celebrated tactician who authored the military classic The Art of War, but 
that one is believed to have lived in the sixth to fourth century b.c., while 
 Sun- Tsu the mathematician probably fl ourished in the fi fth century a.d.) 
Between a.d. 618 and 901, the Zhou bi, the Jiu zhang, and the Sun- Tsu  were, 
with seven other books, considered by the Chinese government to be 
textbooks, and from 1078 to 1085 they  were published together as the Ten 
Classics.

Plate 2.2. This fi gure from the Zhou bi suan jing 
shows that the Chinese understood the Pythago-
rean theorem early on, but no general proof of the 
theorem appears.
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Several more important Chinese books appeared in the thirteenth cen-
tury. One, the 1247 Shushu Jiuzhang, or Mathematical Treatise in Nine Chapters 
of Qin Jiushao (Chin  Chiu- Shao), contains the “heaven origin unit” 1, as 
well as the symbol zero and a clear distinction between positive and nega-
tive numbers. Although the title refers to the original Nine Chapters, Qin 
Jiushao’s nine chapters are not the same. More important for traditional 
Japa nese mathematics was the 1299 Suanxue Qimeng, or Introduction to Math-
ematical Studies by Zhu Shijie (Chu  Shih- Chieh), from which we excerpt 
some problems as well.

As discussed in chapter 1, at the opening of the eighth century, the 
Japa nese government introduced the Nine Chapters and eight other books 
into the university system as mathematics texts. Some of the later books 
may also have found their way to Japan before the seventeenth century, 
but there is little evidence one way or the other. It is only at the time of 
the importation of the Chinese abacus, the suan phan, that information 
becomes more defi nite. The origin of the suan phan is also shrouded in 
the mists of time and debate. The fi rst complete modern description of 
the “calculating plate” is found in Cheng  Da- Wei’s 1593 Suanfa Tong Zong, 
or Systematic Treatise on Arithmetic. The late date has led some to historians 
to argue that the abacus was unknown in China until relatively modern 
times, but other convincing descriptions date from 1513, 1436, and even 
the sixth century or earlier. A figure of the suan phan was published in 
a Chinese mathematics book, the KuiBen DiuXiang SiYan ZaZi, or Leading 
Book of Four Words in Verse of 1371,2 so it seems clear that the abacus 
was complete by that date. A reasonable hypothesis is that the calculating 
rods discussed in chapter 1, the suanzi, gradually morphed into the 
abacus.

Cheng  Da- Wei’s Treatise had a great impact on both Chinese and Japa-
nese mathematics. Cheng (1533–1606) himself was a local government of-
fi cial who needed to know how to use the suan phan, and at the beginning 
of his book he included two chapters on basic calculations and use of the 
abacus. To the nine subsequent chapters he gave the same names as those 
of the nine chapters of the Jiu zhang Suanshu, although Cheng includes 
magic squares, musical tubes, formulas given in verse, and practically any-

2 See Li Di, Chinese Mathematics. See also Martzloff, Chinese Mathematics, p. 215. He gives 
1377 as the probable date. (“For Further Reading, Chapter 2,” p. 338.)
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thing  else he can think of. The book remained pop u lar in China for centu-
ries, and was, apparently, still in print as late as 1964, when old people 
could still be found capable of reciting the versifi ed formulas.3

With such renown in China, it is hardly surprising that Cheng’s book 
soon changed the course of Japa nese mathematics. We have already seen 
that the Treatise led directly to both Mōri Shigeyoshi’s Division Using the Soro-
ban and Yoshida’s phenomenally successfully Jinkō- ki. The infl uence of 
Cheng’s Treatise, as well as the other Chinese classics, continued well into 
the nineteenth century. In 1676 Yuasa Ichirōzaemon published a Japa nese 
edition of the Treatise. Twenty years earlier, in 1658, Haji Dōun (?–?) pub-
lished a Japa nese edition of Zhu Shijie’s 1299 Introduction, and in 1690 
Takebe Katahiro (1664–1739) published an enlarged edition of the same 
work. He called it Sangaku Keimō Genkai Taisei, or Annotation of the Suanxue 
Qimeng. As late as 1824, the Japa nese mathematician Kitagawa Mōko (1763–
1833) intended to publish a translation of the original Jiu zhang, but he 
failed to do so, leaving only a manuscript.

To give a better idea of the fl avor of the great Chinese works, which to 
this day are not well known in the West, we now present problems from 
several of them. A considerable amount of borrowing took place from one 
author to the next. We have eliminated most of the repetition, but that 
there remains some similarity among the problems across the centuries 
refl ects the reality of the practice, not a lack of editing. You will also notice 
that chapter titles do not always correspond closely to the problems con-
tained within them. When not with the problems themselves, the answers 
can be found at the end of the chapter.

1. Jiu zhang Suanshu, or Nine Chapters 
on the Mathematical Art

The nine chapters of this famous book contain a total of 246 problems. 
We present one from each chapter. Most of those below are very easy and 

3 Martzloff, Chinese Mathematics, p. 160 (“For Further Reading Chapter 2, p. 338). One 
should also point out that in the West as well, before equations became widespread, it was 
common to learn formulas or algorithms by memorizing verse.
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Problem 1- 1
(From chapter 1 of the Jiu zhang: “On Mea sur ing Various Fields.”)
We walked around a circular fi eld and obtained for the circumference 181 bu 

(= 208.15 m) and for the diameter is (60 + 1/3)bu (= 69.38 m). Find the value of 
π = circumference/diameter and the area of the fi eld in the form of fractions.4

Solution: Since π = 181/(60+1/3) = 3, the area is A = πr2 = 3 × (181/6)2 = 32761/12 = 2730 
+ 1/12 bu = (11 + 90/240) se + 1/12 bu = 11 se + (90 + 1/12) bu.

In his a.d. 263 revision of the Nine Chapters, annotator Liu Hui (220–265?) noted that 
π = 157/50 = 3.14 was better than π = 3. Another problem from chapter 1 of the Nine 
Chapters was quoted by Yoshida in his Jinkō- ki, and we give it as problem 1 in chapter 3.

Problem 1- 2
(From chapter 2 of the Jiu zhang: “Proportions.”)
In general, a fair exchange is 50 shō of millet for 27 shō of rice.  Here is 21 shō of millet. 

How many shō of rice will we obtain in exchange?

Solution on page 53.

4 In this chapter we generally use original units, for example the bu rather than the me-
ter. To change the original numbers into values consistent with modern units becomes very 
confusing. If readers wish, however, they can go from traditional Chinese units of the sec-
ond century b.c. through the second century a.d to modern units by using the following 
conversions:

For lengths: 1 sun = 2.3 cm;  1 syaku = 10 sun = 23 cm; 
 1 bu = 5 syaku = 1.15 m; 1 jō = 2 bu = 10 syaku = 2.3 m; 
 1 ri = 360 bu = 414 m.

For areas: 1 bu = 32 m2;   1 se = 10 bu = 240 bu = 317 m2.
For volumes: 1 shō = 0.2 l   1 to = 10 shō = 2 l

 1 koku = 10 to = 20 l.
For weights: 1 shō = 0.58 g;  1 ryō = 24 shō = 13.9 g; 

 1 kin = 16 ryō = 222.4 g; 1 koku = 120 kin = 26.688 kg.

we hope cause no great diffi culty for modern students. In looking at the 
form of the solutions, which usually contain fractions, it helps to realize 
that, in ancient Chinese mathematics, fractions  were used exclusively to 
represent nonintegral numbers; there  were no decimals.
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Problem 1- 3
(From chapter 3 of the Jiu zhang: “Distribution.”)
Here is an expert in weaving. She wove a certain amount of cloth on the fi rst day, twice 

as much on the second day, double that on the third day, and so on. In fi ve days she wove 
a total of 5 syaku of cloth. What was the length she wove on the fi rst day?

This problem was quoted in the later Sun- Tsu Suanjing.

See page 53 for solution.

Problem 1- 4
(From chapter 4 of the Jiu zhang : “On Calculating the Area of a Field.”)
Let the area A of a rectangular fi eld be 240 square bu, where x bu is the width and y bu 

is the length.5 For each x below, fi nd y in terms of fractions:

(1) x = 1
(2) x = 1 + 1/2.
(3) x = 1 + 1/2 + 1/3.
(4) x = 1 + 1/2 + 1/3 + 1/4
(5) x = 1 + 1/2 + 1/3 + 1/4 + 1/5
(6) x = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6.

The answers can be found on page 53.

Problem 1- 5
(From chapter 5 of the Jiu zhang: “On Values of Various Solids.”)
Next to the river, we raised a bank of earth 127 syaku long with a lower width of 20 syaku, 

an upper width of 8 syaku and a height of 4 syaku.

(1) Find the volume of the earth bank.
(2)  In winter, one worker can carry in a total of 444 cubic syaku of earth. How many work-

ers are needed to build the bank in one season?

Solution on page 53.

5 Note in the conversions that bu was traditionally used as both a length and an area. We 
will refer to “square bu” for area, and similarly for other units.
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Problem 1- 6
(From chapter 6 of the Jiu zhang: “Wages.”)
One day a traveler started off on a journey, bringing with him a certain amount of kin6 

for the purpose of paying taxes. As he traveled, he had to pass through fi ve check points 
A, B, C, D, and E. Passing through point A, he paid half the money he had brought for 
taxes. When he passed the point B, he paid a third of what was left of his tax money. At C 
he paid a fourth of the tax money that remained after B, and similarly at check points D, 
and E. At the end he found he had paid a total of 1 kin as tax. How much tax money did 
he have to start with?

See page 53 for solution.

Problem 1- 7
(From chapter 7 of the Jiu zhang: “Extra and Lack.”)
A melon stem grows 7 sun a day. A creeper stem grows 10 sun per day. In the same day, 

the melon stem grows down from a point on a cliff that is 90 sun high, and the creeper 
grows up from the bottom of the cliff. After how many days will the two stems meet?

The solution can be found on page 53.

Problem 1- 8
(From chapter 8 of the Jiu zhang: “Square,” or “On Systems of Linear Equations.”)
Assume that each stalk on rice plants A, B, and C produces a, b, and c to of rice, respec-

tively. Now, the total amount of rice from three stalks of A, two stalks of of B, and one 
stalk of C is 39 to. The total amount from two stalks of A, three stalks of of B, and one 
stalk of C are 34 to, and the total amount from one stalk of A, two stalks of of B, and 
three stalks of C is 26 to. Find a, b, and c.

The solution can be found on page 54.

Problem 1- 9
(From chapter 9 of the Jiu zhang: “Gou Gu,” or “Right- Angled Triangles.”)

6 kin is the traditional unit of both money and weight (see previous footnote), but we do 
not know the value of one kin in terms of modern currency. In old China, 1 kin = 16 ryō, and 
1 ryō = 24 shō, and the original result of problem 1-6, 6/5 kin, was represented as 1 kin, 3 ryō, 
and 4 + 4/5 shō, since 6/5 = 1 + 3/16 + (1/16)[(1/24)(4 + 4/5)].
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A bamboo stalk 10 syaku high is broken at a point Q so that the top 
of the stalk falls over and touches the ground at a point T. The dis-
tance from the root P to T is 3 syaku. Find the distance PQ.

This is a famous problem, which fi rst appeared in the Jiu zhang and then 
in a number of Chinese books, including Yang Hu’s Xiangjie Jiuzhang Suanfa 
of a.d. 1261, and Cheng  Da- Wei’s 1593 Suanfa Tong Zong.

The answer follows directly from the Pythagorean theorem: If x is the 
distance PQ, then x2 + 32 = (10 − x)2. Solving for x gives x = 91/20 = 4 + 11/20 
syaku.

Plate 2.3. Illustrating the Pythago-
rean theorem with a broken bamboo 
stalk, this famous problem from Nine 
Chapters was published in many 
subsequent books. The version 
shown  here comes from Yang Hu’s 
Xiangjie Jiuzhang Suanfa of a.d. 1261.
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2. Sun- Tsu Suanjing, or the Arithmetic Classic 
of  Sun- Tsu, c. Fifth Century A.D.

Sun- Tsu’s book, whenever it was written, consisted of three volumes. The 
fi rst is full of problems in elementary arithmetic, which we do not present 
 here. We do, however, present a  half- dozen interesting problems from the 
second and third volumes. One of these is famous as the “Chinese remain-
der theorem,” which we give as problem 2- 6 below.

Problem 2- 1
We built an earth bank 5550 syaku long with an upper base 20 syaku long, a lower base 

54 syaku long, and a height of 38 syaku. A worker can carry 300 cubic syaku of dirt in one 
season. How many workers are needed for building the bank?

As you can see, this problem was taken from the Jiu zhang (problem 1- 5 above) and is 
solved in the same way. The solution is on page 54.

Problem 2- 2
Some thieves stole a long roll of silk cloth from a ware house. In a bush far from the 

ware house, they counted the length of the cloth. If each thief gets 6 hiki, then 6 hiki is left 
over, but if each thief takes 7 hiki then the last thief get no cloth at all.7 Find the number 
of thieves and the length of the cloth.

Answer : If N is the number of thieves and L is the length of the cloth, then the fi rst 
condition tells us that 6N = L − 6. The second condition says L = 7(N − 1). Solving these 
two equations gives N = 13 and L = 84 hiki.

The problem of the silk thieves also appeared in Yoshida’s Jinkō- ki of 1631.

Problem 2- 3
We want to mea sure the height of a tree whose shadow is 15 syaku long. Near the tree, 

we erect a small stick 1.5 syaku tall and mea sure its shadow to be 0.5 syaku long. Find the 
height of the tree.

7 The hiki is another traditional unit of length, used for mea sur ing cloth; 1 hiki = 4.7 m. 
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This problem appeared in the original Jinkō- ki of 1627 as well. The solution is on page 54.

Problem 2- 4
In a cage, there are some roosters and hares. The total number of necks is 35 and the 

total number of feet is 94. How many roosters and hares are in the cage?

The roosters and hares appeared in the Inki Sanka of 1640 (chapter 3) and as cranes and 
turtles in the 1815 Japa nese book Sanpō Tenzan Shinanroku by Sakabe Kōhan (1759–1824). 
The solution is on page 54.

Problem 2- 5
On the top of a gate, one can see nine banks; on each bank there are nine trees, each 

of which has nine branches. On each branch, there are nine nests, in each nest live nine 
adult crows, each of which has nine chicks. Each chick has nine feathers and each 
feather has nine colors. How many trees, branches, nests, crows, chicks, and colors are 
there?

Answer on page 54.

Plate 2.4. Ruthless thieves 
stealing a roll of cloth 

appeared in the Jinkō- ki of 
1643, but the problem was 
taken from the Sun- Tsu 
Suanjing. We present it  here 
as problem 2- 2.
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Problem 2- 6
(This is the Chinese remainder theorem.)
Here is an unknown number of objects. If they are counted in threes, then two are 

left; if they are counted in fi ves, three are left; if they are counted in sevens, two are left. 
How many objects are there?

This is the prototype of a famous problem that appeared in many guises around the 
world. A typical, apparently medieval, version is: “An old woman goes to market and a 
 horse steps on her basket and crushes the eggs. The rider offers to pay for the damages and 
asks her how many eggs she had brought. She does not remember the exact number, but 
when she had taken them out two at a time, there was one egg left. The same happened 
when she picked them out three, four, fi ve, and six at a time, but when she took them seven 
at a time they came out even. What is the smallest number of eggs she could have had?”8

Sun- Tsu’s version is important because it provides a method of solution equivalent to that 
given in modern number theory courses. His original solution9 goes something like this:

Answer : 23.
Rule: If they are counted in threes, two are left: set 140. If they are counted in fi ves, 

three are left: set 63. If they are counted in sevens, two are left: set 30. Take the sum 
of these [three numbers] to obtain 233. Subtract 210 from this total; this gives the 
answer.

In general : For each remaining object when counting in threes, set 70. For each remaining 
object when counting in fi ves, set 21. For each remaining object when counting in sevens, set 
15. If [the sum obtained in this way] is 106 or more, subtract 105 to obtain the answer.

Applying the general instructions to this case means that the answer is 
2 × 70 + 3 × 21 + 2 × 15 − 210 = 23.

Let us decode  Sun- Tsu’s prescription. If there are N objects, then “count-
ing in threes” means simply to subtract three at a time until, in this case, 
two remain. In other words, long division of N by 3 yields a remainder of 2. 
Students of algebra will know that a more sophisticated way of saying this is 
that N = 2(mod 3) (read “N equals 2 mod 3”). In general, x = r(mod m), 
means that m goes into x an integral number of times with a remainder of 
r. For example, 38 = 2(mod 12), since 12 goes into 38 three times with a 
remainder of 2. By the same token, 50 = 2(mod 12), since 12 goes into 50 
four times with a remainder of 2. In Sun Tsu’s problem we have

8 Oyestein Ore, Number Theory and Its History (Dover New York, 1976), p. 118.
9 See Martzloff, Chinese Mathematics, p. 310. (“For Further Reading, Chapter 2,” p. 338).
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N = 2(mod 3),
N = 3(mod 5),

 N = 2(mod 7). (1)

Thus in modern guise the problem reduces to fi nding an integer solution 
N to three simultaneous equations in modular form. There may be (and in 
this case certainly are) more than one N that satisfi es the three relation-
ships; presumably we want the smallest.

We fi nd the solution in a pedestrian manner. Notice that the fi rst num-
ber in Sun Tsu’s prescription is 2 × 70 = 140 = 2(mod 3). But notice also 
that 140 + 63 = 2(mod 3) as well. That is, 63 is exactly divisible by 3, so 
adding 63 to 140 does not affect the remainder. For the same reason 
140 + 63 + 30 = 2(mod 3). Similarly 63 = 3(mod 5), but since both 140 and 
30 are divisible by 5, 140 + 63 + 30 = 3(mod 5). Finally, 30 = 2(mod 7) = 
140 + 63 + 30.

Thus, we see that the sum N = 140 + 63 + 30 = 233 satisfi es all three equa-
tions (technically known as congruences). However, 233 is not the smallest 
possible N. The least common multiple of 3, 5, and 7 is 105, and so 2 × 105 = 210 
is also divisible by all three factors; adding or subtracting it will not affect any 
remainder. Consequently, we want N = 233 − 210 = 23,  Sun- Tsu’s answer. The 
last step is what he meant when he said that if the answer is 106 or more, sub-
tract 105; in fact subtract the nearest multiple of 105.

You are undoubtedly wondering where  Sun- Tsu got the numbers 2 × 70, 
3 × 21, and 2 × 15. This part is educated guesswork. First we multiply to-
gether the divisors of the last two of equations (1) to get 5 × 7 = 35. We 
then look for a multiple of 35 that satisfi es the fi rst equation. Clearly 140 
does. (You might notice that 35 itself does; explain why we do not want this 
solution.) Next we search for multiples of 3 × 7 = 21 that satisfy the second 
equation, and multiples of 3 × 5 = 15 that satisfy the third equation. This 
explains the origins of  Sun- Tsu’s numbers.

Sun- Tsu’s problem appeared in the 1631 edition of the Jinkō- ki, where it 
is called the “105- subtraction” problem.
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3. Suanxue Qimeng, or Introduction to 
Mathematical Studies, by Zhu Shijie, 1299

As mentioned in the introduction to this chapter, the Japa nese mathemati-
cian Haji Dōun (?–?) published a Japa nese version of this important book 
in 1658. The original Chinese version consists of three volumes with a total 
of 259 problems.

In volume 1, the author discusses various values for π. Zhu Shijie refers 
to π = 3 as “old π” and goes on to survey some of the advances in the com-
putation of π over the centuries. He mentions the mathematician Liu Hsin, 
who used a value of 3.154 in the fi rst de cade of the fi rst century a.d., al-
though there is no record of how he arrived at it.10 Zhu Shijie also cites Liu 
Hui, who in a.d. 263 used a 192- sided polygon to arrive at a value of 
π = 157/50 = 3.14 (see problem 1- 1).

In the fi fth century Zu Chongzhi (429–500) and his son Zu Geng ar-
rived at a value of π between 3.1415926 and 3.1415927. Although Zhu Shijie 
does not discuss all these studies in detail, later mathematicians confi rmed 
the accuracy of the Zus’ fi gure by using polygons of up to 16,384 sides. It 
was not until about 1600 that Eu ro pe an values of π approached that of the 
Zus in the fi fth century.

In Zhu Shijie’s second volume, we fi nd methods for calculating the area 
or volume of various fi gures. The third volume contains a numerical 
method for fi nding the roots of  high- degree polynomial equations. Centu-
ries later in the West, this procedure became known as “Horner’s method,” 
after an En glish school teacher William Horner (1786–1837), who pub-
lished it in 1830. Horner, however, has been accused of plagiarizing the 
technique from a London watchmaker, Theophilius Holdred, who pub-
lished it in 1820. In any case, both  were preceded not only by Zhu Shijie but 
by the Italian pioneer of group theory, Paolo Ruffi ni, who developed the 
method in the nineteenth century.11

The following problems are from volumes two and three of Zhu Shijie’s 
work.

10 See Ronan, Science and Civilization (“For Further Reading, Chapter 2,” p. 338).
11 See  http:// www -groups .dcs .st -and .ac .uk/ history/ Mathematicians/ Horner .html. See 

also Cooke, History of Mathematics, p. 415 (“For Further Reading, Chapter 2,” p. 338).
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Problem 3- 1
Find the volumes V of the following fi gures in terms of a, b and h.

(1)  A truncated pyramid of height h = 12 syaku whose lower base is a square with sides 
b = 6 syaku in length, and whose upper base is a square with sides a = 4 syaku in 
length. (See fi gure 2.1.)

(2)  A truncated cone, with height h = 20 syaku whose circumference for the lower base is 
b = 72 syaku and for the upper base is a = 36 syaku. (See fi gure 2.2.) Use π = 3.

Solutions can be found on page 54.

h
b

b

a
a

Figure 2.1. What is the volume of this frustrum, or truncated 
pyramid?

Problem 3- 2
A vigorous  horse A can run 240 ri per day and a weak  horse B can run 150 ri per day. If 

 horse A started off twelve days after B, how many days does it take A to catch up with B?

This problem, with the numbers changed, appeared in the 1815 Traditional Japa nese 
Mathematics book Sanpō Tenzan Shinanroku, or Guide to Algebraic Method of Geometry, by Sak-
abe Kōhan (1759–1824). The solution is on page 54.

Problem 3- 3A
Solve the following system of equations:

(1) xy = 1024, where y/x + x/y = 4.25 and x > y;
(2) xy = 4096 where x/y − y/x = 3.75.

h

b

a

Figure 2.2. What is the volume of this frustrum, or truncated cone?
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Solutions:

(1)  By  cross- multiplying, x2 + y2 = 4.25 xy = 4352. But (x + y)2 = 4,352 + 2xy = 6,400. Thus 
x + y = 80 and xy = 1,024. Together the two conditions imply that x and y are the 
roots of t2 − 80t + 1024 = (t − 16)(t − 64) = 0. Since x > y, x = 64, y = 16.

(2)  Similarly, x2 − y2 = 3.75 xy = 15,360. But x2y2 = 16,777,216. Since x2y2 = x2[x2 − (x2 − y2)], 
we have x2(x2 − 15,360) = 16,777,216. This gives a quadratic equation for x2:

x4 − 15,360x2 − 16,777,216 = (x2 + 1024)(x2 − 16,384) = 0,
  which shows that x2 = 16,384, or x = 128 and y = 32.

Problem 3.3B
Solve the following system of equations for x > y > z:

(1) x2 + y2+ z2 = 14384;
(2) x + y + z = 204;
(3) x − y = y − z.

We give the Suanxue Qimeng’s original solution on page 54.

4. Suanfa Tong Zong, or Systematic Treatise 
on Mathematics, by Cheng  Da- wei, 1592

Perhaps the most infl uential of the Chinese books on Japa nese mathemat-
ics, Cheng  Da- Wei’s Treatise consists of 17 chapters. In the fi rst and second he 
gives the fundamentals of calculations and introduces the soroban. There 
follow nine chapters that have the same titles as in the original Nine Chap-
ters, although the subject matter is different and the fourth chapter has 
been divided into two. The remaining chapters consist of more advanced 
problems. Despite the considerable number of magic squares it contains, 
Cheng  Da- Wei’s book is a practical one. Apart from giving instructions on 
the use of the abacus, he discusses the mixing of alloys and the calculation 
of areas of various fi gures. In this context he discusses various approxima-
tions to π, although the values are the same as in the earlier Suan- hsiao  Chi-
 meng. We  here sample a few problems from various chapters of Cheng’s 
book. Problem 4- 4 is particularly noteworthy in that it requests the use of 
“Pascal’s triangle.” The celebrated triangle appeared in an annotated ver-
sion of the original Chinese Nine Chapters, which was published in 1261. It 
also appears to have been discussed even earlier by  Al- Karaji (953–c. 1029) 
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Figure 2.3. Show that the area of the circle is about  three- fourths the area of 
the square.

in Baghdad.12 In the West, the triangle fi rst appeared in the 1527 Cosmo-
graphia of Petrus Apianus (1425–1552), although Blaise Pascal (1623–1662) 
exploited it more thoroughly a century later. Plenty about Pascal’s triangle 
can be found on the Web. Its basic property is that the entries consist of the 
binomial coeffi cients useful in expanding polynomials, as required in prob-
lem 4- 4. Traditional Japa nese mathematicians learned of the triangle from 
the Suanfa Tong Zong.

12 See  http:// www -groups .dcs .st -and .ac .uk/ history/ Mathematicians/ Al -Karaji .html

Problem 4- 1
(From chapter 3 of the Suanfa Tong Zong: “Houden,” or “Square Fields.”)
Show that the following facts are approximately true:

(1)  The circumference of a circle with diameter 1 is about 3.
(2)  The diagonal of a square whose sides are 5 is about 7.
(3) The height of an equilateral triangle with side 7 is about 6.
(4)  If the area of a circle inscribed in a square is  three- fourths the area of the square, 

then π is 3.
(5)  The area of a square inscribed in a circle is about  two- thirds the area of the 

circle.
(6)  The area of a circle inscribed in an equilateral triangle is about  four- sevenths the 

area of the triangle.
(7)  The area of a regular hexagon inscribed in a circle is about  six- sevenths the area of 

the circle.
(8)  The area of a circle inscribed in a regular hexagon is about  six- sevenths the hexa-

gon’s area.
(9)  The area of an equilateral triangle inscribed in a circle is about  seven- sixteenths the 

area of the circle.

The above problems concerning areas  were quoted in Yoshida’s Jinkō- ki of 1627. Solutions 
to all can be found on page 55.
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Figure 2.4. Show that the area of the square is about  two- thirds the area 
of the circle.

Figure 2.5. Show that the area of the circle is about  four- sevenths the area 
of the equilateral triangle.

Figure 2.6. Show that the area of the regular hexagon is about  six- sevenths the 
area of the circle.

Figure 2.7. Show that the area of the circle is also about  six- sevenths the 
area of the regular hexagon.

Figure 2.8. Show that the area of the equilateral triangle is about  
seven- sixteenths that of the circle.
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Problem 4- 2
(The fi nal problem of chapter 4 of the Suanfa Tong Zong: “Zokufu,” or “Rice and 

Money.”)
We produced cloth with weight 43 + 3/4 kin, which consists of two materials a and b. 

The weights of a and b in the material are in the ratio 4:1. Find the weights of a and b.

See page 55 for the solution.

Problem 4- 3
(From chapter 5 of the Suanfa Tong Zong, On geometric and arithmetic sequences.)

(1)  Here is 594 mon.13 We want to divide them between two people A and B with the 
ratio of 1:2. How much money will A and B get?

(2) Here is 672 silver ryō. We want to divide it among A, B, and C with the ratio of 
1:2:4. How much money will A, B, and C get?

(3) Here is 225.36 koku of rice.14 The government wants to distribute it to fi ve classes 
of homes. Each  second- class home gets 0.8 the amount of each of the four  fi rst- class 
homes. Each  third- class home gets 0.8 times as much rice as each of the eight  second-
 class homes. Each of the  fourth- class homes gets 0.8 times as much as each of the 
fi fteen  third- class homes. Each of the 120  fi fth- class homes receives 0.8 times the 
amount of rice given to each of the 41  fourth- class homes. How much rice does each 
home and each class get in total?

The solutions are on page 55.

Problem 4- 4
(From chapter 6 of the Suanfa Tong Zong, “On Pascal’s triangle.”)
Expand the following polynomials by using Pascal’s triangle (fi gure 2.9).

(1) (a + b)3,
(2) (a + b)4,
(3) (a + b)5.

Answers: Reading off from fi gure 2.9 gives

13 We don’t know how much 1 mon was worth in ancient China but, in seventeenth cen-
tury Japan, 1 mon was about  one- fourth of a dollar.

14 By 1592, the value for the koku was about 71.616 kg and so the problem is talking about 
16,139 kg total.
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(1) (a + b)3 = a3 + 3a2b + 3ab2 + b3,
(2) (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4,
(3) (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

Problem 4- 5

(1)  Find the two sides x bu and x + 15 bu of a rectangle with area 1,750 square bu.
(2)  Find the two sides x bu and x + 28 bu of a rectangle with area 1,920 square bu.

The solutions are on page 56.

Problem 4- 6
(From chapter 7 of the Suanfa Tong Zong: “On the Area of Fields.”)
As shown in fi gure 2.10, we divide an equilateral triangle ABC into three quadrilater-

als that all have the same area. If the triangle has sides of length 14 and G is the center of 
the triangle, fi nd the area of ABC and the length of the sides of the small quadrilaterals.

The solution can be found on page 56.

G

A

CB

Figure 2.10. The equilateral triangle is divided into three 
quadrilaterals of equal area, as shown. We are to fi nd the area 
of ABC and the length of the sides of the small quadrilaterals. 
The length of each side of the triangle is 14.

Figure 2.9. Pascal’s triangle, invented hundreds of years earlier 
in China and Iraq, is a mnemonic device for the coeffi cients of 
the various terms when expanding an expression like (a + b)n. 
Each element in the triangle is found by adding the two ele-
ments on each side diagonally above, with any element outside 
the triangle taken as 0. Thus the coeffi cients for (a + b)3 can be 
read off from row 3, giving a3 + 3a2b + 3b2a + b3. If the leftmost 
element of a row is designated the zeroth element, then the rth 
element of the nth row will be recognized as the binomial 
coeffi cients “n- choose-r,” or n!/r!(n − r)!. 1 7 21 35 35 21 7 1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

row 2 

row 0 

row 1
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Problem 4- 7
(From chapter 8 of the Suanfa Tong Zong: “Civil Engineer.”)

(1) A  horse was stolen. The own er found it and begin to chase the thief after the thief 
had already gone 37 ri. After the own er traveled 145 ri, he learned that the thief was still 
23 ri ahead. After how many more ri did the own er catch up with the thief?

(2) A number of identical balls are arranged as shown in fi gure 2.11, where the base 
contains 7 balls and the top contains 3 balls. How many balls are there in total?

(3) As shown in fi gure 2.12, many identical balls are arranged in a pyramid, whose 
base is an equilateral triangle with a side of 7 balls. How many balls are there in total?

(4) Identical balls are arranged in pyramid, this time where as shown in fi gure 2.13, 
the base is a square of side 12 balls. How many balls are there in total?

Figure 2.11. How many balls are in this truncated pyramid?

Figure 2.12. This pyramid has a triangular base with seven balls 
along each side. How may balls are in the pyramid?

The solution to problem 1 can be found on page 56. The solutions to problems 2–4 are as follows:

(2) The easiest way to do the problem is to count the balls. However, the sum of 
integers k from 1 to n is given by the famous  formula

k
n nn

= +∑ ( )
.

1
21
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Thus, for this problem,

k k k= − = + − + =∑∑∑
1

2

1

7

3

7 7 7 1
2

2 2 1
2

25
( ) ( )

,

which is easily generalized to any number of balls.

(3) From fi gure 2.12, you can convince yourself that, if there are p balls along each 
side of a layer in the pyramid, then the total number of balls in that layer is just 
Σ1 1 2pk p p= +( )/ , or 28 for the base. But each successive layer above the base has one 
fewer ball along the side, until the top layer, which has only a single ball, and so the 
grand total number of balls N is just N p pp= +=Σ 1

7 1 2( )/ .  Using the famous formula 

k
n n nn

2

1

1 2 1
6∑ = + +( )( )

,

one can easily show that

N = 7(7 + 1)(7 + 2)/3! = 84.

(4) Since the base is square, in this case there are just p2 balls on each layer, with one 
fewer for each successive layer, and the total can be found directly as Σ k k= = +1

12 2 12 12 1( )
+ =24 1 6 650( )/ .

Problem 4- 8
(From chapter 9 of the Suanfa Tong Zong: “Transportation.”)

(1) Civil servants A and B work in the town offi ce. A goes to work on every twelfth day 
and B goes to work on every fi fteenth day. Today they meet each other in the offi ce. In 
how many days will they meet for the next time?

Figure 2.13. This pyramid has a square base with twelve 
balls along each side. How many balls are in the pyramid?
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(2) A boy saves money in the following way: On day one he saves 1 mon, on day two he 
saves 2 mon, and on day three he saves 22 = 4 mon. How much money in total will he have 
saved after 30 days?

The answer to (1) can be found on page 56.

Answer 2: The boy’s total savings amounts to a geometric series of the form

S a ar ar ar a rn k

k

n

= + + + + =
=
∑2

0

. . . .

It is well known that such a series sums to

S = a(1 – r n + 1)/(1 - r).

Plate 2.5. How many barrels are in the stack? From the Jinkō - ki, c. 1818. 
(Collection of Fukagawa Hidetoshi.)
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In our case a = 1, r = 2, and n = 29, and so S = 230 − 1 = 1,073,741,823 mon.
Problem 2 was quoted in the Jinkō- ki of 1627.

Problem 4- 9
(From chapter 10 of the Suanfa Tong Zong: “Excess and Lack.”)

(1) Here are N persons and a long cloth of length G hiki with a constant width. When 
each person gets 8 hiki of the cloth, 15 hiki are left over, but if each person wants 9 hiki, 
then 5 hiki is lacking. Find N, the number of persons, and G, the the length of the 
cloth.

(2)  Here are N persons who have G ryō of money among them. If they are separated 
into groups of 3 members and each group takes 5 ryō for shopping, then 10 ryō is left 
over. On the other hand, if they are separated into groups of 5 and each group takes 9 
ryō for shopping, then there is nothing left over. Find the total amount of money G, and 
the number of persons, N.15

See page 56 for the solutions.

Problem 4- 10
(From chapter 11 of the Suanfa Tong Zong: “On Linear Equations.”)
Here are a lot of squash, pears, peaches, and pomegranates. The price of two squash 

and four pears is 4 bu. The price of two pears and seven peaches is 4 bu. The price of four 
peaches and seven pomegranates is 3 bu. The price of eight pomegranates and one 
squash is 2.4 bu. Find the cost of each fruit.

The solution is on page 57.

Problem 4- 11
(From chapter 12 of the Suanfa Tong Zong: “On the Pythagorean theorem.”)

(1) Find the radius of a circle that is inscribed in a right triangle whose short sides are 
36 and 27. (See fi gure 2.14.)

(2) If two sides of a right triangle are 12 and 6, then fi nd the side of a square inscribed 
in it. (See fi gure 2.15.)

15 Like the mon, the values of the monetary ryō and bu (next problem) in sixteenth cen-
tury China are uncertain. The authors believe they may have been worth about 30 dollars 
and 3 dollars, respectively.
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27

r

36

Figure 2.14. Find r.

12

6
Figure 2.15. Find the length of the side of the square.

9
3

Figure 2.16. How deep is the pond?
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(3) Two reeds of equal height project 3 syaku above the surface of a 
pond. If we draw the top of one reed 9 syaku in the direction of the 
shore so that the top is just touching the surface of the water, fi nd the 
depth of the pond. (See fi gure 2.16.)

The answers are on page 57.

Plate 2.6. Problem 4- 11, part 3, as it appeared in the Suanfa Tong Zong.
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Answers and Solutions to Chapter 2 
Problems

Problem 1- 2
If x is the amount of rice, then 50/27 = 21/x, or 

x = 21 × (27/50) = 11 + 17/50 shō of rice.

Problem 1- 3
If x is the amount of cloth the weaver wove on the fi rst day, then 

x + 2x + 4x + 8x + 16x = 5 syaku or 50 sun. Thus 31x = 50 sun, or 
x = (1 + 19/31) sun.

Problem 1- 4
(1) y = 240 bu; (2) y = 160 bu; (3) y = 130 + 10/11 bu; (4) y = 115 + 1/5 

bu; (5) y = 105 + 15/137 bu; (6) y = 97 + 47/49 bu.

Problem 1- 5
(1) To fi nd the volume of the bank one needs to recall that the area 

of a trapezoid is  one- half the product of the altitude and the sum of its 
bases. Thus V = 4 × (20 + 8)/2 × 127 = 7,112 cubic syaku.

(2) The number of workers is just the total volume divided by the 
volume each worker can carry, or (4 × 14 × 127)/444 = 16 + 2/111 
workers. [One guesses the boss hired an extra laborer.]

Problem 1- 6
If N is the original amount of the poor traveler’s tax money, con-

vince yourself that

1 = N(1/2) + N(1/2)(1/3) + N(1/2)(2/3)(1/4) 
 + N(1/2)(2/3)(3/4)(1/5)+ N(1/2)(2/3)(3/4)(4/5)(1/6)

= N[1/2 + (1/2 − 1/3) + (1/3 − 1/4) 
 + (1/4 − 1/5) + (1/5 − 1/6)] = N(5/6)

or N = 6/5 kin.

Problem 1- 7
If t is the number of days when the two stems meet, then the total 

height must be 90 = (7 + 10)t, which implies t = 90/17 = 5 + 5/17 
days.
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Problem 1- 8
For a, b, c, the amounts of rice from plants A, B, C, we have 3a + 2b 

+ c = 39; 2a + 3b + c = 34; a + 2b + 3c = 26. This system of equations can 
easily be solved simultaneously to get a = 9.25, b = 4.25, c = 2.75.

Problem 2- 1
As in problem 1- 5, the number of workers is the volume of the 

trapezoidal bank, divided by the volume each worker can carry per 
season, or (20 + 54)/2 × 38 × 5,550 ÷ 300 = 26,011.

Problem 2- 3
If x is the height of the tree, then by similar triangles, 

x/1.5 = 15/0.5, and so x = 45 syaku.

Problem 2- 4
If r is the number of roosters and h is the number of hares, then 

r + h = 35 and 2r + 4h = 94. Solving these equations implies h = 12 and 
r = 23.

Problem 2- 5
The number of trees is 92 = 81; branches, 93 = 729; nests, 94 = 6,561; 

crows, 95 = 59,049; chicks, 96 = 531,441; feathers, 97 = 4,782,969; colors, 
98 = 43,046,721.

Problem 3- 1
(1) V = (h/3)(a2 + ab + b2) = 304 cubic syaku. (2) V = (h/3)(a2 + ab + b2)

(1/12) = 5040 cubic syaku, where the radius of the lower base is b/2π = 
b/6.

Problem 3- 2
Let n be the number of days it takes  horse A to catch  horse B. The 

distance both  horses travel is the same, so n × 240 = (n + 12) × 150, 
which shows that A catches B in n = 20 days.

Problem 3- 3B
The third equation gives x + z = 2y. Then from the second equation 

y = 68. Now let k ≡ x − 68 = 68 − z. Then x = k + 68 and z = 68 − k. From 
the fi rst equation, (68 + k)2 + 682 + (68 − k)2 = 14,384. Solving for k2 
gives k2 = 256, which implies k = 16, x = 84, y = 68 and z = 52.

h
b

b

a
a

h

b

a
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Problem 4- 1
(1) Cheng  Da- Wei assumed that π = 3, which gives the answer 

directly. One can also inscribe a regular hexagon in a circle of diameter 
1 and see immediately that the perimeter of the hexagon is 
exactly 3.

(2) The diagonal of the square is 5 2 7 07106= . .
(3) The height of the equilateral triangle follows from the Pythago-

rean theorem h2 = 72 − (7/2)2, or h = ≈147 4 6/ .
(4) If the side of the square is a, then πr2 = (3/4)a2. But a = 2r, which 

immediately gives π = 3.
(5) If the diameter of the circle is 2r, then a side of the square is 

2 2r / ,  and the square’s area is 2 2 2 3
2

2r r/ ( / ).( ) = ×π
(6) The area of the equilateral triangle is (3/2) ra, where a is the 

side of the triangle, and r is the radius of the inscribed circle. But 
a = 2r tan 60 = 2 3r, so the ratio of the areas is 1 3 4 7/ / .≈

(7) If the radius of the circle is r, then the area of the inscribed 
hexagon S’ is six times the area of each triangle, with sides r and 
altitude ( / ) .3 2 r  So S' r r r= × × =6 1 2 3 2 3 3 2 2( / ) ( / ) ( / ) .   Dividing by 
the area of the circle S ≈ 3r2 gives S' S/ / / .≈ ≈3 2 6 7

(8) These triangles have side a and altitude r a= 3 2/ . So the area 
of the hexagon is S' r r r= × × =6 1 2 2 3 2 3 2( / ) ( / ) .  Dividing this into 
the area of the circle S ≈ 3r2 gives again S S'/ / / .≈ ≈3 2 6 7

(9) The area of the equilateral triangle with side a is 
S' a=( / ) / .1 2 3 22  But a r= 3 ,  so S' r=( / ) .3 3 4 2  Dividing by the area 
of the circle, S = πr2 = 3r2 gives S' S/ / / .= ≈3 4 7 16

Problem 4- 2
We are told that the total weight of the cloth is a+b=43+3/4 and 

that a/b = 4. Solving these equations together gives a = 35 kin and 
b =8+3/4 kin.

Problem 4- 3
(1) If A gets k mon and B gets 2k mon, then 3k = 594 and k = 198 and 

2k = 396.
(2) If A gets k ryō, B gets 2k, and C gets 4k, then 7k = 672, k = 96, 

2k = 192 and 4k = 384.
(3) Let x be the amount of rice for a  fi rst- class home and let r = 0.8. 

Then (4 + 8r + 15r2 + 41r3 + 120r4)x = 225.36 and x = 225.36/90.144 = 2.50. 
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Thus, one  fi rst- class home gets 2.5 koku and the  fi rst- class homes get 10 all 
together. One  second- class home gets 8 × 2.5 = 2 koku, and the  second-
 class homes get 16 total. Similarly, a  third- class home gets 1.6 koku and the 
 third- class homes get 24.
 A  fourth- class home gets 1.28 koku and the  fourth- class homes get 52.48. 
One  fi fth- class home gets 1.024 koku and 122.88 koku go to the  fi fth- class 
homes.

Problem 4- 5
(1) For the fi rst rectangle we have x(x + 15) = 1,750, which gives 

the quadratic equation x2 + 15x − 1,750 = 0. This factors into 
(x + 50)(x − 35) = 0, yielding x = 35 and x + 15 = 50 bu.

(2) Similarly, for the second rectangle, x(x + 28) = 1,920, which can 
be written as (x + 14)2 = 1920 + 196 = 2,116 = 462. Thus x = 46 − 14, or 
x = 32 and x + 28 = 60 bu.

Problem 4- 6
The area of triangle ABC = × × =1 2 14 7 3 84 87/ . , and the area of 

each quadrilateral is therefore 84.87/3 = 28.29. The sides of small 
quadrilaterals are thus 7 and 7 3 3 4/ .≈

Problem 4- 7
(1) When the own er had gone 145 ri, the thief had traveled 

145 − 37 + 23 = 131 ri. That means that, if st and so are the speeds of the 
thief and own er, their ratio is st/so = 131/145. The time it takes the 
own er to go another k ri is the same as the time it takes the thief to be 
caught after, say, another x ri. Since time is distance divided by speed, 
we have (23 + x)/so = x/st. Consequently (st/so)(x + 23) = x, implying 
x = 215 + 3/14 and k = 238 + 3/14.

Problem 4- 8
(1) The number of days that go by before the civil servants meet again 

is the least common multiple of 12 and 15 = 60 days after they meet.

Problem 4- 9
(1) The fi rst condition gives G = 8N + 15, while the second gives 

G = 9N − 5. Solving the equations simultaneously yields N = 20 and 
G = 175.

G

A

CB
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27

r

36

12

6

9
3

(2) Here, G = (5/3) × N + 10 and G = (9/5) × N, from which it 
follows that N = 75 and G = 135.

Problem 4- 10
Let x be the price of a squash, y the price of a pear, z the price of a 

peach and w the price of a pomegranate. Then, 2x + 4y = 4, 2y + 7z = 4, 
4z + 7w = 3, and 8w + x = 2.4. Solving these equations simultaneously 
gives x = 0.8 bu for one squash, y = 0.6 bu for one pear, z = 0.4 bu for one 
peach, and w = 0.2 bu for one pomegranate.

Problem 4- 11
(1) The length of the hypotenuse is 36 27 452 2+ = . From fi gure 2.14 

this msust also be 36 − r + 27 − r, which implies r = (36 + 27 − 45)/2 = 9.
(2) If x is the side of the square, then similar triangles gives 

12/6 = x/(6 − x), which implies x = 4.
(3) If x is the depth of the pond, then x2 + 92 = (x + 3)2, which gives 

x = 12 syaku.



Plate 3.1. This illustration comes from a 1715 edition of the Jinkō- ki and accompa-
nies a problem dealing with the breeding habits of mice. We give it as problem 4 
in this chapter. (Collection of Fukagawa Hidetoshi.)



Japa nese Mathematics
 and Mathematicians of the 

Edo Period

From a young age I have devoted 
much time to the study of mathematics 
and have read many books. I have 
visited my teacher, far from  here, and 
have studied hard. But, lately, chil-
dren are playing tricks and writing 
bad poetry. It is deplorable that they 
are wasting so much time. If they 
write and read any poetry, it is better 
that the poetry concerns mathematics. 
I shall write formulae in Jyugai-roku 
as poetry.

—From the preface to Imamura 
Tomoaki’s 1640 book for children,
Inki Sanka, or Poetry of Multiples 
and Divisions

In chapter 1 we briefl y recounted the genesis of traditional Japa nese 
mathematics, wasan, how it arose with the appearance of the abacus in Ja-
pan and the 1627 publication of Yoshida Mitsuyoshi’s Jinkō- ki, and how 
wasan’s evolution was very much shaped by the Tokugawa family’s isolation-
ist policies, which took hold in the early to  mid- seventeenth century. En 
route we encountered a few samurai who, having received their Master of 
Mathematics licenses could teach at a juku, or start their own private schools 
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at home or nearby.  Here we survey some of the more important mathemati-
cal works of the Edo period and the  samurai- mathematicians who created 
them. As in the previous chapter, we attempt to impart their fl avor through 
the problems they contain, which for the most part should be suitable for 
high school students.

Wasan of the Seventeenth Century

Yoshida Mitsuyoshi and the Jinkō- ki

Little can be added to the biography of the fi rst identifi able Japa nese math-
ematician, Mori Shigeyoshi, who in 1622 wrote a booklet about how to use 

Plate 3.2. Another street scene from the Jinkō- ki illustrating the benefi ts of 
learning the soroban for business. This one is from an edition published between 
1818 and 1829. (Collection of Fukagawa Hidetoshi.)
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the soroban, except that he had three students, Imamura Tomoaki (?–1668), 
Takahara Yoshitane, and Yoshida Mitsuyoshi (1598–1672), the last of whom 
published the Jinkō- ki, which was responsible for much of what followed.

We know slightly more about Yoshida. Born in Kyoto in 1598, he was the 
grandchild of the merchant Suminokura Ryōi (1554–1614), who had be-
come a millionaire through trade with China and the other East Asian 
countries, and so Yoshida would have had easy access to Chinese mathe-
matics texts. He learned arithmetic from Mōri, and from the intellectual 
Suminokura Soan he learned the mathematics of Cheng  Da- Wei’s Suanfa 
Tong Zong. In later life Yoshida lost his eyesight, undoubtedly from making 
so many revisions on the Jinkō- ki, and he died at the age of  seventy- fi ve.

Most of the exercises in the  three- hundred- plus editions of the Jinkō- ki 
are concerned with calculations useful for everyday life and business trans-
actions.  Here, we present a handful from the 1643 edition, which was pub-
lished during Yoshida’s lifetime. Of the 270 problems it contains,  thirty- six 
are soroban exercises,  twenty- eight concern exchange rates, and  thirty- fi ve 
more involve mea sur ing the areas of fi elds. Almost all of them  were lifted 
from Chinese texts.

Problem 1
This problem is quoted from the Chinese Jiu zhang Suanshu.

Here is a fi eld shaped like a donut. The outer circumference is is 120 ken,1 while the 
inner circumference is 84 ken. A  house sits in the middle of the fi eld so we cannot mea-
sure its diameter, but the distance between the two circumferences is 6 ken. Find the 
area of the fi eld without using π.

Original answer: Area = (120 + 84)/2 × 6 = 612 tubo.

Problem 2
This problem, Nusubito San, or “Thieves Arithmetic” was taken from the Sun- Tsu 

Suanjing (see chapter 2, problem 2-2).

One night, some thieves steal a roll of cloth from a shed. They are dividing up the cloth un-
der a bridge when a  passer- by overhears their conversation: “If each of us gets 7 tan, then 

1 One ken is 1.8 m. One square ken, 1 ken × 1 ken = 1 tubo.
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8 tan are left over, but if each of us tries to take 8, then  we’re 7 tan short.”2 How many thieves 
 were there, and how long was the cloth?

See chapter 2, problem 2–2 for the method of solution.

Problem 3
In the Edo period people used colza oil (similar to rapeseed or canola oil) for lighting 

their homes. Hence this abura wake or “oil distribution” problem:

A  colza- oil peddler is hawking oil. One eve ning on the way home, a customer asks him 
for 5 shō of oil.3 But the oil peddler only has 10 shō of oil left in his big tub, and no way to 
mea sure out oil except two empty ladles that can hold 3 and 7 shō. How does the oil 
peddler mea sure out fi ve shō for the customer?

Original solution: Call the big tub A, the 3-shō ladle B, and the 7-shō ladle C.

2 A tan is a unit for measuring a bolt of cloth about 34 cm wide. One tan of such a cloth is 
about 10 m.

3 1 shō = 1.8 liter. Note: The Japa nese shō differs from the Chinese shō.

Plate 3.3: The oil peddler in 
problem 3 must mea sure out 
an awkward amount of oil 
with only two ladles. From a 
1643 edition of the Jinkō- ki. 
(Collection of Fukagawa 
Hidetoshi.)
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First, with the B ladle, scoop out 3 cups from A and fi ll C as far as it goes. Then there 
is 1 shō in A, 7 shō in C, and 2 shō left over in B.

Next, pour everything in C back to A. Then there is 8 shō in A, 2 shō in B, and nothing 
in C.

Third, pour everything from B into C. Now there is 8 shō in A, 0 shō in B, and 2 shō 
in C.

Last, with the empty cup B, pour 3 shō from A into C. Now there is 5 shō in A, 5 in C, 
and the peddler can satisfy the customer.

The  oil- distribution problem possibly originated with Yoshida himself; at least it appears 
not to have come from any Chinese source. It is also related to the problem known in the 
West as the  three- jug problem.4

Problem 4
Yoshida presents this Nezumi San, or “Mice Problem,” as an exercise for the soroban. Its 

kinship to problem 4-8 in the previous chapter is easy to see.

On January fi rst, a pair of mice appeared in a  house and bore 6 male mice and 
6 female mice. At the end of January there are 14 mice, 7 male and 7 female.

On the fi rst of February, each of the 7 pairs bore 6 male and 6 female mice, so that at 
the end of February, there are 98 mice in 49 pairs. From then on, each pair of mice bore 
six more pairs every month.

(1) Find the number of mice at the end of December.
(2) Assume that the length of each mouse is 4 sun, or 12 cm. If all the mice line up, 

each biting the tail of the one in front, fi nd the total length of mice.

Original answers
(1) 27,682,574,402.
Also, the following was written in the book: At the end of each month, the number 

of mice is 2 × 7 = 14; 2 × 7 × 7 = 98; 2 × 73 = 686; 2 × 74 = 4802; 2 × 75 = 33,614; 
2 × 76 = 235,298; 2 × 77 = 1,647,086; 2 × 78 = 11,529,602; 2 × 79 = 80,707,214; 2 × 710 =  
564,950,498; 2 × 711 = 3,954,653,486; 2 × 712 = 27,682,574,402.

This is a geometric progression (see problem 4-8 in chapter 2).

4 See Coxeter and Grietzer, Geometry Revisited (“For Further Reading, What Do I Need to 
Know . . .”, p. 337. They also give another solution.
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(2) The total length is 2 × 712 × 12 cm. The Jinkō- ki states, “The length is the same as 
the distance around Japan and China. In fact, the length is seven times the distance from 
the earth to the moon.” The last estimate is actually not too far off.

Imamura Tomoaki (?–1668)

The Jinkō- ki spurred a great interest in problems that could be tackled 
numerically, including the calculation of areas of polygons, the volumes 
of solids, and in par tic u lar the calculation of π. One mathematician who 
wrote about such matters was Imamura Tomoaki from Osaka.5 We have 
no information about him except that he was one of Mōri Shigeyoshi’s 
“three honorable disciples” and that in 1639 he published Jyugairoku, 
whose title he appears to have taken from an old Chinese geography 
book, Sengaikyō. The following year he published a revised version for 
children, Inki Sanka, or Poetry of Multiples and Divisions. We quoted the 
beginning of Imamura’s preface to the Inki Sanka at the head of the chap-
ter. He goes on to say, “If any child reads any poem in this book and tries 
to do the calculation on the soroban, then the experience will be useful in 
his future. If any child wants to know the proofs of formulae, then see my 
book Jyugairoku.”

In the Jyugairoku, Imamura determined that the square root of 152.2756 
was 12.34, calculated the cube root of 1880, the areas of regular polygons 
with 3, 5, 6, 7, 8, 9, and 10 sides and provided many formulas for the vol-
umes of solids.  Here is an example of “poetry on the areas of regular poly-
gons” from the Inki Sanka.

Problem 5
(1) For a regular polygon of side s, show that

(a)  The area of an equilateral triangle is the side multiplied by the side multiplied 
by 0.433. [in other words, A = 0.433s2]

(b)  The area of a pentagon is 1.73s2

(c)  The area of a heptagon is 3.64s2

(d)  The area of an octagon is 4.828s2

(e)  The area of a nonagon is 6.093s2

5 Sometimes Imamura Chisho.
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Muramatsu Shigekiyo (1608–1695)

Although the Chinese had a value for π better than 3.14 in the sixth cen-
tury, for some reason at the onset of the Edo period Japa nese mathemati-
cians used π = 3.16. We fi nd this value in Mōri Shigeyoshi’s 1622 primer 
Warizansyo, in the fi rst edition of the Jinkō- ki, as well as in Imamura’s Inki 
Sanka. No one knows why this should be the case. In many traditional prob-
lems, circles  were described by their diameter, not their radius, so the area 
is A = (π/4)(diameter)2 rather than A = πr2. It happens that 3.16 = 4 × 0.79, 
exactly, so it may have been con ve nient to round off π and write A = 0.79 
(diameter)2. But this is just a guess.

During this era of π = 3.16, Muramatsu Shigekiyo showed that the pe-
rimeter of a 215 = 32,768- sided polygon inscribed in a unit circle was 
P = 3.141592648. Muramatsu actually published his value to 22 digits in his 
1663 book Sanso, or Stack of Mathematics, but got it right to only eight digits. 
 Here we present the Sanso’s table of the perimeter P(n) of 2n- sided poly-
gons inscribed in the unit circle. With the formula for the perimeter 
P(n) = 2n sin(180/2n) and a calculator, readers can confi rm the correctness 
to eight digits.

P(3) = 3.061467458, P(4) = 3.121445152, P(5) = 3.136548490, 
P(6) = 3.140331156, P(7) = 3.141272509, P(8) = 3.141513801, 

P(9) = 3.141572940, P(10) = 3.141587725, P(11) = 3.141591421, 
P(12) = 3.141592345, P(13) = 3.141592576, P(14) = 3.141592634, 

P(15) = 3.141592648,

With the local value of π equal to 3.16, Muramatsu needed some cour-
age to conclude that in fact π = 3.1415926, and he did back off slightly, 
claiming after comparison with the Chinese values only that π = 3.14. 
Nevertheless, it was a brave move that gained him an adherent, Isomura 
Yoshinori.

(2) Why are the formulas of the square and hexagon missing?
(3) Show that the volume of a sobagara (buckwheat) grain, which is a tetrahedron, is 

“side, side, side, and 0.11783” [that is, 0.11783s3].

The solutions are given on page 84.



66 Chapter 3

Isomura Yoshinori (1630–1710)

Like the other mathematicians of the period, including Imamura, Isomura 
Yoshinori studied problems that had approximate solutions. Isomura was a 
samurai of the Nihonmatsu clan in Fukushima prefecture. In 1661 he pub-
lished Sanpō Ketsu Gishō, or Profound Mathematics, in which he used π = 3.16. 
But in 1684 he published a second, annotated version, Tohsyo Sanpō Ketsu 
Gishō. By then, spurred on by the Jinkō- ki, as well as Muramatsu, Isomura 
employed a 217 = 131,072- sided polygon to calculate π = 3.141592653, con-
fi rming and extending the results of his pre de ces sor.

Isomura also developed an approach to calculate the volume of simple 
solids by slicing them up into disks, then adding the volume of the disks to-
gether. This would give an approximate result, but calculus had only just 
been invented in the West and did not exist in Japan, and one could not ex-
pect anything more. We offer a noncalculus problem from the fi rst edition.

Plate 3.4. As did many other mathematicians, 
Muramatsu Shigekiyo (1608–1695) approxi-
mated π by constructing regular polygons in 
a unit circle. Shown  here is an octagon, but 
Muramatsu considered up to 32,768- sided 
polygons and calculated π to  twenty- two 
digits; however, only the fi rst eight  were 
correct. (Matsuzaki Toshio.)
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Problem 6
(1) Find the volume of a regular tetrahedron of side 1.
(2) Given an equilateral triangle of side 1, as in fi gure 3.1, draw three lines to the 

center, construct three equal triangles, and draw three inscribed circles. Show that the 
diameter of the circles is 2 0 26794r ≅ . .

Figure 3.1. Show that the diameter of the circles is 2r ≅ 0.26794.

(3) Given a pentagon of side 1, as in fi gure 3.2, draw fi ve triangles and fi ve inscribed 
circles. Show that their diameter is 2 0 50952r ≅ . .

Figure 3.2. Show that 2r ≅ 0.50952.

Here is the original solution to part 1:

Solution to (1): Consider the cube shown in fi gure 3.3, with sides 1 2/ ,  which 
means the sides of the embedded tetrahedron equal 1. Cut out four pyramids from 
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the cube. Convince yourself that each pyramid has sides 1 2 1 2/ , / , hypotenuse 1, and 
altitude 1 2/ . Then the desired volume of the tetrahedron is

V =
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The solutions to parts 2 and 3 can be found on p. 84.

Figure 3.3. The sides of the tetrahedron = 1 
and the sides of the cube = 1 2/ .

1

1

1

Seki Takakazu (1640?–1708)

The level of traditional Japa nese mathematics took a sharp turn upward 
toward the end of the seventeenth century, largely due to the labors of Seki 
Takakazu, Japan’s most celebrated mathematician. Many stories are told of 
Seki’s powers, but like the stories about the youthful Gauss, they are to be 
treated with skepticism. Most of Seki’s works  were published posthumously 
by his disciples and, because Japa nese mathematicians traditionally de-
ferred to their masters, this has always made it diffi cult to know precisely 
what he did and did not do. Seki’s exact birthdate and birthplace remain 
unknown, but he was a close contemporary of Newton. Of samurai descent, 
he was adopted in infancy by the noble family of Seki Gorozayemon and 
went by that surname. Later, he worked in the trea sury of the Koufu clan, 
whose head was Lord Tokugawa Tsunashige. In 1704, Seki moved as a sho-
gunate samurai into the Tokugawa government and worked for two years as 
a  mid- level trea sur er. He retired in 1706 and died in 1708.
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Seki came of age at an opportune moment, exactly during the Gen-
roku, and had ample opportunity to study the burgeoning number of 
mathematics books then being published. In 1672, when he was about 
thirty, he wrote a manuscript “Solutions to Unsolved Problems of the 
Sanpō Ketsu Gishō ” by Isomura. Two years later he published the Hatsubi 
Sanpō, or Detailed Mathematics, which consists of solutions to fi fteen un-
solved problems in the 1671 Kokon Sanpōki, or Old and New Mathematics, by 
Sawaguchi Kazuyuki (?–?).

Hatsubi Sanpō was actually the only book published by Seki during his 
lifetime. At his death he left  twenty- one books in manuscript, including 
seven on astronomy. In 1712 his disciple Araki Murahide published four 
volumes of Seki’s works under the title Katsuyō Sanpō, or Collection of Impor-
tant Mathematical Results. It is from this collection that many of Seki’s contri-
butions are known.

Although Seki’s name is sometimes dubiously associated with the in-
vention of the Enri, defi nite integration, there is no question that he was 

Plate 3.5. A portrait of Japan’s 
greatest mathematician, Seki 
Takakazu (1640?–1708), from the 
undated manuscript Kosetsuki, or 
Ancestry of Mathematicians. 
 (Tsurumai library.)
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Problem 7
(1) Given two equations in y,

ay + b = 0,
cy + d = 0,

where the coeffi cients a, b, c, d may be nonzero constants or any functions in another 
variable x, eliminate y and fi nd the condition on a, b, c, and d to give an equation in 
x alone.

(2) Given three equations in y,

 ay2 + by + c = 0, (3.1)
 dy2 + ey + f = 0, (3.2)
 gy2 + hy + j = 0, (3.3) 

where again the coeffi cients a, b, c, d, e, f, g, h, and j are functions in x, fi nd the condition 
on a, b, c, d, e, f, g, h, and j to give an equation in x alone.

Solutions:
(1) We easily see that y = −b/a = −d/c, from which it follows that ad − bc = 0.
(2) Multiply Eq. (3.1) by d, and Eq. (3.2) by a, and subtract (3.1) from (3.2). This 

gives

y
af dc
bd ae

= −
−

.

Similarly, multiply the original equation (3.2) by g, equation (3.3) by d, and again 
subtract to fi nd

y
dj fg
eg dh

= −
−

.

Together, these two expressions imply (af − dc)(eg − dh) = (bd − ae)(dj − fg), or 
aej + bfg + cdh − afh − bdj − ceg = 0.

Seki displayed these relationships in a diagram (see plate 3.9), which readers familiar 
with linear algebra will recognize as equivalent to setting the modern determinant of a sys-
tem of equations equal to zero (fi gure 3.4).

the fi rst to develop the theory of determinants, a de cade before Leibnitz. 
He also discovered the  so- called Bernoulli numbers before Jacob Ber-
noulli, and Horner’s method 150 years before Horner, although in this 
he was anticipated by the Chinese.  Here we begin by presenting a prob-
lem, Kaifuku Dai no Hō, “Determinants,” dating from 1683. (One does 
not really need to know what a determinant is to follow the solutions.)
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Plate 3.6. Seki’s original notation for determinants from his 1633 
manuscript Kaifuku Dai. (Japan Academy.)

Seki, like his contemporaries, was deeply concerned with determining π, 
but unlike the others devised an original method to do it. Following Mura-
matsu’s method above, he calculated the perimeters of a 215- sided, a 216-
 sided, and a 217- sided polygon: P(15) = 3.14159264, P(16) = 3.14159265, 
and P(17) = 3.141592653. Then suddenly he claims

π = ∞ = + − −
− − −

=P P
P P P P

P P P P
( ) ( )

[ ( ) ( )][ ( ) ( )]
[ ( ) ( )] [ ( ) ( )]

. .16
16 15 17 16

16 15 17 16
3 14159265359

That is, π should be equal to the perimeter of an infi nitely sided polygon 
inscribed in a unit circle, yet he writes his result in terms of P(15), P(16), 
and P(17). Moreover, this value has two more correct digits than the ten 
correct digits contained in P(17). Seki did not reveal his thinking, but in 
this case we can reconstruct it. Let a = a1 = P(16) − P(15) and 
a2 = P(17) − P(16). In problem 4–8 from chapter 2 we discussed a geomet-
ric series, which is of the form a + ar + ar2 + ar3 + ar4 · · · , where r is the 
constant ratio between terms. For an infi nite number of terms such a series 
sums to a/(1 − r). Let r = a2/a1. If one assumes that π can be approximated 
as the sum of a geometric series, then

P P
a

r
P

a a
a a

( ) ( )
( )

( )
( )

,∞ = +
−

= +
−

15
1

16 1 2

1 2

Seki’s result.

Figure 3.4. Modern notation for determinants in problem 7.
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Seki’s new value of π was published by his disciple Takebe Katahiro in 
the Tetsujutsu Sankei, where Seki had previously shown π = 355/113. Of this 
value Takebe remarked, “In the old days, my master Seki Takakazu found 
the value π ≅ 355 113/  by his own method. Then about twenty years later, 
he recognized that the same value π = 355/113 had already been obtained 
by Zu Chongzhi [chapter 2] in the Zuishi [Records of Zui Era (581–619)]. It is 
wonderful two prominent mathematicians got the same value in two sepa-
rate countries and separate ages.”

Plate 3.7. One of Seki’s original 
drawings for a 15- sided polygon, 
from his book Katsuyō Sanpō. 
(Matsuzaki Toshio.)
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Problem 8
As we have been discussing, for this calculation of π Seki was interested in the proper-

ties of n–sided polygons. For instance, in his Kaku Hō, or Angles of Regular Polygons, in 
volume 3 of Katsuyō Sanpō, he calculates the radii of the inscribed circle (incircle) and 
the circumscribed circle (circumcircle) of an n- gon, for n up to twenty. He does this for 
polygons to the accompaniment of complicated drawings (see plate 3.7) without trigono-
metric functions, but we can give an idea of the results through the following exercises.

(1) Given an equilateral triangle of side 1, fi nd the equations giving the radius r3 of 
the inscribed circle and R3 of the circumcircle.

(2) Do the same for a square of side 1, and
(3) for a pentagon of side 1.

The solutions are on page 84.

Wasan of the Eigh teenth Century

Takebe Katahiro (1664–1739)

Within a few de cades of the time that Newton and Leibnitz developed 
calculus in the West, traditional Japa nese mathematicians also began 
taking steps in that direction, although they did not progress to a  full-
 fl edged theory. The person from whom we know most about those initial 
 efforts—and perhaps the greatest contributor to those efforts  himself—is 
Seki’s most illustrious disciple, Takebe Katahiro,6 whom we just men-
tioned. Takebe became Seki’s student at the age of thirteen and published 
his fi rst book when only nineteen, the Kenki Sanpō, or Study Mathematics 
Profoundly. Later he became a shogunate samurai, a position equal to that 
of his former master. In 1719 the government commissioned Takebe to 
create a map of Japan, which was renowned for its detail; however, it has 
not survived. Although, as mentioned, Seki is sometimes credited with 
the invention of the Enri, more concrete evidence indicates that it was in 
fact Takebe.

Takebe published three books during his lifetime and left twelve other 
works behind in manuscript. The fi rst of the manuscripts is Taisei Sankei 
from 1710, the Comprehensive Book of Mathematics in twenty volumes. The 
other, from 1722, was Tetsujutsu Sankei, or Series.

6 Sometimes Takebe or Tatebe Kenko.
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Plate 3.8. In the 1778 Fuhki Jinkō-ki, or Riches of  Jinkō- ki, the anonymous author 
suggests weighing an elephant by bringing it onto a boat and marking the water 
line, removing the elephant, then bringing on stones of known weight until 
the water line reaches the same level it did with the elephant. (Collection of 
Fukagawa Hidetoshi.)

Using a 1,024- sided regular polygon inscribed in a circle, Takebe gave in 
the Taisei Sankei the approximation

π = 5 419 351
1 725 033

, ,
, ,

,

from which he calculated that π = 3.141592653589815383241944, noting 
that this value is bigger than the real π by 0.000000000000022144779300. 
The reader can verify on a computer that 5,419,351/1,725,033 − π = 0.0000
00000000022144779300394, which demonstrates that Takebe’s calcula-
tions  were extraordinarily accurate.
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In the Tetsujutsu Sankei, Takebe calculated π = 3.141592653589793238462
-64338327950288419712. . . . Once again, a computer gives π = 3.14159265-
358979323846264338327950288419716939937510582, meaning that Takebe 
had 41 digits correct. Takebe’s methods are rather complicated, utilizing 
infi nite series, which did not appear in Chinese mathematics and which he 
introduced himself. We outline them in chapter 9.

Matsunaga Yoshisuke (1692?–1744)

Once you have a closed formula for π, like π/4 = tan−1 (1/2) + tan−1 (1/3), 
as was found in the West around the turn of the eigh teenth century, the 
only limitation to computing as many digits of π as you want is sheer bore-
dom. The Japa nese, however, did not use trigonometric functions and did 
not have such formulas, although they did have series. In any case, in the 
seventeenth and early eigh teenth centuries it was not yet understood that π 
was an irrational number, and so perhaps the traditional Japa nese mathe-
maticians, along with their Western counterparts, dreamed of fi nding the 
point at which π became a repeating decimal.

One of the π- digit hunters was Matsunaga Yoshisuke. Little about him 
has come down to us. Matsunaga was a samurai in the Iwaki clan, whose 
lord was also a mathematician, Naitō Masaki (1703–1766). Matsunaga 
wrote  forty- two books in manuscript, the main one of being the Hōen 
Sankei of (1739), or Mathematics of Circles and Squares. In it he calculates π 
correctly to fi fty digits. In an unpublished manuscript, Hōen Zassan, or 
Essay on Mathematics of Circles and Squares, he calculates π correctly to 52 
digits, which is the longest value of π found in the wasan. We present one 
problem  here concerning π that gives an idea of Matsunaga’s methods.

Problem 9
Assume that 3.1415926 < π < 3.1415927. Show that we then have Seki’s approximation 

π = 355/113.

Matsunaga’s original solution can be found on page 85.

Matsunaga also presented many numerical methods for use with the 
soroban, in other words, computer programs. Some of these concerned 
the Enri and we discuss them in chapter 9.
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Nakane Genjun (1701–1761)

As in the West, Japa nese mathematicians like Seki and Isomura took an in-
terest in “recreational pursuits,” such as magic squares and circles. Indeed, 
the Japa nese may have gone beyond their Western counterparts, construct-
ing 20 × 20 squares, not to mention magic wheels, complete with epicycles. 
One mathematician who engaged in such activities was Nakane Genjun, the 
son of a famous Kyoto mathematician, Nakane Genkei (1662–1733), who 
himself had studied under Takebe. At age 60 in 1721, Genkei, considered 
one of the most learned men in Japan, received an invitation from Tokugawa 
Yoshimune to translate two Chinese astronomy books. A de cade later he 
made a number of observations of the sun and moon and dedicated his re-
cord book, in manuscript, to Tokugawa Yoshimune. Nakane Genjun studied 
mathematics with his father in Kyoto and later in Edo with Takebe. Genjun’s 
major work is the book Kanjya Otogi Zōshi, the Collection of Interesting Results in 
Mathematics, published in 1743. The book contains 69 problems of which we 
present two for amusement, “Paper Cutting” and “Magic Squares.”

Problem 10
(1) How do you fold and/or cut with scissors a rectangular piece of paper composed 

of two unit squares such that you can construct a single square of side 2 ? (See fi gure 3.5.)
(2) How do you fold and/or cut a rectangular piece of paper with sides in the propor-

tion 1:3 so that you can construct a square with side equal to 3 ? (fi gure 3.6.)
(3) How do you cut and fold a rectangular sheet composed of fi ve unit squares so that 

for each case shown in fi gure 3.7 you can construct a square of side 5 ?

Answers and solutions can be found on page 85 .

Figure 3.5. Cut and fold a rectangle to make a 
square of side  2 .

Figure 3.6. Cut and fold a rectangle to make a square 
of side  3 .
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Plate 3.9. Original drawings for paper cutting from Nakane Genjun’s 1743 book 
Kanjya Otogi Zōshi. (Masuzaki Toshio.)

Figure 3.7. Cut the given 
confi gurations to make a square 
of side 5 .
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Problem 11
(1) Using the numbers 1,2,3 three times each, make a magic square such that the 

sum of each row, each column, and each diagonal equals 6.
(2) Using the the numbers 1,2,3,4 four times each, construct a magic square such that 

the sum of each row, each column, and each diagonal equals 10.

We give one solution for part 2 in fi gure 3.8. The others we leave to you.

4 1 1 4

3 2 2 3

2 3 3 2

1 4 4 1

Figure 3.8. Magic square with sums of rows, columns, and diagonals 
equal to 10.

Ajima Naonobu (1732–1798)

Throughout the eigh teenth century, Japa nese mathematicians devised ge-
ometry problems that resulted in  high- degree equations. The most famous 
is the “Gion shrine problem,” which consisted of an equation of 1024 de-
grees. (See chapter 7 for the problem itself.) No  analytic—that is,  exact—
solution has ever been found for the Gion shrine problem, but, as mentioned 
in chapter 1, Ajima Naonobu became famous for simplifying it from an 
equation of 1024 degrees to one of ten degrees. He left his calculations in 
an unpublished manuscript of 1774, Kyōto Gion Daitō jutsu (The Solution to 
the Gion Shrine Problem).

The Gion shrine problem was only one contribution of many that Ajima 
made to several branches of mathematics, and, although he in fact pub-
lished nothing during his lifetime, he is considered the greatest Japa nese 
mathematician of the eigh teenth century. Born in 1732 into the Edo branch 
of the Shinjō clan, Ajima became samurai when he was  twenty- three7. At 
 forty- two he attacked the Gion shrine problem; at  forty- three he received the 
position gun bugyō or “country magistrate,” and he died in Edo in 1798.

Apart from his offi cial work, Ajima studied mathematics in the Seki 
school of Edo from which he received a license of Master of Mathematics. 

7 “Becoming samurai” basically means being appointed by a clan to some offi cial posi-
tion.
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Generally, Ajima’s work is marked by its originality, and it has been said 
that had he lived in the West he would have equaled Joseph Lagrange, 
perhaps the greatest mathematical physicist after Newton. In the  forty- two 
books he left behind as manuscripts, which  were later distributed largely 
in  hand- written copies, Ajima comes closest of any Japa nese mathemati-
cian to a full theory of integration. A year after Ajima’s death, one of his 
students, Kusaka Makoto (1764–1839), prepared for publication (but did 
not in fact publish) a collection of Ajima’s works, Fukyū Sanpō, or Master-
pieces of Mathematics, which contains the “Malfatti problem,” written down 
three de cades before it was proposed by the Italian Gian Francesco Mal-
fatti (see chapter 8).

In the course of solving a complicated problem in the Fukyū Sanpō, Ajima 
needed to fi nd 10n for 0 < n < 1. He writes, “I have obtained a new method 
for fi nding the value of 10n (0 < n < 1), which is a diffi cult problem.” This 
provides the basis for the exercise we present  here, one that demonstrates 
Ajima’s method.8

8 It is sometimes claimed, perhaps on the basis of this problem, that Ajima constructed 
tables of logarithms, but we have found no evidence of this in his books.

Problem 12
Solving the equation x10 − 10 = 0, Ajima shows that the root 100.1 = 1.258925. He next 

shows that x10 − 100.1 = x10 − 1.258925 = 0 has the root 100.01 = 1.023293. Thus,

(1) Using 100.1 = 1.258925, fi nd the values of 10n(n = 0.9, 0.8, 0.7, . . . , 0.2) to seven 
digits.

(2) Using 100.01 = 1.023293, fi nd the values of 10n(n = 0.09, 0.08, 0.07, . . . , 0.02) to 
seven digits.

(3) From (1) and (2), fi nd 102.56 to seven digits.

The solution is on page 87.

Fujita Sadasuke (1734–1807) and Fujita Kagen (1772–1828)

The greater part of this book is devoted to sangaku problems, and such a 
collection would have been impossible without the work of our honorable 
ancestors the Fujita, briefl y mentioned in Chapter 1. The elder, Sadasuke, 
was born in 1734 in Saitama province and studied at Seki’s school. In 1762 
he was appointed an assistant astronomer by the Tokugawa government, 
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but due to eye  problems—an occupational hazard of  mathematicians—he 
resigned after fi ve years. In 1768, he became the offi cial mathematician for 
the Kurume clan, whose lord was also a famous mathematician, Arima 
Yoriyuki (1714–1783); Arima himself published Shūki Sanpō (1769), or Gems 
of Mathematics. Around 1780 Fujita became Seki’s fourth successor as head 
of the Seki school.

Sadasuke is most remembered for his 1781 book Seiyō Sanpō, (Detailed 
Mathematics), but he also helped his son Kagen publish the fi rst collection 
of sangaku problems Shinpeki Sanpō, (Sacred Mathematics), which appeared 
in 1789. We speak in more detail about the book in chapter 4 and, in the 
venerable tradition, have lifted a number of exercises from it. Kagen, who 
worked in the same Karume clan as his father, went on in 1807 to publish 
the second edition of Sacred Mathematics, the Zoku Shinpeki Sanpō.

Here we present a problem from Sadasuke’s earlier Seiyō Sanpō.

Problem 13
(1) As shown in fi gure 3.9, two circles of radii a and b kiss each other, as well as touch 

the line l at points D and E, respectively. Show that  DE ab= 2 .
(2) Three positive integers (p, q, r) are termed a Pythagorean triple if p2 + q2 = r2, in 

other words, if you can associate them with the sides of a right triangle. The same integers 
form a “primitive” Pythagorean triple if p and q are relatively prime, meaning they have no 
common divisors other than 1.9 Show that (p, q, r) is a primitive Pythagorean triple if

p = 2mn, q = m2 − n2, r = m2 + n2

for all integers m, n such that m  > n  >  0 (m and n not both odd).
(3) Find fi ve primitive Pythagorean triples for r  ≤  41.

Solutions:
(1) Draw the auxiliary lines shown in fi gure 3.10. Then use the Pythagorean theorem 

to get (a + b)2 = (b − a)2 + DE2, or DE ab= 2 .  (This result will be useful in many prob-
lems to come.)

(2) Suppose in the previous problem we want DE = AC to be an integer. Since 

DE ab= 2  it is suffi cient that a n=  and b m= ,  where both m and n are integers. 
Hence a = n2 and b = m2. Let BC = p, another integer. The condition for a Pythagorean 
triple is then p = b − a = m2 − n2, AC = 2mn and AB = b + a = m2 + n2. For a primitive 
Pythagorean triple, m and n should have no common devisor.

9 If p and q are relatively prime, it follows that p and r and q and r are relatively prime.
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This is the simplest method in traditional Japa nese mathematics for fi nding the 
conditions on a primitive Pythagorean triple.

(3) In the Seiyō Sanpō, Sadasuke gives all primitive Pythagorean triples (p, q, r) for 
0 < r < 1000. For r < 45 they are (3,4,5), (5,12,13), (8,15,17), (7,24,25), (12,35,37), 
(20, 21, 29), and (9, 40,41).

E
l

a b

D
Figure 3.9. Show that DE ab= 2 .

a
l

D E

A C

B

b

b−a

Figure 3.10. Use Pythagoras.

Wasan of the Nineteenth Century

Aida Yasuaki (1747–1817)

For many sangaku we are indebted to the students and followers of the geom-
eter Aida Yasuaki,10 a native of Yamagata province in Japan’s northeast. Born 
in 1747, at the age of sixteen Aida enrolled in the nearby Okazaki school to 
study mathematics. At  twenty- three, he went to Edo, working as a samurai 
road crew member on the construction of roads and levees. He seems to have 
kept this up, apparently writing nothing on mathematics, until the age of 
 thirty- fi ve when he hung a sangaku at the Atago shrine. Another fellow on the 
road crew turned out to be a student of Fujita Sadasuke, which led to an intro-
duction with the master, then head of the Seki school. In a friendly manner 
Fujita advised Aida to correct a mistake on the tablet he had hung.

10 In the West, sometimes Aida Ammei.
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But Aida took offense at Fujita’s warm advice and or ga nized the Saijyoh 
 ryū—“The Best Mathematics School”—to stand in opposition to the Seki 
ryū—the “Seki school.” A protracted feud resulted, but Aida’s ability in math-
ematics was not in doubt. To be sure, he went slightly mad over mathemat-
ics, writing about 1,300 books, of which eleven  were published. “Books” 
may be stretching  things—the unpublished 1,289, approximately, each 
consisted of about twenty pages.

Aida was highly skilled in geometry. His Sanpō Tenshōhō, or Algebraic Geom-
etry, consists of 195 volumes, making it undoubtedly the longest mathematics 
textbook in history, while his Sanpō Kantuh Jyutsu, (General Methods in Geometry) 
consists of  sixty- fi ve volumes. Perhaps Aida’s main contribution was that his 
Best Mathematics School did produce many mathematicians in the northeast 
of Japan, with the result that many sangaku survive to this day in that part of 
the country. Because the reader will encounter a number of sangaku problems 
from Aida’s school throughout the book (in par tic u lar in chapter 4, problem 
37, and chapter 5, problem 21), we do not present any  here.

Other Mathematicians of the Late Edo Period

Many Japa nese mathematicians contributed to the development of wasan, 
too many to name them all. For Sacred Mathematics, one of the most im-
portant is Yamaguchi Kanzan, who is little more than a shadow. He was 
born in Suibara, Niigata prefecture circa 1781, he studied mathematics in 
Edo and died in 1850. His main legacy is a voluminous travel diary, the 
result of six walking tours he took around Japan to record sangaku prob-
lems. Except for two of the tablets Yamaguchi rec ords, all have been lost. 
Chapter 7 is devoted to an extended excerpt from his diary, including 
problems.

Equally important for us is Yoshida Tameyuki (1819–1892), who was a 
samurai in the Owari clan of Nagoya. Yoshida pursued his studies with many 
teachers and left numerous manuscripts containing solutions to temple 
 geometry problems. His solutions are noteworthy for their simplicity, clarity, 
and beauty, and we present several of them throughout this book. Fukagawa 
Hidetoshi, one of the present authors, attempted to fi nd the site of Yoshida’s 
 house in Nagoya, but in vain.

A fairly major fi gure was Uchida Kyō (1805–1882), a mathematical prod-
igy who entered the school of one of Seki’s followers at age eleven and re-
ceived a license to teach at age eigh teen. He knew Dutch, and when he 
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started his own school he named it “Mathematica.” Uchida’s works covered 
many areas, including not only mathematics but astronomy, geography, 
and surveying. Renowned as a teacher, his students came from all over 
 Japan. In 1879, he became a member of the Tokyo Academy under the new 
Meiji government. One of his main works was Kokon Sankan of 1832, or 
Mathematics, Present and Past, which is noteworthy as it included Soddy’s fa-
mous hexlet theorem of 1937, a problem posted on a sangaku in 1822 (see 
problem 16, chapter 6).

Several other  nineteenth- century mathematicians contributed to the 
further development of the Enri, including Wada Yasushi (1787–1840) and 
Uchida Kyūmei (?–1868), but because their contributions  were mostly in 
the area of integration, we defer discussion of their work until chapter 9. 
We end this chapter with an elementary problem from Chiba Tanehide 
(1775–1849), who was born in a farm house but later studied mathematics 
in Hasegawa Hiroshi’s school in Edo. At  fi fty- three, Chiba became a samu-
rai in the Ichinoseki clan of Iwate province. When his book, Sanpō Shinsyo, 
or New Mathematics, appeared in 1830, it became one of Japan’s  best- selling 
mathematics books. It contains an exposition of almost all traditional Japa-
nese mathematics, including the Enri and this exercise, whose solution will 
be extremely helpful in all that is to follow.

From fi gure 3.11, prove the Pythagorean theorem for the right triangle 
ABC.

c
b

a
Figure 3.11. Prove the Pythagorean theorem.
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Solutions to Selected Chapter 3 Problems

Problem 5
In Imamura’s Inki Sanka there are no solutions, so we provide a modern 

confi rmation of the results.
In any  fi rst- year geometry text it is shown that the area of a regular 

polygon is A n sa= 1
2 , where n is the number of sides, s is the length of the 

side, and a is the apothem, the perpendicular distance (altitude) from the 
center of the polygon to one of the sides. You can easily prove that

a
s

n
=

/
( / )

,
2

180tan

and so the area of the polygon is

A
n

n
s=

4 180
2

 tan( / )
.

Plugging in n = 1, . . . , 9 gives the values for A  near—but not quite the 
same  as—those listed by Imamura.

For part 2, the reason the square is omitted is that it is trivial, A = a2. 
The hexagon is merely six times the area of an equilateral triangle.

For part 3, the altitude of a regular tetrahedron of side s is h s= ( / )6 3  
and the volume is (1/3) × (area base) × (altitude) = ( / )2 12 3s  = 
0.11785113s3. The Inki Sanka’s numerical answer is of course approximate.

Problem 6
(2) Considering, say, the lower triangle, then from fi gure 3.1 we see 

that 15 = 2r. From the  half- angle formula 15 = (1 − cos 30)/(sin 30) and 
so 2 2 3 0 26794r = − = . . This value was written in the book.

(3) In this case we have 2r = tan 27 = (1 − cos 54)/ sin . .54 0 50952≅  
Again, this approximation was written in the book. (In chapter 4, 
problem 32, we show how to work out the trigonometric functions of 
such strange angles.)

Problem 8
If rn, and Rn are the radii of the inscribed and circumscribed circles 

of an n- sided regular polygon of side 1, then it is easy to show that 
sin(180/n) = 1/(2Rn) and R rn n

2 21 4= +/ .

(1) For the triangle, we use the  triple- angle formula sin 3θ = − 4 sin3 θ +  
3 sin θ, where θ = 180/3. Plugging in sin θ = 1/2R3 from above gives the 
formula 3 1 03

2R − = ,  and with the Pythagorean theorem 12 1 03
2r − = .
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(2) Here we employ the  qua dru ple- angle formula sin 4θ = cos θ 
(−8sin3 θ + 4sin θ). The same procedure yields 2 1 04

2R − =  and 
2r4 − 1 = 0.

(3) In this case the relevant  quintuple- angle formula is sin 5θ = 16sin5θ 
− 20sin3θ + 5sinθ, from which you can show that 5 5 1 05

4
5
2R R− + =  and 

80 40 1 05
4

5
2r r− + = .

Problem 9
We have approximately (Matsunaga’s decimals are slightly off )

π = + = +

= +
+

= +
+

= +
+

= +
+

=

3 0 1415926 3
1

1 0 1415926

3
1

7 0 062515
3

1
7 1 1 0 62515

3
1

7 1 15 99
3

1
7 1 16

355
113

.
/ .

. /( / . )

/ . /

,

where the last step follows from putting everything over a common denomi-
nator. In traditional Japa nese mathematics this method was called reiyaku-
jyutsu, or “dividing by zero.” Well, if not zero, then very small numbers.

Problem 10
The original solution to this problem consisted only of drawings. We 

add a few details. The best way to follow the solutions is to try it with 
scissors. Part 1 has two solutions:

Solution A: First, fold the paper in half so that the midpoint M is 
marked by the crease (fi gure 3.12). Unfold. From the endpoints of the 
base, cut along the two indicated lines to M, and replace as shown.

Solution B : As in solution A, fold the paper in half to mark the 
midpoints M and N as in fi gure 3.13. Unfold. From the endpoints on 
the  left- hand side, cut along the indicated dashed lines to M and N. 
Replace as shown.

A

M

A

B C
B

C

Figure 3.12. Cut on the dashed lines and 
replace.
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(2) We are given that the sides of the rectangle are in the ratio 1:3, so 
referring to fi gure 3.14 we can assume AD = 1 and AB = 3. Hence we 
want to construct a side equal 3.

As before, fold the paper from left to right and mark the midpoints 
M and N. Unfold. Next fold the paper from bottom to top and mark the 
midpoints F and E. Now take a point G on the centerline FE such that 
AG  = AD and erect the perpendicular GH to AG, where H is a point on 
ND. (This can be done by folding the side AD such that vertex D sits on 
the centerline FE at G. The desired perpendicular is the edge along the 
paper from D to the crease. Unfold.) Finally, extend AG to K and mark 
the point J on MB such that MJ  = HD. 

By construction AG = AD and, since G is on the centerline, AG = 
AD = DG, which implies that ∠ = °GAD 60  and ∠ = °MAK 30  Hence, 
ΔMAK  is a 30–60–90 triangle and so AM AK/ / .= 3 2  Since we folded 
the paper such that AM = 3/2, we get AK = 3, the side length of the 
desired square. Moreover, all the triangles in the fi gure are 30-60-90. 
With this fact you can convince yourself that JN + HG  = 3 as well, which 
allows construction of the square on the right of fi gure 3.14.

(3) For this part we want to construct a square of side 5 from the 
fi ve unit squares in fi gure 3.7. We present the original diagram solu-
tions in fi gure 3.15 and leave the detailed proofs to the reader.

C

M

N

A
B

C

D

B

A

D
Figure 3.13. Cut on the dashed lines and replace.

H

B

C

EF
G

HN

K

MJ

D

A

G

M

C
D

B A
K

G

N
K

N
A

J H

J

Figure 3.14. Cut and replace as shown.
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Problem 12
We give Ajima’s original solution without comment, except to say 

that he actually carried out his calculations to fourteen digits, which a 
scientifi c software package shows are correct!

(1)

100.9 = 101.0/100.1 = 7.943285; 100.8 = 100.9/100.1 = 6.309578;
100.7 = 100.8/100.1 = 5.011878; 100.6 = 100.7/100.1 = 3.981078;
100.5 = 100.6/100.1 = 3.162284; 100.4 = 100.5/100.1 = 2.511892;
100.3 = 100.4/100.1 = 1.995267; 100.2 = 100.3/100.1 = 1.584897.

(2)

100.09 = 100.10/100.01 = 1.230268; 100.08 = 100.09/100.01 = 1.202264;
100.07 = 100.08/100.01 = 1.174897; 100.06 = 100.07/100.01 = 1.148153;
100.05 = 100.06/100.01 = 1.122018; 100.04 = 100.05/100.01 = 1.096478;
100.03 = 100.04/100.01 = 1.071519; 100.02 = 100.03/100.01 = 1.047128.

(3)

102.56 = 102 × 100.5 × 100.06 = 100 × 3.162284 × 1.148152 = 363.0786.

X

X
X

Figure 3.15. The dashed hypot-
enuses of the right triangles have 
length 5 .



Plate 4.1. A replica of a sangaku that was hung in 1879 in the Aga shrine and 
mea sures 163 cm by 58 cm. It contains several problems quite similar to several 
of those in this chapter (see problems 30–35).



Easier Temple Geometry 
Problems

Confucius says, “You should devote 
all your time to study, forgetting to 
have meals and going without sleep.” 
His words are precious to us. Since 
I was a boy, I have been studying 
mathematics and read many books on 
mathematics. When I had any 
questions, I visited and asked 
mathematician Ono Eijyu. I appreci-
ate my master’s teachings. For his 
kindness, I will hang a sangaku in 
this temple.

—Inscription on a sangaku hung in 
1828 by Saitō Kuninori at the 
Kitamuki Kannon temple

Temple geometry problems, as may now be evident, are not found in 
temples alone. During the Edo period, twelve collections of sangaku prob-
lems appeared in print and hundreds of other problems  were recorded in 
unpublished manuscripts. What’s more, some devotees who hung sangaku 
unrepentantly swiped problems from earlier collections. Neither the tab-
lets nor many of the books are to be thought of as texts in the modern 
sense; they do not in any way constitute a coherent exposition of traditional 
Japa nese mathematics. On a single sangaku, a problem that a  twelve- year-
 old might solve can be found next to one that would stop a graduate stu-
dent in his or her tracks. In part this is because sangaku  were frequently 
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created by  whole groups of people, perhaps an entire class at a juku, and 
undoubtedly the students  were at many different levels.

This state of affairs makes selecting and presenting sangaku problems 
something of a challenge. We have chosen to arrange the problems more 
or less in order of diffi culty rather than by source, and, where possible, to 
group similar problems together. Again, these exercises  were not “problem 
sets” developed by an instructor for a mathematics curriculum, but are 
largely the random result of the labors of afi cionados solving geometrical 
riddles that pleased them.

In chapters 4 through 6, we present a selection of about ninety temple 
geometry problems, ranging from the trivial to the nearly impossible. 
Most of those in this par tic u lar chapter, devoted to easier problems, 
come from the tablets themselves, a few of which can be seen in the color 
section of the book. These tablets  were among over one hundred dis-
played at the fi rst exhibit of sangaku, discussed in the Preface. The re-
mainder of the problems come from some of the collections and 
manuscripts just mentioned. Of the published collections of sangaku, the 
fi rst and probably the most famous is that of Fujita Kagen. Fujita’s book, 
Shinpeki Sanpō, or Sacred Mathematics, appeared in 1789 and contains 
problems from  twenty- six tablets hung between 1767 and 1789. For a sec-
ond edition of 1796, Fujita added problems from  twenty- two tablets hung 
between 1790 and 1796. The shrines in which the tablets  were found 
 were located over a wide area in Japan, with the consequence that the 
name of Fujita spread over an equally wide area. In an 1807 sequel, Fujita 
recorded fi fty tablets hung from 1796 to 1806. Of the 48 sangaku re-
corded in the fi rst book, all but one, from the Sakurai shrine in Aichi 
prefecture, have been destroyed or lost. Of the fi fty recorded in the sec-
ond, only one tablet hung in the Isaniha shrine in Ehime prefecture has 
survived.

In terms of the remaining collections, although one of the books ap-
peared in 1873, after the fall of the Tokugawa shogunate, all the problems 
date from the earlier Edo period, before Western infl uence made itself felt. 
We also quote a number of problems from unpublished manuscripts. For 
each of the problems and solutions, we indicate the  author—if a name has 
come down to  us—and the source, whether a tablet, book, or manuscript. 
The books, in the Genroku spirit, are all printed on rice paper with wooden 
blocks and are themselves works of art. Most of them are quite rare and 
the solutions we present from them have generally never been seen in the 
West.
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The fi rst three exercises in this chapter do not actually involve geometry 
but are  so- called diophantine  problems—algebraic problems that require 
integer solutions.1 They are much in the spirit of some of the Chinese prob-
lems from chapter 2. The remaining problems virtually all deal in plain 
plane geometry, although a few of the fi nal ones additionally require sim-
ple calculus. We trust that most will be suitable for high school students. 
They also provide a useful “warmup” for the more diffi cult puzzles of chap-
ters 5 and 6, as they utilize some of the same basic techniques found every-
where in geometry, East and West. For the fi rst problems, we often supply 
the required “auxiliary lines” in the solution fi gures, to get readers going. 
But we do not do this all the time, and somewhat less frequently as the 

1 Named after Diophantus of Alexandria (c. a.d. 200–c. 284), sometimes called the 
 “father of algebra.”

Plate 4.2. Another woodblock print from the Jinkō- ki, this time from 
a 1778 edition.
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chapter progresses. Our hope is that diligent students will take up the task 
themselves.

In doing the exercises, readers may occasionally wonder where the strange 
numbers come from: “If 2r = 35.5, fi nd a.” “If d = 3.62438 and 2t = 0.34, fi nd 
2r.” Many of the sangaku posters chose seemingly bizarre pa ram e ters in 
order to simplify computation of the fi nal answer. A good example is prob-
lem 13 in chapter 6. Finally, a word about signifi cant fi gures. Although 
teachers always admonish students not to engage in “meaningless preci-
sion” by using too many signifi cant fi gures, when there has been no dis-
agreement between our answer and the original, we often display a large 
number of signifi cant fi gures in the answers to numerical problems. In 
such cases, the number of signifi cant fi gures is that found on the original 
tablet.

Answers and solutions can be found at the end of the chapter.

Problem 1
The tablet on which this problem was written was hung by Ufu Chōsaburō in 1743 at 

the Kurasako Kannon temple. Its size is 76 cm by 33 cm.

There are 50 chickens and rabbits. The total number of feet is 122. How many chick-
ens and how many rabbits are there?

The original solution can be found on page 121.

Problem 2
Tanikawa Taizō hung the tablet containing this problem in 1846 at the Yuisin temple 

of  Chita- gun, Aichi prefecture. It is 98 cm wide and 48 cm high. The sangaku was un-
known until 1979 when someone visited the temple, found it empty and abandoned, and 
discovered the tablet.

A circular road A that is 48 km in circumference touches at point P another circular 
road B of circumference 32 km. (See Figure 4.1.) A cow and a  horse start walking from 
the point P along the road A and B, respectively. The cow walks 8 km per day and the 
 horse walks 12 km per day. How many days later days later do the cow and  horse meet 
again at P?

The solution is on page 121.
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Horse

P  Start

b

a

Cow

Figure 4.1. How many days after starting out from P will the 
 horse and cow meet?

Problem 3
The tablet on which this problem was written was hung by Hara Toyokatsu in 1829 at 

the Katsurahama shrine in Akigun of Hiroshima prefecture and mea sures 81 cm by 
46 cm. The problem itself was quoted from the 1797 book Saitei Sanpō, or Revision of 
Certain Problems, by Fujita Kagen.

As shown in fi gure 4.2, three circles A, B, and C of circumference 56 + 2/3 km, 
30 + 5/7 km, and 13 + 3/4 kilometer, respectively, all pass through point P. Three  horses 
a, b, and c start to walk around A, B, and C from P simultaneously.  Horse a’s speed is 
8 + 41/1,000 km per day, b’s is 6 + 123/4,000 km per day, and c’s is 4 + 41/2,000 km per 
day. How many days will pass before the three  horses meet again at P?

Answer: The  horses meet again 20,000 days after they set out. The solution can be found 
on page 121.

P
b

a

c Figure 4.2. How many days will pass before the  horses meet 
again at P?
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Problem 4
This problem comes from the collection Sūri Shinpen, or Mathematics of Shrines and 

Temples by Saitō Gigi (1816–1889). In this 1860 book, Saitō rec ords  thirty- four tablets that 
 were hung between 1843 and 1860. Most of the problems involved  high- level calculus. 
This easy one was originally proposed by Nakasone Munekuni and hung in 1856 at the 
Haruna shrine in Haruna town, Gumma prefecture.

The centers of a loop of n circles of radius r form the vertices of an n- gon, as shown in 
fi gure 4.3. Let S1 be the sum of the areas of the circles inside, and S2 the sum of the areas 
of circles outside. Show that S2 − S1 = 2πr2.

The solution is left as an exercise for the reader.

Figure 4.3. Show that white − grey = 2πr2.

Problem 5
This elementary exercise can be seen as the second one from the bottom left corner 

on the sangaku of the the Katayamahiko shrine, color plate 5.

A circle of radius r is inscribed in an isosceles triangle with sides a = 12 and b = 10 (see 
fi gure 4.4). Find r.

Answer: 2r = 6.

The solution is on page 122.

r

a

bb

Figure 4.4. If a = 12 and b = 10, fi nd r.
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Problem 6
We know of this problem from the unpublished manuscript Jinbyō Bukkaku Sangakushū, or 

Collection of Sangaku from the Aida School, written by Aida Yasuaki (1747–1817) at an unknown 
date. The problem was originally proposed in 1800 by Kobata Atsukuni, a student of the 
Aida school, and presented on a tablet to the Kanzeondō temple of Toba castle town.

A big circle of diameter 2R  = 100 inscribes a large and small equilateral triangle, as 
shown in fi gure 4.5. Find the side q (in terms of R) of the small equilateral triangle ABC 
if A is the midpoint of one side of the large triangle.

See page 123 for a solution.

Problem 7
This problem can be seen as the second on the top left of the Katayamahiko shrine 

sangaku, color plate 5.

Two circles of radius r are tangent to the line l. As shown in fi gure 4.6, a square of side 
t touches both circles. Find t in terms of r.

The answer is given on page 123.

CB

A

R

q

Figure 4.5. Find q in terms of R.

r

l
t

r

Figure 4.6. Find t in terms of r.
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Problem 8
This problem is the second from the bottom right corner on the Katayamahiko shrine 

tablet, color plate 5.

A circle of radius r inscribes three circles of radius t, the centers of which form an 
equilateral triangle of side 2t (fi gure 4.7). Find t in terms of r.

Example : If r = 10, then t = 4.64.

The answer and solution are on page 123.

Problem 9
Kobayashi Syouta proposed this problem on a tablet that was hung in the Shimizu 

shrine, Nagano prefecture, in 1828.

In a big square of side a, a smaller square of side 2r, and a circle of radius r touch the big 
square, as shown in fi gure 4.8. Find r in terms of a.

The answer and solution can be found on page 124.

t

r
t

t

Figure 4.7. Find t in terms of r.

a

2r

r

Figure 4.8. Find r in terms of a.
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Problem 10
This problem is the third from the left on the Meiseirinji sangaku, color plate 8. It was 

proposed by Tanabe Shigetoshi, aged fi fteen.

In a blue equilateral triangle, three “green” (light) circles of radius a, four “red” 
(dark) circles of radius b, and six white circles of radius c touch each other as shown in 
Figure 4.9. If R is the radius of the outer circle, and r is the radius of dashed circle, fi nd c 
in terms of r.

A solution can be found on page 124.

Problem 11
This problem is the leftmost problem on the gilded Sugawara sangaku, 

color plate 7.

As shown in fi gure 4.10, a square of side t is inscribed in a given right triangle with 
sides a, b, c. If the area of triangle is S = 163,350 and the hypotenuse c = 825, then fi nd a, 
b, t, n, and the distance d.

The answer and solution can be found on page 124.

Figure 4.9. Find the radius of the small white 
circles in terms of r, the radius of the dashed 
circle.
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Problem 12
This is the rightmost problem on the Sugawara tablet, color plate 7.

As shown in fi gure 4.11, we have one circle inscribed in the outer square, a rhombus, 
two larger circles of radius R, and two smaller circles of radius r. The side of the rhombus 
b is the same length as the distance between the two horizontal lines drawn in the 
square. If 2r = 35.5, fi nd a, aπ, b, R, and d. (As in traditional Japa nese mathematics,2 take 
π = 3.16.)

Answer: a = 319.507; aπ = 1,009.6428; b = 184.472; 2R = 106.5; d = 67.5172.

The full solution can be found on page 124.

2 Although we saw in chapter 2 that ancient Chinese and Japa nese mathematicians had 
calculated π to many decimal places, traditional Japa nese mathematicians found it simpler 
to use π = 3.16.

d

a

b

c

t

n
Figure 4.10. Given the area S and hypotenuse c, fi nd 
a, b, t, n, and d.

R

d

d

a

b
r

Figure 4.11. Find a, b, d, r, and R.
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Problem 13
Watanabe Kiichi proposed this problem, which is the twelfth from the right on the 

Abe no Monjuin sangaku, color plate 11.

As shown in fi gure 4.12, an equilateral triangle with side t, a square of side s and a 
circle touch each other in a right triangle ABC with vertical side a. Find t in terms of a.

Answer: t a= −( ) .3 1

The solution can be found on page 124.

B

a

t

C

s

A
Figure 4.12. Find t in terms of a.

Problem 14
Proposed by Yamasaki Tsugujirou, this problem is the second problem from the right 

on the Meiseirinji tablet, color plate 8.

In a rhombus, there are two red circles of radius r, two white circles of radius r1, and 
fi ve blue circles of radius r2 (see fi gure 4.13.). Show that r2 = r1/2, or blue = white/2.

A full solution to the problem is given on page 124.

Figure 4.13. Show that the radius of the “blue” 
circles (dark) is  one- half the radius of the 
“white” circles (white).
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Problem 15
This problem is the third from the bottom right corner on the Katayamahiko shrine 

sangaku, color plate 5. It also appears on the newly discovered tablet from the Ubara 
shrine (see problem 31).

As shown in fi gure 4.14, two circles of radius r are inscribed in a square and touch 
each other at the center. Each of two smaller circles with radius t touches two sides of the 
square as well as the common tangent between the two larger circles. Find t in terms of r.

The answer and solution can be found on page 125.

Problem 16
This problem, written on a tablet presented in 1837 to the Ohsu Kannon temple of 

Nagoya city, Aichi prefecture, was originally proposed by Mizuno Tsuneyuki and 
recorded in the unpublished manuscript, Sangaku of Ohsu Kannon by Nagata Toshi-
masa, 1837.

Four circles of radius r, whose centers form a rectangle with one side equal to 2r, are 
inscribed in a big circle of radius R. As shown in fi gure 4.15, draw one small circle of 
radius p that touches the four circles r, and draw two small circles of radius q that touch 
two of the circles r externally and touch R internally. Find p in terms of q.

A solution can be found on page 125.

t

t

r

r

Figure 4.14. Find t in terms of r.
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Problem 17
This problem, presented by Kobayashi Nobutomo, also comes from the Shimizu shrine 

sangaku, 1828.

As shown in fi gure 4.16, a small circle of radius b sits on the point of contact between 
two squares of side 2b that in turn sit on a line l. A big circle of radius a touches the line 
l, the nearest square, and the small circle. Find a in terms of b.

The answer and solution are on page 126.

r

pq

R

r

q

r

r

Figure 4.15. Find p in terms of q.

l

a

b

2b
Figure 4.16. Find a in terms of b.

Problem 18
Gunji Senuemon was the proposer of this problem, which is the sixth from the left 

on the Abe no Monjuin sangaku, color plate 11.
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From point O, the center of a circle with radius c, draw two tangents to the circle O ′, 
which also has radius c and which touches circle O externally. Then, as shown in fi gure 
4.17, draw a large circle of radius R that passes through O and touches O ′ internally. 
Draw two more circles of radius b and a small circle of radius a. Find R, b, and c in 
terms of a.

A solution is on page 127.

Problem 19
This problem was written on a tablet hung in 1842 at the Atsuta shrine of Nagoya city, 

Aichi prefecture. It was proposed by Nagata Takamichi and recorded in the manuscript 
Atsutamiya Hōnō Sandai, or Sangaku of Atsuta Shrine, whose date and author are  unknown.

Take any point C on the segment AB shown in fi gure 4.18 and draw two circles of 
diameters AC and BC that are tangent at C. From point A, draw two tangents to circle s, 
and from point B draw two tangents to circle t. Now consider two circles of radius p and q 
that touch the tangents and pass through point C. Show p = q for any C.

A proof is left as an exercise for the reader.

O’

cO a

c

b

b

R

Figure 4.17. Find R, b, and c in terms of a.
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Problem 20
This problem can be seen as the second from the right top corner of the Katayama-

hiko shrine sangaku, color plate 5.

We have a fi eld in the shape of a right triangle ABC with AC = 30 m and BC = 40 m. 
As shown in fi gure 4.19, we want to plow a path DEFGHIJ of width 2 m so that the three 
remaining interior sections have the same area. Find BE, DE, HC, JC, AI, and FG.

Answer: BE = 21.7743; DE = 16.331; HC = 16.2255; JC = 10.9577; AI = 17.0423 and 
FG = 4.873.

See page 127 for a solution.

t

s

A q BC p

Figure 4.18. Show p = q for any C.

E

S

S
S

A

B

D
G

I

J

F

C
H

Figure 4.19. Find BE, DE, HC, JC, AI, and FG.
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Problem 21
This problem is the fourth from the right top corner on the sangaku of Katayamahiko 

shrine, color plate 5.

On a circular fi eld of diameter 2r = 100 m, we make four lines of length t such that 
they divide the circle into fi ve equal areas S, one of which is a square of side d (see fi gure 
4.20). Find t and d, using π = 3.16.

Answer on tablet: t = 69.75494 and d = 39.7494.

The solution is on page 128.

Problem 22
The tablet from which this problem was taken was hung in 1847 in the Akahagi 

Kannon temple in Ichinoseki city. Its size is 188 cm by 61 cm. The problem itself was 
proposed by Satō Naosue, a  thirteen- year- old boy.

Two circles of radius r and two of radius t are inscribed in a square, as shown in 
fi gure 4.21. The square itself is inscribed in a large right triangle and, as illustrated, two 
circles of radii R and r are inscribed in the small right triangles outside the square. Show 
that R = 2t.

See page 128 for the solution.

S

d
t

d

Figure 4.20. Find t and d in terms of the radius of the circle, r.
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Problem 23
This problem is the fourth from the right on the Sugawara tablet, color plate 7.

As shown in fi gure 4.22, a square of side c is inscribed in an equilateral triangle of side 
k. Two smaller squares of sides a and b are inscribed between the equilateral triangle and 
square c. A smaller equilateral triangle of side d is inscribed within square c and a circle 
of radius r is inscribed within square d. If a = 7.8179, fi nd b, c, d, k, and r.

The answer and solution can be found on page 128.

r

R

r

t t

r

Figure 4.21. Show that R = 2t.

k

a

b

c

r
d

Figure 4.22. Find b, c, d, k, and r in terms of a.
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Problem 24
This problem is the fi fth from the right on the Sugawara sangaku, color plate 7.

In a circle of radius R, a rectangle of width a + b and height t is inscribed (fi gure 4.23). 
Inscribed in the rectangle is a rhombus with short diagonal d. The diameter of the circle 
inscribed in the right triangles is 2r = 30 and a = 45. Find b, d, 2R, 2πR (circumference), 
and e, where π = 3.16.

The answer and solution can be found on page 129.

Caution: From approximately this point on the problems become slightly more diffi cult, involving 
more trigonometry.

Problem 25
Here we have a rare example of a problem proposed by a woman, Okuda Tsume. It can 

be seen as the sixth problem from the right on the Meiseirinji sangaku, color plate 8.

In a circle of diameter AB = 2R, draw two arcs of radius R with centers A and B, respec-
tively, and ten inscribed circles, two of diameter R (light); four “red” (dark) of radius t, 
and four “blue” (lighter) of radius t′ (fi gure 4.24). Show that t = t ′ = R/6.

A solution is on page 129.

Problem 26
During the later Edo period it became pop u lar to consider problems that could be 

drawn upon folding fans, that is, upon a sector of an annulus. This example can be 
found on the top right corner of the Katayamahiko shrine tablet, color plate 5.

e

R

b
a

d

t
r

Figure 4.23. Given a and r, fi nd b, d, e, t, and R.
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As shown in fi gure 4.25, in a sector of radius R, two circles of radius r are tangent to 
each other and touch the sector internally. A small circle of radius t touches both the 
sector and a chord of length d. If d = 3.62438 and 2t = 0.34, fi nd 2r.

Answer on tablet: 2r = 3.025.

The solution can be found on page 129.

BA

Figure 4.24. If R is the radius of the large circle, show that 
the radius t of the small “red” (dark) circles and the radius 
t′ of the small “blue” circles (lighter) is t = t′ = R/6.

d

r r

R

t

Figure 4.25. Given d, fi nd the radii t and r.

Problem 27
This problem was originally proposed by Takeda Sadatada on a tablet hung at the 

Atago shrine of Tokyo in 1830. Our knowledge of it comes from the 1832 book Kokon 
Sankan, or Mathematics, Past and Present, by Uchida Kyō (1805–1882). In this work, Uchida 
recorded problems from  twenty- three tablets hung between 1820 and 1830. Generally 
the problems are diffi cult; this one is not so hard.

Two squares of sides b and d touch each other at a vertex, as shown in fi gure 4.26. 
Each of the squares b and d also touches two other squares with sides a and c, as shown. 
Find d in terms of a, b and c.
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Answer:

d
a c

b= + −
2 2

2

2
.

Example: If a = 13, b = 9, c = 11, then d = 8.

The solution is on page 130.

Problem 28
The tablet on which this problem was found was hung by a  twelve- year- old boy, Imahori 

Yakichi, in 1790 at the Nagaoka Tenman shrine of Kyoto and mea sures 58 cm by 24 cm.

As shown in fi gure 4.27, four circles of radius a and four circles of radius b touch a 
square of side k. Find k in terms of a and b.

b

d

c

a

Figure 4.26. Find d in terms of a, b, and c.

k

ab

k

Figure 4.27. Find k in terms of a and b.
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Plate 4.3. The original illustration for 
problem 27, from Uchida Kyō’s 1832 
book, Kokon Sankan, or Mathematics, 
Past and Present. (Aichi University of 
Education Library.)

Example: If 2a = 5,2b = 3, then k = 4.4465, which is not written on the tablet.

See page 131 for the solution.

Problem 29
Itō Tsunehiro of the Itō Sōtarō school, proposed this problem in 1849. 

The tablet, which mea sures 245 cm by 47 cm, was hung in Senhoku city’s Kumano shrine.

Triangle ABC is inscribed in a circle of diameter 2r (see fi gure 4.28). CH is 
perpendicular to AB. Find r in terms of BC, AC, and CH.

Example: If BC = 5, AC = 8, and CH = 4, then 2r = 10.

See page 131 for the answer and a solution.
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Problem 30
This problem can be seen as the third from the right top corner of the Katayamahiko 

shrine sangaku, color plate 5.

A regular hexagon ABCDEF inscribes two equilateral triangles ACE and BDF, which in 
turn inscribe a circle of radius r. Six smaller circles of radius t are inscribed in, for 
example, AFE, as shown in fi gure 4.29. Find t in terms of r.

Result on tablet: If r = 10 then t = 4.226.

The answer and a solution can be found on page 132.

B

C

H
A

Figure 4.28. Find the radius of the circle r in terms of BC, AC, 
and CH

O

A

B

C

D

E

F

t

Figure 4.29. Find t in terms of r, the radius of the inner 
circle.
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Problem 31
We present  here a problem from the most recently discovered sangaku, which was 

found by Mr. Hori Yoji at the Ubara shrine of Toyama in 2005. It dates from 1879 and 
mea sures 76 cm by 26 cm. (See color plate 13.)

As shown in fi gure 4.30, a ring of eight small circles of radius t, whose centers lie on 
the vertices of a regular octagon, is circumscribed by a circle of radius R and circum-
scribes a circle of radius r. Find R and r in terms of t.

The solution is given on page 132.

Problem 32
The tablet containing this problem was hung in the Kitano shrine of Gumma’s Fujioka 

city in 1891 by the Kishi Mitsutomo school. Its width is 121 cm and height  186 cm.

As shown in fi gure 4.31, a circle of radius r is surrounded by a loop of fi ve equal circles 
of radius R. Find r in terms of R.

Example: If 2R = 1.8, then 2r = 1.26. . . . 

The solution is given on page 133.

Problem 33
This problem, proposed by Shirakawa Katsunao, can be seen as the fi fth one from the 

right on the Mizuho sangaku, color plate 9. Advice: Do the previous problem fi rst.

R

r

t

Figure 4.30. Find R and r in terms of t.
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As shown in fi gure 4.32, fi ve circles of radius t touch the large circle of radius R 
internally. A circle of radius r is inscribed in the pentagram. Show that t r= 0 8. .

The answer and a solution can be found on page 133.

R

r

Figure 4.31. Find r in terms of R

R

r

t

Figure 4.32. Show that t r= 0 8. .

Problem 34
This is the fi fth problem from the left on the Abe no Monjuin sangaku, color plate 11. 

Advice: Follow the previous advice.

A big circle inscribes two equilateral triangles, each of side 3a. As shown in fi gure 4.33 
six small circles of radius r touch the big circle and the two triangles. Find r in terms of a.

Answer: r a= −( ) .9 5 3

See page 134 for a solution.
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Problem 35
This problem can be seen as the one on the top left of the Katayamahiko shrine 

sangaku, color plate 5. Advice: ditto.

As shown in fi gure 4.34, four circles of radius r and four congruent equilateral 
triangles of side a touch a big circle of radius R internally and also touch a small square 
of the side a. Find r in terms of R.

Answer:

r R= − +
+ +

⎛

⎝⎜
⎞

⎠⎟
3 2 1

3 2 2 1
.

Example: If R = 10, then r = 2.37.

Turn to page 135 for the solution.

Figure 4.33. Find the radius of the small circles, r, in terms of 
the sides of the equilateral triangles, a.

R

a

r

Figure 4.34. Find r in terms of R.
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Problem 36
This problem is the one on the bottom left corner of the Katayamahiko shrine san-

gaku, color plate 5.

As shown in fi gure 4.35, an equilateral triangle with side a is inscribed in a square also 
of side a, along with and four circles, including two of radius t and one of radius r. Find t 
in terms of r.

The answer and solution can be found on page 135.

tt

a

r

Figure 4.35. Find t in terms of r.

Problem 37
This problem, dating from 1805, comes from the Suwa shrine sangaku and is mentioned 

in the diary of Yamaguchi Kanzan (chapter 7).

We are given a rectangle ABCD, as shown in fi gure 4.36, with AB  > BC. A circle is 
inscribed such that it touches three sides of the rectangle, AB, AD, and DC. The diagonal 
BD intersects the circle at two points P and Q. Find PQ in terms of AB and BC.

See page 136 for the solution and an example.

D

Q

P

AB

C
Figure 4.36. Find PQ in terms of AB and BC.
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Problem 38
Dating from 1819, this problem comes from Yamaguchi Kanzan’s diary 

(chapter 7).

We stick pins into the position of each vertex of a regular dodecagon (twelve sides), as 
shown fi gure 4.37. Then we take a string of length l = 150 cm and wrap it around the 
pins, as shown. This forms a small regular dodecahedron in the center. Find the length 
of the side s of the small dodecahedron.

The solution is on page 136.

Figure 4.37. Find the side-length of the central dodeca-
hedron in terms of the total length of the string.

Problem 39
This problem is the third one from the bottom left of the Katayamahiko shrine 

sangaku, color plate 5.

A circle of radius R = 5 inscribes a regular pentagon of side a. Find a.

Answer: a = 5.87.

On page 137 we give a traditional solution from the 1810 book Sanpō Tenshōhō Shinan, or 
Guidebook to Algebra and Geometry, by Aida Yasuaki (chapter 3).
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Problem 40
The tablet containing this problem was hung in Senhoku city’s Kumano shrine in 1858 

by Nagayoshi Nobuhiro of the Itō Yasusada school. The sangaku is 89 cm wide and 38 cm 
high. For de cades the tablet had gone unrecognized as a sangaku and was on the verge of 
being discarded when, in 2005, Fukagawa Hidetoshi visited the shrine, and, recognizing 
its value, had the tablet restored.

We have N balls. First, we stack them with 19 balls on the top and m balls on the 
bottom, as on the left side of fi gure 4.39. Then we can stack them with 6 balls on top and 
n on the bottom, as on the right side of the fi gure. Find N, m, and n.

The solution is on page 138.

a

R

Figure 4.38. Find a in terms of R.

n

19

m

6

N

N

Figure 4.39. Find N, m, and n.

Problem 41
This problem is the second from the right on the Sugawara sangaku, color plate 7.

A wine vat in the form of a big triangular pyramid of height a whose base is an equilat-
eral triangle of side a is full (see fi gure 4.40). A man takes away wine from the pyramid 
using a cask of 125 liters and then adds as much water to the vat as the remaining wine. 
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He now takes away one cask of the watered wine and again adds as much water as the 
remaining mixture. After the tenth trial the man takes all that remains. Find the volume 
V0 of the vat, and a.

Answer: V0 = 249.75508592 . . .  liters; a = 12.00549 . . .  cm.

The full solution can be found on page 138.

Caution: Calculus begins  here.

Problem 42
We know of this problem through Fujita Kagen’s book Zoku Shinpeki Sanpō. The

problem was originally proposed 1806 by Hotta Sensuke, a student of the Fujita 
school, and written on a tablet hung in the Gikyōsha shrine of Niikappugun, 
Hokkaidō.

aa

a

Figure 4.40. A pyramidical wine vat has a base in the form of an equilateral 
triangle with side a. The volume of the vat is V0.

A

B

E D

C
F

Figure 4.41. Maximize the area of the rectangle.
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Take a point D on the hypotenuse AB of the right triangle shown in fi gure 4.41. 
Assuming the position of D can be varied along AB, fi nd DE and DF in terms of AC and 
BC such that the area of rectangle DECF is maximized.

Turn to page 139 for the answer and a traditional solution.

Problem 43
This problem was hung in 1909 by Kojima Yōkichi and found in the Tozōji temple of 

Kakuda city, Miyagi prefecture. The tablet is 72 cm high and 162 cm wide.

A right triangle ABC with side AB = x and BC = c intersects a square with side AC at the 
point t. (See fi gure 4.42). Assuming x is variable, fi nd the value of x in terms of c that 
maximizes the shaded portion of the triangle.

Example: If c = 12, then x = 4.

You can fi nd the full solution on page 139.

x

CB

c

A

t

Figure 4.42. Find x in terms of c such that the shaded 
area is a maximum.

Problem 44
This problem was written on a tablet hung in 1821 at the Ohma Shinmeisya shrine of 

Yamada gun (village), Gumma prefecture, and later recorded in Saishi Shinzan, an 
unpublished manuscript edited by Nakamura Tokikazu that contains a record of 208 
sangaku dating from 1731 to 1828.

As shown in fi gure 4.43 we are given a rhombus ABCD with side a. Its diagonal BD ≡ 2t 
is considered variable. Let S(t) be the area of the rhombus minus the area of the white 
square whose diagonal is BD = 2t. Find the side x of the square in terms of a when S(t) is 
a maximum.

A solution can be found on page 139.
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C

B

D

A

a

x

2t

Figure 4.43. Find x in terms of a when the area of the 
rhombus minus the area of the square is maximized.

Problem 45
We know of this problem from the 1873 book Juntendō Sanpu, or The Fukuda School of 

Mathematics, by Fukuda Riken (1815–1889). In his book, Fukuda rec ords problems from 
fi fteen sangaku, most of which are very diffi cult. This selection, proposed by Fukuda’s 
disciple Murai Sukehisa, was originally written on a tablet hung around 1846 at the 
Sumiyoshi shrine of Osaka.

As shown in fi gure 4.44, a square ABCD with side a sits on a line l. An identical square 
EFGH touches l at a point E, which is considered variable, and also touches square ABCD 
at a point F on CD. Draw PH perpendicular to l such that the extensions of BG and PH 
meet at T. Maximize PT in terms of a.

Answer: PT a= − +( ) .10 5 22 1

We give a solution on page 140.

Figure 4.44. Maximize PT in terms of a.
l

AD

F

C

H

P

T

a

B

E

G
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Problem 46
Hung by three merchants in the Yukyuzan shrine of Nagaoka in 1801, this problem 

survives today and is mentioned by Yamaguchi Kanzan in his diary (chapter 7).

We are given a circle with diameter 2r and chord AB, as shown in fi gure 4.45. The 
segment MN is the perpendicular bisector of AB. From A and B, draw two lines through 
the midpoint of MN and inscribe four circles, two of radius s and two of radius t. Find 
t in terms of r when AB  − MN is maximized.

Turn to page 141 for a solution.

Problem 47
The problem presented  here was drawn on a tiny panel placed in the eaves of a small 

temple that was destroyed around 1864. Someone managed to save the panel, setting it in 
the ceiling of another room of the Shiokawa Kōkaidō building in Nagano’s Susaka city. 

A

tt

s

s

O

M

N B

Figure 4.45. Find t in terms of r for (AB  − MN) maximized.

x

A

B C
y

a

Figure 4.46. Maximize y as a function of x assuming BC  = a 
is constant.
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No one realized that the panel was a sangaku until 1997, when  Mr. Kitahara Isao noticed 
the beautiful problem on it. The size of the panel is only 41 cm by 38 cm.

In a given right triangle ABC, draw a circle of radius x = AC whose center is the vertex 
A (see fi gure 4.46). Consider a square, one of whose sides lies on BC and touches both 
the circle and AB. If y is the length of the side of the square, and BC is taken to be the 
constant a, fi nd the maximum value of y as a function of x.

Answer:

y amax = −2 1
2

.

Both the original and a modern solution to the problem are given on page 142.

Horse

P  Start

b

a

Cow

Solutions to Chapter 4 Problems

Problem 1
Here is the original solution to the problem:
If rabbits  were chickens then the total number of feet would be 100, 

so we know that the extra 22 feet are all from the rabbits, which 
implies 11 rabbits and 39 chickens.

Algebraically, the solution can be expressed as follows:  If x is 
the number of chickens and y is the number of rabbits, then 
122 = 2x + 4y  =  2x + 2y + 2y = 2(x + y) + 2y = 100 + 2y; hence 2y = 22 
and y = 11.

Problem 2
Assume that d days after starting out, the cow and the  horse meet 

again at P. Then, because the cow is walking at 8 km per day and 
completes a  whole number of revolutions, we must have 8d = 48m, 
where m is an integer. Similarly, for the  horse, 12d = 32n, where n is 
another integer. Dividing the two equations gives m/n = 4/9. But since 
we are looking for the smallest possible integers, we have simply m = 4 
and n = 9. Thus d = 24 days.

Problem 3
Here is the original solution:



122 Chapter 4

Assume that, n days after they set out, the three  horses meet at 
point P. Then, similarly to the previous problem,

8
41

1000
56

2
3

6
123

4 000
30

5
7

4
41

2000
13

3
4

+
⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

,
,

,
,

,
,

n a

n b

n c

where a, b, and c are the numbers of revolutions each  horse makes. 
Multiplying out these equations gives 1,419n = 10,000a, 3,927n =  
20,000b, and 731n = 2,500c. Consequently, n is the least common 
multiple of 10,000, 20,000, and 2,500, or n = 20,000.

[Another way of saying this is that because 3,927 and 20,000 have no 
common divisors, and similarly for the other coeffi cients, we have 
n = 20,000b′ = 10,000a′ = 2,500c′, where b ′ = b/3,927, a′ = a/1,419, and 
c ′ = c/731 must be integers. The smallest possible integral value of n is 
obtained by setting b ′ = 1, giving n = 20,000.]

Problem 4
The solution is left to the reader.

Problem 5
Draw the auxiliary lines shown in fi gure 4.47. Then, if h is the alti-

tude of the triangle, similar triangles shows that r/(h − r) = a/2b, and so 
2r = 2ah/(a + 2b). From the Pythagorean theorem, h = 8, giving 2r = 6.

b

r

a

b

Figure 4.47. Draw the altitude, and drop a perpendicular 
to a side b. Consider similar triangles.

P
b

a

c
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Problem 6
Call the center of the circle O, as in fi gure 4.48. Since the big 

triangle is equilateral, OA = R/2. Also, OB = R and so by Pythagoras  
R R q q2 2 22 3 2 2= + +( / ( / ) ) ( / ) . Solving for q quickly yields, 
q R= − =(( )/ ) .15 3 4 26 7 which was written on the tablet.

R/2

B

R

q

C

A

R

O

Figure 4.48. Draw the radius of the circle.

Problem 7
A single application of the Pythagorean theorem yields a quadratic 

equation with one solution consistent with the fi gure: t = 2r/5.

t

r
t

t

r

l
t

r

Figure 4.49. Consider Pythagoras.

Problem 8
By inspection of fi gure 4.7, the distance between the center of circle 

r and one of the smaller circles t is r  − t. Since the centers of the circles 
t lie on an equilateral triangle, we then have cos 30° = t/(r  −  t), which 
gives t r r r= + = − =3 2 3 2 3 3 0 464/( ) ( ) . .



124 Chapter 4

Problem 9
Draw in a diagonal from the southwest to the northeast corner of the 

large square a in fi gure 4.8. Then we see that 2 2 2 2a r r r= + + , or, 
solving for r,

r
a=
+

2

3 2 1
.

Problem 10
By inspection of fi gure 4.9 one easily sees that r = 3b + 4c, R = b + 2a, 

R = 5b + 4c, and a + b = 2b + 4c. Solving these equations simultaneously 
yields b = 2c, a = 6c, and r = 10c.

Problem 11
We notice that S = 6 × 1652 and c = 5 × 165. Thus, we have a right 

triangle with sides 3, 4, and 5 (in units of 165). Hence a = 495 and 
b = 660. By similar triangles, we have b:a = (b − t):t, which gives 
t = ab/(a + b) = 282.85. By inspection of fi gure 4.10 n t= =/ . ,2 200 01  
and because d is an altitude, d = 2S/c = 396.

Problem 12
Since the side of the rhombus is equal to the distance between the 

two horizontal lines, each half of the rhombus consists of an equilat-
eral triangle. Then b R= 2 3  and with the Pythagorean theorem, 
R = 3r. Hence 2R = 6r = 106.5 and b = 184.4. The Pythagorean theorem 
also gives directly a b R r= = = =3 6 18 319 5.  and thus aπ = 1009.6. 
Also, d = (a − b)/2 = 67.5.

Problem 13
The angles of the square and equilateral triangle in fi gure 4.12 force 

triangle ABC to be a 30- 60- 90 triangle with ∠A = 30° and ∠B = 60°. 
Hence, AB = 2a. Examining the other interior angles shows
AB a t s s= = + +2 3 3/ . Also we see that BC a s s= = +2 3/ . 
Eliminating s quickly yields t a= −( ) .3 1

Problem 14
Draw the auxiliary lines shown in fi gure 4.50 to get an equilateral 

triangle. Thus rred is the radius of the inscribed circle. By inspection 
rred = rwhite + rblue and by the Pythagorean theorem rred = 3rblue (see 
problem 12). Therefore rwhite = 2rblue and rblue = rwhite/2.

d

a

b

c

t

n

R

d

d

a

b
r

B

a

t

C

s

A

a

2r

r
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Problem 15
From fi gure 4.51 we see that, on the one hand, the length of the 

central diagonal is 2 2 2r r+ . On the other hand, it is also equal to 
2PT + 2r. However, PT t= +( ).1 2  Equating the two expressions gives

t r r r=
+

= − =2

2 1
2 2 0 585786( ) . .

Problem 16
We are given that 2r equals one side of the rectangle. Let 2t equal 

the other side of rectangle. Then, as shown in fi gure 4.52 draw a line 

Figure 4.50. Construct an equilateral triangle.

P

t

r

r t
T

Figure 4.51. Draw the dashed lines and contem-
plate the length of the tangents.
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from the center of one of the circles r to the center of circle p. The 
Pythagorean theorem then gives (r + p)2 = t2 + r2. Similarly, 
(r + q)2 = t2 + (R − r − q)2.

However, R = 2r + p, and so subtracting the fi rst expression from 
the second gives (r + q)2− (r  + p)2 = (r + p − q)2 − r2. After expand-
ing and canceling, one is left with p2 + 2rp − 2rq − pq = 0, or 
(p − q)(2r + p) = 0. Thus p  = q, a relationship that holds 
even if t > r.

Problem 17
Draw the auxiliary lines shown in fi gure 4.53. Then, by Pythagoras, 

(a + b)2 = (a − 3b)2 + (t + 2b)2, or

 8ab − 8b2 = (t + 2b)2. (1)

From fi gure 4.53 one can also see that a2 = (a − 2b)2 + t2, or

 4ab − 4b2 = t2 (2)

Solving equation (1) and (2) together gives 2 2 2 2 12 2t t b t b= + = −( ) /( )or
Reinserting this expression for t into equation (2) gives

4 4
2

2 1
2

2

2ab b b− =
−

⎛
⎝⎜

⎞
⎠⎟

pq

R

r

q

r

rr

t

Figure 4.52. Draw the auxiliary lines and invoke 
Pythagoras.
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and
a

b
b=

−
+

( )
.

2 1 2

Rationalizing the denominator yields the fi nal result

a b= +2 2 2( ) .

Problem 18
Draw an auxiliary line connecting O and O ′ on fi gure 4.17 and drop 

a perpendicular from O′ to one of the tangents. This forms a 30- 60- 90 
triangle, and we see that the angle between the two tangents is 60°. 
Similar triangles immediately gives c = 3b, as well as b = 3a. By inspec-
tion 2R = 3c, and hence

R c a= =3
2

27
2

.

Problem 19
The solution is left to the reader.

Problem 20
Because AC = 30 m and BC = 40 m in fi gure 4.19, we recognize ΔABC 

as a 3- 4- 5 triangle. Letting BE = t, CH = x, and JC = y, one easily sees by 
applying similar triangles to fi gure 4.19 that DE = (3 ⁄4)t, x = 38 − t, 
AI = 28 − y, and FG = (3 ⁄4)t + (3 ⁄4) × 2 − (y + 2).

Since the areas of triangle BDE, the rectangle, and the trapezoid 
must all be equal, we have

S t t xy
x

FG AI
x t

y= × = = + = − +⎛
⎝⎜

⎞
⎠⎟

1
2

3
4 2 2

3
4

2
55
2

( ) ,

t

2b
l

b

a

Figure 4.53. Each block has side 2b and t is the 
distance between the point of contact of circle a 
and the nearest block.
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giving two equations
16y = 3t + 110

and

3
8

38
3 110

16
2t t

t= − +⎛
⎝⎜

⎞
⎠⎟

( ) .

The second is a quadratic for t. Solving it yields t = 21.7743. This in 
turn implies DE = 16.331, CH = 16.2257, JC = 10.9576, AI = 17.0424, and 
FG = 4.873125, as stated.

Problem 21
In fi gure 4.20 each area S = πr2/5 = d2, so that d r= =π/ . .5 39 749
Further, draw one line from the center of the circle perpendicular 

to one of the segments t and another from the center of the circle to 
the point at which t intersects the circle. The Pythagorean theorem 
then gives r2 = (d/2)2 + (t − d/2)2. Solving this quadratic for t yields

t r
d d= − + =2

2

4 2
65 7548. ,

which is slightly different from the result found on the tablet. We have 
not been able to discover the reason for the traditional geometer’s 
mistake.

Problem 22
The side of the square in fi gure 4.21 has length 4r. Use the Pythago-

rean theorem once on the circles inside the square to show that r = (3/2)t. 
Use the Pythagorean theorem again to show that the small upper 
triangle is a 3- 4- 5 triangle with height 3r. The upper triangle and the 
lower triangle containing the circle R are similar, so 4r = 3R. Thus 
R = (4r/3) = 2t.

Problem 23
Draw in the altitude of the largest triangle in fi gure 4.22. Considering 

the equilateral triangle that sits on top of square c and contains squares 
a and b, one easily gets by similar triangles that 3 2= −a b a/[( )/ ], or 
b a= +( / ) .2 3 1  In the same way, c b= +( / )2 3 1  and k c= +( / ) .2 3 1

r

R

r

t t

r

k

a

b

c

r
d

S

d
t

d
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The fact that the inner triangle is equilateral tells us that d r= 2 3  
and the Pythagorean theorem used on this triangle gives in turn r = c/4.

With the provided value of a = 7.8179, we then have b = 16.8452 . . . , 
c = 36.2964 . . . , k = 78.20 . . . , d = 31.4336 . . . , and r = 9.074. . . . 

Problem 24
All sides of a rhombus are equal, so fi gure 4.23 shows that 

b2 = a2 + t2. Furthermore, considering the length of the tangent from, 
say, the top left corner of the rectangle to the circle r shows that 
b = (a − r) + (t − r) = a + t − 2r. Eliminating b gives t = (2ar − 2r2)/
(a − 2r). We are given that the width of the rectangle is a + b. By the 
Pythagorean theorem, we then get 4R2 = t2 + (a + b)2. Because the 
diagonals of a rhombus intersect each other at 90°, the Pythagorean 
theorem also gives d 2 = 4(b2 − R2).

We are told a = 45 and 2r  =  30. Inserting these values into the 
previous expressions yields t = 60, b = 75, 2R = 134.1640 . . . , 
d = 67.082, and 2Rπ = 423.9584. Figure 4.23 also shows that 
e = (R − t)/2 = 37.08.

Problem 25
In fi gure 4.24 the lightest circles have radius r = R/2. Form a right 

triangle by drawing a line from point A to the center of the nearest 
circle t, and from the center of r to the center of t. Then, by the Pythag-
orean theorem, (R − t)2 = (t + r)2 + r2, or

R Rt t t Rt
R2 2 2

2
2

2
− + = + + ,

and t = R/6.
To fi nd t ′, draw a line from point A to the center of the nearest circle t′ 

and from the center of the large circle R to the center of t′. Then the law 
of cosines gives (t ′ + R)2 = (R − t′)2 + R2 − 2Rt′, which also yields t′ = R/6.

Problem 26
Draw the auxiliary lines shown in fi gure 4.54. Applying the Pythago-

rean theorem on the left gives

R
d

R t2
2

2

2
2= ⎛

⎝⎜
⎞
⎠⎟

+ −( ) ,

e

R

b
a

d

t
r

BA
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which implies

R
d

t
t= +

2

16
.

Applying the Pythagorean theorem on the right shows that 
(R − r)2 = r2 + (R − 2t − r)2, yielding

R r t
r

t
= + +

2

4
.

Equating the two expressions for R and solving the resulting qua-
dratic for r gives

r t
d

t= + −4
4

22
2

.

If d = 3.62438 and 2t = 0.34, then r = 1.5038 or 2r = 3.0076, which 
is a slightly different result from the one on the tablet. Once again, we 
cannot determine exactly why the wrong answer is written on the 
sangaku.

t
c

a

b

d d

Figure 4.55. Draw the auxiliary lines shown.

t

r r

R

d/2 d/2

Figure 4.54. Draw the asymmetric auxiliary lines shown.
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Problem 27
We present the original solution:
Referring to fi gure 4.55, we have by the law of cosines

b2 + d2 − c2 = 2bt  and  b2 + d2 − a2 = −(2bt).

Together they imply b2 + d 2 − c2 + b2 + d2 − a2 = 0, or

d
a c

b= + −
2 2

2

2
.

This result was written on the tablet.

Problem 28
Draw in the auxiliary dashed lines as in fi gure 4.56. We must have 

θ = 45° and Cosine θ = 1 2/ . Then, by the law of cosines,

( ) .a b a
k

b
k

a
k

b
k+ = +

⎛
⎝⎜

⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

− +
⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

2

2 2

2 2
2

2 2
1

2

Multiplying everything out gives the quadratic equation k ak2 2 2+ −

ab4 2 2 0+ =( ) ,  which has the solution k a a b a a= + + −4 2 2 2 22( ) .

Θ

b

k

a

b

Figure 4.56. Find k in terms of a and b. Notice that the 
dashed lines do not form a right triangle, but θ  = 45°.

Problem 29
Draw the triangle ACE as shown in fi gure 4.57. It must be a right 

triangle. (Why?) The two marked angles are also equal. (Why?) 
Therefore the two right triangles ACE and CBH are similar, and so 
2r/BC = CA/CH or r = BC · CA/2CH.
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Problem 30
Since triangle ACE in fi gure 4.29 is equilateral, AO = 2r, where r is 

the radius of the inner circle. But because ABCDE is a regular hexa-
gon, we also easily fi nd AO t t r= + +2 3/ , giving

t r= −( ) .2 3 3

If r = 10, then t = 4.641.
As it turns out, the results on the tablet, r = 10, t = 4.266, are wrong, 

which yet again shows that even traditional Japa nese geometers made 
mistakes.

Problem 31
The tablet gives the result

R
k

t r
k

t
k

= +⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

= +1
1

1
1

1
4 8, , ,

which can be easily derived as follows:
From fi gure 4.30, the angle between the centers of any two of the 

small circles is 360°/8, and the angle between the center of a circle and 
the point at which it touches its neighbor is 180°/8. Drawing a line 
from the center of the large circle to the point where two small circles 
touch shows that

sin( / ) .180 8° =
−

=
+

t
R t

t
r t

E

C

H
AB

r

Figure 4.57. Draw in the right triangle ACE. The two 
indicated non-right angles are equal and therefore 
ACE is similar to CBH.
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Let k ≡ = = − = +° °sin sin( / ) ( / ) / / .180 8 45 2 2 2 2 1 4 2 2  Solving 
the above equation for R and r gives the result on the tablet.

Problem 32
This problem is similar to the previous one. From fi gure 4.31, the 

angle between the centers of the outer circles is 72°, and so the angle 
between the center of a circle and the point at which it touches its 
neighbor is 36°. Drawing a line from the center of circle r to this point 
shows that

sin or36
1

36 1
°

°
=

+
=

−
R

R r
r R

sin
.

Now, sin / .36 10 2 5 4° = −  Rationalizing the numerator gives 

1 36 10 2 5 5 2 4 5/ / / ,sin ° = + = +  which implies

r = +( .2 0 8 R− ) .1
The most diffi cult part of the problem is fi nding the expression for 

sin 36°. Although one can look this up in standard tables of trigonometric 
formulas, exact values for such “odd” angles no longer seem to be derived 
in high school geometry texts. One way of doing it relies on the following 
trick: Use the  double- angle formulas for sine and cosine to write

sin 72° = 2 sin 36°cos 36°

= 2[2sin 18°cos 18°][cos2 18° − sin2 18°],
cos 18°= 4[sin 18°cos 18°][1 − 2sin2 18°],

where we have noticed that sin 72° = cos 18°, which con ve niently cancels 
from both sides of the equation. Letting sin 18° = x gives a cubic equa-
tion for x : 8x3 − 4x + 1 = 0. This equation easily factors, yielding three 
solutions. Convince yourself that the only possible one is 
sin18 5 1 4° = −( )/ .

Now use the  half- angle formula sin cos2 1
218 1 36= − =°( )  

sin1
2

21 1 36− − °( ). Solving this equation for sin 36° gives the above 
result.

Problem 33
From fi gure 4.58, r = R cos 72° = R sin 18°, and 

R = t+(1/sin 54°) (t + r). In the previous problem, we showed that 
sin18 5 1 4° = −( )/ , from which it quickly follows that 
sin54 5 1 4° = +( )/ . Eliminating R gives t r r= =2 5 0 8/ . .
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Problem 34
This problem is similar to the previous three and can be solved by 

drawing similar auxiliary lines on fi gure 4.33, one from the center of 
the large circle to the tip of one of the triangles, and a second from the 
center of the large circle through the center of one of the small circles 
of radius r. If a is the side of a small triangle and R is the radius of the 
large circle, then R a= 3 . With the auxiliary lines it is also easily 
shown that R r r a= + +( / ) .2 3  Eliminating R gives

r a a= −
+

= −3 3

2 3
9 5 3( ) ,

as stated.

Problem 35
In a manner similar to the solutions of previous problems, draw one 

line from the center of fi gure 4.34 to the tip of one of the triangles, 
and draw an adjacent line from the center of the fi gure, through the 
corner of the square, and to the large circle. This gives a drawing like 
fi gure 4.59. Then we have both

 R a
a= +3

2 2  (1)

and

R a x r= + +2
2

.

R
O

A

r

t

t

H

Figure 4.58. R is the radius of the large circle. The angle 
AOH = 72°.
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Notice from fi gure 4.59 that r = x cos 15°, so

 
R a r= + +

°
⎛
⎝⎜

⎞
⎠⎟

2
2

1
1
15cos

.
 

(2)

The value of cos 15° can be easily derived from the  double- angle 
formula cos 30° = 2cos2 15° − 1, which gives cos2 15 3 2 4° = +( )/ .  
This is turn can be recognized as the perfect square of cos15° =

6 2 4+( )/ .
Inserting this value into Eq. (2) and eliminating a by Eq. (1) gives 

the result

r R= − +
+ +

3 2 1

3 2 2 1
.

If R = 10, then r = 2.37 which is slightly different from the answer 
written on the tablet r = 2.32.

Problem 36
Since the triangle is equilateral, fi gure 4.35 shows that 

tan30 2 1 3° = =r a/ / . Drawing a line from, say, the center of the right 
circle t to the lower  right- hand corner shows also that tan 15°=t/(a − t). 
A good  half- angle formula for tangent in this case is tan (θ/2)=
(1−cos θ)/sin θ, giving tan15 2 3° = − .  Eliminating a from the two 
expressions yields

t r= −( ) .3 1

a

r

x

r

R

R

Figure 4.59. Notice that the indicated angle is 15° and that 
cos 15° = r/x.

tt

a

r
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Problem 37
Draw the auxiliary lines shown in fi gure 4.60. Let AB ≡ a, BC ≡ b, 

BD ≡ c, and ∠BDC ≡ θ. Since l b= 2 2( / ), we have with the trig identity 
sin(α − β) = sin α cos β − cos α sin β,

OH b b

b
a c b c

= ° − = ° − °

= −

2
2

45
2

2
45 45

2

sin sin cos cos sin( ) [ ( ) ( ) ( ) ( )]

( / / ).

θ θ θ

The radius of the circle OP is just b/2, so by the Pythagorean theorem

PQ b OH b b a c b c b c ab= − = − − =2 4 22 2 2 2 2/ ( ) ( / / ) ( / ) .

Apart from the general case, an example was written on the tablet: If 
a = 185, and b = 80, then PQ = 68 + 625/179.

b
Q

AB

C D

O

H l

Θ
P

a

Figure 4.60. Draw in radius OP and 
l = 2 2( / )b .

Problem 38
On the tablet, the result s = 0.897459621556135 was written. The 

proposer, a Mr. Kitani, wrote, “This value is correct to fi fteen digits.” 
Since Kitani did not write a solution, we give one  here:

Draw fi gure 4.61. The angle α is  one- half the inscribed angle be-
tween nearest nonadjacent pins and thus α = (1 ⁄ 2) × (1 ⁄ 2) × 60° = 15°. 
The angle β is  one- half the central angle between two adjacent pins and 
thus β = 15°. We also have tan β = s/(2a) and tan α = a/(l/24), since half 
the length of the string between two pins is l/24. Eliminating a gives

s
l

=
tan2 °15

12
.

Plugging in l = 150 on a PC gives s = 0.897459621556135323627, 
which shows that Kitani’s boast was  correct— and he did it by hand 
with a soroban!
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Problem 39
Aida Yasuaki’s solution begins by noting that in fi gure 4.62, ΔABC is 

similar to ΔBCF. Thus, a/(a + t) = t/a, or t2 + at − a2 = 0. Solving for t gives

t a= −5 1
2

.

But a + t = AC = BD, and so BD a= +( ) / .5 1 2
Then, by Pythagoras,

BH BD
a

a= − = +
( ) .2

2

4
5 2 5

2

We also have

R BH R
a2 2

2

2
= − + ⎛

⎝⎜
⎞
⎠⎟

( ) ,

which with the previous expression yields

R a a= +

+
= +3 5

2 5 2 5

5 5
10

.

In this case, a modern solution is faster: From the diagram

 a/2R  = sin (π/5) = sin 36 10 2 5 4° = −⎛
⎝

⎞
⎠/ ,  from which it follows 

that a = 5.877. However, this solution assumes that, if you are stranded 

α

a

β

s/2

Figure 4.61. Notice that α = β = 15°.
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on a desert island without a calculator, you know the expression for 
sin 36°. We derived this formula in the solution to problem 32.

Problem 40
Using the summation formula from chapter 2, problem 4- 7, we have

N k k k

k k k

k

m

kk

m

k

n

kk

n

= = −

= = −

= ==

= ==

∑ ∑∑

∑ ∑∑
19 1

18

1

6 1

5

1

,

or

N m m n n= + − ⋅ = + − ⋅1
2

18 19
1
2

5 62 2( ) ( ).

Rearranging the terms and factoring gives (m − n)(m + n + 1) = 8 · 39. 
Setting m − n = 8 and m + n + 1 = 39 yields m = 23, n = 15, and N = 105.

(Notice that 8 · 39 can also be factored into, for example, 6 · 52 or 
24 · 13, but these do not give a solution in positive integers. The 
factorization 1 · 312 gives another solution, m − n = 1 and m + n +  
1 = 312, which yields m = 156, n = 155, and N = 12,075. This solution is 
not written on the tablet. Convince yourself that 8 · 39 and 1 · 312 are 
the only correct possibilities.)

Problem 41
After one trial, the remaining volume of watered wine is 

V = 2[V0 − 125]. After two trials the remaining volume is 

R

a

B

a/2

O

C

D E

A

a

H

F

t a

Figure 4.62. Notice that angle DBH is 18°.

n
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V = 2[2[V0 − 125] − 125] = 22V0 − (2 + 22) × 125. After the tenth trial, we 
have V = 210V0 − (2 + 22 + 23 +  · · ·  + 210) × 125 = 0. The summation of 
powers of two in the parentheses is a geometric series = 2(1 − 210) (see 
chapter 2, problem 4- 8). Thus

V0 = × − × =1
2

2 2 1 125 249 7558594
10

10( ) . .

Also, the volume of the pyramid is V a0 = ( / )( / ) ,1 3 3 4 3  which gives 
a3 = 1,730.359552, or a = 12.00549 cm.

Problem 42
Here is a traditional solution from the manuscript Solutions to 

Problems of Zoku Shinpeki Sanpō by Kitagawa Mōko (1763–1833). In this 
case the traditional solution is pretty much what any calculus student 
would do (but see chapter 9).

In fi gure 4.41 let ED = x, DF  = y, BC  = a, and AC = b. By similar triangles 
a/b = y/(b − x). Thus if S is the area of the rectangle, S = xy = (abx  − ax2)/b. 
Setting the derivative dS/dx = 0 gives x = b/2 and y = a/2.

Problem 43
Referring to fi gure 4.42, similar triangles gives x/c = t/(c − x), or 

t = x(c − x)/c. For 0 < x < c, the shaded region S has area

S x t c x
x c x

c
c x cx x

c
( ) ( )

( )
.= − = − = − +1

2 2
2
2

2 2 2 3

Taking the derivative of S(x) gives S ′(x) = (c2 − 4cx + 3x2)/2c = 
(3x − c)(x − c)/2c, which maximizes S when the numerator vanishes. 
Hence, S = Smax when x = c/3.

Problem 44
The area of a rhombus is  one- half the product of its diagonals, in 

this case, S t a tr = −2 2 2 .  The side of the square x t= 2 , and so the

desired area is S S S t t a t tr s− = = − −( ) .2 22 2 2

Taking the derivative yields

′ = − −
−

−S t
a t

t

a t
t

( )
.

2
22 2

2

2 2

Setting this to zero gives a t t a t2 2 2 22 2− = − ,  which upon squaring 
results in a quadratic equation for t2 in terms of a2. After a little 
algebra, the solution is t a2 24 8 8= −[( )/ ] ,  or in terms of x,

aa

a

A

B

E D

C
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x
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x a= −1
1

2
,

which was written on the tablet.

Problem 45
We have not found a traditional solution, so  here is a modern 

one:
Consider fi gure 4.63. We are to maximize PT given that point E can 

be moved. Shifting E is equivalent to changing the angle θ; we there-
fore take θ as the variable and write the slope of BT in terms of it. 
Focusing on the dashed lines, it is not diffi cult to show that the slope 
m of BT is

m
a a a

a a
TP a

AP
=

+ −
+

= −sin cos
sin

θ θ
θ

.

But AP = a + acos θ + asin θ and with the help of a  double- angle for-
mula we can show that therefore

TP
a

a=
+

+
sin

sin
2

1
θ
θ

.

The derivative of TP with respect to θ is

TP
a a

′ =
+ −

+
2 2 1 2

1 2

cos sin sin cos
sin

( )( ) ( )
( )

.
θ θ θ θ

θ

Since we want TP ′ = 0, we require the numerator to vanish. With the 
help of a few  double- angle formulas we get (see problem 32 this 

chapter) sinθ = −( )/5 1 2  and cosθ = −( )/ .2 5 2 2

l
AD

F

C

H

P

T

a

B

E

G

Θ

Θ

Figure 4.63. Consider θ variable. The dashed 
lines give the slope of BT.
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Plugging back into the expression for TP gives

TP amax = − −
+

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
.

5 1 2 5 2

5 1
1

After rationalizing the denominator and a little more algebra this 
expression reduces to

TP amax = − +⎡
⎣⎢

⎤
⎦⎥

≅10 5 22 1 1 6. ,

which is the value written on the tablet.

Problem 46
Referring to fi gure 4.64, let ON = x. Then we wish to maximize 

AB MN r x r x− = − − −2 2 2 ( ).  Taking the derivative with respect to 

x and setting it to zero gives x r MN r= = −/ , ( / ) .5 1 1 5or
If P is the midpoint of MN and we let NP = y, then from the fi gure 

we also have

 

l y x r t

L r x

2 2 2

2 2 2

+ + = −
= −

( ) ( ) ,

. 
(1)

But x = r − 2y and so the above expressions become

 

l ry y rt t

L y r y

2 2 2

2

2 2

4

− + = − +
= −

.

( ). 
(2)

A

l

M

y

P

x

c

N

O

t

L

r

B

r−t

Figure 4.64. Note that the angled chords intersect at 
P, the midpoint of MN.
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Similar triangles shows that l2 = c2t2/y2, where c2 = y2 + L2 from the 
Pythagorean theorem. Plugging all this into Eq. (l) with L given by Eq. 
(2) leads to

y3 − 4yt2 + 4rt2 − 2ry2 + 2rty = 0.

This equation can in turn be factored into

(y − 2t)[y(y + 2t) − 2r(y + t)] = 0.

The only positive solution is y = 2t, a result that is in de pen dent of r. 
Thus, at the desired maximum, MN y t r= = = −2 4 1 1 5( / ) ,  or

t r
r= − =

+
5 1

4 5 5 5
.

Problem 47
We give two solutions to this problem. The fi rst is a solution follow-

ing the original method with somewhat expanded explanation:
Referring to fi gure 4.65, we see that, by similar triangles, x/a = y/b. 

But b = a − y − c. Furthermore, by the Pythagorean theorem, 

c xy y= −2 2 ,  which gives

2 2xy y a
x a

x
y− = − +( )
.

Squaring both sides yields a quadratic equation for y in terms of x and 
a, which after some algebra yields two solutions, the relevant one being 
the smaller one:

y
a x

x ax a
=

+ +

2

2 22 2
.

x−y

A

B C
y

a

yb c

x

Figure 4.65. The dashed lines make it clear that 
c2 + (x − y)2 = x2.
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Extend the circular arc in the original fi gure 4.46 to point E, creat-
ing a large square with side AE = x, as in fi gure 4.66. Also draw the line 
BD and extend it to point E. (Convince yourself that the extension of 
BD intersects the square at E.) Notice that the inscribed angle CDE 
(not drawn) subtends the arc CE, which is 90°, and so ∠CDE = 45°. 
Consequently, ∠BDC = 135°. Figure 4.67 then shows that y attains its 
maximum when H is the midpoint of the side BC. From fi gure 4.66, we 
then have x a x/( ) ( / ) ,+ = = −tan 45 2 2 1  from which it follows that 
x a= / 2  and y amax = −( ) / ,2 1 2  as above.

B
y

x

D

H
a

A E

C

Figure 4.66. Extend the circular arc to point 
E. This shows that angle CDE = 45° and that 
angle BDC = 135°.

s
B

D

D

D

C

135°

135°135°135°
135°

H
a

Figure 4.67. All the angles BDC intercept the 
same arc and so are equal, but the height y of 
the triangle is maximized when point H falls 
on the midpoint of a. One can show this 
analytically by, for example, using the law of 
cosines to write an expression for y in terms 
of a and the distance of H along the x- axis; 
call it s. Setting dy/ds = 0 shows that y reaches 
a maximum when s = a/2.

The derivative of y with respect to x is

′ = − −
+ +

y
a x a

x ax a

2 2 2

2 2 2

2
2 2

( )
( )

,

which vanishes when x a= / ,2  giving a maximum for y of 
y amax = −[( )/ ] .2 1 2

The following is a modern solution to the same problem by J. F. Rigby, 
Cardiff University Wales:



Plate 5.1. Saitō Kuninori, a disciple of the famous mathematician Ono Eijyu 
(1763–1831), hung this tablet in 1828 at the Kitamuki Kannon temple of Ueda 
city, Nagano prefecture. The sangaku is 115 cm wide and 85 cm high and on it is 
the inscription that we have used as an epigraph for chapter 4. The problem 
depicted is given in this chapter as problem 23. Also shown (b) is the solution as 
it appeared in the 1844 book Sanpō Kyūseki  Tsu- ko of Uchida Kyumei.



Harder Temple Geometry 
Problems

Mathematics is profound. People have 
their methods for solving problems. 
This is true in the West as well as in 
China and Japan. Those who do not 
study hard cannot solve any problems. 
I have not mastered mathematics yet, 
even though I have been studying from 
youth. And so I have not become a 
teacher for anyone, but some people 
have asked me to teach mathematics 
to them. I showed them the solutions to 
the problems and will hang a sangaku 
at the Katayamahiko shrine nearby, on 
which sixteen problems are written. I 
dedicate this tablet to the shrine in the 
hope that my students may get more 
scholarship in mathematics.

—Preface to the sangaku hung in 
the Katayamahiko shrine in 1873 by 
Irie Shinjyun, aged seventy-eight

In this chapter we present two dozen more problems from the same 
sources as those in chapter 4: tablets, books, and manuscripts. Again we 
begin with a diophantine problem and then progress from the easier geo-
metric puzzles to the frustrating. These problems are generally at a higher 
level than the previous ones, the main distinction being that the required 
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algebra is often more involved and that they sometimes require an uncom-
fortable degree of “lateral thinking.” Many of them, nevertheless, can be 
solved by little more than the Pythagorean theorem. Problems 22–25 do 
require serious calculus and will challenge even college students, but they 
also give a good illustration of the integration techniques employed in tra-
ditional Japa nese mathematics, which are often easier than those we are 
taught in school, forcing one to wonder how much of our mathematical 
education is mere convention.

Problem 1
Here is the rightmost problem on the sangaku of the Abe no Monjuin temple, color 

plate 11. This diophantine problem was proposed by Tomitsuka Yukō.

A number of visitors, N, visit the shrine. We know only that

(1) 7
9
N is an integer and the last two digits are 68;

(2) 5
8
N is integer and last two digits are 60.

Find the least possible value for N.

Answer: 7
9

5
81 568 1 260 2 016N N N= = =, ; , ; , .and

The solution is on page 162.

Problem 2
Proposed by Hosaka Nobuyoshi in 1800, this problem is the third one from the right 

on the sangaku of the Mizuho shrine, color plate 9.

A trapezoid has lower side b, upper side a, and height h (see fi gure 5.1). Divide the 
area of the trapezoid into n small trapezoids with equal areas, as shown. Call the lower 
side of the smallest trapezoid k. Find n in terms of a, b, and k.

Example: If a = 1, b = 7, and k = 3, then n = 6.

Turn to page 163 for a solution.
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Problem 3
This problem can be seen on the bottom right of the sangaku in the Katayamahiko 

shrine, color plate 5.

The rhombus ABCD inscribes two circles of radius r and two smaller circles of radius t 
(fi gure 5.2). We are given AC = 2a = 85 and BD = 2b = 42. Find r and t.

Answer on tablet: 2r = 21.559 and 2t = 19.854, which is wrong.

A  solution—and the surprise explanation of the wrong  answer—can be found on page 164.

t

t

C

B

D

Arr

Figure 5.2. Find r and t.

Problem 4
This problem is the fi fth one from the bottom left corner on the Katayamahiko shrine 

sangaku, color plate 5.

As shown in fi gure 5.3, a rhombus of side k and a small circle of radius r are inscribed 
in a right triangle with sides a, b, and c. Find 2r in terms of a, b and c.

b

h

h

1

a

k

Figure 5.1. Find the number of small 
trapezoids of equal area.
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Answer:

2
2

1r
a b
a c

c
a b c

a c
c= +

+
−⎛

⎝⎜
⎞
⎠⎟

= + −
+

⎛
⎝⎜

⎞
⎠⎟

.

A solution can be found on page 165.

Problem 5
In 1819, Ishiguro Nobuyoshi (1760–1836) published a book, Sangaku Kōchi, where in this 

case sangaku connotes “study of math,” not tablet, and so the title may be rendered as Study 
of Mathematics. In the third of three volumes, Ishiguro rec ords  forty- one tablets hung from 
1783 to 1814. The author was a disciple of the Nakata school and all the tablets  were hung 
by disciples of Nakata Kōkan (1739–1802). The problem presented  here was originally 
proposed by Batsui Mitsunao, a  fi fteen- year- old boy, and written on a tablet hung in 1812 at 
the Nishihirokami Hachiman shrine in Izumi city, Toyama prefecture. Like all the tablets 
recorded in Ishiguro’s book, this one has been lost.

As shown in fi gure 5.4, a number of circles of radius t form a pyramid with sides consisting 
of n circles. (The fi gure illustrates n = 4.) A large circle of radius r circumscribes this pyramid. 
If S is the area of the large circle minus the area of small circles, fi nd t in terms of S and n.

a

k

k

r
c

b

Figure 5.3. Find 2r in terms of a, b, and c.

Figure 5.4. Find the radius of the small circle in terms 
of the number of circles and the area of the large circle 
minus the area of the small circles.
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Answer:

t
S

n n
=

− − −
6

1 5 14 8 3π( )[ ( )]
.

A solution by traditional methods is given on page 165.

Problem 6
This problem was proposed by Ikeda Sadakazu in 1826 and hung in a shrine in Azabu 

town, Tokyo. The tablet on which it appears is among the 25 hung between 1808 and 
1826 that  were recorded in the 1827 book, Shamei Sanpu, or Sacred Mathematics, by Shirai-
shi Nagatada (1795–1862). These sangaku problems are generally of a high level of 
diffi culty, containing complicated integrations that, for example, ask for the area of a 
general elliptic solid.1 Another problem (problem 18, chapter 6), asking for the area of a 
spherical triangle, is identical to the one treated by Leonard Euler, although the methods 
are different.  Here is one of the easier problems:

Three squares of sides a, c, and d touch the line l, and they each have one vertex in 
common with a square of the side b, as shown in fi gure 5.5. Show that b = 2d.

The solution is on page 166.

1 A general elliptic solid  here refers to one described by the equation x2/a2 + y2/b2 + 
z2/c2 = 1, with a > b > c.

a

a

d d

b b

c

c

l

Figure 5.5. Show b = 2d.
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Problem 7
Kawano Michimuku, a student of the Fujita school, proposed this problem, which was 

written on a tablet hung in 1804 at the Udo shrine in Miyazaki prefecture. We know of it 
from Fujita Kagen’s 1807 version of the Zoku Shinpeki Sanpō.

As shown in fi gure 5.6, ten circles of radius r touch each other externally and touch 
the large circle internally. If S is the area of the big circle minus the area of the ten little 
circles, fi nd r in terms of S.

Answer:

2
4

2 8 1
r

S=
−π( )

.

Plate 5.2. Original illustration for 
problem 6, from Shiraishi 
Nagatada’s 1827 Shamei Sanpu. 
(Aichi University of Education 
Library.)
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Example: If S = 234.09, then 2r = 8. . . . 

A traditional solution can be found on page 167.

Problem 8
This problem was proposed by Suzuki Satarō and is found on a tablet containing 

 twenty- four problems hung in 1891 at the Shinohasawa shrine of Fukushima city. The 
tablet mea sures 273 cm by 98 cm.

Let A and B be any two points on one chord of a given circle. Draw four inscribed circles 
with radii a, b, c, and d, which touch the chord at A and B. (See fi gure 5.7.) Draw the 
tangent to two of the inscribed circles, which touches them at points C and D. At this 

Figure 5.6. Find the radius of the small circles, r, in terms of S, 
the area of the large circle minus the area of the ten small 
circles.

e A

B

a

c

d
f

C

D

b

Figure 5.7. Show that a/b = c/d = e/f.
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second chord, draw two more inscribed circles of radii e and f, which touch the tangent at 
C and D and the original circle internally. Show that a/b = c/d = e/f.

Turn to page 168 for a traditional solution.

Problem 9
Nakazawa Yasumitsu proposed this problem, which is the the fourth from the right on 

the sangaku of the Mizuho shrine, color plate 9.

Given the right triangle ABC (see fi gure 5.8), draw the lines AD and BE, from the two 
vertices A and B, such that two circles of radius r can be inscribed in the resulting con-
fi guration, as shown. Find the radius r in terms of three sides a, b and c.

The original solution can be found on page 169.

E

r

D

C

B

A

r

Figure 5.8. Find r in terms of sides a, b, and c.

Problem 10
This problem can be seen as the third from the top left corner of the Katayamahiko 

shrine sangaku, color plate 5. Advice: Do the previous problem fi rst.

In an equilateral triangle ABC of side 2a, two lines CE and BD touch two inscribed 
circles of radius r (fi gure 5.9). Find r in terms of a.

Answer: r a= −( ) .3 2

A traditional solution is given on page 170.
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Problem 11
Proposed by Abe Hidenaka, this is the ninth problem from the right on the Dewasan-

zan tablet, color plate 10.

Five circles, two of radius a, one of radius b and two of radius c, touch each other 
and a trapezoid ABCD, as shown in fi gure 5.10. The trapezoid is isosceles, so that 
AD = BC. Find b in terms of a and c.

Example: If a = 36 and c = 16, then b = 49.

The answer and a solution can be found on page 171.

c
AB

a

b

DC
Figure 5.10. Find b in terms of a and c.

E

B

2 a
C

r

D

A

r

Figure 5.9. Find r in terms of a.
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C

A

B

H

a

b
c

r

r2

r1

Figure 5.11. Find r1 in terms of r and b. Find 
r2 in terms of r and a.

Problem 12
Here is another problem from the Shimizu shrine tablet, 1828, proposed by Kobayashi 

Nobutomo.

Given a right triangle ABC, draw a line from vertex C to the hypotenuse, which is per-
pendicular to the hypotenuse at point H (see fi gure 5.11). A circle of radius r is inscribed 
in the triangle. Two more circles of radi r1 and r2 are inscribed between the triangle, the 
line CH, and the circle r. Find r1 in terms of r  and b = AC, and r2 in terms of r and a = BC.

Answer:

r
r

b r
r

r

a r
1

2

2

2

=
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

and .

A full solution can be found on page 172.

Problem 13
This problem, proposed by Aotsuka Naomasa, can be seen as the seventh from the 

right on the sangaku of the Dewasanzan shrine, color plate 10.

Two large intersecting circles of radius R are inscribed in a square in the manner 
shown in fi gure 5.12. Six smaller circles of equal radius r are inscribed in the larger 
circles as shown. Two circles of radius t touch the square as well as the large circles. 
Find r in terms of t.

Answer:

r
t=

+ − +

0 4

0 4 3 4 0 4 2

.

. ( . )
.
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r

r

R

r

R

t

r

r

t

r

Figure 5.12. Find r in terms of t.

a

A

B

C

t

t

t

t'

t'

1

2

1

2

Figure 5.13. Find a = BC in 
terms of t2 and t′2.

Example: If t = 1, then r = 1.03228896.

The solution can be found on page 173.

Problem 14
Motoyama Nobutomo proposed this problem, the sixth from the right on the Mizuho 

tablet, color plate 9.

Five squares with sides t, t1, t2, t′1, and t′2 are inscribed in a right triangle ABC, as shown 
in fi gure 5.13. Find a = BC in terms of t2 and t′2.

The answer and a solution can be found on page 174.
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AC

B

b

l

l

l
l

S

1

3

4

2

a

Figure 5.14. Find l1 in terms of 
L = Σln and S.

Problem 15
Saishi Shinzan is an unpublished manuscript edited by Nakamura Tokikazu, which 

contains a record of 208 sangaku dating from 1731 to 1828. One of the problems 
contained in Saishi Shinzan is this one, proposed in 1821 by Adachi Mitsuaki, and 
dedicated to the Asakusa Kanzeondō temple, Tokyo. Advice: Do the previous problem 
fi rst.

Consider an infi nite number of connected squares with sides ln(n = 1, 2, 3, . . .) in a 
right triangle (see fi gure 5.14). Let L be the total length of the sides, L ln n= ∑ =

∞
1 , and S 

be the area of the triangle minus the total area of the squares. Find l1 in terms of L 
and S.

The solution is on page 175.

Problem 16
This problem can be seen as the fi fth from the right top corner of the Katayamahiko 

shrine sangaku, color plate 5.

A chain of circles of radii r1, r2, r3, and r4 is inscribed in the right triangle ABC, as 
shown in fi gure 5.15. Between the circles of radius rn are three smaller circles, t1, t2 
and t3, each of which touches two of the larger circles and is tangent to BC. Show that 
t1t3 = t2

2

See page 176 for a solution.



Harder Temple Geometry Problems 157

3

B

A

C
tt t

r

r

r
r4

3
2

1

1 2

Figure 5.15. Find the relationship 
between the radii t.

b

B
a

r1

r
5

A

C Figure 5.16. Find a and b in terms of r1 and r5.

Problem 17
Proposed by Miyazawa Bunzaemon in 1828, this problem comes from the sangaku of 

the Shimizu shrine.

A chain of fi ve circles of radii rn(n = 1, 2, 3, 4, 5) is inscribed in the right triangle ABC, 
as shown in fi gure 5.16. Find a and b in terms of r1 and r5. Advice: Do problem 14 fi rst.

Answer:

a
r

T r
Tr r b

r a r
a r

T r r=
−

+ = −
−

=2 2
2

1

5
5 1

1 1

1
1 5

34and where
( )

, .

Example: If 2r1 = 50 and 2r5 = 20.048, then a = 248.6 and b = 56.29.

A full solution is given on page 177.

Problem 18
This problem was hung in 1850 at the Ushikawa Inari shrine of Toyohashi city, Aichi 

prefecture. It was originally proposed by Imaizumi Seishichi and recorded in the unpub-
lished manuscript Record of the Ushikawa Inari Shrine Sangaku.
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Two right triangles ABC and A′B′C ′, such that A, C ′, C, and A′ lie on the same line, 
inscribe the same circle of radius r. As shown in fi gure 5.17, draw four inscribed circles of 
radii r1, r2, r3, and r4, and then show that r1r3 = r2r4.

The solution is left as an exercise for the reader.

a

bb

a

Figure 5.18. Find b in terms of a and R, the radius of the circle.

Problem 19
Honma Masayoshi proposed this problem, the leftmost on the Dewasanzan sangaku, 

color plate 10.

Two identical ellipses of major axis 2a and minor axis 2b touch a circle of radius R 
internally, as shown in fi gure 5.18. Find b in terms of a and R.

The full solution is on page 178.

Answer: b a R a= −1 2( / ) .

C'
A

B

C
A'

B'

r

r4

r1

r3

r2

Figure 5.17. Show that r1r3 = r2r4.
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r

l

r

r

r

r

4

3

2

1

Figure 5.19. Find r4 in terms of r1, r2, and r3.

Problem 20
Proposed by Sugano Teizou, this problem can be seen as the tenth one from the right 

on the Abe no Monjuin tablet, color plate 11.

A chain of four circles of radii r1, r2, r3, and r4 are touched on one side by the line l and 
on the other side by a circular arc of radius r, which in sumo wrestling is called the 
“Gunpai” or “umpire’s fan” (see fi gure 5.19.) Find r4 in terms of r1, r2, and r3.

Answer:

r
r r

r r r r
4

2 3
2

3 1 2 3
21

=
+ −[( / ) ]

.

A solution can be found on page 179.

Caution: Serious calculus required for the remaining problems.

Problem 21
This  college- level problem comes to us through Kobayashi Tadayoshi (1796–1871), a 

student of the Takeuchi school, who in 1836 published a collection of sangaku problems 
called Sanpō Koren, or Mathematical Gems. The collection rec ords only fi ve tablets, dating from 
1824 to 1834, but the problems are all extremely diffi cult, asking for the area of ellipsoids and 
so forth. To calculate such quantities was the purpose of the Enri, discussed in chapter 9.

The problem itself was originally proposed by Kobayashi himself on a tablet hung in 
1824 at Konpira shrine in Komoro city, Nagano prefecture. Like all the other tablets 
contained in the Sanpō Koren, this one has been lost.

As shown in fi gure 5.20 three identical ellipses of major axis 2a are inscribed in a large 
circle of radius r. Find a in terms of r when the area S of the ellipse is a maximum.
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Answer: a r= / .2

Example: If r = 99, then a = 70.0035. (Kobayashi had recognized 2 99 70 0035= ≅/ .
1 414215004. .)

Turn to page 181 for a full solution.

Problem 22
This problem, proposed by Kuno Hirotomo, can be seen as the third from the right on the 

second Atsuta tablet, color plate 12. Hung in 1844 by Takeuchi Shūkei (1815–1873), the 
tablet was lost. More recently, the shrine constructed a replica based on the anonymous 
and undated note, “Sandai Gakumen Sya,” or “Record of Sangaku.”

Two parallel planes, separated by a distance d, cut a sphere of radius r (see fi gure 
5.21). Find the surface area S of the  cut- out section in terms of d and r.

Answer: S = 2πrd.

A solution can be found on page 182.

d

Figure 5.21. Find the surface area 
of the slice (black) in terms of d 
and the radius of the sphere.

Figure 5.20. Find the semimajor axis of an ellipse in terms of the 
radius of the circle when the area of each ellipse is maximized.
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Problem 23
This is the sole problem on a tablet that was hung in 1828 by Saitō Kuninori at the 

Kitamuki Kannon temple of Ueda city, Nagano prefecture. We have used Saitou’s inscrip-
tion as the epigraph for the previous chapter. The problem was originally recorded by Iwai 
Shigetō (1804–1878), in his book Sanpō Zasso, or Collection of Sangaku, published in 1830. In 
his book, Iwai rec ords  twenty- three tablets dating from 1811 to 1828. Of these tablets, two, 
the Kitamuki sangaku and that of the Bandō temple in Saitama prefecture, have survived.

The tablets of Nagano prefecture, including this one, have been presented in Sangaku 
e no Shōtai, or Invitation to Sangaku, by Nakamura Nobuya who has extensively studied the 
tablets.2

We are given a right circular cylinder with base of radius r and height h. We cut the 
cylinder by three planes. The fi rst is plane BCDE, which as shown in fi gure 5.22, is 
perpendicular to the base. We then cut the cylinder with two more planes, one contain-
ing points B and D and the other containing points C and E. The intersections of these 
planes with the cylinder are curves on the cylinder’s lateral surface. Find the surface area 
A of the shaded area between the curves in terms of r, h, and d.

Answer: A rh r d= −2 2 1/ ( / ) .

Example: If d = 1, 2r = 10, and h = 9, then A = 30.

A full solution is given on page 183.

2 Kyouiku Syokan, 2004, out of print.

r

d

D

B

C

E

Figure 5.22. Find the shaded area in terms of r, d, and the height of the 
cylinder h.
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Problem 24
Sugimoto Kōzen proposed this problem in 1826; it was hung in a shrine of Yotsuya, 

Tokyo, and recorded the following year in Shamei Sanpu by Shiraishi Nagatada.

Two identical and parallel right circular cylinders of radius r pass through a sphere 
such that the line of contact between the cylinders passes through the center of the 
sphere (see fi gure 5.23.) For the special case when the radius of the sphere is 2r, fi nd 
the volume V cut out of the sphere. Also, fi nd the area of the surface cut out by the 
cylinders.

Answer: V r A r= =16
9

3 22 8 2( ) ; ( ) .

A modern solution is given on page 186.

Solutions to Chapter 5 Problems

Problem 1
If (7/9)N equals a number whose last two digits are 68, then we can 

write (7/9)N = 100a + 68, where a is some integer ≥ 0. Hence

7N = 900a + 9 × 68.

Similarly, we have (5/8)N = 100b + 60, where b is another integer, or

5N = 800b + 8 × 60.

Multiplying the fi rst equation by 5 and the second by 7 gives 35N = 
4,500a + 3,060 = 5,600b + 3360, and so 45a − 56b = 3.

Since from the last equation 15a − (56/3)b = 1 and 56/3 = 18 2/3, 
one sees that b must be a multiple of three. One easily fi nds that the 
least integers a and b solving this equation are a = 15 and b = 12. 
Substituting into either of the above equations gives N = 2016.

Figure 5.23. Find the volume of the sphere remaining after 
two cylinders intersect it. Find the area of intersection.
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We can, however, make an easy problem more diffi cult. The two inte-
gers 45 and 56 have no common divisor except 1, and so they are called 
“relatively prime.” In general, dividing a number a by a number b gives a 
quotient and a remainder, in other words, a = q × b + r. In our case

56 = 1 × 45 + 11,

where q = 1 and r = 11. Similarly,

45 = 4 × 11 + 1

and

11 = 11 × 1 + 0.

This sequence of successive divisions is an example of Euclid’s algo-
rithm.3 One can easily show that the last nonzero remainder is always 
the greatest common divisor of a and b, in our case 1. We can also 
reverse the procedure and solve for the remainders: 
1 = 45 − 4 × 11 = 45 − 4(56 − 45) = 5 × 45 − 4 × 56, which is the same as 
15 × 45 − 12 × 56 = 3. Notice that 15 and 12 provide the answer to the 
problem. The moral of this  shaggy- dog story is that, any time the 
greatest common divisor of a and b is 1, one can write a × c − b × d = 1, 
where c and d are the given coeffi cients to a and b.

The Japa nese learned of this algorithm through the Chinese, 
in de pen dently of the West.

Problem 2
The area of the original trapezoid is S = [(a + b)/2]h, and so the area 

of the smallest trapezoid is S/n = [(a + k)/2]h1, where h1 is its height. 
Dropping the dashed perpendicular as shown in fi gure 5.24, we then 
have by similar triangles

h
k a
b a

h1 = −
−

⎛
⎝⎜

⎞
⎠⎟

.

Solving these equations for n in terms of h, a and b gives the result

n
a b
a k

h
h

b a
k a

= +
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= −
−1

2 2

2 2
.

3 For more on Euclid’s algorithm, see, for example, Oystein Ore, Number Theory and Its 
History (Dover, New York, 1988).
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Problem 3
We are given that AC = 2a = 85 in fi gure 5.2 and that BD = 2b = 42. 

Let c = AB, and so c a b= + =2 2 47 40516. . Further, if ∠A = 2θ, then 
sin θ = r/(a − r) = b/c. Solving for r gives

r
ab

b c
r=

+
= =13 04726 2 26 0945. . .or

To fi nd t, let k be the distance from the center of the rhombus to the 
upper small circle, in which case k t r r= + −( ) .2 2  Then, similarly to 
what we just did, t/(b − k) = a/c. Substituting for k gives, after a bit of 
algebra, the quadratic in t:

b2t2 − 2a(bc + ar)t + a2b2= 0,

with solution

t a ar bc
b ar bc

b
= +

± − +
( )

[ /( ) ]
.

1 1 4 2

2

In this case the relevant root is the smaller one, which is numerically 
2t = 12.34694.

You might notice that we have obtained different values from those 
on the tablet, the ones given on page 147. Those who have done the 
chapter 4 problems know that such mistakes happen often in tradi-
tional Japa nese mathematics, and the reason is typical: The proposer 
of the problem was actually copying the fi gure from a book, one by 
Miyake Chikataka (1662–1745), called Guō Sanpō, or Concise Mathemat-
ics, which was published in 1699. Unfortunately, the eager disciple got 
the fi gure wrong. The correct diagram is shown in fi gure 5.25.

b

h

h

1

a

k

Figure 5.24. Drop the indicated dashed line.

t

t

C

B

D

Arr
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In this case, t/(b − t) = a/c, which leads to t = ab/(a + c ) = 9.927 or 
2t = 19.854, the answer that was stated on page 147. Thus, the student 
wrote down the right answer but for the wrong reason. An instructor 
grading the tablet would take off points for not showing the work. 
Students, it seems, have not changed.

Problem 4
Call p the altitude of the small right triangle on the lower  left- hand 

corner of fi gure 5.3. Then, from similar triangles, we have the ratios 
(a − k)/k = a/c and p/k = b/c, which in turns gives k = ac/(a + c) and 
p =(b/c)k = ab/(a + c).

Next consider the hypotenuse of the small right triangle contain-
ing the inscribed circle. From the equality of external tangents, 
c − k = (k − r) + (b − p − r), which implies 2r = b − p + 2k − c, or upon 
simplifi cation,

2r
a b c c

a c
= + −

+
( )

.

If, for example, a = 36, b = 15, then c = 39 and 2r = 6.24.

Problem 5
Here is a solution by traditional methods:
The total number of small circles is n(n + 1)/2. (See chapter 2, 

problem 4-7.)
If t is the radius of one of the small circles, then the side of the 

equilateral triangle formed by the pyramid (with vertices at the center 
of the corner circles) has length 2(n − 1)t. The radius r of the circum-
scribed circle is thus

r t
n

t= + −2 1

3

( )
.

t

C

B

D

Ar r

t Figure 5.25. The original fi gure for 
problem 3.

a

k

k

r
c

b
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The required area is S = πr2 − [n(n + 1)/2]πt2, or, substituting for r,

S
n n n

t= + −⎛
⎝⎜

⎞
⎠⎟

− +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π 1
2 1

3

1
2

2

2( ) ( )
.

Solving for t gives

t
S

n n
=

− − +
6

1 5 14 8 3π( )( )
.

Problem 6
The original solution from the 1840 book by Heinouchi Masaomi 

(?–?) Sanpō Chokujutsu Seikai, Mathematics without Proof, says: Draw the 
three dashed squares (fi gure 5.26) and contemplate the fi gure in 
detail; the result is trivial.

Actually, it is almost trivial. Figure 5.27, which contains a few labels, 
shows directly that q = q1 = q2 = q3 = q4 and that therefore point M is the 
midpoint of the side. Thus, MD = b/2.

Similarly, p = p1 = p2 = p3 = p4 implies that N is the midpoint of the 
side and that ND = b/2.

So, we know that ΔMSD and ΔNDT are congruent with MS = p and 
NT  = q. Hence S is the midpoint of MD1 and MS = SD1 = p. But this 
means that triangles MDS and DSD1 are congruent, which immediately 
implies b = 2d.

a

a

d d

b b

c

c

l

Figure 5.26. “The solution is trivial.”
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Problem 7
We offer a traditional solution from the manuscript, Zoku Shinpeki 

Sanpō Kai, or Solutions to the Zoku Shinpeki Sanpō, by Okayu Yasumoto 
(1794–1862).

Referring to fi gure 5.28, let R be the radius of the large outer circle, 
p = R – r and q = AB. The marked angles [Exercise: show they are 
equal] allow us to use similar triangles, such that

n
q

r
p

n
p

q
r

= =;
/

.
2 2

2

p

l

b

d

N
M

ST

p1 q1

q

4q

p

p3

p q

3

p2 q2

4

1

D

D

q

Figure 5.27. “Now the solution is trivial.”

q

n

r

r

A

B

p

Figure 5.28. Similar triangles.
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Hence, pq = 8nr = 8qr2/p, which immediately yields (R − r)2 = p2 = 8r2, 

or R r= +( ) .1 8
S is defi ned as the area of the large circle minus the area of the ten 

small circles, so S R r r= − = −π π π2 2 210 2 8 1( ) ,  which gives the 
desired result

r
S=

−π( )
.

2 8 1

In his example, Kawano, who hung the tablet, showed exacting work, 
stating that, if π = 3.1416, then S = 234.09 and 2r = 8.000178177.

This problem is interesting because we can pack nine circles of 
radius r into a circle of the same radius R r= +( ) ,1 8  as shown in fi gure 
5.29. (The algebra is left as an exercise.)

Figure 5.29. Nine circles of radius r can also be packed into 
the same circle of radius R.

In 1717, Minami Koushin hung a tablet in a small shrine in the 
samurai Egawa’s garden, which is located in Shizuoka prefecture. On 
the tablet  were two fi gures, the same as fi gures 5.28 and 5.29, which 
asked for R for nine and ten circles when r is given. The problem was 
recorded in the unpublished 1830 manuscript of Nakamura Tokikazu 
(?–?) Saishi Shinzan, or The Mathematics of Shrines.

Problem 8
This beautiful solution is quoted from Furuya Michio’s 1854 book, 

Sanpō Tsūsho, or Mathematics.
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Let R be the radius of the big outer circle and s be the perpendicu-
lar distance from the center of R to the common tangent between the 
two circles a and b (see fi gure 5.30). Then by Pythagoras we have 
(R − d)2 = p2 + (s − d)2, or d = (R2 − p2 − s2)/2(R − s), where p is the 
perpendicular distance between the center of R and the line connect-
ing the centers of circles b and d.

Similarly, b = (R2 − p2 − s2)/2(R + s), and dividing by the previous 
expression gives d/b= (R + s)/(R − s). Because the circle R and the initial 
chord  were given, this ratio is a constant, and by symmetry it must apply 
to the other side of the diagram. Thus c/a = d/b. Repeating the argu-
ment with circles e and f gives d/f = c/e. Therefore b/a = d/c = f/e.

Problem 9
The answer is

r
a b c c a b c

=
+ + − + +2

2
( )

.

We  here quote the original solution from the 1837 book Keibi Sanpō 
or Hanging Mathematics by Horiike Hisamichi (?–?).

Draw the auxiliary lines shown in fi gure 5.31. Now just add up the 
areas of the triangles in the fi gure. We have

Δ Δ ΔABC ab r a r r b r r cr= = + × − + × − − + × +1
2

2
1
2

2
1
2

2
1
2

2 ( ) ( ) ,

R

A

a

c

d
f

C

D

B

s

p

e

b

Figure 5.30. If R is the radius of the outer circle, s is 
the perpendicular distance from the center of R to 
the chord on the right, and p is the perpendicular 
distance from the center of R to the line joining the 
centers of circles b and d.
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where Δ is the small area shown. Thus 2r2 − 2(a + b + c)r + ab = 0, or by 
the quadratic formula

r
a b c a b c ab a b c c a b c

=
+ + − + + −

=
+ + − + +( ) ( )

.
2 2

2
2

2

QED. One could hardly ask for a simpler solution.

Problem 10
We present a traditional solution from the (1879) book Meiji 

Shōgaku Jinkō- ki, or the Jinkō- ki of the Meiji Era, by Fukuda Riken (1815–
1889). Referring to fi gure 5.32 and equating areas,

ΔAH′C = ΔAOH + (2ΔOHC – ΔOKF) + 2ΔO′H′C + ΔO′K′F).

c

r
r

b

b−r

r
a

Δ

Δ

B

C A

a−
r

Figure 5.31. Draw in the auxiliary 
lines shown. Bear in mind that two 
tangents to a circle originating 
from the same point P are the 
same length

F

B C

D

A

E

r

2a
K

K'

rO

O'

H

H'

Figure 5.32. Draw the auxiliary lines shown. Note that 
FK = FK′.
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But ΔOKF and ΔO′K′F are congruent, and so their contributions cancel 
out. With the side of the equilateral triangle = 2a, the above expression 
amounts to

1
2

3
1
2

3 2 3a a r r r a r ra= + − +( ) .

Simplifying gives 3 6 3 0 3 22 2 2 2r ar a r a a− + = − =, ( ) ,or  which 
immediately yields

r a= −( ) .3 2

Notice that the method of solution is essentially the same as in 
problem 9.

Problem 11
The answer is

b
a ac c= + +6

4
.

To solve the problem we realize that the diagram is symmetrical 
around the centerline and so we only need to concentrate on one side, 
as in fi gure 5.33. From the drawing, convince yourself that

v + w = x + y.

w

y

x

b

c

a

v

Figure 5.33. The auxiliary lines help fi nd b in terms of a and c.
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The Pythagorean theorem applied to the obvious triangles in the 
fi gure then gives

2 2 2 2 2 2bc ab b c c a b a+ = + − + + −( ) ( ) ,
or

2 2 2( ) .a c b c b a+ − + = +

Squaring both sides and factoring, one fi nds

2 2 3b c a c+ = + .

Solving for b yields the result stated above.

Problem 12
From fi gure 5.34, we see that r = l + h. Furthermore, triangles ADE 

and CFG are similar, so the marked angles are both A/2, while tan (A/2) = 
r/(b − r). Then, using the Pythagorean theorem on triangle DFK gives

r l h rr
r b r

r
= + = + −

2 1
1( )

,

or

r
r r

b r
r

r
b r1 1

22+
−

=
−

,

K

c

a

B C

b

A

H

r1

r

r

r

A/2

A/2

GF

ED

l h

Figure 5.34. Draw the dashed lines and use similar triangles.
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which is a quadratic equation in r1 . Completing the square yields

r
r r
b r

br
b r1

2
2

2
+

−
⎛

⎝⎜
⎞

⎠⎟
=

−( )
.

Solving for r1 gives

r r
b r
b r1

2

2

= −
−

⎛

⎝⎜
⎞

⎠⎟
,

or

r
r

b r
r

r

b r
1 1

2

2
=

+
=

+
;

( )
.

Using the same method gives

r
r

a r
r

r

a r
2 2

2

2
=

+
=

+
;

( )
.

Problem 13
Let p be the distance from the center of either of the large circles 

R to the point where the radius R is tangent to one of the circles r 
(see fi gure 5.35). Then we have both (R − r)2 = r2 + p2 and 
(R + r)2 = r2 + (3p)2. Solving these equations simultaneously yields

 
r R p R= =2

5
1

5
and .

 
(1)

t

p

r

r
p

p

A

DC

R

Figure 5.35. First fi nd p in terms of R.
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Figure 5.35 also shows directly that AC R p= +2 2 2 ,  or

 AC R= +( / ) .2 2 2 5  (2)

One can also easily get

 AD R Rt t R t= + + = +2 2( ) . (3)

Because we also have AC AD= 2 ,equations (2) and (3) give

2 10 2

5
2 2+⎛

⎝⎜
⎞

⎠⎟
= +R R t( ) ,

which is a quadratic equation in t .. Solving it in the usual manner 
gives, after some algebra,

t r= + −⎛
⎝

⎞
⎠2 2 10 1

5
2

2

/ .

(There is another root, but you can easily convince yourself that it 
cannot be reconciled with the fi gure.)

The problem is essentially solved, but the quantity in parentheses 
can be written as

2 2 10 1 3 2 10 2 2 2 10 3 0 4 2 2 0 4
2

+ −⎛
⎝

⎞
⎠ = + − + = + − +/ / / . . .

We are asked to fi nd r in terms of t, and so

r
t=

+ − +

0 4

0 4 3 4 0 4 2

.

( . ) ( . )
,

as stated.

Problem 14
The answer is

a k
t
k

k
t
t

= +
′

=
′

( ) , .1 3 2 2

2

where

The problem is easily solved. Call θ the vertex angle CAB. Then, by 
similar triangles, fi gure 5.13 shows that

tanθ ≡ = − =
−

= − = ′
− ′

=
′

′ − ′
1 1 2

2

1

1

1

1

2

1 2k
a t

t
t t

t
t t

t
t

t t
t

t t
.

a

A

B

C

t

t

t

t'

t'

1

2

1

2
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Solving each equality gives

 
a t

k
k

= +⎛
⎝⎜

⎞
⎠⎟

1
;

 
(1)

 
t

k
k

t t
k

k
t

k
k

t= +⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

1 1 1
1 2 1

2

2; ;
 

(2)

 
t

k
t t

k
t

k
t′ =

+
⎛
⎝⎜

⎞
⎠⎟

′ =
+

⎛
⎝⎜

⎞
⎠⎟

′ =
+

⎛
⎝⎜

⎞
⎠⎟

1
1

1
1

1
11 2 1

2

; .
 (3)

Eliminating t between equations (2) and (3) gives k t t= ′2 2/ .  
Substituting t k t= + ′( )1 2

2  from equation (3) into the expression for a 
in equation (1) yields the stated answer.

One incidentally fi nds the simple relationship t t t= + ′2 2 ,  which 
was written in the 1834 manuscript Yusai Sangaku, or Mathematics of 
Yusai, by Tani Yusai (1802–1841).

Problem 15
We follow basically the same procedure as in the solution to the 

previous problem. Figure 5.14 shows that

tan A
a
b

a l
l

l l
l

l l
l

= = − =
−

=
−

=1

1

1 2

2

2 3

3

. . . .

Multiplying these out shows that al l l l l l l l2 1
2

1 3 2
2

2 4 3
2= = =, , ,  and 

so on, which also means that

l
a

l
l

l
l

k1 2

1

3

2

= = = = ≡. . . .constant

With this defi nition, l1 = ak, l2 = kl1 = ak2, l3 = kl2 = ak3,  etc. The total 
length of the sides of the squares is therefore

L l a kn
n= =

∞ ∞

∑ ∑
1 1

,

which we recognize as a geometric series from problem 4-8 in chapter 
2. This sums to

L
a

k
a

l
k

=
−

− =
−1 1
1 .

Notice also that tan A ≡ a/b = (a − l1)/l1, which implies b = l1/(1 − k). 
Further, the area of the squares, Σ1

2∞ln ,  can be obtained merely by 
substituting a2k2 for ak into equation (1). Then the desired area, the 
area of the triangle minus that of the squares, becomes

AC

B

b

l

l

l
l

S

1

3

4

2

a
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S ab l
l

k k
l

k
l

k kn
n

= − =
−

−
−

=
+=

∞

∑1
2 2 1 1 2 1

2

1

1
2

1
2

2
1
2

( ) ( )
.

From Eq. (2), k = 1 − l1/L. Plugging into the expression we just got 
for S, gives, after a little algebra,

l
L S

L S
L

L

L S
1

3
2

2

2 2

1 4

1 2
2

3 2 1 4
=

− +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+ +

/ /

/ / / /
,

the last of which was written on the tablet. The following example was 
written too: If L = 308 and S = 9702, then l1 = 132.

Problem 16
Draw the bisector of ∠C in fi gure 5.15. Then, similarly to the situa-

tion in fi gure 5.36,

sin( / ) ,∠ =
−
+

=
−
+

ACB
r r
r r

r r
r r

2 1 2

1 2

2 3

2 3

which implies that r r r2
2

1 3= , or that r2 is the geometric mean of r1 and 
r3. In the same way, r r r3

2
2 4= , and so

 

r
r

r
r

r
r

k1

2

2

3

3

4

= = = ,
 

(1)

where k is a constant.
By connecting the centers of r1, r2, and t1, applying the Pythagorean 

theorem, and then doing the same for the other sets of circles, one 
easily shows that

 

1 1 1 1
1

1

1 1 1 1
1

1

1 1 1 1
1

1

1 1 2 2

2 2 3 3

3 3 4 4

t r r r k

t r r r k

t r r r k

= + = +
⎛
⎝⎜

⎞
⎠⎟

= + = +
⎛
⎝⎜

⎞
⎠⎟

= + = +
⎛
⎝⎜

⎞
⎠⎟

,

,

.
 

(2)

From this set of equalities and equation (1) we have

1 1 1 1
1

1 1

1 3 2 4

2

2t t r r k t
= +

⎛
⎝⎜

⎞
⎠⎟

= ,

which immediately yields the fi nal result t t t2
2

1 3= .

3

B

A

C
tt t

r

r

r
r4

3
2

1

1 2
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Problem 17
Considering ∠B, fi gure 5.36 shows that sin(B/2) = (r1 − r2)/(r1 + r2), 

or, letting k ≡ sin(B/2),

r
k
k

r2 1
1
1

= −
+

.

Similarly,

r
k
k

r
k
k

r3 2

2

1
1
1

1
1

= −
+

= −
+

⎛
⎝⎜

⎞
⎠⎟

,

and so forth. Hence,

r
k
k

r5

4

1
1
1

= −
+

⎛
⎝⎜

⎞
⎠⎟

.

Solving this equation for k gives

 
k B

r r

r r
= =

−
+

sin( / ) .2 1
4

5
4

1
4

5
4

 
(1)

Notice also from fi gure 5.36 that

 
tan( / ) .B

r
a r

2 1

1

=
−  

(2)

Write the basic trigonometric identity cos2(B/2) + sin2(B/2) = 1 as

1
1

2
1

22 2
+ =

tan sin( / ) ( / )
.

B B

2

B

a

r
5

A

C

b

r
r1

− r12r

Figure 5.36. The dashed lines give 
sin(B/2) = (r1 − r2)/(r1 + r2).
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Then, inserting the expressions from equations (1) and (2) gives

a r
r

r r

r r

r r

r r

− =
+
−

⎛

⎝
⎜

⎞

⎠
⎟ − =

−
1

1

1
4

5
4

1
4

5
4

2

1 5
4

1
4

5
4

1
2

,

or, solving for a,

a
r

r r r
r r r r

r
T r

Tr r=
−

+ =
−

+2 21

1
4

5
34 5

1
4

5
34 5 1

1

5
5 1,

where we have multiplied the top and bottom of the fi rst term by r 5
3 4/  

and let T r r≡ 1 5
34 .  We have thus found a in terms of r1 and r5, as required.

At the same time, since A = 90° − B,

tan tan
tan
tan

( / ) ( / )
( / )
( / )

,A B
B
B

2 45 2
1 2
1 2

= − =
−
+

°

or, from the fi gure and the expression in equation (2) for tan(B/2),

r
b r

r a r
r a r

a r
a

1

1

1 1

1 1

11
1

2
−

=
− −
+ −

= −/( )
/( )

.

Thus, fi nally,

b
r a r
a r

= −
−

2
2

1 1

1

( )
,

and the problem is solved.

Problem 18
The solution is left to the reader.

Problem 19
To solve this problem we need consider only one of the ellipses, say 

the one on the right. The equation for a vertical ellipse displaced a 
distance b along the x axis is (x − b)2/b2 + y2/a2 = 1, and the equation of 
the circle is x2 + y2 = R2. Eliminating y2 yields a quadratic for the two 
points of intersection:

1 1 2
0

2 2
2

2

2b a
x

b
x

R
a

−⎛
⎝⎜

⎞
⎠⎟

− + = ,

which has roots

x
b

R a b
a

a b
a b± = ± − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ −
1

1 1
2 2 2

4

2 2

2 2

( )
.
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However, from the symmetry of fi gure 5.18, we see that the two roots 
x± must be the same, which implies that the discriminant (the quantity 
under the radical) must vanish. Setting it equal to zero and solving for 
b yields the result

b a a R= −1 2( / ) .

Problem 20

We fi rst prove the following little theorem quoted from Aida Yasua-
ki’s book, Sanpō Tenshōhō Shinan (chapter 3):

Three circles r1, r2 and r3 touch each other externally (see fi gure 
5.37). Two of the circles, r1 and r2, are tangent to the line l, while the 
third circle, r3, is tangent to a parallel line f. Then,

 
r

h r r r r
r r3

1 2 1 2
2

1 2

2
8

=
+ −[ ( ) ]

,
 

(1)

where h is the distance between l and k.
To prove this theorem, fi rst drop a perpendicular line k from f 

through the center of r3 to l. The distance between the center of r1 
and k is s; the distance between the center of r2 and k is t. As in many 
other sangaku problems (e.g. problem 12), from fi gure 5.37 we see that 
by the Pythagorean theorem the horizontal distance between the 
centers of r1 and r2 is

 s t r r+ = 2 1 2 .  (2)

But Pythagoras also tell us that

 s2 = (r1 + r3)
2 − (h − r3 − r1)

2 and t2 = (r2 + r3)
2 − (h − r3 − r2)

2. (3)
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Figure 5.37. Drop a perpendicular k through 
the center of r3.



180 Chapter 5

Expand these expressions, take roots to get s and t, and insert the 
results into Eq. (2). After some tedious algebra, one gets

8 4 41 2 3 1
2

2
2

1 2 1 2
2

1 2
2hr r r r r hr r r r h r r= − + + +( ) ( ) ,

which is equivalent to (1).
We now solve problem 20 proper. Applying the above theorem to r1, 

r2, and r in fi gure 5.19, we have

r
h r r r r

hr r
=

+ −[ ( ) ]
,1 2 1 2

2

1 2

2
8

where h is considered unknown. But, from fi gure 5.19 we also have

r
h r r r r

hr r
=

+ −[ ( ) ]
.2 3 2 3

2

2 3

2
8

Equating the two expressions and solving for h gives

h
r r r r r
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r r r

r r r
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=
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2 22 1 3 1 3

1 2 3 2 3 1

2 1 3

1 3 2
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.

But if this is true, then again the fi gure shows we must have

h
r r r

r r r
=

−

2 3 2 4

2 4 3

.

Eliminating h yields

r r

r r r

r r

r r r
1 2

1 3 2

3 4

2 4 3−
=

−
.

Solving for r4  is straightforward and gives

r
r r r

r r r r r
4

3 1 2

1 3 2 3 1

=
+ −( )

,

or fi nally

r
r r

r r r r
4

2 3
2

3 1 2 3
21

=
+ −[ / ) ]

,

as stated.
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Problem 21
As we could not fi nd a traditional solution, we present a modern one. 

The strategy is to fi nd the area of one of the ellipses in terms of r, the radius 
of the large circle. We choose the coordinate axes to lie along the major 
and minor axes of the horizontal ellipse, 2a and 2b, as in fi gure 5.38.

p

y

x

Figure 5.38. Choose these coordinate axes.

The equation of the horizontal ellipse is

 

x
a

y
b

2

2

2

2
1+ = .

 
(1)

The equation of the large circle with center at (0, p) is

 x2 + (y − p)2 = r2. (2)

By considering the dashed equilateral triangle shown in fi gure 5.38, 
one sees that the equation of the dotted tangent is

 
y x p= +1

3
.
 

(3)

Inserting equation (3) for y into equation (1) gives

x
a

x p
b

2

2

2

2

1 3
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+
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,
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which has solution

x p p p b
b a

a
a

b a
= − ± − − +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

2 2 2
2 2

2

2

2 2

3 3
3

( )
( )

( )
.

However, because the dotted tangent intersects the ellipse at only 
one point, the roots must be the same, implying vanishing of the 
discriminant. This gives a relationship between a, b, and p:

 
p

a b2
2 23

3
= +

.
 

(4)

We also have from equations (1) and (2) for the intersection of the 
circle and the ellipse

r y p
a

y
b

2 2

2

2

2
1

− − + =( )
,

or

a b
b

y py r p a
2 2

2
2 2 2 22 0

−⎛
⎝⎜

⎞
⎠⎟

+ + − − =( ) .

As before, the discriminant of this equation must vanish. With expres-
sion (4) for p2, one easily fi nds

4a4 = 3r2(a2 − b2),

yielding an area for each ellipse of

A ab a b a
a
r

= = = −π π π2 2 4
6

2

4
3

.

The area will be maximized when the quantity under the radical 
is maximized. Taking the derivative and setting it to zero gives 
4a3 − 8a5/r2 = 0, which means the maximum is attained when a2 = r2/2 
and S = π r2/2 3.

Problem 22
We give an original solution from Uchida Kyūmei’s 1844 book Sanpō 

Kyūseki Tsu-ko, or A General Course of Calculus, which is a good textbook 
on integration. Uchida’s dates are unknown.

Let x be the variable of integration. For small increments Δx, the arc 
segment Δl in Figure 5.39 can be considered a straight line. Then 
Δx/Δl = p/r.
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The area element is Δs = 2πpΔl = 2πrΔx. Integrating x from 0 to d 
gives the desired area S = 2πrd.

Notice that the traditional Japa nese method is slightly simpler 
than a typical  fi rst- year calculus approach, which might go like this: 
dA = 2πxdl, where  here x = rcos θ is the usual x coordinate and θ the 
usual angle in polar coordinates. Since dl = rdθ, we get dA = 2πr2 
cos θ dθ and

A r= 2 2
1
2π θ θ

θsin | ,

where θ = sin–1(y/r). With d = y2 − y1 we get the same result, but with the 
explicit introduction of trigonometric and inverse trigonometric 
functions.

Problem 23
We give two solutions. The fi rst is a traditional solution in the book 

Sanpō Kyūseki  Tsu- ko (see solution to problem 22).
As shown in fi gure 5.40, the surface area element ΔA = z(x)Δs, where 

z(x)/x = h/k and k r r d= − −2 2( ) .  (If you are having diffi culty with 
this step, see the next solution.) Figure 5.41 shows that by similar 
triangles Δ Δs r r x x= −( / ) .2 2

ld

O

x
r

Δ xp Δ

Figure 5.39. The large and small right triangles are 
similar (see fi gure 5.41).
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Going to the limit, the desired area is

 

A dA z x ds
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(5)

In regard to this solution, we fi rst point out that traditional Japa nese 
mathematics did not contain the idea of indefi nite integration, only 

s

Δ

Δs

x

x

r

d

k

φ

Figure 5.41. By similar triangles the two indicated angles at 
the lower right are equal. Therefore

Δ Δs r r x x= −( )/ 2 2 Δx.

E

D

r

d

h

x

Δ

ΔA

s

Δx
k

z(x)

B

C

Figure 5.40. The linear increment along x is Δx ; the curved 
increment along the surface is Δs; the area element is ΔA. By 
Pythagoras, k = r r d2 2− −( ) .
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defi nite integration, and so integrals  were used only for fi nding areas, 
volumes, and surfaces of certain fi gures. Often, practitioners used 
mechanical means to get numerical answers. (We discuss this more 
fully in chapter 9.) What’s more, the above answer is surprising be-
cause it does not contain π, that is, it is not an obvious fraction of the 
surface area of a cylinder, 2πrh. We now give a modern derivation that 
may be more convincing.

Imagine that a plane slices a cylinder to form an ellipse, as in 
fi gure 5.42. In spherical coordinates one can show4 what is fairly 
evident from the fi gure, that the height of the point at which the 
plane intersects the cylinder surface is z(φ) = const × sin φ. To deter-
mine the constant, in this problem we have a boundary condition 

4 In spherical coordinates, the unit vector in the R direction is R̂ = îsin θ cos φ + ĵsin θ 
sin φ + k̂cos θ. The height z of a point above the x-y plane is just z = R cos θ. To fi nd this as a 
function of φ, note that if, as in fi gure 5.42, the plane containing R is tilted in the y -z plane 
at an angle β from the z axis, then the unit vector in the z′ direction has components ẑ′ = 
–ĵ sin β + k̂ cos β. R rotates in a plane perpendicular to ẑ′, so ẑ′ · R̂ = 0. Working out the dot 
product gives cot θ = tan β sin φ. But z = R cos θ = r cot θ, and therefore z = r tan β sin φ, or 
z = const × sin φ.

β

φ)z(φ

Θ

z

x

y
r

s = rφ

R

z'

Figure 5.42. A plane slices the cylinder at an arbitrary 
angle θ. The section is an ellipse. We see that 
z(φ) = const × sin(φ).
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that the point at which the plane intersects the cylinder marks the 
maximum angle φ = φmax. At that point we are given z = h/2. Hence 
const = h/2 sin φmax and

 
z

h=
2sin

sin
maxφ

φ.
 

But by defi nition Δs along the cylinder surface is r Δφ. Hence dA = rzdφ 
and the desired area is simply

 

S rh
d

h

4 2

2
1

0
=

= −

∫sin
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sin
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φ
φ φ

φ
φ

φ

[ ]
 (6)

But from fi gure 5.40 or 5.41 we see that sin φmax = k/r  and cos φmax = 
(r − d)/r, so

S hr

r d4 2 2 1
=

−/
,

in agreement with the traditional method. Notice that the traditional 
solution uses the fact that the slope of the plane cutting the cylinder is 
a constant, and thus z as a function of x is a straight line: z(x)/x = h/k, 
as stated above. The increment Δs is then found in terms of Δx, giving 
the area element zΔs. The modern version gets Δs directly in terms of φ, 
but z becomes a more complicated function of φ.

Problem 24
We present a solution by standard modern calculus. To fi nd the volume 

cut out of the sphere by two cylinders, we fi nd the volume cut out of a 
hemi sphere by one cylinder and multiply by four. We build the volume 
element as zdxdy, as shown in fi gure 5.43. The equation of the sphere is 
4r2 = x2 + y2 + z2, so we can eliminate z by writing z r x y= − −4 2 2 2 . 
Further, the equation of the cylinder is r2 = x2 + (y − r)2. Thus, the domain 

of integration over, say, x is bounded by x yr y= −2 2 , or

V zdxdy dy r x y dx
D

r yr y
= = − −∫ ∫∫∫

−
4 8 2

0

2
2 2 2

0

2 2

( ) .
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We now shift to polar coordinates t,θ, with x ≡ t cos θ, y ≡ t sin θ, 
t2 = x2 + y2, dxdy = tdtdθ. Then, with limits of integration given by 
fi gure 5.44,

V d r t tdt
r

= −∫∫−
4 2 2 2

0

2

2

2
θ

θ

π

π
( ) .

/

/ sin

This is a standard integral that gives the result

V r= −⎛
⎝⎜

⎞
⎠⎟

8
3

2
2

2
3

3( ) .
π

r

x

y

z

dy
dx

z

Figure 5.43. The volume element of the sphere is 
zdxdy and is integrated over the circle in the x-y 
plane.

t

x

y

Θ

2r

Figure 5.44. Note that tmax = 2r sin θ.
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However, we notice that the fi rst term is the volume of the sphere itself, 
and so the desired volume is the somewhat surprising answer, again 
lacking in π’s,

V V rsphere − = 16
9

2 3( ) ,

which was written on the tablet.
There are several ways to fi nd the area. Perhaps the most straight-

forward is to write

A = ∫  ∫  zds,

where in fi gure 5.43, ds2 = dx2 + dy2 is the square of the infi nitesimal 
arc length along the curved surface of the cylinder (see problems 
22 and 23) and where z is the height above the x -y plane of the 
curve of intersection between the cylinder and the sphere (the solid 
curve in the fi gure). We already know from the volume calculation 
that along the cylinder surface x2 = 2yr − y2, which gives 
xdx = [r − y]dy, and so

ds dx dy
r y

x
dy

r
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= + =
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/

However, by inserting the above expression for x2 into the equation 
for the sphere 4r2 = x2 + y2 + z2 and solving for z, we get the height of 

the curve of intersection in terms of y: z r yr= −4 22 . Thus

A zds r
r y

yr y
dy r

y
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2
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.

The integral is elementary and gives the result A = 4r2. But this is for 
the area of  one- half a cylinder over  one- half a hemi sphere, so the total 
area we want is eight times this, or A = 32r2. Notice once more that no 
π fi gures in the result.

This problem appears in many modern calculus texts as the solid of 
Viviani (1622–1703). In Japan, the theorem was written down in the 
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1844 book Sanpō Kyūseki  Tsu- ko, or Theory of Integrations, by Uchida 
Kyūmei (?–1868). His solution, however, while employing only elemen-
tary methods, is extremely complicated and we do not present it. It can 
be found in Fukagawa and Rigby, Traditional Japa nese Mathematics 
Problems (“For Further Reading: Chapter 6,” p. 339)



Plate 6.1. The original illustration from problem 12, originally proposed by Hotta 
Jinsuke in 1788, as it appears in Fujita Kagen’s 1789 book, Shinpeki Sanpō. 
(Collection of Fukagawa Hidetoshi.)



Still Harder Temple 
Geometry Problems

I have been studying this problem for 
four or fi ve years and, at last, this 
spring, I succeeded in solving it. But 
the problem is no good. I recommend 
that every student study more math-
ematics books rather than try to solve 
such a problem.

—From the Diary of Yamaguchi 
Kanzan

The problems that fi nd their way into this chapter are distinguished from 
those of the previous ones by three  non- mutually-exclusive criteria: The 
algebra may be considerably more involved than for the problems of chap-
ters 4 and 5; the solutions may require a higher degree of insight, as well as 
a familiarity with the properties of  three- dimensional solids; and fi nally, to 
make tractable some of the solutions requires techniques generally no lon-
ger taught at the high  school—or even  college—level. We speak specifi cally 
of inversion and affi ne transformations. These techniques, which are actu-
ally not diffi cult to master, make solving some of the problems quite easy, 
almost trivial; without them, solutions are nearly impossible.

Problems 1–4 fall into the fi rst category. The individual steps are not dif-
fi cult, but the algebra quotient may easily surpass what most students are 
willing to endure. Problem 4 is of considerable historical interest, however, 
and not as hard as it seems at fi rst glance. Problems 5–8 may prove particu-
larly diffi cult because they involve ellipses, which are not commonly found 
in Western problems. In traditional Japa nese mathematics, on the other 
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hand, problems involving ellipses are commonplace. The reason is that Japa-
nese geometers had a very simple way of looking at an  ellipse—as a slice out 
of a right circular cylinder, rather than as a conic section. Problem 5  explores 
the Japa nese view in detail and problems 6–8 exploit the results. You will 
notice the striking lack of mention of foci. Indeed, in all traditional  Japa nese 
mathematics, the only mention of the  string- and- foci method universally 
taught to Western students for generating an ellipse occurs in Ishiguro 
 Nobuyoshi’s unpublished 1815 manuscript “Sokuen Shūkihō,” or “Method 
for Describing the Ellipse.”

Problem 8 is fairly simple and could have been included in the previous 
chapter, but it has direct bearing on the problems following it and so we 
include it  here. Problems 9–11, involving multitudes of circles, are simply 
diffi cult.

The  three- dimensional problems 14 and 15 are not computationally in-
tensive, but two of them do require knowing the properties of  many- sided 
solids, while the remaining problems require mastering the inversion tech-
nique.

We would not expect many readers to tackle the conundrums in this 
chapter, but we hope that everyone will glance at the extraordinary solu-
tions. 

Problem 1
This problem, proposed by Maruyama Ryoukan in 1800, was written on a tablet hung at 

the Sannōsha shrine in Tsuruoka city of Yamagata prefecture and later recorded in the 
1807 book Zoku Shinpeki Sanpō  by Fujita Kagen.

Figure 6.1. Find rC in terms of rA, rB, and rD.

D

A
B
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rr
AB     

rC

r
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Quadrilateral ABCD is inscribed in a circle, as shown in fi gure 6.1. Let rA, rB, rC, and rD 
be the radii of circles inscribed in triangles ΔDAB, ΔABC, ΔBCD, and ΔCDA, respectively. 
Find rC in terms of rA, rB, and rD.

Answer: rC = rB + rD − rA or rA + rC = rB + rD.

Example: rA = 1, rB = 2, and rD = 3; then rC = 4.

A detailed solution is given on page 208.

Problem 2
This problem was originally proposed by Sugita Naotake on a sangaku hung in 1835 at 

the Izanagi shrine in Mie prefecture. We have taken it from the 1837 collection Kakki 
Sanpō, or Concise Mathematics, by Shino Chigyō (?–?). In his book, Shino rec ords prob-
lems on twelve tablets hung between 1832 and 1836. They are all lost.

F

C

A

B
E

G

P β

α

γ
Figure 6.2. Find the area of ΔABC in terms of α, β, and γ.

As shown in fi gure 6.2, draw three lines AE, BF, and CG that pass through any point P 
inside a triangle ABC.1 Consider the three indicated areas α = ΔAPF, β = ΔFPC, and 
γ = ΔCPE. Find the area S of ΔABC in terms of α, β and γ.

Answer:

S =
+ + +

+ + − +
β α β α β γ

β α β γ γ α β
( )( )

( ) ( )
.

 
1 Lines drawn from the vertex of a triangle to the opposite side with no other restriction 

are known as Cevians, after the the  seventeenth- century mathematician Giovanni Ceva.
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Example: If α = 35, β = 28, and γ = 21, then S = 144.

We give both a traditional and a modern solution on page 210.

Problem 3
This problem was originally hung in 1806 in the Atsuta shrine by Ehara Masanori, a 

disciple of Kusaka Makoto (1764–1839). The tablet, which contained only this problem 
and no solution, was subsequently lost. However, at an unknown date the mathematician 
Kitagawa Mōko (1763–1833) visited the shrine and recorded the sangaku in his note 
“Kyuka Sankei,” or “Nine Flowers Mathematics,” along with his solution. More recently, 
the shrine constructed a replica from Kitagawa’s manuscripts (see plate 6.3). Warning: 
This may be the most involved exploitation of the Pythagorean theorem you have ever seen.

Plate 6.2. The original 
illustration for problem 2, 
originally proposed by 
Sugita Naotaki, as it 
appears in Shino Chigyō’s 
1837 book Kakki Sanpō. On 
the same page can be seen 
a drawing for a more 
advanced problem, similar 
to problems 16 and 17. 
(Aichi University of 
Education Library.)
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Plate 6.3. Mea sur ing only 45 by 30 cm, this tablet is a replica of one that was 
originally hung in 1806 in the Atsuta shrine and subsequently lost (see problem 3). 
The shrine reconstructed the replica shown  here from the manuscript of 
 mathematician Kitagawa Mōko. The actual replica is in color and another replica 
from the shrine with the same color scheme can be seen in color plate 12. (© Asahi 
Shinbun.)

r

B

D

A

C

r

rH

Figure 6.3. Find r in terms of CH.
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As shown in fi gure 6.3, the triangle ABC is isosceles. Two lines BD and CH divide it into 
three smaller triangles, each of which circumscribes a circle of the same radius r. Find r 
in terms of CH.

Answer: r = CH/4.

We give Kitagawa Mōko’s original solution from his notebook on page 212.

Problem 4
Proposed by Shichi Takatada, this is the second problem from the left on the 

Meiseirinji tablet (color plate 8) and is connected with the problem known in the West 
as the Malfatti problem. Caution: This is a long problem, but the solution is relatively 
straightforward.

As shown in fi gure 6.4, r1, r2, and r3 are the radii of three circles that touch each other 
externally. Construct a triangle that inscribes the circles and fi nd the radius r of the 
triangle’s inscribed circle (incircle) in terms of r1, r2, and r3.

Answer:

r
r r r

r r r r r r
=

+ + − + +

2 1 2 3

1 2 3 1 2 3

.

We give a traditional solution on page 216 and a discussion in chapter 8.

r

r

r

r

1

3

2

Figure 6.4. Find the radius of the dashed circle r in 
terms of r1, r2, and r3.

Problem 5
This problem is the third from the right in the photo of the Meiseirinji tablet, color 

plate 8. It was proposed by Kawai Sawame, a  sixteen- year- old girl. Warning: This is a very 
long problem.
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2

r

r

r
l

3 r3

2

1

r

Figure 6.5. Show that r3 = r1/3.

Here we have one ellipse and fi ve circles of radii r1, r2, and r3. Two circles of radius r3 
and one of r2 are tangent to the line l, as shown in fi gure 6.5. Assume r1 is the radius of 
curvature of the ellipse at the end of the major axis. Show that r3 = r1/3.

A traditional solution to the problem is given on page 218.

Problem 6
This problem was written on a sangaku, now lost, dedicated in 1850 to the Ushikawa 

shrine, Aichi prefecture. Caution: This problem is easy but requires advanced techniques.

2E

D

C

B

A
O

E1

Figure 6.6. Show that the side of one of the squares equals the 
minor axis of the ellipse.
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As shown in fi gure 6.6, the major axes of two identical ellipses E1 and E2, which have a 
common center O, are perpendicular. The vertices A, B, and D of square ABCD lie on E1, 
while vertex C lies on the major axis of E1 and also touches E2. Show that the side of the 
square is equal to the length of the semi-minor axis.

Because this problem was on a sangaku, the author, wanting to make it attractive and 
interesting to  passers- by, originally asked for the lengths of squares in a kite fl ying in the 
sky, a kite formed by the two ellipses.

A solution can be found on page 222.

Problem 7
This problem was written in 1822 on a tablet in Iwate prefecture. The tablet is now 

lost. Advice: Do the previous problem fi rst.
On the ellipse shown in fi gure 6.7, mark three points A, B, and C such that the areas of 

the curved sectors S1, S2, S3 are equal. Show that the area of triangle ABC ab= ( / ) ,3 4 3  
where a and b are the semimajor and semiminor axes of the ellipse.

Turn to page 223 for a solution.

C

A

B

S

S

S

1

2

3

Figure 6.7. Find the area of the triangle when the areas of 
the curved sectors are equal.

Problem 8
Also from a lost sangaku, this problem was originally presented in 1842 by Kato 

 Yoshiaki, Yoshida Tameyuki’s student, who hung the tablet in the Ohsu Kanon temple 
of Nagoya. Advice: Do problem 5 fi rst.

4 7

r1 r10

r r

Figure 6.8. Show that r7(r1 + r7) = r4(r4 + r10).
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As shown in fi gure 6.8, a chain of ten circles with radii r1, . . . , r10 is inscribed in an 
ellipse, such that each circle touches its two neighbors as well as the ellipse at two distinct 
points. Shown that r7(r1 + r7) = r4(r4 + r10).

A traditional solution is outlined on page 224.

Problem 9
This problem was proposed in 1828 by Tomita Atsutada, a student of Ono Eijyū’s 

school, and hung in the Shiroyama Inari shrine of Annaka city in Gumma prefecture. 
We know of it from the 1830 book Sanpō Zasso, or Concise Mathematics, by Iwai Shigetō.

Two circles of radii a and b touch each other externally at a point P and also touch a 
larger circle O internally (see fi gure 6.9). Two others circles of radii c and d touch each 
other externally at P as well, and also touch circle O internally. Find b in terms of a, c, and d.

Example: a = 2, c = 3, and d = 4; then b = 12.

The answer and a solution by traditional methods can be found on page 225.

P

c

d

O

b

a

Figure 6.9. Find b in terms of a, c, and d.

Problem 10
We mentioned in connection with problem 26 in chapter 4 that during the later Edo 

period it became pop u lar to consider problems that could be drawn upon folding fans. 
 Here is another and more diffi cult example, dating from 1865; it is the rightmost prob-
lem in the photo of the Meiseirinji temple sangaku, color plate 8, and was presented by 
Sawa Keisaku.

As shown in fi gure 6.10, inside a  fan- shaped sector fi ve circles touch each other; one is 
a “red” circle of radius r1, two are “green” circles of radius r2, and two are “white” circles 
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of radius r3. The radius of the sector is r, and the circles touch each other symmetrically 
about the center O. We take the angle of the sector to be variable and r constant. As the 
angle is varied, the inner radius of the sector t is adjusted so that the fi ve circles continue 
to touch; r3 is also allowed to vary, while the other radii remain constant. Show that 
2(r1 + r3) = r when r3 is a maximum.

A full solution to the problem is given on page 226.

Problem 11
Proposed by Matsuoka Makoto, this is the second problem from the left on the second 

Atsuta tablet, color plate 12. Warning: This is a diffi cult problem.

A small circle of radius r sits in a big circle of radius R such that four circles of radii a, 
b, c, and d touch it externally, as shown in fi gure 6.11. Moreover, eight other circles are 
arrayed among a, b, c, d, r, and R as shown. Prove the following simple relation:

1 1 1 1
a b c d

+ = + .

Turn to page 227 when you need a solution.

O

t

r

1

r r33

r
2r 2r

Figure 6.10. Show that 2(r1 + r3) = r  when r3 is maximized.

c

R

r

d

b

a

Figure 6.11. Find the relationship between a, b, c, and d.
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Problem 12
This problem was originally proposed by Hotta Jinsuke of the Fujita school and 

written on a tablet that was hung in 1788 at the Yanagijima Myōkendō temple of Honjyo, 
Tokyo. It was later recorded in Fujita’s book, Shinpeki Sanpō.2

As shown in fi gure 6.12, a large circle of radius r contains two circles r1 and r′1, each of 
radius r1 = r/2, which are both tangent to each other and touch circle r internally. The 
bottom circle, r′1, also touches a chain of circles rn, as illustrated. Further, a chain of circles 
with radius tn is placed between the circles rn and r′1 such that each tn touches r′1 as well as 
circles rn and rn+1. Find n in terms of r and tn. (Equivalently, fi nd rn and tn in terms of n.)

Answer:

n
r
tn

= − +
⎛

⎝⎜
⎞

⎠⎟
1
2

14 1 .

Example: If r = 97.5 and tn = 0.1, then n = 16.

We give a traditional solution on page 228, and also devote much of chapter 10 to a solution using 
the method of inversion.

Problem 13
Yamamoto Kazutake proposed this problem, which was written in 1806 on a tablet 

hung in the Iwaseo shrine of Takamatsu city, Kagawa prefecture. It was later recorded in 

2 This problem also served as the opening illustration for the Scientifi c American (vol. 278, 
p. 62, 1998).

2

2r

1r

r1t

1

t

r

Figure 6.12. Find the index n of the nth circle in terms of 
rn or tn.
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Fujita’s book Zoku Shinpeki Sanpō. Note that this is the same as problem 5 in Yamaguchi’s 
Diary, chapter 7. Warning: This is not easy.

In a large circle of radius R, an equilateral triangle of side x, three circles of radius a 
and six circles of radius b touch internally as shown in fi gure 6.13. Find x in terms of R.

Answer: x R= + − +( , , ) / .57 3 102 11 364 3 19 695 2

Example: If 2R = 103.5, then x = 59.20. . . . 

A traditional solution can be found on page 231.

Problem 14
We know of this problem from the 1830 book Sanpō Kishō, or Enjoy Mathematics Tablets, 

by Baba Seitoku (1801–1860). In the book, Baba rec ords  thirty- six sangaku from Tokyo 
shrines. The problem was originally proposed by Ishikawa Nagamasa, a student of the 

Figure 6.14. Find the radius of the large ball, R, in terms of the 
radius of the small spheres, r.

Figure 6.13. Find x in terms of R.

x
R

b

a
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Plate 6.4. The original illustration from problem 15 as it 
appears in Fujita Kagen’s 1796 edition of Shinpeki Sanpō . 
(Collection of Fukagawa Hidetoshi.)
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school of Baba Seitō (1777–1843), Seitoku’s father, and written on a tablet hung in 1798 
in Tokyo’s Gyūtō Tennōsha shrine.

As shown in fi gure 6.14, 30 small balls of radius r cover one large ball of radius R, in 
such a way that each small ball touches four other small balls. Find R in terms of r.

Answer: R r= 5 .

A traditional solution is on page 234.

Problem 15
Kimura Sadamasa, a student of the Fujita school, proposed this problem, which was 

written on a tablet in 1795 and hung in Kawahara Taishi temple, Kawasaki city, Kana-
gawa prefecture. It was recorded by Fujita in his Shinpeki Sanpō, second edition of 1796. 
Advice: Do the previous problem fi rst.

Twenty small balls of radius r cover one big ball of radius R where each small ball 
touches three other small balls (see fi gure 6.15). Find R in terms of r.

The answer and a traditional solution can be found on page 234.

Figure 6.15. Find the radius of the large ball, R, in terms of the 
radius of the small spheres, r.

Problem 16
This problem comes to us from the book Kokon Sankan mentioned in problem 27, 

chapter 4. It was originally proposed by Teramoto Yohachirō and hung in 1823 on a 
tablet in the Nishikannta shrine, Ohita prefecture. Warning: This is an advanced problem.

As shown in fi gure 6.16, a necklace of four small spheres r1, r2, r3, r4 touches a large 
sphere of radius R. The necklace also touches two spheres of radii a and b, which in turn 
touch sphere R internally. Find r4 in terms of r1, r2, and r3.
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Answer:

r
r r

r r r r r r r r r4
1 3

1 3 1 3 2 1 3 2 4

1 1 1 1=
+ −

+ = +
( / )

.or

Example: r1 = 1, r2 = 2, r3 = 3; then r4 = 1.2.

We give a modern solution on page 236.

Problem 17
This problem, famous in the West as the 1937 “hexlet theorem” of Frederick Soddy, also 

comes from Uchida Kyō’s collection Kokon Sankan, having been originally proposed in 
1822 by Yazawa Hiroatsu, a disciple of the Uchida school. The tablet on which the problem 
was written was hung in the Samukawa shrine of Kōzagun, Kanagawa prefecture. Warning: 
The problem is either extremely diffi cult or extremely easy, depending on the method of solution.

R

r 
r 

r 

4

3

2r 

a    

1

b Figure 6.16. Find the relationship between the radii of spheres 
r1, r2, r3, and r4.

Plate 6.5. An illustration for a problem similar to problem 16, 
from Uchida Kyō’s 1832 book, Kokon Sankan. (Aichi University 
of Education Library.)
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As shown in fi gure 6.17, two spheres of radii a and b lie inside a large sphere of radius 
r, touching each other and sphere r internally. A loop of n spheres of radii r1, . . . , rn 
circles the neck between a and b. Each of the spheres ri touches its nearest neighbors, as 
well as spheres a, b, and r. Find ri in terms of a, b, r, and r1.

We give a traditional solution on page 236 and discuss the problem further in 
chapter 8.

Problem 18
This problem was written on a tablet hung in 1804 at the Daikokutendō temple, 

Koishikawa, Tokyo. It was proposed by a student of Ichino Shigetaka and recorded in the 
book Shamei Sanpu.

As shown in fi gure 6.18, on a sphere of radius r, draw three circular arcs 
∧
AB, 

∧
BC, and ∧

CA, and let the  straight- line segments AB = c, BC = a, and CA = b. Find the area S of the 
spherical triangle ABC in terms of a, b, c, and r.

r
n

b

a    

r 

r 

r 

r 

1

3

4

r 2

Figure 6.17. Find ri in terms of a, b, r, and r1.

r

 C

A

c

a

b

B

Figure 6.18. Find the area of the spherical triangle ABC in 
terms of a, b, c, and r.
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Answer

S r
a r b r c r

a r b r c r
=

− + +
− − −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−2

1 1 2 2 2 2

1 2 1 2 1 2
2 1

2 2 2

2 2 2
cos

( / )[( / ) ( / ) ( / ) ]

[ ( / ) ][ ( / ) ][ ( / ) ]
.

Example: 2r = 10, a = 12, b = 9, and c = 5; then S = 37.761708184578.

The original solution involved the calculation of a defi nite integral with the help of 
numerous illustrations, and was so complicated that we do not reproduce it. The theo-
rem, however, was the same as that obtained by Leonard Euler (1707–1783), which can be 
found in his Opera Omnia Series Prima, volume 29, page 253, “Variae Speculations Super 
Area Triangulorum Sphaerocorum.” We say a few more words about it in chapter 8.

Problem 19
This is the leftmost problem on the second Atsuta tablet (color plate 12) and was also 

proposed by Matsuoka Makoto. Warning: This is a diffi cult problem.

Find the surface area S on an elliptic cylinder with major axis 2a and minor axis 2b 
that is defi ned when the elliptic cylinder intersects perpendicularly two sectors of a right 
circular cylinder of diameter D and height d. It is assumed that the two sectors touch at 
point T, which is aligned with the origin of the ellipse. (See fi gure 6.19.)

The rather involved solution is given on page 238.

Answer: We guess that the area is close to the areas of the two sectors themselves:

S S Dx x dx
d

= = −∫2 41
2

0
.

A discussion is given on page 238.

T

d

O a
b

1S

Figure 6.19. Find the area A on an elliptic cylinder that intersects 
two sectors of a right circular cylinder. The diameter of the 
cylinder is D and the depth of the sector is d.
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Solutions for Chapter 6 Problems

Problem 1
We quote an original solution from Okayu Yasumoto’s unpublished 

manuscript “Solutions to Problems of Zoku Shinpeki Sanpō.” First, 
three lemmas, which Okayu does not prove, are required:

(1) The area of a triangle ABC can be expressed as SABC = rs = (abc)/4R, 
where a, b, and c are the sides of the triangle; s ≡ (a + b + c)/2 is the 
semiperimeter of ΔABC; and r and R are the radii of the inscribed and 
circumscribed circles of the triangle (see fi gure 6.20). This lemma 
follows directly from two elementary theorems: one, that the area of a 
triangle ABC can be written as SABC = rs, where r is the radius of the 
triangle’s incircle and is its semiperimeter; and two, that the radius R of 
the circumcircle is R = abc/4SABC .

(2) In fi gure 6.1, AB · CD + AD · BC = AC · BD. This is known as 
Ptolemy’s theorem in the West: “The sum of the products of the 
opposite sides of a cyclic quadrilateral is equal to the product of the 
diagonals.”3 Ptolemy’s theorem is proven in any high school geometry 
text and so we leave it as an exercise. Note: From this point on we will 
use the following designations: AB ≡ a, BC ≡ b, CD ≡ c, AD ≡ d, AC ≡ e, 
BD ≡ f. Thus Ptolemy’s theorem for this problem becomes ac + bd = ef.

(3) With these designations, abe + cde = bcf + adf. To prove this lemma, 
refer to fi gure 6.1. We see that if S is the area of the quadrilateral, then 

3 A cyclic quadrilateral is one that can be inscribed in a circle.

a

r

R

cb

Figure 6.20. The area of the triangle can be written as A = rs 
and R = abc/4A, for sides a, b, c and semiperimeter s.

D

A
B

C

D

rr AB     

rC
r
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S ad A bc C= +1
2

1
2sin sin . But ∠A and ∠C are supplementary and so 

S ad bc A= +1
2 ( ) .sin  Similarly, S ab B cd D= + =1

2
1
2sin sin  

ab cd B+1
2 sin( ) .

On the other hand, ΔABD is inscribed in circle R, so by lemma 1, 
SABD = adf/4R. But also SABD = (1 ⁄ 2) ad sin A, giving sin A = f/(2R). 
Similarly, sin B = e/(2R). Eliminating sin A and sin B from the previous 
two expressions immediately yields f(ad + bc) = e(ab + cd).

Okayu’s proof is as follows.
By lemma 1, SABD = adf/(4R) = rA(a + d + f )/2, with similar expres-

sions for SBCD, SACD and SABC. Therefore

 
r

adf
R a d f

r
abe

R a b e

r
bcf

R b c f
r

cde
R c d e

A B

C D

=
+ +

=
+ +

=
+ +

=
+ +

2 2

2 2

( )
;

( )
;

( )
;

( )
.

 

(1)

We have

 
2R r r

bcf a d f adf b c f
b c f a d fA C( )

( ) ( )
( )( )

.+ = + + + + +
+ + + +  

(2)

The numerator of the  right- hand side of this equation is

(a + d)bcf + (b + c)adf + f 2(bc + ad) = f [ab(c + d + e) + cd(a + b + e)],

since f 2(bc + ad) = ef(ab + cd) by lemma 3).
The denominator is f 2 + f(a + b + c + d) + (b + c)(a + d). But, by 

lemmas 2 and 3,

(b + c)(a + d) = (ac + bd) + (ab + cd) = ef + (f/e)(ad + bc),

and so

denominator = 
f
e

ef e a b c d e bc ad
f
e

a b e c d e[ ( ) ] [( )( )],+ + + + + + + = + + + +2

where lemma 2 has been used again to get the second equality. Equa-
tion (2) then becomes

2R r r
e ab c d e cd a b e

a b e c d e
abe

a b e
cde

c d e

A C( )
[ ( ) ( )]

( )( )

,

+ = + + + + +
+ + + +

=
+ +

+
+ +

or from equation (1) the beautiful result
rA + rC = rB + rD.
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Problem 2
We fi rst quote a traditional solution from the manuscript Solutions to 

Kakki Sanpō by Furuya Michio(?–?). The date is unknown.
First we rotate the fi gure and label some points and segments as 

shown in fi gure 6.21. Then, using area = (1 ⁄ 2) base × altitude,

 
S bh= 1

2 2;
 

(3)

 
b h= 1

2 1 1;α
 

(4)

 
b h= 1

2 2 1;β
 

(5)

 
bh+ = 1

2 1;α β
 

(6)

 
bh+ + = 1

2 3.α β γ
 

(7)

Also, by similar triangles,

 
l

h l
h3
3 2

2

= ;
 

(8)

 
t

h t
h1
1 2

2

= ;
 

(9)

3

Pγ

β α

C

B

E
G

H

b
bb2

H H F

h

1

13 2

h

1

2

3

h

A

t
l

l

t1
2

2Figure 6.21. Note: l2 = CH2, l3 = CH3, t1 = FH1, t2 = FH2, 
b = AC, b1 = AF, b2 = CF.
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h
h

b l
b t

3

1

3

1 1

= −
+

.
 

(10)

The last equation can be rewritten as h3(b1 + t1) − h1(b − l3) = 0. Eliminat-
ing t1 and l3 by equations (8) and (9) gives

h b
h t
h

h b
h l
h3 1

1 2

2
1

3 2

2

0+
⎛
⎝⎜

⎞
⎠⎟

− −
⎛
⎝⎜

⎞
⎠⎟

= .

However, we also see from the fi gure that t2 = b2 − l2. Substituting for 
t2 yields

b h
h h b

h
bh1 3

1 3 2

2
1 0+ − = .

Now, eliminating all the h’s with equations (3)–(7), we quickly get

α α β γ
α β

β α β γ α β( ) ( )
( ) ,

+ +
+

+ + + − + =
S

0

and solving for S gives

S = + + +
+ − + +

= + + +
+ + − +

β α β α β γ
α β α α β γ

β α β α β γ
β α β γ γ α β

( )( )
( ) ( )

( )( )
( ) ( )

,
2

as stated on the tablet. The quoted example was also found on the 
tablet.

The solution just given is somewhat cumbersome, and so  here is a 
slightly more elegant one, which is quite similar to a standard proof of 
Ceva’s theorem.4

4 Proofs of Ceva’s theorem can be found in some elementary texts, in any more advanced 
text, and on dozens of websites. Ceva’s theorem is not necessary for this problem.

Z

C

A

B
E

G

P β

α

γ

F

X

Y

Figure 6.22. Defi ne the areas X = ΔBPE, Y = ΔPGB, 
and Z = ΔAPG.



Referring to areas, let X = ΔBPE, Y = ΔPGB and Z = ΔAPG, as in 
fi gure 6.22. Then, from the fi gure, S = X + Y + Z + α + β + γ. The 
strategy is to fi nd X + Y + Z. Recalling that the areas of triangles with 
equal altitudes are proportional to the bases of the triangles,

CE
BE X X Y Z

= = + +
+ +

γ α β γ
,

and

AF
FC

Y Z
X

Y Z
X

= = + +
+ +

= +
+

α
β

α
β γ γ

,

where the last equality follows because if a/b = c/d then a/b = 
(a ± c)/(b ± d).

The two expressions imply

X Y Z X

Y Z
X

+ + = + +

+ = +

α β γ
γ

α γ
β

,

( )
.

Solving these equations simultaneously gives

X =
+ −
αγ

β α β αγ

2

( )

and

X Y Z+ + = + +
+ −

αγ α β γ
β α β αγ

( )
( )

.

Finally,

S X Y Z= + + + + + = + + +
+ −

α β γ β α β α β γ
β α β αγ

( )( )
( )

as before.

Problem 3
We give an original solution by Kitagawa Mōko. It is somewhat 

complicated and we hope that readers can fi nd a simpler one.
First, notice from fi gure 6.23 that triangle CDB is isosceles. There-

fore let b ≡ BC = CD, as indicated. We also let a ≡ BD and k ≡ CH. Next, 
as shown in fi gure 6.24, mark with a compass two points D′ on AB and 
D′′ on AC such that BD = BD′ = CD′′ = a. Because ΔABC is isosceles, 
D′T ′ = D′′T ′′ and by construction D′T ′ = DT; consequently DT = D′′T ′′. 

r

B

D

A

C

r

rH
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T and T ′′ are equidistant from D and therefore DT ′′ = D′′T ′′. Defi ning 
s = DT = DT ′′ we can write

 
s

CD CD a b= ′′ − = −
2 2

.
 

(1)

Further, by examining the tangents in fi gure 6.24, we see that

 
b k r

a
r

a
k r= − + −⎛

⎝⎜
⎞
⎠⎟

= + −( ) .
2 2

2
 

(2)

Hence, from equation (1)

 s
a k r= − −
4

2
2

. (3)

Also, with the Pythagorean theorem, fi gure 6.23 shows that b2 = (a/2)2 + k2. 
Squaring equation (2) and equating the two expressions quickly yields

 a
r k r
k r

= −
−

4
2

( )
.  

(4)

Next, as shown in fi gure 6.25, inscribe a circle of radius R in triangle 
BCD. With the help of the fi gure it is easy to show that

 
CQ k R R k Rk b

a
k r= − − = − = − = −( ) ,2 2 2 2

2
2

 
(5)

where the last equality follows from equation (2). Squaring equation 
(5) gives 2Rk = (4kr) − 4r2, or

 R
r k r

k
= −2 ( )

. (6)

a/2

r

r

D

H

B C
b

b

a/2

Figure 6.23. The tangents from vertex C intercept identical 
circles at identical distances. Therefore angle HCB and 
angle HCD are equal, and triangles CHB and CHD are 
congruent. Hence triangle BCD is isosceles. We defi ne 
BC = CD = b, BD = a, and CH = k (see fi gure 6.24).
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b

A

r

a/2

D

B C

R

Qa/2 b − a/2

k−R

Figure 6.25. With equation (2), the Pythagorean theorem 
gives R in terms of r and k.

Figure 6.24. Let a ≡ BD and b ≡ CD. For  ΔABC 
isosceles, we have by construction D′T ′ = DT =  
DT″ = D″T″. Therefore 2D″T″ ≡ 2s = a − b.

a

k−r

A

r

r
D

B C

sD' D''

b

r

k

a/2

r

a/2 −r

b

T' T''

T

k−r
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The strategy is now to eliminate R in favor of r and k. Applying the 
Pythagorean theorem directly to fi gure 6.26 gives

( ) ( ) ,R r
a

s R r s
a+ + −⎛

⎝⎜
⎞
⎠⎟

= − + +⎛
⎝⎜

⎞
⎠⎟

2
2

2
2

2 2

or, after simplifying,

 2Rr = as. (7)

The problem is almost solved. We now replace R on the left of 
equation (7) by equation (6) and as on the right by the expressions in 
equations (3) and (4) to get

2
2 4

2 2
2

2
r k r

k
r

r k r
k r

r k r
k r

k r( ) ( ) ( )
,

− = −
−

−
−

− −⎛
⎝⎜

⎞
⎠⎟

which gives the cubic

k3 − 4rk2 − 2kr2 + 8r3 = (k2 − 2r2)(k − 4r) = 0.

a/2+s

A

a/2

D

B C

r

R−r

s

s

a/2−s

R+r

Figure 6.26. The Pythagorean theorem can now be used 
on the two right triangles in the center.
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3

B C

G

DC'

D'

B'
E'

FE A'

A

O

O2

O1

OFigure 6.27. Mark the important points and 
draw the auxiliary lines shown.

From any of the fi gures, the relevant root is k = 4r, and thus we have 
the fi nal result

r
CH=
4

.

Problem 4
This solution is by Ōmura Kazuhide (1824–1891), from his 1841 

book Sanpō Tenzan Tebikigusa, or Algebraic Methods in Geometry.
First we draw fi gure 6.27. The radii of circles O, O1, O2, and O3 are 

r, r1, r2, and r3, respectively. The basic approach will be to calculate a 
number of relevant areas as functions of the four radii, then eliminate 
the areas to get r in terms of r1, r2, and r3.

To do this, start by the same method employed in many of this book’s 
problems (e.g., chapter 3, problem 13) to fi nd that the lengths are

 GD r r D E r r EF r r= ′ ′ = =2 2 21 3 1 2 2 3; ; .  
(1)

By using the equality of tangents from vertices A, B, and C to their 
respective inscribed circles, one also sees that E ′C ′ = EA′, GB ′ = FA′,  etc. 
With these one can establish

GD + D′E ′ − EF = 2B′D; D′E ′ + EF − GD = 2C ′E ′; GD + EF − D′E ′ = 2GB ′. (2)

The area of the quadrilaterals formed by the auxiliary lines can 
easily be calculated by the trapezoid formula and equation (1):

 

  ( ) ( ) ,

( ) ( ) ,

 ( ) ( ) .

GO O D r r GD r r r r

D O O E r r D E r r r r

EO O F r r EF r r r r

3 1 1 3 1 3 1 3

1 2 1 2 1 2 1 2

2 3 2 3 2 3 2 3

1
2
1
2
1
2

= + = +

′ ′ = + ′ ′ = +

= + = +
 

(3)
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We now, hopefully, simplify by drawing a second diagram, fi gure 
6.28, which represents the central fi gure (EFO3GDO1D′E ′O2) cut out 
from the triangle and unfolded. (In other words, this is the fi gure that 
remains after cutting away the three quadrilaterals at the vertices of 
the triangle.) The points H1, . . . , H4 are the points at which extensions 
of the radii GO3  etc. reach the height O

From fi gure 6.28 and equations (1) and (2) we see that the areas of 
the missing triangles are

 

Δ

Δ

Δ

O H O r r GB r r r r r r r r

OO H r r B D r r r r r r r r

O H O r r C E r r r r r

3 1 3 3 1 3 2 3 1 2

1 2 1 1 1 3 1 2 2 3

2 2 2 2 1 2 2

1
2

1
2

1
2

1
2

1
2

1
2

= − ′ = − + −

= − ′ = − + −

= − ′ = − +

( ) ( )( ),

( ) ( )( ),

( ) ( )( rr r r3 1 3− ).
 

(4)

It is now con ve nient to employ Heron’s formula, which gives the area 
of a triangle in terms of its sides and semiperimeter5:

AreaΔ = − − − = + + + − + − + −s s a s b s c a b c a b c a c b b c a( )( )( ) ( )( )( )( ).
1
4

Focusing on the central triangle O1O2O3, we have a = r1 + r2, b = r1 + r3, 
c = r2 + r3, and get for the area

 Δ Δ Δ ΔO O O r r r r r r OO O OO O OO O1 2 3 1 2 3 1 2 3 1 2 1 3 2 3= + + = + +( )( ) , (5)

where the last three triangles are shown on fi gure 6.28.
Of course, the area of the big rectangle GH1H4F in fi gure 6.28 is just 

rGF, which with the help of equation (1) is

 GH H F r r r r r r r1 4 1 3 1 2 2 32= + +( ). (6)

5 See problem 1, this chapter. Heron’s formula is discussed in most elementary geometry 
texts and on many websites.

O

E'EDD'B'

r2r1

H 2O O

C'

1O
O2

A'

O3

r3 r3

O3

4H1H

G

r

F

H3

Figure 6.28. The central fi gure in the triangle 
cut out, unfolded, and joined together such 
that the end points F and G match, as well as 
intermediate points DD′ and EE ′. The points 
Hi are the endpoints (“perpendicular feet”) of 
the radii of each circle, e.g., GO3, extended to 
the height of O.



218 Chapter 6

From equations (3)–(5) we now have all the component parts of the 
rectangle’s area. We simply add them all up and equate them to the 
area from equation (6):

2 1 3 1 2 2 3 1 2 3 1 2 3

3 1 3 2 3 1 2

1 1 3 1 2 2 3

2 1 2 2 3 1 3

1 3 1 3

r r r r r r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r

( ) ( )( )

( )( )

( )( )

( )( )

( ) (

+ + = + +

+ − + −

+ − + −

+ − + −

+ + + 11 2 1 2 2 3 2 3+ + +r r r r r r r) ( ) .

Canceling many terms leaves

r r r r r r r r r r r r r

r r r r r r r r r

( ) ( )( )

,

1 2 1 3 2 3 1 2 3 1 2 3

1 2 3 2 1 3 3 1 2

+ + = + +

+ + +

or, fi nally,

r
r r r r r r r r r

r r r r r r

r r r

r r r r r r

=
+ + + + +

+ +

=
+ + − + +

1 2 3 1 2 3 1 2 3

1 2 1 3 2 3

1 2 3

1 2 3 1 2 3

2

[ ( )]

( )
.

We will speak more about this problem in chapter 8.

Problem 5
The solution to this problem is not written on the tablet, but math-

ematician Yoshida Tameyuki (chapter 3) gave a solution in his note-
book Chōshū Shinpeki, or Sangaku from the Chōshū Region.

Yoshida set the following three lemmas without proof. If 2a and 2b 
are the major and minor axes of the ellipse, respectively, then

(1) r1=b2/a.
(2) r r r a2 1 1

23 4= − / .
(3) p b b r a b2 2 2

2
2 2 2= − −( )/( ),

where p is the distance in y from the center of the internal circle r2 to 
the point of tangency with the external circle r2 (see fi gure 6.31 below).

To prove lemma 1, refer to fi gures 6.29 and 6.30. An ellipse is to be 
regarded as the section of a right circular cylinder cut by a plane. The 
minor axis 2b is simply the diameter of the cylinder. A circle inscribed 
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P

S

B

G

F
A

O

C

Figure 6.29. A plane P cuts a right circular 
cylinder, producing an ellipse with major 
axis AB. The center of the ellipse is O. A 
sphere with center S intersects the plane 
containing the ellipse, producing a circle 
with center C. The points of tangency 
between the circle and the ellipse are where 
the “equator” of the sphere (dashed circle) 
intersects the ellipse.

b

B D

F

A

G
O

C

S

2b
Figure 6.30. Side view of plane P cutting cylinder. The segment AB is 
the major axis of ellipse = 2a. The diameter of the cylinder is the 
minor axis of the ellipse = 2b.
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within the ellipse is the intersection of a sphere of radius b with the 
plane containing the ellipse. Figure 6.30 represents a side view of 
plane AB slicing the cylinder. Therefore AB = 2a, BD = 2b  and 

AD a b= −2 2 2 .
Now, if O is the center of the ellipse, S is the center of the sphere, 

and C is the center of the projected circle with diameter FG, we see 
that triangles ABD and SCO are similar, and so OC = SC · AD/BD. But 
since b is the radius of sphere S, SC b r= −2 2 .  Hence, the distance 
between the center of the ellipse O and the center of the circle C is

 
OC

a b b r
b

= − −( )( )
.

2 2 2 2

 
(1)

As circle C moves towards one end of the ellipse and shrinks, the maxi-
mum distance it can attain while still being inscribed in the ellipse is

OC = a − r.
Inserting this into equation (1) gives, after squaring both sides, 
(ar − b2) = 0, or

 r
b
a

=
2

.  (2)

This is the radius of curvature at one end of the ellipse.6 In our case 
r = r1 and Lemma 1 is proven.

To prove lemma 2, equation (1) shows that, if two inscribed circles 
of radii r1 and r2 are touching each other externally, then for r2 > r1 the 
distance between the centers is

 
r r

a b b r

b

a b b r

b1 2

2 2 2
1
2 2 2 2

2
2

+ =
− −

−
− −( )( ) ( )( )

.
 

(3)

From equation (2) let b2 = ar1 in this expression. A page or so of 
straightforward algebra yields

( )( ) .r r r ar ar1 2 1
2

2 14 3 0+ + − =

Because we require r2 > 0, we get Yoshida’s lemma 2:

r r
r
a2 1

1
2

3
4

= − .

To prove lemma 3, note from fi gure 6.31 that CY = p and from fi gure 
6.32 that triangles SCY and ABD are similar. Thus, p/SC = BD/AD. 

6 The radius of curvature of an arbitrary fi gure is the radius of a circle that “matches” (is 
tangent to and has same curvature as) the fi gure at the point in question.
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3
l

Y

O

r

C

1

p

r2

r
2

r3 r

Figure 6.31. Similar triangles shows that the two segments indicated by the arrows 
are equal. The point Y has the same y - coordinate as the point of tangency 
between the circles r2 and the ellipse.

Y

F

A

B D

G
O

C

S

2b

b

Figure 6.32. Point Y lies on the “equatorial plane” of the sphere 
and therefore is connected to S by a horizontal line (see fi gure 
6.29). This means that triangles SCY and ABD are similar.
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From above we have SC b r AD a b= − = −2 2 2 22,  and BD = 2b. With 
r = r2 we immediately get Yoshida’s lemma 3:

 
p

b b r
a b

2
2 2

2
2

2 2
=

−
−

( )
 

(4)

We can now proceed to Yoshida’s original solution to the problem:
Into equation (4) substitute b2 = ar1 from lemma 1 and r2 in terms of 

r1 from lemma 2. A bit of algebra gives

 
p

r r a
a

= −1 14( )
.
 

(5)

From fi gure 6.31 we see that 2p = 2r3 + r2 − r2, or p = r3. Equation (5) 
then gives

 
a

r
r r

=
+

4 1
2

1 3

.
 

(6)

Lemma 2 then immediately yields r2 = 2r1 − r3. By inspection of 
fi gure 6.31 we also have a = r1 + r2 + r3, and so a = 3r1. Inserting this 
into equation (6) gives the fi nal result

r1 = 3r3.

Notice that nowhere in this solution did we use the standard equation 
for an ellipse!

Problem 6
From fi gure 6.6, we see that AC = a − b, where 2a and 2b are the 

major and minor axes of the ellipse. Also, if M is the midpoint of BD, 
then since AC = BD, we have BD = 2BM = a − b, and so the side of the 
square is 2 2 2BM a b= −( )/ . However, not any a and b will do for the 
kite problem.

To determine the relationship between a and b for the kite, we 
perform what geometers term an affi ne transformation on ellipse E1. 
That is, as discussed more fully in the solution to problem 19, the 
change of variables u = x and v = (a/b)y transforms the ellipse x2/a2 + 
y2/b2 = 1 into the circle u2 + v2 = a2. Figure 6.33 shows that this transfor-
mation has the effect of leaving the x- coordinates (and the major axis) 
unchanged, but stretching the y- coordinates (and hence the minor axis) 
by the factor (a/b). As we will see in the next problem, such a transfor-
mation can also be viewed as a projection of an ellipse onto a circle, very 
much in the spirit of what was done in the solution to problem 5.

2E

D

C

B

A
O

E1
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In the case of the kite, this transformation therefore leaves 
OM = (a + b)/2 invariant, since it is a distance along the x- axis. On the 
other hand BM = (a − b)/2, being a vertical segment, is stretched into a 
chord B′M of length [(a − b)/2](a/b). Applying the Pythagorean 
theorem to the triangle OMB ′ in fi gure 6.33 gives

a OM
a b a

b
2 2

2 2

2
= + −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

,

which results in the  fourth- order equation

a4 − 2a3b − 2a2b2 + 2ab3 + b4 = 0.

This expression in turn factors into

(a − b)(b + a)(a2 − 2ab − b2) = 0,

which for a > b has the solution a b b− = 2 . We already know from 
above that the side of the square is 2 2( )/a b−  and so we have simply 
that the side of the square in the kite is

2
2

2 2
2

( )
,

a b
b b

− = =

the minor axis. One must be amazed.

Problem 7
We follow much the same procedure as in the previous problem. As 

discussed in problem 5 (in par tic u lar fi gure 6.29), traditional Japa nese 
geometers viewed an ellipse as a section cut from a right circular 
cylinder. Conversely, they could view a circle as the projection of an 
ellipse onto the top of a cylinder. The affi ne transformation mentioned 

MO

B'

a

Figure 6.33. The ellipse E1 has been stretched in the y - direction 
to a circle. The length OM remains unchanged = (a + b)/2 but 
the length BM has become B ′M = [(a − b)/2](a/b).
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in problem 19 can be seen in the same way, not only as a stretching or 
shrinking of an axis of the ellipse, but as the projection of an ellipse 
onto the top of a cylinder. Thus, as shown in fi gure 6.34, we can 
imagine triangle ABC to be embedded in an ellipse within a cylinder. 
Projecting it onto the top of the cylinder has the effect of shrinking the 
major axis of the ellipse by an amount b/a, while leaving the minor 
axis constant. The result is ΔA′B′C ′. Because the areas S1, S2, S3  were 
assumed equal, ΔA′B′C ′ must be equilateral. Furthermore, the diam-
eter of the circle circumscribing this triangle is the minor axis of the 
ellipse, and so area Δ ′ ′ ′ =A B C b( / ) .3 4 3 2  Triangle ABC is merely 
ΔA′B′C ′ stretched in one direction; consequently, the area is

a
b

b
3
4

3 2⎛
⎝⎜

⎞
⎠⎟

.

Problem 8
We outline a traditional solution from Aida Yasuaki’s 1810 book 

Sanpō Tenshōhō Shinan, or Guide Book to Algebra and Geometry. The 
problem is not too diffi cult if one understands the solution to prob-
lem 5. We follow the method used to prove Yoshida’s lemma 2, in 

B'

A

B

C

A'

S1 S2

S'1

S'2

S'3

S3

C'

Figure 6.34. Project the triangle in the ellipse into a triangle in the 
circle; it becomes equilateral.
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r
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par tic u lar equation (3). Squaring out that equation leads to a qua-
dratic in r1:

r
a b r r

a
r b

a b
a1

2
2 2

1 2
2 2

2 4
2 2

4
2

2
4 0− − + − − =( ) ( )

.

In a way similar to several other problems encountered in this book 
(see in par tic u lar chapter 7, problem 1, and problem 12 in this 
 chapter), one root of this quadratic is the one we are looking for 
(in this case, the smaller root), while the larger root turns out to be r3. 
(Convince yourself of this by doing the fi rst few cases explicitly.) Since 
for any quadratic equation ax2 + bx + c = 0, the sum of the roots 
x+ + x− = − b/a, we get from above

r r
a b r

a1 3

2 2
2

2
2

2+ = −( )
.

This relationship holds for any triplet of circles, and so one has the 
recursion relationship

rn + rn+2 = krn+1,

where k ≡ 2(a2 − 2b2)r2/a2. By tediously writing out the radii of all ten 
circles in terms of r1 and r2, one easily establishes the desired relation-
ship r7(r1 + r7) = r4(r4 + r10). On the tablet, an example was written: 
r1 = 18, r4 = 32, r7 = 30, and r10 = 13.

For a further challenge, one can place smaller circles in the inter-
stices of the larger ones and fi nd the relationships among those.

Problem 9
We give a solution in the traditional spirit:
Let the radius of circle O = r. Referring to fi gure 6.35, we have by the 

law of cosines

(r − a)2 = a2 + p2 − 2ap cos α,
(r − b)2 = b2 + p2 − 2bp cos β,

where p ≡ OP. However, α and β are supplementary angles, and so 
cos α = − cos β. Thus,

( ) ( )
.

r a a p
ap

r b b p
bp

− − − + − − − =
2 2 2 2 2 2

2 2
0

Putting this over a common denominator shows that

1 1 4
2 2a b

r
r p

+ =
−

.
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But r and p for this problem are fi xed, so the  right- hand side of this 
equation is a constant. The analysis must also hold for circles c and d. 
Therefore

1 1 1 1
a b c d

+ = + .

This simple exercise gives a good idea of why in so many problems 
solvable by inversion (for example, problem 10) give results of the form 
“sum of reciprocal radii = constant.”

Problem 10
We only need to consider the  one- half of the diagram. For the 

moment, assume that the centers of circles r, r2, and r3 are colinear. 
Then, fi gure 6.36 shows that r = t + 2r1 = t + 2r3 + 2r2, or

r1 = r2 + r3.

α

c

d

O

b

aP

β

Figure 6.35. Draw the auxiliary lines shown and mark angles 
α and β.

t

O

r
1

r r33

r
2 2r r

C

D

B

A

E

Figure 6.36. Choose k to invert r3 into r2, and vice versa.
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similar triangles gives

r
t r

r
t r r

3

3

2

3 22+
=

+ +
,

or eliminating t by the previous expression,

r
r r r

r
r r

3

2 3

2

22− −
=

−
.

Consequently,

 
r

r
r rr3 2

2
2

1
2= − +( ).

 
(1)

Since r is assumed constant, we can take the derivative of r3 with 
respect to r2 and set it to zero to immediately get r2 = r/4 and r3 = r/8. 
Hence, 2r1 + 2r3 = 2r2 + 4r3 = r, as stated.

This can also be done without calculus by rewriting equation (1) as

r
r

r
r r

3 2

2 21
2

4 8
= − −⎛

⎝⎜
⎞
⎠⎟

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Notice that the fi rst term is negative defi nite. Thus r3 is maximized 
when r2 = r/4, as before.

We need to establish that O, the center of circle r2 and the center 
of circle r3 are colinear.  Here we make the fi rst use of the inversion 
technique (see chapter 10). Theorem M, which was stated without 
proof, says that a circle, its inverse, and the circle of inversion all have 
centers that are colinear. Thus, choosing O as the center of inversion, 
if we can invert r2 into r3 and vice versa, we have shown that the two 
circles are colinear with O, and the rest of the proof follows.

To do this, notice that if in fi gure 6.36 we invert circle t into circle r, 
and vice versa, then circle r1 must invert into itself in order to keep the 
points of tangency A and B invariant. Similarly, r3 and r2 are tangent to 
r1 and to the line OE at the points C and D. In order that all points of 
tangency are preserved, in par tic u lar that C inverts into D and vice 
versa, then r2 must invert into r3, and the reverse. To do this, merely 
choose the radius of inversion k such that k2 = rt.

Problem 11
No solution is written on the tablet. We give a modern one based on 

the technique of inversion; with this the problem is easy, without it 
almost impossible. Readers not familiar with inversion should study 
chapter 10 fi rst, in par tic u lar Theorems N and P.

c

R

r

d

b

a
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Theorem N tells us that, by a proper choice of the center of inver-
sion we can invert any two nonintersecting circles into a pair of concen-
tric circles. Thus, consistent with the discussion of Theorem N, choose 
T outside R in fi gure 6.11 and on the line segment joining the centers 
of r and R. Theorem N then tells us that r and R will be mapped into 
the concentric circles r′ and R ′, as shown in fi gure 6.37. Because, by 
Theorem K, points of tangency are preserved under inversion, a′, b ′, c′, 
and d ′ must all be tangent to r′ as shown, and hence all have the same 
radius! In that case their centers form a square. (We leave it as an 
exercise to construct the details of the fi gure.) From Theorem P, it 
immediately follows that the relation between the radii of the original 
circles is

1 1 1 1
a b c d

+ = + .

Problem 12
Here, we give a traditional solution by Yoshida Tameyuki from his 

unpublished and undated manuscript “Solutions to Shinpeki Sanpō 
Problems.”

To solve Hotta’s problem, Yoshida repeatedly employs a theorem 
known in the West as the “Descartes circle theorem” (DCT). We 
discuss and prove it in chapter 8. For now we just state the result:

If three circles of radii r1, r2, and r3 touch each other, touch a small 
circle of radius t externally and touch a circle of radius r internally, as 
shown in fi gure 6.38, then the following relationships hold:

T

a'

c'

b'

d'

R'

r'

Figure 6.37. The inverse of fi gure 6.11.
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r1t

1
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r
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2
1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1

1
2

2
2

3
2 2

1 2 3

2

1
2

2
2

3
2 2

1 2 3

2

r r r t r r r t

r r r r r r r r

+ + +
⎛

⎝⎜
⎞

⎠⎟
= + + +

⎛
⎝⎜

⎞
⎠⎟

+ + +
⎛

⎝⎜
⎞

⎠⎟
= + + −

⎛
⎝⎜

⎞
⎠⎟

,

.
 

(2)

Yoshida’s plan is quite simple. He uses the DCT on successive triplets of 
circles to inductively establish a recursion relationship for the rn and tn.

To begin, let a ≡ 1/r and pn ≡ 1/rn. Then examine each rn in turn:

[r1]: r1 = r/2, or p1 = 2a.

[r2]: Use DCT for {r1, r1, r2, r } in fi gure 6.12 to get

2
1 1 1 1 1 1 1 1

1
2

1
2

2
2 2

1 1 2

2

r r r r r r r r
+ + +

⎛
⎝⎜

⎞
⎠⎟

= + + −
⎛
⎝⎜

⎞
⎠⎟

,

or

2 4 4 2 22 2
2
2 2

2
2( ) ( ) .a a p a a a p a+ + + = + + −

Solving for p2 gives p2 = 3a or r2 = r/3.

[r3]: Use DCT for {r1, r2, r3, r} to get

2
1 1 1 1 1 1 1 1

1
2

2
2

3
2 2

1 2 3

2

r r r r r r r r
+ + +

⎛

⎝⎜
⎞

⎠⎟
= + + −

⎛
⎝⎜

⎞
⎠⎟

,

or, from the previous steps,

2 4 9 2 32 2
3
2 2

3
2( ) ( ) .a a p a a a p a+ + + = + + −

Hence, p3 = 6a or r3 = r/6. [This is the larger root of the quadratic. 
The small root is p3− = 2a = p1, which we discard.]

r

r

r

1

2

r3

t

Figure 6.38. The Descartes circle theorem gives 
the relationships among the circles.
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[r4] Use the DCT for {r1, r3, r4, r} to get

2
1 1 1 1 1 1 1 1

1
2

3
2

4
2 2

1 3 4

2

r r r r r r r r
+ + +

⎛

⎝⎜
⎞

⎠⎟
= + + −

⎛
⎝⎜

⎞
⎠⎟

,

or from the previous,

82 2 72
4
2

4
2a p a p+ = +( ) .

Thus p4 = 11a or r4 = r/11. [The small root is p4− = p2, which we dis-
card.]

[rn] Use the DCT {r1, rn, rn+1, r} in the general case to get

2 1
2 2

1
2 2

1 1
2( ) ( )p p p a p p p an n n n+ + + = + + −+ +

or

p a p p a p a pn n n n n+ +− + + + − + =1
2

1
2 2 22 10 2 0( ) ( ) .

Regarding this as a quadratic in x = pn+1, the two solutions are x+ = pn+1 
and x− = pn−1. [See the remarks above. Also compare Yoshida’s solution 
for chapter 7, problem 1.] Then x+ + x− = pn+1 + pn−1 = 2(a + pn), or

pn+1 − 2pn + pn−1 = 2a,

which is the desired recursion relationship.
We thus deduce the general solution

p1 = 2a,
p2 = 3a = 2a + a,
p3 = 6a = 2a + 4a,
p4 = 11a = 2a + 9a,
p5 = 18a = 2a + 16a,

or pn = 2a + (n − 1)2a, which yields

r
r

nn =
+ −2 1 2( )

.

To fi nd tn, use the DCT for {rn, rn+1, tn, r1}. Then, with qn ≡ 1/tn

2 2
1

2 2
1
2

1 1
2( ) ( ) .p p q p p p q pn n n n n n+ + + = + + ++ +

Letting pn = 2a + (n − 1)2a from above, we get the quadratic in qn,

q a n n q n n a q n n a q an n n n
2 2 2 2 22 2 2 7 4 4 15 4 4 15 0− − + − − + = − − + + =( ) ( ) { ( ) } { } .

By inspection, either qn = (4n2 − 4n + 15)a = {(2n − 1)2 + 14}a, or 
qn = −a. We discard the latter solution to get the fi nal result
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t
r

nn =
− +( )

,
2 1 142

or

n
r
tn

= − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

14 1 ,

which was written on the tablet.
In chapter 10 we obtain this result by the method of inversion.

Problem 13
We follow Hiroe Nagasada’s original 1833 solution from his book 

Zoku Shinpeki Sanpō Kigen, Solutions to the Zoku Shinpeki Sanpō. It is from 
this solution that we have taken the answer to problem 5 in Yamagu-
chi’s diary, chapter 7.

From fi gure 6.39,

 

R
x

a

p b R b

p
x

b

= +

+ = −

= +

3
2

2 3

2 2 2

,

( ) ,

.
 

(1)

The last two equations imply that x bx b R Rb2 2 212 3 2/ / ,+ + = −  or

 − + + + + =12 24 4 3 12 02 2 2R bR x bx b . (2)

Also from the fi gure, q R a b= − −( )( / )3 2  [consider the segment 
containing q that extends from the center of a to segment p] and 

q

x x

p

R−aR
−b

a+b
b

a

Figure 6.39. R is the radius of the outer circle, x the side of 
the equilateral triangle, b and a the radii of the large and 
small circles, respectively. Further, p is the perpendicular 
distance from the center of R to the indicated horizontal 
radius of b, whereas q is the perpendicular distance from 
the center of a to the indicated vertical radius of b.
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q2 + (b − a/2)2 = (a + b)2. Eliminating a with the fi rst of equations (1) 
yields

 3 2 3 6 2 3 1 4 02xR Rb Rb bx b− − + − + =( ) , (3)

To eliminate b2, subtract equation (2) from 3 × [equation (3)] to 
get

12 6 3 42 3 3 2 3 6 02 2R Rb Rb xR bx bx x− − + + − − = ,

which yields

b
R xR x

R x
= + −

+ + −
12 3 3

6 7 3 2 3 3

2 2

( ) ( )
.

Substitute this expression into equation (2) to get a  fourth- degree 
equation for x :

( , , ) ( , , ) ( , , )

( ) ( ) .

8 640 4 320 3 1 296 6 480 3 1 116 1 584 3

432 360 3 48 3 84 0

4 3 2 2

3 4

+ + − − +

− − + − =

R R x R x

Rx x (4)

[The last step is rather diffi cult. Substituting b into equation (2) 
initially gives

( )[ ( ) ( ) ]

( )( )[ ( ) ( ) ]

[ ] .

− + + + −

+ + + − + + −

+ + − =

12 3 7 3 3 3

6 3 12 3 3 6 7 3 2 3 3

3 12 3 3 0

2 2 2

2 2

2 2 2

R x R x

R x R xR x R x

R xR x

To save hours of tedious work, the authors cheated and used scien-
tifi c software packages to put this equation into Hiroe’s form. The 
problem is now “in principle” solved: all we need to do is solve equa-
tion (4) for x. We return to Hiroe’s calculation, and show how he 
did it.]

Divide (4) by −3 and set 2R = d to get

 

( ) ( ) ( )

( ) ( ) .

28 16 3 72 60 3 93 132 3

270 3 54 180 90 3 0

4 3 2 2

3 4

− + − + +

+ − − + =

x dx d x

d x d  (5)

Next factor this equation. [The method by which Hiroe does this is 
peculiar to traditional Japa nese mathematics and so we examine it in 
detail.] First rewrite equation (5) as

( ) ( ) ( ) ( )

( ) ( ) .

28 16 3 72 60 3 669 132 3 306 3 54

252 90 3 576 2 288 3 432

4 3 2 2 3

4 2 2 2

− + − + + − +

+ − = − × × +

x dx d x d x

d x xd d d (6)
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Factor all the coeffi cients as follows:

( )

( )

(

)

(

16 2 8 3 4 3

2 9 4 2 12 3 4 4 9 3 4 3 12

2 4 3 3 2 3 2 3 2 4 15

2 3 2 15 81 2 12 9 3 3 144

2 9 3 3 2 3 12 3 2 9

4

3

2 2

− × + ×

+ − × × − × × × + × × + × ×

+ − × × × + × × × + × ×

− × × × + + × × × + ×

+ × × × + × × × − ×

x

dx

d x

×× − × × ×

+ − × × + = −

12 2 3 12 15

27 2 45 3 225 24 12 3

3

4 2 2

)

( ) ( ) .

d x

d x d d

This can be recognized as a perfect square7:

[( ) ( ) ( ) ] ( ) ,4 2 3 12 3 9 15 3 3 24 12 32 2 2 2 2− − + + − = −x dx d x d d

giving

( ) ( ) ( ) .4 2 3 33 12 3 15 9 3 02 2− − + + + =x dx d

Multiply this equation by ( )4 2 3+  to fi nd

4 204 114 3 114 66 3 02 2x dx d− + + + =( ) ( ) ,

or

 

x d

R

= + − + − +⎡
⎣⎢

⎤
⎦⎥

= + − +⎡
⎣⎢

⎤
⎦⎥

1
4

102 57 3 102 57 3 4 114 66 3

2
102 57 3 19 695 11 364 3

2( ) ( )

, , .
 

(7)

If d = 103.5, then x = 59.20004939.8 That complete Hiroe’s proof. 
The above result and this example  were written on the tablet.

For Yamaguchi’s diary problem, chapter 7, problem 5, we want the radius 
a. From equation (1) above,

R a
x= +2
3

,

or a R≅ 0 169766527. .

7 To see this admittedly requires some vision, but if Hiroe is searching for a perfect 
square of the form (ax2 + bdx + cd)2, he knows that expanding this expression gives a2x4 + 
2bdx3 + (2ac + b2)d2x2 + 2bcd3x + c2d4. This means that the coeffi cient of the x4 term is a2, and 

we immediately see from his “list” that a = −4 2 3.  Similarly for c. He can then search 
among the x2 terms for a coeffi cient of the form (2ac + b2)d2,  etc.

8 Here is a case where the traditional mathematician picked the pa ram e ters of the 
 problem, d, to simplify computation of the answer. Hiroe calculates (102 57 3+ −

, , ) . / , .19 695 11 364 3 0 571981153 592 1 035+ ≅ ≅  Thus choosing d = 103.5 means the 
answer is merely 592 . . . /10.



234 Chapter 6

Problem 14
This solution is from Yoshida’s unpublished manuscript Solutions to 

Sanpō Kishō Problems.
The centers of ten appropriately chosen small balls form a regular 

decagon, the center of which is the center of the big ball. (See fi gures 
6.40 and 6.41.) Then sin 18° = r/(R + r), which implies R r= 5 .

(For sin 18°, see chapter 4, problem 32.)

Figure 6.40. The heavy line traces out a regular decagon.

R

r

Figure 6.41. The angle between the centers of the two 
small balls is 36°.

Problem 15
We follow Yoshida’s solution, quoted from his manuscript, Solutions 

to Shinpeki Sanpō. It may help to refer to chapter 4, problem 39.
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As shown in fi gure 6.42, connecting the centers of the small balls 
gives a regular dodecahedron with twelve pentagonal faces each of side 
2r. [Note that r/BD = sin 18°, which immediately implies BD r= +( ) .]5 1

Now cut a slice out of the dodecahedron as shown in fi gure 6.43. 
The cross section forms another pentagon with sides ABD. . . . The law 
of sines gives

AD BD r= = +
°

°

sin
sin

108
36

3 5( ) .

Figure 6.43 also shows that (AE)2 = (ED)2 + (AD)2, where 
AE R r AD r= + = +2 3 5( ), ( ) , and ED = 2r. Solving the resulting 
quadratic for R gives the desired result

R r= + −
⎛

⎝⎜
⎞

⎠⎟
3
2

5 3 1( ) .

Kimura Sadamasa, who proposed the problem, gave the approxima-
tion R ≅ ( , / , )1 862 1 033 r. 

C

B

D

r

Figure 6.42. Note that angle BCD = 108° and angle CDB = 36°.

D

O

AB

E

Figure 6.43. Cutting a cross section out of the dodecahedron 
as shown gives a large pentagon. Note that angle ABD = 108° 
and angle BDA = 36°.
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Problem 16
We give a modern solution by the method of inversion, one quite 

similar to that employed to solve problems 10 and 11 above. Once you 
have gone through those solutions, you will fi nd this one quite simple.

Invert fi gure 6.16 with respect to a point T chosen to be the contact 
point between sphere a and the outer sphere R. Because spheres R and 
a pass through the center of inversion T, they must be mapped into two 
parallel planes R ′ and a′. Because the four spheres r1, . . . , r4 are 
tangent to both sphere R and a they must be inverted into a loop of 
spheres of equal radii r′ between planes R ′ and a′. Further, sphere b, 
which does not pass through the center of inversion, must be mapped 
into another sphere b ′. Because b is tangent to r1, . . . , r4, its inverse b ′ 
sits in the middle of the spheres r′1, . . . , r′4. Thus the centers of r′1, . . . , 
r′4 form a square, and by Theorem P in chapter 10, we immediately 
have the result

1 1 1 1

1 3 2 4r r r r
+ = + .

Problem 17
The easy way to solve this problem is by the method of inversion. 

Frederick Soddy (1877–1956), a physical chemist who with Rutherford 
discovered the transmutation of the elements, did not do it the easy 
way. Neither did Yazawa Hiroatsu, who posted the problem in 1822, 124 
years before Soddy. We can be sure of this because traditional Japa nese 
geometers did not know of inversion, which was only invented in the 
West around 1825. We  here give a traditional solution from the second 
volume of Sanpō Tenzan Tebikigusa (1841), or Algebraic Methods in Geom-
etry, by Ōmura Kazuhide (1824–1891).

In Yoshida Tameyuki’s solution to Hotta’s problem (problem 12) 
we made use of the Japa nese version of the Descartes circle theorem, 
which gave the relationship between a chain of three circles that 
touched a fourth circle. By enormous labor traditional Japa nese 
geometers also obtained the  three- dimensional version of the 
theorem:

If fi ve spheres of radii r1, r2, r3, r4, and r5 touch each other, then

3
1 1

2

1

5 2

1

5

r ri iii

⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

==
∑∑ .

R

r 
r 

r 

4

3

2r 

a    

1

b

r
n

b
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1

3
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In this problem, let α ≡ 1/a, β ≡ 1/b, γ ≡ 1/r, and ti ≡ 1/ri. Then

 3 2 2 2
1
2

2
2

1 2
2( ) ( ) .α β γ α β γ+ + + + = + − + +t t t t  (1)

As in the Descartes circle theorem, the term containing r comes in 
with a minus sign because sphere r inscribes the other spheres and so 
is taken to have negative curvature.
Next solve for t2 in terms of α, β, γ, and t1. This gives a quadratic

t t t t t t t2
2

1 2
2 2 2

1
2

1 1 1 0− + − + + + + + − − − + + + =( ) ( ) ,α β γ α β γ αβ α β βγ γ αγ
or

t t

t t t t t

t t t t t

2
1
2 1

1
2 2 2

1
2 2

1 1 1

1
2 1 1 1 1 1

2

4

12 3

= + + −

± + + − − + + + − − − + + + ]
= + + − ± + + − − − − + + −[ ]

[( )

       ( ) ( )

  ( ) ( ) ( )

α β γ

α β γ α β γ αβ α β αγ βγ γ

α β γ αβ α β αγ βγ γ α β γ  

(2)

Notice, however, that equation (1) is absolutely symmetric in the 
variables t1 and t2. Thus, by swapping the labels t1 and t2, equation (2) 
also holds as a solution for t1. Now replace t1 by t2, and t2 by t3 in 
equation (2). We then see that one solution of the quadratic is the 
value of t3 we are looking for, while the other root is t1, a situation that 
is the same as in problem 12 above and problem 1 of chapter 7. Since 
x+ + x− = −b/a for any quadratic equation ax2 + bx + c = 0, we obtain 
t3 + t1 = α + β + t2 − γ, or

t3 = t2 − t1 + α + β − γ = t2 − t1 + k,

where k ≡ α + β − γ.
Following the same prescription for the next spheres, we get

t4 = t3 − t2 + k = − t1 + 2k,
t5 = t4 − t3 + k = − t2 + 2k,

 t6 = t5 − t4 + k = − t2 + t1 + k, (3)

and, remarkably,

t7 = t6 − t5 + k = t1.

We have therefore proven that  six—and only  six—spheres can be 
fi tted inside the outer sphere in the given confi guration. Hence the 
name “hexlet theorem.” By the method of inversion it is quite simple to 
get this result. Invert fi gure 6.17 with respect to, say, the point of 



238 Chapter 6

contact between spheres b and r. As in problem 16, these spheres must 
invert into two parallel planes. Because sphere a is tangent to both b 
and r, it must invert into a ball between the two planes and touching 
them. Because the remaining spheres are all tangent to a, b, and r, they 
can map only into a ring surrounding sphere a′. Thus we have n 
spheres of equal radii surrounding another sphere of the same radius. 
A moment’s refl ection shows that the only way this can be accom-
plished is if there are six balls surrounding a seventh, just as you can 
place only six  ping- pong balls around a given one.9

The author of our solution, Ōmura, also says that that answer n = 6 
is trivial, since if we let both r and a go to ∞, we have two parallel 
planes, with ball b in between, implying that only six other balls of the 
same radius can surround it.

It also follows immediately from equations (3) that

1 1 1 1 1 1

1 4 2 5 3 6r r r r r r
+ = + = + .

Problem 18
We discuss this problem in chapter 8.

Problem 19
The original solution is not written on the tablet, but a similar 

traditional solution, which required numerical calculation by the 
soroban, is found in Uchida Kyūmei’s Sanpō Kyūseki  Tsu- ko.

As discussed in the solution to problem 5, traditional Japa nese 
mathematicians regarded an ellipse as an oblique section cut from a 
right circular cylinder, rather than as a conic section. This in turn led 
traditional mathematicians to view an ellipse as a circle that was 
stretched or shrunk in one direction. That is, in basic geometry we 
learn that any point P on an ellipse centered at the origin O must 
satisfy the equation

x
a

y
b

2

2

2

2
1+ = ,

where x and y are the usual x and y coordinates of point P.

9 Stanley Ogilvy devotes a chapter to the hexlet in Excursions in Geometry (Dover, New 
York, 1990).

T

d

O a
b

1S
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If, on the other hand, we defi ne two new variables u and υ such that 
u = x and υ = (a/b)y, then this equation becomes simply

u2 + υ2 = a2,

which we recognize as the equation of a circle of radius a centered on 
the origin. In this case, we can regard the ellipse as a circle that has 
been shrunk by an amount b/a in the y direction. As mentioned in 
problem 6, we have just made what modern mathematicians call an 
affi ne transformation. The idea of shrinking a circle along one axis 
into an ellipse is illustrated in fi gure 6.44 and is the central idea 
employed in the traditional solution to this problem.

We fi rst apply the same method that was used to fi nd the area 
element in problems 22 and 23 of chapter 5. Focusing attention on the 
small triangle at the top of fi gure 6.45, in which we consider the short 

y,v

a

P(x,y)
a

Q(u,v)

O
x,u

Figure 6.44. A point Q(u, v) on a circle can be trans-
formed into a point P(x, y) on an ellipse by making the 
transformation x = u and y = (b/a)v.

l'

O
x,u

y,v

Δ

Δl

x Δx

y

Δy

vΔ

a

Figure 6.45. For small enough triangles, the segments 
Δl′ and Δl can be considered straight lines.
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segment Δl ′ to be the hypotenuse of the right triangle, then similar 
triangles gives

Δ
Δ

υ
υx
x= ,

or, with the change of variable v = (a/b)y,

Δ
Δ

υ
x

bx
ay

= .

Also, since Δυ is merely the difference in two values of υ, Δυ = (a/b)
Δy and so

Δ
Δ

y
x

b x
a y

=
2

2
.

As is in ordinary calculus, The Pythagorean theorem is employed to 
fi nd the line element Δl :

 

Δ Δ Δ
Δ
Δ

Δ

Δ Δ

l x y
y
x

x

b x
a y

x
b x

a a x
x

= + = + ⎛
⎝⎜

⎞
⎠⎟

= +
⎛
⎝⎜

⎞
⎠⎟

= +
−

( ) ( )

( )
,

2 2

2

2

2

2
2 2

2 2 2

1

1 1  

(1)

where the last equality follows because a2 = υ2 + x2 = (a/b)2y2 + x2 in 
fi gure 6.44.

The area element can be found by examining fi gure 6.46, which gives 
a  head- on view of one of the cylinder sectors. The area element is Δs = 
z(x)Δl , where z(x) is the height of the cylinder cut out on the elliptical 
surface at a point x. The Pythagorean theorem applied to the fi gure gives

z x D D x Dx x( ) ( ) ,= − − = −2 2 22 2

D

d

z(x)

x

A

CB

T

D−2x

Figure 6.46. This fi gure represents a  head- on view of one of the 
cylinder sectors. Point T is where the two sectors touch in fi gure 
6.19, and is assumed to be located at x = 0. D is the diameter of 
the cylinder; d is the depth of the sector, which is the limit of 
integration. At a given x, the full height of ΔABC is z(x). Similar 
triangles shows that BC = D − 2x. The area element for integra-
tion is thus z(x)Δl(x), where Δl(x) is the line element along the 
surface of the elliptical cylinder.
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where D is the diameter of one of the cylinders, and thus, from equa-
tion (1),

Δ Δ Δs z x l Dx x
b x

a a x
x= = − +

−
( )

( )
.2 12

2 2

2 2 2

The full area S = 2S1 is therefore given by

 
S a Dx x

a b a x

a x
dx

d
= −

− −

−∫2 2
1

2
2 2 4 2

2 20

[( )/ ]
.
 

(2)

The problem, as is traditionally said in mathematics, has been 
“reduced to  quadratures”—it has been formally solved assuming one 
can do the integral. Unfortunately, this integral appears to have no 
analytic solution and so must be tackled numerically. To do so, it is 
con ve nient to change the limits of integration to [0, 1], which can be 
easily accomplished by the change of variable x ≡ d · t. Then,

 
S d Dd t d D t

b a d a t
d a t

dt= −
− −

−∫4
1 1

1
2

2 2 2 2 2

2 2 20

1
( / )

( / )( / )
( / )

.
 

(3)

It is possible to evaluate the integral by any number of numerical 
techniques. Before one does that, however, we guess that the fi rst 
factor in equation (2) or (3) is the important one, because it just 
assumes the surface of the elliptic cylinder is fl at and thus gives the 
area of the sectors themselves. Consequently, we expect

S Dx x dx
d

≅ −∫4 2

0
,

the stated answer. Indeed, assuming, for example, D = 1, b/a = 0.5, 
d/a = 0.25, and d/D = 0.25, we fi nd with a standard software package that 
the integral of the fi rst term alone is 0.307 and the complete integral is 
0.308.10

How did traditional Japa nese mathematicians evaluate such inte-
grals? Briefl y, they used numerical tables based on infi nite series. 
Such tables  were known as “Enri tables,” which we discuss in more 
detail in chapter 9. There we give a few more gory details of this 
problem.

10 Readers familiar with series expansions can expand the second square root in equa-
tion (3) and easily convince themselves that, as long as d/a < 0.15, the error in ignoring this 
factor will always be less than about 1%.



Plate 7.1. “Oiwake” by the ukiyo- e artist Keisei Eisen (1790–1848). This print is from 
the series “Sixty- Nine Stations of Kisokaido,” which Eisen produced with Utagawa 
Hiroshige between 1834 and 1842. Depicted  here are pack horses and drivers near 
Oiwake, below Mt. Asama, which mathematician Yamaguchi climbed during his 
travels (see diary entry for 28 July). (Nakasendo Hiroshige Bijutsukan.)



The Travel Diary of 
Mathematician Yamaguchi 

Kanzan

Mathematics developed from the 
relations of circles and squares. 
Mathematics is one of the six educa-
tions: manners, music, archery, riding, 
writing and mathematics. These 
educations are peculiar to human 
beings and are not necessary for 
animals. The teacher Takeda has 
been studying mathematics since he 
was young. In this shrine, his dis-
ciples ask God for progress in their 
mathematical ability and dedicate a 
sangaku.

—Preface to a sangaku hung in 
1815 by Kakuyu, a disciple of 
Takeda

Due to the policy of sakoku, Japan experienced no major external con-
fl icts for nearly three hundred years. Although the country was periodi-
cally wracked by peasant uprisings, the Edo period was by world standards 
peaceful, and travel extremely pop u lar. People toured widely, taking  sight-
 seeing trips, or making pilgrimages to various shrines and temples. Usually 
the Japa nese traveled on foot, seldom on  horse back, and, as in the West, 
put up at inns or rested with friends, sometimes at the temples themselves. 



The poet Matsuo Bashō was almost as famous for his wanderings as his 
haiku, and we know from his books and poems that he stayed with many of 
his friends while on his journeys. 

Geometers did not cede place to poets. A number of  nineteenth- century 
mathematicians, including Hōdōji Zen (1820–1868), and Sakuma Yōken 
(1819–1896) took “sangaku pilgrimages” to teach mathematics, encourage 
amateurs and lovers of geometry, and to hang sangaku in temples around 
the country. Among these itinerants was Yamaguchi Kanzan. The known 
biography of Yamaguchi is this: He was born about 1781 in Suibara of Ni-
igata province, studied mathematics in Edo at the school of Hasegawa Hi-
roshi, and died in 1850. In contrast to how little we know about Yamaguchi 
himself, however, much of our knowledge of sangaku comes from a diary he 
kept of six journeys undertaken between 1817 and 1828.

Yamaguchi’s travel diary is substantial, comprising about seven hundred 
pages all told. In it he describes the sights, speaks of meetings with friends 
and other mathematicians, and also rec ords problems from  eighty- seven 
sangaku, only two of which survive to the present. The fate of the diary is as 
obscure as that of its author. Apparently, Yamaguchi attempted to publish  
part of it under the title Syuyuu Sanpō, or Travel Mathematics. At least in the 
book Kakki Sanpō (Concise Mathematics) by Shino Chigyō, which was pub-
lished in 1837, we fi nd the following advertisement:

Mathematician Yamaguchi has traveled all over Japan for six years, 
from the spring of 1816[7] to the winter of 1821. With many distant 
mathematicians, he has discussed new technical methods of solving 
mathematical problems. If you buy this book, then you will be able to 
know and obtain without traveling the new technical methods of solv-
ing problems of  far- away mathematicians.

Despite the promises of the author, Syuyuu Sanpō remained unpublished.
Nevertheless, the original diary has survived and currently resides in 

the city of Agano as a declared cultural asset. Because we often have no 
other information on the tablets Yamaguchi describes, his journal is a 
unique resource for historians attempting to piece together the history of 
Japa nese mathematics. The book has never been fully translated, even 
into modern Japa nese, and what has been published is without the math-
ematical sections. We are pleased  here to be able to introduce Western 
readers for the fi rst time to this remarkable document. At seven hundred 
pages, it is far too long to present in its entirety. Instead, we have excerpted 
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a few passages from Yamaguchi’s third journey, 1820–1822, in which he 
recorded more sangaku problems than in his fi ve other trips combined. 
Along with the excerpts we present a number of the problems Yamaguchi 
describes. A few of them are fairly simple and the solutions should be acces-
sible to high school or college students. Most, we concede, are extremely 
diffi cult and one or two remain unsolved to the present day. Resolute ge-
ometers may gird their loins; others may simply marvel at the beauty and 
ingenuity of the problems. Interested readers can also follow the mathema-
tician’s itinerary on the map (plate 7.2), where Y1, Y2, . . . indicate Yama-
guchi’s stopping points.

Plate 7.2. Yamaguchi Kanzan traveled along this route for his third sangaku 
journey, which took over two years in 1820–1822. Y1, . . . , Y26 indicate the main 
stopping points Yamaguchi mentions in the text.

Y13 Osaka

Y19 Nagasaki

Y3 Nagano

Y7 Oyashirazu

Y1 Edo(Tokyo)

Y26 Edo

Y23 Kyoto

Y22 Obama

Y24 Nagoya

Y11 Ise

Y25 Hakone

Y17 Hiroshima

Y18 Hakata
Y16 Ehime

Y8 Kanazawa

Y21 TottoriY20 Shimane
Y10 Tsuruga

Y4 Takada

Y5 Shibata

Y6 Nagaoka

Y9 Sabae

Y12 Wakayama

Y15 Kagawa

Y14 Okayama

Y2 Usui pass

Mt. AsamaS e a  o f  J a p
a

n

N o r t h  P a c i f i c  O c e a n

200 Miles0

200 km

N



22nd of July, 1820 to 21st of August, 1820

Y1

22nd of July, 1820: “Many friends came to see me off in Edo for my long trav-
els and left me  send- off haiku . . . After 10 ri [40 km], I arrived in Fuchu and 
visited the Roku shrine. At night, I stayed at a farmer Yohachi’s  house.”

26th of July: “I passed the castle town1 of Takasaki and I remembered that 
a mathematician Ono Eijyu lived there.”2

Y2

27th of July: “I have visited the Hakuunsan Myoujin shrine and walked 
across a river nearby since there was little water in the river. After passing 

1 Although “castle towns” had their origins as military strongholds, as discussed in chap-
ter 1 the Tokugawa shogunate limited the local warlords to one castle per domain. With 
little fi ghting during the entire Edo period, the castle towns became administrative centers 
and the castle took on the aspect of “city hall.” “Castle town” thus has a connotation closer 
to “provincial capital” than to “fortifi ed town.”

2 Mathematician Ono Eijyu (1763–1831), a student of Fujita Sadasuke’s school (chapter 
3) had been training many students to be mathematicians and sometimes helped geogra-
pher Inō Tadataka (1745–1818) to produce his map of Japan.

Plate 7.3. Two pages from Yamaguchi’s diary, showing several problems, including 
the one given as problem 10 in this chapter. (Agano City.)

246 Chapter 7
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through the guard station,3 I arrived at the steep Usui pass and visited 
the Kumano shrine above the tea  house of the pass and enjoyed viewing 
a sangaku in it. I have written down the sangaku problems of the Kumano 
shrine in my diary. In par tic u lar, the preface on the tablet is interest-
ing.”

The tablet Yamaguchi describes was hung in the Kumano shrine in 1801 
by Ono Eijyu, who wrote the preface: “Mr. Tsunoda, who hung this sangaku, 
was born blind. He visited me and he told me that he eagerly wanted to 
study mathematics and so I introduced him to my teacher Fujita Sadasuke 
in Edo.4 Tsunoda studied mathematics and hung this sangaku in this Ku-
mano Jinjya.”

28th of July: “There is the beautiful mountain, Mt. Asama.5 When I 
looked up Mt. Asama, I wanted to ascend it. It is 5 ri [20 km] away from my 
friend Jinzaemon’s  house where I stayed last night. Climbing down the 
mountain, I took the wrong way but didn’t have any trouble.”

2nd of August: “I visited the Suwa shrine in Sakashiro village and found a 
sangaku.”

Yamaguchi recorded all of the problems on the Suwa sangaku, which was 
hung by Kaji and Kobayashi in 1805. Kobayashi wrote, “I have discussed 
mathematics problems with my friend all day and enjoyed it very much. 
Then we decided to hang a sangaku in this shrine. We hope that the visitors 
will look at this tablet and ask for any opinions about the problem.”

We have included one of the problems on the Suwa sangaku as problem 
37 in chapter 4.

14th of August: “Crossing the big river Chikuma by boat, I could visit the 
village Hachiman, where a festival is being held, and there are many people 
in the precinct. In the small village nearby, I found and recorded a sangaku 
hung by Okuma in 1795, and that night I stayed in the  house of my friend 
Kitamura, who is a farmer.”

15th of August: “With my friend Kitamura, I went to see the festival in 
Matsushiro of Nagano province. This area is so beautiful that I have drawn 
the scene in my diary. Afterwards, I came near the big Zenkoji temple, 
which is one ri [4 km] away from  here. Worshipping at Zenkoji is one aim 
of my travels.”

3 During the Edo period, travelers  were required to carry permits and stop at checkpoint 
barriers (sekisho) along major highways.

4 See chapter 3 for more on Fujita. 
5 2,560 m.



Y3

17th of August: “At last I could visit the big Zenkoji temple in Nagano and 
enjoyed looking at it. Today, when I arrived at Zenkoji, is a holiday, so there 
are many visitors in the precinct. In the eve ning I entered the inn at Fu-
jinoya. Going out from the inn at  mid- night I entered the guest  house of 
Zenkoji. I could stay the night with the other visitors because I had gotten a 
pass from the Fujinoya inn to enter the Zenkoji guest  house, but some of 
the others didn’t get passes so they had to come back from the temple. This 
morning I recorded four sangaku of the Zenkoji.”

We present three problems from the Zenkoji sangaku as problems 1–3.

Plate 7.4. The original illustration for problem 2, as it appears in 
Fujita Kagen’s 1789 book, Shinpeki Sanpō. (Collection of Fukagawa 
Hidetoshi.)
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Problem 1 
This problem was hung by Seki Terutoshi at the Zenkoji Temple in 1804. We have a 

regular n- sided polygon, with length of side a. From the vertex A we draw the chords, 
as shown, as well as n − 2 inscribed circles with radii rk 
(k = 1, 2, . . . , n − 2). Find the radii rk of all the inscribed 
circles in terms of a. Yamaguchi didn’t record the answer 
because it was too complicated. 

We have found a traditional solution, which is on page 266.

Problem 2 
This problem is from the second sangaku at the Zenkoji temple, which was hung by 

Kobayashi in 1796. A quadrilateral ABCD is inscribed in the larger circle of radius R and 
touches the smaller circle of radius r. Find r in terms of R and AC × BD. (Hint: The tablet 

gives the solution for a specifi c case: If 2R = 12 and 
AC × BD  = 112, then 2r  = 7.) 

The general solution can be found on page 271.

Y4

20th of August: “Entering the castle town of Takada in Niigata, which is near the 
port, I visited the Suwa shrine and recorded sangaku problems proposed by 
Yoshizawa in 1803. That day I stayed at my friend Yoichi’s home in Ima town.”
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Problem 3 
This problem is from the third sangaku at the Zenkoji temple, which was hung by Saito 

Mitsukuni in 1815. We have a segment of a circle. The line segment m bisects the arc and 
chord AB. As shown, we draw a square with side d and an inscribed circle of the radius r. 
Let the length AB  = a. Then, if p  = a + m + d + r 
and q  = m/a + r/m + d/r, fi nd a, m, d, and r in 
terms of p and q. We have not been able to solve 
this problem.

On the tablet, Saito wrote: “This problem was 
fi rst proposed by Tsuda Nobuhisa in 1749 on a 
sangaku of the Gion shrine of Kyoto. Tsuda derived 
the answer with a  high- degree equation, one of 
one thousand  twenty- four degrees. But the famous 
mathematician Ajima Naonobu showed how to 
solve it with an equation of only the tenth degree 
in the variable a. On this tablet, I will show Ajima’s 
equation.” Yamaguchi, however, did not record the 
equation.

This celebrated problem is known in standard 
histories of Japa nese mathematics as the Gion 
shrine problem, because it was found on Tsuda’s 
sangaku in Kyoto’s Gion, or Yasaka, shrine. As just 
mentioned, the original solution was of 1024 
degrees in terms of the length of the chord, but 
in 1774 Ajima Naonobu (chapter 3) reduced it to 
a problem of the tenth degree by the same 
method Laplace used in 1772 to expand determi-
nants. Ajima’s feat, performed at age 42, brought 
him great fame as a mathematician. The main 
aim of the problem was to fi nd a  high- degree 
equation in one variable, whose roots could then 
be determined numerically by the painstaking 
use of sangi (chapter 1). Ajima’s equation takes a 
full page to write out, so we do not include it in the 
solutions, but will provide it upon request.
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12th of September: “I will stay  here, in Yada village, to the 19th of Jan, next 
year.”

19th of January, 1821 to 
19th of November, 1821

19th of January, 1821: “I have started from Yada village and am going to 
 Haruta village.”

22nd of February: “While I have been staying with my friend Eguchi Shin-
pachi, his son Tamekichi has asked me to teach him math and to make him 
a student of the Yamaguchi school.”

Y5

21st of March: “After arriving in Shibata city, I have stayed with my friend 
Minagawa Eisai.”

Plate 7.5. The Zenkoji temple as it appears today. (Photo Fukagawa Hidetoshi.)



24th of April: “In Suibara village, the place of my birth, I have spent over 
twenty days. Now I will go to Nagaoka city.”

Y6

26th of April: “Arriving in Nagaoka city, I visited the Yukyuzan shrine and 
recorded two sangaku. One was proposed by a disciple of Fujita in 1798 and 
the other is as follows: . . .”

This tablet was hung by three merchants in 1801. It survives today and is 
105 cm by 57 cm. We have offered one of the problems as problem 46 in 
chapter 4.

16th of September: “I have been staying in my friend Arakawa’s home for 
some months in Yamadani village and, today, I set off. I visited the Gochinyo-
rai temple and recorded sangaku problems proposed by Ohta Sadaharu in 
1806.”

Y7

25th of September: “While passing the famous and dangerous coast of Oyashi-
razu, I have become careful.”

30th of September: “There is a big river the Kurobe near the inn and I 
looked at the beautiful bridge 36 ken [70 m] long, which crosses the river 
without any supports in the middle.”

Y8

3rd of October: “I have arrived at the big castle town of Kanazawa. This town 
is so big that it had hundred thousand  houses. However, on the fi rst of Octo-
ber, I stayed in the castle town of Toyama where there are ten thousand 
 houses.”

Y9

7th of October: “I have arrived and visited the Asahikanzeon temple in Sabae 
and recorded the sangaku as follows: . . .”

252 Chapter 7
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Problem 4
From the Asahikanzeon temple sangaku, this problem was presented by Momota in 

1807. It asks us to solve the given system of equations for x, y, and z. For the special case 
above, the table gives x  =  78,125  =  57, y  =  16,384  =  47, and z  =  2,187  =  37. It also gives the 

answer for the general case of any integers, which involves a 49th-
 degree equation. We have been unable to derive it.

x y

y z

x y z

− =
− =

+ + =

61741

14197

127 7 7

Y10

8th of November : Yamaguchi arrived in the town of Tsuruga, which is 25 ri 
[100 km] from Kyoto. “In the town, I met with a mathematician Masuda 
Koujirou who brought three problems and asked me for the solutions. I 
could answer his requests and showed him the solutions. I have recorded 
the problems in my diary.”

We give two of these problems  here as problems 5 and 6.
14th of November: “I have stayed in Kanbe’s home in Minamishinho village 

of Takashima. At his  house, Kanbe showed me a problem sent by Enoki in 
Kyoto. The problem was made by someone in Osaka.”

This problem can be seen as problem 7.
16th of November: “Walking along the side of the biggest lake in Japan, 

Biwako, I stopped at the  sight- seeing place, Ukimidō.”
19th of November: “I have entered the big city of Kyoto. In this city, there 

are a great many temples and shrines. I will spend the rest of the year in 
this city and enjoy it.”

This sangaku, presented by Momota, is extant. We give one of the prob-
lems  here as problem 4.

Problem 5 
As shown above, six circles of radius r and three circles of radius t are inscribed in the 

large outer circle such that they are tangent to this circle and also touch the equilateral 
triangle. If the radius of the outer circle is R, Find t in terms of R.
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Problem 6 
One day, Inō Shūjiro, aged 35, second son of the famous surveyor Inō Tadataka 

(1745–1818), who made the fi rst detailed map of Japan for the ruling Tokugawa 
family, visited Masuda and posed the following problem:

The small circle inscribed in the right triangle ABC touches side AB at Q. A larger circle 
passes through the vertices A and B and 
touches the inscribed circle as shown above. 
If the line segment p bisects the chord AB, 
and q is the length AQ , fi nd the relation 
between p and q. 

Masuda was able to solve this straightforward 
problem, which requires only high school geometry 
and gave Inō the answer; our solution can be 
found on page 275.

Masuda asked Yamaguchi for the answer to this problem because he could not not work 
it out. Yamaguchi showed him the answer that can be found on page 275. We also give it 
as problem 13 in chapter 6 with a traditional solution by 
Hiroe Nagasada.

R

r
t

Problem 7 
Of the problem below, Kanbe said to Yamaguchi, “Someone in Osaka is boasting 

about this problem to Enoki.” Yamaguchi answered Kanbe, “I have been studying 
this problem for four or fi ve years and, at last, this spring, I succeeded in solving it. 

But the problem is no good. I recommend that every student study more mathemat-
ics books rather than try to solve such a problem.”
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Problem 8 
This is a previously unsolved problem proposed by Matsumiya. An arc of a circle passes 

through vertices A and B of right triangle ABC and is tangent to the triangle at B. The sides 
a and b of the curved sector ABC are congruent with two sides of the triangle, as shown. 

Divide side BC into eight equal parts and erect 
perpendiculars lk (k = 1, 2, . . . , 8). Find the 
lengths of lk (k = 1, 2, . . . , 8) in terms of a = BC 
and b = AC.

The problem turns out to be not so diffi cult and 
solution is given on page 277.

2nd of February 1822 
to 1st of December, 1822

2nd of February, 1822: “I paid the fee 120 mon [about 5 dollars] to board a 
boat, and enjoyed visiting a small island Chikubu in lake Biwako. Later, 
I entered the castle town of Hikone, where I visited a mathematician Mat-
sumiya Kiheiji and stayed in his  house. He showed me an unsolved problem 
and a sangaku problem of the Taga shrine as follows: . . .”

These two problems are given as problems 8 and 9.

The reader may not want to spend four or fi ve years working on the exercise, but  here it 
is: Three circles, one of radius a and two of radius b, are inscribed in the arc, as shown. Two 

equilateral triangles of the height p 
are also inscribed in the arc, tangent 
to the circles. Find p in terms of a and 
b. The Osaka proposer gave an 
example: If a = 3 and b = 1.5 then 
p = 5.25. 

The general result and a fairly easy proof can be found on page 276.

pb b
a

p
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Y11

6th of February: “I went to the big Ise shrine and stayed at an inn. I heard 
that a mathematician Koyama Kaname in Sendai city is staying at an inn 
nearby, so I visited the inn but I could not meet with him, because then he 
was out, unfortunately.” Yamaguchi then visited the Seihoji temple, where 
he found two sangaku, noting, “I have recorded one sangaku hung by Sawai 
in 1786 and the other sangaku hung by Koyama in 1819, which criticized an 
incorrect solution on Sawai’s sangaku.”

18th of February: “I went to Wakayama and stayed at mathematician Nuno-
mura Jingorō’s home. His teacher is one of the second generation of disci-
ples of the famous mathematician Fujita Sadasuke. Nunomura showed me 
sangaku problems of Kofukuji temple in Nara.”

Y12

24th of February: “I have visited a big Himae shrine in Wakayama and re-
corded the sangaku problems proposed by Shintani Benjirō in 1806.” Later 

Problem 9 
Here is another sangaku problem originally drawn on a fan, one from the Taga shrine, 

proposed by Katori Zentarō. The date is unknown. The large circle of radius r touches 
three sides of the rectangle ABCD, as shown. Note AB < BC. We draw a line from D tan-
gent to the large circle and one of the small circles 
to the other side of the rectangle. Assume that the 
two small circles both have radius t. Find the 
shaded area S1 in terms of the black area S2. 

The solution can be found on page 278.

2

D

AB

C

S1

S

r

t t
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that day, Yamaguchi arrived at  Ki- Miidera town and stayed at a carpenter 
Benzō’s home.

28th of February: “When I entered Osaka, I visited a mathematician 
Takeda Atsunoshin, who was a disciple of Ban Shinsuke. Takeda is an as-
tronomer, too. In the town, I saw leafl ets (the size is 7 sun [about 20 cm] 
long and 3 sun [9 cm] wide) about an astronomy lecture by Takeda. In his 
home, Takeda showed me his mathematics problem.”

Y13

29th of February: “I visited Osaka castle, which is beautiful beyond descrip-
tion. Afterwards I visited the Tenman shrine and recorded three sangaku, 
one of which has two problems.”

On the fi rst tablet was a preface that we have quoted at the head of this 
chapter. We give one problem from the third of the Tenman sangaku as 
problem 10.

Problem 10
The third sangaku in the Tenman shrine was hung in 1822 by the mathematician 

Takeda Atsunoshin. Takeda wrote a preface:
“My disciples are studying every day in order to solve the many problems given to them 

by myself. I want to publish some of the good 
solutions under the title Kyokusu Binran (Survey of 
Maxima and Minima Problems). On this tablet, I have 
selected and written some good problems on 
maxima and minima and dedicate the sangaku to 
this shrine so that my students will become more 
advanced in mathematics.”

Of the fourteen problems on the tablet, the 
following was proposed by Hayashi Nobuyoshi a dis-
ciple of Takeda: In a sector AOB of radius r, draw a 
small circle of radius x with center O. Draw the 
tangent to the small circle from the vertex B, as 
shown. (See also the original illustration, plate 
7.16.) As x is varied, the area S(x) of the black part 
of the fi gure will also vary. Show that S(x) is a 
maximum when x ≅ (293/744)r.

A

O

r

x

B



4th of March: “I have arrived at Tatsuno city near Himeji and visited the 
Syosya temple to record a sangaku proposed by Sawa in 1821. In the eve-
ning, Sawa visited me and he showed me an unsolved problem and two 
sangaku problems of the Syosya temple. I have written them down in my 
 diary as follows: . . .”

Two problems from the Syosya temple can be found as problems 11 
and 12.
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Plate 7.6. The original illustration 
for problem 10 as it appeared in 
Takeda’s 1826 book Sanpō Binran. 
(Collection of Fukagawa 
Hidetoshi.)
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Y14

7th of March: The mathematician Horiike Hisamichi hung several sangaku, 
one of which was in the Kibitsu shrine in Okayama and another in the 
Suzuka in Ise, far from Okayama. (Neither of these tablets survives.) Yama-
guchi wrote, “I have visited the Kibitsu shrine in Okayama and found a 
sangaku problem proposed by mathematician Horiike in 1804, which I have 
recorded in my diary.”

Problem 11 
This problem, proposed by Sawa Masayoshi in 1821, is from the sangaku of the Syosya 

temple. As shown in the fi gure, fi ve circles of radii a, b, and c are inscribed in a segment of a 
large circle. If a = 72 and b = 32, then fi nd c. 

The result for the general case is on page 280.
c

a a

b b

Problem 12 
Also proposed by Sawa Masayoshi, this problem remains unsolved. As shown below, an 

ellipse is inscribed in a right triangle with its major axis parallel to the hypotenuse. Within 
the ellipse are inscribed two circles of radius r. A third circle of radius r touches the ellipse 
and the two shorter sides of the triangle, 
a and b. Find r in terms of a and b.

b

r

r

r

a



Y15

8th of March: “Seto Nai Kai [the Inland Sea] is very beautiful and I crossed 
it by ferry. I ascended a steep, tall hill in Kagawa and visited the Kotohira 
shrine sitting on top of it.”

Y16

21st of March: “The Dōgo hot spring in Ehime is one aim of my travel 
and when I arrived, I found many people having baths in the hot 
spring.”

The Isaniha shrine in Dōgo has  twenty- two surviving sangaku. When 
visiting Dōgo, Yamaguchi could have seen two of these tablets in the 
nearby Isaniha shrine. However, he makes no mention of them.

260 Chapter 7

Plate 7.7. The Isaniha shrine today. The monkeys are not studying mathematics. 
They are admonishing tourists to “See no evil, hear no evil, speak no evil.” 
(Photo Fukagawa Hidetoshi.)
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Y17

22nd of March: “Once more, by ferry, I crossed the Inland Sea and arrived in 
the eve ning at the traditional shrine Itsukushima in Hiroshima.”

Y18

11th of April: “Passing many cities, I have come near Hakata. I did some 
 sight- seeing at the big Kashii shrine and visited the Hakozaki shrine, where 
I recorded sangaku problems proposed by Narazaki Hozuke in 1807. After-
ward, I visited mathematician Hiroha and enjoyed discussing math with 
him. He showed me the following problem.”

We give Hiroha’s problem as problem 13. On the same day, Yamaguchi 
arrived in Hakata of Fukuoka province.

15th of April: “When I stopped at administrator Harada Futoshi’s  house 
in Shima village near Hakata, I was shown some unsolved problems which 
 were sent by Harada Danbe in Hamamatsu city.”

Harada Danbe in Hamamatsu hung a sangaku in the Akiha shrine 
there.

3rd of May: As we discussed in chapter 1, during the Edo period, only one 
city was open to the West, Nagasaki, and so Nagasaki was fl ourishing as the 
center of international trade.6

“When I arrived at Nagasaki, I saw so many interesting things that I 
could stay for some days  here. I visited the Suwa shrine where I recorded a 
sangaku.”

This problem was proposed by Kitani Tadahide in 1819. We give it as 
problem 37, chapter 4.

Y19

21st of June: “As much as I am leaving my heart with Nagasaki, I have set off 
to Kurume where I visited the Takarao shrine and recorded a sangaku 
problem.”

6 Agencies in several other locations  were open for trade with China and Korea.
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Problem 13 
One day, Hiroha said to Yamaguchi that he could not solve this problem and asked 

Yamaguchi for the solution, but Yamaguchi  doesn’t say anything about a solution in his 
diary, and so we have no further information about it. Triangle ABC is inscribed be-
tween the arc AC of a circle of radius R and 
the chord AC. A circle of radius r is in-
scribed between the triangle and the 
chord. Two other circles, of radius s and t, 
touch the circle r as well as the external 
circle R and the chord, as shown. Given 
that m = |t − r|, n = |t − s|, and p = |r − s|, fi nd R 
in terms of m, n, and p.

t

A

B

C
s

r

h

r

Problem 14 
Ukawa Jiroku proposed this problem in 1808 on a sangaku at the Takarao shrine. 

A cone with base of radius r and height h stands perpendicularly to a plane, as shown. The 
vertex of the cone touches the plane. A chain of n small balls of radius r surround the tip 
of the cone. Find the integer n in terms of r and h. 

The answer is on page 280.

Y20

11th of July: “After much walking, I reached Shimane and worshipped at the 
big Izumo Oyashiro shrine which is the largest shrine after the one at Ise. 
I have been very impressed by it.”

The sangaku problem at the Takarao shrine was proposed by Ukawa Tsuguroku in 1808. 
We present it  here as problem 14.
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Y21

15th of July: “I have arrived at Tottori and stayed with Kitarō. I met two aged 
persons who enjoy studying mathematics and astronomy.”

Y22

24th of July: “After entering Obama, I visited a mathematician Matsumoto 
Einosuke who is a disciple of Kurihara in Obama.”

7th of September: Yamaguchi visited a shrine, Tenman, in Hirokawa village 
in Takashima of Shiga. There he heard that a sangaku from 1748 was hang-
ing in the shrine and recorded it in his diary. Two problems from this 
 sangaku, which  were proposed by Kashiwano Tsunetada, can be found as 
problems 15 and 16.

C
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B
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H

r

Problem 15 
This problem of Tenman shrine in Hirokawa village was proposed by Kashiwano Tsune-

tada in 1748. Kashiwano wrote a preface on the tablet:
“Mathematics is very important in ordinary life and I like to study mathematics. I have 

written my three favorite problems on this tablet 
and have not written the answers for two of them. 
I am very glad if someone tries to solve the 
problems.”

Draw a circle of radius r = 2.4 touching the 
hypotenuse AB and the side BC of right triangle 
ABC. From vertex C also draw the line CP, 
which is tangent to the circle. If the length 
CP  = 13, fi nd CH. 

The answer is on page 281.

15th of September: “I have arrived at Lake Biwako once more. While visit-
ing the Miidera temple in Shiga, I recorded two sangaku as follows: . . .”

The fi rst sangaku at the Miidera temple was hung by Ogura Yoshisada in 
1817. Ogura wrote on it: “Mathematics is the origin of everything in the 
universe. In par tic u lar, when we investigate something in astronomy, math-
ematics is important. I was admitted to the Seki school when young and 



eagerly studied mathematics. Now, I want to hang a sangaku on which new 
problems and their solutions are written. If visitors would look at my san-
gaku, then I would be very happy.”

Yamaguchi also viewed the sangaku in the Shinomiya shrine located 
in the area of Miidera temple. Afterward, he visited Okada Jiuemon, who 
dedicated the Shinomiya sangaku in 1821, to discuss math. “Okada said to 
me that he wanted to enter into my school to further study mathematics. At 
his home, Okada showed me a copy of sangaku of the Kiyomizu temple in 
Kyoto and the Ishiyamadera temple in Shiga.

“In the eve ning, a lover of mathematics, Asano Masanao, visited the inn 
where I am staying. He asked me for permission to advertise ‘A lecture on math-
ematics performed by the famous mathematician Yamaguchi.’ I have granted 
his request. Some days from now, the notices will appear in the town.”
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Problem 16 
Another numerical problem from Kashiwano at the Tenman shrine: I is the center of 

the circle shown, inscribed in right triangle ABC. If BI = 4.03888736 and AI = 3.87886, then 
fi nd a, b, and c.

Y23

17th of September: Yamaguchi visited the big Kitanotenman shrine in Kyoto 
and recorded two sangaku. One of these was dedicated by Nakamura Syuhei 
in 1819. On the tablet, was a postscript: “My teacher Nakamura Fumitora is 
a very famous mathematician. Many people visit the Nakamura school. He 
is aged 60 this year. Esteeming his work, we, his son Nakamura Syuhei and 
his student Hitomi Masahide, have decided to hang a sangaku in this shrine. 
We have selected eight nice problems and have drawn them on the tablet.”

One of the problems on this sangaku was proposed by samurai Kamiya 
Norizane in 1819. We give it as exercise 3, page 336, chapter 10.
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Problem 18
This is Morikawa’s problem at the Tenman shrine, proposed at an unknown date. Two 

circles with radii a and b sit on the line l and touch each other. Between them is an 
inscribed a square with side x. Find the minimum of x in terms of a and b.

The tablet contained no solution, but Mori-
kawa had written, “I will be very happy if some-
one can solve this problem.” And so, says 
Yamaguchi, “I went to Morikawa’s home with my 
friend Takeda and asked him what the answer 
is. He said that he could not solve the problem 
yet.” Neither does Yamaguchi’s diary contain a 
solution and, like Morikawa, we would be very 
happy if someone solves this problem.

18th of September: There was a great statue of Buddha in the Hokoji temple 
of Kyoto. Yamaguchi wanted to see it, but the statue had been destroyed. “I 
have started in the Hokoji temple at the place of the great statue of Buddha 
and visited the Kiyomizu temple. There I recorded a sangaku hung by Ritouken 
in 1822. On the tablet, the names of lovers of mathematics  were written.”

21st of September: “In mathematician Takeda’s  house, I saw one sangaku 
problem that is to be hung in the near future and another problem which 
was already written on the tablet of the Tenman shrine. I have written them 
in my diary.”

We give Takeda’s problem “to be hung in the near future” as problem 17. 
The other problem on the Tenman shrine sangaku was proposed by Mori-
kawa Jihei and is presented as problem 18.

P

AB

d

m

k

r r

Problem 17
Here is Takeda’s problem “to be hung in the near future”: We are given a segment of a 

circle of radius R. Draw two smaller circles of radius r inside the segment such that they 
touch each other; both are tangent to the chord AB; one touches the arc AB and one 

touches the tangent line AP. If AB = k and AP = m, 
fi nd r in terms of k, d, and m. 

The answer is on page 281.



Y24

24th of November: “Four days ago, I stayed at Toraya Kyoemon’s home and 
visited the Atsuta shrine in Nagoya. Crossing the big river Tenryu, I arrived 
in nearby Hamamatsu city. Here, I visited a shrine Akiha and recorded san-
gaku problems proposed by Harada in 1822.”

Y25

29th of November: “I arrived at the famous spa Hakone today. I saw many 
bamboo souvenirs in the shops  here.”

Y26

1st of December, 1822: “At last I have arrived at my school in Edo and have 
fi nished over two years of travel. I have enjoyed this journey. After 
some rest, I will plan my next sangaku journey. This is the end of my 
third journey.”

Answers and Solutions to Selected 
Diary Problems

Problem 1: First Problem from the Zenkoji Temple
Yamaguchi did not record his solution in his travel diary because it 

was too complicated. However, the problem appeared in Fujita Kagen’s 
book Zoku Shinpeki Sanpō (chapter 3). The title refers to the fact that it 
is a “second enlarged edition” of Fujita’s 1789 Shinpeki Sanpō.

The problem is also found in the notes of certain contemporary 
mathematicians, among them a manuscript of Yoshida Tameyuki 
(chapter 3) with the same title as Fujita’s book. We present Yoshida’s 
solution to the problem  here; although lengthy, it requires no 
elaborate mathematics. However, before we get to Yoshida’s solution 
proper, some preliminaries are needed.

As in fi gure 7.1, we circumscribe the polygon with a circle and label 
the vertices Ak (k = 1, 2, . . . , n − 1), such that lengths A1 = A1A2 = · · · = 
An−2An−1 = a.
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We are to fi nd rk (k = 1, 2, . . . , n − 2), the radius of the inscribed circle 
of triangles AAkAk+1, in terms of AA1 = a1 = a and AA2 = a2. [Note: Once 
we have the answer in terms of a and a2, it is easy to fi nd a2 in terms of a.]

The following defi nitions will prove useful in the proof:

 
e

a
a

s
e
e

l s e a≡ ≡ −
+

≡ −2 2
2

2, , ( ) .
  

(1)

In terms of these quantities, the answer to the problem is

  ,

  ,
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  ,
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r
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l

r er r
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1 2
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=
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= − −
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= − −+ +

To obtain this result we must fi rst prove two lemmas, which Yamagu-
chi did not state:
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Θ

Figure 7.1. An n- sided regular polygon with side 
length a1 = a.



Lemma 1: The relation among the sides ak is
 a3 = ea2 − a,
 a4 = ea3 − a2,
 a5 = ea4 − a3,
 a6 = ea5 − a4,
 ak+2 = eak+1 − ak.

The last expression is termed a recursion relationship. To prove it, 
notice that, because the polygon is regular, all the chords drawn from 
vertex A subtend equal angles on the drawn circle. Thus, as indicated 
in fi gure 7.1, all the angles AkAAk+1 are the same. Call this angle θ.

For the fi rst triangle AA1A2, the law of cosines gives

a a a aa2
2
2 2

22= + − cosθ,

or

cosθ = =
a
a

e2

2 2
,

from the defi nition of e. In general, fi gure 7.1 shows that

 
cosθ = + − =+

+

a a a
a a

ek k

k k

1
2 2 2

12 2
.
 

(2)

For k = 2, equation (2) gives

a ea a a a3
2

2 3 2
2 2 0− + − =( ) ,

which is a quadratic equation for a3 in terms of a2 and a. Write 
x ea x a a2

2 2
2 2 0− + − =( ) . For a quadratic equation ax2 + bx + c = 0, the 

sum of the roots x1 + x2 = −b/a. In our case, x1 + x2 = ea2. One root, 
x1 = a1 = a, can be found by inspection. Figure 7.1 shows that this 
corresponds to the side ak−1 = a1 of the smallest triangle AA1A2, which 
means that the larger root x2 corresponds to the side we are looking 
for, ak+1 = a3. Hence,

a3 = ea2−a.

Similarly, for k = 3, equation (2) gives

a ea a a a4
2

3 4 3
2 2 0− + − =( ) .

Here, x1 + x2 = ea3. From the k = 2 case, we suspect that the smaller root 
corresponds to the side of the previous triangle, or x1 = ak−1 = a2, which 
is easily verifi ed by substitution. Therefore, we have at once

a4 = ea3 − a2. 
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One can see that, in general,

a ea a a ak k k k+ + + +− + − =2
2

1 2 1
2 2 0( ) ,

and consequently

 ak  +  2 + ak = eak  +  1.  (3)

We have proved the desired recursion relation ak +2 = eak +1 − ak and thus 
Lemma 1. QED.

Lemma 2: If the circle inscribed in triangle ABC touches the side AC 
at D, then AD = b =(AB + AC − BC)/2

By drawing the auxiliary dotted lines in fi gure 7.2 it is very easy to 
prove this lemma and we leave it as an exercise for the reader. At this 
point Yoshida’s solution formally begins.

a

b

a
ak

r k
A

B

C
D

k+1

Figure 7.2. Drawing for lemma 2.

Yoshida’s solution:
We start by fi nding r1. Notice that ΔAA1A2 is isosceles, and so its area 

is 1
2 2a h,  where h is the altitude. However, one can easily show that 

A r a a= +1
2 1 22( ).  [Hint: Draw a fi gure similar to fi gure 7.2 and add up 

the area of the interior triangles.] From the Pythagorean theorem 

h a a= −2
2
2 4/ ,  and so,

a a a r a a2
2

2
2

1 24 2− = +/ ( ).

Solving for r1 gives

 
r

a a
a a

a sa1
2

2
2 2

1
2

2
2

1
2

= −
+

= ,
 

(4)

where we have used the defi nition of s in equation (1). This gives r1 as 
shown in the answer.

We now fi nd the remaining rk (k = 2, 3, . . . , n − 2). To do this is rather 
easy, exploiting the lemmas we have already proven. We will also make 
use of the quantity bk, which is the length AD in fi gure 7.2. See also 
fi gure 7.3.



Lemma 2 gives directly b a a a2
1
2 3 2= + −( ).

By lemma 1, a3 + a2 − a = ea2 − a1 + a2 − a. Recalling that a2 = ea  and 
letting w ≡ 2 − e, we have a3 + a2 − a = ea2 − wa1 and so

b ea wa2 2
1
2

= −( ).

By the same method,

b a a a

ea a ea a a a a

e a a a a

e b a a a

eb a e a

eb b wa

3 4 3

3 2 2 4 3

3 2 2

2 2

2 2
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1
2

2

1
2

2 2 2

1
2

1
2

2

1
2

= + −

= − + − −

= + − −

= + − −

= − − −

= − −

( )  (lemma )

( )  (lemma on and )

[ ( ) ]

[ ( ) ]  (lemma )

( ) .

.
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Figure 7.3. The length bk is the length from A to 
the point where the kth circle touches ak+1.
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Similarly,

b a a a

ea a ea a a

e a a a a a

e b a b a a

eb b e a

eb b wa

4 5 4

4 3 3 2

4 3 3 2

3 2

3 2 1

3 2

1
2

2

1
2

1

1
2
1
2

2 2 2

1
2

2

1
2

= + −

= − + − −

= + − + −

= + − + −

= − − −

= − −

( )  (lemma )

( )  (lemma )

[ ( ) ( ) ]

[ ( ) ( ) ]  (lemma )

( )

.

Thus, in general,

 
b eb b wak k k+ += − −2 1

1
2

.
 

(5)

Now, from fi gure 7.3, we see that all the right triangles are similar, 
and so

r
b

r
b

r
b

2

2

3

3

1

1

= = =. . . .

But from equation (4) we know that

r
b

a a
a a

s1

1

2

2

2
2

=
−
+

= .

Thus, the quantity s is in fact the ratio of rk/bk. Subsituting equation 
(5) for bk gives the fi nal result

r er r aws er r
l

k k k k k+ + += − − ≡ − −2 1 1
1
2 2

,

as stated. [Note: The problem in Yamaguchi’s diary asks for the solu-
tion in terms of a alone. We leave this step as an exercise for the 
reader.]

Problem 2: Second Problem from the Zenkoji Temple
One example and the answer for the general case  were written on 

the tablet.
The example is as follows: If 2R = 12 and AC × BD = 112, then 2r = 7. 

The answer to the general case:



r
AC BD

AC BD R
= ×

× +2 4 2
.

We  here offer another proof after Yoshida from the same manu-
script. This proof is also long, but perhaps easier than the previous 
one, requiring nothing more than basic trigonometry and relation-
ships among line segments of triangles circumscribing circles.

The general strategy is to fi nd expressions for AC and BD in terms of 
R, r, and the other quantities. The fi rst step is to temporarily remove 
segment BD and consider only AC. We then draw two auxiliary circles, 
as shown in fi gure 7.4. Dropping perpendiculars from the centers of 
these circles to the sides of the quadrilateral, we denote the radius of 
the larger one by r1 and the smaller one r2. Clearly, because circles r 
and r1 are inscribed in the same angle, their centers lie along the same 
chord. The same applies to r and r2. Then, by similar triangles,

 

r
d

r
d

r
b

r
b

= =1

1

2

1

and .
 

(1)
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Figure 7.4. The line segment BD is 
temporarily removed and we draw 
the two  dash- dotted circles of 
radii r1 and r2, inscribed in 
triangles ADC and ABC, respec-
tively. Both circles are tangent to 
the chord AC.
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Also, the tangent distance from A to circle r1 is a + d − d1, and from C is 
c + d − d1, so

 AC = a + c + 2(d − d1). (2)

Similarly, the tangent distance from A to circle r2 is a + b − b1 and from 
C is c + b − b1, so we can also write

 AC = a + c + 2(b − b1). (3)

Letting AC ≡ l and using equations (1) gives

 

d
d a c l

r
r
d

d a c l

1

1

2
2

2
2

= + + −

= + + −

,

( ),  

(4)

and

 

b
b a c l

r
r
b

b a c l

1

2

2
2

2
2

= + + −

= + + −

,

( ).
 

(5)

Next, dividing the quadrilateral ABCD into triangles and adding up 
their areas (= one- half base × altitude) gives the nice result

 AABCD = r (a + b + c + d). (6)

Similarly, we fi nd for the area of triangle ACD

A
r

a c d d dACD = + + − +1
1 12

2 2 2[ ( ( )) ].

Using l = a + c + 2(d − d1) from equation (2) and the fi rst of equations 
(4) to eliminate d1 gives

A
r

d a c lACD = + + +1

2
2( ).

For the top triangle ABC we play the same game, with l from equation 
(3) and the fi rst of equations (5) to eliminate b1, and get

A
r

b a c lABC = + + +2

2
2( ).

Setting AABCD = AABC + AACD yields

 2r(a + b + c + d) = r1(2d + a + c + l) + r2(2b + a + c + l). (7)

We can now eliminate r1 and r2 through the second of equations (4) 
and (5). A few lines of algebra gives an expression for AC2 = l 2:



 
AC a c

a c bd
b d

2 2 4= + + +
+

( )
( )
( )

.
 

(8)

Next we need to make use of a lemma, that AC(b2 + r2) = 4Rrb and 
AC (d2 + r2) = 4Rrd. Because Yoshida states this result without proof, we 
give a simple modern proof:

Proof of Lemma:
As shown in fi gure 7.5, AC = 2R sin α, but α is supplementary to B 

and so

AC R B

R
B B

R
r

b r

b

b r

=

=

=
+ +

2

4
2 2

4 2

1
2

2
2

1

1
2

2
2

sin

sin cos

.

Eliminating b1 and r2 with the help of equation (1) gives

 AC(b2 + r2) = 4Rrb. (9)

We also have AC = 2R sin D. Following the same procedure yields

 AC (d2 + r2) = 4Rrd, (10)

which proves the lemma.
Dividing equation (9) by equation (10) then shows that

 r2 = bd, (11)

and reinserting this into equation (9) yields the penultimate relationship

 
( ) .b d

Rr
AC

+ = 4

 
(12)
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Figure 7.5. The length AC = 2R sin α, but because the triangle 
OAB is isosceles, α and B are supplementary and AC = 2R sin B.
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The next stage is to go back to the beginning, remove chord AC 
from fi gure 7.4, reinstate chord BD, and repeat the entire analysis to 
fi nd an expression analogous to equation (12) for BD. By symmetry, 
however, one can guess the correct answer:

 
( ) .a c

Rr
BD

+ = 4

 
(13)

The proof is now essentially complete. Inserting the expression
 just obtained for (a + c) into the  right- hand side of equation (8), 
and eliminating (b + d) with equation (12) gives the desired 
result

 (AC · BD)2 = 4r2(AC · BD + 4R2). (14)

The reader can verify that if 2R = 12 and AC × BD = 112, then 
2r = 7.

Problem 5: Masuda’s First Problem
Yamaguchi’s answer to Masuda is as follows:

t R R=
− − +

+
=

7 49 3 2 108

2 108
0 2873

( )
. .

Yamaguchi seems to have been uncertain about this result and he wrote 

a second answer above the fi rst in his diary: t R= + −3 7 43 972/( ) . 
Perhaps he meant this as a correction, but the result is numerically 
identical to the fi rst and cannot be reconciled with the fi gure.

Fortunately, we have found an original solution to the same prob-
lem. The correct answer is

t
R

R= + − − =
12

59 085 3 409 3 102 3 165 0 1697[ , , ] . .

For the full solution, see chapter 6, problem 13.

Problem 6: Inō’s Problem
The solution of Inō’s problem requires no more than the Pythago-

rean theorem. We are given that q equals the length AQ and that 
segment p bisects the chord AB. Let x equal  one- half AB. Then from 
fi gure 7.6 q = x + h. Note also that h = x − r, where r is the radius of the 
small circle. Therefore

 
h

q r= −
2

.
 

(1)



Let R be the radius of the large circle and k ≡ R −  p. Drawing the 
auxiliary dotted lines, we see that by Pythagoras

x2 + (R − p)2 = R2.

Squaring this out with x = q − h yields

 h2 = 2Rp + 2qh − q2 − p2. (2)

Inserting equation (1) into the  right- hand side of equation (2) gives

 h2 = 2Rp − qr − p2. (3)

The diagram also shows that

 h2 + (r − k)2 = ε2. (4)

But by inspection ε = R − r. Solving equation (4) for h2 with k = R − p 
then gives

 h2 = 2Rp − p2 − 2rp. (5)

Substituting equation (5) into equation (3) yields the required result, 
q = 2p.

Problem 7: The Osaka Problem
The general solution is p = (3a+b)/2.
We could not fi nd the original proof but the result can be obtained 

fairly easily as follows:
Draw in the full circle of radius r, as in fi gure 7.7. Also draw three 

lines, two radii from the points at which circle a and the equilateral 
triangle touch circle r, and and a line from the center of r to the 
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h = x − r

A

B
C

p

R

h

x

r

k

r−k

ε
Q

q = x + h

Figure 7.6. A few auxiliary lines 
help.
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center of b. With the Pythagorean theorem it is not diffi cult to 
show that

r p r a
a p2 2

2

2
3 3

= + − + +
⎛
⎝⎜

⎞
⎠⎟

( ) .

Similarly,

( ) ( ) .r b b r a
a p b− = + − + + +

⎛
⎝⎜

⎞
⎠⎟

2 2

2

2
3

2

3 3

Solving each equation for r and eliminating r between them gives

(2a − p)b2 + (6a2 + 4p2 − 2ap)b + p(3a − 2p)(5a + 2p) = 0,

which factors into

[b + (3a − 2p)][(2a − p)b + p(5a + 2p)] = 0.

From fi gure 7.7, the second term must be positive. Therefore 
b + 3a − 2p = 0, or

p
a b= +3

2
,

as stated. One wonders why Yamaguchi thought about it for four or 
fi ve years.

Problem 8: Matsumiya’s Problem
Matsumiya did not give the answer to his problem but it is very easy 

and we can obtain the solution as follows:
Find the center of the original circle O of which the given arc is 

part. As shown in fi gure 7.8, draw in three radii from O to the end-
points of the arc and to the point where one of the perpendiculars, 
lk, intersects the arc. Then the Pythagorean theorem gives 

r

bp
a

r−2a

r−
b

Figure 7.7. The Osaka problem.
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r2 = a2 + (r − b)2, or r =(a2 + b2)/2b. If we label the lk from the left, then 
the Pythagorean Theorem also gives r 2 =(ak/8)2 + (r − lk)

2, and hence 
the desired solution

l r r
ak

kk = − − ⎛
⎝⎜

⎞
⎠⎟

=2
2

8
1 2 8( , , . . . , ).

Problem 9: Katori Zentarō’s Problem
Katori’s answer is

S S1 217
280

28 3
= −

−
⎛
⎝⎜

⎞
⎠⎟π

.

To get this result we follow another proof by Yoshida, which requires 
nothing more than elementary geometry and patience. The plan is to 
fi nd expressions for t and b (see fi gure 7.9) in terms of r; this will allow 
us to compute the required areas.

First, draw the auxiliary triangle shown in the fi gure. Then, by 
similar triangles,

 

t
p

r
x p

=
+

.
 

(1)

But by Pythagoras

x2 + (r − t)2 = (r + t)2.

k

A

C

b

a

l
B

r

r

r

O

Figure 7.8. For Matsumiya’s problem.
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Squaring this equation and solving for x gives x r t= 2 , and therefore 
from equation (1)

t
p

r

r t p
=

+2
.

Solving for p yields

 
p

t rt
r t

=
−

2
.
 

(2)

Convince yourself that the marked angles are the same. [Hint: It 
may help to drop a perpendicular from the center of the large circle 
to the hypotenuse of the triangle.] Then once more, by similar 
triangles,

 

q
r

t
p

q
rt
p

= =or .
 

(3)

Since the two sides BC and AD are equal, we have t p q r+ + + =
p r t r+ +2 ,  or, from the above expression for q,

2p r t pt rt= + .

Eliminating p with equation (2) gives after a few steps

5 22rt r t r t− = .

Squaring both sides yields the cubic equation

r3 − 10r2t + 25rt2 − 4t3 = 0,

h
p

x

b

A

DC

B

r

r

    a = 2r

q

t

r

p
t

t Figure 7.9. For Katori Zentarō’s problem.



which factors into

(r − 4t)(r2 − 6rt + t2) = 0.

Thus, we have three roots for r :

 r t r t t= = ±±4 3 8, . (4)

Convince yourself from the fi gure that the r = 4t root is the only one we 
want, from which equations (2) and (3) give

p
r

q
r= =

3
3
4

and .

We also have h = t + p = 7r/12. From the fi gure, b = r + h + q, and so

 b
r a= =7
3

7
6

. 
(5)

This is the desired result for b.
Now, referring to the original fi gure on page 256, the area of the 

black region is S h r t2
1
2

22= ⋅ − π . We use the above expressions to write 
h and t in terms of r, and solve for r2 to get

 
r S2

2
48

28 3
=

−
⎛
⎝⎜

⎞
⎠⎟π

.
 

(6)

Again referring to the original fi gure, we are to fi nd the area of the 
shaded region S ab ah r t1

1
2

2 2= − − −π π .  By assumption a = 2r, and we 
once more use the above expressions to write h and t in terms of r. 
Then using equation (6) we get

 
S S S1 2 2

196 51
28 3

17
280

28 3
= −

−
⎛
⎝⎜

⎞
⎠⎟

= −
−

⎛
⎝⎜

⎞
⎠⎟

π
π π

,
 

(7)

which is Katori’s answer.

Problem 11: Sawa’s Problem from the Syosya Temple
The answer for the specifi c case a = 72, b = 32 is c = 25.
In general,

c
a a b

b ab
= +

+
( )

.
2

3

Problem 14: Ukawa’s Problem from the Takarao Shrine
The number of balls is n = greatest integer part of h/2rπ .
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Problem 15: Kashiwano’s Problem in the Tenman Shrine
The answer is CH = 5.

Problem 17: Takeda’s Problem
The answer is

2
2 4 2 1 2

2 1 2
r

R S k d
S

= − + −
+

{ ( ) }
( )

,

where

S
T

T m T m
T

m R R k k

m k

R
d k

d

=
+ − −

=
− − +

= +

2 2

2 2

2

2 2

1 2 4

2

4
8

,
( / )( )

( / )
,

and .



Plate 8.1. The illustration from Uchida Kyō’s 1832 collection Kokon Sankan, for 
a problem that was originally proposed in 1822 by Yazawa Hiroatsu on a tablet 
hung at the Samukawa shrine of Kōzagun, Kanagawa prefecture. The result is 
known in the West as the Soddy hexlet theorem. (Aichi University of Education 
Library.)
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For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.

—Frederick Soddy, from 
“The Kiss Precise”

If there is a single lesson to be drawn from the preceding chapters, it is 
that creativity respects no geo graph i cal or cultural boundaries, in science 
or art. We are taught in Western schools that mathematics fl owed from an-
cient Greece to Western Eu rope, and with it so too did the great stream of 
discovery. One cannot and should not deny that the majority of important 
“classical” mathematical results have come to us through Greece and Eu-
rope but, as far as the subject of this book goes, a few famous theorems at-
tributed to Western authors  were in fact posted on sangaku prior to their 
occidental discovery, and a few others, which had been previously found in 
the West,  were in de pen dently discovered by traditional Japa nese geome-
ters.

We have already employed many of the ancient theorems common to 
East and West to solve problems throughout Sacred Mathematics. Apart from 
the omnipresent Pythagorean theorem, which reached Japan through 
China, there was Ptolemy’s theorem, “The sum of the products of the op-
posite sides of a cyclic quadrilateral is equal to the product of the diago-
nals,” which was required to solve problem 1, chapter 6. It is found, for 
example, in the 1769 Syuki Sanpō, or Mathematics, by Arima Yoriyuki (chap-
ter 3).
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Similarly, the law of cosines, which has fi gured in many exercises, turns 
up in an equal number of traditional Japa nese manuscripts, for instance, 
the 1840 Sanpō Chokujutsu Seikai, Mathematics without Proof, by Heinouchi 
Masaomi (?–?). (See also the solution to problem 27, chapter 4.) The law 
of sines was likewise well known. One fi nds it written on a surviving tablet 
dating from 1849 at the Kumano shrine of  Senhoku- gun in Akita prefec-
ture, as well as in the earlier book Sanpō Jojutsu of 1841. Heron’s famous 
formula for the area of a triangle, which was employed to solve problem 4 
in chapter 6, is found in an unpublished  nineteenth- century manuscript 
of Kawakita Tomochika (1840–1919). We pointed out in chapter 3 that 
the conditions for Pythagorean triples  were in de pen dently derived by tra-
ditional Japa nese mathematicians; so too  were the less  well- known Heron 
numbers, which are qua dru ples of integers that, analogously to the Py-
thagorean triples, can be associated with the sides of a nonright triangle 
and its area. In the solution to problem 1, chapter 5, we mentioned that 
Euclid’s algorithm was also known in Japan through China.

To mathematicians these theorems are  elementary—most are proved in 
any high school  course—and one could argue that it is hardly remarkable 
that the Japa nese came across them. However, traditional Japa nese geometers 
also discovered a number of more advanced and celebrated “modern” theo-
rems in de pen dently of their Western counterparts. Let us survey these now.

Descartes Circles, Soddy Hexlets, 
and Steiner Chains

The Descartes circle theorem concerns the relationship between the radii 
of four mutually tangent, or kissing, circles and is one of those theorems 
that has been periodically rediscovered over the centuries. The ancient 
Greeks often concerned themselves with the properties of tangent circles; 
Apollonius himself devoted an entire book to the subject in the third cen-
tury b.c., and it is entirely conceivable the result was known to him; how-
ever, his work On Tangencies has not survived.

The theorem as we know it receives its name from René Descartes, who 
mentioned the result in a letter of November 1643 to Princess Elizabeth of 
Bohemia,1 with whom he discussed philosophical and mathematical mat-

1 Oeuvres de Descartes, published by Adam et Tannery (Paris, 1901), vol. 4, p. 45.
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Figure 8.1. The Descartes circle theorem gives the relation-
ships among the radii of four kissing circles. The fourth 
can Either circumscribe the other three, or vice versa.

ters (presumably there is a lesson  here about the change in po liti cal lead-
ers between then and now). In modern notation the theorem can be written 
as it was employed to solve problem 12 in chapter 6:

2(k2
l + k2

2 + k2
3 + κ 2) = (k1 + k2 + k3 + κ)2,

2(k2
l + k2

2 + k2
3 + ζ 2) = (k1 + k2 + k3 – ζ)2.

Here, the k’s are the reciprocals of the radii of the circles shown in fi g-
ure 8.1 k1 ≡ 1/r1,  etc. The reciprocal radius of a circle is termed the curva-
ture, or in some older texts the “bend.” For the situation in which the three 
circles r1, . . . , r3 touch the fourth circle t externally, the curvature of t is 
taken to be positive, and so κ  ≡ 1/t comes into the formula with a plus sign. 
When r1, . . . , r3 touch the fourth circle r internally, the curvature ζ  ≡ 1/r is 
taken to be negative and comes in with a minus sign.

Descartes himself considered only the fi rst  confi guration—three circles 
kissing t—and his sketch was incomplete. In 1826, the great Jakob Steiner 
(1796–1863), one of the mathematicians who discovered inversion, in de-
pen dently proved the Descartes circle theorem for both confi gurations 
shown in fi gure 8.1. The next Western discoverer seems to have been 
Philip Beecroft, an En glish amateur mathematician, who derived the re-
sult in 1842. Finally, it was rediscovered again in 1936 by Frederick Soddy 
(1877–1956). As mentioned in chapter 6, Soddy is known to scientists as 
the physical chemist who, along with Rutherford, discovered the transmu-
tation of the elements via radioactive decay, and who immediately realized 
its implications for the future of the world. Soddy won the 1921 Nobel 
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Plate 8.2. On the right is Descartes’ original drawing for his circle theorem as 
it is found in his letter to Princess Elizabeth of Bohemia of November 1643. On 
the left is the illustration for the Japa nese version of the theorem as it appears 
in Hasimoto Masataka’s 1830 Sanpō  Tenzan Syogakusyo, or Geometry and Algebra. 
The theorem was well known in Edo Japan and employed to solve numerous 
sangaku problems. (Collection of Fukagawa Hidetoshi.)
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Prize in chemistry for the discovery of isotopes, a term he apparently 
coined. Being a physical chemist, he was interested in packing problems: 
How many cylinders (or circles) of differing sizes can be fi tted into into a 
larger circle? In the grand tradition, Soddy published his rediscovery of 
the Descartes circle theorem as a poem in 1936 in Nature.2  Here it is in its 
entirety. You will see that that the second verse describes the formula just 
given:

The Kiss Precise
by Frederick Soddy

For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

2 Nature 137, 1021 (1936).

Plate 8.2. (continued)
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Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An oscular surveyor
Might fi nd the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fi fth sphere in the kissing shares.
Yet, signs and zero as before, For each 
to kiss the other four
The square of the sum of all fi ve bends
Is thrice the sum of their squares.

Notice that the fi nal verse describes the Descartes circle theorem for 
spheres and, indeed, a year later Soddy produced the famous hexlet theo-
rem that bears his name: Given two spheres inscribed within a third sphere, 
such that they kiss each other as well as the outer sphere, put a necklace of 
spheres around the two given spheres. If all the spheres in the necklace kiss 
their nearest neighbors, as well as the outer sphere, then six and only six 
spheres can be placed in the necklace (see fi gure 8.2)

Once again Soddy published his result in Nature.3 We recognize this 
problem, however, as identical to problem 17 of chapter 6, which was 
originally posted in 1822 by Yazawa Hiroatsu on a sangaku hung in the 
Samukawa shrine of Kōzagun, Kanagawa prefecture. This is apparently 
the fi rst statement anywhere of the hexlet theorem. Moreover, the fi nal 
verse in Soddy’s poem is a statement of equation (1) in Ōmura Ka-
zuhide’s proof, which we gave as the solution to problem 17. Soddy’s 
proof is in fact remarkably similar, almost identical, to Ōmura’s. Thus, 

3 Nature 139, 77 (1937).
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we need say little more about it, except to repeat that it is more easily 
solved by inversion.

As for the Descartes circle theorem itself, this seems to have been the 
common property of traditional Japa nese mathematicians. In the Des-
cartes confi guration it appeared on a sangaku in 1796, which was subse-
quently lost but recorded in the 1830 book Saisi Sinzan, or Mathematical 
Tablets, by Nakamura Tokikazu. For interested readers, we now give a 
Japa nese proof from the 1830 Sanpō Tenzan Syogakusyo, or Geometry and 
Algebra, by Hasimoto  Masakata. It is about at the level of the problems in 
chapter 5.

First, we need a preliminary result: Given three kissing circles with radii 
r1, r2, r3, as in fi gure 8.3, show that

 ( )
( )( )
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r r r r
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where l is the external tangent common to circles r2 and r3. This problem 
is an easy one and we leave it as an exercise for the reader.

Referring to fi gure 8.4 and noting that all the circles are mutually kiss-
ing, the preliminary result gives at once
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Figure 8.2. Six and only six spheres can be fi tted in the 
 “necklace” around spheres a and b.

r
n

b

a    

r 

r 

r 

r 

1

3

4

r 2



290 Chapter 8
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Figure 8.4. Because the indicated angle at A is a right angle, it is inscribed in a 
semicircle and the two arrows will intersect at the opposite end of the diameter 
containing CO3 at a point C ′ (not shown).
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Figure 8.3. Find AB in terms of r1, r2, r3, and l.



East and West 291

The inscribed angles ABH and AC ′C subtend the same arc and so are 
equal. Thus, from similar right triangles,

AC
r

AH
AB2 3

= ,

which gives with equation (2)
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From the Pythagorean theorem
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Applying the law of cosines to ΔABC tells us that (AB)2 = (AC)2 + (BC)2 + 
2(BC)(CH). Plugging in the values from equation (2) and (3) yields the 
ungainly
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which nonetheless readily simplifi es to

r r t r r t r r r t r r t r r r r r r1 2 3 1 2 3 2 1 3 1 2 3 1 2 32( ) ( ) ( ) ( ),+ = + + + + + +

or, solving for t,

t
r r r

r r r r r r r r r r r r
=

+ + + + +
1 2 3

1 2 1 3 2 3 1 2 3 1 2 32 ( )
.

We leave it to the reader to show that this is equivalent to result on page 285.

Closely related to the Descartes circle theorem and Soddy hexlet is the 
“Steiner chain” or “Steiner porism,” after Jakob Steiner, who fi rst consid-
ered such confi gurations in the West. Given two circles, one within the 
other but not concentric, we imagine trying to fi t a chain of smaller circles 
of various sizes between them, each of which kisses both the inner and 
outer circles, as well as their nearest neighbors. We have already   encountered 
similar confi gurations in chapter 6; the hexlet is a  three- dimensional rela-
tive; a precise  two- dimensional example is shown in plate 8.3.
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Plate 8.3. In about the same year 
Jakob Steiner was inventing Steiner 
chains, Ikeda Sadasuke hung this 
problem at the Ushijima Chōmeiji 
temple in Tokyo. The drawing is 
from Shiraishi Nagatada’s 1827 
book Shamei Sanpu. (University of 
Aichi Education Library.)

One can well imagine that, if the radii of the circles in the loop are 
not just right, the circles will not fi t properly and end up overlapping, or 
contain a gap at the end of the chain. Employing the method of inver-
sion, which he largely invented, Steiner found the conditions on the ra-
dii of the smaller circles in the loop.

However, in 1826, just about the time Steiner was inventing inversion, a 
sangaku was hung by Ikeda Sadakazu at the Ushijima Chōmeiji temple in 
Tokyo. The tablet was lost, but recorded the following year in Shiraishi 
Nagatada’s book Shamei Sanpu, or Collection of Sangaku, from which plate 
8.3 was taken. The problem asks, given two nonconcentric circles with a 
loop of fourteen smaller circles inscribed between them, show that

1 1 1 1

1 8 4 11r r r r
+ = + .



East and West 293

Ikeda would certainly have solved this with the Descartes circle theorem, 
as in the solution to problem 12, chapter 6. With the powerful method of 
inversion, the answer is easy to get. One inverts the inner and outer circles 
to get two concentric circles. Then all the inverse circles in the chain must 
have equal radii. The inverse circles r′1, r′4, r′8, and r′11, must therefore lie on 
a rectangle, and so 1/r1 + 1/r8 = 1/r4 + 1/r11 by Iwata’s theorem, Theorem P, 
in chapter 10.

The Malfatti Problem

The Malfatti problem has had a long and tortuous history. It was fi rst pro-
posed in the West in 1803 by the Italian mathematician Gian Francesca 
Malfatti (1731–1807) who asked the following practical question:

Given a right triangular prism of any sort of material, such as marble, 
how shall three circular cylinders of the same height as the prism and 
of the greatest possible volume of material be related to one another 
in the prism and leave over the least possible amount of material?4

One does not need to consider cutting columns from a block of marble, 
and Malfatti’s problem immediately reduces to one of two dimensions: 
How can you place three circles in a given triangle such that the area of the 
circles is maximized?

Malfatti intuitively assumed that the maximum was attained by three 
circles that are mutually tangent, as in fi gure 8.5. This question, how do 
you inscribe three circles in a triangle such that they are mutually tangent 
and each tangent to two sides of the triangle? has, much to everyone’s con-
fusion, come to be known as Malfatti’s problem, to which Malfatti provided 
a solution.

To be sure, a number of later geometers, including Steiner himself in 
1826, devised other proofs, verifying Malfatti’s solution. Strangely, well 
over a century passed before in 1930 H. Lob and H. W. Richmond pointed 
out that the Malfatti confi guration was not always the solution to the prob-
lem as originally posed.5 For example, in fi gure 8.6 the confi guration of 

4 Gianfrancesco Malfatti, “Memoria sopra un problema sterotomico,” Mem. Mat. Fis. Soc. 
Ita. Sci. 10, No. 1, 235–244 (1803).

5 H. Lob and H.W. Richmond, “On the solutions to Malfatti’s problem for a triangle,” 
Proc. London Math. Soc. 2, No. 30, 287–304 (1930).
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circles on the  left—which are not mutually  tangent—has a greater area 
than the kissing circles on the right.

Indeed, in 1967, Michael Goldberg showed that the Malfatti confi gura-
tion is never the solution to the original problem.6 As to what exactly is the 
best confi guration, this question was only laid to rest fairly recently, in 1992, 
by V. A. Zalgaller and G. A. Los’. Their proof7 is rather involved, requiring 
even a computer, but briefl y they showed that there  were fourteen different 
confi gurations of  circles- within- triangle to consider, then systematically 
eliminated twelve of them, to be left with two very different ones, each of 
which could take on the maximum value depending on the angles of the 
triangle. The two confi gurations are shown in fi gure 8.7. Notice that neither 
of them are the Malfatti confi gurations, as Goldberg predicted.

The story now has another chapter. The great Japa nese mathematician 
Ajima Naonobu (chapter 3) gave a solution to the problem: How do you 
inscribe three mutually tangent circles in a triangle? in a manuscript ap-
proximately thirty years before Malfatti proposed it. The manuscript was 

6 Michael Goldberg, “On the original Malfatti problem,” Math. Mag. 40, No. 5, 241–247 
(1967).

7 V.A. Zalgaller and G.A. Los’, “The solution of the Malfatti problem,” Ukrainskii Geomet-
richeskii Sbornik 35, pp. 14–33 (1992); En glish translation J. Math. Sci. 72, No. 4, 3163–3177 
(1994).
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2Figure 8.5. Malfatti’s solution to his own problem 
was something like this.

Figure 8.6. The combined area of the circles 
on the left is greater than on the right.
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edited only the year after Ajima’s death as Fukyū Sanpō or Masterpieces of 
Mathematics.

His solution was somewhat along the lines of problem 4 in chapter 6, but 
longer and more complicated. Given a triangle ABC with an inscribed cir-
cle of radius r, then according to Heron’s formula for the area of a triangle

r
s a s b s c

s
= − − −( )( )( )

,

where s is the semiperimeter (see also the solution to problem 1, chapter 6). 
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where the r’s are as shown in fi gure 8.5. Ajima also gave an example: If 
a = 507, b = 375, and c = 252, then r1 = 64, r2 = 56.25, and r3 = 36. We leave 
the details as an exercise for intrepid souls.

Other  Well- Known Theorems

There are a number of other celebrated Western theorems, discovered as 
well by the Japa nese, that are somewhat more diffi cult to derive than the 
above and we end this chapter by giving them a brief mention.

One of the most famous of these is Feuerbach’s theorem, after Karl 
Wilhelm Feuerbach (1800–1834) who published it in 1822. To understand 
Feuerbach’s theorem, one must fi rst know something about the “nine- point 
circle” (also known as the Euler or Feuerbach circle). Any triangle ABC has 
nine “special” points. These are the midpoints of the sides, the bases (or 

Figure 8.7. The winning confi gurations. The 
one on the left wins if sin (A/2) ≥ tan (B/4).

C

BA
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feet) of the three altitudes, and the midpoints of the segments from the 
vertices to the orthocenter (the point at which the three altitudes inter-
sect). It turns out, implausibly, that a single circle can be drawn through all 
the nine special points of the triangle!

What’s more, if one extends the sides of ABC, one can draw three exter-
nal circles that are tangent to the original sides. Feuerbach proved that the 
 nine- point circle is tangent to all three of these “excircles” as well as to the 
incircle (inscribed circle) of ABC. The Japa nese did not have the concept 
of the  nine- point circle, but the problem to fi nd the radius of a circle tan-
gent to its three excircles was posted on an 1801 sangaku, which has disap-
peared; the solution was recorded in Nakamura Tokikazu’s 1830 Saisi 
Sinzan. The circle (see fi gure 8.8) is the  nine- point circle. The traditional 
proof is far too involved to present  here8 but the result on the sangaku was

r
r r r r r r

r r r r r r
=

+ + +
+ +

( )( )( )
( )

,1 2 2 3 3 1

1 2 2 3 3 18

where r is the radius of the  nine- point circle and r1, r2, and r3 are the radii 
of the excircles.

A somewhat less  well- known theorem, but one that is very useful (in fact 
sometimes used to prove Feuerbach’s theorem) was stated by John Casey, 
apparently in 1857. This one concerns four circles tangent to a fi fth circle. 

8 The full proof is given by Fukagawa and Pedoe, Japa nese Temple Geometry Problems, 
pp. 111–114 (“For Further Reading: Chapter 6,” p. 339).
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BFigure 8.8. Feuerbach’s theorem as it appears on a 
sangaku. The sides of triangle ABC are extended as 
shown. Three excircles of radii r1, r2 and r3 are drawn 
tangent to the extended sides. A smaller circle of 
radius r is drawn that kisses all three excircles. A 
large circle of radius R is drawn circumscribing the 
excircles. Find r and R in terms of r1, r2, and r3. Circle 
r is the  nine- point circle.



East and West 297

In slightly less than its most general form, Casey’s theorem states that four 
circles of radii r1, r2, r3, r4 are tangent to a fi fth circle or a line if and only if

t12t34 ± t13t42 ± t14t23 = 0,

where t12 is the common tangent between circles 1 and 2,  etc.9

In 1830 the theorem was stated by Shiraishi Nagatada as follows: For 
four circles to touch a fi fth circle, externally or internally, then

t12t34 + t14t23 = t13t24

Casey’s theorem is actually not diffi cult to prove with the tools already at 
hand. In fi gure 8.9 let the segment AB from the point of tangency between 
circles r1 and r2 be d12, with similar designations for the other like seg-
ments. Then, the preliminary result that we needed to prove the Descartes 
circle theorem tells us at once that
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9 For a proof and more on the signifi cance of the signs, see Paul H. Daus, College Geometry 
(Prentice- Hall, New York, 1941).
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Figure 8.9. Let AB = d12, with similar labels for 
the other segments.
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Also notice that the segments d12, d23, d34, and d41 form a cyclic quadrilat-
eral (an inscribed quadrilateral) in circle r5. Thus Ptolemy’s theorem 
from above (or see problem 1, chapter 6) applies, and immediately gives

d12d34 + d41d23 = d13d24.

Since (tijtkl)
2 = k(dijdkl)

2 for all values of i, j, k, l, Shiraishi writes

t12t34 + t41t23 = t13t24,

which, however, is not general.
More briefl y, as already noted in problem 18, chapter 6, Euler’s 1778 for-

mula for a spherical triangle was posted on a sangaku about a quarter of a 
century later, in 1804. Euler showed that the area of a spherical triangle ABC 
on the surface of a sphere of radius r could be written as S = Er2, where

cos
cos cos cos

cos cos cos
E A B C

A B C2
1

4 2 2 2
=

+ + +
( / ) ( / ) ( / )

.

In this formula, A, B, and C represent angles such that sin(A/2) = a/(2r), 
sin(B/2) = b/(2r), sin(C/2) = c/(2r), with a being the  straight- line seg-
ment opposite ∠A,  etc. Employing the identities cos A = 1 − 2sin2(A/2), 
cos B = 1 − 2sin2(B/2), and cos C = 1 − 2sin2(C/2), Euler’s formula becomes 
S = Er2, where
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identical to the the result of problem 18 (chapter 6).
Readers who have worked through problem 24 in chapter 5 will also 

know that the problem of fi nding the volume cut out of a sphere by two 
parallel  cylinders—known in the West as the solid of Viviani, after Galileo’s 
student Vincenzio Viviani (1622–1703)—was written down in 1844 by 
Uchida Kyūmei (chapter 9) in his 1844 Theory of Integrations. There is little 
to add to except to say that Uchida’s complicated method bore little resem-
blance to anything we would try today.

Finally, in 1896, Joseph Jean Baptiste Neuberg published a problem in 
the French mathematics journal Mathesis.10  Here is a translation. Neuberg 
did not accompany his problem with a diagram; we will be merciful(?): 
Given a triangle ABC, let R, r, ra, rb, rc be the radii of the circumcircle O, the 
incircle I, and the three excircles Ia, Ib, Ic, respectively.

10 J. Neuberg, Mathesis, p. 193, problem 1078 (1896).
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The fourth tangents common to pairs of the excircles Ia, Ib, Ic form a tri-
angle A1B1C1. Show that the center of the incircle of triangle A1B1C1 is the 
same as the center of the circumcircle of triangle IaIbIc and that the follow-
ing relation holds:

r R r
r r r ra b c

1 2
2

= + = + + +
.

The result 2r1 = r + ra + rb + rc was presented in 1803 by Yamamoto Nori-
hisa (?–?) on a sangaku at the Echigo Hakusan shrine, Niigata prefecture. 
The tablet, subsequently lost, was recorded in Nakamura’s 1830 manuscript 
“Saishi Shinzan.”

Although Neuberg’s problem is itself of little consequence, along with 
the other theorems discussed in this chapter, it probably does serve to sup-
port the true mathematician’s conviction that mathematics in a parallel 
universe would be the mathematics we know.

I

CB

A

R
r

A

C1

B1

I

ra

b

cI

Iarb

rc

1

Figure 8.10. Neuberg’s problem. 
The excircles, Ia, Ib, Ic are drawn 

in solid lines. ΔIaIbIc is not drawn 
but its circumcircle is the dotted 
line through Ia, Ib, Ic. The radii of 

ΔABC ’s incircle and circumcircle 
are r and R ; the circles are drawn 
in dotted lines. The radii of the 
excericles are ra, rb, and rc. The 

incircle of ΔA1B1C1, also dotted, is 
marked I.



Plate 9.1. The area of a circle of diameter d is S = (π/4)d2 = (πd/2) × d/2.  Here, in 
an illustration from the Jinkō- ki of 1778, a circle is sliced into a collection of 
sectors and thus changed into a rectangle with sides d/2 and πd/2. Consequently, 
the area of the original circle is S = πd/2 × d/2 = (π/4)d 2. Approximating the 
value of π and calculating the area of circles was central to the Enri concept. 
(Collection of Fukagawa Hidetoshi.)
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The circle principle is a perfect 
method, never before known in ancient 
or in modern times. It is a method 
that is eternal and unchange-
able . . . It is the true method . . . 

—Hachiya Sadaaki,1 as quoted by 
Smith and Mikami

We devote the fi nal two chapters of Sacred Mathematics to matters of tech-
nique. Chapter 9 is dedicated to providing an answer, insofar as there is 
one, to a question that has certainly occurred to readers who have at-
tempted certain of the more diffi cult problems: Given that wasan did not 
include a fully developed theory of calculus, how did traditional Japa nese 
geometers solve the  maxima- minima problems, which require differentia-
tion, or solve problems requiring integration? In the solutions to chapters 
5 and 6 we have given an idea of how the Japa nese approached integration, 
although we have said nothing about differentiation.  Here we tackle both 
matters explicitly.

Differentiation

The question of differentiation in some sense is more diffi cult than that of 
integration because, although traditional Japa nese mathematicians wrote 
volumes on integration techniques, they  were virtually silent about how 
they took derivatives. One thing is certain: the Japa nese did not have the 

1 Sometimes Hachiya Teisho.
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concept of differentiation as we know it. In no traditional manuscript do we 
fi nd the fundamental formula for the derivative:

′ =
+  −

→
f x

f x f x
( ) lim

( ( )
.

ε

ε)
ε0

Without this concept it is diffi cult or impossible to develop a formal theory 
of differentiation. Perhaps for this reason in the wasan differentiation was 
confi ned to fi nding the maximum or minimum of functions.

How did the traditional geometers do this? For quadratic functions, pa-
rabolas, one knows without calculus that the maximum or minimum is at 
the vertex of the parabola, and so for functions of the form y = ax2 + bx + c, 
one can write down the answer: xmin/max = –b/2a and ymin/max = y(xmin/max). 
By induction, one can do this for a few polynomials, y = f(x) = a0 + a1x + 
a2x

2 + a3x
3 +  · · ·  and postulate that the extremum of the function will be 

at 0 = a1 + 2a2x + 3a3x
2 + · · · . It is certainly the case that the traditional 

Japa nese geometers did not differentiate nonpolynomial functions.
For example, in problem 44, chapter 4, we obtained an expression for 

the area that we wanted to maximize, S t t a t t( ) .= − −2 22 2 2  From that 
point on we gave a modern solution:

′ = − −
−

−S t a t
t

a t
t( ) ,2

2
42 2

2

2 2

and S ′ = 0 implies a t t a t2 2 2 22 2− = − .
The Japa nese geometers, however, could not differentiate 

S t a t t= − −2 22 2 2  directly. Instead they probably did something like 
this:

 S t a t t

S t t a t

S St t a t t

SS S t St t a t t

= − −
+ = −

+ + = −
′ + ′ + + = −

2 2

2 4

4 4 4 4

2 4 2 16 8 16

2 2 2

2 2 2 2 2

2 2 4 2 2 4

2 3 2 3

,

( ) ( ),

,

( ) .

 (1)

If at the maximum S ′ = 0, then

S a t

t a t t a t

a t t a t

= −

− − = −

− = −

2 2

2 2 2 2 2

2 2 2 2

4

2 2 4

2 2

,

,

,      (2)

as before.
Unfortunately, the traditional mathematicians wrote down only steps 

(1) and (2), and we have no evidence how they got from one to the other. 
For polynomials, the product rule (St2)′  = S ′t + 2tS can be established with-
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out too much diffi culty, but how they extended it to other functions, 
whether they just assumed it was true, is nowhere made explicit. The above 
sketch, then, is our best guess and it will have to suffi ce.

Toward Integration

At the outset of the book we spoke of how the traditional Japa nese concept 
of integration is bound up with the Enri, usually translated as the ineffable 
“circle principle.” During the early days of wasan—we gave abundant evi-
dence in chapter  3—Japanese mathematicians  were deeply concerned with 
approximating π, which is virtually inseparable from the essential concept of 
“circle.” Such calculations  were facilitated and spurred on by the soroban, and 

Plate 9.2 Early Enri calculations  were largely concerned with fi nding the value of π.  Here is an 
illustration from Takebe Katahiro’s 1710 book Taisei Sankei, in which he used a 1,024- sided regular 
polygon to approximate π as π = 3.141592653589815383241944 (see chapter 3). (Collection of 
Fukagawa Hidetoshi.)
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the term Enri initially referred to such computations. A samurai comput-
ing π, when asked what he did while not at his government job, might have 
replied that he was engaged in Enri calculations. It was only later that the Enri 
took on the connotation of fi nding areas and volumes by defi nite integration.

The transition from calculating π to fi nding areas and volumes took 
place over centuries. For simple geometrical fi gures, of course, it is quite 
easy to fi nd the area, and no calculus is required. A curious example of how 
to compute the area of a circle is shown in plate 9.1 from the 1778 edition 
of the Jinkō- ki. While it tacitly assumes that you already know the formula 
for the area of a circle, it does contain the notion of slicing up a fi gure, 
which is crucial in the calculus approach to computing areas.

An important step in the direction of calculus was taken by Takebe Kata-
hiro (chapter 3). One of the most important problems in traditional Chi-
nese and Japa nese mathematics was to fi nd an arclength l of a circle in 
terms of its radius and k, the length of the sagitta (fi gure 9.1). (“Sagitta,” 
from the Latin “arrow” is a trigonometric function unfortunately not much 
in use nowadays. Figure 9.1 gives an idea of where the word comes from. It 
is also known as the versine, versin θ ≡ 1 − cos θ.) Takebe was the fi rst Japa-
nese mathematician to devise a successful method, which he did by intro-
ducing the notion that functions could be expanded in infi nite series.2 This 
was an original contribution and one not imported from China.

Takebe does not fully explain his methods, but for a circle with 2r = 10 
and sagitta k = 10−5 he found, by enormous computational ability and the 
soroban, (l/2)2 = 0.00001000000333335111112253969066. From this calcu-
lation, he  deduced—apparently by trial and  error—the expansion (l/2)2 =
k + (1/3)k2, and after further calculation decided on the infi nite series 
(l/2)2 = k + (1/3)k2 + (8/45)k3 +  · · · .

Today we would probably do Takebe’s calculation by taking k =r (1 − cos θ) = 

2r sin2(θ/2), which implies that l r r k r/ sin ( / ),2 2 21= = −θ  and then 
 expanding the inverse sine function in a Taylor series as in Eq. (5), below.

If, like Takebe, one takes the length of the sagitta to be the radius of the 
circle, then one immediately has a formula for π2, which makes it clear why 
such computations fell under the circle principle.

2 Readers unfamiliar with series expansions should know that most functions f(x) can be 
approximated as the sum of powers of x. For instance ex = 1 + x + x2/2! + x3/3! +  · · ·  and 
sin θ = θ − θ3/3! + θ 5/5! − θ7/7! · · · . Generally, the more powers of x—or in the latter case 
θ—included, the more accurate the approximation. Such series are usually referred to as 
Taylor series or Maclaurin series. To take the derivative of a function, one can differentiate 
the series term by term or, conversely, one can integrate a function by integrating its series 
repre sen ta tion term by term.
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Matsunaga Yoshisuke, who calculated more digits of π than any other 
traditional Japa nese mathematician (chapter 3) employed Takebe’s meth-
ods. In his book Hōen Sankei of 1739, Matsunaga presented many numerical 
methods for use with the soroban, in other words computer programs. 
These recipes took the form of Takebe’s series expansions. The following 
problems are typical of what traditional Japa nese mathematicians called 
Enri calculations.

Problem 1
We are given a circle of diameter 1 and a segment with arc l, chord h, and sagitta 

k h= − −1 2 1 4 42/ / / . Confi rm that the following series repre sen ta tions are correct:

(1) k in terms of l:

2
2 4 6 8

2 4 6 8
k

l l l l= − + −
! ! ! !

. . .

where n! = 1 · 2 · 3 · · · · n.
Originally, Matsunaga wrote this in a somewhat more complicated way:

k = A0 − A1 + A2 − A3 + A4 − A5 . . .

where A0 = l 2/4; A1 = (l 2/12)A0; A2 = (l 2/30)A1; A3 = (l2/56)A2; · · · .
(2) h in terms of l:

h l
l l l= − + −

3 5 7

3 5 7! ! !
. . . .

Matsunage wrote this series in a way analogous to the previous, but we omit it.

Modern solutions can be found on page 311.

l

Θ
k

h

Figure 9.1. In this fi gure, l is the full arclength subtended by 
the chord. The segment h is the full chord. For a unit circle, 
k ≡ 1 − cos θ is termed the sagitta.
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As already remarked, Takebe evidently discovered his series by trial 
and error, not to mention hard soroban handling. The formal concept of 
the Taylor series had yet to be invented. A more theoretical approach was 
introduced by Wada Yasushi,3 who was born samurai in 1787 into the Ban-
syu clan of Hyogo province. Later he moved to Edo to become a Master of 
Mathematics in an astronomy institute. As we shall see momentarily, Wa-
da’s main work was on defi nite integrals. He wrote  sixty- six manuscripts 
but they  were all destroyed by fi re. Anxious to help his friend, and an-
gered that other mathematicians  were plagiarizing Wada’s results, Koide 
Kanemasa (1797–1865) published the Enri Sankei (1842), or Mathematics of 
the Enri, making clear that it was Wada’s work. Wada’s sole passion was 
mathematics and he disdained honors, with the consequence that he 
spent his entire life in poverty, dying in 1840.

In the Enri Sankei, or the Mathematics of Enri, Wada deduces the expan-
sion of 1 − x  by assuming that 1 0 1 2

2
3

3− = + + + +x a a x a x a x . . . .  Squar-

ing both he gets 1 2 20
2

0 1 1
2

0 2
2− = + + + +x a a a x a a a x( ) . . . ,  which implies 

a0 = 1, a1 = –1/2, a2 = –1/8, a3 = –3/48, . . . , or

 
1 1

1
2

1
8

3
48

15
384

105
3840

2 3 4 5− = − − − − − −x x x x x x . . .
 

(3)

in agreement with the binomial expansion. Similarly,

 

1

1
1

1
2

3
8

15
48

105
384

945
3840

2 3 4 5

−
= + + + + + +

x
x x x x x . . . .

 
(4)

Defi nite Integration

With such expansions, Wada and other Japa nese mathematicians  were in 
a position of being able to calculate various defi nite integrals. Their basic 
procedure was essentially what every calculus student learns when fi rst cal-
culating the areas under curves y = f(x): Divide the domain of integration 
from 0 to xf into small subintervals Δx = (xf )/N; approximate the area un-
der the curve as A f x xn

N
n= =Σ Δ1 ( ) , and let N → ∞. The diffi cult part of this 

procedure is evaluating Σ f(xn). Taking the function f(x) = x2 as a standard 
example, we let xn = (xf ) · n/N. Then

A x x x
n
N

x

N
nn f

n

N

n

N
f

n

N

= = =
== =

∑∑ ∑2 3

11

2

3

2

3
2

1

Δ . .

3 Sometimes Wada Nei.
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But from chapter 2, problem 4- 7, we know how this series sums, and so

A
x

N
N N Nf= + +⎛

⎝⎜
⎞
⎠⎟

3

3

3 2

3 3 6
.

Taking the limit N → ∞, yields the  well- known result A x f= 3 3/ .
Calculus students, though, quickly learn more effi cient methods of eval-

uating integrals. Employing the universal method of substitution, we usu-
ally bring complicated functions into polynomial form, which is then easy 
to integrate. The traditional Japa nese geometers did not go that far. Re-
gardless of the function, they expanded it in a series and calculated the 
defi nite integral as we have just done. Wada’s Enri Sankei, for example, in-
cludes many tables, the Enri Hyō 4 of defi nite integrals of irrational func-
tions. Wada’s near contemporary, Uchida Kyūmei (?–1868), made a detailed 
study of such integrals. It is worth saying a few words about Uchida. Like 
most of the other mathematicians we met earlier, Uchida was a samurai, 
from the Hikone clan in Shiga province, and he eventually become math-
ematics teacher to the lord of the clan himself, Ii Naosuke. Uchida’s main 
work is the Sanpō Kyūseki  Tsu- ko of 1844, the fi ve–volume Theory of Integrals, 
from which we have already taken solutions to problems 22 and 23 in chap-
ter 5 and problem 19 chapter 6.  Here are further examples of defi nite 
integration from the Enri Sankei and the Sanpō Kyūseki  Tsu- ko that employ 

the expansion of 1 2− x  and 1 1/ − x .

4 Literally “folding tables,” from the Japa nese term for integration.

n

x

y

x
fΔ x x

Figure 9.2. In this standard calculus example, 
the function is y = x2. The interval along the 
x-axis between 0 and xf, the fi nal value of x, 
is divided into subintervals each with width 
Δx = xf /N, where N is some large integer. An 
intermediate point xn is given the value 
xn = nΔx = nxf /N, where n < N is another 
integer. As explained in the text, taking the 
limit N→∞ leads to the defi nite integral of x2.
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Plate 9.3. These Enri tables by Wada Yasushi are from his Enri Sankei 1842 manu-
script. The columns on the  right- hand page are series for the circumference of a 
circle, and series for the area. (Japan Academy.)

Problem 2
From fi gure 9.1, fi nd the length l in terms of r and the chord length h.

Uchida’s Original Solution: The method of solution is similar to several other problems 
we have encountered, especially problems 22–24 in chapter 5.  Here, let h be the  half-

 length of the chord. The infi nitesimal arclength along the circle is dx dy2 2+ . We 
integrate along y. Then

l dx dy dy
h

= +∫2 1 2

0
( / )

From similar triangles, as in fi gure 5.39 or 5.41 of chapter 5, we fi nd dx/dy = − y/x. Along 
the circle x2 = r2 − y2. Eliminating x, making the substitution y = ht and expanding the 
denominator by Eq. (4) gives

l h
ht r

dt

h ht r ht r ht r dt

h h r h r

=
−

= + + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +

= + ⋅ + ⋅ ⋅ ⋅ + ⋅

∫

∫

2
1

1

2 1 1 2 1 3 2 4 1 3 5 2 4 6

2 1 1 2 3 1 3 2 4 5 1 3

20

1

2

0

1
4 6

2 4

( / )

[ ( / )( / ) ( / )( / ) ( / )( / ) . . . , ]

[ ( / )( / ) ( / )( / ) ( ⋅⋅ ⋅ ⋅ ⋅ +5 2 4 6 7 6/ )( / ) . . .].h r
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In modern notation we would write this as

l r h r h h r h r h r= = +
⋅

+ ⋅
⋅ ⋅

+ ⋅ ⋅
⋅ ⋅ ⋅

+⎡
⎣⎢

⎤
⎦⎥

2 2 1
1

2 3
1 3

2 4 5
1 3 5

2 4 6 7
2 4 6arcsin( / ) ( / ) ( / ) ( / ) . . . ,

or, with x = h/r,

l x x x x x= = +
⋅

+ ⋅
⋅ ⋅

+ ⋅ ⋅
⋅ ⋅ ⋅

+arcsin
1

2 3
1 3

2 4 5
1 3 5

2 4 6 7
3 5 7 . . . .

Two de cades earlier, in 1822, Sakabe Kōhan (1759–1824) had employed 
the same procedure to to fi nd the length of an ellipse, a result he wrote 
down in his manuscript Sokuen Syukai, or “Circumference of Ellipse.” 
Sakabe was the fi rst Japa nese mathematician who succeeded in doing this.

Problem 3
Here are three of Wada’s expansions from plate 9.3. Two are for the area of a circle 

and one for the circumference. Confi rm their correctness.

( ) . . . ,

( ) . . . ,

( ) . . .

1 1
1
3

1
5

1
7

1
9

2 1
1

2 3
1

5 8
3

7 48
15

9 384
105

11 3840

3 2 1
1

2 3
3

5 8
15

7 48
105

9 384
945

11 3840

2

2

A d

A d

C d

= − + − + −⎛
⎝⎜

⎞
⎠⎟

= −
⋅

−
⋅

−
⋅

−
⋅

−
⋅

⎛
⎝⎜

⎞
⎠⎟

= +
⋅

+
⋅

+
⋅

+
⋅

+
⋅

⎛
⎝⎜

⎞
⎠⎟
..

Solutions are on page 311.

As a fi nal example of the Enri, also from Uchida’s Sanpō Kyūseki  Tsu- ko, we re-
turn to problem 19 from chapter 6, one of the most diffi cult problems in the 
wasan. We  were to fi nd the surface area cut out of an elliptic cylinder by the 
sectors of two right circular cylinders. The problem resulted in the integral

S d Dd t d D t
b a d a t

d a t
dt= −

− −
−∫4 1

1 1
1

1 2
2 2 2 2 2

2 2 20

1
/ ( / )

( / )( / )
( / )

,

which we evaluated numerically. Although the author of the problem, Mat-
suoka Makota, did not write down his detailed calculations on the sangaku, 
he evidently did much the same but in a fashion more suitable for soroban 
calculations. The integrand contains three square roots, two of which are 
of the same form. We use the binomial expansions above for 1 − x  and 
1 1/ ,− x  applying the fi rst expansion to the two square roots in the 
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numerator and the second expansion to the square root in the denomina-
tor. Thus, we are multiplying together three infi nite series. This results in 
calculations too lengthy to reproduce  here, but Makota did summarize 
them on the tablet. First, he writes the three infi nite series in terms of the 
following recursion formulas:

(1) With s ≡ 1 − b2/a2, a and b as above, let

c s

c s c

c s c sc

c s c sc

c s c sc

1

2 1

3 2 1

4 3 2

5 4 3

1
2

1

1
4

3
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6

5 3
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7 5
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9 7
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⎞
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⎝⎜

⎞
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≡

( ),

( )

( ) ,

( ) ,

( ) ,

. . . . . . .

(2) With w ≡ d 2/a2 and c D D d≡ − −2 22( ) ,  let

B
c
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B wB

B wB
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3 2

4 3
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,
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(3) With t ≡ d·D/a2 and k ≡ D/d, let
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A c D D t D kB B
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Solutions to Selected Chapter 9 Problems

Problem 1
(1) In this case we do not have a unit circle, but rather r = 1/2. Thus, 

from fi gure 9.1, versin θ = k = r − x = r(1 − cos θ), and l = 2rθ = θ. 
 Expanding cos θ in a Taylor series immediately gives

2 2 1

2 1 1
2 4 6 8

2 4 6 8

2 4 6 8

2 4 6 8

k r

r

l l l l

= −

= − − + − +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − − +

( )

! ! ! !
. . .

! ! ! !
. . . .

cosθ

θ θ θ θ

(2) Since h is the full chord, h/r = 2 sin θ . As in part 1, we expand 
sin θ in a Taylor series or, equivalently, differentiate the series for cos θ. 
Since l = θ, we have at once

h l l
l l l= = − + −sin

3 5 7

3 5 7! ! !
. . . .

Problem 3
(1) The area should be A = πd2/4. We recognize the quantity in 

parentheses as tan–1x = x − x3/3 + x5/5 − x7/7 + · · · , for x = 1. 
Arctan(1) = π/4. Therefore we regain A = π d2/4.

(2) The area of a unit circle is

A dx dy x dx
x

= = −∫∫∫
−

4 4 1 2

0

1

0

1

0

1 2 2

.

Use the binomial expansion given in equation (3) to get

1 1 1 2 1 8 3 482 2 4 6− = − − − −x x x x( / ) ( / ) ( / ) . . .

and integrate both sides. Multiply by d 2/4 to get Wada’s result.
(3) This result follows from problem 2 in the text. There we found l 

by expanding 1 1 2/ − x  to get l = 2r arcsin(h/r). Notice that the series 
in Uchida’s solution is the one we are asked to confi rm. Merely substi-
tute (h/r) = 1 and multiply by 2 to get C = πd.

Then the fi nal result, written on the tablet, is given as
S = A0 + A1 + A2 + A3 + A4 + · · · .

We leave it an an exercise for the reader to fi ll in the details, but the re-
sult is correct.



Plate 10.1. Traditional Japa nese geometry problems typically involve multitudes 
of circles within circles, such as those shown  here or in chapter 6. Traditional 
Japa nese mathematicians would have solved them using the methods of chapter 6, 
but they are more easily solved by the technique of inversion, the subject of this 
chapter. The original illustrations  here are from Fujita Kagen’s Shinpeki Sanpō of 
1789. The problem, which asks you to show that r7 = r/7, is from a lost tablet hung 
by Kanei Teisuke in 1828 in the Menuma temple of Kumagaya city, Saitama 
pefecture. We know of it from the 1830 manuscript Saishi Shinzan or Collection of 
Sangaku by Nakamura Tokikazu (?–1880). (Japan Academy.)
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The world needs to be turned upside 
down in order to make it right side up

—Billy Sunday, possibly

In chapter 6 we encountered several problems with multiple circles 
in contact with one another. A striking example was problem 12, pro-
posed by Hotta Jinsuke and hung in 1788 at the Yanagijima Myōkendō 
temple of Tokyo. Yoshida’s original solution of Hotta’s problem deployed 
the Japa nese equivalent of the Descartes circle theorem, but this prob-
lem and many similar ones can be solved more easily by an extraordi-
narily powerful and simple technique known as inversion, which was 
discovered in the West in de pen dently by several mathematicians between 
1824 and 1845, and which was unknown to the practitioners of tradi-
tional Japa nese mathematics. Roughly speaking, inversion is a way of 
turning fi gures inside out; points that  were inside the fi gure become 
points outside the fi gure, and vice versa. Certain problems involving cir-
cles that at fi rst glance seem impossible are quickly vanquished in this 
 inside- out space, after which one “reinverts” back to the original space to 
get the fi nal  result.

Inversion can only be called “way cool,” and although it is simple 
enough to be mastered by high school se niors, it is evidently no longer 
taught in the United States except in some advanced undergraduate 
mathematics courses. Therefore in this chapter we give an introduction 
to the technique, including enough theorems to solve the problems in 
the book. The proofs are fairly standard; and interested readers can fi nd 
variations on them in any of the references in the “Further Reading” sec-
tion. Once the theorems are in hand, we employ them to solve Hotta’s 
problem.
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Inversion is an operation generally defi ned with respect to a circle. Sup-
pose we are given a circle Σ with radius k and center T (see fi gure 10.1).

P and P ′ are two points in the plane containing Σ. Notice that by construc-
tion P and P ′ lie on the same line. If the lengths TP and TP ′ in the fi gure are 
such that

 TP · TP ′ = k2, (1)

we say that P and P ′ are inverses. In other words, when the radius k is the 
geometric mean of TP and TP ′, P and P ′ are inverses. Equivalently, we can 
say that the point P has been inverted with respect to the circle Σ. Geometri-
cally, the meaning of inversion can easily be seen from the fi gure. By con-
struction, triangles TAP and TAP ′ are similar, so

TP
k

k
TP

=
′
,

or TP · TP ′ = k2, as already stated.1 As we will show later, when solving prob-
lems we usually set k = 1. Then we have simply TP ′ = 1/TP and it becomes 
clear why P and P ′ are termed inverses. Points that are inside Σ are thrown 
outside and vice versa.

Not only individual points but entire fi gures can be inverted. That is, sup-
pose we have some fi gure F that we wish to invert with respect to Σ. Each 
point P on F inverts to a point P ′, with the result that the entire world inside 
Σ is tossed outside and the reverse. The question is, What sort of fi gure is F ′? 
Except in diabolical situations, the fi gure F to be inverted is a straight line or 
a circle itself, so the question becomes, what is the locus of points described 
by the inverse F ′ of a line or a circle F ? In order to answer this question, and 
solve Hotta’s problem, we need several theorems about inversion. For con ve-
nient reference, we list them fi rst and prove most afterward.

1 Readers who have studied complex variables will recognize inversion as a type of con-
formal transformation.

at A

k

A

T P P'

Σ

tangent to Σ 

Figure 10.1. Inversion is defi ned with respect 
to the circle Σ. The points P and P ′ are 
termed inverses. The point T is termed the 
center of inversion.
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Basic Theorems about Inversion

Suppose we have a circle Σ, as shown in fi gure 10.1, whose center T is called 
the center of inversion. Assume we also have a straight line l that we wish to 
invert with respect to Σ. Then:

Theorem A
A straight line passing through the center of inversion inverts into 

itself. A straight line not passing through the center of inversion in-
verts into a circle that passes through the center of inversion.

The former situation is shown in fi gure 10.1; the latter situation is illus-
trated in fi gure 10.2

Now assume we have a circle C and that we wish to invert C with respect to 
Σ. Then:

Theorem B
If circle C does not pass through the center of inversion T, then C 

inverts into another circle C ′.

An example of such a situation is shown in fi gure 10.3.

l

k

Σ

T

l'

Figure 10.2. Theorem A. The line l does not pass 
through the center of inversion T. Its inverse with 
respect to circle Σ is the small circle l ′, which does 
pass through T.
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Theorem C
If circle C does pass through the center of inversion T, then C in-

verts into a straight line that does not pass through the center of inver-
sion. (This is the converse of theorem A.)

Furthermore, if for simplicity we take T to lie at the origin (0, 0) of a 
coordinate system, then the equation of the line is

′ = − ′ +y
gx
f

k
f

2

2
.

Here, (g, f ) are the coordinates of the center of C with respect to T. Primes 
denote coordinates in the inverted system. An example of such a situation is 
shown in fi gure 10.4. Note that the equation is of the usual  slope- intercept 
form y′ = mx′ + b, with m = −g/f and b = k2/2f.

C
Σ

T

C'

Figure 10.3. The circle C does not pass through the center 
of inversion T and so its inverse C ′ is also another circle, 
which does not pass through T.

(0, 1/2 )

T = (0,0     )

C

(0,1  )

T = (0,0      )

C'

Figure 10.4. The circle C passes through 
the center of inversion T, which is 
located at (0, 0). The center of C is 
located at (0, 1), so by Theorem C the 
inverse C′ is a horizontal line with 
equation y′ = k2/2. If the radius of Σ (not 
shown) is taken to be 1, which is 
generally allowed, the equation becomes 
simply y′ = 1/2, as shown on the right.
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Theorem D
If r is the radius of C and r′ is the radius of C ′, then r and r′ are re-

lated by

′ =
−

r
k

d r
r

2

2 2|( )|
,

where d is the distance between T and the center of C.

Theorem E
If L is the length of the tangent from T to the inverse circle C′, then

rL2 = k2r′.

The geometry is somewhat clarifi ed by Figures 10.6 and 10.10 below.

Theorems A–E fi gure in virtually all inversion problems and, what’s more, 
theorems B–E are all that is needed to solve Hotta’s problem. The reader 
may fi rst want to go through the proofs of those theorems, and then peruse 
the additional theorems listed below as they come up for an occasional ad-
vanced problem:

Theorem F
Points on the circle of inversion are invariant.

Theorem G
Concentric circles whose center is the center of inversion invert 

into concentric circles.

Theorem H
The center of the inverse circle is not the inverse of the center of 

the original circle.

Theorem K
If two circles are tangent to each other at T, they invert into parallel 

lines. If two circles are tangent to each other at a point P that is not 
the center of inversion, then the inverse circles must be tangent to 
each other at some point P ′. Points of tangency are preserved.
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Theorem L
Inversion preserves angles (That is, if two curves intersect at a given 

angle, their inverses intersect at the same angle.)

Theorem M
A circle, its inverse, and the center of inversion are colinear.

Theorem N
By the proper choice of the center of inversion T, two circles that 

are not in contact can be inverted into two concentric circles.

Theorem P (Iwata’s theorem).
If four circles can be inverted into four circles of equal radii, r′, 

whose centers form the vertices of a rectangle, then

1 1 1 1

1 3 2 4r r r r
+ = + ,

where r1, r2, r3, r4 are the radii of the original circles (see fi gure 10.15).

Proofs of Theorems A–E

To prove the basic theorems is not diffi cult. The fi rst part of theorem A 
follows directly from the defi nition of inversion: We may take a line pass-
ing through the center of inversion to be the horizontal line drawn in fi g-
ure 10.1. Under inversion, points P and P ′ are merely swapped, as are all 
the other points and their inverses on the line, but by construction all of 
them remain on the same line. Thus the line inverts into itself. The sec-
ond part of theorem A is proved by fi gure 10.5. Therefore, we have again

Theorem A
A straight line passing through the center of inversion inverts into 

itself. A straight line not passing through the center of inversion in-
verts into a circle that passes through the center of inversion.
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Theorem B states that the inverse of a circle not passing through the cen-
ter of inversion inverts into another circle, while Theorem C states that a 
circle passing through the center of inversion inverts into a straight line (the 
converse of Theorem A). The basic proofs can be carried out by construc-
tion as in fi gures 10.6 and 10.7. However, it is often useful to have the actual 
equations for the original circle and its inverse. For simplicity, we take the 
center of inversion T to lie at (0, 0), the origin of the coordinate system. 
This, then, is also the center of Σ.

Now, the equation of a circle C with center (g, f ) can be written

 x2 + y2 − 2gx − 2fy + c = 0, (2)

T

Q

k

Σ

P

l

P'

Q'

Figure 10.5. Proof of theorem A. Take points P and Q on line l. Their inverses P ′ 
and Q′ lie on straight lines through the center of inversion T. By defi nition of 
inversion, we must have TP · TP ′ = k2 and TQ · TQ′ = k2, which implies TQ/TP ′ =  
TP/TQ′. Together with the fact that angle T is common to both ΔTPQ and ΔTP ′Q′, 
this means the two triangles are similar, and so ∠TQ′P ′ is a right angle. Point Q on 
l was chosen arbitrarily, and so, for any Q , Q′ must be such that ∠TQ′P ′ remains a 
right angle. A basic theorem in geometry says that any angle inscribed in a 
semicircle is a right angle, so the locus of points traced out by Q′ must be a circle.

Thus the inverse of a straight line not passing through the center of inversion is 
a circle that passes through the center of inversion. The converse clearly holds (see 
fi gure 10.7), so the inverse of a circle passing through the center of inversion is a 
straight line that does not pass through the center of inversion.
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R'

Q

P
C

C'

P'

Q'

β

β

Θ

φ

T

Σ R

Figure 10.6. Proof of theorem B. This is similar to the proof of theorem A. Take 
points P, Q, and R on circle C. P ′, the inverse of P, lies on the line TP, while R and 
R′ lie on TR. By defi nition of inversion, TR · TR′ = k2 and TP · TP ′ = k2, which 

implies TR/TP ′ = TP/TR′. Hence, as in the proof of theorem A, ΔTPR and ΔTP ′R′ 
are similar, with ∠TPR = ∠TR′P ′. By the same argument, ΔTQR and ΔTQ′R′ are 
similar with ∠TQR = ∠TR′Q′ (marked β).

However, ∠TPR is an exterior angle of ΔPQR and so TPR = θ + β = TR ′P ′. 
Moreover, we see from the diagram that ∠TR ′P ′ = β + φ. Therefore φ = θ. But θ is a 
right angle, and once again the locus of points traced out, this time by R ′, must 
be a circle. The proof assumes that TP is nonzero, or that circle C does not pass 
through T. Notice that in this proof and the previous, the radius of inversion k 
was not important. For this reason one can often set k = 1.

Figure 10.7. Proof of theorem C. This is the converse of Theorem A. We know 
that ∠TQP in the circle C on the left must be a right angle. The circle of inversion 
Σ is not drawn. If we take k = 1 for simplicity, then by defi nition of inversion 
TP · TP ′ = 1 and since TP is the diameter of C = 2r, then TP ′ = 1/2r. If the dis-
tance TQ = q, then TQ′ = 1/q. Q′ lies along the same line from T as Q and so the 
marked angle does not change. Also notice TP ′/TQ′ = q/2r = TQ/TP. Thus 
triangle TPQ on the left is similar to triangle TQ′P ′ on the right, and ∠TP ′Q′ must 
be a right angle. Thus circle C inverts into a straight line parallel to l at a distance 
of 1/2r.

1/2r
l

T

P

Q

2r

C

P' Q'

T

C'

l
q 1/q
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or equivalently, upon completing the square,

 (x − g)2 + (y − f )2 = g2 + f 2 − c. (3)

This is the more usual form, where g 2 + f 2 − c = r 2 is the radius squared of 
C. By the Pythagorean theorem g 2 + f 2 ≡ d 2 is the squared distance from 
the origin T to the center of C, as shown in fi gure 10.8.

From either of the above expressions we see that, if x = y = 0, then c = 0. 
Thus c = 0 implies that the circle passes through the origin T; c ≠ 0 implies that 
the circle does not pass through T.

We now fi nd an equation for the inverse fi gure of C and show that this is 
a circle C ′. The easiest way to do this is to write the coordinates of a point P 
on C as

 x = s cos θ, y = s sin θ, (4)

where θ is the angle shown in fi gure 10.9.

2

T = (0,0)
x

y

r
(g,f)

d  = g  + f 22

Figure 10.8. A circle with center (g, f ). The distance 
from the origin to (g, f ) is d.

s

k

P = (x,y) 
P' = (x',y')

Θ

Σ C

T

s'
Figure 10.9. The point P on circle C has 
coordinates (x, y) = (s cos θ, s sin θ). Because P 
and its inverse P ′ lie on the same line, P ′ has 
coordinates (x, y) = (s′ cos θ, s′ sin θ).



322 Chapter 10

As seen in the diagram, P ′, the inverse of P, lies along the same radius of Σ 
as P and so it shares the same angle θ. Hence the coordinates of P ′ must be

 x′ = s′ cos θ, y′ = s′sin θ, (5)

where s′ is the distance from T to P ′.
Now, divide equation (4) by equation (5) to get

 
x

s
s

x y
s
s

y=
′

′ =
′

′, .
 

(6)

But by the defi nition of inversion ss′ = k2, so s = k2/s′. Inserting this relation-
ship into equation (6) yields

x
k

x y
x y

k
x y

y=
′ + ′

′ =
′ + ′

′
2

2 2

2

2 2
, ,

where x′2 + y′2 = s′2 by the Pythagorean theorem.
Plugging these expressions into Eq. (2) and multiplying through by 

(x′2 + y′2) gives

 c(x′2 + y′2) − 2k2gx′ − 2k2fy′ + k4 = 0. (7)

When c ≠ 0, the condition that circle C does not pass through T, we can 
 divide through by c to get

 ′ + ′ − ′ − ′ + =x y
k g
c

x
k f
c

y
k
c

2 2
2 2 42 2

0. (8)

Notice now that equation (8) is of exactly the same form as equation (2). 
Thus we have, once again,

Theorem B
If the circle C does not pass through T, then inversion maps C into 

another circle C ′. Moreover, the center of this circle is at (k2g/c, k2f/c).

If c does equal zero, then the circle C passes through T and equation (7) 
immediately gives

Theorem C
If the circle C does pass through T, then inversion maps C onto the 

straight line

′ = − ′ +y
gx
f

k
f

2

2
.



Introduction to Inversion 323

Theorem D is easily derived by referring to fi gure 10.6. The radius r′ of 
the inverse circle is (TP ′ − TQ′)/2. From the defi nition of inversion we can 
write this as

 
′ = −

⎛
⎝⎜

⎞
⎠⎟

= −
⋅

⎛
⎝⎜

⎞
⎠⎟

r
k

TP TQ
k TQ TP

TP TQ

2 2

2
1 1

2
.
 

(9)

However, we also have r = (TQ − TP)/2, and so if we call d the distance from 
T to the center of circle C, equation (9) can be written as

′ =
− +

r
k

d r d r
r

2

( )( )
.

Recognizing that d may be greater or less than r, but that r′ must always 
be positive, we recast this as

Theorem D

′ =
−

r
k

d r
r

2

2 2| |
.

This result may also be obtained analytically by completing the square in 
equation (8) and writing the equation of the inverse circle analogously to 
equation (3):

′ −⎛
⎝⎜

⎞
⎠⎟

+ ′ −⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

−x
k g
c

y
k f

c
k g
c

k f
c

k
c

2 2 2 2 2 2 2 2 4
.

We leave it as an exercise to show that this expression also leads directly 
to theorem D. However,  here is a clear case where geometric reasoning 
saves work over algebra, as in the previous proofs.

Theorem E is proved in a manner similar to theorem D. Figure 10.10 
depicts the inverse circle shown in fi gure 10.6 with the tangent L drawn in. 
As in equation (9) we can write

L

T

r'

C'

Q' P'
Figure 10.10. The inverse circle C ′ from fi gure 10.6 
with radius r′. An elementary theorem says that 
L2 = TP ′ · TQ′.
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 2 2r
TP TQ
TP TQ

k= ′ − ′
′ ⋅ ′

( )
. (10)

However, TP ′ − TQ′ = 2r′, and a basic result (“the  secant- tangent seg-
ments theorem”) from  fi rst- year geometry states that TP′ ⋅ TQ′ = L2. Thus 
equation (10) immediately gives

Theorem E
r
r

k
L′

=
2

2
.

Proofs of Selected Theorems F–P

As already mentioned, theorems B–E are all that are needed for basic in-
version problems, and readers interested in the solution to Hotta’s prob-
lem can skip this section. However, a number of other facts and theorems 
arise in solving some of the remaining problems in chapter  6—and ad-
vanced inversion problems in general. Theorem F, that points on the circle 
of inversion are invariant, follows trivially from the defi nition of inversion, 
but it is useful to bear in mind when constructing diagrams. Theorem G, 
that concentric circles whose centers are the center of inversion invert into 
concentric circles, is likewise trivial. Many students mistakenly assume 
that the center of the inverse circle is the inverse of the center of the 
original circle. This is not true, as theorem H states, but we do not prove 
it  here.

The fi rst part of theorem K, that two circles tangent to each other at the 
center of inversion invert into parallel lines, follows directly from theorem 
C and fi gure 10.7; we leave the few details as an exercise for the reader. The 
second part, that if two circles are tangent at a point P not the center of in-
version, they must be tangent at some other point P ′ is also reasonable; af-
ter all, the point of tangency is a single point and it can only be inverted to 
a single destination P ′.

For one or two of the problems in chapter 6, it is also important to keep 
in mind theorem M, that the centers of the original circle, the inverse and 
the circle of inversion are colinear, but this is also fairly obvious and we do 
not prove it. We, however, do prove theorem L, that inversion preserves 
angles. For the proof see fi gure 10.11
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α

T

P C

t

R

C'

P'

Σ

β
R'φ

Θ

t'

Figure 10.11. Proof of theorem L. This 
diagram is meant to go with the proof of 
theorem B, fi gure 10.6. Suppose a curve C 
cuts the radial lines TP and TR at points P 
and R. Curve C is inverted into curve C ′, 
which cuts TP and TR at P ′ and R ′. The 
angle C makes with TP at P is θ, the angle 
between TP and C’s tangent t (dash- dotted 
line) at P. Similarly, the angle C ′ makes with 
TP is given by φ. We already proved for 
theorem B that under inversion triangles 
TPR and TP ′R ′ are similar; hence α = β. As 
R moves toward P, the side of the triangle 
PR becomes coincident with tangent t, and 
so in this limit α = θ. Similarly, β = φ. Hence 
in the limit, φ = θ, and the angles C and C ′ 
make with TP are the same. If there is a 
second curve, call it S, that intersects TP at 
P at an angle ζ, then one merely repeats the 
analysis for S, fi nding that ζ is preserved 
under inversion. The angle between the two 
curves ζ − θ, will thus also be preserved.

Theorem N was also required for one of the problems in chapter 6. 
A totally rigorous proof requires a considerable number of preliminaries. 
However, with one or two shortcuts we can be  quasi- rigorous.2

Figure 10.12 shows several members of a nonintersecting family of cir-
cles.3 The important thing  here is that we have chosen the coordinate sys-
tem so the centers of all the circles α in the family lie on the x axis. Now, for 
any circle α with its center at point (g, 0), equation (2) above becomes

 x2 + y2 − 2gx + c = 0, (11)

or equivalently, as before,

 (x − g)2 + y2 = g2 − c = r2 (12)

For such a system, c is taken as fi xed, while varying g generates an infi nite 
number of different α- circles (see footnote 4). Notice that, if c = 0, the ra-

2 For fuller discussions, see Pedoe, Geometry, or Durell, Course of Plane Geometry (“For Fur-
ther Reading, Chapter 10,” p. 339).

3 Advanced students will recognize this as a  so- called coaxal or coaxial system of circles.
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dius of any circle is just g and the circle touches the y axis. For c > 0 a circle 
does not reach the y axis, and, for c < 0, a circle crosses the y axis. However, 
as drawn, c > 0, which also means that none of the circles intersect.4 Since 
c > 0, we can write c = p2, and the radius of a given circle is r g p= −2 2 . 
For r to be real, we see that g2 ≥ p2, which means that no circle in the system 
can have a center between (−p, 0) and (+p, 0) and that the circles centered 
there have zero radius. For that reason (−p, 0) and (+p, 0) are usually 
termed limiting points and are denoted as L and L′ on fi gure 10.12.

Considering the point x = A where the indicated circle intersects the 
x axis, we have from above A2 − 2Ag + p2 = 0, or p2 = 2Ag − A2. With A = OA 
and g = (OA + OA′)/2, the fi gure shows that

 p2 = OA ⋅ OA′ = OL2 = (OL′)2. (13)

This should begin to look familiar.5 Redesignate the center g of circle r 
as O ′ (to get all capital letters), as in fi gure 10.13. It is then easy to show 

4 From equation (11), it is a simple exercise to show that the points of intersection of two 
circles with g1, g2 and c1, c2 lie on the straight line 2(g2 − g1)x + c1 − c2 = 0. This line is termed 
the “radical axis” and it is always perpendicular to the line connecting the centers of the 
two circles. However, since we have required c1 = c2 above, we see that this equation becomes 
x = 0, or the y axis. Since none of the circles cross this axis, they do not intersect.

5 By way of terminology, A, A′ and L, L′ are referred to as harmonic conjugates and are said 
to divide the segment L′A′ harmonically.

g

r

R

y

x
L' A A'O

C

α

L

α

Figure 10.12. The coordinate axes are chosen so the centers of the family of 
circles α lie on the x- axis. The dashed circle C passes through points L and L′.
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from equation (13) that, for r = (OA′ − OA)/2, the radius of the indicated 
circle,

r2 = (O′L)(O′L′),

and hence by defi nition the limiting points are inverses with respect to O′!
Next, a basic theorem in geometry (which we used to prove theorem E) 

says that a tangent drawn from an external point (O′) to a circle (C) is the 
geometric mean between the external segment (O′L) and the entire secant 
(O′L′); consequently, the radius r must be tangent to circle C. In that case 
we have the very important result: Because L and L′ are inverses, circles C and r 
intersect orthogonally.6 Notice we could draw an infi nite number of circles C 
with different diameters through L and L′ but we have not specifi ed any 
diameter. Thus, any circle C and any circle α intersect orthogonally.

Now to theorem N. Let us invert the entire fi gure 10.12 with respect 
to one of the limiting points, say L. By theorem B, because none of the α-
 circles on the left pass through the center of inversion, they will all invert 
into other circles α′ whose centers lie somewhere on the x axis, as shown in 
fi gure 10.14. On the other hand, since every C - circle passes through the 
center of inversion, L, they must invert into a straight line, C ′. Further, be-
cause any C - circle is orthogonal to all the α- circles, any C ′ must be orthogo-
nal to the inverse circles α′. (If this is not obvious, quote theorem L above.) 
Consequently, C ′ must be a diameter of α′. In fact, all the C ′ must intersect 

6 “Orthogonal”  here has its usual meaning: at right angles.

r

y

x
L' A A'O

C

L

α

g = O'

Figure 10.13. Redesignate the 
center g of the α- circle r as O ′. One 
sees that L and L′ are inverses with 
respect to O ′. Thus, circle C must 
intersect circle r orthogonally.



328 Chapter 10

at the inverse of L′ (call it L″), and so L″ is the center of a family of concen-
tric circles α′. Thus we have

Theorem N
By the proper choice of the center of inversion T, two circles that 

are not in contact can be inverted into two concentric circles. (The 
proper choice of T is one of the limiting points.)

To prove theorem P, consider fi gure 10.15. Drop a perpendicular TM onto 
O′3O′4, as shown, where the O′ designate the centers of the inverse circles. 
Then by the Pythagorean theorem

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) .

′ + ′ = ′ + + ′ +
= ′ + + ′ +
= ′ + ′

O T O T O M TM O N NT

O N NT O M TM

O T O T

1
2

3
2

1
2 2

3
2 2

4
2 2

2
2 2

4
2

2
2

But the length of the tangent L from any external point T to a circle of 
radius r′ is also given by Pythagoras as L2 = (O′T)2 − r′2, where O′ is the cir-
cle’s center. Thus in our case

L L O T O T r1
2

3
2

1
2

3
2 22+ = ′ + ′ − ′( ) ( ) ,

'

invert

C'

r

y

x
O

α

α
LL'

C

C α

Figure 10.14. Invert fi gure 10.13 (left) with respect to the limiting point L. The 
α- circles invert into a concentric family of circles α′ (right) with center L" and 
the C - circles invert into straight lines orthogonal to the α′.
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O'

T

M

NO'

 

3

O'1

O'4

2

Figure 10.15. The centers of the four inverse circles O1′, O2′ O3′, 
O4′ are assumed to form the vertices of a rectangle.

or from above,

L L O T O T r

L L
1
2

3
2

4
2

2
2 2

2
2

4
2

2+ = ′ + ′ − ′
= +

( ) ( )

.

Theorem E then immediately gives the desired result:

Theorem P
If four circles r1, r2, r3, r4 can be inverted into four circles of equal 

radii r′ whose centers lie on a rectangle, then

1 1 1 1

1 3 2 4r r r r
+ = + .

Solution to Hotta’s Problem

With theorems A–E in hand, many problems like those in chapter 6 are 
surprisingly easy to solve and require no more than high school geometry. 
We demonstrate this by solving Hotta’s problem.

Begin by referring to fi gure 10.16. We are given that the radius of the 
outer circle α is r and the radii of the two largest inscribed circles β and γ 
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are each r/2. The problem asks us to fi nd the radius of the nth circle in the 
outer or inner contact chains in terms of r. Denote by r1 the radius of circles 
β and γ . As just stated, r1 = r/2. Let r2 = radius of the third largest circle 
and t1 = radius of the largest circle in the inner chain. We will use rn and tn 
to designate the radii of the nth circle in the outer and inner chains. As we 
have throughout the book, we will also use rn and tn to designate the circles 
themselves.

Before employing inversion we will need the radii r2 and t1. From Figure 
10.17, we see that r − 2r2 = h. Also, the Pythagorean theorem gives

( ) ( ) .r r r r h1 2
2

1
2

2
2+ = + +

From these two relationships, and remembering that r = 2r1, we quickly 
fi nd that

 r r2
1
3

= . 
(14)

Similarly, using the Pythagorean theorem on the small circle t1 (fi gure 
10.18) leads to

 t
r

1 15
= . (15)

1

r2

α

β

γ

r1

r

t

Figure 10.16. Hotta’s problem. The 
radius of the circle α is r. The radius of 
the inscribed circles β and γ  is r1 = 1/2r. 
The nth circle in the outer chain will 
have radius rn, and the nth circle in the 
inner chain will have radius tn. The 
largest circle in the inner chain t1 is 
indicated.
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1
r

r

r + t 11

2 t1

x = r − 2r − t 
2 1

Figure 10.18. The relationships needed to 
show that t1 = r/15 [equation (15)].

1r

r

r

r2 h

2

1

Figure 10.17. The relationships needed to show 
that r2 = r/3 (equation (14). Note that 
h = r − 2r2 = 2r1 − 2r2, where the last equality 
follows because r = 2r1.

We now begin to invert the fi gure with respect to the point T, chosen as 
shown in fi gure 10.19. For simplicity we can take the radius of the inversion 
circle Σ to be k = 1 (which only means that everything is scaled to 1). Then, 
by the defi nition of inversion, we must have for point O

TO ⋅ TO′ = 1.
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But TO = r. Thus

 
TO

r
′ = 1

.
 

(16)

Similarly for point B,

TB ⋅TB ′ = 1, TB = 2r,
or

 TB
r

′ = 1
2

. (17)

Now, note that circle α passes through the center of inversion, T. Thus, by 
theorem C, α must invert into a straight line, in par tic u lar into a horizontal 
line because we have chosen T to lie directly below O (x coordinate of 
O = g = 0). Similarly, circle β also passes through T, so β must invert into 
a horizontal line. Equations (16) and (17) give the distances from T to 
these lines. Figure 10.19 shows these relationships.

Next, consider the upper circle, with r = r1. This circle does not pass 
through T, so by theorem B it must invert into another circle. But circle r1 is 
tangent to circle β at point O and tangent to circle α at point B. Therefore 
it must invert into the circle r′1 that lies between β′ and α′, as shown in fi g-
ure 10.20. Similarly, circle r2 is tangent to α, β and r2 as shown. Therefore it 
must invert into the circle r′2 shown in fi gure 10.20. The same is true for all 
the circles in the outer chain.

Thus we have the remarkable result that all the inverse circles in the 
outer chain have the same radius!

B'

r

T

T

O

O'

α
β

β'

α'
1/2r 1/ r

B

Figure 10.19. Because they pass through the 
center of inversion T, the circles α and β must 
invert into straight lines, as shown. The 
distances of α′ and β′ from T are given by 
equations 16 and 17.
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′ = ′ = ′ = = ′ ≡ ′r r r r rn1 2 3
. . . .

In the same way, all the circles of the inner chain map into circles of equal 
radius:

′ = ′ = ′ = = ′ ≡ ′t t t t tn1 2 3
. . . .

We now relate r′ and t′ to r. Consider r1. The distance from T to the cen-
ter of circle γ (r1) is by defi nition d in theorem D. In this case, from fi gure 
10.16, d = 3r1. Theorem D states that ′ − =r d r r1

2 2
1
2 2

1
2( ) ,  which yields

′ = ′ =r r
r1
1

1
8

.

But r1 = r/2, so

′ =r
r

1
4

Similarly,

 ′ =t
r

1
16  (19)

Now that we have r′ and t′ in terms of r, we can get back to the rn’s and 
tn’s. We draw the tangent Ln from T to r′n, as in fi gure 10.21. Notice fi rst 
from the fi gure that the distance to the center of r′n is given by

 xn = 2(n − 1)r′. (20)

β

r

r

r'r'r'

2

23

1

1

T

B'

O'

O

B

β

α '

'

α
Figure 10.20. Because r1 is tangent 
to both α and β at the points O and 
B, it must invert into a circle that 
lies between α′ and β′ and tangent 
to them at O ′ and B ′. In the same 
way, the circle r2 is tangent to r1, α, 
and β. Thus, the outer chain of 
circles maps to a contact chain of 
inverse circles that all must lie 
between α′ and β′. In other words, 
all the inverse circles have the same 
radius!
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Also, by the Pythagorean theorem,

 

L r M

M r
r

x

n n

n n

2 2 2

2
2

21
2

+ ′ =

= ′ +⎛
⎝⎜

⎞
⎠⎟

+

,

.
 

(21)

We now employ theorem E, which tells us that

 
L

r
rn
n

2 = ′
.
 

(22)

Substituting equations (18), (20), and (22) into equation (21) and solving 
for rn yields

 
r

r
nn =

+ −2 1 2( )
.
 

(23)

This gives the radius of the nth circle in the outer chain in terms of r, as 
required.

For the inner chain, we follow the same procedure (fi gure 10.22). In this 
case we have

 
L M t

M
r

t x

n n

n n

2 2 2

2
2

21

= − ′

= − ′⎛
⎝⎜

⎞
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+

,

.
 

(24)

From equation (19) we have t′ = (1 ⁄16)r and from fi gure 10.11, xn = (2n − 1)r′. 
This time theorem E gives L t tn n

2 = ′/ . Substituting these expressions into 
equation (24) yields

 
t

r
nn =

− +( )
,

2 1 142  
(25)

the desired result. As an example, for n = 5, tn = r/95. QED.

1/2r

xn

r'

Ln

Mn

T

r'

Figure 10.21. The distance Ln 
from T to r′n is given by the 
Pythagorean theorem.
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Further Practice with Inversion

For further practice with the inversion technique, we  here give three more 
(nontrivial) exercises from sangaku, without solution.

1

r
r5

r4
r3

r2

r

Figure 10.23. Show that r1 = r/2 ; r2 = r/4; r3 = r/15; 
r4 = r/12; r5 = r/10.

x

T

r'

Mn
Ln

t'

1/r

n

Figure 10.22. The distance 
Lnfrom T to t′n is given by the 
Pythagorean theorem.

Exercise 1
This problem is from a lost tablet hung by Adachi Mitsuaki in 1821 in the Asakusa 

Kanzeondō temple, Tokyo prefecture. We know of it from the 1830 manuscript Saishi 
Shinzan or Collection of Sangaku by Nakamura Tokikazu (?–1880).

Inside the semicircle of radius r shown in fi gure 10.23 are contained nine circles with 
the tangent properties indicated. Show that

r
r

r
r

r
r

r
r

r
r

1 2 3 4 52 4 15 12 10
= = = = =; ; ; ; .
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Exercise 2
Like the previous exercise, this one also comes from Nakamura Tokikazu’s Collection of 

Sangaku.

In fi gure 10.24, show that

1 1 2 2 2 1

1 3 2r r r
+ = −( )

.

3

r

r1

r2

rFigure 10.24. Find the relationship among r1, r2, and 
r3, which are inscribed in a semicircle of radius r.

Exercise 3
This problem dates from 1819 and comes from Yamaguchi’s diary.

In fi gure 10.25 four chains of circles of radii rk (k = 0, 1, 2, 3, . . . ,n) kiss the large 
circle of radius r internally as well as kiss two circles of radii r/2 externally. Find rk in 
terms of r.

r

r/2 r/2

r

or or r1

2

rn

ro ro
Figure 10.25. Find rk, k = 0, 1, 2, 3, . . . , n in terms of r.



For Further Reading

What Do I Need to Know to Read This Book?

Three pop u lar high school geometry texts are listed below. Each has its supporters 
and detractors. Of the fi rst two, the fi rst is defi nitely more attractive, but apparently 
lacks some necessary results contained in the second. We are not very familiar with the 
third. None will provide enough technique to conquer all the problems in this book, 
and they will need to be supplemented by other sources on trigonometry and calculus.

Harold R. Jacobs, Geometry: Seeing, Doing, Understanding, third edition (W. H. 
 Freeman, New York, 2003).

Ray C. Jugensen, Richard G. Brown, John W. Jurgensen, Geometry (Mcdougal  Littell/
Houghton Miffl in, New York, 2000).

Larson, Boswell, Stiff, Geometry, tenth edition (Mcdougal Littell/Houghton Miffl in, 
New York, 2001).

Below are several advanced texts, more closely matched to the harder problems in 
this book. Ogilvy is very readable, but presents only selected topics. Coxeter and Gri-
etzer is a  no- nonsense  college- level text. Pedoe’s approach to geometry is more alge-
braic than the others. Durell’s book is a century old but somewhat clearer than Pedoe’s 
and presents many theorems not discussed elsewhere.

Stanley Ogilvy, Excursions in Geometry (Dover, New York, 1990).
H. Coxeter and S. Greitzer, Geometry Revisited (New Mathematical Library, New York 1967).
Dan Pedoe, Geometry, A Comprehensive Course (Dover, New York, 1988).
Clement Durell, A Course of Plane Geometry for Advanced Students (Macmillan,  London, 

1909), part 1.

Chapter One. Japan and Temple Geometry

In En glish
Two  large- scale surveys of Japa nese history that have been very helpful for chapter 1 are

Marius B. Jansen, The Making of Modern Japan (Harvard University Press, Cam-
bridge, 2000).



Conrad Totman, Early Modern Japan (University of California Press, Berkeley, 
1993).

Only two histories devoted to Japa nese mathematics are readily available in the 
United States, and they are now nearly 100 years old:

Yoshio Mikami, The Development of Mathematics in China and Japan (Chelsea, New 
York, 1974; reprint of 1913 edition).

David Smith and Yoshio Mikami A History of Japa nese Mathematics (Open Court, Chi-
cago, 1914).

Despite any shortcomings and mistakes they are the major references in En glish on 
the history of Japa nese mathematics.

On the Web
A fairly comprehensive and reliable website on the history of mathematics is the 

MacTutor History of Mathematics Archive, which has been established at
 http:// www -history .mcs .st -andrews .ac .uk/ history/ index .html
The archive does not contain a special section on Japa nese mathematics, but it does 

contain biographies of several of the mathematicians mentioned throughout this 
book.

In Japa nese
A website on Traditional Japa nese Mathematics by Fukagawa and Horibe:
 http:// horibe .jp/ Japanese _Math .htm
The Japa nese translation of the Scientifi c American article can be obtained via
 http:// www .nikkei -science .com/ 

Chapter 2. The Chinese Foundation of Japa nese Mathematics

In En glish
Yoshio Mikami, The Development of Mathematics In China and Japan (Chelsea New 

York, 1974; reprint of 1913 edition).
David Smith and Yoshio Mikami, A History of Japa nese Mathematics (Open Court, Chi-

cago, 1914).
Colin A. Ronan, The Shorter Science and Civilization in Ancient China: An Abridge-

ment of Joseph Needham’s Original Text (Cambridge University Press, Cambridge, 
1995), Vol. 2.

Jean- Claude Martzloff, A History of Chinese Mathematics (Springer, Berlin, 1995).
Christopher Cullen, Astronomy and Mathematics in Ancient China: The Zhou Bi Suan 

Jing (Cambridge University Press, Cambridge, 1996).
Roger Cooke, The History of Mathematics: A Brief Course (Wily- Interscience, New York, 

2005).
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On the Web
The MacTutor History of Mathematics Archive at
 http:// www -history .mcs .st -andrews .ac .uk/ history/ index .html

A good starting point for this chapter is
 http:// turnbull .mcs .st -and .ac .uk/ history/ Indexes/ Chinese .html

In Japa nese
Li Di, History of Chinese Mathematics, Japa nese translation by Otake Shigeo and Lu 

Renrui (Morikita Syuppan, Tokyo, 2002).

Chapter 6. Still Harder Temple Geometry Problems

Additional temple geometry problems, most fairly diffi cult, can be found in
Fukagawa Hidetoshi and Dan Pedoe, Japa nese Temple Geometry Problems, available 

from Charles Babbage Research Centre, P.O. Box 272, St. Norbert Postal Station, 
Winnepeg Canada, R3V 1L6.

Fukagawa Hidetoshi and John Rigby, Traditional Japa nese Mathematics Problems of the 
18th and 19th Centuries (SCT, Singapore, 2002).

Chapter 10. Introduction to Inversion

The advanced texts listed in the section “What Do I Need to Know to Read This 
Book?” all discuss inversion in less or more detail. They are:

Stanley Ogilvy, Excursions in Geometry (Dover, New York, 1990).

At a higher level but more complete are

H. Coxeter and S. Greitzer, Geometry Revisited (New Mathematical Library, New York, 
1967).

Dan Pedoe Geometry, A Comprehensive Course (Dover, New York, 1988).
Probably the clearest, and containing literally hundreds of results on inversion is

Clement Durell, A Course of Plane Geometry for Advanced Students (Macmillan, Lon-
don, 1909), Part 1.

Many websites devoted to inversion can be found on the Internet. The degree of 
comprehensibility varies widely. A few sites that may be helpful with defi nitions and 
constructions are:

 http:// whistleralley .com/ inversion/ inversion .htm
 http://aleph0.clarku.edu/~djoyce/java/compass/compass3.html
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Enri Hyō (Uchida), 307
Enri Sankei (Mathematics of the Enri) 

(Koide), 306–7
equations: derivative, 302; Euler’s 

formula, 298; Heron’s formula, 
295; memorizing verse and, 31n3; 
sum of integers, 47–48

Euclid’s algorithm, 284
Eudoxus, 22
Euler, Leonard, 149, 207, 298
Everything’s Relative and Other Fables 

from Science and Technology 
(Rothman), 21n10

eye problems, 80

feudal lords, ix
Feuerbach, Karl Wilhelm, 295
Feuerbach’s theorem, 295–96
fl ower arranging, 7
folding fan problems, 106–7, 199, 256
fractions, 28, 32
Fuchu, 246
Fujioka city, 111
Fujita Kagen, 24, 79–81, 90, 117, 

201–2, 204, 266
Fujita Sadasuke, 24, 79–82, 246n2, 

247, 256
Fujita school, 117, 150, 201, 204

Fukagawa Hidetoshi, x–xviii, 82, 116, 
189, 296n8

Fukuda Riken, 119, 170
Fukuoka province, 261
Fukushima prefecture, 66, 151
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Gumma prefecture, 94, 111, 118, 199
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haiku, 7, 244
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Hayashi Nobuyoshi, 257
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Heijo, 10
Heinouchi Masaomi, 166, 284
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Heron’s formula, 284, 295
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Hiroe Nagasada, 231–33, 253
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Hōen Zassan (Essay on Mathematics of 
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Hōryūji, 12
Hosaka Nobuyoshi, 146
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(Kamo), 13
Hotta Jinsuke, 201; Descartes circle 

theorem (DCT) and, 229–31; 
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Ichino Shigetaka, 206
Ii Naosuke, 307

Ikeda Sadakazu, 149
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Inki Sanka (Poetry of Multiples and 
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ment of, 303–6; as folding tables, 
73; pi and, 303–5; series expansion 
and, 304–11. See also calculus

international trade, 3–5, 24, 261
inversion, 191, 236–38; angle 

preservation and, 318; basic 
theorems of, 315–18; center of, 
315–21, 332; coaxial system and, 
325n2; as conformal transforma-
tion, 314n1; further practice with, 
335–36; harmonic conjugates and, 
326n5; hexlet theorem and, 
288–89; Hotta’s problem and, 313, 
329–35; Iwata’s theorem and, 318; 
kissing circles and, 285–88; limiting 
points and, 326–28; proofs for, 
318–29; Pythagorean theorem and, 
321, 330–31, 334; Steiner chain and, 
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Yamaguchi travel diary and, 336
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Ishiguro Nobuyoshi, 148
Ishikawa Nagamasa, 202, 204
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Izumo Oyashiro, 262
Izumo Taisya, 12

Jansson, Jan, xxviii
Japa nese: age of arithmetic and, 

10–14; ascendance of traditional 
mathematics in, 14–21; Chinese 
infl uence on, 10, 27–57 (see also 
Chinese); closed country policy of, 
xv, 5, 7, 19, 59, 243; decline of 
traditional mathematics in, 21–25; 
Edo period and, 3, 7, 19–21, 59–88; 
foreign trade and, 3–5, 24, 261; 
Genroku (Re nais sance) and, 7, 69, 
90;  high- school teacher rank in, x; 
in de pen dent writing system of, 13; 
Kamakura period and, 13; mapping 
of, 254; Muromachi period and, 13; 
Nara period of, 10, 12–14, 256; 
power struggles in, 12–14; samurai 
and, ix; surname order and, xviii; 
temples and, 1–10; Tokugawa 
shogunate and, 2–4, 7, 14, 19, 24, 
59, 68, 76, 79, 90, 254; travel in, 
243–44; unifi cation of, 10; units of, 
61n1, 62nn2,3; warlords and, 2–5
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(Japa nese mathematics)
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(Aida), 95
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(Yoshida), 16, 19; abacus and, 61; 
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Kobayashi Syouta, 96
Kobayashi Tadayoshi, 159
Kofukuji temple, 256
Koide Kanemasa, 306
Koishikawa, 206
Kojima Yōkichi, 118
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Li Di, 30n2
limiting points, 326–28
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Maruyama Ryoukan, 192
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20–21
Masuda Koujirou, 253, 275
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mathematics: age of arithmetic and, 

10–14; ascendance of traditional 
Japa nese, 14–21; calculating sticks 
and, 11–12; Chinese, xvi, 4–5, 
10–11, 24, 27–57, 61, 91; classical, 
283; decline of traditional 
Japa nese, 21–25; Edo period and, 
59–88; Greek, 2, 10, 16n6, 22, 283; 
immutability of, 2; importance of, 
263–64; jyuku schools and, 19–21, 
24; pilgrimages and, 244; samurai 
and, ix; stylistic form and, 7–8; 
Yamaguchi travel diary and, 
243–66. See also wasan (Japa nese 
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Mathematics of Shrines and Temples 
(Fujita), 24

Mathesis journal, 298
Matsumiya, 277–78
Matsumoto Einosuke, 263
Matsunaga Yoshisuke, 24, 
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Meiji Shōgaku Jinkō- ki (Jinkō- ki of the 
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Miidera temple, 263–64
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Mizuno Tsuneyuki, 100
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monks, ix
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64–65
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Muramatsu Shigekiyo, 16, 65–66, 71
Murasaki, Shikibu, 13
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notation, xxv, 24
Notoyama Nobutomo, 155
Number Theory and Its History (Ore), 
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Obama, 263
Oda Nobunaga, 14
Ogilvy, Stanley, 238n9
Ogura Yoshisada, 254, 263
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Ohsu Kannon temple, 100, 198
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Okayu Yasumoto, 166, 208–9
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Ōmura Kazuhide, 216, 236, 238, 288
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Richmond), 293n5
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Ore, Oyestein, 38n8, 163n3
Osaka, 10, 14, 119, 254–55, 257
Owari clan, 82
Oyashirazu coast, 252

packing problems, 287–88
paper cutting, 76
Pascal, Blaise, 43
Pascal’s triangle, 42–46
Pedoe, Daniel, x–xi, xv–xvi, 296n8, 

325n2
Perry, Matthew C., 3, 24
pi, 16, 19, 98, 188; Chinese and, 32, 

40; Imamura and, 64; infi nite 
series and, 75; integration and, 
303–5; Isomura and, 66; Matsu-
naga and, 75; Muramatsu and, 65, 
71; Seki and, 71–73, 75; Suanfa 
Tong Zong and, 42; Takebe and, 
74–75

pilgrimages, 243–44
Pillow Book, The (Sei), 13

poetry, 7, 59, 64, 244
Pollock, Jackson, x
Portuguese, 4–5
positive numbers, 30
power series, 304n2
primes, 80–81
printing, 7, 21
Ptolemy’s theorem, 283, 298
puppets, 7
Pythagoreans, 2
Pythagorean theorem, xxii, 83, 146, 

283; cylinders and, 184; Descartes 
circle theorem and, 291; ellipses 
and, 240;  fourth- order equations 
and, 223; inscribed circles and, 
122–24, 129–30, 176, 179–80, 194, 
214–15, inversion and, 321, 330–31, 
334; Jiuzhang Suanshu and, 10, 
28–29, 34–35; primitive triples and, 
80–81, 284; quadratics and, 142–43, 
241; similar triangles and, 172–73; 
Suanfa Tong Zong and, 50–52; 
Yamaguchi travel diary and, 
277–79; Zenkoji temple sangaku 
and, 269–71

Qin Jiushao (Chin  Chiu- Shao), 30
quadratics, xxii, 139; Descartes circle 

theorem (DCT) and, 228–31; 
ellipses and, 178–79; inscribed 
circles and, 170; Jiuzhang Suanshu 
and, 29; Pythagorean theorem 
and, 142–43, 241; reduction to 
quadratures and, 241; similar 
triangles and, 173

Record of the Ushikawa Inari Shrine 
Sangaku, 157

recreational mathematics, 76
reduction to quadratures, 241
reiyakukyutsu (dividing by zero), 85
religion: Buddhists, ix, xv, xviii, 2, 4, 

9, 12–13, 265; chants, 13; Chris-
tians, 4–5; Jesuits, 4; missionaries 
and, 4; peace and, 12; pilgrimages 
and, 243–44; tolerance and, 12; 
Zen principles, 13

remainder theorem, 38
Re nais sance, 7, 13, 69, 90
Richmond, H. W., 293–94
Rigby, J. F., 143, 189
Roku shrine, 246
Rothman, Tony, xii, xv–xviii
Ruffi ni, Paolo, 40
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Sabae, 252
Sacred Mathematics (Fujita), 24
sagitta, 304
Saijyoh ryū  (The Best Mathematics 

School), 82
Saishi Shinzan (The Mathematics of 

Shrines) (Nakamura), 118, 156, 168, 
335–36

Saisi Sinzan (Mathematical Tablets) 
(Nakamura), 289, 296

Saitama prefecture, 161
Saitō Gigi, 94
Saitō Kuninori, 89, 161
Saitō Mitsukuni, 250
Sakabe Kōhan, 37, 41, 309
Sakashiro village, 247
sakoku (closed country), xv, 5, 7, 19, 

59, 243
Sakuma Yōken, 20, 244
Sakurai shrine, 90
Samukawa shrine, 205
samurai, ix; Aida and, 81; Ajima and, 

78; Chiba and, 83; culture for, 
19–20; Edo period and, 19–21; 
education and, 9–10, 19–21, 
59–60; Kamiya and, 264; Seki and, 
68; Takebe and, 73; Wada and, 306

Sand Reckoner (Archimedes), 10
sangaku, xv; art of, ix–xii, xv, 7; 

calculus and, 146, 160–62, 182–88; 
Chinese mathematics and, xvi (see 
also Chinese); complexity of, 89–90; 
contributors to, 1–2, 89–90; 
diophantine problems and, 91–93, 
146; easier geometry problems of, 
88–121; economics of, 21; Edo 
period and, 89–90; ellipses and, 
191–92, 196–99, 218–25; errors in, 
130, 132; expertise needed for, 
xxi–xxiii; folding fan problems and, 
106–7, 199, 256; as folk mathemat-
ics, 1; harder geometry problems 
and, 145–62, 191–241; inversion 
and, 236–38 (see also inversion); lack 
of solutions on, 9; oldest surviving, 
9; pilgrimages and, 244; as Shinto 
gifts, 8; stylistic form and, 7–8; 
wooden tablets and, ix; Yamaguchi 
travel diary and, xvi–xvii, 243–66

Sangaku e no Shōtai (Invitation to 
Sangaku) (Nakamura), 161

Sangaku Keimo Genkai Taisei (Annota-
tion of the Suanxue Qimeng) 
(Takebe), 31

Sangaku Kōchi (Study of Mathematics) 
(Ishiguro), 148

Sangaku of Ohsu Kannon (Nagatz), 100
sangi (calculating sticks), 11–13, 19
San Hakase (Department of Arithme-

tic Intelligence), 11–12
Sannōsha shrine, 192
Sanpō Chokujutsu Seikai (Mathematics 

without Proof ) (Heinouchi), 166, 284
Sanpō Jojutsu, 284
Sanpō Kantuh Jyutsu (General Methods 

in Geometry) (Aida), 82
Sanpō Ketsu Gisyou (Profound 

Mathematics) (Isomura), 66
Sanpō Kishō (Enjoy Mathematics Tablets) 

(Baba), 202
Sanpō Koren (Mathematical Gems) 

(Kobayashi), 159
Sanpō Kyūseki  Tsu- ko (Theory of 

Integrations) (Uchida), 182–83, 189, 
238, 307, 309

Sanpō Shinsyo (New Mathematics) 
(Chiba), 83

Sanpō Tenshōhō (Algebraic Geometry) 
(Aida), 82

Sanpō Tenshōhō Shinan (Guidebook 
to Algebra and Geometry) (Aida), 
115, 179, 224

Sanpō Tenzan Shinanroku (Guide to 
Algebraic Method of Geometry) 
(Sakabe), 37, 41

Sanpō Tenzan Syogakusyo (Geometry and 
Algebra) (Hasimoto), 289

Sanpō Tenzan Tebikigusa (Algebraic 
Methods in Geometry) (Ōmura), 216, 
236–38

Sanpō Tsūsho (Mathematics) 
(Furuya), 168

Sanpō Zasso (Concise Mathematics) 
(Iwai), 161, 199
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matsu), 16

Satō Naosue, 104
saunzi (calculating sticks), 11–12
Sawaguchi Kazuyuki, 69
Sawai, 256
Sawa Keisaku, 199
Sawa Masayoshi, 258–59, 280
Scientifi c American, xvi, 201n2
Seihoji temple, 256
Sei Shonagon, 13

Seiyō Sanpō (Detailed Mathematics) 
(Fujita), 24, 80–81

Seki Gorozayemon, 68
Seki school, 81–82, 263
Seki Takakazu, xviii, 16, 22; abilities 

of, 68–70; background of, 68; Enri 
and, 69–70, 73; pi and, 71–73, 75

Seki Terutoshi, 249
Sendai city, 256
Sengaikyō (Chinese geography 

book), 64
Senhoku city, 109, 116, 284
Sen no Rikyū, 13
series expansion, 304–11
Seto Nai Kai (the Inland Sea), 

260–61
Shamei Sanpu (Sacred Mathematics) 

(Shiraishi), 149, 162, 206, 292
Shang Kao, 28
Shichi Takatada, 196
Shiga province, 263, 307
Shima village, 261
Shimizu shrine, 96, 101
Shinjō clan, 78
Shino Chigyō, 193, 244
Shinohasawa shrine, 151
Shinomiya shrine, 264
Shinpeki Sanpō (Sacred Mathematics) 

(Fujita), 80, 90, 201, 204
Shintani Benjirō, 256
Shinto shrines, ix, xv, xviii, 2, 8, 12, 

243. See also specifi c shrines
Shiokawa Kōkaidō building, 120
Shiraishi Nagatada, 149, 162, 292
Shirakawa Katsunao, 111
Shiroyama Inari shrine, 199
shoguns, 2–4; Ashikaga, 13–14; 

Genroku (Re nais sance) and, 7; 
Minamoto, 13; Tokugawa, 
2–4, 7, 14, 19, 24, 59, 68, 76, 
79, 90, 254

Shūki Sanpō (Gems of Mathematics) 
(Arima), 80

Shushu Jiuzhang (Mathematical Treatise 
in Nine Chapters) (Qin), 30

Soddy, Frederick, 236, 283; Descartes 
circle theorem and, 285, 287–89; 
hexlet theorem and, 22, 83, 205–6, 
288–89

“Sokuen Shūkihō” (“Method for 
Describing the Ellipse”) (Nobuyo-
shi), 192

Sokuen Syukai (Circumference of Ellipse) 
(Sakabe), 309
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Solutions to Kakki Sanpōu (Furuya), 

210
Solutions to Problems of Zoku Shinpeki 

Sanpō (Kitagawa), 139
“Solutions to Problems of Zoku 

Shinpeki Sanpō” (Okayu), 208
Solutions to Sanpō Kishō Problems 

(Yoshida), 234
“Solutions to Shinpeki Sanpō Prob-

lems” (Yoshida), 228
“Solutions to Unsolved Problems of 

the Sanpō Ketsu Gishō” (Seki), 69
soroban ( Japa nese abacus), 11, 14–16, 

19, 42, 61, 136, 238, 303
Spanish, 4
square roots, 28, 64, 76–77
Steiner, Jakob, 291
Steiner chain, 291–93
Sūri Shinpen (Mathematics of Shrines 

and Temples) (Saitō), 94
Suanfa Tong Zong (Systematic Treatise on 

Mathematics) (Cheng), 15, 19, 35, 
61; abacus and, 42; circles and, 
43–44; geometric areas and, 44, 
46–48; Pascal’s triangle and, 
42–43, 45–46; pi and, 42; problems 
of, 43–52; Pythagorean theorem 
and, 50–52; sum of integers and, 
47–48; versifi ed formulas of, 30–31

suan phan (Chinese abacus), 14–15, 30
Suanxue Qimeng (Introduction to 

Mathematical Studies) (Zhu), 
30, 40–42

suanzi, 14, 30
Sugano Teizou, 159
Sugawara sangaku, 97–98, 105–6
Sugimoto Kōzen, 162
Sugita Naotake, 193
Suibara village, 244, 252
Su- li  Ching- Yin, 24
Suminokura Ryōi, 61
Suminokura Soan, 61
Sumiyoshi shrine, 119
Sunday, Billy, 313
Sun- Tsu (mathematician), 29, 33, 

36–39
Sun- Tsu (samurai), 29
Sun- Tsu Suanjing (Arithmetic Classic of 

 Sun- Tsu) (Sun- Tsu), 29, 33, 36–39
Suruga province, 12
surveying, 83, 254
Susaka city, 120
Suwa shrine, 114, 247, 264

Suzuka shrine, 259
Suzuki Satarō, 151
Syosya temple, 258–59, 280
Syuki Sanpō (Mathematics) 

(Arima), 283
Syuyuu Sanpō (Travel Mathematics) 

(Yamaguchi), 243–66

Taga shrine, 255, 256
Takahara Yoshitane, 61
Takaku Kenjirō, 24–25
Takamatsu city, 201
Takarao shrine, 261–62, 280
Takasaki, 246
Takashima, 255, 263
Takebe Katahiro, 16, 19, 31,

 73–75, 304–6
Takeda Atsunoshin, 243, 249, 257, 

265, 281
Takeda Sadatada, 107
Takeuchi school, 159
Takeuchi Shūkei, 160
Tales of the Genji, The (Murasaki), 13
Tanaba Shigetoshi, 97
Tanikawa Taizō, 92
Tani Yusai, 175
Tasei Sankei (Comprehensive Book of 

Mathematics) (Takebe), 73
Tatebe Kenko, 73n6
Tatsuno city, 258
taxes, 12
Taylor series, 306, 311
tea ceremony, 7
Ten Classics, 10, 29
Tenman shrine, 257, 263–65, 281
Tenyru river, 266
Teramoto Yohachirō, 204
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warlords, 2–5
wasan (Japa nese mathematics), 60; 

age of arithmetic and, 10–14; 
ascendance of, 14–21; calculus and, 
22, 73; Casey’s theorem and, 
296–98; Chinese infl uence on, 10, 
27–57 (see also Chinese); decline of, 
21–25; Descartes circle theorem 
and, 289–91; differentiation and, 
301–3; ellipses and, 191–92, 
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