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PROLOGUE

In August 1859, Bernhard Riemann
was made a corresponding member of the Berlin Academy, a great
honor for a young mathematician (he was 32). As was customary on
such occasions, Riemann presented a paper to the Academy giving an
account of some research he was engaged in. The title of the paper
was: “On the Number of Prime Numbers Less Than a Given Quan-
tity.” In it, Riemann investigated a straightforward issue in ordinary
arithmetic. To understand the issue, ask: How many prime numbers
are there less than 20? The answer is eight: 2, 3, 5, 7, 11, 13, 17, and 19.
How many are there less than one thousand? Less than one million?
Less than one billion? Is there a general rule or formula for how many
that will spare us the trouble of counting them?

Riemann tackled the problem with the most sophisticated math-
ematics of his time, using tools that even today are taught only in
advanced college courses, and inventing for his purposes a math-
ematical object of great power and subtlety. One-third of the way
into the paper, he made a guess about that object, and then remarked:



x PRIME OBSESSION

One would, of course, like to have a rigorous proof of this, but I

have put aside the search for such a proof after some fleeting vain

attempts because it is not necessary for the immediate objective of

my investigation.

That casual, incidental guess lay almost unnoticed for decades.
Then, for reasons I have set out to explain in this book, it gradually
seized the imaginations of mathematicians, until it attained the sta-
tus of an overwhelming obsession.

The Riemann Hypothesis, as that guess came to be called, re-
mained an obsession all through the twentieth century and remains
one today, having resisted every attempt at proof or disproof. Indeed,
the obsession is now stronger than ever since other great old open
problems have been resolved in recent years: the Four-Color Theo-
rem (originated 1852, proved in 1976), Fermat’s Last Theorem (origi-
nated probably in 1637, proved in 1994), and many others less well
known outside the world of professional mathematics. The Riemann
Hypothesis is now the great white whale of mathematical research.

The entire twentieth century was bracketed by mathematicians’
preoccupation with the Riemann Hypothesis. Here is David Hilbert,
one of the foremost mathematical intellects of his time, addressing
the Second International Congress of Mathematicians at Paris in Au-
gust 1900:

Essential progress in the theory of the distribution of prime num-

bers has lately been made by Hadamard, de la Vallée Poussin, von

Mangoldt and others. For the complete solution, however, of the

problems set us by Riemann’s paper “On the Number of Prime

Numbers Less Than a Given Quantity,” it still remains to prove the

correctness of an exceedingly important statement of Riemann,

viz. . . .

There follows a statement of the Riemann Hypothesis. A hun-
dred years later, here is Phillip A. Griffiths, Director of the Institute
for Advanced Study in Princeton, and formerly Professor of Math-
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ematics at Harvard University. He is writing in the January 2000 issue
of American Mathematical Monthly, under the heading: “Research
Challenges for the 21st Century”:

Despite the tremendous achievements of the 20th century, dozens

of outstanding problems still await solution. Most of us would prob-

ably agree that the following three problems are among the most

challenging and interesting.

The Riemann Hypothesis. The first is the Riemann Hypothesis,

which has tantalized mathematicians for 150 years. . . .

An interesting development in the United States during the last
years of the twentieth century was the rise of private institutes for
mathematical research, funded by wealthy math enthusiasts. Both the
Clay Mathematics Institute (founded by Boston financier Landon T.
Clay in 1998) and the American Institute of Mathematics (established
in 1994 by California entrepreneur John Fry) have targeted the Rie-
mann Hypothesis. The Clay Institute has offered a prize of one mil-
lion dollars for a proof or a disproof; the American Institute of Math-
ematics has addressed the Hypothesis with three full-scale
conferences (1996, 1998, and 2002), attended by researchers from all
over the world. Whether these new approaches and incentives will
crack the Riemann Hypothesis at last remains to be seen.

Unlike the Four-Color Theorem, or Fermat’s Last Theorem, the
Riemann Hypothesis is not easy to state in terms a nonmathematician
can easily grasp. It lies deep in the heart of some quite abstruse math-
ematical theory. Here it is:

The Riemann Hypothesis

All non-trivial zeros of the zeta function
have real part one-half.

To an ordinary reader, even a well-educated one, who has had no
advanced mathematical training, this is probably quite incomprehen-
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sible. It might as well be written in Old Church Slavonic. In this book,
as well as describing the history of the Hypothesis, and some of the
personalities who have been involved with it, I have attempted to
bring this deep and mysterious result within the understanding of a
general readership, giving just as much mathematics as is needed to
understand it.

* * * * *

The plan of the book is very simple. The odd-numbered chapters
(I was going to make it the prime-numbered, but there is such a thing
as being too cute) contain mathematical exposition, leading the
reader, gently I hope, to an understanding of the Riemann Hypoth-
esis and its importance. The even-numbered chapters offer historical
and biographical background matter.

I originally intended these two threads to be independent, so that
readers who don’t like equations and formulae could read only the
even-numbered chapters while readers who did not care for history
or anecdote could just read the odd-numbered ones. I did not quite
manage to hold to this plan all the way through, and I now doubt that
it can be done with a subject so intricate. Still, the basic pattern was
not altogether lost. There is much more math in the odd-numbered
chapters, and much less in the even-numbered ones, and you are, of
course, free to try reading just the one group or the other. I hope,
though, that you will read the whole book.

I have aimed this book at the intelligent and curious but
nonmathematical reader. That statement, of course, raises a number
of questions. What do I mean by “nonmathematical?” How much
math knowledge have I assumed my readers possess? Well, everybody
knows some math. Probably most educated people have at least an
inkling of what calculus is all about. I think I have pitched my book to
the level of a person who finished high school math satisfactorily and
perhaps went on to a couple of college courses. My original goal was,
in fact, to explain the Riemann Hypothesis without using any calculus
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at all. This proved to be a tad over-optimistic, and there is a very
small quantity of very elementary calculus in just three chapters, ex-
plained as it goes along.

Pretty much everything else is just arithmetic and basic algebra:
multiplying out parentheses like (a + b) × (c + d), or rearranging
equations so that S = 1 + xS becomes S = 1 ⁄ (1 – x). You will also need
a willingness to take in the odd shorthand symbols mathematicians
use to spare the muscles of their writing hands. I claim at least this
much: I don’t believe the Riemann Hypothesis can be explained us-
ing math more elementary than I have used here, so if you don’t un-
derstand the Hypothesis after finishing my book, you can be pretty
sure you will never understand it.

* * * * *

Various professional mathematicians and historians of math-
ematics were generous with their help when I approached them. I am
profoundly grateful to the following for their time, freely given, for
their advice, sometimes not taken, for their patience in dealing with
my repetitive dumb questions, and in one case for the hospitality of
his home: Jerry Alexanderson, Tom Apostol, Matt Brin, Brian Conrey,
Harold Edwards, Dennis Hejhal, Arthur Jaffe, Patricio Lebeuf,
Stephen Miller, Hugh Montgomery, Erwin Neuenschwander, Andrew
Odlyzko, Samuel Patterson, Peter Sarnak, Manfred Schröder, Ulrike
Vorhauer, Matti Vuorinen, and Mike Westmoreland. Any gross errors
in this book’s math are mine, not theirs. Brigitte Brüggemann and
Herbert Eiteneier helped plug the gaps in my German. Commissions
from my friends at National Review, The New Criterion, and The

Washington Times allowed me to feed my children while working on
this book. Numerous readers of my online opinion columns helped
me understand what mathematical ideas give the most difficulty to
nonmathematicians.

Along with these acknowledgments goes an approximately equal
number of apologies. The topic this book deals with has been under
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intensive investigation by some of the best minds on our planet for a
hundred years. In the space available to me, and by the methods of
exposition I have decided on, it has proved necessary to omit entire
large regions of inquiry relevant to the Riemann Hypothesis. You will
find not one word here about the Density Hypothesis, the approxi-
mate functional equation, or the whole fascinating issue—just re-
cently come to life after long dormancy—of the moments of the zeta
function. Nor is there any mention of the Generalized Riemann Hy-
pothesis, the Modified Generalized Riemann Hypothesis, the Ex-
tended Riemann Hypothesis, the Grand Riemann Hypothesis, the
Modified Grand Riemann Hypothesis, or the Quasi-Riemann Hy-
pothesis.

Even more distressing, there are many workers who have toiled
away valiantly in these vineyards for decades, but whose names are
absent from my text: Enrico Bombieri, Amit Ghosh, Steve Gonek,
Henryk Iwaniec (half of whose mail comes to him addressed as
“Henry K. Iwaniec”), Nina Snaith, and many others. My sincere
apologies. I did not realize, when starting out, what a vast subject I
was taking on. This book could easily have been three times, or thirty
times, longer, but my editor was already reaching for his chainsaw.

And one more acknowledgment. I hold the superstitious belief
that any book above the level of hired drudge work—any book writ-
ten with care and affection—has a presiding spirit. By that, I only
mean to say that a book is about some one particular human being,
who is in the author’s mind while he works, and whose personality
colors the book. (In the case of fiction, I am afraid that all too often
that human being is the author himself.)

The presiding spirit of this book, who seemed often to be glanc-
ing over my shoulder as I wrote, whom I sometimes imagined I heard
clearing his throat shyly in an adjoining room, or moving around
discreetly behind the scenes in both my mathematical and historical
chapters, has been Bernhard Riemann. Reading him, and reading
about him, I developed an odd mixture of feelings for the man: great
sympathy for his social awkwardness, wretched health, repeated be-
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reavements, and chronic poverty, mixed with awe at the extraordi-
nary powers of his mind and heart.

A book should be dedicated to someone living, so that the dedi-
cation can give pleasure. I have dedicated this book to my wife, who
knows very well how sincere that dedication is. There is a sense,
though, not to be left unremarked in a prologue, in which this book
most properly belongs to Bernhard Riemann, who, in a short life
blighted with much misfortune, gave to his fellow men so very, very
much of everlasting value—including a problem that continues to
vex them a century and a half after, in a characteristically diffident
aside, he noted his own “fleeting vain attempts” to resolve it.

John Derbyshire
Huntington, New York
June 2002
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1

CARD TRICK

Like many other performances, this
one begins with a deck of cards.

Take an ordinary deck of 52 cards, lying on a table, all four sides
of the deck squared away. Now, with a finger slide the topmost card
forward without moving any of the others. How far can you slide it
before it tips and falls? Or, to put it another way, how far can you
make it overhang the rest of the deck?

FIGURE 1-1

I.
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The answer, of course, is half a card length, as you can see in
Figure 1-1. If you push it so that more than half the card overhangs, it
falls. The tipping point is at the center of gravity of the card, which is
halfway along it.

Now let’s go a little further. With that top card pushed out half its
length—that is, to maximum overhang—over the second one, push
that second card with your finger. How much combined overhang
can you get from these top two cards?

The trick is to think of these top two cards as a single unit. Where
is the center of gravity of this unit? Well, it’s halfway along the unit,
which is altogether one and a half cards long; so it’s three-quarters of
a card length from the leading edge of the top card (see Figure 1-2).
The combined overhang is, therefore, three-quarters of a card length.
Notice that the top card still overhangs the second one by half a card
length. You moved the top two cards as a unit.

FIGURE 1-2

If you now start pushing the third card to see how much you can
increase the overhang, you find you can push it just one-sixth of a
card length. Again, the trick is to see the top three cards as a single
unit. The center of gravity is one-sixth of a card length back from the
leading edge of the third card (see Figure 1-3).
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FIGURE 1-3

In front of this point is one-sixth of the third card, a sixth plus a
quarter of the second card, and a sixth plus a quarter plus a half of the
top card, making a grand total of one and a half cards.

1

6

1

6

1

4

1

6

1

4

1

2
1

1

2
+ +







+ + +





=

FIGURE 1-4

That’s half of three cards—the other half being behind the tipping
point. Here’s what you have after pushing that third card as far as it
will go (see Figure 1-4).

The total overhang now is a half (from the top card) plus a quar-
ter (from the second) plus a sixth (from the third). This is a total of
eleven twelfths of a card. Amazing!

Can you get an overhang of more than one card? Yes you can.
The very next card—the fourth from the top—if pushed forward
carefully, gives another one-eighth of a card length overhang. I’m not
going to do the arithmetic; you can trust me, or work it out as I did
for the first three cards. Total overhang with four cards: one-half plus
one-quarter plus one-sixth plus one-eighth, altogether one and one-
twenty-fourth card lengths (see Figure 1-5).
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FIGURE 1-5

If you keep going the overhangs accumulate like this.

1

2

1

4

1

6

1

8

1

10

1

12

1

14

1

16

1

102
+ + + + + + + + +L

for the 51 cards you push. (No point pushing the very bottom one.)
This comes out to a shade less than 2.25940659073334. So you have a
total overhang of more than two and a quarter card lengths! (See
Figure 1-6.)

FIGURE 1-6

I was a college student when I learned this. It was summer vaca-
tion and I was prepping for the next semester’s work, trying to get
ahead of the game. To help pay my way through college I used to
spend summer vacations as a laborer on construction sites, work that
was not heavily unionized at the time in England. The day after I
found out about this thing with the cards I was left on my own to do
some clean-up work in an indoor area where hundreds of large,
square, fibrous ceiling tiles were stacked. I spent a happy couple of
hours with those tiles, trying to get a two and a quarter tile overhang
from 52 of them. When the foreman came round and found me deep
in contemplation of a great wobbling tower of ceiling tiles, I suppose
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his worst fears about the wisdom of hiring college students must have
been confirmed.

II. One thing mathematicians like to do, and find very fruitful, is
extrapolation—taking the assumptions of a problem and stretching
them to cover more ground.

I assumed in the above problem that we had 52 cards to work
with. We found that we could get a total overhang of better than two
and a quarter cards.

Why restrict ourselves to 52 cards? Suppose we had more? A hun-
dred cards? A million? A trillion? Suppose we had an unlimited sup-
ply of cards? What’s the biggest possible overhang we could get?

First, look at the formula we started to develop. With 52 cards the
total overhang was

1

2

1

4

1

6

1

8

1

10

1

12

1

14

1

16

1

102
+ + + + + + + +…+

Since all the denominators are even, I can take out one-half as a fac-
tor and rewrite this as

1

2
1

1

2

1
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8

1

51
+ + + + + + + + +
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


L

If there were a hundred cards, the total overhang would be

1
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With a trillion cards it would be

1

2
1

1
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1
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8

1

999999999999
+ + + + + + + + +



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L

That’s a lot of arithmetic; but mathematicians have shortcuts for this
kind of thing, and I can tell you with confidence that the total over-
hang with a hundred cards is a tad less than 2.58868875882, while for
a trillion cards it is a wee bit more than 14.10411839041479.
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These numbers are doubly surprising. The first surprise is that
you can get a total overhang of more than 14 full card lengths, even
though you need a trillion cards to get it. Fourteen card lengths is
more than four feet, with standard playing cards. The second sur-
prise, when you start thinking about it, is that the numbers aren’t
bigger. Going from 52 cards to 100 got us only an extra one-third of a
card overhang (a bit less than one-third, in fact). Then going all the
way to a trillion—a stack of a trillion standard playing cards would
go most of the way from the Earth to the Moon—gained us only
another 11 1

2  card lengths.
And if we had an unlimited number of cards? What is the abso-

lute biggest overhang we could get? The remarkable answer is, there is
no limit. Given enough cards, you could have an overhang of any size.
You want an overhang of 100 card lengths? You’d need a stack of about
405,709,150,012,598 trillion trillion trillion trillion trillion trillion
cards—a stack whose height would far, far exceed the bounds of the
known universe. Yet you could get still bigger overhangs, and bigger,
as big as you want, if you’re willing to use unimaginably large num-
bers of cards. A million-card overhang? Sure, but the number of cards
you need now is so huge it would need a fair-sized book just to print
it in—it has 868,589 digits.

III. The thing to concentrate on here is that expression inside the
parentheses

1
1

2

1

3

1

4

1

5

1

6

1

7
+ + + + + + +L

This is what mathematicians call a series, addition of terms continu-
ing indefinitely, where the terms follow some logical progression.
Here the terms 1, 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 ,… are the reciprocals of the ordi-

nary counting numbers 1, 2, 3, 4, 5, 6, 7, ….
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The series 1+ 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 +… is sufficiently important that
mathematicians have a name for it. It is called the harmonic series.

What I have stated above amounts to this: by adding enough
terms of the harmonic series, you can get a total as big as you please.
The total has no limit.

A crude, but popular and expressive, way to say this is: the har-
monic series adds up to infinity.

1
1

2

1

3

1

4

1

5

1

6

1

7
+ + + + + + + = ∞L

Well-brought-up mathematicians are taught to sniff at expressions
like that; but so long as you know the pitfalls of using them I think
they are perfectly all right. Leonhard Euler, one of the half-dozen
greatest mathematicians who ever lived, used them all the time with
very fruitful results. However, the proper mathematical term of art is:
The harmonic series is divergent.

Well, I have said this, but can I prove it? Everybody knows that in
mathematics you must prove every result by strict logic. Here we have
a result: the harmonic series is divergent. How do you prove it?

The proof is, in fact, rather easy and depends on nothing more
than ordinary arithmetic. It was produced in the late Middle Ages by
a French scholar, Nicole d’Oresme (ca. 1323-1382). D’Oresme
pointed out that 1

3 + 1
4  is greater than 1

2 ; so is 1
5 + 1

6 + 1
7 + 1

8 ; so is
1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16 ; and so on. In other words, by taking 2
terms, then 4 terms, then 8, then 16 terms, and so on, you can group
the series into an infinite number of blocks, every one of which is
bigger than one-half. The entire sum must, therefore, be infinite.
Don’t be perplexed by the fact that the blocks get bigger very quickly.
There is an awful lot of room in “infinity,” and no matter how many
blocks you take, the next block is well defined and waiting for you.
There is always another one-half to be added; and that means that the
total increases without limit.
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D’Oresme’s proof of the divergence of the harmonic series seems
to have been mislaid for several centuries. Pietro Mengoli proved the
result all over again in 1647, using a different method; then, forty
years later, Johann Bernoulli proved it using yet another method; and
shortly after that, Johann’s elder brother Jakob produced a proof by a
fourth method. Neither Mengoli nor the Bernoullis seem to have been
aware of d’Oresme’s fourteenth-century proof, one of the barely
known masterpieces of medieval mathematics. D’Oresme’s proof re-
mains the most straightforward and elegant of all the proofs, though,
and is the one usually given in textbooks today.

IV. The amazing thing about series is not that some of them are
divergent, but that any of them are not. If you add together an infin-
ity of numbers, you expect to get an infinite result, don’t you? The
fact that you sometimes don’t can be easily illustrated.

Take an ordinary ruler marked in quarters, eighths, sixteenths,
and so on (the more “so on” the better—I’ve shown a ruler marked in
sixty-fourths). Hold a sharp pencil point at the very first mark on the
ruler, the zero. Move the pencil one inch to the right. The pencil point
is now on the one-inch mark and you have moved it a total of one
inch (see Figure 1-7).

64ths

1 2 3

FIGURE 1-7
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Now move the pencil half an inch further to the right (see Figure
1-8).

64ths

1 2 3

FIGURE 1-8

Now move the pencil a quarter-inch further to the right … then an
eighth-inch … then a sixteenth … then a thirty-second … then a
sixty-fourth. Your pencil is in the position shown in Figure 1-9

64ths

1 2 3

FIGURE 1-9

… and you have moved to the right a total distance of

1
1

2

1

4

1

8

1

16

1

32

1

64
+ + + + + +

which is, as you can see, 1 63
64 . Clearly, if you could go on like this,

halving the distance each time, you would get closer and closer to the
two-inch mark. You would never quite reach it; but there is no limit
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to how close you could get. You could get to within a millionth of an
inch of it; or a trillionth; or a trillion trillion trillion trillion trillion
trillion trillion trillion trillionth. We can express this fact as

1
1

2

1

4

1

8

1

16

1

32

1

64

1

128
2+ + + + + + + + =L

Expression 1-1

where it is understood that there is an infinite number of terms to
add up on the left-hand side of the equals sign.

The point I’m making here is the difference between the har-
monic series and this new one. With the harmonic series I added up
an infinite number of terms and got infinity. Here I am adding up an
infinite number of terms and getting 2. The harmonic series is diver-

gent. This one is convergent.
The harmonic series has its charms, and it stands at the center of

the topic this book addresses—the Riemann Hypothesis. Generally
speaking, however, mathematicians are more interested in conver-
gent series than divergent ones.

V. Suppose that instead of moving one inch to the right, then a
half-inch to the right, then a quarter-inch to the right, and so on, I
decided to alternate directions: an inch to the right, a half-inch to the
left, a quarter-inch to the right, an eighth-inch to the left.… After
seven moves I’d be at the point shown in Figure 1-10.
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64ths

1 2 3

FIGURE 1-10

Since from the mathematical point of view a move to the left is just a
negative move to the right, this is equivalent to

1
1

2

1

4

1

8

1

16

1

32

1

64
− + − + − +

which is 43
64 . In fact, it’s rather easy to show—I’ll prove it in a later

chapter—that if you keep on adding and subtracting to infinity you
get

1
1

2

1

4

1

8

1

16

1

32

1

64

1

128

2

3
− + − + − + − + =L

Expression 1-2

VI. Now, suppose that instead of starting out with a ruler marked
in halves, quarters, eighths, sixteenths, and so on, I have a ruler
marked in thirds, ninths, twenty-sevenths, eighty-firsts, and so on. In
other words, instead of halves, halves of halves, halves of halves of
halves … I have thirds, thirds of thirds, thirds of thirds of thirds, and
so on. And suppose I do an exercise similar to the first one, move the
pencil along one inch, then a third of an inch, then a ninth, then a
twenty-seventh (see Figure 1-11).
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81sts

1 2

FIGURE 1-11

I don’t think it’s too hard to see that if you continue forever, you end
up moving right a total 1 1

2  inches as shown in Expression 1-3. That is,

1
1

3

1

9

1

27

1

81

1

243

1

729

1

2187
1

1

2
+ + + + + + + + =L

Expression 1-3

And of course, I can do the alternating movement with this new ruler,
too: right one inch, left a third, right a ninth, left a twenty-seventh,
and so on (see Figure 1-12).

81sts

1 2

FIGURE 1-12

The math of Expression 1-4 is not so visually obvious, but it’s a fact
that



CARD TRICK 15

1
1

3

1

9

1

27

1

81

1

243

1

729

1

2187

3

4
− + − + − + − + =L

Expression 1-4

So here we have four convergent series, the first (Expression 1-1)
creeps closer and closer to 2 from the left, the second (Expression 1-
2) closes in on 2

3  from left and right alternately, the third (Expression
1-3) creeps closer and closer to 1 1

2  from the left, the fourth (Expres-
sion 1-4) closes in on 3

4  from left and right alternately. Before that, I
showed one divergent series, the harmonic series.

VII. When reading math, it is important to know where in math
you are—what region of this vast subject you are exploring. The par-
ticular zone these infinite series dwell in is what mathematicians call
analysis. Analysis used, in fact, to be thought of as the study of the
infinite, that is, the infinitely large, and of the infinitesimal, the infi-
nitely small. When Leonhard Euler—of whom I shall write much
more later—published the first great textbook of analysis in 1748, he
called it Introductio in analysin infinitorum: “Introduction to the
Analysis of the Infinite.”

The notions of the infinite and the infinitesimal created serious
problems in math during the early nineteenth century, though, and
eventually they were swept away altogether in a great reform. Modern
analysis does not admit these concepts. They linger on in the vocabu-
lary of mathematics, and I shall make free use of the word “infinity”
in this book. This usage, however, is only a convenient and imagina-
tive shorthand for more rigorous concepts. Every mathematical state-
ment that contains the word “infinity” can be reformulated without
that word.

When I say that the harmonic series adds up to infinity, what I
really mean is that given any number S, no matter how large, the sum
of the harmonic series eventually exceeds S. See?—No “infinity.” The



16 PRIME OBSESSION

whole of analysis was rewritten in this kind of language in the middle
third of the nineteenth century. Any statement that can’t be so rewrit-
ten is not allowed in modern mathematics. Nonmathematical people
sometimes ask me, “You know math, huh? Tell me something I’ve
always wondered, What is infinity divided by infinity?” I can only
reply, “The words you just uttered do not make sense. That was not a
mathematical sentence. You spoke of ‘infinity’ as if it were a number.
It’s not. You may as well ask, ‘What is truth divided by beauty?’ I have
no clue. I only know how to divide numbers. ‘Infinity,’ ‘truth,’
‘beauty’—those are not numbers.”

What is a modern definition of analysis, then? I think the study of

limits will do for my purposes here. The concept of a limit is at the
heart of analysis. All of calculus, for example, which forms the largest
part of analysis, rests on the idea of a limit.

Consider the following sequence of numbers: 1
1 , 3

2 , 7
5 , 17

12 , 41
29 , 99

70 ,
239
169 , 577

408 , 1393
985 , 3363

2378 , …. Each fraction is built from the one before by a
simple rule: add top and bottom to get new bottom, add top and
twice bottom to get new top. That sequence converges to the square
root of 2. If you square 3363

2378 , for example, you get 11309769
5654884 , which is

2.000000176838287…. We say that the limit of the sequence is 2 .
Here is another case: 4

1
8
3

32
9

128
45

768
225

4608
1575

36864
11025

294912
99225, , , , , , , ,.... To get

the N-th member of that sequence: if N is even, multiply the previous
member by N

N +1 , if N is odd, multiply the previous member by N
N
+1 .

That converges to π . The last fraction shown is 2.972154… (this se-
quence converges very slowly). Here is yet another: 11 , 1 1

2

2
( ) , 1 1

3

3
( ) ,

1 1
4

4
( ) , 1 1

5

5
( ) , …. If you work them out, these come to 1 2 1

4, ,
2 2 210

27
113
256

1526
3125, , ,...  a sequence that converges to a number close to

2.718281828459. This is an exceedingly important number—I shall
use it later.

Notice that all of these are sequences, just strings of numbers sepa-
rated by commas. They are not series, where the numbers are actually
added up. From the point of view of analysis, however, a series is just
a sequence in thin disguise. The statement “The series 1 + 1

2  + 1
4  + 1

8
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+ 1
16  + 1

32  + … converges to 2” is mathematically equivalent to: “The
sequence 1 1 1 1 1 11

2
3
4

7
8

15
16

31
32, , , , , ,  … converges to 2.” The fourth term of

the sequence is the sum of the first four terms of the series, and so on.
(The term of art for this kind of sequence is the sequence of partial

sums.) Similarly, of course, the statement, “The harmonic series di-
verges” is equivalent to: “The sequence 1 1 1 2 2 21

2
5
6

1
12

17
60

27
60, , , , , ,  … di-

verges,” where the N-th term of the sequence is the previous term
plus 1

N .
This is analysis, the study of limits, of how a sequence of num-

bers can get closer and closer to a limiting number without ever quite
reaching it. If I say the sequence goes on forever, I mean that no mat-
ter how many terms you write down, I can always write another. If I
say it has the limit a, I mean that no matter how tiny a number x you
pick, from some point on, every number in the sequence differs from
a by less than x. If you choose to say: “The sequence is infinite,” or:
“The limit of the N-th term, when N goes to infinity, is a,” you are free
to do so, as long as you understand that these are just loose and con-
venient ways of speaking.

VIII. The traditional division of mathematics into subdisciplines is
as follows.

� Arithmetic—The study of whole numbers and fractions.
Sample theorem: If you subtract an odd number from an even
number you get an odd number.

� Geometry—The study of figures in space—points, lines,
curves, and three-dimensional objects. Sample theorem: The
angles of a triangle on a flat surface add up to 180 degrees.

� Algebra—The use of abstract symbols to represent mathemati-
cal objects (numbers, lines, matrices, transformations), and
the study of the rules for combining those symbols. Sample
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theorem: For any two numbers x and y, (x + y) × (x − y) = x2
−

y2.
� Analysis—The study of limits. Sample theorem: The harmonic

series is divergent (that is, it increases without limit).

Modern mathematics contains much more than that, of course.
It includes set theory, for example, created by Georg Cantor in 1874,
and “foundations,” which another George, the Englishman George
Boole, split off from classical logic in 1854, and in which the logical
underpinnings of all mathematical ideas are studied. The traditional
categories have also been enlarged to include big new topics—geom-
etry to include topology, algebra to take in game theory, and so on.
Even before the early nineteenth century there was considerable seep-
age from one area into another. Trigonometry, for example, (the word
was first used in 1595) contains elements of both geometry and alge-
bra. Descartes had in fact arithmetized and algebraized a large part of
geometry in the seventeenth century, though pure-geometric dem-
onstrations in the style of Euclid were still popular—and still are—
for their clarity, elegance, and ingenuity.

The fourfold division is still a good rough guide to finding your
way around mathematics, though. It is a good guide, too, for under-
standing one of the greatest achievements of nineteenth-century
math, what I shall later call “the great fusion”—the yoking of arith-
metic to analysis to create an entirely new field of study, analytic num-
ber theory. Permit me to introduce the man who, with one single
published paper of eight and a half pages, got analytic number theory
off the ground and flying.
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THE SOIL, THE CROP

We do not know much about
Bernhard Riemann. He left no record of his inner life, other than
what can be deduced from his letters. His friend and contemporary,
Richard Dedekind, was the only person close to him who wrote a
detailed memoir; but that was a mere 17 pages and revealed little.
What follows, therefore, cannot hope to capture Riemann, but I hope
it will at least leave him more than a mere name in the reader’s mind.
I have reduced his academic career to a brief sketch in this chapter. I
shall describe it in much more detail in Chapter 8.

First, let me set the man in his time and place.

II. Supposing that their Revolution had left the French disorganized
and ineffective, and disturbed by its republican and antimonarchical
ideals, France’s enemies moved to take advantage of the situation. In
1792 a huge force of mainly Austrian and Prussian troops, but which
included 15,000 emigré French, advanced on Paris. To their surprise,

I.
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the army of revolutionary France took a stand at the village of Valmy,
engaging the invaders in an artillery duel fought in thick fog on Sep-
tember 20 of that year. Edward Creasy, in his classic Fifteen Decisive

Battles of the World, calls this the Battle of Valmy. Germans call it the
Cannonade of Valmy. By either name it is a convenient marker for the
beginning of the succession of wars that occupied Europe for the next
23 years. The Napoleonic Wars is the usual name given to these events;
though it would be logical, if the expression were not already spoken
for, to put them all under the heading First World War, since they
included engagements in both the Americas and the Far East. When
it all ended at last, with a peace treaty worked out at the Congress of
Vienna (June 8, 1815), Europe settled into a long period, almost a
century, of relative peace.

Cologne

Hesse Thuringia

Mecklenburg

Oldenburg
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et
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Denmark

Holstein

Schleswig

Hanover
Berlin

Leipzig
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Hamburg

Gottingen
..
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Brunswick
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Saxony

R
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Northwest Germany after 1815. Note that Hanover (the state) is in two

pieces; both Hanover (the city) and Göttingen belong to it. Prussia is in two

large pieces and some smaller ones; both Berlin and Cologne are Prussian

cities. Brunswick is in three pieces.
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One consequence of the treaty was a modest tidying up of the
German peoples in Europe. Before the French Revolution a German-
speaking European might have been a citizen of Hapsburg Austria
(in which case he was probably a Catholic) or of the Kingdom of
Prussia (making him more likely a Protestant) or of any one of three
hundred-odd petty principalities scattered across the map of what we
now call Germany. He might also have been a subject of the king of
France, or of the king of Denmark, or a citizen of the Swiss Confed-
eration. “Tidying up” is a relative term—there was enough untidiness
left over to occasion several minor wars, and to contribute to the two
great conflicts of the twentieth century. Austria still had her empire
(which included great numbers of non-Germans: Hungarians, Slavs,
Romanians, Czechs, and so on); Switzerland, Denmark, and France
still included German speakers. It was a good start, though. The three
hundred-odd entities that comprised eighteenth-century Germany
were consolidated into 34 sovereign states and 4 free cities, and their
cultural unity was recognized by the creation of a German Confed-
eration.

The largest German states were still Austria and Prussia. Austria’s
population was about 30 million, only 4 million of them German
speakers. Prussia had about 15 million citizens, most of them Ger-
man speakers. Bavaria was the only other German state with a popu-
lation over 2 million. Only four others had more than a million: the
kingdoms of Hanover, Saxony, and Württemberg, and the Grand
Duchy of Baden.

Hanover was something of an oddity in that, although a king-
dom, its king was hardly ever present. The reason for this was that, for
complicated dynastic reasons, he was also king of England. The first
four of what English people call the “Hanoverian kings” were all
named George,1 and the fourth was on the throne in 1826, when the
central character in the story of the Riemann Hypothesis first
appeared.
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III. Georg Friedrich Bernhard Riemann was born on September
17, 1826, in the village of Breselenz in the eastern salient of the King-
dom of Hanover. This part of the kingdom is known as Wendland,
“Wend” being an old German word for the Slavic-speaking peoples
they encountered. Wendland was the furthest west reached by the
great Slavic advance of the sixth century. The name “Breselenz” itself
derives from the Slavic word for “birch-tree.” Slavic dialects and folk-
lore survived into modern times—the philosopher Leibnitz (1646−

1716) promoted research into them—but from the late Middle Ages
onward German immigrants moved into Wendland and by
Riemann’s time the population was pretty solidly German.

Wendland was, and still is, something of a backwater. With only
110 inhabitants per square mile, it is the most thinly populated dis-
trict in its modern region, Lower Saxony. There is little industry and
few large towns. The mighty Elbe—it is about 250 yards wide here—
flows just 7 miles from Breselenz and was the principal connection
with the world beyond until modern times. In the nineteenth century
sailing ships and barges carried timber and agricultural produce
down to Hamburg from Central Europe, returning with coal and in-
dustrial goods. During the recent decades of division, the Wendland
stretch of the Elbe was part of the border between East and West
Germany, a fact that did nothing to help local development. It is a
flat, dull countryside of farm, heath, marsh, and thin woodland, prone
to flooding. There was a serious flood in 1830 that must have been
the first great external event of Bernhard Riemann’s childhood.2

Riemann’s father, Friedrich Bernhard Riemann, was a Lutheran
minister and a veteran of the wars against Napoleon. He was already
middle-aged when he married Charlotte Ebell. Bernhard was their
second child and seems to have been especially close to his older sis-
ter, Ida—he named his own daughter after her. Four more children
followed, a boy and three girls. With today’s standard of living, which
of course we take for granted, it is difficult to imagine the hardships
that faced a country parson, well into his middle years, with a wife
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and six children to support, in a poor and undeveloped region of a
middling country in the early nineteenth century. Of the six Riemann
children, only Ida lived a normal life span. The others all died young,
probably in part from poor nutrition. Riemann’s mother, too, died
young, before her children were grown.

Poverty aside, it needs an effort of imagination for us, living and
working in a modern economy, to grasp the sheer difficulty of find-
ing a job in those times and circumstances. Outside large cities the
middle class barely existed. There was a scattering of merchants, par-
sons, schoolteachers, physicians, and government officials. Everyone
else who did not own land was a craftsman, a domestic servant, or a
peasant. The only respectable employment for women was as gov-
ernesses; otherwise they relied on their husbands or male family
members for support.

When Bernhard was still an infant, his father took up a new posi-
tion as minister in Quickborn, a few miles from Breselenz, and closer
to the great river. Quickborn is still, today, a sleepy village of timber-
framed houses and mostly unpaved streets bordered by massive, an-
cient oak trees. This place, even smaller than Breselenz, remained the
family home until the elder Riemann died in 1855. It was the center
of Bernhard’s emotional world until he was almost 30 years old. He
seems to have returned there at every opportunity to be amongst his
family, the only surroundings in which he ever felt at ease.

In reading of Riemann’s life, therefore, one must set it all against
a backdrop of this environment, the environment of his home and
upbringing, which he cherished, and for which, when away from it,
he yearned. The flat, damp countryside; the draughty house lit only
by oil lamps and candles, ill-heated in winter and ill-ventilated in
summer; long spells of sickness among siblings who themselves were
never quite well (they seem all to have suffered from tuberculosis);
the tiny and monotonous social round of a parson’s family in a re-
mote village; the inadequate and unbalanced diet on the stodgy side
of a stodgy national cuisine (“For a long time he suffered from
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chronic constipation,” notes Neuenschwander3). How did they stand
it? But they knew nothing else and simple affection is sufficient to
sustain the human spirit amid shared hardships.

IV. The multitude of states—kingdoms, principalities, duchies, and
grand duchies—that made up North Germany in Riemann’s time
were largely independent of each other and each made its own inter-
nal policy. This loose structure generated local pride and competi-
tion between the states.

In most respects they took their lead from Prussia. The eastern
part of that kingdom was the only German state to keep some mea-
sure of independence from Napoleon after the defeats of 1806−1807.
Under the stimulus of that brooding threat, the Prussians concen-
trated on internal reforms, overhauling their system of secondary
education in 1809−1810 under the direction of the philosopher, dip-
lomat, and linguist Wilhelm von Humboldt. Von Humboldt (whose
brother Alexander was a great explorer and natural scientist) was a
classicist and an ivory-tower man, who once said, “Alles Neue ekelt

mich an.”—“All that is new disgusts me.” Yet oddly, the reforms
brought in by this stern reactionary eventually made the educational
systems of the German states the most academically advanced in
Europe.

At the heart of the system was the 10-year gymnasium school,
the years in question being age 10 to 20. In its earliest form, the cur-
riculum at these schools was divided as follows.

Latin  . . . . . . . . . . . . . . . . . . 25 percent

Greek  . . . . . . . . . . . . . . . . . 16 percent

German  . . . . . . . . . . . . . . . 15 percent

Math  . . . . . . . . . . . . . . . . . . 20 percent

History and geography  . . . 10 percent

Science  . . . . . . . . . . . . . . . . . 7 percent

Religion  . . . . . . . . . . . . . . . . 7 percent
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By contrast, it is reported (by Jonathan Gathorne-Hardy in The

Public School Phenomenon) that the great English boys’ schools of
1840 allocated 75−80 percent of teaching time—40 hours a week—to
classics.

Quickborn had no gymnasium and Riemann did not begin his
proper schooling until age 14, four years into the gymnasium course.
This was in Hanover, the kingdom’s capital city, 80 miles from
Quickborn. The location was determined by the fact of his maternal
grandmother’s living in Hanover so that Riemann’s family was spared
boarding fees. Before attending this gymnasium Riemann was edu-
cated by his father with some assistance from a village schoolteacher
named Schultz.

Riemann, aged 14, was terribly unhappy in Hanover, morbidly
shy and homesick. His only extracurricular activity, so far as we know,
was seeking out such presents as he could afford to buy for his par-
ents and siblings, to send to them on their birthdays. The death of his
grandmother in 1842 led to a slight improvement. Riemann was
transferred to another gymnasium, this one in the town of Lüneburg.
Dedekind has this to say about the new situation.

The greater proximity to home, and the opportunity this offered to

spend vacations with his family, made these later schooldays very

happy for him. To be sure, the journeys to and fro, mostly by foot,

were physically exhausting in a way he was not used to.4 His mother,

whom sad to say he was soon to lose, expressed anxious concern for

his health in her letters, adding many heartfelt warnings to him to

avoid excessive physical effort.

Riemann does not seem to have been a good scholar. He had the
type of mind that could hold only those things it found interesting,
mathematics mostly. Furthermore, he was a perfectionist to whom
conscientiousness in producing flawless essay compositions was more
important than timeliness in delivering them. To improve his work
the school director arranged for him to board with a teacher of He-
brew called Seffer or Seyffer. Under the care of this gentleman
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Riemann improved sufficiently that in 1846 he was admitted to the
University of Göttingen as a student of theology. The idea was that he
would follow his father into the ministry.

V. Göttingen was the only university within the sphere of the
Hanover church so it was the logical choice. The name “Göttingen”
will crop up all through this book, so a few words about the history of
the university may not be out of order. Founded in 1734 by George II
of England (who was also Elector of Hanover5), Göttingen quickly
became one of the better German provincial universities, with more
than 1,500 students registered in 1823.

The 1830s, however, were a troubled time. Political agitation by
both students and faculty lowered attendance to less than 900 in 1834.
Three years later matters came to a head, and Göttingen attained a
moment of Europe-wide fame. King William IV of England and
Hanover died in 1837 without legitimate issue and the English throne
passed to his niece, Victoria. Hanover, however, subscribed to the Salic
Law of the medieval Franks, according to which only a male could
succeed to the throne. England and Hanover thereupon parted com-
pany. The new ruler of Hanover was Ernest Augustus, oldest surviv-
ing son of George III.

Ernest Augustus was a great reactionary. Almost his first act was
to set aside the liberal constitution granted by William IV four years
earlier. Seven eminent professors at Göttingen University refused to
swear an oath to uphold the new constitution and were dismissed.
Three of them were actually exiled from the kingdom. These dis-
missed scholars became known as “the Göttingen Seven” and were
heroes to social and political reformers all over Europe.6 Among them
were the two brothers Grimm of fairy-tale fame, who were academic
philologists.

In the changes that followed the continent-wide upheavals of
1848, Hanover got a new liberal constitution. At least one of the
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Göttingen Seven, the physicist Wilhelm Weber, was reinstated. The
university soon recovered its luster, eventually to become a great seat
of learning, as we shall see. When Bernhard Riemann arrived in 1846,
though, these upward trends were still in the future. He found
Göttingen University a subdued place, attendance not yet recovered
from the ructions of nine years earlier.

Göttingen did, however, have one major attraction for the young
Riemann. It was the home of Carl Friedrich Gauss, the greatest math-
ematician of his age, and possibly of any age.7

Gauss was already 69 years old when Riemann arrived at
Göttingen. His best work was behind him and he did little lecturing,
regarding it as an annoying waste of time. Still his presence must have
impressed Riemann, who had already been bitten by the math bug.
We know that Riemann attended Gauss’s lectures on linear algebra
and those of Moritz Stern on the theory of equations. At some point
during this year 1846−1847 Riemann must have confessed to his fa-
ther that he was far more interested in math than in theology and his
father, who seems to have been a kind parent, gave his consent to
mathematics as a career. And so Bernhard Riemann became a math-
ematician.

VI. Of Riemann’s adult personality, very little has come down to us.
The primary source is the short memoir by Dedekind that I men-
tioned at the beginning of this chapter. The memoir was written 10
years after Riemann’s death and was appended to the first edition of
his Collected Works (but never, so far as I know, translated into En-
glish).8 I have depended heavily on it for this book, so that many of
the statements here and in Chapter 8 should really be tagged “… ac-
cording to Dedekind.” You must take this as understood. Though
Dedekind might, of course, have been mistaken on points of fact, he
was the closest thing Riemann had to a friend. He was an honest and
upright man and I have never seen any suggestion that he was less
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than scrupulously truthful about his subject, with a single under-
standable exception that I shall mention in a moment. Other sources
are Riemann’s private letters, many of which have survived, and some
random recorded comments by students and colleagues.

These accounts tell us the following.

� Riemann was an extremely shy man. He avoided human con-
tact as far as possible and was ill at ease in company. His only
close ties—and they were very close indeed—were with his
family, and his only other ties of any sort were with other
mathematicians. When not among his family at the vicarage
in Quickborn he suffered from homesickness.

� He was very pious, in the German Protestant style. (Riemann
was Lutheran.) His opinion was that the essence of religion is,
to translate literally from Dedekind’s German, “Daily self-
examination before the face of God.”

� He thought deeply about philosophy and saw all his math-
ematical work in a larger philosophical context.

� He was a hypochondriac, in both the old and new senses of
the word. (It was formerly a synonym for “depressive.”)
Dedekind avoids this word, apparently out of consideration
for Riemann’s widow, who begged that Riemann’s hypochon-
dria not be made known. Dedekind makes it plain, though,
that Riemann was subject to spells of very deep unhappiness,
especially after the death of his father, whom he worshiped.
Riemann dealt with these episodes by losing himself in work.

� His health was never good and was destroyed by the long years
of privation to which a poor man had to resign himself if he
was to get an advanced education in that time and place.

It is tempting to find Riemann a rather sad and slightly pathetic
character. And yet that would be to consider only the outward ap-
pearance and manner of the man. Within that diffident, withdrawn
exterior was a mind of great brilliance and staggering boldness. How-
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ever timid and listless he may have appeared to casual observers,
Riemann’s mathematics has the fearless sweep and energy of one of
Napoleon’s campaigns. His mathematical friends and colleagues knew
this, of course, and revered him.

Riemann brings to my mind an episode from Somerset
Maugham’s novel The Moon and Sixpence, inspired by the life of the
painter Gauguin. Maugham’s hero, like Gauguin an artist, dies of lep-
rosy in a hut on a Pacific island, whither he has fled to pursue his
vision of art. Hearing that the man is dying, a local doctor goes to his
hut. It is a poor construction, shabby and dilapidated. When the doc-
tor steps inside, however, he is astonished to find the interior walls all
painted from floor to ceiling with brilliant, mysterious pictures. As
with that hut, so it was with Riemann. Outwardly he was pitiable;
inwardly, he burned brighter than the sun.

VII. In the realm of higher education, Wilhelm von Humboldt’s
reforms had as yet left a mark only in Berlin, the Prussian capital. The
situation in other German universities was as described by Heinrich
Weber in his introduction to Riemann’s Collected Works.

The purpose of the universities was conceived by their princely

patrons as a place for the preparation of lawyers and physicians,

teachers and preachers, as well as a place where the sons of the

nobility and the well-to-do could pass their time conspicuously and

respectably.

Indeed, the von Humboldt reforms had for a while a negative
effect on German higher education. They caused a demand for an
increased supply of well-trained secondary-school teachers, and the
only way this demand could be met was for the universities to do the
training. Even the mighty Gauss was teaching mainly elementary
courses at Göttingen University in 1846−1847. In search of a meatier
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diet, Riemann transferred to Berlin University. Two years at that in-
stitution, under instruction from the best mathematical minds in
Germany, brought Riemann to full maturity as a mathematician.

(Here and throughout these early historical chapters, you should
understand that in Europe before the post-Napoleonic shift of atti-
tudes, and in some countries for longer, there was a clear distinction
between universities, whose purpose was to teach and train whatever
of a cognitive elite the nation was thought to require, and academies or
societies, which existed for the purpose of research—this being under-
stood, to a greater or lesser degree depending on the time, the place,
and the inclination of the ruler, to be for the practical advantage of the
state. Institutions like Berlin University, founded in 1810, where some
research was done, and the early St. Petersburg Academy, where teach-
ing went on, were rare exceptions to this general rule. The Berlin Acad-
emy, where the Riemann Hypothesis first saw the light of day, was a
pure-research establishment modeled on England’s Royal Society.)

We know next to nothing about Riemann’s everyday life in Berlin
outside his mathematical studies. Dedekind records only one inci-
dent worth noting. In March 1848 the Berlin mob, inspired by the
February revolution in Paris, took to the streets, demanding the uni-
fication of the German states into a single empire. Barricades went
up, the army tried to clear them, and blood was shed. The Prussian
king at the time was Friedrich Wilhelm IV, a rather dreamy and un-
worldly man, much under the influence of the Romantic Movement,
with a sentimental view of his people and an ideal of the state as a
paternalistic monarchy. He proved maladroit in the crisis, sending
the army back to camp and leaving his palace unprotected before the
insurrectionists had been dispersed. The university students formed
a loyal guards corps to protect the king and Riemann served a spell of
guard duty with this corps from 9:00 one morning until 1:00 the fol-
lowing afternoon, a grand total of 28 hours.

After returning to Göttingen in 1849, Riemann began work for
his doctorate, which he attained two years later, at age 25, having sub-
mitted a dissertation on complex function theory. He became a lec-
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turer at Göttingen three years after that and an associate professor in
1857—his first salaried position. (Ordinary lecturers were expected
to survive on fees paid by whatever students they could attract to
their lectures. The job title was Privatdozent—“private lecturer.”)

The year 1857 was also what we should call, in the language of
current celebrity biography, Riemann’s “breakout year.” His 1851 doc-
toral dissertation is nowadays regarded as a classic of nineteenth-
century mathematics, but it drew little attention at the time in spite
of having been enthused over by Gauss. His other written papers of
the early 1850s were not widely known and were published in an
accessible form only after his death. To the degree that he had become
known at all, it was mainly through the content of his lectures; and
much of that content was too far ahead of its time to be appreciated.
In 1857, however, Riemann published a paper on analysis that was at
once recognized to be a major contribution. Its title was “Theory of
Abelian Functions.”9 In it, he tackled topical problems by ingenious
and innovative methods. Within a year or two his name was known
to mathematicians all over Europe. In 1859 he was promoted to full
professor at Göttingen, at last attaining sufficient income to allow
him to marry—which he did, three years later. His bride was Elise
Koch, a friend of his oldest sister.

On August 11 of that same year, 1859, shortly before his 33rd
birthday, Bernhard Riemann was also appointed a corresponding
member of the Berlin Academy. The Academy based their decision
on the only two of Riemann’s papers that were well known, the 1851
doctoral dissertation and the 1857 work on Abelian functions. To be
elected a member of the Berlin Academy was a great honor for a
young mathematician. It was the custom to acknowledge such ap-
pointments by submitting an original paper to the Academy, describ-
ing some research one was engaged in. The paper Riemann submit-
ted was titled “On the Number of Prime Numbers Less Than a Given
Quantity” (Über die Anzahl der Primzahlen unter einer gegebenen

Grösse).
Mathematics has not been quite the same since.
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3

THE PRIME NUMBER THEOREM

Well, how many primes are there
less than a given quantity? I’m going to tell you very soon, but first,
the five-minute refresher course on prime numbers.

Take a positive whole number—I’ll take 28 as an example. What
numbers divide exactly into it? The answer is: 1, 2, 4, 7, 14, and 28.
These are the factors of 28. We say: “28 has six factors.”

Now, every number has 1 as a factor; and every number has itself
as a factor. These are not very interesting factors. They are, to use a
word mathematicians rather like, “trivial” factors. The interesting fac-
tors are the others: 2, 4, 7, and 14. These are called the proper factors.

The number 28, therefore, has four proper factors. The number
29, however, has no proper factors. Nothing divides into 29 exactly,
except, of course, 1 and 29. It is a prime number. A prime number is
one with no proper factors.

Here are all the prime numbers up to 1,000.

I.
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2 3 5 7 11 13 17 19 23 29 31 37 41 43

47 53 59 61 67 71 73 79 83 89 97 101 103 107

109 113 127 131 137 139 149 151 157 163 167 173 179 181

191 193 197 199 211 223 227 229 233 239 241 251 257 263

269 271 277 281 283 293 307 311 313 317 331 337 347 349

353 359 367 373 379 383 389 397 401 409 419 421 431 433

439 443 449 457 461 463 467 479 487 491 499 503 509 521

523 541 547 557 563 569 571 577 587 593 599 601 607 613

617 619 631 641 643 647 653 659 661 673 677 683 691 701

709 719 727 733 739 743 751 757 761 769 773 787 797 809

811 821 823 827 829 839 853 857 859 863 877 881 883 887

907 911 919 929 937 941 947 953 967 971 977 983 991 997

As you can see, there are 168 of them. At this point, someone
usually objects that 1 is not included in this or any other list of primes.
It fits the definition, doesn’t it? Well, yes, strictly speaking, it does, and
if you want to be a barrack-room lawyer about it, you can write in a
“1” at the start of the list for your own satisfaction. Including 1 in the
primes, however, is a major nuisance, and modern mathematicians
just don’t, by common agreement. (The last mathematician of any
importance who did seems to have been Henri Lebesgue, in 1899.)
Even including 2 is a nuisance, actually. Countless theorems begin
with, “Let p be any odd prime.…” However, 2 pays its way on balance;
1 doesn’t, so we just leave it out.

If you look closely at the list of primes, you’ll see that they thin
out as you go along. Between 1 and 100 there are 25 primes; between
401 and 500, 17; and between 901 and 1,000, only 14. The number of
primes in any block of 100 whole numbers seems to decline. If I con-
tinued the list to show all the primes up to a million, you would see
that there are only eight primes in the last hundred-block (i.e., from
999,901 to 1,000,000). If I took it to a trillion, there would be just four
in the last hundred-block. (Here they are: 999,999,999,937;
999,999,999,959; 999,999,999,961; and 999,999,999,989.)
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II. The question naturally arises, Do the primes eventually thin out
to nothing? If I continued the list into the trillions of trillions, and
trillions of trillions of trillions of trillions, would I eventually reach a
point beyond which there are no more primes, so that the last prime
on my list would be the last prime, the biggest prime?

The answer to that was found by Euclid around 300 B.C.E. No,
the primes never thin out to nothing. There are always more. There is
no biggest prime. However big a prime you find, there is always a
bigger one yet to be found. The primes go on forever. Proof: Suppose
N is a prime. Form this number: (1 × 2 × 3 × … × N) + 1. This num-
ber doesn’t divide exactly by any number from 1 to N—you always
get remainder 1. So either it doesn’t have any proper factors—and
therefore is itself a prime bigger than N—or its smallest proper factor
is some number bigger than N. Since any number’s smallest proper
factor is bound to be a prime—if it wasn’t, it could be factored down
into something smaller—this proves the result. If N is 5, for example,
then 1 × 2 × 3 × 4 × 5 + 1 is 121, whose smallest prime factor is 11.
Whichever prime you start with, you end up with a bigger one. (I
shall give another proof of the infinity of primes in Chapter 7.iv, after
showing you the “Golden Key.”)

Having had that point settled so early in the history of math-
ematics, the next thing mathematicians were naturally curious about
was: Can we find a rule, a law, to describe the thinning-out? There are
25 primes up to 100. If primes were distributed perfectly evenly, there
would of course be 10 times that many—250—up to 1,000. In fact
there are only 168 primes up to 1,000, because of the thinning out.
Why 168? Why not 158, or 178, or some other number? Is there a
rule, a formula, to tell me how many primes there are less than a
given number?

And there we are, back with the question that I, and Bernhard
Riemann, started with: how many primes are there less than a given
quantity?
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III. Let’s do a little reverse engineering. I actually know the answer
to that last question for quite impressively large numbers. Table 3-1
shows some.

TABLE 3-1

How many primes

N less than N?

1,000 168

1,000,000 78,498

1,000,000,000 50,847,534

1,000,000,000,000 37,607,912,018

1,000,000,000,000,000 29,844,570,422,669

1,000,000,000,000,000,000 24,739,954,287,740,860

That’s nice, but not actually terribly informative. Yes, the primes
sure do thin out. If they kept up the pace set in the first 1,000, where
there are 168 primes, there would be 168,000,000,000,000,000 or so
in that last box. In fact there are only one-seventh that number.

In a moment I am going to perform a trick that will send a flash
of light through this rather murky situation. First, though, a word
about functions.

IV. A two-column table like Table 3-1 is an illustration of a func-
tion. “Function” is one of the most important concepts in all of math,
the second or third most important, I should think, after “number”
and possibly “set.” The main idea of a function is that some number
(the one in the right-hand column) depends on some other number
(the one in the left-hand column) according to some fixed rule or
procedure. In the case of Table 3-1, the procedure is, “Count how
many primes there are up to the number in the left-hand column.”
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Another way to say the same thing is: a function is a way to turn
(mathematicians say “map”) a number into another number. The
function in Table 3-1 turns, or maps, the number 1,000 into the num-
ber 168—again, by way of some definite procedure.

Terms of art: Because “the number in the left-hand column” and
“the number in the right-hand column” are awfully tedious things to
have to keep saying, mathematicians refer to them as the “argument”
and the “value” (or the “function value”) respectively. So the essence
of a function is that you get a value by applying some rule or proce-
dure to an argument.

One more key term of art. The rule that stands at the heart of a
function might apply to some numbers, or some kinds of numbers,
but not others. The rule, “subtract the argument from 1 and take the
reciprocal,” for example, defines a perfectly respectable function—
the function a mathematician would call 1 ⁄ (1 – x), which we shall
look at more closely in Chapter 9.iii—but it can’t be applied to the
argument “1,” since that would involve dividing by zero, which math-
ematics doesn’t allow. (No use to ask “What happens if I do?” You
can’t. It’s against the rules. If you try, the game stops and everyone
goes back to his last legal position.)

For another example, consider the function whose rule is “count
the number of factors the argument has.” You find that 28 has six
factors (I’m including trivial factors here), while 29 has only two. So
this function turns 28 into 6; it turns 29 (or any other prime number)
into 2. This is another useful and respectable function, usually writ-
ten “d(N).” However, this function has a meaning only for whole
numbers—really has any point only for positive whole numbers. How
many factors does 12 7

8  have? How many factors does π  have? Beats
me. That’s not what this function is for.

The term of art here is “domain.” The domain of a function is the
numbers it can have as arguments. The function 1 ⁄ (1 – x) can have
any number except 1 as an argument; its domain is all numbers ex-
cept 1. The function d(N) can have any positive whole number as its
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argument; that’s its domain. The domain of the function x  is all
non-negative numbers, since negative numbers don’t have square
roots (though I reserve the right to change my mind about this later
in the book).

Some functions allow all numbers as their domain. The squaring
function x 2, for example, works for any number. Any number can be
squared (i.e., multiplied by itself). The same applies to any polyno-

mial function—that is, a function whose value is got by adding and
subtracting powers of the argument. Here is an example of a polyno-
mial function: 3x 5 + 11x 3 − 35x 2 − 7x + 4. The domain of a polyno-
mial is all numbers. This fact will be important in Chapter 21.iii. Most
interesting functions, however, have some limits on their domain. Ei-
ther there are some arguments for which the rule doesn’t work, usu-
ally because you would have to divide by zero, or else the rule only
applies to certain kinds of numbers.

It’s important to understand that a table like Table 3-1 is only a
sample of its function. How many primes are there less than 30,000?
Less than seven million? Less than 31,556,926? Well, I could tell you
by putting more rows into the table; but given that I’m trying to hold
this book to a reasonable number of pages, there is obviously a limit
to how much of that I can do. This table is just a sample of the func-
tion, a snapshot, with arguments I have chosen for a very deliberate
purpose.

In the case of most functions, there is in fact no good way to
show a function in all its glory. A graph is sometimes helpful to illus-
trate some particular feature of a function, but in this case a graph is
pretty useless. If you try plotting Table 3-1 as a graph, you will see
what I mean. My efforts to provide you with a graph of the zeta func-
tion in Chapter 9.iv will drive the point home. Mathematicians gen-
erally get a feel for a particular function by working intimately with it
for a long time, observing all its features and peculiarities. A table or a
graph rarely encompasses the whole thing.
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V. Another thing to be noted about functions is that the important
ones have names; and the really important ones have special symbols
to denote them. The function I’ve sampled in Table 3-1 has the name
“The Prime Counting Function” and the symbol π (N), which is pro-
nounced “pi of N.”

Yes, I know, this is confusing. Isn’t π  the ratio of a circle’s cir-
cumference to its diameter, the ineffable

3.14159265358979323846264…?

It is indeed, and this new use of the symbol π  is nothing whatever to
do with that. The Greek alphabet has only 24 letters and by the time
mathematicians got round to giving this function a symbol (the per-
son responsible in this case is Edmund Landau, in 1909—see Chapter
14.iv), all 24 had been pretty much used up and they had to start
recycling them. I am sorry about this; it’s not my fault; the notation is
now perfectly standard; you’ll just have to put up with it.

(If you have ever done any serious computer programming, you
will be familiar with the concept of overloading a symbol. This use of
π  for two utterly different purposes is a sort of overloading of the π

symbol.)
So π (N) is defined to be the number of primes up to N (inclu-

sive, though it rarely matters, and I shall be sloppy about saying “less
than” when I should say “less than or equal to”). Back to our main
question: Is there some rule, some neat formula, that will give me
π (N) without putting me to the trouble of counting?

Allow me to perform a small trick on Table 3-1. I am going to
divide the first column by the second, the arguments by the values.
I’m not aiming for terrific precision. In fact, I shall use the $6 pocket
calculator I take to the supermarket. Here goes. 1,000 divided by 168
gives 5.9524; 1,000,000 divided by 78,498 gives 12.7392. Four more
similar calculations give me Table 3-2.
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TABLE 3-2

N N / π (N)

1,000 5.9524

1,000,000 12.7392

1,000,000,000 19.6665

1,000,000,000,000 26.5901

1,000,000,000,000,000 33.6247

1,000,000,000,000,000,000 40.4204

Look closely at the values here. They go up by 7 each time. Or
rather, by a number that wobbles between 6.8 and 7.0. This might not
strike you as very wonderful, but a large light bulb goes on over a
mathematician’s head when he sees a table like that, and a particular
word comes into his mind. Let me explain.

VI. There is a certain family of functions that is terrifically impor-
tant in math, the exponential functions. Chances are you know some-
thing about them. The word “exponential” is one of those that has
escaped from math into ordinary language. We all hope our mutual
funds will grow exponentially—that is, faster and faster.

From the point of view I have adopted here—functions illus-
trated by two-column tables, like Table 3-1—I can give you a loose
definition of an exponential function as follows. If you pick your ar-
guments so that they go up by regular addition from row to row, and
then apply the function rule to them, and if it turns out that the re-
sulting values go up by regular multiplication from row to row, you
are looking at an exponential function. “Regular” here means that the
same number is being added, or multiplied, each time.

Here’s an example, for which the rule is “Work out 5 × 5 × 5 …,
where there are N fives in the expression.”
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N 5N

1 5

2 25

3 125

4 625

See how the arguments go up by addition of 1 each time while the
values go up by a multiple of 5 each time? That’s an exponential func-
tion. The arguments go up by addition while the values go up by
multiplication.

I chose the arguments to go up by adding 1 each time and shall
continue to do that, just for convenience. In this particular function,
this makes the values multiply by 5. Of course, there is nothing spe-
cial about 5. I could pick on a function with 2 as a multiplier, or 22,
or 761, or 1.05 (which would give a table showing the accumulation
of compound interest at five percent), or even 0.5. Each gives me
an exponential function. That’s why I started by saying “a family of
functions.”

Here’s another term mathematicians are fond of: “canonical
form.” When you have a situation like this, in which a certain phe-
nomenon (in this case an exponential function) can show up in many
different ways, there is generally one way mathematicians prefer to
represent the whole phenomenon. So it is here. There is one expo-
nential function mathematicians prefer above all others. If you were
to take a guess at it, you might suppose it is the one in which the
multiplier is 2—the simplest number to multiply by, after all. Nope.
The canonical form of the exponential function has multiplier
2.718281828459045235360287…. This is another of those magic
numbers, like π , that turn up all over the place in math.10 It has al-
ready turned up in this book (Chapter 1.vii). It’s irrational,11 so the
decimal never repeats itself, and can’t be rewritten as a fraction. The
symbol for it is e, named for Leonhard Euler, of whom much more in
the next chapter.
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Why this number? Isn’t it an awfully clumsy number to take for
your canonical form? Wouldn’t 2 be much simpler? Well, yes, it prob-
ably would, for these purposes. I can’t explain the importance of e
without going into calculus, though, and I have sworn a solemn oath
to explain the Riemann Hypothesis with the utter minimum of cal-
culus. I am, therefore, just going to beg you to take on faith that e is a
really, really important number, and that no other exponential func-
tion can hold a candle to this one, the function eN.

N eN

1 2.718281828459

2 7.389056098930

3 20.085536923187

4 54.598150033144

(To 12 places of decimals.) The main principle remains, of course.
The left-hand columns—the arguments—go up by adding 1 each
time. As they do so, the right-hand columns—the values—are multi-
plied by e each time.

VII. What about the contrary situation? Suppose I find myself look-
ing at a function whose rule is: when the arguments go up by multi-
plication, the values go up by addition? What kind of function is that?

Here we have entered the realm of inverse functions. Mathemati-
cians are very keen on inverting things—turning them inside out. If y
is 8 times x, what is x in terms of y? It’s y ⁄ 8, of course. Division is the
inverse of multiplication. There’s a thing you like to do called squar-
ing numbers, where you multiply a number by itself? OK, what is the
inverse? If y = x2, what is x equal to, in terms of y? Well, it’s the square
root of y. If you know a bit of calculus, you know there’s a process
called “differentiation,” that you can use to turn a function f into an-
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other function g that will tell you the instantaneous rate of change of
f at any argument. What’s the inverse? It’s integration. And so on.
Inversion is going to be a key topic later, when I get deep into
Riemann’s 1859 paper.

From the point of view of my approach here, showing a function
as a table, inversion just means flipping the table round, right to left,
left to right. This is actually a quick way to make trouble for yourself.
Take the squaring function—probably the first non-trivial function
you learned in high school. To square a number, you multiply it by
itself.

N N2

−3 9

−2 4

−1 1

0 0

1 1

2 4

3 9

(I’m assuming you remember the rule of signs12 here, so that −3
times −3 is 9, not −9.) Now, if you flip columns, you get the inverse
function.

NN N

9 −3

4 −2

1 −1

0 0

1 1

4 2

9 3
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But hold on here. What’s the function value for argument 9? Is it −3
or 3? Couldn’t this function be rewritten like this.

N N

0 0

1 1, or maybe −1

4 2, or just possibly −2

9 3, or can it also be −3?

This won’t do at all—too messy. Well … as a matter of fact, there is a
mathematical theory of many-valued functions. Bernhard Riemann
was a master of that theory and I shall offer a glimpse of his ideas
about it in Chapter 13.v. This is not the time or the place, though, and
I’m not going to have any truck with such things here. As far as I am
concerned, the iron rule is, one argument, at most one value (no value
at all, of course, when the argument isn’t in the function’s domain).
The square root of 1 is 1; the square root of 4 is 2; the square root of 9
is 3. Does this mean I don’t acknowledge that −3 times −3 is 9? Sure I
acknowledge it. I just don’t include it in my definition of the term
“square root.” Here, for the time being at any rate, is my definition of
a square root. The square root of N is the single non-negative num-
ber (if any) which, when multiplied by itself, gives N.

VIII. Fortunately the exponential function doesn’t give any of these
problems. You can cheerfully invert it to give you a function that,
when you pick arguments going up by multiplication, gives you val-
ues going up by addition. Of course, as with exponential functions,
there is a whole family of inverse functions, depending on the multi-
plier; and as with the exponential function, mathematicians much,
much prefer the one that goes up in additions of 1 when the argu-
ments go up in multiples of e. The function you have then is called
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the log function, and “log” is the word that came into the math-
ematician’s mind, under the illumination of the light bulb, when he
saw Table 3-2. If y = ex, then x = log y. (From which it follows, by way
of straightforward substitution, that for any positive number y,
y = elog y, a fact I’ll pick up on later, a lot.)

In the mathematical topics relevant to this book—relevant, that
is, to the Riemann Hypothesis—the log function is everywhere. I shall
have much more to say about it in Chapters 5 and 7, and it will play a
starring role when I actually turn the Golden Key in Chapter 19. For
the time being, just take it on faith that it is a function in the sense I
have just described, a really important function, and the inverse of
the exponential function: If y = ex, then x = log y.

I’m going to cut right to the chase at this point and show you the
log function, but instead of going up in multiples of e, I shall let the
arguments go up in multiples of 1,000. As I said, when showing a
function as a table, I get to pick the arguments (and also the number
of decimal places, in this case four). It’s still the same function, I swear.
To help you see what’s happening, I have tacked two extra columns
on at the right, the first just the right-hand column from Table 3-2,
the second giving column 2’s percentage difference from column 3.
The result is Table 3-3.

TABLE 3-3

N log N N / π (N) % error

1,000 6.9077 5.9524 16.0490

1,000,000 13.8155 12.7392 8.4487

1,000,000,000 20.7232 19.6665 5.3731

1,000,000,000,000 27.6310 26.5901 3.9146

1,000,000,000,000,000 34.5378 33.6247 2.7156

1,000,000,000,000,000,000 41.4465 40.4204 2.5386
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The following statement seems reasonable: N ⁄ π (N) is close to
log N; and the larger N gets, the closer (proportionally) it gets.

Mathematicians have a special way to write this: N ⁄ π (N)
∼ log N. (Pronounced “N over pi of N tends asymptotically to log N.”
That wavy line is properly called a “tilde,” pronounced “til-duh.” How-
ever, in my experience, mathematicians more often refer to it as a
“twiddle” sign.13)

If you just rearrange this according to the ordinary rules of alge-
bra, you get:

The Prime Number Theorem

π (N) ~
N

Nlog

Of course, I haven’t proved this, I have just shown that it’s plau-
sible. It is a very important result; so important that it is called “the
Prime Number Theorem.” Not “a prime number theorem.” This is
“the Prime Number Theorem.” Note the capital letters, which I shall
use when referring to the theorem. Very often, in fact, when the con-
text is sufficiently plain, number theorists simply write “PNT,” a prac-
tice I shall follow in this book.

IX. Finally, two consequences of the PNT, supposing it is true. To
derive those consequences, let me point out that there is a sense—a
logarithmic sense!—in which, when dealing with all the numbers up
to some large N, most of those numbers resemble N in size. Of all the
numbers from 1 to 1 trillion, for example, over 90 percent have 12 or
more digits, and in that respect resemble 1 trillion (which has 13 dig-
its) more than they resemble, say, 1,000 (which has only 4 digits).
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If there are N ⁄ log N primes from 1 to N, the average density of
primes in that range is 1 ⁄ log N; and since most numbers in that range
are like N in size—in the very rough sense that I just described—it is
fair to conclude that around N, the density of primes is 1 ⁄ log N. So it
is. At the end of the first section in this chapter I counted primes in
the last block of 100 numbers before 100, 500, 1,000, 1 million and 1
trillion. The counts were: 25, 17, 14, 8, and 4. The corresponding val-
ues of 100 ⁄ log N (i.e., for N = 100, 500, etc.) are, to the nearest whole
numbers: 22, 16, 14, 7, and 4. Another way to say this is that in the
neighborhood of a big number N, the probability of a number being
prime is ~1 ⁄ log N.

By the same rough logic, we can estimate the size of the N-th
prime. Consider a range of numbers from 1 to K, for some big num-
ber K. If the count of primes in that range is C, then on average we
should expect to find the first of those numbers at K ÷  C, the second
at 2K ÷ C, the third at 3K ÷ C, and so on. The N-th will be around NK

÷ C, and the C-th, which is to say the last in this range, will be around
CK ÷  C, which means, of course, K. Now, if the PNT is true, then the
count C is actually K ⁄ log K, so that the N-th prime is actually around
NK ÷  (K ⁄ log K), which is to say, around N log K. Since most num-
bers in this range resemble K in size, I can take K and N to be inter-
changeable, and the N-th prime is ~ N log N. I know it looks fishy,
but in fact this is not a bad estimate, and gets proportionately better
and better on the twiddle principle. It predicts, for example, that the
trillionth prime will be 27,631,021,115,929; in fact, the trillionth
prime is 30,019,171,804,121, an 8 percent error. Percent errors at a
thousand, a million, and a billion are 13, 10, and 9.

Consequences of the PNT

The probability that N is prime is ~
1

logN
.

The N-th prime number is ~ N log N.
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Not only are these consequences of the PNT; it is also a conse-
quence of them. If you could mathematically prove the truth of ei-
ther, the PNT would follow. Each of these results is equiponderant
with (i.e., has the same weight as) the PNT, and can be considered
just an alternative way of stating it. In Chapter 7.viii I shall show
another, more important way to express the PNT.
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4

ON THE SHOULDERS OF GIANTS

The first person to whom the truth
contained in the Prime Number Theorem (PNT) occurred was Carl
Friedrich Gauss, whose dates were 1777 to 1855. Gauss has, as I men-
tioned in Chapter 2.v, a good claim to being the greatest mathemati-
cian who ever lived. In his lifetime he was known as Princeps

Mathematicorum—the Prince of Mathematics—and at his death the
King of Hanover, George V, ordered a commemorative medal in his
honor, with that title on it.14

Gauss came from extremely humble origins. His grandfather was
a landless peasant; his father was a jobbing gardener and bricklayer.
Gauss attended the poorest kind of local school. A famous incident,
reported from that school, is much more likely to be true than most
such stories are. One day the schoolmaster, to give himself a half-
hour break, set the class to adding up the first 100 numbers. Almost
instantly, Gauss threw his slate onto the master’s table, saying, “Ligget

se!” which in the peasant dialect of that place and time meant, “There
it is!” Gauss had mentally listed the numbers horizontally in order (1,
2, 3, …, 100), then in reverse order (100, 99, 98, …, 1) then added the

I.
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two lists vertically (101, 101, 101, …, 101). That is 100 occurrences of
101, and since all the numbers were listed twice, the required answer
is half this sum: 50 times 101, which is 5,050. Easy when you have
been told it, but not a method that would occur to the average 10-
year-old; nor even the average 30-year-old, for that matter.

It was Gauss’s good luck that his schoolmasters recognized his
ability and were willing to go to some pains to promote it. It was his
even greater luck to live in the small German duchy of Brunswick—
the blob that separates the two parts of Hanover on the map in Chap-
ter 2.ii. Brunswick was ruled at this time by Carl Wilhelm Ferdinand,
who rejoiced in the title Herzog zu [that is to say, “Duke of ”]
Braunschweig-Wolfenbüttel-Bevern. We have met this Duke already
without knowing it at the time. A keen soldier all his life, he held the
rank of field marshal in the Prussian army and was in charge of the
joint Prussian-Austrian force that the French stopped at Valmy on
September 20, 1792.

Carl Wilhelm truly was a gentleman. If there is a mathematicians’
Heaven, some sumptuous apartments must be set aside in it for him,
for his use whenever he feels inclined to visit. Hearing of the boy
Gauss’s talent, the Duke asked to see him. Young Gauss cannot have
possessed much in the way of social polish at this point. Later in life,
after much acquaintance with courts and universities, he is described
as mild and affable; but he always had the rough-cut features and
stocky physique of his peasant origins. However, the Duke was suffi-
ciently discerning that he took to the boy at once, remained his friend
until death parted them, and provided the steady financial support
that enabled young Gauss to embark on a long brilliant career as a
mathematician, physicist, and astronomer.15

The Duke’s ability to support Gauss ended very tragically. In 1806
Napoleon was at the height of his career. In the previous year’s cam-
paigning, he had defeated the combined armies of Russia and Austria
at the battle of Austerlitz, having temporarily bought off the Prussians
by offering them Hanover. He had then established the Confedera-
tion of the Rhine, bringing all the western part of what is now Ger-
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many under French rule, and reneged on the Hanover deal, offering
it now to Britain. Only Prussia and Saxony held out against him; and
their only ally was Russia, gun-shy from the defeat at Austerlitz.

To prevent Saxony from becoming a French satellite, the
Prussians occupied it, calling the Duke of Brunswick out of retire-
ment—he was 71 years old at this point—to lead their forces. Napo-
leon declared war and his army struck northwest through Saxony to-
ward Berlin. The Prussians tried to concentrate forces, but the French
were too fast for them, and crushed the main Prussian units at Jena.
The Duke was with a detachment at Auerstädt a few miles to the
north; one of Napoleon’s flanking corps caught him and routed his
troops.

Defeated and mortally wounded, the Duke asked Napoleon, via
an emissary, for leave to return to his home to die. The Emperor, a
thoroughly modern dictator who was not much given to chivalry,
laughed in the messenger’s face. The unfortunate Duke, blinded and
dying, had to be hurried away in a cart to the free territories beyond
the Elbe. Napoleon’s secretary, Louis de Bourienne, tells the melan-
choly end of the tale in his Memoirs.

The Duke of Brunswick, grievously wounded at the battle of

Auerstädt, arrived at Altona [across the Elbe, just west of Hamburg]

on October 29. His entry into this city was a new and striking ex-

ample of the vicissitudes of fortune. People beheld a sovereign

prince, enjoying, whether rightly or wrongly, a great military repu-

tation, and but lately powerful and tranquil in his capital, and now

wounded to death, making his entry into Altona on a miserable

stretcher borne by ten men, without officers, without servants, es-

corted by a crowd of children. While the Duke continued to live, he

saw nobody but his wife, who reached him November 1. He per-

sisted in refusing all visits and died November 10.

He had passed through Brunswick on the way, and it is said that
Gauss saw the cart from the window of his room opposite the castle
gate. The Duchy of Brunswick was then wound up, incorporated into
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Napoleon’s puppet “Kingdom of Westphalia.” The Duke’s heir,
Friedrich Wilhelm, was dispossessed and had to flee to England. He,
too, died fighting Napoleon, at the battle of Quatre Bras in 1815, a
few days before Waterloo, but not before his duchy had been restored
to him.

(In strict fairness to Napoleon, I should add that on a later razzia
through western Germany, when Gauss was installed at Göttingen,
the Emperor spared the city because “the greatest mathematician of
all time is living there.”)

II. Having lost his patron, Gauss had to find a job. He was offered,
and took, the position of director of the observatory at Göttingen
University, arriving there in late 1807.16  Göttingen was already known
as one of the better-equipped provincial German universities. Gauss
had studied there himself in 1795−1798, apparently attracted by its
splendid library, where he had spent most of his time. Now he be-
came head of astronomy at the university and stayed at Göttingen
until his death in February 1855, a few weeks short of his 78th birth-
day. In the last 27 years of his life, he slept away from his beloved
observatory only once, to attend a conference in Berlin.

To tell of Gauss’s connection with the PNT, I must explain his
chief peculiarity as a mathematician. Gauss published much less than
he wrote. We know—from his correspondence, his surviving unpub-
lished papers, and circumstantial evidence in his published works—
that what he presented to the world was only part of what he discov-
ered. Theorems and proofs that would have made another man’s
reputation, Gauss left languishing in his personal diaries.

There seem to have been two reasons for this apparent careless-
ness. One was a lack of ambition. A serene, self-contained, and frugal
man, who grew up without material possessions and seems never to
have acquired the taste for them, Gauss had little need of anyone’s
approval and did not seek social advancement. The other factor, much
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more common among mathematicians in all ages, was perfectionism.
Gauss could not bring himself to present any result to the world until
it was polished smooth, all in faultless logical order. His personal seal
showed a tree with only sparse fruit, and the motto, Pauca sed

matura—“Few, but ripe.”
This is, as I said, a common failing among mathematicians and

often makes the reading of published mathematical papers a very te-
dious business. In one of the minor classics of modern psychological
literature, The Presentation of Self in Everyday Life, Erving Goffman
develops a theory of “performances,” in which a product or activity
created in conditions of disorder and opportunity in some “back”
environment is presented as a smooth, finished creation at the “front.”
Restaurants illustrate the point. Dishes prepared in the clatter, break-
age, and yelling of an overheated kitchen appear in the public area as
flawless arrangements on spotless plates, delivered by dapper mur-
muring waiters. A great deal of intellectual work is like this. Says
Goffman:

[I]n those interactions where the individual presents a product to

others, he will tend to show them only the end product, and they

will be led into judging him on the basis of something that has been

finished, polished and packaged. In some cases, if very little effort

was actually required to complete the object, this fact will be con-

cealed. In other cases it will be the long, tedious hours of lonely

labor that will be hidden….

Published mathematical papers often have irritating assertions
of the type: “It now follows that…,” or: “It is now obvious that…,”
when it doesn’t follow, and isn’t obvious at all, unless you put in the
six hours the author did to supply the missing steps and checking
them. There is a story about the English mathematician G.H. Hardy,
whom we shall meet later. In the middle of delivering a lecture, Hardy
arrived at a point in his argument where he said, “It is now obvious
that….” Here he stopped, fell silent, and stood motionless with fur-
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rowed brow for a few seconds. Then he walked out of the lecture hall.
Twenty minutes later he returned, smiling, and began, “Yes, it is obvi-
ous that….”

If he lacked ambition, however, Gauss also lacked tact. He made a
great deal of trouble for himself with his fellow mathematicians by
referring to discoveries he had made, but not published, years before
someone else discovered and published them. This was not vanity—
Gauss was free of vanity—but what Dr. Johnson called “stark insensi-
bility.” In a book published in 1809, for example, Gauss referred to his
discovery in 1794 of the method of least squares (a way of finding the
best “fit” for a number of experimental observations). He had, of
course, not published the discovery at the time he made it. The older
French mathematician Adrien-Marie Legendre had discovered, and
published, the method in 1806 and was furious at Gauss’s claim to
prior discovery. There is no doubt of the truth of Gauss’s claim—we
have documentary evidence—but if he wanted the credit, he really
should have published. He did not care about the credit, though; and
would not publish a paper if he hadn’t enough time to polish it to
perfection.

III. In December 1849 Gauss exchanged letters with the astrono-
mer Johann Franz Encke (after whom a famous comet is named).
Encke had made some remarks about the frequency of primes.
Gauss’s letter opened:

The kind communication of your remarks about the frequency of

primes was of interest to me as more than just a reference. It re-

called to me my own work in the same subject, whose beginnings

were in the distant past, in 1792 or 1793…. One of the first things I

did was direct my attention to the decreasing frequency of primes,

to which purpose I counted the same in several chiliads and jotted

down the results on the attached white pages. I soon perceived that
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beneath all of its fluctuations, this frequency is, on average, close to

inversely proportional with the logarithm…. I have very often (since

I have no patience for a continuous count of the range) spent an

idle quarter of an hour to count another chiliad here and there; but

I gave it up at last without quite getting through a million.

[My italics]

By “chiliads” Gauss meant blocks of 1,000 numbers. So begin-
ning in 1792—when he was fifteen years old!—Gauss had amused
himself by tallying all the primes in blocks of 1,000 numbers at a
time, continuing up into the high hundreds of thousands (“without
quite getting through a million”).

To get a feeling for the effort involved here, I set myself the task of
extracting the primes from the chiliad 700,001 to 701,000, using just
the aids that would have been available to Gauss: a pencil, some sheets
of paper, and a list of the primes up to 829, which is as many as you
need in order to apply the basic prime-finding process to numbers
up to 701,000.17 I confess I gave up after an hour, when I had worked
through prime divisors up to 47…which means I had 130 prime divi-
sors still to go. You are welcome to try the same exercise yourself. This
was Gauss’s “idle quarter of an hour” (unbeschäftigte Viertelstunde).

The sentence I italicized in the extract from Gauss’s letter to
Encke is the first of the two PNT-related results I showed in Chapter
3.ix. It is, as I remarked there, equivalent to the PNT. There is no
doubt that Gauss was indeed working on this in the early 1790s. His
claim is well documented, just as other claims of the same kind were.
He just never bothered to publish.

IV. Oddly, the first published work touching on the PNT came from
that same Adrien-Marie Legendre who had been so vexed by Gauss’s
claim to have discovered the method of least squares. In 1798—that
is, five or six years after Gauss had unearthed the PNT, without mak-
ing his results known to the world—Legendre published a book titled
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Essay on the Theory of Numbers, in which he conjectured, on the basis
of some prime counts of his own, that

π x
x

A x B
( )

+
~

log

for some numbers A and B, “to be determined.” In a later edition of
the book he refined this conjecture (which he could not prove) to

π x
x
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−
~

log

where A, for large values of x, tended to some number near 1.08366.
Gauss discusses Legendre’s conjectures in his 1849 letter to Encke. He
demolishes the 1.08366 value but comes to no other very definite
conclusions.

No doubt the Encke letter, if he had read it, would have caused
poor Legendre to throw another conniption. Fortunately he had died
some years before it was written.18

V. Because I am surveying here relevant discoveries and conjectures
before 1800, and because he was the author of the “Golden Key,” of
which I am going to make so much in later chapters, this is the right
place to introduce the other first-rank mathematical genius born in
the eighteenth century, Leonhard Euler (pronounced “oiler”). Euler
(1707−1783) was, says E.T. Bell in Men of Mathematics, “probably the
greatest man of science that Switzerland has produced” and he is, so
far as I know, the only mathematician to have two numbers named
after him: e, which I have already mentioned, equal to 2.71828…, and
the Euler-Mascheroni number, which I have not had enough space to
describe properly in this book,19 equal to 0.57721…. In order to in-
troduce Euler, I must first open up a new geographical region in the
history of this topic, Russia.

Russia, as I think is well known, entered the modern age some-
what behind the rest of Europe, and her entry was accomplished
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mainly by the energy and imagination of Peter the Great, who as a
boy of 10 was crowned Tsar in 1682. Peter’s regnal dates are com-
monly given as 1682−1725. In fact, for the first seven of those years,
he reigned jointly with his blind, lame, and speech-impaired half-
brother Ivan, and the government was actually controlled by Ivan’s
sister, Sophia. Peter attained sole power only in 1689, at age 17. Even
then he displayed no interest in statecraft and spent the next five years
amusing himself. Fortunately he was a man of keen intelligence and
great curiosity, and most of his amusements were of an improving
sort. He was especially fond of the company of foreigners, of whom
at that time there was a large settlement near Moscow, in the so-called
“German suburb.” Here, among Scottish mercenaries, Dutch mer-
chants, and German and Swiss engineers, Peter took in European sci-
ence and culture and indulged his passion for fireworks and boats (in
between riotous banquets and all-night drinking bouts). In 1692−

1693, at Lake Pleschev near Moscow, Peter actually built a warship
himself, from the keel up. The following year, 1694, his mother died
and Peter took power in earnest.

In 1695−1696 this extraordinary, extraordinary-appearing

man—he stood 6 feet 7 inches and suffered from occasional, but ter-
rifying, facial twitches—attacked the Black Sea port of Azov and
wrested it from the Ottoman Turks. In 1697−1698 he traveled incog-
nito in France, Britain, and Holland, the first Russian sovereign to go
abroad, learning as he traveled. (From his British trip the following
story is well known, though it is almost certainly apocryphal. Staying
at John Evelyn’s country house outside London, Peter marched into
the drawing-room one day with a shotgun over his arm and an-
nounced, in thick English, “I haff shot a peasant.” “No, no, my dear
fellow,” replied his host, laughing. “You mean a pheasant.” “Nyet,” said
Peter, shaking his head. “It voss a peasant. He voss insolent, unt so I
shot him.”) Returning to Russia, he began his great campaign of re-
form, ordering the nobility to shave their beards, humbling the
Church and crushing the old Muscovite imperial guard, the Streltsy,
which had terrorized his childhood. In 1700 he began his 20-year
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war with Charles of Sweden; in 1703 he broke through Swedish terri-
tory and occupied the length of the river Neva, from Lake Ladoga to
the shores of the Baltic. There, on land still in the legal possession of
a powerful, undefeated enemy, on the boggy estuary of the Neva, he
founded his new capital, St. Petersburg.

One of those astonishing personalities that put the lie to any no-
tion of history as a mere mechanical shadow-play of impersonal
forces, Peter went on to reform the government, the nobility, trade,
education, and even the customary dress of his people. Not all of it
worked; that is, not all of it “stuck”; and not all of it penetrated very
far into the gloomy wooded depths of that vast old country; but there
is no doubt that Peter left Russia a very different place from the one
he found.

Most to the point so far as this book is concerned, he made her a
nation hospitable to mathematics and mathematicians.20

VI. In January 1724, Peter issued a decree establishing an Academy
at St. Petersburg. The decree explained that in the normal way of
things an academy, where learned scholars carried out research and
produced inventions for the use of the state, was different from a
university, which existed to teach young people. Because of the dearth
of learning in Russia, however, the St. Petersburg Academy would in-
clude a university and a gymnasium (that is, a secondary school) un-
der its authority. It would also have its own observatories, laborato-
ries, workshops, publishing house, print shop, and library. Peter did
not do things by halves.

The dearth of learning in Russia was indeed so great that there
were no Russians capable of acting as academicians. In fact, since Rus-
sia lacked any significant number of elementary or secondary schools,
there were not even any Russian youngsters qualified to attend as stu-
dents at the attached university. These problems were solved by sim-
ply importing the required personnel. This was well-established prac-
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tice in Europe. The first director of the Paris Academy of Sciences,
founded 60 years earlier, had been the Dutch physicist Christiaan
Huygens. St. Petersburg was a long way from the great European cen-
ters of culture, though, and Western Europeans still thought of Rus-
sia as a dark and barbarous land, so generous terms had to be offered.
Eventually, though, it all got off the ground, the shortage of students
for the university being solved by importing eight German young-
sters. The St. Petersburg Academy opened its doors in August, 1725—
too late for Tsar Peter to preside over the ceremony; he had died six
months earlier.

Among the foreign scholars who showed up at the first session of
the St. Petersburg Academy were two brothers, Nicholas and Daniel
Bernoulli. Aged 30 and 25 respectively, they were sons of Johann Ber-
noulli of Basel in Switzerland—the gentleman we met in Chapter
1.iii in connection with the harmonic series. (There was a whole dy-
nasty of mathematical Bernoullis; in this generation, in fact, there
was a third brother, who followed his father into the chair of math-
ematics at Basel University, and who “personified the mathematical
genius of his native city in the second half of the eighteenth century,”
according to the Dictionary of Scientific Biography.)

Unfortunately, after less than a year in St. Petersburg, Nicholas
Bernoulli died (“of a hectic fever”—D.S.B.), creating a vacancy at the
Academy. Daniel Bernoulli had known Leonhard Euler in Basel and
recommended him. Euler, glad of the chance of an academician’s post
at such a young age, arrived in St. Petersburg on May 17, 1727, a
month after his 20th birthday.

That date was also, unfortunately, 10 days after the death of Em-
press Catherine, Peter’s wife, who had succeeded Peter on the throne
and followed through on his plans for the Academy. It was a bad time
to come to Russia. The 15-year period between Peter’s death and the
reign of Elizabeth, his daughter, was one of feeble leadership, clique
politics, and occasional outbreaks of xenophobia. The warring cliques
all maintained networks of spies and informers, and the atmosphere
in the capital (which St. Petersburg now was) went from bad to worse.
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Under the cruel and brutish Empress Anna, who reigned 1730−1740,
Russia descended into one of those spells of state terrorism that she
seems particularly prone to, with endless treason trials, mass execu-
tions, and other atrocities. This was the notorious Bironovschina,
named for Anna’s favorite, the German Ernst Johann Biron, on whom
ordinary Russians put the blame.

Euler stuck it out for 13 years, burying himself in work, staying
well clear of the court and its intrigues. “Common prudence forced
him into an unbreakable habit of industry,” writes E.T. Bell, and this
seems as good an explanation as any for Euler’s astonishing pro-
ductivity. Even now the full edition of his collected works is not
complete. To date it comprises 29 volumes on mathematics, 31 on
mechanics and astronomy, 13 on physics, and 8 volumes of corre-
spondence.

For Euler’s friend Daniel Bernoulli, with whom he lodged during
the early years in St. Petersburg, the stifling political atmosphere of
Russia after Peter was all too much. In 1733 Daniel left to return to
Basel, and Euler took over the chair of mathematics at the Academy.
This brought him sufficient income to get married. He chose a Swiss
girl, Catherine Gsell, whose father was a painter living in St. Peters-
burg.

It was in these circumstances that Euler solved the Basel problem
in 1735; I’ll describe that problem in the next chapter. Two years later,
in a small memorandum on infinite series, Euler discovered the result
that I have called “the Golden Key,” and to which I have devoted the
first half of Chapter 7. He was, in short, a principal player in the story
I am telling—but this will emerge more clearly later, as the math-
ematical side of the story unfolds.

VII. By 1741 Euler had had enough of secret-police spies and the
public impaling of “traitors.” Frederick the Great was now on the
throne of Prussia and had already embarked on his plan to make the
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Kingdom of Prussia—a mere duchy until 1700—one of the great
powers of Europe. He planned an Academy of Science in Berlin to
replace, or re-vivify, that city’s moribund Society of Sciences and in-
vited Euler—by now famous throughout Europe—to be the Acad-
emy’s Director of Mathematics. Euler arrived in Berlin on July 25,
1741, after a one-month sea and land journey from St. Petersburg.
Frederick’s mother, Sophia Dorothea of England—she was George
II’s sister—took a shine to young Euler (he was still only 34) but could
not get him to say much. “Why won’t you talk to me?” she asked him.
Euler replied, “Because, Madame, I have come from a country where
every person who speaks is hanged.”

In fact, part of Frederick’s aim in bringing Euler to Berlin was
precisely that he should speak. Frederick wanted his court to be a sort
of salon, full of brilliant people saying brilliant things to each other.
Euler was a very brilliant man indeed, but unfortunately only in
mathematics. His opinions on matters of philosophy, literature, reli-
gion, and worldly affairs, while well-informed and sensible, were
commonplace and uninspired. Further, Frederick was a manipulative
egotist who, while in principle wishing to surround himself with ge-
niuses, in practice preferred second-raters who would flatter him. Set-
ting aside a few luminaries like Voltaire and Euler, the general intel-
lectual level at Frederick’s court was probably less than scintillating.
In 1745–1747 Frederick built the Sans Souci summer palace for him-
self at Potsdam, 20 miles outside Berlin. (Euler helped design a sys-
tem of water pumps for the place.) A visitor to Sans Souci asked one
of the royal princes: “What do you do here?” The prince replied: “We
conjugate the verb s’ennuyer.” S’ennuyer means “to be bored.” The
language of Frederick’s court was French, the language of high soci-
ety all over Europe.21

Euler stuck that out for 25 years, through all the horrors of the
Seven Years War, when foreign armies twice occupied Berlin, and one
in ten of Frederick’s subjects died of hunger, disease, or by the sword.
By then a second Catherine, Catherine the Great, was on the throne
of Russia. (It is interesting that for two-thirds of the eighteenth cen-
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tury—67 years out of 100—Russia, one of the most difficult nations
to govern, was ruled by women, for the most part very successfully.)
Catherine showed every sign of being an enlightened monarch, firmly
in control of her throne. She was, furthermore, a German princess,
and it is possible Euler had some acquaintance with her at Frederick’s
court before she was shipped off to St. Petersburg to marry Peter the
Great’s grandson. Be that as it may, he left the genteel intrigues of
Sans Souci to resume his position in St. Petersburg—which, incred-
ibly, had been held open for him. He spent his last 17 years in Russia,
productive to the end, and died in an instant, in full possession of all
his powers but sight, at age 76, with a grandchild on his knee.

VIII. I have had to restrain myself considerably in this sketch of
Leonhard Euler, because he is one of my favorite people in the history
of mathematics for a number of reasons. One is that his work is a
pleasure to read. Euler always expresses himself briefly and clearly,
without any fuss, and without much of that polishing that Gauss went
in for. Euler wrote mainly in Latin, but this is not much of an obstacle
to appreciating him, as he had a spare and utilitarian style.22

Euler’s crystal-clear Latin makes one realize what western civili-
zation lost when scholars ceased writing in that language. Gauss was
the last important mathematician to do so; this was one of those
changes that came upon us after the Napoleonic wars. It is a curious
thing that while the Congress of Vienna, which marked the end of
those wars, was a gathering of reactionaries intent on restoring the
status quo ante to Europe, in fact the wars had changed everything,
and nothing could be the same after them. The historian Paul Johnson
has written a good book about this, Birth of the Modern.

Another reason I find Euler so attractive is that, without being
striking or eccentric or interesting in any particular way, he was a
very admirable human being. When you read about his life you get a
strong impression of serenity and inner strength. Euler lost the sight
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in his right eye when he was barely 30 (the heartless Frederick called
him “My Cyclops”) and went completely blind in his early 60s. Nei-
ther the partial nor the full disability seems to have slowed him down
a bit. Of his thirteen children, only five survived into adolescence,
and only three outlived him. His wife Catherine died when Euler was
69; a year later he remarried—to another Gsell, Catherine’s half-
sister.

He loved children, and it is reported that he could do serious
mathematics with infants playing at his feet. (As a writer working at
home, with two small children running around, this is very impres-
sive indeed to me.) He seems to have been incapable of intrigue,
seems never to have lost a friend other than by death, and was frank
in all his dealings—though, if Strachey is to be believed, willing to
bend his principles a little for the sake of a quiet life.23 He wrote one
of the first pop-science bestsellers, Letters to a German Princess, ex-
plaining to ordinary readers why the sky is blue, why the moon looks
larger when it rises, and similar points of common bafflement.24

Underneath it all was a rock-solid religious faith. Euler had been
raised a Calvinist and never wavered in his belief. His father, like
Riemann’s, had been the pastor of a village church, and Euler, like
Riemann, had originally been intended for a clerical career. We are
told that while living in Berlin, “He assembled the whole of his family
every evening, and read a chapter of the Bible, which he accompanied
with an exhortation.” This, while attending a court at which, accord-
ing to Macaulay, “the absurdity of all the religions known among men
was the chief topic of conversation.” Hardworking, pious, stoical, de-
voted to his family, plain-living and plain-spoken—no wonder
Frederick didn’t like him. But it is time to turn from the life to the
work, and to look at Euler’s first great triumph, the Basel problem.
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—The Basel Problem—

Find a closed form for the infinite series
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The Basel problem25 is named from the Swiss city in whose uni-
versity two of the Bernoulli brothers successively served as professor
of mathematics (Jakob, 1687−1705, Johann, 1705−1748). I mentioned
in Chapter 1.iii that both Bernoullis found proofs for the divergence
of the harmonic series. In the book where he published his brother’s
proof, and then his own, Jakob Bernoulli stated the above problem
and asked anyone who could figure it out to tell him the answer. (I
shall explain the term “closed form” in just a moment.)

Notice that the series the Basel problem is concerned with—I
shall call it “the Basel series”—is not far removed from the harmonic
series. Each term is, in fact, the square of the corresponding term in
the harmonic series. Now, if you square a number smaller than 1, you
get a still smaller number; the square of one-half is one-quarter, which
is smaller. The smaller the number you start with, the stronger is this

I.
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effect; one-quarter is only modestly smaller than one-half, but the
square of one-tenth is one-hundredth, which is a lot smaller than
one-tenth.

Every term in the Basel series is, therefore, smaller than the cor-
responding term in the harmonic series, and as you go along they get
much smaller. Since the harmonic series only barely diverges, it is not
too much to hope that the Basel series, made up of smaller, and then
much smaller, terms, converges. Calculation suggests that this is in-
deed so. The sum of the series to 10 terms is 1.5497677…, the sum to
100 terms is 1.6349839…, the sum to 1,000 terms is 1.6439345…,
and the sum to 10,000 terms is 1.6448340.… It really does seem to be
converging to some number in the neighborhood of 1.644 or 1.645.
But what number?

In situations like this, mathematicians are not satisfied just to get
an approximation, especially when the series under investigation con-
verges rather slowly, as this one does. (That sum to 10,000 terms is
still 0.006 percent short of the true, final, infinite sum, which is
1.6449340668….) Is the answer a fraction, 9108

5537  perhaps, or 560837199
340948133 ?

Or something more complicated, perhaps involving roots, 46
17 , or

the fifth root of 11983
995 , or the eighteenth root of 7766? What is it? A lay

person might think that it would be satisfying enough to know the
number to half a dozen places of decimals. No: mathematicians want
to know it exactly, if they can. Not just because they are weird
obsessives, but because they know from experience that getting that
exact value often opens unexpected doors and throws light on the
underlying math. The mathematical term of art for this exact repre-
sentation of a number is “closed form.” A mere decimal approxima-
tion, however good, is an “open form.” The number 1.6449340668…
is an open form. Look—those three dots tell you that it is open at the
right-hand end, open for you to compute a few more digits, if you
feel like it.

That was the Basel problem: to find a closed form for the series of
reciprocal squares. The problem was finally cracked in 1735, 46 years



RIEMANN’S ZETA FUNCTION 65

after being posed, by the young Leonhard Euler, toiling away in St.
Petersburg. The astonishing answer was π 2 ⁄ 6. This is the familiar π ,
the magic number 3.14159265…, the ratio of a circle’s circumference
to its diameter. What is it doing in a question that has nothing to do
with circles, or with geometry at all? This is not very astounding to
modern mathematicians, who are used to seeing π  turn up all over
the place, but it was very striking in 1735.

The Basel problem opens the door to the zeta function, which is
the mathematical object the Riemann Hypothesis is concerned with.
Before we can pass through that door, though, I must recapitulate
some essential math: powers, roots, and logs.

II. Powers arise in the first place from repeated multiplication. The
number 123 is 12 × 12 × 12, with three multiplicands; 125 is 12 ×

12 × 12 × 12 × 12, with five. What happens if I multiply 123 by 125?
That would be (12 × 12 × 12) × (12 × 12 × 12 × 12 × 12), which of
course is 128. I just add the powers, 3 + 5 = 8. This is the first great
rule of powers.

Power Rule 1: xm
× xn

= xm + n

(Let me just add here that the whole of this section is only con-
cerned with positive values of x. Raising zero to powers is mostly a
waste of time, and raising negative numbers to powers brings up
tricky problems I shall deal with later.)

What happens if I divide 125 by 123? That is (12 × 12 × 12 × 12 ×
12) ⁄ (12 × 12 × 12). I can cancel out three of the twelves top and
bottom, leaving 12 × 12, which, of course, is 122. You can see that this
is equivalent to just subtracting the powers.

Power Rule 2: xm ÷ xn
= xm − n
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Suppose I cube 125: (12 × 12 × 12 × 12 × 12) × (12 × 12 × 12 ×

12 × 12) × (12 × 12 × 12 × 12 × 12) is 1215. Here the powers are being
multiplied.

Power Rule 3: (xm)n
= xm × n

These are the most fundamental rules for powers. I shall refer to them
as “Power Rule 1” and so on throughout this book, without further
explanation. I am not quite through with power rules, though. I need
to add a few more, because so far I have used only powers that are
positive whole numbers. What about negative powers and fractional
powers? What about a zero power?

To take the last first, if a0 is going to mean anything at all, it might
as well be consistent with the power rules I already have, since they
are so commonsensical. Suppose I put m equal to n in Power Rule 2;
then the right-hand side will indeed be a0. The left-hand side will be
am ÷  am. Now, if I divide anything by itself, the answer is 1.

Power Rule 4: x0
= 1 for any positive number x

Power Rule 2 can also be used to give meaning to negative pow-
ers. Divide 123 by 125; by Power Rule 2, the answer should be 12−2. The
answer is in fact (12 × 12 × 12) ⁄ (12 × 12 × 12 × 12 × 12), which, can-
celing out three 12s top and bottom, is 1

122 .

Power Rule 5: x
x

n

n

− =
1

 (and in particular, x
x

− =1 1
)

Power Rule 3 gives a clue to what fractional powers ought to
mean. What could I do with x

1
3 ? Well, I could cube it; and if I did, by

Power Rule 3, I ought to get x1, which is just x. Therefore, x
1
3  is just

the cube root of x. (Definition of “cube root of x”: That number
which, if cubed, gives x.) Power Rule 3 then tells us the meaning of
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any fractional power; x
2
3  is the cube root of x, squared—or the cube

root of x2, which works out to the same thing.

Power Rule 6: x
m
n  is the n-th root of xm

Since 12 is 3 × 4, it follows that 125 is (3 × 4) × (3 × 4) × (3 × 4) ×

(3 × 4) × (3 × 4). This can be rearranged as (3 × 3 × 3 × 3 × 3) ×

(4 × 4 × 4 × 4 × 4). In a nutshell, 125
= 35

× 45. This is generally true.

Power Rule 7: (x × y)n
= xn

× yn

What about raising x to an irrational power? What would 12 2  mean,
or 12π , or 12e? Here we are back in the realm of analysis. Recall that
sequence from Chapter 1.vii, the one that converges to 2 . It looked
like this: 1

1 , 3
2 , 7

5 , 17
12 , 41

29 , 99
70 , 239

169 , 577
408 , 1393

985 , 3363
2378 , …. By taking the

sequence far enough, you can get as close as you please to 2 . Now,
since Power Rule 6 tells me the meaning of any fractional power, I can
work out 12 to the power of any of those fractions. Of course, 121 is
12. And 12

3
2  is the square root of 12, cubed: 41.569219381…. And

12
7
5  is the fifth root of 12, raised to the seventh power, which comes

out to 32.423040924…. Similarly, 12
17
12  is 33.794038815…, 12

41
29  is

33.553590738…, 12
99
70  is 33.594688567…, and so on. As you can see,

these fractional powers of 12 are closing in on a number—actually,
the number 33.588665890…. Since the fractions themselves close in
on 2 , I am highly justified in saying that 12 2

= 33.588665890….
Given a positive number x, I can, therefore, raise x to any power

at all—positive, negative, fractional, or irrational; and doing so al-
ways obeys the Power Rules I have stated, because I rigged my defini-
tions to make sure of that! Figure 5-1 shows graphs of xa for various
numbers a, ranging from −2 to 8. Notice particularly the zero-th
power of x, which is just a horizontal line at height 1 above the x-
axis—what mathematicians call “a constant function” (and Intensive
Care Unit nurses call “a flat trace”). For every argument x, the func-
tion value is 1. Notice also how fast the whole-number powers of x
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(x2, x3, x8) increase; and, much more to the point of this book, how
slowly positive fractional powers like x0.5 do so.

III. Raising numbers to powers—the proper term is “exponentia-
tion”—is, in the beginning, analogous to multiplication. Multiplica-
tion is first presented as repeated addition: 12 × 5 = 12 + 12 +

12 + 12 + 12. Then you move on to a higher level and learn how to do
12 5 1

2× , which is a bit more than just repeated addition. So it is with

1 2 3 4 5

x
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FIGURE 5-1 Powers of x.
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powers. We can define 125 very easily. It’s repeated multiplication,
12 × 12 × 12 × 12 × 12. To get to grips with 12

51
2  needs more explana-

tion—the explanation I attempted to provide in the previous section.
As I said before, mathematicians love to invert expressions. I have

an expression for P in terms of Q? All right, let’s see if I can get Q in
terms of P. This is where the analogy between exponentiation and
multiplication breaks down. Inverting multiplication is easy. If
x = a × b, then a = x ÷  b and b = x ÷  a. Division provides a complete
solution to the problem of inverting multiplication.

The analogy breaks down there because, while a × b is always,
invariably and infallibly, equal to b × a, it is unfortunately not true,
except occasionally and accidentally, that ab

= ba. (The only whole-
number case with different a and b is 24

= 42.) For instance, 102 is 100,
but 210 is 1,024. If I seek to invert x = ab, therefore, I am going to need
two different methods: one to get a in terms of x and b, another to get
b in terms of x and a. The first is a breeze. Raising both sides to the
power 1

b , Power Rule 3 gives me a x b=
1

, which, by Power Rule 6,
means that a is the b-th root of x. But what is b in terms of x and a?
The Power Rules offer no clue.

This is where logs make their appearance. The answer is, b is the
log of x to base a. That is just the definition of log. The log of x to base
a (generally written “loga x”) is defined to be the number b that makes
x = ab true. From this flows the whole family of log functions: log of x
to base 2, log of x to base 10 (which older readers will remember as an
aid to calculation taught in high schools up to about 1980), and so
on. I could present them all in graphs, as I did the graphs of xa in
Figure 5-1.

I am not going to do this because I am deeply indifferent to all
members of the log family except one, log to base e, where e is the
extremely important, though unfortunately irrational, number
2.71828182845…. Log to the base e is the only kind of log I care about,
and the only kind I shall use in this book. In fact, I shall not say “log
to base e” any more, just “log.” So what is the log of x? By the above
definition, it is the number b that makes x = eb a true statement.



70 PRIME OBSESSION

Since log x is the b that makes x = eb a true statement, it is obvi-
ous that x = elog x. This is just the definition of “log x” written math-
ematically; but it is so important in what follows that I am going to
make a rule out of it.

Power Rule 8: x = elog x

That is true for every positive number x. The log of 7, for ex-
ample, is 1.945910…, because 7 = 2.7182811.945910, to six decimal
places. Negative numbers don’t have logs (though this is another thing
I reserve the right to change my mind about later); zero doesn’t have
a log, either. There is no power you can raise e to with a negative or
zero result. The domain of the log function is all positive numbers.

The log function is everywhere in this region of math. We have
already seen it in Chapter 3.viii-ix, in the Prime Number Theorem
and its equivalents. It will show up again and again in this book in
everything to do with prime numbers and the zeta function.

With the log function all over like this, I should give some more
detailed coverage of it. Figure 5-2 is a graph26 of log x, for arguments
out to 55. I’ve particularly marked the function values for arguments
2, 6, 18, and 54. These arguments go up in multiples of 3; and you can
see from the graph that the corresponding function values go up in
equal steps—that is, by addition. That’s the point I made about the
log function in Chapter 3.viii.

It’s worth enlarging on a little. The great thing about the log func-
tion is that it turns multiplication into addition. Look at those lines I
marked on the graph. The arguments are 2, 6, 18, 54—I start with 2,
multiply by 3, multiply by 3 again, then multiply by 3 again. The
function values, holding myself to four places of decimals here, and
putting up with a small rounding error, are 0.6931, 1.7918, 2.8904,
3.9890—which start with 0.6931, add 1.0987, add 1.0986, then add
1.0986 again. The log function turned multiplication (by 3) into ad-
dition (of log 3, which is 1.09861228866810…).
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This follows from the definition of log x and from the Power
Rules. From Power Rule 8, if a and b are any two positive numbers,
a × b = elog a

× elog b. But from Power Rule 1, I can replace the right-
hand side like this, a × b = elog a + log b. However, a × b is just a number
itself, and so, from Power Rule 8 again, a × b = elog (a×b). Equating the
two different expressions I just got for a × b gives a new Power Rule.

Power Rule 9: log(a × b) = log a + log b

This is a wonderful thing. It means that, when faced with a diffi-
cult problem involving multiplication, by “taking logs” (i.e., by ap-
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FIGURE 5-2 The log function.
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plying the principle that if P = Q, it must also be the case that
log P = log Q) we can reduce it to a problem in addition, which may
be more manageable. It sounds almost trivial; yet this little tool is
exactly what I shall need, in Chapter 19.v, to turn the Golden Key.

Since log(a × b) = log a + log b, it follows that log(a × a ×

a × …) = log a + log a + log a.… This gives the last of my Power
Rules.

Power Rule 10: log(aN) = N × log a

Without chasing down the logic, let me just tell you that it ap-
plies to all powers of a, including fractional and negative ones. A very
important particular case is log (1 ⁄ a) = – log a,  because 1 ⁄ a is just
a−1. So once you know that log 3 is 1.09861228866810…, you imme-
diately know that log( 1

3 ) = –1.09861228866810…. That’s why the
graph of log x dives down to negative infinity as x gets closer and
closer to zero. This fact, too, will help me turn the Golden Key.

IV. Log x increases slowly, as you can see. The slowness with which
log x increases is a very fascinating and important thing all by itself.
The main point is that log x increases slower than any power of x. At
first thought, that might seem to be very obvious. When I say “power
of x,” you probably think of squares and cubes; and you know that a
graph of the squaring function or the cubing function zooms up out
of sight as the argument increases, way beyond the feeble inching-up
of the log function. True, but that’s not the point. What I have in
mind here is not a power like this, x2, or like this, x3, but rather a
power like this, x0.1.

Figure 5-3 shows some graphs of xa for small numbers a. I’ve
chosen a = 0.5, 0.4, 0.3, 0.2, and 0.1 (with the log function—dotted
line—for comparison). You can see that the smaller a is, the flatter
the graph of xa is. You can also see that for values of a below a certain
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point (actually, for a less than 1 ⁄ e, which is 0.3678794…) the log
curve cuts the curve xa not very far east (never further than ee, which
is 15.1542…).

Well, no matter how small you make a, the graph of log x is even-
tually flatter than the graph of xa. If a is bigger than 1 ⁄ e, this is true
already, even in this diagram. If a is less than 1 ⁄ e, then by going far
enough east—by taking a big enough argument x—the log x curve
eventually cuts the xa curve again, and then, forever after, lies below it.

Of course, you might have to go some way out. The log curve re-
crosses the x0.3 curve slightly east of x = 379; it re-crosses the x0.2 curve
around x = 332,105; it does not re-cross the x0.1 curve until past
x = 3,430,631,121,407,801. If I were to plot the graph of x to the power
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FIGURE 5-3: The functions xa, for small positive a.
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of one trillionth, (that is, of x0.000000000001), it would look pretty darn
flat. It would, in fact, be hard to distinguish from the “flat trace” at a
height of 1 above the x-axis—not at all like that elegant ascending
curve of the log function. The log curve would cross it a tiny distance
east of e. It’s increasing, though, even if terrifically slowly, and the log
curve is getting flatter; and sooner or later they re-cross, and then,
forever after, the log curve lies below the x0.000000000001 curve. The cross-
ing point in this particular case actually occurs at an argument too
big for me to write out; the number starts: 44,556,503,846,304,183 …
and continues for a further 13,492,301,733,606 digits.

It’s as if log x were trying to be x0. It is not x0, of course; for any
positive number x, x0 is defined to be 1, by Power Rule 4. Its graph is
the flat trace, as I showed earlier. Yet even though log x is not equal to
x0, it nonetheless manages to dip below, and stay below, x ε , for any
number ε , no matter how tiny, when x is large enough.27

The matter is, in fact, even stranger than that. Consider this state-
ment: “The function log x eventually increases more slowly than x0.001,
or x0.00001, or x0.0000001, or….” Suppose I raise this whole statement to
some power—say, the hundredth power. (This is not a very rigor-
ously mathematical procedure, I admit, but it gives a true result.)
Applying Power Rule 3, the statement will then read: “The function
(log x)100 eventually increases more slowly than x0.1, or x0.001, or x0.00001,
or….” In other words, since log x increases more slowly than any
power of x, the same is true of any power of log x. Each one of the
functions (log x)2, (log x)3, (log x)4, …, (log x)100, …, increases more
slowly than any power of x. Any power of log x eventually increases

more slowly than any power of x. The graph of (log x)N will eventually
drop below, and for ever after stay below, the graph of x ε , no matter
how big N is or how small ε  is.

This is hard to visualize. Those functions (log x)N increase fast,
and then very fast. Still, if you go far enough out to the east in Figure
5-3, every one of them will eventually, at some argument of stupen-
dous size, drop below the x0.3 curve, the x0.2 curve, the x0.1 curve, and
any other curve of this family you might care to draw. You need to go
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out east to the neighborhood of x = 7.9414 × 103959 before (log x)100

drops below the x0.1 curve; but eventually it does.

V. Some of this I am going to use right away; some I shall leave
lying here for future reference. All of it is important to the under-
standing of the Riemann Hypothesis, and I urge you to try out some
of the main points, to check your understanding of them, before pro-
ceeding. A pocket calculator is good for this. You might, for example,
find log 2 (which is 0.693147…) and log 3 (which is 1.098612…) and
confirm that by adding them together you do indeed get log 6 (which
is 1.791759…). Please notice, however, that because of the older use
for base-10 logs that I mentioned, the “log” key on many pocket cal-
culators delivers log to base 10. For the only log I care about, log to
base e, such calculators generally provide an alternative key labeled
“ln.” That’s the key you need. (The “n” stands for “natural”; log to
base e is properly called “the natural log.”)

Now, let’s return to the Basel problem.

VI. As an illustration of what I said in section I about the search for
closed-form solutions yielding important insights, Euler’s solution of
the Basel problem not only gave a closed form for the reciprocal-
squares series; as a by-product, it also gave closed forms for
1 1

2
1
3

1
4

1
54 4 4 4+ + + + +  …, 1 1

2
1
3

1
4

1
56 6 6 6+ + + +  …, and so on. So long as N

is an even number, Euler’s result tells you the precise value, as a closed
form, of the infinite series shown in Expression 5-1.
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When N is 2, the series converges on π 2⁄6, as I said. When
N is 4, it converges on π 4⁄ 90; when N is 6 it converges on
π 6⁄ 945, and so on. Euler’s argument provided an answer
for every even number N. He himself, in a later publication,
took the argument all the way out to N = 26, when the series con-
verges to 1315862 π

26

⁄ 11094481976030578125.

But what if N is odd? Euler’s result has nothing to say about that.
Neither has any other result in the 260-odd years since. We have no
clue about the closed form for 1 1

2
1
3

1
4

1
53 3 3 3+ + + + +  …, if there even is

one, nor the equivalent for any other odd number. Nobody has been
able to find closed forms for these series. We know that they con-
verge, and we can of course, by brute calculation, get their values to
any required degree of accuracy. We just don’t know what they mean.
They are, in fact, very difficult numbers. It was not until 1978 that
1 1

2
1
3

1
4

1
53 3 3 3+ + + + +  … was even proved irrational.28

So by the middle of the eighteenth century, quite a lot of
mathematicians were thinking about the infinite series in
Expression 5-1. Precise values—closed forms—were known for all
even numbers N, while for the odd numbers, approximate values
could be got by just adding up enough terms. Remember that when
N is 1, the series is just the harmonic series, which diverges. Table 5-1
shows values for Expression 5-1—which, just to remind you, is
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+ + + + + +

N N N N N …

TABLE 5-1

N Value of Expression 5-1

1 (No value)

2 1.644934066848

3 1.202056903159

4 1.082323233711

5 1.036927755143

6 1.017343061984
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(to 12 decimal places). This looks like one of those snapshots of a
function that I spoke about in Chapter 3.iv. Sure enough, it is. Recall
the statement of the Riemann Hypothesis that I gave in my Prologue.

The Riemann Hypothesis

All non-trivial zeros of the zeta function
have real part one-half.

Table 5-1 is your first glimpse of Riemann’s zeta function, and there-
fore a first step toward understanding the Riemann Hypothesis.

VII. Since, in the earlier sections of this chapter, I went to the
trouble of defining the meaning of “xa” for any number a, not just
whole numbers, I am under no obligation to restrict the number N in
Expression 5-1 to whole numbers. I can, in my imagination, let it
roam freely over fractions, negative numbers, and irrational num-
bers. There is no guarantee that the infinite series will converge for all
numbers—we already know from Chapter 1.iii that it doesn’t when
N = 1. But we can at least entertain the possibility.

In honor of this new realization, I am going to change the “N” to
a different letter, one that has less traditional association with whole
numbers. The obvious choice is, of course, “x.” Riemann himself,
however, did not use “x” in his 1859 paper. These matters were not so
settled in his day. He used “s” instead; and so momentous was that
1859 paper that every succeeding mathematician has followed him.
In studies of the zeta function, the argument is always given as “s.”

Here then, at last, is the Riemann zeta function (zeta, written “ζ ,”
being the sixth letter of the Greek alphabet).

ζ s
s s s s s s s s s s( ) = + + + + + + + + + + +1
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Expression 5-2
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VIII. Before going any further, let me introduce a handy math-
ematical notation that cuts down on typing. (Do you think it’s easy,
getting stuff like Expression 5-2 into Microsoft Word?)

If mathematicians want to add up a lot of terms that all have the
same pattern, they use the Σ  sign. That’s a capital sigma, the eigh-
teenth letter of the Greek alphabet, the Greek “s” (for “sum”). The
way it works is, you stick the pattern “under” (which actually means
to the right, though we illogically say “under”) the sigma sign. Then
at bottom and top of the sigma, you declare where your sum will start
and end. This expression, for example,

n
n

n

=

=

∑
12

15

is mathematicians’ shorthand for 12 13 14 15+ + + . The sigma
says “add ’em up”; the expressions at the top and bottom of the sigma
tell us when to start and when to finish adding; and the expression
“under” (to the right of) the sigma tells us what, exactly, is being
added—in this case, n .

Mathematicians are not especially strict about the style of these
expressions. That one, for example, would probably be written

n
12

15

∑

since it is obvious that it must be “n” that’s going from 12 to 15. Now,
using the sigma sign, I can save myself a lot of fiddling around with
symbols by rewriting Expression 5-2 as

ζ s
n s

n

( ) =
=

∞

∑
1

1

Or equivalently, bearing in mind Power Rule 5,

ζ s n s

n

( ) = −

=

∞

∑
1
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In fact, since “n” is so commonly and obviously used to stand for the
positive whole numbers 1, 2, 3, 4, …, mathematicians are generally
even more terse, just writing

ζ s n s

n

( ) = −∑
which, again, is Riemann’s zeta function. This is pronounced “Zeta of
s is defined to be the sum over all n of n to the power of minus s.”
Here, “all n” is understood to mean “all positive whole numbers n.”

IX. Having got the zeta function set up as a neat expression, let’s
turn our attention to that argument “s.” We know, from Chapter 1.iii,
that when s is 1, the series diverges, so that the zeta function has no
value. When s is 2, 3, 4, … it always converges, though, and we get
values for the zeta function (see Table 5-1). In fact, you can show that
the series converges for any number bigger than 1. When s is 1.5, it
converges to 2.612375…. When s is 1.1, it converges to 10.584448….
When s is 1.0001 it converges to 10,000.577222…. It might seem odd
that the series diverges when s = 1 but yet manages to converge for
s = 1.0001. This is a common situation in math, though. In fact, when
s gets very close to 1, the zeta function behaves remarkably like
1 ⁄ (s – 1). This, too, has a value for any number s except when s is
precisely equal to 1, because the denominator is then zero, and you
can’t divide by zero.

Perhaps a graph will make things clearer. Figure 5-4 is a graph of
the zeta function. You can see that as s approaches the number 1 from
the right, the function value shoots up to infinity; and as s itself goes
off to infinity at the far right, the function value gets closer and closer
to 1. (I’ve drawn in the line s = 1 and the constant function 1, both
dashed.)

The graph doesn’t show any part of the function to the left of the
line s = 1. That’s because so far I’ve been assuming that s is greater
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than 1. What if it isn’t? What if, for example, s is zero? Well, then
Expression 5-3 would look like this:

ζ (0) = 1
1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

110 0 0 0 0 0 0 0 0 0
+ + + + + + + + + + +L

By Power Rule 4, this sum is 1 + 1 + 1 + 1 + 1 + 1 +…, which pretty
obviously diverges. Add a hundred terms, the sum is a hundred; add a
thousand, the sum is a thousand; add a million, the sum is a million.
Yep, it diverges.

For negative numbers, things are even worse. What value does
Expression 5-2 have if x is −1? From Power Rule 5, 2−1 is just 1

2 , 3−1 is

1 2 3 4

1

2

3

4

s

ζ( )s

FIGURE 5-4 The zeta function, for arguments greater than 1.
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just 1
3 , and so on. Since 1 ⁄ 1

2 is just 2,  1 ⁄ 1
3

 is just 3, etc., the series
looks like this, 1 + 2 + 3 + 4 + 5 +…. Definitely divergent. How about
x = 1

2 ? Since 2
1
2  is just 2  etc., the series is

ζ ( 1
2 ) = 1

1

2

1

3

1

4

1

5

1

6

1

7

1

8
+ + + + + + + +L

Since the square root of any whole number is smaller than the num-
ber, each term in this series is bigger than the corresponding term in
1 1

2
1
3

1
4

1
5

1
6

1
7+ + + + + + +  …. (Basic algebra: if a is smaller than b, then

1 ⁄ a is bigger than 1 ⁄ b. For example, 2 is smaller than 4, but 1
2  is

bigger than 1
4 .) That series diverges, so this one must, too. Sure

enough, if you take the trouble to actually work out the sums and add
them up, you see that the first ten terms add up to 5.020997899…,
the first hundred add up to 18.589603824…, the first thousand add
up to 61.801008765…, the first ten thousand to 198.544645449…and
so on.

It seems that the graph shows all that can be shown of the
Riemann zeta function. There’s no more. The function has values only
when s is greater than 1. Or, as we now know to say, using the proper
term of art, the domain of the zeta function is all numbers greater
than 1. Right? Wrong!
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6

THE GREAT FUSION

The Chinese word Taiye (pro-
nounced “tie-yeah”) translates literally as “ultimate grandpa.” It is the
title given in my wife’s family to her paternal grandfather. Visiting
China in the summer of 2001, our first duty was to call on Taiye. The
family is immensely proud of him, for he has lived to age 97 in good
health and with a clear head. “Ninety-seven years old now!” they all
told me. “You should see him!” Well, I did see him—a fine cheerful
Buddha of a man, his face glowing ruddy and his mind still sharp.
Whether he was actually 97 at the time is, however, an interesting
point.

Taiye was born on the third day of the twelfth lunar month of
the lunar year named yi si in the traditional “Heaven-Earth” year-
numbering system. This day was December 28, 1905, on the Western
calendar. Since my visit occurred early in July 2001, Taiye’s age at the
time was, in the modern western reckoning, 951⁄2 years and a few
days. So why was everyone telling me that he was 97? Because in the
old Chinese style, which Taiye clove to, he was one year old at birth,
and another one year old when each Lunar New Year rolled round—
which one did, on January 24, 1906, by our calendar, 27 days after his

I.
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birth. Not yet one month in the world, and he was already two years
old! Thus, when the Lunar New Year arrived in 2001 (also on January
24, as it happened, though Lunar New Year can fall on any date be-
tween January 21 and February 20), Ultimate Grandpa hailed it as
his 97th year.

There is nothing wrong with the logic behind this traditional
Chinese system of reckoning age. You come into the world on a cer-
tain day. That day belongs to a certain year. Obviously, that is your
first year. If, 28 days later, a new year dawns—well, that will be your
second year. It all makes perfect sense. The only reason it seems odd is
that in the matter of computing our ages, modern people (in China
as well as in the West) have got accustomed to dealing with time as
something to be measured. In Taiye’s young days, the Chinese thought
of a person’s age as something to be counted.

II. This distinction between numbers for counting and numbers
for measuring reaches deep into human habits of thought and speech.
It is as if with one part of our minds we perceive the world as made
up of distinct, solid objects that can be tallied; while with another, we
see it as a collection of fabrics, grains, or fluids, to be divided up and
measured. Keeping the two notions straight does not come easily. My
son, six years old, still confuses “many” with “much.” To a friend, after
the Christmas festivities, “How much presents did you get?”

Our perceptions of the world are mirrored in our languages. The
English language takes the world to be mainly a countable place: one
cow, two fishes, three mountains, four doors, five stars. Somewhat
less frequently, our language takes the world to be measurable: one
blade of grass, two sheets of paper, three head of cattle, four grains of
rice, five gallons of gasoline. The words “blade,” “sheet,” “head,”
“grain,” and “gallon,” though of course some of them have lives of
their own, here are acting as units of measurement. The Chinese lan-
guage, by contrast with English, takes very nearly the whole of cre-
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ation to be measurable. One of the minor chores of learning Chinese
is memorizing the right “measure word” (that is a precise translation
of the Chinese grammatical term liang ci) for each noun: one head of
cow, two sticks of fish, three plinths of mountain, four fans of door,
five grains of star. In the entire Chinese language there are only two
words that can always be let loose grammatically without a measure
word: “day” and “year.” Everything else—cows, fishes, mountains,
doors, stars—is a kind of stuff that must be divided up and measured
out before we can talk about it.

The much/many confusion has occasioned much argument and
many inconveniences. At the time of the millennium, for example,
which most of us celebrated when the year 1999 turned into the year
2000, there was an irritating minority of dissidents who said we had
it all wrong. The source of their complaint was the true fact that our
common calendar was set up without a year zero. The first day of the
year 1 C.E. was preceded by the last day of the year 1 B.C.E. This was
because Dionysus Exiguus, the sixth-century monk who imposed a
Christian year-numbering system on the months and days of Julius
Caesar’s calendar, regarded years as countable things, just as our Taiye

does. The first year of the Christian era was, therefore, to be the year
1, the second was to be year 2, and so on.

The error is easily understood. Look at a common desk ruler.
(Not for the first time in this book. It is amazing how much math—
even higher math—can be referred back to the marks on a $1.89
ruler.) Yes, there are 12 inches marked on it. Yes, you can count them:
1, 2, 3, 4, …, 12. Ah, but if you are an ant, and you begin walking from
the left-hand end of the ruler to the right, and you have just covered
the first half-inch, where are you? In the middle of the first inch? Yes.
In the middle of inch 1, then? Sure, if you like. But what is the precise
measure of the distance you have walked? Well, it is 0.5 inches. Since
walking is a continuous process—since the ant will eventually traverse
every point of the ruler—this is a much more interesting and impor-
tant number for the mathematician. He therefore prefers to say that



THE GREAT FUSION 85

you are halfway (that is, .5 of the way) through the zero-th inch, giv-
ing a position 0.5.

Modern people are sufficiently sophisticated about mathematics
that they think like this quite naturally most of the time. That, in fact,
was the source of confusion for those millennium complainers—or
for the revelers late on the night of December 31, 1999, depending on
which point of view you want to take. The complainers were saying:
“If you measure the time from the starting instant of the common era
to the very end of the year 1999, you only have 1,999 complete years.
You should wait until 2,000 complete years have elapsed.” They were
imposing measuring logic on a system created according to counting
logic. The revelers, on the other hand, were saying: “Here comes year
number 2,000! Whoopee!”—pure counting logic. Yet these same rev-
elers might fall back on measuring logic if asked the age of their new
baby: “Oh, he’s just half a year old.” Which is to say, his age is 0.5
years—measuring logic, at least by contrast with the traditional Chi-
nese approach. (They might, of course, confuse the issue further by
saying: “Six months.…”)

I once got into a mild controversy with the writer and word-lover
William F. Buckley, Jr., about the word “data.” Is this a singular word or a
plural word? The word originated with the Latin verb dare, “to give.”
From this, by the ordinary processes of Latin grammar, a gerund (that
is, a verbal noun) can be formed: datum, meaning “that which is
given.” From this, in turn, you can make a plural: data—“those things
that are given.” However, we are speaking English, not Latin. Plenty of
Latin plurals are used as English singulars—agenda, for example.
Nobody says “The agenda are prepared.” English is our language; if we
borrow a word from another tongue, we can do with it as we please.

Having worked with data all my adult life, I know very well what
it is. It is a stuff, made up of innumerable tiny particles, indistinguish-
able one from another—like rice, sand, or grass. This kind of stuff
needs to be referred to, in English, with singular verb forms (“The
rice is cooked”) or measure words. If you want to pluck out one par-
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ticle and address it, you use a measure word: “A grain of rice,” “An
item of data.” This is, in fact, how people who make a living handling
data do speak, by instinct. Among people whose business is data, no-
body ever says “One datum, two data.” If people did say this, nobody
would understand them. The grammarians, however, still want us to
say “The data are.…” I predict they will lose the battle eventually.

As a final example, one that used to puzzle me in my Church of
England schooldays, consider the three days that Jesus Christ lay in
his tomb before being resurrected, according to his own prophecy,
“After three days I will rise again.” Three days? The Crucifixion oc-
curred on a Friday—Good Friday. The Resurrection occurred on a
Sunday. That’s 48 hours, measure-wise, but of course 3 days (Friday,
Saturday, Sunday) counting-wise, which is how the Hellenized intel-
lectuals who compiled the New Testament reckoned it.

The Riemann Hypothesis

All non-trivial zeros of the zeta function
have real part one-half.

The Riemann Hypothesis was born out of an encounter, what
my chapter heading calls a great fusion, between counting logic and
measuring logic. To put it in precise mathematical terms; it arose
when some ideas from arithmetic were combined with some from
analysis to form a new thing, a new branch of the mathematical tree,
analytic number theory.

To summarize the traditional categories of mathematics that I
gave in Chapter 1.viii.

� Arithmetic—The study of whole numbers and fractions.
� Geometry—The study of figures in space.
� Algebra—The use of abstract symbols to represent mathemati-

III.
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cal objects (numbers, lines, matrices, transformations), and
the study of the rules for combining those symbols.

� Analysis—The study of limits.

This fourfold scheme was well established in people’s minds
around 1800, and the great fusion I am going to describe in this chap-
ter was a fusion of ideas which, until 1837, had lived separate lives
under two of the above headings, arithmetic and analysis. This fusion
created the discipline of analytic number theory.

We are quite blasé about these leaps of imagination nowadays,
and perhaps a little better at them. Today, in fact, as well as analytic
number theory, there is an algebraic number theory and a geometric
number theory. (I shall introduce some algebraic number theory in
Chapter 20.v.) In the 1830s, however, it was a very striking thing, to
yoke together concepts from two areas previously thought to be un-
connected. Before I can introduce you to the principal player in this
phase of the story, though, I need to say a little more about those two
disciplines he brought together.

IV. At the time I am speaking of—the early nineteenth century—
analysis was still the newest and sexiest branch of math, where the
greatest advances were being made and the keenest minds were work-
ing. We knew more about arithmetic, geometry, and algebra at the
end of the nineteenth century than we did at the beginning, but we
knew way more about analysis. At the opening of that century, in fact,
the most fundamental concept of analysis, the concept of a limit, was
not clearly understood even by the best minds. If you had asked Euler,
or even the young Gauss,what analysis was all about, he would have
said: “It is about the infinite and the infinitesimal.” If you had then
asked Euler what, precisely, the infinite is, he would have had a
coughing fit and left the room, or else opened a discussion about the
meaning of “is.”
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Analysis really dates from the invention of calculus by Newton
and Leibnitz in the 1670s. Certainly the idea of limit, the idea that
separates analysis from the rest of math, is fundamental to calculus. If
you ever sat through a calculus class at school, you probably have
some dim memory of a graph showing a curve with a straight line
intersecting it at two points. “Now,” says the instructor, “if you let the
two points come closer and closer together, in the limit…” and you
forget the rest.

Calculus is not the whole of analysis—the divergence of the har-
monic series is a theorem in analysis, but it does not belong to calcu-
lus, which did not exist in Nicole d’Oresme’s time. There are other
quite large areas of analysis that do not strictly belong in calculus.
Measure theory, for example, developed by Henri Lebesgue in 1901,
and a chunk of set theory. I think it’s fair to say, though, that even
these newer non-calculus areas of analysis were opened up with the
idea of improving calculus—in Lebesgue’s case, of getting a better
definition of “integral.”

The concepts that analysis deals with—“the infinite and the in-
finitesimal,” as Euler would have said; “limits and continuity,” his
modern counterpart would insist—are among the most difficult for
the human mind to grasp. This is why calculus is so fearsome to so
many intelligent people. The causes of all the bafflement were stated
very early on in the history of math—in about 450 B.C.E., by a Greek
philosopher named Zeno. How (asked Zeno) is motion possible? How
can we say that an arrow moves, if, at any given instant, it must be
somewhere? If all time is composed of instants, and motion is not
possible in any given instant, then how is motion possible at all?

In the early eighteenth century, when calculus first became
known to the general educated public, the notion of infinitesimals
came in for much scorn. The Irish philosopher George Berkeley
(1685−1753—the California town is named after him) was a notable
skeptic: “And what are these evanescent increments? They are neither
finite quantities, nor quantities infinitely small, nor yet nothing. May
we not call them the ghosts of departed quantities?”
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The difficulty people have in grasping these ideas is a reminder
that mathematical thinking is, at some level, deeply unnatural. It goes
against all the grain of human thought and language. Never mind
analysis, this is true even of basic arithmetic. In the preface to
Principia Mathematica, Whitehead and Russell note that

[T]he very abstract simplicity of the ideas of this work defeat lan-

guage. Language can represent complex ideas more easily. The

proposition “a whale is big” represents language at its best, giving

terse expression to a complicated fact; while the true analysis of “one

is a number” leads, in language, to an intolerable prolixity.

(They weren’t kidding. Principia Mathematica takes 345 pages to de-
fine the number “1.”)

This is surely right. A whale is, by any standard of complexity
that makes sense, a vastly more complicated thing than “five,” yet it is
a much easier thing for the human mind to apprehend. Any tribe of
human beings that was acquainted with whales would certainly have
a word for them in their language; yet there are peoples whose lan-
guage has no word for “five” even though five-ness is there, quite lit-
erally, at their fingertips! I repeat, mathematical thinking is a deeply
unnatural way of thinking, and this is probably why it repels so many
people. And yet, if that repulsion can just be overcome, what benefits
flow! Consider the 2,000-year struggle to domesticate the concept of
“zero”—a number widely accepted as mathematically legitimate only
about 400 years ago. Where should we be nowadays without it?

Arithmetic, by contrast with analysis, is widely taken to be the
easiest, most accessible branch of math. Whole numbers? Obviously
useful for counting. Negative numbers? Indispensable if you want to
know the temperature on a cold day. Fractions? Well, of course I know
that a 3

8  nut won’t fit onto a 13
32  bolt. If you gave me a little time with

paper and pencil, I could probably tell you whether a 15
23  nut could fit

on a 29
44  bolt. What’s to be afraid of?
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In fact, arithmetic has the peculiar characteristic that it is rather
easy to state problems in it that are ferociously difficult to prove. It
was in 1742 that Christian Goldbach put forward his famous conjec-
ture that every even number greater than 2 can be expressed as the
sum of two primes. Twenty-six decades of effort by some of the best
minds on the planet have failed to prove or disprove this simple as-
sertion (which has inspired at least one novel, Apostolos Doxiadis’s
Uncle Petros and Goldbach’s Conjecture29). There are a thousand con-
jectures like this in arithmetic30; some proved, most still open.

This is undoubtedly what Gauss had in mind when he declined
to enter into a prize competition for the solution of Fermat’s Last
Theorem. To Heinrich Olbers, who had urged him to compete, Gauss
replied “I confess that Fermat’s Theorem … has very little interest for
me, because I could easily lay down a multitude of such propositions,
which one could neither prove nor dispose of.”

Gauss’s indifference is in this case a minority viewpoint, it must
be said. A problem that can be stated in a few plain words, yet which
defies proof by the best mathematical talents for decades or—in the
case of Goldbach’s Conjecture or Fermat’s Last Theorem—for centu-
ries, has an irresistible attraction for most mathematicians. They
know that they can achieve great fame by solving it, as Andrew Wiles
did when he proved Fermat’s Last Theorem. They know, too, from
the history of their subject, that even failed attempts can generate
powerful new results and techniques. And there is, of course, the
Mallory factor. When the New York Times asked George Mallory why
he wanted to climb Mount Everest, Mallory replied: “Because it’s
there.”

V. The connection between measuring and continuity is this. Since
there is no theoretical limit to the accuracy with which a quantity can
be measured, the list of all possible measurements is infinite, and in-
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finitely fine. Between a measurement of 2.3 inches and one of 2.4
inches there are intermediate, more precise, measurements of 2.31,
2.32, 2.33…, 2.39 inches; and these in turn can be subdivided ad in-

finitum. We can, therefore, in imagination, travel connectedly from
any measuring number to any other, passing over the infinitude of
other measuring numbers that lie between them, without ever find-
ing ourselves without (so to speak) a number to stand on. This idea
of connectedness—of traversing some space or some interval with-
out ever having to leap over a void—lies behind the vitally important
mathematical concepts of continuity and limit. In other words, it lies
behind all of analysis.

When counting, by contrast, there is nothing between seven and
eight; we must leap from one to the other, with no stepping-stones in
between. You can measure something at seven and a half units, but
you can’t count seven and a half objects. (You might object to this,
saying “What if I say I have seven and a half apples? Isn’t that a count-
ing statement?” To which the answer is “I might allow you to say so …
but only if you’re sure that is precisely one-half of an apple, as pre-
cisely as Larry, Curly, and Moe are precisely three people. Could it not
be 0.501 of an apple, or 0.497…?” And at once, if we want to resolve
the issue, we must pass into the realm of measuring. “Seven and a half
string quartets” is just cheating.)

The great fusion between arithmetic and analysis—between
counting and measuring, between numbers staccato and numbers
legato—came about as the result of an inquiry into prime numbers,
conducted by Lejeune Dirichlet in the 1830s. Dirichlet (1805−1859)
was, names notwithstanding, German, from a small town near
Cologne, where he got most of his education.31 The fact that he was a
German deserves a brief detour by itself; for the fusion of ideas from
arithmetic and analysis, carried out by Dirichlet and Riemann, hap-
pened within a broader social change in mathematics at large, the rise
of the Germans.
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VI. If you draw up a list of the dozen or so greatest mathematicians
at work in 1800, it looks something like this: Argand, Bolyai, Bolzano,
Cauchy, Fourier, Gauss, Germain, Lagrange (just), Laplace, Legendre,
Monge, Poisson, Wallace. A different writer, or this writer in a differ-
ent mood, might of course add a name here or subtract one there, but
without making any difference to the most striking feature of the list,
which is the near-total absence of Germans. Gauss is the only one.
There is one Scot, one Czech, one Hungarian, and one “disputed”
(Lagrange, baptized Giuseppe Lagrangia, is claimed by both Italy and
France). The rest are all French.

There were a great many more mathematicians at work in 1900,
so a list made up for that year would be correspondingly more likely
to start a fistfight. However, I believe that the following attains some
local minimum of controversiality: Borel, Cantor, Carathéodory,
Dedekind, Hadamard, Hardy, Hilbert, Klein, Lebesgue, Mittag-Leffler,
Poincaré, Volterra. Four Frenchmen, an Italian, an Englishman, a
Swede, and five Germans.32

The rise of the Germans to prominence in mathematics is inti-
mately related to some of the historical events I sketched in Chapters
2 and 4. For all of Frederick the Great’s reforms, the defeat at Jena in
1806 showed the Prussians that they still had some way to go in mod-
ernizing and strengthening their state. The rising nationalist passions
stimulated by the long wars against Napoleon, and by the Romantic
Movement, were an added spur to reform, in spite of having been
thwarted (as the nationalists saw it) by the failure of the Congress of
Vienna to unify the German-speaking peoples. In the years after Jena,
the Prussian army was reorganized on a basis of universal conscrip-
tion, serfdom was abolished, restrictions on industry were lifted,
taxation and the whole financial system were overhauled, and the
educational reforms of Wilhelm von Humboldt, already mentioned
in Chapter 2.iv, were instituted. The lesser German states took their
lead from Prussia, and Germany at large soon became a place hospi-
table to science, industry, progress, education—and, of course, math-
ematics.
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It should perhaps be added that there was another, lesser, reason
for the rise of nineteenth-century German mathematics. There was
Gauss. His is the only German name in that list I drew up for 1800;
but there go ten dimes to the dollar, and one Gauss was worth at
least ten ordinary mathematicians. The fact that Gauss was in his ob-
servatory at Göttingen and teaching (though he disliked teaching
and did as little as he could get away with) was sufficient to put Ger-
many, and Göttingen, on the mental map of anyone interested in
mathematics.

VII. That is the world in which Lejeune Dirichlet grew up. Born in
1805, he was of the generation before Riemann. The son of a post-
master in a small town 20 miles east of Cologne, in Prussia’s Rhine
province, Dirichlet was also among the first generation to benefit
from von Humboldt’s reformed gymnasium system of secondary
education. He must have been an exceptionally quick study, for by
age 16 he had acquired all the qualifications necessary for university
entrance. Already hooked on mathematics, he set off for what was
still the world capital of mathematical knowledge, Paris, carrying with
him the book he treasured above all others, Gauss’s Disquisitiones

Arithmeticae. In Paris, 1822−1825, Dirichlet attended lectures given
by many of the great French stars of that time, including at least four
from the list I presented earlier: Fourier, Laplace, Legendre, and Pois-
son.

In 1827, now 22 years old, Dirichlet returned to Germany to teach
at the University of Breslau in Silesia. (Breslau is now in Poland, and
appears on modern maps as the city of Wroc»aw.) He gained this
position with the assistance and encouragement of Alexander von
Humboldt, the explorer, and brother of Wilhelm. Both von
Humboldts were key players in these early nineteenth-century Ger-
man cultural developments.
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Outside Berlin, however, German universities were in the condi-
tion I have described in Chapter 2.vii, given over mainly to the train-
ing of teachers, lawyers, and so on. Dissatisfied with Breslau, Dirichlet
got a position in Berlin and spent most of his professional career—
1828−1855—teaching there. Among those he taught was a brilliant
but shy young scholar from the Wendland region of north Germany,
Bernhard Riemann, who had transferred from the University of
Göttingen in search of the finest mathematical instruction. I shall
have much more to say about Dirichlet’s influence on Riemann in
Chapter 8; here I note only the connection, and the fact that through
it, Riemann came to revere Dirichlet, considering him to be the sec-
ond greatest mathematician alive, after Gauss.

Dirichlet married Rebecca Mendelssohn, one of the sisters of the
composer Felix Mendelssohn, thereby forming one of the many
Mendelssohn-mathematics connections.33

We have some sketches of Dirichlet and his teaching style during
his Berlin years from Thomas Hirst, an English mathematician and
diarist who spent much of the 1850s traveling in Europe, taking in
mathematics wherever he could find it. During the fall and winter of
1852−1853 he was in Berlin, where he befriended Dirichlet and at-
tended his lectures. From Hirst’s diary:

31st October 1852: Dirichlet cannot be surpassed for richness of ma-

terial and clear insight into it: as a speaker he has no advantages—

there is nothing like fluency about him, and yet a clear eye and un-

derstanding make it dispensable: without an effort you would not

notice his hesitating speech. What is peculiar in him, he never sees

his audience—when he does not use the black-board at which time

his back is turned to us, he sits at the high desk facing us, puts his

spectacles up on his forehead, leans his head on both hands, and

keeps his eyes, when not covered with his hands, mostly shut. He

uses no notes, inside his hands he sees an imaginary calculation,

and reads it out to us—that we understand it as well as if we too saw

it. I like that kind of lecturing.
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14th November 1852: …Wednesday evening I spent with Dirichlet:

saw Mrs. Dirichlet again, found she was sister to Mendelssohn—she

played me several of her brother’s pieces, to which I listened with

great willingness.

20th February 1853: …Dirichlet has also his peculiarities—one is of

forgetting time; he pulls his watch out, finds it past three, and runs

out without even finishing the sentence.

VIII. For the purposes of this story, Dirichlet’s principal signifi-
cance is as follows. Inspired by a result Euler had proved precisely 100
years before, a result I hereby name “the Golden Key,” Dirichlet in
1837 brought together ideas from analysis and arithmetic to prove an
important theorem about prime numbers. This is generally consid-
ered to be the beginning of analytic number theory; of arithmetic
with limits. The title of Dirichlet’s groundbreaking paper was, I am
sorry to say, Beweis des Satzes, dass jede unbegrenzte arithmetische Pro-

gression, deren erstes Glied und Differenz ganze Zahlen ohne gemein-

schaftlichen Factor sind, unendlich viele Primzahlen enthält—“Proof
of the theorem that each unlimited arithmetic progression, whose
first member and difference are whole numbers without common
factor, contains infinitely many prime numbers.”

Take any two positive whole numbers and repetitively add one to
the other. If the two numbers have a common factor, every resulting
number has that factor, too; repetitively adding 6 to 15 gives you 15,
21, 27, 33, 39, 45, … all of which have 3 as a factor. If the two numbers
have no common factor, however, there is the possibility of getting
some primes in the list. If, for example, I repetitively add 6 to 35, I get
35, 41, 47, 53, 59, 65, 71, 77, 83, … which has lots of primes—along,
of course, with many non-primes like 65 and 77. How many primes?
Could this sequence contain an infinity of primes? In other words,
could it be that, for any number N, no matter how big, I could, by
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repetitively adding 6 to 35 enough times, turn up more than N

primes? Could any sequence like this, made from any two numbers
with no common factor, contain an infinity of primes?

Yes, it could. This is, in fact, precisely the case. Take any two num-
bers with no common factor and repetitively add one to the other.
You will generate an infinity of primes (mixed with an infinity of
non-primes). Gauss had conjectured that this was the case—know-
ing Gauss’s powers, one is tempted to say that he intuited it—but it
was decisively proved by Dirichlet in that 1837 paper. It was in
Dirichlet’s proof that the first part of the great fusion was accom-
plished.

The truth is even more interesting. Take any positive whole num-
ber, say, 9. How many of the numbers less than 9 have no factor in
common with it, not counting 1 as a factor? Well, there are six such
numbers, and here they are: 1, 2, 4, 5, 7, 8. Take each one of these in
turn, and repetitively add 9 to it.

1: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, …

2: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128, …

4: 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130, …

5: 14, 23, 32, 41, 50, 59, 68, 77, 86, 85, 104, 113, 122, 131, …

7: 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133, …

8: 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, …

Not only does every one of those sequences contain an infinity of
primes (I have underlined them), but each of the six sequences con-
tains the same proportion of primes. In other words, if you imagine
each sequence stretching out to the neighborhood of some very large
number N, instead of merely to the neighborhood of 134, then each
contains about the same number of primes, about 1

6 (N ⁄ log N), if the
Prime Number Theorem is true (which had not yet been proved in
Dirichlet’s time). If N is 134, 1

6 (N ⁄ log N) is about 4.55983336…. The
six sequences I’ve shown turn up 5, 5, 4, 5, 4, and 5 primes, for an



THE GREAT FUSION 97

average of 4.6666…; high by 2.3 percent, which is pretty good for
such a small sample size.

To prove his result, Dirichlet began with a form of arithmetic
developed at great length by Gauss in Disquisitiones Arithmeticae.
Mathematicians call it “the arithmetic of congruences.” You can
think of it as clock arithmetic. Temporarily replace the 12 on a clock
face with 0. The 12 hours of the clock now read 0, 1, 2, 3, … up to
11. If the time is eight o’clock, and you add 9 hours, what do you
get? Well, you get five o’clock. So in this arithmetic, 8 + 9 = 5; or, as
mathematicians say, 8 + 9 ≡ 5 (mod 12), pronounced “eight plus nine
is congruent to five, modulo twelve.” The phrase “modulo twelve”
means “I am working from a clock-face with twelve hours marked, 0
to 11.” This may seem trivial, but in fact the arithmetic of con-
gruences goes very deep and is full of strange and difficult results.
Gauss was a great grand master of it; not one of the seven sections
of Disquisitiones Arithmeticae is free from that “≡” sign.

The Disquisitiones, remember, was the constant companion of
Dirichlet’s younger years. When he came to this problem, in 1836 or
1837, he was in his early 30s and must have completely internalized
Gauss’s work on congruences. Then somehow, Euler’s 1737 result—
“the Golden Key”—came to his attention. It gave him an idea; he put
the two things together, applied some elementary techniques of analy-
sis, and got his proof.

IX. Dirichlet was thus the first to pick up the Golden Key, the link
between arithmetic and analysis, and make serious use of it. In terms
of the analogy I am using, it would be a bit too much to say that he
turned the key. I would rather say that he picked it up, sensed its
beauty and potential power, set it down again, then used it as a model
for a similar key—a silver key, you might say—to unlock the particu-
lar problem he had in front of him. The great fusion, analytic number
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theory, did not appear in its full glory until 22 years later, in Riemann’s
paper of 1859.

Recall, though, that Riemann was one of Dirichlet’s students and
certainly knew of the older man’s work. In the opening paragraph of
the 1859 paper, in fact, he mentioned Dirichlet’s name in conjunc-
tion with that of Gauss. They were his two mathematical idols. If it
was Riemann who turned the key, it was Dirichlet who first showed it
to him and demonstrated that it was a key to something or other; and
it is to Dirichlet that the immortal glory of inventing analytic num-
ber theory properly belongs.

But what, exactly, is this Golden Key? What was it that Leonhard
Euler, working away by candlelight in his room, the secret police of
the Bironovschina prowling the streets of St. Petersburg outside, left
lying around for Dirichlet to find a hundred years later?
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7

THE GOLDEN KEY,
AND AN IMPROVED

PRIME NUMBER THEOREM

The patient reader will have noticed
that the mathematical chapters of this book have been moving on
two tracks. Chapters 1 and 5 were all about those infinite sums, lead-
ing up to a mathematical object named, by Riemann, “the zeta func-
tion”; Chapter 3 was concerned with primes, taking its lead from the
title of Riemann’s 1859 paper and proceeding from there to the Prime
Number Theorem (PNT). Obviously, both issues—the zeta function
and the primes—are connected through Riemann’s interest in them.
In fact, by yoking the two concepts together in a certain way, by turn-
ing the Golden Key, Riemann opened up the whole field of analytic
number theory. But how did he do that? What’s the connection? What
is the Golden Key? In this chapter I aim to answer that question—to
show you the Golden Key. Then I shall begin preparations for turning
the Golden Key by offering an improved version of the PNT.

I.
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II. It begins with the “sieve of Eratosthenes.” The Golden Key is, in
fact, just a way that Leonhard Euler found to express the sieve of Era-
tosthenes in the language of analysis.34

Eratosthenes of Cyrene (nowadays the little town of Shahhat in
Libya) was one of the librarians at the great library of Alexandria.
Around 230 B.C.E.—70 years or so after Euclid—he developed his
famous sieve method for finding prime numbers. It works like this.
First, write down all the whole numbers, starting with 2. Of course,
you can’t write them all, so let’s make do with 100 or so.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 45 46 47 48 49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 104 106 107 108 109 110 111 112 113

Now, starting from 2, and leaving 2 untouched, remove every
second number from 2 on. The result is

2 3 . 5 . 7 . 9 . 11 . 13 . 15

. 17 . 19 . 21 . 23 . 25 . 27 . 29

. 31 . 33 . 35 . 37 . 39 . 41 . 43

. 45 . 47 . 49 . 51 . 53 . 55 . 57

. 59 . 61 . 63 . 65 . 67 . 69 . 71

. 73 . 75 . 77 . 79 . 81 . 83 . 85

. 87 . 89 . 91 . 93 . 95 . 97 . 99

. 101 . 103 . 104 . 107 . 109 . 111 . 113

The first number left unscathed after 2 is 3. Leave 3 untouched,
but remove every third number from 3 on, if it hasn’t already been
removed. The result is
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2 3 . 5 . 7 . . . 11 . 13 . .

. 17 . 19 . . . 23 . 25 . . . 29

. 31 . . . 35 . 37 . . . 41 . 43

. . . 47 . 49 . . . 53 . 55 . .

. 59 . 61 . . . 65 . 67 . . . 71

. 73 . . . 77 . 79 . . . 83 . 85

. . . 89 . 91 . . . 95 . 97 . .

. 101 . 103 . . . 107 . 109 . . . 113

The first number left unscathed after 3 is 5. Leave 5 untouched, but
remove every fifth number from 5 on, if it hasn’t already been re-
moved. The result is

2 3 . 5 . 7 . . . 11 . 13 . .

. 17 . 19 . . . 23 . . . . . 29

. 31 . . . . . 37 . . . 41 . 43

. . . 47 . 49 . . . 53 . . . .

. 59 . 61 . . . . . 67 . . . 71

. 73 . . . 77 . 79 . . . 83 . .

. . . 89 . 91 . . . . . 97 . .

. 101 . 103 . . . 107 . 109 . . . 113

The first number left unscathed after 5 is 7. The next step would
be to leave 7 untouched, but remove every seventh number from 7
on, if it hasn’t already been removed. The first number left unscathed
after 7 would then be 11, and so on.

If you keep doing this for ever, the numbers you are left with are
all the primes. That is the sieve of Eratosthenes. If you stop just before
processing prime p—that is, just before removing every pth number
that wasn’t already removed—you have all the primes less than p2.
Since I stopped before processing 7, I have all the primes up to 72,
which is 49. After that you see some numbers, like 77, that are not
prime.
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III. The sieve of Eratosthenes is pretty straightforward, and 2,230
years old. How does it get us into the middle of the nineteenth cen-
tury, and deep results in function theory? Here’s how.

I am going to repeat the process I went through above. (That’s
why I went through it so painstakingly.) This time, however, I’m go-
ing to apply it to Riemann’s zeta function, which I defined at the end
of Chapter 5. Here is the zeta function for some number s bigger
than 1.

ζ s
s s s s s s s s s s( ) = + + + + + + + + + + +1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11
K

Note that writing it in this way involves writing out all the positive
whole numbers—which is how we started off the sieve of Era-
tosthenes (except that this time I included 1).

What I’m going to do is multiply both sides of the equals sign by
1
2s . This gives me

1

2

1

2

1

4

1

6

1

8

1

10

1

12

1

14

1

16

1

18s s s s s s s s s s
sζ ( ) = + + + + + + + + +K

because of Power Rule 7 (which, for example, makes 2s times 7s equal
to 14s). Now I’ll subtract the second of these expressions from the
first. On the left-hand sides I have one of ζ (s), and I have 1

2s  of it.
Subtracting

1
1

2
1

1

3

1

5

1

7

1

9

1

11

1

13

1

15

1

17

1

19
−





( ) = + + + + + + + + + +
s s s s s s s s s s

sζ K

The subtraction eliminated all the even-numbered terms from
the infinite sum. I’m left with just the odd-numbered terms.

Remembering the sieve of Eratosthenes, I’ll now multiply both
sides of this equals sign by 1

3s , 3 being the first unscathed number on
the right-hand side.

1

3
1

1

2

1

3

1

9

1

15

1

21

1

27

1

33

1

39

1

45

1

51

s s

s s s s s s s s s

s−





( ) =

+ + + + + + + + +

ζ

K
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Now subtract this expression from the one before. When sub-
tracting the left-hand sides, treat 1 1

2
−( )s sζ( ) as a blob, a single num-

ber (which of course it is, for any given s). I have one of this blob, and
I have 1

3s  of it. Subtracting, I get 1 1
3

−( )s  of it.

1
1

3
1

1

2

1
1

5

1

7

1

11

1

13

1

17

1

19

1

23

1

25

1

29

−





−





( ) =

+ + + + + + + + + +

s s

s s s s s s s s s

sζ

K

All the multiples of 3 have vanished from the infinite sum. The first
unscathed number on the right is now 5.

If I multiply both sides by 1
5s , the result is

1

5
1

1

3
1

1

2

1

5

1

25

1

35

1

55

1

65

1

85

1

95

1

115

s s s

s s s s s s s s

s−





−





( ) =

+ + + + + + + +

ζ

L

And now, subtracting this equation from the previous one, and this
time treating 1 11

3
1
2

−( ) −( )s s sζ( )  as a single blob, I have one of it, and I
have 1

5s  of it. Subtracting

1
1

5
1

1

3
1

1

2

1
1

7

1

11

1

13

1

17

1

19

1

23

1

29

1

31

−





−





−



 ( ) =

+ + + + + + + + +

s s s

s s s s s s s s

sζ

K

All the multiples of 5 vanished in the subtraction, and the first num-
ber left unscathed on the right is 7.

Notice the resemblance to the sieve of Eratosthenes? Actually, you
should first notice the difference. When doing the original sieve, I
chose to leave each original prime standing, deleting only its mul-
tiples by 2, 3, 4, .… Here, I eliminate the original prime from the
right-hand side in the subtraction, along with all its multiples.
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If I keep doing this up to some decently large prime, let’s say 997,
I have this.

1
1

997
1

1

991
1

1

5
1

1

3
1

1

2
−





−





−





−





−





( ) =
s s s s s

sK ζ

1
1

1009

1

1013

1

1019

1

1021
+ + + + +

s s s s
K

Now, that right-hand side, if s is any number bigger than 1, is just
a tiny bit bigger than 1 itself. If s is 3, for example, it works out to
1.00000006731036081534.… So it is not too improbable to say that if
you repeated the process forever, you’d get the result shown in Ex-
pression 7-1.

K 1
1

13
1

1

11
1

1

7
1

1

5
1

1

3
1

1

2
1−





−





−





−





−





−





( ) =
s s s s s s

sζ

Expression 7-1

for any number s bigger than 1, with the left-hand side having one
bracketed expression for every prime number, stretching away for-
ever to the left. Dividing each side of the expression repeatedly by
each of the parentheses in turn, I get the result shown in Expression
7-2.

ζ s

s s s s s s

( ) =
−

×
−

×
−

×
−

×
−

×
−

×
1

1
1

2

1

1
1

3

1

1
1

5

1

1
1

7

1

1
1

11

1

1
1

13

K

Expression 7-2

IV. That is the Golden Key. To show it to you in all its elegance, let
me clean it up a little. I don’t like fractions with fractional denomina-
tors any more than you do, and there is a useful bit of mathematical
notation I can introduce here to save on typing.
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First, remember from Power Rule 5 that a−N means 1 ⁄ aN, and a−1

means 1 ⁄ a. I can therefore write Expression 7-2 somewhat more suc-
cinctly as

ζ s s s s s s( ) = −( ) −( ) −( ) −( ) −( )− − − − − − − − − −
1 2 1 3 1 5 1 7 1 11

1 1 1 1 1

K

There is an even neater way to write this. Recall the Σ  notation from
Chapter 5.viii. When I am adding up a bunch of terms with the same
pattern, I can write the sum in shorthand using the Σ  sign. Well,
there is an equivalent thing for when I am multiplying terms that all

conform to a pattern, the Π  sign. That’s a capital Greek letter “pi,” for

“product.” Here is Expression 7-2 written using the Π  sign.

ζ s p s

p

( ) = −( )− −∏ 1 1

This is pronounced “Zeta of s equals the product over all primes of
one minus p to the minus s, to the minus one.” The little “p” beneath

the Π  sign is understood to mean “over all primes.”35 Remembering
the definition of ζ (s) as an infinite sum, I can rewrite the left-hand
side and get Expression 7-3.

The Golden Key

n ps

n

s

p

− − −∑ ∏= −( )1 1

Expression 7-3

Both the sum on the left and the product on the right go all the
way to infinity. This, in fact, offers another proof that the primes never
end. If they did end, the right-hand side product would end, there-
fore working out to some finite number, no matter what the value of
s. When s = 1, however, the left-hand side is the harmonic series from
Chapter 1, which “adds up to infinity.” Since it cannot be the case that
an infinity on the left equals a finite number on the right, the number
of primes must be infinite.



106 PRIME OBSESSION

V. What, you may be wondering, is so all-fired special about Ex-
pression 7-3, that I have given it such a grandiloquent name?

The answer to that won’t become entirely clear until a later chap-
ter, when I actually turn the Golden Key. At this point, the main thing
to be impressed by—mathematicians, at any rate, find it extremely
impressive—is the fact that on the left-hand side of Expression 7-3
we have an infinite sum running through all the positive whole num-
bers 1, 2, 3, 4, 5, 6, …, while on the right-hand side we have an infinite
product running through all the prime numbers 2, 3, 5, 7, 11, 13, ….

Expression 7-3—the Golden Key—is actually named “the Euler
product formula.”36 It first saw the light of day, though arranged
slightly differently, in a paper with the title Variae observationes circa

series infinitas, written by Leonhard Euler and published in 1737 by
the St. Petersburg Academy. (The title translates as “Various Observa-
tions about Infinite Series”—compare the Latin with the translation,
and you can see what I meant back in Chapter 4.viii when I spoke of
the ease of reading Euler’s Latin.) The actual statement of the Golden
Key in that paper is as follows:

THEOREMA 8
Si ex serie numerorum primorum sequens formetur expressio

2 3 5 7 11

2 1 3 1 5 1 7 1 11 1

n n n n n

n n n n n

etc

etc

⋅ ⋅ ⋅ ⋅ ⋅

−( ) −( ) −( ) −( ) −( )
.

.

erit eius valor aequalis summae huius seriei

1
1

2

1

3

1

4

1

5

1

6

1

7
+ + + + + + +

n n n n n n
etc.

The Latin means “If from the series of prime numbers the fol-
lowing expression be formed … its value will be equal to the sum of
this series….” Again, once you know a basic few dozen word endings
(“-orum,” a genitive; “-etur,” a present subjunctive passive, etc.),
Euler’s Latin holds no terrors.
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When jotting down the ideas that make up this book, I first
looked through some of the math texts on my shelves to find a proof
of the Golden Key suitable for non-specialist readers. I settled on one
that seemed to me acceptable and incorporated it. At a later stage of
the book’s development, I thought I had better carry out authorial
due diligence, so I went to a research library (in this case the excellent
new Science, Industry and Business branch of the New York Public
Library in midtown Manhattan) and pulled out the original paper
from Euler’s collected works. His proof of the Golden Key covers ten
lines and is far easier and more elegant than the one I had selected
from my textbooks. I thereupon threw out my first choice of proof
and replaced it with Euler’s. The proof in part III of this chapter is
essentially Euler’s. It’s a professorial cliché, I know, but it’s true none-
theless: you can’t beat going to the original sources.

VI. Having shown you the Golden Key, I now have to begin prepa-
rations for turning it. This involves recapitulating a fair amount of
math, including a very small quantity of calculus. In the rest of this
chapter, I am going to present all the calculus you need to understand
the Hypothesis and its significance. Then, making a virtue of neces-
sity, I shall employ that calculus to present an improved version of
the PNT—a version much more relevant to Riemann’s work.

Calculus instruction traditionally begins with a graph. The graph
I am going to start with is the one in Chapter 5.iii, showing the log
function—I have reproduced it here as Figure 7-1. Imagine you are a
very small—infinitesimal, if you can manage it—homunculus, climb-
ing up the graph of the log function from left to right. At first, if you
start somewhere close to zero, the ascent is very steep, and you need
rock-climbing gear. As you go on, however, it gets less and less steep.
By the time you get to arguments around 10, you can get upright and
actually walk it.
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x
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1

2

3

Log x

FIGURE 7-1 The function log x.

The steepness of the curve varies from point to point. At every
point it has a definite numerical value, though, just as your automo-
bile has a definite speed at any point while you are accelerating—
namely, the speed you see if you glance at the speedometer. If you
glance again an instant later, you see a slightly different speed; but at
every point in time there is some definite speed. Just so, for any argu-
ment in its domain (which is all numbers greater than zero), the log
function has some definite gradient.

How do we measure that gradient, and what is it? First, let me
define “gradient” for a sloping straight line. It is the vertical rise di-
vided by the horizontal span. If, in covering a horizontal distance of 5
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units, I rise a vertical distance of 2 units, the gradient is 2 in 5, or 0.4.
See Figure 7-2.

2

5

FIGURE 7-2 Gradient.

To get the gradient of a curve at any point, I construct the one
straight line that touches the curve at that point. Plainly there is only
one such line; if I “roll” the line a little (imagine it’s a steel rod, and
the curve a steel band), it touches the curve at a slightly different
point. The gradient of the curve at the point is the gradient of that
unique touching straight line. The gradient of log x at the argument
x = 10 turns out, if you measure it, to be 1

10 . The gradient at argument
20 is less, of course; it measures 1

20 . The gradient at argument 5 is
steeper; it measures 1

5 . It is, in fact, yet another amazing property of
the log function that the gradient at any argument x is 1 ⁄ x, the recip-
rocal of x, also known as x−1.

If you ever did a calculus course, this all sounds pretty familiar.
The starting point of calculus is, in fact, this: From any function f
I can derive another function g, which measures the gradient of f at
any argument. If f is log x, then g is 1 ⁄ x. This derived function is
called, believe it or not, “the derivative” of f. For example, 1 ⁄ x is the
derivative of log x. If you are presented with some function f, the pro-
cess of finding the derivative is called “differentiation.”

Differentiation follows some easy rules. It is, for example trans-
parent to several basic arithmetic operations. If the derivative of f is g,
then the derivative of 7f is 7g. (So the derivative of 7 times log x is 7
times 1 ⁄ x.) The derivative of f-plus-g is the derivative of f plus the
derivative of g. This breaks down for multiplication, though; the de-
rivative of f-times-g is not the derivative of f times the derivative of g.



110 PRIME OBSESSION

In this book, the only functions besides log x whose derivatives I
am concerned with are the simple power functions xN. I am going to
tell you without proving it that for any number N, the derivative of xN

is NxN−1. Table 7-1 is a partial table of the derivatives of all the power
functions.

TABLE 7-1 Derivatives of xN.

Function … x−3 x−2 x−1 x0 x1 x2 x3 …

Derivative … −3x−4 −2x−3 −x−2 0 1 2x 3x2 …

Of course x0 is just 1, its graph a flat horizontal line. It has no gradi-
ent, zero gradient. If you differentiate any fixed number, you get zero.
And x1 is just x; the graph is a straight line going diagonally upward,
exiting the graph paper at the top right corner; the gradient is a steady
1. Note that there is no power whose derivative is x−1, though x0 looks
to be in the right position. That is not surprising, since we already
know that the derivative of log x is x−1. Once again, log x looks as
though it is trying to pass itself off as x0.

VII. You no doubt recall my saying more than once that mathema-
ticians love to be able to invert things. Here is P in terms of Q; what is
Q in terms of P? That is how I brought up the log function in the first
place—as the inverse of the exponential function. If a = eb, then what
is b in terms of a? It’s log a.

Suppose then, that I differentiate function f and get function g.
Then g is the derivative of f. And f is the … what? of g? What is the
inverse of differentiation?  The derivative of log x is 1 ⁄ x, so log x is
the … what? of 1 ⁄ x? Answer: It’s the integral, that’s what. The inverse
of a derivative is an integral, and the inverse of differentiation is inte-

gration. Since the whole business is transparent to multiplication by a
fixed number, turning Table 7-1 upside down and fiddling a little
gives the inverse table shown in Table 7-2.
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TABLE 7-2 Integrals of xN.

Function … x–3 x–2 x–1 x0 x1 x2 x3 …

Integral … − −1
2

2x –x–1 log x x 1
2

2x 1
3

3x 1
4

4x …

And in fact, so long as x is not equal to −1, the integral of xN is
xN+1⁄ (N + 1). (And looking at that table, you see again how the func-
tion log x strives to behave as if it were x0, which of course it is not.)

If derivatives are good for telling us the gradient of a function—
that is, the rate at which it is changing at any point—what are inte-
grals good for? Answer: For finding the areas under graphs.

The function I’ve shown in Figure 7-3—it is actually the func-
tion 1 ⁄ x4, which is to say of x−4—embraces a certain area between the
arguments x = 2 and x = 3. To calculate that area, you first figure out
the integral function of x−4. That, by the general rule above, is − −1

3
3x ,

that is, –1 ⁄ (3x3). Like any other function, this has a value for every
argument in its domain. To find the area from argument 2 to argu-
ment 3, you calculate the value of the integral at argument 3, then
calculate the value at argument 2, then subtract the second value from
the first.

1 2 3 4
x

0.05

0.10

x–4

FIGURE 7-3 What integration is good for.
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When x = 3, the value of –1 ⁄ (3x3) is − 1
81 ; when x = 2 it is − 1

24 .
Subtract, remembering that subtracting a negative number is
the same as adding the corresponding positive number, −( ) −1

81

−( ) = −1
24

1
24

1
81 , which is 19

648 , about 0.029321.

Mathematicians have a way to write this, x dx−∫ 4

2

3

, read as “the

integral of x to the minus fourth power, with respect to x, from 2 to
3.” (Don’t worry too much about that “with respect to x.” Its purpose
is to declare x as the main variable we are working with, whose inte-
gral has to be figured out. If there happen to be any other variables
under the integral sign, they are just hanging out there; they are not
being integrated. Chapter 19 has an illustration.)

Now, sometimes you can let the right-hand end of the integra-
tion go off to infinity and get a finite area. It’s like infinite sums. If the
values are right, they can converge to a finite value. Same here. If the
function is right, the area under it can be finite even though infinitely
long. Integrals are connected to sums at a deep level. The integral
sign—first used by Leibnitz in 1675—is just an elongated “S” for
“sum.”

Look, suppose instead of stopping that area at 3, I took it all the
way out to x = 100. Then, since the cube of 100 is 1,000,000, my cal-
culation would have gone like this:

−





− −





= −
1

3 000 000

1

24

1

24

1

3 000 000, , , ,

If I went even further, obviously that second fraction would be even
smaller. As I head off to infinity, it dwindles away to zero, and I am

surely justified in writing x dx−
∞

∫ =4

2

1
24 . Notice how the x disappears

when I actually use integrals to work out an area. I substitute num-
bers for it, and end up with a number for my answer.

That’s it. That’s all the calculus in this book, I swear. However,
although I am not going to introduce any more calculus, I am going
to start using calculus right away. I am going to use it to define a
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completely new function, one that is terrifically important in the
theory of prime numbers and the zeta function.

VIII. First, consider the function 1 ⁄ log t. Figure 7-4 shows a graph
of it. I have changed my symbol for argument from x to t, because I
have a use for x other than as a dummy variable.

I have also shaded an area under the graph, because I am going to
do a spot of integration. Integration, as I presented it just now, is a
way to calculate the area under a function. First you figure out the
integral of the function, then you hit the calculator. So, what is the
integral of 1 ⁄ log t?

2 x 4

t

–2

2

4

1

log( )t

FIGURE 7-4 The function 1 ⁄ log t.
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Unfortunately, there is no ordinary household function that can
be used to express the integral of 1 ⁄ log t. This integral is, however,
very important. It turns up a lot in our researches into the Riemann

Hypothesis. Since we don’t want to keep having to write 1
0

/ logt dt
x

( )∫
every time we refer to the darn thing, we simply define it to be a new
function, and issue it a certificate declaring it a sound and respectable
function in good standing with its peers.

This new function has the name “the log integral function.” The
usual symbol for it is Li(x). (Sometimes “li(x).”) It is defined to be37

the area under that graph—the graph of 1 ⁄ log t—from zero to x.
This involves a certain sleight of hand, because 1 ⁄ log t has no

value at t = 1 (because the log of 1 is zero). I am going to skate breez-
ily over that little difficulty, assure you that there is a way to finesse it,
and note only that when calculating integrals, areas below the hori-
zontal axis count as negative, so that the area to the right of 1 works
to cancel out the area to the left, as t increases. In other words, Li(x) is
the shaded area in Figure 7-4, with the negative to the left of t = 1
netted against the positive to the right (when x lies to the right).

Figure 7-5 is a graph of Li(x). Notice that it has negative values
when x is less than one (because that area in Figure 7-4 is negative),
that it dives off to negative infinity at x = 1 (as you would expect), but
that as x advances to the right of 1, the positive area increasingly can-
cels out the negative so that Li(x) comes back from negative infinity,
reaches zero (i.e., the negative area is entirely canceled out) at
x = 1.4513692348828…, and thereafter increases steadily. Its gradient
at any point is, of course, 1 ⁄ log x. And that, please note, is, as I showed
in Chapter 3.ix, the probability that a whole number in the neighbor-
hood of x is a prime number.38

Which is why this function is so important in number theory.
You see, as N gets larger, Li(N) ~ N ⁄ log N. Now, the PNT asserts that
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π (N) ~ N ⁄ log N. A moment’s thought will convince you that the
twiddle sign is transitive—that is, if P ~ Q and Q ~ R, then it must be
the case that P ~ R. So if the PNT is true—which we know it is, it was
proved in 1896—then it must also be true that π (N) ~ Li(N).

This is not merely true; it is, in a manner of speaking, truer. I
mean, Li(N) is actually a better estimate of π (N) than N ⁄ log N is.
A much better estimate.

2 4 6 8
x

–4

–2

2

4

Li(x)

FIGURE 7-5 The function Li(x).
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TABLE 7-3

N π (N)
N

N
N

log
− ( )π Li(N) − π (N)

100,000,000 5,761,455 −332,774 754

1,000,000,000 50,847,534 −2,592,592 1,701

10,000,000,000 455,052,511 −20,758,030 3,104

100,000,000,000 4,118,054,813 −169,923,160 11,588

1,000,000,000,000 37,607,912,018 −1,416,706,193 38,263

10,000,000,000,000 346,065,536,839 −11,992,858,452 108,971

100,000,000,000,000 3,204,941,750,802 −102,838,308,636 314,890

Table 7-3 shows that Li(x) is central to our whole inquiry. In fact, the
PNT is most often stated as π (N) ~ Li(N), rather than as
π (N) ~ N⁄ log N. Because the twiddle sign is transitive, the two things
are equivalent, as can be seen in Figure 7-6. Out of Riemann’s 1859
paper came a precise, though unproven, expression for π (x), and
Li(x) leads off that expression.

The PNT (Improved Version)

π (N) ~ Li(N)

Note just one more thing about Table 7-3. For all the values of N

shown in the table, N ⁄ log N gives a low estimate for π (N), while
Li(x) gives a high one. I am just going to leave that lying there as a
comment, for future reference.
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FIGURE 7-6 The PNT.
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8

NOT ALTOGETHER UNWORTHY

So far I have presented the deep
background to the Riemann Hypothesis—to the Prime Number
Theorem (PNT) and to Riemann’s 1859 paper on that topic, in which
the Hypothesis was first stated. In this chapter I shall describe the
immediate background to that paper. This is really two stories inter-
twined: the story of Bernhard Riemann and the story of Göttingen
University in the 1850s, with brief side trips to Russia and New Jersey
for some local color.

You should keep in mind a broad general picture of European
intellectual life in the 1830s, 1840s, and 1850s. It was, of course, a
time of great change. The upheavals of the Napoleonic wars had let
loose new forces of nationalism and reform. The Industrial Revolu-
tion was on the march. The shifts in thought and feeling we custom-
arily collect under the heading “the Romantic Movement” had seeped
down to the general population everywhere. The 1830s, when spirits
had revived after the exhaustion of the long wars, were an unsettled
time, marked by the July revolution in France, a nationalist uprising
in Poland (at that time part of the Russian empire39), agitation among

I.
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the Germans for national unity, and the great Reform Bills in Britain.
Alexis de Tocqueville visited the United States and wrote a penetrat-
ing analysis of that curious new experiment in popular government.
In the following decade darker forces stirred, culminating in 1848,
“the year of revolutions,” whose disturbances, as we saw in Chapter 2,
penetrated for a moment even the deep reserve of Bernhard Riemann.

Göttingen was for all this period a provincial backwater illumi-
nated mainly by the presence of Gauss. The university’s one moment
of political prominence occurred in 1837 with the dismissal of the
“Göttingen Seven” that I already mentioned, the main effect of which
was to lower the prestige of the university. Paris remained the great
center of mathematical research, with Berlin rising fast. In Paris
Cauchy and Fourier had overhauled analysis, laying the foundations
of the modern treatment of limits, continuity, and the calculus. In
Berlin new advances were being made by Dirichlet in arithmetic, by
Jacobi in algebra, by Steiner in geometry, and by Eisenstein in analy-
sis. Anyone who wanted to do serious mathematics in the 1840s
needed to be in Paris or Berlin. That is why young Bernhard Riemann,
20 years old in the spring of 1847, disappointed with the standard of
instruction at Göttingen and very keen indeed to do serious math-
ematics, went to Berlin. He studied there for two years, during which
the greatest influence on him was Lejeune Dirichlet, the man who
had picked up the Golden Key in 1837. Dirichlet took a personal lik-
ing to the shy, poverty-stricken young Riemann, an attitude which
Riemann, in the words of Heinrich Weber, “reciprocated with respect-
ful gratitude.”

Returning to Göttingen after the Easter break in 1849, Riemann
embarked upon his doctorate course, under the supervision of Gauss
himself. Plainly, his hope was to become a lecturer at the university.
That was a long road to travel, though. To lecture at Göttingen re-
quired not only a doctorate, but also a further qualification, the “ha-
bilitation,” a sort of second doctorate, with a thesis to be prepared
and a trial lecture to be given. The whole thing, doctorate and habili-
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tation, took Riemann more than five years—from age 221⁄2 to nearly
age 28—during which he had no income at all.

Right away, Riemann enrolled for some courses in physics and
philosophy along with math. These were required subjects for those
wishing to teach in the gymnasium high-school system, pretty much
Riemann’s only career choice if he could not get a lecturing position.
He might have been hedging his bets by taking these courses. He had,
however, a deep interest in both subjects, so it is probable that pure
personal inclination was at least as much of a factor in his enrolling
for them. Standards at Göttingen had improved, too. The physicist
Wilhelm Weber, one of the Göttingen Seven cashiered in 1837, had
returned to the university to teach, the political climate having thawed
considerably. An old friend and colleague of Gauss’s—the two of
them had together invented the electric telegraph—Weber taught a
course in experimental physics, which Riemann attended.40

II. Those five years of unpaid research work must have been hard
ones for Bernhard Riemann. He was far from home; it was 120 miles
from Göttingen to Quickborn, a two-day journey in great discom-
fort, and expensive. He did, though, have some company. In 1850
Richard Dedekind arrived at the university. Dedekind was 19, five
years younger than Riemann, and was also aiming for a doctorate. It
is plain from Dedekind’s biographical note on Riemann in the Col-

lected Works that he felt affection and sympathy for his older col-
league, and great admiration for his mathematical abilities; it is more
difficult to judge Riemann’s feelings in the matter.

The two men got their doctorates within a few months of each
other, Riemann in December 1851, Dedekind the following year. Both
were examined by Gauss, now in his mid-70s but keenly alert to ex-
ceptional mathematical talent. On the thesis submitted by young
Dedekind, still not mathematically mature, Gauss’s report is little bet-
ter than boilerplate approval. On Riemann’s, he gushed—and Gauss
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was a man who rarely gushed. “A substantial and valuable work, which
does not merely meet the standards required for a doctoral disserta-
tion, but far exceeds them.”

Gauss was not mistaken. (About mathematics, I doubt he ever
was.) Riemann’s doctoral dissertation is a key work in the history of
complex function theory. I shall attempt an explanation of complex
function theory in Chapter 13. For the time being, suffice it to say
that it is a very deep, powerful, and beautiful branch of analysis. To
this day, almost the first things you learn in a course on complex
function theory are the Cauchy-Riemann equations for a function to
be well behaved and worthy of further investigation. These equations
first appear in their modern form in Riemann’s doctoral dissertation.
The paper also contains the first sketches of the theory of Riemann
surfaces, a fusion of function theory with topology—the latter topic
so new at the time there was really no coherent body of knowledge
about it, only some scattered results going back to Euler’s time.41

Riemann’s doctoral thesis is, in short, a masterpiece.
Both Riemann and Dedekind then embarked on the second leg

of the academic marathon to which they had committed themselves,
the habilitation thesis and trial lecture required for a teaching posi-
tion at the university.

III. Let us leave Bernhard Riemann for a while, toiling away at that
habilitation thesis in his room at Göttingen, and step a year or two
back in time, and a thousand miles away in space, to St. Petersburg.
Considerable water has flowed under the bridges of that city since
last we were there, watching Leonhard Euler living contentedly and
working productively, even though old and blind, under the rule of
Catherine the Great. Euler died in 1783, the Empress herself in 1796.
Catherine was succeeded by her eccentric and irresponsible son Paul.
Four and a half years of Paul proved enough for the nobility, who
staged a coup, garroted Paul, and replaced him with his son Alexander.
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The nation was then soon absorbed in the conflict with Napoleon,
and her French-speaking aristocracy in the glittering social scenes
drawn by Tolstoy in War and Peace. After a postwar spell of manage-
rial despotism under Alexander, and in spite of the failed revolt of the
liberalizing faction known as Decembrists, the throne passed in 1825
to the more old-fashioned absolutism of Nicholas I.

However, the reassertion, and re-reassertion, of the absolutist
principle had not prevented great social changes, most memorably
the first great flowering of modern Russian literature under Pushkin,
Lermontov, and Gogol.42 The university at St. Petersburg, now a sepa-
rate institution from the Academy, had grown and flourished, and
new universities had been established in Moscow, Kharkov, and
Kazan. In Kazan, the university boasted the presence of the great
mathematician Nikolai Lobachevsky, who served as Rector until his
dismissal in 1846. Lobachevsky was the inventor of non-Euclidean
geometry, of which I shall have more to say shortly.43

And now, in 1849−1850, 25 years into the reign of Nicholas I,
intellectual life in Russia was enduring another spell of repression, as
Nicholas reacted to the 1848 revolutions in Europe. University enrol-
ments were slashed and Russians studying abroad were ordered home.
This was the environment in which a young lecturer at the university
of St. Petersburg produced two remarkable papers on the PNT.

The first thing to be said about Pafnuty Lvovich Chebyshev is
that his last name is a data-retrieval nightmare. Researching for this
book, I turned up 32 different transcriptions of the name: Cebysev,
Cebyshev, Chebichev, Chebycheff, Chebychev, etc., etc.

And if that unusual first name, Pafnuty, caught your eye, you are
not alone. It caught the eye of mathematician Philip J. Davis around
1971. Davis embarked on a quest to find the origins of “Pafnuty,” and
wrote an extremely funny book about his researches, The Thread

(1983). In very brief, the name “Pafnuty” is Coptic in origin
(Papnute = “the man of God”), entered Europe via Egyptian Chris-
tianity, and was the name of a minor Church Father in the fourth
century. Present at the Synod of Nicea, Bishop Paphnutius (as he is
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usually spelled) argued against priestly celibacy. A later Pafnuty noted
by Davis en passant was St. Pafnuty of Borovsk, the son of a Tartar
noble, who entered a monastery at age 20 and stayed there until he
died, aged 94, in 1478. Says the hagiographer of this Pafnuty: “He was
a virgin and an ascetic, and, because of this, a great wonderworker
and seer.” (In the middle of writing this chapter I got an e-mail from a
reader of my web column asking me to suggest a name for her
new dog. There is now a Pafnuty chasing squirrels somewhere in the
Midwest.)

Our own Pafnuty was something of a wonder-worker himself. To
him belongs the honor of having accomplished the only real advances
toward a proof of the PNT in between Dirichlet’s picking up the
Golden Key in 1837 and Riemann’s turning it in 1859. The curious
thing is that his most original work did not flow into the mainstream
of researches on the PNT, but started a lesser branch of the stream,
which went underground, to emerge only 100 years later.

Chebyshev actually wrote two papers on the PNT. The first, dated
1849, is titled “On the Function that Determines the Totality of Prime
Numbers Less Than a Given Limit”; notice the similarity to the title
of Riemann’s paper of 10 years later. In this paper Chebyshev picked
up Euler’s Golden Key, fiddled with it a little in much the way
Dirichlet had 12 years before, and produced the following interesting
result.

Chebyshev’s First Result

If π N
CN

N
( ) ~

log
 for some fixed number C,

then C must be equal to 1.

The problem, of course, was with that “if.” Chebyshev could not get
past it, and neither, for half a century, could anyone else.

Chebyshev’s second paper, dated 1850, is much more curious.
Instead of using the Golden Key, it began from a formula proved by



124 PRIME OBSESSION

the Scottish mathematician James Stirling in 1730 to get approximate
values of the factorial function for large numbers. (The factorial of N
is 1 × 2 × 3 × 4 × … × N. The factorial of 5, for example, is 120:
1 × 2 × 3 × 4 × 5 = 120. The usual symbol for the factorial of N is
“N !” Stirling’s formula says that for large values of N, the factorial of
N is about N e NN N− 2π .) Chebyshev converted this into a different
formula involving a step function—that is, a function that has the
same value across a range of arguments, then jumps to another value.

With just these tools, and some very elementary calculus,
Chebyshev got two important results. The first was a proof of
“Bertrand’s postulate,” suggested in 1845 by the French mathemati-
cian Joseph Bertrand. The postulate states that between any number
and its double (for example, between 42 and 84) there is always a
prime to be found. The second was the one shown here.

Chebyshev’s Second Result

π (N) cannot differ from 
N

Nlog
 by more than

about ten percent up or down.

This second paper was important in two ways. First, its use of a step
function might have inspired Riemann’s use of a similar function in
his 1859 paper, which I shall show in detail later. It is certain that
Riemann knew of Chebyshev’s work; the Russian mathematician’s
name appears in Riemann’s notes (spelled “Tschebyschev”).

It is Chebyshev’s line of approach in that second paper that is
more noteworthy, though. He got his results without using any com-
plex function theory. Mathematicians have a shorthand way of ex-
pressing this fact. They say that Chebyshev’s methods were “elemen-
tary.” Riemann, in his 1859 paper, did not use elementary methods.
He brought the full power of complex function theory to bear on the
issue he was investigating. The results he got were so striking that
other mathematicians followed him, and the PNT was proved at last
using Riemann’s non-elementary methods.
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That it might be possible to prove the PNT by elementary meth-
ods remained an open issue, but by the time several decades had
passed, the general opinion was that no such proof was possible. Thus,
in Albert Ingham’s 1932 text The Distribution of Prime Numbers, the
author says in a footnote “[A] ‘real variable’ proof of the prime num-
ber theorem, that is to say a proof not involving explicitly or implic-
itly the notion of an analytic function of a complex variable, has never
been discovered, and we can now understand why this should be
so….”

Then, to everybody’s astonishment, such a proof was discovered
in 1949 by Atle Selberg, a Norwegian mathematician working at the
Institute for Advanced Study in Princeton, New Jersey.44 There was
much controversy over the result, because Selberg had communicated
some of his preliminary ideas to the eccentric Hungarian mathemati-
cian Paul Erdős, who used them to create a proof of his own at the
same time. Two popular biographies of Erdős were produced after his
death in 1996, and the curious reader can find a full account of the
controversy in either. The proof is called the Erdős-Selberg proof in
Hungary, and the Selberg proof elsewhere.

In addition to his research, Chebyshev was a great teacher and
proselytizer for his subject. His disciples took his ideas and methods
to other Russian universities, inspiring interest and raising standards
everywhere. Active into his 70s, Chebyshev was also a keen inventor,
who built a series of calculating machines still preserved at museums
in Moscow and Paris. A lunar crater is named after him; it is at about
135°W 30°S.45

IV. I cannot leave Chebyshev without at least a passing mention of
his famous bias—famous among number theorists, I mean.

If you divide a prime number (other than 2) by 4, the remainder
must be either 1 or 3. Do the primes show any preference? Yes, they do:
up to p = 101, there are 12 remainder-1 primes and 13 remainder-3’s.
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Up to p = 1,009, the tallies are 81 and 87. Up to p = 10,007, they are
609 and 620. Clearly, the remainder-3’s have a small but persistent
edge over the remainder-1’s. This is an example of a Chebyshev bias,
first remarked on by Chebyshev in a letter dated 1853. This particular
bias is eventually violated at p = 26,861, when remainder-1’s snatch a
momentary lead. Even that is only a one-time aberration, though: the
first real zone of violation is the 11 primes from p = 616,877 to
617,011. Remainder-1’s hold the lead at only 1,939 of the first 5.8
million primes, which is as far as I checked. They don’t hold it once in
the last 4,988,472 of those primes.

With divisor 3, the bias is even more dramatic. Here, the remain-
der (once you get past p = 3) can be either 1 or 2, and the bias is to 2.
This bias is not violated until p = 608,981,813,029. Now that is a bias!
This violation was tracked down in 1978, by Carter Bays and Richard
Hudson. I shall have occasion to mention the Chebyshev bias again,
in Chapter 14.

V. In the fall of 1852, the first year of work on his habilitation the-
sis, Riemann met Dirichlet again. The whole episode is rather touch-
ing, and I transcribe it here from the biography by Dedekind.

In the fall vacation of 1852, Lejeune Dirichlet stayed a while in

Göttingen. Riemann, who had just returned from Quickborn, had

the good fortune to see him almost daily. Both on his first visit to

Dirichlet’s lodgings and on the following day … he consulted

Dirichlet, who was recognized as the greatest living mathematician

of the time after Gauss, for advice on his work. Riemann wrote to

his father about the meeting: “The other morning, Dirichlet spent

about two hours with me. He gave me notes I need for my Habilita-

tion thesis—they are so comprehensive that my work has been sub-

stantially lessened. I would otherwise have had to spend a long time

looking in the library for some of those things. He also went through

my thesis with me, and all in all was very friendly towards me, which
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I could hardly have expected, considering the great disparity of rank

between us. I hope he will not forget me in the future.” Some days

after this … a large group of them went out on an excursion to-

gether—a very valuable trip, as after so many hours in company

Riemann’s reserve was much diminished. The following day,

Dirichlet and Riemann met again in Weber’s house. The stimulus

provided by these personal contacts did Riemann a world of good.

Still, he wrote about it to his father thus: “You see that I am not

altogether housebound here; but the next morning I worked all the

harder, and advanced as much as if I had sat with my books all day

long.”

That last remark shows the demands Riemann placed on himself,
his powerful sense of duty, and his determination to justify every
minute of his time at Göttingen to himself, to his father (who, after
all, was supporting him), and to God.

The procedure for habilitating was that Riemann should first sub-
mit a written thesis, then prepare a trial lecture to be delivered before
the faculty. The thesis itself—it is titled “On the representability of a
function by a trigonometric series”—is a landmark paper, giving the
world the Riemann integral, now taught as a fundamental concept in
higher calculus courses. The habilitation lecture, however, far sur-
passed the thesis.

Riemann was supposed to offer three lecture titles from which
Gauss, his supervisor, would pick one to be delivered. Riemann’s three
offerings were of two topics in mathematical physics and one in ge-
ometry. Gauss picked the lecture titled “On the Hypotheses that Lie
at the Foundations of Geometry,” and Riemann delivered it to the
assembled faculty on June 10, 1854.

This is one of the top 10 mathematical papers ever delivered any-
where, a sensational achievement. Its reading was, declares Hans
Freudenthal in the Dictionary of Scientific Biography, “one of the high-
lights in the history of mathematics.” The ideas contained in this pa-
per were so advanced that it was decades before they became fully
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accepted, and 60 years before they found their natural physical appli-
cation, as the mathematical framework for Einstein’s General Theory
of Relativity. James R. Newman, in The World of Mathematics, refers
to the paper as “epoch-making” and “imperishable” (but fails to in-
clude it in his huge anthology of classic mathematical texts). And the
astonishing thing is that the paper contains almost no mathematical
symbolism. Leafing through it, I see five equals signs, three square
root signs and four Σ  signs—an average of fewer than one symbol
per page! There is just one real formula. The whole thing was written
to be understood—or perhaps (see below) misunderstood—by the
average faculty member of a middling provincial university.

Riemann’s starting point was some ideas Gauss had put forward
in an 1827 paper titled “A General Investigation into Curved Sur-
faces.” Gauss had been employed for the previous few years in carry-
ing out a detailed topographical survey of the Kingdom of Bavaria
(during which, by the way, he invented the heliotrope, a device for
making long-distance observations by reflecting flashes of sunlight
from an arrangement of mirrors). Gauss’s stupendous mind had ab-
stracted from the material he was dealing with some ideas about the
properties of two-dimensional surfaces, and the way those proper-
ties might be described mathematically. Gauss’s paper is generally
regarded as the starting point for the subject named “differential
geometry.”

Riemann, in his habilitation lecture, took up these ideas and gen-
eralized them to spaces of any number of dimensions. More signifi-
cantly, he brought in quite a new way of looking at the topic. Gauss
saw it all, in his imagination, in terms of curved two-dimensional
sheets embedded in ordinary three-dimensional space from which
they could be viewed—the natural abstraction from his experiences
as a land surveyor. Riemann shifted the point of view to one that was
interior to the space under consideration.

I imagine you are familiar with the idea contained in Einstein’s
General Theory of Relativity, that the three dimensions of space and
one of time can be dealt with mathematically as a four-dimensional
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space-time, and that this four-dimensional continuum is warped and
puckered by the presence of mass and energy. From the Gaussian
point of view, the geometry of this space-time would have been de-
veloped by imagining it imbedded in a five-dimensional continuum,
in the way that Gauss thought of his two-dimensional surfaces as
embedded in ordinary three-dimensional space. That modern physi-
cists do not think of space-time in this way is due to Riemann. In fact,
if you were to go down to your local university and sign up for a
course in the General Theory of Relativity, these would be the topic
headings you might cover, in order:

� The metric tensor
� The Riemann tensor
� The Ricci tensor
� The Einstein tensor
� The stress-energy tensor
� Einstein’s equation G = 8πT

You would then have mastered the essentials of the General Theory.
Though I am concerned in this book to describe Riemann’s dis-

coveries in arithmetic and the great Hypothesis that sprang from
them, these geometrical researches of his are not entirely off the topic.
Riemann’s general cast of mind, and all his best mathematical work,
arose from a tension between two contrary sets of ideas. On the one
hand he was a great globalist, whose tendency was always to see things
in the large. A function was not, for Riemann, a mere set of points;
still less was it any of its pictorial representations as a graph or a table;
and still less a collection of expressions involving algebraic formulas.
(In one of his few recorded negative comments about anyone at all,
Riemann noted that the Berlin mathematician Gotthold Eisenstein
“stopped at formal computation.”) What, then, was a function? It was
an object, from which none of its attributes could properly be de-
tached. Riemann saw a function the way chess grandmasters are said
to see a game, all at once, as a unified whole, a Gestalt.
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Yet in tension with this was an opposing tendency, also very
marked in Riemann’s work—the tendency to reduce every math-
ematical topic to analysis. “Riemann … always thought in analytic
terms,” says Laugwitz. The writer is thinking here of the infinitesimal
aspect of analysis; of limits, continuity, smoothness—of the local

properties of numbers, functions, and spaces. It is, when you think
about it, very odd that inquiries about the infinitesimal neighbor-
hoods of points and numbers should give us the power to explain the
large global properties of functions and spaces. This is especially ap-
parent in General Relativity theory, where you start off by analyzing
microscopic regions of space-time and end by contemplating the
shape of the universe and the death throes of galaxies. That we are
able to think in this extraordinary way, in both pure and applied
mathematics, is mainly due to the mathematicians of the early nine-
teenth century, and most of all to Bernhard Riemann.

That great habilitation lecture is, in fact, as much a philosophical
document as a mathematical one. In this respect the much-remarked
obscurity of some of its passages might have been deliberate on
Riemann’s part. (Though see Freudenthal’s remark below.) What he
was speaking about at its most fundamental was the nature of space.
Now, to the average complacent elderly academic of the time—the
kind of person who would have been among the Göttingen faculty
listening to Riemann’s lecture that June day—the nature of space was
a settled matter. It had been settled 70 years earlier by Immanuel Kant
in The Critique of Pure Reason. Space is a pre-existing part of our
mental equipment, with which we organize our sense impressions,
and it is necessarily Euclidean—that is, flat, with a straight line being
the shortest distance between two points, and the angles of a triangle
adding up to 180 degrees.

The non-Euclidean geometry described by Lobachevsky in the
1830s was, seen from this point of view, a philosophical heresy.
Riemann’s paper was an enlargement of that heresy; and this might
be why he presented his ideas at such a very general level that their
connection with non-Euclidean geometry would have escaped all but
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the most mathematically adept in his audience. (But not, of course,
Gauss. Gauss had in fact invented non-Euclidean geometry for him-
self, but had not published his findings, “for fear,” as he wrote in a
letter to a friend, “of the hue and cry of the blockheads.” Nineteenth-
century Germans took their philosophy seriously.)

Hans Freudenthal, in the Dictionary of Scientific Biography note
mentioned above, has the following to say about Riemann’s philo-
sophical abilities.

One of the most profound and imaginative mathematicians of all

time, he had a strong inclination to philosophy, indeed was a great

philosopher. Had he lived and worked longer, philosophers would

acknowledge him as one of them.

I am not qualified to judge whether this is true. I can, however,
give wholehearted assent to another remark of Freudenthal’s: “Rie-
mann’s style, influenced by philosophical reading, exhibits the worst
aspects of German syntax; it must be a mystery to anyone who has
not mastered German.” I confess that, though I possess a copy of
Riemann’s collected works in the original German—it is a single vol-
ume of 690 pages—and have done my best with his actual words,
where he departs from straightforward mathematical exposition—
as, for example, in the habilitation lecture—I have approached his
tremendous thoughts mainly through translations and secondary
sources.46

VI. Dedekind habilitated shortly after Riemann, and both math-
ematicians began lecturing in the fall-winter term of 1854, Riemann
now 28, Dedekind 23. For the first time in his life, Riemann had a
salary. It can’t have been much of a salary, though. Ordinary lecturers
were paid by the students who attended their lectures (technically by
the university, which forwarded the students’ fees to the lecturers).
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There were few students of mathematics at Göttingen at this time—
Riemann’s first lecture drew eight—and lectures were frequently can-
celed because nobody enrolled for them. Riemann and Dedekind
seem to have attended each other’s lectures, though whether they paid
each other the requisite fees, I have not been able to discover.

There was further the problem that Riemann seems to have been
a poor lecturer. Dedekind is frank about this.

There is no doubt that lecturing caused large difficulties for

Riemann in the first years of his academic career. His brilliant intel-

lect and prescient imagination were usually not apparent. What ap-

peared rather were large steps in the logic of his arguments, steps

that were difficult for lesser intellects to follow. If he was asked to

elaborate the missing links, he became flustered and could not ad-

just himself to the slower train of thought of the inquirer…. His

attempts to judge from his students’ expression whether he was go-

ing too fast or not, also disturbed him when, against his expecta-

tions, they caused him to feel that he should prove a point that

seemed perfectly natural to him….

Dedekind, ever sympathetic to his subject, goes on to claim that
Riemann’s lecturing style improved over the years. This might be true;
but surviving letters by Riemann’s students suggest that as late as 1861
“His thoughts frequently failed him and he was unable to explain the
simplest things.” Riemann’s own take on the matter is, as usual, rather
touching. Writing to his father after his first lecture, which was on
October 5, 1854, he says “I hope that in half a year I shall feel easier
about my lectures, and the thought of them will not spoil my stay in
Quickborn and my being together with you, as last time.” This was a
desperately shy man.

VII. The great event of that fall-winter term was the death of Gauss
on February 23, 1855, at the age of 77. Though not in good health
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toward the end, he died quickly, of a heart attack, while sitting in his
favorite chair in his beloved observatory.47

Gauss’s professorship was immediately offered to Dirichlet, who
accepted, arriving in Göttingen a few weeks later. Recalling how gen-
erously Dirichlet had treated him in Berlin, and their bonding during
the older man’s visit to Göttingen in 1852, Riemann must have been
pleased. Gauss’s brain, meanwhile, was pickled and stored in the
university’s physiology department, where it remains to this day.

Dirichlet was pleased, too; he had been seriously overworked in
Berlin. Whether his wife was pleased is not so certain. Accustomed to
the high society of Berlin, Rebecca Dirichlet, née Mendelssohn, must
have thought Göttingen very dull and provincial. She did her best
with the place, organizing balls—Dedekind mentions one attended
by 60 or 70 people—and musical soirées in the Berlin style. Dedekind
himself thrived in this environment, being sociable and musical. Rie-
mann was, of course, a different case, and if his friend ever persuaded
him to attend one of these functions, poor Riemann must have en-
dured it in an agony of self-consciousness.

He experienced much deeper agony in October of that year, 1855,
when his father died, followed very shortly by his younger sister Clara.
Now the cherished link with Quickborn was broken. Riemann’s
brother had a position as postal clerk in Bremen and Riemann’s three
remaining sisters, having no other means of support, nor even ac-
commodation (since the vicarage at Quickborn was taken over by the
new pastor), went to live with him there.

Poor Riemann must have been devastated. He threw himself into
work, and in 1857 produced the landmark paper on function theory
that I mentioned in Chapter 1, the paper that made his name known.
The effort, however, combined with grief, precipitated a nervous
breakdown. Dedekind’s family had a summer home in the Harz
mountains a few miles west of Göttingen. He persuaded Riemann to
spend a few weeks there and joined him briefly, going for walks with
him.
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After Riemann’s return to Göttingen in November, he was ap-
pointed Assistant Professor at the university, with a modest salary of
300 thalers a year. But now calamities came thick and fast. His brother
Wilhelm died in Bremen that same month, then, early the following
year, his sister Marie. The family that Riemann adored, and that was
the entire focus of his emotional life, was disappearing before his eyes.
He brought the two surviving sisters to stay with him at Göttingen.

In the summer of 1858 Dirichlet suffered a heart attack while
lecturing in Switzerland and was brought back to Göttingen only with
much difficulty. While he was lying gravely ill, his wife died suddenly
of a stroke. Dirichlet himself followed her the next May. (His brain
joined Gauss’s in the department of physiology.) Gauss’s chair was
now empty.

VIII. From the death of Gauss to the death of Dirichlet was four
years, two months, and twelve days. In that span, Riemann lost not
only the two colleagues he had esteemed above all other mathemati-
cians, but also his father, his brother, two of his sisters, and the vicar-
age at Quickborn—the one place that had been a home and refuge to
him since his infancy.

While his emotional life had been visited by these traumas,
Riemann’s star in the world of mathematics had been rising. By the
end of the 1850s, the brilliance and originality of his work were
known, at some level, to mathematicians all over Europe. The pain-
fully shy young student who had shown up to begin his doctoral stud-
ies 10 years earlier was now a mathematician of note, and Göttingen,
which had entered the 1850s as the home of Gauss, was beginning to
be spoken of as the home of Gauss, Dirichlet, and Riemann. (Though
not of Dedekind, whose best work was still in front of him. Dedekind
had, in fact, left Göttingen to take up a post in Zürich in the fall of
1858.)
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It was, therefore, not very surprising that the authorities selected
Riemann as the second successor of Gauss. On July 30, 1859, he was
given a full professorship, an assured livelihood, and—probably as an
acknowledgment of his need to support his two surviving sisters—
Gauss’s apartments at the observatory. Other honors soon followed.
The first came on August 11, when he was appointed a corresponding
member of the Berlin Academy. Riemann returned to Berlin a little
more than 10 years after he had left, but now he came with a modest
set of laurels on his brow, to be received with honor by the great
names of German mathematics: Kummer, Kronecker, Weierstrass,
Borchardt.

To crown his triumph, Riemann gave the Academy his paper on
“the number of primes less than a given quantity.” In the paper’s first
sentence he acknowledged the two men, both now dead, with whose
aid—though given much more willingly in Dirichlet’s case than in
Gauss’s—he had scaled the heights. In the second sentence he showed
the Golden Key. In the third he named the zeta function. Here, in fact,
are the first three sentences of Riemann’s 1859 paper.

For the consideration which the Academy has shown to me by

admitting me as one of its corresponding members, I believe I can

best express my thanks by availing myself at once of the privilege

thereby given me to communicate an inquiry into the frequency of

prime numbers; a subject which, through the interest shown in it by

Gauss and Dirichlet over a long period, appears not altogether un-

worthy of such a communication.

I take as my starting-point for this inquiry Euler’s observation

that the product

1

1
1

1

−
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p

n
s

s

for all prime numbers p and all whole numbers n. The function of a

complex variable s which both these expressions stand for, so long

as they converge, I signify by ζ (s).
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The Riemann Hypothesis, which appears on the fourth page of
that paper, asserts a certain fact about the zeta function. To advance
in our understanding of the Hypothesis, we must now go deeper into
the zeta function.
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9

DOMAIN STRETCHING

We are starting to close in on the
Riemann Hypothesis. Let me state it again, just as a refresher.

The Riemann Hypothesis

All non-trivial zeros of the zeta function
have real part one-half.

Well, we’ve got a handle on the zeta function. If s is some number
bigger than 1, the zeta function is as shown in Expression 9-1.

ζ s
s s s s s s s s s s( ) = + + + + + + + + + + +1
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Expression 9-1

or, to be somewhat more sophisticated about it

ζ s n s

n

( ) = −∑

I.
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where the terms of the infinite sum run through all the positive whole
numbers. I have showed how, by applying a process very much like
the sieve of Eratosthenes to this sum, it is equivalent to
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that is,
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where the terms of the infinite product run through all the primes.
And so

n ps

n
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p
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which I have called the Golden Key.
So far, so good, but what is this about non-trivial zeros? What is a

zero of a function? What are the zeros of the zeta function? And when
are they non-trivial? Onward and upward.

II. Forget about the zeta function for a moment. Here is a com-
pletely different infinite sum.

S(x) = 1 + x + x2 + x3 + x4 + x5 + x6 + …

Does this ever converge? Sure. If x is 1
2 , the sum is just Expression

1-1 in Chapter 1.iv, because 1
2

2
1
4( ) = , 1

2

3
1
8( ) = , etc. Therefore,

S 1
2( ) = 2, because that’s what that sum converged to. What’s more, if

you think about the rule of signs, −( ) =1
2

2
1
4 , −( ) = −1

2

3
1
8 , etc. There-

fore, S −( )1
2 = 2

3 , from Expression 1-2 in Chapter 1.v.  Similarly, Ex-
pression 1-3 means that S 1

3
1
21( ) = , while Expression 1-4 gives
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S −( ) =1
3

3
4 . Another easy value for this function is S(0) = 1, since zero

squared, zero cubed, and so on are all zero, and only the initial 1 is left
standing.

If x is 1, however, S(1) is 1 + 1 + 1 + 1 + …, which diverges. If x is
2, the divergence is even more obvious, 1 + 2 + 4 + 8 + 16 + …. When
x is −1 a weird thing happens. By the rule of signs, the sum becomes
1 − 1 + 1 − 1 + 1 − 1 + ….  This adds up to zero if you take an even
number of terms, to one if you take an odd number. This is definitely
not going off to infinity, but it isn’t converging, either. Mathemati-
cians consider it a form of divergence. For −2 things are even worse.
The sum is 1 − 2 + 4 − 8 + 16 − …, which seems to go off to infinity
in two different directions at once. Again, you definitely can’t call this
convergence, and if you call it divergence, nobody will argue with
you.

In short, S(x) has values only when x is between −1 and 1, exclu-
sive. Elsewhere it has no values. Table 9-1 shows values of S(x) for
arguments x between −1 and 1.

TABLE 9-1 Values of S(x) = 1 + x + x2 + x3 + …

x S(x)

−1 or below (No values)

−0.5 0.6666…

−0.3333… 0.75

0 1

0.3333… 1.5

0.5 2

1 or above (No values)

That’s all you can get from the infinite sum. If you make a graph, it
looks like Figure 9-1, with no values at all for the function west of −1
or east of 1. If you remember the term of art, the domain of this
function is from −1 to 1, exclusive.
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S(x)

FIGURE 9-1 The function S(x) = 1 + x + x2 + x3 + …

III. But look, I can rewrite that sum

S(x) = 1 + x + x2 + x3 + x4 + x5 + …

like this

S(x) = 1 + x(1+ x + x2 + x3 + x4 + …)

Now, that series in the parenthesis is just S(x). Every term that is in
the one is also in the other. That means they are the same.

In other words, S(x) = 1 + xS(x). Bringing the rightmost term
over to the left of the equals sign, S(x) − xS(x) = 1, which is to say
(1 − x) S(x) = 1. Therefore, S(x) = 1 ⁄ (1 – x). Can it be that behind
that infinite sum is the perfectly simple function 1 ⁄ (1 – x)? Can it be
that Expression 9-2 is true?

1

1
1 2 3 4 5 6

−
= + + + + + + +…

x
x x x x x x

Expression 9-2
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It certainly can. If x = 1
2 , for example, then 1 ⁄ (1 – x) is 1 ⁄ (1 – 1

2 ),
which is 2. If x = 0, 1 ⁄ (1 – x) is 1 ⁄ (1 – 0), which is 1. If x = – 1

2 , 1 ⁄ (1 – x)
is  1 ⁄ (1 – (– 1

2 )), which is 1 ⁄ 1 1
2 , which is 2

3 . If x = 1
3 , 1 ⁄ (1 – x) is

1 ⁄ (1 – 1
3 ), which is 1 ⁄ 2

3 , which is 1 1
2 . If x = – 1

3 , 1 ⁄ (1 – x) is 1 ⁄ (1 –
(– 1

3 )), which is 1 ⁄ 1 1
3 , which is 3

4 . It all checks out. For all the argu-
ments – 1

2 , – 1
3 , 0, 1

3 , 1
2 , for which we know a function value, the value

is the same for the infinite series S(x) as it is for the function 1 ⁄ (1 – x).
Looks like they are actually the same thing.

But they are not the same thing, because they have different do-

mains, as Figures 9-1 and 9-2 illustrate. S(x) only has values between
−1 and 1, exclusive. By contrast, 1 ⁄ (1 – x) has values everywhere, ex-
cept at x = 1. If x = 2, it has the value  1 ⁄ (1 – 2), which is −1. If x = 10,
it has the value 1 ⁄ (1 – 10), which is − 1

9 . If x = −2, it has the value
1 ⁄ (1 – (–2)), which is 1

3 . I can draw a graph of 1 ⁄ (1 – x). You see that
it is the same as the previous graph between −1 and 1, but now it has
values west of 1 and east of (and including) −1, too.

–2 –1 1 2 3
x

1

2

3

4

1/(1–x)

FIGURE 9-2 The function 1/(1 − x).
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The moral of the story is that an infinite series might define only
part of a function; or, to put it in proper mathematical terms, an
infinite series may define a function over only part of its domain. The
rest of the function might be lurking away somewhere, waiting to be
discovered by some trick like the one I did with S(x).

IV. That raises the obvious question: is this the case with the zeta
function? Does the infinite sum I’ve been using for the zeta func-
tion—Expression 9-1—describe only part of it? With more yet to be
discovered? Is it possible that the domain of the zeta function

ζ s
s s s s s s s s s s( ) = + + + + + + + + + + +1
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is bigger than just “all numbers greater than 1”?
Of course it is. Why would I be going to all this trouble other-

wise? Yes, the zeta function has values for arguments less than 1. In
fact, like 1 ⁄ (1 – x), it has a value at every number with the single
exception of x = 1.

At this point, I’d like to draw you a graph of the zeta function
showing all its features across a good range of values. Unfortunately, I
can’t. As I mentioned before, there is no really good and reliable way
to show a function in all its glory, except in the case of the simplest
functions. To get intimate with a function takes time, patience, and
careful study. I can graph the zeta function piecemeal, though. Fig-
ures 9-3 through 9-10 show values of ζ (s) for some arguments to the
left of s = 1, though I have had to draw each to a different scale. You
can tell where you are by the argument (horizontal) and value (verti-
cal) numbers printed on the axes. In the scale marks, “m” means “mil-
lion,” “tr” means “trillion,” “mtr” means “million trillion,” and “btr”
means “billion trillion.”

In short, when s is just less than 1 (Figure 9-3), the function value
is very large but negative—as if, when you cross the line s = 1 heading
west, the value suddenly flips from infinity to minus infinity. If you
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continue traveling west along Figure 9-3—that is, bringing s closer
and closer to zero—the rate of climb slows down dramatically. When
x is zero, ζ (s) is – 1

2 . At s = −2 the curve crosses the s-axis—that is,
ζ (s) is zero.

It then (we are still headed west, and now in Figure 9-4) climbs
up to a modest height (actually 0.009159890…) before turning down
and crossing the axis again at s = −4. The graph drops down to a shal-
low trough (−0.003986441…) before rising again to cross the axis at
s = −6. Another low peak (0.004194), a drop to cross the axis at s =
−8, a slightly deeper trough (−0.007850880…), across the axis at −10,
now a really noticeable peak (0.022730748…), across the axis at s =
−12, a deep trough (−0.093717308…), across the axis at s = −14, and
so on.

The zeta function is zero at every negative even number, and the
successive peaks and troughs now (Figures 9-5 to 9-10) get rapidly
more and more dramatic as you head west. The last trough I show,
which occurs at s = –49.587622654…, has a depth of about
305,507,128,402,512,980,000,000. You see the difficulty of graphing
the zeta function all in one piece.

–2 –1 0.5
s

–3

–2

–1

ζ( )s

FIGURE 9-3

–10 –8 –6 –4 –2
s

–0.2

–0.1

ζ( )s

–12–14

FIGURE 9-4

FIGURES 9-3 through 9-10

Graphs of ζ (s) when s is less than 1.
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V. But how do I get these values for ζ (s) when s is less than 1? I’ve
already shown that the infinite series in Expression 9-1 doesn’t work.
What does work? If, to save my life, I had to calculate the value of
ζ (−7.5), how would I set about it?

This I can’t fully explain, because it needs way too much calculus.
I can give the general idea, though. First, let me define a new func-
tion, using an infinite series slightly different from the one in Expres-
sion 9-1. This is the η  function; “η ” is “eta,” the seventh letter of the
Greek alphabet, and I define the eta function as

η s
s s s s s s s s s s( ) = − + − + − + − + − + −1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

11
K

In a rough sort of way, you can see that this has a better prospect of
converging than Expression 9-1. Instead of relentlessly adding num-
bers, we are alternately adding, then subtracting, so each number will
to some extent cancel out the effect of the previous number. So it
happens. Mathematicians can prove, in fact—though I’m not going
to prove it here—that this new infinite series converges whenever s is
greater than zero. This is a big improvement on Expression 9-1, which
converges only for s greater than 1.

What use is that for telling us anything about the zeta function?
Well, first note the elementary fact of algebra that A − B + C − D + E −
F + G − H + … is equal to (A + B + C + D + E + F + G + H + …) mi-
nus 2 × (B + D + F + H + …).

So I can rewrite η (s) as

 1
1

2

1
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1
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1
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1
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1
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1
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1
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1
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+ + + + + + + + + +
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1
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1

4

1
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1
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1
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× + + + + +



s s s s s

L

The first parenthesis is of course just ζ (s). The second parenthesis
can be simplified by Power Rule 7, (ab)n = anbn. So every one of those
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even numbers can be broken up like this: 1
10

1
2

1
5s s s= × , and I can take

out 1
2s  as a factor of the whole parenthesis. Leaving what inside the

parenthesis? Leaving ζ (s)! In a nutshell

η (s) = 1 2
1

2
− ×



s  times ζ (s)

or, writing it the other way round and doing a last bit of tidying

ζ (s) = η (s) ÷ −




−

1
1

2 1s

Now, this means that if I can figure out a value for η (s), then I can
easily figure out a value for ζ (s). And since I can figure out values for
η (s) between 0 and 1, I can get a value for ζ (s) in that range, too, in
spite of the fact that the “official” series for ζ (s) (Expression 9-1)
doesn’t converge there.

Suppose s is 1
2 , for example. If I add up 100 terms of η 1

2( ) I get
0.555023639…; if I add up 10,000 I get 0.599898768…. In fact, η 1

2( )
has the value 0.604898643421630370…. (There are shortcuts for do-
ing this without adding up zillions of terms.) Armed with this, I can
calculate a value for ζ 1

2( ) ; it comes out to −1.460354508…, which
looks pretty much right, based on the first one in that last batch of
graphs.

But hold on there a minute. How can I juggle these two infinite
series at the argument s = 1

2 , where one of the series converges and
one doesn’t? Well, strictly speaking, I can’t, and I have been playing a
bit fast and loose with the underlying math here. I got the right an-
swer, though, and could repeat the trick for any number between zero
and 1 (exclusive), and get a correct value for ζ (s).

VI. Except for the single argument s = 1, where ζ (s) has no value, I
can now provide a value for the zeta function at every number s

greater than zero. How about arguments equal to or less than zero?
Here things get really tough. One of the results in Riemann’s 1859
paper proves a formula first suggested by Euler in 1749, giving
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ζ (1 − s) in terms of ζ (s). So if you want to know the value of, say,
ζ (−15), you can just calculate ζ (16) and feed it into the formula. It’s
a heck of a formula, though, and I give it here just for the sake of
completeness.48

ζ π π ζ1 2
1

2
11−( ) =

−





−( ) ( )− −s
s

s ss s sin !

Here π , in both occurrences, is the magic number 3.14159265…,
“sin” is the good old trigonometric sine function (with the argument
in radians), and ! is the factorial function I mentioned in Chapter
8.iii. In high school math, you meet the factorial function only in
relation to positive whole numbers: 2! = 1 × 2, 3! = 1 × 2 × 3,
4! = 1 × 2 × 3 × 4, and so on. In advanced math, though, there is a
way to define the factorial function for all numbers except the nega-
tive integers, by a domain-stretching exercise not unlike the one I just
did. For example, −( )1

4 ! turns out to be 0.8862269254…(half the
square root of π , in fact), 1

2( ) ! = 1.2254167024…, etc. The negative
integers create problems in the formula, but they are not major prob-
lems, and I shall say nothing about them here. Figure 9-11 shows the
full factorial function, for arguments from −4 to 4.

–3 –2 –1 1 2 3
x

–15

–10

–5

5

10

15

x!

FIGURE 9-11 The full factorial function x!
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If you find that a little over the top, just take it on faith that there
is a way to get a value of ζ (s) for any number s, with the single excep-
tion of s = 1. Even if that last formula bounces right off your eye, at
least notice this: it gives ζ (1 − s) in terms of ζ (s). That means that if
you know ζ (16) you can calculate ζ (−15); if you know ζ (4) you
can calculate ζ (−3); if you know ζ (1.2) you can calculate ζ (−0.2);
if you know ζ (0.6) you can calculate ζ (0.4); if you know ζ (0.50001)
you can calculate ζ (0.49999); and so on. The point I’m getting at is
that the argument “one-half” has a special status in this relationship
between ζ (1 − s) and ζ (s), because if x = 1

2 , then 1 − s = s. Obvi-
ously—obviously, I mean, from glancing at Figure 5-4 and Figures
9-3 through 9-10—the zeta function is not symmetrical about the ar-
gument 1

2 ; but the values for arguments to the left of 1
2  are bound up

with their mirror images on the right in an intimate, though compli-
cated, way.

Glancing back at that last bunch of graphs, you notice something
else: ζ (s) is zero whenever s is a negative even number. Now, if a
certain argument gives the function a value of zero, that argument is
called “a zero of” the function. So the following statement is true.

−2, −4, −6, … and all other negative even whole numbers
are zeros of the zeta function.

And if you look back at the statement of the Riemann hypothesis,
you see that it concerns “all non-trivial zeros of the zeta function.”
Are we getting close? Alas, no, the negative even integers are indeed
zeros of the zeta function; but they are all, every one of them, trivial
zeros. For non-trivial zeros, we have to dive deeper yet.

VII. As an afterthought to this chapter, I am going to give my calcu-
lus a very brief workout, applying two of the results I stated in Chap-
ter 7 to Expression 9-2. Here is that expression again, true for any
number x between −1 and 1, exclusive.
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1

1
1 2 3 4 5 6

−
= + + + + + + +

x
x x x x x x L

Expression 9-2, again

All I intend to do is integrate both sides of the equals sign. Since the
integral of 1 ⁄ x is log x, I hope it won’t be too much of a stretch to
believe—I shall not pause to prove it—that the integral of 1 ⁄ (1 – x)
is −log(1 − x). The right-hand side is even easier. I can just integrate
term by term, using the rules for integrating powers that I gave in
Table 7-2. Here is the result (which was first obtained by Sir Isaac
Newton).

− −( ) = + + + + + + +log 1
2 3 4 5 6 7

2 3 4 5 6 7

x x
x x x x x x

L

It will be a little handier, as you can see in Expression 9-3, if I multiply
both sides by −1.

log 1
2 3 4 5 6 7

2 3 4 5 6 7

−( ) = − − − − − − − −x x
x x x x x x

L

Expression 9-3

Oddly, though it makes little difference to the way I shall apply it,
Expression 9-3 is true when x = −1, even though the expression I
started with, Expression 9-2, isn’t. When x = −1, in fact, Expression
9-3 gives the result shown in Expression 9-4.

log 2 1
1

2

1

3

1

4

1

5

1

6

1

7
= − + − + − + −L

Expression 9-4

Note the similarity to the harmonic series. Harmonic series …
prime numbers … zeta …. This whole field is dominated by the log
function.

The right-hand side of Expression 9-4 is slightly peculiar, though
this is not obvious to the naked eye. It is, in fact, a textbook example
of the trickiness of infinite series. It converges to log 2, which is
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0.6931471805599453…, but only if you add up the terms in this order.
If you add them up in a different order, the series might converge to
something different; or it might not converge at all!49

Consider this rearrangement, for example, 1 – 1
2  – 1

4  + 1
3  – 1

6  –
1
8 + 1

5  – 1
10  – …. Just putting in some parentheses, it is equal to (1 –

1
2 ) – 1

4  + ( 1
3  – 1

6 ) – 1
8  + ( 1

5  – 1
10 ) – …. If you now resolve the paren-

theses, this is 1
2  – 1

4  + 1
6  – 1

8  + 1
10  – …, which is to say 1

2  (1 – 1
2  + 1

3  –
1
4  + 1

5  – …). The series thus rearranged adds up to one-half of the
un-rearranged series!

The series in Expression 9-4 is not the only one with this rather
alarming property. Convergent series fall into two categories: those
that have this property, and those that don’t. Series like this one,
whose limit depends on the order in which they are summed, are
called “conditionally convergent.” Better-behaved series, those that
converge to the same limit no matter how they are rearranged, are
called “absolutely convergent.” Most of the important series in analy-
sis are absolutely convergent. There is another series that is of vital
interest to us, though, that is only conditionally convergent, like the
one in Expression 9-4. We shall meet that series in Chapter 21.
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A PROOF AND A TURNING POINT

The 1859 paper “On the Number of
Prime Numbers Less Than a Given Quantity” was Bernhard
Riemann’s only publication on number theory, and the only one of
his productions that contained no geometrical ideas at all.

The paper, though dazzling and seminal, was in some respects
unsatisfactory. There was, first of all, the great Hypothesis, which
Riemann left hanging in the air (where it still hangs). His actual
words, after making a statement that is equivalent to the Hypothesis,
were

One would, of course, like to have a rigorous proof of this, but I

have put aside the search for such a proof after some fleeting vain

attempts (einigen flüchtigen vergeblichen Versuchen) because it is not

necessary for the immediate objective of my investigation.

Fair enough. Since the Hypothesis was not crucial to the ideas he
was pursuing, Riemann left it unproved. That, however, is the least of
the paper’s deficiencies. Several other things are asserted but not thor-

I.
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oughly proved—including the paper’s main result! (I shall give the
result in a later chapter.)

Bernhard Riemann was a very pure case of the intuitive math-
ematician. This needs some explaining. The mathematical personal-
ity has two large components, the logical and the intuitive. Both are
present in any good mathematician, but often one or the other is
strongly dominant. The usual example of an extremely logical math-
ematician is the German analyst Karl Weierstrass (1815−1897), who
did his great work in the third quarter of the nineteenth century.
Reading Weierstrass’s papers is like watching a rock climber. Every
step is firmly anchored in proof before the next step is taken. Poincaré
said that none of Weierstrass’s books contained any diagrams. There
is, in fact, just one exception to that, but certainly the precise logical
progression of Weierstrass’s work, with every least fact carefully justi-
fied before proceeding to the next, and no appeals to geometrical in-
tuition at all, is representative of the logical mathematician.

Riemann is at the other pole. If Weierstrass is a rock climber,
inching his way methodically up the cliff face, Riemann is a trapeze
artist, launching himself boldly into space in the confidence—which
to the observer often seems dangerously misplaced—that when he
arrives at his destination in the middle of the sky, there will be some-
thing there for him to grab. It is plain that Riemann had a strongly
visual imagination, and also that his mind leaped to results so power-
ful, elegant, and fruitful that he could not always force himself to
pause to prove them. He was keenly interested in philosophy and
physics, and notions gathered from long, deep contemplation of those
two disciplines—the flow of sensations through our senses, the orga-
nizing of those sensations into forms and concepts, the flow of elec-
tricity through a conductor, the movements of liquids and gases—
can be glimpsed beneath the surface of his mathematics.

The 1859 paper is therefore revered not for its logical purity, and
certainly not for its clarity, but for the sheer originality of the meth-
ods Riemann used, and for the great scope and power of his results,
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which have provided, and will yet provide, Riemann’s fellow math-
ematicians with decades of research.

In his book on the zeta function,50 Harold Edwards has this to say
about what followed that 1859 paper.

For the first 30 years after Riemann’s paper was published, there was

virtually no progress in the field. It was as if it took the mathemati-

cal world that much time to digest Riemann’s ideas. Then, in a space

of less than 10 years, Hadamard, von Mangoldt and de la Vallée

Poussin succeeded in proving both Riemann’s main formula for
π (x) and the prime number theorem, as well as a number of other

related theorems. In all these proofs Riemann’s ideas were crucial.

II. Riemann’s “On the Number of Prime Numbers Less Than a
Given Quantity” had a direct bearing on efforts to prove the Prime
Number Theorem (PNT). If the Riemann Hypothesis were true, the
PNT would follow as a consequence. However, the Hypothesis is a
much stronger result than the PNT, and the latter could be proved
from weaker premises. The main significance of Riemann’s paper for
the proof of the PNT is that it provided the tools—the deep insights
into analytic number theory that showed the way to a proof.

That proof came in 1896. The landmarks between Riemann’s pa-
per and the proof of the PNT were as follows.

� There was an increase in the practical knowledge of prime
numbers. Longer tables of primes were published, notably
Kulik’s, deposited at the Vienna Academy in 1867, which pro-
vided factors for all numbers up to 100,330,200. Ernst Meissel
developed a clever way to work out π (x), the prime counting
function. In 1871 he produced a correct value for
π (100,000,000). In 1885 he computed a value for
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π (1,000,000,000), which was short by 56 (though this was not
discovered until 70 years later).

� In 1874, Franz Mertens proved a modest result about the se-
ries of reciprocals of primes, using methods that owed some-
thing to both Riemann and Chebyshev. That series, by the way,
the series 1

2
1
3

1
5

1
7

1
11

1
13

1
17

1+ + + + + + + + +L p …, diverges,
though even more slowly than the harmonic series. It
is ~log(log p).

� In 1881, J.J. Sylvester at Johns Hopkins University in the United
States improved Chebyshev’s limits (see Chapter 8.iii) from 10
percent to 4 percent.

� In 1884 the Danish mathematician Jørgen Gram published a
paper titled “Investigations of the Number of Primes Less
Than a Given Number” and won a prize for it from a Danish
mathematical society. (The paper made no important ad-
vances but laid the groundwork for Gram’s later efforts, which
we shall examine in due course.)

� In 1885 the Dutch mathematician Thomas Stieltjes claimed to
have a proof of the Riemann Hypothesis. More on this shortly.

� In 1890 the French Académie des Sciences announced that a
grand prize would be awarded for a paper on the topic “Deter-
mination of the number of prime numbers less than a given
quantity.” The deadline for presentation was June 1892. It was
made plain in the announcement that the Académie was solic-
iting work that would supply some of the proofs missing from
Riemann’s 1859 paper. The young French mathematician
Jacques Hadamard submitted a paper concerning the repre-
sentation of certain kinds of functions in terms of their zeros.
Riemann had relied on this result to get a formula for π (x); it
is on this point—I shall explain the math in more detail later—
that the connection between prime numbers and the zeros of
the zeta function hinges. Riemann, however, had left it un-
proved. The key ideas in Hadamard’s paper were drawn from
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his own doctoral thesis, which he defended that same year. He
won the prize.

� In 1895 the German mathematician Hans von Mangoldt
proved the main result of Riemann’s paper, which states the
connection between π (x) and the zeta function, and recast it
in a simpler form. It was then plain that if a certain theorem
much weaker than the Riemann Hypothesis could be proved,
the application of the result to von Mangoldt’s formula would
prove the PNT.

� In 1896 two mathematicians working independently, the
aforementioned Jacques Hadamard and the Belgian Charles
de la Vallée Poussin, proved that weaker result and, therefore,
the PNT.

It had been said that whoever proved the PNT would attain im-
mortality. This prediction very nearly came true. Charles de la Vallée
Poussin died five months short of his 96th birthday; Jacques
Hadamard two months short of his 98th.51 They did not know—not
until late in the proceedings, anyway—that they were in competition
with each other; and since both published in the same year, math-
ematicians consider it invidious to credit either with having got the
result first. As with the ascent of Everest, the honor is shared.

In fact, de la Vallée Poussin seems to have been slightly earlier to
press. Hadamard’s paper—its title was Sur la distribution des zéros de

la fonction ζ (s) et ses conséquences arithmétiques—appeared in the
bulletin of the Mathematical Society of France. Hadamard appended
a note saying that while going over the galley proofs of the paper he
had learned of de la Vallée Poussin’s result. He adds, “However, I
believe no one will deny that my method has the advantage of
simplicity.”

Nobody ever has denied it. Hadamard’s proof is simpler; and his
knowing this before his paper went to press implies that he had not
only heard of de la Vallée Poussin’s result but had had the chance to
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examine it. However, since the two men’s work was plainly indepen-
dent, and since there has never been any slightest suspicion of hanky-
panky, and since both Hadamard and de la Vallée Poussin were per-
fect gentlemen, these simultaneous proofs have never generated any
rancor or controversy. I am content to say, along with the whole world
of mathematics, that in 1896, Jacques Hadamard of France and
Charles de la Vallée Poussin of Belgium, working independently,
proved the PNT.

III. The proving of the PNT is a great turning point in our story, so
much so that I have divided my book into two parts on this point. In
the first place, both of the 1896 proofs depended on getting a Hy-
pothesis-style result. If either Hadamard or de la Vallée Poussin could
have proved the truth of the Hypothesis, the PNT would have fol-
lowed at once. They couldn’t of course, but they didn’t need to. If the
PNT is a nut, the Riemann Hypothesis is a sledge hammer. The PNT
follows from a much weaker result (which has no name):

All non-trivial zeros of the zeta function
have real part less than one.

If you can prove this, then you can use von Mangoldt’s 1895 version
of Riemann’s main result to prove the PNT. That is what our two
scholars did in 1896.

In the second place, with the PNT out of the way, the Hypothesis
came into plain view. It was the next great open issue in analytic
number theory; and as mathematicians turned their attention to it, it
soon became plain that if the Hypothesis could be shown to be true, a
great many things would follow. If the PNT was the great white whale
of number theory in the nineteenth century, the Riemann Hypoth-
esis was to take its place in the twentieth. More than take its place, in
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fact, for it cast its fascination not only on number theorists, but on
mathematicians of all kinds, and even, as we shall see, on physicists
and philosophers.

And in the third place—apparently trivial, but these things have
a way of fixing themselves in people’s minds—there is the neat coin-
cidence of the PNT being first thought of at the end of one century
(Gauss, 1792), then being proved at the end of the next (Hadamard
and de la Vallée Poussin, 1896). Once that theorem had been dis-
posed of, the attention of mathematicians turned to the Riemann
Hypothesis, which occupied them for the following century—which
came to its end without any proof being arrived at. And that led in-
quisitive generalists to write books about the PNT and the Hypoth-
esis at the beginning of the next century!

I am going to fill out the social, historical, and mathematical
background to the bullet points given above by offering a sketch of
the career of Jacques Hadamard; partly because he was the most im-
portant of the various players, and partly because I find him an ap-
pealing and sympathetic personality.

IV. Politically, France did not have a good nineteenth century. If
Napoleon’s “100 days” are included (and if you will excuse a small
rounding error), the constitutional arrangements of that ancient na-
tion from 1800 to 1899 went as follows:

First Republic (41⁄2 years)

First Empire (10 years)

Kingdom restored (1 year)

Empire restored (3 months)

Kingdom re-restored (33 years)

Second Republic (5 years)

Second Empire (18 years)

Third Republic (29 years)
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… and even that 33 years of monarchy was interrupted halfway
through by a revolution and change of dynasty.

For French people of the later part of the century, the great na-
tional trauma was the defeat of their armies by Prussia in 1870, fol-
lowed by the Prussian siege of Paris in the winter of 1870−1871, then
by a peace treaty that involved the cession of two provinces and a
huge cash indemnity. The treaty itself triggered a brief but vicious
civil war. The consequences of all this for France were, of course, very
great. The nation went into the Franco-Prussian War an empire and
came out a republic.

The French army was particularly affected. For the rest of the
century and beyond, that proud institution not only had to bear the
humiliation of the 1870 defeats; it also had to embody the hopes of
the nation for revenge and for recovery of the lost territories. The
army also became a focus for old-fashioned French patriotism, with
young men from aristocratic, clerical, and high-bourgeois families
joining the officer corps in large numbers. This tipped the officer class
toward the old “Throne and Altar” style of French conservatism, and
to some degree cut it off from the mainstream of French life in these
decades. The mainstream was all in the direction of a bustling, open-
minded, commercial, and industrial republic, a leader in the arts and
sciences, a center of brilliance, wit, and gaiety—the wonderful, glit-
tering France of the Belle Epoque, one of the great high points of
western civilization.

Jacques Hadamard lived through the siege of Paris as an infant,
and the house his family occupied was burned down in the Civil War.
He had been born in December 1865 to French-Jewish parents. His
father was a high-school teacher, his mother gave piano lessons.
(Among her pupils was Paul Dukas, who wrote that Sorcerer’s Ap-

prentice symphonic poem so well known to Disney fans.) After a de-
gree and a brief spell of school teaching, Hadamard got his doctorate
in 1892. He married that same year. In 1893 he moved with his wife
to Bordeaux, where he took a position as lecturer at the university.
The Hadamards’ first child, Pierre, was born in October 1894, and



A PROOF AND A TURNING POINT 159

they began raising one of those close, loving, busy bourgeois families
in which everyone was expected to play a musical instrument and to
enter business, academia, or the professions.

France was, then as today, a highly centralized nation. To get a
lecturing position in Paris was extraordinarily difficult, and it was
understood that young academics should serve an apprenticeship in
the provinces for a few years. Hadamard’s Paris opportunity came in
1897. He moved back to the capital in that year, quitting his profes-
sorship in Bordeaux—he had advanced from lecturer to full profes-
sor in just two years—to become an assistant lecturer at the Collège
de France—from the point of view of academic prestige, a move
upward.

Those six years 1892−1897 laid the foundations of Hadamard’s
career and fame. He was a mathematician of considerable scope, pro-
ducing original work in several different areas. Undergraduate stu-
dents of math generally first encounter his name attached to the Three
Circles Theorem in complex function theory, a result Hadamard ob-
tained in 1896, and which you can look up in any good encyclopedia
of mathematics.52

You will see it written that Hadamard was the last of the univer-
sal mathematicians—the last, that is, to encompass the whole of the
subject, before it became so large that this was impossible. However,
you will also see this said of Hilbert, Poincaré, Klein, and perhaps of
one or two other mathematicians of the period. I don’t know to whom
the title most properly belongs, though I suspect the answer is actu-
ally Gauss.

V. It is to the Bordeaux period that Hadamard’s proof of the PNT
belongs. Permit me to step back a little and look at the immediate
mathematical environment of the proof.

The senior figure in French mathematics at this time was Charles
Hermite (1822−1901), professor of analysis at the Sorbonne until he
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retired in 1897. One of his creations will play an important part later
in our story (Chapter 17.v).

From 1882 onward Hermite had been conducting a mathemati-
cal correspondence with a younger mathematician, a Dutchman
named Thomas Stieltjes.53 In 1885, Stieltjes published a note in the
Comptes Rendus54 of the Paris Academy of Sciences, claiming to have
proved my Theorem 15-1—a result stronger than the Riemann Hy-
pothesis, from which, if Stieltjes had indeed proved it, the truth of the
Hypothesis would follow (but whose falsehood would not disprove
the Hypothesis—see Chapter 15.v). Stieltjes did not, however, include
his proof in that note. He wrote to Hermite at about the same time,
making the same claim, but adding, “My proof is very arduous; I shall
try to simplify it further when I resume my research on these ques-
tions.” Now, Stieltjes was an honest man and a serious and respected
mathematician—there is a type of integral named after him. No one
had any reason to doubt that he did, in fact, have a proof, and in all
probability Stieltjes himself thought he did.

Meanwhile, Riemann’s 1859 paper was being scrutinized, and its
arguments tidied up. Hadamard’s prize result of 1892 was a great step
forward. Then, in 1895 in Berlin, the German (Germany was by this
time an Empire under Kaiser Wilhelm I) mathematician Hans von
Mangoldt cleared away most of the remaining underbrush and
proved Riemann’s main result linking the prime counting function
π (x) to the zeros of the zeta function.

Only two large points remained, the Hypothesis and the PNT. By
this time everyone concerned understood that the Hypothesis was
the stronger proposition. If the Hypothesis (sledgehammer) could be
proved true, the PNT (nut) would follow as a consequence, with no
need for further effort; but the PNT could be established from weaker
results without invoking the Hypothesis, and a proof of the PNT
would not imply the truth of the Hypothesis.

So, what was a mathematician to do, given that it was widely be-
lieved that Stieltjes had disposed of both matters? Start work on prov-
ing the lesser result—to which, thanks to the brush-clearing work of
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Hadamard and von Mangoldt, the way was now pretty clear? Was it
worth the trouble, considering that Stieltjes’s superior result on the
Hypothesis might appear while your own work was still in progress?
On the other hand, by the mid-1890s it had been 10 years since
Stieltjes’s announcement, and a lot of people must have been enter-
taining doubts. Not doubts about Stieltjes’s character; it is a very com-
mon thing for a mathematician to believe he has proved a result, only
to find, going over his arguments (or more commonly, having them
peer-reviewed), that there is a logical flaw in them. This happened
with Andrew Wiles’s first proof of Fermat’s Last Theorem in 1993. It
happens somewhat more dramatically to the narrator of Philibert
Schogt’s 2000 novel The Wild Numbers. Nobody would have thought
the worse of Stieltjes if this had been the case, this being much too
common an event in mathematical careers. But where was that proof?

Both Charles de la Vallée Poussin at the University of Louvain in
Belgium and Jacques Hadamard in Bordeaux took up the lesser chal-
lenge and soon got the result. They proved the PNT. Both must have
wondered, though, whether there was any point to their efforts, since,
even if their papers were to be published before Stieltjes’s, their lesser
results would be overshadowed by his much greater one. Hadamard
actually states in his paper: “Stieltjes has proved that all the imaginary
zeros of ζ (s) are (conforming to Riemann’s prediction) of the form
1
2 + t i , t being real; but his proof has never been published. I simply

intend to show that ζ (s) cannot have zeros with real part equal to 1.”
Stieltjes’s proof never did appear; and, in fact, Stieltjes had died

in Toulouse on the last day of 1894. This fact must surely have been
known to Hadamard, working on his paper in 1895−1896, so pre-
sumably he was expecting the proof to turn up in unpublished pa-
pers among Stieltjes’s effects. It never has. Until quite recently it was
thought possible that Stieltjes might, nonetheless, have proved the
Hypothesis. Then, in 1985, Andrew Odlyzko and Herman te Riele
proved a result that casts serious doubt on Theorem 15-1. Belief in
Stieltjes’s lost proof of Riemann’s Hypothesis has now, I think, pretty
much evaporated.
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VI. One consequence of the great national trauma of 1870−1871
was, as I have pointed out above, the reinforcing of the element of
social conservatism in the officer class of the French army, and a cer-
tain distancing of that class from the main current of French society.
This had one enormous consequence in the last years of the nine-
teenth century, the Dreyfus affair.

To attempt to do justice to “The Affair” in a couple of paragraphs
is hopeless. It was a central issue in French public life for over a de-
cade and can ignite a shouting match even today. There is a vast lit-
erature on it, along with movies, novels, and at least one TV mini-
series (in French). As briefly as it can be stated: Alfred Dreyfus, an
officer on the general staff of the French Army, from a wealthy Jewish-
bourgeois family, was arrested and charged with treason at the end of
1894. Court-martialed in camera, he was condemned, degraded, and
transported for life to Devil’s Island. Dreyfus loudly protested his in-
nocence and had no apparent motive for treason, having always been
impeccably patriotic and without any need for money.

In March 1896 Colonel George Picquart of French military intel-
ligence happened to notice that the document that had been the prin-
cipal item of evidence against Dreyfus was in fact in the handwriting
not of Dreyfus but of another officer, Major Esterhazy, a man of er-
ratic character and extravagant habits, chronically beset by gambling
debts. Picquart informed his superiors. He was told to say nothing
further about the matter and transferred to a frontier post in French
North Africa. The following year, 1897, Dreyfus’s brother Mathieu
learned of Picquart’s discovery and demanded that Esterhazy be tried.
Esterhazy was acquitted by a military tribunal in January 1898. The
novelist Émile Zola promptly published an open letter, the famous
J’accuse, to the President of the Republic, Félix Faure, denouncing the
various people involved in Dreyfus’s conviction as participants in a
monstrous injustice and cover-up. Zola was indicted on a charge of
criminal libel against the Minister of War.

The Affair then metastasized, consuming the attention of French
society until Dreyfus’s innocence was finally and officially proclaimed
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in July 1906. There were impassioned trials, dramatic reversals, the
suicide of one of the conspirators, and numerous other colorful
events. (Perhaps the most colorful, not arising directly from the Af-
fair but influencing its course, was the death of President Faure while
in flagrante delicto with his mistress in a back bedroom at the Elysée
Palace. He suffered a massive stroke and in his death agony seized the
poor woman by the hair with such force she was unable to separate
herself from him. Her screams brought the Palace servants, who dis-
engaged the lady, dressed her, and hustled her out a side door.)

It happened that Jacques Hadamard was a second cousin of
Alfred Dreyfus’s wife Lucie, née Lucie Hadamard. The Affair was,
therefore, of direct personal concern to him. In addition to this per-
sonal connection, it confronted all French Jews with deep questions
about identity and loyalty. Before the Affair, most of the Jewish-
French bourgeoisie—people like the Hadamards and the Dreyfuses—
had thought themselves perfectly assimilated—patriotic French
people who happened to be Jewish. Anti-Semitism had been lurking
below the surface, however, and not only in the army. An anti-Semitic
polemical book, La France Juive, had been a huge publishing success
in 1886, and an anti-Semitic newspaper, La Libre Parole, was widely
read. The Affair brought all this to the surface and made French Jews
wonder if they had been living in a fool’s paradise. But even without
the anti-Semitism factor a gross injustice had been done, and the
ranks of the Dreyfusards—those agitating on behalf of the disgraced
captain—included countless gentile citizens outraged by the army’s
deceit and the failure of the political authorities to act.

Before the Affair, Hadamard seems to have been an apolitical and
unworldly man, rather the absent-minded professor type that is very
common among great mathematical talents. Much is made of this
stereotype, and there is in fact something to it. Because of the purely
abstract nature of the material they work with and the need to con-
centrate on that material for long hours at a time, mathematicians
tend to be somewhat detached from more earthly matters. It is not
impossible for a mathematician to be worldly, and there are many



164 PRIME OBSESSION

counterexamples. René Descartes was a soldier and a courtier. (He
survived the first but not the second.) Karl Weierstrass spent his years
at university drinking and fighting and left without a degree. John
von Neumann, one of the greatest of twentieth-century mathemati-
cians, was quite a boulevardier, fond of pretty women and fast cars.

Jacques Hadamard, on the evidence, was not one of those
counterexamples. Even discounting the apocrypha that develop
around any great man, it seems plain that Hadamard could not knot
his tie without assistance. His daughter claimed he could not count
beyond four, “After that came n.” His involvement in the Dreyfus Af-
fair, therefore, speaks to the depths of the feeling aroused by that inci-
dent, stirring even such a detached soul as this. Once he had become
involved, Hadamard was a passionate Dreyfusard. He became active
in the League for Human Rights, founded in 1898 during the trial of
Zola. Hadamard’s third son, born in February 1899, was named
Mathieu-Georges, “Mathieu” after Dreyfus’s brother and most tire-
less champion, “Georges” after the remarkable Colonel Picquart,
whose iron integrity and quiet insistence on telling the truth were key
factors in the eventual vindication of Dreyfus (whom Picquart per-
sonally detested).

Hadamard remained a public man for the rest of his life, which,
as well as being exceptionally long, was more than usually productive
and busy. It was also deeply marked with tragedy. The great wars of
the twentieth century took all three of his sons. The older two died at
Verdun within three months of each other; Mathieu-Georges was
killed in 1944 while serving with the Free French forces in North Af-
rica. In grief and despair after the First World War, Hadamard turned
to pacifism and the League of Nations. He worked to help elect the
Popular Front government of 1936−1938. Like many more worldly
than himself, he was to some degree taken in by communism and the
Soviet Union.55 Driven from Paris by the German advance in 1940, he
taught at Columbia for four years. He traveled and lectured every-
where and met everyone. He was a keen naturalist, with museum-
grade collections of ferns and fungi. He was an early supporter of the
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Hebrew University of Jerusalem (founded in 1925). His many books
included The Psychology of Invention in the Mathematical Field (1945),
still well worth reading for its insights into the thought processes of
mathematicians; I have used some of its ideas for this book. He orga-
nized an amateur orchestra at his home; Albert Einstein—a lifelong
friend—was a visiting violinist. He was married for 68 years to the
same woman. When she died, Jacques was 94 years old. He struggled
on for two years; but then the death of his beloved grandson in a
climbing accident robbed him of his spirit and he died a few months
later, a little short of his 98th birthday.

VII. In concentrating on Jacques Hadamard, I have indulged my
personal fondness for an attractive personality and fine mathemati-
cal talent, intending no disrespect to the other mathematicians who
participated in the clarification of Riemann’s great paper and the
proof of the PNT.56 By the later nineteenth century the world of math-
ematics had passed out of the era when really great strides could be
made by a single mind working alone. Mathematics had become a
collegial enterprise in which the work of even the most brilliant schol-
ars was built upon, and nourished by, that of living colleagues.

One recognition of this fact was the establishment of periodic
International Congresses of Mathematicians. The first such gather-
ing was held in Zürich in August 1897. (Hadamard’s wife was expect-
ing their second child, so he did not attend. He sent a paper to be read
by his friend Emile Picard. It is interesting to note that the First Zion-
ist Congress was taking place at the same time, 40 miles away in Basel,
and inspired in part by issues arising out of the Dreyfus Affair.)

There was a second Congress in Paris in the summer of 1900, and
the idea was to have a Congress every four years. History had other
plans, however. There was no Congress in 1916, nor in 1940, 1944, or
1948. The system started up again in 1950 in Cambridge, Massachu-
setts. Hadamard was, of course, invited; but because of his pro-Soviet
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leanings, he was at first denied a U.S. visa. It took a petition by his
fellow mathematicians, and the personal intervention of President
Truman, to get him to Harvard. At the time of writing, early in 2002,
preparations are under way for the 24th Congress, to be held in
Beijing this summer, only the second outside the West (defined as
Europe, Russia, and North America).

VIII. The first of the twentieth-century Congresses was that one
held in Paris from August 6 to 12, 1900, and this is the one everyone
remembers. The Paris Congress will forever be linked with the name
of David Hilbert, a German mathematician working at Göttingen,
the university of Gauss, Dirichlet, and Riemann. Though only 38
years old, Hilbert was well established as one of the foremost math-
ematicians of his time.

On the morning of August 8, in a lecture hall at the Sorbonne,
Hilbert stood up before the 200-odd delegates to the Congress,
Jacques Hadamard among them, and delivered an address on “Math-
ematical Problems.” His aim was to concentrate the minds of his fel-
low mathematicians on the challenges facing them in the new cen-
tury. To effect this goal, he directed their attention to a handful of the
most important topics needing investigation, and problems needing
solution. He organized these topics and problems under 23 headings;
number 8 was the Riemann Hypothesis.

With that address, twentieth-century mathematics began in
earnest.
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NINE ZULU QUEENS RULED CHINA

In Chapter 9.vi I showed some zeros
of the zeta function. I said that every negative even number is a zero
of the zeta function: ζ (−2) = 0, ζ (−4) = 0, ζ (−6) = 0, and so on.
That gets us a certain way toward understanding the Riemann Hy-
pothesis, which, just to remind you, says that

The Riemann Hypothesis

All non-trivial zeros of the zeta function
have real part one-half.

Unfortunately, all those negative even numbers are trivial zeros.
So … where are these non-trivial ones? To answer that, I must take
you into the realm of complex and imaginary numbers.

A lot of people are alarmed by this topic. They believe imaginary
numbers are scary, or fantastic, or impossible—have leaked into
mathematics from science fiction somehow. This is all nonsense.
Complex numbers (of which imaginary numbers are a special case)
came into math from very practical considerations. They were useful

I.
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in helping mathematicians solve problems they couldn’t solve other-
wise. They are no more imaginary than any other kind of number.
When was the last time you stubbed your toe on a seven?

The irrational numbers (like 2  and π ) are actually more mys-
terious, more intellectually intimidating, and, yes, even scarier, than
the square root of minus one. Indeed the irrational numbers have
given—and, in the form of the so-called Continuum Hypothesis (see
David Hilbert’s address in Chapter 12.ii) continue to give—philoso-
phers of mathematics far more trouble than inoffensive, handy little

−1  ever did. There have been determined attempts to reject irratio-
nal numbers, even in modern times, and even by important profes-
sional mathematicians: Kronecker in the late nineteenth century,
Brouwer and Weyl in the early twentieth. For some further remarks
on this topic, see Section V in this chapter.

II. To get a balanced view of complex numbers, you really need to
understand how a modern mathematician thinks of numbers in gen-
eral. I’m going to try to give an account of this, including complex
numbers in my account. Don’t worry too much about what they are
right now; I’ll go into more detail a bit later. I include the complex
numbers in these next few paragraphs just for the sake of complete-
ness.

So how does a modern mathematician see numbers? As hollow
letters, that’s how. As �, �, �, �, and �. I have been trying to think of
a good, memorably daft, mnemonic for keeping these letters in mind
but have so far been unable to come up with anything better than
“Nine Zulu Queens Ruled China.”

Perhaps I’m getting ahead of things a bit. Here’s an alternative
answer to that question. Mathematicians think of numbers as a set of
nested Russian dolls.

� Innermost doll: The natural numbers 1, 2, 3, 4, ….
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� Next doll: The integers. That is, the natural numbers together
with zero and the negative whole numbers (for example, −12).

� Next doll: The rational numbers. That is, the integers together
with all positive and negative fractions (for example, numbers
like 3

2
1

917635
1000000000001

6, ,− − ).
� Next doll: The real numbers. That is, the rational numbers to-

gether with the irrational numbers, like 2 , π , e. (Recall from

note 11 to Chapter 3.vi the discovery by the ancient Greeks
that there are numbers that are neither integers nor frac-
tions—irrational numbers.)

� Outermost doll: The complex numbers.

There are several things to notice about this arrangement. The
first is that there is a characteristic way to write numbers in each doll.

� Natural numbers tend to be written like this “257.”
� Integers frequently have a sign in front like this “−34.”
� Rational numbers are most often written as fractions. For pur-

poses of writing them in fraction form, rational numbers come
in two varieties. Those whose size (that is, ignoring the sign) is
less than 1 are called “proper fractions,” while the others are
“improper.” A proper fraction is written like this, 14

37 . An im-
proper fraction can be written in two styles, “vulgar” ( 13

9 ) or
“mixed” (1 4

9 ).
� The most important real numbers have special symbols, like

π  or e. Many others can be expressed with “closed forms” like

7 25 +  or π 2 ⁄ 6. Failing all else, or to give an idea of the
actual numerical value of a real number, we write it as a deci-
mal, generally with three trailing dots to mean “this isn’t the
whole thing, I could supply more digits if I really had to:”
−549.5393169816448223…. Alternatively, we can round it to
“five decimal places” (−549.53932) or “five significant digits”
(−549.54) or any other level of precision.
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� Complex numbers look like this, −13.052 + 2.477i. More on
that later.

The next thing to note is that the inhabitants of each Russian doll
are honorary inhabitants of the next one out and can, if there is some
good reason for it, be written in the style appropriate to the outer
one.

� Natural numbers (e.g., 257) are honorary integers, and can be
written with a plus sign, like this: +257. When you see an inte-
ger with a plus sign in front, you think “natural number.”

� Integers (e.g., −27) are honorary rational numbers, and can
be written as fractions whose denominator is 1, like this: − 27

1 .
When you see a rational number with denominator 1, you
think “integer.”

� Rational numbers (e.g., 1
3 ) are honorary real numbers, and

can be written out as decimals, like this: 0.33333333.… It is an
interesting thing about rational numbers that if you write a
rational number in decimal form, the decimal digits always
repeat themselves sooner or later (unless they just come to a
dead stop, like 7

8 = 0.875). The rational number 65463
27100 , for ex-

ample, if written as a decimal, looks like this:
2.4156088560885608856088….

All rational numbers repeat like that, no irrational numbers
ever do. Which is not to say that an irrational number can’t
have some pattern to its digits. The number

 0.12345678910111213141516171819202…
has a clear pattern, and I could tell you in advance what the
hundredth digit is, or the millionth, or the trillionth. (Wanna
bet? They are 5, 1, and 1, respectively.) This number is, how-
ever, irrational. When you see a real number whose decimal
repeats, you think “rational number.”
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� Any real number can be written as a complex number. Here is
2  written as a complex number: 2 0+ i . More later.

(You can jump over steps in the above list of bullet points and write,
for example, a natural number as a real number: 257.0000000000….)

Each family of numbers, each Russian doll, is denoted by a hol-
low letter. � is the family of all natural numbers; � is the integers; �
the rationals; and � the reals. Each family is, in a sense, contained in
the next one. Each expands the power of math. It lets us do some-
thing we couldn’t do with the previous doll. For example, � allows us
to subtract any two numbers and get an answer, which we couldn’t do
with � (7 − 12 = ?). Likewise, � lets us divide by any number (except
zero) and get an answer, which we couldn’t do in � (−7 ÷ −12 = ?).
And � opens the door to analysis, the mathematics of limits, because
any infinite sequence of numbers in � has a limit in �, a thing not
true in �.

(Recall those sequences and series at the end of Chapter 1. All
consisted of rational numbers. Some of them converged to 2, or 2

3 , or
1 1

2 —that is, their limits were also rational. Others, however, con-
verged to 2 , or π , or e—irrational numbers. Thus, an infinite se-
quence of numbers in � may converge to a limit not in �. The math-
ematical term of art is: � is not complete. �, however, is complete,
and so is �. This idea of completing � will assume new importance
when I talk about p-adic numbers in Chapter 20.v.)

There are other categorizations of number within, or cutting
across, the �, �, �, �, and � schema. Prime numbers, to take an
obvious case, are a subset of �. They are very occasionally referred to
collectively as �. There is a very important subset of � called the
algebraic numbers, sometimes also given a hollow letter of its own, �.
An algebraic number is a number that is a zero of some polynomial
with coefficients all in �, for example, 2x7 − 11x6 − 4x5 + 19x3 −

35x2 + 8x − 3. Among the real numbers, every rational number—and,
therefore, every integer and natural number—is algebraic; 39541

24565  is a
zero of 24565x − 39541 (or a solution of 24565x − 39541 = 0, if you
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prefer the language of equations and solutions to the language of
functions and zeros). An irrational number might or might not be
algebraic. Those that are not are called transcendental. Both e and π

are transcendental, as proved by, respectively, Hermite in 1873 and
Ferdinand von Lindemann in 1882.

III. You can get another perspective on the matter from the follow-
ing history of numbers I have made up. “Made up” as in “invented
out of whole cloth”—it is entirely false.

John Derbyshire’s Bogus History of Numbers

Human beings have always known how to count. We have had �—

the system of natural numbers—since prehistoric times. But �

comes with a prohibition, an impossibility. You can’t subtract a

greater number from a lesser one. As technology developed, this be-

came a stumbling block. The temperature was 5 degrees; it fell 12

degrees; what’s the temperature now? There’s no answer available in

�. At this point, negative numbers were invented. Oh, and someone

thought up zero, too.

Negative numbers, positive numbers, and zero were gathered

together in a new system, �, the integers. But � comes with a new

impossibility. You can’t divide a number by a number that isn’t a fac-

tor of it. You can divide 12 by 3 (answer: 4), or even by −3 (answer:

−4), but you can’t divide 12 by 7. � has no answer for such an op-

eration. As the science of measuring developed, this became a stum-

bling block. For finer and finer work, you need finer and finer mea-

surements. You can finesse this for a while by just inventing new

units. Need something finer than a yard? OK, here’s a foot, they go

three to the yard. Need something finer still? OK, here’s an inch….

There is a limit to how much of this you can do, though, and the

need for a general way to express fragments of a unit became press-

ing. So fractions were invented.
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Fractions, together with all the integers, were gathered together

in a new system, �—the rational numbers. Alas, � comes with its

own impossibility. You can’t always find the limit of a convergent se-

quence. I gave three examples of such sequences in Chapter 1.vii. As

science advanced to the point where it needed calculus, this became

a stumbling block, because all of calculus rests on the idea of a limit.

For calculus to develop, irrational numbers had to be invented.

Irrational numbers were gathered together with the rationals

(including, of course, all the integers) to form a new system, �—the

real numbers. Yet the real numbers still contain an impossibility.

You can’t take the square root of a negative number. By the end of the

sixteenth century, math had advanced to the point where this was a

stumbling block. So imaginary numbers were invented. An imagi-

nary number is the square root of a negative number.

Imaginary numbers, together with all the real numbers, were

gathered together in a grand new synthesis: �, the complex num-

bers. With the complex numbers, nothing is impossible, and history

comes to an end.

That account is, I emphasize, totally bogus. Our understanding
of numbers did not develop like that at all. Even the order is all wrong.
It should be �, �, �, �, �. Natural numbers were certainly known in
prehistoric times. The Egyptians invented fractions early in the third
millennium B.C.E. Pythagoras (or one of his disciples) discovered
irrational numbers around 600 B.C.E. Negative numbers came in
during the Renaissance, by way of accounting (though zero had
shown up somewhat earlier). Complex numbers appeared in the sev-
enteenth century. It all grew up haphazardly, chaotically, in the way of
most human things. Nor is it true that history has ended. History
never ends; as soon as one chess game has been won, another begins
immediately.

My little bogus history does show how the Russian dolls fit to-
gether, though, and I hope it offers some insight into why mathema-
ticians do not regard imaginary and complex numbers as anything
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very peculiar. They are just one more Russian doll, created for practi-
cal reasons—to solve problems that could not be solved otherwise.

IV. It is tedious to have to keep writing −1 , so mathematicians
substitute the letter i for this quantity. Since i is the square root of
minus one, i 2 = −1. If you multiply both sides of that by i, it follows
that i 3 = −i. Repeat that process, and you get i 4 = 1.

What about −2 , −3 , −4 , and so on? Don’t we need sym-
bols for them, too? No. By ordinary rules for multiplying integers,
−3 = −1 × 3. Since x  is just x

1
2 , Power Rule 7 tells me that

a b a b× = × . (For example, 9 4 9 4× = × , a fancy way of
writing 6 = 2 × 3.) So − = − ×3 1 3 . Now, 3  is, of course, a per-
fectly ordinary real number, with a value of 1.732050807568877….
To three places of decimals, therefore, − =3 1 732. i . (In its closed
form, this is usually written as i 3 .) The same is true of the square
root of any other negative number. You don’t need a whole mass of
them; you need just i.

Now, i is a very proud number. It is aloof and doesn’t care to mix
much with other numbers. If I add 3 to 4 I get 7; the 3-ness of the 3
and the 4-ness of the 4 disappear, absorbed into the 7-ness of the 7. If,
by contrast, you add 3 to i, you get … 3 + i. It’s the same with multi-
plication. When you multiply 5 by 2 the 5-ness and 2-ness are swal-
lowed up by the 10-ness of the result, and vanish without trace. Mul-
tiply 5 by i, and you get … 5i. It’s as if the i can’t bear to let go of its
identity; or perhaps as if the real numbers know that i just isn’t the
same kind of thing as they are.

The result is that once you introduce i into the scheme of things,
it spawns a whole new class of numbers like 2 + 5i, −1−i, 47.242−

101.958i, 2 + π i , and every other possible a + bi, where a and b are
any real numbers at all. These are the complex numbers. Each com-
plex number has two parts, the real part and the imaginary part. The
real part of a + bi is a; the imaginary part is b.
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As is the case with the other Russian dolls �, �, �, and �, num-
bers belonging to any inner doll are honorary complex numbers. The
natural number 257, for example, is the complex number 257 + 0i;
the real number 7  is the complex number 7 0+ i . A real number
is just a complex number with zero imaginary part.

What about complex numbers with no real part? They are called
imaginary numbers. Examples of imaginary numbers are: 2i, −1479i,
π i, 0.0000000577i. An imaginary number can, of course, be written
as a full complex number, if you want to make a point: 2i can be
written as 0 + 2i. If you square an imaginary number, you get a nega-
tive real number. Note that this is true even for negative imaginaries.
The square of 2i is −4, and the square of −2i is also −4, by the rule of
signs.

Adding two complex numbers is a breeze. You just add the real
parts, then add the imaginary parts; −2 + 7i plus 5 + 12i would be
3 + 19i. Subtraction likewise; if you subtract instead of adding, the
answer is −7 − 5i. For multiplication, you must remember how to
multiply out brackets, and keep in mind that i 2 = −1. So
(−2 + 7i) × (5 + 12i) is −10 − 24i + 35i + 84i2, which reduces to
−94 + 11i. In general, (a + bi) × (c + di) = (ac − bd) + (bc + ad)i.

Division depends on a simple trick. What is 2 ÷ i? Answer: write
it as a fraction, 2 ⁄ i. The wonderful thing about fractions is that if you
multiply both the top and bottom of a fraction by the same number
(not zero), its value does not change: 3

4 , 6
8 , 15

20  and 12000
16000  are all ways of

writing the same fraction. So multiply top and bottom of 2 ⁄ i by −i.
Two times −i is, of course, −2i. And i times −i is −i 2, which is −(−1),
which is 1.  Therefore,  2 ⁄ i is just  –2i ⁄ 1, which is −2i.

There is always a way to do this, turning the bottom of a fraction
into a real number. Since dividing by real numbers is no mystery, we
are home and dry. How do I divide two full-blown complex numbers,
say (–7 – 4i) ⁄ (–2 + 5i)? I multiply top and bottom of the fraction by
–2 − 5i, that’s how. Multiply out the top, (−7 − 4i) × (−2 − 5i) =

−6 + 43i. Multiply out the bottom, (−2 + 5i) × (−2 −5i) = 29. Answer:
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− +6
29

43
29 i . You can always turn the bottom of (a + bi) ⁄ (c + di) into a

real number; just multiply by c − di. The general rule, in fact, is

a bi c d i
ac bd

c d

bc ad

c d
i+( ) ÷ +( ) =

+
+

+
−

+2 2 2 2 .

What is the square root of i? Don’t we have to define a whole
other class of numbers to take in i ? And so on for ever? Answer:
Multiply out the brackets (1 + i) × (1 + i). You will see that the result
is 2i. So the square root of 2i is 1 + i. Scaling down, the square root of
i must be 1 2 2/ /+ i , which indeed it is.

Complex numbers are wonderful. You can do anything with
them. You can even raise them to complex powers, if you know what
you are doing. For example, (−7 − 4i)−2+5i is approximately
−7611.976356 + 206.350419i. That, however, is something I shall ex-
plain more fully elsewhere.

V. The thing you can’t do with complex numbers is lay them out on
a line, as you can with real numbers.

You can visualize the family of real numbers, � (which of course
includes within itself �, �, and �) very easily. Just lay it out on a
straight line. This way of illustrating the real numbers is called “the
real line,” as shown in Figure 11-1.

–5 –4 –3 –2 –1 1 2 3 4 50

FIGURE 11-1 The real line.

Every real number is on there somewhere. For example, 2  is a
little way east of 1, not quite half way to 2, −π  is just slightly west of
−3, and 1,000,000 is off in the next county somewhere. I can, of
course, show only part of the line on a finite sheet of paper. You must
use your imagination.
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The real line looks obvious, but in fact it is a very deep and mys-
terious affair. The rational numbers, for example, are “everywhere
dense” on it. That means that between any two rational numbers, you
can always find another one. And that means that between any two
rational numbers you can find an infinity of other ones. (Look: if,
between a and b, I am guaranteed to find c, then between a and c, and
between c and b, I am guaranteed to find a d and an e … and so on
forever.) That, you can just about visualize. But where do the irratio-
nal numbers go? It seems they have to somehow squish in between
the rational numbers, which, as I’ve just said, are themselves every-
where dense! While yet managing to be not complete!!

Take that sequence from Chapter 1.vii that closes in on 2 , for
example, 1

1 , 3
2 , 7

5 , 17
12 , 41

29 , 99
70 , 239

169 , 577
408 , 1393

985 , 3363
2378 , …. The terms are

alternately less than and greater than 2 , so that 1393
985  is short of 2

by about 0.00000036440355 and 3363
2378  exceeds it by about

0.00000006252177. Squeezed in between those two fractions, though,
is an infinity of other fractions … and still there is room in there
somewhere for 2 . And not only for 2 , either, but for an infinity
of other irrationals!

For the amazing thing is that not only is there an infinity of
irrationals, and not only are they, too, everywhere dense; but there is
a precise mathematical sense in which there are far more irrationals
than rationals. This was shown by Georg Cantor in 1874. The num-
ber of rational numbers is infinite, and the number of irrational num-
bers is infinite; but the second infinity is bigger than the first. How on
earth do they all fit on the real line? How does such an inconceivably
vast number of irrationals squeeze in among the rationals, if the
rationals themselves are everywhere dense?

I have no space to go into such things here. My advice is not
to think about these matters too much. That way lies madness. (In
fact, Cantor ended his life in an asylum, although this was more a
consequence of a congenital disposition toward depression aggra-
vated by difficulty in getting his theories accepted than a result of
thinking too much about the real line. Those theories are not now
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seriously doubted.) Just accept that all real numbers are there on the
line somewhere.

But now, where on earth are we going to put the complex num-
bers? The real line is jammed up—and then some!—with rationals
and irrationals. Yet for any real number a, there’s a whole infinity of
complex numbers a + bi, with b roaming freely up and down the real
line. Where shall we put them all?

That last remark suggests the answer. For each real number, we
need a line, and since there is an infinity of reals, we need an infinity
of lines, side by side. That means a flat plane. While the real numbers
can be spread out for inspection on a line, the complex numbers need
a plane—which of course we call “the complex plane.” Every complex
number is illustrated by a point somewhere in the plane.

In the complex plane as usually drawn (see Figure 11-2), the real
line stretches west-east as usual. Set at right angles to it is a new line
going south-north, containing all the imaginary numbers: i, 2i, 3i,
and so on. To get to the number a + bi, you go a distance a to the east
(west if negative), then b to the north (south if negative). The real line
and the imaginary line—they are more commonly called “the real
axis” and “the imaginary axis”—cross at zero. Points on the real line
have imaginary part zero; points on the imaginary line have real part
zero. The point where they cross, the point that is on both, has both
real and imaginary parts zero. It is 0 + 0i, that is, zero.

Let me introduce three terms of art. The modulus of a complex
number is its straight-line distance from zero. The symbol is |z |, pro-
nounced “mod z.” By Pythagoras’s Theorem, the modulus of a + bi is

a b2 2+ . It is always a positive number or zero. The amplitude of a
complex number is the angle it makes with the positive real line, mea-
sured in radians. (One radian is 57.29577951308232… degrees; 180
degrees is π  radians.) The amplitude is conventionally taken to be an
angle between −π  (exclusive) and π  (inclusive) radians, and its sym-
bol is Am(z).57 Positive real numbers have amplitude zero; negative
real numbers have amplitude π ; positive imaginary numbers have
amplitude π ⁄ 2; negative imaginaries have amplitude –π ⁄ 2.
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Finally, the complex conjugate of a complex number is its mirror
image in the real line. The complex conjugate of a + bi is a − bi. Its
symbol is z , pronounced “z bar.” If you multiply a complex number
by its conjugate, you get a real number: (a + bi) × (a − bi) = a2 + b2,
which is, in fact, the modulus of a + bi, squared. That’s what makes
the trick for division work. In proper symbols it is z z× = |z |2, and

the division trick is just z w z w/ ( )/= × |w |2.

For the complex number −2.5 + 1.8i, shown in Figure 11-2, the
modulus is 9 49. , that is, about 3.080584, the amplitude is about

–3 –2 –1 1 2 3
Real

–3i

–2i

–i

i

2i

3i

Imaginary

z

Am(z)

z

z

FIGURE 11-2 The complex plane showing a point z (actually −2.5 + 1.8i)

with its modulus, amplitude, and conjugate.
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2.517569 radians (or 144.246113 degrees, if you prefer), and the con-
jugate is, of course, −2.5 − 1.8i.

VI. To show the complex plane in action, I shall do a wee bit of
analysis with complex numbers. Consider the infinite series in Ex-
pression 9-2.

1

1
1 2 3 4 5 6

−
= + + + + + + +

x
x x x x x x ...

 (x between −1 and 1, exclusive)

Since there’s nothing involved there but adding, multiplying, and
dividing numbers, there seems no reason x should not be a complex
number. Does this work for complex numbers? Yes, under certain

conditions. Suppose, for example, that x is 1
2 i . Then the series con-

verges. In fact,

1

1
1

2

1
1

2

1

4

1

8

1

16

1

32

1

64
2 3 4 5 6

−
= + + + + + + +

i

i i i i i i ...

The left-hand side, if you do the trick I described above for division,
works out to 0.8 + 0.4i. The right-hand side can be simplified just
from the fact that i 2 = −1.

0 8 0 4 1
1

2

1

4

1

8

1

16

1

32

1

64
. . ...+ = + − − + + − −i i i i

You can actually walk out the right-hand side on the complex plane;
Figure 11-3 gives the general idea. Start at the point 1 (which is on the
real line, of course); then go north to add the 1

2 i ; then go west 1
4 ;

then go south 1
8 i  … and so on. You get a neat spiral, closing in on the

complex number 0.8 + 0.4i. Analysis in action, an infinite series clos-
ing in on its limit.

Notice that while we lost the simplicity of one dimension when
we moved to complex numbers, we gained some imaginative power.
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With two dimensions to play with, you can show mathematical re-
sults the way I just did, as striking visual patterns or pictures. This is
part of the appeal, for me anyway, of complex analysis. In Chapter 13,
I shall actually show you Riemann’s zeta function, and the great hy-
pothesis itself!, laid out as elegant patterns on the complex plane.

0.2 0.4 0.6 0.8 1

Real

0.2i

0.4i

0.6i

0.8i

i

Imaginary

FIGURE 11-3 Analysis in the complex plane.
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HILBERT’S EIGHTH PROBLEM

David Hilbert was 38 years old
when he stepped up to address the Second International Congress of
Mathematicians on the morning of Wednesday, August 8, 1900. The
son of a judge in the East Prussian capital of Königsberg, Hilbert had
made his name as a mathematician 12 years earlier by solving
Gordan’s Problem, in the theory of algebraic invariants.

This had been not only a succès d’estime, but also, in a minor way,
a succès de scandale. Gordan’s Problem concerned the existence of a
certain class of objects. Hilbert had proved that the objects exist but
had not produced them, nor even suggested any method for con-
structing them. Mathematicians refer to this kind of thing as an “ex-
istence proof.” Hilbert used the following everyday example in his
lectures. “There is at least one student in this class—let us name him
‘X’—for whom the following statement is true: no other student in
the class has more hairs on his head than X. Which student is it? That
we shall never know; but of his existence we can be absolutely cer-
tain.” Existence proofs are rather common in modern mathematics
and are nowadays not particularly controversial. Matters were differ-

I.
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ent in the Germany of 1888. Just one year previously, Leopold Kro-
necker, a respected member of the Berlin Academy, had issued his
manifesto On the Concept of Number, which attempted to banish from
mathematics what he regarded as unnecessary levels of abstraction—
anything, in his view, that could not be derived from the integers in a
finite number of steps. Gordan himself famously remarked of
Hilbert’s existence proof, “This is not mathematics. This is theology.”

The generality of mathematicians, however, acknowledged the
validity of Hilbert’s solution. Hilbert then went on to do important
work in the theory of algebraic numbers and in the foundations of
geometry. He created brilliant new proofs—three and one-half pages
for both—of the facts that π  and e are transcendental. (When, in
1882, von Lindemann had been the first to prove π  transcendental,
the aforementioned Kronecker58 had complimented him on the el-
egance of his argument but added that it proved nothing, since tran-
scendental numbers did not exist!) In 1895 Hilbert was given a chair
at Göttingen, where he remained until his retirement in 1930.

The names “Hilbert” and “Göttingen” are yoked together in the
minds of modern mathematicians as closely as, in other spheres, are
“Joyce” and “Dublin,” or “Johnson” and “London.” Hilbert and
Göttingen dominated mathematics during the first third of the
twentieth century—not merely German mathematics, but all math-
ematics. The Swiss physicist Paul Scherrer, arriving at Göttingen as a
student in 1913, reported finding there “an intellectual life of unsur-
passed intensity.” An astonishing proportion of important mathema-
ticians and physicists of the first half of the century had studied ei-
ther at Göttingen, or under someone who had studied there.

Of Hilbert’s personality, mixed reports have come down to us. By
no means antisocial, he was a keen dancer and a popular lecturer. He
was also something of a skirt-chaser, to the very limited degree that
was possible in the ambience of provincial Wilhelmine Germany. (It
is not likely that anything very improper took place.) He had an ir-
reverent streak and seems to have been impatient with the stuffiness
of university life, the customs, regulations, and social proscriptions.
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One old professor’s wife was scandalized to hear that Hilbert had been
seen in the back room of a restaurant in the town, playing billiards
with his junior lecturers. When, during World War I, the university
refused to give Emmy Noether a regular lecturing position on the
grounds that she was a female, Hilbert simply announced a course of
lectures to be given by himself, then let Noether deliver them. He
seems to have been a soft examiner, always ready to give a candidate
the benefit of the doubt.

It is hard to avoid the impression, though, that Hilbert was a man
who did not suffer fools gladly, and that he classed rather a large part
of humanity as fools. This was particularly unfortunate in Hilbert’s
case because Franz, his only child, was afflicted with serious mental
problems. Unable to learn anything much, or to hold down any kind
of job, Franz also suffered occasional lapses into paranoia, following
which he had to be kept in a mental hospital for a while. Hilbert is
recorded as saying, at the time of the first of these incarcerations,
“From now on I must consider myself as not having a son.”

Hilbert was, at any rate, revered by his students and mathemati-
cal colleagues. There is a vast number of anecdotes about him, mostly
of an affectionate sort. Here are just three. The first, which touches
on the Riemann Hypothesis, I have taken from Constance Reid’s
English-language biography.

Hilbert had a student who one day presented him with a paper pur-

porting to prove the Riemann Hypothesis. Hilbert studied the pa-

per carefully and was really impressed by the depth of the argu-

ment; but unfortunately he found an error in it which even he could

not eliminate. The following year the student died. Hilbert asked

the grieving parents if he might be permitted to make a funeral

oration. While the student’s relatives and friends were weeping be-

side the grave in the rain, Hilbert came forward. He began by saying

what a tragedy it was that such a gifted young man had died before

he had had an opportunity to show what he could accomplish. But,
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he continued, in spite of the fact that this young man’s proof of the

Riemann Hypothesis contained an error, it was still possible that

some day a proof of the famous problem would be obtained along

the lines which the deceased had indicated. “In fact,” he continued

with enthusiasm, standing there in the rain by the dead student’s

grave, “let us consider a function of a complex variable….”

The second I have borrowed from Martin Davis’s book The Uni-

versal Computer.

Hilbert was seen day after day in torn trousers, a source of embar-

rassment to many. The task of tactfully informing Hilbert of the

situation was delegated to his assistant, Richard Courant. Knowing

the pleasure Hilbert took in strolls in the countryside while talking

mathematics, Courant invited him for a walk. Courant managed

matters so that the pair walked through some thorny bushes, at

which point Courant informed Hilbert that he had evidently torn

his pants on one of the bushes. “Oh no,” Hilbert replied, “they’ve

been that way for weeks, but nobody notices.”

The third is apocryphal, though quite possibly true.

One of Hilbert’s students stopped showing up to classes. On en-

quiring the reason, Hilbert was told that the student had left the

university to become a poet. Hilbert: “I can’t say I’m surprised. I

never thought he had enough imagination to be a mathematician.”

Hilbert was not, by the way, Jewish, though his given name, un-
usual among German gentiles, brought him under suspicion in the
Hitler years. His paternal ancestors belonged to a fundamentalist
Protestant sect called Pietists, who favored Old Testament and horta-
tory names. Hilbert’s grandfather rejoiced in the names David
Fürchtegott Leberecht (i.e., Fear God Live Right) Hilbert.
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II. Constance Reid describes Hilbert at the 1900 Congress thus:

The man who came to the rostrum that morning was not quite forty,

of middle height and build, wiry, quick, with a noticeably high fore-

head, bald except for wisps of still reddish hair. Glasses were set

firmly on a strong nose. There was a small beard, a still somewhat

straggly moustache, and under it a mouth surprisingly wide and

generous for the delicate chin. Bright blue eyes looked innocently

but firmly out from behind shining lenses.

Hilbert delivered his address, in German, in a stuffy lecture hall
at the Sorbonne. Total attendance at the Congress was 250, but it is
not likely that all of them were present to hear Hilbert speak on the
morning of August 8.

The title of the address was “Mathematical Problems.” Its open-
ing words became as familiar to twentieth-century mathematicians
as those of the Gettysburg Address are to American schoolchildren.
“Who of us would not be glad to lift the veil behind which the future
lies hidden; to cast a glance at the next advances of our science and at
the secrets of its development during future centuries?”59 Hilbert went
on to speak of the importance of difficult problems in concentrating
the attention of mathematicians, inspiring new developments and
new symbols, and in pushing mathematics to higher and higher lev-
els of generalization. He ended with a list of 23 particular problems
“from the discussion of which an advancement of science may be
expected.”

I should like to take you on a tour of Hilbert’s 23 problems.60 To
do so, however, would make this book unacceptably long. Besides,
there is a considerable literature, pitched at many different levels of
understanding, providing such tours.61 I shall only note in passing
that the very first of Hilbert’s problems was that of the Continuum
Hypothesis, which I mentioned in my previous chapter, and which
goes to the heart of the knotty issue of the nature of the real numbers,
and of Kronecker’s objections to them. There is a large literature on



HILBERT’S EIGHTH PROBLEM 189

the Continuum Hypothesis, too. A good library, or a good internet
search engine, will satisfy the curiosity of anyone who wants to look
into this fascinating issue.62

Only one of Hilbert’s problems is of direct concern to the topic
of this book, and that is the eighth. Here it is, as translated for the
Bulletin of the American Mathematical Society by Mary Winston
Newson.

8. Problems of Prime Numbers

Essential progress in the theory of the distribution of prime num-

bers has lately been made by Hadamard, de la Vallée Poussin, von

Mangoldt and others. For the complete solution, however, of the

problems set us by Riemann’s paper “Über die Anzahl der

Primzahlen unter einer gegebenen Grösse,” it still remains to prove

the correctness of an exceedingly important statement of Riemann,

viz., that the zero points of the function ζ (s) defined by the series

ζ s
s s s( ) = + + + +1

1

2

1

3

1

4
L

all have the real part 1
2 , except the well-known negative integral real

zeros. As soon as this proof has been successfully established, the

next problem would consist in testing more exactly Riemann’s infi-

nite series for the number of primes below a given number and,

especially, to decide whether the difference between the number of

primes below a number x and the integral logarithm of x does in fact

become infinite of an order not greater than 1
2  in x. Further, we should

determine whether the occasional condensation of prime numbers

which has been noticed in counting primes is really due to those

terms of Riemann’s formula which depend upon the first complex

zeros of the function ζ (s).

Some parts of this will be understood by readers who have fol-
lowed me this far. I hope all of it will make sense by the time I have
finished. The main point to note here is that the Riemann Hypothesis
was regarded as one of 23 large, difficult issues or problems facing
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mathematics in the twentieth century, and it was so regarded by David
Hilbert, probably the greatest mathematician doing productive work
in 1900.63

III. I briefly mentioned, in Chapter 10.iii, the reason for the promi-
nence of the Riemann Hypothesis at the turn of the century. The
main factor was that the Prime Number Theorem had now been
proved. Since 1896 it was known, with mathematical certainty, that,
yes indeed, π (N) ~ Li(N). Everyone’s attention now focused on that
twiddle sign. OK, so as N gets larger and larger without limit, π (N)
gets proportionally closer and closer to Li(N). But what is the nature
of that closeness? Is a better approximation possible? How approxi-
mate is the approximation anyway? What is the “error term”?

Free—now that the proof of the PNT was in the bag—to think
about these secondary matters, mathematicians found their eyes be-
ing drawn to the Riemann Hypothesis. Bernhard Riemann’s 1859 pa-
per had not, of course, proved the PNT, but it had mightily suggested
that it should be true, and even further had suggested an expression
for the error term. That expression involved all the non-trivial zeros
of the zeta function. Knowing where, precisely, those zeros lie thus
became a matter of pressing importance.

The mathematics of all this will become clearer as we go along,
but I think you will not be at all surprised to hear that those non-
trivial zeros are all complex numbers. In 1900 the following things
were known, with mathematical certainty, about the location—the
location on the complex plane, that is—of the non-trivial zeros.

� There is an infinity of them, all having real parts between 0
and 1 (exclusive). Using the complex plane to visualize this
(see Figure 12-1), mathematicians say that all non-trivial
zeros are known to lie in the critical strip. The Riemann Hy-
pothesis makes a much stronger assertion, that they all lie on



HILBERT’S EIGHTH PROBLEM 191

the line whose real part is one-half, that is, on the critical line.
“Critical strip” and “critical line” are common terms of art in
discussions of the Riemann Hypothesis, and from now on I
shall use them quite freely.

The Riemann Hypothesis (stated geometrically)

All non-trivial zeros of the zeta function
lie on the critical line.

� The zeros occur in conjugate pairs. That is, if a + bi is a zero,
then so is a − bi. In other words, if z is a zero, then so is its

–3 –2 –1 2 3
Real

–3i

–2i

–i

i

2i

3i

Imaginary

+

FIGURE 12-1 The critical strip (shaded) and the critical line (dashed).
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complex conjugate z . I defined “complex conjugate” and the
z-bar notation in Chapter 11.v. In yet other words, if there is a
zero above the real line, its mirror image below the real line is
also a zero (and, of course, vice versa).

� Their real parts are symmetrical about the critical line; that is,
a zero either has real part equal to 1

2  (in line with the Hypoth-
esis), or is one of a pair with real parts 1

2 +α  and 1
2 −α , for

some real number α  between 0 and 1
2 , and identical imagi-

nary parts. Real parts 0.43 and 0.57 are an example, or real
parts 0.2 and 0.8. Another way of saying this would be: sup-
posing there is any non-trivial zero not on the critical line, its
mirror image in the critical line must also be a zero. This fol-
lows from that formula in Chapter 9.vi. If one side of that
formula is zero, the other side must be too. Leaving aside inte-
ger values of s, where other terms in the formula misbehave or
go to zero, this formula says that if ζ (s) is zero, then ζ (1 −s)
must be zero too. Thus, if 1

2 +( ) +α it  is a zero of the zeta func-
tion, then so is 1

2 −( ) −α it , and so, by the previous bullet
point, is the conjugate 1

2 −( ) +α it .

Little more than this was known when Hilbert gave his address.
Riemann had suggested another twiddle formula for the approximate
number of zeros with imaginary part between zero and some large
number T (see Chapter 16.iv). However, this formula was not actu-
ally proved until 1905, by von Mangoldt. The Hypothesis had not
been entirely ignored. It turns up as a discussion topic in some math-
ematical literature of the 1890s, for example in the French problem
journal L’Intermediaire de Mathematiciens. To all intents and pur-
poses, though, the mathematicians of the nineteenth century left it to
those of the twentieth to take on Bernhard Riemann’s tremendous
and subtle conjecture.
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IV. The twentieth century was a very … busy century. A great deal
happened, in all spheres of human endeavor. This makes it seem, in
retrospect, awfully long, far longer than the mere one-and-a-half
standard lifetimes that a century actually is. Mathematics, however,
moves at a stately pace, and the deep problems tackled by modern
mathematicians yield up their secrets only very slowly and reluctantly.
The world of any given mathematical specialty is, too, a small one,
with its own heroes, folklore, and oral traditions binding the com-
munity together in both time and space. From speaking with living
mathematicians to gather material for this book, I came to feel that
the twentieth century was not such a very long span of time after all,
the great names of its early years almost within hailing distance.

I am writing these words, for example, just a week after talking to
Hugh Montgomery, a key figure in developments of the 1970s and
1980s (which I shall tell you about in the proper place). Hugh did
postgraduate work at Trinity College, Cambridge, in the later 1960s.
Among the faculty members he knew personally was John Edensor
Littlewood, 1885–1977, who obtained one of the earliest major ad-
vances toward the understanding of the Riemann Hypothesis in 1914.
“He tried to persuade me to take snuff,” reports Hugh, who still has in
his possession handwritten notes from Littlewood. Littlewood could
in theory have met and talked mathematics with Riemann’s friend
Richard Dedekind, who lived until 1916 and was mathematically ac-
tive almost to the end of his life … and who had studied under Gauss!
(I have not been able to discover if any such meeting took place. It is
not actually very likely. Dedekind retired from his professorship at
the Brunswick Polytechnic in 1894 and thereafter, according to
George Pólya64 “lived in a quiet way, seeing very few people.”)

Because of this strong impression of continuity across the pe-
riod, I am tempted to abandon a strictly chronological approach to
the twentieth century. That temptation is strengthened by the nature
of developments through that century. The story of the Riemann
Hypothesis in the twentieth century is not a single linear narrative,
but a number of threads, sometimes crossing, sometimes tangling
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with each other. This needs a little preliminary explanation; and the
explanation itself needs a preamble, a note about how mathematics
developed from 1900 to 2000.

V. Aside from having been distinguished by Hilbert’s Paris address,
the year 1900 is, of course, an arbitrary mark. Mathematics has devel-
oped steadily and continuously across the modern period. Mathema-
ticians did not go home from their New Years’ parties in the small
hours of January 1, 1900 (or 1901, if you like—see Chapter 6.ii) think-
ing, “It’s the twentieth century! We must move to a higher level of
abstraction!” any more than Europeans woke up on the morning of
May 30, 1453, thinking, “The Middle Ages are over! We’d better start
disseminating printed books, challenging the authority of the Pope,
and discovering the New World!” I should hate to have to stand be-
fore a jury of my peers and justify the term “twentieth-century math-
ematics.”

It is nonetheless true that the mathematics of the last few decades
has had a distinctive flavor, quite different from the flavor of math-
ematics as practiced by Gauss, Dirichlet, Riemann, Hermite, and
Hadamard. As well as it can be captured in a word, that flavor is alge-

braic. Here is the beginning of the first proposition in Alain Connes’
Noncommutative Geometry (1990), a pretty typical higher-math text
of the later twentieth century.

The classes of bounded random operators ql l X
( )

∈
 modulo equality

almost everywhere, endowed with the following algebraic rules,

form a von Neumann algebra W(V,F)….

Algebraic … algebra … And this in a book about geometry! (The
11th word in the statement of the book’s final theorem, by the way, is
“Riemannian.”)
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What has been happening these past few decades, very roughly, is
this. For most of its development, mathematics has been firmly rooted
in number. Most of nineteenth-century math was concerned with
numbers: whole numbers, rational numbers, real numbers, complex
numbers. In the course of this development, new mathematical ob-
jects were created, or the scope of existing ones extended—functions,
spaces, matrices—and powerful new tools devised for the manipula-
tion of these objects. Still, it was all about numbers. A function maps
one set of numbers into another set. The squaring function maps 3,
4, 5 into 9, 16, 25; Riemann’s zeta function maps 0, 1 + i, 2 + 2i into
− 1

2 , 0.58216 − 0.92685i, 0.86735 − 0.27513i. Similarly, a space is a set
of points, known by their coordinates, which are numbers. A matrix
is an array of numbers, and so on. (I shall introduce matrices in Chap-
ter 17.iv.)

In twentieth-century math the objects that had been invented to
encapsulate important facts about number themselves became the ob-

jects of inquiry, and the techniques that had been developed for inves-
tigating numbers and sets of numbers were turned on those objects
themselves. Mathematics broke free, as it were, from its mooring in
number and soared up to a new level of abstraction.

Classical analysis, for example, concerns itself with the limit of
an infinite sequence of numbers or points (with “point” defined by
coordinates, which are numbers). A typical product of the twentieth
century, by contrast, was “functional analysis,” where the fundamen-
tal object of study is sequences of functions, which might or might
not converge, and where a function is itself liable to be treated as a
“point” in a space of infinitely many dimensions.

Mathematics even turned on itself to such a degree that the very
techniques of investigation and proof became objects of inquiry.
Some of the most important theorems of twentieth-century math-
ematics were concerned with the completeness of mathematical sys-
tems (Kurt Gödel, 1931) and the decidability of mathematical propo-
sitions (Alonzo Church, 1936).
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These momentous developments have not yet, even at the open-
ing of the twenty-first century, been reflected in mathematics educa-
tion, at least up to college-entrance level. Perhaps they cannot be.
Mathematics is a cumulative subject. Every new discovery adds to the
body of knowledge, and nothing is ever subtracted. When a math-
ematical truth has been discovered it is there forever, and every suc-
ceeding generation of students must learn it. It never (well, hardly
ever) becomes untrue or irrelevant—though it might become un-
fashionable, or be subsumed as a particular case of some more gen-
eral theory. (And note that in mathematics, “more general” does not
necessarily mean “more difficult.” There is a theorem in projective
geometry, Desargues’ Theorem, which is easier to prove in three di-
mensions than in two. Chapter 7 of H.S.M. Coxeter’s Regular

Polytopes contains a theorem65 that is easier to prove in four dimen-
sions than in three!)

A bright young American turning up for a first class as a college
math major learns math pretty much as it was known to the young
Gauss, with perhaps a few forward excursions. Since I am pitching
my book to readers at about that level, the mathematics you are read-
ing here has a strong nineteenth-century flavor to it. I shall cover all
developments down to the present day in these narrative chapters,
explaining them as best I can, but my mathematical chapters do not
often go beyond 1900.

VI. The story of the Riemann Hypothesis in the twentieth century
is the story of an obsession that gripped most of the great mathema-
ticians of the age sooner or later. Instances of this obsession are abun-
dant, as will become clear over the next few chapters. Here I shall just
give a single example.

David Hilbert, as I have already described, listed the Riemann
Hypothesis eighth in his list of 23 problems for mathematicians of
the twentieth century to concentrate their efforts on. That was in
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1900, before the obsession took hold. His state of mind a few years
later is revealed in the following story, told by his younger colleague
George Pólya.

The thirteenth-century German emperor Frederick Barbarossa,

who died while on a crusade, was popularly supposed by Germans

to be still alive, asleep in a cave deep in the Kyffhäuser Mountains,

ready to awake and emerge when Germany needed him. Someone

asked Hilbert what he would do if, like Barbarossa, he could be re-

vived after a sleep of several centuries. Hilbert: “I would ask whether

anyone had proved the Riemann Hypothesis.”

And this was not an era short of challenging problems. Fermat’s
Last Theorem (that there are no whole-number solutions to the equa-
tion xn + yn = zn when n is greater than 2, proved in 1994) was still
open; so was the Four Color Theorem (that four colors are sufficient
to color any map in the plane, no two adjacent regions having the
same color, proved in 1976); so was Goldbach’s Conjecture (that ev-
ery even number greater than 2 is the sum of two primes, still un-
proved); so were many lesser but long-standing problems, conjec-
tures, and conundrums. The Riemann Hypothesis soon came to
tower over them all.

The obsession took different mathematicians in different ways,
according to their mathematical inclinations. Thus a number of
threads developed during the course of the century—different ap-
proaches to investigating the Hypothesis, each originated by some
one person, then carried forward by others, the threads sometimes
crossing and tangling with each other. There was, for example, the
computational thread, in which mathematicians set about actually
calculating the value of more and more zeros, and developing better
methods for doing so. There was an algebraic thread, started by Emil
Artin in 1921, attempting to take the Riemann Hypothesis by a flank-
ing movement through an algebraic topic called Field Theory. Later
in the century, as a result of a remarkable encounter I shall write about
in due course, a physical thread emerged, linking the Hypothesis to
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the mathematics of particle physics. While all this was going on, ana-

lytic number theorists were still working steadily away, continuing
the tradition begun by Riemann himself, tackling the Hypothesis with
the tools of complex function theory.

And research into the primes themselves went on, too, without
any particular application to the Hypothesis but still, very often, with
the hope that new insights into the distribution of the primes might
throw light on why the Hypothesis is true—or, as the case may be,
false. Key advances here were the development of a probabilistic
model for the distribution of primes in the 1930s, and Selberg’s “el-
ementary” proof of the Prime Number Theorem in 1949, which I
described in Chapter 8.iii.

In covering these developments I shall try to make it clear at ev-
ery point which thread I am talking about, though sometimes skip-
ping carelessly from one to another to maintain the overall chrono-
logical narrative. Let me begin with a brief introductory remark about
the computational thread, since that is the easiest for a non-
mathematician to understand. What are the actual values, as num-
bers, of the non-trivial zeros? How can they be calculated? What are
their overall statistical properties, taken as a collectivity?

VII. The first concrete information about the zeros was provided
by the Danish mathematician Jørgen Gram, to whom I gave a passing
mention in Chapter 10. An amateur mathematician with no univer-
sity position—his day job was, like the poet Wallace Stevens’s, as an
insurance company executive—Gram seems to have been doodling
for some years with methods of actually calculating the location of
the non-trivial zeros (this was long before the age of computers, of
course). In 1903, after settling on a fairly efficient method, he pub-
lished a list of the “first” 15 zeros—the ones closest to, and above, the
real line. Gram’s zeros are shown dotted along the critical line in
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Figure 12-2. His list, which contained some slight inaccuracies in the
right-most digits, begins

1
2 14 134725+ . i , 1

2 21 022040+ . i , 1
2 25 010856+ . i ….

0 1

10i

20i

30i

40i

50i

60i

FIGURE 12-2 Gram’s zeros.

Every one of these numbers, as you can see, has real part one-half.66

(And the existence of each one, of course, implies a conjugate one

below the real axis: 1
2 14 134725− . i , and so on. I shall take this as un-

derstood and not mention it again until it becomes important, in
Chapter 21.) Therefore, as far as they go, they confirm the truth of
the Riemann Hypothesis. But of course they don’t go very far. The
number of zeros was known to be infinite—that was implicit in
Riemann’s 1859 paper. Do they all have real part one-half? Riemann
thought so. That was his mighty Hypothesis. At this point, however,
no one had a clue.

When Gram’s list appeared, mathematicians must have looked
on it in fascinated awe. The secret of the distribution of prime num-
bers, which had engaged the attention of mathematicians since the
days of the legendary Gauss, was locked up somehow in this string of
numbers: 1

2 14 134725+ . i , 1
2 21 022040+ . i , 1

2 25 010856+ . i , …. But
how? Their real parts were certainly one-half, as Riemann had hy-
pothesized; but the imaginary parts showed no apparent order or
pattern.
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I said “mathematicians must have….” I really should have said “a
few continental mathematicians must have….” The obsession with
Riemann’s Hypothesis that seized mathematicians during the twenti-
eth century was only just beginning to gather strength in 1905. In
some parts of the world, it was hardly known. In the next part of my
historical narrative I shall take the reader to England, in the high
Edwardian summer of her imperial glory. But first let me show you
what the zeta function actually looks like.
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13

THE ARGUMENT ANT

AND THE VALUE ANT

Supposing, as I have tried to per-
suade you, that complex numbers are a perfectly straightforward ex-
tension of ordinary real numbers, obeying all the normal rules of
arithmetic with the single extra one that i 2 = −1; and recalling that a
function just turns one range of numbers—its domain—into another;
is there any reason there should not be functions of complex num-
bers? No reason at all.

The squaring function, for example, works just fine for complex
numbers, following the rule for multiplication. The square of −4 + 7i,
for example, is (−4 + 7i) × (−4 + 7i), which is 16 − 28i − 28i + 49i 2,
i.e., −33 − 56i. Table 13-1 shows a sample of the squaring function
for some random complex numbers.67

TABLE 13-1 The Squaring Function.

z z 2

−4 + 7i −33 − 56i

1 + i 2i

i −1

0.174 − 1.083i −1.143 − 0.377i

I.
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It may be hard to believe at this point, but the study of “functions
of a complex variable” is one of the most elegant and beautiful
branches of higher mathematics. All the familiar functions of high
school math can easily have their domains extended to cover all, or
most, of the complex numbers. For example, Table 13-2 gives a
glimpse of the exponential function for some complex numbers.

TABLE 13-2 The Exponential Function.

z e z

−1 + 2.141593i −0.198766 + 0.30956i

3.141593i −1

1 + 4.141593i −1.46869 − 2.28736i

2 + 5.141593i 3.07493 − 6.71885i

3 + 6.141593i 19.885 − 2.83447i

Note that, just as before, when I choose the arguments to go up
by addition—as of course I do, in this case adding 1 + i each time—
the function values go up by multiplication, in this case by
1.46869 + 2.28736i. If I had picked the arguments to go up by adding
1 each time, then of course the values would have multiplied by e.
Note also that I slipped into this table one of the most beautiful iden-
tities in all of math.

eπ i = −1

Gauss is supposed to have said—and I wouldn’t put it past him—that
if this was not immediately apparent to you on being told it, you
would never be a first-class mathematician.

How on earth is it possible to define a complex power for e, or
any other number? By a series, that’s how. Expression 13-1 shows the
actual definition of ez for any number z whatsoever, real or complex.

e z
z z zz = + +
×

+
× ×

+
× × ×

+1
1 2 1 2 3 1 2 3 4

2 3 4

L

Expression 13-1
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Miraculously (it seems to me) this infinite sum converges for ev-
ery number. The denominators grow so fast they eventually swamp
any power of any number. Equally miraculously, if z is a natural num-
ber, the infinite sum works out to exactly what the basic meaning of
“power” would lead you to expect, though from just looking at Ex-
pression 13-1, there is no obvious reason why it should. If z is 4, it
works out to exactly the same as e × e × e × e, which is what e4 is sup-

posed to mean.
Let me just feed π i into Expression 13-1, to show how it con-

verges. If z is π i, then z2 is − π 2, z3 is − π 3i, z4 is π 4, z5 is π 5i, and so
on. Feeding these into the infinite sum, and calculating the actual
powers of π  (to just six decimal places for simplicity’s sake), the
sum is

e i

i i

iπ = + −

− + + −

1 3 141592

9 869604

2

31 006277

6

97 409091

24

306 019685

120

.

. . . .
L

If you add up the first 10 terms of this, you have
−1.001829104 + 0.006925270i. If you add up the first 20, you have
−0.9999999999243491 − 0.000000000528919i. Sure enough, it is con-
verging on −1. The real part is closing in on −1, and the imaginary
part is disappearing.

Can the log function be extended to complex numbers, too? Yes,
it can. It is, of course, just the inverse of the exponential function. If
ez = w, then w = log z. Unfortunately, as with square roots, you run
into the many-valued function quicksand unless you take precau-
tions. This is because, in the complex world, the exponential function
sometimes gives the same value for different arguments. The cube
of −1, for example, is, by the rule of signs, −1; so if you cube both
sides of eπ i = −1, you get e3π i = −1; so the arguments π i and 3 π i both
yield the same function value of −1, just as −2 and +2 both yield value
4 under the squaring function. So what is log(−1)? Is it π i? Or 3π i?

It’s π i. To stay out of trouble, we restrict the imaginary part of
the function value to between −π , exclusive, and π , inclusive. Then
every non-zero complex number has a log, and log(−1) = π i. In fact,
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in the symbols I introduced in Chapter 11.v, log z = log |z | + i Am(z),
with Am(z) measured in radians, of course. Table 13-3 is a sample of
the log function, using six decimal places.

TABLE 13-3 The Log Function.

z log z

−0.5i −0.693147 − 1.570796i

0.5 − 0.5i −0.346574 − 0.785398i

1 0

1 + i 0.346574 + 0.785398i

2i 0.693147 + 1.570796i

−2 + 2i 1.039721 + 2.356194i

−4 1.386295 + 3.141592i

−4 − 4i 1.732868 − 2.356194i

Here the arguments go up by multiplication (each row is 1 + i

times the previous row) while the function values go up by addition
(of 0.346574 + 0.785398i each time). So, it’s a log function. The only
wrinkle is, when the imaginary part of the function value gets bigger
than π , as it does in going from argument −4 to argument −4 − 4i,
you have to subtract 2 π i to keep it in range, 2 π  radians being 360
degrees. (Recall from Chapter 11.v that radians are just mathemati-
cians’ favorite way to measure angles.) This doesn’t cause any prob-
lems in practice.

II. Since there is an exponential function for complex numbers, and
a log function, there doesn’t seem to be any reason we can’t raise any
complex number to any complex power. By Power Rule 8 in Chapter
5.ii, any real number a is just elog a, so by Power Rule 3, ax is just ex log a.
Can’t we just extend this idea into the realm of complex numbers,
and say that for any two complex numbers z and w, zw just means
ew log z?
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We certainly can, and do. If you wanted to raise −4 + 7i to the
power of 2 − 3i, you’d first calculate the log of −4 + 7i, which turns
out to be around 2.08719 + 2.08994i. Then you’d multiply that by
2 − 3i, getting answer 10.4442 − 2.08169i. Then you’d raise e to that
power, giving final result −16793.46 − 29959.40i. So

(−4 + 7i)2−3i = −16793.46 − 29959.40i

Piece of cake. As another example, since eπ i = −1, taking the square

root of both sides gives i e
i

=
π

2 . If you now raise both sides to the

power of i, remembering Power Rule 3 again, you get i ei =
−

π

2 . Note

that this is a real number, equal to 0.2078795763….
Since I can raise any complex number to the power of any com-

plex number, it should be easy to raise a real number to a complex
power. Given a complex number z, I can, therefore, calculate 2z, 3z, 4z,
and so on. You can see where this is leading. Can we extend the do-
main of the zeta function

ζ s
s s s s s s s( ) = + + + + + + + +1

1

2

1

3

1

4

1

5

1

6

1

7

1

8
K

into the world of complex numbers? Of course we can. I tell you, with
complex numbers you can do anything.

III. Since the formula for zeta is still an infinite sum, the question
of convergence arises. It turns out that the sum converges for any
complex number whose real part is greater than one. Mathematicians
say “in the half-plane Re(s) > 1,” where Re(s) is understood to mean
“the real part of s.”

As with the zeta function for real arguments, though, mathemati-
cal tricks can be used to extend the domain of the zeta function back
into regions where the infinite sum doesn’t converge. After applying
those tricks, you have the complete zeta function, whose domain is all
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the complex numbers, with a single exception at s = 1. There, just as I
started out showing with that deck of cards in Chapter 1, the zeta
function has no value. Everywhere else, it has a single, definite value.
There are some places, of course, where that value is zero. We already
know that. Those graphs in Chapter 9.iv show the zeta function tak-
ing the value zero at all the negative even numbers −2, −4, −6, −8, ….
I have already dismissed these arguments as not being very impor-
tant. They are the trivial zeros of the zeta function. Could it be that
there are some complex arguments for which the value of the zeta
function is zero? And that these are the non-trivial zeros mentioned
in the Hypothesis? You bet; but I am getting a little ahead of the story.

IV. Forty years ago the brilliant but eccentric Theodor Estermann68

wrote a textbook titled Complex Numbers and Functions, which con-
tains just two diagrams. “I … have avoided any appeal to geometric
intuition,” announced the author in his preface. There has been a
small number of kindred spirits, but the generality of mathemati-
cians do not follow Estermann’s approach. They tackle the theory of
complex functions in a strongly visual way. Most of us feel that com-
plex functions are easier to get to grips with if you have some
visual aids.

How then can complex functions be visualized? Let’s take the
simplest non-trivial complex function, the squaring function. Is there
any way to get a handle on what it looks like?

In the first place, ordinary graphs are no help. In the world of real
numbers you can graph a function like this. Draw a line to represent
the arguments (remember the real numbers live on a line). Draw an-
other line at right angles to represent the function values. To repre-
sent the fact that this function turns the number x into the number y,
go east from argument zero a distance x (west if x is negative); then
go north from value zero a distance y (south if y is negative). Mark
the spot. Repeat for as many function values as you care to compute.
This gives you a graph of the function. Figure 13-1 shows an example.
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1 2 3 4
x

5

10

15

x
2

3
2

= 9

FIGURE 13-1 The function x2.

This can’t be made to work for complex functions. The argu-
ments need a two-dimensional plane to be laid out on. The function
values need another two-dimensional plane. So to get a graph, you
need four dimensions of space to draw it in: two for the argument,
two for the function value. (In four dimensions of space, believe it or
not, two flat two-dimensional planes can intersect in a single point.
Compare the fact, utterly inconceivable to the inhabitants of a two-
dimensional universe, that in three dimensions, two non-parallel
straight lines need not intersect at all.)

To compensate us for this disappointment, there are things you
can do to make pictures of complex functions. Remember the basic
thing about a function; it turns one number (the argument) into an-



208 PRIME OBSESSION

other number (the value). Well, the argument number is a point
somewhere on the complex plane; and the function value is some
other point. So a complex function sends all the points in its domain
to a bunch of other points. You can just pick some points and see
where they go.

Figure 13-2, for example, shows some numbers forming the sides
of a square in the complex plane. I’ve marked the corners a, b, c, and
d. They are actually the complex numbers −0.2 + 1.2i, 0.8 + 1.2i,
0.8 + 2.2i, and −0.2 + 2.2i. What happens to these numbers if I apply
the squaring function? If you multiply −0.2 + 1.2i by itself, you get
−1.4 − 0.48i; so that’s the function value for a. Squaring b, c, and d
gives you values for the other corners—I have marked them as A, B,
C, and D. If you repeat this for all the points along the sides of the
square, and the points making up the grid inside, you get the dis-
torted square I have shown in Figure 13-2.

–4 –1
Real

i

3i

Imaginary

d

a

c

b

B

C

D

A

FIGURE 13-2 The function z2 applied to a square.
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V. It helps with complex functions to think of the complex plane as
an infinitely stretchable sheet of rubber and ask what a function does
to this sheet. You can see from Figure 13-2 that the squaring function
stretches the sheet counter-clockwise round the zero point, while si-
multaneously stretching it outward from that point for the numbers
I’ve shown. The number 2i, for example, whose natural home is on
the positive-imaginary (north) axis, when you square it, goes to −4,
which is on the negative-real (west) axis, and twice as far from the
zero point. In turn, −4, when you square it, gets stretched round to
16, on the positive-real (east) axis, and even further from zero. By the
rule of signs, −2i, down on the negative-imaginary (south) axis, gets
winched all the way round to −4. Because of the rule of signs, in fact,
every function value turns up twice, from two arguments. Remember
that −4 is not only the square of 2i, it is also the square of −2i.

Bernhard Riemann, who seems to have had a very powerful vi-
sual imagination, conceived of the matter like this. Take the entire
complex plane. Make a cut along the negative real (west) axis, stop-
ping at the zero point. Now grab the top half of that cut and pull it
round counter-clockwise, using the zero point as a hinge. Stretch it
right round through 360 degrees. Now it’s over the stretched sheet,
with the other side of the cut under the sheet. Pass it through the
sheet (you have to imagine that the complex plane is not only infi-
nitely stretchable, but also is made of a sort of misty substance that
can pass through itself) and rejoin the original cut. Your mental pic-
ture now looks something like Figure 13-3. That is what the squaring
function does to the complex plane.

This is not a fanciful or trivial exercise. From it, Riemann devel-
oped a whole theory, called the theory of Riemann surfaces. It con-
tains some powerful results and gives deep insights into the behavior
of complex functions. It also yokes function theory to algebra and
topology, two key growth areas of twentieth-century math. It is, in
fact, a typical product of Riemann’s bold, fearless, and ever-original
imagination—a fruit of one of the greatest minds that ever existed.
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VI. I am going to take a much simpler approach to illustrating com-
plex functions. I’d like you to meet my pal the argument ant, shown
in Figure 13-4.

FIGURE 13-4 The argument ant.

The argument ant is awfully hard to see, because he is infinitesi-
mal in size. If you could see him, however, he would look just like a
regular ant—a Camponotus japonicus worker, to be precise—with the
regulation number of appendages, antennae, etc. In one of the front-
most appendages, which for convenience we may call a “hand,” the
argument ant holds a small gadget rather like a beeper, or a mobile
telephone, or one of those global positioning devices that can tell you

FIGURE 13-3 The Riemann surface corresponding to the function z2.
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exactly where you are. This gadget (Figure 13-5) has three displays.
The first display, labeled “Function,” shows the name of some func-
tion: z2, log z, or whatever the gadget might be set to. The second
display, labeled “Argument,” shows the point—the complex num-
ber—the argument ant is currently standing on. The third display,
labeled “Function value,” shows the value of the function at that ar-
gument. So the argument ant always knows exactly where he is; and,
for any given function, he knows where the point he’s standing on
gets sent to by the function.

i

i

FIGURE 13-5 The ant’s gadget.

I have set the gadget to show the zeta function, and I am going to
let the argument ant wander freely over the complex plane. When
“Function value” shows zero, he will be standing on a point (“Argu-
ment”) that is a zero of the zeta function. I can have him mark those
points for us with a magic marker he carries in a small pouch under
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his thorax. Then we shall know where the zeros of the zeta function
are.

In fact, I am going to have the argument ant do a little bit more
work than that. I am going to have him mark all arguments that give a

pure-real or pure-imaginary function value. An argument whose value
is 2 or −2, or 2i or −2i, will be marked; a point whose value is 3 − 7i

will not. To put it another way, all those points that zeta will send to
the real line or the imaginary line will be marked. And, of course,
since the real line and the imaginary line cross at zero, the arguments
where these lines cross, will be zeros of the zeta function. In this way,
I can get some kind of picture of the zeta function.

Figure 13-6 shows the result of this little odyssey. The straight
lines in it show the real and imaginary axes and the critical strip. All
the curved lines are made up of points that are sent to either the real
or imaginary axis. At the point where each curve leaves the diagram
at left or right, I have written in the function value corresponding to
that point.

Trying to imagine what the zeta function does to the complex
plane—in the sense of Figure 13-3, which shows what the squaring
function does to it—is a rather demanding mental exercise. While
the squaring function wraps the plane over itself into the double-
sheeted surface of Figure 13-3, the zeta function does the equivalent
thing an infinite number of times, to give an infinite-sheeted surface.
If you find this difficult to visualize, don’t feel bad about it. You need
long practice over several years to get an intuitive feel for these func-
tions. As I said, I shall take a simpler approach here.

The argument ant has marked up the complex plane to give the
patterns of Figure 13-6. Now I shall set him to wandering along some
of those curves. Let’s suppose he starts out standing on the point −2.
Since this is a zero of the zeta function—one of the trivial zeros—the
“Function value” display reads 0. Now he starts heading west along
the real axis. The function value begins to creep up from zero.

Shortly after he passes the point −2.717262829, heading west,
“Function value” reaches the number 0.009159890…. Then it starts
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FIGURE 13-6 The argument plane, showing points that zeta

“sends to” the real and imaginary axes.
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to decline back down to zero again. Since you have read Chapter 9,
you can guess what is going to happen. The function value will de-
cline all the way down to zero, which it will reach at argument −4.

That wasn’t very interesting. Let’s start again. From −2, with the
function value reading 0, the argument ant heads west to that point
where the function value maxed. Instead of continuing west to −4, he
makes a sharp right turn and heads north along the top half of that
parabola shape. Now the function value will go on increasing, past
0.01, then past 0.1, reaching 0.5 shortly after he crosses the imaginary
axis. As he heads out east on that upper arm of the parabola, it con-
tinues to increase. As he leaves the page, heading pretty much directly
due east now, the display reads 0.9990286. It is still increasing, but
awfully slowly, and he has to walk all the way out to infinity before it
shows 1.

Since the argument ant now finds himself at infinity, he may as
well turn round and come back. Instead of coming back along the
same path, though, I’ll have him come back along the positive real
axis. (Don’t think about this too much. For these purposes, there is
really only one “point at infinity,” so whenever you find yourself there,
you can head back into the realm of actual finite numbers from any
direction at all.) The “Function value” display increases now, show-
ing 1.0009945751 … as he re-enters the diagram, 1.644934066848 …
as he passes 2 (remember the Basel problem?) and then really soaring
as he approaches 1.

As he steps on the number 1, a buzzer goes off in the gadget he is
holding, and the “Function value” display shows a big bright red flash-
ing infinity sign, “∞.” If he looks more closely at the display, the argu-
ment ant will notice a curious thing. At the right of the infinity sign, a
small letter “i” is flickering on and off very fast. Simultaneously, to the
left of the infinity a minus sign is flickering on and off, also very fast,
and out of sync with the flickering “i.” It is as if the display were trying
to show four different values all at the same time: ∞, −∞, ∞i, and −∞i.
Curious!
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The reason is that the argument ant now has three choices (other
than to go back the way he came). If he just goes forward, heading
west along the real axis until he comes home to the zero at argu-
ment −2, he will see the function values turn into large negative num-
bers, like minus 1 trillion, then rise very fast to moderate-sized nega-
tive numbers (minus 1,000, minus 100) eventually coming up to −1,
then to −0.5 as he steps on the zero point (because ζ (0) = −0.5), and
eventually back to zero at argument −2.

If, on the other hand, he takes a sharp right turn northwards at 1
and traverses the top half of that oval shape around the zero point, he
will find from the display that the function values are ascending the
negative imaginary axis, from numbers like −1,000,000i, up
through −1,000i to −10i, −5i, −2i, then to −i. Shortly before he crosses
the imaginary axis the display reads −0.5i. Then, as he heads to the
zero at −2, the function value rises to, of course, zero.

Just to help you keep your bearings, and to anchor this firmly in
the world of functions (which I first introduced in Chapter 3 by way
of tables),Table 13-4 shows that last walk, counterclockwise round
the top of the oval shape. I have picked the arguments for this table to
have the following amplitudes (in degrees, not radians): 0°, 30°, 60°,
90°, 120°, 150°, and 180°. All numbers are rounded to four decimal
places in Table 13-4.

TABLE 13-4 The Argument Ant Traverses
the Top of the Oval in Figure 13-6.

z ζ (z)

1 −∞i

0.8505 + 0.4910i −1.8273i

0.4799 + 0.8312i −0.7998i

0.9935i −0.4187i

−0.5737 + 0.9937i −0.2025i

−1.3206 + 0.7625i −0.0629i

−2 0
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If the ant had taken a left turn at 1, the function values would
have come back to zero down the positive imaginary axis instead,
through 1.8273i, 0.7998i, and so on.

VII. The argument ant can start his walk from any other zero of the
function. I have shown them all in Figure 13-6 with teeny circles. To
help the ant know where he is going, I have shown the actual values
that are on the “Function value” display at the moment he leaves the
diagram along any particular line. (To save space, I have written “m”
for “million” in these values. “i,” of course, just means i.) Notice the
pattern as he goes up the left-hand edge of the diagram, that is,
through arguments whose real part is −10. The first line to leave the
diagram at this edge is one that maps into the negative real axis. The
next maps into the positive imaginary axis; the next, into the positive
real axis; the next, into the negative imaginary axis, … and so on, this
pattern repeating itself.

The lines that leave the diagram on the right-hand edge, by con-
trast, are all mapping into the positive real axis. To the right of the
critical strip, in fact, this is a pretty dull function. This whole vast
eastern region maps into a tiny area around the 1 point. It is not as
“busy” as the left-hand western region; and that western region is not
as interesting as the critical strip. With the zeta function, all the inter-
esting stuff happens in the critical strip. (For another illustration of
this general truth, see my account of the Lindelöf Hypothesis in the
Appendix.)

Figure 13-6 is really the heart of this book. There you actually see

the Riemann zeta function, as well as a complex function can be seen.
I urge you to spend some time in silent contemplation of this dia-
gram, and to venture out on a few of those ant-walk exercises. The
functions of higher mathematics are very wonderful things. They
don’t yield up their secrets easily. Some, like this one, can offer a life-
time of study. I can by no means claim to be an expert on the zeta
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function. I don’t have a comprehensive collection of zeta-function
literature, having relied mainly on university libraries and personal
acquaintances for the facts in this book. Still, even without trying
hard, I seem to have acquired my own copies of E.C. Titchmarsh’s
The Theory of the Riemann Zeta-function (412 pages), S.J. Patterson’s
An Introduction to the Theory of the Riemann Zeta-Function (156
pages), and Harold Edwards’s indispensable Riemann’s Zeta Function

(316 pages, and I have three copies of this one—that’s a long story),
as well as a thick folder of photocopied articles from various journals
and periodicals. There must be a score of other full-length books
plumbing the mysteries of this function, and thousands of articles.
This is serious math.

And, best of all, you can see in that diagram the Riemann Hy-
pothesis shining clear. Look!—the non-trivial zeros actually do all lie
on the critical line. I have not shown the critical line in Figure 13-6,
but obviously it lies halfway down the critical strip, like a highway
median.

VIII. Before leaving the topic of visualizing zeta, just a couple more
pictures. First, note that the general pattern you see in Figure 13-6
continues all the way up, for as far as we know.

To illustrate this, Figure 13-7 shows a block of zeros up around
1
2 + 100i. You will notice that they are packed closer together than the

ones in Figure 13-6. In fact the average spacing between the eight
zeros shown here is 2.096673119…. For the five zeros shown in Fig-
ure 13-6, the average spacing was 4.7000841…. So up here around
100i on the imaginary axis, the zeros are packed more than twice as
densely as down around 20i.

There is in fact a rule for the average spacing of zeros at height T
in the critical strip. It is ~ 2 π ⁄ log(T ⁄ 2π ). If T is 20 this works out to
5.4265725.… If T is 100 it is 2.270516724.… You can see that the rule
is not very precise, though, as the twiddle sign tells you, it gets better
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for bigger numbers. Andrew Odlyzko has published a list of 10,000
zeros up in the neighborhood of 1

2  + 1,370,919,909,931,995,308,897i.
In that neck of the woods,  2 π ⁄ log(T ⁄ 2 π ) is worth about
0.13416467. The actual average of the 9,999 spaces is 0.13417894….
Not bad.

Next, note a point that will be of some importance later in the
book. There is a certain symmetry about the real (i.e., east-west) axis.
If I extended Figure 13-6 down south of the real axis, the lines would
be mirror images of what they are north of it. The only difference is
that while the real numbers I have written in on Figure 13-6 are just
the same south as they are north, the imaginary numbers have their
signs flipped. To put it mathematically, if ζ (a + bi) = u + vi, then

ζ (a − bi) = u − vi. In proper complex-number symbols, ζ ζz z( ) = ( ) .

FIGURE 13-7 A higher region of the argument plane.
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The important thing that follows is: If a + bi is a zero of the zeta func-
tion, then so is a − bi.

IX. Finally, a pictorial representation of the Riemann Hypothesis—
or at any rate, of the fact that there are lots of zeros on the critical line.

To understand Figure 13-8, you should remember that Figures
13-6 and 13-7 were pictures of the argument plane. A function of a
complex variable sends one set of complex numbers, the arguments,
to another set, the values. Since the complex numbers can be laid out
as points on a plane, you can think of a function as sending points of
one plane, the argument plane, to points of another plane, the value
plane. The zeta function sends the point 1

2  + 14.134725i in the argu-
ment plane to the point 0 in the value plane. Look back at Figure
13-2. There I showed both the argument plane and the value plane
together, as if they were transparencies, one laid on top of the other.

Figures 13-6 and 13-7 are pictures of the argument plane, show-
ing which arguments are sent to interesting values. The argument ant
lives on the argument plane—whence his name. I had him wander-
ing over the argument plane, noting where the argument points are
sent to by the zeta function. I actually had him wandering along
strange curves and loops, made up of points that are sent to (i.e.,
whose function values are equal to) pure real or pure imaginary num-
bers. I shall call these “‘sent to’ pictures of the argument plane.”

An alternative way to show a function is with a “comes from”
picture of the value plane.69 Instead of showing, as I did in Figures
13-6 and 13-7, which arguments are sent to interesting values (in
those cases, pure-real and pure-imaginary numbers), I can present a
picture of the value plane, showing which value points come from

interesting arguments.
Let us imagine that the argument ant has a twin brother who

lives on the value plane. This brother is, of course, the value ant. Let’s
further suppose that the two brothers are in instantaneous radio com-
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munication; and that by this means they synchronize their move-
ments, so that whichever argument the argument ant is standing on
at any moment, the value ant is standing on the corresponding value
in the value plane. If the argument ant is standing on 1

2  + 14.134725i,
for example, with his gadget set to the zeta function, then the value
ant is standing on 0 in his plane, the value plane.

Now suppose that the argument ant, instead of following those
fancy loops and whorls in Figure 13-6 (which send the value ant on
dull hikes up and down the real and imaginary axes), takes a walk
straight up the critical line, heading due north from argument 1

2 .
What path will the value ant follow? Figure 13-8 shows you. His path
starts out at ζ 1

2( ) , which, as I showed in Chapter 9.v, is
−1.4603545088095…. Then he does a sort of half-circle counter-
clockwise below the zero point, then turns and loops clockwise

–1 1 2
Real

–1

1

Imaginary

FIGURE 13-8 The value plane, showing points

that come from the critical line.



THE ARGUMENT ANT AND THE VALUE ANT 221

around 1. He heads to zero and passes through it (that’s the first
zero—the argument ant has just passed 1

2  + 14.134725i). Then he
keeps going round in clockwise loops, passing through the zero point
every so often—whenever his twin on the argument plane steps on a
zero of the zeta function. I stopped his walk when the argument ant
reached 1

2  + 35i, because that’s as far as Figure 13-6 goes. By that
point, the curve has passed through zero five times, corresponding to
the five non-trivial zeros in Figure 13-6. Notice that points on the
critical line have a strong tendency to map to points with positive real
part.

Once again, Figure 13-8 shows the value plane. It is not a “sent to”
diagram like Figures 13-6 and 13-7; it is a “comes from” diagram,
showing what the zeta function does to the critical line, just as Figure
13-2 showed what the squaring function does to that little checkered
box. If you want to be properly mathematical about it, that looping
curve in Figure 13-8 is ζ (critical line), the set of all points that come
from points on the critical line. The curves in Figures 13-6 and 13-7
are ζ −1(real and imaginary axes), the set of all points that are sent to
the real and imaginary axes. The notation “ζ (critical line)” means
“all zeta function values for arguments on the critical line.” Con-
versely, “ζ −1(real and imaginary axes)” means “all arguments whose
zeta function values are on the real or imaginary axis.” Note that the
expression “ζ −1” is used here in the special function-theory sense of
“inverse function.” Don’t confuse it with a−1 as in Power Rule 8, which
has the meaning 1 ⁄ a, the arithmetic reciprocal of a. This is a different
usage—another case of overloading math symbols, like the use of π

for both 3.14159… and the prime counting function.
Speaking very generally, “sent to” pictures of the argument plane

are better tools for understanding a function in its broad properties
(e.g., where its zeros are). “Comes from” pictures of the value plane
are more useful for exploring particular aspects or curious features of
the function.70

The Riemann Hypothesis states that all the non-trivial zeros of
the zeta function lie on the critical line—the line of complex num-
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bers with real part one-half. All the non-trivial zeros I have shown in
this chapter do indeed lie on that line, as you can see from Figures
13-6, 13-7, and 13-8. Of course, that doesn’t prove anything. The zeta
function has an infinite number of non-trivial zeros, and no diagram
could show them all. How do we know that the trillionth one, or the
trillion trillionth, or the trillion trillion trillion trillion trillion tril-
lionth lies on the critical line? We don’t, not from drawing diagrams
anyway. What’s it all got to do with prime numbers? To answer that, I
shall have to turn the Golden Key.
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IN THE GRIP OF AN OBSESSION

Göttingen was not, of course, the
only place where first-class mathematics was being done in the early
years of the twentieth century. Here is the English mathematician
John Edensor Littlewood, 60-odd years before he offered snuff to
Hugh Montgomery. As a young mathematician at Trinity College,
Cambridge, in 1907, Littlewood was casting around for a good meaty
problem on which to do postgraduate research.

Barnes71 was now encouraged to suggest a new problem: “Prove the

Riemann Hypothesis.” As a matter of fact this heroic suggestion was

not without result; but I must begin by sketching the background of
ζ (s) and prime numbers in 1907, especially so far as I was myself

concerned. I had met ζ (s) in Lindelöf,72 but there is nothing there

about primes, nor had I the faintest idea there was any connexion;

for me the R.H. was famous, but only as a problem in integral func-

tions; and all this took place in the long vacation when I had no

access to literature, had I suspected there was any. (As for people

better instructed, only some had heard of Hadamard’s paper, and

fewer still knew of de la Vallée Poussin’s in a Belgian journal. In any

case, the work was considered very sophisticated and outside the

I.
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main stream of mathematics. The famous paper of Riemann is in-

cluded in his collected works; this states the R.H., and the extraordi-

nary, but unproved, “explicit formula” for π (x); the “Prime Num-

ber Theorem” is not mentioned, though it is doubtless an easy guess

granted the explicit formula. As for Hardy in particular, he told me

later that he knew the P.N.T. had been proved, but he thought by

Riemann. All this was transformed at a stroke by the appearance of

Landau’s book in 1909.)

I have taken that passage from Littlewood’s Miscellany, a quirky
collection of autobiographical fragments, jokes, math puzzles, and
character sketches, first published (under a slightly different title) in
1953. The other dramatis personae in the extract are the older English
mathematician Godfrey Harold Hardy, 1877−1947, and the German
Edmund Landau, 1877−1938. These three men, half a generation af-
ter Hilbert, were all pioneers in the early assaults on the Riemann
Hypothesis.

II. British mathematics in the nineteenth century had been oddly
asymmetrical in its development and achievements. Great advances
were made by British mathematicians in the least abstract areas of
math, those most closely connected with physics. This was something
I noticed during my own higher-mathematical education in London.
We would sit through a class in real analysis, or complex function
theory, or number theory, or algebra, and the names attached to the
theorems would come rolling in across the English Channel from the
Continent: Cauchy, Hadamard, Jacobi, Chebyshev, Riemann,
Hermite, Banach, Hilbert…. Then we would have a Methods lecture
(i.e., on mathematical methods used in physics), and suddenly we
were back in Victoria’s islands: Green’s Theorem (1828), Stokes’s For-
mula (1842), the Reynolds Number (1883), Maxwell’s Equations
(1855), the Hamiltonian (1834)….
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Such other activity as took place in Britain was concentrated in
the most abstract areas of math. Arthur Cayley, with J.J. Sylvester, in-
vented matrices (more about them later), and the theory of algebraic
invariants. George Boole opened up the whole territory of “founda-
tions”—that is, mathematical logic, which he called “the laws of
thought.” (You can get an argument going about whether this is really
at the high end of the abstraction scale. Boole himself declared that
his intention was to make logic a branch of applied mathematics.
However, I think mathematical logic is sufficiently abstract for most
of us mortals.) It is curious to note that the week before Hilbert ad-
dressed the Paris Congress, the same lecture rooms at the Sorbonne
had been booked for an International Congress of Philosophy. One
of the papers read was “The Idea of Order and Absolute Position in
Space and Time.” Its author was a young British logician, also a Trin-
ity man, named Bertrand Russell, who 10 years later, with Alfred
North Whitehead, produced the classic of mathematical logic (to be
more precise, of logicized mathematics), Principia Mathematica.

The least abstract math, and the most, but the great middle
ground of abstraction—function theory, number theory, most of al-
gebra—was yielded to the Continentals. In analysis, the most fertile
field of nineteenth-century mathematics, the British were nearly in-
visible. At the end of the century they were in fact barely visible even
in their strong areas. Only seven British mathematicians showed up
at the Paris Congress, ranking Britain below France (90), Germany
(25), the U.S.A. (17), Italy (15), Belgium (13), Russia (9), Austria, and
Switzerland (8 each). Mathematically, Britain in 1900 was a back-
water.

Even a backwater, of course, has some pockets of vitality. Trinity
College, Cambridge, where Littlewood was in residence, maintained
a strong mathematical tradition. It had been Sir Isaac Newton’s col-
lege, 1661−1693, and counted several geniuses of mathematics and
physics among its nineteenth-century alumni: Charles Babbage, gen-
erally credited with inventing the computer; the astronomer George
Airy, after whom a family of mathematical functions is named;
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Augustus de Morgan, the logician; Arthur Cayley, the algebraist;
James Clerk Maxwell, and some lesser lights. Bertrand Russell got his
degree at Trinity in 1893, was elected a fellow73 in 1895, and was teach-
ing there at the time Hardy joined the faculty. The college’s history in
the twentieth century was somewhat more mixed. It supplied most of
the personnel for the Cambridge spy ring,74 as well as several Blooms-
berries.75 So far as mathematics was concerned in the early years of
the century, though, it was first and foremost the home of G.H.
Hardy—the Hardy of Littlewood’s memoir. It was Hardy, more than
anyone else, who awoke English pure mathematics from its long
slumber.

Studying for his degree at Trinity in 1897, Hardy came across a
famous textbook of the time, Cours d’Analyse, by the French math-
ematician Camille Jordan. Jordan is familiar to students of complex
variable theory for Jordan’s Theorem, which says, basically, that a
simple closed curve in the plane, for example a circle, has an inside
and an outside. This theorem is ferociously difficult to prove—
Estermann describes Jordan’s own proof as “an intelligent attempt.”
Cours d’Analyse seems to have had the same effect on Hardy as
Chapman’s Homer had on Keats. After getting his fellowship at Trin-
ity in the summer of Hilbert’s address, Hardy spent the next few years
publishing papers on analysis.

One fruit of Hardy’s early analytical obsession was an under-
graduate textbook, A Course of Pure Mathematics, first published in
1908 and never subsequently out of print. I learned analysis from this
book, as did most twentieth-century British undergraduates. We re-
ferred to the book simply as “Hardy.” The book’s title is entirely mis-
leading, as it contains nothing but analysis—no algebra, no number
theory, no geometry, no topology. Nobody has ever minded this,
though. As an introduction to classical (i.e., nineteenth-century)
analysis, it is as near to perfect as a textbook can be. Its influence on
my own approach to math was tremendous. Looking through what I
have written in this book, I see Hardy all too plainly.
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III. G.H. Hardy is the kind of oddity that only nineteenth-century
England could produce. In old age he wrote a very curious book titled
A Mathematician’s Apology (1940), in which he described his own life
as a mathematician. It is in some ways a sad book—an elegiac book,
to be precise. The reason for this is very well explained in C.P. Snow’s
preface to the later editions. Hardy was a Peter Pan, a boy who never
grew up. Snow: “His life remained the life of a brilliant young man
until he was old: so did his spirit: his games, his interests, kept the
lightness of a young don’s. And, like many men who keep a young
man’s interests into their sixties, his last years were the darker for it.”
Littlewood: “Until he was about 30 he looked incredibly young.”
Hardy’s games were cricket, about which he was passionate, and real
tennis (a.k.a. court tennis or jeu de paume), a more difficult, more
intellectually challenging game than ordinary tennis.

For 12 years, 1919−1931, Hardy held a chair at Oxford, with an
exchange year at Princeton, 1928−1929; the rest of his life was spent
at Trinity, Cambridge. A handsome and charming man, he never mar-
ried, nor had any intimate attachments of any kind, so far as anyone
knows. It must be remembered that the old Oxford and Cambridge
colleges were men-only institutions with a strong flavor of misogyny.
Until 1882, Fellows of Trinity were not permitted to marry. In the
manner of our age, there has recently been some speculation that
Hardy may have been homosexual. I refer the curious reader to Rob-
ert Kanigel’s biography of Hardy’s protégé Srinivasa Ramanujan, The

Man Who Knew Infinity, which contains a full discussion of this point.
The answer seems to be: probably not, except perhaps in the inner-
most sense.

There are even more Hardy stories than there are Hilbert sto-
ries—I see that I have already told one. Here are two more, both con-
taining the Riemann Hypothesis. The first is from his obituary in the
British science journal Nature.

Hardy had one ruling passion—mathematics. Apart from that his

main interest was in ball-games, of which he was a skilled player
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and an expert critic. An illustration of some of his interests and

antipathies is given by this list of “six New-Year wishes” which he

sent on a postcard to a friend (in the 1920s):

(1) prove the Riemann Hypothesis;

(2) make 211 not out in the fourth innings of the last Test Match

at the Oval;

(3) find an argument for the non-existence of God which shall

convince the general public;

(4) be the first man at the top of Mount Everest;

(5) be proclaimed the first president of the USSR of Great Brit-

ain and Germany;

(6) murder Mussolini.

The second illustrates another of Hardy’s eccentricities. Though
claiming not to believe in God, he carried on a perpetual battle of
wits with Him. In the 1930s, Hardy often visited with his friend
Harald Bohr, who was Professor of Mathematics at the University of
Copenhagen (and younger brother of the physicist Niels Bohr).
George Pólya told the following story about one of these trips.

Hardy stayed in Denmark with Bohr until the very end of the sum-

mer vacation, and when he was obliged to return to England to start

his lectures there was only a very small boat available…. The North

Sea can be pretty rough, and the probability that such a small boat

would sink was not exactly zero. Still, Hardy took the boat, but sent

a postcard to Bohr: “I proved the Riemann Hypothesis. G.H. Hardy.”

If the boat sinks and Hardy drowns, everybody must believe that he

has proved the Riemann Hypothesis. Yet God would not let Hardy

have such a great honor and so He will not let the boat sink.

His wonderful textbook aside, Hardy is best known for two great
collaborations of which he was a part. The one with Ramanujan has
been best publicized, and for good reason because it is one of the
most curious and affecting stories in the history of mathematics. It is
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told in full in the aforementioned book by Robert Kanigel. However,
the Hardy-Ramanujan collaboration is of only the most incidental
concern to the history of the Riemann Hypothesis, and I shall have
no more to say about it.

Hardy’s other great collaboration was with Littlewood, with
whose memoir about his own postgraduate research I opened this
chapter. Littlewood joined the Trinity faculty in 1910. His collabora-
tion with Hardy began the following year and continued until 1946.
It was conducted mostly by mail during the years that Hardy was at
Oxford and Princeton, and also during World War I, when Littlewood
worked on artillery matters for the British army. Collaboration by
mail was not much of a departure for Hardy and Littlewood, though:
they often communicated by mail when living in rooms at Trinity.

Both Hardy and Littlewood were great mathematicians, both
were the sons of schoolmasters, and both were lifelong bachelors. In
most other ways they were different. There is something distinctly
strange about Hardy. He hated having his photograph taken, for ex-
ample—there are only half a dozen extant photographs of him76—
and when staying in a hotel or guest room, he would cover up all the
mirrors. Littlewood was much more of a meat-and-potatoes man.
Where Hardy was slender and finely made, Littlewood was stocky
and strong, a good all-round sportsman: swimming, rowing, rock
climbing, cricket. He took up skiing at age 39 and became very profi-
cient—an unusual thing among Englishmen at that time. He loved
music and dancing.

Though conforming to the old idea of a college fellow—never
married, he occupied the same set of rooms at Trinity for 65 years,
1912−1977—Littlewood had at least two children. The story as his
colleague Béla Bollobás tells it is that Littlewood, in his younger years,
used to go for annual vacations with the family of a doctor in
Cornwall, whose children grew up calling him “Uncle John.” One of
these children was named Ann; Littlewood referred to her as “my
niece.” However, after becoming close friends with Bollobás and his
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wife, Littlewood confessed that Ann was, in fact, his daughter. They
persuaded him to stop calling her his niece and start saying “my
daughter.” He accordingly did so, in the faculty common room one
evening, and was mortified that none of his colleagues displayed the
least surprise. Then, after Littlewood’s death in 1977, a middle-aged
man showed up at Trinity asking about his effects, explaining that he
was Littlewood’s son.

IV. “Hardy and Littlewood” became such a common byline on
mathematical papers in the 1910s and 1920s that jokes were circulat-
ing about Littlewood being a fiction, invented by Hardy to take the
blame for his mistakes. One German mathematician was said to have
crossed the English Channel solely to confirm his belief that
Littlewood did not exist.

That mathematician was Edmund Landau, who was seven days
younger than Hardy. Landau was an instance of that uncommon phe-
nomenon, the scion of a wealthy family who yet had a powerful work
ethic and a record of great achievement in a non-commercial field.
Landau’s mother Johanna, née Jacoby, came from a rich banking fam-
ily. His father was a Professor of Gynecology in Berlin, with a success-
ful practice. Landau Senior was also a keen supporter of Jewish causes.
The family home was at Pariser Platz 6a, in the most elegant quarter
of Berlin, close to the Brandenburg Gate. Edmund was appointed to a
professorship at Göttingen in 1909. When people asked for directions
to his house, he would reply “You can’t miss it. It’s the finest house in
town.” He followed his father’s (and Jacques Hadamard’s) interest in
Zionism, helping to establish the Hebrew University of Jerusalem and
giving the first math lecture there, in Hebrew, shortly after the uni-
versity opened in April 1925.

Landau was something of a character—this was a great age for
mathematical characters—and there are apocrypha about him rival-
ing those of Hilbert and Hardy. Perhaps the best-known story is his
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remark about Emmy Noether, a colleague at Göttingen. Noether was
mannish and very plain. Asked if she was not an instance of a great
female mathematician, Landau replied: “I can testify that Emmy is a
great mathematician, but that she is female, I cannot swear.” His work
ethic was legendary. It is said that when one of his junior lecturers
was in hospital, recuperating from a serious illness, Landau climbed a
ladder and pushed a huge folder of work through the poor man’s
window. Littlewood: “He simply did not know what it was like to be
tired.” Hardy says that Landau worked from 7 A.M. until midnight
every day.

Landau was a gifted and enthusiastic teacher, and an extraordi-
narily productive mathematician. He wrote more than 250 papers
and 7 books. His main importance for our story is the first of those
books, a classic of number theory, published in 1909. This is the book
Littlewood was speaking of in the extract I opened this chapter with:
“All this was transformed at a stroke by the appearance of Landau’s
book….” The book’s full title was Handbuch der Lehre von der

Verteilung der Primzahlen—“Handbook of the Theory of the Distri-
bution of the Prime Numbers.” It is generally referred to by number
theorists as simply “the Handbuch.”77 In two volumes of more than
500 pages each, this book gathered together all that was known about
the distribution of primes up to that time, with a strong emphasis on
analytic number theory. The Riemann Hypothesis is stated on page
33. The Handbuch was not the first book on analytic number
theory—Paul Bachmann had published one in 1894—but its ex-
tremely detailed and systematic presentation laid out the subject in a
style both clear and attractive, and Landau’s book at once became the
standard in its field.

I don’t think Landau’s Handbuch has ever been translated into
English. Number theorist Hugh Montgomery, the star of my Chapter
18, taught himself German by reading his way through the Handbuch,
one finger on the dictionary. He tells the following story. The first 50-
odd pages of the book are given over to a historical survey, in sections
each of which is headed with the name of a great mathematician who
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made contributions in the field: Euclid, Legendre, Dirichlet, and so
on. The last four of these sections are headed “Hadamard,” “von
Mangoldt,” “de la Vallée Poussin,” “Verfasser.” Hugh was extremely
impressed with the contributions of Verfasser, but was puzzled to
know why he had not heard the name of this fine mathematician
before. It was some time before he learned that “Verfasser” is a Ger-
man word meaning “author” (ordinary nouns are capitalized in
German).

V. “All this was transformed at a stroke by the appearance of
Landau’s book….” Both Hardy and Littlewood must have read
Landau’s book soon after it became available. Here is what Hardy has
to say, in the obituary of Landau he wrote (with Hans Heilbronn) for
the London Mathematical Society.

The Handbuch was probably the most important book he wrote. In

it the analytic theory of numbers is presented for the first time, not

as a collection of a few beautiful scattered theorems, but as a sys-

tematic science. The book transformed the subject, hitherto the

hunting ground of a few adventurous heroes, into one of the most

fruitful fields of research of the last thirty years. Almost everything

in it has been superseded, and that is the greatest tribute to the book.

It was certainly from the Handbuch that both Hardy and
Littlewood became infected with the Riemann Hypothesis obsession.
The first fruits came in 1914, not in the form of a collaboration,
though they were collaborating by that time, but as two separate pa-
pers, both of major importance in the development of the theory.

Hardy’s paper was titled Sur les zéros de la fonction ζ (s) de

Riemann and appeared in the Comptes Rendus of the Paris Academy
of Sciences. In it, he proved the first major result on the distribution
of the non-trivial zeros.
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Hardy’s 1914 Result

Infinitely many of the zeta function’s non-trivial zeros satisfy the
Riemann Hypothesis—that is, have real part one-half.

Though a major step forward, it is important for the reader to
understand that this did not settle the Hypothesis. There is an infin-
ity of non-trivial zeros; Hardy proved that infinitely many of them
have real part one-half. This leaves three possibilities still open:

� Infinitely many zeros do not have real part one-half.
� Only finitely many zeros do not have real part one-half.
� There are no zeros that do not have real part one-half—the

Hypothesis!

For an analogy, consider the following statements about the even
numbers greater than two, that is: 4, 6, 8, 10, 12, ….

� Infinitely many of them are divisible by 3; infinitely many are
not.

� Infinitely many are greater than 11; only four are not.
� Infinitely many are the sum of two primes; there are none that

are not—the Goldbach Conjecture (which is still unproven at
the time of writing).

Littlewood’s paper, also published in the Paris Academy’s Comptes

Rendus of that year, was titled Sur la distribution des nombres pre-

miers. It proved a result as subtle and striking as Hardy’s, though in a
different part of the field. It needs some preamble.

VI. I have already pointed out the following general trend in think-
ing about the Riemann Hypothesis at the beginning of the twentieth
century. The Prime Number Theorem (PNT) had been proved. It was
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known with mathematical certainty that indeed π (x) ~ Li(x)—to put
it in words, that the relative difference between π (x) and Li(x)
dwindles away to zero as x gets bigger and bigger. So now what can we
say about this difference, this error term? It was in focusing on the
error term that mathematicians’ attention was drawn to the Riemann
Hypothesis, because Riemann’s 1859 paper gave an exact expression
for the error term. That expression, as I shall show in due course,
involves all the non-trivial zeros of the zeta function, so the key to
understanding the error term is hidden in among the zeros somehow.

Let me make this concrete by showing some actual values of the
error term. In Table 14-1, “absolute error” means Li(x) − π (x), while
“relative error” means that number as a proportion of π (x)—in other
words, the absolute error divided by π (x).

TABLE 14-1

Error Term

x π (x) Absolute Relative

1,000 168 10 0.059523809524

1,000,000 78,498 130 0.001656093149

1,000,000,000 50,847,534 1,701 0.000033452950

1,000,000,000,000 37,607,912,018 38,263 0.000001017419

1,000,000,000,000,000 29,844,570,422,669 1,052,619 0.000000035270

1,000,000,000,000,000,000 24,739,954,287,740,860 21,949,555 0.000000000887

Well, the relative error is certainly dwindling away to zero, just as
the PNT says it should. This is happening because the absolute error,
though increasing, is not increasing anything like as fast as π (x).

The inquiring mathematical mind now asks how, exactly, do these
numbers behave? Are there rules to describe the slow increase of the
absolute error, or the dwindling to zero of the relative error? To put
it another way, if you drop the second and fourth columns of Table
14-1, or the second and third, and consider the resulting two-column
tables to be snapshots of some functions (argument, value)—what
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functions are they? Can we get twiddle formulas for them, as we did
for π (x)?

That is where the non-trivial zeros of the zeta function come in.
They are intimately connected, in a way I shall later show you in exact
mathematical detail, with the error term.

Although it is the relative error that the PNT speaks about, inves-
tigations in this area more often concentrate on the absolute error. It
really makes no difference, of course, which one you consider. The
relative error is just the absolute error divided by π (x), so you can
always skip easily from one to the other. So can we get any kind of
result for the absolute error term, Li(x) − π (x)?

VII. Looking at Figure 7-6, and at Table 14-1, we can say with fair
confidence that the the absolute difference Li(x) − π (x) is positive
and increasing. The numerical evidence for this is so strong that
Gauss, when he made his own investigations, believed it to be always
the case. Probably most early researchers agreed, or at least felt sure
that π (x) is always less than Li(x). (Riemann’s opinion on the matter
is unclear.) Littlewood’s 1914 paper therefore came as a sensation, for
it proved that this is not so; that, on the contrary, there are numbers x
for which π (x) is greater than Li(x). It actually proved much more.

Littlewood’s 1914 Result

Li(x) − π (x) changes from positive to negative and back
infinitely many times.

Given that π (x) is less than Li(x) for as far as we have been able to
take x, even with the most powerful computers, where is that first
crossing point, the first “Littlewood violation,” where π (x) becomes
equal to, and then greater than, Li(x)?

In situations like this, mathematicians go looking for what they
call an upper bound, that is, a number N for which they can prove that
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whatever the precise answer to the question, it is at any rate definitely
less than N. Proven upper bounds N of this sort are sometimes far
larger than the actual answer.

That was the case with the first upper bound for the Littlewood
violation. In 1933 Littlewood’s student Samuel Skewes showed that if
the Riemann Hypothesis is true, the crossover point must come be-

fore e ee79

, a number of about 10ten billion trillion trillion digits. That’s not the

number; that’s the number of digits in the number. (By way of con-
trast, the number of atoms in the cosmos is thought to have about
eighty digits.) This monstrosity attained fame as “Skewes’ number,”
the largest number ever to emerge naturally from a mathematical
proof up to that time.78

In 1955 Skewes improved his result, this time without assuming
the truth of the Riemann Hypothesis, to a number of a mere
10one thousand digits. In 1966, Sherman Lehman pulled the upper bound
down to a much more manageable (or at least, writable) figure,
1.165 × 101165 (a number, that is, of a mere 1,166 digits), and estab-
lished an important general theorem about the upper bound. In 1987,
using Lehman’s theorem, Herman te Riele reduced the upper bound
still further, to 6.658 × 10370.

At the time of writing (mid-2002), the best figure is the one es-
tablished by Carter Bays and Richard Hudson in 2000, also starting
from Lehman’s theorem.79 They showed that there are Littlewood vio-
lations in the vicinity of 1.39822 × 10316 and even gave some reasons
for thinking that these may be the first violations. (Bays’s and
Hudson’s paper leaves open a small possibility that lower violations
might exist, perhaps even as low as 10176. They also show a huge zone
of violation around 1.617 × 109608.)

VIII. These oscillations of the error term Li(x) − π (x) from posi-
tive to negative and back take place within fairly well-defined con-
straints, though. If this were not so, the PNT would not be true. Some
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ideas about the nature of those constraints had already emerged out
of the effort to prove the PNT. De la Vallée Poussin had actually in-
cluded an estimate for the constraining function in his own proof of
the PNT. Five years later, in 1901, the Swedish mathematician Helge
von Koch80 had proved the following key result, which I’ll state in a
modern form.

Von Koch’s 1901 Result

If the Riemann Hypothesis is true, then

π x Li x O x x( ) = ( ) + ( )log

The equation is pronounced as, “Pi of x equals log integral of x plus
big oh of root x log x.” Now I have to explain the “big oh” notation.
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15

BIG OH AND MÖBIUS MU

I have given over this chapter to two
mathematical topics that are related to the Riemann Hypothesis, but
not otherwise to each other. The topics are the “big oh” notation and
the Möbius mu function. First, big oh.

II. When the great Hungarian number theorist Paul Turán lay dy-
ing of cancer in 1976, his wife was at his bedside. She reported that
his last murmured words were “Big oh of one….” Mathematicians
tell this story with awed admiration. “Doing number theory to the
very end! A real mathematician!”

Big oh came into math from Landau’s 1909 book, whose influ-
ence, as I have already described, was tremendous. Landau did not
actually invent big oh. He candidly acknowledges, on page 883 of the
Handbuch, that he borrowed it from Paul Bachmann’s 1894 treatise.
It is, therefore, very unfair that it is always referred to as “Landau’s big
oh,” and that most mathematicians probably believe Landau did in-

I.
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vent it. Big oh is all over the place in analytic number theory, and has
leaked into other areas of math too.

Big oh is a way of setting a limit on the size of a function, as the
argument goes off (usually) to infinity.

Definition of Big Oh

Function A is big oh of function B if, for large enough arguments,
the size of A never exceeds some fixed multiple of B.

Let me take a cue from Paul Turán and consider big oh of one.
“One,” as used here, is a function, a function of the simplest kind. Its
graph is a flat horizontal line, one unit above the horizontal axis. For
any argument at all, the function value is … 1. What, then, does it
mean to say that some function ƒ(x) is big oh of one? By the defini-
tion I just gave, it means that as the argument x goes off to infinity,
ƒ(x) never exceeds some fixed multiple of 1. To put it another way,
the graph of ƒ(x) stays forever below some horizontal line. This is
useful information about ƒ(x) . There are lots of functions for which
this is not true. It’s not true for x2, for example, or for x to any positive
power, or for ex, or even for log x.

Big oh means a bit more than that, actually. Note that in my defi-
nition I said “the size of A….” That means “the value of A, ignoring its
sign.” The size of 100 is 100; the size of −100 is also 100. Big oh doesn’t
care about minus signs. To say that some function ƒ(x) is big oh of
one is to say that ƒ(x) is forever trapped between two horizontal lines,
one above the axis, one an equal distance below it.

As I said, lots of functions are not big oh of one. The simplest is
the function x—that is, the function whose value is always equal to
the argument. Its graph is a diagonal straight line, disappearing off
the graph paper at top right. Clearly it is not contained between any
pair of horizontal lines. No matter how far apart you set those hori-
zontal lines, the function x breaks through them eventually. This re-
mains true even if you reduce the slope. The functions 0.1x (shown
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in Figure 15-1), 0.01x, 0.001x, 0.0001x all eventually break through
any fixed horizontal lines you set as bounds. None is big oh of one.

5 10 15
x

–1

1

2

f (x)

FIGURE 15-1 0.1x is not O(1).

Which illustrates another thing about big oh. Not only does big
oh not care about signs, it doesn’t care about multiples, either. If A is
big oh of B, then so is ten times A, a hundred times A, a million times
A; so is one-tenth of A, one-hundredth of A, one-millionth of A. Big
oh doesn’t tell you a precise rate of increase—we have derivatives to
do that for us. It tells you the type of rate of increase. The function
“one” has no rate of increase at all; it’s dead flat. A function that is big
oh of one never increases any faster than that. It might do all sorts of
other stuff: dwindle to zero, oscillate indefinitely inside its bounding
lines, or approach one of those bounding lines ever more closely, but
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it never shoots suddenly upward, or dives suddenly downward, break-
ing through the lines and staying outside them thereafter.

Those functions 0.1x, 0.01x, 0.001x, 0.0001x are not big oh of
one; they are all big oh of x. So is any other function that remains
forever trapped in a “pie wedge” between a line ax and its mirror-
image line −ax. Figure 15-2 is an example of a function that does not
stay thus trapped. This is x2, the squaring function. No matter how
wide you make the pie wedge—no matter how big the value of a—
the graph of x2 eventually crashes through the upper line.

5 10 15
x

5

10

15

f(x)

FIGURE 15-2 0.1x2 is not O(x).

Now you can see the meaning of von Koch’s 1901 result. If the
Riemann Hypothesis is true, then the absolute difference between
π (x) and Li(x)—either Li(x) − π (x) or π (x) − Li(x), it doesn’t mat-
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ter because big oh doesn’t care about signs—stays trapped between
two bounding curves as x goes off to infinity. The bounding curves
are C x xlog  and its mirror image, for some fixed number C. The
error term can do what it likes between those two curves, but it can’t
break out from them and suddenly soar away out of their control.
The difference between π (x) and Li(x) is big oh of x xlog .

Figure 15-3 is an instance of a function that is O x xlog( ). The
graph shows (1) the curve x xlog  (top half of the vaguely parabola
shape), (2) the mirror-image curve − x xlog  (bottom half of same),
and (3) a nonsense function I invented just for illustration, that is
O x xlog( ). The little “m” stands for “million”—this kind of thing is
interesting only for big arguments. Notice that the Derbyshire func-
tion actually bursts through its bounds around argument 200m.
That’s okay, because it never does it again. The big oh just means that
from some point on, forever after, the function stays within its
bounds. Trust me, this one does, though obviously I can’t show you
the function all the way out to infinity. Big oh doesn’t mind low value
exceptions to its rules, which are anyway commonplace in number
theory. (Compare: All prime numbers are odd … except the very first.)

Notice also that, since big oh doesn’t care about multiples, the
vertical scale is entirely arbitrary. It’s the configuration that matters—
the shape of the bounding curves, and the fact that my function from
some point on is forever trapped between them.

III. Von Koch’s 1901 result81—that if the Riemann Hypothesis is
true, then π x Li x O x x( ) = ( ) + ( )log —was an early example of a
type of result that number theory is now densely populated with,
results that begin “If the Riemann Hypothesis is true, then….” If it
turns out that the Riemann Hypothesis is not true, quite large parts
of number theory will have to be rewritten.
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FIGURE 15-3 The Derbyshire function is O x xlog( ).

Is there any big-oh type result for the error term Li(x) − π (x)
that does not depend on the truth of the Riemann Hypothesis? Oh,
yes. It has for decades been a popular sport among analytic number
theorists to find ever better big-oh formulas for the error term. None
is as good as O x xlog( ). That is the bee’s knees, the tightest possible
bound on the error term known up to the present. Since it depends
on the Hypothesis being true, though, we can’t be certain it applies.
The ones we do know for certain are all looser than that. The corre-
sponding parabola shape in Figure 15-3 is a tad wider, the difference
getting more and more noticeable as x goes out to infinity. If the
Riemann Hypothesis is true, we have the best possible—the tight-
est—big-oh formula for the error term, O x xlog( ) so far known. It
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is also the simplest. The proven ones we have, the ones that don’t
depend on the truth of the Hypothesis, are all rather ugly. Here is the
best one I currently know:

O xe
C x x− ( ) ( )









log log log
3 5 1 5

,

where C is a constant number. None of them is much easier on the
eye than that.

Compare von Koch’s 1901 result with the italicized words in
Hilbert’s eighth problem as I gave them in Chapter 12.ii. Hilbert was
echoing Riemann, who says in the 1859 paper that the approxima-
tion of π (x) by Li(x) “is correct only to an order of magnitude of
x

1
2 .” Now, x  is of course just x

1
2 . Furthermore, I showed in Chap-

ter 5.iv that log x grows more slowly than any positive power of x,
even the teeniest. This can be expressed using big-oh notation thus:
For any number ε , no matter how small, log x = O(x ε). You can,
therefore (well, it’s not immediately obvious, but it’s actually easy to
prove), substitute x ε  for log x in O( x log x); and since x  is just
x

1
2 , you can add the powers to get O x( )

1
2

+ ε
. This gives a very popular

alternative way to express von Koch’s result, π
ε

( ) ( ) ( )x Li x O x= +
+1

2 .
The symbol ε  is so commonly used for vanishingly small numbers
that the words “…for any ε , no matter how small” are understood.

Notice, however, that in making this substitution, I weakened von
Koch’s result slightly. “Error term = O( x log x)” implies “Error
term = O x( )

1
2

+ ε
”; but the converse is not true. The two results are not

precisely equivalent. This is because, as I showed in Chapter 5.iv, not
only does log x increase more slowly than any power of x; so does
(log x)N, for any positive N.  So if von Koch’s result had stated that the
error term was O x x( log )( )

100
, we could still deduce the alternative

form O x( )
1
2
+ε

!
Writing von Koch’s result in this slightly weaker form O x( )

1
2
+ε

 is,
though, very suggestive. Riemann was almost right, in the sense that
the log function is almost x0; the order of magnitude is not x

1
2 , it’s

x
1
2
+ε

. Given the tools at his disposal, the state of knowledge in the
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field, and the known numerical facts at that time, Riemann’s x
1
2  must

still count as an intuition of breathtaking depth.82

I introduced big oh with a story, so I shall take my leave of it with
another. The point of this story is that mathematicians, like other
professionals, sometimes put out a cloud of squid ink to deter and
confuse outsiders.

At the Courant conference in Summer 2002 (see Chapter 22), I
was talking to Peter Sarnak about this book. Peter is Professor of
Mathematics at Princeton University and is an expert on number
theory. I mentioned that I was trying to think of a way to explain big
oh to readers who weren’t familiar with it. “Oh,” said Peter, “You
should speak to my colleague Nick” (i.e., Nicholas Katz, also a profes-
sor at Princeton, though mainly an algebraic geometer). “Nick hates
big oh. Won’t use it.” I swallowed this and made a note of it, thinking
I might find some place for it in this book. Then that evening I hap-
pened to be talking to Andrew Wiles, who knows Sarnak and Katz
both very well. I mentioned Katz’s not liking big oh. “That’s all non-
sense,” said Wiles. “They’re just teasing you. Nick uses it a lot.” Sure
enough, he used it in a lecture the next day. Funny sense of humor,
mathematicians.

IV. So much for big oh. Now, the Möbius function. There are many
ways to introduce the Möbius function. I am going to approach it by
way of the Golden Key.

Take the Golden Key and turn it upside down, that is, take the
reciprocal of each side in Expression 7-1. Obviously, if A = B and nei-
ther is zero, then 1 ⁄ A = 1 ⁄ B. The result is Expression 15-1.

1
1

1

2
1

1

3
1

1

5
1

1

7
1

1
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1

1

13ζ s s s s s s s( )
= −
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

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


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


−





−





−




K

Expression 15-1
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I’m now going to multiply out those parentheses on the right-
hand side. At first blush this seems like a fairly ambitious thing to
want to do. There are, after all, infinitely many of them. It does, in
fact, demand a bit more justification and care than I’m going to give
it here; but I shall get a useful and true result, so in this case, the end
justifies the means.

Multiplying out parentheses is a thing you learn in basic algebra.
To multiply out (a + b)(p + q), you first multiply the (p + q) by a to
give ap + aq. Then you multiply (p + q) by b to give bp + bq. Then,
since the first parenthesis is a plus b, you add the two sub-results
together for the final result, ap + aq + bp + bq.

If you have to multiply out three parentheses (a + b) (p + q)
(u + v), repeating the process gets you apu + aqu + bpu +

bqu + apv + aqv + bpv + bqv. Multiplying out four parentheses
(a + b)(p + q)(u + v)(x + y) gives a result like the one in Expres-
sion 15-2.

apux + aqux + bpux + bqux + apvx + aqvx + bpvx + bqvx +

apuy + aquy + bpuy + bquy + apvy + aqvy + bpvy + bqvy

Expression 15-2

All of this is starting to look a bit formidable. And we have an
infinity of parentheses to multiply out! The trick is to look at it with a
mathematician’s eyes. What is Expression 15-2 made up of? Well, it’s
the sum of a number of terms. What do these terms look like? Take
one of them at random, let’s say aqvy. It’s got an a from the first pa-
renthesis, a q from the second, a v from the third and a y from the
fourth. It’s a product made up of one number plucked from each paren-

thesis. And the whole expression is got by adding up the results of all
possible combinations of plucks.

Once you have seen this, multiplying out an infinity of parenthe-
ses is a breeze. The answer is going to be a sum—an infinite sum, of
course—of terms; and each term is got by plucking one number from
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each parenthesis and multiplying all those plucked numbers together.
If you add up the result of all possible plucks, you have the result. As
written, that still looks pretty daunting. It says that every term in my
infinite sum is an infinite product. Yes, it is, but since every parenthe-
sis on the right hand of Expression 15-1 contains a 1, I can finesse the
situation by plucking an infinity of 1s and only a finite number of
not-1s.  After all, since every not-1 term in every parenthesis is a num-
ber between − 1

2  and 0, if I multiplied an infinity of them, the size of
the result (I mean, ignoring the sign) would certainly be no bigger
than 1

2( )
∞

—which is zero! Watch me build the infinite sum.
First term of the infinite sum: Pluck the 1 from every parenthesis.

This gives you the infinite product 1 × 1 × 1 × 1 × 1 × 1 × 1 × …,
whose value is of course just 1.

Second term: Pluck the 1 from every parenthesis except the first.
From that one, pluck the – 1

2s . This gives the infinite product
– 1

2s × 1 × 1 × 1 × 1 × 1 × 1 × …, which is just – 1
2s .

Third term: Pluck the 1 from every parenthesis except the sec-
ond. From that one, pluck the – 1

3s . This gives the infinite product
1 × (– 1

3s )1 × 1 × 1 × 1 × 1 × 1 × …, which is just – 1
3s .

Fourth term…. Well, I think you can see that by plucking a 1
from every parenthesis except the nth, I am going to get a term equal
to –1 ⁄ ps, where p is the nth prime. So the infinite sum looks like
Expression 15-3.

1
1
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1

3

1
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1
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1

11

1

13
− − − − − − −

s s s s s s
L

Expression 15-3

That’s not the end of it, though. When you multiply out paren-
theses, you end up with the sum of all possible terms got by plucking
one number out of each parenthesis. Suppose I pluck – 1

2s  from the
first parenthesis, – 1

3s  from the second, and 1 from all the others. This
gives me (– 1

2s ) × (– 1
3s ) × 1 × 1 × 1 × 1 × 1 × …, which is 1

6s . I shall get
a similar term from every possible pair of not-1 plucks. Plucking − 1

5s
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from the third parenthesis, − 1
13s  from the sixth, and 1 from every

other, gives me a term 1
65s .

(Note that there are two simple rules of arithmetic at work here.
One is the rule of signs, a minus times a minus gives a plus. The other
is Power Rule 7, (x × y)n = xn × yn.)

So as well as the terms I’ve already gathered in Expression 15-3, I
have a new bunch, of which there is one for every pair of different
primes—like 5 and 13—and whose signs are all positive. So now Ex-
pression 15-3 has grown to look like this.

1
1

2

1

3

1

5

1

7

1

11

1

13
− − − − − − −

s s s s s s
L

+ + + + + + + + +
1

6

1

10

1

14

1

15

1

21

1

22

1

26

1

33s s s s s s s s
L

with every number in that second row being the product of two dif-
ferent primes.

And we’ve only just started at this business of multiplying out an
infinity of parentheses. The next step is to take all possible plucks of
three not-1s, with all other plucks equal to 1. An example is 1 ×

1 1 1 1 11
3

1
11

1
13

)      )  )       − × × × − × − × × × ×( ( (s s s …, which comes to
− 1

429s . Now the result has expanded to

1
1

2

1

3

1

5

1

7

1

11

1

13
− − − − − − −

s s s s s s
L

+ + + + + + + + +
1

6

1

10

1

14

1

15

1

21

1

22

1

26

1

33s s s s s s s s
L

− − − − − − − −
1

30

1

42

1

66

1

70

1

78

1

102

1

105s s s s s s s
L

with every number in that third row being the product of three dif-
ferent primes.

Assuming that I can just keep doing this, and assuming that I can
rearrange the resulting terms at will, Expression 15-1 boils down to
the one shown in Expression 15-4.
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1
1

1

2

1

3

1

5

1

6

1

7

1

10

1

11

1

13

1

14

1

15ζ s s s s s s s s s s s( )
= − − − + − + − − + + −L

Expression 15-4

The natural numbers that show up on the right-hand side there
are … what? Not all the natural numbers, for sure: 4, 8, 9, and 12 are
missing. Not the primes: 6, 10, 14, and 15 aren’t primes. If you look
back at the process I went through to multiply out that infinity of
parentheses, you will see that the answer is: every natural number
that is the product of an odd number (including 1) of different
primes, prefixed by a minus sign, together with every natural number
that is the product of an even number of different primes, prefixed by
a plus sign. The numbers that are missing are those like 4, 8, 9, 12, 16,
18, 20, 24, 25, 27, 28, … that divide by some prime squared.

Welcome to the Möbius function, named after the German math-
ematician and astronomer August Ferdinand Möbius (1790−1868).83

It is universally referred to now by the Greek letter µ , pronounced
“mu,” the Greek equivalent of “m.”84 Here is a full definition of the
Möbius function µ (n).

� Its domain is �, that is, all the natural numbers 1, 2, 3, 4, 5, ….
� µ (1) = 1.
� µ (n) = 0 if n has a square factor.
� µ (n) = −1 if n is a prime, or the product of an odd number of

different primes.
� µ (n) = 1 if n is the product of an even number of different

primes.

That might seem like an awfully cumbersome function definition to
you. However, the Möbius function is tremendously useful in the
theory of numbers and will play a starring role later in this book. As
an instance of its utility, note that all that laborious algebra I just
went through boils down to the elegant result shown in Expression
15-5.



250 PRIME OBSESSION

1

ζ

µ

s

n

n s
n( )

=
( )

∑

Expression 15-5

V. As important as µ (n) itself in the history of the Riemann Hy-
pothesis is its cumulative value, that is, the number you get if you add
up µ (1) + µ (2) + µ (3) + … + µ (k) for some number k. This is
“Mertens’s function,” M(k). Its first 10 values (that is, for arguments
k = 1, 2, 3, … up to 10) are: 1, 0, −1, −1, −2, −1, −2, −2, −2, −1. M(k)
is a very irregular function, oscillating back and forth around zero in
the manner of what mathematicians call a “random walk.” For argu-
ments 1,000, 2,000, … up to 10,000 it has the values: 2, 5, −6, −9, 2,
0, −25, −1, 1, −23. For arguments 1 million, 2 million, … up to
10 million it has values: 212, −247, 107, 192, −709, 257, −184, −189,
−340, 1,037. If you ignore the signs, it’s pretty clear that the size of
M(k) increases, but nothing else is clear.

Because of Expression 15-5, the behaviors of the µ  function and
the M function (cumulative µ ) are intimately tied up with the zeta
function and, therefore, with the Riemann Hypothesis. In fact, if you
could prove Theorem 15-1, it would follow that the Riemann Hy-
pothesis is true!

M k O k( ) = ( )1
2

Theorem 15-1

However, if Theorem 15-1 is not the case, it does not follow that
the Hypothesis is false. Mathematicians say that Theorem 15-1 is
stronger than the Hypothesis.85 A slightly weaker version, Theorem
15-2, is precisely as strong as the Hypothesis.
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M k O k( ) = ( )+1
2

ε
,

for every number ε , no matter how small.
Theorem 15-2

If Theorem 15-2 is true, the Hypothesis is true; and if it is false,
the Hypothesis is false. They are exactly equivalent theorems. More
on this in Chapter 20.vi.
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16

CLIMBING THE CRITICAL LINE

In 1930 David Hilbert attained his
68th birthday. In conformity with the regulations of Göttingen Uni-
versity, he retired. Honors poured in. Among them was a resolution
by the authorities of Königsberg to award the keys of the city to this
eminent native son. The presentation was to be made at the opening
session of a conference scheduled for that fall, a meeting of the Soci-
ety of German Scientists and Physicians. The occasion naturally re-
quired a speech. Thus, on September 8, 1930, in Königsberg, Hilbert
delivered the second great public speech of his career.

The title of the speech was “Logic and the Understanding of Na-
ture.” Hilbert’s purpose was to express some opinions about the rela-
tionship between our inner lives—our mental processes, including
those that help us to create and prove mathematical truths—and the
physical universe. This was, of course, a topic with a long philosophi-
cal pedigree, one in which the name of another of Königsberg’s na-
tive sons, the eighteenth-century philosopher Immanuel Kant, has
particular prominence. It is one to which the modern understanding
of the Riemann Hypothesis is, as it happens, rather especially perti-

I.
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nent, as I shall show in Chapter 20. This was not known at the time of
Hilbert’s Königsberg address, though.

It had been arranged that, following the speech, Hilbert would
give a shorter version of the address over the radio—at that time, of
course, a very new thing. That shorter version was recorded and was
actually released as a 78 R.P.M. gramophone record. (“Celebrity math-
ematician” was apparently not an oxymoron in Weimar Germany.) It
can now be found on the Internet. With very little effort you can now
hear spoken, in Hilbert’s own voice, the six words for which he is best
remembered, and which appear on his memorial stone at the cem-
etery in Göttingen. Those words are the last in his Königsberg
address.

Hilbert believed firmly in the unbounded power of the human
mind to uncover the truths of Nature and mathematics. In his youth,
the rather pessimistic theories of the French philosopher Emil
duBois-Reymond had been very popular. DuBois-Reymond main-
tained that certain things—the nature of matter and of human con-
sciousness, for example—are intrinsically unknowable. He coined the
apothegm ignoramus et ignorabimus—“we are ignorant and we shall
remain ignorant.” Hilbert had never liked this gloomy philosophy.
Now, with all the world (or at any rate the scientific-mathematical
part of it) listening, he gave it a last resounding kick.

We ought not believe those who today, with a philosophical air and

a tone of superiority, prophesy the decline of culture, and are smug

in their acceptance of the Ignorabimus principle. For us there is no

Ignorabimus, and in my opinion there is none for the natural sci-

ences either. In place of this foolish Ignorabimus, let our resolution

be, to the contrary: “We must know, we shall know.”

Those last six words—in German, Wir müssen wissen, wir werden

wissen—are the most famous that Hilbert ever spoke, and among the
most famous in the history of science. They express a strong opti-
mism, all the more remarkable from a man who was heading into
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retirement and was furthermore unwell. (Hilbert had for some years
been suffering from pernicious anemia, a disease that in the 1920s
was only just beginning to yield to treatment.) Those words make a
happy contrast with the rather gloomy solipsism of Hardy’s Apol-

ogy—written 10 years later when Hardy was 63, five years younger
than was Hilbert at the time of the Königsberg address.

II. A happy contrast too—though now we are in the realm of hind-
sight—with the horrors that were soon to engulf Germany. When
Hilbert retired from his professorship in 1930, Göttingen was still
what it had been for 80 years, a great center of mathematical research
and study, probably the greatest in the world at that point. Four years
later it was an empty shell, from which the greatest minds had fled, or
been driven out.

The principal events here were of course those that took place in
the early months of 1933: Adolf Hitler’s swearing-in as Chancellor on
January 30, the Reichstag fire on February 27, the elections of March
5, in which the Nazis won 44 percent of the votes (a plurality), and
the Enabling Act of March 23, which transferred key constitutional
powers from legislature to executive. By April the Nazis had almost
total control of Germany.

One of their first decrees, on April 7, was intended to bring about
the dismissal of all Jews from the civil service. I say “was intended”
because the old Field Marshal, Paul von Hindenburg, was still presi-
dent of the German Republic and had to be deferred to. He insisted
that there be two categories of exemption to the April 7 decree: first,
any Jew who had performed military service in World War I, and
second, any who had already held a civil service position before Au-
gust 1914, when that war began.

University professors were civil servants and so came under the
scope of the decree. Of the five professors teaching mathematics at
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Göttingen, three—Edmund Landau, Richard Courant, and Felix
Bernstein—were Jewish. A fourth, Hermann Weyl (who had suc-
ceeded to Hilbert’s chair), had a Jewish wife. Only Gustav Herglotz
was racially uncompromised. As a matter of fact, the April 7 decree
did not apply to Landau or Courant, since they fell within the
Hindenburg exemptions. Landau had been appointed to his profes-
sorship in 1909; Courant had performed valiant war service on the
Western Front.86

It was not the way of the Nazis to stick to the letter of the law in
such matters, though. It did not help that Göttingen at large was
rather strong for Hitler. This was true of both “town” and “gown.” In
the 1930 elections, Göttingen had delivered twice as many votes to
Hitler’s party as the national average; and the Nazis had a majority in
the university’s student congress as far back as 1926. (That grand
house of which Edmund Landau was so proud had been defaced with
a painting of a gallows in 1931.) On April 26 the town newspaper,
Göttinger Tageblatt, which was keenly pro-Nazi,87 printed an an-
nouncement that six professors at the university were being placed
on indefinite leave. The announcement came as a surprise to the six
professors; they had not been notified.

Between April and November that year, Göttingen as a math-
ematical center was gutted. Not only Jewish faculty were involved;
anyone thought to have leftist leanings came under suspicion. The
mathematicians fled—most eventually finding their way to the
United States. Altogether 18 faculty members left or were dismissed
from the Mathematics Institute at Göttingen.

One holdout was Edmund Landau (the only Göttingen math
professor, by the way, who was a member of the town’s synagogue).
Relying on the integrity of the law, Landau attempted to resume his
calculus classes in November 1933, but the Science Students’ Council
learned of his intention and organized a boycott. Uniformed storm
troopers prevented Landau’s students from entering the lecture hall.
With singular courage, Landau asked the Council leader, a 20-year-
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old student named Oswald Teichmüller, to write out as a letter his
reasons for organizing the boycott. Teichmüller did so, and the letter
somehow survived.

Teichmüller was a very intelligent man and in fact became a fine
mathematician.88 It is clear from his letter that his motivation for the
boycott was ideological. He believed, wholeheartedly and sincerely, in
the Nazi doctrines, including the racial ones, and felt it improper that
German students should be taught by Jews. We are accustomed to
think of Nazi activists as thugs, low-lifes, opportunists, and failed art-
ists of one sort or another, which indeed most of them were. It is
salutary to be reminded that they also included in their ranks some
people of the highest intelligence.89

Landau himself then left Göttingen, brokenhearted. He went back
to the family home in Berlin. There were a few overseas lecturing
trips, which seemed to give him great pleasure, but he would not leave
his native land to live permanently abroad and died from natural
causes at his Berlin home in 1938.

Hilbert himself died in wartime Göttingen on February 14, 1943,
three weeks after his 81st birthday, from complications following a
fall in the street. No more than a dozen people attended the funeral
service. Only two of them had much claim to mathematical honors:
the physicist Arnold Sommerfeld, who had been an old friend of
Hilbert’s, and the above-mentioned Gustav Herglotz. Hilbert’s home
city of Königsberg was flattened in the war; it is now the Russian city
of Kaliningrad. Göttingen is now a rather ordinary provincial Ger-
man university with a strong math department.

III. Those years of the early 1930s, before the darkness fell, brought
forth one of the most romantic episodes in the history of the Rie-
mann Hypothesis, the discovery of the Riemann-Siegel formula.

Carl Ludwig Siegel, the son of a Berlin letter carrier, was a lec-
turer at the University of Frankfurt. An accomplished number theo-
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rist, he understood very well, as any mathematician who reads it must,
that Riemann’s 1859 paper was only, to employ the terminology of
Erving Goffman that I introduced in Chapter 4.ii, a “front” display—
a summary for formal presentation of what must have been a far
greater amount of “back” work. Siegel spent such time as he could
spare at Göttingen, going through Riemann’s private mathematical
papers from the period, to see if he could gain any insight into the
activity of Riemann’s mind when he was constructing the paper.

Siegel was by no means the first to attempt this. The papers had
been deposited at the university library in 1895 by Heinrich Weber,
following his second edition of Riemann’s collected works. When
Siegel arrived, they had been sitting there in the Göttingen archives
(where they still sit—see Chapter 22.i) for 30 years. Several research-
ers had investigated them, but all had been defeated by the fragmen-
tary and disorganized style of Riemann’s jottings, or else they lacked
the mathematical skills needed to understand them.

Siegel was made of sterner stuff. He persevered with the piles of
scribbled sheets, and made an astonishing discovery, which he pub-
lished in 1932 in a paper titled “Of Riemann’s Nachlass90 as It Relates
to Analytic Number Theory.” This is one of the key papers in the
story of the Riemann Hypothesis. To explain the nature of Siegel’s
discovery, I shall have to return to the computational thread in my
narrative—that is, to the effort to actually calculate the zeros of the
zeta function and to verify the Riemann Hypothesis experimentally.

IV. I left the computational thread in Chapter 12 with Jørgen
Gram’s publication of the first 15 non-trivial zeros in 1903. Further
work in this direction has continued down to the present day. At the
1996 Seattle conference on the Riemann Hypothesis, Andrew Odlyzko
presented the history shown in Table 16-1.

Van de Lune went on to carry his investigation to 5 billion zeros
at the end of 2000, and to 10 billion by October 2001. In the mean-
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time, in August 2001, Sebastian Wedeniwski, using idle time on 550
office PCs at IBM Corp., Germany, began a project to advance com-
putation yet further. The latest result posted by Wedeniwski is dated
August 1, 2002, and reports that the number of non-trivial zeros with
real part one-half has now been carried to 100 billion.

There are actually a number of different things going on here,
and it is important to keep them distinct in one’s mind.

First, there is the confusion between (a) height up the critical line,
and (b) number of zeros. “Height” here just means the imaginary part
of a complex number; the height of 3 + 7i is 7. In discussions of the
zeta zeros, it is now customary to refer to this height as t or T. (Since
we know that the zeros are symmetrical about the real axis, we only
bother with positive t, by the way.) We have a formula for the number
of zeros up to height T.

N T
T T T

O T( ) = 





− + ( )
2 2 2π π π

log log

This is actually a very good formula—the first two terms are
Riemann’s—giving excellent approximations even for quite low val-

TABLE 16-1 Computational Work on the Zeta Zeros.

Number of zeros

Researcher(s) Publication date with real part 1⁄2

J. Gram 1903 15

R.J. Backlund 1914 79

J.I. Hutchinson 1925 138

E.C. Titchmarsh et al. 1935−1936 1,041

A.M. Turing 1953 1,054

D.H. Lehmer 1956 25,000

N.A. Meller 1958 35,337

R.S. Lehman 1966 250,000

J.B. Rosser et al. 1969 3,500,000

R.P. Brent et al. 1979 81,000,001

H. te Riele, J. van de Lune et al. 1986 1,500,000,001
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ues of T. Ignoring the big oh term,91 for T equal to 100, 1,000, and
10,000, it gives 28.127, 647.741, and 10,142.090. The actual numbers
of zeros up to these heights are 29, 649 and 10,142. To get a value
of N(T) equal to Wedeniwski’s 100 billion, you need T to be
29,538,618,432.236 … , and that is the height Wedeniwski has carried
his work to.

And then there is the confusion about what is actually being cal-
culated. It should not be assumed that Wedeniwski can show us all 50
billion of those zeros, to a high (or even medium) degree of accuracy.
The aim of most of this kind of work is to confirm the Riemann
Hypothesis, and this can be done without very precise computations
of the zeros. There is a piece of theory that lets you compute how
many zeros are in the critical strip between heights T1 and T2—that is,
inside a rectangle whose bottom and top edges are imaginary T1 and
T2, and whose left and right edges are real 0 and 1, as illustrated in
Figure 16-1. There is another piece of theory that lets you compute
how many zeros are on the critical line between these heights.92 If the
two computations give the same result, you have confirmed the Rie-
mann Hypothesis in that range. You can do this with only a rough
knowledge of where the zeros actually are. Most of the work in Table
16-1 is of this kind.

What about tabulation of the actual precise values of the zeros?
Surprisingly little of this has been done, except incidentally to the
other effort (i.e., verifying the Hypothesis). So far as I am aware, the
first published table of this kind to any length was by Brian Hasel-
grove. In 1960, working on second-generation mainframe computers
at the universities of Cambridge and Manchester, in England,
Haselgrove and his colleagues tabulated the first 1,600 zeros, accurate
to six decimal places, and published the table.

Andrew Odlyzko told me that when he began his work on the
zeta zeros in the late 1970s, Haselgrove’s tables were the only ones he
knew of, though he thinks that Lehman, as part of his 1966 work,
might have done accurate computation of more zeros. Andrew him-
self has a table (on computer disk, not printed) of the first two mil-
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lion zeros, accurate to nine decimal places. At the time of writing,
that is the largest known table of zeros.

All of the above work is concerned with the first N zeros. Andrew
Odlyzko has also leapt ahead to examine small, isolated ranges very
high up. He has published the highest non-trivial zero of the zeta
function known to date, the 10,000,000,000,000,000,010,000-th. It is
at argument 1

2 + 1,370,919,909,931,995,309,568.33539i, to five places
of decimals in the imaginary part. Andrew has also computed the

Real 

Imaginary

T2

T1

FIGURE 16-1 Heights T1 and T2 up the critical strip.
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first 100 zeros to 1,000 decimal places each.93 The first zero (I mean,
of course, its imaginary part) begins

14.13472514173469379045725198356247027078425711569924

31756855674601499634298092567649490103931715610127

79202971548797436766142691469882254582505363239447

13778041338123720597054962195586586020055556672583

601077370020541098266150754278051744259130625448…

V. There are stories behind Table 16-1. That A.M. Turing, for ex-
ample, is the very same Alan Turing who worked in mathematical
logic, developing the idea of the Turing Test (a way of deciding
whether a computer or its program is intelligent), and of the Turing
machine (a very general, theoretical type of computer, a thought ex-
periment used to tackle certain problems in mathematical logic).
There is a Turing Prize for achievement in computer science, awarded
annually since 1966 by the Association for Computing Machinery,
equivalent to a Fields Medal94 in mathematics, or to a Nobel Prize in
other sciences.

Turing was fascinated by the Riemann Hypothesis. By 1937 (his
26th year) he had made up his mind that the Hypothesis was false
and conceived the idea of constructing a mechanical computing de-
vice with which to generate a counterexample—a zero off the critical
line. He applied to the Royal Society for a grant to cover the cost of
construction and actually cut some of the gear wheels himself, at the
engineering department of King’s College, Cambridge, where he was
lecturing.

Turing’s work on the “zeta function machine” stopped abruptly
in 1939, when World War II broke out. He joined the Government
Code and Cypher School at Bletchley Park and spent the war years
breaking enemy codes. Some of the gear wheels survived, however,
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and were found among his effects when he died, probably from sui-
cide, on June 7, 1954.

As sad and strange as Turing’s death was—he ate an apple coated,
by himself, with cyanide—he enjoyed posthumous good fortune in
the matter of biographers. Andrew Hodges wrote a beautiful book
about him (Alan Turing: The Enigma, 1983), and then Hugh White-
more made a fascinating play based on the book (Breaking the Code,
1986).

I have no space here to go into the details of Turing’s life. I refer
the reader to Hodges’s fine biography, from which I shall just quote
the following.

[O]n 15 March [1952] he submitted for publication his work on the

calculation of the zeta function, even though the practical attempt

at doing it on the prototype Manchester computer had been so un-

satisfactory. It might be that he wished to get it out of the way in

case he was going to prison.

Turing was to be tried on March 31 on 12 charges of “gross inde-
cency,” consensual homosexual acts being at that time criminal of-
fenses in Britain. In the event he did not go to prison. He was found
guilty but placed on probation, with the condition that he undergo
medical treatment. “There was,” notes Hodges, “no concept of a right
to sexual expression in the Britain of 1952.”

There are other stories, too. Edward Titchmarsh, who had been a
student of Hardy’s (as, by the way, had Turing), worked through his
1,041 zeros95 using punched-card machines on loan from the British
Admiralty, which used them for compiling tide tables. He went on to
write a classic mathematical text on the zeta function.96 All this me-
chanical work came to an end with the advent of electronic comput-
ers after World War II, of course.

Other stories, too … but I have strayed too far from my course.97

I was going to finish telling you about the Riemann-Siegel formula.
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VI. The first three entries in Table 16-1—the contributions of
Gram, Backlund, and Hutchinson—all consisted of work done pains-
takingly with paper, pencil, and books of mathematical tables. This
was computational hard labor; values of the zeta function are not
easy to compute. The basic technique was one named “Euler-
Maclaurin summation,” developed around 1740 by Leonhard Euler
and the Scottish mathematician Colin Maclaurin, working indepen-
dently. It involves the approximation of integrals by long and compli-
cated sums. Though arduous, it was the best method anyone could
come up with. Gram himself tried several others, over a period of
years, with very little success.

The essence of Carl Siegel’s discovery, from his researches into
Riemann’s Nachlass at the Göttingen library, was this: Bernhard Rie-
mann, in the background work for his 1859 paper, had developed a
much better method for working out the zeros—and had actually
implemented it and computed the first three zeros for himself! None
of this was revealed in the 1859 paper. It was all hidden away in the
Nachlass.

Says Harold Edwards: “Riemann was in fact in possession of the
means to compute ζ 1

2 +( )i t  with amazing accuracy.”98 Riemann sat-
isfied himself with rough calculations, however, precise knowledge of
the location of the zeros not being essential for his work. He got the
imaginary part of the first zero (see above) as 14.1386 and confirmed
that it is the first; he computed the second and third to within a per-
centage point or two of accuracy.

The discovery of Riemann’s formula, fine-tuned and published
by Siegel to become the Riemann-Siegel formula, made work on the
zeros much easier. All significant research depended on it up to the
mid-1980s. Andrew Odlyzko’s classic 1987 paper, “On the Distribu-
tion of Spacings Between Zeros of the Zeta Function,” for example,
which I shall have more to say about in Chapter 18.v, used Riemann-
Siegel. Stimulated by this work, Odlyzko and Arnold Schönhage then
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developed and implemented some improved algorithms, but every-
thing is built on Riemann-Siegel.

Carl Siegel, by the way, was not Jewish and was not directly af-
fected by the restrictive laws of the early Nazi period. He detested the
Nazis, though, and left Germany in 1940 to work at the Institute for
Advanced Study in Princeton. He returned to Germany in 1951,
finishing his career as a professor at that same Göttingen where, 20
years before, the archives had yielded up to him a glimpse of the
astonishing powers of mind that dwelt behind Bernard Riemann’s
quiet diffidence.
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A LITTLE ALGEBRA

There should actually be a lot of al-
gebra in this book, much more than I have been able to present. My
focus has been on Bernhard Riemann and his work on prime num-
bers and the zeta function. That work was in number theory and
analysis, and so my narrative has been dominated by those topics.
However, modern math is, as I have already noted, very algebraic.
This chapter fills in the algebraic background you need to under-
stand two important approaches to the Riemann Hypothesis.

Like Chapters 7 and 15, this is a twofer chapter. Sections II and
III give the basics of field theory; the remainder of the chapter dis-
cusses operator theory. Field theory is important because it has al-
lowed something very much like the Riemann Hypothesis to actually
be proved. Many researchers believe that field theory offers the most
promising line of attack on the original, classical Riemann Hypoth-
esis.99 Operator theory became important following the remarkable
and rather romantic developments I shall describe in the next chap-
ter. First, though, field theory.

I.
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II. “Field” has a very particular meaning to mathematicians. A set
of elements forms a field if the elements can be added, subtracted,
multiplied, and divided, according to the ordinary rules of arith-
metic—for example, the rule that a × (b + c) = ab + ac. The results of
all these operations must stay within the field.

For example, � is not a field. If you try to subtract 12 from 7, you
get a result that is not in �. Similarly with �. If you divide 12 by 7, the
answer is not in �. These are not fields.

However, �, �, and � are all fields. If you add, subtract, multiply,
or divide two rational numbers, you get another rational number.
Likewise with real and complex numbers. These are three examples
of fields. Each has an infinite number of elements, of course.

Other infinite fields are easy to construct. Consider the family of
all numbers with the form a b+ 2 , where a and b are rational num-
bers. Either b is zero, or it isn’t. If b is not zero, since 2  is not a
rational number, a b+ 2  is not a rational number either. This fam-
ily therefore includes all the rationals (b zero) as well as a host of very
particular irrationals. It is a field. Adding a b c d+ +2 2 to  gives
(a + c) + (b + d) 2, subtracting gives (a – c) + (b – d) 2, multiplying
gives (ac + 2bd) + (ad + bc) 2 and dividing, using a trick similar to the
one for complex numbers, gives (ac – 2bd) ⁄ (c2 – 2d2) + ((bc – ad) ⁄
(c2 – 2d2)) 2 . Since a and b can be any rational numbers at all, the
field has infinitely many members.

Fields do not have to be infinite. Here is the simplest of all fields,
with only two elements, 0 and 1. The rules for addition are: 0 + 0 = 0,
0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. The rules for subtraction are: 0 − 0 = 0,
0 − 1 = 1, 1 − 0 = 1, 1 − 1 = 0. (Notice that these results are the same
as for addition. In this field, any minus sign can be freely replaced by
a plus sign!) The rules for multiplication are: 0 × 0 = 0, 0 × 1 = 0,
1 × 0 = 0, 1 × 1 = 1. The rules for division are: 0 ÷ 1 = 0, 1 ÷ 1 = 1, and
division by zero is not allowed. (Division by zero is never allowed.)
That is a perfectly sound field, and by no means trivial; I shall make
good use of it in a moment. Mathematicians call it “F2.”
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You can, in fact, construct a finite field for any prime number p,
and even for any power of any prime number. If p is a prime number,
there is a finite field with p members, one with p2 members, one with
p3 members, and so on. Furthermore, these are all the possible finite
fields. You can list them: F2, F4, F8, …, F3, F9, F27, …, F5, F25, F125, …, …;
and when you have done so, you have listed all possibilities for finite
fields.

It is a mistake to think, as beginners often do, that finite fields are
just a restatement of the clock arithmetic I described in Chapter 6.viii.
This is true only for fields with a prime number of members. For
other finite fields, the arithmetic is more subtle. Figure 17-1, for ex-
ample, shows the clock arithmetic—addition and multiplication—
for a clock with four hours marked (i.e., 0, 1, 2, and 3).

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

×+ 0 1 2 3

0 

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

 

0 1 2 3

FIGURE 17-1 Addition and multiplication on a 4-hour clock. (That is,

carrying out addition and multiplication in the usual way, then taking

remainders after division by 4.)

This system of numbers and rules is interesting and useful, but it
is not a field, because you can’t divide 1 or 3 by 2. (If you could divide
1 by 2, then the equation 1 = 2 × x would have a solution. It doesn’t.)
Mathematicians call it a ring—not unreasonably, since we are talking
about clocks. In a ring, you can add, subtract, and multiply, but not
necessarily divide.

The particular ring shown in Figure 17-1 has the official symbol
�/4�. I confess I have never liked this style of symbolism though, so I
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am going to exercise author’s privilege and create a symbol of my
own for it: �����4. Plainly, you can create such a ring for any natural
number N. In my symbols, that ring would be called �����N.

You can’t create a field FN for every number N, only for primes
and prime powers. For a pure prime p, Fp looks just like �����p—
same addition table, same multiplication table. For a power of a
prime, however, things get trickier. Figure 17-2 shows addition and
multiplication (from which, of course, you can deduce subtraction
and division) in F4. Notice that F4 is different from �����4.

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 3 1 

3 0 3 1 2 

×

FIGURE 17-2 Addition and multiplication in the finite field F4.

Every field, finite or infinite, has an important property called
the characteristic. The characteristic of a field tells you how many
times you have to add 1 to itself to get zero. If 1 + 1 + 1 + 1 + … (N

times) = 0, then the characteristic is N. Obviously the characteristic
of F2 is 2. Less obviously, but you will see it if you check the addition
table in Figure 17-2, the characteristic of F4 is also 2. Fields like �, �,
and �, in which no amount of adding 1 to itself will ever produce
zero, are said to have characteristic zero. (You might think that char-
acteristic infinity would be more logical, and you might be right, but
there are good reasons for choosing zero instead.) It can be proved
that every field has characteristic either zero or a prime number.

Since this is algebra, the elements of a field need not be numbers.
Algebra can deal with any kind of mathematical object. Consider all
polynomials of any degree, that is, all expressions like axn + bxn−1 +
cxn−2 + …, where a, b, c, and so on are integers. Now form the set of all
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rational functions—that is, any function that is the ratio of two poly-
nomials. That is a field. Here is an example of an addition sum in the
field.

x

x x

x x

x x

x x x x

x x x2 5 3

20 19 3

3

40 58 25 3

2 5 32

2

4 3

4 3 2

5 4 3+ −
+

− +

+
=

+ − + −
+ −

(This is the kind of thing that high school algebra classes used to be
devoted to.)

The coefficients of the polynomials in that field don’t have to be
integers. You can have some fun, in fact, by making them members of
a finite field, like the F2 I defined above. Here is an example of the
kind of addition sum you would then get

x

x

x x x

x x

x x x

x x x

+
+

+ + +
+ +

=
+ + +

+ +
1 1

1

13 2

2

4 2

3 2

(Remember if you check this out, that in the F2 field, 1 + 1 = 0; there-
fore, x + x = 0, x2 + x2 = 0, and so on.) That field would be called “the
field of rational functions over F2.” It has, of course, infinitely many
members; only the coefficients are restricted to a finite field. Thus, you
can use a finite field to build up an infinite field. Notice also that since
1 + 1 = 0, this field has characteristic 2. Thus an infinite field can have
a finite characteristic.

It is not very helpful to ask what x represents in these last two
examples. It is a symbol, for the manipulation of which we have wa-
tertight rules. From the algebraic point of view, that is the main thing.
As a matter of fact, the answer to the question is almost certainly “x

represents a number.” However, the algebraist is much more inter-
ested in what kind of number—to what families, what groups, what
fields the number belongs, and what rules of manipulation it obeys.
To the analyst, my number a b+ 2  is not very interesting. “It is just a
real number,” the analyst will say—“all right, an algebraic number”
(Chapter 11.ii), if pressed. To the algebraist, though, it is exquisitely
interesting, because it represents a field. For the most part, analysts
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and algebraists are not really discussing different things; they are just
interested in different aspects of those things.100

III. That glimpse of the scope, power, and beauty of algebraic field
theory is all I have space for here, though I shall revisit these topics
briefly, from a different angle, in Chapter 20.v. I have given some cov-
erage of these ideas because in 1921 the Austrian mathematician Emil
Artin, in his Ph.D. thesis at the University of Leipzig, used field theory
to open up a new approach to the Riemann Hypothesis. The math
here is deep, and I can give only a sketch.

I mentioned in the previous section that there is a finite field for
any prime power pN. I also showed how a finite field can be used as a
basis for building other fields, including even infinite ones. It turns
out that if you start from a finite field, there is a way to construct one
of these “extension” fields in such a way that a zeta function can be
associated with it. By “a zeta function,” I mean a function of a com-
plex argument, defined over the field of complex numbers, that bears
an uncanny resemblance, in its broad properties, to Riemann’s zeta
function. For example, these analogues to the Riemann zeta function
come with their own Golden Keys, their own Euler products (see Note
36), and their own Riemann Hypotheses.

In 1933 Helmut Hasse, working at the University of Marburg in
Germany, was actually able to prove a result analogous to the Rie-
mann Hypothesis for a certain category of those base fields. In 1942
André Weil101 extended this proof to a much wider class of objects
and conjectured that similar results would apply to yet wider classes—
these were the famous three “Weil Conjectures.” In 1973 the Belgian
mathematician Pierre Deligne, in a sensational achievement that won
him a Fields Medal, proved the Weil Conjectures, essentially com-
pleting the program initiated by Artin.

Whether the techniques developed to prove these analogues of
the Riemann Hypothesis for these very abstruse fields can be used to
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solve the classical Hypothesis is not known. A great many people
think they can, and this remains a very active area of Riemann Hy-
pothesis studies.

Are these researchers on to something? It is not clear—not, at
any rate, to me. For the crux of the matter, go back to the second
paragraph in this section, where I said that one of these analogue zeta
functions is associated with a certain kind of field. For the classical
zeta function, the one to which the original Riemann Hypothesis ap-
plies—the one this book is mainly about—the equivalent associated
field is �, the field of ordinary rational numbers. As investigations
have proceeded through these past few decades, it has become appar-
ent that this elementary rational number field � is in some sense
deeper and more intractable than the subtle, artificial fields to which
the results of Artin, Weil, and Deligne apply. On the other side of the
argument, though, the techniques developed for the manipulation of
those artificial fields have considerable power—Andrew Wiles used
them to prove Fermat’s Last Theorem!

IV. The physical thread of Riemann Hypothesis studies, whose gen-
esis I shall describe in Section VI, and which has opened up wide new
territories for exploration, depends on some understanding of a dif-
ferent algebraic topic, operator theory. I have, therefore, given over
this section and the next to an account of operators, approaching
them by way of the related theory of matrices.

Matrices are all over the place in modern math and physics, and
the ability to manipulate them is a fundamental modern mathemati-
cal skill. Since my space is limited, I am going to simplify the whole
business, giving just the bare essentials. In particular, I am going to
ignore the entire issue of singular matrices, as if no such things ex-
isted. This is perhaps the most brazen act of simplification in the
book, and I apologize to mathematically fastidious readers.
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A matrix is a square array of numbers, like this, 
5 1

2 6







. I am

using just whole numbers for simplicity. The numbers in a matrix

can be rational, real, or even complex. That particular matrix is a
2 × 2. A matrix can be any size, though: 3 × 3, 4 × 4, 120 × 120, and so
on. It can even be infinite in size, though the rules change slightly for
infinite matrices. An important part of every matrix is the lead diago-

nal, the one that runs from top left to bottom right. In my example,
the lead diagonal has elements 5 and 6.

Given two matrices of the same size, you can add, subtract, mul-
tiply, and divide them. The rules for doing this are not straightfor-
ward; for example, if A and B are matrices of the same size, it is not
generally true that A × B = B × A. You can find the rules for manipu-
lating matrices in any decent algebra textbook, and I don’t need to go
into them here. Suffice it to say that they exist and that there is an
arithmetic of matrices, rather like the arithmetic of ordinary num-
bers, only trickier.

The important thing about matrices for us here is this. From any
N × N matrix you can extract a polynomial of the N-th degree—that
is, a function made up of various powers of x, up to the N-th power.
I’m afraid I can’t explain just how you find the characteristic polyno-
mial of a given matrix. You must trust me, it’s there, and there is a way
to find it. This polynomial is called the characteristic polynomial of
the matrix.

The characteristic polynomial of my example 2 × 2 matrix is x2 −
11x + 28. For what values of x is this polynomial equal to zero? This is
the same as asking, what are the solutions of the quadratic equation
x2 − 11x + 28 = 0? By the well-known formula (or, as my own school-
master used to say optimistically, “by inspection”) the solutions are 4
and 7. And sure enough, if you substitute 4 for x, the polynomial has
value 16 − 44 + 28, which is indeed zero. Same with 7: 49 − 77 + 28 is
zero, too.

All this illustrates a general truth. Any N × N matrix has a char-
acteristic polynomial of degree N, and that polynomial has N zeros.102
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The zeros of a matrix’s characteristic polynomial are tremendously
important. They are called the eigenvalues of the matrix. Notice an-
other thing. If you add up the numbers in the lead diagonal of my
sample 2 × 2 matrix, you get 11 (because 5 + 6 = 11). That is also the
sum of the eigenvalues (7 + 4 = 11); and it is the negative of the first
number that appears in the characteristic polynomial (the negative
of −11 is 11). This is a very important number, called the trace of the
matrix.

Characteristic polynomial; eigenvalues; trace—what’s this all
about? You see, the importance of matrices is not in themselves, but
in what they represent. Matrix arithmetic, once you get the hang of it,
is a merely mechanical skill, like ordinary arithmetic. But just as ordi-
nary numbers can be used to represent much deeper, more funda-
mental things, so can matrices. It takes me 12 minutes to walk from
my house to Huntington village; the distance is about 0.8 miles. If,
starting tomorrow, the United States were to switch to the metric sys-
tem, I should have to say “about 1.3 kilometers” instead of “about 0.8
miles.” The distance, however, would not have changed; only the num-

bers used to represent it would have changed. It would still take me 12
minutes to walk it (until we switch to a metric clock).

To take another example, the calendar on my wall is a way of
representing, in numbers, the motions of the sun and moon. Mainly
of the sun, since we Americans have a solar calendar, whose months
are out of sync with the motions of the moon. My calendar, however,
was given to us by a local Chinese restaurant. If I look at it closely, I
can see the months and days of the traditional Chinese lunar calen-
dar marked, each month beginning with a new moon. The numbers
are all different from the solar numbers, but they represent the same
celestial events, the same passage of time, the same actual days.

Just so with matrices. The great importance of matrices is that
they can be used to represent, to quantify, certain deeper and more
fundamental things. What are those things? They are operators. The
notion of an operator is one of the most important in twentieth-
century math, and also in physics. I don’t want to go into detail about
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what operators are, not until Chapter 20 at any rate. The important
thing to grasp is that they are lurking underneath all this business of
matrices, and it is their properties that matrices allow us to measure
and study numerically.

That is why the characteristic polynomial, the eigenvalues, and
the trace are such key concepts. They are properties of the underlying
operator, not just of the matrix that represents it. An operator can, in
fact, be represented by many matrices, all having the same eigenval-
ues, and so on. My sample 2 × 2 matrix represents a certain operator,

the matrix 
3 2

2 8−






  represents the same operator. So does 
−





1 8

5 12
,

so does 
1000000 666662

1499994 999989− −





 . All these matrices—and an infinity

of others, too—have the characteristic polynomial x2 − 11x + 28, the
eigenvalues 4 and 7, and trace 11. That is because the underlying op-
erator has those properties.

All of this applies to matrices of any size. Here is a 4 × 4 matrix.

2 1 5 1

1 3 7 0

0 0 2 1

2 4 1 4



















Its characteristic polynomial is x4 − 11x3 + 40x2 − 97x + 83. (Notice
that this matrix, like the other one, has trace 11. This is just coinci-
dence; they are otherwise unrelated.) That polynomial has a full set
of four zeros. To five decimal places, they are: 1.38087, 7.03608,
1.29152 − 2.62195i, and 1.29152 + 2.62195i. Those are, of course, the
eigenvalues of the matrix. Two of them, as you can see, are complex
numbers. (And complex conjugates of each other—which is always
the case for a polynomial with real coefficients.) That is quite normal,
even when, as here, all the numbers in the home matrix are real num-
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bers. If you add up the four eigenvalues, you get 11; the imaginary
components cancel out on addition.

V. By the time mathematicians had studied matrices for a few de-
cades, they had classified them into different types. They had devel-
oped, so to speak, a taxonomy of matrices, in which the entire family
of N × N matrices—referred to by mathematicians as “the general
linear group for N,” and symbolized by “GLN”—was organized into
species and genera.

I am going to pluck just one species out of that great matrix zoo,
the Hermitian matrix, named after the great French mathematician
Charles Hermite, whom we met briefly in Chapter 10.v. The numbers
in a Hermitian matrix are complex numbers and they have the fol-
lowing pattern; if the number in the m-th row of the n-th column is
a + bi, then the number in the n-th row of the m-th column is a − bi.
In other words, every element of the matrix is the complex conjugate
(Chapter 11.v) of its reflection in the lead diagonal. An example will,
I hope, make this clear. Here is a 4 × 4 Hermitian matrix.

− − + − +

+ − − −

− + − −

− − − +



















2 8 3 4 7 3 2

8 3 4 1 1 5

4 7 1 5 6

3 2 1 5 6 1

i i i

i i i

i i i

i i i

You see how the element in the third row, first column is the
complex conjugate of the one in the first row, third column? That’s a
Hermitian matrix. Note that it follows from the definition that all the
numbers in the lead diagonal must be real, because the definition
requires each number in the diagonal to be its own complex conju-
gate, and only a real number can be its own complex conjugate:
a + bi = a − bi if and only if b is zero.
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Now, there is a famous theorem about Hermitian matrices, which
says that all the eigenvalues of a Hermitian matrix are real. This is
pretty surprising, when you think about it. Even if all the elements of
a matrix are real, the eigenvalues can still be complex, as I showed
with my first 4 × 4 matrix example. That a matrix with complex ele-
ments should nonetheless have real eigenvalues is remarkable. Well, if
the matrix is Hermitian, it does. The eigenvalues of that matrix I just
showed are (approximately): 4.8573, 12.9535, −16.553, and
−3.2578. All real (and adding up to −2, the trace).

This theorem, by the way, implies that all the coefficients of the

characteristic polynomial of a Hermitian matrix are real. This follows
from the fact that the eigenvalues of any matrix are, by definition, the
zeros of the matrix’s characteristic polynomial. If a polynomial has
zeros a, b, c, …, then it can be factorized as (x − a)(x − b)(x − c)….
You can just multiply out all the parentheses to get back to the usual
form of the polynomial. Well, if a, b, c, … are all real numbers, then
multiplying out those parentheses gives you an expression with real-
number coefficients. Since I have already stated the eigenvalues of the
4 × 4 Hermitian matrix above, we know that the characteristic poly-
nomial is (x − 4.8573)(x − 12.9535)(x + 16.553)(x + 3.2578). If you
multiply out all the parentheses, you get the following as the charac-
teristic polynomial: x4 + 2x3 − 236x2 + 286x + 3393.

VI. This was all known 100 years ago … at the time, that is, when
David Hilbert was just embarking on his investigation of integral
equations, in which the study of operators played a key role. Other
mathematicians—some independently, some inspired by Hilbert’s
work—also spent the early years of the twentieth century absorbed in
the study of operators. It was in the air. The Riemann Hypothesis was
not nearly so much in the air at this point; although following
Hilbert’s 1900 address and the publication of Landau’s book in 1909,
a lot of the best minds were beginning to think hard about it.
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It is, therefore, not altogether surprising that the two things came
together in two of the most brilliant and wide-ranging intellects of
the time. One of those intellects was Hilbert’s, the other was George
Pólya’s, and they seem to have reached the same insight indepen-
dently. Their thought processes probably went something like this.

Here is a mathematical object, the Hermitian matrix, which is built

up of complex numbers; yet its most intimate and essential prop-

erty—the list of its eigenvalues—consists entirely and unexpectedly

of real numbers. And now here is a function, the Riemann zeta func-

tion, which is built up of complex numbers; and its most intimate

and essential property is the list of its non-trivial zeros. (Let’s ignore

the other zeros for this argument.) Every one of these zeros is in the

critical strip. They are symmetrical about the critical line, whose

real part is 1
2 . Let’s say a typical zero is 1

2  + zi, for some number z.

Then the Riemann Hypothesis says that all the z’s are real.

Mathematicians of the 1910s would actually have said “operator,”
not “matrix.” Matrices, though they had been lying around since
Arthur Cayley invented them in 1856, did not become common cur-
rency until quantum mechanics took off around 1925. Still, you can
see the rough analogy here. With both the eigenvalues of a Hermitian
matrix and the non-trivial zeta zeros, we have a list of unexpectedly
real numbers emerging from the key property of an essentially com-
plex object. Hence,

The Hilbert-Pólya Conjecture

The non-trivial zeros of the Riemann zeta function correspond to
the eigenvalues of some Hermitian operator.

The origins of the Conjecture are rather murky. Both Hilbert and
Pólya are supposed to have mentioned the possibility of some such
equivalence in lectures or conversations, at some time in the years
1910−1920. However, neither, so far as I have been able to discover,
committed the thought to paper for publication. So far as I know—
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and, says Peter Sarnak, so far as he knows—the only written evidence
for the Hilbert-Pólya Conjecture having been conjectured consists of
a letter Pólya wrote to Andrew Odlyzko 60 years later, part of which is
shown in Figure 17-3. In it, Pólya said that he had been asked the
following question by Edmund Landau: “Can you think of any physi-

cal reason why the Riemann Hypothesis might be true?” Of Hilbert’s
own conjecturing, there is no material evidence at all that I am
aware of.

FIGURE 17-3 Part of George Pólya’s letter to Andrew Odlyzko.
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It must be remembered, though, that Hilbert was a figure of tow-
ering stature in early twentieth-century mathematics; and also that
he lived and worked in the atmosphere of German academia, where
university professors were looked up to by their students and subor-
dinates as remote and omniscient gods, to be approached only with
the utmost deference. Not only was a professor not ever to be ad-
dressed as anything less elevated than “Herr Professor,” even his wife
became “Frau Professor.” For the very grandest of these Olympians,
indeed, even “Herr Professor” was inadequate. The most exceptional
individuals were awarded the title “Geheimrat” by the German gov-
ernment—a rank roughly equivalent to a British knighthood. The
correct form of address was then “Herr Geheimrat,” though Hilbert
himself did not care for this level of formality.

Given all of this, it is not surprising that if by good fortune you
got sufficiently close to one of these deities to hear him speak, you
would not soon forget his words. It is also the case, to be sure, that
such giants caused a certain amount of unverifiable apocrypha to be
generated about them. Still, I think the balance of the evidence, cir-
cumstantial though it be, leads one to believe that Hilbert did, in-
deed, at some point utter the Hilbert-Pólya Conjecture, or something
equivalent to it. (To simply say “the Pólya Conjecture” would be con-
fusing, by the way, as there is another, different conjecture known by
that name.)
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18

NUMBER THEORY MEETS

QUANTUM MECHANICS

In the last chapter I gave the math-
ematical background and a little historical background to the
Hilbert-Pólya Conjecture. The Conjecture was far ahead of its time
and lay there untroubled for half a century.

That was, however, a very eventful half-century in physics, the
most eventful ever. In 1917, just around the time of the Conjecture,
Ernest Rutherford observed the splitting of the atom; 15 years later,
Cockroft and Walton split the atom by artificial means. This led in
turn to Enrico Fermi’s work, to the first controlled chain reaction in
1942, and to the first nuclear explosion on July 16, 1945.

“Splitting the atom” is, as all high-school physics teachers tell
their classes, a misnomer. You split atoms every time you strike a
match. What we are really talking about here is the splitting of the
atomic nucleus, the heart of the atom. To get a nuclear reaction—
controlled or otherwise—going, you must fire a subatomic particle
into the nucleus of a very heavy element. If you do that in a certain
way, the nucleus splits, firing off new subatomic particles as it does.
These particles penetrate the nuclei of neighboring atoms … and so
on, leading to a chain reaction.

I.
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Now, the nucleus of a heavy element is a very peculiar beast. You
can visualize it as a seething, wobbling blob of protons and neutrons,
welded together in such a way that it’s hard to say where one particle
starts and another ends. In the case of seriously heavy elements like
uranium, the whole blob is teetering on the edge of instability. It
might, in fact, depending on the precise mix of protons and neu-
trons, be actually unstable, liable to fly apart of its own volition.

As nuclear physics developed through the middle decades of the
twentieth century, it became very important to understand the be-
havior of this strange beast and, in particular, to understand what
happens if you fire a particle into it. Now, this nucleus, this wobbling
blob, can exist in a number of states, some having high energy (imag-
ine really energetic wobbling), some having low energy (a dull, lan-
guorous kind of wobbling). If a particle is fired into it so that the
nucleus absorbs the particle instead of flying apart, then—since the
energy of the particle must go somewhere—the nucleus moves from
a lower state of energy to a higher. Later, tired of all the excitement, it
might eject an equivalent particle, or perhaps a different type of par-
ticle altogether, and resume a lower energy state.

How many possible energy levels are there? When does a nucleus
pass from level a to level b? How are the energy levels spaced relative
to each other, and why are they spaced like that? Questions like these
placed the study of the nucleus in a larger class of problems, prob-
lems about dynamical systems, collections of particles each of which
has, at any point in time, a certain position and a certain velocity. As
investigations proceeded through the 1950s, it became apparent that
some of the most interesting dynamical systems in the quantum
realm, including the heavy nucleus, were too complicated to yield to
exact mathematical analysis. The number of energy levels was too
large, the possible configurations too numerous. The whole thing was
a nightmare version of the “many-body” problem of classical (that is,
pre-quantum) mechanics, where several objects—the planets of the
solar system, for example—are all acting on each other through
gravity.
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Precise mathematics has trouble coping with this level of com-
plexity, so investigators fall back on statistics. If we can’t discover ex-
actly what’s going to happen, perhaps we can discover what, on aver-
age, is most likely to happen. Such statistical approaches had been
extensively developed in classical mechanics, beginning as far back as
the 1850s, long before quantum theory appeared. Things go some-
what differently in the quantum world, but at least there was a good
body of classical theory to provide inspiration. The necessary work
was done, the necessary statistical tools for complex quantum dy-
namical systems like heavy-element nuclei were developed in the late
1950s and early 1960s, key players being the nuclear physicists Eu-
gene Wigner and Freeman Dyson. One central concept was that of a
random matrix.

II. A random matrix is just what its name suggests, a matrix made
up of numbers chosen at random. Not quite at random, actually. Let
me offer an illustration. Here is a random 4 × 4 matrix, of a rather
particular type whose relevance I shall explain later. I round every-
thing to four places of decimals in what follows, to save space.

1 9558 0 0104 0 4043 1 8694 1 2410 0 8443 0 4180

0 0104 0 4043 1 8675 0 7520 1 1290 0 2270 0 1323

1 8694 1 2410 0 7520 1 1290 0 0781 1 6122 0 8667

0 8443 0 4180 0 2270 0 1323 1 6122 0 8667 2 0378

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

− − −

+ + +

+ − − +

+ − − − −

 i i i

i i i

i i i

i i i















The first thing you may notice about this contraption is that it is
Hermitian—it has that not-quite-symmetry about the lead diagonal
that I described in Chapter 17.v. Recall the following facts from that
chapter.

� Associated with every N × N matrix is a polynomial of degree
N, called the characteristic polynomial.



NUMBER THEORY MEETS QUANTUM MECHANICS 283

� The zeros of the characteristic polynomial are called the eigen-

values of the matrix.
� The sum of the eigenvalues is called the trace of the matrix

(and is equal to the sum of the lead-diagonal elements).
� In the particular case of a Hermitian matrix, the eigenvalues

are all real and so, therefore, are the coefficients of the charac-
teristic polynomial, and also the trace.

For the sample matrix I have shown here, the characteristic polyno-
mial is

x4 − 1.8636x3 − 15.3446x2 + 26.0868x − 2.0484
The eigenvalues are: –3.8729, 0.0826, 1.5675, and 4.0864. The

trace is 1.8636.
Now turn your attention to the actual numbers that make up

that sample matrix. The numbers you see there—the real numbers
that make up the lead diagonal (with a slight qualification, see be-
low), and all the real parts and imaginary parts of the off-diagonal
complex numbers—are random in a certain special sense. They are
plucked at random from a Gaussian-normal distribution—the fa-
mous “bell curve” that crops up all over the place in statistics.

Imagine the standard bell curve drawn on a sheet of fine-ruled
graph paper, so that there are hundreds of graph-paper squares un-
der the curve (Figure 18-1). Pick one of those squares at random; its
horizontal distance from the peak center-line is a Gaussian-normal
random number. There are many more of those squares clustered
round the peak than there are out in the tails of the curve so you are
much more likely to get a number between −1 and +1 than you are to
get a number to the right of +2, or to the left of −2. So you see if you
look at the numbers in the sample matrix shown at the beginning of
this section. (Though the lead-diagonal elements are actually
Gaussian-normal random numbers multiplied by 2  for technical
reasons, and are, therefore, a bit bigger than you would expect.)
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-3 -2 -1 10 2 3

Normal Distribution

FIGURE 18-1 The Gaussian-normal distribution.

Gaussian-random Hermitian matrices like that one, though
much, much bigger, proved to be just the ticket for modeling the be-
havior of certain quantum-dynamical systems. In particular, their
eigenvalues turned out to provide an excellent fit for the energy levels
observed in experiments. Therefore these eigenvalues, the eigenval-
ues of random Hermitian matrices, became the subject of intensive
study through the 1960s. Their spacing in particular turned out to be
very interesting. They were not spaced at random. It was, for example,
much more unusual than you would expect, on a random basis, for
two levels to be close to each other. This is the phenomenon called
“repulsion”—energy levels trying to get as far as possible from each
other, like a long standing line of antisocial people.

To give you a visual aid to what I am describing here, I asked my
math software package, Mathematica 4, to generate a random
269 × 269 Hermitian matrix and compute its eigenvalues (see Figure



NUMBER THEORY MEETS QUANTUM MECHANICS 285

18-2). The reason for using the number 269 here will become clear
very shortly. Mathematica, which never ceases to amaze me, did this
in a trice. The 269 eigenvalues ranged from −46.207887 to
46.3253478. My idea was to string them out as blobs on a line going
from −50 to +50, like raindrops on a fence wire, to show you the pat-
tern of spacings. There was no way I could fit this neatly on a book
page, though; so I chopped up the line into 10 equal segments (−50
to −40, −40 to −30, and so on) and just stacked the segments on top
of each other to make Figure 18-2.

2 4 6 8 10

–50 to –40

–40 to –30

–30 to –20

–20 to –10

–10 to 0

10 to 20

0 to 10

20 to 30

30 to 40

40 to 50

FIGURE 18-2 The eigenvalues of a 269-by-269 random Hermitian matrix.

There is no obvious pattern to the spacing. You might say that it
is random. Not at all! Figure 18-3 shows 269 numbers picked entirely
at random in the range 0–10 and plotted in the same way. Comparing
Figures 18-2 and 18-3, you can see that the eigenvalues of a random
matrix are not randomly scattered across their range. You can see the
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repulsion effect in Figure 18-2—the random scattering of Figure 18-3
has more adjacent pairs of values very close together than has the
eigenvalue distribution (and, inevitably, more far apart, too). The
eigenvalues in Figure 18-2, though unwilling to form any recogniz-
able patterns—they arise, after all, from a random matrix—are strug-
gling to keep their distance from each other. A purely random dot, by
contrast, doesn’t seem to mind at all if it finds itself jammed up
against another random dot.

Permit me to introduce three terms of art here. The set of ran-
dom (that is, Gaussian-random) Hermitian matrices103 of the type I
have been describing is called, in its totality, the “Gaussian Unitary
Ensemble,” or GUE (pronounced “goo”). The precise statistical prop-

0.2 0.4 0.6 0.8 1.0

9 to 10

8 to 9

7 to 8

6 to 7

5 to 6

4 to 5

3 to 4

2 to 3

1 to 2

0 to 1

FIGURE 18-3 Random spacings: 269 random numbers between 0 and 10.
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erties of the spacings between a long non-uniform string of numbers
like those I have illustrated are encapsulated in a creature called the
“pair correlation function.” And a certain ratio associated with this
function, and highly characteristic of it, is called its “form factor.”

Now I am in a position to tell you about a remarkable meeting,
one that opened up very strange and mysterious questions about the
Riemann Hypothesis and launched a thousand research projects.

III. The meeting, a chance encounter between a number theorist
and a physicist, occurred at Princeton’s Institute for Advanced Study
in the spring of 1972. The number theorist was Hugh Montgomery, a
young American doing graduate work at Trinity College, Cam-
bridge—G.H. Hardy’s old college. The physicist was Freeman Dyson,
who held a professorship at the Institute. Dyson, whom I mentioned
earlier, was a renowned physicist. He had not yet embarked on his
second career as an author of thought-provoking bestsellers about
the origins of life and the future of the human race.

Hugh Montgomery’s most recent work had been an investiga-
tion of the spacing between non-trivial zeros of the zeta function.
This was not part of any attempt to prove the Riemann Hypothesis. It
just happens that a result about the nature of that spacing has conse-
quences in the theory of number fields, fields somewhat like the
a + b 2  field that I showed you in Chapter 17.ii.104 This was Mont-
gomery’s area of interest. Here is the story as he tells it.

I was still a graduate student when I did this work. I had written my

thesis but not yet defended it. When I first did the work, I didn’t

understand what it meant. I felt that there should be something this

was telling me, but I didn’t know what, and I was troubled by that.

That spring, the spring of ’72, Harold Diamond105 organized

an analytic number theory conference in St. Louis. I went and lec-

tured at that, then I flew to Ann Arbor. I’d accepted a job at Ann

Arbor and I wanted to buy a house. Well, I bought a house. Then I
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stopped off in Princeton on my way back to England, specifically to

talk to Atle [Selberg] about this. I was a little worried that when I

showed him my results he’d say: “This is all very nice, Hugh, but I

proved it many years ago.” I heaved a big sigh of relief when he

didn’t say that. He seemed interested but rather noncommittal.

I took afternoon tea that day in Fuld Hall with Chowla.106 Free-

man Dyson was standing across the room. I had spent the previous

year at the Institute and I knew him perfectly well by sight, but I had

never spoken to him. Chowla said: “Have you met Dyson?” I said

no, I hadn’t. He said: “I’ll introduce you.” I said no, I didn’t feel I had

to meet Dyson. Chowla insisted, and so I was dragged reluctantly

across the room to meet Dyson. He was very polite, and asked me

what I was working on. I told him I was working on the differences

between the non-trivial zeros of Riemann’s zeta function, and that I

had developed a conjecture that the distribution function for those

differences had integrand 1 – (sinπ u ⁄ π u)2. He got very excited. He

said: “That’s the form factor for the pair correlation of eigenvalues

of random Hermitian matrices!”

I’d never heard the term “pair correlation.” It really made the

connection. The next day Atle had a note Dyson had written to me

giving references to Mehta’s book,107 places I should look, and so on.

To this day I’ve had one conversation with Dyson and one letter

from him. It was very fruitful. I suppose by this time the connection

would have been made, but it was certainly fortuitous that the con-

nection came so quickly, because then when I wrote the paper for

the proceedings of the conference, I was able to use the appropriate

terminology and give the references and give the interpretation. I

was amused when, a few years later, Dyson published a paper called

“Missed Opportunities.” I’m sure there are lots of missed opportu-

nities, but this was a counterexample. It was real serendipity that I

was able to encounter him at this crucial juncture.

You can understand why Freeman Dyson was so excited. The expres-
sion that Hugh Montgomery mentioned, the expression that had
emerged from his inquiries into the Riemann zeta function’s non-
trivial zeros, was precisely the form factor associated with a random
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Hermitian matrix—the kind of thing Dyson had been involved with
for several years in his researches into quantum dynamical systems.
(And Montgomery even understated the degree of serendipity in-
volved in this meeting. Though he made his name as a physicist,
Dyson’s first degree was in math, and his first area of interest was
number theory. If this had not been so, he might not have grasped
what Montgomery was talking about.108)

To illustrate the point, I am going to take all the non-trivial zeros
of the Riemann zeta function up to the height 500i—that is, on the
critical line (they all are on the critical line; the Riemann Hypothesis
is certainly true down at these low levels)—from 1

2  to 1
2  + 500i. There

are 269 zeros in this range. (That is why I picked the number 269 for
Figures 18-2 and 18-3.) Figure 18-4 shows them, their range chopped
into 10 segments and stacked up just as before. If you compare this
with Figures 18-2 and 18-3, you see that it resembles Figure 18-2, not
Figure 18-3.

10 20 30 40 50

0 to 50

50 to 100

100 to 150

150 to 200

200 to 250

250 to 300

300 to 350

350 to 400

400 to 450

450 to 500

FIGURE 18-4 The first 269 values of “t,” where 1
2 + i t  is

a non-trivial zero of the zeta function.
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You should make some modest allowances when comparing these
figures. The zeta zeros in Figure 18-4 take a while to get started and
pack closer further up the critical line, according to the principle I
stated in Chapter 13.viii. Also, the eigenvalues in Figure 18-2 are
stretched out somewhat at the beginning and end of their range and
correspondingly squished in the middle. Both effects can be reduced
by taking more zeros and bigger matrices and by normalizing (see
below). Even allowing for these distortions, the following points look
pretty plausible on the basis of these diagrams.

� Neither the zeta zeros nor the eigenvalues look much like ran-
domly scattered points.

� They resemble each other.
� In particular, they both show the repulsion effect.

IV. Hugh Montgomery’s paper on the spacing of zeta zeros was
published by the American Mathematical Society in 1973. Its first
words are, “We assume the Riemann Hypothesis (RH) throughout
this paper….” There is nothing very striking about that. By 1973 a
vast amount of mathematical literature consisted of theorems that
assumed the truth of the Hypothesis.109 Today the quantity is corre-
spondingly vaster, and if the RH (as I shall henceforth term it, follow-
ing Montgomery and all other modern researchers) proves false, this
entire superstructure will become unstable; though if the counter-
examples are few, much could be rescued.

Montgomery’s 1973 paper contains two results. The first is a
theorem about the broad statistical properties of the zeta-zero spac-
ing. This theorem presupposes the truth of the RH. The second result
is a conjecture. It asserts that the pair correlation function for the
spacing is what Montgomery told Dyson he thought it was. It is im-
portant to understand that this is a conjecture. Montgomery was not
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able to prove it, not even on the assumption that the RH is true. No-
body else has been able to prove it, either.

Most of the features of the Riemann zeros that you will see re-
ported and discussed, most of the ideas that have come up in the last
30 years, are likewise conjectural. Hard proofs are in desperately short
supply in this area. In part this is because, following the link estab-
lished by Montgomery, so much of the recent thinking about the RH
has been done by physicists and applied mathematicians. Sir Michael
Berry110 likes to quote the Nobel Prize-winning physicist Richard
Feynman in this context, “A great deal more is known than has been
proved.” In part it is also because the RH is a very, very tough prob-
lem. There is such an immense quantity of literature on the RH now
that you have to keep reminding yourself of the truth that very little is
known for certain about the zeros of the zeta function, and even with
all the rising interest during the past few years, results that are math-
ematically watertight still come only occasionally, at long intervals.

V. The Institute for Advanced Study in Princeton, New Jersey, is
only 32 miles from AT&T’s Bell Labs research center in Murray Hill.
Hugh Montgomery lectured on what was, by that time, the “Mont-
gomery pair correlation conjecture” at Princeton in 1978. Among
those present was Andrew Odlyzko, a young researcher from the
AT&T facility. At just about this time, his laboratory acquired a Cray-1
supercomputer. Researchers were encouraged to run projects on the
Cray, to familiarize themselves with the kinds of algorithms appro-
priate to its architecture.

Ruminating on Montgomery’s lecture, Odlyzko reasoned as fol-
lows. The Montgomery conjecture asserts that the spacing of zeta
zeros follows such-and-such a statistical law. This law also appears in
the investigation of a certain family of quantum dynamical systems
that conform to the GUE model. The statistical properties of that
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family have been the subject of intensive analysis over several years.
The statistical properties of the zeta zeros, however, have been very
little investigated. Useful work could be done, the balance redressed,
by undertaking a statistical study of the zeta zeros.

That is what Andrew Odlyzko proceeded to do. Using spare time
in 5-hour segments on the Cray computers111 at Bell Labs, he gener-
ated the first 100,000 non-trivial zeros of the Riemann zeta function
to high accuracy (around 8 decimal places), using the Riemann-Siegel
formula. Then, to get a snapshot of the situation much higher up the
critical line, he generated another 100,000 zeros starting with the
1,000,000,000,001st. He then ran these two sets of zeros through vari-
ous statistical tests, to see how they compared with the eigenvalues of
matrices for GUE operators. The results of all this work were pub-
lished in a landmark paper in 1987, under the title, “On the Distribu-
tion of Spacings Between Zeros of the Zeta Function.”

The results were not quite conclusive. As Odlyzko put it very deli-
cately in the paper, “The data presented so far are fairly consistent
with the GUE predictions.” There were slightly more small spacings
than the GUE model predicted. Odlyzko’s results were sufficiently
impressive, though, to capture the attention of a wide range of re-
searchers. Further work cleared up the discrepancies noted in the
1987 paper, and the Montgomery Pair Correlation Conjecture be-
came the Montgomery-Odlyzko Law.112

The Montgomery-Odlyzko Law

The distribution of the spacings between successive non-
trivial zeros of the Riemann zeta function (suitably

normalized) is statistically identical with the distribution of
eigenvalue spacings in a GUE operator.

VI. I can give only a brief sketch of the nature of Odlyzko’s results.
To do so, I duplicated them on my own PC, using a list of the zeros
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that Odlyzko has helpfully posted on his web site. To avoid any start-
up anomalies, I took the 90,001st to the 100,000th zeros, counting up
the critical line from z = 1

2 . That’s 10,000 zeros—quite sufficient to
make some statistical sense of. The 90,001st zero is at 1

2  +
68194.3528i; the 100,000th is at 1

2  + 74920.8275i (rounding to 4 deci-
mal places). I am thus going to investigate the statistical properties of
a sequence of 10,000 real numbers, a sequence that starts with
68194.3528 and ends with 74920.8275.

Since, as I pointed out in Chapter 13.viii, the zeros get closer to-
gether, on average, as you go up the critical line, I must make an ad-
justment to stretch out the higher end of this range. This I can do
quite simply by multiplying every number by its log. Bigger numbers
have bigger logs, and this is just what I need to even out the average
spacing. This is the meaning of the word “normalized” in the state-
ment of the Montgomery-Odlyzko Law given above. My sequence
now begins with 759011.1279 and ends with 840925.3931.

Furthermore, I am interested in the relative spacing of the zeros;
so I can subtract 759011.1279 from every number in the sequence
without affecting my result. The sequence now goes from zero to
81914.2653. Finally, just to make the numbers neater, I am going to
switch to a different scale, dividing every number in my sequence by
8.19142653. Again, this doesn’t affect the relative spacing; I have
merely switched rulers. This final form of my sequence starts like
this: 0, 1.2473, 2.5840, …, and ends like this: 9997.3850, 9999.1528,
10,000.

If you include the end points, I now have 10,000 numbers laid
out for study, ranging from 0 to 10,000. Since there are 9,999 spaces
between consecutive numbers, the average spacing is 10,000 ÷ 9,999,
which is just a shade greater than 1.
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1 2 3

5,000

10,000

FIGURE 18-5 The Montgomery-Odlyzko Law. (Distribution of spacings

for the 90,001st to 100,000th zeta-function zeros.)

Now I can ask statistical questions. Sample question: How do the
spacings depart from that average? How many have a length less than
one?113 The answer is 5,349. How many have a length of more than 3?
None. Now, this is at total variance with the counts you get from a
perfectly random scattering, which are 6,321 and 489, respectively.114

That confirms the lesson of Figures 18-2 and 18-3. The zeros are not
randomly scattered. They are more bunched around the average spac-
ing (a tad more than 1), with a dearth of small spacings and a dearth
of large ones.

Tallying the number of spacings with length between 0 and 0.1,
between 0.1 and 0.2, and so on, and making a histogram of the tallies,
scaled so that the whole area is 9,999, I get Figure 18.5. This shows the
spacings for my 10,000 zeros against the curve predicted by GUE
theory. It’s not a sensationally good fit, but then my sample isn’t very
big, or very high up the critical line. The fit is good enough, well
within the variation allowed by chance; and the fits in Andrew
Odlyzko’s paper are of course much better.115
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VII. So yes, it seems that the non-trivial zeros of the zeta function
and the eigenvalues of random Hermitian matrices are related in
some way. This raises a rather large question, a question that has been
hanging in the air ever since that encounter in Fuld Hall in 1972.

The non-trivial zeros of Riemann’s zeta function arise from in-
quiries into the distribution of prime numbers. The eigenvalues of a
random Hermitian matrix arise from inquiries into the behavior of
systems of subatomic particles under the laws of quantum mechan-
ics. What on earth does the distribution of prime numbers have to do

with the behavior of subatomic particles?
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19

TURNING THE GOLDEN KEY

Now I am going to try to make a
run right for the heart of Riemann’s 1859 paper. This involves taking
in some of Riemann’s math, which is very advanced. I shall skip nim-
bly over the really difficult parts, presenting them as faits accomplis,
and just try to give the logical steps in Riemann’s argument by saying
things like, “Mathematicians have a way to get from here to here,”
without explaining what that way is, or why it works.

My hope is that you will end up with at least an outline of the
main logical steps Riemann followed. I can’t do even that much,
though, without a very small amount of calculus, the essential points
of which I have already laid out in Chapter 7.vi-vii. You might find
the following few sections challenging. The reward will be a result of
great beauty and power, from which flows everything—the Hypoth-
esis, its importance, and its relevance to the distribution of prime
numbers.

I.
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II. To begin, I’m going to contradict something I said way back in
Chapter 3.iv. Well, sort of contradict it. I said there wasn’t much point
trying to draw a graph of the Prime Counting Function π (N). At
that point in the book, there wasn’t. Well, now there is.

However, I am first going to make some slight adjustments. In-
stead of writing π (N), which, to the mathematical eye, translates as
“the number of primes up to and including the natural number N,”
I’m going to write π (x), which should be taken to mean “the number
of primes up to and including the real number x.” This is not a big
deal. Obviously the number of primes up to 37.51904283 inclusive is
just the number of primes up to 37 inclusive, which is twelve: 2, 3, 5,
7, 11, 13, 17, 19, 23, 29, 31, 37. But we are heading for some calculus,
so we want to be in the realm of numbers at large, not just whole
numbers.

And one more adjustment. As I advance the argument x smoothly
through a range of values, π (x) is going to make sudden jumps. Sup-
pose x moves smoothly from 10 to 12, for example. The number of
primes less than 10 is 4 (2, 3, 5, and 7), so the function value is 4 when
x = 10, and also of course when x = 10.1, 10.2, 10.3, and so on. At
argument 11, however, it will suddenly jump to 5; and for 11.1, 11.2,
11.3, … the value will hold at a steady 5. This is what mathematicians
call a “step function.” And here is an adjustment rather commonly
made with step functions. At precisely the point where π (x) jumps, I
am going to give it a value half-way up the jump. So at argument 10.9,
or 10.99, or 10.999999, the function value is 4; at argument 11.1, or
11.01, or 11.000001, the function value is 5; but at argument 11 it is
4.5. I am sorry if this seems a little wacky, but it is essential for what
follows. If I do this, then all the arguments in this chapter and Chap-
ter 21 work; if I don’t, they don’t.

Now I can show a graph of π (x) (see Figure 19-1). Step func-
tions are a little hard to get used to at first, but from a mathematical
point of view they are perfectly sound. The domain here is all non-
negative numbers. In that domain, every argument has a single
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unique value. Give me an argument, I’ll give you a value. Math has
much stranger functions than this.

III. Now I am going to introduce another function, also a step func-
tion, just a little bit odder than π (x). Riemann, in his 1859 paper,
calls it the “f ” function, but I’m going to follow Harold Edwards and
refer to it as the “J” function. Since Riemann’s time, mathematicians
have got into the habit of using “f” to represent a generic function,
“Let f be any function…,” so it’s a bit difficult for them to see f as
referring to a particular function.

5 10 15 20
x

2

4

6

8

π(x)

FIGURE 19-1 The prime counting function.
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OK, here goes with the definition of the J function. For any non-
negative number x, the J function has the value shown in Expression
19-1.

J x x x x x x( ) = ( ) + ( ) + ( ) + ( ) + ( ) +π π π π π
1

2

1

3

1

4

1

5
3 4 5 K

Expression 19-1

The symbol “ π ” here is the Prime Counting Function as defined
up above, for any real number x.

Notice that this is not an infinite sum. To see why not, consider
some definite number x, say, x = 100. The square root of 100 is 10; the
cube root is 4.641588…; the fourth root is 3.162277…; the fifth root
is 2.511886…; the sixth root is 2.154434…; the seventh root is
1.930697…; the eighth root is 1.778279…; the ninth root is
1.668100…, and the tenth root is 1.584893…. I could, of course, go
on working out the eleventh, twelfth, thirteenth roots, and so on for
as far as you please. I don’t need to, though, because the prime count-
ing function has a very nice property; if x is less than 2, π (x) is zero,
because there aren’t any primes less than 2! In fact I could have
stopped calculating roots of 100 after the seventh. What I have in this
case is

J 100 100
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. ... . ... K

which, if you count up primes, means
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


and that works out to 28 8
15 , or 28.53333…. If you keep taking roots

of any number, sooner or later the root drops below 2, and all the
terms in the J function from there on are zero. So for any argument x,
the value of J(x) can be worked out from a finite sum—a great im-
provement over some of the functions we’ve been dealing with!
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This J function is, as I said, a step function. Figure 19-2 shows
what it looks like for arguments up to 10. You can see that the J func-
tion jumps suddenly from one value to another, holds the new value
for a while, then makes another jump. What are these jumps? What’s
the pattern?

2 4 6 8
x

2

4

6

J(x)

FIGURE 19-2 The function J(x).

If you stare hard at Expression 19-1, you will see the following
pattern. First, when x is any prime number, J(x) jumps up 1, because
π (x)—the number of primes up to and including x—jumps up 1.
Second, when x is the exact square of a prime (e.g., x = 9, which is the
square of 3), J(x) jumps up one-half, because the square root of x is a



TURNING THE GOLDEN KEY 301

prime, so π( )x  jumps up 1. Third, when x is the exact cube of a prime
(e.g., x = 8, which is the cube of 2), J(x) jumps up one-third, because
the cube root of x is a prime, so π( )x3  jumps up 1. And so on.

Note, by the way, that the J function preserves the feature I intro-
duced with π (x). At the actual point where a jump occurs, the func-
tion value is halfway up the jump.

To give a fuller picture of the J function, Figure 19-3 is a graph of
J(x) for arguments up to 100. The smallest jump here is at x = 64,
which is a sixth power (64 = 26), so the J function jumps up one-sixth
at x = 64.

20 40 60 80
x
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10

15

20

25

J(x)

FIGURE 19-3 More of the function J(x).
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What possible use is a function like this? Patience, patience. But
first, I am going to take one of those leaps I warned you about at the
start of the chapter.

IV. I mention yet again that mathematicians have any number of
ways to invert relationships. We have an expression for P in terms of
Q? OK, let’s see if we can find a way to express Q in terms of P. Over
the centuries, mathematics has developed a huge toolbox of inver-
sion tricks, for use in all kinds of circumstances. One of them is called
“Möbius inversion,” and it is exactly what we need here.

I’m not going to attempt to explain Möbius inversion in general.
Any good textbook on number theory will describe it (see, for ex-
ample, section 16.4 in Hardy and Wright’s classic Theory of Numbers)
and an internet search will turn up numerous references. Rather like
the π  and J functions themselves, instead of gliding smoothly from
one point to the next, I am going to vault over to the following fact:
When Möbius inversion is applied to Expression 19-1, the result is as
shown in Expression 19-2.

π x J x J x J x J x

J x J x J x

( ) = ( ) − ( ) − ( ) − ( ) +

( ) − ( ) + ( ) −

1

2

1

3

1

5
1

6

1

7

1

10

3 5

6 7 10
L

Expression 19-2

You will notice that some terms (the fourth, eighth, ninth) are
missing here. Of those that are present, some (the first, sixth, tenth)
have a plus sign; others (the second, third, fifth, and seventh) have a
minus sign. Anything come to mind? This is the Möbius mu function
from Chapter 15. In fact

π
µ

x
n

n
J xn

n

( ) =
( ) ( )∑
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(where x1 , here and everywhere in the book, is understood to mean
just x). Why did you think it was called “Möbius inversion”?

I have now written π (x) in terms of J(x). That is a wonderful
thing, because Riemann found a way to express J(x) in terms of ζ (x).

Before leaving Expression 19-2, I’d just like to point out that it is,
like Expression 19-1, a finite sum, not an infinite one. This is because
the J function, like the π  function, is zero when x is less than 2 (check
the graph), and if you keep taking roots of a number, the answers
eventually drop below 2 and stay there. For example,

π 100 100 10 4 64 2 51

2 15 0 0

1
2

1
3

1
5

1
6

( ) = ( ) − ( ) − ( ) − ( ) +

( ) − + −

J J J J

J

. ... . ...

. ... K

= − ×( ) − ×( ) − ×( ) + ×( )28 5 2 1 18
15

1
2

1
3

1
3

1
2

1
5

1
6

= − − − +28 28
15

2
3

5
6

1
5

1
6

which is precisely 25, which is indeed the number of primes less than
100. Magic.

Now let’s turn the Golden Key.

V. Here is the Golden Key, the very first equation in Riemann’s 1859
paper, the one I developed in Chapter 7, arguing that it is just a fancy
way to write out the sieve of Eratosthenes.

ζ s

s s s s s s

( ) =
−

×
−

×
−

×
−

×
−

×
−

×
1

1
1

2

1

1
1

3

1

1
1

5

1

1
1

7

1

1
1

11

1

1
1

13

K

Remember that the numbers on the right-hand side are just primes.
I am going to take the log of both sides. If one thing is equal to

another thing, of course its log must be equal to the other thing’s log.
From Power Rule 9, which says that log (a × b) = log a + log b,
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Since log log
1

a
a= −  by Power Rule 10, this is
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Now recall Sir Isaac Newton’s infinite series for log (1 − x) in Chapter
9.vii. It applied to x between −1 and +1, which is certainly the case
here, so long as s is positive. So I can expand each log as an infinite
series as shown in Expression 19-3.
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Expression 19-3

This is an infinite sum of infinite sums—a bit startling at first
sight, I suppose, but not actually an unusual situation in math.

At this point you might think I am much worse off than when I
started. From a fairly neat little infinite product, I have now got my-
self an infinite sum of infinite sums. The situation might seem hope-
less. Ah, but that is to reckon without the power of the calculus.

VI. Let me pick on just one term in that sum of sums. I’ll pick on
the term 1

2
1

32× s . Consider this function: x−s−1, and assume for the time
being that s is a positive number. What’s the integral of x−s−1? By the
general rule for powers, which I gave in Chapter 7.vii, it’s x−s ⁄ (–s), i.e.,
(–1 ⁄ s) × (1 ⁄ xs). If I take the integral at infinity minus the integral at
32, what do I get? Well, if x is a very large number, (–1 ⁄ s) × (1 ⁄ xs) is a
very small number, so it’s fair to say that when x is infinite, it’s zero.
From that—from zero—I’m going to subtract (–1 ⁄ s) × (1 ⁄ (32)s). The
answer to this subtraction is (1 ⁄ s) × (1 ⁄( 32)s). The long and short of
it is that the term in Expression 19-3 that I picked on can be rewritten
as an integral,

1

2

1

3

1

22

1

32

× = × × − −
∞

∫s

ss x dx

Why in Heaven’s good name would I want to do that? To get back to
the J function, that’s why.

You see, x = 32 is where the J function takes a step up of 1
2 . In a

mathematician’s mind—certainly in the mind of a great mathemati-
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cian like Riemann—that part-expression 1
2

32

×
∞

∫… conjures up an im-

age. The image it conjures up is the one in Figure 19-4. It’s the J func-
tion, with a strip filled in. The strip goes from 32 (that is, from 9) to
infinity, and it has height one-half. Plainly, the whole area under
(“area under”—think “integral”) the J function is made up of strips
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FIGURE 19-4 
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like that. Strips going from each prime to infinity, with height 1; strips
going from each square of a prime to infinity, with height one-half;
strips going from each cube of a prime to infinity with height one-
third…. See how it all keys in to that infinite sum of infinite sums in
Expression 19-3?

Of course, the area under the J function is infinite. The strip I
showed has infinite area (height 1

2 , length infinite, 1
2  × ∞ = ∞). So do

all the other strips. Together, they add up to an infinity. But what if I
were to squish down the J function at the right, so that the area under
it is finite? So that each one of those strips tapers away to nothing,
with a finite area? How might I accomplish such a squishing-down?

That last integral suggests a way. Suppose I pick some number s
(which I shall suppose to be greater than 1). For every argument x, I
shall multiply J(x) by x−s−1. By way of illustration, take s = 1.2. Then
x−s−1 means x−2.2; or, to put it another way, 1 ⁄ x2.2 . Take an argument x;
say, x = 15. Now J(15) has the value 7.333333…; 15−2.2 has the value
0.00258582…. Multiplying them together, J(x)x−s−1 has the value
0.018962721…. If I take a bigger argument, the squishing-down is
more pronounced. For x = 100, J(x)x−s−1 has the value 0.001135932….

Figure 19-5 shows a graph of the function J(x)x−s−1, with s = 1.2.
To emphasize the squish-down effect, I have shown the same strip I
showed before, now in its squished-down form. You can see how it
gets skinnier and skinnier as the arguments head off east. There is a
fighting chance that its entire area will be finite, even though it’s infi-
nitely long. Supposing that were true, and supposing it were true of
every other strip, what would be the entire area under this function?

What, to put it mathematically, would be the value of 
0

1
∞

− −∫ ( )J x x dxs
?

Let’s see. Taking the primes one by one, for the prime 2 I have,
pre-squish, a strip going from 2 to infinity, height 1, then a strip go-
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ing from 22 to infinity, height 1
2 , then a strip going from 23 to infinity,

height 1
3 , and so on. The sum of the squished strips, considering just

the prime 2, is shown in Expression 19-4.
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Expression 19-4
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Of course, that’s just the 2-strips. There is a similar infinite sum of
integrals for the 3-strips, shown in Expression 19-5.
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Expression 19-5

There’s another for 5, another for 7, and so on for all the primes. An
infinite sum of infinite sums of integrals! Worse and worse! Ah, but
things always look darkest before the dawn.

That brings us back to the beginning of this section. Since inte-

gration is transparent to a multiplying factor, 1
2

3

1

2

∞
− −∫ × x dxs  is the same

as 
1
2

3

1

2

×
∞

− −∫ x dxs
. But I showed at the beginning of this section that

my sample term from Expression 19-3, 1
2

1
32× s , is equal to

s x dxs× × − −
∞

∫1
2

1

32

; that is, s times the thing I just got. So what does

Expression 19-5 amount to? Why, just the second line of Expression

19-3, divided by s! And Expression 19-4, plus Expression 19-5, plus
the similar expressions for all the other primes, add up to all of Ex-
pression 19-3, divided by s.

Here comes the dawn. It follows that the thing I am currently

fooling with, which is 
0

1
∞

− −∫ ( )J x x dxs , is just Expression 19-3, divided

by s. But Expression 19-3 is equal to log ζ (s), from the Golden Key.

Hence the result shown in Expression 19-6.

The Golden Key (calculus version)

1

0

1

s
s J x x dxslogζ ( ) = ( )

∞

− −∫
Expression 19-6
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I simply cannot tell you how wonderful this result is. It leads di-
rectly to the central result in Riemann’s paper, a result I shall show in
Chapter 21. Really, it is just a rewriting of the Golden Key in terms of
calculus. This is a great and marvelous thing to do, however, as it now
opens up the Golden Key to all the powerful tools of nineteenth-
century calculus. That was Riemann’s achievement.

One of those tools is yet another inversion method, which allows
us to turn this new expression inside out to get an expression for J in
terms of ζ . I’m going to hold off showing this inverted expression
for the time being. The logic is clear, though.

� I can express π (x) in terms of J(x) (Section IV in this chap-
ter).

� By inverting Expression 19-6, I can express J(x) in terms of the
zeta function.

Therefore,

� I can express π (x) in terms of the zeta function.

Which is exactly what Riemann had set out to do, because then all the
properties of the π  function will be found encoded somehow in the
properties of the ζ  function.

The π  function belongs to number theory; the ζ  function be-
longs to analysis and calculus; and we have just thrown a pontoon
bridge across the gap between the two, between counting and mea-
suring. In short, we have just created a powerful result in analytic
number theory. Figure 19-6 shows a graphical representation of Ex-
pression 19-6, the Golden Key in calculus form.
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The area shown shaded is J x x dxs( )
∞

− −∫
0

1 , for s = 1.2. Its numerical

value is actually 1.434385276163…. This is equal to 1
s slogζ ( ) .
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THE RIEMANN OPERATOR AND

OTHER APPROACHES

The Montgomery-Odlyzko Law
tells us that the non-trivial zeros of the Riemann zeta function look
like—statistically, that is—the eigenvalues of some random Hermi-
tian matrix. The operators represented by such matrices can be used
to model certain dynamical systems in quantum physics. Is there,
then, a Riemann operator, an operator whose eigenvalues are pre-
cisely the zeta zeros? If there is, what dynamical system does it repre-
sent? Could that system be created in a physics lab? And if it could,
would that help to prove the Hypothesis?

Research into these questions was under way even before the pub-
lication of Odlyzko’s 1987 paper. The previous year, in fact, Michael
Berry had published a paper titled “Riemann’s Zeta Function: A
Model for Quantum Chaos?” Using results that were being widely
circulated and discussed at the time, including some of Odlyzko’s,
Berry tackled the following question. Suppose there is a Riemann
operator: what kind of dynamical system would it model? His answer
was: a chaotic system. To explain this, I must make a brief detour
through Chaos Theory.

I.
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II. That pure number theory—ideas about the natural numbers
and their relations with each other—should have relevance to sub-
atomic physics is not all that surprising. Quantum physics has a much
stronger arithmetical component than classical physics, since it de-
pends on the idea that matter and energy are not infinitely divisible.

Energy comes in 1, 2, 3, or 4 quanta, but not in 1 1
2 , 2 17

32 , 2 , or π

quanta. That is by no means the whole story, and quantum mechan-
ics could not have been developed without the most powerful tools
of modern analysis. Schrödinger’s famous wave equation, for ex-
ample, is written in the language of traditional calculus. Still, the
arithmetical component is there in quantum mechanics, whereas in
classical mechanics it is almost entirely absent.

The foundations of classical physics—the physics of Newton and
Einstein—are quintessentially analytical, in the mathematical sense.
They rest on mathematical analysis, on the notions of infinite divis-
ibility, of smoothness and continuity, of limit and derivative, of real
numbers. Newton invented the calculus, too, remember—the ulti-
mate application of the concept “limit”—that eventually took over
most of analysis.

Take the classical problem of one body in an elliptical orbit
around another, under mutual gravitational attraction. At a certain
distance from the parent body (measured by r, a real number) the
satellite body has some precise velocity (measured by v, another real
number). The relationship between v and r has a precise mathemati-
cal expression; v is in fact a function of r, expressed by the so-called
vis viva equation familiar to all students of elementary celestial me-
chanics,

v M
r a

= −





2 1
,

where M and a are some fixed numbers determined by the compo-
nents and initial conditions of the system under observation—on the
masses of the two bodies, and so on.
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Now, of course, in practice we cannot attain the infinite precision
needed to assign actual real numbers to r and v. We might be able to
measure r to 10 decimal places, or even 20; but to pin down a real
number you need infinitely many decimal places, and that we cannot
get. In the case of any actual orbit, therefore, there will be some mod-
est error in assigning a real number to r, and a corresponding error in
the computed value of v. This doesn’t matter much. Kepler’s laws as-
sure us that we will still get a regular ellipse, and the mathematics of
the vis viva equation tell us that a 1 percent error in r typically turns
up only a 0.5 percent error in v. The situation is manageable, predict-
able. It is, as mathematicians say, “integrable.”

That, however, is an extremely simple problem. Almost all actual
physical problems are more complex than that. Take the case of three
bodies under mutual gravitational attraction, for instance—the fa-
mous “three-body problem.” Can we solve it with closed-form solu-
tions like the vis viva equation? Is it integrable? By the end of the
nineteenth century it was apparent that the answers are: No, we can-
not, and it is not. The only way to get solutions is by extensive nu-
merical calculation, leading to approximations.

In 1890, in fact, Henri Poincaré published a definitive paper on
the three-body problem, making it clear not only that the problem
has no closed-form solutions, but that it has another, even more dis-
turbing quality: Its solutions are sometimes chaotic. That is, if you
vary the initial conditions of the problem—the numbers equivalent
to M and a in my two-body example—very slightly, the resulting or-
bits change drastically, beyond all recognition. Poincaré himself com-
mented that one set of conditions produced “orbits so tangled that I
cannot even begin to draw them.”

Poincaré’s paper is generally taken to mark the birth of modern
chaos theory. Nothing much happened in chaos theory for several
decades, mainly because mathematicians had no way to do number-
crunching on the scale required to analyze chaotic results. That
changed when computers became available, and chaos theory was
reborn with the work of meteorologist Ed Lorentz at M.I.T. in the
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1960s.116 Chaos theory is now a vast subject embracing many different
subdisciplines within physics, mathematics, and computer science.

It is important to grasp that a chaotic system, like a solution to
the three-body problem, need not (and, in general, does not) consist
of random motions. The beauty of chaos theory is that there are pat-
terns embedded in chaotic systems. While in general a chaotic system
never retraces its steps, it does exhibit these recurring patterns; and
underlying these patterns are certain regular, but unstable, periodic
orbits into which, in theory, if infinite precision were available to the
nudger, a chaotic system could be nudged.

III. When modern chaos theory first came up, physicists took it to
be entirely a classical matter, with no relevance for quantum theory.
Chaos arises from issues like the three-body problem because the
numbers defining the initial conditions are real numbers, measuring
numbers, infinitely divisible; they can be varied by 1 percent, or by
0.1 percent, or by 0.001 percent…. Since the conditions are infinitely
variable, an infinity of outcomes presents itself. In quantum theory,
by contrast, you can vary those initial conditions by 1, 2, or 3 units,
but not by 1 1

2  or 2.749. There should be “no room” for chaos in quan-
tum theory. It is true that there is a degree of uncertainty in quantum
mechanics, but the controlling equations are nonetheless linear. Small
perturbations lead to small consequences, as with the classical vis viva

equation for two-body motion.
Yet in fact, a certain level of chaos can be observed in quantum-

scale dynamical systems. The orderly energy-level structure of the
electrons in orbit around the nucleus of an atom, for example, can be
scrambled into an irregular pattern by the application of a sufficiently
strong magnetic field. (This is, in fact, one of the dynamical systems
modeled by GUE operators.) The atom’s subsequent behavior is cha-
otic—wildly different for only slightly different initial conditions.

If such quantum-chaotic systems persist for a period, however,
the laws of quantum mechanics eventually impose order on them,
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draining away the chaos. The number of permitted states dwindles;
the number of forbidden states swells. The bigger and more complex
the system, the longer it takes for the quantum rules to assert order,
and the larger the number of permitted states…until, on the scale of
the everyday world, it would take trillions of years for the quantum
order to assert itself, and the number of permitted states is large
enough to be taken as infinite. That is why we have chaos in classical
physics.

Back in 1971, physicist Martin Gutzwiller found a way to relate
chaotic systems on the classical scale with analogous systems down in
the quantum world, by allowing the quantum factor, Planck’s con-
stant, in the quantum-mechanical equations to tend to zero, and tak-
ing limits. The periodic orbits that underlie a classical-chaotic system
correspond to the eigenvalues of the operator defining this “semiclas-
sical” system.

Michael Berry argued that if there is a Riemann operator, it mod-
els one of these semiclassical chaotic systems, and its eigenvalues, the
imaginary parts of the zeta zeros, are the energy levels of that system.
The periodic orbits in the analogous classical-chaotic system would
correspond to … the prime numbers! (To their logs, to be precise.)
He further argued that this semiclassical system would not have the
quality of “time reversal symmetry”—that is, if all the velocities of all
the particles in the system were to be instantly and simultaneously
reversed, the system would not return to its initial state. (Chaotic sys-
tems can be time-reversible or not. The ones that are time-reversible
are modeled not by operators of the GUE type, but by another kind
belonging to a different ensemble, the GOE—Gaussian Orthogonal
Ensemble.)

Berry’s work (much of it in collaboration with a Bristol colleague,
Jonathan Keating) is subtle and deep. He has, for example, analyzed
the Riemann-Siegel formula in great detail in search of insights into
the zeros, and their effects on each other at different ranges. At the
time of writing, he has not identified any dynamical system that cor-
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responds to the Riemann operator, but thanks to his work, if such an
operator exists, we shall know it at once when we see it.

IV. Another researcher, Alain Connes, Professor of Mathematics at
the Collège de France in Paris, has taken an alternative approach. In-
stead of seeking to pin down the kind of operator the zeta zeros might
be eigenvalues of, he has actually constructed such an operator.

That was no mean feat. An operator must have something to op-
erate on. The kind of operators I have been speaking about operate
on spaces. A flat two-dimensional space will do to illustrate the gen-
eral principle, with a sheet of graph paper for purposes of visualiza-
tion, though you must imagine the paper extending to infinity in all
directions. Suppose that I rotate that space by 30 degrees counter-
clockwise, sending every point of the space to some other point
thereby (except the point about which I am rotating—that stays put).
This rotation is an instance of an operator. The characteristic polyno-
mial of this particular operator is x2 – 3 x + 1. The eigenvalues are

1
2 3+ 1

2 i and 1
2 3 – 1

2 i ; the trace is 3 .
If you wanted, you could set up a coordinate system to describe all

the points of the space, drawing a horizontal x-axis and a vertical y-axis
to meet at the rotation point, and marking off distances along them in
inches or centimeters, in the usual way. You might then notice that my
rotation operator sends the point (x, y) to a new point with different
coordinates—actually, to ( 1

2 3x – 12 y,  1
2 x + 1

2 3y). That is incidental to
the nature of the operator, though, which exists, and which moves the
points of the space to new points, independent of any coordinate sys-
tem. A rotation is a rotation, even if you forgot to draw in a pair of axes.

The operators used in mathematical physics operate on much
more complicated spaces than that, of course. Their spaces are not
merely two-dimensional, nor just three-dimensional like the space
we live out our everyday lives in. Nor are they even four-dimensional,
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like the one required by Relativity Theory. They are abstract math-
ematical spaces with infinitely many dimensions. Each point of such a
space is a function. An operator transforms one function into an-
other function, that is, in the language of spaces and points, it sends
one point to another point.

To get a very elementary idea of how a function might be identi-
fied with a point in a space, consider one simple class of functions,
the quadratic polynomials p + qx + rx2. The family of all such poly-
nomials could be represented by a three-dimensional space, the point
with coordinates (p, q, r) standing for the polynomial p + qx + rx2. A
four-dimensional space could model cubic polynomials; a five-
dimensional space could model quartics … and so on. Now, since
some functions can be written as series, and a series looks like an
infinite polynomial (ex, for example, as 1 + x + 1

2 x2 + 1
6 x3 + 1

24 x4 + …),
you can see how a space of infinitely many dimensions might be use-
ful for modeling functions. Then ex would be the point in that space
located by the infinity of coordinates 1 1 1

2
1
6

1
24, , , , ,K( ) .

In quantum mechanics, the functions are wave functions, defin-
ing the probability that the particles of a system are at certain places,
with certain velocities, at a given moment in time. Each point of the
space, in other words, represents a state of the system. The operators
used in quantum mechanics encode observable features of the sys-
tem—most famously, the Hamiltonian operator, which encodes the
system’s energy. The eigenvalues of the Hamiltonian operator are the
fundamental energy levels of the system. Each eigenvalue is particu-
larly associated with a key point—function—of the space, called an
eigenfunction, representing the state of the system at that energy level.
These eigenfunctions are essential and fundamental states of the sys-
tem. Every possible state of the system, every physical manifestation,
is some linear combination of the eigenfunctions, just as every point
in a three-dimensional space can be written as (x, y, z), a linear com-
bination of the points (1,0,0), (0,1,0), and (0,0,1).

Alain Connes has constructed a very peculiar space for his Rie-
mann operator to operate on. The prime numbers are built in to this
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space in a way derived from concepts in algebraic number theory.
Here is a sketch of Connes’s work.

V. Classical physics is built around real numbers like this,
22.45915771836…, for which—absent a closed form—an infinite
number of digits is required to give full theoretical accuracy. Actual
physical measurements, though, are approximate, like this: 22.459.

That is a rational number, 22459
1000

. The entire world of physical experi-

ment can therefore be written down in rational numbers, members
of �. To pass from the experimental world to the theoretical, we
have to complete � (see Chapter 11.v). That is, we have to enlarge it,
so that if an infinite sequence of numbers in � has a limit, that limit
is either in � itself, or in the enlarged field. The normal and natural
way to do this is with �, the real numbers, or �, the complex
numbers.

Algebraic number theory, however, has other ways to complete
�. In 1897 the Prussian mathematician Kurt Hensel117 devised an
entire new family of objects to deal with certain problems in the

theory of algebraic fields, like that a b+ 2  field that I discussed in

Chapter 17.ii. These objects are called “p-adic numbers.” There is one
field of these exotic creatures, with infinitely many members in it, for
any prime number p. The building blocks of this field are the clock
rings of size p, p2, p3, p4, and so on, that I discussed in Chapter 17.ii. In

the symbols I introduced there, they are ����� p , �����
p

2 ,

�����
p

3 …. The field of 7-adic numbers, for example, is built up

from the rings �����7, �����49, �����343, �����2401…. Recall my
illustration of how a finite field can be used to help build an infinite
field? Well, here we are using an infinity of finite rings to build a new
infinite field!

The field of p-adic numbers goes by the symbol “�p.” So there is a
field �2, a field �3, a field �5, a field �7, a field �11, and so on. Each is
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a complete field: �2 the field of 2-adic numbers, �3 the field of 3-adic
numbers, and so on.

As the symbol suggests, the p-adic numbers bear a certain resem-
blance to ordinary rational numbers. However, �p is richer and more
complicated than � and in some respects is more like �, the field of
real numbers. In particular, �p can, like �, be used to complete �.

You might at this point be wondering, “All well and good; but
you say there is a field �p of these strange new objects, these p-adic
numbers, for any prime number p, and that any old �p can be used to
complete �. So … which one is best, �2? �3? �11? �45827? Which
prime should Professor Connes use to carry out this stunt, to throw a
bridge from the prime numbers to the physics of dynamical systems?”

The answer is, all of them! You see, there is an algebraic concept
called an adele that embraces within its broad arms all the �p, for all
the prime numbers 2, 3, 5, 7, 11, …. In fact, it embraces real numbers,
too! Adeles are built up from �2, �3, �5, �7, …, and �, in much the
same way that p-adic numbers are built up from ����� p , ����� p

2 ,
�����

p
3 , …. Adeles are, if you like, one further level of abstraction

up from p-adic numbers, which are themselves one level of abstrac-
tion up from ordinary rational numbers.

If all this has your head spinning, just suffice it to say that we
have a class of super-numbers that are simultaneously 2-adic, 3-adic,
5-adic, … and also real. Every one of these super-numbers has all the

primes imbedded in it.

The adele is certainly a very abstruse concept. Nothing is so ab-
struse that it doesn’t find its way into physics eventually, though. In
the 1990s mathematical physicists set about constructing adelic quan-
tum mechanics, in which the actual rational-number measurements
that show up in experiments were taken to be manifestations of these
bizarre creatures hauled up from the lightless depths of the math-
ematical abyss.

This is the kind of space Alain Connes built for his Riemann op-
erator to play in, an adelic space. Being adelic, it has the prime num-
bers built in, so to speak. Operators that act on this space are perforce
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prime-based. You can now, I hope, see how it is possible to build a
Riemann operator whose eigenvalues are precisely the non-trivial
zeros of the zeta function, and whose space—the space on which it
operates—has the primes built in, in the way I have attempted to
describe, while yet being relevant to actual physical systems, actual
assemblies of subatomic particles.

The Riemann Hypothesis (RH) is then reduced to the matter of
proving a certain trace formula—that is, a formula like Gutzwiller’s,
relating the eigenvalues of an operator on Connes’s adelic space to
the periodic orbits in some analogous classical system. Having the
prime numbers already built in to one side of the formula ought to
make everything easy. In a way it does, and Connes’s construction is
brilliant, and extremely elegant, with energy levels that are precisely
zeta zeros on the critical line. Unfortunately, it has so far offered no
clue as to why there might not be zeta zeros off the critical line!

Opinions as to the value of Connes’s work vary widely. Not at all
sure that I understood it myself, I canvassed some real mathemati-
cians working in the field. I shall tread carefully here. For all I know,
Alain Connes might announce a proof of the RH the day this book
comes out, and I don’t want to make anyone look foolish. Here are
two quotes from professionals.

Mathematician X: “Tremendously important work! Connes will
not only prove the RH, he will give us a Unified Field Theory, too!”

Mathematician Y: “What Connes has done, basically, is to take an
intractable problem and replace it with a different problem that is
equally intractable.”

I do not feel qualified to tell you which opinion is correct. Given
the stature and abilities of X and Y, though, I feel pretty sure that one
of them is….118

VI. Other approaches to the RH are still active, of course. The alge-
braic approach through finite fields that I mentioned in Chapter 17 is
very much alive. And, as we glimpsed in Section V above, that ap-
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proach has interesting connections with the physical lines of attack.
Analytic number theory, too, is still a busy area, and capable of strong
results.

There are also indirect approaches. There is, for example, my
Theorem 15.2, concerning the M function got by accumulating
Möbius µ . That is, as I said, exactly equivalent to the Hypothesis.
Analytic number theorist Dennis Hejhal of the University of Minne-
sota actually uses this as a way to present the RH to nonmathematical
audiences, to avoid having to introduce complex numbers. Here, he
says (I am paraphrasing his approach, not quoting it), is the RH.

Write down all the natural numbers, starting with 2. Under each
number, write its prime factors. Then, ignoring any number with a
square factor (or any higher power, which will necessarily include a
square), go along the line marking as “heads” any number with an
even number of prime factors, “tails” any with an odd number. This
gives an infinite string of heads and tails—just like a coin-tossing
experiment.

2 3 4 5 6 7 8 9 10 11 12 …

2 3 22 5 2 × 3 7 23 32 2 × 5 11 22 × 3 …

T T T H T H T …

Now, we know very well, from classical probability theory, what
to expect from a long run of N coin tosses. On average, we will get

1
2 N heads and 1

2 N tails. But of course, we should hardly ever get
exactly these numbers. Suppose we subtract the number of heads
from the number of tails. (Or vice versa, depending on which is
larger.) What do we expect this excess to be? On average, it is N ,
that is, N

1
2 . This has been known since the time of Jakob Bernoulli,

300 years ago. If you toss a fair coin a million times, on average you
have an excess of a thousand heads (or tails). You might have more or
you might have less, but on average, as you keep tossing that coin—as
N goes off to infinity—the size of the excess grows at a certain rate; at
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a rate that is less than N
1
2
+ε

, for any number ε , no matter how small.
Just like my Theorem 15.2!

In fact, my Theorem 15.2, which is equivalent to the RH, says
that the M function grows just like the excess in a coin-tossing exer-
cise. To put it another way, it says that a square-free number is either
a head or a tail—has either an even or an odd number of prime fac-
tors—with 50−50 probability. This does not seem particularly un-
likely and might in fact be true. If you can prove that it is true, you
will have proved the RH.119

VII. A less direct probabilistic approach concerns the so-called
“Cramér model.” Harald Cramér was, in spite of that accent on his
name, Swedish, and yet another insurance company employee—an
actuary for Svenska Livförsäkringsbolaget, but also a popular and in-
spiring lecturer on math and statistics.120 In 1934 he published a pa-
per titled “On Prime Numbers and Probability,” in which he put for-
ward the idea that the primes were distributed as randomly as they
could be.

One consequence of the Prime Number Theorem (PNT), which
I demonstrated in Chapter 3.ix, is that in the neighborhood of some
large number N, the proportion of primes is ~ 1 ⁄ log N. The log of a
trillion, for example, is 27.6310211…, so in the neighborhood of a
trillion, around one number in 28 is a prime. Cramér’s model says
that aside from this one restraint on their average frequency, the
primes are utterly random.

Here is one way to see what this means.121 Imagine a long line of
earthenware jars with the natural numbers painted on them. The
numbers go 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …, to infinity (or some very
large number). Into each jar put a number of wooden balls. The num-
ber of balls in jar N should be log N (or the nearest whole number).
So the number of balls in the first few jars are 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, …. Furthermore, there must be exactly one black ball in each
jar; all the rest of the balls in the jar are white. Jars number 2, 3, and 4,
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therefore, have only one black ball in them; jars number 5 to 12 have
one black and one white; jars number 13 to 33 have one black and
two white, and so on.

Now take a clipboard and a large (preferably infinite) sheet of
paper, and take a walk along the line. Pull a ball at random from each
jar. If it’s black, write down the number of the jar. When you finish, you
have a long list of whole numbers starting “2, 3, 4, ….” The chance
that 5 is on your list is 50−50, since jar 5 has one white ball and one
black. The chance that 1,000,000,000,000 is on your list is 1 in 28.

Now, what can we say about this list? It is not a list of the primes,
of course. There are lots of even numbers on it, for example; but only
one prime, 2, is even. Well, if the Cramér model is true, the list will be
statistically indistinguishable from the primes. Any broad statistical
property the primes have—how many you expect to find in intervals
of certain lengths, for instance, or the degree of clustering (what Hil-
bert, in stating his eighth problem, called “condensation”)—this ran-
dom list will have, too.

For an analogy, consider the decimal digits of π . So far as anyone
knows, they are perfectly random.122 They never repeat themselves.
Digits, and pairs of digits, and triplets and quartets of digits, occur
with just the frequency you would expect from pure chance. Nobody
has ever been able to detect any pattern in the billions of digits of π

now available for inspection. The decimal digits of π  are a random
sequence of digits … except that they represent π ! So with the
primes, on Cramér’s model. They are indistinguishable from any
other sequence with frequency 1 ⁄ log N, and in that sense they are
perfectly random … except, of course that they are the primes!

In 1985 Helmut Maier proved that the Cramér model in the
simple form I have sketched above is not a complete picture of the
primes. A modified version of the model does give accurate predic-
tions for the distribution of primes, however, and is linked to the RH
in ways subtle and indirect. There is a modest hope that further re-
search on this topic will yield insights into the RH.123
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VIII. Finally, I cannot resist mentioning the most indirect approach
of all, the one through non-deductive logic. This is not, properly
speaking, a mathematical topic. Mathematics demands rigorous logi-
cal proof before a result can be accepted. Most of the world is not like
this, however. In our daily lives we work mainly from probabilities. In
courts of law, in medical consultations, in drawing up insurance poli-
cies, it is the balance of probabilities that we take into account, not
ironclad certainties. Sometimes, of course, we use the actual math-
ematical theory of probability to quantify the matters under dis-
pute—that is why insurance companies employ actuaries. Much more
often we do not, and cannot—think of a law court.

Mathematicians have often cast an interested eye at this side of
life. George Pólya actually wrote a two-volume book about it,124 in
which he made the rather surprising claim that non-deductive logic
is better appreciated in mathematics than in the natural sciences. This
line of thought has most recently been taken up by Australian math-
ematician James Franklin. His 1987 paper “Non-deductive Logic in
Mathematics,” in The British Journal for the Philosophy of Science, in-
cluded a section headed “Evidence for the Riemann Hypothesis and
other Conjectures.”

Franklin approaches the RH as if it were a courtroom case. He
presents the evidence for the RH being true:

� Hardy’s 1914 result that all infinitely many zeros lie on the
critical line.

� The RH implies the PNT, which is known to be true.
� “Denjoy’s probabilistic interpretation”—that is, the coin-

tossing argument given in this chapter.
� Another 1914 theorem by Landau and Harald Bohr, stating

that most zeros—all but an infinitesimal proportion—are very
close to the critical line. Note that since the number of zeros is
infinite, one trillion counts as an infinitesimal proportion.

� The algebraic results of Artin, Weil, and Deligne, that I men-
tioned in Chapter 17.iii.
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Then the case for the prosecution:

� Riemann himself had no sound reasons to support his state-
ment in the 1859 paper that the RH was “very likely,” and the
semi-reasons that might have motivated his statement have
been knocked down since.

� The zeta function exhibits some very peculiar behavior high
up the critical line, as revealed by the computer-generated re-
sults of the 1970s. (Franklin seems not to have known of
Odlyzko’s work.)

� Littlewood’s 1914 result on the error term Li(x) − π (x). Says
Franklin: “The relevance of Littlewood’s discovery to Rie-
mann’s Hypothesis is far from clear. But it does give some rea-
son to suspect that there may be a very large counterexample
to Riemann’s Hypothesis, although there are no small ones.”
So far as I can tell, Franklin’s argument here is by analogy. “For
some extremely large numbers, the error term misbehaves. It
is connected with the zeros of the zeta function.” [See my
Chapter 21.] “So perhaps for very large T, the zeta function
misbehaves, having zeros off the critical line.”

This is all circumstantial, of course. It should not, however, be
dismissed as mere sub-philosophical word-play. The rules of evidence
can deliver very persuasive results, sometimes contrary to the strictly
argued certainties of mathematics. Consider, for example, the very
un-mathematical fact that a hypothesis might be seriously weakened
by a confirming instance. Hypothesis: No human can possibly be
more than nine feet tall. Confirming instance: A human being who is
8′113⁄4′′ tall. The discovery of that person confirms the hypothesis …
but at the same time casts a long shadow of doubt across it!125
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21

THE ERROR TERM

In Chapter 19, after defining that step
function J in terms of the prime counting function π , I used Möbius
inversion to get π  in terms of J. Then, turning the Golden Key, I went
through the steps Riemann took to express the zeta function ζ  in
terms of J. Another inversion (I said) will now give J in terms of ζ .
The long and short of it is that:

� The prime counting function π  can be written in terms of
another step function, J.

� The function J can be written in terms of Riemann’s zeta func-
tion ζ .

It follows that all the properties of the prime counting function
π  are coded, in some way, in the properties of ζ . A sufficiently close
study of ζ  will tell us all we want to know about π —that is, about
the distribution of prime numbers.

How does this actually work? What’s the code? Where do those
non-trivial zeros come into it? And what does that middle-man

I.
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function, J, look like when written in terms of ζ —a point I left hang-
ing at the end of Chapter 19?

II. I left it hanging for a very good reason, which will now become
clear. Expression 21-1 shows the result of that last inversion, the final
and precise expression for J(x) in terms of the zeta function.

J x Li x Li x
dt

t t tx

( ) = − ( ) − +
−( )∑ ∫

∞

( ) log
log

ρ

ρ

2
12

Expression 21-1

You take the point. If you’re not a mathematician, that’s an ugly beast
of a thing (and where, by the way, is the zeta function in it?) I’m going
to take it apart piece by piece, though, and show you what’s going on
inside it. First, I just want you to know that this equation is the main
result of Riemann’s 1859 paper. If you can get some kind of a handle
on it, you will essentially understand Riemann’s work in this area and
have a clear view of all that followed.

The first thing to note is that Expression 21-1 has four parts, or
terms, on the right-hand side. The first term, Li(x), is generally called

the “principal term.” The second term, Li x ρ

ρ
( )∑ , was referred to by

Riemann in the plural as the “periodic terms” (periodischer Glieder)
for reasons that will shortly become clear; I shall speak of it in the
singular as the “secondary term.” The third term is a no-brainer. It’s
just a number, log 2, which is 0.69314718055994….

The fourth term, though intimidating to the nonmathematician,
is in fact easy to dispose of. It’s an integral, that is, the area under the
curve of a certain function, from argument x all the way out to infin-
ity. The function is, of course, 1 ⁄ (t(t2 – 1) log t). If you draw a graph
of this function (see Figure 21-1), you will see that it is very friendly
to the purpose in hand. Bear in mind that we have no interest in
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arguments x less than 2, since J(x) is zero when x is less than 2. So the
shaded area I’ve shown, corresponding to x = 2, is as big as this inte-
gral—this fourth term—is ever going to get. The actual value of this
area, the maximum value of the fourth term for any x we might ever
be interested in, is, in fact, 0.1400101011432869….

So the third and fourth terms taken together (and minding signs)
are limited to the range from −0.6931… to −0.5531…. Since we are
studying π (x), which is only really interesting up in the millions and
trillions, this is pretty inconsequential. I will, therefore, say almost
nothing more about those last two terms and concentrate on the first
two.

1 x 3 4

t

1

2

3

1

1
2t t t−( )log

FIGURE 21-1 The fourth term of Riemann’s expression for J(x).
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The principal term is not too much of a problem either. I have
already defined the function Li(x) in Chapter 7.viii as the area under
the curve of 1 ⁄ log t from zero to x, and I have given the Prime Num-
ber Theorem (PNT) in the form π (N) ~ Li(N). In this principal
term, x is a real number. The value of Li(x) can, therefore, be looked
up in a book of mathematical tables, or computed by any decent math
software package like Maple or Mathematica.126

Having thus disposed of the first, third, and fourth terms in Ex-

pression 21-1, I will focus on the second, Li x ρ

ρ
( )∑ . This is the heart

of the matter; this is the real business. First I will explain broadly
what it means and how it got into Expression 21-1. Then I shall take
it apart and show why it is crucial to understanding the distribution
of primes.

III. The Σ  is an invitation to add many things together. The things to
be added together are indicated by the little “ ρ” underneath the sign.
That’s not an American “p,” it’s a “rho,” the seventeenth letter of the
Greek alphabet, and in this usage stands for “root.” To calculate this
secondary term you must add up Li(x ρ) for all of these roots, with ρ
taking the value of one root after another. And what are these roots?
Why, they are the non-trivial zeros of the Riemann zeta function!

How did these zeros turn up in the expression for J(x)? I can
explain this, but only in outline. Recall the expression we arrived at in
Chapter 19 by turning the Golden Key,

1

0

1

s
s J x x dxslogζ ( ) = ( )

∞
− −∫

I said that mathematicians have a way to invert this, to turn it
inside out, to get J(x) in terms of the zeta function. The actual process
of inversion is rather long and complex (in both senses of that word!),
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and most of the steps involve math beyond the level I am presenting
here. That is why I have leaped straight to the final result, my Expres-
sion 21-1. I think I can explain one part of the process, though. It
happens that one step in this inversion is to express the zeta function
in terms of its zeros.

Expressing functions in terms of their zeros is not altogether a
novel idea, if you have done high school algebra. Consider the good
old quadratic equation, for example. I’ll take the one I used in Chap-
ter 17.iv, z2 − 11z + 28 = 0 (but using z instead of x, since we are in the
realm of complex numbers here). The left-hand side of this equation
is of course a function, a polynomial function. If you feed in any
argument z and do some arithmetic, it works out to some function
value. If you feed in the argument 10, for example, the value is 100 −
110 + 28, which is 18. If you feed in the argument i, the value is
27 − 11i.

What are the solutions of the equation z2 − 11z + 28 = 0? As I
showed in Chapter 17, the solutions are 4 and 7. If you feed either
number into the function on the left-hand side, the equation is true,
the left-hand side is equal to zero. Another way to say this is that 4
and 7 are the zeros of the function z2 − 11z + 28.

Now that I know the zeros, I can factorize this function. It factor-
izes to (z − 4)(z − 7); or what, by the rule of signs, amounts to the
same thing, (4 − z)(7 − z). Another way to write this is 28(1 – z ⁄4)
(1 – z ⁄ 7). And, look! Either way, I have expressed the function z2 −
11z + 28 in terms of its zeros. This doesn’t work only for quadratic
functions, of course. The fifth-degree polynomial z5 − 27z4 + 255z3 −
1045z2 + 1824z − 1008 can be rewritten in terms of its zeros (which
are 1, 3, 4, 7, and 12), too. Here it is: –1008(1 – z ⁄ 1)(1 – z ⁄ 3)
(1 – z ⁄ 4)(1 – z ⁄ 7)(1 – z ⁄ 12). Any polynomial function can be rewrit-
ten in terms of its zeros.

From the point of view of complex function theory, polynomial
functions have a very interesting property. The domain of a polyno-
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mial is all complex numbers. A polynomial never “equals infinity.”
There is no argument z for which its value just can’t be calculated.
Calculating the value of a polynomial function for any given argu-
ment just involves raising the argument to natural-number powers,
multiplying it by numbers, and adding the results together. You can
do that with any number.

Functions whose domain is all complex numbers and which are
decently well behaved (there is a precise mathematical definition of
that!) are called entire functions. All polynomials are entire functions,
so is the exponential function. Those rational functions I showed in
Chapter 17.ii, however, are not entire functions, since their denomi-
nators can be zero. The log function is not an entire function, either:
it has no value at argument zero. Riemann’s zeta function, likewise,
has no value at argument 1, and so is not an entire function.

An entire function might have no zeros at all (like the exponen-
tial function: ez = 0 is never true), or it might have many (like a poly-
nomial: 4 and 7 are the zeros of z2 − 11z + 28), or it might have infi-
nitely many (like the sine function, which is zero at every integer
multiple of π ).127 Now since polynomials can be rewritten in terms
of their zeros, can all entire functions that have zeros be rewritten this
way? Suppose I have some entire function, call it F, that can be de-
fined by an infinite sum, F(z) = a + bz + cz2 + dz3 + …. And suppose I
happen to know that this function has infinitely many zeros; call them
ρ , σ , τ  …. Can I rewrite this function in terms of its zeros, as an
infinite product, F(x) = a (1 – z ⁄ ρ)(1 – z ⁄ σ )(1 – z ⁄ τ )…? As if the
infinite sum were a sort of super-polynomial?

The answer is that under certain conditions, yes, you can. When
you can do it, it’s often a very handy thing. This, for example, is how
Euler solved the Basel problem, by applying this reasoning to the sine
function.

How does this help us with the zeta function, which unfortu-
nately is not an entire function? Well, as part of that complicated
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inversion process, Riemann transformed the zeta function into some-
thing slightly different—an entire function, whose zeros are exactly
the non-trivial zeros of the zeta function. At that point, we can write
out this slightly different function in terms of those zeros. (The trivial
zeros conveniently vanished during the transformation.)

That, after some further processing, is how we end up with

Li x ρ

ρ
( )∑ , with the sum being taken over all the non-trivial zeros of

the zeta function.
Now, to show the significance of this second term in Expression

21-1, and the problems it raises, I am going to take it apart. I shall do
this from the inside out, first looking at x ρ, then at the Li function,
and then at the matter of summing across all possible zeros ρ .

IV. I have this number x, which is a real number. (The ultimate ob-
ject of the exercise is to get a formula for π (x), and π (x) is relevant
only for real numbers—only for natural numbers, to tell the truth;
but we have switched from “N” to “x” so that we can apply the tools of
analysis.) I raise this real number x to the power of ρ , which is a
complex number—one having the form 1

2  + ti, for some real number
t, if the Riemann Hypothesis (RH) is true. This is worth a note by
itself.

If you raise a real number x to a complex power a + bi, the rules
of complex arithmetic dictate the following. The modulus of the an-
swer—how far it is from zero, as the crow flies—is xa. It is not affected
by b at all. The amplitude of the answer—how far round it is, which
part of the complex plane it is found in—depends on x and b. It is not
affected by a.

If you raise a real number x to the power 1
2  + ti, the modulus of

the result is, therefore, x to the power of 1
2 , that is, x . The ampli-

tude, however, might be anything at all—the result might be any-
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where in the complex plane, so long as its distance from zero is x .
To put it another way, if, for a given number x, you compute values of
x ρ for a host of different zeta zeros ρ , the numbers you get are scat-
tered round the circumference of a circle of radius x  in the com-
plex plane, centered on zero. (If the RH is true!)

–4 –3 –2 –1 1 2 3 4
Real
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–3i

–2i

–i
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4i

Imaginary
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14

16
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12

9

FIGURE 21-2 The value plane for the function w = 20z, showing the values

of w for the first 20 non-trivial zeros of the zeta function.

The points marked on Figure 21-2 are the results of raising 20 to
the power of the first, second, third, …, twentieth zeros of the zeta
function. You see how the results are scattered around a circle of ra-
dius 20  (which is 4.47213…) in the complex plane, in no particu-
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lar order. This is because the function 20z sends the critical line into a
circle radius 20 , wrapping the critical line (and all the zeta zeros
speckled along it) round and round that circle an infinity of times.
Mathematically speaking, that circle in the value plane is 20critical line. If
you imagine our pal the argument ant walking north up the critical
line in the argument plane with his function-ometer set to the func-
tion 20z, his twin brother, the value ant, tracing out the correspond-
ing values in the value plane, is walking round and round and round
that circle. He is proceeding counterclockwise and by the time the
argument ant has reached the first zeta zero, the value ant is nearly
three-quarters of the way through his seventh circuit.

V. Now, one by one, I am going to find the Li function of all those
points—the whole infinity of them. Unfortunately, they are complex
numbers. I defined the Li function only for real numbers, as the area
under a curve. Is there a way to define Li for complex numbers, too?
How do integrals work with complex numbers? Yes, there is a way to
define it; and, yes, there is a way to develop integrals involving com-
plex numbers. Integration is in fact a key feature of complex analysis,
the subject of many of the most beautiful and powerful theorems in
the topic. I shall not go into detail, only say that, yes, Li(z) is defined128

for complex numbers z.
Figure 21-3 shows where the first 10 of the points in Figure 21-2

are sent by the Li function. To put it another way, it shows where the
critical line (to be precise, a stretch of it from 1

2  + 14i to 1
2  + 50i) is

sent by the function Li(20z). As you can see, this function maps the
critical line into a counter-clockwise spiral that closes in on the num-
ber π i as the argument ascends the critical line. Where the function
20z wrapped the critical line infinitely many times round and round
the circle with radius 20 , applying the Li function unwraps it into
this elegant spiral, with the zeros still dotted along it.
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–0.10 –0.05 0.05 0.10

Real

3.05i
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3.25i

Imaginary

FIGURE 21-3 The function Li(20z) for a segment of the critical line.

VI. Now I shall tackle the sigma sign—the business of summing
those dots (each of which is just a complex number) across all pos-
sible non-trivial zeros of the zeta function. To do this, let me first
bring up a point I have mostly been ignoring so far. For any non-
trivial zero on the north half of the critical line, there is a correspond-
ing one in the south half. That is, if 1

2  + 14.134725i is a zero of the zeta
function, so must 1

2  – 14.134725i be. In proper math language, if z is

a zero, then so is its complex conjugate z . (Remember that “ z ” is
pronounced “z-bar.” At this point you might want to check back with
Figure 11-1 to refresh your memory on complex number basics.)



THE ERROR TERM 337

In carrying out this summation, the south half of the critical strip
plays a key role. Figures 21-2 and 21-3 were concerned only with the
first few zeros along the northern half of the critical line. For a fuller
picture, including the southern half of the line, Figure 21-4 shows, at
the far left, a plane of complex numbers with the critical strip marked
in from 1

2  – 15i to 1
2  + 15i. This is enough to show the first zero at

1
2 + 14.134725i, and also its complex conjugate at 1

2  – 14.134725i. I

have marked them as “ ρ” and “ ρ .”

( )Li 20

–5i

5i

–1 1 2 3

–2i

–i

i

2i

1

2
+ 10i

1

2
– 10i

1

2
+ 5i

1

2
– 5i

–1 10

20

20

20

–5 5

Li 20( )

FIGURE 21-4 The critical line, out to the first pair of non-trivial zeros,

mapped first by the function 20z, then by the function Li(20z).

Taking this as the argument plane for the function 20z, the middle
part of the diagram shows the “comes from” figure in the value plane,
a circle of radius 20 , with 20 ρ marked as in Figure 21-2, and now
also 20ρ . Notice that the values are complex conjugates just as the
arguments are. This doesn’t happen with all functions, but fortunately
it does with 20z. If we apply the Li function, using that middle figure
this time as the argument plane for Li, we see that the critical line,
which got wound round that circle an infinity of times by 20z, now
unwinds into that pleasing double spiral at the right. (Figure 21-3
was a close-up of the top spiral.) And again, when the arguments are
complex conjugates, so are the values.
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There is just one more thing to notice before I actually evaluate

the sum Li 20ρ

ρ
( )∑ . That spiral—Figure 21-3 shows it best—isn’t

closing in on its target very fast. Its closing-in rate is, in fact, har-
monic. That is, if you imagine the argument ant walking north up the
critical line with his function-ometer set to Li(20z), the value ant tra-
versing the spiral in the value plane is getting closer and closer to π i

at a rate inversely proportional to the argument ant’s height. If the
argument ant’s height is T, the value ant’s distance from π i is
(roughly) proportional to 1 ⁄ T.

Bearing this in mind, I am now ready to tackle the sum

Li 20ρ

ρ
( )∑ . What I am adding is the complex numbers that corre-

spond to all those dots on the spiral in Figure 21-3, together with all
the complex conjugate dots on the southern spiral. Since for every
dot on the northern spiral there is a mirror-image dot in the south-
ern one, the imaginary parts all cancel out. Every a + bi has a corre-
sponding a − bi, so when I add them I just get 2a. This is just as well
because J(x) is a real number. It wouldn’t do to have imaginary num-
bers showing up on the right-hand side of Expression 21-1! It is really
good news, in fact, because it means I have to add up only the real
(that is, east-west) parts of the dots in Figure 21-3. The contribution
of the southern hemisphere is merely to double the answer,
(a + bi) + (a − bi) = 2a.

The rest of the news is not so good. The dots scattered along that
spiral in Figure 21-3 are, as I observed, closing in on π i—their real
parts, therefore, closing in on zero—at a harmonic rate. Adding up
the real parts of all those dots, therefore, offers the danger that I might
be adding up something like the harmonic series, which, we recall

from Chapter 1, is divergent. How do I know this sum Li 20ρ

ρ
( )∑

converges?
It helps that the dots can have real parts that are either positive or

negative. In fact, the sum this one resembles is not the harmonic sum
but its cousin, which I introduced briefly in Chapter 9.vii:
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Here the terms approach zero harmonically: 1, 1
2 , 1

3 , 1
4 , 1

5 , …, but

the alternating plus and minus signs mean that each term to some
degree cancels out the term before, and convergence is possible. How-
ever, the convergence is, in the terminology I introduced in Chapter
9.vii, only conditional. It depends on adding up the terms in the cor-

rect order.

Just so with Li x ρ

ρ
( )∑ . We need to be careful about the order in

which we do the addition if we want to be sure of convergence to the
correct number. So what is the proper order? It is just what you would
think it should be. Take the zeros one by one, heading north up the
critical line, pairing off each zero with its complex-conjugate zero
down south.

VII. So to evaluate Li x ρ

ρ
( )∑  we first pair off each zeta zero with its

mirror image (i.e., complex conjugate) in the south half of the argu-
ment plane. Then these pairs must be taken in ascending order of the
positive imaginary parts. So we take the zeros in this order,

1
2

 + 14.134725i  and 1
2

 – 14.134725i ; then
1
2

 + 21.022040i  and 1
2

 – 21.022040; then
1
2

 + 25.010858i  and 1
2

 – 25.010858i ; then….

To see how this process actually works out, and to get an insight into
why Riemann called this secondary term the “periodic terms,” let me
work through the arithmetic for an actual value of x. I’ll take x = 20 as
before, so we are engaged in computing J(20)—which, you can easily
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verify from the original definition of J, is actually 9 7
12 , that is,

9.5833333…. Here goes.
First, I must raise 20 to the power 1

2  + 14.134725i. The result is
−0.302303 − 4.46191i, which is the dot marked “1” in Figure 21-2.
Take the logarithmic integral—the Li function—of that to get the
answer −0.105384 + 3.14749i, which is the western-most dot in Fig-
ure 21-3. Now do the conjugate member of this pair of zeros. Raise 20
to the power 1

2  – 14.134725i. The result is −0.302303 + 4.46191i.
That’s shown in the middle picture of Figure 21-4. It’s the mirror
image in the real axis of the “1” dot in Figure 21-2. Take the logarith-
mic integral to get answer −0.105384 − 3.14749i, which is the one
way down south on the right of Figure 21-4. Add the two answers:
−0.210768. The imaginary parts have, of course, canceled out. So
much for the first matching pair of zeros.

Repeat for the second pair, 1
2  + 21.022040i and 1

2  – 21.022040i.
The final answer this time is 0.0215632. For the third pair it’s
−0.0535991. Three down, an infinity to go!

After 50 of these calculations, you have the following answers
(read down the columns):

−0.210768 0.0563226 −0.0332852 0.00801349 0.0240114

0.0215632 −0.0274298 −0.00692417 0.0279464 −0.0223427

−0.0535991 0.0481966 0.0205354 0.0159041 −0.0225924

−0.00432174 0.00127986 −0.0312052 −0.0102871 −0.000132221

−0.0868451 0.0128283 0.0280167 0.0224912 −0.0180932

−0.037716 −0.00472225 0.0188243 −0.00106082 0.0221559

−0.0046281 0.0361164 0.0228139 0.0130158 −0.017333

−0.0577894 0.0317626 −0.0301646 −0.0191586 −0.0150514

−0.0400277 0.0222196 0.0208943 −0.018169 0.0206192

−0.0595976 −0.037927 0.0275883 −0.0165671 0.0207551

That first is a bit of an anomaly, because that westernmost dot in
Figure 21-3 is more than twice as far from the vertical axis as any of
the others. After that, though, they get smaller as the values corre-
sponding to the north half of the critical line spiral in toward π i.
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And look at the signs—there are about as many positives as nega-
tives.129 That’s good news, because, though the answers are getting
smaller, they’re not getting smaller very fast, and we need all the help
we can get from positives and negatives canceling each other out on
addition. This is all happening under the sigma sign, remember—
those 50 numbers have to be added up. (The sum is −0.343864, which
is, as a matter of fact, within 8 percent of the infinite sum. Not bad for
just 50 terms.)

Li 20 Li 20kth zero –kth zero  ( ) + ( )

k

–0.2

–0.1

0.1

10 20 30 40 50

FIGURE 21-5 The first 50 values got by taking a non-trivial zero and its

complex conjugate, computing the function values Li (20z), and then

adding them.

You can see from Figure 21-5 why Riemann referred to these
components of the secondary term as “periodic.” They vary irregu-
larly (which means, if you want to be finicky about it, that they are
not strictly “periodic,” only “oscillatory”) up and down, from positive
to negative and back.130 The reason for this is plain in Figure 21-3.

The oscillatory quality of these secondary terms arises because,
as Figure 21-3 shows, the function Li(x ρ) winds the critical line round
and round in an ever-tighter spiral. The function values for the zeros
are likely to end up anywhere on this spiral; especially since, for large
x, the critical line gets immensely stretched before being wound. The
winding is so tight that a high segment of the critical line maps into
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something very close to a circle. The values for the zeros, therefore,
resemble points scattered around the circumference of a circle again.
If you know some trigonometry, you know that this brings us into
the world of sines and cosines, of wave functions, oscillations, vibra-
tions … of music. This is the ultimate root of Sir Michael Berry’s
notion of the “music of the primes.”

Li 20 Li 20kth zero –kth zero  ( ) + ( )

k

–0.02

–0.01

0.01

0.02

500 1000

FIGURE 21-6 Same as Figure 21-5, but showing 1,000 values (and the

points not joined up).

As you add them up, the terms are gradually decreasing, and the
positives and negatives are canceling out, and you get convergence,
though it’s awfully slow. For three-digit accuracy you need to add up
over 7,000 terms; for four-digit accuracy, more than 86,000. In Figure
21-6 I have plotted the first 1,000 results (though some over at the left
got lost in the scaling) without attempting to join the dots this time.
You can see that they really do get smaller, though at a leisurely pace.

The final result is −0.370816425…. This is, to remind you, the
second term in Expression 21-1. The first is, in this case, Li(20), which
is 9.90529997763…. The third term is log 2, which is
0.69314718055994…. The fourth term, that nuisance integral, deliv-
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ers a piddling 0.000364111…. Feed those into Expression 21-1 and—
ker-ching! J(20) = 9.58333333, which we knew all along.

VIII. I’ll round off with a complete calculation of π (1,000,000),
the number of primes up to one million, using Riemann’s formula—
not for the fun of it, though it is of course great fun, but to make
some important points about the error term.

Remember from Chapter 19.iv that

π 1 000 000 1 000 000
1

2
1 000 000

1

3
1 000 0003, , ( , , ) , , , ,( ) = − ( ) − ( ) −J J J L

How far do I need to take that right-hand side? Until the number
inside the parenthesis is less than 2, because J(x) is zero when x is less
than 2. The nineteenth root of 1,000,000 is 2.069138…; the twentieth
root is 1.995262…. We can, therefore, stop at 19. Since 19 is square-
free and has only one prime factor—itself—the Möbius function
µ (19) has value −1. The last item on the right-hand side is, therefore,
− ( )1

19
19 1 000 000J , , . Altogether there are 13 items on that right-hand

side since there are 13 numbers from 1 to 19 whose Möbius function
is not zero: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19. The Möbius func-
tion is zero, remember, for any number that is divisible by a perfect
square like 4 or 9.

Each of those 13 items has four terms: the principal term, the
secondary term (which involves the zeros of the zeta function), the
log 2 term, and the integral term. If I add up all 52 of these fragments,
I have π (1,000,000)—which, we know in advance from Chapter 3.iii,
is 78,498.

I have laid out all this arithmetic in Table 21-1 (omitting row N
when µ (N) is zero). Reading across row N, and using y to stand for
the N-th root of one million, the principal term is (µ(N) ⁄ N) Li(y),
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the secondary term is −
( ) ( )∑

µ ρ

ρ

N

N
Li y , the log 2 term is

−
( )µ N

N
log2 , and the integral term is 

µ N

N

dt

t t ty

( )
−( )

∞

∫ 2 1 log .

TABLE 21-1 Calculation of π (1,000,000).

Principal Secondary Log 2 Integral

N term term term term Row totals

1 78627.54916 −29.74435 −0.69315 0.00000 78597.11166

2 −88.80483 0.11044 0.34657 0.00000 −88.34782

3 −10.04205 0.29989 0.23105 0.00000 −9.51111

5 −1.69303 0.08786 0.13863 −0.00012 −1.46667

6 1.02760 −0.02349 −0.11552 0.00031 0.88889

7 −0.69393 −0.04737 0.09902 −0.00058 −0.64286

10 0.29539 −0.02791 −0.06931 0.00183 0.20000

11 −0.23615 −0.00634 0.06301 −0.00234 −0.18182

13 −0.15890 0.03206 0.05332 −0.00340 −0.07692

14 0.13281 −0.01581 −0.04951 0.00394 0.07143

15 0.11202 −0.00362 −0.04621 0.00448 0.06667

17 −0.08133 −0.01272 0.04077 −0.00554 −0.05882

19 −0.06013 −0.02241 0.03648 −0.00657 −0.05263

Column 78527.34662 −29.37378 0.03515 −0.00799 78498.00000

totals

The row totals should, and in fact do, work out to (µ(N) ⁄ N) J(y).
For an easy check, look at the row N = 6. Since a million is 106, the
sixth root of a million is 10. The value of J(10) is easy to work out, it
comes to 16

3 . Because 10 is square-free and the product of two primes,
its Möbius function µ (10) has the value +1. For the row N = 6, that
last column should therefore work out to (+1) × ( 1

6 ) × ( 16
3 ). That is

8
9 , which is just what we have for the row total when N = 6.
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The principal term when N = 1 is of course just Li(1,000,000),
the approximation given by the PNT. What is the difference between
that and π (1,000,000)? A quick subtraction gives the answer. The
difference, taking it as π (1,000,000) minus Li(1,000,000) to preserve
the signs in my table, is –129.54916. How is that difference made up?
As follows.

From principal terms: −100.20254

From secondary terms: −29.37378

From log 2 terms: 0.03515

From integral terms: −0.00799

The largest difference arises from the principal terms. However,
these are pretty predictable. They decline steadily and rapidly.

The difference arising from the secondary terms is of the same
order of magnitude, and its components, those secondary terms, are
much more worrisome. The first secondary term is quite large and
negative; but there is no obvious reason why this should be so. Even
the others do not look helpful. If you just read down the column of
secondary terms, ignoring minus signs, and noting whether each term
is bigger or smaller than the one above it, they read: smaller, bigger,
smaller, smaller, bigger, smaller, smaller, bigger, smaller, smaller, big-
ger, bigger. The one for N = 19 is almost as big as the one for N = 6.
Those secondary terms, the terms that involve zeros of the zeta func-
tion, are the wild cards in this calculation. The log 2 and integral
terms are, as I promised, negligible.

Think of Littlewood’s 1914 paper (Chapter 14.vii), in which he
proved it is not true that Li(x) is always greater than π (x). That means
that the difference will eventually be positive. Since the primary terms
decrease very fast in size, and since the Möbius function makes most
of the first few, including the really big ones (N = 2, N = 3, N = 5),
negative, it’s hard to see how those primary terms can ever contribute
anything to the difference but a big negative number. If the net differ-
ence is going to be positive, as Littlewood proved it eventually will be,
then that number will have to be swamped by bigger, positive, sec-
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ondary terms. For that to happen, the secondary terms—the zeros of
the zeta function—are going to have to seriously misbehave. Appar-
ently they do.

IX. For further insights into the meaning of the error term, look
back at that double spiral on the right of Figure 21-4. It is Li(xcritical line)
when x = 20. The critical line—with, if the RH is true, all the zeta
zeros speckled along it—is sent to that spiral by the function Li(20z).
What happens if, instead of 20, we choose some larger value of x?
What will the corresponding spirals look like?

Figure 21-7 gives the general idea. It shows Li(10critical line),
Li(100critical line) and Li(1,000critical line). In all three cases I have mapped
the same segment of the critical line, the segment from 1

2  – 5i to
1
2 + 5i. Notice the following things that happen as x goes from 10, to

100, to 1,000.

� The spirals get bigger. They still, however, converge on the
same two points, − π i and π i.

� The segment of the critical line that we are mapping, which
has length 10 units, gets more and more stretched, winding
more and more times round the result points at −π i and π i.

� The top spiral and the bottom spiral approach each other,
“kiss” at some value of x between 100 and 1,000, and thereaf-
ter overlap. (The spirals actually kiss when
x = 399.6202933538….)

The segment of the critical line I have mapped here is too short
to reach to the first pair of zeros at 1

2  + 14.134725i. Because the line is
getting stretched, wound more and more round the result points, even
as the spirals get bigger, an interesting question arises. Does the
stretching and winding perhaps keep the zeta zeros close in to − π i

and π i, regardless of how big the spirals become? Answer: No, for
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FIGURE 21-7 Li(xcritical line), for x = 10, 100, and 1,000. The part of the critical

line being mapped here is the segment from 1
2 5− i  to 1

2 5+ i .
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bigger and bigger x, the zeta zeros map into points that get arbitrarily
large. When ρ  is the first zeta zero, the one at 1

2  + 14.134725i, for
arguments x around a mere trillion, Li(x ρ) is clocking up real parts of
more than 2,200.

In Chapter 14.vii I noted the recent result by Bays and Hudson
that the first Littlewood violation—when π (x) exceeds Li(x) for the
first time—occurs before, and quite likely at, x = 1.39822 × 10316. Sup-
pose I were to repeat the process I used to calculate π (1,000,000),
but using this number—I’ll call it the “Bays-Hudson Number”—in-
stead of 1,000,000. What would the arithmetic look like?

Obviously I would have more than 13 J-functions to work out.
The 1,050th root of the Bays-Hudson number is 2.0028106…, the
1,051st root is 1.99896202…, so I must take first, second, …, 1,050th
roots of the number and compute their J-functions. It’s not quite
that bad, because a lot of the numbers from 1 to 1,050 are square-
divisible, and so have Möbius function zero. How many? As a matter
of fact 411, so I need to compute only 639 J-functions.131

The double spirals in Figure 21-7 cross the positive real axis suc-
cessively further east, at 2.3078382, 6.1655995, and 13.4960622. If I
was working with the Bays-Hudson Number, that double spiral would
cross the real axis at a number much larger than these, a number that
begins “325,771,513,660” and continues for a further 144 digits be-
fore reaching its decimal point. The spirals now are inconceivably
vast. Yet they still close in on π i and −π i. This means that the top
and bottom spirals massively overlap—you would not be able to dis-
tinguish them in a diagram. The critical line, with the zeros speckled
along it (if the RH is true!) is tremendously stretched out. The dia-
gram equivalent to Figure 21-3 has a far bigger hole in the middle—
though still centered on π i—and the spiral winds trillions of times
between successive low-order zeros, scrambling their coordinates in
the complex plane very effectively, the real parts of the values oscillat-
ing between hugely negative and hugely positive numbers. And all
this refers only to the first of the 639 table rows I need for computing
π (Bays-Hudson Number). Those secondary terms are very unruly.
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All of the calculations in this chapter have assumed, with occa-
sional reminders, that the RH is true. If it is not true, then these el-
egant circles and spirals are mere approximations, and at some un-
known height up the critical line—for some zero ρ  far out along the
infinite sum in that secondary term—the logic of this chapter falls
apart. In the theory of the error term, the RH is central.

X. I have attained the main object of the mathematics in this book,
to show the intimate connection between the distribution of prime
numbers, as embodied in π (x), and the non-trivial zeros of the zeta
function, which make up a large—and, by Littlewood’s result, some-
times dominant—component of the difference between π (x) and
Li(x), that is, of the error term in the PNT.

All this was revealed to us by Bernhard Riemann’s dazzling 1859
paper. We know much more today, of course, than we did in 1859. Yet
the great conundrum first set out in that paper still stands unresolved,
as resistant to assaults by the world’s finest minds as when Riemann
recorded his own “fleeting vain attempts” to prove it, back when ana-
lytic number theory had just been born. What are the prospects now,
in the fifteenth decade of our efforts to crack the RH?
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EITHER IT’S TRUE,
OR ELSE IT ISN’T

There is a satisfying symmetry about
the fact that the Riemann Hypothesis (RH), after 120 years among
the mathematicians, has got the attention of the physicists. Riemann’s
own imagination was, as I noted in Chapter 10.i, very much that of a
physical scientist. “Four of the nine papers that he himself managed
to publish must be viewed as belonging to physics” (Laugwitz). And
in fact, number theorist Ulrike Vorhauer132 reminds me, the distinc-
tion between mathematician and physicist was not much made in
Riemann’s time. Shortly before that it was not made at all. Gauss was
a first-rank physicist as well as a first-rank mathematician and would
have been puzzled to hear the two disciplines spoken of as separate
spheres of interest.

Jonathan Keating133 tells the following anecdote, which I must
say I find rather eerie.

I was vacationing in the Harz Mountains with some colleagues. Two

of us decided to drive the 30 miles or so to Göttingen to look at

Riemann’s working notes, which are kept in the library there. I my-

I.
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self wanted to look at his notes from around the time of the 1859

zeta function paper.

My colleague, however, an applied mathematician with no in-

terest in number theory, was interested in some completely differ-

ent work Riemann had done, relating to perturbations. Imagine a

large blob of gas in empty space, held together by the gravitational

attraction between its particles. What happens if you give it a good

kick? Well, there are basically two things that might happen: it might

fly apart, or it might just start wobbling at some frequency. It de-

pends on the size, direction, and location of the kick, the shape and

size of the original blob, and so on.

We got to the library, and I asked to see the notes on number

theory, and my colleague asked to see the notes on perturbation

theory. The librarian did some checking, then she came back and

told us that a single set of Riemann’s notes would do for both of us.

He had been working on both these problems at the same time.

Of course, Jonathan adds, Riemann didn’t have twentieth-
century operator algebra to help him with the perturbation problem,
to give him the set of all possible wobble frequencies as a spectrum of
eigenvalues. He’d just slogged through the differential equations, cre-
ating a sort of ad hoc, embryonic operator theory for himself. Still,
it’s hard to believe that a mind as acute and penetrating as Riemann’s
would have missed the analogy between the zeta zeros strung out on
the critical line, and his spectrum of perturbation frequencies—the
analogy that was so dramatically paralleled over afternoon tea in Fuld
Hall 113 years later!

II. It was at New York University’s Courant Institute that I heard
Keating tell that anecdote, in the early summer of 2002. The occasion
was a four-day series of lectures and discussions organized by the
American Institute of Mathematics (AIM). The title of the thing was
“Workshop on Zeta Functions and Associated Riemann Hypotheses.”
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There were many famous names at the Courant conference. Atle
Selberg himself showed up, 84 years old and still sharp as a tack. (He
pulled up Peter Sarnak on a point of historical-mathematical fact in
the very first lecture. During lunch break I went up to the Courant’s
excellent library and checked the point. Selberg was right.) Many of
the other names mentioned in these last few chapters were present,
too, including both halves of the Montgomery-Odlyzko Law. Other
attendees included the current superstar of math, Andrew Wiles, fa-
mous for having proved Fermat’s Last Theorem; Harold Edwards,
whose definitive book on the zeta function I have mentioned several
times in these pages; and Daniel Bump, one of the two names at-
tached to the most euphonious of all RH-related results, the Bump-
Ng Theorem.134

The AIM has been a considerable force in assaults on the RH
during recent years. The Courant conference was the third they had
sponsored on RH-related topics. The first, at the University of Wash-
ington in Seattle, in August 1996, was inspired by a wish to com-
memorate the proof of the Prime Number Theorem by Hadamard
and de la Vallée Poussin 100 years earlier. The second was held in
1998 at the Erwin Schrödinger Institute in Vienna. The AIM by no
means restricts its activities to RH studies—nor even just to number
theory. They currently have a project on general relativity, for ex-
ample. They have, though, done great work in bringing together
scholars from different fields, pursuing all the different approaches I
have mentioned: algebraic, analytic, computational, and physical.

AIM was established in 1994 by Gerald Alexanderson, a senior
figure in American mathematics (and author of a very good book
about George Pólya), and John Fry, a California businessman. Fry
comes from a family of entrepreneurs. His parents owned a success-
ful chain of supermarkets in California. John fell in love with math
early on and in the 1970s he majored in the subject at Santa Clara
University, where Alexanderson was on the faculty. After graduation
John faced the choice of following the family tradition into business
or going to graduate school. John opted for business and with his two
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brothers started the Fry’s Electronics chain of stores, originally just in
California, but at the time of writing going nationwide.

John Fry and Jerry Alexanderson stayed in touch. They shared a
common interest, collecting rare math books and original papers. In
the early 1990s they kicked around the idea of establishing a math
library to house their collections. This developed into a plan for a
math institute. They called in Brian Conrey, an old classmate of John’s
at Santa Clara, a number theorist of some repute, and a very success-
ful head of department at Oklahoma State University.

For the first few years of its existence, AIM was funded almost
entirely by personal donations from John Fry, to the tune of around
$300,000 a year. This was a case of doing good by stealth. John is a
reserved and private man who does not publicize his activities. When
I first learned about AIM I went looking for a picture of him on the
internet; there weren’t any. In his element, though, that is, among
mathematicians and people who love math, John is perfectly acces-
sible. He took a party of us to lunch at the Courant conference in
New York. A tall, boyish man, his face lights up when he talks math. I
quietly wondered whether he had ever regretted the decision to go
into business rather than the academy, but thought it might be im-
pertinent to ask, and so missed the opportunity.

Visiting AIM headquarters a few days before the Courant confer-
ence, I found it occupying a utilitarian suite of rooms attached to the
Fry’s store in Palo Alto, California. In 2001, however, AIM applied for
National Science Foundation funding to help establish a conference
center on a leafy 200-acre property south of San Jose, California. The
funding was approved, and research programs at the new location
will begin in December 2002.

Another privately-funded enterprise similar to AIM began on the
East Coast of the United States in 1998, when Boston businessman
Landon T. Clay and Harvard mathematician Arthur Jaffe established
the Clay Mathematics Institute (CMI). While AIM’s first major ini-
tiative was to commemorate the proof of the Prime Number Theo-
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rem, CMI’s was to mark the anniversary of Hilbert’s speech at the
1900 Paris Congress.

For that purpose, the Clays held a two-day Millennium Event,
also in Paris, at the Collège de France, in May 2000, during the course
of which a $7 million fund was unveiled, $1 million to be awarded for
the solution to each of seven great mathematical problems. The RH
was naturally included, as problem number 4. (The order was based
on the lengths of the problems’ titles, to give the announcement an
attractive appearance.)Whatever may be the case with the other six
problems, $1 million is very little extra incentive to prove, or dis-
prove, the Hypothesis. It is sufficiently established as the open prob-
lem in math at the beginning of the twenty-first century that who-
ever can resolve it will attain, in addition to everlasting fame, financial
success—in lecture, interview, and royalty fees alone—far in excess of
$1 million.135

III. What are the prospects for a proof or disproof of the RH? De-
livering prognostications about this sort of thing is a very good way
to make a fool of yourself. This is true even if you are a great math-
ematician, which of course I am not. Seventy-five years ago, lecturing
to a lay audience, David Hilbert ranked three problems in ascending
order of difficulty:

� The RH.
� Fermat’s Last Theorem.
� “The Seventh”—that is, number 7 in the list of 23 problems

Hilbert presented at the 1900 congress. In its more explicit
form: If a and b are algebraic numbers, then ab is transcenden-
tal (see Chapter 11.ii) except when it trivially isn’t.

Hilbert said that the RH would be resolved in his lifetime, and
Fermat’s Last Theorem within the lifetime of younger audience mem-
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bers; but “no-one in this room will live to see a proof of the Seventh.”
In fact the Seventh was proved less than 10 years later, by Alexander
Gel’fond and Theodor Schneider working independently. Hilbert was
right, at a stretch, about Fermat’s Last Theorem, proved by Andrew
Wiles in 1994, when younger members of Hilbert’s audience would
have been in their nineties. He was drastically wrong about the RH,
though. Should the RH make a fool of me, too—should the words I
am about to write be rendered null and void by a proof of the RH
turning up while this book is at the casebinder—I shall at least be
able to console myself that I am in excellent company.

I am, therefore, going to stick my neck out and say that I believe a
proof of the RH to be a long way beyond our present grasp. Survey-
ing the modern history of attempts on the RH is something like read-
ing an account of a long and difficult war. There are sudden surpris-
ing advances, tremendous battles, and heartbreaking reverses. There
are lulls—times of exhaustion, when each side, “fought out,” does
little but conduct small-unit probes of the enemy defenses. There are
breakthroughs followed by outbursts of enthusiasm; and there are
stalemates followed by spells of apathy.

My impression of the current (mid-2002) state of affairs—
though, to be sure, it is only the impression of a noncombatant—is
that researchers are stalemated. We are in a lull. The great burst of
interest generated by Deligne’s proof of the Weil Conjectures in 1973
and by the Montgomery-Odlyzko developments of 1972−1987 seems
to me to have spent itself.

In May 2002 I spent three days at the AIM office in Palo Alto,
reviewing the videotaped record of the 1996 Seattle conference. The
following month I attended the Courant Institute workshop. If you
subtract 1996 from 2002, you get six years. If you “subtract” the con-
tents of the Seattle conference from those of the Courant workshop,
the mathematicians assembled at the Courant had little new to show.
That is not a very surprising statement, to be sure, and I certainly do
not mean it in a disparaging sense. This is work of the utmost diffi-
culty. Progress is naturally slow, and six years is a very short time in
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the history of mathematics. (It took 357 years to prove Fermat’s Last
Theorem!) And there were some striking presentations at the Cou-
rant by younger mathematicians like Ivan Fesenko.

Still, the overriding impression was of stalemate. It is as if the RH
were a mountain to be climbed, but from whichever direction one
approaches it, one sooner or later finds oneself stuck at the rim of a
wide, bottomless crevasse. I lost count of the number of times, in
both 1996 and 2002, a lecturer ended his presentation with a verbal
throwing up of hands: “This is of course a very important advance.
However, it is not clear how we can proceed from here to a proof of
the classical RH….”

Sir Michael Berry, who has a way with words, has coined the con-
cept of the “clariton,” which he defines to be “the elementary particle
of sudden understanding.” In the realm of the RH, claritons are cur-
rently in short supply.

Andrew Odlyzko: “It was said that whoever proved the Prime
Number Theorem would attain immortality. Sure enough, both
Hadamard and de la Vallée Poussin lived into their late nineties. It
may be that there is a corollary here. It may be that the RH is false;
but, should anyone manage to actually prove its falsehood—to find a
zero off the critical line—he will be struck dead on the spot, and his
result will never become known.”

IV. Setting aside the search for a proof, how do mathematicians feel

about the RH? What does their intuition tell them? Is the RH true, or
not? What do they think? I made a point of asking every mathemati-
cian I spoke with, very directly, whether he or she believed the Hy-
pothesis to be true. The answers formed a wide spectrum, with a full
range of eigenvalues.

Among that majority of mathematicians who believe it true
(Hugh Montgomery, for example), it is the sheer weight of evidence
that tells. Now, all professional mathematicians are aware that weight



EITHER IT’S TRUE, OR ELSE IT ISN’T 357

of evidence can be a very treacherous measure. There was a good
weight of evidence for Li(x) being always greater than π (x), until
Littlewood’s 1914 result disproved it. Ah, yes, RH believers will tell
you, but that was merely one line of evidence, numerical evidence,
together with the unsupported assumption that the second log-
integral term − 1

2

1
2Li x( ) would continue to dominate the difference,

which would therefore always be negative. For the Hypothesis we have
far more lines. The RH underpins an enormous body of results, most
of them very reasonable and—to bring in a word mathematicians are
especially fond of—“elegant.” There are now hundreds of theorems
that begin, “Assuming the truth of the Riemann Hypothesis….” They
would all come crashing down if the RH were false. That is undesir-
able, of course, so the believers might be accused of wishful thinking,
but it’s not the undesirability of losing those results, it’s the fact of
their existence. Weight of evidence.

Other mathematicians believe, as Alan Turing did, that the RH is
probably false. Martin Huxley136 is a current nonbeliever. He justifies
his nonbelief on entirely intuitive grounds, citing an argument first
put forward by Littlewood: “A long-open conjecture in analysis gen-
erally turns out to be false. A long-open conjecture in algebra gener-
ally turns out to be true.”

The answer I liked best was Andrew Odlyzko’s. He was actually
the first person to whom I posed the question—the first mathemati-
cian I approached, when I was preparing the proposal for this book.
We went for dinner at a restaurant in Summit, New Jersey. Andrew
was at that time working for Bell Labs; he is now at the University of
Minnesota.

I was fairly new to the RH at this point and had been learning a
lot. With an excellent Italian meal under our belts and two hours of
solid math talk behind us, having finally run out of things to ask, I
said this:

JD: Andrew, you have gazed on more non-trivial zeros of the
Riemann zeta function than any person alive. What do you think
about this darn Hypothesis? Is it true, or not?
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AO: Either it’s true, or else it isn’t.
JD: Oh, come on, Andrew. You must have some feeling for an

answer. Give me a probability. Eighty percent it’s true, twenty percent
it’s false? Or what?

AO: Either it’s true, or else it isn’t.
I could get no more from him than that. He simply would not

commit himself. In a later conversation, in another place, I asked An-
drew if there are any good mathematical reasons to believe the Hy-
pothesis false. Yes, he said, there are some. You can, for example, de-
compose the zeta function into different parts, each of which tells
you something different about zeta’s behavior. One of these parts is
the so-called S function.  (This has no connection at all with the func-
tion I called S(x) in Chapter 9.ii.) For the entire range for which zeta
has so far been studied—which is to say, for arguments on the critical
line up to a height of around 1023—S mainly hovers between –1 and
+1. The largest value known is around 3.2. There are strong reasons
to think that if S were ever to get up to around 100, then the RH
might be in trouble. The operative word there is “might”; S attaining
a value near 100 is a necessary condition for the RH to be in trouble,
but not a sufficient one.

Could values of the S function ever get that big? Why, yes. As a
matter of fact, Atle Selberg proved in 1946 that S is unbounded; that
is to say, it will eventually, if you go high enough up the critical line,
exceed any number you name! The rate of growth of S is so creepingly
slow that the heights involved are beyond imagining; but certainly S
will eventually get up to 100. Just how far would we have to explore
up the critical line for S to be that big? Andrew: “Probably around T
equals 101010 000,

.” Way beyond the range of our current computational
abilities, then? “Oh, yes. Way beyond.”

V. A thing that nonmathematical readers want to know, a question
that is always asked when mathematicians address lay audiences, is,
What use is it? Suppose the RH were proved true, or false. What prac-
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tical consequences would follow? Would our health, our convenience,
our safety be improved? Would new devices be invented? Would we
travel faster? Have more devastating weapons? Colonize Mars?

I had better unmask myself at this point as a pure mathematician
sans mélange, having no interest in such questions at all. Most math-
ematicians—and most theoretical physicists, too—are motivated not
by any thought of advancing the health or convenience of the human
race, but by the sheer joy of discovery and the challenge of tackling
difficult problems. Mathematicians are generally pleased when their
work turns out to have some practical result (at any rate if the result
is peaceful), but they rarely think about such things in their working
lives. At the Courant conference I sat through four days of solid lec-
tures and discussions on topics related to the RH, from 9:30 A.M. to
6:00 P.M. every day, without ever hearing a mathematician mention
practical consequences.

Here is what Jacques Hadamard had to say on this point in The

Psychology of Invention in the Mathematical Field.

[T]he answer appears to us before the question…. Practical appli-

cation is found by not looking for it, and one can say that the whole

progress of civilization rests on that principle…. [P]ractical ques-

tions are most often solved by means of existing theories…. It sel-

dom happens that important mathematical researches are directly

undertaken in view of a given practical use: they are inspired by the

desire which is the common motive of every scientific work, the

desire to know and to understand.

G.H. Hardy, in the concluding pages of his strange little Apology,
was more blunt and more personal about it.

I have never done anything “useful.” No discovery of mine has made,

or is likely to make, directly or indirectly, for good or ill, the least

difference to the amenity of the world…. Judged by all practical

standards, the value of my mathematical life is nil.
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In the case of prime number theory, Hadamard’s “the answer ap-
pears to us before the question” applies, and Hardy’s claim is no
longer true. Beginning in the late 1970s, prime numbers began to
attain great importance in the design of encryption methods for both
military and civilian use. Ways to test a large number for primality,
ways to resolve large numbers into their prime factors, ways to manu-
facture gigantic primes; these all became very practical matters in-
deed in the last two decades of the twentieth century. Theoretical
results, including some of Hardy’s, were essential in these develop-
ments, which, among other things, allow you to use your credit card
to order goods over the internet. A resolution of the RH would un-
doubtedly have further consequences in this field, validating all those
countless theorems about primes that begin, “Assuming the truth of
the RH…” and acting as a spur to further discoveries.

And of course, if the physicists really do succeed in identifying a
“Riemann dynamics,” our understanding of the physical world will
be transformed thereby.

Unfortunately, it is impossible to predict what things will follow
from that transformation. Not even the cleverest people can make
such predictions, and those who do should not be trusted. Here is a
mathematician at work, not quite 100 years ago.

Every morning I would sit down before a blank sheet of paper.

Throughout the day, with a brief interval for lunch, I would stare at

the blank sheet. Often when evening came it was still empty….

[T]he two summers of 1903 and 1904 remain in my mind as a pe-

riod of complete intellectual deadlock…. [I]t seemed quite likely

that the whole of the rest of my life might be consumed in looking

at that blank sheet of paper.

That is from Bertrand Russell’s autobiography. What was stump-
ing him was the attempt to find a definition of “number” in terms of
pure logic. What does “three,” for example, actually mean? The Ger-
man logician Gottlob Frege had come up with an answer; but Russell
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had found a flaw in Frege’s reasoning and was searching for a way to
plug the leak.

If you had asked Russell, during those summers of frustration,
whether his perplexities were likely to lead to any practical applica-
tion, he would have hooted with laughter. This was the purest of pure
intellection, to the degree that even Russell, a pure mathematician by
training, found himself wondering what the point was. “It seemed
unworthy of a grown man to spend his time on such trivialities…,”
he remarked. In fact, Russell’s work eventually brought forth Principia

Mathematica, a key development in the modern study of the founda-
tions of mathematics. Among the fruits of that study have been, so
far, victory in World War II (or at any rate, victory at a lower cost than
would otherwise have been possible) and machines like the one on
which I am writing this book.137

The RH should therefore be approached in the spirit of
Hadamard and Hardy, though preferably without the overlay of mel-
ancholy Hardy put on his disclaimer. As Andrew Odlyzko told me,
“Either it is true, or else it isn’t.” One day we shall know. I have no idea
what the consequences will be, and I don’t believe anyone else has,
either. I am certain, though, that they will be tremendous. At the end
of the hunt, our understanding will be transformed. Until then, the
joy and fascination is in the hunt itself, and—for those of us not
equipped to ride—in observing the energy, resolution, and ingenuity
of the hunters. Wir müssen wissen, wir werden wissen.
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EPILOGUE

Bernhard Riemann died on Friday,
July 20, 1866, a few weeks short of his 40th birthday. He had caught a
heavy cold in the fall of 1862, and this had accelerated the tuberculo-
sis from which he had probably suffered since childhood.138 The ef-
forts of Göttingen colleagues had secured a series of government
grants to enable Riemann to travel to a better climate, this being the
only way known for a TB sufferer to obtain relief from the disease
and slow its progress.

Thus, Riemann’s last four years had been spent almost entirely in
Italy. When he died he was staying in Selasca, on the western shore of
Lago Maggiore in the Piedmontese Alps. His wife, Elise, and their
three-year-old daughter, Ida, were with him. Richard Dedekind re-
corded the event in the brief biography of his friend that he appended
to the Collected Works.

On June 28 he arrived at Lago Maggiore, where he lived at the Villa

Pisoni in Selasca, near Intra.139 Swiftly his strength ebbed away, and

he himself perceived with full clarity that his end was approaching.

Still, on the day before his death, resting in the shade of a fig tree,

full of joy at the beautiful scenery laid out before him, he was at
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work on those papers that, sad to say, he left unfinished. His end

was very peaceful, with no struggle or death-spasm. It seemed as

though he watched with interest the separation of the soul from the

body. His wife brought bread and wine to him. He asked her to take

his greetings to those at home, and said to her: “Kiss our child.” She

recited the Lord’s Prayer for him, but he himself could no longer

speak. At the words “forgive us our trespasses” he directed his eyes

devoutly upward. She felt his hand become colder in hers, and after

a few breaths his pure, noble heart ceased beating. That pious sense

that was planted in him under his father’s roof, stayed with him all

his life, and he served God faithfully, in his own way. With devotion

of the highest kind, he never interfered with the faith of others: the

main thing in religion was, in his opinion, daily self-examination

before the face of God.

He rests in the churchyard of Biganzolo, in the parish of Selasca.

His gravestone carries the inscription:

HERE RESTS IN GOD

GEORG FRIEDRICH BERNHARD RIEMANN

PROFESSOR AT GÖTTINGEN

BORN IN BRESELENZ, SEPT. 17, 1826

DIED IN SELASCA, JULY 20, 1866

ALL THINGS WORK TOGETHER FOR GOOD

TO THEM THAT LOVE GOD

The inscription is all in German. The epitaph is from St. Paul’s
epistle to the Romans, 8:28. (In German, Denen die Gott lieben müssen

alle Dinge zum Besten dienen.) Riemann’s grave site no longer exists.
It was destroyed in a later reorganization of the church property. The
inscribed stone survived, though, and has been set in a nearby wall.

Elise Riemann returned to Göttingen with her daughter. They
lived there with Bernhard Riemann’s one surviving sister, also named
Ida, at Weender Chaussee 17. The next door house, No. 17A, was oc-
cupied by Hermann Schwartz, a professor of mathematics at the Uni-
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versity.140 Riemann’s chair at the University was taken by Alfred
Clebsch, who wrote the founding text of modern algebraic geometry.

In 1884, Riemann’s daughter Ida, then 20 years old, married Carl
David Schilling, who had taken his doctor’s degree under Schwartz in
1880 and remained friendly with him. Soon after this, Schilling took
up a position as director of the marine academy in Bremen. In Sep-
tember 1890, Riemann’s widow and his sister went to live with the
Schillings in Bremen. Riemann’s daughter lived until 1929, her hus-
band until 1932. They seem to have produced a large family, but the
precise number of their children has eluded me. The descendants of
Bernhard Riemann are, at any rate, now merged into the general mass
of humanity.

Few as were the years of work allotted to him, and few as are the

printed pages covered by the record of his researches, his name is,

and will remain, a household word among mathematicians. Most

of his memoirs are masterpieces—full of original methods, pro-

found ideas and far-reaching imagination.

—George Chrystal, from the article headed

“Riemann” in the 1911 Encyclopædia Britannica
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NOTES

CHAPTER 2

1. A fact I learned at school in England by means of the following Victo-

rian ditty:

George the First was always reckoned

Vile; but viler George the Second.

No one ever said or heard

A decent thing of George the Third.

When to heaven the Fourth ascended,

God be praised!—the Georges ended.

In fact, they did not end; the twentieth century brought forth two more

Georges.

2. There was another great Elbe flood in 1962, causing many deaths and

much destruction in the Wendland district. Following that, a system of

major dikes was built. In August 2002, as I was finishing this book, the

Elbe flooded again. However, the post-1962 dikes appear to have held,

and the region has suffered less than those further upriver.

3. Erwin Neuenschwander is professor of the history of mathematics at

the University of Zürich. He is the leading authority on the life and

work of Bernhard Riemann and has edited Riemann’s letters. I have

made use of his researches in this book. I have also relied heavily on the
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only two books in English that give anything like a comprehensive ac-

count of Riemann: Michael Monastyrsky’s Riemann, Topology and

Physics (the 1998 translation by Roger Cooke, James King, and Victoria

King) and Detlef Laugwitz’s Bernhard Riemann, 1826–1866 (the 1999

translation by Abe Shenitzer). Though they are mathematical biogra-

phies—that is, much more math than biography—both books give a

good picture of Riemann and his times, with many valuable insights.

4. I should think they were. The distance from Lüneburg to Quickborn is

38 miles as the crow flies—10 hours walking at a brisk pace.

5. Hanover did not become a kingdom until 1814. Before that, its rulers

were titled “Elector”—that is, they had the right to participate in elect-

ing the Holy Roman Emperor. The Holy Roman Empire was wound

up in 1806.

6. Ernest Augustus was the last but one king of Hanover. The kingdom

was incorporated into the Prussian Empire in 1866, a key moment in

the creation of modern Germany.

7. Rankings vary, but he is almost always in the top three, usually with

Newton and either Euler or Archimedes.

8. Heinrich Weber and Richard Dedekind published that first edition in

1876. The most recent edition of the Collected Works was compiled by

Raghavan Narasimhan and published in 1990. The German for “Col-

lected Works” is Gesammelte Werke, by the way; and this is a phrase so

often encountered in mathematical research that English-speaking

mathematicians, in my experience, say it in German quite unself-

consciously.

9. An Abelian function is a multivalued function obtained by inverting

certain kinds of integrals. The term is hardly used nowadays. I shall

mention multivalued functions in Chapter 3, complex function theory

in Chapter 13, and the inverting of integrals in Chapter 21.

CHAPTER 3

10. Here is an example of e turning up unexpectedly. Select a random num-

ber between 0 and 1. Now select another and add it to the first. Keep

doing this, piling on random numbers. How many random numbers,
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on average, do you need to make the total greater than 1? Answer:

2.71828….

11. One of the great mathematical discoveries of antiquity, made by

Pythagoras or one of his followers around 600 B.C.E., was that not

every number is either a whole number or a fraction. The square root

of 2, for example, is obviously not a whole number. Brute arithmetic

shows that it is between 1.4 (whose square is 1.96) and 1.5 (whose

square is 2.25). It’s not a fraction either, though. Here is a proof. Let S

be the set of all positive whole numbers n for which the following thing

is true: n 2  is also a positive whole number. If S is not empty, it has a

least member. (Any non-empty set of positive whole numbers has a

least member.) Call this least member k. Now form the number

u = ( 2  – 1)k. It is easy to show that (i) u is less than k, (ii) u is a

positive whole number, (iii) u 2  is also a positive whole number, so

that (iv) u is a member of S. This is a contradiction, since k was defined

to be the least member of S, and therefore the founding assumption—

that S is not empty—must be false. Therefore, S is empty. Therefore,

there is no positive whole number n for which n 2  is a positive whole

number. Therefore, 2  is not a fraction. A number that is neither

whole nor fractional is called “irrational,” because it is not the ratio of

any two whole numbers.

12. Rule of signs: a minus times a minus is a plus. This is a major sticking

point in arithmetic for a lot of people. “What does it mean to multiply

a negative by a negative?” they ask. The best explanation I have seen is

one of Martin Gardner’s, as follows. Consider a large auditorium filled

with two kinds of people, good people, and bad people. I define “addi-

tion” to mean “sending people into the auditorium.” I define “subtrac-

tion” to mean “calling people out of the auditorium.” I define “positive”

to mean “good” (as in “good people”) and “negative” to mean “bad.”

Adding a positive number means sending some good people into the

auditorium, which obviously increases the net quantity of goodness in

there. Adding a negative number means sending some bad people in,

which decreases the net goodness. Subtracting a positive number

means calling out some good people—net goodness in the auditorium
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decreases. Subtracting a negative number means calling out some bad

people—net goodness increases. Thus, adding a negative number is

just like subtracting a positive, while subtracting a negative is like add-

ing a positive. Multiplication is just repeated addition. Minus three

times minus five? Call out five bad people. Do this three times. Result?

Net goodness increases by 15…. (When I tried this out on 6-year-old

Daniel Derbyshire, he said, “What if you call for the bad people to come

out and they won’t come?” A moral philosopher in the making.)

13. One reader of this book’s manuscript thought that “twiddle” sounds

like a Britishism. (I was educated in England.) I agree, it does. Ameri-

can mathematicians certainly use it, though. I have heard, for example,

Nicholas Katz of Princeton University use it in a lecture. Prof. Katz is

from Baltimore and was educated entirely in the U.S.A.

CHAPTER 4

14. George was the last king of Hanover. The kingdom was swallowed by

Prussia in 1866, after taking the wrong side in the Austro-Prussian war

of that year. The medal seems not to have actually been struck until the

Gauss centenary in 1877.

15. Among the Duke’s claims to fame, perhaps it is worth noting that he

was the father of Caroline of Brunswick, who was married off to the

Prince Regent of England. The marriage was a disaster and Caroline

left England; but when the Prince ascended the English throne as King

George IV, she returned to claim her rights as Queen. This caused a

constitutional crisis of the minor sort, as well as much public merri-

ment over the unpopular king’s discomfiture, his queen’s rather bump-

tious personality, her peculiar personal habits, and her flagrant liai-

sons. The following ditty was widely circulated.

Gracious Queen, we thee implore

To go away and sin no more;

But if this effort be too great,

To go away, at any rate.

One of the Duke’s maternal aunts married a Holy Roman Emperor

and begat Maria Theresa, the great Hapsburg empress. Another mar-



NOTES 369

ried Alexis Romanov and was the mother of Peter II, nominal Tsar

when Leonhard Euler came ashore in St. Petersburg (Section VI of this

chapter). Once you start following the genealogies of these petty Ger-

man rulers, there is no end to it.

16. Did I mention that as well as being a towering mathematical genius

and a physicist of the first rank, Gauss was also a brilliant astronomer,

the first person to correctly compute the orbit of an asteroid?

17. To find out if some number N is prime, you just keep dividing it by

primes 2, 3, 5, 7, … one after another until either one of them divides

exactly, in which case you have shown that N is not prime, or … what?

How do you know when to stop? Answer: you stop when the prime you

are about to divide by is bigger than N . Suppose N is 47, for ex-

ample; 47  is 6.85565…, so I only need to try division by 2, 3, and 5. If

none of them works, 47 must be prime. Why don’t I need to try 7?

Because 7 × 7 = 49, so if 7 divided exactly into 47, the quotient would

be some number less than 7. Likewise, 701 000,  is 837.2574…. The last

prime below this is 829; the next prime above it is 839. If 839 divided

into 701,000, the quotient would be a number less than 839; either

some prime less than 839 (which I would therefore already have tried),

or a composite number made up of even smaller prime factors….

18. Legendre died in poverty, having offended his political superiors by

taking a stand on principle. His dates are 1752−1833. I am sorry that I

have presented him here as a disgruntled and slightly comical figure.

Legendre was a fine mathematician, at the top of the second division,

and did valuable work over many years. His Elements of Geometry was

the leading elementary textbook on the subject for over a century. It is

said to have inspired the tragic Évariste Galois—the narrator in Tom

Petsinis’s novel The French Mathematician—to take up a career in

mathematics. More relevant to the present narrative, his book Theory

of Numbers—the renamed third edition of the Essay mentioned in the

text—was lent by a schoolmaster to the adolescent Bernhard Riemann,

who returned it in less than a week with the comment, “This is truly a

wonderful book; I know it by heart.” The book has 900 pages.

19. There is a very good account of the Euler-Mascheroni number in Chap-

ter 9 of The Book of Numbers, by John Conway and Richard Guy.
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Though I have not described it properly in this book, the very obser-

vant reader will glimpse the Euler-Mascheroni number in Chapter 5.

20. In the mathematics department of my English university, all under-

graduates were expected to take a first-year course in German. Those

like myself who had studied German in secondary school were shipped

off to the nearby School of Slavonic and East European Studies to learn

Russian, which our instructors considered to be the language of most

importance to mathematicians, after German. There you have the

legacy of Peter.

21. I have taken this story from a hilarious account of Frederick’s relations

with Voltaire written by the English wit and satirist Lytton Strachey in

1915 and found in his Books and Characters: French and English.

22. Euler’s Latin is a stripped-down, racing version of the language, de-

signed not to show off the writer’s superb grasp of Augustan style

(which Euler probably could have done if he had wanted to—he knew

the Aeneid by heart) but to communicate ideas as plainly as possible

with a minimum of verbiage to readers much less concerned with form

than with content. I shall give some actual examples in Chapter 7.v.

23. The President of the Berlin Academy, Pierre Maupertuis, was accused

by Swiss mathematician Samuel König, probably correctly, of having

plagiarized Leibnitz’s work. Maupertuis called on the Academy to pro-

nounce König a liar, which they duly did. Writes Strachey: “The mem-

bers of the Academy were frightened; their pensions depended on the

President’s good will; and even the illustrious Euler was not ashamed

to take part in this absurd and disgraceful condemnation.”

24. First English edition 1795; first American, 1833. For some reason this

book can now be found only in expensive collector’s editions.

CHAPTER 5

25. It had been posed by Pietro Mengoli in 1644. Mengoli was a professor

at the University of Bologna at the time, so we really should say “the

Bologna problem.” It was Jakob Bernoulli who first brought the prob-

lem to the attention of a wide audience, though, and “the Basel prob-

lem” has stuck.



NOTES 371

26. If the shape of the curve looks oddly familiar, that’s because if you add

up N terms of the harmonic series (Chapter 1.iii), you get a number

close to log N. In fact,

1
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1
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1
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1
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1

7

1
+ + + + + + + +L

N
N~ log

and the profile of that tottering stack of cards, if you rotate it clockwise

through 90 degrees then reflect it in a vertical mirror, is the graph of

log x.

27. Note: It is a convention in math to use ε —that’s epsilon, the fifth letter

of the Greek alphabet—to mean “some very tiny number.”

28. The proof was devised by Greek-French mathematician Roger Apéry,

who was 61 years old at the time—so much for the notion that no

mathematician ever does anything worthwhile after the age of 30. In

honor of this achievement, the sum—its actual value is 1.2020569031

595942854…—is now known as “Apéry’s number.” It actually has some

use in number theory. Take three positive whole numbers at random.

What is the chance they have no proper factor in common? Answer:

around 83 percent—to be precise, 0.83190737258070746868…, the re-

ciprocal of Apéry’s number.

CHAPTER 6

29. English edition published by Bloomsbury USA, 2000. The novel was

first published in Greek in 1992. As Doxiadis points out, the conjecture

was first framed in proper mathematical form by Euler.

30. Of topics like the Goldbach Conjecture and Fermat’s Last Theorem,

you might want to say “Oh, that’s not arithmetic, that’s number theory.”

These two terms have had an interesting relationship. The phrase

“number theory,” or at any rate “theory of numbers,” goes back to at

least Pascal (1654, in a letter to Fermat), but was not clearly distinct

from “arithmetic” until the nineteenth century. Gauss’s great classic on

number theory was titled Disquisitiones Arithmeticae (1801). It seems

to have been sometime in the later nineteenth century that “arithmetic”

was definitely reserved for the basic manipulations learned in elemen-

tary school, with “number theory” used for the deeper researches of
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professional mathematicians. Then, around the middle of the twenti-

eth century, there began to be a road back. Perhaps it all began with

Harold Davenport’s 1952 book The Higher Arithmetic, an excellent

popular presentation of serious number theory, whose title echoed an

occasional synonym for “number theory” going back at least as far as

the 1840s. Then, some time in the 1970s (I am working from personal

impressions here) it began to be thought cute for number theorists to

refer to their work as just “arithmetic.” Jean-Pierre Serre’s A Course in

Arithmetic (1973) is a text for graduate students of number theory,

covering such topics as modular forms, p-adic fields, Hecke operators,

and, yes! the zeta function. I smile to think of some doting mother

picking it out for her third-grader, to help him master long multiplica-

tion.

31. The pronunciation of Dirichlet’s name gives a lot of trouble. Since he

was German, the pronunciation should be “Dee-REECH-let,” with the

hard German “ch.” English-speakers hardly ever say this. They either

use the French pronunciation “Dee-REESH-lay,” or half-and-half it:

“Dee-REECH-lay.”

32. Constantin Carathéodory, though of Greek ancestry, was born, was

educated, and died in Germany. Cantor was born in Russia and had a

Russian mother, but he moved to Germany at age 11 and lived there

practically all his life. Mittag-Leffler was the Swede. According to math-

ematical folklore, he was the cause of there being no Nobel Prize in

mathematics. The story goes that he had an affair with Nobel’s wife,

and Nobel found out. It’s a nice story, but Nobel was not married.

33. Felix’s first cousin, Ottilie, married the great German mathematician

Eduard Kummer; their grandson, Roland Percival Sprague, was co-cre-

ator of “Sprague-Grundy Theory,” in twentieth-century Game

Theory…. I have to resist the temptation to take this further; it’s like

tracing the genealogies of those German princes. Another Mendelssohn

link will show up in Chapter 20.v.

CHAPTER 7

34. “Eratosthenes” is pronounced—at any rate by mathematicians—“era-

TOSS-the-niece.”
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35. Mathematics allows infinite products, just as it allows infinite sums. As

with infinite sums, some of them converge to a definite value, some

diverge to infinity. This one converges when s is greater than 1. When s

is 3, for example, it is

8

7

27

26

125
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343

342

1331

1330

2197

2196

4913

4912

6859

6858
× × × × × × × ×L

The terms get closer and closer to 1 really fast, so at each step in the

multiplication you are multiplying by something a teeny bit bigger than

1 … which, of course, hardly changes the result. Add 0 to something:

no effect. Multiply something by 1: no effect. In an infinite sum, the

terms have to get close to 0 really fast, so that adding them has very

little effect; in an infinite product, they have to get close to 1 really fast,

so that multiplying by them has very little effect.

36. “Golden Key” is strictly my nomenclature. “Euler product formula” is

standard. So are the following terms for the two parts, “the Dirichlet

series” for the infinite sum, and “the Euler product” for the infinite

product. Strictly speaking, the left-hand side is a Dirichlet series and

the right-hand side is an Euler product. In the narrow context of this

book, though, “the” is fine.

37. There are two ways to define Li(x), both, unfortunately, in common

use. In this book I shall use the “American” definition given in

Abramowitz and Stegun’s classic Handbook of Mathematical Functions,

published in 1964 by the National Bureau of Standards. This definition

takes the integral from 0 to x, and this is also the sense in which Ri-

emann used Li(x). Many mathematicians—including the great Landau

(see Chapter 14.iv)—have preferred the “European” definition, which

takes the integral from 2 to x, avoiding the nasty stuff at x = 1. The two

definitions differ by 1.04516378011749278…. The Mathematica soft-

ware package uses the American definition.

38. You can get a good approximation for Li(N) by just adding up 1 ⁄ log 2,

1 ⁄ log 3,  1 ⁄ log 4, …,   1 ⁄ log N. If you do this for N equal to a million,

for example, you get 78,627.2697299…, while Li(N) is equal to

78,627.5491594…. So the sum gives an approximation that is low by

0.0004 percent. That integral sign sure does look like an “S” for “sum.”
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CHAPTER 8

39. Mostly. Prussia and Austria also held parts of historic Poland.

40. He worked for a year and a half as an assistant in Weber’s physics lab

and might have earned some spare change thereby, so perhaps was not

utterly without income.

41. Topology is “rubber-sheet” geometry—the study of those properties of

figures left unaffected by stretching, without tearing or cutting. The

surface of a sphere is topologically equivalent to that of a cube, but not

to that of a doughnut or a pretzel. The word “topology” was coined by

Johann Listing in 1836, in a letter to his old schoolmaster. In 1847 List-

ing wrote a short book titled Preliminary Sketch of Topology. He was a

professor of mathematical physics at Göttingen during Riemann’s time

there, and Riemann certainly knew him and his work. However, Ri-

emann seems never to have used the word “topology,” always referring

to the topic by the Latin term favored by Gauss, analysis situs—“the

analysis of position.”

42. Eugene Onegin, 1833; A Hero of Our Times, 1840; Dead Souls, 1842.

43. He was also the subject of a 1959 comic song, Lobachevsky, by math-

ematician/musician Tom Lehrer.

44. Atle Selberg, now the Grand Old Man of number theory, is still at the

Institute at the time of writing (June 2002) and still mathematically

active. There is a story about this in Chapter 22. He was born June 14,

1917, in Langesund, Norway.

45. Riemann, Gauss, Dirichlet, and Euler also enjoy this distinction.

Riemann’s crater is at 87°E 39°N.

46. I should perhaps explain that mathematicians have their own particu-

lar approach to the learning of foreign languages. To be able to read

mathematical papers in a language not one’s own, it is by no means

necessary to master that language thoroughly. You need to learn only

the few dozen words, phrases, and constructions that are common in

mathematical exposition: “it follows that…,” “it is sufficient to prove

that…,” “without loss of generality…,” and so on. The rest is symbols

like √ and Σ , that are common to all languages (though there are some

minor national dialects in their usage). Some mathematicians, of
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course, are fine linguists. André Weil (see Chapter 17.iii) spoke and

read English, German, Portuguese, Latin, Greek, and Sanskrit, besides

his native French. I am speaking of ordinary mathematicians.

47. Two of Gauss’s six children emigrated to the United States, where they

helped populate the state of Missouri.

CHAPTER 9

48. “Heck of a formula….” It is not actually so daunting, unless you have

forgotten all your high school math. Other than the zeta function, there

is nothing in there that high school math doesn’t cover, at least in part.

The sine and factorial functions are, as mathematicians say, “elemen-

tary,” so this formula “elementarily” relates the value of zeta at argu-

ment 1 − s to its value at s. This formula, by the way, is called “the func-

tional equation.”

49. A fact first proved by Bernhard Riemann, incidentally.

CHAPTER 10

50. Riemann’s Zeta Function, by H.M. Edwards (1974). Reprinted by

Dover in 2001.

51. A few unfortunate cases like Riemann notwithstanding, higher math-

ematics is wonderfully healthful. In writing this book, I have been

struck by the number of mathematicians who lived to advanced ages,

active to near the end. “Mathematics is very hard work, and dons tend

to be above the average in health and vigor. Below a certain threshold a

man cracks up, but above it hard mental work makes for health and

vigor (also—on much historical evidence through the ages—for lon-

gevity).”—The Mathematician’s Art of Work by J.E. Littlewood, 1967.

Littlewood, of whom I shall have much more to say in Chapter 14, was

an illustration of his own argument. He lived to be 92. A colleague,

H.A. Hollond, recorded the following note about him in 1972: “In his

87th year he is still working long hours at a stretch, writing papers for

publication and helping mathematicians who send their problems to
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him.”—Quoted by J.C. Burkill in Mathematics: People, Problems, Re-

sults (Brigham Young University, 1984).

52. I cannot restrain myself. “If f is an analytic function in the annulus

0 < r1 < |z | < r2 < ∞, r is some number between r1 and r2 exclusive, and

M1, M2, and M are the maxima of f on the three circles corresponding

to r1, r2, and r, respectively, then M M M
r r r r r rlog log log2 1 2 1

1 2
( ) ( ) ( )≤ .”

53. Stieltjes’s dates are 1856−1894. The most popular pronunciation of his

name among English-speaking mathematicians is “STEEL-ches.”

54. “Reports Received.” This term is so common in scholarly bibliogra-

phies, it is often abbreviated to “C.R.”

55. He did not join the Communist Party, though his daughter Jacqueline

did.

56. Though the glory of proving the PNT belongs to Hadamard and de la

Vallée Poussin equally, I have written a great deal about the former and

next to nothing about the latter. This is only in part because I find

Hadamard an interesting and sympathetic character. It is also because

there is much less material on de la Vallée Poussin. Though a fine math-

ematician, he appears to have been active in no other sphere. I men-

tioned this to Atle Selberg, the only mathematician I have spoken with

who might have known both men. Hadamard? “Oh, yes. I met him at

the Cambridge Congress” (i.e., in 1950). De la Vallée Poussin? “No. I

never met him, and I don’t know anyone who did. I think he did not

travel much.”

CHAPTER 11

57. Nowadays it is more often called “the argument” and denoted by Arg(z).

I have used the older term, partly out of loyalty to G.H. Hardy (see

Chapter 14.ii) and partly to avoid confusion with my use of “argu-

ment” to mean “the number to which a function is applied.”

CHAPTER 12

58.  I do not mean to dismiss Kronecker as a crackpot. The case he made

was, though I disagree with it, subtle and mathematically sophisticated.
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For a spirited defense of Kronecker, see Harold Edwards’ article in the

Mathematical Intelligencer, Vol. 9, No. 1. Kronecker was, says Prof.

Edwards, “reasonable, not vitriolic.”

59. In German, Wer von uns würde nicht gern den Schleier lüften, unter dem

die Zukunft verborgen liegt, um einen Blick zu werfen auf die

bevorstehenden Fortschritte unserer Wissenschaft und in die Geheimnisse

ihrer Entwickelung während der künftigen Jahrhunderte?

60. Hilbert actually only presented 10 of the problems to his audience,

having been urged by those who had read the printed form of his ad-

dress to shorten it for delivery. All 23 problems are listed in the printed

address, and they are generally referred to by their numbers in that

paper. The ones he actually read out to his audience at the Sorbonne

were numbers 1, 2, 6, 7, 8, 13, 16, 19, 21, and 22. A further confusion

arises from the fact that some of Hilbert’s 23 bullet points just single

out areas for investigation, and are only arguably problems. Typical is

number 2, “To investigate the consistency of the axioms of arithmetic.”

This accounts for the different numbering schemes you will sometimes

see. Andrew Hodges, for example, in his biography of Alan Turing,

counts 17 Hilbert problems, not 23, with the proof of the Riemann

Hypothesis at number 4, not 8. Those of Hilbert’s items that were ac-

tual well-defined problems have now all been solved, with the single

exception of the Riemann Hypothesis.

61. The best such book-length account that I know of is Jeremy J. Gray’s

The Hilbert Challenge (Oxford University Press, 2000).

62. For a good popular account, see John L. Casti’s book Mathematical

Mountaintops (Oxford University Press, 2001).

63. Most mathematicians of the time would have given that title to Henri

Poincaré (1854−1912). The Hungarian Academy of Sciences in fact did

so in 1905, awarding Poincaré its first Bolyai Prize as “that mathemati-

cian whose achievement during the past 25 years have most greatly

contributed to the progress of mathematics.” The second Bolyai Prize

was awarded to Hilbert in 1910.

64. George Pólya (1887−1985). Look at those dates—another immortal.

Pólya was Hungarian. Even more striking than the rise of the Germans

in the early nineteenth century was the rise of Hungarians in the early

twentieth. While the German states (excluding Austria and Switzer-
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land) in 1800 had about 24 million people, the Hungarian-speaking

population of Hungary was around 8.7 million in 1900, and I believe

never rose above 10 million. This small and obscure nation produced

an astonishing proportion of the world’s finest mathematicians:

Bollobás, Erdélyi, Erdős, Fejér, Haar, Kerékjártó, two Kőnigs, Kürschák,

Lakatos, Radó, Rényi, two Rieszes, Szász, Szegő, Szokefalvi-Nagy, Turán,

von Neumann, and I have probably missed a few. There is a modest

literature attempting to explain this phenomenon. Pólya himself

thought that the major factor was Fejér (1880−1959), an inspiring

teacher and gifted administrator, who attracted and encouraged math-

ematical talent. A high proportion of the great Hungarian mathemati-

cians (including Fejér) were Jewish—or, like Pólya’s parents, “social”

converts to Christianity, of originally Jewish stock.

65. “The vertex figures of a regular polytope are all equal.” A polytope is

the n-dimensional equivalent of a polygon in two dimensions, or a

polyhedron in three. It is regular if all its “cells”—its (n − 1)-dimen-

sional “faces”—are regular and all its vertex figures regular. The cells of

a cube are squares; the vertex figures are equilateral triangles. Longev-

ity watch: “Donald” Coxeter was born February 9, 1907. In late 2002,

he was still listed as a faculty member of the University of Toronto. He

published a paper, jointly with Branko Grunbaum, in 2001. Of the fa-

mously prolific Coxeter, a mathematician remarked to me: “Donald

seems to have slowed down some recently.”

66. Theory assures us, by the way, that the real part is precisely and math-

ematically 1
2 , not 0.4999999, or 0.5000001. I shall say more about this

in Chapter 16.

CHAPTER 13

67. Note incidentally, that the “unknown” complex number is most com-

monly represented by “z,” not “x.” Mathematicians customarily use “n”

and “m” for whole numbers, “x” and “y” for real numbers, and “z” and

“w” for complex numbers. We can, of course, use any other letters we

feel like using—this is just a custom. (For the argument of the zeta

function, I shall persist in that other custom of calling it “s,” as all math-
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ematicians do.) Pólya used to tell his students that the common use of

“z” for the argument and “w” for the value in complex function theory

derived from the German words Zahl, which means “number,” and

Wert, which means “value.” I don’t know if this is true, though.

68. Estermann (1902−1991) made his mark in mathematics by proving, in

1929, that the Goldbach Conjecture, which asserts that every even

number greater than 2 is the sum of two primes, is almost always true.

He was also the originator of my proof for the irrationality of 2  in

Note 11—“the first new proof since Pythagoras,” he used to boast.

69. Mathematicians working with functions of a complex variable gener-

ally say “the z plane” and “the w plane,” it being understood that “z” is

the generic argument and “w” the generic value in complex function

theory.

70. And both kinds of illustration have really come into their own only

with the advent of fast computer workstations and PCs. Before then,

constructing pictures like my Figures 13-6 through 13-8 was an aw-

fully painstaking business.

CHAPTER 14

71. E.W. Barnes, Littlewood’s director of studies. He later became an An-

glican bishop.

72. Author of Calcul des Résidus, a textbook of complex function theory.

Ernst Lindelöf (1870–1946) was a great hero of Scandinavian math-

ematics, which he worked hard to advance through teaching, research,

and writing textbooks. Born in Helsinki, he began his life a subject of

the Russian Tsar—Finland did not get independence from Russia until

1917. Lindelöf was, however, a Finnish patriot (one of only two Finns

in this book), and participated enthusiastically in the life of the new

nation. He was the originator of the Lindelöf Hypothesis, a famous

conjecture about the Riemann zeta function, concerning its rate of

growth in the critical strip. I describe this conjecture in the Appendix.

73. A fellowship at Trinity was a lecturing position, with a regular stipend,

and the right to take rooms in the college and eat dinner in the “hall”

(refectory). It was not necessarily tenured.
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74. In the mid-1930s, the Soviet intelligence services recruited five young

Cambridge undergraduates. Their names were Guy Burgess, Donald

Maclean, Kim Philby, Anthony Blunt, and John Cairncross. This “Ring

of Five,” as the Soviets referred to them, all went on to attain high posi-

tions in the British political and intelligence establishments during the

1940s and 1950s and passed vital information to the U.S.S.R. through

World War II and the Cold War. Four of the five were at Trinity;

Maclean was at Trinity Hall, a separate, smaller college.

75. Lytton Strachey, Leonard Woolf, Clive Bell, Desmond MacCarthy,

Saxon Sydney-Turner, and both Stephen brothers (Thoby and Adrian)

were Trinity men. John Maynard Keynes, Roger Fry, and E.M. Forster,

however, were at King’s.

76. So it is always said. In his book on George Pólya, though, Jerry

Alexanderson claims that the Pólya estate holds many more.

77. Though the spine of my copy, a first edition, says simply “Primzahlen.”

78. There are also lower bounds in problems of this sort. A lower bound is

a number N for which we could prove that whatever the precise answer

may be, it is certainly greater than N. In the case of the Littlewood

violations, there seems to have been less work done here, presumably

because everyone knew that the precise value of the first violation was

extremely large. Deléglise and Rivat established 1018 as a lower bound

in 1996 and have since extended the lower bound to 1020, but in view of

the Bays and Hudson result, these lower bounds are almost nugatory.

79. If the names Bays and Hudson ring a bell, that is because I mentioned

them in Chapter 8.iv in connection with the Chebyshev bias. There is

in fact a deep level, too deep to explore further here, at which the ten-

dency of Li(x) to be greater than π (x) is kin to the Chebyshev biases.

These two issues are generally dealt with as one by analytic number

theorists. In fact, Littlewood’s 1914 paper showed not only that the

tendency of Li(x) to be greater than π (x) is violated infinitely many

times, but that this is also true of Chebyshev biases. For some very

fascinating recent insights on this topic, see the paper “Chebyshev’s

Bias,” by Michael Rubinstein and Peter Sarnak, in Experimental Math-

ematics, Vol.3, 1994 (pp. 173−197).
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80. Von Koch is better known to readers of pop-math books for the “Koch

snowflake curve.” The “von” always gets dropped in that context, I don’t

know why.

CHAPTER 15

81. Either unaware of Bachmann’s book, or (more likely) just choosing

not to use the new big oh notation, von Koch actually expressed his

result in a more traditional form

f x Li x K x x( ) − ( ) < ⋅ ⋅ log

82. There has been a vast amount of research in this area. It is quite prob-

ably the case, in fact, that π x Li x O x( ) = ( ) + ( ), which may be what

Riemann meant by his “order of magnitude” remark. However, we are

nowhere near being able to prove this. Some researchers, by the way,

prefer the notation O xε
ε

( )
1
2
+ , to emphasize that the constant implied

by the definition of big oh depends on ε . If you use this notation, the

logic of Section 15.iii changes slightly. Note that the square root of N is

about half as long (I mean, has about half as many digits) as N. It

follows, though I shall not pause to prove it in detail, that Li−1(N) gives

the N-th prime, correct to about half-way along, that is, roughly the

first half of the digits are correct. The expression “Li−1(N)” here is to be

understood in the inverse-function sense of Chapter 13.ix, with this

meaning: “The number K for which Li(K) = N.” The billionth prime,

for instance, is 22,801,763,489; Li−1(1,000,000,000) is 22,801,627,415—

five digits, very nearly six, out of eleven.

83. Möbius is best remembered for the Möbius strip, shown in Figure 15-

4, which he discovered for himself in 1858. (It had previously been

described by another mathematician, Johann Listing, also in 1858. List-

ing published, and Möbius didn’t, so according to the academic rules it

should really be called “the Listing strip.” There is no justice in this

world.) To create a Möbius strip, take a strip of paper, hold the two

ends together (one in your right hand, one in your left), twist one end

through 180°, and glue the ends together. You now have a one-sided
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strip—an ant can walk from any point on the strip to any other point

without going over the edge.

FIGURE 15-4 A Möbius strip, with ant.

84. In case you think it was somewhat vainglorious of Möbius to pick a

symbol equivalent to his own initial, let it be known that Möbius him-

self did not use µ when he first described the function in 1832; the µ
is due to Franz Mertens in 1874, and Mertens was honoring Möbius,

by then dead, not himself.

85. If the logic there escapes you, here’s a parallel case. Imagine that Theo-

rem 15-1 said “All human beings are less than 10 feet tall,” while the

Riemann Hypothesis said “All U.S. citizens are less than 10 feet tall.” If

the first is true, the second must be true, since every U.S. citizen is a

human being. The weaker result follows from the stronger one. If a

human being 11 feet tall were discovered living in the remote high-

lands of New Guinea, then the existence of that person would prove

Theorem 15-1 to be false. The Riemann Hypothesis, however, would

still be open, since the giant is not a U.S. citizen. (Though I suspect he

soon would be….)
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CHAPTER 16

86. Bernstein became a professor only in 1921. I have seen it written that

he was also technically exempt under the Hindenburg modifications,

but I do not know the basis for this statement. Bernstein (1874–1956)

fled to the U.S. during the Hitler period but returned to Göttingen in

1948.

87. Carl Siegel told Harold Davenport the following story. “In 1954, to cel-

ebrate the 1,000th anniversary of Göttingen’s founding, the city fathers

decided to give the freedom of the city to three of those professors who

had been dismissed in 1933. The Tageblatt sent a reporter to Rellich

(i.e., Franz Rellich, then director of the university’s Mathematics Insti-

tute) to ask if he could write an article on the three. Rellich replied,

‘Why don’t you just look up what you wrote back in ’33?’”

88. There is actually a branch of geometric function theory known, not

altogether accurately, as “Teichmüller Theory.” It deals with the prop-

erties of Riemann surfaces. Teichmüller volunteered for active duty in

World War II. He disappeared in fighting along the Dnieper in Sep-

tember 1943.

89. In the world of mathematics another instance was Ludwig Bieberbach,

author of a famous conjecture in complex function theory (proved in

1984 by Louis de Branges). In 1933 at Berlin University, Bieberbach

was conducting spoken examinations of doctoral candidates in full

Nazi uniform.

90. I can think of no satisfactory English translation for Nachlass. Neither,

to judge from the word’s frequent appearance in English-language ma-

terials, can anyone else. “Literary remains,” says my German dictio-

nary. In this context the meaning is “unpublished papers found among

a scholar’s effects after his death.”

91. Recall from my explanation of big oh that it involves some fixed con-

stant multiplier. Thus, O(log T) means “This term never exceeds some

fixed multiple of log T.” To describe the formula as “very good” is to say

that the fixed multiplier is small. In this case it is less than 0.14.

92. This particular piece of theory deals with zeros actually, precisely,

mathematically on the critical line. It is important to grasp the logic

here. Theory A tells you: “There are n zeros in the rectangle from T1 to
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T2.” (See Figure 16-1.) Theory B tells you: “There are m zeros on the

critical line from T1 to T2.” If it turns out that m = n, then you have

verified the Riemann Hypothesis between T1 and T2. If, on the other

hand, m is less than n, you have disproved the Riemann Hypothesis! (It

is, of course, logically impossible for m to be greater than n.) Theory B

deals with matters on the critical line. There is no possibility that the

zeros being discussed here might have real parts 0.4999999999 or

0.5000000001. Compare the note on this in Chapter 12.vii.

93. All the zeros computed so far appear to be irrational numbers, by the

way. It would be astonishing and wonderful if an integer showed up

among them, or even a repeating decimal (indicating a rational num-

ber). I know no reason this should not happen, but it hasn’t.

94. The Fields Medal, first awarded 1936, was the idea of Canadian math-

ematician John Charles Fields (1863–1932). Now given at four-year

intervals, its main purpose is to encourage promising younger math-

ematicians. Therefore, it is given only to those under 40. Several of the

mathematicians named in this book have been Fields medalists: Atle

Selberg (1950), Jean-Pierre Serre (1954), Pierre Deligne (1978), and

Alain Connes (1982). The Fields Medal is held in high esteem by math-

ematicians. If you are a Fields winner, every mathematician knows it,

and speaks your name with great respect.

95. Not “104,” as Hodges says.

96. The Theory of the Riemann Zeta-function (1951). Still in print.

97. Just one more biographical note. Josef Backlund (1888−1949) is the

other Finn in this book, born into a working-class family in Jakobstad

on the Gulf of Bothnia. “The family was gifted but seems to have been

mentally unstable; three brothers of Josef committed suicide.” (The

History of Mathematics in Finland, 1828−1918, by Gustav Elfving;

Helsinki, 1981.) A student of Lindelöf ’s, Backlund became an actuary

after taking his doctorate and made a career in insurance, like Gram.

Human knowledge owes a great deal to the insurance business. Gram,

by the way, died an absurd death—struck and killed by a bicycle.

98. Professor Edwards’s book includes some photographs of pages from

the Nachlass, illustrating the scale of the task Siegel undertook.
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CHAPTER 17

99. For example, S.J. Patterson, in his book, An Introduction to the Theory

of the Riemann Zeta-Function, §5.11, wrote: “The most convincing rea-

son that has so far been evinced for the validity of the Riemann Hy-

pothesis is that an analogous statement is valid for the zeta-functions

attached to curves over finite fields. The formal similarities are so strik-

ing that it is difficult to believe that they do not lead to even more far-

reaching coincidences.” (My italics.)

100. To coin an apothegm, algebraists do not care so much about what

things are, as about what you can do with them. They are verb people,

not noun people. Another interesting conceptual perspective on alge-

bra was offered by Sir Michael Atiyah at a Fields Lecture in Toronto in

June 2000. While geometry is obviously about space (said Sir Michael,

a Fields Medal winner), algebra is about time. “[G]eometry is essen-

tially static. I can just sit here and see, and nothing may change, but I

can still see. Algebra, however, is concerned with time, because you

have operations that are performed sequentially….” (Shenitzer, A. and

M.F. Atiyah. “Mathematics in the 20th century,” American Mathemati-

cal Monthly, Vol. 108, No. 7.)

101. Pronounced “Vay” by most English-speaking mathematicians. The

main thing is to avoid listeners’ confusing him with Hermann Weyl

(“Vail”). Weil, one of the most illustrious names in twentieth-century

mathematics, was the brother of the mystic and French Resistance

heroine Simone Weil. He had been a student of Hadamard’s at the

Collège de France.

102. It might be better to say “from 1 to N zeros,” because zeros sometimes

repeat. The zeros of the polynomial x2 − 6x + 9 are 3 and 3. It factorizes

as (x − 3)(x − 3). You might, therefore, prefer to say that this polyno-

mial has only one zero, namely 3. In strict mathematical terms, this is

“a zero of order 2.” There is a way to assign a similar order to any zero

of any function, by the way. So far as we know, all the non-trivial zeros

of the zeta function have order 1; but this has not been proved. Should

a non-trivial zero of the zeta function show up with order 2 or greater,

it would not disprove the Hypothesis, but it would create havoc with

some of the computational theory.
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CHAPTER 18

103. I am really speaking here about operators, of course. Operators provide

a mathematical model for describing dynamical systems. “Ensemble”

(this usage of the word, by the way, is due to Albert Einstein) refers to a

collection of such operators that share some common statistical prop-

erties.

104. To be more precise, Montgomery’s area of interest was the so-called

“class number problem,” of which there is a very accessible account in

Keith Devlin’s book, Mathematics: The New Golden Age (Columbia Uni-

versity Press, 1999).

105. Harold Diamond is a number theorist. He is currently Professor of

Mathematics in the University of Illinois at Urbana-Champaign.

106. Sarvadaman Chowla, 1907–1995. A fine number theorist, mainly at

the University of Colorado.

107. The standard introductory text on random matrix theory is Madan Lal

Mehta’s Random Matrices and the Statistical Theory of Energy Levels

(1991. New York: Academic Press).

108. Dyson was in fact another Trinity man, having attended that college in

the early 1940s. He recalls that Hardy, at that time slipping into his

terminal depression, was “not encouraging.”

109. This raises the interesting question of the degree to which these are

really theorems. A result that assumes the truth of the RH is techni-

cally, it seems to me, a hypothesis itself—or perhaps a sub-hypothesis,

but at any rate not a proper theorem. Considering, in fact, that math-

ematics is supposed to be the most precise of disciplines, mathemati-

cians are not very consistent about the use of terms like “conjecture,”

“hypothesis,” and “theorem.” Why, for example, is the RH a “hypoth-

esis,” not a “conjecture”? I don’t know, and I haven’t found anyone who

can tell me. These remarks seem, on a cursory examination, to apply in

languages other than English, too. The German for “the Riemann Hy-

pothesis,” by the way, is Die Riemannsche Vermutung, from the verb

vermuten—“to surmise.”

110. Professor of Physics at Bristol University in England. Berry was elevated

to the knightage in the Queen’s Birthday Honors of June, 1996, becom-
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ing Sir Michael Berry. I have done my best to refer to him as “Berry” in

writing of his activities up to 1996, and “Sir Michael” thereafter; but I

don’t guarantee consistency.

111. The Cray-1 was supplemented by a Cray X-MP at some point in the

late 1980s.

112. The earliest reference I have been able to track down to the Montgom-

ery-Odlyzko Law thus named is in a paper by Nicholas Katz and Peter

Sarnak published in 1999. The word “Law” is of course to be under-

stood in a physical, rather than a mathematical sense. That is, it is a fact

established by empirical evidence, like Kepler’s laws for the motions of

the planets. It is not a mathematical principle, like the rule of signs.

The Sarnak-Katz paper actually proved the law for zeta-like functions

over finite fields (see Chapter17.iii), thus establishing a bridge between

the algebraic and physical approaches to the RH.

113. The answer is not “a half.” That would be to confuse the median with

the average. The average of these four numbers: “1, 2, 3, 8510294,” is

2127575; but half of them are less than 3.

114. Known to mathematicians as a “Poisson distribution.” The number e,

by the way, is all over here. That 6,321, for example, is  10,000(1 – 1 ⁄ e).

115. The equation I used for the curve in Figure 18-5 is y =

(320000 ⁄ π 2) x 2e–4x 2⁄ π . It is a skewed distribution, not (like the Gaussian-

normal) a symmetrical one. Its peak is at argument 1
2 π , i.e.,

0.8862269…. This was the curve surmised by Eugene Wigner for the

GUE consecutive-spacings distribution. His surmise was based on the

small amounts of data that can be gathered from experiments on the

nucleus. It later turned out that this is not precisely the correct curve,

though it is accurate to about a 1% error. The true curve, found by

Michel Gaudin, has a more difficult equation. Andrew Odlyzko had to

write a program to draw it.

CHAPTER 20

116. Though the word “chaos” was not applied to these theories until 1976,

when physicist James Yorke first coined it. James Gleick’s 1987 best-

seller Chaos: Making a New Science remains the best guide to chaos
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theory for the layman … unless you count Tom Stoppard’s 1993 play

Arcadia.

117. Hensel (1861–1941) was yet another branch of the Mendelssohn tree.

His grandmother, Fanny, was the sister of the composer; his father,

Sebastian Hensel, was her only son. Sebastian was 16 when Fanny died,

and he was sent to live with the Dirichlets (Chapter 6.vii), with whom

he remained until his marriage. Kurt spent most of his career as a pro-

fessor at the University of Marburg, in central Germany, retiring in

1930. In spite of the Jewish lineage, he seems not to have suffered un-

der the Nazis. “In general, the Mendelssohns did not feel the full brunt

of the Nuremberg anti-Semitic laws because most of the family had

undergone conversion several generations back.” (H. Kupferberg, The

Mendelssohns.) In 1942, Hensel’s daughter-in-law donated his large

mathematical library to the newly Nazified University of Strasbourg in

occupied Alsace, reopened in November that year as the Reichs-

universität Straßburg (but nowadays back in France once more).

118. And at least one mathematician has expressed guarded skepticism in

print. Reviewing Connes 1999 paper “Trace Formulae in Non-

commutative Geometry and the Zeros of the Riemann Zeta Function,”

Peter Sarnak (who is neither of my mathematicians X and Y) noted:

“The analogies and calculations in the paper and its appendices are

suggestive, pleasing and intricate and for these reasons this appears to

offer more than just another equivalence of RH. Whether in fact these

ideas and in particular the space X can be used to say anything new

about the zeroes of L(s, λ ) is not clear to this reviewer.” The L(s, λ )

Sarnak refers to is one of those analogues of the Riemann zeta function

I mentioned in 17.iii.

119. The official name for this approach is “Denjoy’s Probabilistic Interpre-

tation,” after the French analyst Arnaud Denjoy (1884−1974). Denjoy

was Professor of Mathematics at the University of Paris, 1922−1955.

120. “Touching the dull formulas with his wand, he turned them into po-

etry.”—Gunnar Blom, from the memorial essay included in Cramér’s

collected works. Cramér (1893−1985) was yet another immortal. He

died a few days after his 92nd birthday.
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121. I have borrowed this thought experiment from Chapter 3 of The Prime

Numbers and Their Distribution, by Gérald Tenenbaum and Michel

Mendès France (American Mathematical Society publications, 2000).

122. A good article on this topic is “Is π  Normal?” by Stan Wagon, in Math-

ematical Intelligencer, Vol. 7, No. 3.

123. I have a preprint copy of a very recent paper by Hugh Montgomery

and Kannan Soundararajan, titled “Beyond Pair Correlation,” and de-

livering another blow to the Cramér model. The last words in the pa-

per are, “…it seems that there is something going on here that remains

to be understood.”

124. Mathematics and Plausible Reasoning (1954).

125. Franklin has written a very good book about nonmathematical prob-

ability theory, The Science of Conjecture (2001). I reviewed this book

for The New Criterion, June 2001.

CHAPTER 21

126. I should perhaps say, for the benefit of any reader so fired up by my

exposition as to be on the point of running out and buying a math

software package, that very strong opinions are held about the relative

merits of the different packages, along the lines of the evergreen PC/

Macintosh debate, with Stephen Wolfram, who created Mathematica,

playing the part of Bill Gates. As a mere journalist, I consider myself

hors de combat in this war. I am certainly not propagandizing on behalf

of Mathematica. It was the first math software package that came to my

attention, and it is the only one I have ever used. It has always done

what I asked it to do. Sometimes, to be sure, I had to tweak it a little

(see Note 128), but I never knew a software package that didn’t need

tweaking now and again.

127. It has no direct bearing on the argument here, but I can’t resist adding,

as a matter of interest, that one of the most famous theorems in com-

plex function theory concerns entire functions. The theorem was stated

and proved by Émile Picard (1856−1941). Picard’s Theorem says that if

an entire function takes more than one value—if, that is, it is not merely
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a flat constant function—then it takes every value, with at most one

exception. For ez, the exception is 0.

128. Though the definition involves some ambiguities, on the resolution of

which there is no general agreement. The Mathematica 4 software pack-

age, for example, provides Li(x) as one of its built-in functions—it calls

it LogIntegral[x]. For real numbers, it is just as I described it—in fact, I

used it to draw the graph of Li(x) in Chapter 7.viii. For complex num-

bers, however, Mathematica’s definition of the integral is slightly dif-

ferent from Riemann’s. Therefore, I didn’t use Mathematica’s

LogIntegral[z] for these complex calculations. I actually set up Li x
i r

( )
1
2
+

in Mathematica as ExpIntegralEi[( 1
2  + ir) Log[x]].

129. Looking at this list with one eye and Figure 21-3 with the other, you

can see that the tendency of the first few zeros to be sent to numbers

with negative real parts is just a chance effect, and soon rights itself.

130. In Figures 21-5 and 21-6, I have referred to the complex conjugate of

the kth zero as the −kth zero. This is just a handy way of enumerating

the zeros. It is, of course, not the case that ρ ρ= − .

131. Note that 639 ÷ 1050 = 0.6085714…. For large numbers N, the prob-

ability that N is square-free is ~ 6 ⁄ π2, that is, 0.60792710…. Recalling

Euler’s solution of the Basel problem in Chapter 5, you might notice

that this probability is 1 ⁄ ζ(2). This is generally true. The chance that a

positive whole number N chosen at random is not divisible by any nth

power is indeed ~ 1 ⁄ ζ(n). Of all the numbers up to and including

1,000,000, for example, 982,954 are not divisible by any sixth power.

1 ⁄ ζ(6) is 0.98295259226458….

CHAPTER 22

132. Ulrike’s pages on the University of Ulm website have a photograph of

her standing next to Bernhard Riemann’s memorial stone in Selasca,

Italy.

133. Professor of Applied Mathematics at the University of Bristol, England.

Keating has worked closely with Sir Michael Berry on the physical as-

pects of the RH.
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134. “The zeros of Mellin transforms of Hermite functions have real part

one-half,” (1986). Bump’s collaborator in the proof was one E. K.-S.

Ng, otherwise unknown to me.

135. So it seems to me. One of the professional mathematicians who looked

over my manuscript expressed frank disbelief at this, though. The idea

that one might be able to make money by doing mathematics is ex-

tremely difficult for mathematicians to take seriously.

136. Professor of Pure Mathematics, University of Wales, Cardiff.

137. Here is the chain of events in barest outline. The method adopted for

Principia Mathematica offered no guarantee against flaws, like the flaw

Russell had spotted in Frege’s work. Hilbert’s “metamathematics” pro-

gram tried to encompass both logic and mathematics in a more water-

proof symbolism. This inspired the work of Kurt Gödel and Alan Tur-

ing. Gödel proved important theorems by attaching numbers to

Hilbert-type symbols; Turing coded both instructions and data as ar-

bitrary numbers in his “Turing machine” concept. Picking up on this

idea, John von Neumann developed the stored-program concept on

which all modern software is based, that code and data can be repre-

sented in the same way in a computer’s memory….

EPILOGUE

138. In a letter to his brother dated June 26, 1854, he mentioned a recur-

rence of mein altes Übel—“my old malady”—brought on by a spell of

bad weather.

139. In the modern municipality of Verbania.

140. Weender Chaussee has since been renamed Bertheaustrasse.
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Appendix

THE RIEMANN HYPOTHESIS

IN SONG

Tom Apostol, Professor of Math-
ematics Emeritus at Caltech, wrote the following tribute to the Rie-
mann Hypothesis (RH) in 1955 and performed it at the Caltech
Number Theory conference held in June of that year. Tom’s original
lyrics went only as far as Line 32; the last two stanzas were posted on a
bulletin board at Cambridge University in 1973 by algebraic topolo-
gist Saunders MacLane.

The song mentions the Lindelöf Hypothesis (LH), a younger
cousin of the RH. Dating as it does from 1908, the LH really belongs
in Chapter 14 somewhere; but because it is peripheral to the main
story, and because it involves the “big oh” notation from Chapter 15,
and because I felt that my book already had too much math at that
point, I left it out. Tom’s lyrics can’t be understood without it, though,
and I couldn’t bear to omit them; so you get a song and a bonus
hypothesis!
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Where are the zeros of zeta of s?

by Tom M. Apostol

(To the tune of Sweet Betsy from Pike.)

Where are the zeros of zeta of s? 1

G.F.B. Riemann has made a good guess:

“They’re all on the critical line,” stated he,

“And their density’s one over two pi log T.”

This statement of Riemann’s has been like a trigger, 5

And many good men, with vim and with vigor,

Have attempted to find, with mathematical rigor,

What happens to zeta as mod t gets bigger.

The efforts of Landau and Bohr and Cramér,

Hardy and Littlewood and Titchmarsh are there. 10

In spite of their effort and skill and finesse,

In locating the zeros there’s been no success.

In 1914 G.H. Hardy did find,

An infinite number that lie on the line.

His theorem, however, won’t rule out the case, 15

That there might be a zero at some other place.

Let P be the function pi minus Li;

The order of P is not known for x high.

If square root of x times log x we could show,

Then Riemann’s conjecture would surely be so. 20

Related to this is another enigma,

Concerning the Lindelöf function mu sigma,

Which measures the growth in the critical strip;

On the number of zeros it gives us a grip.

But nobody knows how this function behaves. 25

Convexity tells us it can have no waves.
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Lindelöf said that the shape of its graph

Is constant when sigma is more than one-half.

Oh, where are the zeros of zeta of s?

We must know exactly. It won’t do to guess. 30

In order to strengthen the prime number theorem,

The integral’s contour must never go near ’em.

André Weil has improved on old Riemann’s fine guess

By using a fancier zeta of s.

He proves that the zeros are where they should be, 35

Provided the characteristic is p.

There’s a moral to draw from this long tale of woe

That every young genius among you must know:

If you tackle a problem and seem to get stuck,

Just take it mod p and you’ll have better luck. 40

Notes.

Tune. “Sweet Betsy from Pike” is the song Americans sing to this tune. The

tune is older than those lyrics, though. It first showed up attached to an

English song popular in the mid-nineteenth century, “Villikens and his

Dinah.” (From which, by the way, the cat in Lewis Carroll’s Alice books

got its name. “Villikens and his Dinah” was a favorite with Alice Liddell,

the girl who inspired the books, and she actually did have a cat named

Dinah.) If you had a British education that included membership in a

school rugby club, you will most likely recognize the tune as that of the

melancholy ballad beginning, “O Father, O Father, I’ve come to con-

fess. I’ve left some poor girl in a hell of a mess….”

Line 1. See Chapter 5.vii.

Line 2. Riemann’s full name was Georg Friedrich Bernhard Riemann (Chap-

ter 2.iii). He seems only ever to have used the “Bernhard.”

Line 3. “Critical line”, see Chapter 12.iii, Figure 12-1.
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Line 4. Compare my statement in Chapter 13.viii that at height T up the

critical line, the average spacing of zeros is ~ 2 π  ⁄ log(T ⁄ 2π ). That

means that in a unit length of the line, there are ~ (1 ⁄ 2π)log(T ⁄ 2π )

zeros. That’s what the songwriter means by “density.” Note that by the

rules for logs, log(T ⁄ 2 π ) is equal to log T − log (2 π ), that is, log T −

1.83787706…. If you multiply that by 1 ⁄ 2π , you get (1 ⁄ 2π)log T –

0.29250721….  As T gets larger and larger, so does log T (albeit much

more slowly), and the significance of the 0.29250721… term dwindles

to nothing. The density is, therefore, ~ “one over two pi log T.”

Line 8. “Mod t” refers to the modulus of t, as defined in Chapter 11.v. When, as

here, t is understood to be a real number, “mod t”—in proper symbols,

“| t |”—just means “the size of t,” that is, t without its sign. | 5 | is 5;

| –5 | is also 5. As I pointed out in Chapter 16.iv, “t ” (or “T ”) is pretty

standard in zeta-function theory for referring to height up the critical

line; or, more generally, as in the discussion of the LH in the notes on

Lines 21−28, to the imaginary part of a zeta-function argument.

Line 9. Harald Bohr (Chapter 14.iii) and Edmund Landau proved an impor-

tant theorem about the S function (see Chapter 22.iv) in 1913. The

theorem states that, so long as there is only a finite number of zeta

zeros off the critical line, S(t) is unbounded when t goes to infinity.

Selberg’s 1946 proof that S(t) is unbounded, which I mentioned in

Chapter 22.iv, is stronger, as it does not need that initial condition. For

Cramér, see Chapter 20.vii. As well as developing that “probabilistic

model” for the prime numbers, Cramér also proved a minor result

about the S function: If the LH (see the notes for Lines 21−28) is true,

then S(t) ⁄ log t dwindles to zero as t goes to infinity. For Littlewood and

Hardy, see Chapter 14; for Titchmarsh, see Chapter 16.v.

Lines 13−16. Chapter 14.v.

Line 17. The term “Li” here should be pronounced “ell-eye,” to preserve the

meter. The songwriter is here discussing the error term π (x) − Li(x),

which I cover extensively in Chapter 21.

Line 18. “The order of P is not known” means, “P is ‘big oh’ of … what? We

don’t know.” For big oh, see Chapter 15.ii-iii. By “x high,” the songwriter

means, “large values of x.”
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Lines 19−20. If we could show that π( ) ( ) ( log )x Li x O x x− = , the RH would

follow. That is the converse of von Koch’s 1901 result in Chapter14.viii.

I didn’t mention it at the time, but if von Koch’s result is true, the RH

follows. Each implies the other.

Lines 21−28. These next few lines are all about the Lindelöf Hypothesis (LH),

a famous conjecture in the theory of the zeta function. For Lindelöf the

man, see Note 72. His hypothesis concerns the growth of the zeta func-

tion in a vertical direction—that is, up a vertical line in the complex

plane.

Lindelöf, writing the argument of the zeta function as σ + i t ,
asked: For any given real part σ  (that’s a lowercase Greek “sigma,” by
the way), what can be said about the size of ζ σ +( )i t  as t, the imagi-
nary part, goes from zero to infinity? “Size” here means the modulus,
as defined in Chapter 11.v; in other words, it means ζ σ +( )i t , the
distance of the value from zero. This is a real number, so that for any
given σ , both the argument t and the value ζ σ +( )i t  are real num-
bers. We can therefore draw a graph. Figures A-1 through A-8 show
these graphs, for some representative values of σ , and explain the
issue better than any number of words.

Note the non-trivial zeros of the zeta function in Figure A-5.
Note, in fact, the busyness of Figures A-4 through A-6, compared to
the others. With the zeta function, all the interesting action is in the
critical strip.
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FIGURE A-1
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FIGURE A-2

FIGURES A-1 through A-8  |ζ σ +( )i t | for some representative values of σ .
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Note also some familiar values when t = 0: 1
2  in Figure A-4 (cor-

responding to ζ (0) = – 1
2  in Figure 9-3, since of course − 1

2  is just
1
2 ); infinity, in Figure A-6 (divergence of the harmonic series, Chap-

ter 1.iii); 1.644934 … in Figure A-7 (solution of the Basel problem,
Chapter 5.i); and 1.202056 … in Figure A-8 (Apéry’s number, Chap-
ter 5.vi). The function value of zero at t = 0 in Figure A-2 is genuine, a
trivial zero (Chapter 9.vi). The apparent zeros in Figures A-1 and A-3
are false; the actual t = 0 values are just too small to register. (They
are, respectively, 0.0083333…, and 0.0833333….)

The LH is about finding a big oh (Chapter 15.ii) for these graphs.
Just from looking at them, you can guess the following:

� For σ = −1, −2, and −3, the graph looks as if it is big oh of
some accelerating function of t, perhaps a power like t2 or t5,
those powers seeming to get bigger as σ  heads west along the
negative real axis.

� For σ = 2 and 3, it looks as though we are in the world of
O(1), or in other words, of O(t 0).

� In the critical strip, that is, for σ = 0, 1
2 , and 1, it is not easy to

say what an appropriate big oh might be.

Could it be that, for any value of σ , there is a definite number µ

for which ζ σ +( )i t = O t( )µ
? With µ = 0 when σ  is bigger than 1,

and µ  some increasing positive number when σ  goes west from
zero? That’s how things look. But then, what happens in the critical
strip when σ  is between 0 and 1? And in particular, what happens on
the critical line when σ = 1

2 ?
Well, here (see Figure A-9) is what we know for certain at the

time of writing. For any given value of σ , there is indeed a number
µ  for which ζ σ µ ε( ) ( )+ = +i t O t , for arbitrarily small ε . This is not
quite the same as my suggestion in the previous paragraph, but you
could be forgiven for ignoring the difference. (If you compare the ε

that showed up in Chapter 15.iii, though, you will understand its sig-
nificance here.) Clearly, this number µ  is a function of σ . Hence
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“the Lindelöf function mu sigma” in Line 22. This is nothing to do
with the Möbius µ  function of Chapter 15, of course. Here we have
another unfortunate case of overloaded symbols.

We also know the following, with mathematical certainty.

� When σ  is less than or equal to zero,  µ (σ ) = 1
2  – σ .

� When σ  is greater than or equal to 1, µ (σ ) = 0.
� In the critical strip (that is, when σ  is between 0 and 1 exclu-

sive), µ (σ ) < 1
2 (1 – σ ). In other words, it lies below the dot-

ted line in Figure A-9.

σ

µ( )σ

–2 –1 1 2

–2

–1

1

2

FIGURE A-9 Lindelöf ’s function.
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� For all values of σ , µ (σ ) is convex downward. That is, if you
join any two points of the graph with a straight line, the arc
you cut off lies entirely below, or on, the line. This is true ev-
erywhere, including the critical strip; and it implies that for σ
between 0 and 1, µ (σ ) must be positive or zero. (Line 26 of
the song.)

� The truth of the RH would imply the truth of the LH (which I
am just about to state), but not vice versa. The LH is the weaker
result.

That, I repeat, is the limit of our current knowledge. The LH,
shown in Figure A-10, says that µ ( 1

2 )= 0, from which it easily follows

–2 –1 1 2

–2

–1

1

2

σ

µ( )σ

FIGURE A-10 The Lindelöf Hypothesis.
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that µ (σ ) = 1
2  – σ  all the way from negative infinity to σ  = 1

2 , and
then is zero for every argument east of that. Compare Lines 27 and 28
of the song. This is an open hypothesis, still unproven. As a matter of
fact, we don’t know a single value for µ (σ ) when σ  is between 0
and 1, exclusive. The LH is the greatest challenge in zeta-function
theory after the RH and has been the subject of intense interest and
investigation since Lindelöf stated it in 1908.

Line 24. It can be proved that the LH is equivalent to a statement limiting the

number of zeta zeros off the critical line. If the RH is true, of course,

there should be no such zeros; but then, as I have already pointed out,

if the RH is proved, the LH follows.

Line 31. “In order to strengthen the prime number theorem….” That is, in

order to get the best possible big oh expression for the error term.

Line 32. In ordinary integration, as I defined it in Chapter 7.vii, you integrate

along the x-axis, from some number a to some bigger number b. In

complex variable theory, you integrate along some contour—that is,

some line or curve—in the complex plane, from some point on the

contour to some other point. Usually, you get to choose the contour.

The result might depend on which contour you do your integration

along. Contour integration is a key tool in analytic number theory (and

in complex function theory generally). To get certain results about the

error term, you must integrate along a contour that avoids the zeros.

Line 33. “André Weil….” These last two stanzas refer to the algebraic approach

I mentioned in Chapter 17.iii, and to Weil’s 1942 result.

Line 34. “A fancier zeta….” That is, one of those zeta-function analogues asso-

ciated with finite fields that I mentioned in Chapter 17.iii.

Line 35. “He proves….” Thanks to Weil, we know that the RH-analogy for

these special fields is true.

Line 36. I defined the characteristic of a field in Chapter 17.ii. The RH-ana-

logue has been proved only for zeta functions whose associated field

has non-zero characteristic—that is, its characteristic is some prime

number p.
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Line 40. The word “mod” here is being used in the clock arithmetic sense of

Chapter 6.viii; as I remarked in Chapter 17.ii, this has connections with

field theory.

Among the many alternative versions of Tom’s lyrics to be found on
the internet, I note that one ends with the line, “Use R.M.T., and you’ll
have better luck.” This is a good-natured dig at the “physical” ap-
proach. “R.M.T.” stands for “Random Matrix Theory.”
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Bolyai, Farkas, 92
Bolyai Prize, 377
Bolzano, Bernard, 92
Bombieri, Enrico, xiv
Book of Numbers, The (Conway and

Guy), 369
Boole, George, 18, 225
Borchardt, 135
Borel, Émile, 92
Bourienne, Louis de, 60
Branges, Louis de, 383
Breaking the Code (Whitemore), 262
Brent, Richard P., 258
British mathematics and

mathematicians, 224-226
Brothers Grimm, 26
Brouwer, Luitzen, 170
Brunswick, Dukes of, 49-50; pl. 1
Brunswick Polytechnic, 193
Buckley, William F., Jr., 85
Bump, Daniel, 352, 391
Bump-Ng Theorem, 352
Burkill, J.C., 376

C

Calcul des Résidus (Lindelöf), 379
Calculus, 119

in analysis, 87-88
invention, 87-88, 313
limit concept, 16, 175
and PNT, 107-113

Cambridge spy ring, 226, 380
Canonical form, 40-41



INDEX 409

Cantor, Georg, 18, 92, 179
Carathéodory, Constantin, 92, 372
Card trick exercise, 3-8
Carl Wilhelm Ferdinand, Duke of

Brunswick, 49-50; pl. 1
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argument of, 36, 207-208
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208, 216-217
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defined, 35-36, 129
domain of, 36-37, 70, 138-142, 201,

331-332
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gradient of, 111
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value of, 36, 67, 207-208, 212, 214,

216
zero of, 139, 148, 154, 385
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Game theory, 18, 372
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Gaudin, Michel, 387
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50-54, 87, 90, 92, 93, 96, 120-
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374, 375; pl. 1
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(GOE), 316
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286-287, 291, 294, 315, 387
Gel’fond, Alexander, 354
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defined, 17, 86
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Gogol, Nikolai, 122
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calculus version, 309-311
expression, 105, 138, 303-304
and Möbius function, 245-246
proof of, 102-104, 107
sieve of Eratosthenes and, 100-101
turning, 303-311

Gonek, Steve, xiv
Gordan, Paul Albert, 185
Gordan’s Problem, 184
Göttingen, city of, 255-256, 383
Göttingen Seven, 26-27, 119, 120
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134, 166, 185, 230, 252, 254-256,
257, 264, 363-364

Gradient, 108-109, 110, 111, 114
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Griffiths, Phillip A., x
Grünbaum, Branko, 378
Gsell, Catherine, 59, 62
Gsell, Salome, 62
Gutzwiller, Martin, 316, 321
Guy, Richard, 369
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159, 376
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232, 238-239
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convergence of, 11-15
divergence of, 9-10, 12, 63, 64, 76,

88, 399
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165, 230
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283, 284-285, 286, 288-289, 295
Hilbert, David, x, 92, 159, 166, 170,

184-190, 196-197, 252, 253-254,
256, 276, 277, 279, 353, 354, 377,
391; pl. 4
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Hodges, Andrew, 262, 377, 384
Hollond, H.A., 375
Hudson, Richard, 126, 236, 380
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Humboldt, Wilhelm von, 24, 29, 92
Hungarians, 377-378
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Huxley, Martin, 357
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Ingham, Albert, 125
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Integers, 171, 172, 173, 174
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Introduction to the Theory of the
Riemann Zeta-Function, An
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171, 172, 173, 174, 175, 179, 266,
367
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Johns Hopkins University, 154

Johnson, Dr., 53
Johnson, Paul, 61
Jordan, Camille, 226
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Liddell, Alice, 395
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of a sequence, 16, 175
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Lindelöf, Ernst, 223, 379, 384, 395; pl. 8
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216
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Lindelöf mu function, 394, 400-402
Lindemann, Ferdinand von, 174, 185
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394, 396-397
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arithmetic of, 272, 273
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eigenvalues of, 273, 274, 276, 283,

284, 285, 295
inventor of, 225, 277
lead diagonal, 272
trace of, 273, 274, 283
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Maupertuis, Pierre de, 370
Maxwell, James Clerk, 226
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86, 90-91
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Mehta, Madan Lal, 288, 386
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Mendelssohn, Ottilie, 372
Mendelssohn, Rebecca, 94, 95, 133
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Mertens, Franz, 154
Mertens’s function, 250-251, 322
Mittag-Leffler, Gösta, 92, 372
M(k). See Mertens’s function
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Möbius mu function, 245-251, 302-

303, 322, 343-344, 345, 362
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complex number
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Modulo, 97, 395, 403
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182, 333-334, 396-399
Moments of zeta function, xiv
Monge, Gaspard, 92
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Montgomery-Odlyzko Law, 292-294,

312, 352, 355, 387
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28
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N

Nachlass, 257, 383
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174
Negative numbers, 65, 70, 80-81, 176
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Neumann, John von, 164, 378, 391
Newman, James R., 128
Newson, Mary Winston, 189
Newton, Sir Isaac, 88, 149, 225, 304, 313
Ng, E.K.-SW., 391
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Noether, Emmy, 186, 231
Non-deductive logic, 325-326
Number theory, 18, 86-87, 96, 97-98,

114, 151, 153, 156, 225, 231, 313,
371-372
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bogus history of, 174-175
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historical knowledge of, 174-175,
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O
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Odlyzko, Andrew, 161, 218, 257, 259-

261, 263-264, 278, 291, 292, 294,
326, 352, 356, 357-358, 361; pl. 5
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Olbers, Heinrich, 90
On the Concept of Number

(Kronecker), 185
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Operator theory, 265, 271-279, 351. See

also Matrices
Operators, 273-274, 386. See also

Riemann operators
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Order of a zero, 385
Oresme, Nicole d’, 9, 88

P

p-adic numbers, 173, 319-320
Pair correlation function, 287, 288,

290-291
Paphnutius, Bishop, 122-123
Paris Academy of Sciences, 58, 160
Particle physics, 198, 280-281, 295
Pascal, Blaise, 371
Patterson, Samuel J., 217, 385
Paul I, Emperor of Russia, 121
Periodic terms, 328, 330-333, 339-340,

341
Perturbation theory, 351
Peter the Great, Emperor of Russia, 56-

57, 58; pl. 1
Petsinis, Tom, 369
π, 185
π(N). See Prime counting function
Picard, Emile, 165, 389-390
Picard’s Theorem, 389-390
Picquart, George, 162, 164
Pietists, 187
Planck’s constant, 316
PNT. See Prime Number Theorem
Poincaré, Henri, 92, 159, 314, 377
Point at infinity, 214
Poisson distribution, 387
Poisson, Siméon-Denis, 92, 93
Pólya, George, 193, 197, 228, 277, 325,

352, 377-378, 380; pl. 7
Polynomial

characteristic of a matrix, 272-273
function, 37, 331-332
zero of, 173

Polytopes, 196, 378
Popular Front, 164
Power functions, derivatives of, 110

Powers
complex, 178, 202-203, 204-205
fractional, 66-67, 68
graphing, 68, 73
irrational, 67
rules, 65-68, 69, 71-72
zero, 65, 66

Prime counting function, 38, 153-154,
160, 297, 298, 299

Prime Number Theorem (PNT)
calculus and, 106-113
Chebyshev and, 123-124
consequences of, 45-47, 323-324,

359-360
equivalents, 47
expressions, 45, 116
first published work, 54
Gauss and, 51, 53-54
graph, 117
improved version, 116
log integral function and, 113-117
logarithmic sense, 45-46
proofs, 124-125, 153-155, 159-160,

190, 198, 233-234, 237, 356
Prime numbers

Chebyshev bias, 125-126
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frequency of, see Prime Number

Theorem
infinity of, 34, 95-97, 105
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of, 198
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sieve method for finding, 100-101
tables, 33, 153-154
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Principia Mathematica (Whitehead

and Russell), 89, 225, 361, 391
Product sign (Π), 105
Proper factor, 32
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Pythagoras of Samos, 175, 367, 379
Pythagoras’s Theorem, 180
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Quantum factor, 316
Quantum physics, 313, 315-317
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Random matrix, 282-287, 386, 403
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spacings between, 285-286
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Rational functions, 268-269, 332
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179, 319
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Real line, 178-180
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Reid, Constance, 186, 188
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130, 318
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Repulsion effect, 284, 285-286
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132, 134, 135
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bereavements, xiv-xv, 23, 133, 134
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early life and home environment,

22-23
on error term’s big oh, 244-245, 381
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363-364
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22-23
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244
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244, 324
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physical thread, 197-198, 271-272
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and zeta function, 136, 137
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263-264, 292, 316
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153, 217, 375, 384
Ring, 267-268
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374, 376, 384; pl. 3
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defined, 16
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Series. See also Harmonic series
Basel, 63-64
convergent, 11-15, 79
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divergent, 9-10, 81, 139
infinite, 59, 63, 75
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sequences contrasted, 16-17

Serre, Jean-Pierre, 372, 384
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University of Washington in Seattle,

352
Upper bound, 235-236

V

Vallée Poussin, Charles de la, x, 153,
155-156, 161, 189, 223, 232, 237,
352, 356, 376; pl. 3

Value plane, 219-221, 335
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power, 65, 66
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