




In an entry made in one of his teenage notebooks in April 1933, just before his fifteenth
birthday, the future physics Nobel Prize winner Richard Feynman (1918–1988) took
notice of a major theme of this book. Notice the power series expansions for the exponen-
tial, sine, and cosine functions given just below the “most remarkable formula in math.”
The next line is the start of the standard derivation of Euler’s formula (also known as
Euler’s identity) e iu = cos(u) + i sin(u), of which the remarkable formula is the special
case of u = π . (Feynman’s source, The Science History of the Universe, was a ten-volume ref-
erence set first published in 1909.) Although remembered today as a physicist, Feynman
was also a talented mathematician, who wrote in his The Character of Physical Law (1965),
“To those who do not know mathematics it is difficult to get across a real feeling as to the
beauty, the deepest beauty of nature. . . . If you want to learn about nature, to appreciate
nature, it is necessary to understand the language that she speaks in.” Feynman would
surely have agreed with one of the early working titles to this book: Complex Numbers Are
Real! (Photograph courtesy of the Archives, California Institute of Technology)
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Finally I meet my imaginary part!
—Nobel Prize–winning (1989) experimental physicist

Wolfgang Paul upon meeting the Nobel Prize–winning

(1945) theoretical physicist Wolfgang Pauli (this joke

makes sense once you remember the structure of a

complex number and that i = √−1)

−1 = e iπ ,

Proves that Euler was a sly guy.

But ζ(2)

Was totally new

And raised respect for him sky-high.
—William C. Waterhouse, professor of

mathematics at Penn State University

Dr. Euler is the sequel to my earlier book An Imaginary Tale: The Story of√−1 (Princeton University Press, 1998, 2007, 2010). Both books were
written because I have, since high school, been completely and utterly
fascinated by the “mystery” of i = √−1, and by the beautiful calculations
that flow, seemingly without end, from complex numbers and functions
of complex variables. I once came across a poem, titled “The Happy
Land,” that nicely and exactly catches that fascination. Here it is, and if
it resonates with you, too, then you are just the sort of reader for whom
I wrote both of my books.

The Happy Land

I hear them speak of a Happy Land,
The chosen researchers a joyful band,
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Professor, ah where is that radiant shore,
Shall I attain it and weep no more?

Take care, take care, my child.

Is it where the Geometer draws his base,
And elegant quadrics float through space,
Where the circular points are the open door,
And conics osculate evermore?

Not there, not there, my child.

Does it lie ’mid Algebra’s stern array,
Where the law of Symmetry points the way,
And the path leads up through ascending powers
To the hilltop won after weary hours?

Not there, not there, my child.

Is it set in the space of the Dead-Alive,
Where the Non-Euclidean seems to thrive,
Where nothing is ever the form it seems,
And the Absolute haunts in ghostly dreams?

Not there, not there, my child.

It must be then in that region fair
Where the Calculus scents the fragrant air,
And the infinitesimal’s gifts combine,
Giving man a mastery half divine?

Not there, not there, my child.

Can it lie, perchance, in the active sphere
Of the highly technical engineer,
Who silent stands in the foremost place,
Hewing the path for the human race?

Not there, not there, my child.

It lies afar on the Z-prime plane,
Conformal, mapped by a Cauchy brain,
Where genius sees with the complex i ,
And the Spirit of Functions dwells thereby,

It is there, it is there, my child.
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“The Happy Land” was published in the May 1915 issue of the Mathemat-
ical Gazette, with an editorial comment that the author wished to remain
anonymous. An additional comment noted, however, that the “joyful
band” mentioned in the second line of the first stanza is the “Research
School of the Mathematical Department at Edinburgh University.”

After the hardcover edition of Dr. Euler appeared, I received a great
deal of correspondence from readers. Most of it was friendly e-mail
pointing out typos, but there was also a handwritten, quite long (twelve
closely-spaced pages!) letter from an unhappy academic mathematician.
I carefully read all this correspondence—the unhappy mathematician’s
scholarly effort, in particular, was examined with much interest—and
have incorporated a large fraction of what my critics had to say in this
new printing of Dr. Euler. I am particularly in the debt of the following
individuals, in no particular order: Hymie Mida, Jordan Bell, France
Dacar, Gerald F. Brunzie, Richard Thompson, A. David Wunsch, John
Fuqua, Bob McLeod, J. L. Brown, Ernest Gerbitz, and R. B. Burckel.
Typos, missing minus signs, and proofreading oversights have, of course,
been corrected. But not everything my correspondents had to say struck
me as important. Let me give you two examples of this, both from the
unhappy mathematician’s letter.

First, in a number of places in this book, after using Euler’s fabu-
lous formula to derive an interesting mathematical result (for example,
1
12 − 1

22 + 1
32 − 1

42 + · · · = π2

12 , on p. 148), I numerically calculate each
side of the claimed equality to several decimal places. I did this because
I don’t see how anyone with even just a spark of imagination could resist.
I think it exciting to see the agreement, digit after digit. On page 31,
after doing such a calculation (on a problem associated with the great
Indian math genius Ramanujan), I admit such agreement of course
proves nothing—it is just for fun. (The derivation is the proof.) I do such
calculations in Dr. Euler in the same joyful spirit of Ramanujan, who
wrote such things as π = 3.14159265358 · · · and then observed that(2,143

22

)1/4 = 3.14159265258 · · · , in agreement out to the eighth digit.
Why did Ramanujan think this was even worth commenting on? My
answer is—for fun! The unhappy mathematician doesn’t approve of
this sort of thing, however, and cited numerous classic examples of
“formulas” that are almost but not exactly right. Since all the computed
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results in this book are based on derived formulas, however, I fail to see
the relevance of his objection and have, on this score, made no alter-
ations to the text.

On a more technical level, the unhappy mathematician also objected
to writing the convolution of two time functions as x(t) ∗ y(t), saying
that this notation is confusing, and it just really must be written as
(x ∗ y)(t). Well, I’ve seen it both ways, in books by engineers and mathe-
maticians alike, and I can’t imagine why x(t) ∗ y(t) would confuse anyone
who knows what convolution means. This objection is akin to claiming
that writing sin−1(x) for the inverse-sine is confusing because somebody
might think it means the reciprocal of the sine! On this matter of nota-
tion, I agree with Humpty Dumpty, who had this famous exchange with
Alice in Lewis Carroll’s 1871 masterpiece Through the Looking-Glass:

“When I use a word,” Humpty Dumpty said in a rather scornful
tone, “it means just what I choose it to mean—neither more
nor less.”
“The question is,” said Alice, “whether you can make words
mean so many things.”
“The question is,” said Humpty Dumpty, “which is to be
master—that’s all.”

We’ll hear from the unhappy mathematician again later. But first, some
different issues.

Dr. Euler begins with what I intended to be a light-hearted attempt
at discussing the role of beauty in mathematics. What’s beautiful is, of
course, open to debate. As reported in the American Journal of Physics
( June 1999, p. 519), for example, the late astrophysicist Fred Hoyle,
best known for rejecting the Big Bang theory of the origin of the uni-
verse in favor of his controversial concept of the continual creation of
matter, once had an encounter on this issue with the great Paul Dirac
(who appears in numerous places in this book). As Hoyle remembered
it, “Dirac never had much of an appreciation for my way of attacking
problems. He’d say, ‘That’s much too brutal, that method, you should
really go for the beauty of it,’ and I tried to find out from him what was
beauty, and he said ‘Well, you have to think about it, you know . . .’ ”

As part of the book’s opening discussion on the undefinable nature
of beauty, I use the works of the abstract American painter Jackson
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Pollock as a negative case in point. My wife, who majored in art history
in college, warned me of the immense danger of inflaming the intense,
near-fanatical outrage of Pollock’s many devoted admirers by daring to
criticize him, but I foolishly ignored her. After fifty years of marriage,
I should have known better. Just as she predicted, a review of Dr. Euler
eventually appeared on Amazon.com, taking me to task for my “rant” on
Pollock. Another online reviewer was equally distressed by my “diatribe”
against Pollock. And yet another, in a misguided attempt to strike back,
used my praise for Norman Rockwell as a painter as a springboard to
make the absurd statement that Rockwell was a mere “cartoonist.” My
Lord, there are only four or five sentences in this book on Pollock, and yet
these ‘reviews’ were only on my few words about Pollock, with not a sin-
gle comment on mathematics. I certainly didn’t intend to turn this book
into an issue of Art Critics’ Monthly! Well, as the old saying goes, “better
late than never,” and I have at last learned my lesson—not another word,
from me, here, on Pollock.

In chapter 3, devoted to showing the irrationality of π2, my discussion
of the conditions for ab to be transcendental prompted some correspon-
dence from history-minded readers. They correctly pointed out that my
statement of Alexander Gelfond proving a special case in 1929 is incom-
plete. I should have also said that Gelfond later proved a more general
case, and that the final result is known as the Gelfond-Schneider theorem
(the German mathematician Theodor Schneider (1911–1988) indepen-
dently repeated Gelfond’s work, as did Carl Siegel). I state on page 93
only that Siegel proved the general case (Schneider was once Siegel’s
assistant, and Gelfond, too, worked with Siegel during a visit Gelfond
made to Berlin in 1930), without any mention of Gelfond-Schneider.
I regret my historical lapse.

On that same page, immediately after using the Gelfond-Schneider
theorem to show that eπ is transcendental, I make the comment that the
nature of e + π is unknown. What I mean by that claim is that it is not
known if e + π , like eπ, is transcendental. Suppose, however, that the
question is on the irrationality (or not) of e + π . We know that e and π

are, individually, irrational, but what of their sum? It is certainly possible
to add two irrational numbers to get a rational sum (for example, add√

2 to 3−√
2 to get 3), and so maybe e +π is rational, too. This question

prompted a reader in California to send me a “proof” of the irrationality
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of e + π that, while clever, does have a flaw. Here’s the “proof,” which
makes use of Euler’s fabulous formula, and my challenge to you is to
spot where it goes wrong. If you get stuck, I’ll give you the answer at the
end of this preface.

(1) Since 3.1 < π < 3.2 and 2.7 < e < 2.8, then 5.8 < e + π < 6,
that is, e + π is certainly not an integer;

(2) Now, suppose e + π is rational, that is, e + π = a
b where a and

b are integers. Then a > b (obvious) and (almost as obvious)
b > 1 (why?—because if b = 1, then e + π = a, an integer, in
contradiction to (1));

(3) Multiply through (2) by ib and rearrange to get iπb = ia − ibe ;
(4) Thus, e iπb = e ia−ibe or, (e iπ)b = e i(a−be);
(5) Since Euler’s fabulous formula tells us that e iπ = −1, then

(−1)b = e i(a−be);

Before continuing, note that the integer b is either even or odd; let’s
now consider each possibility in turn.

(6) Suppose b is odd. Then (−1)b = −1, and so taking the natural
logarithm of (5) gives ln(−1) = ia − ibe ;

(7) Again from Euler’s fabulous formula, since −1 = e iπ, then
taking the natural logarithm gives ln(−1) = iπ , and so
iπ = i(a − be) or π = a − be or π

b + e = a
b ;

(8) From (2), we have e + π = a
b , and so π

b + e = e + π , which
means π

b = π ;
(9) Thus, b = 1, which contradicts the claim in (2) that b > 1, and

so the assumption in (6) that b is odd is wrong;
(10) So, b must be even. Then (−1)b = 1, and so (5) says

1 = e i(a−be), and taking the natural logarithm gives
0 = i(a − be), which says a = be , which means e = a

b , which
says e is rational, which is not true, and so the claim that b
must be even is also wrong;

(11) Thus, since b is neither even or odd, the conclusion is that
there is no b, and the original assumption in (2) that there are
values a and b such that e + π = a

b is wrong, and so e + π must
be irrational.
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To repeat—where does this chain of reasoning go wrong (the irrational-
ity conclusion, however, may well be true; I’d be astonished, in fact, if it
isn’t)?

In chapter 4 I devote a fair amount of space to the eighteenth-century
debate on the mathematical physics of vibrating strings and the resulting
development of Fourier series. One quite interesting historical paper
on this topic, which I overlooked while writing that chapter, should be
mentioned: J. R. Ravetz’s “Vibrating Strings and Arbitrary Functions,” in
The Logic of Personal Knowledge: Essays Presented to Michael Polanyi on His
Seventieth Birthday, The Free Press, 1961, pp. 71–88.

Given the Fourier transform pair f (t) ←→ F (ω) for a finite energy
signal f (t), the question of the existence of the integral

∫∞
−∞ |F (ω)|2dω

comes up in chapter 5 (p. 213), where I assert that
∫∞
−∞ |F (ω)|2dω < ∞

“can be true only if lim|ω|→∞ |F (ω)|2 = 0, as otherwise the ω-integral
would blow up.” In objection to this I received letters from two corre-
spondents (the unhappy mathematician, and a fellow retired professor
of electrical engineering). Each gave essentially the same counterexam-
ple, that is, they defined an F (ω) such that

∫∞
−∞ |F (ω)|2dω < ∞, and

yet (they said) lim|ω|→∞ |F (ω)|2 �= 0. To use the electrical engineer’s
specific example, for each integer n ≥ 1 define

F (ω) = n, n − 1
2n4 < ω < n + 1

2n4

0, otherwise.

Then

∞∫
−∞

|F (ω)|2dω =
∞∑

n=1

n2
[(

n + 1
2n4

)
−
(

n − 1
2n4

)]
=

∞∑
n=1

n2 · 2
2n4

=
∞∑

n=1

1
n2 = π2

6
< ∞,

which is consistent with a finite energy signal. As the electrical engineer-
ing professor concluded his letter, this particular F (ω) is “admittedly a
bit pathological.” Yes, he is mathematically correct. But . . .
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As already stated, he also claimed that for his counterexample
lim|ω|→∞ |F (ω)|2 �= 0. Indeed, he claimed that the limit is infinity. I dis-
agree. I claim that his |F (ω)|2 does not have a limit ! That’s because while
his |F (ω)|2 does indeed seemingly blow up as n → ∞, the fact is that for
almost all ω, F (ω) is actually zero. As n → ∞, |F (ω)|2 has a non-zero value
only as ω is squeezed ever closer to an integer value. Yes, as n → ∞ it is
true that |F (ω)|2 does become ever larger, but only at isolated, ever shrink-
ing intervals centered on the integer values of ω, and so it is not at all clear
to me what speaking of a limit even means for this |F (ω)|2. Even in this
counterexample, we have (for a finite energy signal) the conclusion that
|F (ω)|2 is almost everywhere zero as ω → ∞, and so, if I were writing today
for the first time, perhaps this would be a better way to put it.

Soon after the hardcover edition of this book appeared, I received
a very nice letter from the late Martin Gardner (I am writing this soon
after the announcement of Gardner’s death at age 95), famous among
all who love mathematics. As anyone who has read Gardner’s books and
essays over the decades knows, he loved jingles, and he wrote to inform
me that he was the author of the jingle (on π and e) that I quoted with-
out attribution on page 360. I am very happy to now have the opportunity
to correct that error by omission. He also wrote to tell me—and I
cannot resist telling you—that he agreed with my position on Pollock,
and he directed me to his book Are Universes Thicker Than Blackberries?
(W. W. Norton, 2003, 2004), where he had written a funny, brutal jingle
about Pollock. In keeping with my earlier promise not to further hurt
the feelings of Pollock fans, however, I won’t reproduce it here. Get
Gardner’s book.

Okay, did you spot where my California correspondent’s proof of the
irrationality of e + π goes wrong? It is in step (7), where the assertion
−1 = e iπ is correct but incomplete. In fact, −1 = e iπ(2k+1) where k is any
integer, positive or negative, not just for k = 0. The “proof” would then
continue as follows:

(7) Since −1 = e iπ(2k+1), then taking the natural logarithm of this
gives ln(−1) = iπ(2k + 1), and so iπ(2k + 1) = i(a − be) or
π(2k + 1) = a − be or π

b (2k + 1) + e = a
b ;

(8) From (2) we have e + π = a
b , and so π

b (2k + 1) + e = e + π ,
which says π

b (2k + 1) = π ;
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(9) Thus, b = 2k + 1, which says b is odd, which is in agreement
with the assumption of (6), unlike the contradiction derived
in the original “proof.”

And without the contradiction we are left exactly where we started, in
ignorance of the irrationality (or not) of e + π . All we have done is
show that if we assume e + π is rational, then it would have to be of the
form a

b with b odd. What we have not shown is that e + π actually is
rational.

As I typed the above proof, I was reminded of a nice way to graph-
ically illustrate Euler’s identity, e iπ = −1. From the definition of the
exponential function, we have

e z = lim
n→∞

(
1 + z

n

)n
.

In particular, if z = iπ, then

e iπ = lim
n→∞

(
1 + iπ

n

)n

.

It is easy with modern computer software to calculate
(
1 + iπ

n

)n for any
specific value of n, and to extract the real and the imaginary parts of
the result. One can do that as a series of individual multiplications; for
example, if n = 3, then we can calculate the three complex numbers
w1 = (

1 + iπ
3

)
, w2 = w1

(
1 + iπ

3

) = (
1 + iπ

3

)2, and w3 = w2
(
1 + iπ

3

) =(
1 + iπ

3

)3. Each of these three complex numbers has a real and an imag-
inary part: w1 = R1 + iI1, w2 = R2 + iI2, and w3 = R3 + iI3. If we plot
the points (R1, I1), (R2, I2), and (R3, I3) and join them with straight lines,
we should see the individual w’s in the complex plane, and in particular
where

(
1 + iπ

3

)3 is located. Each plot starts on the real axis at (1, 0)
because limn→0

(
1 + iπ

n

)n = 1. I’ve coded this procedure in MATLAB,
and the figure below shows the result for n = 1, 2, 3, 4, 5, 10, 20, 50, and
100 (the code, eulerid.m, follows the figure, allowing you to experiment
with other values of n yourself if you wish). You can literally see the con-
vergence of the far-left end of each resulting plot approaching −1. That
is, e iπ = limn→∞

(
1 + iπ

n

)n = −1.
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Euler’s identity as a limiting process

eulerid.m

n=[1 2 3 4 5 10 20 50 100];x(1)=1;y(1)=0;
for k=1:9

N=n(k);
c=1+(i*pi)/N;
w(1)=c;
for loop=2:N

w(loop)=w(loop-1)*c;
end
for loop=1:N

x(loop+1)=real(w(loop));
y(loop+1)=imag(w(loop));

end
subplot(3,3,k)
plot(x,y,‘k’)
title_str=[‘n = ’ int2str(N)];
title(title_str)

end
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To end, let me quote a wonderful line from Alexander Sokurov’s
2002 film The Russian Ark: “The dead weep with joy when their books
are reprinted.” An author doesn’t actually have to be dead, however,
to “weep with joy” when given a chance to revisit an earlier work, and I
gratefully thank my long-time editor at Princeton University Press, Vickie
Kearn, for giving me another shot at Dr. Euler. Every writer should be as
fortunate as I am in having such a supportive and enthusiastic editor.

Paul J. Nahin
Lee, New Hampshire
June 2010
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Everything of any importance is founded on mathematics.

—Robert Heinlein, Starship Troopers (1959)

Several years ago Princeton University Press published my An Imaginary
Tale: The Story of

√−1 (1998), which describes the agonizingly long,
painful discovery of complex numbers. Historical in spirit, that book
still had a lot of mathematics in it. And yet, there was so much I had to
leave out or else the book would have been twice its size. This book is
much of that “second half” I had to skip by in 1998. While there is some
historical discussion here, too, the emphasis is now on more advanced
mathematical arguments (but none beyond the skills I mention below),
on issues that I think could fairly be called the “sexy part” of complex
numbers. There is, of course, some overlap between the two books, but
whenever possible I have referred to results derived in An Imaginary Tale
and have not rederived them here.

To read this book you should have a mathematical background
equivalent to what a beginning third-year college undergraduate in an
engineering or physics program of study would have completed. That
is, two years of calculus, a first course in differential equations, and per-
haps some elementary acquaintance with matrix algebra and first-year
probability. Third-year math majors would certainly have the required
background! These requirements will, admittedly, leave more than a
few otherwise educated readers out in the cold. Such people commonly
share the attitude of Second World War British Prime Minister Winston
Churchill, who wrote the following passage in his 1930 autobiographical
work My Early Years: A Roving Commission:
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I had a feeling once about Mathematics, that I saw it all—Depth
beyond depth was revealed to me—the Byss and the Abyss. I saw, as
one might see the transit of Venus—or even the Lord Mayor’s Show,
a quantity passing through infinity and changing its sign from plus
to minus. I saw exactly how it happened and why the tergiversation
was inevitable: and how the one step involved all the others. It was
like politics. But it was after dinner and I let it go!

Churchill was, I’m sure, mostly trying to be funny, but others, equally
frank about their lack of mathematical knowledge, seem not to be ter-
ribly concerned about it. As an example, consider a review by novelist
Joyce Carol Oates of E. L. Doctorow’s 2000 novel City of God (New York
Review of Books, March 9, 2000, p. 31). Oates (a professor at Princeton
and a winner of the Pulitzer Prize) wrote, “The sciences of the universe
are disciplines whose primary language is mathematics, not conven-
tional speech, and it’s inaccessible even to the reasonably educated
non-mathematician.” I disagree. Shouldn’t being ignorant of what is
taught each year to a million college freshman and sophomores (math, at the
level of this book) world-wide, the vast majority of whom are not math
majors, be reason for at least a little concern?

Some of Oates’s own literary colleagues would also surely disagree
with her. As novelist Rebecca Goldstein wrote in her 1993 work Strange
Attractors, “Mathematics and music are God’s languages. When you speak
them . . . you’re speaking directly to God.” I am also thinking of such
past great American poets as Henry Longfellow and Edna St. Vincent
Millay. It was Millay, of course, who wrote the often quoted line from her
1923 The Harp-Weaver, “Euclid alone has looked on Beauty bare.” But
it was Longfellow who long ago really laid it on the line, who really put
his finger on the knowledge gap that exists without embarrassment in
many otherwise educated minds. In the opening passages of Chapter 4
in his 1849 novella Kavanagh, A Tale, the dreamy and thoughtful school-
master Mr. Churchill and his wife Mary have the following exchange in
his study:

“For my part [says Mary] I do not see how you can make mathe-
matics poetical. There is no poetry in them.”

“Ah [exclaims Mr. Churchill], that is a very great mistake! There
is something divine in the science of numbers. Like God, it holds
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the sea in the hollow of its hand. It measures the earth; it weighs
the stars; it illuminates the universe; it is law, it is order, it is beauty.
And yet we imagine—that is, most of us—that its highest end and
culminating point is book-keeping by double entry. It is our way of
teaching it that makes it so prosaic.”

You, of course, since you are reading this book, fully appreciate and
agree with this Mr. Churchill’s words!



This page intentionally left blank 



The above question, from a 2002 editorial1 in The Boston Globe, observes
how the concept of beauty in mathematics has moved from the insulated
male-dominated world of pipe-smoking, sherry-sipping mathematicians
in tweedy coats and corduroy trousers, at the weekly afternoon college
seminar, to the “real world” of truck drivers, teenagers, and retired cou-
ples looking for a bit of entertainment on a rainy afternoon. You’ll
see what I mean if you watch the film Spider-Man 2 (2004); look for
Tobey Maguire’s casual reference in a Hollywood super-hero adventure
flick to Bernoulli’s solution to the famous problem of determining the
minimum gravitational descent time curve.

In support of its claim, the Globe editorial cites three plays and a
movie as examples of this remarkable intellectual transition. In the
play Copenhagen we see a dramatic presentation of a debate between
the physicists Niels Bohr and Werner Heisenberg on quantum mechan-
ics. Heisenberg, who gave his very name to the mathematics of inherent
uncertainty in nature (discussed in chapter 5), talks at one point of his
first understanding of the new quantum theory: it is, he says “A world
of pure mathematical structures. I’m too excited to sleep.” He then, as
the Globe put it, “rushes out in the dawn to climb a rock jutting out to
sea, the crashing surf all around.” It seems a scene we’ve all seen many
times before in films from the 1930s and 1940s, just before (or after) the
heroine is bedded. The erotic connection between mathematical insight
and sexual orgasm is simply impossible to deny.2

The editorial then goes on to discuss the plays Proof (in which arcane
formulas are presented as “beautiful”), Q.E.D. (about the theoretical
physicist Richard Feynman, who often talked of the wondrous way mathe-
matics is at the root of any meaningful interpretation of nature), and
Ron Howard’s Oscar-winning 2001 film A Beautiful Mind. While that film
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was an interpretation of the life of Princeton mathematician John Nash
as viewed through a somewhat distorted glass, it did the best a Hollywood
movie probably could do in telling a general audience (from teenagers
on up) of what Nash’s work in game theory was (sort of) all about. Oddly,
the Globe didn’t mention the 1997 film Good Will Hunting (I say oddly
because the stars are Ben Affleck and Matt Damon, two of Boston’s
own), in which line after line of Fourier integral equations fills the screen
during the opening sequences. That film, also an Oscar-winner, also has
a mathematical genius—a handsome night-shift custodian at MIT—as its
hero. In a powerful emotional reversal of the idea that math is wonderful,
Tom Hanks’s mob hitman-on-the-run in The Road to Perdition (2002) finds
common ground with his son when the two discover that they both hate
math. As poets are so fond of saying, hate and love are two sides of the
same coin and so, even in this violent film, math plays an emotional role
as male-bonding glue.

Even before the examples mentioned by the Globe, mathematics had
played a prominent role in a number of mainstream films.3 Take a look
at such movies as Straw Dogs (1971), It’s My Turn (1980), Stand and Deliver
(1987), Sneakers (1992), The Mirror Has Two Faces (1996), Contact (1997),
Pi (1998), and Enigma (2002), and you’ll agree that the Globe was right—
mathematics (often equated with extreme dorkiness) has become sexy!
Even television has gotten into the act, with the 2005 series Numb3rs,
involving an FBI agent with a mathematical genius brother who helps
solve crime mysteries (the show’s technical adviser is a professor of
mathematics at Caltech, where numerous “atmosphere” scenes were shot
to achieve the appropriate academic ambiance).

The Globe thought this embracing of mathematics by popular culture
had happened because “The attraction of math and science is that they
require embracing the unknowable.” The inclusion of science in this
statement is interesting, because many physicists think the most beautiful
equations (note the plural) are those of Einstein’s theory of gravity. For
them it is not the mathematics, itself, that is the source of the beauty, but
rather the equations’ elegant expression of physical reality. For them the
mathematics is the visible flesh, yes, but it is the physics that is the soul—
and source—of the beauty. The 1933 Physics Nobel Prize co-winner Paul
Dirac was a notable exponent of that view. Dirac (1902–1984) was famous
for his many comments on technical beauty4; in response to being asked
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(in Moscow, in 1955) about his philosophy of physics, for example, he
wrote on a blackboard “Physical Laws should have mathematical beauty.”
That blackboard is preserved to this day by admiring Russian physicists.

Of course, as physicists learn more physics their equations change.
No one, not even Einstein, is immune to this evolution. Just as Newton’s
gravitational theory gave way to Einstein’s, Einstein’s is having to give way
to newer ideas that are compatible, as Einstein’s equations are not, with
quantum mechanics. So, Einstein’s physics is, at some fundamentally
deep level, “wrong” (or, more graciously, “missing something”) and so
is only approximately correct. But does that mean the mathematical
beauty of the equations in Einstein’s theory fades?

I don’t think so. In the Introduction I’ll discuss a number of views
that various writers have put forth on what makes theories (and their
equations) beautiful, but one point that isn’t mentioned there is perhaps
best done so here. The reason I think Einstein’s theory is still beautiful,
even though we now know it cannot possibly be perfectly correct, is that
it is the result of disciplined reasoning. Einstein created new physics, yes,
but not just willy-nilly. His work was done while satisfying certain severe
restrictions. For example, the physical laws of nature must be the same
for all observers, no matter what may be their state of motion in the
universe. A theory that satisfies such a broad constraint must, I think, be
beautiful.

Ugly creations, in my opinion, be they theories or paintings, are ones
that obey no constraints, that have no discipline in their nature. It is
by that criterion, alone, for example, that I place Norman Rockwell far
above Jackson Pollock as an artist. This will no doubt send most modern
art fans into near-fatal convulsions and brand me a cultural Neanderthal
(my art historian wife’s opinion), but anybody who can observe the result
of simply throwing paint on a canvas5—what two-year-olds routinely do
in ten thousand day-care centers every day (my gosh, what I do every
time I paint a ceiling!)—and call the outcome art, much less beautiful
art, is delusional or at least deeply confused (in my humble opinion).
To take my point to the limit, I find the imagery of Jackson Pollock
fans exclaiming in awe at the mess formed by paint randomly dripping
on the floor of the Sistine Chapel, rather than at what Michelangelo
painstakingly, with skill and discipline, applied to the ceiling, hilarious.
Pollock fans might very well rebut me by saying his works are beautiful
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because he did have discipline—the “discipline” never to be hamstrung
by discipline! I have heard that argument before from college students,
and I must admit I am still trying to come up with a good reply other
than rolling my eyes.

In this book the gold standard for mathematical beauty is one of the
formulas at the heart of complex number analysis, Euler’s formula or
identity e iθ = cos(θ) + i sin(θ), where i = √−1. The special case of θ = π

gives e iπ = −1 or, as it is usually written, e iπ + 1 = 0, a compact expres-
sion that I think is of exquisite beauty. I think e iπ + 1 = 0 is beautiful
because it is true even in the face of enormous potential constraint. The
equality is precise; the left-hand side is not “almost” or “pretty near” or
“just about” zero, but exactly zero. That five numbers, each with vastly
different origins, and each with roles in mathematics that cannot be
exaggerated, should be connected by such a simple relationship, is just
stunning. It is beautiful. And unlike the physics or chemistry or engineer-
ing of today, which will almost surely appear archaic to technicians of the
far future, Euler’s formula will still appear, to the arbitrarily advanced
mathematicians ten thousand years hence, to be beautiful and stunning
and untarnished by time.

The great German mathematician Hermann Weyl (1885–1955) is
famous for declaring, in only a half-joking way, “My work always tried
to unite the truth with the beautiful but when I had to choose one or
the other, I usually chose the beautiful.” Read on, and I’ll try to demon-
strate what Weyl meant by showing you some really beautiful (“sexy”?)
complex number calculations, many based in part on Euler’s formula.
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Like a Shakespearean sonnet that captures the very essence of

love, or a painting that brings out the beauty of the human

form that is far more than just skin deep, Euler’s equation

reaches down into the very depths of existence.

—Keith Devlin writing of e iπ + 1 = 01

The nineteenth-century Harvard mathematician Benjamin Peirce (1809–
1880) made a tremendous impression on his students. As one of them
wrote many years after Peirce’s death, “The appearance of Professor
Benjamin Peirce, whose long gray hair, straggling grizzled beard and
unusually bright eyes sparkling under a soft felt hat, as he walked briskly
but rather ungracefully across the college yard, fitted very well with the
opinion current among us that we were looking upon a real live genius,
who had a touch of the prophet in his make-up.”2 That same former
student went on to recall that during one lecture “he established the
relation connecting π , e , and i , eπ/2 = i√i , which evidently had a strong
hold on his imagination.3 He dropped his chalk and rubber (i.e., eraser),
put his hands in his pockets, and after contemplating the formula a few
minutes turned to his class and said very slowly and impressively, ‘Gentle-
men, that is surely true, it is absolutely paradoxical, we can’t understand
it, and we don’t know what it means, but we have proved it, and therefore
we know it must be the truth.’ ”

Like any good teacher, Peirce was almost certainly striving to be dra-
matic (“Although we could rarely follow him, we certainly sat up and took
notice”), but with those particular words he reached too far. We certainly
can understand what Peirce always called the “mysterious formula,” and
we certainly do know what it means. But, yes, it is still a wonderful, indeed
beautiful, expression; no amount of “understanding” can ever diminish



2 Introduction

its power to awe us. As one limerick (a literary form particularly beloved
by mathematicians) puts it,

e raised to the pi times i ,
And plus 1 leaves you nought but a sigh.
This fact amazed Euler
That genius toiler,
And still gives us pause, bye the bye.

The limerick puts front-and-center several items we need to discuss
pretty soon. What are e , pi, and i , and who was Euler? Now, it is hard
for me to believe that there are any literate readers in the world who
haven’t heard of the transcendental numbers e = 2.71828182 . . . and
pi = π = 3.14159265 . . ., and of the imaginary number i =

√−1. As
for Euler, he was surely one of the greatest of all mathematicians. Mak-
ing lists of the “greatest” is a popular activity these days, and I would
wager that the Swiss-born Leonhard Euler (1707–1783) would appear
somewhere among the top five mathematicians of all time on the list
made by any mathematician in the world today (Archimedes, Newton,
and Gauss would give him stiff competition, but what great company
they are!).

Now, before I launch into the particulars of e , π , and
√−1, what

about the stupefying audacity I displayed in the Preface by declaring
e iπ + 1 = 0 to be “an expression of exquisite beauty”? I didn’t do that
lightly and, indeed, I have “official authority.” In the fall 1988 issue of
the Mathematical Intelligencer, a scholarly quarterly journal of mathematics
sponsored by the prestigious publisher of mathematics books and jour-
nals, Springer-Verlag, there was the call for a vote on the most beautiful
theorem in mathematics. Readers of the Intelligencer, consisting almost
entirely of academic and industrial mathematicians, were asked to rank
twenty-four given theorems on a scale of 0 to 10, with 10 being the most
beautiful and 0 the least. The list contained, in addition to e iπ + 1 = 0,
such seminal theorems as

(a) The number of primes is infinite;
(b) There is no rational number whose square is 2;
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(c) π is transcendental;
(d) A continuous mapping of the closed unit disk into itself has a

fixed point.

A distinguished list, indeed.
The results, from a total of 68 responses, were announced in the sum-

mer 1990 issue. Receiving the top average score of 7.7 was e iπ + 1 = 0.
The scores for the other theorems above, by comparison, were 7.5 for
(a), 6.7 for (b), 6.5 for (c), and 6.8 for (d). The lowest ranked theorem
(a result in number theory by the Indian genius Ramanujan) received
an average score of 3.9. So, it is official: e iπ + 1 = 0 is the most beauti-
ful equation in mathematics! (I hope most readers can see my tongue
stuck firmly in my cheek as they read these words, and will not send me
outraged e-mails to tell me why their favorite expression is so much more
beautiful.)

Of course, the language used above is pretty sloppy, because e iπ +1 =
0 is actually not an equation. An equation (in a single variable) is a
mathematical expression of the form f(x) = 0, for example, x2 + x −
2 = 0, which is true only for certain values of the variable, that is, for
the solutions of the equation. For the just cited quadratic equation, for
example, f(x) equals zero for the two values of x = −2 and x = 1,
only. There is no x , however, to solve for in e iπ + 1 = 0. So, it isn’t an
equation. It isn’t an identity, either, like Euler’s identity e iθ = cos(θ) +
i sin(θ), where θ is any angle, not just π radians. That’s what an identity
(in a single variable) is, of course, a statement that is identically true for
any value of the variable. There isn’t any variable at all, anywhere, in
e iπ + 1 = 0: just five constants. (Euler’s identity is at the heart of this
book and it will be established in Chapter 1.) So, e iπ + 1 = 0 isn’t an
equation and it isn’t an identity. Well, then, what is it? It is a formula or
a theorem.

More to the point for us, here, isn’t semantics but rather the issue I
first raised in the Preface, that of beauty. What could it possibly mean to
say a mathematical statement is “beautiful”? To that I reply, what does it
mean to say a kitten asleep, or an eagle in flight, or a horse in full gallop,
or a laughing baby, or . . . is beautiful? An easy answer is that it is all simply
in the eye of the beholder (the ultimate “explanation,” I suppose, for
the popularity of Jackson Pollock’s drip paintings), but I think (at least
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in the mathematical case) that there are deeper possibilities. The author
of the Intelligencer poll (David Wells, the writer of a number of popular
mathematical works), for example, offered several good suggestions as
to what makes a mathematical expression beautiful.

To be beautiful, Wells writes, a mathematical statement must be sim-
ple, brief, important, and, obvious when it is stated but perhaps easy
to overlook otherwise, surprising. (A similar list was given earlier by
H. E. Huntley in his 1970 book The Divine Proportion.) I think Euler’s
identity (and its offspring e iπ + 1 = 0) scores high on all four counts,
and I believe you will think so too by the end of this book. Not everyone
agrees, however, which should be no surprise—there is always someone
who doesn’t agree with any statement! For example, in his interesting
essay “Beauty in Mathematics,” the French mathematician François Le
Lionnais (1901–1984) starts off with high praise, writing of e iπ + 1 = 0
that it

[E]stablishes what appeared in its time to be a fantastic connec-
tion between the most important numbers in mathematics, 1, π ,
and e [for some reason 0 and i are ignored by Le Lionnais].
It was generally considered “the most important formula of
mathematics.”4

But then comes the tomato surprise, with a very big splat in the face:
“Today the intrinsic reason for this compatibility has become so obvi-
ous[!] that the same formula seems, if not insipid, at least entirely
natural.”

Well, good for François and his fabulous powers of insight (or is it
hindsight?), but such a statement is rightfully greeted with the same
skepticism that most mathematicians give to claims from those who say
they can “see geometrical shapes in the fourth dimension.” Such people
only think they do. They are certainly “seeing things,” all right, but I
doubt very much it’s the true geometry of hyperspace. When you are
finished here, e iπ + 1 = 0 will be “obvious,” but borderline insipid?
Never!

At this point, for completeness, I should mention that the great
English mathematician G. H. Hardy (1887–1947) had a very odd view
of what constitutes beauty in mathematics: to be beautiful, mathematics
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must be useless! That wasn’t a sufficient condition but, for the ultra-
pure Hardy, it was a necessary one. He made this outrageous assertion
in his famous 1940 book A Mathematician’s Apology, and I can’t believe
there is a mathematician today (no matter how pure) who would sub-
scribe to Hardy’s conceit. Indeed, I think Hardy’s well-known interest
and expertise in Fourier series and integrals, mathematics impossible
by 1940 for practical, grease-under-the-fingernails electrical engineers to do
without (as you’ll see in chapters 5 and 6), is proof enough that his
assertion was nonsense even as he wrote it. To further illustrate how
peculiar was Hardy’s thinking on this issue, he called the physicists
James Clerk Maxwell (1831–1879), and Dirac, “real” mathematicians.
That is comical because Maxwell’s equations for the electromagnetic
field are what make the oh-so-useful gadgets of radios and cell-phones
possible, and Dirac always gave much credit to his undergraduate
training in electrical engineering as being the inspiration behind his
very nonrigorous development of the impulse “function” in quantum
mechanics!5

As a counterpoint to mathematical beauty, it may be useful to men-
tion, just briefly, an example of mathematical ugliness. Consider the 1976
“proof” of the four-color theorem for planar maps. The theorem says that
four colors are both sufficient and necessary to color all possible planar
maps so that countries that share a border can have different colors.6

This problem, which dates from 1852, defied mathematical attack until
two mathematicians at the University of Illinois programmed a com-
puter to automatically “check” many hundreds of specific special cases.
The details are unimportant here—my point is simply that this partic-
ular “proof” is almost always what mathematicians think of when asked
“What is an example of ugly mathematics?” If this seems a harsh word
to use, let me assure you that I am not the first to do so. The two Illinois
programmers themselves have told the story of the reaction of a mathe-
matician friend when informed they had used a computer:7 the friend
“exclaimed in horror, ‘God would never permit the best proof of such a
beautiful theorem to be so ugly.”’

Although nearly all mathematicians believe the result, nearly all dis-
like how it was arrived at because the computer calculations hide from
view so much of the so-called “solution.” As the English mathematician
who first started the four-color problem on its way into history, Augustus
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De Morgan (1806–1871), wrote in his book Budget of Paradoxes, “Proof
requires a person who can give and a person who can receive” (my
emphasis). There is no mention here of an automatic machine perform-
ing hundreds of millions of intermediate calculations (requiring weeks
of central processor time on a supercomputer) that not even a single
person has ever completely waded through.8

Before leaving computer proofs, I should admit that there is one
way such an approach could result in beautiful mathematics. Imagine
that, unlike in the four color problem, the computer discovered one or
more counter-examples to a proposed theorem. Those specific counter-
examples could then be verified in the traditional manner by as many
independent minds as cared to do it. An example of this, involving
Euler, dates from 1769.9 The disproof of a statement, by presenting a
specific counter-example, is perhaps the most convincing of all meth-
ods (the counter-example’s origin in a computer analysis is irrelevant
once we have the counter-example in-hand), and is generally thought
by mathematicians to be a beautiful technique.

There are, of course, lots of beautiful mathematical statements that
I think might give e iπ + 1 = 0 a run for its money but weren’t on the
original Intelligencer list. Just to give you a couple of examples, consider
first the infinite series

S =
∞∑

n=1

1
n

= 1 + 1
2

+ 1
3

+ 1
4

· · · .

This series is called the harmonic series, and the question is whether the
sum S is finite or infinite, that is, does the series converge or does it
diverge? Nearly everyone who sees this for the first time thinks S should
be finite (a mathematician would say S exists) because each new term is
smaller than the previous term. Indeed, the terms are tending toward
zero, which is, indeed, a necessary condition for the series to converge to
a finite sum—but it isn’t a sufficient condition. For a series to converge,
the terms must not only go to zero, they must go to zero fast enough
and, in the case of the harmonic series, they do not. (If the signs of the



Introduction 7

harmonic series alternate then the sum is finite: ln(2).) Thus, we have
the beautiful, surprising statement that,

lim
k→∞

k∑
n=1

1
n

= ∞,

which has been known since about 1350. This theorem should, I think,
have been on the original Intelligencer list.10

By the way, the proof of this beautiful theorem is an example of a
beautiful mathematical argument. The following is not the original proof
(which is pretty slick, too, but is more widely known and so I won’t
repeat it here11). We’ll start with the assumption that the harmonic series
converges, i.e., that its sum S is some finite number. Then,

S = 1 + 1
2

+ 1
3

+ 1
4

+ · · ·

=
(

1 + 1
3

+ 1
5

+ 1
7

+ · · ·
)

+
(

1
2

+ 1
4

+ 1
6

+ 1
8

+ · · ·
)

=
(

1 + 1
3

+ 1
5

+ 1
7

+ · · ·
)

+ 1
2

(
1 + 1

2
+ 1

3
+ 1

4
+ · · ·

)
=
(

1 + 1
3

+ 1
5

+ 1
7

+ · · ·
)

+ 1
2

S .

So,

1
2

S = 1 + 1
3

+ 1
5

+ 1
7

+ · · · .

That is, the sum of just the odd terms alone is one-half of the total
sum. Thus, the sum of just the even terms alone must be the other half
of S. Therefore, the assumption that S exists has led us to the conclusion
that

1 + 1
3

+ 1
5

+ 1
7

+ · · · = 1
2

+ 1
4

+ 1
6

+ 1
8

+ · · · .

But this equality is clearly not true since, term by term, the left-hand side
is larger than the right-hand side (1 > 1

2 , 1
3 > 1

4 , 1
5 > 1

6 , · · · ). So, our
initial assumption that S exists must be wrong, that is, S does not exist,
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and the harmonic series must diverge. This beautiful argument is called
a proof by contradiction.

The most famous proof by contradiction is Euclid’s proof of theorem
(a) on the original Intelligencer list. I remember when I first saw (while
still in high school) his demonstration of the infinity of the primes; I was
thrilled by its elegance and its beauty. For me, a proof by contradiction
became one of the signatures of a beautiful mathematical demonstra-
tion. When Andrew Wiles (1953–) finally cracked the famous problem
of Fermat’s last theorem in 1995, it was with a proof “by contradiction.”
And the proof I’ll show you in chapter 3 of the irrationality of π2, using
Euler’s formula, is a proof “by contradiction.”

Celebrity intellectual Marilyn vos Savant (“world’s highest IQ”) is not
impressed by this line of reasoning, however, as she rejects any proof
by contradiction. As she wrote in her now infamous (and famously
embarrassing) book on Wiles’s proof,

But how can one ever really prove anything by contradiction? Imag-
inary numbers are one example. The square root of +1 is a real
number because +1 · +1 = +1; however, the square root of −1
is imaginary because −1 times −1 would also equal +1, instead
of −1. This appears to be a contradiction. [The “contradiction”
escapes me, and I have absolutely no idea why she says this.] Yet it
is accepted, and imaginary numbers are used routinely. But how
can we justify using them to prove a contradiction?

This is, of course, as two reviewers of her book put it, an example of
“inane reasoning” (the word drivel was also used to describe her book),12

and so let me assure you that proof by contradiction is most certainly a
valid technique.

So, imagine my surprise when I read two highly respected mathemati-
cians call such a demonstration “a wiseguy argument!” They obviously
meant that in a humorous way, but the phrase still brought me up short.
I won’t give Euclid’s proof of the infinity of the primes here (you can
find it in any book on number theory), but rather let me repeat what
Philip Davis and Reuben Hersh said in their acclaimed 1981 book, The
Mathematical Experience, about the traditional proof by contradiction of
theorem (b) in the Intelligencer list. To prove that

√
2 is not rational, let’s
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assume that it is. That is, assume (as did Pythagoras some time in the
sixth century b.c.) that there are two integers m and n such that

√
2 = m

n
.

We can further assume that m and n have no common factors, because
if they do then simply cancel them and then call what remains m and n.

So, squaring, 2n2 = m2, and thus m2 is even. But that means that
m itself is even, because you can’t get an even m2 by squaring an odd
integer (any odd integer has the form 2k + 1 for k some integer, and
(2k + 1)2 = 4k2 + 4k + 1, which is odd). But, since m is even, then there
must be an integer r such that m = 2r . So, 2n2 = 4r 2 or, n2 = 2r 2, which
means n2 is even. And so n is even. To summarize, we have deduced that
m and n are both even integers if the integers m and n exist. But, we
started by assuming that m and n have no common factors (in particular,
two even numbers have the common factor 2), and so our assumption
that m and n exist has led to a logical contradiction. Thus, m and n do not
exist! What a beautiful proof—it uses only the concept that the integers
can be divided into two disjoint sets, the evens and the odds.

Davis and Hersh don’t share my opinion, however, and besides the
“wiseguy” characterization they suggest that the proof also has a prob-
lem “with its emphasis on logical inexorableness that seems heavy and
plodding.” Well, to that all I can say is all proofs should have such a
problem! But what is very surprising to me is what they put forth as a
better proof. They start as before, until they reach 2n2 = m2. Then,
they say, imagine that whatever m and n are, we factor them into their
prime components. Thus, for m2 we would have a sequence of paired
primes (because m2 = m · m), and similarly for n2. I now quote their
dénouement:

But (aha!) in 2n2 there is a 2 that has no partner.
Contradiction.

Huh? Why a contradiction? Well, because they are invoking (although
they never say so explicitly) a theorem called “the fundamental theorem
of arithmetic,” which says the factorization of any integer (in the realm
of the ordinary integers) into a product of primes is unique. They do
sort of admit this point, saying “Actually, we have elided some formal
details.” Yes, I think so!
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Davis and Hersh claim their proof would be preferred to the Pytha-
gorean one by “nine professional mathematicians out of ten [because
it] exhibits a higher level of aesthetic delight.” I suppose they might well
be right, but I think the unstated unique factorization result a pretty big
hole to jump over. It isn’t hard to prove for the ordinary integers, but
it isn’t either trivial or, I think, even obvious — indeed, it isn’t difficult
to create different realms of real integers in which it isn’t even true!13 I
therefore have a very big problem with that “aha!” It certainly is a huge
step beyond just the concept of evenness and oddness, which is all that
the Pythagorean proof uses.

For my second example of a beautiful mathematical expression, this
one due to Euler, consider the infinite product expansion of the sine
function:

sin (x) = x
∞∏

n=1

(
1 − x2

π2n2

)
.

You don’t have to know much mathematics to “know” that this is a pretty
amazing statement (which may account for why many think it is “pretty,”
too). I think a high school student who has studied just algebra and
trigonometry would appreciate this. As an illustration of this statement’s
significance, it is only a few easy steps from it to the conclusion that

∞∑
n=1

1
n2 = 1

12 + 1
22 + 1

32 + · · · = π2

6
= 1.644934 · · · ,

a beautiful line of mathematics in its own right (I’ll show you a way
to do it, different from Euler’s derivation, later in the book).14 Failed
attempts to evaluate

∑∞
n=1(1/n2) had been frustrating mathematicians

ever since the Italian Pietro Mengoli (1625–1686) first formally posed
the problem in 1650, although many mathematicians must have thought
of this next obvious extension beyond the harmonic series long before
Mengoli; Euler finally cracked it in 1734.15 All this is beautiful stuff but,
in the end, I still think e iπ + 1 = 0 is the best. This is, in part, because
you can derive the infinite product expression for sin(x) via the intimate
link between sin(x) and i = √−1, as provided by Euler’s identity (see
note 14 again).
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Let me end this little essay with the admission that perhaps mathemat-
ical beauty is all in the eye of the beholder, just like a Jackson Pollock
painting. At the end of his 1935 presidential address to the London Math-
ematical Society, for example, the English mathematician G. N. Watson
stated that a particular formula gave him “a thrill which is indistinguish-
able from the thrill which I feel when I enter the Sagrestia Nuova of the
Capelle Medicee and see before me the austere beauty of the four stat-
ues representing Day, Night, Evening, and Dawn which Michelangelo
has set over the tombs of Guiliano de’Medici and Lorenzo de’Medici.”16

Wow, that’s quite a thrill!
In a series of lectures he gave to general audiences at the Science

Museum in Paris in the early 1980s, the Yale mathematician Serge Lang
tried to convey what he thought beautiful mathematics is, using some-
what less dramatic imagery than Watson’s.17 He never gave a formal
definition, but several times he said that, whatever it was, he knew it
when he saw it because it would give him a “chill in the spine.” Lang’s
phrase reminds me of Supreme Court Justice Potter Stewart, who, in
a 1964 decision dealing with pornography, wrote his famous comment
that while he couldn’t define it he “knew it when he saw it.” Perhaps it
is the same at the other end of the intellectual spectrum, as well, with
beautiful mathematics.

Being able to appreciate beautiful mathematics is a privilege, and
many otherwise educated people who can’t sadly understand that they
are “missing out” on something precious. In autobiographical recollec-
tions that he wrote in 1876 for his children, Charles Darwin expressed
his feelings on this as follows:

During the three years which I spent at Cambridge my time was
wasted, as far as academical studies were concerned . . . I attempted
mathematics, and even went during the summer of 1828 with a
private tutor . . . but I got on very slowly. The work was repugnant
to me, chiefly from my not being able to see any meaning in the
early steps in algebra. This impatience was very foolish, and in after
years I have deeply regretted that I did not proceed far enough at
least to understand something of the great leading principles of
mathematics, for men thus endowed seem to have an extra sense [my
emphasis].18
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I started this section with a limerick, so let me end with one. I think,
if you read this book all the way through, then, contrary to Professor
Peirce, you’ll agree with the following (although I suspect the first two
lines don’t really apply to you!):

I used to think math was no fun,
’Cause I couldn’t see how it was done.
Now Euler’s my hero
For I now see why zero,
Equals epi i + 1.

Okay, enough with the bad poetry. Let’s begin the good stuff. Let’s
do some “complex” mathematics.



1.1 The “mystery” of
√−1.

Many years ago a distinguished mathematician wrote the following
words, words that may strike some readers as somewhat surprising:

I met a man recently who told me that, so far from believing in the
square root of minus one, he did not even believe in minus one.
This is at any rate a consistent attitude. There are certainly many
people who regard

√
2 as something perfectly obvious, but jib at√−1. This is because they think they can visualize the former as

something in physical space, but not the latter. Actually
√−1 is a

much simpler concept.1

I say these words are “somewhat surprising” because I spent a fair
amount of space in An Imaginary Tale documenting the confusion about√−1 that was common among many very intelligent thinkers from past
centuries.

It isn’t hard to appreciate what bothered the pioneer thinkers on
the question of

√−1. In the realm of the ordinary real numbers, every
positive number has two real square roots (and zero has one). A negative
real number, however, has no real square roots. To have a solution for the
equation x2 + 1 = 0, for example, we have to “go outside” the realm of
the real numbers and into the expanded realm of the complex numbers.
It was the need for this expansion that was the intellectual roadblock,
for so long, to understanding what it means to say i = √−1 “solves”
x2 + 1 = 0. We can completely sidestep this expansion,2 however, if
we approach the problem from an entirely new (indeed, an unobvious)
direction.
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imaginary

real

β

α

y´

y

x´

x

Figure 1.1.1. A rotated vector

A branch of mathematics called matrix theory, developed since 1850,
formally illustrates (I think) what the above writer may have had in
mind. In figure 1.1.1 we see the vector of the complex number x + iy,
which makes angle α with the positive real axis, rotated counterclock-
wise through the additional angle of β to give the vector of the complex
number x ′ + iy′. Both vectors have the same length r , of course, and so
r = √

x2 + y2 = √
x ′2 + y′2. From the figure we can immediately write

x = r cos(α) and y = r sin(α), and so, using the addition formulas for
the sine and cosine

x ′ = r cos(α + β) = r [cos(α) cos(β) − sin(α) sin(β)] ,

y′ = r sin(α + β) = r [sin(α) cos(β) + cos(α) sin(β)] .

Now, focus on the x ′,y′ equations and replace r cos(α) and r sin(α)

with x and y, respectively. Then,

x ′ = x cos(β) − y sin(β),

y′ = y cos(β) + x sin(β) = x sin(β) + y cos(β).
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Writing this pair of equations in what is called column vector/matrix
notation, we have⎡⎢⎣x ′

y′

⎤⎥⎦ =
[

cos(β) − sin(β)

sin(β) cos(β)

]⎡⎢⎣x

y

⎤⎥⎦ = R(β)

⎡⎢⎣x

y

⎤⎥⎦ ,

where R(β) is the so-called two-dimensional matrix rotation operator (we’ll
encounter a different sort of operator—the differentiation operator —in
chapter 3 when we prove the irrationality of π2). That is, the column
vector

[x
y

]
, when operated on (i.e., when multiplied3) by R(β), is rotated

counterclockwise through the angle β into the column vector
[x ′

y′
]
.

Since β = 90◦ is the CCW rotation that results from multiplying x + iy
by i , this would seem to say that i = √−1 can be associated with the 2×2
matrix R(90◦) [

cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

]
=
[

0 − 1
1 0

]
.

Does this mean that we might, with merit, call this the imaginary matrix?
To see that this actually makes sense, indeed that it makes a lot of sense,
recall the 2 × 2 identity matrix

I =
[

1 0
0 1

]
,

which has the property that, if A is any 2 × 2 matrix, then AI = IA = A.
That is, I plays the same role in matrix arithmetic as does 1 in the
arithmetic of the realm of the ordinary real numbers. In that realm,
of course, i2 = −1, and the “mystery” of

√−1 is that it itself is not
(as mentioned earlier) in the realm of the ordinary real numbers.
In the realm of 2 × 2 matrices, however, there is no such “mystery”
because the square of the “imaginary matrix” (a perfectly respectable
2 × 2 matrix) is[

0 −1
1 0

][
0 −1
1 0

]
=
[
−1 0
0 −1

]
= −I.
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That is, unlike the ordinary real numbers, the realm of 2 × 2 matrices
does have a member whose square is equal to the negative of the 2 × 2
matrix that plays the role of unity.

To carry the analogy with the ordinary real numbers just a bit further,

the zero 2×2 matrix is 0 =
[

0 0
0 0

]
, since any 2×2 matrix multiplied by 0

gives 0. In addition, just as (1/a) · a = 1 for any real number a different
from zero (1/a is the inverse of a), we’ll call A−1 the inverse matrix of
A if AA−1 = A−1A = I. (This notation immediately suggests A0 = I.)
One has to be careful not to carry the analogy of 2 × 2 matrices to the
ordinary real numbers too far, however. There are profound differences.
For example, the number 1 has two square roots, −1 and 1. And its matrix
counterpart I does indeed also have −I and I as square roots (we call a
matrix S the square root of A if S2 = SS = A). But I also has an infinity
more of square roots! You can see this by writing S as

S =
[

a b
c −a

]

and then setting S2 = I, that is,

[
a b
c −a

][
a b
c −a

]
=
[

a2 + bc 0
0 cb + a2

]

=
[

1 0
0 1

]
.

Thus, a, b, and c can be any three real numbers that satisfy the condition
a2 + bc = 1. In fact, they don’t even have to be real. If a = √

2, then
bc = −1, which is satisfied by b = c = i . Thus,

S =
[√

2 i
i −√

2

]

is a square root of I, too. Even more astonishing than an infinity of square
roots, perhaps, is the fact that it is possible to have two nonzero matrices
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whose product is zero! Nothing like that happens in the ordinary real
numbers. As an example of this remarkable possibility, I’ll let you
confirm that if

A =
[

4 0
−1 0

]
and B =

[
0 0
7 1

]
,

then AB = 0 even though A �= 0 and B �= 0. Matrices are not “just like”
numbers at all.

This may all seem mostly a pretty game in symbol pushing, but it is
actually much more than that. Here’s why. Suppose we apply two succes-

sive rotations to the arbitrary vector

[
x
y

]
, first with a rotation angle of β

and then with a rotation angle of α. That is, suppose

[
x ′
y′

]
= R(α)R(β)

[
x
y

]
.

The result should be equivalent to a single angular rotation through the
angle α + β and, further, which rotation is actually the first one shouldn’t
matter. Thus, the rotation operator R should have the following two
properties:

R(α)R(β) = R(α + β),

R(α)R(β) = R(β)R(α).

The second statement says that R has very special commutation prop-
erties (see note 3 again). It is the first relation, however, that really has
a nice result tucked away in it. It tells us that if we apply n successive,
equal rotations of angle β, then the result is the same as for a single
rotation of angle of nβ. That is, for n any integer (positive, negative,
or zero),

Rn(β) = R(nβ) ,
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which is the matrix operator form of De Moivre’s theorem (I’ll explain
this comment in just a moment). That is,

[
cos(β) − sin(β)

sin(β) cos(β)

]n

=
[

cos(nβ) − sin(nβ)

sin(nβ) cos(nβ)

]
.

An interesting special case is that of n = −1, which says

R−1(β) = R(−β).

That is, R(−β) is the inverse of R(β). Inverse matrices are, in general, not
trivial to calculate, but the rotation matrix is an exception to that. After
all, the inverse of a CCW rotation through angle β is just the CW rota-
tion through angle β (which is equivalent to the CCW rotation through
angle −β). Thus,

R−1(β) =
[

cos(−β) − sin(−β)

sin(−β) cos(−β)

]
=
[

cos(β) sin(β)

− sin(β) cos(β)

]
.

We can verify that this matrix has the proper mathematical behavior
by direct calculation:

R−1(β)R(β) =
[

cos(β) sin(β)

− sin(β) cos(β)

][
cos(β) − sin(β)

sin(β) cos(β)

]

=
[

cos2(β) + sin2(β) − cos(β) sin(β) + sin(β) cos(β)

− sin(β) cos(β) + cos(β) sin(β) sin2(β) + cos2(β)

]

=
[

1 0
0 1

]
= I.

I’ll let you show that R(β)R−1(β) = I, too.

The matrix

[
cos(β) − sin(β)

sin(β) cos(β)

]
rotates the vector

[
x
y

]
through the

CCW angle β. So does multiplication of the vector by e iβ = cos(β) +
isin(β). Thus, the matrix operator expression in the above box simply
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says (e iβ)n = e inβ (which is hardly surprising!), and Euler’s formula turns
this into

[cos(β) + isin(β)]n = cos(nβ) + isin(nβ),

which is the well-known De Moivre’s theorem. So, in this sense, it appears
that the introduction of matrix notation hasn’t told us anything we didn’t
already know. That isn’t really true (and I’ll explain that remark in just
a moment); for now, however, these results do present us with a quite
interesting mathematical question—can we show, without any reference
to the physical concept of rotation, the mathematical truth of[

cos(β) − sin(β)

sin(β) cos(β)

]n

=
[

cos(nβ) − sin(nβ)

sin(nβ) cos(nβ)

]
?

The answer is yes, at least for the case of n any positive integer, although
it will still require us to take notice of complex numbers. The cases of
n = 0 and 1 are of course trivially obvious by inspection.

The pure mathematical argument I’ll show you in the next section
is based on what is perhaps the most famous theorem in matrix alge-
bra, the Cayley-Hamilton theorem, named after the English mathematician
Arthur Cayley (1821–1895) and the Irish mathematician William Rowan
Hamilton (1805–1865). Of Cayley in particular, who was so pure a math-
ematician that he would have been positively repelled by mere physical
arguments, the great physicist James Clerk Maxwell (of “Maxwell’s equa-
tions for the electromagnetic field” fame) wrote “Whose soul too large
for vulgar space, in n dimensions flourished.”

1.2 The Cayley-Hamilton and De Moivre theorems.
The Cayley-Hamilton theorem is deceptively simple to state. It applies
to all square matrices of any size (n × n, n any positive integer), but we
will need to treat it here only for the n = 2 case. To start, the determinant
of any 2 × 2 matrix A is defined as

det A = det

[
a11 a12

a21 a22

]
= a11a22 − a21a12,

that is, the determinant of A is the difference of the two diagonal
products of A.
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Next, we define what is called the characteristic polynomial of A as the
polynomial in the scalar parameter λ given by

p(λ) = det(A − λI).

The equation p(λ) = 0 is called the characteristic equation of A. For

example, if A =
[

1 4
2 3

]
, then we have

A − λI =
[

1 4
2 3

]
−
[
λ 0
0 λ

]
=
[

1 − λ 4
2 3 − λ

]
,

and so the characteristic polynomial of A is

p(λ) = det

[
1 − λ 4

2 3 − λ

]
= (1 − λ)(3 − λ) − 8,

that is, p(λ) = λ2 − 4λ − 5. The solutions to the characteristic equation
p(λ) = 0 are called the characteristic values of A. In this example, since
λ2 − 4λ − 5 = (λ − 5)(λ + 1), we see that A has two characteristic values:
λ = 5 and λ = −1.

With all of this preliminary discussion done, you can now understand
the statement of the Cayley-Hamilton theorem: any square matrix A
satisfies its own characteristic equation, that is, substituting A for λ in
p(λ) = 0 gives p(A) = 0. In this example, the Cayley-Hamilton theorem
says A2 − 4A − 5I = 0, which you can easily verify for yourself. Indeed,
for the 2 × 2 case, it is just as easy to work through the algebra in general
to show that the characteristic equation

det

[
a11 − λ a12

a21 a22 − λ

]
= 0

is indeed identically satisfied when A is substituted in for λ. Indeed,
that is all Cayley himself did. That is, he didn’t prove the theorem for
all positive integer n, but only (in 1858) for the n = 2 and n = 3
cases by working through the detailed algebra (the n = 3 case is sig-
nificantly grubbier than the n = 2 case). Hamilton’s name is attached
to the theorem because he did the even more intricate algebra for the
n = 4 case. “Working through the algebra” for arbitrary n, however,
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clearly isn’t the path to follow for larger values of n. The general proof,
for arbitrary n, requires more mathematical machinery than I care to
get into here (all we need is the 2 × 2 case, anyway), and so I’ll sim-
ply refer you to any good book on linear algebra and matrix theory
for that.

Now, what’s the relevance of the Cayley-Hamilton theorem for us?
One of its major uses by applied mathematicians, engineers, and physi-
cists is in the calculation of high powers of a matrix. Given A, it is easy to
directly calculate A2, A3, or A4 (if A isn’t very large), but even for a mere
2 × 2 matrix the calculation of A3,973 gives one reason to pause. And
such calculations do occur; two examples are in the probabilistic the-
ory of Markov chains and in the engineering subject of control theory.4

With modern computers, of course, the numerical calculation of high
matrix powers is easy and fast (MATLAB, the language used to generate
all of the computer plots in this book, can blast through A3,973 in the
snap of a finger for a 2 × 2 matrix). Our interest here, however, is in a
mathematical solution (which we’ll then use to establish the matrix form
of De Moivre’s theorem for integer n ≥ 0).

For a 2×2 matrix the characteristic polynomial will be quadratic in λ,
and so we can write the characteristic equation p(λ) = 0 in the general
form of λ2 + α1λ + α2 = 0, where α1and α2 are constants. Thus, by
the Cayley-Hamilton theorem, A2 + α1A + α2I = 0. Now, suppose we
divide λn by λ2 + α1λ + α2. The most general result is a polynomial of
degree n −2 and a remainder of at most degree one (this argument obviously
doesn’t apply for n < 2, and this restriction means our method here,
while mathematically pure, is not as broad as is the physical rotation idea
in the previous section which has no such restriction), that is,

λn

λ2 + α1λ + α2
= q(λ) + r (λ)

λ2 + α1λ + α2
,

where r (λ) = β2λ + β1, with β1and β2 constants. That is,

λn = (λ2 + α1λ + α2)q(λ) + β2λ + β1 .

This is a polynomial identity in λ, and it is another theorem in matrix
algebra that the replacement of λ with A in such an identity results in
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a valid matrix identity. (This is not hard to establish, I’ll simply take it as
plausible here, and refer you to any good book on linear algebra for a
formal proof.) Thus,

An = (A2 + α1A + α2I)q(A) + β2A + β1I.

But since A2 + α1A + α2I = 0 by the Cayley-Hamilton theorem,

An = β1I + β2A.

All we have left to do is to determine the constants β1 and β2, and that
is a straightforward task. Here’s how to do it.

Returning to the above boxed equation, which holds for all λ, insert
the two characteristic values λ1 and λ2 (for which, by definition, λ2 +
α1λ + α2 = 0). Then,

λn
1 = β2λ1 + β1,

λn
2 = β2λ2 + β1.

These equations are easy to solve for β1and β2 in terms of λ1and λ2, and
I’ll let you do the algebra to confirm that

β1 = λ2λ
n
1 − λ1λ

n
2

λ2 − λ1
,

β2 = λn
2 − λn

1

λ2 − λ1
.

So, our general result for An is, for the 2 × 2 case,

An = λn
2 − λn

1

λ2 − λ1
A + λ2λ

n
1 − λ1λ

n
2

λ2 − λ1
I.

One might wonder what happens if λ1 = λ2 (giving a division by zero in
the formula), but that is actually easily handled by writing λ1 = λ2 + ε

and then letting ε → 0. In any case, for our use here in establishing
De Moivre’s theorem, you’ll next see that λ1 �= λ2 and so we actually
don’t have to worry about that particular problem.

For us, we have

A =
[

cos(β) − sin(β)

sin(β) cos(β)

]
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and so

A − λI =
[

cos(β) − λ − sin(β)

sin(β) cos(β) − λ

]
,

so the characteristic equation det(A − λI) = 0 is simply [cos(β) − λ]2 +
sin2(β) = 0, which reduces to λ2 − 2λ cos(β)+ 1 = 0. The quadratic for-
mula then gives us the characteristic values of λ1 = cos(β) − isin(β)

and λ2 = cos(β) + i sin(β). Euler’s formula then immediately tells
us that we can write λ1 and λ2 as λ1 = e−iβ and λ2 = e iβ . Plug-
ging these complex exponentials into the general formula for An ,
we have

An =
[

cos(β) − sin(β)

sin(β) cos(β)

]n

= e iβ e−inβ − e−iβ e inβ

e iβ − e−iβ

[
1 0

0 1

]
+ e inβ − e−inβ

e iβ − e−iβ

[
cos(β) − sin(β)

sin(β) cos(β)

]

= e−i(n−1)β − e i(n−1)β

2i sin(β)

[
1 0

0 1

]
+ 2i sin(nβ)

2i sin(β)

[
cos(β) − sin(β)

sin(β) cos(β)

]

= −2i sin {(n − 1)β}
2i sin(β)

[
1 0

0 1

]
+ sin(nβ)

sin(β)

[
cos(β) − sin(β)

sin(β) cos(β)

]

=
⎡⎢⎣− sin {(n − 1)β}

sin(β)
0

0 − sin {(n − 1)β}
sin(β)

⎤⎥⎦

+
⎡⎢⎣

sin(nβ) cos(β)

sin(β)
− sin(nβ)

sin(nβ)
sin(nβ) cos(β)

sin(β)

⎤⎥⎦

=
⎡⎢⎣

sin(nβ) cos(β) − sin {(n − 1)β}
sin(β)

− sin(nβ)

sin(nβ)
sin(nβ) cos(β) − sin {(n − 1)β}

sin(β)

⎤⎥⎦ .
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Now, sin {(n − 1)β} = sin(nβ) cos(β) − cos(nβ) sin(β). Thus,

sin(nβ) cos(β) − sin {(n − 1)β}
sin(β)

= sin(nβ) cos(β) − sin(nβ) cos(β) + cos(nβ) sin(β)

sin(β)

= cos(nβ).

So, [
cos(β) − sin(β)

sin(β) cos(β)

]n

=
[

cos(nβ) − sin(nβ)

sin(nβ) cos(nβ)

]
.

Thus, at last, we have De Moivre’s theorem in matrix form for n a
nonnegative integer without any mention of physical rotations.

It is actually pretty straightforward to extend De Moivre’s theorem
from just nonnegative integers to all of the integers, using a purely
mathematical argument. (Remember, the automatic inclusion of nega-
tive powers is a most attractive feature of the rotation argument.) Here’s
one way to do it. We first write

{cos(β) + i sin(β)}−1 = 1
cos(β) + i sin(β)

= cos(β) − i sin(β)

{cos(β) + i sin(β)} {cos(β) − i sin(β)}

= cos(β) − i sin(β)

cos2(β) + sin2(β)
= cos(β) − i sin(β).

Since cos(−β) = cos(β) and sin(−β) = − sin(β) (the cosine and sine
are said to be even and odd functions, respectively),

{cos(β) + i sin(β)}−1 = cos(−β) + i sin(−β) .

Now, using the fact that k = (−1)(−k) for any k, we have

{cos(β) + i sin(β)}k = [{cos(β) + i sin(β)}−1]−k
;
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substituting the boxed expression into the right-hand side gives

{cos(β) + i sin(β)}k = [cos(−β) + i sin(−β)]−k ,

and this is true for any integer k (positive, zero, and negative). In partic-
ular, if k is negative, then −k is positive and the right-hand side becomes
(from De Moivre’s theorem, which we have already established for pos-
itive powers) cos(kβ) + i sin(kβ). That is, for k < 0 (and so now for all
integer k),

{cos(β) + i sin(β)}k = cos(kβ) + i sin(kβ)

and we are done.
De Moivre’s theorem is a powerful analytical tool, and let me show

you one application of it right now. Applying the binomial theorem to
the left-hand side of De Moivre’s theorem, we have

{cos(β) + i sin(β)}k =
k∑

j=0

(k
j

)
cosk−j (β) {i sin(β)} j ,

and so, by the right-hand side of De Moivre’s theorem,

cos(kβ) + i sin(kβ) = cosk(β) + (k
1

)
cosk−1(β)i sin(β)

+ (k
2

)
cosk−2(β)i2 sin2(β) + (k

3

)
cosk−3(β)i3 sin3(β)

+ (k
4

)
cosk−4(β)i4 sin4(β) + · · · .

Equating the real and imaginary parts of both sides of this identity,
we have

cos(kβ) = cosk(β) − (k
2

)
cosk−2(β) sin2(β)

+ (k
4

)
cosk−4(β) sin4(β) + · · ·

and

sin(kβ) = (k
1

)
cosk−1(β) sin(β) − (k

3

)
cosk−3(β) sin3(β) + · · · .
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Thus,

tan(kβ) = sin(kβ)

cos(kβ)

=
(k

1

)
cosk−1(β) sin(β) − (k

3

)
cosk−3(β) sin3(β) + · · ·

cosk(β) − (k
2

)
cosk−2(β) sin2(β) + (k

4

)
cosk−4(β) sin4(β) − · · ·

=
(k

1

)[cosk(β) sin(β)]/cos(β) − (k
3

)
cosk(β) sin3(β)/cos3(β) + · · ·

cosk(β) − (k
2

)
cosk(β) sin2(β)/cos2(β) + (k

4

)
cosk(β) sin4(β)/cos4(β) − · · ·

or,

tan(kβ) =
(k

1

)
tan(β) − (k

3

)
tan3(β) + · · ·

1 − (k
2

)
tan2(β) + (k

4

)
tan4(β) − · · · .

This result says we can write tan(kβ) as the ratio of two polynomials
in tan(β), with integer coefficients. Notice, since

(k
j

) = 0 for any positive
integers j and k such that j > k, that this expression does indeed reduce
to the obviously correct tan(β) = tan(β) for the special case of k = 1.
And for the next case of k = 2 we get

tan(2β) = 2 tan(β)

1 − tan2(β)
,

which agrees with the double-angle formula for sin(2β) and cos(2β),
that is,

tan(2β) = sin(2β)

cos(2β)
= 2 sin(β) cos(β)

cos2(β) − sin2(β)
= 2cos(β)/sin(β)

[cos2(β)]/sin2(β) − 1

= 2/ tan(β)

[1/ tan2(β)] − 1
= 2 tan(β)

1 − tan2(β)
.

For k = 5, however (for example), we get the not so obvious formula

tan(5β) = 5 tan(β) − 10 tan3(β) + tan5(β)

1 − 10 tan2(β) + 5 tan4(β)
,

a result easily confirmed by direct calculation for any value of β you wish.
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−   3 3

Figure 1.2.1. The 30◦–60◦–90◦ triangle (“the side opposite the 30◦
angle is half the hypotenuse”)

For example, from high school geometry’s good old 30◦–60◦–90◦ tri-
angle we know that tan(30◦) = 1/

√
3 = √

3/3 (see figure 1.2.1) and that
tan(150◦) = − tan(30◦) = −√

3/3. Our formula agrees with this because
it says that tan(5 · 30◦) is

5(
√

3/3) − 10(
√

3/3)3 + (
√

3/3)5

1 − 10(
√

3/3)2 + 5(
√

3/3)4
= 5

√
3/3 − 30

√
3/33 + 9

√
3/35

1 − 30/32 + 45/34

= 5 · 34
√

3 − 30 · 32
√

3 + 9
√

3
35 − 30 · 33 + 45 · 3

= √
3

405 − 270 + 9
243 − 810 + 135

= √
3

144
−432

= −
√

3
3

.

This sort of success should really make us feel that we have a very powerful
tool in hand with De Moivre’s theorem in particular, and with complex
numbers in general. The rest of this chapter is devoted to a number of
very different problems that I hope will enhance that feeling.

1.3 Ramanujan sums a series.
In 1912 the self-taught Indian genius Srinivasa Ramanujan (1887–1920)
used complex numbers and Euler’s formula to solve an “interesting”
problem that had been posed the previous year in the Journal of the Indian
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Mathematical Society. What makes any problem “interesting” is often a
matter of taste, but for us this problem will be interesting because at one
time it “interested” a genius.5 The problem was to express the function

P (x) =
∞∑

m=1

(−1)m cos(mx)

(m + 1)(m + 2)

in closed form. Here’s how Ramanujan did it.
If we make the perhaps “obvious” auxiliary definition

Q (x) =
∞∑

m=1

(−1)m sin(mx)

(m + 1)(m + 2)
,

then we can use Euler’s formula to write

P (x) + iQ (x) =
∞∑

m=1

(−1)me imx

(m + 1)(m + 2)
=

∞∑
m=1

(−1)mzm

(m + 1)(m + 2)
,

where z = e ix . We can write this last sum as

∞∑
m=1

(−1)mzm

(m + 1)(m + 2)
=

∞∑
m=1

(−1)m
{

1
m + 1

− 1
m + 2

}
zm

=
∞∑

m=1

(−z)m 1
m + 1

−
∞∑

m = 1

(−z)m 1
m + 2

.

Now, as shown in freshman calculus, the Maclaurin power series
expansion for ln(1 + x) is

ln(1 + x) = x − 1
2

x2 + 1
3

x3 − 1
4

x4 + 1
5

x5 − · · · = −
∞∑

n=1

(−1)n

n
xn .

That derivation assumed x is real, but if we now assume that the expan-
sion holds even for our complex-valued z (at the end of this section I’ll
explore this assumption just a bit), then we see that

∞∑
m=1

(−z)m 1
m + 1

= − z
2

+ z2

3
− z3

4
+ z4

5
− z5

6
+ · · · ,
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and so

z
∞∑

m=1

(−z)m 1
m + 1

= − z2

2
+ z3

3
− z4

4
+ z5

5
− · · · = ln(1 + z) − z,

or,

∞∑
m=1

(−z)m 1
m + 1

= ln(1 + z)
z

− 1.

Also,

∞∑
m=1

(−z)m 1
m + 2

= − z
3

+ z2

4
− z3

5
+ z4

6
− · · · ,

and so

z2
∞∑

m=1

(−z)m 1
m + 2

= − z3

3
+ z4

4
− z5

5
+ z6

6
− · · · ,

= − ln(1 + z) + z − 1
2

z2.

or

∞∑
m=1

(−z)m 1
m + 2

= − ln(1 + z)
z2 + 1

z
− 1

2
.

Thus,

∞∑
m=1

(−z)m 1
m + 1

−
∞∑

m=1

(−z)m 1
m + 2

= ln(1 + z)
z

− 1 + ln(1 + z)
z2 − 1

z
+ 1

2

= ln(1 + z)
{

1
z

+ 1
z2

}
− 1

z
− 1

2
.

Since z = e ix , 1/z = e−ix and 1/z2 = e−i2x , and we therefore have

P (x) + iQ (x) = ln(1 + e ix )
{
e−ix + e−i2x}− e−ix − 1

2
.
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Now,

ln(1 + e ix ) = ln
{

e ix/2(e−ix/2 + e ix/2)
}

= ln
{

e ix/22 cos
(

x
2

)}
= ln(e ix/2) + ln

{
2 cos

(
x
2

)}
= ln

{
2 cos

(
x
2

)}
+ i

x
2

.

Thus,

P (x) + iQ (x) =
[

ln
{

2 cos
(

x
2

)}
+ i

x
2

] {
e−ix + e−i2x

}
− e−ix − 1

2

=
[

ln
{

2 cos
(

x
2

)
+ i

x
2

}]
× [cos(x) + cos(2x) − i {sin(x) + sin(2x)}] − cos(x)

+ i sin(x) − 1
2

= ln
{

2 cos
(

x
2

)}
[cos(x) + cos(2x)]

+ x
2

{sin(x) + sin(2x)} − cos(x) − 1
2

+ i
[

x
2

{cos(x) + cos(2x)} − ln
{

2 cos
(

x
2

)}
× {sin(x) + sin(2x)} + sin(x)

]
,

and so, equating real parts, we get Ramanujan’s answer:

P (x) =
∞∑

m=1

(−1)m cos(mx)

(m + 1)(m + 2)

= ln
{

2 cos
(

x
2

)}
[cos(x) + cos(2x)]

+ x
2

{sin(x) + sin(2x)} − cos(x) − 1
2

.

(Equating imaginary parts would, of course, give us the sum for Q (x),
as well.) We must impose a constraint on this result, however; it is valid
only in the interval −π < x < π , which keeps the argument of the log
function nonnegative.
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Figure 1.3.1. Ramanujan’s sum

The main question now, of course, is whether Ramanujan’s result is
“correct.” By “correct” I mean in the sense of plugging the same value
for x into each side of the above formula and getting the same answer.
After all, we started with a formula derived for real values of x , but then
used complex values. Did that perhaps cause a problem? This is easy to
check by computer, and figure 1.3.1 shows the behavior of both sides of
the formula. The left-hand plot directly evaluates the sum of the first 200
terms of the original series, for each of 314 values of x (from 0.01 to 3.14,
in steps of 0.01). The right-hand plot shows Ramanujan’s expression for
the same values of x . The two plots are virtually identical—an overlay
of one plot on the other reveals no discrepancy visible to the eye. This
illustration isn’t a proof, of course,6 but only the most rigid purist would
remain unconvinced! This is, I think, a quite powerful demonstration
of the utility of complex numbers, and of Euler’s formula.
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This use of Euler’s identity to sum a series is more than a mere trick.
Here’s another example of its use to sum a famous series.7 We start with

ln [2 cos(u)] = ln
[

2
e iu + e−iu

2

]
= ln

[
e iu(1 + e−i2u)

]
= ln(e iu) + ln(1 + e−i2u) = iu + ln(1 + e−i2u).

Thus,

π/2∫
0

ln [2 cos(u)] du =
π/2∫
0

{
iu + ln(1 + e−i2u)

}
du.

If we again suppose the power series for ln(1+x) holds even for complex
values (an assumption we should feel a little more confidence in mak-
ing, given our success with Ramanujan’s problem), then with x = e−i2u

we have

π/2∫
0

ln [2 cos(u)] du = i
(

u2

2

∣∣∣∣π/2

0
−

π/2∫
0

∞∑
n=1

(−1)n

n
e−i2undu

= i
π2

8
−

∞∑
n=1

(−1)n

n

π/2∫
0

e−i2undu.

Considering for now just the integral, we have

π/2∫
0

e−i2undu = i
(

e−i2un

2n

∣∣∣∣π/2

0
= i

e−iπn − 1
2n

.

Now, from Euler’s formula we have e−iπn = cos(πn) − i sin(πn) =
cos(πn), as sin(πn) = 0 for all integer n. Since cos(πn) = (−1)n for
all integer n, then

π/2∫
0

e−i2undu = i
(−1)n − 1

2n
=
{

−i 1
n for n odd,

0 for n even.
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Substituting this into our last expression for
∫ π/2

0
ln [2 cos(u)] du, we

have

π/2∫
0

ln [2 cos(u)] du = i
π2

8
−

∑
odd n>0

(−1)n

n

[
−i

1
n

]

= i
π2

8
− i

∑
odd n>0

1
n2 = i

[
π2

8
−

∞∑
k=0

1
(2k + 1)2

]
.

Now, if there is only one thing we can say about
∫ π/2

0 ln [2 cos(u)] du
it is that it is real, since the integrand is real over the entire interval of
integration. The only way this fact is compatible with the above result,
which says that the integral is pure imaginary, is that the integral is zero.
Thus,

∞∑
k=0

1
(2k + 1)2 = π2

8
,

a result first found by Euler himself (by different means), and in yet a
different way in section 4.3. As a little extra payoff, since we now know
that

π/2∫
0

ln [2 cos(u)] du = 0 =
π/2∫
0

{ln(2) + ln [cos(u)]} du

= π

2
ln(2) +

π/2∫
0

ln [cos(u)] du,

we also have the pretty result

π/2∫
0

ln [cos(u)] du = −π

2
ln(2).

1.4 Rotating vectors and negative frequencies.
Euler’s formula allows us to write the real-valued time functions cos(ωt)
and sin(ωt) in terms of complex exponentials (for now the ω is an
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arbitrary constant, but it does have a simple physical interpretation, as
you’ll soon see). That is,

cos(ωt) = e iωt + e−iωt

2
,

sin(ωt) = e iωt − e−iωt

2i
.

There is a very nice geometrical interpretation to these analytical expres-
sions, which as they stand, admittedly, do look pretty abstract. e iωt is a
vector in the complex plane with constant length one, making angle ωt
with the positive real axis. So, at time t = 0 the e iωt vector has angle zero
and thus lies directly along the positive real axis, pointing from 0 to 1.
As time increases the angle ωt increases, and so the vector rotates (or
spins) around the origin in the complex plane, in the counter-clockwise
sense. It makes one complete rotation when ωt = 2π radians. If that
occurs when t = T , then ω = 2π/T , which has the units of radians
per second. Accordingly, ω is called the angular frequency of the vector’s
rotation.

If we measure frequency in units of rotations (or cycles) per second,
which is probably the more natural measure, and if we denote that
number by ν, then ν = 1/T (T is called the period of the rotation)
and ω = 2πν. In the world of mechanical technology, ν is typi-
cally in the range of values from zero to several thousands or tens of
thousands,8 while in electronic technology ν can vary from zero up to
the frequency of gamma rays (1020 hertz9). For example, ordinary AM
and FM radio use frequencies in the 106 hertz and 108 hertz range,
respectively.

The only difference between e iωt and e−iωt is that the angle of e−iωt

is −ωt , that is, e−iωt rotates in the opposite direction, that is, in the
clockwise sense, as time increases, and this finally lets us see what writing
cos(ωt) in terms of complex exponentials means. Figure 1.4.1a shows
e iωt and e−iωt at some arbitrary time t . The imaginary components of
the two vectors are equal in magnitude and opposite in direction (that
is, straight up and straight down), and so the imaginary components
cancel at every instant of time. The real components of the two vectors,
however, are equal in magnitude and in the same direction at every
instant of time (that is, they always add). Thus, the two exponentials add
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ωtωt

e−iωt

eiωt−e−iωt

Figure 1.4.1. Counter-rotating vectors in the complex plane

vectorially to give an oscillation that lies completely and always along the
real axis. The division of this sum by 2 to get cos(ωt) is done because the
real component of each individual rotating vector is cos(ωt), by itself.
The same imagery holds for the complex exponential form of sin(ωt),
except that now the vectorial addition of e iωt and −e−iωt is as shown in
figure 1.4.1b, which gives rise to an oscillation that lies completely and
always along the imaginary axis, so the division of the sum by 2i gives the
real-valued sin(ωt). (Note that the −e−iωt vector is indeed as shown, since
−e−iωt = − cos(ωt) + i sin(ωt), that is, its real component is the negative
of the real component of e iωt and its imaginary component equals the
imaginary component of e iωt .)

Rather than speaking of both e iωt and e−iωt as rotating with the
positive angular frequency ω and then using the additional words
counterclockwise and clockwise to distinguish between the two vectors
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engineers and mathematicians often simply write e−iωt = e i(−ω)t and
say that if e iωt is a vector rotating at positive frequency ω, then e−iωt is
a vector rotating at the negative frequency −ω. This usually strikes begin-
ning students as mysterious (“How can something vary at a frequency
less than zero?”), and of course real time functions cannot. But complex
time functions can.

Writing cos(ωt) and sin(ωt) in terms of complex exponentials can be
the key to solving otherwise difficult problems, and I’ll return to this
point at great length in Chapter 4. But for now, let me show you one
quick but impressive example of what can be done with this approach.
Let’s evaluate the following integral (it was a challenge problem in An
Imaginary Tale, presented without solution there, p. 70), and I’ll tell you
why it is of historical interest when we are done):

π∫
0

sin2n(θ)dθ , n = 0, 1, 2, 3, · · · .

Since

sin(θ) = e iθ − e−iθ

2i
,

we have

sin2n(θ) = (e iθ − e−iθ )2n

22n(i)2n .

And since (i)2n = (
√−1)2n = ((

√−1)2)n = (−1)n and 22n = 4n , we
have

sin2n(θ) = (e iθ − e−iθ )2n

(−1)n4n .

From the binomial theorem we have

(e iθ − e−iθ )2n =
2n∑

k = 0

( 2n
k

)
ekiθ (−e−iθ )2n−k

=
2n∑

k = 0

( 2n
k

)
e ikθ (−e−iθ )2n

(−e−iθ )k =
2n∑

k = 0

( 2n
k

)
e ikθ (−1)2ne−i2nθ

(−1)k e−ikθ
.
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Since (−1)2n = 1, we have

(e iθ − e−iθ )2n =
2n∑

k = 0

(2n
k

)
e i2kθ e−i2nθ

(−1)k =
2n∑

k = 0

(2n
k

) e i2(k−n)θ

(−1)k ,

and so

π∫
0

sin2n(θ)dθ = 1
(−1)n4n

2n∑
k = 0

(2n
k

)
(−1)k

π∫
0

e i2(k−n)θdθ .

Now, concentrate for the moment on the integral at the right. If k �= n,
then

π∫
0

e i2(k−n)θdθ =
(

e i2(k−n)θ

i2(k − n)

∣∣∣∣∣
π

0

= 0

because, at the lower limit of θ = 0, e i2(k−n)θ = e0 = 1 and, at the upper
limit of θ = π , e i2(k−n)θ = e i(k−n)2π = e integer multiple of 2π i = 1, too. But
if k = n we can’t use this integration because that gives a division by
zero. So, set k = n before doing the integral. Thus, for k = n we have the
integrand reducing to one and so our integral is just

π∫
0

dθ = π .

That is,

π∫
0

e i2(k−n)θdθ =
{

0 if k �= n

π if k = n
.

Thus,

π∫
0

sin2n(θ)dθ = 1
(−1)n4n

( 2n
n

)
(−1)n π = π

4n

( 2n
n

)
.
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Because of the symmetry of sin2n(θ) over the interval 0 to π , it is clear
that reducing the interval of integration to 0 to π/2 cuts the value of the
integral in half, and so

π/2∫
0

sin2n(θ)dθ = π/2
4n

( 2n
n

)
,

which is often called Wallis’s integral, after the English mathematician
John Wallis (1616–1703). This is a curious naming, since Wallis did
not evaluate this integral! His name is nonetheless attached to the inte-
gral because integrals of the form

∫ π/2
0 sinn(θ)dθ can be used to derive

Wallis’s famous product formula for π :

π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· 6 · 6

5 · 7
· 8 · 8

7 · 9
· 10 · 10

9 · 11
· · · ,

a formula which is, in fact, much more easily derived from Euler’s infinite
product formula for the sine function.10

1.5 The Cauchy-Schwarz inequality and falling rocks.
We can use an argument based on both analytic geometry and complex
numbers to derive one of the most useful tools in analysis—the so-called
Cauchy-Schwarz inequality. As one writer put it many years ago, “This
[the inequality] is an exceptionally potent weapon. There are many
occasions on which persons who know and think of using this formula
can shine while their less fortunate brethren flounder.”11 At the end of
the section, once we have the inequality in our hands, I’ll show you an
amusing example of what that writer had in mind, of how the inequality
can squeeze a solution out of what seems to be nothing more than a
vacuum. We’ll use the Cauchy-Schwarz inequality again in chapter 5.

The derivation of the inequality is short and sweet. If f (t) and g (t) are
any two real-valued functions of the real variable t , then it is certainly
true, for λ any real constant, and U and L two more constants (either
or both of which may be arbitrarily large, i.e., infinite), that

U∫
L

{ f (t) + λg (t)}2dt ≥ 0.
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This is so because, as something real and squared, the integrand is
nowhere negative. We can expand the integral to read

λ2

U∫
L

g 2(t)dt + 2λ

U∫
L

f (t)g (t)dt +
U∫

L

f 2(t)dt ≥ 0.

And since these three definite integrals are constants (call their values
a, b, and c) we have the left-hand side as simply a quadratic in λ,

h(λ) = aλ2 + 2bλ + c ≥ 0,

where

a =
U∫

L

g 2(t)dt , b =
U∫

L

f (t)g (t)dt , c =
U∫

L

f 2(t)dt .

The inequality has a simple geometric interpretation: a plot of h(λ)

versus λ cannot cross the λ-axis. At most that plot (a parabolic curve) may
just touch the λ-axis, allowing the “greater-than-or-equal to” condition
to collapse to the special case of strict equality, that is, to h(λ) = 0, in
which the λ-axis is the horizontal tangent to the parabola. This, in turn,
means that there can be no real solutions (other than a double root)
to aλ2 + 2bλ + c = 0, because a real solution is the location of a λ-axis
crossing. That is, the two solutions to the quadratic must be the complex
conjugate pair

λ = −2b ± √
4b2 − 4ac

2a
= −b ± √

b2 − ac
a

,

where, of course, b2 ≤ ac is the condition that gives complex values to λ

(or a real double root if b2 − ac = 0). Thus, our inequality h(λ) ≥ 0
requires that

⎧⎨⎩
U∫

L

f (t)g (t)dt

⎫⎬⎭
2

≤
⎧⎨⎩

U∫
L

f 2(t)dt

⎫⎬⎭
⎧⎨⎩

U∫
L

g 2(t)dt

⎫⎬⎭
and we have the Cauchy-Schwarz inequality.12
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As a simple example of the power of this result, consider the fol-
lowing. Suppose I climb to the top of a 400-foot-high tower and then
drop a rock. Suppose further that we agree to ignore such complicat-
ing “little” details as air drag. Then, as Galileo discovered centuries ago,
if we call y(t) the distance the rock has fallen downward toward the
ground (from my hand), where t = 0 is the instant I let go of the rock,
and if g is the acceleration of gravity (about 32 feet/second2), then
the speed of the falling rock is v(t) = dy/dt = gt = 32t feet/second
(I am measuring time in seconds). So (with s a dummy variable of
integration)

y(t) =
t∫

0

v(s)ds =
t∫

0

32s ds = (
16s2∣∣t

0 = 16t2.

If the rock hits the ground at time t = T , then 400 = 16T 2 or, T = 5
seconds.

With this done, it now seems to be a trivial task to answer the follow-
ing question: What was the rock’s average speed during its fall? Since it
took five seconds to fall 400 feet, then I suspect 9, 999 out of 10, 000
people would reply “Simple. It’s 400 feet divided by 5 seconds, or
80 feet/second.” But what would that ten-thousandth person say, you
may wonder? Just this: what we just calculated is called the time average,
that is,

Vtime = 1
T

T∫
0

v(t)dt .

That is, the integral is the total area under the v(t) curve from t = 0
to t = T , and if we imagine a constant speed Vtime from t = 0 to
t = T bounding the same area (as a rectangle, with Vtime as the con-
stant height), then we have the above expression. And, indeed, since
v(t) = 32t , we have

Vtime = 1
5

5∫
0

32t dt = 32
5

{
1
2

t2
∣∣∣∣5
0

= 32 · 25
10

= 80 feet/sec,

just as we originally found.
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And then, as we all nod in agreement with this sophisticated way
of demonstrating what was “obviously so” from the very start, our odd-
man-out butts in to say “But there is another way to calculate an average
speed for the rock, and it gives a different result!” Instead of looking at
the falling rock in the time domain, he says, let’s watch it in the space
domain. That is, rather than speaking of v(t), the speed of the rock as
a function of the time it has fallen, let’s speak of v(y), the speed of the
rock as a function of the distance it has fallen. In either case, of course,
the units are feet/second. If the total distance of the fall is L (400 feet
in our example), then we can talk of a spatial average,

Vspace = 1
L

L∫
0

v(y)dy.

Since t = √
y/16 = 1

4
√y, then v(y) = 32( 1

4
√y) = 8√y. When y = 400

feet, for example, this says that v(400 feet) = 8
√

400 = 160 feet/ sec
at the end of the fall, which agrees with our earlier calculation of
v(5 seconds) = 160 feet/sec. Thus, for our falling rock,

Vspace = 1
400

400∫
0

8
√

y dy = 1
50

{
2
3

y3/2
∣∣∣∣400

0

= 1
75

· 4003/2 = 400
√

400
75

≈ 107 feet/sec .

We could discuss, probably for quite a while, just what this result
means, but all I want to do here is to point out that Vtime ≤ Vspace. In
fact, although we have so far analyzed only a very specific problem, it
can be shown that no matter how v(t) varies with t (no matter how v(y)
varies with y), even if we take into account the air drag we neglected
before, Vtime ≤ Vspace. This is a very general claim, of course, and there
is a beautiful way to show its truth using the Cauchy-Schwarz inequality
(which, of course, is the whole point of this section!) Here’s how it goes.
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Let g (t) = v(t)/T and f (t) = 1. Then, the Cauchy-Schwarz inequal-
ity says ⎛⎝ 1

T

T∫
0

v(t)dt

⎞⎠2

≤
⎧⎨⎩

T∫
0

dt

⎫⎬⎭
⎧⎨⎩ 1

T 2

T∫
0

v2(t)dt

⎫⎬⎭
= 1

T

T∫
0

v2(t)dt = 1
T

T∫
0

(
dy
dt

)2

dt .

Now, taking advantage of the suggestive nature of differential notation,(
dy
dt

)2

dt = dy
dt

· dy
dt

· dt = dy
dt

· dy.

If we insert this into the last integral above, then we must change the
limits on the integral to be consistent with the variable of integration,
that is, with y. Since y = 0 when t = 0, and y = L when t = T , we have⎛⎝ 1

T

T∫
0

v(t)dt

⎞⎠2

≤ 1
T

L∫
0

dy
dt

dy = 1
T

L∫
0

v(y)dy.

Now, L = ∫ T
0 v(t)dt , and so⎧⎨⎩ 1

T

T∫
0

v(t)dt

⎫⎬⎭
⎧⎨⎩ 1

T

T∫
0

v(t)dt

⎫⎬⎭ =
⎛⎝ 1

T

T∫
0

v(t)dt

⎞⎠ L
T

≤ 1
T

L∫
0

v(y)dy.

Thus,

1
T

T∫
0

v(t)dt ≤ 1
L

L∫
0

v(y)dy,

and so Vtime ≤ Vspace as claimed, and we are done.
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At no place in the above analysis did I make any assumptions about
the details of either v(t) or v(y), and so our result is completely gen-
eral. This result would be substantially more difficult to derive without
the Cauchy-Schwarz inequality, and so don’t forget how we got it—with
arguments that depend in a central way on the concept of complex
numbers.

1.6 Regular n-gons and primes.
In An Imaginary Tale I included some discussion of the equation
zn − 1 = 0; one solution to it is obviously z = 1, which means that (z − 1)

must be a factor of zn − 1. In fact, as I mentioned in AIT, it is easy to
verify by direct multiplication that

(z − 1)(zn−1 + zn−2 + · · · + z + 1) = zn − 1.

The second factor is called a cyclotomic polynomial, and I also rather
casually mentioned in AIT that the polynomial gets its name from its
association with the construction of regular n-gons. I did not pursue
that comment in AIT, however; here I will, with a discussion of the con-
nection cyclotomic polynomials have with one of the great triumphs of
mathematics, as well as another connection they have with an impres-
sive mistake. To set the stage for all that, let me very quickly review a few
elementary matters concerning zn − 1 = 0.

To formally “solve” zn −1 = 0 is “easy.” The solutions are z = 11/n , one
of which (as mentioned above) is obviously 1. Since there are n solutions
to an nth-degree equation, then there must be n − 1 others, and Euler’s
formula tells us, quickly and easily, what they are. Since 1 = e i2πk , where
k is any integer, we can write

z = 11/n = (e i2πk)1/n = e i2πk/n = e i360◦k/n ,

where k is any integer (k = 0 gives us the solution of 1). For k = 1,
2, . . . , n − 1 we get the other n − 1 solutions, which are, in general,
complex (unless n is even, and then k = n/2 also gives a real solution,
but more on that later). Any other integer value for k simply repeats
one of the n solutions; for example, k = n gives the same solution as
does k = 0.
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We can now see several interesting properties that these solutions
possess. First, all have an absolute value of one, that is, |e i(real)| = 1.
Therefore, all the solutions to zn − 1 = 0 lie on the circumference of
the circle with radius one centered on the origin. Second, the solutions
are evenly spaced around the circle, separated by the constant angular
displacement of 2π/n radians, with each step around the circle from one
solution to the next caused by incrementing k by one. Let me now quote
to you from Felix Klein’s 1895 book Famous Problems in Elementary Geom-
etry. (Klein (1849–1925) is perhaps most famous today for his discovery
of the single -sided closed surface, called the Klein bottle, which exists only
in spaces with dimension greater than three and, consequently, also in
many science fiction stories.) In his book Klein wrote

Let us trace in the z-plane (z = x + iy) a circle of radius 1. To divide
this circle into n equal parts, beginning at z = 1, is the same as to
solve the equation

zn − 1 = 0.

This equation admits the root z = 1; let us suppress this root by
dividing by z − 1, which is the same geometrically as to disregard
the initial point of the division. We thus obtain the equation

zn−1 + zn−2 + · · · + z + 1 = 0,

which may be called the cyclotomic equation.

The even spacing of the roots of zn − 1 = 0 around the unit circle
explains why the word cyclotomy is used when studying this equation—it
comes from cycl (circle) + tom (divide).

Notice, too, that not only is z = 1 a solution for any integer n, so is
z = −1 if n is even. This is most obvious from just (−1)even −1 = 1−1 =
0, but our general formula for z tells us this, too. If n is even then there
is an integer m such that n = 2m. Thus,

z = e i360◦k/n = e i360◦k/2m = e i180◦k/m ,

and so when k = m = 1
2n we have

z = e i180◦ = cos(180◦) + i sin(180◦) = −1.
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So, for n even, there are two real solutions to zn − 1 = 0 (±1) and n − 2
complex ones. For n odd, there are one real solution (+1) and
n − 1 complex ones. In any case, therefore, there are always an even num-
ber of complex solutions. This leads us to our third general observation
about the solutions to zn − 1 = 0.

Since there are always an even number of complex roots, and since
those roots are evenly spaced around a circle centered on the origin, then
by symmetry half the complex roots are on the top half of the circle, and
half are on the bottom half. Also by symmetry, we can conclude that each
root on the top half is the conjugate of a root on the bottom half (and
vice versa, of course). For example, suppose n = 5 and we are talking
about the roots of z5 − 1 = 0. Since n is odd, the only real root is +1,
and the other four roots are complex. Those four roots are

z1 = e i360◦·1/5 = e i72◦
,

z2 = e i360◦·2/5 = e i144◦
,

z3 = e i360◦·3/5 = e i216◦
,

z4 = e i360◦·4/5 = e i288◦
.

The first two roots are on the top half of the circle, and the last two are
on the bottom half. Furthermore, z1 and z4 are a conjugate pair, as are
z2 and z3 (all these assertions are obvious when you look at figure 1.6.1).

Now we are ready for the first example of this section. Let me set the
stage with a little history. On March 30, 1796, the German genius Carl
Friedrich Gauss (1777–1855), still a month short of his nineteenth birth-
day, made a wonderful discovery. This discovery, so stunning it is said
to have been the event that pursuaded him to pick mathematics as his
career path, was that it is possible to construct the regular heptadecagon
(the regular n-gon, with n = 17) using compass-and-straightedge alone.
The reason this result was immediately seen as “important” was that,
until Gauss, there had been no progress on the constructability (or not)
of regular n-gons for 2,000 years. That is, there had been nothing new
since Euclid!

In Euclid we can find compass-and-straightedge constructions of the
equilateral triangle (3-gon), the square (4-gon), the pentagon (5-gon),
and the pentadecagon (15-gon); it is nearly trivial, too, to see that once
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y

x

z1

z4

z3

z2

z0

+1

144˚

72˚

288˚

216˚

Figure 1.6.1. The solutions to z5 − 1 = 0

we have constructed any regular n-gon then we can construct a regular
2n-gon by simply bisecting the central angles formed by joining the cen-
ter of the regular n-gon to its vertices. For example, once you have a 3- or
4- or 5- or 15-gon, it is easy to get a 6-gon (hexagon), a 8-gon (octagon), a
10-gon (decagon), a 12-gon (dodecagon), a 20-gon (icosagon), a 30-gon
(triacontagon), a 40-gon (tetracontagon), a 5, 242, 880-gon (?-gon), etc.,
etc., etc. These are all even-gons, however, and until Gauss nobody knew
anything about the constructability of odd -gons other than what Euclid
had shown twenty centuries before.

Now Gauss didn’t actually construct a 17-gon. What he did was to show
that it is possible to construct it. What does that mean? Take a look at
figure 1.6.2, which shows the vertices of a regular 17-gon spaced (equally,
of course) around the circumference of the unit circle centered on
the origin (point O). Two adjacent vertices are labeled P and S , and
their central angle is θ . The point T on the radius OS is determined by
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S
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T
O

1

θ

θcos

Figure 1.6.2. Gauss’s regular 17-gon

dropping a perpendicular from P to OS . It is clear that cos(θ) = T , that
is, since θ = 2π/17 radians, T = cos(2π/17). So here’s what Gauss did.
He showed that T , i.e., that cos(2π/17), is constructable by compass-and-
straightedge. Thus, with T located, one only has to erect a perpendicular
at T to find P . That, in turn, defines the length of each of the 17-gon’s
sides and so it is a simple matter to swing a compass around the circle to
find all of the vertices of the 17-gon. That’s it!

But what does it mean to say “cos(2π/17) is constructable”? Simply
that it can be written as a finite expression including only the operations
of addition, subtraction, bisection, and square roots, all of which can be
done by compass and straightedge.13 Specifically, Gauss showed that

cos
(

2π

17

)
= − 1

16
+ 1

16

√
17 + 1

16

√
34 − 2

√
17

+ 1
8

√
17 + 3

√
17 −

√
34 − 2

√
17 − 2

√
34 + 2

√
17.
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You can easily check that each side does indeed evaluate to the same
result (to sixteen decimal places, at least) of 0.93247222940436. This
impressive expression also gives us a step-by-step process by which the
regular 17-gon can actually be constructed by compass-and-straightedge.
Starting with the unit length (a radius of the circle), it is easy to extend
it to length 17, take its square root, etc., etc., etc. The division by 8
is simply three consecutive bisections, and the division by 16 is the
result of one more bisection. It isn’t elegant, but it does the job of
locating T .14

With Gauss’s demonstration of the 17-gon’s constructability came
the fact that the 34-gon, the 68-gon, the 136-gon, etc., could all be
constructed. In his 1801 Disquisitiones Arithmeticae, Gauss stated that a
necessary and sufficient condition for a regular n-gon to be constructable
is that n must have the form

n = 2kFiFj Fk · · · ,

where k is any nonnegative integer (k = 0, 1, 2, 3, . . .) and the F s are
distinct Fermat primes, primes named after the French genius Pierre de
Fermat (1601–1665). A Fermat number is of the form Fp = 22p + 1, where
p is a nonnegative integer. If Fp happens to be prime, then we have a
Fermat prime. Fermat himself showed that p = 0, 1, 2, 3, and 4 do result
in primes, that is,

F0 = 21 + 1 = 3,

F1 = 22 + 1 = 5,

F2 = 24 + 1 = 17,

F3 = 28 + 1 = 257,

F4 = 216 + 1 = 65, 537

are all primes. From 1640 on, Fermat made it plain that he thought Fp

always to be prime, and toward the end of his life he claimed that he
could prove it. But he couldn’t have actually had such a proof because
the very next case, F5, is not a prime: in 1732 Euler found the factors15

of F5 = 232 + 1.
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Euclid’s ancient constructions for n = 3 and 5 obviously follow Gauss’s
formula in the above box for k = 0 with F0, and for k = 0 with F1, respec-
tively. Gauss’s own 17-gon follows for k = 0 with F2. (It is only for k = 0,
of course, that we get odd values for n.) Although Gauss said his above
formula for constructable n-gons is both necessary and sufficient, and
he did indeed prove sufficiency, he did not prove the necessity part. That
wasn’t done until 1837, when the French mathematician and engineer
Pierre Wantzel (1814–1848) proved that if the odd prime factors of n are
not distinct Fermat primes then the regular n-gon can not be constructed.
So, for example, we now see that it is futile to search for a compass-and-
straightedge construction of the regular 7-gon (heptagon). Somewhat
more subtle is the regular 9-gon (nonagon or, alternatively, enneagon)
because for k = 0 we can write 9 = 20 · 3 · 3 = 20 · F0 · F0. But this fails
Gauss’s condition that the F -factors be distinct. So, the regular 9-gon is
not constructable either.

After Gauss’s 17-gon, the next smallest prime -gon16 that is con-
structable is the 257-gon, which was finally constructed in 1832 by the
German mathematician F. J. Richelot (1808–1875). You might think that
only a crazy person would try to construct a bigger n-gon, but you’d be
wrong. As Professor Klein stated in his Famous Problems book, “To the
regular polygon of 65,537 sides Professor Hermes of Lingen devoted
ten years of his life, examining all the roots furnished by Gauss’ method.
His MSS. are preserved in the mathematical seminary in Göttingen.” The
man Klein was referring to was the German schoolteacher Johann Gus-
tav Hermes (1846–1912), and his 1894 manuscript is indeed still stored
to this day at the University of Göttingen. In a note on the Web (Decem-
ber 5, 2002), University of San Francisco mathematician John Stillwell,
a well-known historian of the subject, posted the following fascinating
follow-up to the story of Hermes’s manuscript:

When I visited Göttingen in July this year it was still there, and in
pretty good condition. They keep it in the library of the math-
ematics institute, in a suitcase made specially for it called the
“Koffer.” The manuscript is around 200 large sheets, about the
size of tabloid newspaper pages, and bound into a book. Evidently,
Hermes worked out his results on scratch paper first, then entered
the results very meticulously into the book. His penmanship is
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incredibly neat (by today’s standards) and in some places so small
it can barely be read with the naked eye. He also made an enor-
mously detailed ruler and compass construction, whose purpose is
not clear to me, of a 15-gon elaborated with scores of extra circles.
I could not see what Hermes is really driving at in the manuscript,
but it is not sheer nonsense. According to colleagues at Göttingen,
he knew some algebraic number theory, and seems to use it in his
investigations, but he doesn’t reach a clear conclusion. You won’t
find the 65537th root of 1 written in terms of square roots, which
is what I was hoping for.

There is, of course, still the challenge of the largest (the one with
the most sides) constructable odd -gon known today (there might be a
bigger one—see notes 15 and 16 again): the one with F0F1F2F3F4 =
(3)(5)(17)(257)(65, 537) = 4, 294, 967, 295 sides. It would of course be
indistinguishable from a circle! I don’t think anyone will really attempt
to analyze this case, but when it comes to mathematical “cranks” you can
never be absolutely sure. So, that’s the history of constructable n-gons.
Now, how did Gauss prove that the 17-gon is constructable?

I think that question is best answered in this book by showing you
how his approach works in the simpler case of n = 5, as the details for
the regular pentagon are easy to follow and the approach extends to
the n = 17 case. So, to start, take a look at figure 1.6.3, which shows a
pentagon inscribed in a unit radius circle centered on the origin (with
one vertex on the horizontal axis). The other vertices are labeled r , r 2,
r 3, and r 4, where r = e iθ , with θ = 2π/5 radians being the angle the
radius vector to r makes with the horizontal axis (of course the vertex on
the horizontal axis is r 0 = 1). These vertices are evenly spaced around
the circle, and so, as discussed at the beginning of this section, they are
solutions to z5 − 1 = 0,

(z − 1)(z − r )(z − r 2)(z − r 3)(z − r 4) = 0, r = e i 2π/5.

And don’t forget that r 5 = (e i 2π/5)5 = e i2π = 1.
Now, following Gauss, let’s form two sums, A and B, as follows:

A = r + r 4,

B = r 2 + r 3.
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Figure 1.6.3. The regular pentagon

Then,

AB = (r + r 4)(r 2 + r 3) = r 3 + r 4 + r 6 + r 7.

But, since r 6 = r · r 5 = r · 1 = r , and r 7 = r 2 · r 5 = r 2 · 1 = r 2, we
thus have

AB = r + r 2 + r 3 + r 4.

Remember next what r , r 2, r 3, r 4, and 1 are—they are vectors in the
complex plane, each of unit length and originating at the same point
(the origin). Can you see what their sum is? Can you see, because of
their equal length and uniform spacing in direction, that their sum is
zero? That is, 1 + r + r 2 + r 3 + r 4 = 0, which of course means that
r + r 2 + r 3 + r 4 = −1. Thus,

AB = −1 .



52 Chapter 1

Notice, too, that

A + B = r + r 2 + r 3 + r 4

which is the same as AB! That is,

A + B = −1 .

It is easy to solve these two equations for A and B; all we’ll actually need
is A, which is

A = −1 + √
5

2
.

In the notation of figure 1.6.3, we see that the coordinates of r and
r 4 (which are, of course, complex conjugates) are x + iy and x − iy,
respectively. From our original definition of A we have

A = r + r 4 = (x + iy) + (x − iy) = 2x ,

and so

x = A
2

= −1 + √
5

4
.

If you’ll recall the earlier discussion on constructable (by compass-and-
straightedge) quantities then you can see that x is such a quantity (x
is, of course, equal to cos(θ) = cos(2π/5)). So, first construct x along
the horizontal radius, starting from the origin, then erect a perpendic-
ular there, and its intersections with the circle will give the two vertices
associated with r and r 4. And from that we easily have our pentagon!

This discussion of the construction of the regular 5-gon by compass-
and-straightedge can be extended to the regular 17-gon. The procedure
is of course a bit more complex (pun intended!), but not to the point of
being terrible. The analysis follows the same line of reasoning I’ve used
here.17 Indeed, the analysis was extended by Gauss to any regular Fp -gon
with Fp a Fermat prime, which is to say that Gauss showed it is possible
to write cos(2π/Fp) in terms of, at worst, square roots. In this section, for
example, you’ve already seen cos(2π/F1) = cos(2π/5) and cos(2π/F2) =
cos(2π/17) written that way. (The case of cos(2π/F0) = cos(2π/3)
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doesn’t even require square roots, as cos(2π/3) = −1/2, which is obvi-
ously constructable.) What about the remaining (perhaps last?) two
cases, those of F3 = 257 and F4 = 65, 537? That is, what are cos(2π/257)

and cos(2π/65, 537) in terms of square roots?
To actually carry-out Gauss’s method for those two cases has proven

to be beyond human labor. With the development of electronic com-
puters, however, a massive computational requirement is no longer
a barrier. Indeed, the computer scientist Michael Trott has written a
Mathematica program,18 implementing Gauss’s method, that computes
symbolic expressions for cos(2π/Fp). He first checked the code by ask-
ing for the expressions for the first three Fermat primes; the results
were in agreement with the known expressions. And the code worked
for F3 = 257, too. There was just one problem—the resulting expres-
sion was too immense to actually print! The program revealed to Trott
that cos(2π/257) has over five thousand square roots, and that the entire
expression requires over 1, 300, 000 bytes of memory, (1.3 megabytes),
more than did all the text files of this book. The corresponding numbers for
cos(2π/65, 537) would be simply astronomical—and that explains the
last line in Professor Stillwell’s note on the Hermes’ manuscript.

1.7 Fermat’s last theorem, and factoring complex numbers.
In this section I want to pursue the connection between complex num-
bers and prime numbers just a bit more, mostly in a historical context.
I’ll start with what is almost surely still the most famous problem in math-
ematics, the question of Fermat’s last theorem, so named not because it
was the last thing Fermat wrote down before dying, but rather because
it was the last remaining of his conjectures to go unresolved (until 1995).
The story of the origin of this problem is almost too well known to bear
repeating, but in the interest of completeness I will quickly tell it here
once again.

In 1670, five years after his father’s death, Fermat’s son Samuel
arranged for a new printing of Diophantus’s Arithmetica (circa a.d. 250).
Indeed, it was just a bit more than that, as the new printing also included
the marginal notes that the elder Fermat had written in his personal copy
of Arithmetica. Fermat scribbled many assertions and conjectures in those
margins, and in them he would often claim to have a proof—which he
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did not include. All these assertions and conjectures have been success-
fully resolved by later mathematicians, but they usually proved to be real
challenges. Here’s one example, and I’ll start by quoting from E. T. Bell’s
famous 1937 book of biographies, Men of Mathematics:

Anyone playing with numbers might well pause over the curious
fact that 27 = 25+2. The point of interest here is that both 25 and
27 are exact powers, namely 27 = 33 and 25 = 52. Thus we observe
that y3 = x2 + 2 has a solution in whole numbers x , y; the solution is
y = 3, x = 5. As a sort of superintelligence test the reader may now
prove that y = 3, x = 5 are the only whole numbers which satisfy the
equation. It is not easy. In fact it requires more innate intellectual
capacity to dispose of this apparently childish thing than it does to
grasp the theory of relativity. (p. 20)

Well!, you might well think to yourself, that’s certainly claiming a lot
and, I’ll admit to you, my first reaction to reading Bell’s words was none
too sympathetic. But I think I was wrong in that, and I think you’ll soon
agree. He may be guilty of just a bit of exaggeration, but actually by not
very much. Continuing now with Bell,

The equation y3 = x2 + 2, with the restriction that the solution
y, x is to be in whole numbers, is indeterminate (because there are
more unknowns, namely two, x and y, than there are equations,
namely one, connecting them). . . . There is no difficulty whatever
in describing an infinity of solutions without the restriction to whole
numbers: thus we may give x any value we please and then deter-
mine y by adding 2 to this x2 and extracting the cube root of the
result. . . . The solution y = 3, x = 5 is seen “by inspection”: the
difficulty of the problem is to prove that there are no other whole
numbers y, x which will satisfy the equation. Fermat proved that
there are none but, as usual, suppressed his proof, and it was not
until many years after his death that a proof was found.

What Bell did not tell his readers is that the proof that was found is
due to Euler; it appeared in his 1770 book Algebra and it makes use of
complex numbers in factoring polynomials. I’ll show it to you later in
this section, and you’ll see then that while it is fantastically clever there
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are issues with it that even Euler did not understand. Indeed, it would
be nearly another hundred years before they were understood.

Another of Fermat’s marginal notes in Arithmetica lit the famous fire
that burned for over three centuries before being finally extinguished
by Andrew Wiles in 1995. The note reads as follows:

It is impossible to separate a cube into two cubes, or a biquadrate
into two biquadrates, or generally any power except a square into
two powers with the same exponent. I have discovered a truely
marvellous proof of this, which however the margin is not large
enough to contain.19

That is, Fermat asserted that for any integer n > 2 there are no integer
solutions x , y, and z to the equation xn + yn = zn . The case of n = 2, of
course, has infinitely many integer solutions, à la Pythagoras!

Did Fermat actually have such a proof? Nobody really knows but, since
Wiles’s proof20 requires so much high-powered mathematics invented
after Fermat’s time, most mathematicians now believe he once thought
he had a proof but then discovered an error in it. Not realizing the furor
his son would later stir up by publishing his marginal notes, Fermat
neglected to go back and either add a disclaimer or simply cross it out
(by then he’d probably forgotten he had even written the note). Fermat
did have an elegant so-called “infinite descent” proof for the special case
of n = 4, which is usually dated at 1637 (this proof he did write down
at the end of his copy of Arithmetica, and you can find it in any good
book on number theory). It is also believed that he had a proof for
the n = 3 case (although that proof has never been found), because
by 1638 he was posing x3 + y3 = z3 as a challenge problem to other
mathematicians. This is particularly interesting because it is yet another
reason for believing that by 1638 Fermat knew his marginal note was
wrong—if he had a general proof valid for all integer n, then why bother
with proving special cases?

After Fermat, progress came with proofs for additional special cases.
Euler published a slightly flawed (but later patched up by others) proof
for the n = 3 case (again, using complex numbers) in 1753. He also
made the prescient observation that his n = 3 proof had no resem-
blance at all to Fermat’s n = 4 proof; the proofs for the two values of n
required totally different approaches. The n = 5 case was established in
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1825 by the joint efforts of the twenty-year-old German mathematician
Lejeune Dirichlet (1805–1859)—it was his first published paper!—and
the French mathematician Adrien-Marie Legendre (1752–1833). In
1832 Dirichlet also proved the truth of Fermat’s assertion for n = 14.
And in 1839 the French mathematician Gabriel Lamé (1795–1870) did
the same for n = 7. This last result is particularly interesting because it
made Dirichlet’s proof for n = 14 “less interesting.” Here’s why.

Suppose there are integer solutions to the n = 14 case, that there are
integers x , y, and z such that x14 + y14 = z14, an equation that can be
written as (x2)7 + (y2)7 = (z2)7. If we write A = x2, B = y2, and C = z2,
then of course A, B, and C are integers since x , y, and z are, and we
would have A7 + B7 = C 7. But Lamé’s proof showed that this is impos-
sible. So our assumption that there are integer solutions to the n = 14
case must be false, hence, Dirichlet’s proof for n = 14 is an immediate
consequence of Lamé’s n = 7 proof. This same argument shows the
n = 6 case, too: if there were integer solutions to x6 + y6 = z6, which
can be written as (x2)3 + (y2)3 = (z2)3, then there would be integer solu-
tions to A3 + B3 = C 3, which is not possible because of Euler’s proof
for the n = 3 case. It is curious to note that the generally authoritative
Dictionary of Scientific Biography credits the French mathematician Joseph
Liouville (1809–1882) with the 1840 (!) observation that the impossibil-
ity of integer solutions to xn + yn = zn immediately says the same for
x2n + y2n = z2n . It is difficult to believe that this (which follows from
precisely the above arguments) wasn’t known long before 1840.

Lamé’s proof for the n = 7 case was very complicated, and continuing
to hunt for individual proofs for specific values of n would obviously be
a never-ending task; there are an infinity of integers! Of course, one
doesn’t really have to be concerned about all the integer possibilities
for n. It was quickly realized that only prime values for n need to be
considered. This is actually pretty easy to show, depending only on the
fact that every integer n ≥ 3 is either a prime, or is divisible by an odd
prime, or is divisible by 4. Here’s why.

It should be obvious to you that if we divide any integer by 4 the
remainder must be either 0, 1, 2, or 3. If the remainder is 0, that’s the
case of the number being divisible by 4. For the other three cases, we
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argue as follows. With k some integer, if the remainder is

1, the number is 4k + 1, which is odd;
2, the number is 4k + 2 = 2(2k + 1), which is even;
3, the number is 4k + 3, which is odd.

In the two odd cases either the number is an odd prime or, if it is not
prime, then it is a composite that can be factored into a product of
odd primes. In either case the number is therefore divisible by an odd
prime (perhaps itself). For the even case, the 2k + 1 factor (which is of
course odd) is either an odd prime or a composite that can be factored
into a product of odd primes. In any case the 2k + 1 factor (and so the
number itself) is divisible by an odd prime. And that’s it, at least for the
preliminary divisibility claim.

Now, suppose m is any integer (equal to or greater than 3). As we’ve
just seen, m is divisible either by 4 or by an odd prime (perhaps itself, the
case if m is prime). In the first case there is an integer k such that m = 4k,
so xm + ym = zm becomes x4k + y4k = z4k , which is (xk)4 + (yk)4 = (zk)4.
Or, using the now familar argument that A = xk , B = yk , and C = zk

are all integers because x , y, and z are, we have A, B , and C as integer
solutions to A4 + B4 = C 4. But this is impossible by Fermat’s proof for
the n = 4 case. In the second case, where m is divisible by an odd prime,
we have m = kp (where p is that prime) and k is some integer. Thus,
xm + ym = zm becomes (xk)p + (yk)p = (zk)p or, as before, A, B , and C
are integer solutions to Ap + Bp = C p . Whether or not this is possible is,
of course, just the issue of Fermat’s last theorem again, except that now
we have the common power p limited to being a prime.

With Lamé’s proof for p = 7, the next interesting case to consider
would then be p = 11. But people were now just about out of enthusi-
asm for this sort of “nibbling around the edge” of the problem; a more
powerful approach was needed. One early (1823) step was taken by the
French mathematician Sophie Germain (1776–1831). She discovered
that if p is a prime such that 2p + 1 is also prime (as is the case for
p = 11), then under certain conditions Fermat’s conjecture is true.
Such values of p are called Germain primes, and it is still an open question
whether they are infinite in number (being only finite in number would
make her result much less interesting). This was a big step forward,
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but still it fell far short of resolving the basic question of Fermat’s last
theorem.

All the specialized proofs did have one thing in common: all
depended at some point on finding some factoring identity. For exam-
ple, for n = 3 it is x3 + y3 = (x + y)(x2 − xy + y2) and for n = 7 it is
(x + y + z)7 − (x7 + y7 + z7) = 7(x + y)(x + z)(y + z)[(x2 + y2 + z2 + xy +
xz + yz)2 + xyz(x + y + z)]. As n becomes larger such factoring identities
become both more complicated and difficult to find, as the identity for
one value of n tells you nothing about what to do for the next value.
That was the observation, you’ll recall, of Euler after finding his proof
for n = 3 had essentially nothing in common with Fermat’s proof for
n = 4. Then, at a meeting of the Paris Academy of Sciences in March
1847, Lamé claimed to have at last solved the problem for all exponents.
Lamé observed that there is a very direct, general way to factor xn + yn

into n linear factors, if one is willing to use complex numbers. As you’ll
recall from our discussion in the previous section on regular n-gons,
the equation X n − 1 = 0 has the n roots of 1, r , r 2, . . . , r n−1, where
r = e i 2π/n , and so

X n − 1 = (X − 1)(X − r )(X − r 2) · · · (X − r n−1).

Next, let X = −x/y; then(
−x

y

)n

− 1 =
(

−x
y

− 1
)(

−x
y

− r
)(

−x
y

− r 2
)

· · ·
(

−x
y

− r n−1
)

,

or

(−1)n xn

yn − 1 =
[
−x + y

y

] [
−x + ry

y

] [
−x + r 2y

y

]
· · ·

[
−x + r n−1y

y

]
,

which is

(−1)nxn − yn

yn = (−1)n (x + y)(x + ry)(x + r 2y) · · · (x + r n−1y)
yn .

As argued before, we need only consider the case where n is an odd
prime (odd is the important word here), and since (−1)odd = −1, and
canceling yn on both sides, we arrive at

−xn − yn = −(x + y)(x + ry)(x + r 2y) · · · (x + r n−1y).
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At last, we have the general factoring identity (for n odd) of

xn + yn = (x + y)(x + ry)(x + r 2y) · · · (x + r n−1y) = zn , r = e i2π/n .

So far, all of this is okay. But then Lamé made a mistake.
Lamé asserted that, because of the above identity, since the right-

hand side is a power of n then each of the factors in the middle (i.e.,
(x + y), (x + ry), etc.), if relatively prime (whatever that might mean in
the realm of complex numbers), must individually also be powers of n.
In the realm of the ordinary real integers, this is indeed true. That is,
if we have an integer that is an nth power, that is, if we have N n , where
N is an integer, then we can write this as N n = N · N · N · · · N , with N
repeated n times. Now, if we factor N into primes, the unique factorization
theorem for the real integers tells us that this can be done only in one way,
that is, N = p1p2 · · · ps , where one or more of the pi may in fact be equal,
(i.e., one or more of the pi may repeat). So, in N · N · N · · · N each
prime factor will appear n times (once for each N ), so N n will be equal
to pn

1 pn
2 · · · pn

s , and so each factor is indeed an nth power.
But this is not generally true with Lamé’s factorization of xn + yn

into complex numbers. Indeed, when Lamé put forth his idea he was
immediately rebutted by Liouville on this very point. Complex factoring
was not new, and Liouville reminded Lamé of Euler’s use of just such
factoring decades earlier. And how did Lamé know his factors were “rel-
atively prime,”? asked Liouville. Later it became known that three years
earlier, in 1844, the German mathematician Ernst Kummer (1810–1893)
had proven (in an admittedly obscure publication) that unique factor-
ization failed in the complex factoring of precisely the polynomials21

Lamé thought would solve Fermat’s last theorem. The world had to wait
nearly another 150 years for the resolution Lamé incorrectly thought he
had achieved, and, when it did finally come, it was by entirely different
means.

To end this section, let me show you how the property of unique
factorization into primes can fail in complex number systems. Unique
factorization doesn’t have to fail for complex numbers—in 1832, for
example, Gauss very carefully showed that the system of complex num-
bers with the form a+ib, a and b ordinary integers (the so-called Gaussian
integers), does possess the property of unique factorization into primes—
but for each new system the property does have to be validated. One way
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to generalize the Gaussian integers is to consider all complex number
systems with the general form a + ib

√
D, where D is an integer with no

square factors. (D = 1 is, of course, the case of the Gaussian integers,
while D = 2 occurs in Euler’s proof of Fermat’s assertion concerning
the integer solution of y3 = x2 + 2, which I’ll show you at the end of
this discussion.) Unique factorization into primes fails for D = 6, which
I’ll now demonstrate by exhibiting a specific example.22 From now on,
then, we are specifically considering numbers of the form a + ib

√
6, with

a and b ordinary integers—this set of numbers I’ll call the integers of S.
All of the ordinary integers are obviously in S, with b = 0.

If we add any two integers in S, or if we multiply any two integers
in S, we will always get a result that is also in S. This is probably pretty
obvious,23 but here’s why anyway:

(a1 + ib1
√

6) + (a2 + ib2
√

6) = (a1 + a2) + i(b1 + b2)
√

6,

(a1 + ib1
√

6) · (a2 + ib2
√

6) = (a1a2 − 6b1b2) + i(a1b2 + a2b1)
√

6.

What about division? If A and B are any two of the integers of S, we say
A divides B if there is an integer C in S such that B = AC . This brings us
in a natural way to the question of the primes of S.

To help us understand what a prime is (in S), let’s define what is
called the norm of an integer A in S, that is, N (A), where � means “by
definition”:

N (A) = N (a + ib
√

6) � a2 + 6b2.

That is, the norm of A is simply the square of the absolute value of A,
and it is clear that N (A) is always an ordinary, nonnegative integer. The
reason for introducing the norm is that it gives us a way to order the
complex numbers in S. Unlike the ordinary real numbers, which are
ordered from −∞ to +∞ (from smaller to larger ), there is no intrinsic
meaning to saying (for example) that −3+ i3 is larger (or smaller) than
2 − i7. The ordering of the ordinary real numbers is along the real line,
and is based on the distance of a number from the origin. The absolute
value (squared) generalizes this idea from the one-dimensional real line
to the two-dimensional complex plane by assigning an ordering based
on the distance (squared) of the complex number from the origin.
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The norm has three properties that will be of interest to us, all obvious
with about five seconds of thought (⇒ means “implies”):

(a) N (A) = 0 ⇒ A = 0 (i.e., a = 0 and b = 0);
(b) N (A) = 1 ⇒ A = ±1 (i.e., a = ±1 and b = 0).

Finally, if B is also an integer in S,

(c) N (AB) = N (A)N (B),

which is simply the statement that the absolute value of the product of
two complex numbers is the product of their individual absolute values.
Okay, let’s now see what all this has to do with the primes of S.

Just as all the prime factors of an ordinary composite integer are each
smaller than the integer, as well as larger than 1, we will analogously say
that each prime factor of a nonprime integer A in S must have a norm
both greater than 1 and less than the norm of A. That is, if B = AC
and if B is not a prime in S, then 1 < N (A) < N (B) and 1 < N (C ) <

N (B). Otherwise B is a prime. This definition is a generalization of
how we define a prime when factoring ordinary integers. Let’s do some
examples.

Is 10 a prime in S? No, because 10 = 5·2 and N (5) = 25 and N (2) = 4
are both greater than 1 and less than N (10) = 100. That was easy! Now,
what about 2; is it a prime in S? Let’s suppose it isn’t, and in fact has
factors A and B. Then, 2 = AB , and so N (2) = 4 = N (AB) = N (A)N (B).
For 2 not to be a prime we require both N (A) and N (B) to be greater
than 1 and less than 4. Remembering that the norm is always an ordinary
nonnegative integer, we see that only N (A) = N (B) = 2 could result in
the conclusion that 2 can be factored, that is, that 2 is not a prime in S.
But that says N (A) = 2 = a2 + 6b2, which has no integer solutions for a
and b (this should be obvious). Thus, 2 is a prime in S. And what about
5; is it a prime in S? We answer this in the same way, by assuming it is
not a prime and writing 5 = AB. Thus, N (5) = 25 = N (A)N (B) and the
only possibility, for 5 to be factorable, is N (A) = N (B) = 5. And this says
that N (A) = a2 + 6b2 = 5, which we see is impossible for integer values
of a and b. Thus, 5 is a prime in S, too.

Now, just one more example. Is 2 + i
√

6 a prime in S (you’ll see why
this particular number in just a moment)? Again, suppose it isn’t prime
and write 2+i

√
6 = AB . Thus, N (2+i

√
6) = 10 = N (AB) = N (A)N (B).
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The only possibilities are N (A) = 2 and N (B) = 5, or N (A) = 5 and
N (B) = 2. But we’ve already shown that there are no integers in S with
either of these norms. So 2 + i

√
6 has no factors A and B and it is

a prime in S.
Here’s the rabbit out of the hat. Our earlier factoring of 10 = 5 · 2

expresses 10 as a product of two primes, 5 and 2. But, 10 = (2+i
√

6)·(2−
i
√

6), too, a product of two different primes. Unique prime factorization
has failed in S.24

Finally, here’s how Euler anticipated not just Lamé, but everybody else
as well, in the use of complex factoring to solve number theory problems.
You’ll recall that in 1770 Euler showed that the only integer solutions to
y3 = x2 + 2 are y = 3, x = 5. He did this as follows, using the com-
plex number system a + ib

√
2 (which certainly must have seemed very

mysterious to just about everybody else in the mid-eighteenth century).
Factoring the right-hand side of the equation, Euler wrote

y3 = (x + i
√

2)(x − i
√

2)

and argued (as loosely as would Lamé decades later) that each factor
must be a cube since their product is a cube. In particular, Euler claimed
that there must be integers a and b such that

x + i
√

2 = (a + ib
√

2)3.

Thus,

x + i
√

2 = (a + ib
√

2)(a + ib
√

2)(a + ib
√

2)

= (a2 − 2b2 + i2ab
√

2)(a + ib
√

2)

= a3 − 2ab2 − 4ab2 + i2a2b
√

2 + ia2b
√

2 − i2b3√2,

or,

x + i
√

2 = a3 − 6ab2 + i[3a2b − 2b3]√2 .

Equating imaginary parts on both sides of the equality, we have

1 = 3a2b − 2b3 = b(3a2 − 2b2).
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Now b is an integer, and since a is an integer then so is 3a2 − 2b2, and
their product is 1. This can be true only if b = ±1 and 3a2 − 2b2 = ±1,
with each having the same sign. If b = +1, then we have 3a2 −2b2 = 1 or
3a2−2 = 1 or 3a2 = 3 or, a = ±1. And if b = −1 we have −(3a2−2b2) =
1 or 3a2 − 2 = −1 or 3a2 = 1, and this is not possible for any integer a.
So, b = +1 and a = ±1.

Thus, equating real parts in the boxed expression, we see that x =
a3 −6ab2 = a3 −6a since b = +1. If a = +1, then x = 1−6 = −5, and if
a = −1, then x = −1+6 = +5. The fact that x is squared in the original
equation makes the sign of x irrelevant; we see that x = +5 is the only
positive solution (and hence y3 = 27 or y = 3). Thus, claimed Euler, the
only positive solution to y3 = x2 + 2 is, as originally asserted by Fermat,
(x , y) = (5, 3). This is a compelling analysis, but Euler (as would Lamé)
glossed over the issue of the uniqueness of his factorization, as well as
making the unsupported argument that the product of two complex
quantities being a cube means that each factor must necessarily also be
a cube.

1.8 Dirichlet’s discontinuous integral.
To start the last section of this chapter, I want you to gaze upon the
following mathematical expression and honestly ask yourself if you think
it’s possible for someone to have just made it up. I personally think it so
spectacularly bizarre that no one could have had that much imagination!
It is something that had to be discovered. Here it is, where ω is simply
(for now) a dummy variable of integration:

∞∫
− ∞

e iωx

ω
dω = iπ sgn(x) ,

where sgn(x) (pronounced signum x) is the discontinuous sign function,

sgn(x) =
{

+1 if x > 0,

−1 if x < 0.
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The astonishing statement in the box will be very important to us later,
in chapter 5, when we get to the impulse function and the Fourier trans-
form, but for now its interest to us is simply in how we can derive it with
the aid of Euler’s formula.

As a last comment on sgn(x), at least for now, notice that formally we
can write

d
dx

|x | = sgn(x).

If this isn’t clear, then draw a graph of the absolute function and look at
its slope for the cases of x < 0 and x > 0. Thus, formally, we have the
interesting expression (which you should think about, carefully, because
you’ll see it again in a very interesting calculation we’ll be doing later in
section 5.4):

|x | =
x∫

0

sgn(s)ds.

See if you can “explain” for yourself, now, why this makes sense.
We start the calculation of

∫∞
− ∞ e iωx/ωdω by using a “trick” that starts

with an integral that defines a particular function g (y):

g (y) =
∞∫

0

e−sy sin(s)
s

ds, y ≥ 0.

It probably isn’t obvious where g (y) comes from, and I don’t think it
is obvious—that’s the trick! I don’t know the history of this approach
but, as you’ll see, it works. Someone in the past was very, very clever.
If we differentiate g (y) using Leibniz’s rule for how to differentiate an
integral,25 then

dg
dy

=
∞∫

0

d
dy

{
e−sy sin(s)

s

}
ds =

∞∫
0

−se−sy sin(s)
s

ds,

or

dg
dy

= −
∞∫

0

e−sy sin(s)ds.
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This last integral is not difficult to do; it yields nicely to a double
application of integration by parts, with the result

dg
dy

= − 1
1 + y2 .

If we now integrate this last expression, then

g (y) = C − tan−1(y),

where C is the constant of indefinite integration. We could evaluate C
if we just knew the value of g (y) for some value of y. And, in fact, a
little thought should convince you that g (∞) = 0 (think about the area
interpretation of the integral, about what sin(s)/s looks like, and how
e−sy behaves as y → ∞ for any s ≥ 0).26 Thus,

0 = C − tan−1(∞) = C − π

2
,

or C = π/2. Thus,

g (y) =
∞∫

0

e−sy sin(s)
s

ds = π

2
− tan−1(y).

Setting y = 0, we get (since tan−1(0) = 0) the important result (first
derived—are you surprised and, if so, why?—by Euler)

∞∫
0

sin(s)
s ds = π

2 ,

which appears countless times in advanced mathematics, physics, and
engineering.

There is a marvelous gem tucked away in this last result that is not at
all obvious. But it isn’t hard to tease it out into full view, and it is what we
are after here. If we change variables to s = kω, where k is some constant
(and so ds = kdω), then if k > 0 we have

∞∫
0

sin(s)
s

ds = π

2
=

∞∫
0

sin(kω)

kω
kdω =

∞∫
0

sin(kω)

ω
dω,
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or

∞∫
0

sin(kω)

ω
dω = π

2
for any k > 0,

not just k = 1. That’s pretty surprising, but we are not done yet. Suppose
now that k < 0, that is, k = −l where l > 0. Then,

∞∫
0

sin(kω)

ω
dω =

∞∫
0

sin(−lω)

ω
dω = −

∞∫
0

sin(lω)

ω
dω = −π

2
.

That is, we have the result (where I’ve replaced l with k > 0, which is a
trivial change in notation)

∞∫
0

sin(kω)

ω
dω =

{
+π

2 if k > 0,

−π
2 if k < 0.

or, if we replace the k with x to match our earlier notation (again, a
trivial step), we have the truly wonderful

∞∫
0

sin(ωx)

ω
dω =

{
+π

2 if x > 0

−π
2 if x < 0

,

a result called Dirichlet’s discontinuous integral. It is named after the same
Dirichlet in the previous section who proved the n = 5 and n = 14
cases of Fermat’s last theorem. He discovered this integral result some-
time before 1837. Since the integrand of Dirichlet’s integral is an even
function of ω, and using the sgn function, we can also write

∞∫
− ∞

sin(ωx)

ω
dω = πsgn(x),

because extending the interval of integration from 0 to ∞ to − ∞ to ∞
simply doubles the value of the integral.
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For our final step, we again use Euler’s formula. Since cos(ωx)/ω is
an odd function of ω, then

∞∫
− ∞

cos(ωx)

ω
dω = 0,

and so

∞∫
− ∞

e iωx

ω
dω =

∞∫
− ∞

cos(ωx)

ω
dω + i

∞∫
− ∞

sin(ωx)

ω
dω

= i

∞∫
− ∞

sin(ωx)

ω
dω = iπsgn(x),

just as claimed at the start of this section. This derivation has, of course,
made use of some pretty slick trickery, but our result is correct. It can
be verified using Cauchy’s theory of integration in the complex plane
(that is, with a so-called contour integral—see the end of note 12 again),
and you can find it all worked-out that way in any number of advanced
books.27 You’ll see this result used to good effect in section 5.4.



2.1 The generalized harmonic walk.
As discussed in the opening section of chapter 1, one of the fundamental
intellectual breakthroughs in the historical understanding of just what
i = √−1 means, physically, came with the insight that multiplication
by a complex number is associated with a rotation in the complex plane.
That is, multiplying the vector of a complex number by the complex
exponential e iθ rotates that vector counterclockwise through angle θ .
This is worth some additional explanation, as this elegant property of
complex exponentials often pays big dividends by giving us a way to
formulate, in an elementary way, seemingly very difficult problems.
In An Imaginary Tale, for example, I showed how to use the rotation
idea to solve an amusing little “treasure hunt” puzzle from George
Gamow’s famous 1947 book One, Two, Three . . . Infinity.1 This chapter
is devoted to much more sophisticated problems than is Gamow’s, but
they will yield, too, in part, because of the “multiplication is rotation”
concept.

As our first warm-up exercise on thinking of vector trips in terms of
complex numbers and, in particular, in terms of complex exponentials,
consider the following problem. A man starts walking from the origin of
a rectangular coordinate system. His first step is of unit length along the
positive real axis. He then spins on his heels through the counterclock-
wise (positive) angle of θ and walks a second step of distance one-half
unit. Then he spins on his heels through another positive angle of θ and
walks a third step of distance one-third unit. He continues this process
endlessly (his next step, for example, is of distance one-fourth unit after
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Figure 2.1.1. A walk in the complex plane

spinning on his heels through yet another positive angle of θ). If the
spin angle is θ = 90◦, for example, his path is as shown in the upper left
plot of figure 2.1.1.

The first step of the walk is a vector of length one, at an angle of zero
to the real axis, that is, it is e i0 = 1. The second step is a vector of length 1

2
at angle θ to the real axis, that is, it is 1

2 e iθ . The third step is of length
1
3 at angle 2θ to the real axis, that is, it is 1

3 e i2θ . And so on. Thus, if p(θ)
is the position vector of the walker’s “ultimate destination” (what I’ll call
the endpoint), then

p(θ) = 1 + 1
2

e iθ + 1
3

e i2θ + 1
4

e i3θ + 1
5

e i4θ + · · · .



70 Chapter 2

If θ = 90◦ = π/2 radians, for example, then Euler’s formula says

p
(

π

2

)
= 1 + 1

2
e iπ/2 + 1

3
e iπ + 1

4
e i3π/2 + 1

5
e i2π + · · ·

= 1 + 1
2

i − 1
3

− 1
4

i + 1
5

+ 1
6

i − 1
7

+ 1
8

i · · ·

=
(

1 − 1
3

+ 1
5

− · · ·
)

+ i
(

1
2

− 1
4

+ 1
6

− · · ·
)

,

which we could (for this particular value of θ) have written by inspection.
From the Maclaurin power series expansion of ln(1 + x)—look back at
section 1.3—we recognize the second series as equal to 1

2 ln(2) because
1
2 − 1

4 + 1
6 −· · · = 1

2 (1− 1
2 + 1

3 −· · · ), while the first series has been known
since 1671 to be equal to π/4 (we’ll derive this result in chapter 4). Thus,
the final distance from the origin of our walker (for θ = π/2) is

∣∣∣∣p(π

2

)∣∣∣∣ =
√{π

4

}2 +
{

1
2

ln(2)

}2

= 0.8585.

For both θ = 0 and θ = 2π radians (0◦ and 360◦), it is clear that the
walk is simply a straight line path out along the positive real axis, and that
the endpoint is at infinity; I call these two special cases harmonic walks.2

For all θ �= 0, 2π it is physically clear that the general walk is a spiral that
converges to an endpoint that is a finite distance from the origin (the
top right plot of figure 2.1.1 shows the spiral for the spin angle θ = 30◦
and the bottom left plot shows the spiral for θ = 1◦). That is, |p(θ)|< ∞
for all θ �= 0, 2π . Since

p(θ) =
∞∑

k=1

cos {(k − 1)θ}
k

+ i
∞∑

k=1

sin {(k − 1)θ}
k

,

then a converging spiral for all θ �= 0, 2π means that both of these
sums converge for all θ �= 0, 2π . This is now obvious from the physical
interpretation of the sums as the real and imaginary (the x -axis and the
y-axis) components of a spiral walk, but it would be (I think) nontriv-
ial tasks to prove the convergences for almost all θ by purely analytical
means.
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The walks in figure 2.1.1 are not drawn to the same scale. The smaller
the spin angle the larger the spiral, as shown in the bottom right plot of
that figure (is it a priori obvious to you that the bottom right plot should
be symmetrical about the vertical line at the 180◦ spin angle?3). One
might guess that a spin angle of θ = 180◦ gives the walk that minimizes
the distance of the walk’s end-point from the origin, as that walk is simply
a decaying oscillation back-and-forth along the real axis. For θ = 180◦
we have

p = 1 − 1
2

+ 1
3

− 1
4

+ · · · = ln(2) = 0.693,

and the bottom right plot of figure 2.1.1 confirms that this is, indeed,
the distance of the endpoint from the origin when that distance is
smallest.

2.2 Birds flying in the wind.
This section does not use complex number anywhere (although it does
use vector concepts); it is a “warm-up” for the next section that does use
them in similar (but more complicated) problems.4 To begin, suppose
a bird flies along a straight path from point A to point B, and then back
to A. A and B are distance d apart. The bird’s speed, relative to the
ground, is V when there is no wind. The time to make the round trip, with
no wind, is then obviously T = 2d/V . Suppose now that there is a wind
blowing from A to B at speed W (<V ). When flying with the wind from
A to B the bird’s ground speed is V + W , and when flying against the
wind from B back to A, the bird’s ground speed is V − W , so the total
flight time is given by

d
V + W

+ d
V − W

= d(V − W ) + d(V + W )

(V + W )(V − W )

= Vd − Wd + Vd + Wd
V 2 − W 2 = 2Vd

V 2 − W 2

= 2Vd/V 2

(V 2 − W 2)/V 2 = 2d/V

1 − (W /V )2 = T

1 − (W /V )2 ≥ T

with equality if W = 0. That is, a nonzero wind increases the total round
trip flight time.5
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Suppose next that the bird flies through this same wind (called a
vector field) not along a straight, back-and-forth path, but rather along
a prescribed closed-loop two-dimensional path that we’ll call C. This
means, of course, that the bird is now flying not only sometimes with
and other times against the wind, but also at all possible angles to the
wind, too. What can we say now about the affect of the wind on the total
round trip flight time? Quite a lot, it turns out.

We imagine that the bird always attempts to fly along a straight line
through its body, from tail to beak, with velocity vector V relative to the
ground when there is no wind. The magnitude of V is a constant, but
of course the direction of V is not. Without a wind present, that vec-
tor would indeed define the direction of the bird’s motion. If there is
a wind velocity vector W (which we will take as a constant, i.e., same
speed and direction, everywhere) at some angle to V, however, it is
the vector sum of V and W that defines the instantaneous direction of
the bird’s motion. That is, the bird’s motion is defined by the velocity
vector v = V + W, which is tangent to the path C. Let’s suppose the
instantaneous angle between W and v is θ (which will, of course, vary
with the bird’s instantaneous position on C). From the law of cosines,
then, figure 2.2.1 shows that the relationship between v = |v|, V = |V|,
and W = |W| is

V 2 = W 2 + v2 − 2Wv cos(θ),

W (wind vector)

θ

v

V (tail-to-beak vector)

Figure 2.2.1. A bird in the wind
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or

v2 − [2W cos(θ)]v + W 2 − V 2 = 0.

This is easily solved for v to give

v = W cos(θ) ±
√

V 2 − W 2 sin2(θ).

We obviously require that V ≥ W to keep the square root real for
all θ . Actually, we require strict inequality, (i.e., V > W ) to keep v > 0,
which means the bird is always flying forward along C, even when it is
flying head-on into the wind (and on a closed-loop path that condition
will happen at some point). This same requirement also tells us that we
must use only the plus sign, in order to keep v > 0 for all V . Thus,

v = R + W cos(θ), R =
√

V 2 − W 2 sin2(θ).

Now, the differential time required for the bird to fly along a differential
segment ds of C is dt = ds/v. Thus, the total time to fly around C is

T =
∮
C

ds
v

,

where the circle in the symbol
∮

C means we add up all the differential
times ds/v as the bird travels the closed-loop path C. Thus,

T =
∮
C

ds
R + W cos(θ)

=
∮
C

R − W cos(θ)

{R + W cos(θ)}{R − W cos(θ)}ds

=
∮
C

R − W cos(θ)

R2 − W 2 cos2(θ)
ds =

∮
C

R − W cos(θ)

V 2 − W 2 sin2(θ) − W 2 cos2(θ)
ds

=
∮
C

R − W cos(θ)

V 2 − W 2{sin2(θ) + cos2(θ)}ds =
∮
C

R − W cos(θ)

V 2 − W 2 ds

=
∮
C

R
V 2 − W 2 ds − W

V 2 − W 2

∮
C

cos(θ)ds.

The projection of the differential length ds along the (fixed) wind
direction is cos(θ)ds. Since C is closed (the bird eventually returns to its
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starting point), then the total sum of all the infinitesimal projections
must be zero. Thus,

∮
C cos(θ)ds = 0, and so

T =
∮
C

R
V 2 − W 2 ds =

∮
C

√
V 2 − W 2 sin2(θ)

V 2 − W 2 ds >

∮
C

√
V 2 − W 2

V 2 − W 2 ds

=
∮
C

ds√
V 2 − W 2

>

∮
C

ds
V

.

But the last integral is the total time to fly around the closed path C
with no wind and so, with a wind present, it takes the bird longer to
fly around C. This generalizes our earlier result when the bird always
flew either completely with or completely against the wind on a straight
back-and-forth path.

There is an amusing (and, I think, surprising) implication of this
result for the “real world” of sports. Track and field events generally
have the stipulation that records don’t count if the wind is too strong
(or, at best, an asterisk is attached meaning “wind-aided”). The reason-
ing is seemingly obvious for such events as the discus, hammer, and
javelin throws, as well as short sprints (if the wind is from behind the
athlete). Our result here, however, shows that the “obviousness” is false
for running events that involve races requiring an integral number of
closed loops around a track (of any shape). Indeed, if a record is set in
such an event with a constant wind blowing in any direction, then the
record should absolutely count because the athlete would have done
even better without the wind!

Now, with these two warm-up examples done, let me show you a vector
trip problem in which complex numbers and vector rotation will be of
great help in arriving at an answer even more surprising than the one
above.

2.3 Parallel races.
A recent mathematical paper opens with the following passage:6

It all started one day when I went running on a trail with my faithful
dog Rover. Now Rover does not actually rove. In fact, Rover is so
well trained that he always runs exactly one yard to my right. As long
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Start
and

Finish

Figure 2.3.1. A complicated running trail

as I change direction smoothly, he will adjust his speed and his path
perfectly so as to remain in this position. . . . On this particular day
our trail was flat but curvy. We looped around several times. [see
figure 2.3.1]

Since the trail in the figure is traveled in the clockwise sense, it is
obvious that Rover (running on an inside parallel path to the right of his
master) runs the shorter distance. The author of this paper (a professor
of mathematics, of course!) then asked the following question: “How
much further did I run than Rover?” The answer to this question is almost
always a surprise to those who hear it for the first time, because it is so
simple to state. The trail shown in the figure seems so convoluted and
twisted that it is hard to believe the answer wouldn’t also be equally
complicated. We can, however, get a hint toward the answer by first
considering an almost trivial special case.

Figure 2.3.2 shows the paths of two runners who start and finish a
parallel run at the same time, with the inside runner following a trail
consisting of the sides of a triangle. The outside runner is always a fixed
distance d away from the inside runner. To satisfy this requirement, even
when the inside runner is at a vertex (A, B, or C) the outside runner must
swing around on the arc of a circle with radius d . Since the runners start
and finish together, this requires that the outside runner perform the
“swings” instantly (which is just slightly impossible!), but we’ll overlook
that objection (which is, of course, due to our triangle runner not making
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A B

C

βθ

γ

d

Figure 2.3.2. A triangular “parallel” run

his changes in direction “smoothly” at the vertices). All we care about,
after all, is the difference in the total distances traveled by the two runners.
Two observations can now be immediately made from the figure. First,
on the straightaways the two run the same distance. Second, the outside
runner has run one complete circular circumference of radius d after
executing the three swings (because θ + β + γ = 360◦). The total of
the partial circular swings is the source of the extra distance the outside
runner travels. Thus, the outside runner travels precisely 2πd further
than does the triangle runner, a value that is independent of the actual
size of the triangle. That is, the only parameter that matters is d , the
constant spacing between the two runners.

Wouldn’t it be nice if that were the case, too, for the convoluted run
of figure 2.3.1? Well, in fact it is (usually)! Under very general conditions
the difference between the distances run by the dog and his master is
simply equal to the product of the spacing between the two and the net
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angular change experienced by the running path’s tangential vector.
The above result for the simple triangular run of figure 2.3.2 is a special
case of this, of course, with the net angular change of the path’s tangen-
tial vector obviously equal to 2π (the tangential vector rotates through
one complete revolution from start to finish).

How can we prove that the difference in the distances run is a function
only of the separation distance and the angular change of the path’s
tangential vector? The triangular run was easy because the geometry of
the run was both fixed and simple. In the general case, however, we
could have much more complicated runs, with twists and loops galore,
far more than the run of figure 2.3.1. How could we possibly take all
that potential complexity into account? Complex numbers, and vector
rotation by multiplication by i = √−1, are the key.

We’ll start by taking a look at figure 2.3.3, which shows an arbitrary
section of the path C traveled by our runner (we’ll get to the dog in
just a bit). As shown in the figure, the point O serves as our origin, with
the vector r(t) from O to a point on C defining the runner’s position
vector at time t . The vector r(t) makes angle θ(t) with the horizontal axis

C
path of runner

r(t)

N(t)

T(t)

(t)φ

(t)θ

O

Figure 2.3.3. Defining our notation
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through O. Thus, if x(t) and y(t) are the coordinates of the runner at
time t , then we have

r(t) = x(t) + iy(t),

|r(t)| =
√

x2(t) + y2(t).

The velocity vector of the runner is r′(t), where the prime denotes
differentiation with respect to t :

r′(t) = d
dt

r(t) = x ′(t) + iy′(t).

The magnitude of the velocity vector is the runner’s speed, which when
integrated with respect to t gives the distance traveled along C :∣∣r′(t)

∣∣ =
√

x ′2 + y′2 = r ′(t).

And finally, the unit tangent vector to C is T(t), where

T(t) = r′(t)
|r′(t)| = r′(t)

r ′(t)
= x ′ + iy′√

x ′2 + y′2 .

This is because the velocity vector r′(t) is tangent to C, and so dividing r′(t)
by its own magnitude gives us a unit length vector in the same direction
as r′(t). Thus, r′(t) = T(t)|r′(t)|. (Notice that T(t) is dimensionless.)

And finally, to complete the preliminary development of our notation,
imagine that we rotate r′(t) by 90◦, counterclockwise, to get a vector
perpendicular (normal) to T(t). That is, let’s multiply r′(t) by i , to get
ir′(t) = i[x ′(t) + iy′(t)] = −y′(t) + ix ′(t). If we divide this vector by its
length then we get the unit normal vector N(t) (as shown in figure 2.3.3)
which points to the runner’s left :

N(t) = ir′(t)
|r′(t)| ,

which is, like T(t), dimensionless. The reason we will need N(t) is
because it will allow us to write a mathematical expression for the dog ’s
location: since the dog is at the runner’s right, then the dog’s position
vector is

d(t) = r(t) − αN(t),
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where α represents the constant distance the dog maintains between
himself and his master (α is equal to one yard in the original problem
statement).

Next, without attempting to explain immediately why we are doing
the following calculation (you’ll see why, soon), let’s find an expression
for θ ′(t), the rate of change of the angle the runner’s position vector
makes with the horizontal axis. Since

cos{θ(t)} = x√
x2 + y2

,

then differentiation with respect to t gives (remember, θ , x , and y are all
functions of t)

− sin(θ)θ ′ = x ′√x2 + y2 − x/(2
√

x2 + y2)(2xx ′ + 2yy′)
x2 + y2

= x ′(x2 + y2) − x2x ′ − xyy′

(x2 + y2)3/2 = x ′y2 − xyy′

(x2 + y2)3/2 .

But

sin(θ) = y√
x2 + y2

,

so

θ ′ = − x ′y2 − xyy′

sin(θ)(x2 + y2)3/2 = − x ′y2 − xyy′

(y/
√

x2 + y2)(x2 + y2)3/2
= −x ′y − xy′

x2 + y2 ,

that is,

θ ′ = xy′ − x ′y
x2 + y2 .

Why did we do this? That is a pertinent question to ask because we
actually are not going to need θ ′ itself to solve our original problem.
You’ll recall that the angle we will find to be at the core of the solution
is the net angular change of the path’s tangential vector (θ is the angle
of the runner’s position vector). That is, it is φ(t), the angle T(t) makes
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with the horizontal that we are going to be interested in, not θ(t). You will
be relieved to know, however, that there is actually a reason for what we
did. The reason for calculating θ ′(t) is that not only is it easy to do but
knowledge of θ ′(t) will guide us quickly and painlessly to φ′(t). Here’s
how. We start by writing our earlier expression for T(t) as

T(t) = r′(t)
|r′(t)| = c(t)r′(t),

where

c(t) = 1
|r′(t)| = 1

r ′(t)
.

Thus,

T(t) = c(t)[x ′(t) + iy′(t)] = c(t)x ′(t) + ic(t)y′(t).

Now, think about what we have here. We have a vector with given
components—c(t)x ′(t) and c(t)y′(t)—that makes an angle φ(t) with the
horizontal axis. But with our earlier calculation we worked out θ ′(t), the
derivative of an angle that a vector with given components—x(t) and
y(t)—makes with respect to the horizontal axis. All that is different in
these two cases is the given components. So, we can simply use c(t)x ′(t)
and c(t)y′(t) for x(t) and y(t), respectively, in the equation for θ ′(t) to
get φ′(t). Thus, by inspection(!),

φ′(t) = (cx ′)(cy′′ + c ′y′) − (cx ′′ + c ′x ′)(cy′)
c2x ′2 + c2y′2 = c2x ′y′′ − c2x ′′y′

c2x ′2 + c2y′2 ,

or

φ′ = x ′y′′ − x ′′y′

x ′2 + y′2 .

Now, recall that

N(t) = ir′(t)
|r′(t)| = −y′ + ix ′√

x ′2 + y′2 .

Therefore,

N′(t) =
√

x ′2 + y′2(−y′′ + ix ′′) − (−y′ + ix ′)(x ′x ′′ + y′y′′)/(
√

x ′2 + y′2)
x ′2 + y′2 ,
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which reduces, after just a bit of algebra, to

N′(t) = x ′ + iy′√
x ′2 + y′2 · x ′′y′ − y′′x ′

x ′2 + y′2 = T(t){−φ′(t)},

that is, to

N′(t) = −φ′(t)T(t) .

Recall, too, the position vector for the dog, who always stays the
constant distance α to the runner’s right:

d(t) = r(t) − αN(t).

Thus,

d′(t) = r′(t) − αN′(t) = r′(t) + αφ′(t)T(t).

You’ll recall from earlier, however, that we have r′(t) = T(t)|r′(t)|, and so

d′(t) = T(t)|r′(t)| + αφ′(t)T(t) = {|r′(t)| + αφ′(t)}T(t).

The dog’s speed is simply the absolute value of d′(t), and so his speed is

|d′(t)| = |{|r′(t)| + αφ′(t)}T(t)|,
or, since the absolute value of a product is the product of the absolute
values,

|d′(t)| = |{|r′(t)| + αφ′(t)}||T(t)|.
Now, recall that T(t) is the unit tangent vector to C, that is, that |T(t)|= 1,
and so, finally,

|d′(t)| = |{|r′(t)| + αφ′(t)}|.
Now we make an assumption that I will defer justifying until the end

of the analysis, that |r′(t)| + αφ′(t) ≥ 0 for all t . Then the dog’s speed
becomes

|d′(t)| = |r′(t)| + αφ′(t)
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where, keep in mind, the runner ’s speed is |r′(t)| . If we integrate a speed
over any time interval we’ll get the distance run during that interval. So,
denoting the distances run in the time interval 0 to T̂ by the runner and
the dog as LR and LD , respectively, we have

LR − LD =
T̂∫

0

| r′(t) | dt −
T̂∫

0

{| r′(t) | +αφ′(t)}dt

= −α

T̂∫
0

φ′(t)dt = −α{φ(T̂ ) − φ(0)} = α{φ(0) − φ(T̂ )}.

At the start of the run, φ(0) = 0. If you follow Figure 2.3.1 from
start to finish you should see that the tangential vector to C rotates
through one-and-a-half clockwise revolutions by the end of the run, that
is, φ(T̂ ) = −3π . So, if α equals one yard, then

LR = LD + 1 · {0 − (−3π)} = LD + 3π .

That is, the runner has traveled 3π yards more than has the dog.
One final point: what about the assumption made earlier that |r′(t)| +

αφ′(t) ≥ 0? We can see the physical significance of this assumption by
recalling that the radius of curvature, at an arbitrary point on the runner’s
path, is R(t), where

R(t) = {x ′2 + y′2}3/2

x ′y′′ − x ′′y′ .

The concept of the radius of curvature (due to Newton, from 1671)
is defined at every point along a curve, and refers to the radius of the
circle that “most snugly fits” the curve at each point. Its reciprocal is
called the curvature. For example, a straight line can be thought of as
the circumference of a circle with infinite radius (and so the curvature
of a straight line is the reciprocal of infinity, or zero). And the circle
that “most snugly fits” a circular curve is the circle itself—the radius of
curvature of a circle is the radius of the circle—and since the radius is
a constant then so is the curvature. You can find the above formula for
R(t) derived in just about any calculus textbook.
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The radius of curvature can be either positive or negative; it is negative
when the path is turning clockwise, and positive when the path is turning
counter-clockwise. Since, from before, we have |r′(t)|= √

x ′2 + y′2 (and
looking back at the boxed expression for φ′(t)), you can immediately
see that

R(t) = |r′(t)|
φ′(t)

.

Thus, if |r′(t)| + αφ′(t) < 0, then |r′(t)|< −αφ′(t). An absolute value
is nonnegative, of course, and so the condition |r′(t)| + αφ′(t) < 0 is
equivalent to saying 0 <|r′(t)|< −αφ′(t). (Since the physical meaning
of α requires α > 0, it is clear that φ′(t) < 0.) Using the left endpoint
of the double inequality on |r′(t)| we have R(t) < 0, and using the right
endpoint we have −α < R(t). Thus,

−α < R(t) < 0.

Since R(t) is negative, then we see that the condition |r′(t)| + αφ′(t) < 0
means the runner is turning clockwise (i.e., toward the dog) with a radius
of curvature less than the separation distance (as the radius of curvature
of a turn decreases the turn becomes sharper, i.e., more severe). When
that happens, our simple result no longer applies and, as the creator of
this problem wrote (see note 6 again),

I would be turning towards Rover so sharply that he could not
compensate by slowing down. Instead he would have to do some
additional running around (perhaps on a rather small scale) in
order to remain in the ideal position beside me. Our simple for-
mula [for the difference in the distances traveled by the runner
and his dog] would no longer apply. The reader might like to think
about what happens if, for example, I run clockwise around a circle
of radius less than one yard, while Rover remains exactly one yard
to my right.

That final sentence is a good challenge problem, too. The author
doesn’t provide the answer but it isn’t too hard to work out, and so I’ll
let you think about it for a while (you can find the answer in the last
section of this chapter).
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2.4 Cat-and-mouse pursuit.
In the previous section we used complex vector concepts to solve a racing
problem. The same ideas can be used to solve a historically important
chase problem, too. Suppose a mouse suddenly comes upon a snoozing
cat and, startled and excited, begins running in a circle centered on the
cat (mice are not very smart!). The cat awakes and, upon observing that
lunch has arrived, begins its chase. The question of interest for the cat
is: can I catch the mouse? The mouse, of course, has a related question:
can I escape the cat?

The mathematical origin of such problems dates from 1732 and is
due to the French mathematician and hydrographer Pierre Bouguer
(1698–1758), who formulated his pioneering analysis in response to a
most practical problem of his day—determining the path followed by
a pirate ship pursuing a merchant vessel sailing on a straight escape
path. For us, however, let’s return to our hungry cat and its prey, the
mouse (whose circle is a more complicated path than is the merchant
vessel’s). To set the cat-and-mouse problem up for mathematical analysis,
you’ll see that complex numbers and their associated vectors, and Euler’s
formula, will be most helpful. First, some assumptions.

Denoting the cat and the mouse by C and M, respectively, let’s agree
to start measuring time, t , at the instant the cat awakes (t = 0). Further-
more, let’s agree to let the radius of the circle the mouse runs along be
unity. This involves no loss of generality, as we can measure distance in
any units we wish. Also, let’s draw our coordinate system such that at
t = 0 the mouse (point M ) is at (1,0), and that the mouse runs around
its circular path in the counterclockwise sense at a constant speed of
unity. Again, these assumptions have no affect on the generality of our
analysis—as for the speed assumption, we’ll simply reference the cat’s
speed (also assumed to be a constant) to the mouse’s unity speed: for a
“slow” cat its speed is less than one, and for a “fast” cat its speed is greater
than one.

Now, finally, our last major assumption: we have to decide what strategy
the cat will employ in its chase. Assuming our cat lives its life always doing
what appears to be the most direct thing to bring it instant pleasure,
let’s assume our kitty uses what is called a pure pursuit strategy. That is,
at every instant of time the cat runs directly towards the instantaneous
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location of the mouse. So, here’s what we have: C is a point pursuing
M such that C ’s velocity vector always points at M ’s present location, and
the vector magnitudes for C and M are constant. The magnitude of C ’s
velocity vector is the cat’s speed, s, while of course the magnitude of the
mouse’s velocity vector (its speed) is one. If we write m(t) as the mouse’s
location at time t , then the mouse’s position vector is

m(t) = cos(t) + i sin(t) = e it ,

which agrees with our assumption that the mouse is at (1, 0) at t = 0.
Notice, also, that as t increases from zero the angle of m(t) increases
from zero, that is, m(t) rotates in the CCW sense. And finally, the velocity
vector of the mouse is

d
dt

m(t) = − sin(t) + i cos(t),

so the mouse’s speed is indeed the constant one because

| d
dt

m(t)| = | − sin(t) + i cos(t)| =
√

sin2(t) + cos2(t) = 1.

As for the cat, let’s write its position vector as

c(t) = x(t) + iy(t).

Then, as shown in figure 2.4.1, the geometry of the problem requires that
the vector pointing from C to M be e it − c(t). Now, since C always runs
directly toward M, C ’s velocity vector always points toward M, and as just
demonstrated, we have such a vector in e it − c(t). To get the magnitude
of the cat’s velocity vector right, first notice that the unit vector (recall
from the previous section that a unit vector has length one) pointing
from C to M is simply e it − c(t) divided by its own length,

e it − c(t)
|e it − c(t)| .
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C

M

eit

c(t )

eit − c(t )

Figure 2.4.1. The geometry of cat-and-mouse pursuit

So, since we need a vector of length (magnitude) s for the cat’s velocity
vector, we can write that velocity vector as

d
dt

c(t) = dx
dt

+ i
dy
dt

= s
e it − c(t)

| e it − c(t) | .

And thus, using Euler’s formula to expand e it , we have

dx
dt

+ i
dy
dt

= s
cos(t) + i sin(t) − x − iy

| cos(t) + i sin(t) − x − iy |
= s

{cos(t) − x} + i{sin(t) − y}
| {cos(t) − x} + i{sin(t) − y} |

= s
{cos(t) − x} + i{sin(t) − y}√{cos(t) − x}2 + {sin(t) − y}2

.
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If we now equate real and imaginary parts, we arrive at the following pair
of differential equations:

dx
dt

= s
cos(t) − x√{cos(t) − x}2 + {sin(t) − y}2

= s
cos(t) − x
D(t , x , y)

,

dy
dt

= s
sin(t) − y
D(t , x , y)

,

where D(t , x , y) = √{cos(t) − x}2 + {sin(t) − y}2.
To solve these differential equations analytically for x(t) and y(t) is

probably not possible, that is, I can’t do it! But it is not at all difficult to
get numerical results for any given value of s, using a computer, a good
programming language (e.g., MATLAB), and the rather unsophisticated
approach of approximating the derivatives with the ratios of very small
(but nonzero) increments, that is, for a fixed, small value of t , we have

dx
dt

≈ x
t

,
dy
dt

≈ y
t

.

Thus, for some given initial values of t , x , and y, our approach is to write
the pair of differential equations as

x ≈
{

s
cos(t) − x
D(t , x , y)

}
t , y ≈

{
s

sin(t) − y
D(t , x , y)

}
t

and then to calculate new values of x , y, and t as

xnew = xold + x , ynew = yold + y, tnew = told + t .

If we repeat this process a large number of times, then (assuming round-
off errors don’t accumulate too much) we can plot these values of x
and y to show the trajectory of the cat.7 We can simultaneously plot the
mouse’s trajectory because we already know where the mouse is at each
instant of time (on its circle). Figures 2.4.2 and 2.4.3 show two such plots,
each using t = 0.001 seconds. Figure 2.4.2 is for a “fast” cat running
1.05 times as fast as the mouse, and this cat does eventually capture
the mouse (the MATLAB program looped through 2, 500 iterations to
generate this figure, that is, the simulated duration of the pursuit is
2.5 seconds). Figure 2.4.3, however, shows that a “slow” cat running 0.9
times as fast as the mouse does not end in a capture—the cat’s trajectory
quickly settles down into a circle, itself, that remains inside and forever
lagging the mouse’s circular trajectory.
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2.5 Solution to the running dog problem.
Let the man run on a circular path (centered on the origin) with radius
A, while his dog always stays precisely one yard to his right. We can write
the parametric equations of the runner’s circular path as

x(t) = −A cos(t), y(t) = A sin(t).

These equations describe a clockwise circular run of radius A that begins
(at time t = 0) at x = −A, y = 0 and, at some later time, returns to the
starting point. Then, using the equations developed in section 2.3, the
man’s position vector is

r(t) = −A cos(t) + iA sin(t) = A[− cos(t) + i sin(t)],

and so

r′(t) = A[sin(t) + i cos(t)],

which says |r′(t)|= A. This also tells us that

T(t) = r′(t)
| r′(t) | = sin(t) + i cos(t),

and so

N(t) = iT(t) = − cos(t) + i sin(t) = r(t)
A

.

And finally, the dog’s position vector is d(t) = r(t) − αN(t) (remember,
α = 1 yard) and so

d(t) = r(t) − r(t)
A

=
(

1 − 1
A

)
r(t).

By studying this last result, for various values of A, we discover a very
interesting behavior. First, if A > 1 (the man runs around in a “big”
circle) then the factor (1 − 1/A) is such that 0 < (1 − 1/A) < 1 and
the dog simply runs around (always one yard to his master’s right) on a
“smaller” circle inside the man’s circle. If we now imagine A shrinking,
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then when A = 1 we have d(t) = 0: the dog doesn’t really “run” at all,
but merely spins around on its feet while remaining on the origin! If
A continues to shrink, then for A < 1 we see that the factor (1 − 1/A)

is such that −∞ < (1 − 1/A) < 0. The fact that the factor is negative
means d(t) is now pointing in the direction opposite to r(t): the nature of
the problem has suddenly and dramatically changed because, for A < 1,
the man and the dog are not really running together anymore; the man
and the dog are now on opposite sides of the origin! In the special case
of A = 1/2, for example, where d(t) = −r(t), we actually have a chase
rather than a parallel run: the man and the dog are running on the
same circle, half a circumference apart (it isn’t at all clear who is chasing
who, however!) and yet, the dog is always exactly one yard to the man’s
right.

The case where A shrinks even more
(
A < 1

2

)
, is shown in figure 2.5.1,

where the radius of the runner’s circle is A and the radius of the dog’s
circle is |A(1−1/A)|. We need the absolute value signs since the radius of
a circle is always nonnegative and, for this situation, 1 − 1/A is negative.
Notice that, for A < 1,

∣∣∣∣A (1 − 1
A

)∣∣∣∣ = |A − 1| = 1 − A,

and so the distance between the runner and his dog is, indeed, still one
(yard) even when A < 1 because (A) + (1 − A) = 1. Most surprising
of all, perhaps, is that it is now clear that it is the dog, not the man,
that runs on the larger circle! And finally, as A shrinks even more, until
it finally reaches zero, we see that it is the man who has now stopped
running—it is he who is now spinning around on his feet while remaining
on the origin (as did the dog when A = 1). When A = 0 the dog
runs along a circular path (of radius one yard) around the stationary
(spinning) man.

We see from all this that our original result, that the man runs a
distance greater than the dog’s distance by an amount equal to 2π times
the net number of clockwise rotations of T(t), fails for A < 1. For a
circular path the net number of rotations of T(t) is obviously one, for
any A; our formula gives the man’s total run distance as 2π yards greater
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dog

man

A

1 − A

A < 1/2

Figure 2.5.1. The geometry of the man running on a “small” circle
(A < 1

2 )

than the dog’s for any A. But for A < 1 we see that actually the man
runs a total distance of LR = 2πA and the dog runs a total distance of
LD = 2π(1 − A). Thus,

LR − LD = 2πA − 2π(1 − A) = 4πA − 2π = 2π(2A − 1),

which is less than 2π since A < 1. Indeed, for A < 1/2, LR − LD < 0; it is
the dog that runs further (as clearly shown in figure 2.5.1), not the man.



3.1 The irrationality of π.
The search for ever more digits of π is many centuries old, but the
question of its irrationality seems to date only from the time of Euler. It
wasn’t until the1761 proof by the Swiss mathematician Johann Lambert
(1728–1777) that π was finally shown to be, in fact, irrational. Lambert’s
proof is based on the fact that tan(x) is irrational if x �= 0 is rational.
Since tan(π/4) = 1 is not irrational, then π/4 cannot be rational, i.e.,
π/4 is irrational, and so then π too must be irrational. Lambert, who
for a while was a colleague of Euler’s at Frederick the Great’s Berlin
Academy of Sciences, started his proof by first deriving1 a continued
fraction expansion for tan(x),

tan(x) = 1
1
x − 1

3
x − 1

5
x − 1

7
x −···

Lambert’s derivation was done in a less than iron-clad way, however, and
a really solid mathematical demonstration wasn’t published until the
French mathematician Adrien-Marie Legendre (1752–1833) brought
out the seventh edition of his book Eléments de géométrie (1808). In fact,
Legendre did more than show π is irrational; he showed that π2 is irra-
tional. If π2 is irrational then so must be π . (The converse does not
follow, e.g.,

√
2 is irrational but its square is obviously rational.) After

all, if π were rational, that is, if there exist integers p and q such that
π = p/q , then π2 = p2/q2, which is also a ratio of integers, and so π2

would be rational as well. If one has, however, previously shown that π2

is not rational then we have a contradiction with the assumption that
π = p/q , which shows that π itself can not be rational.
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Legendre suspected that π ’s irrationality is fundamentally different
from

√
2’s, writing in his book that “It is probable that the number

π is not even included in the algebraic irrationals [as is
√

2], but it
appears to be very difficult to demonstrate this proposition rigorously.”2

Indeed, it wasn’t until 1882 that the German mathematician Ferdinand
Lindemann (1852–1939) showed that π is transcendental (with the aid
of Euler’s formula). The transcendental problem is an amusing one
because most real numbers are transcendental3 and yet, paradoxically,
demonstrating that any particular real number is transcendental can
be very difficult (as Legendre noted in the case of π). This was recog-
nized by the German mathematician David Hilbert (1862–1943), who,
in 1900, presented the mathematical world with a list of twenty-three
unsolved problems. Number seven on that famous list4 was a challenge
to study the transcendence problem, and in particular to determine the
nature of 2

√
2.

In 1929 the Russian mathematician Alexander Gelfond (1906–1968)
made some progress by showing that ab , where a �= 0 or 1 but algebraic
and b = i

√
c , where c is a positive, nonsquare integer, is transcenden-

tal. In 1930 his fellow Russian Rodion Kuzmin (1891–1949) extended
this to include the case where b = √

c is real. Kuzmin’s result thus
answered Hilbert’s specific question in the affirmative; 2

√
2 is transcen-

dental. And finally, in 1936 the German mathematician Carl Siegel
(1896–1981) showed that ab (a �= 0 or 1 but algebraic and b not real
and rational) is always transcendental.5 An important special case is
a = i (which is algebraic—see note 2 again) and b = −2i (which is
certainly not real). Thus, i−2i must be transcendental. But, using Euler’s
formula,

i−2i = (e iπ/2)−2i = e (iπ/2)(−2i) = eπ .

Thus, eπ is transcendental (the natures of “similar” numbers such as π e ,
ππ , e e , e + π , and πe , however, are still unknown).

Now, before starting the math of this chapter, first a little philosophy.
Does it really matter that π is irrational? Do physicists or engineers really
need to know the value of π beyond, say, 3.14159265 (or even the crude
approximation that schoolchildren are often taught, 22/7)? Probably
not. As the Plumber says in Kandelman’s Krim,
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It is now an accepted fact among plumbers, a fact impressed on all
apprentices, that the circumference of a pipe is found by multiply-
ing the diameter by π . . . I am of course perfectly well aware of the
irrationality of π , but, on the job, π is 3 1

7 , or 3 if I am in a hurry.6

The question of π ’s irrationality isn’t a question of accuracy, however,
but rather it is a spiritual issue. As one mathematician wrote in a book
for a lay audience,7

What does it matter whether π is rational or irrational? A mathe-
matician faced with [this] question is in much the same position as
a composer of music being questioned by someone with no ear for
music. Why do you select some sets of notes and have them repeated
by musicians, and reject others as worthless? It is difficult to answer
except to say that there are harmonies in these things which we
find that we can enjoy. It is true of course that some mathematics
is useful. [The applications of logarithms, differential equations,
and linear operators are then mentioned.] But the so-called pure
mathematicians do not do mathematics for such [practical appli-
cations]. It can be of no practical use8to know that π is irrational, but if
we can know it would surely be intolerable not to know.

A demonstration of π ’s irrationality is not often presented in under-
graduate texts, but it can in fact be done with freshman calculus concepts
and Euler’s formula. In the next several sections I’ll follow in Legen-
dre’s footsteps and show you the stronger result that π2 is irrational,
although the approach I’ll use is a modern one, not Legendre’s orig-
inal proof. (An immediate consequence of this is that Euler’s sum of
the reciprocals squared—equal to π2/6—is irrational.) The proof (one
by contradiction) that I’ll show you is essentially the one given in Carl
Siegel’s beautiful little 1946 book Transcendental Numbers. That book is a
reprint of a series of typed lectures Siegel gave at Princeton in the spring
of 1946, and those notes are (very!) terse. Siegel was speaking to gradu-
ate students and professors of mathematics, and often leaped over many
intervening steps from one equation to the next, steps which he clearly
thought to be self-evident to his audience.9 Some of the leaps were of
Olympic size. I have filled in those missing steps. So, we begin.
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3.2 The R(x) = B(x)ex + A(x) equation, D-operators, inverse
operators, and operator commutativity.

We know that the power series expansion of ex is one of “infinite degree”
that is, there is no largest n for the general term of xn in the expansion.
Suppose, however, that we attempt to approximate ex in the neighbor-
hood of x = 0 by the ratio of two finite polynomials, each of degree n.
That is, if A(x) and B(x) are each of degree n, then we wish to find A(x)

and B(x) such that, for x ≈ 0,

ex ≈ −A(x)

B(x)
.

With this goal in mind, we’ll start by defining the function R(x) to be

R(x) = B(x)ex + A(x) = B(x)

[
ex + A(x)

B(x)

]
,

which means R(x) will be “small” for x ≈ 0 if we have selected A(x) and
B(x) properly. In the next section I’ll use the results of this section to
solve the R(x) equation for A(x) and B(x).

Since A(x) and B(x) are each of degree n, we can write

A(x) = a0 + a1x + a2x2 + · · · + anxn ,

B(x) = b0 + b1x + b2x2 + · · · + bnxn ,

and so it is clear, by direct multiplication and the power series of ex , that

R(x) = (a0 + b0) + (a1 + b0 + b1)x

+ (a2 + b1 + 1
2!b0 + b2)x2 + · · · .

Let’s next suppose that we wish R(x) to start with the x2n+1 term, that
is, let’s demand that the coefficients of the first 2n + 1 terms of R(x)

vanish. This means that, as x → 0, R(x) will vanish as fast as x2n+1

vanishes (which is, of course, faster than the vanishing of x itself). This
requirement serves as a measure of how well we have determined A(x)

and B(x). The faster R(x) vanishes as x → 0 (the larger is n) the better
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our approximation of ex . So, setting the first 2n + 1 coefficients of R(x)

to zero, we have

a0 + b0 = 0,

a1 + b0 + b1 = 0,

a2 + b1 + 1
2!b0 + b2 = 0,

and so on. Notice, carefully, that this gives us 2n + 1 equations for the
2n+2 coefficients of A(x) and B(x), that is, we have more unknowns than
equations, so the coefficients of A(x) and B(x) are under determined by
our requirement that the first 2n + 1 terms of R(x) vanish. It is clear,
therefore, that there must exist a nontrivial solution for the n + 1 as and
the n + 1 bs.

We can find general formulas for A(x) and B(x) (in the next section)
as soon as we develop some preliminary results concerning what is called
the differentiation operator. We start by defining this operator, denoted by
D, as follows: if n is a positive integer then Dnφ(x) will mean the nth
derivative of the function φ(x). Thus, we actually have an infinite set of
operators defined as

Dnφ(x) = dn

dxn φ(x), n = 1, 2, 3, · · · .

Since differentiation is a linear operation, it is clear that if c1 and c2 are
constants then

Dn {c1φ1(x) + c2φ2(x)} = c1Dnφ1(x) + c2Dnφ2(x).

We can extend the meaning of Dnφ(x) to the case where n is a nonpos-
itive integer (n ≤ 0) as follows, with two observation. First, if n = 0, we
make the plausible argument that since n = 0 means zero differentiations
(which leaves φ(x) unaffected), it “must” be so that

D0φ(x) = φ(x),

which means, formally, that we can think of the operator D0 as equivalent
to simply multiplying by one. Indeed, we will think of an operator function
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of D, for example, g (D) = 1+D, as equivalent to unity when applied zero
times, i.e., g (D)0 = (1 + D)0 = 1. Second, since (dk/dxk){djφ/dxj } =
dk+jφ/dxk+j , for k and j both positive integers, then formally we have
DkD jφ(x) = Dk+jφ(x); we’ll extend this to include all integer values of
k and j , even negative ones.

Now, what could D−1 possibly mean? It can’t mean doing less than zero
differentiations, right? Well, formally, D−1D1 = D0 = 1, so D−1 should
be the mathematical operation that “undoes” what D1 does. That is, D−1

is the inverse operator of D1; D−1 should be an integration. So, let’s define
D−1 as

D−1φ(x) =
x∫

0

φ(t)dt .

The t is, of course, simply a dummy variable of integration.
Two operators are said to commute when the order of their applica-

tion doesn’t matter. So, if the operators D1 and D−1 commute, then it
would be true that D1D−1φ(x) = D−1D1φ(x). It is easy to show, however,
that this is generally not the case for these two operators. That is, from
Leibniz’s rule for differentiating an integral,10 we have

D1D−1φ(x) = d
dx

⎧⎨⎩
x∫

0

φ(t)dt

⎫⎬⎭ = φ(x),

while

D−1D1φ(x) = D−1 d
dx

φ(x)

=
x∫

0

d
dt

φ(t)dt =
x∫

0

dφ

dt
dt =

x∫
0

dφ = φ(x) − φ(0).

So, D1D−1 �= D−1D1 unless it just happens that φ(0) = 0. You’ll see, as
we proceed into the development of our proof for the irrationality of
π2, that matters will be cleverly arranged so that this condition for the
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commutativity of D1 and D−1 is always satisfied, even though it is not
true in general. We will just be very careful to work only with φ-functions
such that φ(0) = 0.

Now, what if n = −2—what could D−2 mean? We might think that
since D−1 is an integration then D−2 should mean two integrations, and
indeed, that is so. But there is a clever trick that will allow us to reduce the
two integrations back down to one. This is one of the points I mentioned
earlier that Seigel passes over without comment in his book, so here is
how it is done. We start by writing

D−2φ(x) = D−1D−1φ(x) = D−1

x∫
0

φ(t)dt .

Next, if we write

f (x) =
x∫

0

φ(t)dt =
x∫

0

φ(s)ds

(the two integrals are equal because all that has “changed” is the dummy
variable of integration, from t to s, which is really no change at all), then

D−2φ(x) = D−1f (x) =
x∫

0

f (t)dt =
x∫

0

⎧⎨⎩
t∫

0

φ(s)ds

⎫⎬⎭ dt .

The double integral has a very nice geometric interpretation, as shown
in figure 3.2.1. It represents the integration of φ (in vertical strips)
over the two-dimensional triangular region shown in the figure. To see
this, think of what the double integral notation is “saying”: pick a value
for t from the interval 0 to x (the outer integral) and then, for that
value of t , integrate φ(s) from s = 0 to s = t (the inner integral),
which is a vertical integration path (a strip of width dt). Picking a new
value for t simply selects a new vertical integration path (strip) and, as
t varies from 0 to x , the total of all these strips covers the triangular
region.

From the same figure you can see, however, that we can integrate φ

over the same region in horizontal strips (of width ds) just as well, by
writing the double integral as

∫ x
0

{∫ x
s φ(s)dt

}
ds. Since we can pull φ(s)
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Figure 3.2.1. Region of integration for D−2

out of the inner integral (the inner integration variable is t , not s), we
therefore have

D−2φ(x) =
x∫

0

⎧⎨⎩
x∫

s

φ(s)dt

⎫⎬⎭ ds =
x∫

0

φ(s)

⎧⎨⎩
x∫

s

dt

⎫⎬⎭ ds =
x∫

0

φ(s)(x − s)ds,

and so, as claimed, D−2 is a one-dimensional integral, just as is D−1.
Well, then what about D−3? Can we repeat the above arguments to see
what D−3 is? Yes!

Since D−3φ(x) = D−1D−2φ(x), we have

D−3φ(x) = D−1

x∫
0

φ(s)(x − s)ds = D−1f (x) =
x∫

0

f (t)dt ,

where

f (x) =
x∫

0

φ(s)(x − s)ds.
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So

D−3φ(x) =
x∫

0

⎧⎨⎩
t∫

0

φ(s)(t − s)ds

⎫⎬⎭ dt ,

and this double integral is, using the same argument as before,

D−3φ(x) =
x∫

0

⎧⎨⎩
x∫

s

φ(s)(t − s)dt

⎫⎬⎭ ds =
x∫

0

φ(s)

⎧⎨⎩
x∫

s

(t − s)dt

⎫⎬⎭ ds.

The inner integral is easy to do (change variable to u = t − s and you
should see that the inner integral equals 1

2 (x − s)2). Thus,

D−3φ(x) =
x∫

0

φ(s)
(x − s)2

2
ds.

If you continue in this manner (or use mathematical induction) you
should be able to convince yourself that the general result is

D−n−1φ(x) =
x∫

0

φ(s)
(x − s)n

n! ds, n = 0, 1, 2, 3, · · · .

So far I’ve not said anything about the nature of φ(x). To be quite
specific on this point, we’ll limit ourselves from now on to functions
that have the form φ(x) = eλxP (x), where λ is a constant and P (x) is a
polynomial such that P (0) = 0 (which means φ(0) = 0, and so D1 and
D−1 will commute). This is pretty specific, but it will prove to be all we’ll
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need to establish the irrationality of π2. Then,

D1φ(x) = D1 {eλxP (x)
}

= d
dx

{
eλxP (x)

}
= eλx dP

dx
+ λeλxP (x)

= eλx
{
λP (x) + dP

dx

}
= eλx {λP (x) + D1P (x)

}
,

or, finally, if we adopt the simpler notation of just writing D for D1,

Dφ(x) = eλx (λ + D)P (x).

Continuing in the same fashion, we can write

D2φ(x) = D {Dφ(x)}

= d
dx

{
eλx

[
λP (x) + dP

dx

]}
= eλx d

dx

[
λP (x) + dP

dx

]
+ λeλx

[
λP (x) + dP

dx

]
= eλx

[
λ

dP
dx

+ d2P
dx2

]
+ λ2eλxP (x) + λeλx dP

dx

= eλx [λDP (x) + D2P (x)
]+ λ2eλxP (x) + λeλxDP (x)

= eλx [D2 + 2λD + λ2]P (x) = eλx (D + λ)2P (x),

or, finally,

D2φ(x) = eλx (λ + D)2P (x).

If you repeat this process over and over (or use induction) it is easy to
see that, in general,

Dnφ(x) = DneλxP (x) = eλx (λ + D)nP (x), n = 0, 1, 2, · · · .
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We have now developed all the mathematical machinery we need to solve
the equation R(x) = B(x)ex + A(x) for A(x) and B(x), the topic of the
next section.

3.3 Solving for A(x) and B(x).
Differentiation of R(x) = B(x)ex + A(x) a total of n + 1 times gives

Dn+1R(x) = Dn+1 {B(x)ex + A(x)
} = Dn+1 {B(x)ex}+ Dn+1A(x).

Since A(x) is (by our assumption at the start of the last section) of
degree n, then Dn+1A(x) = 0, and so, from the final, boxed result
of the last section (with λ = 1), we have

Dn+1 {B(x)ex} = ex (1 + D)n+1B(x) = Dn+1R(x) .

From this we can immediately write that

(1 + D)n+1B(x) = e−xDn+1R(x).

Since we earlier assumed that R(x) starts with the x2n+1 term, we can
write R(x) = r1x2n+1 + r2x2n+2 + · · · . Thus,

Dn+1R(x) = (2n + 1)(2n)(2n − 1) · · · (n + 1)r1xn

plus terms of degree n + 1 and higher, and so, with r0 = (2n + 1)

(2n) · · · (n + 1)r1, we have

(1 + D)n+1B(x) = e−x [r0xn + · · · ] = (1 − x + x2

2! − · · · )(r0xn + · · · ),

which is simply r0xn plus terms which are all of degree n + 1 and higher.
Now, since we are assuming that B(x) is a polynomial of degree n,

(1 + D)n+1B(x) is a polynomial of degree n, too. This is so because the
operator (1+D)n+1 is, by a formal application of the binomial theorem,
equivalent to a sum of various D operators, i.e.,

(1 + D)n+1 =
n+1∑
j=0

(n+1
j

)
(1)n+1−j D j ,
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which is simply the sum of the operator (1)n+1 = 1 (for j = 0) and
the operators

(n+1
j

)
D j (for 1 ≤ j ≤ n + 1). Each of the D j operators,

when applied to B(x), reduces the degree of B(x) by j (i.e., by at least
one), while the 1 operator simply reproduces B(x). So, since B(x) is of
degree n, (1 + D)n+1B(x) is also of degree n. Therefore, we keep just
the leading term of e−xDn+1R(x), as all the other terms are of higher
degree (those other terms must, of course, all have zero coefficients as
there are no terms of degree higher than n in (1 + D)n+1B(x)), that is,
(1 + D)n+1B(x) = r0xn . Now, solving for B(x) by applying the operator
(1+D)−n−1 to both sides (and using the fact that (1+D)−n−1(1+D)n+1 =
(1 + D)0 = 1), we have

B(x) = r0(1 + D)−n−1xn .

We can solve for A(x) in almost the same way. Starting now with the
alternative form of the R(x) equation gotten by multiplying through by
e−x , that is, starting with R(x)e−x = B(x) + A(x)e−x , differentiating a
total of n + 1 times gives

Dn+1 {R(x)e−x} = Dn+1B(x) + Dn+1 {A(x)e−x} ,

or, as Dn+1B(x) = 0 (because, remember, by assumption B(x) is of
degree n),

Dn+1 {A(x)e−x} = Dn+1 {R(x)e−x} .

From the final, boxed result of the last section, where we now use λ = −1,
we see that

e−x (−1 + D)n+1A(x) = e−x (−1 + D)n+1R(x),

or

(−1 + D)n+1A(x) = (−1 + D)n+1R(x).

Now, as before, (−1 + D)n+1A(x) is a polynomial of degree n because,
by assumption, A(x) is a polynomial of degree n (simply repeat the argu-
ment I used in the discussion about B(x)). Therefore we are interested
only in the terms of degree n (or less) generated by (−1 + D)n+1R(x).
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Since R(x) is, by assumption, a polynomial that starts with the x2n+1 term,
then only the Dn+1 operator in the binomial expansion of (−1 + D)n+1

will generate an xn term, that is, as before Dn+1R(x) is r0xn plus terms of
degree n + 1 and higher (which must of course have zero coefficients).
So, we keep only the r0xn term and write (−1 + D)n+1A(x) = r0xn , or,
finally,

A(x) = r0(−1 + D)−n−1xn .

We have thus found A(x) and B(x), each to within the common scale
factor of r0. The specific value of r0 is actually unimportant because A(x)

and B(x) appear as a ratio in our approximation of ex , that is, recall from
the start of the previous section that, as x → 0,

ex ≈ −A(x)

B(x)
.

Thus, the r0 scale factor cancels out; the unimportance of its specific
value is a result of A(x) and B(x) being underdetermined, as I mentioned
earlier. So, without any loss of generality (and a nice gain in simplicity),
let’s simply take r0 = 1 and arrive at

A(x) = (−1 + D)−n−1xn

B(x) = (1 + D)−n−1xn .

At this point I can almost surely predict your reaction to the above
boxed expressions: “Wow, what a wild ride! I followed all the individual
steps okay, and I ‘see’ where those expressions for A(x) and B(x) came
from. Still, I wonder what they mean!” That’s a perfectly respectable
question to ask, too, and so I’m going to take a break from pushing
forward our proof of the irrationality of π2 (we are at about the halfway
point). What I want to do before going any further is show you what
those formulas mean. To say that the above A(x) and B(x) equations
are “solutions” is to say that, for any particular given value of n (a pos-
itive integer), we can calculate the specific polynomials that are A(x)

and B(x). Our proof of the irrationality of π2 actually does not require
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that we do this, but I think it valuable to do it anyway for two impor-
tant reasons. First, once you see that the A(x) and B(x) polynomials we
arrive at actually do achieve the original goal (i.e., −A(x)/B(x) ≈ ex for
x ≈ 0), then I think you’ll gain confidence in the boxed expressions, as
well as confidence that what admittedly have been some “wild” operator
manipulations really do make sense. And second, in calculating some
specific polynomials you’ll see that they have one very special property,
a property that will prove to be absolutely essential in completing the
proof of the irrationality of π2.

To start, let’s back up one step, to the expressions we derived just
before the boxed formulas. That is, to (with r0 = 1)

(−1 + D)n+1A(x) = xn ,

(1 + D)n+1B(x) = xn .

Now, suppose that n = 1. Then, A(x) = a0 + a1x and B(x) = b0 + b1x
and so

(−1 + D)2(a0 + a1x) = x ,

(1 + D)2(b0 + b1x) = x .

Thus,

(1 − 2D + D2)(a0 + a1x) = x ,

(1 + 2D + D2)(b0 + b1x) = x ,

and so, after doing the indicated operations, we arrive at

(a0 + a1x) + (−2a1) = x = (a0 − 2a1) + a1x ,

(b0 + b1x) + (2b1) = x = (b0 + 2b1) + b1x .

Equating coefficients of equal powers on both sides of these expressions,
we see that a1 = 1 and a0 − 2a1 = 0. Thus, a0 = 2a1 = 2. Also, b1 = 1
and b0 + 2b1 = 0. Thus, b0 = −2b1 = −2. So,

A(x) = 2 + x ,

B(x) = −2 + x ,
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and our approximation is

ex ≈ −A(x)

B(x)
= − 2 + x

−2 + x
.

Let’s see how “good” an approximation this is (it’s obviously exact at
x = 0). For x = 0.1, which is “small” but not really very small, we have

ex = e0.1 = 1.105170918,

while

− 2 + 0.1
−2 + 0.1

= − 2.1
−1.9

= 2.1
1.9

= 1.105263158.

We have perfect agreement with the first three decimal places of e0.1, and
that’s not too bad. The approximation should be even better, however,
for n = 2. I’ll let you repeat the above process and verify that then

A(x) = −12 − 6x − x2,

B(x) = 12 − 6x + x2,

and so the approximation is, at x = 0.1,

−A(x)

B(x)
= −−12 − 6(0.1) − (0.1)2

12 − 6(0.1) + (0.1)2 = 12.61
11.41

= 1.105170903.

This agrees exactly with the first seven decimal places of e0.1, which is
very impressive!

Finally, you may have noticed for the n = 1 and n = 2 cases that
the polynomial coefficients were all integers. Upon a little reflection of
the details for the calculation of A(x) and B(x), you should be able to
convince yourself that this will always be the case, for any value of n.
We’ll use this property, in particular for the A(x) polynomial, at the end
of the proof.

3.4 The value of R(πi).
Our next step is to determine the value of R(x) for x = π i . This isn’t an
obvious step by any means, but you’ll soon see how it comes into play.
From the first boxed equation at the start of the last section, recall that

Dn+1R(x) = ex (1 + D)n+1B(x).
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Thus, using our formal solution for B(x) in the last box of the previous
section,

Dn+1R(x) = ex (1 + D)n+1 [(1 + D)−n−1xn] = exxn ,

and so

R(x) = D−n−1 {exxn} .

In the discussion in section 3.2 we found that

D−n−1φ(x) =
x∫

0

φ(s)
(x − s)n

n! ds,

and so, with φ(x) = exxn , we have

Box #1 R(x) = 1
n!

x∫
0

(x − s)ne s snds .

We can put this integral into more convenient form by changing
variable to u = s/x . Then du = (1/x)ds, and so ds = x(du). Thus,

R(x) = 1
n!

1∫
0

(x − ux)neux (ux)nx(du) = 1
n!

1∫
0

xn(1 − u)neuxunxnx(du),

or

Box #2 R(x) = x2n+1

n!

1∫
0

(1 − u)nuneuxdu .

We can further transform this result with another change of variable, to
t = 1 − u (and so dt = −du). Then,

R(x) = x2n+1

n!
0∫

1

tn(1 − t)ne (1−t)x (−dt),
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or

R(x) = x2n+1

n!
1∫

0

tn(1 − t)ne (1−t)xdt .

Notice that the expression for R(x) in Box #2 can be written (if we
simply replace the dummy variable of integration u with t) as

R(x) = x2n+1

n!
1∫

0

tn(1 − t)ne txdt .

Adding these last two expressions for R(x) together (and dividing by 2)
gives

R(x) = x2n+1

n!
1∫

0

tn(1 − t)n e tx + e (1−t)x

2
dt .

Now

e tx + e (1−t)x

2
= e tx + ex−tx

2
= ex/2e (tx−x/2) + ex/2e (x/2−tx)

2

= ex/2 e (t−1/2)x + e (1/2−t)x

2
= ex/2 e (t−1/2)x + e−(t−1/2)x

2

and so

R(x) = x2n+1

n! ex/2

1∫
0

tn(1 − t)n e (t−1/2)x + e−(t−1/2)x

2
dt .

If we now set x = π i then the factor outside the integral (ignoring
the factorial) becomes

(π i)2n+1eπ i/2 = π2n+1(i2n+1)i = π2n+1i2ni2

= π2n+1(i2)n(−1)

= π2n+1(−1)n+1.
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Also, inside the integral we have (using Euler’s formula several times)

e (t−1/2)π i + e−(t−1/2)π i

2
= e−π i/2e iπ t + eπ i/2e−iπ t

2

= −ie iπ t + ie−iπ t

2
= −i

2i sin(π t)
2

= sin(π t).

Thus, at last, we have

R(π i) = (−1)n+1 π2n+1

n!
1∫

0

tn(1 − t)n sin(π t)dt .

The reason I say at last is that we are not going to evaluate the inte-
gral. You probably have two reactions to this—first, relief (it is a pretty
scary-looking thing) and, second, shock (why did we go through all the
work needed to derive it?) In fact, all we will need for our proof that
π2 is irrational are the following two observations about R(π i). First,
and most obviously, it is real. And second, R(π i) �= 0. This is because,
over the entire interval of integration, the integrand (for any integer n)
is positive (except at the two endpoints where the integrand is zero).
Thus, the integral is certainly nonzero. R(π i) itself can be either neg-
ative or positive, depending on whether n is even or odd, respectively,
but the sign of R(π i) won’t matter to our proof. All that will matter is
that R(π i) �= 0. You’ll see why soon, but first we need to establish one
more result.

Recall the expression that started our analysis, the one in the box at
the beginning of section 3.2. That is,

Box #3 B(x)ex + A(x) = R(x) .

From this it immediately follows that

B(−x)e−x + A(−x) = R(−x)

and so, multiplying through by ex , we have

Box #4 A(−x)ex + B(−x) = exR(−x) .
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Next, recall from the expression for R(x) in Box #1 that we have

Box #5 R(x) = 1
n!

x∫
0

(x − s)ne s snds .

Thus,

exR(−x) = ex

n!
−x∫
0

(−x − s)ne s snds.

Changing variable to t = −s (and so ds = −dt), we have

exR(−x) = ex

n!
x∫

0

(−x + t)ne−t (−t)n(−dt)

= ex

n!
x∫

0

[−(x − t)]n e−t (−1)ntn(−dt)

= − ex

n!
x∫

0

(−1)n(x − t)ne−t (−1)ntndt ,

or, as (−1)n(−1)n = (−1)2n = 1, and taking the ex inside the integral,
we have

exR(−x) = − 1
n!

x∫
0

(x − t)ne (x−t)tndt .

Changing variables once more, to u = x − t (and so du = −dt), we
have

exR(−x) = 1
n!

0∫
x

uneu(x − u)ndu = − 1
n!

x∫
0

(x − u)nuneudu,
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or, if we make the trivial change in dummy variable from u to s,

exR(−x) = − 1
n!

x∫
0

(x − s)nsne sds.

Comparing this result with the expression for R(x) in Box #5, we
immediately see that

exR(−x) = −R(x).

Inserting this result into the expression in Box #4, we have

A(−x)ex + B(−x) = −R(x).

That is, recalling Box #3, we now have the pair of statements

B(x)ex + A(x) = R(x),

−A(−x)ex − B(−x) = R(x).

Subtracting the second from the first, we have

ex [B(x) + A(−x)] + [B(−x) + A(x)] = 0,

and this can be true for all x only if B(x) + A(−x) and B(−x) + A(x)

each identically vanish. That is, we have the conditions B(x) = −A(−x)

and B(−x) = −A(x), and it is now obvious that these are equivalent
statements and that what we thought to be two conditions are actually
just alternative forms of a single condition.

Now, setting x = π i in B(x)ex + A(x) = R(x), we have

B(π i)eπ i + A(π i) = R(π i),

or, as Euler’s formula tells us that eπ i = −1,

−B(π i) + A(π i) = R(π i).

But B(π i) = −A(−π i), and so A(−π i) + A(π i) = R(π i). But, since
R(π i) �= 0, then

A(−π i) + A(π i) �= 0 .
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3.5 The last step (at last!).
The expression A(x) + A(−x) is equal to the sum of the following two
polynomials (each with integer coefficients, as discussed earlier at the end
of section 3.3):

a0 + a1x + a2x2 + a3x3 + · · · + anxn ,

a0 − a1x + a2x2 − a3x3 + · · · ± anxn ,

where the sign of the ±anxn term in the second polynomial depends on
whether n is even (positive) or odd (negative). Thus,

A(x) + A(−x) = 2a0 + 2a2x2 + 2a4x4 + · · ·

out to a final term that is 2an−1xn−1 if n is odd or 2anxn if n is even. This
means A(x) + A(−x) can be thought of as a polynomial in the variable
u (= x2) of degree (n − 1)/2 if n is odd, or of degree n/2 if n is even. In
the usual mathematical notation, [m] means the integer part of the real
number m (e.g., [7.3] = 7), and so the degree of A(x) + A(−x) is, in the
variable u,

[
n/2

]
, in general. That is,

A(x) + A(−x) = 2a0 + 2a2u + 2a4u2 + · · · + 2a2[n/2]u[n/2]

where u = x2 and all of the ai are integers.
Now, suppose that π2 is rational, that is, suppose there are two integers

p and q such that π2 = p/q . Then, with x = π i (u = −π2), it follows
that

A(π i) + A(−π i) = 2a0 − 2a2
p
q

+ 2a4
p2

q2 − · · · ± 2a2[n/2]
p[n/2]

q [n/2] .

Multiplying through both sides by the integer q [n/2], it is clear that
q [n/2] {A(π i) + A(−π i)} must be an integer because every term on the
right-handside is an integer. That is, there must be some nonzero inte-
ger (because, as we just showed in the last section, A(π i) + A(−π i) =
R(π i) �= 0), which I’ll write as j (which may be either positive or
negative) such that

q[n/2]R(π i) = j .
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Therefore, taking absolute values of both sides of this, we have

|q [n/2]R(π i)| = q [n/2]|R(π i)| = |j | > 0.

One last step and we are finished with our proof. We have

|R(π i)| =
∣∣∣∣∣∣(−1)n+1 π2n+1

n!
1∫

0

tn(1 − t)n sin(π t)dt

∣∣∣∣∣∣
= π2n+1

n!
1∫

0

tn(1 − t)n sin(π t)dt .

As n becomes arbitrarily large we have, by inspection, both

lim
n→∞

π2n+1

n! = 0

and

lim
n→∞

1∫
0

tn(1 − t)n sin(π t)dt = 0.

It is therefore clear that, whatever the integer q may be, we can always
pick n large enough to make q[n/2] |R(π i)|< 1. Thus, for j some inte-
ger, we reach the conclusion that 1 > q[n/2]|R(π i)| = |j |> 0. That is,
1 > |j | > 0. But there is no integer between 0 and 1 and we clearly have
an absurdity. The only conclusion, then, is that our starting assumption
that π2 = p/q must be wrong, that is, there are no integers p and q , and
so π2 is irrational and we are done.



4.1 Functions, vibrating strings, and the wave equation.
This entire chapter is devoted to those trigonometric series satisfying
certain conditions that go under the general title of Fourier series—named
after the French mathematician Joseph Fourier (1768–1830)—but the
story of these series begins well before Fourier’s birth.1 And, as you must
suspect by now, Euler’s formula plays a prominent role in that story.
The prelude to the tale begins with a fundamental question: what is a
function?

Modern analysts answer that question by saying that a function f (t) is
simply a rule that assigns a value to f that is determined by the value of t ,
that is, a function maps t into f . The mapping rule (the function) might
be an analytical formula, but it doesn’t have to be. It could, for exam-
ple, take the form simply of a table or a list (perhaps infinitely large)
of numbers; you look up the value of t on the left, and to the right is
the value of f for that t . There were those in the eighteenth century,
however, who did not accept such a broad interpretation. In particular,
the French mathematician Jean Le Rond D’Alembert (1717–1783) held
to the strict interpretation that a function must be expressible via the
ordinary processes of algebra and calculus. Not all mathematicians of
that time were so rigid, however, and in particular Euler was much more
open-minded. Originally of the same view as D’Alembert, Euler even-
tually came to the conclusion that a function was defined if you could
simply draw the curve of f (t) versus t . This difference of interpretation
led to a famous controversy in mathematical physics, and that in turn
led to the formal development of Fourier series.
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Before getting into that controversy, let me first tell you that, while
Euler’s liberal view of a function sounds plausible, there are astounding
surprises associated with it. For example, “drawing a curve” implies that,
at nearly every instant of time, there is a direction to the tip of the pen-
cil or pen doing the drawing. That is, the curve has a tangent at nearly
every point along the curve, which means the derivative exists at nearly
every point. If a curve has a finite number of points without a derivative,
e.g., f (t) = |t |, which has no derivative at t = 0, we could of course still
draw it. In 1872, however, the German mathematician Karl Weierstrass
(1815–1897) showed the possibility of a function that is everywhere contin-
uous but which is nowhere differentiable, that is, it does not have a tangent
anywhere, and so one could not draw it. This function is a trigonometric
series (but it isn’t, as you’ll see later, a Fourier series): it is given by

∑∞
n=1

bn cos(anπx), where b is a fixed positive number less than one, and a is
any fixed odd integer such that ab > 1 + (3/2)π .

Weierstrass’s infinite sum has a lot of what engineers call “high-
frequency content,” which is the physical origin of its failure to have
a derivative. (A “high frequency” function is, by definition, changing
its value rapidly as the independent variable changes.) That is, since
1 + 3/2π ≈ 5.7, then the conditions ab > 5.7 and b < 1 mean that the
smallest a can be is 7 (the first odd integer greater than 5.7). The frequen-
cies of the terms of the sum increase as an , so for values of b just slightly
less than one (which means the amplitude factor bn doesn’t get small
very fast as n increases), we have the frequencies of the terms increasing
as 7n , which gets big, fast. Alternatively, if we select a small b to make the
amplitudes decay quickly as n increases, then the smallest possible a is
even larger than 7 and so the frequencies increase even faster than does
7n . So, big or small for b, we cannot avoid a significant high-frequency
presence in Weierstrass’s function. It is that high frequency content, in
the limit as n → ∞, that results in a sum that has an infinite number of
local extrema (“peaks and valleys”) in any finite interval of x , no matter
how small that interval may be, and it is that which causes the failure of
the derivative to exist anywhere.

The inspiration for Weierstrass’s very unusual function was the ear-
lier function cooked-up in 1861 by the German mathematical genius
G.F.B. Riemann (1826–1866),

∑∞
n=1 (sin(n2x)/n2), a continuous func-

tion that Riemann speculated would fail (but offered no proof) to have
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Figure 4.1.1. Riemann’s function

a derivative anywhere.2 This is a far simpler function than Weierstrass’s:
figure 4.1.1 shows that “simpler” is a relative term, however, because
Riemann’s function is pretty wild too—the figure shows three partial
sums over the interval 0 < x < π , using just the first term (dashed
curve), the first three terms (dotted curve), and the first eighteen terms
(solid curve).

With this preliminary discussion done, we are now ready to discuss the
origin of the analyses that led to Fourier series; it was a problem in physics,
motivated by musical instruments that have vibrating components, such
as a piano wire or a violin string. That is, our question here is: how
does a stretched, perfectly elastic string (with its two ends fixed), of
uniform mass density along its length, move when set in motion? Certain
specialized analyses had been carried out by the Swiss mathematician
Johann Bernoulli (1667–1748) as early as 1728, who studied the motion
of a massless string that supports a finite number of evenly spaced point
masses (the so-called loaded, ideal string ). It was, however, D’Alembert
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(in 1747), Euler (in 1748), and Johann’s own son Daniel (in 1753) who
were the major players in this story. And, as you’ll see, while Euler and
D’Alembert were “mostly right,” they were also confused by just what is a
function, and it was Daniel (1700–1782) who was the “most right” of the
three. But first, to understand the mathematical positions of those three
men, we need to discuss one of the most famous equations in physics,
the so-called one-dimensional wave equation.

Imagine a perfectly elastic, stretched string initially lying motionless
along the x -axis, with its two ends fixed at x = 0 and x = l . The elas-
tic qualification means that the string is not able to support shear or
bending forces (forces perpendicular to the string); it can support only
forces along its own length (tension). The stretched qualification means
that the motionless string has a built-in nonzero tension, which we’ll
denote as T . Let’s further suppose that the mass per unit length of
the stretched string is a constant, denoted by ρ. Now, imagine that
at time t = 0 the string is given a very slight deflection so that it no
longer lies entirely along the x -axis, except that the fixed ends are just
that—fixed. What a very slight deflection means is that the tension at
every point along the string remains unchanged by the resulting very
small change in the length of the deflected string. The deflected string
is illustrated in figure 4.1.2, which also shows a very short element of
the string, between x and x + x . The curve describing the shape of

y

x x +   x∆ l0

Figure 4.1.2. A vibrating string
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the string is y = y(x , t), that is, y is the deflection of the string from
the horizontal axis for arbitrary values of x and t (notice, carefully, that
we have two independent variables), and so the initial deflection is the
given y(x , 0) = f (x). This temporal requirement is called an initial condi-
tion. Another initial condition I’ll impose here is that we’ll release the
deflected string from rest, that is, ∂y/∂t |t=0 = 0 for all x . That is, we are
modeling, here, what is called a plucked string. The derivative is a partial
derivative because y(x , t) is a function of more than one independent
variable. The condition of fixed ends requires, in addition, that y(0, t) =
y(l , t) = 0, for all t ≥ 0, which are spatial requirements called boundary
conditions.

What the early analysts wanted to calculate was y(x , t) for all x in
the interval 0 to l , for all t > 0. To do that they needed an equation
for y(x , t) that they could then solve, subject to the given initial and
boundary conditions. That equation is a partial (because we have more
than one independent variable) differential equation, called the one-
dimensional (we have only one spatial variable, x) wave equation (you’ll
see why soon) that is actually pretty easy to derive. Here’s how.

If we look at just the short string element of figure 4.1.2 in detail, then
figure 4.1.3 shows that there are only two forces acting on it (there would
be three if we consider the gravitational force on the string element,
that is, the weight of the string element, but I’m going to ignore that

y

x x +   x0

T

1

2
T

m =      x∆ ∆

∆

ρ
α

α

Figure 4.1.3. Free-body diagram of an isolated string element
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complication). That is, figure 4.1.3 shows the string element isolated
in what engineers and mathematicians call a free-body diagram, which
completely describes the “world as seen by the string element.” The
angle α is the angle the tangent line to the curve of the string makes
with the horizontal (obviously, α = α(x , t)), with α1 and α2 being the
values of α at the left and right ends of the string element, respectively.
The two forces acting on the string element are the tensions at each end,
equal in magnitude (T ) but at the angles α1 and α2, which are generally
different because the string is, generally, curved.

Because of our assumption of small amplitude vibrations, we can take
the length of the string element as very nearly always equal to x , and so
the mass of the string element is simply m = ρx . The vertical motion
of the string, that is, its vibration, is described by Newton’s second law
of motion, his famous “force equals mass times acceleration,”3 where
the “force” is the net vertical force acting on the string element. This
net vertical force is, from figure 4.1.3, given by T sin(α2) − T sin(α1) =
T [sin(α2)− sin(α1)]. Because of our small amplitude assumption we can
replace the sine with the tangent (you’ll see why this is desirable in just
a moment) and so, as the vertical acceleration is ∂2y/∂t2, we can write

ρx
∂2y
∂t2 = T [tan(α2) − tan(α1)],

or

∂2y
∂t2 = T

ρ
· tan[α(x + x)] − tan[α(x)]

x
.

If we now imagine x → 0, then the factor on the far right is the very
definition of the (partial) derivative of tan(α) with respect to x , that is,

∂2y
∂t2 = T

ρ
·
{

∂

∂x
tan(α)

}
.

To complete our derivation, all we need to do is to notice that the geometry
of figure 4.1.3 says

tan(α) = ∂y
∂x

.
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Now you can see why it was advantageous to replace the sine function
with the tangent, because, at last, we have as our result that the equation
of a vibrating string is the second order partial differential equation

∂2y
∂t2 = T

ρ
· ∂2y
∂x2 .

That T /ρ factor is particularly interesting because of its units. A quick
dimensional analysis shows us, in fact, that T /ρ has the units of

force
mass/length

=⇒ mass · acceleration · length
mass

=⇒ length · length

(time)2

=⇒
(

length
time

)2

=⇒ (speed)2,

that is, T /ρ is a speed (of something ) squared. What “something”? you
might ask. We’ll get to that soon. For now, let’s just write

√
T /ρ = c

(with the units of speed), and so our vibrating string equation reduces
to the form as you’ll generally see it written in textbooks:

∂2y
∂x2 = 1

c2 · ∂2y
∂t2 .

This is the equation that both D’Alembert (who first derived it in 1747)
and Euler solved, in general, arriving at the same answer for y(x , t) but
with very different interpretations of what that answer means.

It is actually not difficult to understand the D’Alembert-Euler solution.
Our basic assumption is that y(x , t) is twice differentiable with respect to
both x and t . With that assumption, we begin by immediately making a
change of variables to

u = ct − x ,

v = ct + x .
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That is,

x = v − u
2

,

t = v + u
2c

.

Notice, carefully, that u and v are independent variables, just as x and t
are. This is because knowledge of the value of u tells you nothing about
the values of x and t , themselves, and so nothing of the value of v, and
vice-versa.

Then, by the chain rule from calculus, we can write

∂y
∂v

= ∂y
∂x

· ∂x
∂v

+ ∂y
∂t

· ∂t
∂v

= ∂y
∂x

· 1
2

+ ∂y
∂t

· 1
2c

.

And so, differentiating one more time and again using the chain rule,

∂

∂u

(
∂y
∂v

)
= ∂2y

∂u∂v
= ∂

∂x

(
∂y
∂v

)
· ∂x
∂u

+ ∂

∂t

(
∂y
∂v

)
· ∂t
∂u

,

or, using our first result for ∂y/∂v,

∂2y
∂u∂v

=
[

∂2y
∂x2 · 1

2
+ ∂2y

∂x∂t
· 1

2c

]
·
(

−1
2

)
+
[

∂2y
∂t∂x

· 1
2

+ ∂2y
∂t2 · 1

2c

]
·
(

1
2c

)

= −1
4

· ∂2y
∂x2 − 1

4c
· ∂2y
∂x∂t

+ 1
4c

· ∂2y
∂t∂x

+ 1
4c2 · ∂2y

∂t2

= −1
4

{
∂2y
∂x2 − 1

c2 · ∂2y
∂t2

}
.

(Notice that I am assuming ∂2y/∂t∂x = ∂2y/∂x∂t , i.e., that the order of
the two partial differentiations doesn’t matter. That is not always true,
but this assumption will not get us into trouble here.) The expression in
the final set of braces is, of course, zero, since y by definition satisfies the
differential equation of the vibrating string, and so

∂2y
∂u∂v

= 0.

This equation is now immediately integrable, by inspection (which is
the reason for the change of variables from x and t to u and v!), to give

y(u, v) = φ(u) + ψ(v),
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where φ and ψ are each twice-differentiable (but otherwise arbitrary)
functions of u and v, respectively. That is, the general solution to the
wave equation is

y(x , t) = φ(ct − x) + ψ(ct + x) .

You can now see where the adjective wave comes from, as well as what the
physical significance is of c . If one has a function ψ(x), and if x0 > 0, then
ψ(x0+x) is simply ψ(x) shifted to the left by x0 (if x0 < 0, then the shift is
actually to the right). Thus, ψ(ct + x) is ψ(x)—which is ψ(ct + x) at time
t = 0—shifted to the left by the amount ct . That is, the shape ψ(x) has
traveled through distance ct in time t (that is, at a speed of c). A traveling
shape is more commonly called a wave, and so there’s the explanation for
both the wave equation’s name and of the physical meaning of c . The
same argument applies to φ(ct − x), except of course that represents a
wave traveling to the right at speed c . Now, at last, we are ready to do
some mathematics.

The detailed plucked string problem facing D’Alembert was that of
solving the equation

∂2y
∂x2 = 1

c2 · ∂2y
∂t2 ,

subject to the boundary conditions

(1) y(0, t) = 0
(2) y(l , t) = 0

as well as the initial conditions

(3) ∂y/∂t |t=0 = 0
(4) y(x , 0) = f (x).

Applying (1) to the general solution in the above box gives

φ(ct) + ψ(ct) = 0,

which says that φ = −ψ , a conclusion that reduces the general solution to

y(x , t) = φ(ct − x) − φ(ct + x).
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If we now apply (2) to this we arrive at

φ(ct − l ) = φ(ct + l ),

which is, since it is true for any t , an identity in t . There is a very interesting
implication in this result, namely, that φ must be a periodic function of
time (a function that endlessly repeats its values from some finite interval
of time of duration T ). I’ll discuss periodic functions in more detail in
the next section but, quickly, a function s(t) is said to be periodic with
period T if there is a T > 0 such that s(t) = s(t +T ) for all t (which is just
the situation we have for φ). The important observation for us is simply
that the difference between the two arguments of s(t) and s(t +T ) is the
period. So, since φ(ct − l ) and φ(ct + l ) have arguments differing by 2l ,
2l is the value of cT (where T is the period of φ), that is, the period of
φ is 2l/c , the time it takes a wave to travel from one end of the string to
the other end, and back.

We could continue on in this fashion, applying next the boundary
conditions (3) and (4) to the general solution, but I’m not going to
do so. D’Alembert had at this point clearly shown the periodic nature
of the solutions (which, of course, is what one actually observes when
looking at a vibrating string), and so he believed he had found the solu-
tion; a solution nicely expressed by a well-behaved, twice-differentiable
function. Euler took exception with that, however, observing that it is
perfectly obvious that a string can be set into motion from an initial state
that is not twice differentiable, for instance, a plucked string as shown in
figure 4.1.4. Therefore, concluded Euler, while D’Alembert’s solution is
a solution, it could not be the general solution. To further complicate
matters, just a few years later Daniel Bernoulli solved the wave equation
in an entirely different way and arrived at a completely different looking
solution. That was, as you can appreciate, a very puzzling development,
and it had far-reaching implications in mathematics, ones that continue
to this day.

Bernoulli’s solution to the wave equation can be established by sepa-
rating the variables, that is, by assuming that y(x , t) = X (x)T (t). This is, in
fact, the standard approach used in virtually every textbook on partial
differential equations published during the last one hundred and fifty
years. X (x) and T (t) are functions only of x and t , respectively (e.g., xt
is obviously separable, while xt is not). Substituting this y(x , t) into the
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x0 l

f (x) = y (x, 0)

Figure 4.1.4. An initial string deflection which is not twice
differentiable at all points

wave equation gives us

T
d2X
dx2 = 1

c2 · X
d2T
dt2 ,

or

1
X

d2X
dx2 = 1

c2 · 1
T

d2T
dt2 .

Since the left-hand side is a function only of x , and the right-hand side
is a function only of t , then the only way both sides can be equal for all
x and all t is if they are each equal to the same constant ; let’s call that
constant k. Thus,

d2X
dx2 − kX = 0,

d2T
dt2 − kc2T = 0.

Whenever a mathematician sees a function that is proportional to its
own derivative (or second derivative, in this case), the idea of exponential
pops into her mind. So, to solve a generic equation that models both of
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our equations, let’s imagine that we have

d2Z
dz2 − aZ = 0,

and assume that Z (z) = Ceαz , where C and α are constants. Then,

α2Ceαz − aCeαz = 0,

α2 − a = 0,

α = ±√
a,

and so the general solution is

Z (z) = Aez
√

a + Be−z
√

a ,

where A and B are constants. So, for our functions X (x) and T (t), we
have (with a = k for X and a = kc2 for T )

X (x) = A1ex
√

k + B1e−x
√

k ,

T (t) = A2e ct
√

k + B2e−ct
√

k

and so

y(x , t) = [A1ex
√

k + B1e−x
√

k ][A2e ct
√

k + B2e−ct
√

k ].

Using boundary condition (1), y(0, t) = 0, we thus have, for all t ≥ 0,

[A1 + B1][A2e ct
√

k + B2e−ct
√

k ] = 0,

meaning either that A2 = B2 = 0 (which we reject since that results in
the trivial solution of y(x , t) = 0), or that A1 + B1 = 0 (which we accept
because it leads to a non-trivial solution). That is, B1 = −A1 or, dropping
subscripts,

y(x , t) = A[ex
√

k − e−x
√

k ][A2e ct
√

k + B2e−ct
√

k ].

Turning next to boundary condition (2), y(l , t) = 0, we have

A[e l
√

k − e−l
√

k ][A2e ct
√

k + B2e−ct
√

k ] = 0,
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again for all t ≥ 0. This is cause for some alarm because it asks for
something that is simply impossible(!), except for the trivial cases of
A = 0 and/or A2 = B2 = 0 (trivial because these lead to y(x , t) =
0, which certainly does satisfy initial condition (3) but does not satisfy
initial condition (4) unless we have the physically uninteresting case of
f (x) = 0, a non-vibrating string). Our quandary is resolved once we
realize we have been tacitly assuming the arbitrary constant k is positive.
But nothing requires that; suppose instead that we assume k < 0, and
so replace

√
k with i

√
k where now k > 0. Then,

y(x , t) = A[e ix
√

k − e−ix
√

k ][A2e ict
√

k + B2e−ict
√

k ],

and now y(l , t) = 0 leads to a nontrivial conclusion. That is, using Euler’s
formula on the first expression in brackets gives

y(x , t) = 2iA sin(x
√

k)[A2e ict
√

k + B2e−ict
√

k ],

and so, for all t ,

2iA sin(l
√

k)[A2e ict
√

k + B2e−ict
√

k ] = 0,

which says l
√

k = nπ , where n is any nonzero integer. That is, our
“arbitrary” constant k isn’t all that arbitrary at all; rather, it is

k = n2π2

l 2 , n = · · · , −2, −1, 1, 2, · · · .

And so, absorbing the 2i into the constant A, we have

y(x , t) = A sin
(nπ

l
x
) [

A2e ict(nπ/l ) + B2e−ict(nπ/l )
]

.

Thus,

∂y
∂t

= A sin
(nπ

l
x
) [

A2
icnπ

l
e ict(nπ/l ) − B2

icnπ

l
e−ict(nπ/l )

]
,

and then applying initial condition (3) gives us, for all x ,

A sin
(nπ

l
x
) icnπ

l
[A2 − B2] = 0.
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This is true if A = 0 (which we reject because it leads to the trivial
y(x , t) = 0) or if A2 = B2. So, again dropping subscripts, we have

y(x , t) = A sin
(nπ

l
x
)

B
[
e ict(nπ/l ) + e−ict(nπ/l )

]
= AB sin

(nπ

l
x
)

2 cos
(ncπ

l
t
)

or, absorbing all the constants into just one constant, which may be
different for each value of n and so we’ll call them cn , we have

yn(x , t) = cn sin
(nπ

l
x
)

cos
(nπc

l
t
)

.

Our most general solution is the sum of all these particular solutions
indexed on n. That is,

y(x , t) =
∞∑

n = −∞
yn(x , t) =

∞∑
n = −∞

cn sin
(nπ

l
x
)

cos
(nπc

l
t
)

.

We can simplify this a bit by noticing that, for any particular pair of
values for n = ±k, we can write the sum of those two terms as

c−k sin
(−kπ

l
x
)

cos
(−kπc

l
t
)

+ ck sin
(

kπ

l
x
)

cos
(

kπc
l

t
)

= (ck − c−k) sin
(

kπ

l
x
)

cos
(

kπc
l

t
)

.

Thus, simply redefining our arbitrary constants and observing that the
n = 0 term in the summation is zero, we can start the sum at n = 1 and
write, as did Bernoulli,

y(x , t) =
∞∑

n = 1

cn sin
(nπ

l
x
)

cos
(nπc

l
t
)

.

This would be our solution if we knew what that infinity(!) of arbi-
trary cn coefficients are. We can start to answer that by applying the one
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remaining initial condition (4), y(x , 0) = f (x), to get

f (x) =
∞∑

n=1

cn sin
(nπ

l
x
)

,

an astounding result that claims we should (if we just knew the values of
those cn) be able to add up an infinity of various amplitude sinusoidal
functions to get the given arbitrary f (x)—which is, remember, the shape
of the plucked string just before we release it.

Briefly putting aside the question of the cn , let me first tell you that
Euler didn’t like Bernoulli’s solution at all, arguing that it was clearly
absurd to imagine adding up an infinity of odd, periodic functions (the
sines) and to believe you could arrive at the arbitrary initial string deflec-
tion f (x), since f (x) is generally neither odd nor periodic. Bernoulli’s
trigonometric expansion, said Euler, couldn’t be true in general (but
might be okay for particular f (x)). To his credit, Bernoulli stood his
ground and said that, no matter what recognized masters like Euler and
D’Alembert (who agreed with Euler’s rejection of Bernoulli’s solution)
might say, his solution was right. I’ll discuss in section 4.3 how Euler’s
objections lose all their force when the concept of a function is properly
understood.

Now, as my final comment in this section, it is amusing to note that
it was the nonbeliever Euler who took the last step and showed how
to calculate the cn (for the particular trigonometric expansions of f (x)

that Euler thought did make sense). In a paper written in 1777 (but not
published until 1793) Euler evaluated the cn coefficients using what is
now the standard textbook approach. I’ll defer the details until later,
however, to when we get to the work of Fourier; for now, what we need
to do next is to take a closer look at periodic functions, in general.

4.2 Periodic functions and Euler’s sum.
As you saw in the previous section, expressing functions as trigonomet-
ric series has a long, pre-Fourier history. The French mathematician
Charles Bossut (1730–1814), for example, wrote a number of such series
with a finite number (n) of terms, and, in 1773 Daniel Bernoulli took
Bossut’s formulas and simply let n → ∞. Bernoulli was pretty casual
with his manipulations (a common feature of eighteenth-century math-
ematics, and of Euler’s in particular), and his results make sense only by
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making the meaningless argument that sin(∞) and cos(∞) are zero.4

Even before Bernoulli, however, we can find the fingerprints of Euler
on Fourier series.

For example, in a 1744 letter to a friend Euler wrote the following
remarkable claim:

x(t) = π − t
2

=
∞∑

n=1

sin(nt)
n

= sin(t) + sin(2t)
2

+ sin(3t)
3

+ · · · .

This was probably (almost certainly) the first “Fourier series,” although
of course Euler didn’t call it that since Fourier wouldn’t be born until
twenty-four years later. In addition to this glaring apparent anachronism
(at the end of this section I’ll show you how Euler derived this Fourier
series decades before Fourier), there appears to be a more immediate
technical question—is it even correct? It looks, for example, like there
is a dramatic problem at t = 0, as Euler’s formula seems to be a claim
that π/2 = 0 (which I think we’d all agree isn’t right). The key to under-
standing just what is going on here is the concept of a periodic function,
and that’s where I’ll start, with a little review.

If x(t) is a periodic function with fundamental period T (which we’ll
take to be a real number), then the function satisfies the condition

x(t) = x(t + T ), −∞ < t < ∞,

where T is the smallest possible positive T , i.e., T > 0. (Demanding T > 0
eliminates the specific case of x(t) = constant being called a periodic
function; there is no smallest T > 0 such that x(t) = x(t +T ), because for
every T > 0 there is yet a smaller T > 0, for instance, the T that is half
of the previous T .) In simple language, a periodic function is one that
endlessly “repeats itself” in both directions as the independent variable
(in our case here, t) goes off to ±∞.

Probably the most obvious such functions are sine and cosine; for
example, x(t) = sin(t) is periodic with period T = 2π . Notice that
sin(t) = sin(t + k2π) for all t for any positive integer k, but we take
the smallest such k (k = 1) as defining the fundamental period T . The
concept of periodicity is so simple that it is easy to fall into the trap
of thinking it is nearly trivial. Believe me, it isn’t! For example, what’s
your answer to this: is the sum of two periodic functions periodic? Most
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people blurt out a yes, of course with hardly a missed heartbeat, but the
correct answer is it depends. That is, sometimes yes and other times no.
For example, both cos(t) and cos(t

√
2) are periodic; cos(t) has period

2π and cos(t
√

2) has period 2π/
√

2. But their sum is not periodic. Here’s
why. Let’s suppose there is a T such that

x(t) = cos(t) + cos(t
√

2) = x(t + T ) = cos(t + T ) + cos{(t + T )
√

2}.

This is to be true for all t , and in particular for t = 0, which says that

x(0) = cos(0) + cos(0) = 2 = cos(T ) + cos(T
√

2).

Since the maximum value of the cosine function is one, then it follows
that cos(T ) = cos(T

√
2) = 1. That is, there must be two (obviously

different) integers m and n such that T = 2πn and T
√

2 = 2πm. But
that means

T
√

2
T

= 2πm
2πn

= √
2 = m

n
,

which says
√

2 is rational. But it isn’t ! (See the discussion on this very
point in the Introduction.) We thus have a contradiction, the origin
of which is our initial assumption (false, as we now know) that there is
a period (T ) to our x(t). Figure 4.2.1 shows plots of cos(t), cos(t

√
2),

and their sum, and the sum plot “looks” anything but periodic. The
general rule (of which you should be able to convince yourself with just
a little thought) is that a sum of periodic terms will itself be periodic
if all possible ratios of the individual periods, taken two at a time, are
rational.

Here’s another “simple” question about periodicity. Can two periodic
functions x1(t) and x2(t) add to give a sum that is periodic with a period
less than either of the original periods, that is, if T1 and T2 are the
periods of x1(t) and x2(t), respectively, and if x1(t) + x2(t) is periodic
with period T , is it possible to have T < min(T1, T2)? The answer is yes
(which often surprises too-quick-to-answer students), as shown by the
example of figure 4.2.2.

Sometimes students think that last example to be just a bit of a “cheat”
since it depends on the two pulse-like functions to be precisely aligned,
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Figure 4.2.1. A sum of two periodic functions that is not periodic

with the pulses of one function occurring exactly midway between the
pulses of the other function. If such a perfect alignment is absent,
then the sum is still periodic but with a period that is the same as that
of the original functions. So, here’s an even more astounding exam-
ple, of two functions of equal, fixed fundamental periods that have a
sum with a fundamental period that can be as small as we wish. Sup-
pose that N is any positive integer, and we define x1(t) and x2(t) as
follows:

x1(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(2N π t), 0 ≤ t ≤ 1

N
,

0,
1
N

< t < 1,

x1(t + 1), −∞ < t < ∞
,
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x1(t)

t

period = T

x2(t)

t

period = T

x1(t) + x2(t )

t

period = 1/2T

Figure 4.2.2. Two periodic functions with a periodic sum that has a
smaller period

x2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 ≤ t ≤ 1

N
,

sin(2N π t),
1
N

< t < 1,

x2(t + 1), −∞ < t < ∞
.

Clearly, x1(t) and x2(t) are each periodic with a fundamental period of
one, independent of the value of N . But, consider their sum,
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x1(t) + x2(t) =
{

sin(2N π t), 0 ≤ t < 1,

x1(t + 1) + x2(t + 1), −∞ < t < ∞ .

This sum obviously has fundamental period T , where 2N πT = 2π ,
that is, T = 1/N . Thus, we can make T as small as desired by making N
arbitrarily large.

Now, just one more question: can a time-varying x(t) satisfy the con-
dition x(t) = x(t + T ) for all t and yet not have a fundamental period
(remember, the condition T > 0 eliminates constant functions from
being called periodic)? This is a bit harder to see, but again the answer
is yes. Here’s an example. Define x1(t) and x2(t) as follows:

x1(t) =
{

1 if t is an integer,

0 if t is not an integer,
,

x2(t) =
{

1 if t is rational but not an integer,

0 if t is irrational or is an integer
.

It is obvious that x1(t) is a perfectly “respectable” function, that is, we
can actually sketch it on a piece of paper. On the other hand, x2(t) is
pretty wild (try sketching it!) because between any two rationals there
are an infinite number of irrationals (and vice versa). Nevertheless, x1(t)
and x2(t) are each periodic with equal fundamental periods of T = 1
(just apply the very definition of periodicity). Now, consider their sum,
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which we can write as

s(t) = x1(t) + x2(t) =
{

1 if t is rational

0 if t is irrational
.

This sum satisfies the periodicity condition s(t) = s(t+T ) for T any ratio-
nal number, but there is no fundamental period for the sum because
there is no smallest positive rational. The examples given here are, admit-
tedly, carefully crafted to have particularly weird behaviors; engineers
and mathematicians alike call them pathological, a term motivated by the
medical meaning of pathology, the science of disease.

Now, to end this section, let me show you how Euler arrived at the
trigonometric series that opened this discussion. When we are done
you’ll see the explanation for that puzzling special case at t = 0,
which seems to claim that π/2 = 0 “!” In addition, this calculation
is a good example of Euler’s spectacularly inventive genius that, while
often successful, would earn him some raised eyebrows from modern
mathematicians. Euler started with the geometric series

S(t) = e it + e i2t + e i3t + · · ·

and then, oblivious to any questions of convergence (e.g., S(0) = 1+1+
1 + 1 + · · · = ∞), he “summed” it in the usual way. That is, multiplying
through by e it he arrived at

e it S(t) = e i2t + e i3t + · · · ,

and so

S(t) − e it S(t) = e it .

Thus,

S(t) = e it

1 − e it = e it (1 − e−it )

(1 − e it )(1 − e−it )
= e it − 1

1 − e it − e−it + 1
;
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then, using his own formula that names this book to unwrap the complex
exponentials,

S(t) = cos(t) + i sin(t) − 1
2 − (e it + e−it )

= cos(t) − 1 + i sin(t)
2 − 2 cos(t)

= −[1 − cos(t)] + i sin(t)
2[1 − cos(t)]

and so, finally,

S(t) = −1
2

+ i
1
2

· sin(t)
1 − cos(t)

.

Returning now to Euler’s original geometric series for S(t), he again
used his formula to write

S(t) = cos(t) + cos(2t) + · · · + i{sin(t) + sin(2t) + · · · },

and then equated the real part of this with the real part of the expression
for S(t) in the box. That is, he wrote

cos(t) + cos(2t) + cos(3t) + · · · = −1
2

.

Then (being a genius!) he indefinitely integrated term by term to
arrive at

sin(t) + sin(2t)
2

+ sin(3t)
3

+ · · · = −1
2

t + C ,

where C is the arbitrary constant of indefinite integration. To find
C , Euler observed that if one substitutes t = π/2 this last expression
becomes

1 − 1
3

+ 1
5

− 1
7

+ · · · = −π

4
+ C .

The expression on the left is equal to π/4 (we used this fact in section
2.1, and we’ll derive it later in this chapter), which means that C must
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equal π/2. Thus, as Euler wrote his friend,

∞∑
n=1

sin(nt)
n

= sin(t) + sin(2t)
2

+ sin(3t)
3

+ · · ·

= −1
2

t + π

2
= π − t

2
= x(t).

One can only look at all this, mouth agape, with a combination of
awe and horror (in about equal parts). It is something that only a genius
or a failing calculus student could have written! In the next section
I’ll show you the modern derivation of this formula, but we can do
something right now with this astounding formula that Euler could only
have dreamed about doing—we can perform several million arithmetic
operations in mere seconds on a computer, plot the left-hand side (the
actual summation of the sines) as a function of t , and then simply see
if it looks like the plot for (π − t)/2. Figures 4.2.3 through 4.2.6 do just

0

0.5

−0.5

−1.0

−1.5

−2.0

1.0

1.5

2.0

P
ar

tia
l S

um
 o

f x
(t

)

−5 0 5 10 15
Time

−10

Figure 4.2.3. Sum of first five terms of Euler’s series
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Figure 4.2.4. Sum of first ten terms of Euler’s series

that, using progressively more terms to form partial sums. Even just a
glance at these plots prompts several interesting observations:

(1) The Euler series is a periodic function, with period 2π .
(2) The series is an odd function.
(3) In the interval 0 < t < 2π the series does approximate

(π − t)/2.
(4) The series makes very sudden jumps between its most negative

and most positive values at the beginning (end) of each new
period.

(5) Looking at the period 0 < t < 2π , where the series does
approximate (π − t)/2, the approximation does not improve
everywhere in that interval with an increasing number of terms
in the partial sum. (What are those wiggles around t = 0 and
t = 2π , and why don’t they go away as we add more terms?)
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Figure 4.2.5. Sum of first twenty terms of Euler’s series

Observations (1) and (2) should really be no surprise—after all, the
terms in the series are all sine functions (which are, individually, odd),
with periods whose ratios taken two at a time are all rational. Observa-
tion (3) is the one of real interest here, of course, as it seems to verify
Euler’s (outrageous) calculations, provided we add the qualification that
the series approximates (π − t)/2 if 0 < t < 2π (but the approximation
fails if t is outside of that interval). And finally, observations (4) and (5)
are most curious, indeed, representing behavior that Euler completely
missed, as did all those who came after him for many decades, includ-
ing Fourier himself. Observations (1), (2), and (3) will be addressed in
more detail in the next section. Observations (4) and (5) are given
a section of their own (section 4.4) because not only is there some
quite interesting mathematics involved, there is also a fascinating human
story of a talented mathematician that has been almost lost to history
(until now).
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Figure 4.2.6. Sum of first forty terms of Euler’s series

4.3 Fourier’s theorem for periodic functions
and Parseval’s theorem.

In December 1807, twenty-five years after Daniel Bernoulli’s death (dur-
ing which matters concerning trigonometric series had remained mostly
a subject of confusion), Joseph Fourier presented an astonishing paper
to the Academy of Science in Paris. In it he asserted that any arbitrary
function could be written in the form of such a series. Indeed, he went
even further than that (which had already been the much earlier posi-
tion of Bernoulli, of course). Fourier specifically stated that, contrary to
Euler’s view, an infinity of individually odd sine functions could represent
non-odd functions, and the same could be said for cosine trigonometric
series. Indeed (according to Fourier), one could even express the sine
itself as the sum of an infinity of cosines. I’ll show you how in the next
section.

These statements drove Fourier’s fellow countryman, the aging grand
master of French mathematics Joseph-Louis Lagrange (1736–1813) to
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assert—in very strong terms—that Fourier’s claims were simply impossi-
ble. It is actually no surprise that Lagrange should have felt that way—
early in his career, a half-century before, he had sided with D’Alembert
and Euler in opposing Bernoulli’s trigonometric series solution to the
wave equation. For Lagrange (with a nod to Yogi Berra), Fourier’s claims
for trigonometric series must have seemed like déjà vu all over again.

Fourier’s claims were based on his work with a different partial differ-
ential equation from physics, the so-called heat equation, which he studied
in its one-, two-, and three-dimensional forms. Like the wave equation,
it yields to separation of variables. In the one-dimensional form, it is

∂2u
∂x2 = 1

k
· ∂u

∂t
,

where u(x , t) is the temperature along a heat conductive (thin) rod, at
position x and time t .5 There are, of course, initial and boundary con-
ditions that go along with this fundamental equation for any particular
problem, just as with the wave equation. The physical properties of the
rod material (heat capacity, cross-sectional area, and thermal conduc-
tivity) are contained in the constant k. This equation is also called the
diffusion equation, as it describes how many quantities (in addition to
heat) spread or diffuse with time through space. In its three-dimensional
form, for example, it describes how an ink drop spreads through water,
or how a drop of cream or a dissolving sugar cube spreads through a cup
of coffee. The diffusion equation was brilliantly used in the 1850s by the
Scottish mathematical physicist William Thomson (1804–1907), later
Lord Kelvin, to describe how electricity “spreads” through a very long
telegraph cable (in particular, the Atlantic cable that electrically con-
nected England and the North American continent6). Thomson was an
early admirer of Fourier’s work—his first published paper, written when
he was just fifteen, was on Fourier series. Later in his career Thomson
used the heat equation in an attempt to calculate the age of the Earth
by rational science rather than through biblical study. In that paper he
called Fourier’s theory a “mathematical poem.”7

As mentioned not all were convinced by Fourier’s 1807 paper;8 still,
his critics did make the question of the theory of heat propagation the
Academy’s subject for its mathematics prize competition of 1812. That
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was probably done as an attempt to encourage Fourier to clarify and
expand on his ideas, and if so it worked—Fourier submitted just such
an entry and won the prize. Alas, his critics were still not convinced and
his new paper was not published. Then, in 1822, Fourier published his
work in book form, Théorie analytique de la chaleur, and it was no longer
possible to push aside what he had done. It was that book, in fact, that
fell into the hands of the young William Thomson and so inspired him.
Fourier’s book is enormous, in both size and scope, and it is impossible
to do it justice in my very limited space here, and so I’ll limit myself to
some of the more dramatic mathematical aspects of it.9 In the rest of
this section we’ll suppose that we have a function f (t) whose values are
defined over some interval of finite length. It is only in this interval that
we really care about what f (t) is “doing.”

First, with no loss of generality, we can imagine that we are working
with a function f (t) defined on the interval 0 < t < L. Starting the
interval at zero can be justified by simply defining the instant t = 0 to be
the start of the interval, and ending the interval at L can be justified by
defining our time scale (the “unit of time”) properly. Or, if you prefer,
we can map any finite interval a < t < b into 0 < t < L with the simple
linear rule

L
b − a

(t − a) −→ t ,

as this maps t = a into t = 0 and t = b into t = L.
Second—this appears to be the seminal insight due to Fourier alone,

an insight missed by Euler, D’Alembert, Bernoulli, Lagrange, and every-
one else until Fourier—we can extend the definition of f (t) from the
interval 0 < t < L to the interval −L < t < L by defining f (t) in the
extension −L < t < 0 any way we want. This is because, since we are
actually only interested in f (t) in the interval 0 < t < L, who cares how
the extended f (t) behaves in the interval −L < t < 0? The answer is,
nobody cares. The reason for making such an extension is that if we make
it cleverly then we can reap interesting, indeed astonishing, mathemat-
ical simplicity. And valuable results, too. (I’ll show you some examples
of this soon.) Two special ways of extending f (t) into −L < t < 0 are to
make an even extension (as shown in figure 4.3.1) or an odd extension
(as shown in figure 4.3.2).
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t0 L−L

Figure 4.3.1. The even extension of f (t)

t0 L−L

Figure 4.3.2. The odd extension of f (t)

Now, one last step. Let’s consider the behavior of f (t) in the interval
−L < t < L as defining a single period of the periodic extension of our
extended f (t), that is, let’s extend the behavior of f (t) over the interval
−L < t < L to −∞ < t < ∞. We thus have a periodic function with
period T = 2L and so, according to Fourier, the periodic extension of
f (t) (which from now on will be what I mean when writing f (t)) can be
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expressed as the trigonometric series

f (t) = a0 +
∞∑

k=1

{ak cos(kω0t) + bk sin(kω0t)},

where the infinity of as and bs are all constants and ω0 = 2π/T (which
is called the fundamental frequency). It is very convenient, at this point,
to write the sum in terms of complex exponentials because they are
generally easier to work with than are sines and cosines. So, using Euler’s
formula,

f (t) = a0 +
∞∑

k=1

{
ak

e ikω0t + e−ikω0t

2
+ bk

e ikω0t − e−ikω0t

2i

}

= a0 +
∞∑

k=1

{
ak

2
+ bk

2i

}
e ikω0t +

∞∑
k=1

{
ak

2
− bk

2i

}
e−ikω0t .

Then, letting our summation index run from k = −∞ to k = ∞, we can
write f (t) as

f (t) =
∞∑

k=−∞
cke ikω0t , ω0T = 2π ,

where the ck are constants (generally, complex constants). Indeed, if f (t)
is a real-valued function of t , as it will be for us, usually (but not always—
read on for a beautiful example of the “real value” of a complex-valued
function), and since the conjugate of a real quantity is equal to itself (the
conjugate of x + iy, written as (x + iy)∗, is (x − iy), we see that whatever
the coefficients ck are, it must be true that

f (t) =
∞∑

k=−∞
cke ikω0t = f ∗(t) =

∞∑
k=−∞

c∗
k e−ikω0t .

This, in turn, says c∗
k = c−k (just set the coefficients of matching expo-

nential terms on each side of the equality equal to each other). And
notice, too, that for the special case of k = 0 we have c∗

0 = c0, which says
that for any real-valued f (t) it will always be true that c0 is real.
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With all of this preliminary stuff behind us we can no longer avoid the
question of just what are the Fourier coefficients—what are the ck? They
are actually easy to determine. For k any particular integer from −∞ to
∞ (let’s say, k = n), multiply both sides of the boxed expression for f (t)
by e−nωot and integrate over a period, that is, over any interval of length
T . Then,

t ′+T∫
t ′

f (t)e−inω0t dt =
t ′+T∫
t ′

⎧⎨⎩
∞∑

k=−∞
cke ikω0t

⎫⎬⎭ e−inω0t dt

=
∞∑

k=−∞
ck

t ′+T∫
t ′

e i(k−n)ω0t dt .

The last integral is easy to do; we’ll consider the two cases of n �= k
and n = k separately. First, if n �= k then

t ′+T∫
t ′

e i(k−n)ω0t dt =
(

e i(k−n)ω0t

i(k−n)ω0

∣∣∣∣∣
t ′+T

t ′

= e i(k−n)ω0(t ′+T ) − e i(k−n)ω0t ′

i(k − n)ω0

= e i(k−n)ω0t ′ [e i(k−n)ω0T − 1]
i(k − n)ω0

.

But, since ω0T = 2π , and since k − n is an integer, Euler’s formula says
we have e i(k−n)ω0T = 1, and so the integral is zero. On the other hand,
if n = k then the integral becomes

t ′+T∫
t ′

e0dt = (t |t ′+T
t ′ = T .

In summary, then,

∫
period

e i(k−n)ωo t dt =
{

0, k �= n,

T , k = n.
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Thus, ∫
period

f (t)e−inωot dt = cnT ,

so, at last, we have the elegant result that the Fourier coefficients are
given by

cn = 1
T ·

∫
period

f (t)e−inωot dt , ω0T = 2π .

As I mentioned at the end of section 4.1, this approach to finding the
coefficients in the trigonometric series expansion for a periodic f (t) is
due to Euler.10

Now we can see how a modern analyst would derive Euler’s 1744
series discussed in the previous section. As the plots there show (see
figures 4.2.3 through 4.2.6 again), Euler was actually working with a peri-
odic function, with period T = 2π (one such period is 0 < t < 2π).
We therefore have ω0 = 1 (from ω0T = 2π) and so, in the interval
0 < t < 2π ,

f (t) = π − t
2

=
∞∑

n=−∞
cne int ,

where

cn = 1
2π

2π∫
0

π − t
2

e−int dt = 1
4

2π∫
0

e−int dt − 1
4π

2π∫
0

te−int dt .

The n = 0 case is easy to do:

c0 = 1
4

2π∫
0

dt − 1
4π

2π∫
0

t dt = 1
4

(
t
∣∣∣∣2π

0
− 1

4π

(
1
2

t2
∣∣∣∣2π

0

= 2π

4
− 4π2

8π
= 0.
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For the case of n �= 0, the first integral for cn is

1
4

2π∫
0

e−int dt = 1
4

(
e−int

−in

∣∣∣∣2π

0
= e−i2πn − 1

−i4n
= 0,

since e−i2πn = 1 for any integer n. Thus, our formula for cn reduces to

cn = − 1
4π

2π∫
0

te−int dt .

Using integration by parts (or simply a good integral table) we find that,
for any constant a �= 0,

∫
teat dt = eat

a

(
t − 1

a

)
.

So, setting a = −in, we have

cn = − 1
4π

{
e−int

−in

(
t − 1

−in

)∣∣∣∣2π

0

= − i
4πn

{
e−int

(
t − i

n

)∣∣∣∣2π

0

= − i
4πn

[
e−i2πn

(
2π − i

n

)
+ i

n

]
,

or, as e−i2πn = 1,

cn = − i
4πn

(
2π − i

n
+ i

n

)
= − i

2n
.

Thus, in the interval 0 < t < 2π we have

f (t) = π − t
2

=
∞∑

n=−∞, �=0

− i
2n

eint ,



Fourier Series 147

or, writing the summation out in pairs of terms (n = ±1, ±2, ±3, etc.)
we have

π − t
2

= − i
2

[(
e it − e−it

1

)
+
(

e i2t − e−i2t

2

)
+
(

e i3t − e−i3t

3

)
+
(

e i4t − e−i4t

4

)
+ · · ·

]
= − i

2

[
2i sin(t) + 2i sin(2t)

2
+ 2i sin(3t)

3
+ 2i sin(4t)

4
+ · · ·

]
= sin(t) + sin(2t)

2
+ sin(3t)

3
+ sin(4t)

4
+ · · · ,

which is the expression Euler wrote in his 1744 letter. Our derivation
here, of course, has avoided the brilliant (but outrageous) excesses of
Euler’s derivation given in the previous section. And notice one little
tidbit we get “for free,” so to speak: if we set t = π/2, then

π

4
= sin

(
π

2

)
+ sin(π)

2
+ sin(3π/2)

3
+ sin(2π)

4
+ sin(5π/2)

5
+ · · · ,

or

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · ,

which is usually called Leibniz’s series, after the German mathematician
Gottfried Leibniz (1646–1716)—you’ll recognize it as having been used
before in this book without proof.

We can do a couple of very interesting things with Euler’s series; first,
integrating both sides from 0 to x we get

x∫
0

π − t
2

dt =
x∫

0

∞∑
n=1

sin(nt)
n

dt

= π

2
x − x2

4
=

∞∑
n=1

1
n

x∫
0

sin(nt)dt
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=
∞∑

n=1

1
n

(
−cos(nt)

n

∣∣∣∣ x

0
=

∞∑
n=1

1 − cos(nx)

n2

=
∞∑

n=1

1
n2 −

∞∑
n=1

cos(nx)

n2 .

As Euler showed in 1734 (and we’ll derive it, too, later in this section),

∞∑
n=1

1
n2 = π2

6
,

and so

∞∑
n=1

cos(nx)

n2 = π2

6
− π

2
x + x2

4
= 3x2 − 6πx + 2π2

12
.

Setting x = π/2, we get

∞∑
n=1

cos(nπ/2)

n2 = − 1
22 + 1

42 − 1
62 + 1

82 − · · · = 3π2/4 − 6π2/2 + 2π2

12
,

or

− 1
(1 · 2)2 + 1

(2 · 2)2 − 1
(3 · 2)2 + 1

(4 · 2)2 − · · · = 3π2/4 − π2

12
= −π2

48
,

or

−
[

1
4 · 12 − 1

4 · 22 + 1
4 · 32 − 1

4 · 42 + · · ·
]

= −π2

48
,

or, at last, the beautiful formula

1
12 − 1

22 + 1
32 − 1

42 + · · · = π2

12
.

This is easily and quickly “checked” on a computer (π2/12 =
0.82246703342411 while the first ten thousand terms of the alternating
series itself directly sum to 0.822467028442461).
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Now, go back to the boxed expression for
∑∞

n=1 cos(nx)/n2 and
integrate it from 0 to u:

u∫
0

∞∑
n=1

cos(nx)

n2 dx =
u∫

0

3x2 − 6πx + 2π2

12
dx

=
∞∑

n=1

1
n2

u∫
0

cos(nx)dx

=
(

x3

12
− πx2

4
+ π2x

6

∣∣∣∣u
0

,

or

∞∑
n=1

1
n2

(
sin(nx)

n

∣∣∣∣u
0

=
∞∑

n=1

sin(nu)

n3 = u3

12
− πu2

4
+ π2u

6
.

And so, setting u = π/2,

∞∑
n=1

sin(nπ/2)

n3 = 1
13 − 1

33 + 1
53 − 1

73 + · · · = π3

12 · 8
− π3

4 · 4
+ π3

12

= π3

32
.

Again, this is easily checked; π3/32 = 0.96894614625937 while the
first one thousand terms of the alternating series itself directly sum to
0.96894614619687. Our formula in this case is particularly interesting
because the sum of the reciprocals of all the integers cubed is still an
open question,

∞∑
n=1

1
n3 = 1

13 + 1
23 + 1

33 + 1
43 + · · · = ?

and our calculation, of the reciprocals of the odd integers cubed with
alternating signs would seem to be closely related. But, as Groucho Marx
used to say, “close, but no cigar.” One could continue on in this fash-
ion literally forever—integrating and inserting particular values for the
independent variable—thereby deriving an infinity of ever more exotic
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Figure 4.3.3. A “square-wave”

formulas involving the sums of the reciprocals of ever higher powers of
the integers, but I think I’ll stop here with that sort of thing and move
on to something else.

An historically important example (that we’ll return to in the next
section) is the periodic function with a period defined as

f (t) =

⎧⎪⎨⎪⎩
+1, |t | <

π

2
,

−1,
1
2
π < |t | < π ,

and illustrated in figure 4.3.3 (the illustration makes it obvious, I think,
why engineers, physicists, and mathematicians call this periodic function
a square wave). Therefore, following Fourier (with T = 2π and ω0 = 1),

f (t) =
∞∑

n=−∞
cne int ,

cn = 1
2π

π∫
−π

f (t)e−int dt .
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The coefficients are particularly easy to calculate for this particular
problem, as we have for n = 0

c0 = 1
2π

π∫
−π

f (t)dt = 0,

and for n �= 0

cn = 1
2π

⎡⎢⎣−
−π/2∫
−π

e−int dt +
π/2∫

−π/2

e−int dt −
π∫

π/2

e−int dt

⎤⎥⎦
= 1

2π

[(
e−int

in

∣∣∣∣−π/2

−π

−
(

e−int

in

∣∣∣∣π/2

−π/2
+
(

e−int

in

∣∣∣∣π
π/2

]

= 1
2π in

[e inπ/2 − e inπ − e−inπ/2 + e inπ/2 + e−inπ − e−inπ/2]

= 1
2π in

[2(e inπ/2 − e−inπ/2) − (e inπ − e−inπ)]

= 1
2π in

[
4i sin

(
n

π

2

)
− 2i sin(nπ)

]
= 2

nπ
sin

(
n

π

2

)
.

Therefore,

f (t) = 2
π

∞∑
n=−∞, n �=0

sin(nπ/2)

n
e−int

= 2
π

[
(e it + e−it ) +

(−e−i3t

3
+ e i3t

−3

)
+
(

e−i5t

5
+ −e i5t

−5

)
+ · · ·

]

= 2
π

[
2 cos(t) − 2

cos(3t)
3

+ 2
cos(5t)

5
− · · ·

]
= 4

π

[
cos(t) − cos(3t)

3
+ cos(5t)

5
− · · ·

]
.

Notice that substituting t = 0 (which means f = +1) gives us Leibniz’s
series again. Figure 4.3.4 shows a partial sum (with ten terms) of this
Fourier series and, as with Euler’s series, we again see those curious
wiggles in the neighborhoods of sudden transitions of the function.
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Figure 4.3.4. The ten-term partial sum of the square-wave Fourier series

A famous result lies hidden in this Fourier series. Since f 2(t) = 1
for all t ,

16
π2

[
cos(t) − 1

3
cos(3t) + 1

5
cos(5t) − · · ·

]2

= 1.

Now, suppose we integrate term by term on both sides of this equality,
from 0 to 2π (when we square the left-hand side we get the squares of all
the individual terms plus all possible cross products). Using the easy-to
establish result

2π∫
0

cos(mt) cos(nt)dt =
{

0, m �= n,

π , m = n
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( just replace the cosines with their complex exponential equivalents and
integrate), we arrive at

16
π2

[
π + π

1
32 + π

1
52 + · · ·

]
= 2π ,

or

1
12 + 1

32 + 1
52 + · · · = π2

8
.

That is, we have the value of the sum of the reciprocals of the odd integers
squared, which we write as

∞∑
n=1

1
(2n − 1)2 = π2

8
.

Now, since all the integers can be separated into two sets, the evens
and the odds, we can write the sum of the reciprocals of all the integers
squared as (the first sum on the right of the first equality is the evens,
and the second sum is the odds)

∞∑
n=1

1
n2 =

∞∑
n=1

1
(2n)2 +

∞∑
n=1

1
(2n − 1)2 = 1

4

∞∑
n=1

1
n2 + π2

8
,

or

3
4

∞∑
n=1

1
n2 = π2

8
,

which immediately gives us Euler’s result, which made him world-famous
(his derivation was, of course, based on a non-Fourier method):

∞∑
n=1

1
n2 = π2

6
.

I used this result, you’ll recall, earlier in this section, and we can easily
“check” it:

π2

6
= 1.64493406684823
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while the first ten thousand terms of the series directly sum to
1.64483407184807.

Finally, here’s a really spectacular use of Fourier series. Let f (t) =
cos(αt), −π < t < π , where α is any real, non-integer (you’ll see why
soon) number. If we imagine that we periodically extend this f (t) onto
−∞ < t < ∞, with period 2π , then ω0 = 1 and

f (t) = cos(αt) =
∞∑

n= − ∞
cne int ,

where

cn = 1
2π

π∫
−π

cos(αt)e−int dt

= 1
2π

π∫
−π

e iαt + e−iαt

2
e−int dt

= 1
4π

⎡⎣ π∫
−π

e i(α−n)t dt +
π∫

−π

e−i(α+n)t dt

⎤⎦
= 1

4π

[
e i(α−n)t

i(α − n)
+ e−i(α+n)t

−i(α + n)

∣∣∣∣∣
π

−π

= 1
4π i

[
e i(α−n)π − e−i(α−n)π

α − n
− e−i(α+n)π − e i(α+n)π

α + n

]

= 1
4π i

·
αe iαπ2 cos(nπ) − αe−iαπ2 cos(nπ)

−neiαπ2i sin(nπ) − ne−iαπ2i sin(nπ)

α2 − n2

= 1
4π i

· 2α cos(nπ)(e iαπ − e−iαπ )

α2 − n2

= 2α cos(nπ)2i sin(απ)

4π i(α2 − n2)

= α cos(nπ) sin(απ)

π(α2 − n2)
= α(−1)n sin(απ)

π(α2 − n2)
.
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So,

cos(αt) =
∞∑

n=−∞

α(−1)n sin(απ)

π(α2 − n2)
e int ,

or

cos(αt) = α sin(απ)

πα2 + 1
π

∞∑
n=1

α(−1)n sin(απ)

π(α2 − n2)
[e int + e−int ],

or

cos(αt) = sin(απ)

πα
+ α sin(απ)

π

∞∑
n=1

(−1)n

α2 − n2 2 cos(nt),

or,

cos(αt) = sin(απ)

π

[
1
α

+ 2α

∞∑
n= 1

(−1)n

α2 − n2 cos(nt)

]
.

This last expression is stuffed with marvelous special cases. For exam-
ple, if t = 0 then

π

sin(απ)
= 1

α
+ 2α

∞∑
n=1

(−1)n

α2 − n2 ,

which, for α = 1/2, reduces to

π = 2 +
∞∑

n=1

(−1)n

(1/2)2 − n2 = 2 + 4
∞∑

n=1

(−1)n

1 − 4n2 .

This is easily “checked” numerically; using the first ten thousand terms
of the series gives, for the right-hand side, a value of 3.14159264859029,
which is pretty nearly equal to pi. Or, if we set t = π in the boxed
expression, then as cos(nπ) = (−1)n (and as (−1)n(−1)n = (−1)2n = 1)
we have

cos(απ) = sin(απ)

π

[
1
α

+ 2α

∞∑
n=1

1
α2 − n2

]
,
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or, alternatively, we have the dazzling result

π

tan(απ)
= 1

α
+ 2α

∞∑
n= 1

1
α2 − n2 .

Before doing any further particular Fourier series expansions, let
me show you an extremely useful formula that holds for all Fourier
series. To begin, I’ll define the so-called energy of the function f (t), in a
period, as

W =
∫

period

f 2(t) dt .

The origin of this definition is from physics, but we can treat it here as
simply a definition. (You’ll soon see that it is an extraordinarily good
definition because we will be able to use it to do some wonderful, easy
calculations.) Next, let’s insert the Fourier series expansion for f (t) into
the energy integral. Writing f 2(t) = f (t) · f (t) and using a different
index of summation for each f (t), we have

W =
∫

period

{ ∞∑
m=−∞

cme imω0t

}{ ∞∑
n=−∞

cne inω0t

}
dt

=
∞∑

m=−∞

∞∑
n=−∞

cmcn

∫
period

e i(m+n)ω0t dt .

As we’ve already seen, when deriving the general formula for the Fourier
coefficients, this last integral is zero for m and n such that m + n �= 0,
and is equal to T (the period) if m + n = 0, that is, if m = −n. Our
result thus reduces to what is called Parseval’s formula, named after the
French mathematician Antoine Parseval des Chenes (1755–1836),

W =
∞∑

k=−∞
ckc−kT = T

∞∑
k=−∞

ckc∗
k = T

∞∑
k=−∞

|ck |2,
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where I’ve used the fact that c−k = c∗
k if f (t) is a real-valued function.

This result is often written in the alternative form, once it is noticed that
|c−k | = |ck |, as

W
T

= c2
0 + 2

∞∑
k= 1

|ck |2 = 1
T

∫
period

f 2(t) dt ,

and W /T is called the power of the function f (t), because in physics
power is energy per unit time.

Here’s a really spectacular application of Parseval’s formula. Let
f (t) = e−t over the interval 0 < t < 2π , and then imagine that the
definition is extended over the real line, −∞ < t < ∞, with 0 < t < 2π

representing one period. We can express the resulting periodic function
as the Fourier series (remember, ω0T = 2π and so, in this problem, we
have ω0 = 1)

f (t) =
∞∑

n=−∞
cne int ,

where

cn = 1
2π

2π∫
0

e−t e−int dt .

The integral is easy to do:

cn = 1
2π

2π∫
0

e−(1+in)t dt = 1
2π

{
e−(1+in)t

−(1 + in)

∣∣∣∣∣
2π

0

= 1
2π

· 1 − e−(1+in)2π

1 + in

= 1
2π

· 1 − e−2π e−in2π

1 + in
= 1 − e−2π

2π(1 + in)
.

Thus,

|cn |2 = (1 − e−2π)2

4π2(1 + n2)
,
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and so
∞∑

n=−∞
|cn |2 = (1 − e−2π)2

4π2

∞∑
n=−∞

1
1 + n2 .

By Parseval’s formula this is equal to

1
T

∫
period

f 2(t) dt = 1
2π

2π∫
0

e−2t dt

= 1
2π

(
− e−2t

2

∣∣∣∣2π

0

= 1
4π

(1 − e−4π) = 1
4π

(1 − e−2π)(1 + e−2π).

That is,

1
4π

(1 − e−2π)(1 + e−2π) = (1 − e−2π)2

4π2 ·
∞∑

n=−∞

1
1 + n2

and, suddenly, we have the pretty result that

∞∑
n=−∞

1
1 + n2 = π

1 + e−2π

1 − e−2π
.

I’ll show you an even more beautiful generalization of this in section
5.5. Of course, one might wonder if this result is “right,” and two such
easy-to-calculate expressions simply cry out for a numerical test:

π
1 + e−2π

1 − e−2π
= 3.15334809493716,

while letting n run from −100,000 to 100,000 (there is nothing spe-
cial about 100,000—I simply picked a number “big enough” to get a
reasonably good approximation to the actual value of the sum) gives

100,000∑
n=−100,000

1
1 + n2 = 1 + 2

100,000∑
n=1

1
1 + n2 = 3.15332809503716.

As wonderful as this last example is, let me now show you another
use of Parseval’s formula which I think tops it. First, let’s extend our
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definition of the energy per period of a periodic function to include
complex-valued functions. One way to do this, while keeping the energy
itself real (thereby keeping one toe in the “real world”), is to write

W =
∫

period

f (t)f ∗(t) dt =
∫

period

|f (t)|2 dt .

This reduces, if f (t) is real, to our earlier definition for the energy of a
real-valued f (t). With our extended definition of energy we have

W =
∫

period

{ ∞∑
m=−∞

cme imω0t

}{ ∞∑
n=−∞

cne inω0t

}∗
dt ,

and, since the conjugate of a sum is the sum of the conjugates and the
conjugate of a product is the product of the conjugates,

W =
∫

period

{ ∞∑
m=−∞

cme imω0t

}{ ∞∑
n=−∞

c∗
ne−inω0t

}
dt

=
∞∑

m=−∞

∞∑
n=−∞

cmc∗
n

∫
period

e i(m−n)ω0t dt .

Again, since the integral is zero for m and n such that m − n �= 0, and is
equal to T if m − n = 0 (that is, if m = n), we have

W =
∞∑

k=−∞
ckc∗−kT = T

∞∑
k=−∞

ckc∗−k = T
∞∑

k=−∞
|ck |2,

which is, again, Parseval’s formula.
Notice, very carefully, that in this derivation we did not use c−k = c∗

k ,
which is good since for complex-valued functions it isn’t true! This is
quite interesting, in fact, because since we have now shown that Parseval’s
formula is true for complex-valued functions (which include real-valued
functions as a special case), our earlier use of c−k = c∗

k for real-valued
functions was actually demanding more of the Fourier coefficients than
necessary. That is, analyzing the problem for the general case requires
fewer conditions than does the analysis for the special case! Yes, the
mathematics gods do often work in mysterious ways.
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Now, suppose f (t) = e iαt over the interval −π < t < π , where α

is any real constant that is not an integer (you’ll see why we need this
condition soon), and then imagine that f (t) is periodically extended
over the entire real line −∞ < t < ∞. We thus have a complex -valued
periodic function with period 2π . Since ω0 = 1, Fourier’s theorem tells
us that

f (t) =
∞∑

k=−∞
cke ikt ,

where

ck = 1
2π

π∫
−π

e iαt e−ikt dt = 1
2π

π∫
−π

e i(α−k)t dt = 1
2π

{
e i(α−k)t

i(α − k)

∣∣∣∣∣
π

−π

= 1
2π

· e i(α−k)π − e−i(α−k)π

i(α − k)

= 1
2π

· i2 sin{(α − k)π}
i(α − k)

= sin{π(α − k)}
π(α − k)

.

If we assume that α is any real number not equal to an integer, then we
see that this result for ck is always defined (that is, there is no integer k
for which the denominator is zero), and so our expression for ck holds
for all integer k.

The energy of our complex-valued function is

W =
∫

period

f (t)f ∗(t) dt =
π∫

−π

e iαt e−iαt dt =
π∫

−π

dt = 2π .

Parseval’s formula then tells us that

W
T

=
∞∑

k=−∞
|ck |2 = 2π

2π
= 1 =

∞∑
k=−∞

sin2{π(α − k)}
π2(α − k)2 .

Or, if we make the change of variable α = u/π , then

1 =
∞∑

k=−∞

sin2{π((u/π) − k)}
π2((u/π) − k)2 =

∞∑
k=−∞

sin2{u − kπ}
(u − kπ)2 .
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Since sin2(u − kπ) = sin2(u) for all integer k,

1 =
∞∑

k=−∞

sin2(u)

(u − kπ)2 = sin2(u)

∞∑
k=−∞

1
(u + kπ)2 ,

where the second equality follows since the summation index k runs
through all the integers, positive and negative. And so, finally, writing
u = πα, we have

1

sin2(πα)
=

∞∑
k=−∞

1
(πα + kπ)2 ,

which becomes the beautiful identity (known by other means to Euler
as early as 1740)11

∞∑
k= − ∞

1
(k + α)2 = π2

sin2(πα)
.

Inserting particular values for α reduces this result to specific, testable
cases. For example, if α = 1/2, then

∞∑
k= − ∞

1
(k + 1/2)2 = π2.

I personally don’t find this very “obvious” and, you too might well ask, is
it true? Repeating our earlier approach of doing a numerical check, we
find that

π2 = 9.86960440108936,

while

10,000∑
k=−10,000

1
(k + 1/2)2 = 9.86940441108855.

Well, I’m convinced! I hope you are, too. But maybe not.
So, let me end this section with the admission that I have willingly

(perhaps a little too willingly) avoided saying anything about the con-
vergence of the Fourier series I have been manipulating with abandon.
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Certain sufficiency conditions have been established that ensure conver-
gence; these are the so-called strong Dirichlet conditions, formulated in
1829. If f (t) is a periodic function, then the partial sums of its Fourier
series do indeed converge to f (t) for all t (other than at discontinuities)
if, besides being absolutely integrable,

(1) f (t) has a finite number of finite discontinuities in a period

and

(2) f (t) has a finite number of extrema in a period.

These are called strong conditions because they are known not to be
necessary conditions, that is, there are f (t) that do not satisfy all the
strong conditions but nonetheless do have convergent Fourier series
for all t (other than at discontinuities). The strong conditions are suffi-
cient conditions that are mild enough so that all functions an engineer
would encounter in “real life” do satisfy them. (Functions that don’t
satisfy all of the strong Dirichlet conditions are sufficiently weird that
they are called pathological. For example, figure 4.3.5 shows one period
of f (t) = t · sin(1/t), a function with an infinite number of extrema in
the interval 0 < t < 1; indeed, there are an infinity of extrema in any
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Figure 4.3.5. One period of a function that violates a Dirichlet
strong condition
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finite interval 0 < t < ε, no matter how small is ε!) In 1904 the Hun-
garian mathematician Lipót Fejér (1880–1959) discovered convergence
conditions weaker than the Dirichlet strong conditions, but even they
are stronger than necessary and sufficient conditions; such conditions are
still unknown.

4.4 Discontinuous functions, the Gibbs phenomenon,
and Henry Wilbraham.

We are now at the point where we have to say something about those
funny wiggles that won’t go away in Euler’s series for (π − t)/2. As Figures
4.2.3 through 4.2.6 indicate, adding in more and more terms in that
Fourier series does indeed result in the partial sums becoming better and
better approximations to (π − t)/2 over most of the period 0 < t < 2π ,
but that is not so as we approach either t = 0 from the right or t = 2π

from the left. This sort of “wiggly” behavior (electrical engineers call
it “ringing”) is, in fact, characteristic of the Fourier series for any dis-
continuous periodic function near a discontinuity (we saw it, too, in the
square-wave Fourier series partial sum of figure 4.3.4) but, astonishingly,
the wiggles escaped the notice of mathematicians for many years after
Fourier.12

Except for one.
But that’s getting ahead of my story here. The story of that single

exception is, I think, the most interesting part of the whole “tale of the
wiggles,” and I’ll save it for last (there is historical information at the
end of this section that is published for the first time).

The traditional tale of how those wiggles finally came to be noticed
begins with an 1898 letter13 to the British science journal Nature, written
by the American Albert Michelson (1852–1931), head of the University
of Chicago’s physics department. In his letter Michelson disputed the
possibility that a Fourier series could represent a discontinuous function.
As he wrote in his opening sentences,

In all expositions of Fourier’s series which have come to my notice,
it is expressly stated that the series can represent a discontinuous
function. The idea that a real discontinuity can replace a sum of
continuous curves [the individual terms of the series] is so utterly
at variance with the physicists’ notions of quantity, that it seems
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to me to be worth while giving a very elementary statement of the
problem in such simple form that the mathematicians can at once
point to the inconsistency if any there be.

In particular, Michelson did not believe that the Fourier series for the
periodically extended function f (t) = t , −π < t < π , could converge
to zero at the instants of the discontinuities (odd multiples of π). These
zero values would represent “isolated points” and Michelson offered an
argument that he thought showed this to be nonsense.

A reply14 was published just a week later, from A.E.H. Love (1863–
1940), then a professor of mathematics at Cambridge University. Love
correctly pointed out Michelson’s mathematical errors in reasoning,
beginning several of his sentences with “It is not legitimate to . . . ” and
“The processes employed are invalid . . . ,” and ending with the observa-
tion that Michelson had started his analysis with a series that doesn’t even
converge! Michelson replied several weeks later with a short note, stating
that he was unconvinced; immediately following his letter, in the same
issue of Nature, was one from a new correspondent, the American math-
ematical physicist J. W. Gibbs (1839–1903) at Yale, as well as a new letter
from Love.15 Love attempted once again to identify Michelson’s mis-
steps, and Gibbs, too, made criticism of Michelson’s reasoning. There
was no reply from Michelson, and then several months later Gibbs wrote
a fateful follow-up letter,16 one that is often cited in modern textbooks.
The other Nature letters have been forgotten by all but historians.

It is a short letter, written only, said Gibbs, to “correct a careless error”
and “unfortunate blunder” that he had made in his first letter, but it
contained, almost as a throwaway line, the seminal statement that, as the
number of terms in the partial sum of a Fourier series for a discontinuous
periodic function is increased, the amplitude of the wiggles will indeed
decrease everywhere except in the neighborhood of the discontinuity.
There, the partial sums will overshoot and undershoot the original function,
with a maximum overshoot amplitude that does not decrease with an
increasing number of terms in the partial sums. As the number of terms
increases, the duration of the overshoot will indeed decrease, but the
maximum overshoot amplitude will not decrease. And, if you look back at
figures 4.2.3 through 4.2.6, you’ll see precisely the behavior that Gibbs
describes in his letter.
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Then, without providing any derivation or explanation, Gibbs simply
states that the maximum overshoot is related to a certain integral: as t
approaches π from the left, the maximum amplitude of the Fourier
series of a periodically extended f (t) = t is not π but rather is
2
∫ π

0 (sin(u)/u du). The percentage overshoot is thus

2

π∫
0

(sin(u)/u) du − π

π
· 100%

= 2 · 1.851937 − π

π
· 100% = 17.9 percent

or, more generally, the Fourier series of any discontinuous function will
have an overshoot in the neighborhood of the discontinuity of about
8.9 percent of the total jump of the discontinuity. This is a number you
can find in innumerable modern engineering, mathematics, and physics
textbooks. If there is any citation at all in those texts (and there often is
not) it is always to Gibbs’s second letter in Nature, and the overshoot is
called the “Gibbs phenomenon.”

The Gibbs phenomenon does not occur in the Fourier series of peri-
odic functions that are free of discontinuities. For example, consider the
function f (t) = sin(t) in the interval 0 ≤ t ≤ π . This function is equal
to zero at both end points, and so if we extend it in an even way to include
−π ≤ t ≤ 0, that is,

f (t) =
{

sin(t), 0 ≤ t ≤ π ,

− sin(t), −π ≤ t ≤ 0,

and then periodically extend this to −∞ < t < ∞, we’ll have a peri-
odic function that is continuous everywhere, and when we plot the
partial sums of its Fourier series you’ll see that there is no Gibbs phe-
nomenon. And, as you’ll also see, the Fourier series will consist only of
cosines (because of the even extension), and so we’ll have an example
of Fourier’s claim that sin(t) (in the interval 0 ≤ t ≤ π) can be written
in terms of an infinity of cosines. The problem is easy to set up: since
T = 2π (and ω0T = 2π , as always) then ω0 = 1 and so, with f (t) now
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denoting the periodic function on the entire real line −∞ < t < ∞, we
have

f (t) =
∞∑

n=−∞
cne int ,

where

cn = 1
2π

⎡⎣ π∫
0

sin(t)e−int dt −
0∫

−π

sin(t)e−int dt

⎤⎦ .

As it almost always is, it is convenient now to first write sin(t) in
terms of complex exponentials and then, after a bit of algebra (which
I’ll let you do), we’ll get

cn =
⎧⎨⎩

2
π

· 1
1 − n2 , n even,

0, n odd.

Inserting this result into the summation for f (t), we have

f (t) = 2
π

·
∞∑

n=−∞, n even

1
1 − n2 e int = 2

π
+ 2

π
·

∞∑
n=2, n even

2 cos(nt)
1 − n2

or, if we write n = 2k where k = 1, 2, 3, . . . (and so n = 2, 4, 6, . . .), we
then have

f (t) = 2
π

+ 4
π

·
∞∑

k=1

cos(2kt)
1 − 4k2 .

This should, if I’ve made no mistakes, be equal to sin(t) in the interval
0 ≤ t ≤ π . As a check, I’ve plotted some partial sums of this Fourier
series to see what they look like, in figures 4.4.1 through 4.4.4 (for the
first one, five, ten, and twenty terms in the summation, respectively).
And, sure enough, those plots do appear to “look more and more like”
sin(t) for 0 ≤ t ≤ π as more and more terms of the Fourier series are
used. And, as you can see, there is no sign of a Gibbs phenomenon
(because there are no discontinuities).
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Figure 4.4.1. A sine from cosines (one term)
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Figure 4.4.2. A sine from cosines (five terms)
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Figure 4.4.3. A sine from cosines (ten terms)
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Figure 4.4.4. A sine from cosines (twenty terms)
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As a final comment on this particular Fourier series, it has an impor-
tant place in electronics as well as in mathematics. This periodically
extended, everywhere continuous function is called a full-wave rectified
sine wave. It is, in fact, the signal that is produced by certain electri-
cal circuits that transform the a-c (alternating current) waveform that
is present at wall sockets into a pulsating d-c (direct current) waveform
that can be further “smoothed” into a constant d-c waveform (the wave-
form that is the usual requirement for the proper operation of electronic
circuits, such as radios and computers).

The Nature correspondence soon came to an end, first with a testimo-
nial letter from the French mathematician Henri Poincaré (1854–1912)
written in support of Michelson (which, curiously, gives the wrong val-
ues to Dirichlet’s discontinuous integral). And then a final letter came
from Love, in response to Poincaré and trying, one last time, to explain
matters to Michelson.17 In that I think Love almost certainly failed, but
it is important to understand that Michelson was not being dense in this
affair. He was really at a mathematical disadvantage that wasn’t entirely
his own fault—the mathematicians of the time didn’t understand the full
behavior of the Fourier series of discontinuous functions, either. In fact,
far from being dense, Michelson was a world-class experimenter; it was
the famous “Michelson-Morley experiment,” using a fantastic optical
interferometer, that showed the absence of a detectable ether effect
on the speed of light and thereby hinted at the constancy of the speed
of light in all inertial frames of reference (a fundamental axiom of
Einstein’s special theory of relativity). For that work Michelson received
the 1907 Nobel Prize in physics. No, he wasn’t dense.

It was the puzzling results from yet another fantastic experimental
gadget that he had helped design and build that prompted his initial
letter to Nature. In a paper published the previous year (1898), Michelson
(and his coauthor S. W. Stratton) described this amazing mechanical
device; as they wrote in their opening paragraph,18

Every one who has had occasion to calculate or to construct graph-
ically the resultant of a large number of simple harmonic motions
has felt the need of some simple and fairly accurate machine
which would save the considerable time and labor involved in such
computations.
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Today we all have such machines, of course—our personal computers
running some scientific programming language such as MATLAB or
Mathematica, but in Michelson’s day there had been only one other
such machine constructed in the entire world: by William Thomson in
the 1880s as an aid in predicting tides.19 The actual invention of the
tidal harmonic analyzer was due to William’s brother James Thomson,
and they had published the conceptual details in the Proceedings of the
Royal Society of 1876 and 1878. Foreshadowing Michelson and Stratton’s
opening words, William wrote in 1882 that “The object of this machine
[the tidal harmonic analyzer] is to substitute brass for brains.” (Since
modern computer processing chips are made from silicon, I suppose an
up-dating of Thomson’s words would say our computers “substitute sand
for smarts”!) The tidal analyzer superficially resembles the power train of
a modern automobile engine20 and is most impressive, but, as Michelson
and Stratton went on to write in their 1898 paper, the construction details
of the ingenious Thomson brothers’ machine eventually led to cumula-
tive errors that overwhelmed any benefit obtained by adding ever more
terms to the partial sum of a Fourier series (the tidal analyzer could add
fifteen terms).

Somewhat mysteriously writing “It occurred to one of us some years
ago . . . that most of the imperfections in existing machines [there was
only the tidal analyzer] might be practically eliminated” (no clue is given
as to which of the two coauthors is the “one”), Michelson and Stratton
then stated

About a year ago [1897] a machine was constructed on [their new
principle of adding harmonic functions] with twenty elements [i.e.,
the number of harmonic functions added] and the results obtained
were so encouraging it was decided [to build] the present machine
with eighty [!] elements.

The Thomson analyzer used a flexible cord passing through a compli-
cated arrangement of fixed and moveable pulleys, and cord stretching
eventually limited the machine’s accuracy. The Michelson/Stratton
machine,21 on the other hand, used gears, spiral springs, pinions, and
eccentric wheels, all (it seems) much less vulnerable to cumulative error
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build-up. Indeed, at the end of their paper they asserted “it would be
quite feasible to increase the number of elements to several hundred or
even to a thousand with a proportional increase [in accuracy].” (“Big
machine” physics evidently did not start with the cyclotron builders in
the twentieth century—Michelson and Stratton were there first in the
nineteenth!)

Both the Thomson and the Michelson/Stratton harmonic analyzers
automatically generated ink drawings on paper of the resulting sum-
mations, and in their 1898 paper Michelson and Stratton reproduced
some of their more spectacular results, some of which (the plots of
theoretically discontinuous functions) distinctly exhibit the Gibbs phe-
nomenon. And now you can appreciate what prompted Michelson’s
opening line in his first letter to Nature—the plots produced by his
machine were not discontinuous, even with eighty terms. If he wondered
at all about the wiggles around the sharp, nearly vertical transitions his
ink pen traveled as it moved through the mathematical discontinuities
isn’t clear—he probably thought they were just the cumulative effect of
numerous small but unavoidable deviations from machine perfection.
Michelson’s letter was the result of physical experiments that deviated from
what he had been led to expect by pure mathematics. This fact is interesting
in its own right, because the Nature controversy eventually resulted in
mathematicians making new studies into just what is meant by a Fourier
series expansion of a periodic function. As interesting as all that is, how-
ever, I haven’t yet told you what I think is the most interesting part of
the story.

The answer to Michelson’s query, and Gibbs’s discovery of the curious
behavior of a Fourier series near a discontinuity, had been anticipated
and published fifty years before in 1848, by the forgotten English-
man Henry Wilbraham (1825–1883), then a twenty-two-year-old student
at Trinity College, Cambridge. Wilbraham’s paper22 opens with the
following passage:

Fourier, in his Treatise, after discussing the equation

y = cos x − 1
3

cos 3x + 1
5

cos 5x − · · · ad inf.,
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says that, if x be taken for abscissa and y for ordinate, it [the equa-
tion] will represent a locus composed of separate straight lines,
of which each is equal to π [in length], parallel to the axis of x ,
and at a distance of 1

4π alternately above and below it, joined by
perpendiculars which are themselves part of the locus of the equa-
tion. Some writers who have subsequently considered the equation,
have stated that the part of the lines perpendicular to the axis of x
which satisfies the equation is contained between the limits ± 1

4π .
The following calculation will shew that these limits are erroneous.

You’ll recognize the equation cited by Wilbraham as being the square-
wave function we analyzed in the last section, and which led to figure
4.3.4.

Then, in his next two pages, Wilbraham derived the result that the
Fourier series overshoot at the discontinuity is proportional to the
integral

∫ π

0 (sin(u)/u) du, the same integral given by Gibbs without
derivation. In addition, Wilbraham’s paper contains a number of labori-
ously calculated, hand-plotted partial sums for the square-wave Fourier
series; those plots clearly display the wiggles we see in figure 4.3.4, that
is, the Gibbs phenomenon was in print when Gibbs was just nine years
old. Nevertheless, when the American mathematician Maxime Bôcher
(1867–1918), on the faculty at Harvard, finally gave a full mathematical
analysis on the behavior of Fourier series at discontinuities in 1906 (all
the while being unaware of Wilbraham), he coined the term Gibbs’s phe-
nomenon for that behavior (now just called Gibbs phenomenon), and that’s
the name that has stuck.

How could such a gross oversight have happened, you might wonder?
Wilbraham was clearly a talented mathematician, but that talent did not
lead to an academic career and numerous published papers, books, and
other forms of professional recognition by which he and his work would
have become well known. Indeed, a search of the Royal Society Catalogue of
Scientific Papers shows only seven published papers by Wilbraham, the first
of which was his Fourier series paper, and the last a beautifully written
1857 paper on actuarial mathematics that appeared in the Assurance
Magazine.23 So, let me end this section by telling you what I have been
able to find out about this long-forgotten almost -mathematician whose
very first published paper was fifty years ahead of its time.24
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Born the second youngest of five brothers on July 25, 1825, Henry
Wilbraham came from a privileged family. His father George (1779–
1852) served for ten years in Parliament, his mother Lady Anne (died
1864) was the daughter of the first Earl Fortescue, and they moved in
high circles. In October 1832, for example, Henry’s parents were in
one of the formal carriages that followed the royal procession to the
ceremony where the then thirteen-year old Princess Victoria (who would
be queen five years later) opened the Grosvenor Bridge (then the largest
single-span stone arch bridge in the world). After attending the elite
Harrow School Wilbraham was admitted to Trinity College, Cambridge
in October 1841, shortly after his sixteenth birthday.25 He received his
BA in 1846 and an MA in 1849. For several years (at least up to 1856) he
was a Fellow at Trinity, and then sometime after 1856 he left academia
for unknown reasons.

In 1864 he married Mary Jane Marriott (died 1914); they had seven
children (one survived until 1954). By 1875 he was not employed as
a mathematician at all, but rather held the post of District Registrar
of the Chancery Court at Manchester. And that was the only position
mentioned (along with being a late Fellow of Trinity) in his will when he
died (from tuberculosis) on February 13, 1883, still in his 57th year. He
left his family well provided for with, among other valuable possessions,
a pension valued in excess of £37,000. And then, with the exception of
a few historians, the world forgot Henry Wilbraham.26

When the Nature debate began, Wilbraham had been dead for more
than fifteen years, and all of his work from half a century earlier had to
be rediscovered. If his paper had not vanished from view almost immedi-
ately after publication, perhaps the state of Fourier analysis might have
been greatly accelerated. For example, it wasn’t until Bôcher’s 1906
paper that it was finally proved that if the periodic function f (t) is dis-
continuous at t = t 0 then at t = t 0 the Fourier series for f (t) converges
to 1/2[f (t 0−) + f (t 0+)], where f (t 0−) and f (t 0+) are the values of f (t)
“just before” and “just after” the discontinuity, respectively.

4.5 Dirichlet’s evaluation of Gauss’s quadratic sum.
In this, the penultimate section of the chapter, I’ll show you a beautiful
application of Fourier series that most engineers and physicists never
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see because its origin is in abstract number theory; even mathemati-
cians might not see it until graduate school. This analysis will be doubly
interesting for us because not only does it use Fourier series and Euler’s
formula, it also involves the solution to a problem that stumped the
great Gauss for years. He finally solved it using number theoretic argu-
ments by 1805, just as Fourier was starting his work. Then, thirty years
later (1835) Dirichlet (who appeared earlier in sections 1.7 and 1.8)
used Fourier’s method to produce an entirely new, extremely elegant
derivation of Gauss’s result. The problem is easy to state.

We wish to evaluate a function called G (m)—G for Gauss, of course—
defined as

G (m) =
m−1∑
k=0

e−i(2π/m)k2
, m > 1.

Gauss encountered this expression during his study of regular n-gons
(see section 1.6 again). Often you’ll see G (m) defined with a positive
exponent,

G (m) =
m−1∑
k=0

e i(2π/m)k2
,

but this is a trivial variation. This G (m), and the one I first defined with
a minus sign in the exponent, are simply conjugates. That is, once we
have the answer for one of the G s, then the answer for the other G is
the conjugate of the first answer; I’ll return to this point at the end of
the analysis.

G (m) is called a Gaussian quadratic sum because of the k2 in the expo-
nent, and it’s the squaring of k that makes the problem hard.27 If it were
simply k, then we would have nothing more complicated than a geomet-
ric series, which is easy to work with (you should be able to show, for that
case, that the sum is zero). Geometrically, too, the zero sum is obvious
as G (m) is the sum of m ≥ 2 equal-length vectors, all originating at the
origin and angularly spaced uniformly around a circle. The net vector
sum is, by inspection, zero. But make the k in the exponent k -squared and
the uniform angular spacing goes out the window. Then the problem
gets tough.
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There is, of course, no reason to stop with k2. In fact, mathematicians
have generalized the Gaussian sum exponent to kp , where p is any pos-
itive integer. And so for p = 3, 4, 5, 6, . . . we have the Gaussian cubic,
quartic, quintic, sextic, ... sums. Mathematicians have studied Gaussian
sums up to at least (as far as I know) p = 24 (the biduodecimic) Gaus-
sian sum.28 Exercising great and admirable restraint, however, I’ll limit
myself here to Gauss’s original quadratic sum.

Now, to start, let’s do a very quick summary of what we’ve developed
in the earlier sections of this chapter, cast into the particular form we’ll
need here. Suppose f (t) is a periodic function with period one. Then,
its complex exponential Fourier series is (remember, ω0T = 2π and,
with T = 1, we have ω0 = 2π)

f (t) =
∞∑

k=−∞
cke ik2π t ,

where the Fourier coefficients are given by

ck =
1∫

0

f (t)e−ik2π t dt .

That’s the review—I told you it would be quick! Now, what should we
use for f (t)?

It was Dirichlet’s clever idea to define f (t) as follows: let g (t) be a
function defined as

g (t) =
m−1∑
k=0

e−i(2π/m)(k+t)2
, 0 ≤ t < 1,

and take this as giving the behavior of one complete period of the peri-
odic function f (t). That is, our periodic f (t) is simply the g (t) defined
above, repeated over and over as t goes off (in both directions) to infinity.
Notice, carefully, that

G (m) = g (0) = f (0).
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If you look at the complex exponential series expression for f (t), you
can see that if we set t = 0 we get

f (0) =
∞∑

k=−∞
ck = G (m).

Now all we have to do is find an expression for the Fourier coefficients
ck of f (t), stick that expression into the summation, and calculate the
result. This might seem like we’ve simply traded one sum, our original
G (m), for just another sum, but the trade is very much in our favor—the
second sum will prove to be far easier to do. So, let’s do it.

Inserting the expression for a period of f (t), that is, g (t), into the
Fourier coefficient integral, we have

cn =
1∫

0

{m−1∑
k=0

e−i(2π/m)(k+t)2

}
e−i2πnt dt ,

where I’ve changed the subscript on c to n (from k) because I’m using
k as the dummy index of summation on the sum inside the integral.
This is “just” notational stuff, but it’s really important to keep your indices
straight. Continuing,

cn =
m−1∑
k=0

1∫
0

e−i(2π/m)(k+t)2
e−i2πnt dt =

m−1∑
k=0

1∫
0

e−i2π((k+t)2+mnt)/mdt .

It is easy to confirm (and you should do the easy algebra) that

(k + t)2 + mnt =
[

k + t + 1
2

mn
]2

−
[

mnk + 1
4

m2n2
]

and so

cn =
m−1∑
k=0

1∫
0

e−i2π([k+t+mn/2]2−[mnk+m2n2/4])/mdt

=
m−1∑
k=0

1∫
0

e−i2π [k+t+mn/2]2/me i2πnke i2πmn2/4dt
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or, as e i2πnk = 1 from Euler’s formula (because n and k, and so their
product, are integers), we have

cn = e i2πmn2/4
m−1∑
k=0

1∫
0

e−i2π [k+t+mn/2]2/mdt .

Next, change variables in the integral to u = k + t + 1
2mn. Then

cn = e i2πmn2/4
m−1∑
k=0

k+1+mn/2∫
k+mn/2

e−i2πu2/mdu.

We can greatly simplify this by making the almost trivial observation that

m−1∑
k=0

k+1+mn/2∫
k+mn/2

=
1+mn/2∫
mn/2

+
2+mn/2∫

1+mn/2

+
3+mn/2∫

2+mn/2

+ · · · +
m+mn/2∫

m−1+mn/2

=
m+mn/2∫
mn/2

.

Therefore,

cn = e i2πmn2/4

m+mn/2∫
mn/2

e−i2πu2/mdu

and, since as shown earlier we have G (m) =
∞∑

n= − ∞
cn,

G (m) =
∞∑

n= − ∞
e i2πmn2/4

m+mn/2∫
mn/2

e−i2πu2/mdu.

In this expression, to repeat an obvious but important detail, m and
n are both integers; m > 1 and −∞ < n < ∞. Let’s now take a look
at the behavior of that mn2/4 in the exponent of the first exponential.
Specifically, we’ll consider the two all-encompassing possibilities of n
being even and then odd.

The even case is easy: if n is even (· · · , −4, −2, 0, 2, 4, · · · ), then mn2/4
is an integer and so e i2πmn2/4 = 1.
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The odd case is just a bit more subtle: if n is odd (· · · , −3, −1, 1, 3, · · · ),
then with l some integer we can write n = 2l + 1 and so mn2/4 =
m(2l + 1)2/4 = m(4l 2 + 4l + 1)/4 = ml 2 + ml + m/4, which means
mn2/4 is an integer plus a fraction that depends only on m. This fraction
is, of course, one of just four possibilities: 0 (this is the case when m is a

multiple of 4), or
1
4

, or
2
4

, or
3
4

. Considering each possibility in turn, we
see that

if the fraction is 0, then e i2πmn2/4 = 1,

if the fraction is
1
4

, then e i2πmn2/4 = i ,

if the fraction is
2
4

, then e i2πmn2/4 = −1,

if the fraction is
3
4

, then e i2πmn2/4 = −i .

The standard way of writing all of this is with what mathematicians
call congruence arithmetic, that is, if m, q , and r are all integers, then

m
4

= q + r
4

,

which is written in shorthand as m ≡ r mod 4. It is read as “m is con-
gruent to r , mod(ulus)4.” So, writing η = e i2πmn2/4, then for odd n
we have

η =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if m ≡ 0 mod 4,

i if m ≡ 1 mod 4,

−1 if m ≡ 2 mod 4,

−i if m ≡ 3 mod 4.

Therefore, returning to our last expression for G (m), we see that we
can write it as

G (m) =
∞∑

n= − ∞ (even)

m+mn/2∫
mn/2

e−i2πu2/mdu

+
∞∑

n=−∞ (odd)

η

m+mn/2∫
mn/2

e−i2πu2/mdu.
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Now, just as we did before when we showed that
m−1∑
k=0

k+1+mn/2∫
k+mn/2

=
m+mn/2∫
mn/2

,

it is equally easy to show that
∞∑

n= − ∞ (even)

m+mn/2∫
mn/2

=
∞∫

− ∞
and that the

same is true for
∞∑

n= − ∞ (odd)

m+mn/2∫
mn/2

. Thus,

G (m) =
∞∫

− ∞
e−i2πu2/mdu + η

∞∫
− ∞

e−i2πu2/mdu = (1 + η)

∞∫
− ∞

e−i2πu2/mdu,

or, using Euler’s formula in the obvious way,

G (m) = (1 + η)

⎡⎣ ∞∫
− ∞

cos
(

2π
u2

m

)
du − i

∞∫
− ∞

sin
(

2π
u2

m

)
du

⎤⎦ .

Both of these integrals are the so-called Fresnel integrals, even though it
was Euler who first evaluated them in 1781 using complex numbers.29

For our purposes here, let me simply quote what you’ll find in any good
table of definite integrals:

∞∫
0

sin(ax2)dx =
∞∫

0

cos(ax2)dx = 1
2

√
π

2a
.

So, with a = 2π/m, we have (because the integrands are even)

∞∫
− ∞

cos
(

2π
u2

m

)
du =

∞∫
− ∞

sin
(

2π
u2

m

)
du = 2

[
1
2

√
π

2 · 2π/m

]
=
√

m
4

= 1
2

√
m.
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Thus,

G (m) = (1 + η)

(
1
2

√
m − i

1
2

√
m
)

= 1
2

√
m(1 + η)(1 − i).

So, at last,

m ≡ 0 mod 4 =⇒ G (m) = 1
2

√
m(1 + 1)(1 − i) = (1 − i)

√
m,

m ≡ 1 mod 4 =⇒ G (m) = 1
2

√
m(1 + i)(1 − i) = √

m,

m ≡ 2 mod 4 =⇒ G (m) = 1
2

√
m(1 − 1)(1 − i) = 0,

m ≡ 3 mod 4 =⇒ G (m) = 1
2

√
m(1 − i)(1 − i) = −i

√
m.

For example, if m = 93, then m ≡ 1 mod 4 and so our formula says

G (93) =
92∑

k=0

e−i2πk2/93 = √
93 = 9.64365076099317.

It is easy, a matter of a few key strokes, to directly code the summation
itself in MATLAB, and when I did that the result was 9.64365076099295.
(The difference, starting in the 12th decimal place, is round-off error.)
Hurrah for Gauss!

And finally, as mentioned earlier, if we alter our definition of G (m) to
its conjugate form, then we have

G (m) =
m−1∑
k=0

e i2π k2
m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + i)

√
m for m ≡ 0 mod 4,√

m for m ≡ 1 mod 4,

0 for m ≡ 2 mod 4,

i
√

m for m ≡ 3 mod 4.

As you might imagine, Gauss had great admiration for Dirichlet’s
beautiful new proof of the Master’s old problem, as well as for Dirichlet’s



Fourier Series 181

many other brilliant contributions to mathematics. In a letter dated
November 2, 1838, Gauss wrote to Dirichlet (at the Berlin Academy
of Sciences) to say “my thanks for sending me your beautiful papers.”
Beautiful indeed was his work and, as a measure of Dirichlet’s eminence
in the world of mathematics, he was selected to be Gauss’s successor at
Göttingen when Gauss died in 1855.

4.6 Hurwitz and the isoperimetric inequality.
The title to the final section of this chapter refers to an ancient prob-
lem: how, with a fence of fixed length, to enclose the greatest area. The
problem proved extraordinarily frustrating, for literally thousands of
years, because its answer (the fence should form a circle) is both so very
obvious and so very difficult to actually prove. It stumped the brightest
of mathematicians for centuries. I’ve told the story of the isoperimet-
ric inequality in detail elsewhere, including giving a proof using the
calculus of variations,30 and so here I’ll simply state the problem and
show you how to establish it with an elegant Fourier series analysis. The
Fourier proof is a relatively new one (1901), and is due to the German
mathematician Adolf Hurwitz (1859–1919).

The isoperimetric inequality has two parts:

(i) the area inside a closed, simple (i.e., non-self-intersecting)
curve of given perimeter L cannot exceed the area of a circle
with circumference L;

(ii) the circle is the only simple, closed curve that actually achieves
the maximum possible enclosed area.

If we call the curve C and its enclosed area A, then mathematically the
isoperimetric inequality says

A ≤ L2

4π
,

and equality occurs if and only if C is a circle.
Before starting our proof of this, let me point out that this is what

mathematicians call a scalable problem. That is, the inequality holds for
any value of L we wish to use, and so if we can establish it for a particular
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L then we can scale up (or down) to any other value that we wish. To
see this, suppose a curve C ′ has the same shape as C and a perimeter
that is l times that of C , (i.e., L ′ = lL). Now, I think I can appeal to your
intuition when I say that, if L ′ = lL, then A′ = l 2A. That is, L = L ′/l
and A = A′/l 2. Then our original statement says

A′

l 2 ≤ (L ′/l )2

4π
= L ′2

l 24π
,

or,

A′ ≤ L ′2

4π
.

So, the use of any scale factor l ′ > 0 has no effect on the truth of the
inequality, which means we can establish the inequality for any particular
value of L that we wish, with no loss of generality. You’ll see, in fact, that
L = 2π is a particularly attractive choice (in that case, the isoperimetric
inequality reduces to A ≤ π).

To start the analysis, I’ll first show you a preliminary result we’ll need
about halfway into Hurwitz’s proof. Interestingly, this preliminary result
also uses Fourier methods—in particular, Parseval’s theorem. Suppose
f (t) is a real-valued periodic function, with period T = 2π and an
average value of zero. Then, with ω0 = 1 (since ω0T = 2π), we can
write

f (t) =
∞∑

k=− ∞
cke ikt .

Assuming we can differentiate term by term to get the Fourier series for

f ′(t) = df
dt

, then

f ′(t) =
∞∑

k=− ∞
ikcke ikt =

∞∑
k=− ∞

c ′
k e ikt

where c ′
k = ikck . Now, since we have the general coefficient formula

ck = 1
T

∫
period

f (t)e−ikt dt ,
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in particular, c0 is obviously the average value of f (t), which we are given
as being zero. (Notice that c ′

0 = 0 even in the case of c0 �= 0.) Parseval’s
theorem, from section 4.3, tells us that

1
2π

2π∫
0

f 2(t)dt = c2
0 + 2

∞∑
k=1

|ck |2 = 2
∞∑

k=1

|ck |2

and that

1
2π

2π∫
0

f ′2(t)dt = c ′2
0 + 2

∞∑
k=1

|c ′
k |2 = 2

∞∑
k=1

k2|ck |2.

Obviously,

∞∑
k=1

k2|ck |2 ≥
∞∑

k=1

|ck |2,

and so we have our preliminary result: if the real-valued f (t) is periodic
with period 2π , with zero average value, then

2π∫
0

f ′2(t)dt ≥
2π∫
0

f 2(t)dt ,

a result called Wirtinger’s inequality because it is generally attributed to
the Austrian mathematician Wilhelm Wirtinger (1865–1945).

Now we can start Hurwitz’s proof. Imagine, as illustrated in
figure 4.6.1, that we have positioned C on coordinate axes such that
P denotes the rightmost x -axis crossing of C . We will take L, the perime-
ter of C , to be 2π (a choice, as I discussed earlier, that involves no loss of
generality). Starting at P , we travel once around C in a counterclockwise
sense and measure our x and y coordinates as a function of the counter-
clockwise arc-length s that separates us from P . It should then be clear
that x(s) and y(s) are each periodic with period 2π (one complete trip
around C increases s from 0 to 2π , and x(0) = x(2π) and y(0) = y(2π)
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y

xP

s = 0

s = 2π

C
s > 0

0

Figure 4.6.1. The geometry of the isoperimetric problem

because when s = 2π we have returned to P ). We know from calculus that
the differential arc-length ds satisfies the relation (ds)2 = (dx)2 + (dy)2

and so (
dx
ds

)2

+
(

dy
ds

)2

= 1 = x ′2 + y′2.

We can express all of this mathematically by writing (where I’ve changed
variable from s to t just to make the equations look more familiar) with,
again, ω0 = 1 as ω0T = 2π and T = 2π ,

x(t) =
∞∑

k=− ∞
xke ikt , y(t) =

∞∑
k=− ∞

yke ikt

x ′2 + y′2 = 1.

And finally, with no loss in generality, I’ll assume it is physically obvi-
ous that we can always position our coordinates axes in such a way that
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the center of gravity of the perimeter of C lies on the y-axis, which
means

2π∫
0

x(t)dt = 0,

that is, x(t) has zero average value. We’ll do this, as you’ll soon see, so
that we can invoke Wirtinger’s inequality for x(t) and x ′(t).

Now, it is known from calculus31 that the area enclosed by C is
given by

A =
2π∫
0

x
dy
dt

dt =
2π∫
0

xy′dt .

Therefore,

2(π − A) = 2π − 2A =
2π∫
0

dt − 2

2π∫
0

xy′dt .

Since x ′2 + y′2 = 1,

2(π − A) =
2π∫
0

(x ′2 + y′2)dt − 2

2π∫
0

xy′dt =
2π∫
0

(x ′2 − 2xy′ + y′2)dt ,

or

2(π − A) =
2π∫
0

(x ′2 − x2)dt +
2π∫
0

(x − y′)2dt .

Wirtinger’s inequality tells us that the first integral is nonnegative,
and the second integral (with its squared integrand) is obviously non-
negative. Thus, 2(π − A) ≥ 0 or, A ≤ π , which establishes part (i) of the
isoperimetric inequality. Notice that if C is a circle then A = π . To show
part (ii) of the isoperimetric inequality we must show that A = π means
C must be a circle. This is actually not hard to do.
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If A = π , then 2(π − A) = 0 and each of our two nonnegative inte-
grals must individually be zero. In particular, the second integral, with
a squared integrand, can vanish only if y′ = x for every t . If we combine
this conclusion with our earlier equation x ′2 + y′2 = 1, then we have(

dx
dt

)2

+
(

dy
dt

)2

= 1 and
dy
dt

= x .

Thus,

(dx)2 + (dy)2 = (dt)2 and dt = 1
x

dy,

and so

(dx)2 + (dy)2 = 1
x2 (dy)2,

or

1 +
(

dy
dx

)2

= 1
x2

(
dy
dx

)2

.

This is quickly rewritten as(
dy
dx

)2

= x2

1 − x2 ,

which becomes

dy
dx

= ± x√
1 − x2

,

and so ∫
dy = ±

∫
x√

1 − x2
dx .

Integrating, with K as the arbitrary constant of indefinite integration,
gives

y + K = ±
√

1 − x2,

or

(y + K )2 = 1 − x2
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which becomes, at last,

x2 + (y + K )2 = 1,

the equation of a circle centered on x = 0, y = −K , with radius one
(such a circle has an enclosed area, of course, of π), and this completes
part (ii) of the isoperimetric inequality. As a final comment, you might
be wondering why the circle is specifically centered on x = 0, while
the y-coordinate of the center is arbitrary. Remember, however, that
we started our analysis with the assumption that the center of gravity of
the perimeter of C lies on the y-axis (that allowed us to use Wirtinger’s
inequality) and for the symmetrical circle that means the center of C
must be such that its x -coordinate is zero.



5.1 Dirac’s impulse “function.”
In this fairly short introductory section I want to take a break from
Fourier and jump ahead a century to Paul Dirac, the English mathe-
matical physicist I mentioned way back in the Preface. His name today
is synonymous with the concept of the impulse function (often called
the Dirac delta function), which will be of great use to us—as much as
will Euler’s formula—in the next section on the Fourier transform. The
impulse (I’ll define it soon) is one of the most important technical tools
a physicist or engineer has; Dirac himself was originally trained as an
electrical engineer (first-class honors in the 1921 class of the University
of Bristol). His Ph.D. was, however, in mathematics—despite the fact that
he received the Nobel Prize in physics, he was the Lucasian Professor of
Mathematics at Cambridge (until late in life, when he became a profes-
sor of physics at Florida State University in Tallahassee). The Lucasian
Professorship is the same position once held by Isaac Newton, and now
occupied by the famous mathematical physicist Stephen Hawking.

To trade rigor for clarity (I hope!), an impulse represents something
that occurs “all at once.” (When a baseball player hits a home run he has
delivered an impulsive force to the ball.) Dirac’s own view of an impulse is
shown in figure 5.1.1, which displays a narrow pulse of duration α and
height 1/α, centered on t = 0. This pulse, which I’ll call f (t), is zero
for all |t | > α/2. For any α > 0, it is obvious that f (t) bounds unit area,
and it is a perfectly ordinary, well-behaved function. But there’s magic
hidden in it.

Imagine next that we multiply f (t) by some other nearly arbitrary
(we’ll demand only that it be continuous) function φ(t), and then
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1/2−1/2

1/α

αα

f(t)

t0

Figure 5.1.1. A nonzero-width pulse with unit area

integrate the product over all t , that is, let’s define the integral

I =
∞∫

−∞
f (t)φ(t)dt =

α/2∫
−α/2

1
α

φ(t)dt = 1
α

α/2∫
−α/2

φ(t)dt .

Now suppose we let α → 0, which means that the height of the pulse f (t)
becomes arbitrarily large and the interval of integration (the duration
of f (t)) becomes arbitrarily small. Since φ(t) is continuous, I’ll take it as
physically obvious that φ(t) cannot change by very much from the start
of the integration interval to the end of that interval. Indeed, as α → 0
we can essentially treat φ(t) as constant over the entire interval, that is,
equal to φ(0), and so we can pull it outside of the integral. That is,

lim
α→0

I = lim
α→0

1
α

φ(0)

α/2∫
−α/2

dt = φ(0).

The limit of f (t) as α → 0 is shown in figure 5.1.2, which is an attempt
to indicate that our perfectly ordinary pulse “becomes” an infinitely
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t0

1

(t ) = lim f (t)δ
0α

Figure 5.1.2. The Dirac impulse “function,” δ(t)

high spike of zero duration that bounds unit area. Since I can’t draw an
infinitely high spike, the figure simply shows an upward pointing arrow
with “1” written next to it, to indicate that the spike bounds unit area
(the spike does not have unit height—the height is infinity!); the spike
is a so-called unit strength impulse. More formally, we write the limit of
f (t) as

lim
α→0

f (t) = δ(t),

which denotes an impulse that occurs at t = 0.
This is a very strange object when it sits naked on the page, all by itself,

but in fact it behaves quite nicely inside integrals; for instance, as we’ve
just seen, for any continuous φ(t)

∞∫
−∞

δ(t)φ(t)dt = φ(0).

There is, in fact, nothing particularly special about t = 0, and we can
position the impulse to occur at any time, say t = t0, by simply writing
δ(t −t0). Then, by the argument above, if φ(t) is any continuous function
we have ∞∫

−∞
δ(t − t0)φ(t)dt = φ(t0),
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which is called the sampling (sometimes the sifting ) property of the
impulse function. I’ll show you a wonderful application of this property
at the end of this section.

This sort of reasoning is of the type once dismissed by many
nineteenth-century analysts as merely “stuff and nonsense.” And not
without cause, I must admit. In particular, when I pulled the 1/α out-
side of the integral when calculating I = ∫∞

−∞ f (t)φ(t)dt , leaving just
φ(t) inside, I was treating α as a constant. But then I let α → 0, which
certainly means α is not a constant. Since the operation of integration,
itself, is defined in terms of a limiting operation, what I was really doing
was reversing the order of taking two limits. “Well,” says a skeptic with
a questioning raise of her eyebrows, “How do you know that’s mathe-
matically valid?” “Well,” I reply, “I don’t—and I also realize it often isn’t.
Being adventurous, however, I won’t let that paralyze me into inaction,
and I will simply go ahead with it all until (unless) something terrible
happens in the math that tells me I have finally gone too far.” That was
Dirac’s attitude as well.1

Dirac of course knew he was being nonrigorous with his development
of impulses. (To reflect its slightly suspect origin, the impulse is often
called an “improper” or “singular” function.) As Dirac wrote in his pio-
neering 1927 paper that introduced physicists to the impulse function,
published while he was still only twenty-five,2

Strictly, of course, δ(x) is not a proper function of x , but can be
regarded only as a limit of a certain sequence of functions. All
the same one can use δ(x) as though it were a proper function
for practically all the purposes of quantum mechanics without get-
ting incorrect results. One can also use the [derivatives] of δ(x),
namely δ′(x), δ′′(x), . . . , which are even more discontinuous and
less “proper” than δ(x) itself.

Many years later Dirac gave credit to his youthful engineering training
for his ability to break free of a too-restrictive loyalty to absolutely pure
mathematical rigor3:

I would like to try to explain the effect of this engineering training
on me. I did not make any further use of the detailed applications
of this work, but it did change my whole outlook to a very large
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extent. Previously, I was interested only in exact equations. Well,
the engineering training which I received did teach me to tolerate
approximations, and I was able to see that even theories based on
approximations could sometimes have a considerable amount of
beauty in them, . . . I think that if I had not had this engineering
training, I should not have had any success with the kind of work
that I did later on, . . . I continued in my later work to use mostly
the non rigorous mathematics of the engineers, and I think that
you will find that most of my later writings do involve non rigorous
mathematics. . . . The pure mathematician who wants to set up all of his
work with absolute accuracy is not likely to get very far in physics. (my
emphasis)

None of this is to shove sleazy mathematics under the rug, as the
mathematics of impulses has been placed on a firm foundation since
Dirac’s initial use of them. While much of the early work in doing so
is due to the Russian mathematician Sergei Sobolev (1908–1989), the
central figure in that great achievement is generally considered to be the
French mathematician Laurent Schwartz (1915–2002), with the publica-
tion of his two books Theory of Distributions (1950, 1951). For his work in
distribution theory Schwartz received the 1950 Fields Medal, an award
often called the “Nobel Prize in mathematics.”

Now, at last, we come to the central idea of what an impulse is. Using
the imagery that an integral of a function is the area bounded by that
function, it should be clear that

t∫
−∞

δ(s)ds =
{

0, t < 0,
1, t > 0,

where s is, of course, simply a dummy variable of integration. If
t < 0 then the impulse (which has unit area) is not in the interval of
integration—δ(s) is located at s = 0—and so the integral is zero, while
if t > 0 then the impulse is in the interval of integration and so the
integral is the area of the impulse, that is, one. This behavior, a function
that is zero for t < 0 and one for t > 0, is called the unit step function
(because, as figure 5.1.3 shows, its graph looks like the cross-section of
a step). The unit step, written as u(t), is discontinuous at t = 0, and I’ll
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t0

1

u(t)

Figure 5.1.3. The unit step function

avoid (until section 5.3) the question what u(0) “equals.” Thus,

u(t) =
t∫

−∞
δ(s)ds,

and so, differentiating both sides, we formally have the unit area impulse
as the derivative of the unit step:

δ(t) = d
dt

u(t) .

This makes some intuitive sense, too, as u(t) is a constant everywhere
except at t = 0, where it makes a jump of one in zero time (and now
recall the definition of the derivative). This imagery relating the step and
impulse functions was almost certainly suggested to Dirac by his under-
graduate electrical engineering training, where he first encountered
the step function from the books on electrical circuits and electromag-
netic wave theory by the English mathematical electrical engineer Oliver
Heaviside (1850–1925). One still occasionally finds the step function
called the Heaviside step by both electrical engineers and mathematicians
(often with the notation H (t) in his honor).
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We’ve actually encountered the step earlier in this book; look back to
section 1.8, where we derived Dirichlet’s discontinuous integral

∞∫
0

sin(ωx)

ω
dω =

{
+π

2 , x > 0,
−π

2 , x < 0.

There I used the sgn(x) function to rewrite the right-hand side more
compactly, but we could just as easily have used the step. That is,

∞∫
0

sin(ωx)

ω
dω = π

[
u(x) − 1

2

]
.

Suppose we now proceed, in a formal way, to differentiate both sides of
this; then

d
dx

∞∫
0

sin(ωx)

ω
dω = πδ(x) =

∞∫
0

cos(ωx)dω,

where the last integral comes from our usual assumption that we can
reverse the order of differentiation and integration. Since the cosine is
an even function, we double the integral if we extend the integration
interval from (0, ∞) to (−∞, ∞):

2πδ(x) =
∞∫

−∞
cos(ωx)dω.

Since the sine is an odd function,

∞∫
−∞

sin(ωx)dω = 0,

and Euler’s formula then tells us that

2πδ(x) =
∞∫

−∞
cos(ωx)dω + i

∞∫
−∞

sin(ωx)dω =
∞∫

−∞
e iωxdω.
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That is, we have the absolutely astonishing statement that

δ(x) = 1
2π

∞∫
−∞

e iωxdω .

This is an astonishing statement because the integral just doesn’t make
any sense if we attempt to actually evaluate it, because e iωt does not
approach a limit as |ω|→ ∞. The real and imaginary parts of e iωt both
simply oscillate forever, and never approach any final values. The only
way we can make any sense out of it, at all, is to interpret the right-hand
side of the boxed expression (the integral) as just a collection of printed
squiggles that denote the same concept that the printed squiggles (the
impulse) on the left do. Any time we encounter the right-hand squiggles,
we’ll just replace them with a δ.

All of this “symbol-pushing” may be leaving you just a bit numb, so let
me end this section with an example that I think will convince you that
there is more than madness here. Consider the periodic function shown
in figure 5.1.4, consisting entirely of unit impulses. The spacing between
adjacent impulses is unity, that is, f (t) is periodic with period T = 1. This
particular function is often called a periodic impulse train (and you’ll see it
again when we get to the important sampling theorem). The Fourier series

t0

f (t)

1 2 3−1−2−3

Figure 5.1.4. A periodic impulse train
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for f (t) is, formally (with ω0 = 2π because, remember, ω0T = 2π),

f (t) =
∞∑

k=−∞
cke ik2π t ,

where

ck = 1
T

∫
period

f (t)e−ik2π t dt =
∫

period

∞∑
k=−∞

δ(t − k)e−ik2π t dt .

The interval of integration (of length T = 1) can be anywhere, but
I’ll pick it to be −1

2 < t < 1
2 , to make it easy to see just what the integral

equals. This choice of integration interval places just one impulse—the
one at t = 0—right in the middle of the integration interval. If I used
the interval 0 to 1, on the other hand, then there would be two impulses
in the integration interval, one at each end—or would there? Maybe it
would be two “half-impulses,” whatever that might mean. The −1

2 < t <
1
2 choice smoothly avoids that nasty ambiguity, and we find that

ck =
1/2∫

−1/2

δ(t)e−ik2π t dt = 1

because of the sampling property of the impulse. Thus,

f (t) =
∞∑

k=−∞
e ik2π t =

∞∑
k=−∞

{cos(k2π t) + i sin(k2π t)}.

For all t the imaginary part of f (t) vanishes (which is good, since the f (t)
we started with is purely real), that is, writing the imaginary part of the
right-hand sum out, term by term in pairs (k = ±1, ±2, ±3, . . .), along
with the k = 0 term, we see that

∞∑
k=−∞

sin(k2π t) = sin(0) + {sin(2π t) + sin(−2π t)}
+ {sin(4π t) + sin(−4π t)} + {sin(6π t)

+ sin(−6π t)} + · · · = 0,
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as each bracketed pair of terms is identically zero for all t (and certainly
sin(0) = 0). So, our function f (t) is given by

f (t) =
∞∑

k=−∞
δ(t − k) = 1 + 2

∞∑
k=1

cos(k2π t) .

But is this true?
In keeping with previous questions of this type, let’s take a pragmatic

approach and just calculate and plot the right-hand side and see what it
looks like. If our boxed result makes any sense at all we should see the
partial sums of the right-hand side start to ‘look like’ a periodic train of
impulses. Figures 5.1.5 through 5.1.7 show three partial sums (using the
first five, ten, and twenty terms, respectively) of the right-hand side, and
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Figure 5.1.5. First five terms of an impulse train Fourier series
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Figure 5.1.6. First ten terms of an impulse train Fourier series

you can indeed see “impulse-building” taking place. What is happening
is that the cosine terms are adding together (constructively interfering )
at integer values of t , and destructively interfering at all other values of t .
These plots aren’t a proof of anything, of course, but I think they are
quite compelling and give us reason to believe that there is sense to all
of the symbol pushing.

One last remark about impulses. Figure 5.1.1 shows us that the pulse-
like function Dirac used in his original conceptualization of the impulse
is even. We can show, formally, that δ(t) itself has that property, too. It
is almost trivial to show this, in fact. If φ(t) is, as usual, any continuous
function, then

∞∫
−∞

δ(t)φ(t)dt = φ(0)
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Figure 5.1.7. First twenty terms of an impulse train Fourier series

by the sampling property. But, if we make the change of variable to
s = −t , then

∞∫
−∞

δ(−t)φ(t)dt =
−∞∫
∞

δ(s)φ(−s)(−ds)

=
∞∫

−∞
δ(s)φ(−s)ds = φ(−0) = φ(0)

too. So, we say δ(t) and δ(−t) are equivalent (more loosely, equal) because
they produce the same result when applied to any continuous φ(t) inside
an integral. So, δ(t) = δ(−t) and δ(t) is even. We’ll use this important
result at the end of the next section.
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5.2 Fourier’s integral theorem.
Fourier series are a mathematical description of a periodic function f (t)
(as usual, we’ll think of t as representing time). But what if we have a
function f (t), defined on −∞ < t < ∞, that is not periodic? Since
the function definition already “uses up” the entire infinite t -line, we
can’t use our usual trick of periodically extending the function—there’s
nowhere left to extend f (t) into. So, Fourier series are out. But there is yet
another devilishly clever trick available for us to play. What if we simply
think of our nonperiodic f (t) as having an infinitely long period, and so it
is periodic (we are simply seeing, as t goes from −∞ to +∞, the period
we “just happen” to be living in)? This is clever—no, I’ll be honest, it’s
actually pretty outrageous—but in fact it is the standard approach used in
just about every engineering textbook I have seen. That approach takes
the Fourier series equations

f (t) =
∞∑

k=−∞
cke ikω0t ,

ck = 1
T

∫
period

f (t)e−ikω0t dt , ω0T = 2π

and explores what happens to them “mathematically” as T → ∞.
Perhaps “explore” is too gentle a word—what we’ll do is play with

the two Fourier series equations in a pretty rough-and-ready way with
little (if any) regard to justifying the manipulations. But—and this is
important to understand—once we are done it won’t matter. Once we
have the mathematical result that is our goal (i.e., the answer to “what
happens as T → ∞?”) we can forget how we got it and simply treat it
as a definition. The reason we can do this is because that result—called
the Fourier integral—has deep physical significance, which is Nature’s way
of telling us that, although we may have been a bit “casual” in getting
to the result, the result is still a good result. Indeed, many books on the
Fourier integral, written by mathematicians, take precisely this course of
action.

Okay, let’s get started on seeing what happens as T → ∞. Notice
first that the kω0 in the exponent of the ck integral changes by ω0 as k
increases from one integer to the next. If we call this change ω, then
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ω = ω0. Now, since ω0 = 2π/T , as T → ∞ we see that ω0 → 0, that
is, ω0 becomes arbitrarily small, and so we should write dω and not ω

as T → ∞, that is, as T → ∞ the change in the fundamental frequency
becomes a differential change. Thus, for our first result, we have

lim
T →∞ ω = lim

T →∞ ω0 = lim
T →∞

2π

T
= dω.

In addition, it therefore follows that, as T → ∞, k(2π/T ) → kdω.
Since dω is, by definition, infinitesimally small, as k varies from −∞ to
+∞, kdω “should behave” like a continuous variable which we will call ω,
that is,

lim
T →∞ kω0 = ω.

Now, if you accept all of that, then let’s continue by rewriting the ck

expression (with T → ∞ and integrating over the period symmetrical
around t = 0) as

lim
T →∞ ck = lim

T →∞
1
T

T /2∫
−T /2

f (t)e−ikω0t dt = lim
T →∞

1
2π

· 2π

T

T /2∫
−T /2

f (t)e−ikω0t dt

= lim
T →∞

1
2π

⎡⎢⎣T /2∫
−T /2

f (t)e−ikω0t dt

⎤⎥⎦ 2π

T
= lim

T →∞
1

2π

⎡⎢⎣T /2∫
−T /2

f (t)e−iωt dt

⎤⎥⎦ dω.

Or, if we define the integral in the brackets as the so-called Fourier transform
of f (t), written as F (ω), then we have

lim
T →∞ ck = 1

2π
F (ω)dω,

where

F (ω) =
∞∫

−∞
f (t)e−iωt dt .

The Fourier transform has many wonderful mathematical properties
and a highly useful physical interpretation, all of which I’ll develop as
we move further into this chapter.
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Finally, to complete this line of “reasoning,” if we now insert our result
for limT →∞ ck back into our formula for f (t), we get

f (t) =
∞∑

k=−∞

{
1

2π
F (ω)dω

}
e ikω0t = 1

2π

∞∑
k=−∞

F (ω)e ikω0t dω.

This formula is, of course, a bit of a mixed bag of notation, since parts
of it are for T → ∞ and other parts of it are written as if T is still
finite. In fact, so goes the final step of this argument, as T → ∞ the
summation becomes an integral (and “of course” kω0 → ω), and so we
arrive at the inverse Fourier transform that goes in the reverse direction
from the Fourier transform itself, that is, the inverse transform gives f (t)
from F (ω),

f (t) = 1
2π

∞∫
−∞

F (ω)e iωt dω .

The two expressions in the boxes are called the Fourier transform
integral pair. Unlike Fourier series, which were actually used long
before Fourier, the Fourier transform is his alone, appearing for the
first time in Fourier’s writings. Symbolically, we’ll write the one-to-one
correspondence of f (t) and its Fourier transform F (ω) as

f (t) ↔ F (ω).

The doubleheaded arrow indicates that each side is uniquely determined
by the other. The convention is to always write the time function on the
left, and the frequency function—the transform—on the right. Written
this way, f (t) and F (ω) are simply called a Fourier pair.

Many “pure” analysts are truly aghast at the preceding “derivation,”
and I must admit, although I have introduced the Fourier transform pair
to my own students in just that way for the past thirty years, I’ve always
felt just a tiny bit guilty about it. Not enough to stop me, of course—I’ll
reverse the order of integration on a double integral as fast as you can
snap your fingers. I pin my fate (perhaps foolishly) on the hope that, as
one mathematician recently put it,4 “In mathematics, as in life, virtue is
not always rewarded, nor vice always punished” (my emphasis). Still, since
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it’s always good to know how to do something in more than one way, let
me give you an alternative approach to the Fourier transform pair that
perhaps is just a little easier to swallow.

Recall, from the previous section, our “astonishing expression” for
δ(x), written as an integral:

δ(x) = 1
2π

∞∫
−∞

e iωxdω.

From this it immediately follows that

δ(x − y) = 1
2π

∞∫
−∞

e iω(x−y)dω.

Now, suppose we take an arbitrary function h(x) and use the sampling
property of the impulse to write

h(x) =
∞∫

−∞
δ(x − y)h(y)dy.

Thus,

h(x) =
∞∫

−∞
h(y)

⎧⎨⎩ 1
2π

∞∫
−∞

e iω(x−y)dω

⎫⎬⎭ dy

= 1
2π

∞∫
−∞

e iωx

⎧⎨⎩
∞∫

−∞
h(y)e−iωydy

⎫⎬⎭ dω.

The last step is surely now obvious—we write this as a pair of integrals;
the interior integral is

H (ω) =
∞∫

−∞
h(y)e−iωydy =

∞∫
−∞

h(x)e−iωxdx

and the exterior integral is

h(x) = 1
2π

∞∫
−∞

H (ω)e iωxdω.
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But this is just the Fourier transform pair again (with h(x) instead of
f (t)). That’s it!

The Fourier transform of a real-valued function f (t) is generally a
complex-valued quantity, but it can’t just be anything. There are con-
straints. It is easy to show, for example, that |F (ω)|2is always even. The
reason we are going to be interested in this is that the quantity |F (ω)|2 is
intimately related to the physical interpretation of F (ω)—(1/2π)|F (ω)|2
is called the energy spectrum of f (t), and you’ll see why in the next
section—but for now let me just demonstrate the evenness property of
|F (ω)|2 for any real-valued f (t). Using Euler’s formula, we can write

F (ω) =
∞∫

−∞
f (t)e−iωt dt =

∞∫
−∞

f (t) cos(ωt)dt − i

∞∫
−∞

f (t) sin(ωt)dt .

Writing F (ω) explicitly as a complex-valued quantity, that is, writing

F (ω) = R(ω) + iX (ω),

gives

R(ω) =
∞∫

−∞
f (t) cos(ωt)dt

and

X (ω) = −
∞∫

−∞
f (t) sin(ωt)dt ,

where of course both R(ω) and X (ω) are real-valued functions of ω

(because f (t) is real).
Since cos(ωt) and sin(ωt) are even and odd, respectively,

R(−ω) =
∞∫

−∞
f (t) cos(−ωt)dt = R(ω),

X (−ω) = −
∞∫

−∞
f (t) sin(−ωt)dt = −X (ω).
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That is, R(ω) is even, while X (ω) is odd, so both R2(ω) and X 2(ω) are
even and, since

|F (ω)|2 = R2(ω) + X 2(ω),

|F (ω)|2 (and so |F (ω)|, too) is even. If—remember—f (t) is real -valued.
If we impose further requirements on f (t) beyond being simply real,

then we can say even more about F (ω). For example, if f (t) is even
(odd) then it should be clear from the R(ω) and X (ω) integrals that
F (ω) is purely real (imaginary). (I’ll use this observation at the end
of this section.) And in chapter 6 I’ll show you that if f (t) is a causal
function (defined as any f (t) with the property that f (t) = 0 for t < 0)
then R(ω) and X (ω) are so closely related that each completely determines
the other.

As a final observation in this section on the Fourier transform, the
transform is in a certain sense more general than the Fourier series, even
though you’ll recall that we “derived” the transform from the series. By
this I mean that nonperiodic functions do not have a Fourier series,
but all “well-behaved” functions have Fourier transforms, even periodic
ones (which have Fourier series, too, of course). That is, if we take the
Fourier series of a periodic function,

f (t) =
∞∑

k=−∞
cke ikω0t ,

and insert it into the Fourier transform integral, we get

f (t) ←→ F (ω) =
∞∫

−∞

{ ∞∑
k=−∞

cke ikω0t

}
e−iωt dt =

∞∑
k=−∞

ck

∞∫
−∞

e i(kω0−ω)t dt .

That integral ought to look vaguely familiar—if you remember our
astonishing statement from the previous section—

δ(x) = 1
2π

∞∫
−∞

e iωxdω,

which if we replace x with t becomes

δ(t) = 1
2π

∞∫
−∞

e iωt dω.
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Now, let me show you a little “trick”: replace every t with ω and every ω

with t ! This “trick” is based on the observation that the particular squig-
gles we use in our equations are all historical accidents. The only absolute
constraint that we must follow in writing equations is to be consistent; if
we do something on one side of an equation then we must do the same
thing on the other side. Swapping t for ω and ω for t on both sides does
nothing to alter the mathematical truth of the original statement. So,

δ(ω) = 1
2π

∞∫
−∞

e iωt dt ,

which gives us an integral representation for an impulse in the frequency
domain that says

∞∫
−∞

e i(kω0−ω)t dt = 2πδ(kω0 − ω) = 2πδ(ω − kω0),

because the impulse is even. Thus, a periodic f (t) with period 2π/ω0 in
the t -domain has the Fourier transform

F (ω) = 2π

∞∑
k=−∞

ckδ(ω − kω0),

which is an impulse train in the ω-domain (the impulses are regularly
spaced at intervals of ω0 but the train itself is not necessarily periodic as
the ck are generally all different).

5.3 Rayleigh’s energy formula, convolution,
and the autocorrelation function.

The Fourier transform has a beautiful physical interpretation, an energy
property analogous to Parseval’s power formula for Fourier series. The
total energy of the nonperiodic real function f (t) is defined to be

W =
∞∫

−∞
f 2(t)dt =

∞∫
−∞

f (t)f (t)dt .

(The total energy of a periodic function is, of course, infinite, which is
why we used the energy per period—the power—when working with peri-
odic functions in chapter 4.) Writing one of the f (t) factors in the last
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integrand above in terms of the inverse Fourier transform,

W =
∞∫

−∞
f (t)

⎧⎨⎩ 1
2π

∞∫
−∞

F (ω)e iωt dω

⎫⎬⎭ dt

or, reversing the order of integration,

W =
∞∫

−∞

1
2π

F (ω)

⎧⎨⎩
∞∫

−∞
f (t)e iωt dt

⎫⎬⎭ dω.

Since f (t) is real, then the second integral is the conjugate of F (ω), that is,

∞∫
−∞

f (t)e iωt dt = F ∗(ω),

and so

W =
∞∫

−∞

1
2π

F (ω)F ∗(ω)dω =
∞∫

−∞

1
2π

|F (ω)|2 dω =
∞∫

−∞
f 2(t)dt .

The formula in the box is the Fourier transform equivalent of Par-
seval’s formula in Fourier series, and is often called Rayleigh’s energy
formula, after the great English mathematical physicist John William
Strutt (1842–1919), better known as Lord Rayleigh, who published
it in 1889. The energy spectrum of the function f (t) is defined to be
(1/2π) | F (ω) |2 because that quantity describes how the energy of f (t)
is distributed over frequency (ω). That is, integration of (1/2π) | F (ω) |2
over the interval ω1 < ω < ω2 gives the energy of f (t) in that frequency
interval (ω1 = −∞ and ω2 = ∞ gives, of course, the total energy of
f (t)). For this reason, (1/2π) | F (ω) |2 is called the energy spectral density
(ESD).

A little aside. We could, and many analysts do, eliminate the sometimes annoy-
ing 1/2π (annoying because it’s just one more thing to have to carry along in the
equations). This is done by expressing the interval of integration in the frequency
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domain in terms of hertz (look back at section 1.4) instead of radians per second,
that is, by using ν instead of ω (= 2πν). Thus, dω = 2πdν and so

W =
∞∫

−∞
f 2(t)dt =

∞∫
−∞

| F (ν) |2 dν.

The energy formula is very useful as a pure mathematical tool, in
addition to its physical energy interpretation. Let me give you just three
examples of this right now (more later).

Example 1. Consider the very simple function

f (t) =
{

1, | t |< τ
2 ,

0, otherwise,

a pulse of duration τ centered on the origin (t = 0). Its Fourier
transform is

F (ω) =
∞∫

−∞
f (t)e−iωt dt =

τ/2∫
−τ/2

e−iωt dt =
(

e−iωt

−iω

∣∣∣∣τ/2

−τ/2

= e−iωτ/2 − e iωτ/2

−iω
= −i2 sin(ωτ/2)

−iω
= 2

sin(ωτ/2)

ω
= τ

sin(ωτ/2)

(ωτ/2)
.

Rayleigh’s energy formula then tells us that

∞∫
−∞

f 2(t)dt =
τ/2∫

−τ/2

dt = τ = 1
2π

∞∫
−∞

τ 2 sin2(ωτ/2)

(ωτ/2)2 dω.

Or, if we change variable to x = ωτ/2 (and so dω = (2/τ)dx), we have

τ = 1
2π

∞∫
−∞

τ 2 sin2(x)

x2 · 2
τ

dx .

That is,
∞∫

−∞

sin2(x)

x2 dx = π ,
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or, since the integrand is even,

∞∫
0

sin2(x)

x2 dx = π
2 .

This definite integral—which is similar to the result we derived back in
section 1.8,

∫∞
0 (sin(u)/u)du = (π/2)—occurs often in advanced math-

ematics, physics, and engineering analysis, and is not easily derived by
other means.

Example 2. Suppose now that f (t) = e−σ t u(t), where σ is any positive
(σ > 0) constant and u(t) is the step function introduced in the previous
section. The Fourier transform of f (t) is

F (ω) =
∞∫

−∞
f (t)e−iωt dt =

∞∫
0

e−σt e−iωt dt

=
∞∫
0

e−(σ+iω)t dt =
(

e−(σ+iω)t

−(σ + iω)

∣∣∣∣∣
∞

0

= 1
σ + iω

;

that is, we have the Fourier transform pair

e−σt u(t) ↔ 1
σ + iω

, σ > 0.

We thus have |F (ω)|2 = 1/(σ 2 +ω2), and Rayleigh’s energy formula then
tells us that

∞∫
−∞

f 2(t)dt =
∞∫
0

e−2σt dt =
(

e−2σt

−2σ

∣∣∣∣∞
0

= 1
2σ

= 1
2π

∞∫
−∞

|F (ω)|2dω

= 1
2π

∞∫
−∞

dω

σ 2 + ω2 ,

or ∞∫
−∞

dω

σ 2 + ω2 = π

σ
, σ > 0.
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We can write this as
∞∫

−∞

dω

σ 2(1 + (ω2/σ 2))
= π

σ
,

or ∞∫
−∞

dω

(1 + (ω2/σ 2))
= πσ .

Changing variables to x = ω/σ (and so dω = σdx), we have
∞∫

−∞

σdx
1 + x2 = πσ ,

or, at last,

∞∫
−∞

dx
1 + x2 = π .

This is, of course, just a special case of the general integration formula∫
dx/(1 + x2) = tan−1(x). But, it is useful for us, here, to use Fourier

transform theory to get this result because now we can use our transform
pair to answer a puzzle I mentioned back in section 5.1—what is the
“value” of u(0), the step function at t = 0? We have left that “value”
undefined up to now, but in fact Fourier transform theory says that
u(0) cannot just be anything. To see this, we’ll use the inverse Fourier
transform to write

e−σt u(t) = 1
2π

∞∫
−∞

1
σ + iω

e iωt dω.

Then, setting t = 0,

u(0) = 1
2π

∞∫
−∞

1
σ + iω

dω = 1
2π

∞∫
−∞

σ − iω
σ 2 + ω2 dω

= σ

2π

∞∫
−∞

dω

σ 2 + ω2 − i
1

2π

∞∫
− ∞

ω

σ 2 + ω2 dω.
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The second integral is zero because its integrand is an odd function of
ω, and so u(0) has the purely real value (no surprise with that!) of

u(0) = σ

2π

∞∫
−∞

dω

σ 2 + ω2 .

Just a few steps back, however, we showed that this integral equals (π/σ),
and so we have u(0) = 1

2 . In retrospect, from how Fourier series behave
at a discontinuity, this is just what we’d expect; u(0) is the average of the
values of u(t) on each side of the discontinuity at t = 0.

Example 3. Suppose now that

f (t) =
{

e−at , 0 ≤ t ≤ m,

0, otherwise.

Then,

F (ω) =
∞∫

−∞
f (t)e−iωt dt =

m∫
0

e−at e−iωt dt =
m∫
0

e−(a+iω)t dt

=
(

e−(a+iω)t

−(a + iω)

∣∣∣∣∣
m

0

= e−(a+iω)m − 1
−(a + iω)

= e−ma{cos(mω) − i sin(mω)} − 1
−(a + iω)

= 1 − e−ma cos(mω) + ie−ma sin(mω)

a + iω
.

Therefore,

|F (ω)|2 = {1 − e−ma cos(mω)}2 + {e−ma sin(mω)}2

ω2 + a2

= 1 − 2e−ma cos(mω) + e−2ma cos2(mω) + e−2ma sin2(mω)

ω2 + a2

= 1 + e−2ma − 2e−ma cos(mω)

ω2 + a2 .
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So, by Rayleigh’s energy formula, we have

1
2π

∞∫
−∞

1 + e−2ma − 2e−ma cos(mω)

ω2 + a2 dω

=
∞∫

−∞
f 2(t)dt =

m∫
0

e−2at dt =
(

e−2at

−2a

∣∣∣∣m
0

= 1 − e−2ma

2a
.

Or,
∞∫

−∞

1 + e−2ma − 2e−ma cos(mω)

ω2 + a2 dω = π

a
(1 − e−2ma).

Or,

2e−ma

∞∫
−∞

cos(mω)

ω2 + a2 dω = (1 + e−2ma)

∞∫
−∞

dω

ω2 + a2 − π

a
(1 − e−2ma).

In the integral on the right, change variables to x = ω/a, (dω = a dx),
and so

∞∫
−∞

dω

ω2 + a2 = 1
a2

∞∫
−∞

dω

(ω/a)2 + 1
= 1

a2

∞∫
−∞

a dx
x2 + 1

= 1
a

∞∫
−∞

dx
x2 + 1

,

or, using our result from example 2,

∞∫
−∞

dω

ω2 + a2 = π

a
.

Thus,

2e−ma

∞∫
−∞

cos(mω)

ω2 + a2 dω = (1 + e−2ma)
π

a
− π

a
(1 − e−2ma) = 2π

a
e−2ma ,

or ∞∫
−∞

cos(mω)

ω2 + a2 dω = π

a
e−ma ,
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a very pretty result that would, without the aid of Rayleigh’s energy for-
mula, be much more difficult to derive. (Notice that it reduces to our
earlier, simpler integral for the case of m = 0.)

As I’ve derived this last result, we have explicitly taken m > 0, that is,
we started the derivation with an f (t) defined on the interval 0 < t < m.
I’ll leave it for you to verify, but if one does this calculation for f (t) = eat

for m < t < 0 (which of course says m < 0), then the result is

∞∫
−∞

cos(mω)

ω2 + a2 dω = π

a
ema , m < 0.

We can write one expression that covers both possibilities for m as follows:

∞∫
−∞

cos(mω)

ω2 + a2 dω = π

a
e−|m|a .

The Rayleigh energy formula has an immediate mathematical implica-
tion that has a quite interesting physical interpretation. If f (t) has finite
energy (a constraint that certainly includes almost all time functions of
engineering interest—the impulse and step are exceptions, as I’ll discuss
soon), then Rayleigh’s energy formula says

∞∫
−∞

f 2(t)dt = 1
2π

∞∫
−∞

| F (ω) |2 dω < ∞.

But this can be true only if lim|ω|→∞ | F (ω) |2= 0, as otherwise the
ω-integral would blow up. (I’ve noticed that sometimes students have to
think a bit about this: suppose instead that lim|ω|→∞ |F (ω)|2 = ε > 0,
where ε is as small as you like but not zero; since the ω-integral is from
−∞ to +∞, |F (ω)|2 would bound infinite area above the ω-axis.) In
fact, |F (ω)|2 not only must vanish as |ω| → ∞, but must do so at a
sufficiently rapid rate, that is, it must vanish faster than does 1/|ω| for
the ω-integral to exist (|F (ω)|2 vanishing only as fast as 1/|ω| still allows
the ω-integral to diverge logarithmically). That is, for the energy of f (t)
to be finite F (ω) must vanish fast enough that lim|ω|→∞ ω|F (ω)|2 = 0.
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Writing lim|ω|→∞ F (ω) = 0 is the Riemann-Lebesgue lemma, for the French
mathematician Henri Lebesgue (1875–1941) and, of course, Riemann.
For an electrical engineer it means that the energy spectral density of
any “real-world” time function must “roll off to zero” at a fairly fast rate
as one goes ever higher in frequency. Notice that, for each of our three
examples, Rayleigh energy convergence is indeed achieved. The same
sort of argument, by the way, used with Parseval’s theorem for a periodic
function f (t) with finite power, shows that lim|n|→∞ |cn |2 = 0, where the
cn are the coefficients in the complex Fourier series expansion of f (t).
In that case an electrical engineer would say the power spectrum of f (t)
“rolls off to zero” as one goes ever higher in frequency.

The Rayleigh energy formula is actually a special case of a much more
general result that we can find by asking the following question: if m(t)
and g (t) are two time functions with Fourier transforms M (ω) and G (ω),
respectively, then what is the Fourier transform of m(t)g (t)? When we get
to chapter 6, you’ll see how forming the product of two time functions
is essential to the operation of speech scramblers and radios. For now,
this is purely of mathematical interest. The transform of m(t)g (t) is, by
definition,

∞∫
−∞

m(t)g (t)e−iωt dt =
∞∫

−∞
m(t)

⎧⎨⎩ 1
2π

∞∫
−∞

G (u)e iut du

⎫⎬⎭ e−iωt dt ,

where g (t) has been written in the form of an inverse Fourier transform
(I’ve used u as the dummy variable of integration in the inner integral,
rather than ω, to avoid confusion with the outer ω). So, continuing, if
we reverse the order of integration we have the transform of m(t)g (t) as

∞∫
−∞

1
2π

G (u)

⎧⎨⎩
∞∫

−∞
m(t)e iut e−iωt dt

⎫⎬⎭ du

= 1
2π

∞∫
−∞

G (u)

⎧⎨⎩
∞∫

−∞
m(t)e−i(ω−u)t dt

⎫⎬⎭ du,
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or, as the inner integral is just M (ω − u), we have the Fourier transform
pair

m(t)g (t) ←→ 1
2π

∞∫
−∞

G (u)M (ω − u)du .

The integral on the right occurs so often in mathematics and engineer-
ing that it has its own name; the convolution integral. In general, if one has
any two functions x(t) and y(t) that are “combined” as

∫∞
−∞ x(τ )y(t−τ)dτ ,

we say that x(t) and y(t) are convolved, and write it in shorthand as
x(t) ∗ y(t). (You’ll see a lot more on convolution, and some of its appli-
cations in electronic technology, in the next chapter.) So, our new pair
is simply

m(t)g (t) ←→ 1
2π

G (ω) ∗ M (ω) .

Note carefully: the ∗ symbol denotes conjugation when used as a super-
script, and convolution when used in-line in a formula. And since it is
arbitrary which function we call m(t) and which we call g (t), then in fact
convolution is commutative (this is easy to prove formally, as well—just
make the obvious change of variable in the convolution integral) and so
m(t)g (t) ←→ (1/2π)M (ω) ∗ G (ω), too.

For the special case of m(t) = g (t) we have

g 2(t) ←→ 1
2π

G (ω) ∗ G (ω) ,

and we can use this special case as a nice example of how a purely math-
ematical result can also give us a lot of insight in the physical world.
Suppose g (t) is what electrical engineers call a bandlimited baseband sig-
nal, by which they mean that g (t) has all of its energy confined to the
finite frequency interval |ω| ≤ ωm (that’s the bandlimited part). (Base-
band means the interval is centered on ω = 0.) This means, of course,
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that G (ω) = 0 for |ω| > ωm . The Fourier transform of g 2(t) (which tells
us where the energy of g 2(t) is located) is, as just derived,

1
2π

G (ω) ∗ G (ω) = 1
2π

∞∫
−∞

G (u)G (ω − u)du,

which will certainly be zero if the integrand is zero, that is, if ω is so
positive (or so negative) that G (u)G (ω−u) = 0. Now, obviously G (u) �= 0
only if −ωm ≤ u ≤ ωm , by definition (see the upper hashed interval in
figure 5.3.1). And G (ω − u) �= 0 only if −ωm ≤ ω − u ≤ ωm , that is, if
−ωm − ω ≤ −u ≤ ωm − ω, that is, if ωm + ω ≥ u ≥ −ωm + ω, that is, if
−ωm + ω ≤ u ≤ ωm + ω (see the lower hashed interval in figure 5.3.1).
Now, imagine that we increase ω, which shifts the lower hashed interval
to the right. We will have an overlap of the two hashed intervals (and so a
nonzero integrand) as long as −ωm +ω ≤ ωm , that is, as long as ω ≤ 2ωm .
And, if we decrease ω (which shifts the lower hashed interval to the left)

G(u)

u0 ωm−ωm

G(    − u)ω

u0 ωm + ωωm + ω−

Figure 5.3.1. The integrand of a convolution integral
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we will have an overlap of the two hashed intervals (and so a nonzero
integrand) as long as −ωm ≤ ωm +ω, that is, as long as −2ωm ≤ ω. Thus,
we have a nonzero integrand as long as |ω| ≤ 2ωm . This tells us that if
g (t) has all of its energy confined to the frequency interval |ω| ≤ ωm then
g 2(t) has all of its energy confined to the frequency interval |ω| ≤ 2ωm .
You’ll see, in chapter 6, how useful this conclusion is to the construction
of a quite interesting electronic gadget.

In the last example we avoided the actual details of evaluating a convo-
lution integral. Let me now show you an example of “doing the details”
of a calculation, which we’ll return to in the last section of this chapter.
Suppose we have the time function (defined for all t)

f (t) = e−α|t | cos(t),

where α > 0. We could determine F (ω) by simply stuffing f (t) into the
defining integral for the Fourier transform, but our convolution result
provides an elegant (and short) alternative. If we write g (t) = e−α|t | and
h(t) = cos(t), then we know we can write

F (ω) = 1
2π

H (ω) ∗ G (ω) = 1
2π

∞∫
−∞

H (τ )G (ω − τ)dτ .

Now, since |t | = t for t > 0 and |t | = −t for t < 0,

G (ω) =
∞∫

−∞
e−α|t |e−iωt dt =

0∫
−∞

eαt e−iωt dt +
∞∫
0

e−αt e−iωt dt

=
0∫

−∞
e (α−iω)t dt +

∞∫
0

e−(α+iω)t dt =
(

e (α−iω)t

α − iω

∣∣∣∣∣
0

−∞
+
(

e−(α+iω)t

−(α + iω)

∣∣∣∣∣
∞

0

= 1
α − iω

+ 1
α + iω

= 2α

α2 + ω2 .
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Also,

H (ω) =
∞∫

−∞
cos(t)e−iωt dt =

∞∫
−∞

e it + e−it

2
e−iωt dt

= 1
2

⎡⎣ ∞∫
−∞

e i(1−ω)t dt +
∞∫

−∞
e−i(1+ω)t dt

⎤⎦.

At the end of section 5.2 you’ll recall that we derived the result

δ(ω) = 1
2π

∞∫
−∞

e iωt dt .

Thus,
∞∫

−∞
e i(1−ω)t dt = 2πδ(1 − ω)

and (because, don’t forget, the impulse is even)

∞∫
−∞

e−i(1+ω)t dt = 2πδ(1 + ω).

Therefore,
H (ω) = πδ(1 − ω) + πδ(1 + ω),

and so we immediately have

F (ω) = 1
2π

∞∫
−∞

π{δ(1 − τ) + δ(1 + τ)} 2α

α2 + (ω − τ)2 dτ ,

which, despite its formidable appearance, is trivial to evaluate because of
the sampling property of impulse functions that appear inside integrals.
That is, we have the pair

e−α|t | cos(t) ←→ F (ω) = α
[

1
α2+(ω−1)2 + 1

α2+(ω+1)2

]
.
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That’s it! You’ll see this particular result again in section 5.6, as an
illustration of the famous uncertainty principle.

Since we have been convolving ω-functions in the previous calcula-
tions, these last results are often referred to as frequency convolutions.
You’ll notice that ω is an arbitrary variable in our result for the general
transform pair for m(t)g (t) and, as a special case, if we set ω = 0, we get

∞∫
−∞

m(t)g (t)e−iωt dt |ω=0 = 1
2π

∞∫
−∞

G (u)M (ω − u)du |ω=0

or ∞∫
−∞

m(t)g (t)dt = 1
2π

∞∫
−∞

G (u)M (−u)du.

Now, since

M (u) =
∞∫

−∞
m(t)e−iut dt ,

it is clear that M (−u) = M ∗(u). Thus, we have

∞∫
−∞

m(t)g (t)dt = 1
2π

∞∫
−∞

G (u)M ∗(u)du .

And finally, if we again specialize this to the case of m(t) = g (t), then
M (ω) = G (ω) and so

∞∫
−∞

g 2(t)dt = 1
2π

∞∫
−∞

G (u)G∗(u)du = 1
2π

∞∫
−∞

| G (ω) |2 dω,

where in the last integral I changed the dummy variable of integration
from u to ω to make it more familar—this is, of course, just Rayleigh’s
energy formula.

To follow up briefly on our result that m(t)g (t) ←→ M (ω) ∗ G (ω),
before returning to the Rayleigh energy formula itself, you might be
wondering what would be the “reverse” of this pair. That is, what is the
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transform of m(t) ∗ g (t)? If you like symmetry, you might argue that
since multiplication in time pairs with convolution in frequency, then
convolution in time should pair with multiplication in frequency. And
you’d be right! This is actually quite easy (and most important, too) to
prove. Since

m(t) ∗ g (t) =
∞∫

−∞
m(u)g (t − u)du,

the transform of m(t) ∗ g (t) is
∞∫

−∞

⎧⎨⎩
∞∫

−∞
m(u)g (t − u)du

⎫⎬⎭ e−iωt dt ,

or, reversing the order of integration, the transform is equal to
∞∫

−∞
m(u)

⎧⎨⎩
∞∫

−∞
g (t − u)e−iωt dt

⎫⎬⎭ du.

Now, in the inner integral let τ = t − u (dτ = dt) and our transform
becomes

∞∫
−∞

m(u)

⎧⎨⎩
∞∫

−∞
g (τ )e−iω(τ+u)dτ

⎫⎬⎭ du

=
∞∫

−∞
m(u)e−iωu

⎧⎨⎩
∞∫

−∞
g (τ )e−iωτ dτ

⎫⎬⎭ du

=
∞∫

−∞
m(u)e−iωuG (ω)du = G (ω)

∞∫
−∞

m(u)e−iωudu = G (ω)M (ω).

That is, as claimed, we have

m(t) ∗ g (t) ←→ M (ω)G (ω) .

And once again, if we look at the special case of m(t) = g (t), we have

m(t) ∗ m(t) ←→ M 2(ω) .
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For the last topic of this section, let me show you a result related to
this last special case; this new result, in turn, is intimately related to one
of the most celebrated theorems in Fourier analysis. And to really get
your interest up, let me alert you to the little-known fact that it wasn’t a
mathematician who discovered it, but rather the physicist Albert Einstein.

I’ll start by defining what is called the autocorrelation of the real-valued
function f (t):

Rf (τ ) =
∞∫

−∞
f (t)f (t − τ)dt .

Notice, carefully, that Rf (τ ) is a function of τ , not t . I say this because the
above integral bears a superficial resemblance to a convolution integral,

f (t) ∗ f (t) =
∞∫

−∞
f (τ )f (t − τ)dτ ,

which is a function of t , not τ . (These two integrals do look a lot alike—we
are used to thinking of t as time, and dimensionally τ has the units of
time, too, but what is τ?) But there is a profound difference, which I’ll
develop shortly. You may have your doubts about this. After all, if you
remember our symbol swapping trick, you might well argue that we can
make both expressions functions of the same variable—for example, in
the Rf (τ ) equation let’s simply write t for τ and τ for t . The truth of the
equality is unaffected, and so now we have

Rf (t) =
∞∫

−∞
f (τ )f (τ − t)dτ .

Now the only difference in the two expressions is quite clear: in Rf (t)
the integrand has the factor f (τ − t) while in f (t) ∗ f (t) the integrand
has the factor f (t − τ). How much difference can a simple reversal in
the argument of f really make, you ask? Well, you’ll see that it makes a
lot of difference.
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What is Rf (τ ), physically? Rf (τ ) is a measure of the similarity of f (t) with
a shifted (τ is a time shift !) version of itself; hence the name correlation.
The auto, of course, comes from f (t) being measured against itself. While
I’m not going to pursue it here, Rf (τ ) can be generalized to measure
f (t) against any function g (t) (also real-valued) as

Rfg (τ ) =
∞∫

−∞
f (t)g (t − τ)dt .

Then, if g = f we see that Rfg (τ ) = Rff (τ ), which is just Rf (τ ). Rfg (τ )

is called the cross -correlation, and that’s all I’ll say about it in this book.
And, while I won’t pursue the technological uses of the autocorrelation
function either, I see no reason not to tell you at least that it has enormous
application in the construction of electronic signal processing circuitry
that can “extract” an information-bearing signal that is literally buried in
random noise. To pursue this matter at any depth would require us to
plunge into the theory of stochastic processes, which would be getting
pretty far beyond the scope of this book.

I’ll show you a specific example of an Rf (τ ) calculation soon, once
we’ve established the following three (there are actually lots more)
fundamental general properties of any Rf (τ ).

(i) Rf (0) ≥ 0. This follows immediately by simply inserting τ = 0
into the defining integral and arriving at Rf (0) = ∫∞

−∞ f 2(t)dt ,
which is certainly never negative. Indeed, Rf (0) is the energy of
f (t).

(ii) Rf (τ ) is even, that is, Rf (−τ) = Rf (τ ). This follows by first
writing Rf (−τ) = ∫∞

−∞ f (t)f (t + τ)dt and then changing
variables to s = t + τ (ds = dt). Then, Rf (−τ) = ∫∞

−∞ f (s − τ)

f (s)ds, or, making the trivial notational change in the dummy
variable of integration from s to t , Rf (−τ) = ∫∞

−∞ f (t − τ)f (t)
dt = Rf (τ ).

(iii) Rf (0) ≥ |Rf (τ )|. That is, Rf (τ ) has its maximum value for zero
time shift.5 To establish this, first write

∫∞
−∞{f (t) ± f (t − τ)}2

dt ≥ 0, which should be obviously true (the integral of anything
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real, squared, is nonnegative. Then, expanding, we have

∞∫
−∞

f 2(t)dt ± 2

∞∫
−∞

f (t)f (t − τ)dt +
∞∫

−∞
f 2(t − τ)dt ≥ 0.

Or, Rf (0) ± 2Rf (τ ) + Rf (0) ≥ 0 or, Rf (0) ≥ ±Rf (τ ), from
which Rf (0) ≥| Rf (τ ) | immediately follows.

As an example to illustrate these properties, suppose that f (t) =
e−t u(t), where u(t) is the unit step function. That is, f (t) = 0 for t < 0
and f (t) = e−t for t > 0. Then,

Rf (τ ) =
∞∫

−∞
e−t u(t)e−(t−τ)u(t − τ)dt .

To understand the next step in the analysis, remember how the step
function “works”: since u(t) = 0 for t < 0 and u(t) = 1 for t > 0,
u(t − τ) = 0 for t < τ and u(t − τ) = 1 for t > τ . So, since we need
both steps to be 1 to have a nonzero integrand, our expression for Rf (τ )

takes on two different forms, depending on whether τ < 0 or τ > 0.
Specifically,

Rf (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∫
τ

e−t e−(t−τ)dt , τ > 0,

∞∫
0

e−t e−(t−τ)dt , τ < 0.

Both of these integrals are quite easy to do. So,

If τ > 0, Rf (τ ) = e τ

∞∫
τ

e−2t dt = e τ

(
e−2t

−2

∣∣∣∣∞
τ

= e τ e−2τ

2
= 1

2
e−τ .

If τ < 0, Rf (τ ) = e τ

∞∫
0

e−2t dt = e τ

(
e−2t

−2

∣∣∣∣∞
0

= 1
2

e τ .
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1/2

Rf (  )

τ

τ

0

Figure 5.3.2. An autocorrelation function

We can combine these two expressions into a single formula, valid for
all τ , as

Rf (τ ) = 1
2

e−|τ | ,

which is shown in figure 5.3.2. That plot exhibits all three of the general
properties developed earlier. Notice that limτ→±∞ Rf (τ ) = 0, which
means that e−t u(t) “looks less and less like itself” as the time shift τ

increases, a conclusion I think you should find obviously true.
Now, let me end this topic by demonstrating the great difference

between autocorrelation and autoconvolution, using the Fourier trans-
form. You’ll recall that earlier in this section we derived the time-
convolution pair

f (t) ∗ f (t) ←→ F 2(ω).

Let’s now derive the Fourier transform of the autocorrelation (where
now I’ll use Rf written as a function of t). By definition, the transform
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of Rf (t) is

∞∫
−∞

Rf (t)e−iωt dt =
∞∫

−∞

⎧⎨⎩
∞∫

−∞
f (τ )f (τ − t)dτ

⎫⎬⎭ e−iωt dt

=
∞∫

−∞
f (τ )

⎧⎨⎩
∞∫

−∞
f (τ − t)e−iωt dt

⎫⎬⎭ dτ

where I’ve reversed the order of integration. Now, in the inner integral
make the change of variables to s = τ − t (so ds = −dt). Thus, the
transform of Rf (t) is

∞∫
−∞

f (τ )

⎧⎨⎩
−∞∫
∞

f (s)e−iω(τ−s)(−ds)

⎫⎬⎭ dτ =
∞∫

−∞
f (τ )e−iωτ

⎧⎨⎩
∞∫

−∞
f (s)e iωsds

⎫⎬⎭ dτ .

The inner integral is simply F ∗(ω), and so the transform of Rf (t) is

∞∫
−∞

f (τ )e−iωτ F ∗(ω)dτ = F ∗(ω)

∞∫
−∞

f (τ )e−iωτ dτ = F ∗(ω)F (ω) =| F (ω) |2 .

That is, we have the time-correlation pair

Rf (t) ←→| F (ω) |2,

which is very different from the F 2(ω) we got for time-convolution. |F (ω)|2
is the magnitude squared of F (ω), while F 2(ω) is the direct square of F (ω)

itself. | F (ω) |2 is purely real, always, while F 2(ω) is generally complex.
Now, I’ll end with a really big surprise. Notice that, to within a fac-

tor of 2π , Rf (t) and the energy spectral density are a Fourier transform
pair! This is a remarkable result, so remarkable that it has its own name:
the Wiener-Khinchin theorem, named after the American mathematician
Norbert Wiener (1894–1964), who discovered it in 1930, and the Russian
mathematician Aleksandr Khinchin (1894–1959), who independently
discovered it in 1934. In fact, however, both men were following in the
footsteps of the theoretical physicist Albert Einstein (1879–1955), who
discovered it in 1914 (in a paper delivered at the Swiss Physical Soci-
ety’s meeting in Basel in February of that year).6 Like Wilbraham’s 1848
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paper, however, the 1914 paper by Einstein was overlooked by math-
ematicians until sixty-five years later, in 1979, the year of the Einstein
centenary. Today we remember Einstein for his revolutionary gravita-
tional physics, but, as his 1914 math discovery shows, in his youth just
about everything technical that Einstein touched turned to gold.

5.4 Some curious spectra.
All through our discussions on the energy of a time function I’ve avoided
the question of existence, the question of whether there actually is a
finite value to

∫∞
− ∞ f 2(t)dt . In fact, a very useful function, the unit step,

obviously has infinite energy because

∞∫
−∞

u 2(t)dt =
∞∫
0

dt = ∞.

What does this mean with respect to the Fourier transform of u(t)? To
be consistent in our notation, I’ll write that transform as U (ω), that
is, u(t)←→U (ω). But—does U (ω) even exist? After all, if we simply
substitute u(t) into the definition of U (ω), we get

U (ω) =
∞∫

−∞
u(t)e−iωt dt =

∞∫
0

e−iωt dt =
(

e−iωt

−iω

∣∣∣∣∞
0

= e−i∞ − 1
−iω

= ?

This seems to be a first-class puzzle, as what in the world could e−i∞ possi-
bly mean? And how about the impulse function, which seems to be even
more mysterious? After all, what meaning can we attach to

∫∞
−∞ δ2(t)dt?

You might argue that, from the sampling property of the impulse, we
can write

∞∫
−∞

δ2(t)dt =
∞∫

−∞
δ(t)δ(t)dt = δ(0) = ∞,

but that’s assuming our φ(t) function (introduced at the beginning of
section 5.1) can be set equal to δ(t), which goes far beyond what I claimed
earlier for the mathematical nature of φ(t), for example, that it is contin-
uous at t = 0 (which δ(t) surely is not!). Oddly enough, however, it is the
impulse function and not the benign-appearing step that has the more
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easily calculated Fourier transform. We can do the impulse calculation
as follows.

The Fourier transform of δ(t − t0), an impulse located at t = t0, is by
definition (and the sampling property) given by

δ(t − t0) ←→
∞∫

−∞
δ(t − t0)e−iωt dt = e−iωt |t=t0= e−iωt0 .

In particular, for t0 = 0 we have the astonishingly simple Fourier
transform pair

δ(t) ←→ 1 .

And for t0 anything we have the magnitude squared of the Fourier trans-
form of δ(t − t0) as | e−iωt0 |2, which Euler’s formula tells us is equal to 1,
a constant over all frequencies. The energy spectral density of δ(t − t0),
for any t0, is simply 1/2π , −∞ < ω < ∞. An impulse in time has its
energy uniformly distributed over all frequencies. It is clear now that the
total energy of an impulse is infinite, as Rayleigh’s energy formula tells
us that we can express that energy as

∞∫
−∞

1
2π

dω = 1
2π

∞∫
−∞

dω = ∞.

We’ve encountered impulses in time a number of times now, and that
may have prompted a related question in your mind: what time function
goes with δ(ω), an impulse in frequency? All we need to do to answer that
question is to substitute δ(ω) into the inverse Fourier transform integral
to get the pair

1
2π

∞∫
−∞

δ(ω)e iωt dω ←→ δ(ω),

which, from the sampling property of the impulse, gives us the important
result that

1
2π

←→ δ(ω) .
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This purely mathematical result has a certain physical plausibility to it,
too. The time function 1/2π , a constant over all time, is what electrical
engineers call a constant d c-signal. And another way to think of a constant
d c-signal is that it is a signal of zero frequency, that is, it doesn’t vary with
time. And that means all of the energy of such a signal is concentrated
at the single frequency ω = 0. And what does that remind you of ? An
impulse, that’s what, an impulse located at ω = 0. An impulse at zero
frequency is associated with a time function that has all of its energy
uniformly distributed over all time, from minus infinity to plus infinity.
It clearly has infinite energy, as

∞∫
−∞

12dt =
∞∫

−∞
dt = ∞.

Well, you might be thinking at this point, the impulse wasn’t too
hard to handle. Maybe it won’t be so hard after all to calculate U (ω),
the Fourier transform of the unit step u(t), either. You might suggest,
for example, looking back at the earlier calculation we did for f (t) =
e−σ t u(t) (example 2 in the previous section), where we found its Fourier
transform to be F (ω) = 1/(σ + iω). Thus, you might argue that since

lim
σ→0

f (t) = lim
σ→0

e−σ t u(t) = u(t),

it should be the case that

U (ω) = lim
σ→0

F (ω) = lim
σ→0

1
σ + iω

= 1
iω

.

This would say that

|U (ω)|2= 1
ω2 ,

and so Rayleigh’s energy formula would say the energy of the unit step is

∞∫
−∞

1
2π

|U (ω)|2dω = 1
2π

2

∞∫
0

dω

ω2 = ∞,

which is just what we calculated at the start of this section. But, this
calculation can not be right. Here’s why.



Fourier Integrals 229

U (ω) = 1/iω obviously says that U (ω) is purely imaginary, which in
turn says (as we showed back in section 5.2) that u(t) “must be” an
odd function of t—which u(t) is clearly not. We have an apparent deep
inconsistency here and we seem to be right back where we started, that
is, nowhere, with calculating U (ω)—what is going on? What is going on
is that U (ω) = 1/iω is almost right, but it’s also “missing something.”
“What ‘something’?” you ask, and the surprising answer is—an impulse.
Here’s how to show that.

The key idea is to write u(t) in terms of the sgn(t) function, which we
first encountered back in section 1.8. There we wrote

sgn(t) =
{

+1, t > 0,
−1, t < 0.

Now, clearly (as I’ve already done in section 5.1 in the discussion on
Dirichlet’s discontinuous integral) we can write

u(t) = 1
2

+ 1
2

sgn(t).

Thus, U (ω), the transform of u(t), is the sum of the transforms of 1
2 and

1
2sgn(t). As we’ve seen, we have the pair 1/2π ←→ δ(ω), and so the
transform of 1

2 is πδ(ω). And the transform for sgn(t) is 2/iω, a result we
can verify by inserting 2/iω into the inverse Fourier transform integral:

1
2π

∞∫
−∞

2
iω

e iωt dω = 1
π i

∞∫
−∞

e iωt

ω
dω.

This integral, as shown at the very end of section 1.8, is π i · sgn(t). So,
the time function that is paired with 2/iω is 1/π i[π i · sgn(t)] = sgn(t).
That’s it. Thus,

U (ω) = πδ(ω) + 1
2

(
2
iω

)
.

That is, we at last have the pair that we are after:

u(t) ↔ U (ω) = πδ(ω) + 1
iω

.



230 Chapter 5

It’s worth a little time here to stop and understand why the δ(ω) is
needed. Intuitively, u(t) has an “average” value of 1

2 (0 for − ∞ < t < 0
and +1 for 0 < t < ∞), and that’s the source of the πδ(ω). We do not
have a δ(ω) in the transform of sgn(t) since it has an average value of
zero (−1 for − ∞ < t < 0 and +1 for 0 < t < ∞). The purely imaginary
2/iω is just fine, all by itself, for the odd sgn(t). For both u(t) and sgn(t),
however, the 1/iω and 2/iω are needed, respectively, because of the
sudden jumps at t = 0, that is, both functions need energy at arbitrarily
high frequencies to support a discontinuous change in time. Notice that
the form of these terms is 1/iω, times the magnitude of the jump (one
for u(t) and two for sgn(t)).

We can now use our result for U (ω), curious in its own right, to derive
what might be considered an even more curious Fourier transform
pair. That is, we can now answer the following intriguing mathematical
question (one that you’ll see in chapter 6 has important practical value
in the theory of radio): what time function pairs with a step in frequency?
That is, what’s on the left in the pair? ←→ u(ω)? Be crystal-clear on
the notation: u(ω) �= U (ω). U (ω) is the transform of the unit step
in time, that is, u(t) ←→ U (ω), while u(ω) is the unit step in fre-
quency (u(ω) = 1 for ω > 0, and u(ω) = 0 for ω < 0). Such an
ω-function is called a single-sided spectrum, with all of its energy at pos-
itive frequencies only. You shouldn’t be surprised, then, when we find
that the time function that goes with such a spectrum is quite unusual
indeed.

To answer our question, I need to establish one more theoretical
result. Suppose we have the pair g (t) ←→ G (ω). Then, from the inverse
Fourier transform integral we have

g (t) = 1
2π

∞∫
−∞

G (ω)e iωt dω.

If we now replace t with −t on both sides (which retains the truth of the
equality), we have

g (−t) = 1
2π

∞∫
−∞

G (ω)e−iωt dω.
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And then if we use again our symbol swapping trick that I used in the last
section, that is, if we replace every ω with t and every t with ω, we have

g (−ω) = 1
2π

∞∫
−∞

G (t)e−itωdt ,

or

2πg (−ω) =
∞∫

−∞
G (t)e−iωt dt .

But the integral is simply the Fourier transform of G (t), and so we have
the following wonderful result, known as the duality theorem:

if g (t) ←→ G (ω)

then G (t) ←→ 2πg (−ω)
.

Now we are all set to go. According to the duality theorem, since we
have already established that

u(t) ←→ πδ(ω) + 1
iω

,

we have
πδ(t) + 1

it
←→ 2πu(−ω).

This isn’t quite what we’re after, of course, which is the time function
that goes with u(ω), rather than with the u(−ω) we have here. But we
are almost done, because all we need to do to complete the analysis is to
make one last, easy observation. If f (t) is any function in general, then
of course we have (assuming the integral exists)

f (t) ←→
∞∫

−∞
f (t)e−iωt dt = F (ω).

Thus,

F (−ω) =
∞∫

−∞
f (t)e−i(−ω)t dt =

∞∫
−∞

f (t)e iωt dt .
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Now, make the change of variable to v = −t . Then,

F (−ω) =
−∞∫
∞

f (−v)e iω(−v)(−dv) =
∞∫

−∞
f (−v)e−iωvdv =

∞∫
−∞

f (−t)e−iωt dt ,

which is just the Fourier transform of f (−t)—the last integral follows by
making the trivial change in the dummy variable of integration from v
to t . That is, we have the general pair f (−t) ←→ F (−ω).

So, returning to our “almost” result for u(−ω), we have (once we
replace ω with −ω and t with −t)

πδ(−t) + 1
i(−t)

←→ 2πu(ω).

Or, remembering that δ(t) is even, we have the exotic (this is not too
strong a word to use) pair shown in the box below as the answer to our
original question of what time function pairs with the unit step in the
frequency domain?

1
2
δ(t) + i

1
2π t

←→ u(ω) .

This pair, I think, involving a complex time function, is really nonobvious!
This section is titled “curious spectra” (and we’ve certainly seen some

pretty curious examples) and to end it I want to show you analyses of
two really curious signals. The first example is rather fanciful. It isn’t
of much practical interest, but it does present a maze of fascinating
mathematical puzzles which Fourier theory will see us through. The
second and concluding example is, on the other hand, of absolutely
enormous practical interest to electrical engineers.

For our first example, the function we are going to study is g (t) = |t |,
which I first asked you to think about back in section 1.8 (where I asked
you to convince yourself that sgn(t) = (d/dt)|t |). Our question here is:
how is the energy of g (t) distributed in frequency? Now g (t) = |t | is
obviously an infinite energy signal, but you’ll see that it is very unlike the
other infinite energy signals we’ve already encountered (the step and the
impulse). Our first step is, of course, to calculate the Fourier transform
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of g (t), which immediately gets us into trouble. That is, it does if we
simply plug |t | directly into the Fourier transform integral and expand
with Euler’s formula:

G (ω) =
∞∫

−∞
|t |e−iωt dt =

∞∫
−∞

|t | cos(ωt)dt + i

∞∫
−∞

|t | sin(ωt)dt ,

or, because the first integrand on the right is even and the second
integrand is odd, we have

G (ω) = 2

∞∫
0

t cos(ωt)dt = ?

So, let’s try another approach. It doesn’t completely work, either, but it
almost does. And with just one more try, we’ll be able to patch it up.

We know the Fourier transform of sgn(t), and so

sgn(t) = d
dt

|t | ←→ 2
iω

.

Can we use this to get our hands on G (ω), the Fourier transform of
|t |? Well, as I said above, almost. Here’s how, using what is called the time
differentiation theorem. If we have the pair f (t) ←→ F (ω), then the inverse
Fourier transform integral says

f (t) = 1
2π

∞∫
−∞

F (ω)e iωt dω.

Differentiating with respect to t gives

df
dt

= 1
2π

∞∫
−∞

F (ω)iωe iωt dω

which says that if f (t) ←→ F (ω) then df /dt ←→ iωF (ω). (We’ll use
this theorem again in section 5.6, in the discussion of the uncertainty
principle.) This assumes, of course, that f (t) is differentiable and, since
the derivative of |t | does not exist everywhere (i.e., at t = 0) then we
might not be too surprised if we run into at least a little trouble. Well,
let’s tighten our seatbelts and see what happens.
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To help keep things straight and obvious, let’s write T as the Fourier
transform integral operator on f (t):

T{ f (t)} = F (ω).

Our time differentiation theorem, for example, is simply7

T
{

df
dt

}
= iω T { f (t)}.

So,

T {sgn(t)} = T
{

d
dt

|t |
}

= iω T {|t |} = iωG (ω),

or
G (ω) = 1

iω
T {sgn(t)} = 1

iω
· 2

iω
= − 2

ω2 ,

that is, we have the pair |t | ←→ −2/ω2. We seem to have solved our
problem. But this cannot be right! Here’s why. The Fourier transform of
g (t) is, of course,

G (ω) =
∞∫

−∞
g (t)e−iωt dt ,

and so for ω = 0 we have

G (0) =
∞∫

−∞
g (t)dt =

∞∫
− ∞

|t |dt = +∞.

But our result says

G (0) = − 2
ω2 |ω=0 = −∞.

Alas, we have the wrong sign on the infinity. The −2/ω2 is, in fact,
correct for all ω except at ω = 0, where, just as with our first attempt
at transforming the step function u(t), we are still “missing something.”
So, let’s try yet another approach to find that “something.”

You’ll recall that back in section 1.8 I also asked you to think about
the following formula:

|t | =
t∫
0

sgn(s)ds.
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This is actually quite easy to establish, if we consider the two cases t > 0
and t < 0 separately. The first case is nearly obvious: if t > 0 then s > 0
over the entire interval of integration and we have

t∫
0

sgn(s)ds =
t∫
0

1 · ds = t = |t | because t > 0.

The case t < 0 is just slightly more subtle. Let l = −t (where, of course,
l > 0); then

t∫
0

sgn(s)ds =
−l∫
0

sgn(s)ds = −
0∫
−l

sgn(s)ds.

Over the entire interval of integration s is negative, and so

t∫
0

sgn(s)ds = −
0∫
−l

(−1)ds =
0∫
−l

ds = s
∣∣∣∣0−l

= 0 − (−l ) = l = −t = |t | because t < 0.

Thus, as claimed, for all t we have

|t | =
t∫
0

sgn(s)ds.

Now, recall our result from section 1.8 that resulted in Dirichlet’s
discontinuous integral:

∞∫
−∞

sin(ωt)
ω

dω = π sgn(t).

Combining this with our last result for |t |, we have

|t | =
t∫
0

⎧⎨⎩ 1
π

∞∫
−∞

sin(ωs)
ω

dω

⎫⎬⎭ ds.
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Reversing the order of integration, we have

|t | = 1
π

∞∫
−∞

1
ω

⎧⎨⎩
t∫
0

sin(ωs)ds

⎫⎬⎭ dω = 1
π

∞∫
−∞

1
ω

{− cos(ωs)
ω

∣∣∣∣t
0

dω

= 1
π

∞∫
−∞

1 − cos(ωt)
ω2 dω.

Now, to return to our original problem of calculating the Fourier
transform of |t |, let’s stick this integral representation8 for |t | into the
Fourier transform integral. That gives us

G (ω) =
∞∫

−∞

⎧⎨⎩ 1
π

∞∫
−∞

1 − cos(αt)
α2 dα

⎫⎬⎭ e−iωt dt ,

where I’ve changed the dummy variable of integration in the inner inte-
gral from ω to α to avoid confusion with the independent variable ω in
the outer integral. Reversing the order of integration gives

G (ω) =
∞∫

−∞

1
πα2

⎧⎨⎩
∞∫

−∞
{1 − cos(αt)}e−iωt dt

⎫⎬⎭ dα .

We can write the inner integral as
∞∫

−∞
{1 − cos(αt)}e−iωt dt =

∞∫
−∞

e−iωt dt −
∞∫

−∞
cos(αt)e−iωt dt .

The first integral on the right is just our “astonishing statement” from
section 5.1, that is, from there we have

δ(x) = 1
2π

∞∫
−∞

e iωxdω = 1
2π

∞∫
−∞

e isxds.

Replacing x with ω gives

δ(ω) = 1
2π

∞∫
−∞

e isωds,
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and so, replacing ω with −ω,

∞∫
−∞

e is(−ω)ds = 2πδ(−ω) = 2πδ(ω) =
∞∫

−∞
e−iωsds =

∞∫
−∞

e−iωt dt .

Thus, our inner integral is

∞∫
−∞

{1 − cos(αt)}e−iωt dt = 2πδ(ω) −
∞∫

−∞
cos(αt)e−iωt dt .

The remaining integral on the right is just the Fourier transform of
cos(αt), and by now this should be a routine Euler’s formula calculation
for you:

∞∫
−∞

cos(αt)e−iωt dt =
∞∫

−∞

e iαt + e−iαt

2
e−iωt dt

= 1
2

∞∫
−∞

e it [−(ω−α)]dt + 1
2

∞∫
−∞

e it [−(ω+α)]dt

= 1
2

2πδ(−{ω − α}) + 1
2

2πδ(−{ω + α})
= πδ(ω − α) + πδ(ω + α).

Thus, finally, our inner integral is

∞∫
−∞

{1 − cos(αt)}e−iωt dt = 2πδ(ω) − πδ(ω − α) − πδ(ω + α),

and if we insert this result into our boxed expression for G (ω) we arrive at

G (ω) =
∞∫

−∞

1
πα2 {2πδ(ω) − πδ(ω − α) − πδ(ω + α)}dα

= 2δ(ω)

∞∫
−∞

dα

α2 −
∞∫

−∞

1
α2 δ(ω − α)dα −

∞∫
−∞

1
α2 δ(ω + α)dα.



238 Chapter 5

The first term is an impulse at ω = 0 with infinite strength! Remem-
ber, all impulses have infinite height, all by themselves—the factor 2∫∞
−∞ dα/α2 = 4

∫∞
0 dα/α2 = ∞ is the area or strength of the impulse.

This is one mega-powerful impulse! As it well should be, of course, since
you will recall from our earlier analyses of sgn(t) and u(t) how δ(ω)

played its role in their transforms—the strength factors there that mul-
tiplied δ(ω) (0 and 1

2 , respectively), were the average value of the time
function. And what is the “average value” of |t | over all time?—infinity.
This huge impulse is the “missing something” we’ve been after. Located
at ω = 0, it is just what we need to turn the − ∞ we got for G (0) from
the almost correct G (ω) = −2/ω2 into the + ∞ G (0) actually equals.

The remaining two integrals in our last expression for G (ω) are equal
to the −2/ω2 we calculated before. That is, by the sampling property of
the impulse we have

−
∞∫

−∞

1
α2 δ(ω − α)dα −

∞∫
−∞

1
α2 δ(ω + α)dα = − 1

(ω)2 − 1
(−ω)2 = − 2

ω2 .

So, at last, we have the pair

|t | ←→ 4δ(ω)

∞∫
0

dα

α2 − 2
ω2 ,

which is indeed one curious spectrum.
The energy of |t | is, as mentioned at the start of this analysis, infinite,

but the above curious pair tells us that all that energy is distributed over
frequency in an equally curious way. If we stay away from ω = 0, then
the energy spectral density is given by 4/ω4 and so, for any ω1 > 0, no
matter how small ( just not zero), the total energy over all ω (excluding
the arbitrarily small “hole” at −ω1 < ω < ω1) is, by Rayleigh’s energy
formula,

1
2π

⎡⎣−ω1∫
−∞

4
ω4 dω +

∞∫
ω1

4
ω4 dω

⎤⎦ = 4
2π

2

∞∫
ω1

dω

ω4 = 4
π

(
− 1

3ω3

∣∣∣∣∞
ω1

= 4

3πω3
1

< ∞.
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That is, there is just a finite amount of energy in any frequency interval
(even of infinite width) that does not include ω = 0. The infinite energy
of |t | is, therefore, packed into the infinitesimally tiny frequency interval
around ω = 0, which is in marked contrast to the infinite energy of
a “mere” impulse, which we found earlier in this section is uniformly
distributed over all frequencies.

For the second and final example of our pair of really curious spectra,
a very interesting problem occurs in radio engineering with the analysis
of the elementary signal s(t) = sin(ωc t), − ∞ < t < ∞. When you listen
to a radio you are hearing the information signal (voice or music) that has
been “placed onto” what is called the carrier signal, which is our sinusoidal
function s(t) at frequency ωc . (In chapter 6 I’ll elaborate on what “placed
onto” means, and you’ll see that Fourier theory and complex numbers
will be very helpful with that, too.) In commercial AM broadcast radio
νc = ωc/2π is called the carrier frequency, and its value (measured in
hertz) is different for each transmitting station in the same listening
area in order to avoid mutual interference at receivers. If a station’s
carrier frequency is 1.27 MHz (megahertz), for example, which is 1,270
kHz (kilohertz), then the station’s announcer will often say something
like “you’re listening to twelve-seventy on your radio dial.” A very natural
question to ask, here, is where is the energy of a carrier signal? This is not
a mystery of the ages, of course—the energy is at the carrier frequency.
But the mathematics of it is not so obvious. With a clever use of Fourier
theory, however, this question will be easy for us to answer.

We have from Euler’s formula that

s(t) = sin(ωc t) = e iωc t − e−iωc t

2i
,

and so the Fourier transform of s(t) is

S(ω) =
∞∫

−∞

e iωc t − e−iωc t

2i
e−iωt dt

= 1
2i

⎡⎣ ∞∫
−∞

e i(ωc−ω)t dt −
∞∫

−∞
e i[−(ωc+ω)]t dt

⎤⎦ .
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We have from our previous work that

δ(ω) = 1
2π

∞∫
−∞

e iωt dt ,

and, since the impulse is even, we have

∞∫
−∞

e i(ωc−ω)t dt = 2πδ(ωc − ω) = 2πδ(ω − ωc )

and ∞∫
−∞

e i[−(ωc+ω)]t dt = 2πδ[−(ωc + ω)] = 2πδ(ω + ωc ).

That is,

S(ω) = 1
2i

[2πδ(ω − ωc ) − 2πδ(ω + ωc )]
= −π i[δ(ω − ωc ) − δ(ω + ωc )].

The Fourier transform of sin(ωc t) is purely imaginary because the real-
valued time function sin(ωc t) is odd, and the transform consists of just
two impulses, one at ω = ωc and the other at ω = −ωc .

The formal answer to our initial question, then, of “where’s the
energy of the carrier?” is given by looking at the energy spectral density
(1/2π) | S(ω) |2. Admittedly, that’s a bit difficult to visualize since S(ω)

is impulsive. What does the square of an impulse look like? Since the
impulses themselves are at ±ωc , then it seems clear that their “squares”
(and so their energies) are located at ±ωc as well. But what does the
energy spectral density look like?

Here’s a really clever way to sneak up on the answer. Instead of cal-
culating the transform of a sinusoidal carrier that’s been “on” for all
time (that’s nearly as unrealistic as |t |—don’t you agree?—and in fact it
is this very point that results in those two impulses), let’s imagine that
we have a sinusoid that’s been “on” for exactly N complete cycles. The
transform of such a signal is non-impulsive. Then we can study where
the energy is, and also what happens as N → ∞. Such a signal is called
a sinusoidal burst, and figure 5.4.1 shows such a burst for N = 6. Such
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t

Figure 5.4.1. A sinusoidal burst of six cycles

burst signals are intentionally produced by what are called pulse radars,
which transmit a very short burst of electromagnetic energy at a very high
frequency, and then listen to the echoes that indicate the presence of
and range to (proportional to the time delay between pulse transmission
and echo reception) a target. By studying multiple echoes, such radars
can track targets. If a pulse radar operates at 10 GHz (gigahertz), for
example—this is a so-called “3-centimeter radar,” as three centimeters
is the wavelength of 10 GHz electromagnetic waves—and if a pulse lasts
one microsecond, then N = 10, 000 cycles.

We set our analysis up mathematically as follows, with the duration of
each complete cycle as 2π/ωc :

sb(t) =
⎧⎨⎩sin(ωc t), −2π

ωc
· N

2
≤ t ≤ 2π

ωc
· N

2
,

0 , otherwise,

that is,

sb(t) =
⎧⎨⎩sin(ωc t), −N π

ωc
≤ t ≤ N π

ωc
,

0 , otherwise.
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The Fourier transform of sb(t) is (once again, using Euler’s formula)

Sb(ω) =
∞∫

−∞
sb(t)e−iωt dt =

N π/ωc∫
−N π/ωc

sin(ωc t)e−iωt dt

=
N π/ωc∫

−N π/ωc

e iωc t − e−iωc t

2i
e−iωt dt

= 1
2i

⎡⎢⎣ N π/ωc∫
−N π/ωc

e−i(ω−ωc )t dt −
N π/ωc∫

−N π/ωc

e−i(ω+ωc )t dt

⎤⎥⎦
= 1

2i

[(
e−i(ω−ωc )t

−i(ω − ωc )

∣∣∣∣N π/ωc

−N π/ωc

−
(

e−i(ω+ωc )t

−i(ω + ωc )

∣∣∣∣N π/ωc

−N π/ωc

]

= 1
2

[{
e−i(ω−ωc )(N π/ωc ) − e i(ω−ωc )(N π/ωc )

ω − ωc

}

−
{

e−i(ω+ωc )(N π/ωc ) − e i(ω+ωc )(N π/ωc )

ω + ωc

}]

= 1
2

[{
e−iN π(ω/ωc )e iN π − e iN π(ω/ωc )e−iN π

ω − ωc

}

−
{

e−iN π(ω/ωc )e−iN π − e iN π(ω/ωc )e iN π

ω + ωc

}]
.

We now consider the two cases of N first an even integer, and then an
odd integer. If N is even, then Euler’s formula says e iN π = e−iN π = 1,
and so

Sb(ω) = 1
2

[{
e−iN π(ω/ωc ) − e iN π(ω/ωc )

ω − ωc

}
−
{

e−iN π(ω/ωc ) − e iN π(ω/ωc )

ω + ωc

}]

= 1
2

[−2i sin(N π(ω/ωc ))

ω − ωc
− −2i sin(N π(ω/ωc ))

ω + ωc

]
= −i sin(N π(ω/ωc ))

[
1

ω − ωc
− 1

ω + ωc

]
,
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or,

Sb(ω) = −i
2ωc sin(N πω/ωc )

ω2 − ω2
c

, N even .

On the other hand, if N is odd, then e iN π = e−iN π = −1, and so

Sb(ω) = 1
2

[{
−e−iN π(ω/ωc ) + e iN π(ω/ωc )

ω − ωc

}
−
{

−e−iN π(ω/ωc ) + e iN π(ω/ωc )

ω + ωc

}]

= 1
2

[
2i sin(N π(ω/ωc ))

ω − ωc
− 2i sin(N π(ω/ωc ))

ω + ωc

]
= i sin

(
N π

ω

ωc

)[
1

ω − ωc
− 1

ω + ωc

]
,

or,

Sb(ω) = i
2ωc sin(N πω/ωc )

ω2 − ω2
c

, N odd .

Thus, for any nonnegative integer N the energy spectral density (ESD)
of an N -cycle sinusoidal burst is

1
2π

| Sb(ω) |2 = 2
ω2

c π
· sin2(N π(ω/ωc ))

[( ω
ωc

)2 − 1]2 .

Figures 5.4.2 through 5.4.5 show the ESD (without the constant scale
factor 2/ω2

c π) for N = 1, 2, 5, and 10, respectively, over the normal-
ized frequency interval −2 ≤ ω/ωc ≤ 2. (Notice that the plots are
even, as they should be for a real sb(t).) It is clear that as N increases
the ESD is, indeed, looking more and more like two impulses at
(ω/ωc ) = ±1. It is surprising, I think, just how quickly the ESD does
approach two impulses; after all, N = 10 is a “pretty small” number
and, in the illustration I mentioned earlier of the pulse radar, with
N = 10,000, the ESD would be virtually indistinguishable from the
impulsive ESD of a true (but “unrealistic”) sinusoid that has been (and
will be) “forever on.”
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Figure 5.4.2. 1-cycle sinusoidal burst
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Figure 5.4.3. 2-cycle sinusoidal burst
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Figure 5.4.4. 5-cycle sinusoidal burst
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5.5 Poisson summation.
In this short section I’ll show you a beautiful, surprising connection
between a time function and its Fourier transform. This result, called
Poisson’s summation formula, has an ironic aspect—it is named for the
French mathematician Siméon-Denis Poisson (1781–1840) who was one
of Fourier’s most severe critics. Suppose we have a function f (t) defined
over the entire real line, − ∞ < t < ∞. From this f (t) we then construct
another function g (t), defined as

g (t) =
∞∑

k=−∞
f (t + k).

If you look at this definition for just a bit, you should be able to see that
g (t) is periodic, with period T = 1. We can easily show this formally by
writing

g (t + 1) =
∞∑

k=−∞
f (t + 1 + k),

which becomes, with a change in the summation index to n = k + 1,

g (t + 1) =
∞∑

n=−∞
f (t + n) = g (t).

This works, of course, because mapping the infinite set of all the integers
into itself by simply adding one to each integer changes nothing.

Now, since g (t) is periodic, it can be written as a Fourier series with
(as you’ll recall from Chapter 4) ω0 = 2π since T = 1:

g (t) =
∞∑

n=−∞
cne in2π t ,

where

cn = 1
T

∫
period

g (t)e−in2π t dt =
1∫
0

∞∑
k=−∞

f (t + k)e−in2π t dt

=
∞∑

k=−∞

1∫
0

f (t + k)e−in2π t dt .
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If we change variables (in the integral) to s = t + k, then ds = dt and

cn =
∞∑

k=−∞

k+1∫
k

f (s)e−in2π(s−k)ds =
∞∑

k=− ∞

k+1∫
k

f (s)e−in2πs e ink2πds

=
∞∑

k=−∞

k+1∫
k

f (s)e−in2πsds

as, since n and k are integers, e ink2π = 1. Then, since

∞∑
k=−∞

k+1∫
k

=
∞∫

−∞
,

we have

cn =
∞∫

−∞
f (s)e−in2πsds =

∞∫
−∞

f (t)e−in2π t dt .

Since f (t) ←→ F (ω), where

F (ω) =
∞∫

−∞
f (t)e−iωt dt ,

we see that
cn = F (2πn),

and so

g (t) =
∞∑

n=−∞
F (2πn)e in2π t =

∞∑
k=−∞

f (t + k).

This is an identity in t and, in particular, for t = 0 we get the remarkable
Poisson’s summation formula, derived9 by him in 1827,

∞∑
k=−∞

f (k) =
∞∑

n=−∞
F (2πn) .

This may look pretty benign, but let me now show you three examples
that will convince you that such an initial impression is wrong.
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Example 1. Suppose f (t) is defined for all t as follows, where α is any
positive number:

f (t) = e−α|t |, α > 0.

Then

F (ω) =
∞∫

−∞
f (t)e−iωt dt

=
0∫

−∞
eαt e−iωt dt +

∞∫
0

e−αt e−iωt dt

=
0∫

−∞
e (α−iω)t dt +

∞∫
0

e−(α+iω)t dt

=
(

e (α−iω)t

α − iω

∣∣∣∣∣
0

−∞
+
(

e−(α+iω)t

−(α + iω)

∣∣∣∣∣
∞

0

= 1
α − iω

+ 1
α + iω

= 2α

α2 + ω2 .

Poisson’s summation formula tells us, therefore, that it must be
true that ∞∑

k=−∞
e−α|k| =

∞∑
n=−∞

2α

α2 + (2πn)2 .

The sum on the left is, when written out,

∞∑
k=−∞

e−α|k| = 1 + 2
∞∑

k=1

e−αk = 1 + 2(e−α + e−2α + e−3α + · · ·)

and the expression in the parentheses is simply a geometric series which
is easily summed to give

∞∑
k=−∞

e−α|k| = 1 + 2
e−α

1 − e−α
= 1 + e−α

1 − e−α
.

Thus,
∞∑

n=−∞

2α

α2 + (2πn)2 = 1 + e−α

1 − e−α
,
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or, with a couple of quick algebraic steps (that I’ll let you do), we arrive at

∞∑
n=−∞

1
(α/2π)2 + n2 = π

(
2π

α

)
1 + e−α

1 − e−α
.

This is a generalization of a result we derived back in section 4.3:

∞∑
n=−∞

1
1 + n2 = π

1 + e−2π

1 − e−2π
,

which is our new result in the above box for the special case of α = 2π .
Our new result has an infinity of such special cases, of course, one for
any value of α > 0 we care to use. For example, if α = π then

∞∑
n=−∞

1
1/4 + n2 = 2π

1 + e−π

1 − e−π
.

The expression on the right equals 6.850754, which is easily “checked” by
direct calculation of the sum, itself (using −10,000 ≤ n ≤ 10,000 in the
sum gives 6.850734). Who could have even made up such a wonderful
formula?

Example 2. A very pretty extension of our special result from section 4.3
is now possible with help from our generalized formula—specifically, we
can now calculate the value of

∞∑
n=−∞

(−1)n

1 + n2 ,

our original result from section 4.3 written now with alternating signs.
To do this, notice that

∞∑
n=−∞

(−1)n

1 + n2 =
∑

n even

1
1 + n2 −

∑
n odd

1
1 + n2

and that∑
n even

1
1 + n2 =

∞∑
n=− ∞

1
1 + (2n)2 =

∞∑
n=−∞

1
1 + 4n2 = 1

4

∞∑
n=−∞

1
1/4 + n2 .
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Also, ∑
n odd

1
1 + n2 =

∞∑
n=− ∞

1
1 + n2 −

∑
n even

1
1 + n2

=
∞∑

n=−∞

1
1 + n2 − 1

4

∞∑
n=−∞

1
1/4 + n2 .

Thus,
∞∑

n=−∞

(−1)n

1 + n2 = 1
4

∞∑
n=−∞

1
1/4 + n2

−
{ ∞∑

n=−∞

1
1 + n2 − 1

4

∞∑
n=−∞

1
1/4 + n2

}

= 1
2

∞∑
n=−∞

1
1/4 + n2 −

∞∑
n=−∞

1
1 + n2

= π
1 + e−π

1 − e−π
− π

1 + e−2π

1 − e−2π
;

with a final couple of quick algebraic steps, we arrive at the very pretty

∞∑
n=−∞

(−1)n

1 + n2 = 2π

eπ − e−π
.

“Confirmation” comes (as usual) from direct calculation; the right-hand
side is 0.27202905498213, while using −100,000 ≤ n ≤ 100,000 for the
sum on the left gives 0.27202905508215.

Example 3. For my third and final example of this section, I’ll start by
deriving the Fourier transform of the so-called Gaussian pulse, that is, the
transform of

f (t) = e−αt2
, α > 0, |t | < ∞.

That is, f (t) is an exponential with a quadratic exponent. By definition,

F (ω) =
∞∫

−∞
e−αt2

e−iωt dt .
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This may look like a pretty tough integral to calculate, but it yields to the
following clever attack.

Differentiating with respect to ω gives

dF
dω

= −i

∞∫
−∞

te−αt2
e−iωt dt .

If we then integrate by parts on the right, that is, in the classic formula
from calculus

∞∫
−∞

u dv =
⎛⎝uv

∣∣∣∣∞−∞
−

∞∫
−∞

v du,

we let u = e−iωt and dv = te−αt2
dt , then du = −iωe−iωt dt and v =

−(1/2α)e−αt2
, and so

∞∫
−∞

te−αt2
e−iωt dt =

⎛⎝− 1
2α

e−αt2
e−iωt

∣∣∣∣∣∣
∞

−∞
− i

ω

2α

∞∫
−∞

e−αt2
e−iωt dt

= −i
ω

2α

∞∫
−∞

e−αt2
e−iωt dt ,

since lim|t |→∞ e−αt2
e−iωt = 0. But, this last integral is F (ω) and so we

have a simple first order differential equation for F (ω):

dF
dω

= −i
[
−i

ω

2α
F (ω)

]
= − ω

2α
F (ω),

or
dF
F

= − ω

2α
dω.

With ln(C ) as the constant of indefinite integration, integrating both
sides gives

ln[F (ω)] = −ω2

4α
+ ln(C ),

or

F (ω) = Ce−ω2/4α .
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To evaluate the constant C , notice that C = F (0), that is,

C =
∞∫

−∞
e−αt2

dt .

This particular definite integral can be evaluated by elementary (but
very clever) means10; it is equal to

√
π/α. So, we have the quite

interesting pair

f (t) = e−αt2 ←→ F (ω) =
√

π
α

e−ω2/4α ,

which says that a Gaussian pulse in time has a Fourier transform of the
same form in frequency, that is, an exponential with an exponent of
quadratic variation in ω.

A brief aside: While not the central point of this example (that’s the
next paragraph), notice a pretty little result we now have. Our pair tells
us that ∞∫

−∞
e−αt2

e−iωt dt =
√

π

α
e−ω2/4α ,

and then Euler’s formula tells us that, since the integral is purely real
because the right-hand side is purely real,

∞∫
−∞

e−αt2
cos(ωt)dt =

√
π

α
e−ω2/4α .

This, I think, would not be easy to directly derive. The same argument
also tells us, of course, that

∫∞
− ∞ e−αt2

sin(ωt)dt = 0, but we already knew
that since the integrand of this integral is odd. Notice, too, that for the
special case of α = 1

2 our pair reduces to

e−t2/2 ←→ √
2πe−ω2/2,

which says that, to within a factor of
√

2π , e−(t2/2) is its own Fourier
transform.11
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Now, with the pair in the box in hand, let’s apply the Poisson
summation formula to it. The result is

∞∑
k=−∞

e−αk2 =
∞∑

n=−∞

√
π

α
e−4π2n2/4α ,

or

∞∑
k=−∞

e−αk2 =
√

π

α

∞∑
n=−∞

e−π2n2/α .

Both of these summations should look at least somewhat familar to
you—they have the form of Gauss’s quadratic sum that we studied in
section 4.5. I’ll not pursue that connection any further here, but in
fact both of the sums in the box are special cases of the far more general
topic of theta functions, first studied in a systematic manner by the German
mathematician Carl Jacobi (1804–1851) in his 1829 masterpiece Funda-
menta nova theoriae functionum ellipticarum (New Foundations of the Theory
of Elliptic Functions). Theta functions12 are intimately connected with
many deep problems in analytic number theory. One purely numerical
computational use of our result in the box is that one sum is preferable
to the other for calculation purposes, depending on the value of α. If α

is “small” then the sum on the right will converge faster than does the
sum on the left, while if α is “big” the reverse is true.

5.6 Reciprocal spreading and the uncertainty principle.
In 1927 the German theoretical physicist Werner Heisenberg (1901–
1976) published his famous uncertainty principle in quantum mechanics
(hereafter written as QM). Now, we are not going to take a long side
jaunt into QM in this book, but a few philosophical words will perhaps
motivate the mathematics that follows. QM is probabilistic physics. In
pre-QM times “classical” theoretical physics predicted what would (or
would not) happen in a given situation. QM, on the other hand, accepts
the observed fact that, in a given situation in the microworld, several
(perhaps many) different things could happen, and so QM provides only
the probabilities of these various possible outcomes as actually being the
one that occurs. The mathematics of QM is, therefore, as you might
expect, probability theory.
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In probability theory one quickly learns the following terminology
and notation: if X (called a random variable) denotes a quantity whose
value can be measured but is not deterministic (every time you measure
X you can get a different value), then associated with X is a function f X(x)

called the probability density function (or, simply, the “pdf”) such that

(i) f X(x) ≥ 0, − ∞ < x < ∞,
(ii)

∫ b
a f X(x)dx = probability X has a value in the interval

a ≤ x ≤ b.

As a consequence of (ii), we have the so-called normalization condition

(iii)
∫∞
−∞ f X(x)dx = 1, which simply says the obvious: X has a value

somewhere in the interval − ∞ < x < ∞.

In probability theory one learns all sorts of clever ways to calculate
f X(x) from other information that is given about the nature of X, but
here we’ll simply assume that such calculations have already been done
and f X(x) is known. Once f X(x) is known, one uses it to calculate var-
ious other quantities that are descriptive of X. For example, two such
quantities are the mean and the mean square of X, written as X̂ and X̂2,
respectively. X̂ is more commonly known as the average of X, and is
calculated as

X̂ =
∞∫

−∞
x f X(x)dx .

Without any loss of generality we can assume X̂ is zero (instead of working
with X̂ itself, imagine we are working with X−X̂, which by construction has
a zero mean because (remember, X̂ is a number and not a function of x)

̂X − X̂ =
∞∫

−∞
(x − X̂)f X(x)dx =

∞∫
−∞

x f X(x)dx − X̂

∞∫
−∞

f X(x)dx

= X̂ − X̂ = 0.

If X doesn’t take on values that deviate much from X̂, then X̂ is a good
measure of the “typical” value of X when many measurements of X are
made. If X does vary a lot around its average value, then X̂ is not such a
good measure. A useful quantity, which measures how good a measure X̂
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is, is the so-called variance of X, written as σ 2
X = ̂(X − X̂)2, the average of

the square of the variation of X around X̂ (the squaring prevents positive
and negative variations from negating each other). That is, with our
assumption that X̂ = 0 we have

σX =

√√√√√ ∞∫
−∞

x2f X(x)dx .

Notice, carefully, that σX ≥ 0, always.
Okay, here’s where all of this is going. Another way to think of σX is

as a measure of the uncertainty we have in the value of X (notice that
σX has the same units as X). We think of X̂ (equal to zero) as being
the average value of X. A “small” σX would mean that it’s “probably” a
pretty good estimate for X (i.e., we have “low” uncertainty in the value
of X), while a “large” σX means we would have a “high” uncertainty as
to the actual value of X, that is, with significant probability X could have
a value considerably different from its average value of zero.

In QM there are many coupled pairs of probabilistic quantities that
one encounters, and Heisenberg’s uncertainty principle states that the
product of the uncertainties of the two variables in such a pair is at
least equal to some positive constant. The classic example of such a pair,
commonly used in physics texts, is the location and the momentum
of a particle; if we call σX the uncertainty in the location and σY the
uncertainty in the momentum then, for c > 0 some constant,

σXσY ≥ c .

This is popularly stated as “it is impossible simultaneously to measure
both the position and the momentum of a particle with perfect cer-
tainty.” When measuring the values of a pair, one trades off more
certainty in one quantity with less certainty in the other.

We can do the same sort of thing with the coupled Fourier pair
g (t) ←→ G (ω), that is, we can relate the “uncertainty” we have in the
location in time of g (t) and the “uncertainty” we have in the location
in frequency of G (ω) (which is a measure of where g (t)’s energy is in
frequency). By “location in time” of g (t) we simply mean that the “sig-
nificant” part of g (t) generally occurs over an interval of time (perhaps



256 Chapter 5

even infinite in extent), and similarly for the “significant” part of G (ω)

in the frequency domain. It is generally true that the two intervals vary
inversely with each other, that is, a signal that occurs in a very narrow
interval of time must have a Fourier transform that exhibits significant
presence over a very wide interval of frequency. The extreme example of
this behavior is the impulse function, δ(t), which occupies zero time and
has a transform with uniform amplitude over the entire infinite ω-axis.
This inverse relationship is called reciprocal spreading. Figure 5.6.1 shows
an example of reciprocal spreading, using a Fourier transform pair we
derived back in section 5.3:

e−α|t | cos(t) ←→ α

[
1

α2 + (ω − 1)2 + 1
α2 + (ω + 1)2

]
.

The top two plots show the time function and its transform for α = 0.2
(a “fast” decay in time), while the bottom two plots display the same for
α = 0.05 (a “slow” decay in time). As the time function becomes “less
localized” its transform becomes “more localized.”

The very next year (1928) after the appearance of Heisenberg’s paper,
the German mathematician Hermann Weyl (1885–1955) published an
elegant mathematical derivation of the uncertainty principle in his book
The Theory of Groups and Quantum Mechanics (published by Dover in
English in 1931). The Fourier integral derivation of the uncertainty prin-
ciple that I’ll show you next, which uses the Cauchy-Schwarz inequality
we derived in section 1.5, is based on Weyl’s presentation—although
in his book Weyl seems to credit the Austrian physicist Wolfgang Pauli
(1900–1958) as the actual originator of this approach.

Suppose g (t) is any real-valued (nonperiodic) time function, where
g (t) ←→ G (ω). Then, with W = ∫∞

− ∞ g 2(t)dt as the energy of g (t),
we see that

∫∞
−∞ g 2(t)/Wdt = 1 and that g 2(t)/W ≥ 0 for all t . That is,

g 2(t)/W “behaves” just like the pdf of a random variable. Taking this
analogy even further, let’s then define the uncertainty in the time of
g (t) as

σ t =

√√√√√ ∞∫
−∞

t2 g 2(t)
W

dt .
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Figure 5.6.1. Reciprocal spreading

That is, we are treating time as a random variable which takes on its
values from the interval − ∞ < t < ∞—and so has an “average value”
of zero!—with pdf (g 2(t)/W . (Remember, this is an analogy.)

In the same way, from Rayleigh’s energy formula, we have W =
1/2π

∫∞
−∞ |G (ω)|2dω and so

∫∞
− ∞ |G (ω)|2/(2πW )dω = 1, where

|G (ω)|2/2πW ≥ 0 for all ω. That is, |G (ω)|2/(2πW ) “behaves” just like
the pdf of a random variable that takes on its values from the interval
−∞ < ω < ∞—and so has an “average value” of zero. So, as with σ t ,
let’s write

σω =

√√√√√ ∞∫
−∞

ω2 | G (ω) |2
2πW

dω

as the uncertainty in frequency. Our question, now, is, simply this: what
can we say about the product σ tσω?
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To answer that question, let me first remind you of the Cauchy-
Schwarz inequality from section 1.5: if h(t) and s(t) are two real functions
of time then, assuming all the integrals actually exist, we have⎧⎨⎩

∞∫
−∞

s(t)h(t)dt

⎫⎬⎭
2

≤
⎧⎨⎩

∞∫
−∞

s2(t)dt

⎫⎬⎭
⎧⎨⎩

∞∫
−∞

h2(t)dt

⎫⎬⎭ .

To have equality implies that h(t) is proportional to s(t), that is, h(t) =
ks(t), where k is some constant; this condition obviously reduces both
sides of the inequality (before canceling the k’s) to k2{∫∞

−∞ s2(t)dt}2. If
you look back at our derivation of the inequality, you’ll see that equality
meant, in our original notation in section 1.5, that

U∫
L

{f (t) + λg (t)}2dt = 0,

which can only be true if the squared integrand is identically zero, that is,
that f (t) = −λg (t), that is, the two functions f (t) and g (t) are propor-
tional. I’ll put this observation to good use at the end of the following
analysis.

Now, to start, let’s make the following definitions:

s(t) = tg (t), h(t) = dg
dt

.

Then the Cauchy-Schwarz inequality says

⎧⎨⎩
∞∫

−∞
tg (t)

dg
dt

dt

⎫⎬⎭
2

≤
⎧⎨⎩

∞∫
−∞

t2g 2(t)dt

⎫⎬⎭
⎧⎨⎩

∞∫
−∞

(
dg
dt

)2

dt

⎫⎬⎭ .

Looking at the integral on the left in the box, we can write

∞∫
−∞

tg (t)
dg
dt

dt =
∞∫

−∞
t
d(g 2(t)/2)

dt
dt ,
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and we can now evaluate the rewritten integral (on the right) by parts.
That is, in

∞∫
−∞

u dv = (uv
∣∣∣∣∞− ∞

−
∞∫

−∞
v du,

let u = t and dv = d(g 2(t)/2)dt/dt . Then, du = dt and v = 1
2g 2(t),

and so ∞∫
−∞

t
d(g 2(t)/2)

dt
dt =

(
1
2

tg 2(t)
∣∣∣∣∞−∞

−
∞∫

−∞

1
2

g 2(t)dt .

If we make the assumption that, as |t |→ ∞, we have g (t) → 0 faster
than 1/

√
t (which is actually not very fast), then lim|t |→∞ tg 2(t) = 0

and so

∞∫
−∞

tg (t)
dg
dt

dt = −1
2

∞∫
−∞

g 2(t)dt = −1
2

W .

That takes care of the left-hand side of the Cauchy-Schwarz inequality in
the above box. Let’s now look at the two integrals on the right in the box.

The first one is easy: literally by definition we have

∞∫
−∞

t2g 2(t)dt = W σ 2
t .

And the second integral is almost as easy. Recalling the time differentia-
tion transform pair we derived back in section 5.4,

if g (t) ←→ G (ω),
then dg

dt ←→ iωG (ω),

and so Rayleigh’s energy formula tells us that

∞∫
−∞

(
dg
dt

)2

dt = 1
2π

∞∫
−∞

|iωG (ω)|2dω = 1
2π

∞∫
−∞

ω2|G (ω)|2dω = W σ 2
ω.

Our result here says lim|ω|→∞ ω2|G (ω)|2 = 0 must be true for the
ω-integral to exist, which is a stronger requirement than just lim|ω|→∞
ω|G (ω)|2 = 0 (the condition for a function with finite energy derived
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in section 5.3). Example 1 in section 5.3, for example, fails this
requirement. There we derived the Fourier transform pair of the pulse

f (t) =
{

1, |t | < τ
2 ,

0, otherwise,

and found that

F (ω) = τ
sin(ωτ/2)

ωτ/2
.

Thus, since the energy of f (t) is W = τ , we have

σ 2
ω =

∞∫
−∞

ω2τ 2 sin2(ωτ/2)

(ωτ/2)22πτ
dω = 2

πτ

∞∫
−∞

sin2
(

ωτ

2

)
dω = ∞.

This result for σ 2
ω is, of course, due to the fact that

lim|ω|→∞ ω2|F (ω)|2 �= 0.

If we take our three results for the integrals in the Cauchy-Schwarz
inequality and substitute them into the inequality we get(

−1
2

W
)2

= 1
4

W 2 ≤ (W σ 2
t )(W σ 2

ω) = W 2σ 2
t σ

2
ω

,

or
1
4

≤ σ 2
t σ

2
ω

or, at last, we have the uncertainty principle for Fourier integral theory:

σ tσω ≥ 1
2 .

This is a result, I think, that is totally nonobvious.
A natural question to ask now is, how good a lower bound is 1

2 on
the σ tσω product? Let’s do a specific example and see what happens.
Suppose that

g (t) = e−|t |/T ,
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where T > 0 and − ∞ < t < ∞. The energy of g (t) is

W =
∞∫

−∞
g 2(t)dt =

0∫
−∞

e2t/T dt +
∞∫
0

e−2t/T dt

=
(

e2t/T

2/T

∣∣∣∣0−∞
+
(

e−2t/T

−2/T

∣∣∣∣∞
0

= 1
2/T

+ 1
2/T

= T .

Thus,

σ 2
t = 1

W

∞∫
−∞

t2g 2(t)dt = 1
T

⎡⎣ 0∫
−∞

t2e2t/T dt +
∞∫
0

t2e−2t/T dt

⎤⎦ ,

which reduces (I’ll let you do the integrals by parts or, even easier, look
them up in tables) to T 2/2,

σ t = T√
2
·

To calculate σω we could just substitute into

σω =

√√√√√ ∞∫
−∞

ω2 | G (ω) |2
2πW

dω

once we have G (ω). Recall our alternative formulation of σ 2
ω, however,

which is much easier to use in this case. If you look back to the use of
the time differentiation pair to derive this formula for σ 2

ω you’ll see that
we also had the expression

σ 2
ω = 1

W

∞∫
−∞

(
dg
dt

)2dt .

For our problem this is an easy integral to do. We have

dg
dt

=
{ 1

T e t/T , t < 0,

− 1
T e−t/T , t > 0,
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and so (as W = T )

σ 2
ω = 1

T

⎡⎣ 1
T 2

0∫
−∞

e2t/T dt + 1
T 2

∞∫
0

e−2t/T dt

⎤⎦
= 1

T 3

[(
e2t/T

2/T

∣∣∣∣0−∞
+
(

e−2t/T

−2/T

∣∣∣∣∞
0

]
= 1

2T 2 [1 + 1] = 1
T 2 ·

That is,

σω = 1
T

·
Thus,

σ tσω = T√
2

· 1
T

= 1√
2

= 0.707,

which is, indeed, greater than our theoretical lower bound of 0.5
(significantly greater, in fact, by more than 41%).

This no doubt prompts the obvious question in your mind: is it pos-
sible for σ tσω ever to equal 0.5? The answer is yes. For σ tσω = 1

2 , the
Cauchy-Schwarz inequality must actually be an equality, which we
observed earlier implies (in our earlier notation) that h(t) = ks(t) with
k some constant, and so

dg
dt

= ktg (t).

That is,
dg

g (t)
= ktdt

or, with C the constant of indefinite integration,

ln{g (t)} − ln(C ) = 1
2

kt2.

Now, with C = 1 (this choice involves no loss of generality since we can
always redefine our amplitude scale) we have

ln{g (t)} = 1
2

kt2

or, simply writing a new constant k for the “old” 1
2k,

g (t) = ekt2
,



Fourier Integrals 263

where it is clear that k < 0 for g (t) actually to have a Fourier transform.
That is, a time function that achieves the minimum product of the time
and frequency uncertainties is the Gaussian-pulse signal we considered
in Example 3 of section 5.5.

The concept of reciprocal spreading, once confined to the worlds of
theoretical physics and esoteric mathematics, has today found its way
into popular fiction; for example, in Carl Sagan’s 1985 novel Contact. At
one point, his heroine, a radio astronomer searching for radio messages
from extraterrestrials, is troubled by the apparent lack of such signals. As
she runs through possible explanations for the failure to detect intelli-
gent communications from deep space, her train of thought is as follows;
maybe the aliens are

fast talkers, manic little creatures perhaps moving with quick and
jerky motions, who transmitted a complete radio message—the
equivalent of hundreds of pages of English text—in a nanosecond.
Of course, if you had a very narrow bandpass to your receiver, so you
were listening only to a tiny range of frequencies, you were forced
to accept the long time-constant. [This is the reciprocal spread-
ing.] You would never be able to detect a rapid modulation. It was
a simple consequence of the Fourier Integral Theorem, and closely
related to the Heisenberg Uncertainty Principle. So, for example,
if you had a bandpass of a kilohertz, you couldn’t make out a sig-
nal that was modulated at faster than a millisecond. It would be
a kind of sonic blur. [Her radio receivers’] bandpasses were nar-
rower than a hertz, so to be detected the [alien] transmitters must
be modulating very slowly, slower than one bit of information a
second. (pp. 65–66)

5.7 Hardy and Schuster, and their optical integral.
Fourier transform theory is such a beautiful subject that it is easy to get
so caught up in the symbols that you lose any connection with physical
reality. So, every now and then, I think it’s a good idea to see Fourier
theory in action in support of science. The story I’m going to tell you in
this section has, as far as I know, not been told before.

In 1925 the German-born English physicist Arthur Schuster (1851–
1934), who became a naturalized British subject in 1875 (and was
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knighted in 1920) published a paper on the theory of light.13 In that
paper he encountered a definite integral that appears, at first sight, to be
particularly challenging. (A second look will not change that opinion!)
In his notation, that integral is

∞∫
0

[{
1
2

− C (v)

}2

+
{

1
2

− S(v)

}2
]

dv,

where

C (v) =
v∫
0

cos
(

π

2
v2
)

dv, S(v) =
v∫
0

sin
(

π

2
v2
)

dv.

Schuster has, of course, committed a freshman calculus blunder here by
the use of the same symbol for the upper limits on the C and S integrals
as for the dummy variable of integration. He should have written the C
and S integrals as, for example,

C (y) =
y∫
0

cos
(

π

2
v2
)

dv, S(y) =
y∫
0

sin
(

π

2
v2
)

dv, y ≥ 0,

and then his integral would become

∞∫
0

[{
1
2

− C (y)
}2

+
{

1
2

− S(y)
}2
]

dy.

In any case, awkward notation aside, Schuster was unable to evaulate
this integral. At one point, however, he concludes that the physics of the
problem would be satisfied “if it could be proved that

∞∫
0

[(
1
2

− C
)2

+
(

1
2

− S
)2
]

dv = π−1.”

Alas, he couldn’t prove this and that is where he left matters.
Schuster’s paper soon came to the attention of the great British math-

ematician G. H. Hardy, whom I’ve mentioned several times before in
this book (he will appear again in the next chapter). It wasn’t Schuster’s
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physics that interested him, however. Indeed, the author of one of his
obituary notices wrote that “Hardy had singularly little appreciation of
science.”14 I mentioned this curious attitude of Hardy’s in the Introduc-
tion, and in fact he was such a purist that even applied mathematics
had no place in his world. As he wrote in his interesting (and a bit
sad) A Mathematician’s Apology, “It is true that there are branches of
applied mathematics, such as ballistics and aerodynamics, which have
been developed deliberately for war . . . but none of them has any claim
to rank as ‘real.’ They are indeed repulsively ugly and intolerably dull.”
The physics of light was obviously of no interest to anyone who could
write that. Rather, it was Schuster’s definite integral itself that attracted
Hardy’s mathematician’s eye.

Indeed, displaying an unevaluated definite integral to Hardy was very
much like waving a red flag in front of a bull. Hardy’s papers15 are full
of such calculations, and one cannot fail to be impressed at the force of
intellect he could focus to achieve success in attacking some pretty nasty,
downright scary-looking integrals. (As the previously quoted obituary
notice put it, “There was hardly a branch of analysis to which he did
not make some contribution. He came to be recognized generally as the
leading English mathematician of his time.”) By comparison, Schuster’s
integral is much less terrifying than others laid low by Hardy, but, it
was still enough of a challenge for the mathematician temporarily to
push aside whatever was on his plate at the time. A physicist needed
mathematical help, and Hardy was just the fellow to come to the rescue.
Both men were clearly top-notch in their respective fields; each received
the Royal Society’s highest honor, the Copley Medal (Schuster in 1931,
and Hardy in 1947). But this problem was on Hardy’s turf, and here was
an irresistible opportunity to show the brilliance of pure mathematical
thought over mere experimental grubbing.

Hardy’s first efforts were in simply expressing the problem in cleaner
fashion. Hardy opened his paper,16 with no preamble at all, with

The integral in question is

J =
∞∫
0

(C 2 + S2)dx
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where

C =
∞∫
x

cos t2dt , S =
∞∫
x

sin t2dt .

Sir Arthur Schuster . . . suggests that the value of the integral is
1
2

√
1
2π .

In a footnote he admitted to the reader “I have altered the notation
slightly.” Indeed!

Here’s how I’ve reconstructed what Hardy probably did to get to
his restatement of Schuster’s integral. The correctly written C and
S integrals are actually the well-known Fresnel integrals that we first
encountered in section 4.5, in the discussion on Gauss’s quadratic sum;
they each have the property that

lim
y→∞ C (y) = lim

y→∞ S(y) = 1
2

.

Thus, if we redefine the C and S integrals as

C (y) =
∞∫
y

cos
(

π

2
v2
)

dv, S(y) =
∞∫
y

sin
(

π

2
v2
)

dv, y ≥ 0,

then Schuster’s integral becomes (because
∫∞

y = ∫∞
0 − ∫ y

0 and
∫∞

0 = 1
2)

∞∫
0

{C 2(y) + S2(y)}dy,

and his conjecture becomes

∞∫
0

{C 2(y) + S2(y)}dy = 1
π

.

If we next make the change of variable to t = v
√

π/2, then

C (y) =
√

2
π

∞∫
y
√

π/2

cos(t2)dt , S(y) =
√

2
π

∞∫
y
√

π/2

sin(t2)dt , y ≥ 0,
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and the Schuster conjecture becomes

∞∫
0

⎧⎪⎨⎪⎩
⎡⎢⎣ ∞∫

y
√

π/2

cos(t2)dt

⎤⎥⎦
2

+
⎡⎢⎣ ∞∫

y
√

π/2

sin(t2)dt

⎤⎥⎦
2⎫⎪⎬⎪⎭ dy = 1

2
, y ≥ 0.

And then, with one more change of variable to x = y
√

π/2, the Schuster
conjecture becomes

J =
∞∫
0

⎧⎪⎨⎪⎩
⎡⎣∞∫

x

cos(t2)dt

⎤⎦2

+
⎡⎣∞∫

x

sin(t2)dt

⎤⎦2
⎫⎪⎬⎪⎭ dx = 1

2

√
π

2
, x ≥ 0,

which is, as mentioned above, where Hardy’s paper begins. We have,
for the rest of this section, Hardy’s new and final definitions for C (x)

and S(x):

C (x) =
∞∫
x

cos(t2)dt , S(x) =
∞∫
x

sin(t2)dt .

Notice, carefully, that with Hardy’s redefinitions we now have limx→∞
C (x) = limx→∞ S(x) = 0.

With his opening words Hardy’s paper is already nearly one-third
done—and then, in less than two dozen more lines (mostly prose), he
calculates Schuster’s integral (which I will from now on refer to as the
Hardy-Schuster integral) not once, but twice ! It is his second solution,
using Fourier theory, that is the central point of this section, but let me
first say just a few words about his initial solution. It’s pretty clever, too,
and Euler’s formula plays a role in it as well. Hardy begins with a direct
frontal assualt on the integral by writing “It is plain that

C 2 + S2 =
∞∫
x

∞∫
x

cos(t2 − u2)dt du.”

Intelligent people might argue about just how “plain” this is, but
here’s one way to see it without too much work. From Euler’s formula
we have

e it2 = cos(t2) + i sin(t2),
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which allows us to write

C (x) + iS(x) =
∞∫
x

e it2
dt .

Taking the conjugate of both sides gives

C (x) − iS(x) =
∞∫
x

e−it2
dt =

∞∫
x

e−iu2
du.

Multiplying these last two expressions together gives

C 2(x) + S2(x) =
∞∫
x

e it2
dt

∞∫
x

e−iu2
du

=
∞∫
x

∞∫
x

e i(t2−u2)dt du

=
∞∫
x

∞∫
x

cos(t2 − u2)dt du + i

∞∫
x

∞∫
x

sin(t2 − u2)dt du.

Now, since C 2(x) and S2(x) are each purely real, the imaginary part
of this expression must vanish and we immediately have Hardy’s “plain”
result that

C 2(x) + S2(x) =
∞∫
x

∞∫
x

cos(t2 − u2)dt du.

The Hardy-Schuster integral, therefore, is equivalent to the stunning
triple integral

J =
∞∫
0

∞∫
x

∞∫
x

cos(t2 − u2)dt du dx , x ≥ 0.

Hardy sounds less the mathematician and more the physicist or engineer
when he goes on to write “If we integrate with respect to x , and ignore
any difficulties in changing the order of integrations . . . the integral then
falls apart . . . ” and then, suddenly, he simply writes the final result. This
all requires just six lines (four of which are prose), and he concludes in
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Figure 5.7.1. Integrand of the Hardy-Schuster integral

a flourish with the astonishing (to me, anyway) words “We thus obtain
Schuster’s result almost without calculation (my emphasis).” Figure 5.7.1
shows the integrand of the Hardy-Schuster integral.

Hardy’s “mathematical instincts” were perhaps not quite happy with
the devil-may-care attitude his “ignore any difficulties in changing the
order of integration” might have implied. Writing that “it is plain that
a strict analytical proof would be rather troublesome to write out,” he
went on to say “An alternative proof may be based on the theory of
Fourier transforms.” The rest of this section is a discussion of what Hardy
did, and you’ll see that the derivation is essentially Rayleigh’s energy
formula combined with a clever trick that you first saw back in chapter
4. The entire derivation is a tour de force.

We start with some preliminary remarks about any f (x), not necessarily
confined to C (x) and S(x). We’ll specialize the analysis to them in just a
bit, but not yet. Since the Fourier transform of any f (x) is

F (ω) =
∞∫

−∞
f (x)e−iωxdx =

∞∫
−∞

f (x) cos(ωx)dx − i

∞∫
−∞

f (x) sin(ωx)dx ,
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for the case where f (x) is real and zero for x < 0, F (ω) must be complex
since neither integrand on the right is either even or odd. But, suppose
we make an odd extension of f (x) for x < 0 (this is the “clever trick”
I mentioned). Then the integral that is the real part of F (ω) vanishes
(because its integrand is now odd). So, if we denote the odd extension
of f (x) by f̂ (x), then its Fourier transform is the purely imaginary F̂ (ω)

given by

F̂ (ω) = −i

∞∫
−∞

f̂ (x) sin(ωx)dx .

Since f̂ (x) = f (x) for x > 0 (and of course f̂ (x) = −f (x) for x < 0), we
can write

F̂ (ω) = −i

⎡⎣ 0∫
−∞

f̂ (x) sin(ωx)dx +
∞∫
0

f (x) sin(ωx)dx

⎤⎦ .

In the first integral we change variables to s = −x , and then that integral
becomes

0∫
∞

f̂ (−s) sin(−ωs)(−ds) = −
∞∫
0

f̂ (−s) sin(ωs)ds =
∞∫
0

f̂ (s) sin(ωs)ds,

where the last integral follows because f̂ (−s) = −f̂ (s), because that’s
how we constructed f̂ , that is, it is an odd function. Thus,

F̂ (ω) = −i

⎡⎣∞∫
0

f̂ (s) sin(ωs)ds +
∞∫
0

f (x) sin(ωx)dx

⎤⎦
or, since f̂ = f for positive arguments (notice that both integrals are
indeed over positive intervals), and using the same variable for the
dummy variable of integration, we arrive at

Box #1 F̂ (ω) = −i2

∞∫
0

f (x) sin(ωx)dx .
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Now, the energy of f̂ (x) is given by
∫∞
−∞ f̂ 2(x)dx = 2

∫∞
0 f 2(x)dx , as well

as (à la Rayleigh) by 1/2π
∫∞
−∞ |F̂ (ω)|2dω. Since |F̂ (ω)|2 is even (because

f̂ (x) is real) we can also write the energy as 1/π
∫∞

0 |F̂ (ω)|2dω, and so

Box #2

∞∫
0

f 2(x)dx = 1
2π

∞∫
0

|F̂ (ω)|2dω .

Now we stop being general and restrict our any f (x) to C (x) and S(x).
We have our earlier definitions of them,

C (x) =
∞∫
x

cos(t2)dt , S(x) =
∞∫
x

sin(t2)dt ,

which we take to hold for all x ≥ 0. Furthermore, we imagine we have
made odd extensions of each (just as argued above for an arbitrary f (x))
for x < 0. Then, if we define two real functions φ(ω) and ψ(ω) as

φ(ω) =
∞∫
0

C (x) sin(ωx)dx , ψ(ω) =
∞∫
0

S(x) sin(ωx)dx ,

then as shown above (see Box #1) the Fourier transforms of C (x) and
S(x) are

F̂C (x)(ω) = −i2φ(ω), F̂S(x)(ω) = −i2ψ(ω).

Then, from our result in Box #2,
∞∫
0

C 2(x)dx = 1
2π

∞∫
0

4φ2(ω)dω = 2
π

∞∫
0

φ2(ω)dω

and, similarly,
∞∫
0

S2(x)dx = 2
π

∞∫
0

ψ2(ω)dω.

Thus, we have for the Hardy-Schuster integral,

J =
∞∫
0

{C 2(x) + S2(x)}dx = 2
π

∞∫
0

{φ2(ω) + ψ2(ω)}dω.
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We can find φ(ω) and ψ(ω) via integration by parts. So, for
φ(ω) = ∫∞

0 C (x) sin(ωx)dx with C (x) = ∫∞
x cos(t2)dt , recall that∫∞

0 u dv = (uv|∞0 −∫∞
0 v du and set u = C (x). Thus, du/dx = − cos(x2).

Also, with dv = sin(ωx)dx , v = −cos(ωx)/ω. Thus,

∞∫
0

C (x) sin(ωx)dx = φ(ω)

=
{

− cos(ωx)

ω
C (x)

∣∣∣∣∞
0

−
∞∫
0

−cos(ωx)

ω
{− cos(x2)dx},

or, as C (∞) = 0,

φ(ω) = 1
ω

C (0) − 1
ω

∞∫
0

cos(ωx) cos(x2)dx .

Since C (0) = ∫∞
0 cos(t2)dt = 1

2
√

π/2, and since from integral tables we
have the result

∞∫
0

cos(ax2) cos(2bx)dx = 1
2

√
π

2a

[
cos

(
b2

a

)
+ sin

(
b2

a

)]
,

with a = 1 and b = 1
2ω we have

∞∫
0

cos(ωx) cos(x2)dx = 1
2

√
π

2

[
cos

(
1
4
ω2
)

+ sin
(

1
4
ω2
)]

.

Thus,

φ(ω) = 1
2ω

√
π

2

[
1 − cos

(
1
4
ω2
)

− sin
(

1
4
ω2
)]

.

For ψ(ω) the calculations are almost identical. I’ll let you go through the
details, and you should arrive at

ψ(ω) = 1
2ω

√
π

2

[
1 − cos

(
1
4
ω2
)

+ sin
(

1
4
ω2
)]

.
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So,

φ2(ω) + ψ2(ω) = π

8ω2

[{
1 − cos

(
1
4
ω2
)

− sin
(

1
4
ω2
)}2

+
{

1 − cos
(

1
4
ω2
)

+ sin
(

1
4
ω2
)}2

]

= π

8ω2

[
2
{

1 − cos
(

1
4
ω2
)}2

+ 2 sin2
(

1
4
ω2
)]

= π

4ω2

[
1 − 2 cos

(
1
4
ω2
)

+ cos2
(

1
4
ω2
)

+ sin2
(

1
4
ω2
)]

= π

2ω2

[
1 − cos

(
1
4
ω2
)]

.

Thus,

J = 2
π

· π

2

∞∫
0

1 − cos(ω2/4)

ω2 dω =
∞∫
0

1 − cos(ω2/4)

ω2 dω.

This integral (whose integrand is perfectly well behaved at ω = 0—see
the discussion in note 8 for the behavior of a similar integrand)—can
also be done by integration by parts. In the standard formula let u =
1 − cos(1/4ω2) and so du = 1

2ω sin(1/4ω2)dω. Also, let dv = dω/ω2 and
so v = −1/ω. Thus,

J =
∞∫
0

1 − cos(ω2/4)

ω2 dω

=
{
− 1

ω

(
1 − cos

(
1
4
ω2
))∣∣∣∣∞

0

−
∞∫
0

− 1
ω

· 1
2
ω sin

(
1
4
ω2
)

dω

= 1
2

∞∫
0

sin
(

1
4
ω2
)

dω.
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Now, let t = 1
2ω and so dt = 1

2dω and, at last, we have Hardy’s result of

J = 1
2

∞∫
0

sin(t2)2dt =
∞∫
0

sin(t2)dt = 1
2

√
π

2
·

What did Schuster think of all this? As far as I know he never
commented in print on Hardy’s solution, but I would not be surprised
if he never bothered to fill in the gaps as I’ve done here. Schuster knew
Hardy was a brilliant analyst (Hardy received a Royal Medal from the
Royal Society of London in 1920, of which Schuster had been a Fellow
since 1879 and Secretary from 1912 to 1919). It seems most likely that
he was of course pleased that his conjecture had been confirmed by
an expert, and simply let it go at that. Still, on the other hand, maybe
Schuster did fill in the missing details—I think he certainly could have.
He was, in fact, quite comfortable with Fourier’s mathematics. There
is a nice discussion of the Fourier transform and of Rayleigh’s energy
formula, for example, in Schuster’s book An Introduction to Optics (all
editions of which appeared before Hardy’s paper, and which is dedi-
cated, by the way, to Schuster’s friend Lord Rayleigh). Perhaps I am
being unfair to Hardy, but I have the impression from his paper that he
meant it to be taken as a mere trifle tossed off while reading the cricket
scores in The Times one morning over tea. “Let the physicists top this!” is
the message I sense being sent (surely unconsciously, as by all accounts
Hardy was fundamentally a kind person—but nevertheless he was
human, too).



6.1 Why this chapter is in this book.
Up to now this book has treated mathematical topics for the sake of the
mathematics, alone. However, since my writing was strongly motivated
by an admiration for Euler the engineering physicist nearly as deep as my
admiration for him as a mathematician, it seems appropriate to end with
a chapter on some technological uses of the complex number mathe-
matics he helped develop. Euler’s large body of applied work shows that
he took to heart, very seriously, the motto of the Berlin Academy of
Sciences (of which he was a member from 1741 to 1766): “theoria cum
praxi,” which my tiny linguistic abilities in Latin translate as “theory with
practice.” No engineer could have said it better. (The motto is due, I
should tell you, to a mathematician—Leibniz, who founded the Berlin
Academy in 1700.)

In Euler’s times there was no electricity other than lightning bolts
in the sky, and so what I’ll do here is show you some wonderful uses
of complex numbers in electronics that I think Euler would have loved.
I’ve made this choice because I am, after all, an electrical engineer
(but I will not assume that you are—you do not need to know anything
about electronics to read this chapter). Euler’s own applied work in
ship building, cannon ballistics, and hydraulics was pretty spectacular,
too, but that has been written about many times before1—I want to do
something just a bit different here.

6.2 Linear, time-invariant systems, convolution (again),
transfer functions, and causality.

Electronic systems are actually constructed out of amazingly complex,
tiny bits of matter created by equally complex manufacturing processes



276 Chapter 6

to precisely implement certain current/voltage relationships. These tiny
bits of matter, mostly constructed from the common element silicon
(every beach in the world has kilotons, at least, of silicon locked up in
sand), behave like resistors, capacitors, transistors, diodes, and other
devices with equally fancy names that are part of the workaday lingo of
electrical engineers. Those engineers get paid a lot of money to know
how electrons make their way through circuits constructed from millions
of microscopic slivers of silicon, circuits that are often interconnected to
a degree approaching the connectivity of the human brain. It’s all very
arcane stuff that often comes close to being magical, but we will need
none of it here.

We will, instead, work here with what are called technology independent
block diagrams. They are the diagrams you’ll find on the blackboards in
the offices of a project manager (I call them management-level diagrams).
Sometimes they are simply called input-output diagrams. The simplest2

such diagram is the single box shown in figure 6.2.1, with x(t) as the
input and y(t) as the output. I’ll tell you soon what that h(t) inside the
box means. In principle we can mathematically describe the behavior of
any box by, of course, just writing an equation that tells us what y(t) is
as a function of x(t). For example, if our box is an integrator we could
write

y(t) =
t∫

−∞
x(s)ds.

For our purposes in this chapter, we’ll limit ourselves to boxes that
are what electrical engineers call linear, time-invariant (LTI) boxes. The
linear part of LTI means that the principle of superposition applies, which
in turn means (a right-pointing arrow is shorthand for causes):

if x1(t) → y1(t)
and if x2(t) → y2(t),

y (t)x(t) h(t )

Figure 6.2.1. The simplest block diagram
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then c1x1(t) + c2x2(t) → c1y1(t) + c2y2(t)
for c1 and c2 any constants (perhaps complex).

The time-invariant part of LTI means:

if x(t) → y(t),
then x(t − t0) → y(t − t0).

In words, if the input to an LTI box is shifted in time by t0, then the
output of the box will also be shifted in time by t0.

Now, what’s that h(t) in figure 6.2.1? It is what is called the impulse
response of the box. That is, if x(t) = δ(t) then y(t) = h(t). The box
output is h(t) when the box input is the unit strength impulse δ(t). As
I’ll show you next, h(t) represents complete information on the contents of
the box. That is, if we know h(t) then we can calculate the output y(t)
for any input x(t). One reason the impulse response of a box “contains
all knowledge” of the internal structure of the box is that the impulse
has its energy (as we showed in chapter 5) distributed uniformly over all
frequencies, from − ∞ to + ∞. Everything and anything inside the box
will find some energy in the impulsive input at whatever frequency that
“thing” needs to be stimulated. That is, there is nothing inside the box
that won’t contribute to the total output response. More dramatically,
there is nothing inside a box that “keeps a secret”—everything inside the
box “talks” about itself when stimulated by an input impulse.

One of the first things an undergraduate electrical engineering stu-
dent learns to do is how to calculate h(t) for an LTI box when the detailed
internal structure of the box (e.g., a circuit schematic) is given. We won’t
get into that here, but rather will simply assume we already know h(t).
Even more direct is to just imagine we’ve applied δ(t) to the box and then
measured what comes out—by definition that’s h(t). Of course, you might
wonder how a δ(t) could actually be applied, since it’s an infinite energy
signal; how could one really generate a δ(t)? That’s a valid question, but
it has an easy answer (which I’ll tell you later in this section). On paper,
of course, there’s no problem in mathematically applying an impulse. For
example, what’s h(t) for an integrator? Well, if x(t) = δ(t), then

y(t) =
t∫

−∞
x(s)ds =

t∫
−∞

δ(s)ds =
{

0, t < 0,
1, t > 0,
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t

s(t )

∆

∆

Figure 6.2.2. A train of impulses, uniformly spaced  in time

which says h(t) = u(t). The impulse response of this integrator is the
unit step function.

Now, to start, let me first prove to you that if we have h(t), by whatever
means (theory or experiment), then we can indeed calculate y(t) for any
x(t). Imagine the input to our box in figure 6.2.1 is a train of impulses
of varying strength (uniformly spaced in time) as determined by the
arbitrary function s(t), as shown in figure 6.2.2. That is, if the temporal
spacing between sequential impulses is  we’ll write x(t) as

x(t) =
∞∑

k=−∞
s(k) ·  · δ(t − k).

Be sure you understand what this means: s(k) ·  is the strength or
area of the impulse at time t = k. (The height of each impulse is infin-
ity, by the very concept of an impulse.) Since x(t) is the input to an
LTI box, by superposition and time invariance we can write the out-
put as (because the unit strength impulse at time t = k produces the
output h(t − k))

y(t) =
∞∑

k=−∞
s(k)h(t − k).

Let’s now argue just like we did in Section 5.2, when we derived the
Fourier transform integral from the Fourier series summation. That is,



Electronics and
√

–1 279

let’s imagine that  → 0. Then,

(i) k “becomes” a continuous variable, which we’ll write as τ ;

(ii)
∞∑

k=−∞
“becomes”

∞∫
−∞

;

(iii)  “becomes” dτ .

Our x(t) and y(t) expressions then become

x(t) =
∞∫

−∞
s(τ )δ(t − τ)dτ ,

y(t) =
∞∫

−∞
s(τ )h(t − τ)dτ .

From the sampling property of the impulse the equation for x(t)
reduces to just x(t) = s(t). And so, if we substitute that result into the
equation for y(t), we arrive at our answer:

y(t) =
∞∫

−∞
x(τ )h(t − τ)dτ =

∞∫
−∞

x(t − τ)h(τ )dτ ,

where the second integral follows by the obvious change of variable in
the first integral. In other words, if you recall section 5.3, the output
y(t) of an LTI box with input x(t) and impulse response h(t) is the time
convolution of x(t) and h(t), that is, y(t) = x(t)∗h(t). This result is a gold
mine of information.

For example, we can now answer the question of how to measure
h(t) experimentally without having to actually generate the impossible to
generate input signal δ(t). Suppose our input is instead the easy to generate
unit step function, that is, x(t) = u(t). (The step, like the impulse, is an
infinite energy signal but, unlike the impulse, we don’t have to come up
with all that infinite energy in a single instant ; with the step, we literally
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can take forever.) The response of the box (logically enough called the
step response) is

y(t) =
∞∫

−∞
x(t − τ)h(τ )dτ =

∞∫
−∞

u(t − τ)h(τ )dτ

=
t∫

−∞
h(τ )dτ .

Then, differentiating with respect to t , we immediately have

dy
dt

= h(t).

That is, the impulse response of an LTI box is simply the derivative (easy
to calculate) of the step response. What could be simpler?

As a second example of what the convolution integral can tell us,
recall our result from section 5.3 when we took the Fourier transform of
the time convolution integral,

Y (ω) = X (ω)H (ω) ,

a result so important I put it in a box there and I’ve put it in a box here,
too. It, in turn, immediately says that

1
2π

|Y (ω)|2 = 1
2π

|X (ω)|2|H (ω)|2.

Since Rayleigh’s energy formula tells us that 1/2π |X (ω)|2 and
1/2π |Y (ω)|2 are the energy spectral densities of the input and output
signals, respectively, then we have

energy of output =
∞∫

−∞

1
2π

|Y (ω)|2dω

=
∞∫

−∞
(ESD of input) · |H (ω)|2dω.
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The central role of H (ω) (the Fourier transform of the impulse
response) in the study of LTI boxes can not be overstated. It is so impor-
tant it has its own name: H (ω) is the transfer function of our LTI box, as it
determines (as in the above integral) how the energy in the input signal
is transferred to the output signal. Any frequency at which H (ω) = 0 is
a frequency at which there is no energy in the output (even if there is
a lot of energy at that frequency in the input). You’ll see how use-
ful is this insight in building electronic systems before this chapter
is done.

So far, I’ve said nothing in particular about the nature of h(t). So, to
end this section, let me introduce the concept of a causal h(t). Mathe-
matically, this simply means that h(t) = 0 for t < 0. There is a deep
physical interpretation of this. The impulse response h(t) of an LTI
box is the output of the box because the input is δ(t), an input that
occurs at the single instant t = 0. Any box that can be made from
actual hardware that exists in the world as we know it cannot have an
impulse response that exists before t = 0, hence the term causal. That is,
the impulsive input is the cause of the h(t) output signal. Any box that
has an impulse response h(t) �= 0 for t < 0 is called an anticipatory box
because such a box “anticipates” the arrival of the impulse (at t = 0) and
so begins to produce an output response before t = 0, that is, at t < 0.
(That’s why another name for a noncausal box that starts responding
to an input that hasn’t yet occurred is time machine !) To impose causal-
ity on h(t) will obviously have an impact on the nature of its Fourier
transform, the transfer function H (ω). What may not be so obvious,
however, is just how great that impact is; it is profound. Let me show
you why.

I’ll start by explicitly writing the real and imaginary parts of the
generally complex H (ω) as R(ω) and X (ω), respectively. That is,

H (ω) = R(ω) + iX (ω).

In addition, I’ll write h(t), itself, as the sum of even and odd functions,

h(t) = he (t) + ho(t).

The easiest way to prove you can always do this, for any h(t), is to simply
derive what he (t) and ho(t) are (a proof by construction, the best sort of
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proof of all). By the very definitions of evenness and oddness we have

he (−t) = he (t),

ho(−t) = −ho(t).

Thus,

h(−t) = he (−t) + ho(−t) = he (t) − ho(t),

and so if we add and subtract h(t) and h(−t) we quickly arrive at

he (t) = 1
2
[h(t) + h(−t)],

ho(t) = 1
2
[h(t) − h(−t)],

which shows that there is an he (t) and an ho(t) for any given h(t).
Now, since h(t) is given as causal, that is, h(t) = 0 for t < 0, then

he (t) = 1
2

h(t)

ho(t) = 1
2

h(t)

⎫⎪⎪⎬⎪⎪⎭ if t > 0

and

he (t) = 1
2

h(−t)

ho(t) = −1
2

h(−t)

⎫⎪⎪⎬⎪⎪⎭if t < 0.

That is,

he (t) = ho(t) if t > 0,

he (t) = −ho(t) if t < 0,

which could of course be equally well written as

ho(t) = he (t) if t > 0,

ho(t) = −he (t) if t < 0.
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And finally, we can write each of these pairs of statements very compactly,
without having to give explicit conditions on t , as

he (t) = ho(t)sgn(t),
ho(t) = he (t)sgn(t)

.

Since h(t) = he (t) + ho(t) we can write

H (ω) = He (ω) + Ho(ω).

And since he (t) is even (by definition), He (ω) is purely real, and since
ho(t) is odd (by definition), Ho(ω) is purely imaginary (take a look back
at section 5.2). Thus, it must be true that

He (ω) = R(ω),

Ho(ω) = iX (ω).

Recall now a Fourier transform pair that we derived in section 5.4,

sgn(t) ←→ 2
iω

.

Combining this with the frequency convolution theorem from section 5.3,
and applying to the two equations written in the above box, we have

He (ω) = R(ω) = 1
2π

Ho(ω) ∗ 2
iω

= 1
2π

iX (ω) ∗ 2
iω

and

Ho(ω) = iX (ω) = 1
2π

He (ω) ∗ 2
iω

= 1
2π

R(ω) ∗ 2
iω

.

Or,

R(ω) = 1
π

X (ω) ∗ 1
ω

= 1
π

∞∫
−∞

X (τ )

ω − τ
dτ

and

X (ω) = − 1
π

R(ω) ∗ 1
ω

= − 1
π

∞∫
−∞

R(τ )

ω − τ
dτ .
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These two equations show that R(ω) and X (ω) each determine the
other for a causal LTI box. The integrals that connect R(ω) and X (ω)

are called Hilbert transforms,3 a name introduced by our old friend
G. H. Hardy. Hardy published the transform for the first time in English in
1909, but when he later learned that the German mathematician David
Hilbert (remember him from section 3.1?) had known the transform
integral since 1904 Hardy began to call it the Hilbert transform. But
even Hilbert was not first—the transform appears in the 1873 doctoral
dissertation of the Russian mathematician Yulian-Karl Vasilievich Sokhot-
sky (1842–1927). Notice that the Hilbert transform, unlike the Fourier
transform, does not change domains. That is, the Hilbert transform takes
an ω-function and transforms it into another ω-function (the Fourier
transform, of course, transforms between two domains, those of t and ω).

The Hilbert transform integrals that relate the real and imaginary
parts of the transfer function of a causal box might be called local
constraints, because they show how the values of R(ω) and X (ω) are
determined, for any specific ω. We can also derive what might be called
global constraints on R(ω) and X (ω) for a causal h(t) as follows. Applying
Rayleigh’s energy formula to the Fourier transform pairs

he (t) ←→ R(ω),

ho(t) ←→ iX (ω),

we have (remember, both R(ω) and X (ω) are real functions of ω)

∞∫
−∞

h2
e (t)dt = 1

2π

∞∫
−∞

R2(ω)dω,

∞∫
−∞

h2
o (t)dt = 1

2π

∞∫
−∞

X 2(ω)dω.

We showed earlier, for a causal h(t), that he (t) = ho(t)sgn(t), so h2
e (t) =

h2
o (t). Thus, the two time integrals (on the left) are equal, and therefore

the two frequency integrals are equal, too,

∞∫
−∞

R2(ω)dω =
∞∫

−∞
X 2(ω)dω,
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which shows how the integrated (global) behavior of R(ω) depends
on the integrated (global) behavior of X (ω)—and vice versa—for a
causal h(t).

It should now be clear that causality is a very strong constraint on
the LTI boxes we can actually build in real hardware, as opposed to simply
pushing symbols around on paper. Indeed, no matter how sophisticated
a super top secret electronic gadget may be on paper, it must obey the
“fundamental” law of cause and effect if we are to be able to actually
build it in hardware.4 If it can be shown that a proposed gadget violates
cause and effect (i.e., that its impulse response is anticipatory), then
that gadget cannot be built in actual hardware. Electrical engineers say
that such a gadget is unrealizable. Put simply, there must be no output
signal before there is an applied input signal. This may sound so trivially
obvious that it is hardly worth mentioning, but in fact some circuits
that look quite benign on paper are not causal. Try as you might, they
are simply impossible to build according to electrical engineering as it
is presently understood, and to save yourself from an endless quest for
what doesn’t exist it is important to know how to tell if a theoretical paper
design can actually be constructed. To demonstrate how this works, I’ll
now take you through the details of a specific example.

An important theoretical circuit in electronics is the ideal unity-gain
bandpass filter, which allows energy located in a specified interval of fre-
quencies to pass through it, while completely rejecting all input energy
outside that interval. A plot of the magnitude of the transfer function of
this idealized filter is shown in figure 6.2.3 (it is called a unity-gain filter
because the magnitude of its transfer function H (ω) is one for those

ω0

1

H(  )

ωc

−ωc  − ∆ω ωc  − ∆ω

−ωc

−ωc   ∆ω

ω

+ ωc   ∆ω+

Figure 6.2.3. Transfer function (magnitude only) of the ideal unity-gain
bandpass filter
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frequencies at which energy transmission occurs). The plot of figure
6.2.3 is said to be idealized because |H (ω)| = 0 when it isn’t equal to
one, that is, because of the so-called vertical skirts where |H (ω)| changes
value (the term comes from the resemblance of the magnitude plot to a
nineteenth-century hoop skirt). Actual filters always exhibit a less than
vertical roll-off of the skirts.

The bandwidth of this ideal filter is 2ω, and the frequency interval
over which the filter passes energy is called the passband, that is, the
passband is ωc − ω < |ω| < ωc + ω, where ωc is the center frequency
of the passband. Be clear about what this plot means. Suppose ωc −ω <

ω < ωc + ω and we apply the signal cos(ωt) = (e iωt + e−iωt )/2 as the
input. Then half the energy of the input is at frequency +ω and half is
at frequency −ω, and cos(ωt) “passes through” the filter, unattenuated,
because the e iωt/2 “gets through” since |H (ω)| = 1 on the right of the
ω-axis of figure 6.2.3 and the e−iωt/2 “gets through” since |H (ω)| = 1
on the left of the ω-axis of figure 6.2.3.

Knowledge of |H (ω)| is not enough to describe the ideal bandpass
filter completely, of course, as it doesn’t include phase information. That
is, in general H (ω) is complex and so H (ω) = |H (ω)|e iθ(ω), where θ(ω) is
called the phase function of H (ω). To determine what should be used for
the phase function, electrical engineers impose an additional constraint
on the ideal filter called zero phase distortion. Phase distortion is said to
occur in a filter if energies at different frequencies take different times
to transit the filter, from input to output. Physically, zero phase distortion
means that the input signal shape will be unaltered by passage through
the ideal bandpass filter if all of the energy in the input signal is in the
passband of the filter.

Consider, then, a particular frequency ω that we take as being in the
passband of the filter. Further, suppose that all of the energy propagating
through the filter experiences the same time delay t0. Now, since the
magnitude and shape of the input are unaltered by a unity-gain filter,
the input signal e iωt experiences only a time delay of t0. That is, the
output signal will be e iω(t−t0) = e iωt e−iωt0 . But, by the very definition of
the transfer function H (ω), the output signal is H (ω)e iωt . Thus, H (ω) =
e−iωt0 , where ω is any frequency in the passband. (H (ω) = 0 when ω

is not in the passband, from the definition of the ideal bandpass filter.)
So, an ideal zero phase distortion bandpass filter has a negative phase
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ω0

(  )

ωc−ωc  − ∆ω

ωc  − ∆ω

−ωc −ωc   ∆ω

ω

+

ωc   ∆ω+

θ

Figure 6.2.4. Phase function of the ideal bandpass filter

function that varies linearly with frequency (as shown in figure 6.2.4),
that is, θ(ω) = −ωt0 for ωc − ω < |ω| < ωc + ω.

We can show that this ideal filter is impossible to actually construct
because its impulse response h(t) �= 0 for t < 0. To do that we write the
inverse Fourier transform integral

h(t) = 1
2π

∞∫
−∞

H (ω)e iωt dω

= 1
2π

⎡⎢⎣ −ωc+ω∫
−ωc−ω

e−iωt0e iωt dω +
ωc+ω∫

ωc−ω

e−iωt0e iωt dω

⎤⎥⎦ ,

which, after doing the integrals and applying Euler’s formula, becomes

h(t) = 1
π t0

· sin[ωc t0(1 + ω/ωc )(t/t0 − 1)] − sin[ωc t0(1 − ω/ωc )(t/t0 − 1)]
t/t0 − 1

,

which, after using a trig identity and doing just a bit more algebra (I’ll
let you fill in the details) becomes

h(t) = 2
π t0

· cos[ωc t0(t/t0 − 1)] sin[ωt0(t/t0 − 1)]
t/t0 − 1

.

What does h(t) “look like”? For plotting purposes, suppose that t0 = 1,
ωc = 50, and ω = 5. Figure 6.2.5 shows h(t) for these values (over
the interval −4 ≤ t/t0 ≤ 3) and, as you might expect, the maximum
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Figure 6.2.5. Impulse response of an ideal bandpass filter

response occurs at t = t0; you can also see that h(t) is quite “active”
for t < 0.

So the ideal bandpass filter is impossible to build. But, nonetheless, it
is so useful in helping electrical engineers when thinking about elec-
tronic systems that they use it anyway—at least they do on paper.
You’ll see how, later in this chapter. During a 1933 collaboration the
American mathematician Norbert Wiener (recall the Wiener-Khinchin
theorem from section 5.3) and the English mathematician Raymond
Paley (1907–1933) discovered a necessary and sufficient condition for
|H (ω)| to be the magnitude part of the transfer function of a causal filter:
the so-called Paley–Wiener integral must be finite, that is,

∞∫
−∞

| ln |H (ω)||
1 + ω2 dω < ∞.

For the ideal bandpass filter, with |H (ω)| = 0 for almost all ω, it is obvious
that the Paley-Wiener integral is not finite, and so such a magnitude
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response is not possible in a causal filter. In the second volume of his
autobiography, Wiener wrote of their joint work

Paley attacked [the problem] with vigor, but what helped me and
did not help Paley was that it is essentially a problem in electrical
engineering [much of Wiener’s work in mathematics was inspired
by his interactions with colleagues in the MIT electrical engineer-
ing department]. It had been known for many years that there is
a certain limitation on the sharpness with which an electric wave
filter cuts a frequency band off, but the physicists and engineers
had been quite unaware of the deep mathematical grounds for
those limitations. In solving what was for Paley a beautiful and dif-
ficult chess problem, completely contained within itself, I showed
at the same time that the limitations under which the electrical
engineers were working were precisely those which prevent the
future from influencing the past.5

The last sentence of this must have seemed mysterious to many readers
of his autobiography (which is fascinating reading—Wiener was truly an
odd duck), but he was of course referring to the anticipatory impulse
response of a non-causal circuit. The Paley-Wiener integral doesn’t say
anything about the phase of the transfer function; all it tells us is that
if |H (ω)| passes the Paley-Wiener integral test then there exists some
phase function that, when combined with |H (ω)|, results in the transfer
function of a causal filter.

One thing the Paley-Wiener integral test does tell us, however, is that
along with the ideal bandpass filter it is also true that the ideal lowpass,
the ideal highpass, and the ideal bandstop filters are impossible to build
as well (the magnitude part of their transfer functions are shown in
figure 6.2.6). But again, just as with the ideal bandpass filter, these three
filters are so useful in aiding the thinking of electrical engineers that
the engineers often pretend that such unrealizable filters actually do
exist.

6.3 The modulation theorem, synchronous radio receivers,
and how to make a speech scrambler.

Electrical engineers often find it useful to shift the energy of a sig-
nal both up and down in frequency. Fourier theory is invaluable for



290 Chapter 6

ω

ω

ω

0

0

H(  )

0

ω

H(  )ω

H(  )ω

low-pass filter

high-pass filter

bandstop filter

−ω   − ∆ω

−ω

0

0 ω0

−ω0 ω0

−ω0 ω0

−ω      ∆ω0 + ω   − ∆ω0 ω      ∆ω0 +

Figure 6.2.6. Magnitudes of the ideal lowpass, highpass, and bandstop
filter transfer functions

understanding how that is accomplished using electronic circuitry. But
first, to help motivate the mathematics in this section, let me give you an
easy-to-appreciate example of why this is such an important task. I think
every reader of this book would agree that radio is a marvelous electronic
invention. It may not be commonly known, however, that frequency
shifting is essential to radio. Here’s why.

A common commercial use of radio (what is called amplitude-
modulated or AM radio) allows the operation of many transmitters in the
same geographical area. Why don’t these multiple transmitters conflict
with each other? That is, why can we select (tune in) from among all the
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multiple stations broadcasting to us the one to which we’ll actually listen?
To be simple about this, suppose Alice is talking into her microphone at
Station A and Bob is talking into his microphone at Station B. Since the
sounds produced by both are generated via the same physical process
(vibrating human vocal cords), the energies of the two voice signals will
be concentrated at essentially the same frequencies (typically, a few tens
of hertz up to a few thousand hertz). That is, the frequency interval
occupied by the electrical signals produced on the wires emerging from
Alice’s microphone is the same as the frequency interval occupied by
the electrical signals produced on the wires emerging from Bob’s micro-
phone. This common interval of so-called audio frequencies determines
what is called the baseband spectrum, that is, the voices of both Alice and
Bob produce baseband, bandlimited (defined in section 5.3) energy.

To apply a baseband electrical signal of a microphone directly to an
antenna will not result in the efficient radiation of energy into space;
Maxwell’s equations for the electromagnetic field tell us that for the
efficient coupling of the antenna to space to occur the physical size of
the antenna must be comparable to the wavelength of the radiation
(you’ll have to take my word on this bit of electrical physics). At the
baseband frequency of 1 kHz, for example, a wavelength of electro-
magnetic radiation is one million feet, which is pretty big. So, to get
a reasonably sized antenna, we need to reduce the wavelength, that
is, to increase the frequency. What is done in commercial AM radio
to accomplish that is to shift the baseband spectrum of the micro-
phone signal up to somewhere between about 500 kHz to 1,500 kHz,
the so-called AM radio band. (Each radio station receives a license
from the Federal Communications Commission—the FCC—that gives
it permission to do the upward frequency shift by a value that no
other station in the same geographical area may use.) At 1,000 kHz,
for example, the wavelength is a thousand times shorter than it is at
1 kHz—one thousand feet. If our station’s antenna is constructed to be
a quarter-wavelength in size, for example, then we are talking about an
antenna 250 feet high (which you’ll notice, the next time you drive by
your local AM radio station’s transmitter site, is just about what you’ll
actually see).
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x1(t)

x2(t)

y (t) = x1(t)x2(t)

Figure 6.3.1. Block diagram symbol for a multiplier

So, let’s suppose that at Station A we shift Alice’s baseband signal
up to 900 kHz, while at Station B we shift Bob’s baseband signal up
to 1,100 kHz. A radio receiver could then select which signal to listen
to by using a tunable bandpass filter, that is, an adjustable6 bandpass
filter whose center frequency could be centered on either 900 kHz
or 1,100 kHz (the bandwidth of the filter, for AM radio, is 10 kHz).
Notice, carefully, that radio uses a frequency upshift for two reasons:
(1) to move baseband energies up to radio frequencies to achieve
efficient radiation of energy and (2) to separate the baseband spec-
tra of the broadcasting stations by using a different upshift frequency,
which will allow a bandpass filter to select a particular station. At the
receiver we need a final frequency downshift to place the energy of the
selected station signal back at the baseband frequencies to which our
ears respond.

To accomplish these frequency shifts, both up and down, is, as you’ll
see, as simple as doing a multiplication—but you’ll also soon see that
doing direct multiplication in electronic circuitry is not so simple. We’ll
have to be just a bit clever at it, and Fourier theory will show us the
way. To see that the mathematics of multiplication does indeed do the
job of frequency shifting, let’s first assume that we actually do have an
electronic circuit with two inputs x1(t) and x2(t) and a single output
y(t) that is the product of the two inputs, as shown in figure 6.3.1. (Do
you see that such a circuit cannot be an LTI box?7) Now, suppose that
x1(t) = m(t), the baseband voice signal produced by a microphone, and
that x2(t) = cos(ωc t), where ωc is the specific frequency that a radio
station receives from the FCC as its assigned upshift frequency (the so-
called carrier frequency). Our question is: where (in frequency) is the
energy of y(t) = m(t) cos(ωc t)?
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To answer that question we of course need to find the Fourier
transform of y(t). So,

Y (ω) =
∞∫

−∞
y(t)e−iωt dt

=
∞∫

−∞
m(t) cos(ωc t)e−iωt dt

=
∞∫

−∞
m(t)

e iωc t + e−iωc t

2
e−iωt dt

= 1
2
[

∞∫
−∞

m(t)e−i(ω−ωc )t dt +
∞∫

−∞
m(t)e−i(ω+ωc )t dt ]

= 1
2
[M (ω − ωc ) + M (ω + ωc )].

Thus, the Fourier transform of the multiplier output is the transform
of the baseband signal shifted both up and down by the frequency ωc .
This fundamental result is called the modulation or heterodyne theorem,8

and is illustrated in figure 6.3.2, where the energy of m(t) is confined
to the frequency interval −ωm ≤ ω ≤ ωm (as mentioned before, ωm is
the maximum frequency in the baseband signal m(t) at which there is
energy and has a value of a few kHz).

The information in the baseband signal, m(t), originally centered on
ω = 0, is now “riding piggyback” on ω = ωc , and so you can appreciate
why ωc is called the carrier frequency. The multiplication done at the
radio station transmitter facility is accomplished with a circuit called a
modulator (about which I’ll say more in section 6.4), and the multiplier
output y(t) is the signal applied to the antenna (after being boosted to
a power level that, in commercial AM radio in America, can be as high
as 50,000 watts). Note: my use of a triangle for the transform of m(t)
is just a metaphor for the actual transform, which could have a very
non-triangular shape in reality (of course, since m(t) is real, we know
|M (ω)| is always even)—the important thing for us, here, is that M (ω)

is bandlimited.
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Figure 6.3.2. Fourier transform of a baseband signal, and its
heterodyned version

Once the selection process is done at the receiver, the frequency
downshift back to baseband can be accomplished with yet another multi-
plication by cos(ωc t), which results in moving the transform of Y (ω) in
figure 6.3.2 both up and down by ωc , that is, this newly shifted transform
is that of a signal that has some energy centered around ±2ωc , and the
rest around ω = 0 (which is, of course, the original baseband signal). The
baseband energy can then be selected by a lowpass filter that rejects the
energy at and around 2ωc (in actual practice this filtering operation is
automatically done by the fact that a mechanically “massive” loudspeaker
simply cannot respond to the high frequency that is 2ωc , a frequency
that is greater than 1 MHz in commercial AM radio). This entire process
at the receiver is called detection or demodulation by electrical engineers.
Indeed, since it depends on having available the same cos(ωc t) signal
used at the transmitter (any deviation in frequency from ωc and/or the
introduction of a phase shift, e.g., the use of cos(ωc t + θ) , with θ �= 0,
will result in serious problems9), this form of radio receiver is called
a synchronous demodulator (or synchronous detector ). If r (t) denotes the
received signal (with a spectrum similar to that of the transmitted signal
y(t)), then figure 6.3.3 shows the block diagram of a synchronous demod-
ulation receiver. (The circle with the wavy curve inside it represents an
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Figure 6.3.3. A synchronous demodulation radio receiver

oscillator circuit that produces a sinusoidal signal at frequency ωc —it is
not difficult to construct such a circuit.)

The receiver block diagram in figure 6.3.3 looks simple, but looks are
deceiving. The requirement to locally generate a sinusoid at the receiver
that very nearly matches in frequency and phase the sinusoid at the trans-
mitter (which could be thousands of miles distant) is actually not an
impossible task, but such synchronous receivers are expensive to build.
That makes them unattractive for use in commercial AM radio. A mod-
ern AM radio receiver is so cheap, in fact, that nobody bothers to fix
them—when they fail people just throw them away and buy a new one.
For economic reasons, techniques other than synchronous demodula-
tion for detecting the transmitted baseband signal are actually used in
AM radio receivers.10 However, if one is willing to pay for the additional
circuit complexity of synchronous demodulation, then some near-
magical new possibilities are opened up and I’ll discuss an example of
that in section 6.5.

Now, all of the above is well and good, but it of course assumes that we
actually do have a multiplier circuit. Do we? Well, no—they’re really hard
to build to operate at radio frequencies. So, is all that I’ve been telling
you just a big, outrageous shaggy dog story? Well, no. We just have to be
clever about how we achieve multiplication (i.e., we have to do it without
actually multiplying ). To explain this mysterious statement, let’s be just
a bit less ambitious and suppose that all we have is a special case of a
multiplier circuit, a circuit that produces the square of its single input
(look again at Note 7). We can make a multiplier from our squarer if
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Figure 6.3.4. Multiplying by squaring and filtering

we assume that we also have a circuit that adds (shown in figure 6.3.4
as the circle with a summation sign inside it; you’ll see why a bandpass
filter is in the circuit, too, in just a moment). The input to the squarer
is m(t) + cos(ωc t), and so the squarer output is

s(t) = [m(t) + cos(ωc t)]2 = m2(t) + 2m(t) cos(ωc t) + cos2(ωc t),

which includes the desired product m(t) cos(ωc t). The output s(t) also
includes, seemingly to our misfortune, two other terms. The fact is,
however, to our great fortune, that it is possible to arrange matters so
that the energy of the product term is completely separate and distinct
(in frequency) from the energies of the two other terms. Therefore, if
we apply s(t) as the input to the appropriate bandpass filter, then that
filter’s output y(t) will contain the energy only of the product term, that
is, y(t) will be proportional to m(t) cos(ωc t).

Consider now each of the three terms of s(t), in turn. First, and the
easiest to understand, is 2m(t) cos(ωc t). By the heterodyne theorem the
energy of this term is simply the energy of m(t) shifted up and down the ω-
axis, to be centered on the frequencies ω = ±ωc . Next, the cos2(ωc t) term
can be expanded with a trigonometric identity to give the equivalent
expression (and its Fourier transform)

1
2

+ 1
2

cos(2ωc t) ←→ πδ(ω) + 1
2
π [δ(ω − 2ωc ) + δ(ω + 2ωc )],

that is, all of the energy of cos2(ωc t) is at the three specific frequencies
of ω = 0 and ω = ±2ωc . (We found the Fourier transform of a con-
stant, as well as the Fourier transform of a pure sinusoid, in section 5.4.
In that section I analyzed sin(ωc t) instead of cos(ωc t), but the calcula-
tions are the same and the results are trivially different.) And finally,
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Figure 6.3.5. Where the energy is in the output s(t) of the squarer of
figure 6.3.4

from section 5.3 and the frequency convolution theorem, we know the
Fourier transform of m2(t) is

m2(t) ←→ M (ω) ∗ M (ω).

There we showed (with the aid of figure 5.3.1) that the Fourier trans-
form of m2(t) is confined to the bandlimited interval |ω| ≤ 2ωm . All
of these conclusions are shown in figure 6.3.5, where I’ve drawn all of
the individual energies for the case of the heterodyned baseband energy
(our desired product term) not overlapping the energies of the other
two terms. It is clear from the figure that this will indeed be the situation
if 2ωm < ωc − ωm , i.e., if ωc > 3ωm . In AM radio this condition is more
than satisfied, as you’ll recall that I stated earlier that ωc is greater than
500 kHz while ωm is only a few kHz. Thus, if the output of the squarer,
s(t), is the input to the bandpass filter shown in figure 6.3.4 (with band-
width 2ωm =10 kHz for AM radio) centered on ωc , then the energy of
the output of the filter is the energy associated with the product term
m(t) cos(ωc t) (and only that energy). We have achieved multiplication
by squaring-and-filtering with a circuit I think only Fourier theory can
make it possible to understand.

Still, even though elegant, the squarer/filter circuit is not the easiest
way to make a multiplier. The way multiplication is actually accomplished
by an AM radio transmitter is incredibly more clever—I’m going to put
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off showing you the way it’s actually done until the next section, just to
let you think about this. Can you discover a method even simpler (and
far cheaper) than figure 6.3.4? Don’t peek ahead until you’ve thought
about this, at least for a while. Again, Fourier theory will be the key to
understanding what is happening.

To end this section, let me now show you how all of the ideas we’ve
discussed in this chapter come together in the design of an electronic
speech scrambler, a personal portable device that provides a modest level
of privacy over public telephone circuits. This gadget (its block diagram
is shown in figure 6.3.6, where HPF and LPF stand for highpass filter
and lowpass filter, respectively) clamps onto the mouth and ear pieces
(you’ll see why both, in just a moment) of an ordinary telephone. It is
sufficiently complex to keep the “innocent” from “accidently” listening
on a conversation, but not so sophisticated that it would be beyond
the legal intercept, crime-fighting capabilities of even the local police

m(t)
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0

H1(  )

0−20

ν

ν

H2(  )ν

20 ν
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x1(t) x2(t ) x3(t)H1(  )ν
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H2(  )ν
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π cos(2       25    103t)π

y(t )

20 kHz sinusoidal oscillator 25 kHz sinusoidal oscillator

Figure 6.3.6. A speech scrambler
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department. This scrambler circuit is quite old, dating back to just after
the First World War. It was first used commercially on the radio-telephone
link connecting Los Angeles and the offshore gambling casino and resort
hotel on Santa Catalina Island, a place made famous, at least for a while,
during my senior year of high school (1958) in a little town near Los
Angeles, with the Top-10 pop-song “26 Miles” by the Four Preps:

Twenty-six miles across the sea,
Santa Catalina is a-waitin’ for me.

(I’m singing this to myself as I write during the subzero New Hampshire
winter of 2004—okay, that’s enough nostalgia!)

Both filters in the figure are ideal; each has a skirt at 20 kHz that
drops vertically to zero. The input signal to the scrambler, m(t), is a voice
baseband signal that is assumed to be bandlimited at 5 kHz (an assump-
tion that can be assured by first lowpass filtering the input signal). The
signals that exist in the circuit as we move from left to right, x1(t), x2(t),
x3(t), and finally the (scrambled) output signal y(t), have their respec-
tive Fourier transform magnitudes sketched in figure 6.3.7 (which, by
Rayleigh’s energy formula, tells us “where the energy is”); these sketches
follow immediately from direct applications of the heterodyne theorem
and the filter transfer functions. As the figure shows, the scrambler out-
put has inverted the energy spectrum of the input, that is, input energy
at frequency ν kHz (remember, ω = 2πν) appears in the output at fre-
quency (5 − ν) kHz. This is sufficient mischief to make a conversation
pretty much unintelligible to a casual eavesdropper.

We do have an obvious last question to answer, of course. We don’t
want everybody to be puzzled; how does the person on the other end of
the conversation understand what is being sent? That person clearly
needs a descrambler. The fact that our scrambler works by inverting
the input energy spectrum strongly hints at the amusing idea that the
scrambler is its own descrambler (if we invert an inversion we should
arrive back with what we started with). And, in fact, if you take the
scrambled output spectrum Y (ν) from figure 6.3.7 (the received signal
at the telephone earpiece at the other end of the link) and apply it
to the scrambler input you’ll find that you arrive at figure 6.3.8, which
confirms our guess. So, each person simply uses the same scrambler
circuitry, which doubles as its own descrambler, a feature that makes
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the circuit of figure 6.3.6 particularly attractive. Without Fourier theory,
do you think it possible to “understand” how this gadget works? I don’t
think so.

6.4 The sampling theorem, and multiplying by sampling
and filtering.

So, since reading the last section have you thought some more about
how to multiply without really multiplying ? To understand the clever way
that is done to generate an AM radio transmitter’s signal, I’ll first derive
a famous result in electrical engineering (dating from the 1930s) called
the sampling theorem, which is usually attributed to either the American
electrical engineer Claude Shannon (1916–2001) or the Russian elec-
tronics engineer V. A. Kotel’nikov (1908–2005), although the basic
idea can be traced all the way back to an 1841 paper by a French
mathematician (Cauchy).

In figure 6.4.1 I’ve illustrated the very simple conceptual idea of
mechanically sampling the function m(t); it shows a rotating switch that
completes a rotation each T seconds; during each revolution the switch
briefly connects to m(t). If we denote the contact duration by τ , then
we can write the sampled version of m(t) that appears on the switch
wire at the right as ms(t) = m(t)s(t), where s(t) is also shown in the

m(t)s(t)

s(t )

m(t)

tT0−T

1

τ

Figure 6.4.1. A mechanical sampler
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figure (I am assuming that when the switch is not connected to m(t)
we have ms(t) = 0, a mathematical assumption that is easily satisfied in
an actual electrical circuit with simple engineering details we needn’t get
into here).

Since s(t) is a periodic function, we can write it as a Fourier series,
and so, with ωs = 2πvs = 2π/T as the so-called sampling frequency,
we have

ms(t) = m(t)
∞∑

k=−∞
cke ikωs t , ωs = 2π

T
.

We could, if we want, now calculate the ck , but as you’ll soon see this is
not necessary to get to the result we are after. You will notice, however,
that I’ve drawn s(t) as an even function in figure 6.4.1, and that means
all of the ck , whatever their values are, are real; that conclusion is not
necessary for anything that follows, but it perhaps will make it easier to
“see” what happens. Our central question, now, is simply this: where in
frequency is the energy of ms(t)?

As usual, this question is answered by calculating the Fourier trans-
form and so, with ms(t) ←→ Ms(ω), we have

Ms(ω) =
∞∫

−∞

⎧⎨⎩m(t)
∞∑

k=−∞
cke ikωs t

⎫⎬⎭ e−iωt dt

=
∞∑

k=−∞
ck

∞∫
− ∞

m(t)e−i(ω−kωs )t dt .

Recognizing the last integral is M (ω − kωs), we have

Ms(ω) =
∞∑

k=−∞
ckM (ω − kωs) .

This deceptively simple-appearing result says that the transform of ms(t)
is just the transform of m(t) repeated, endlessly, up and down the frequency
axis at intervals of the sampling frequency ωs .
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Figure 6.4.2. Where the energy is in m(t) and in ms (t)

Let’s now suppose that m(t) is a baseband, bandlimited signal, that is,
that |M (ω)| = 0 for |ω| > ωm . Figure 6.4.2 shows what |Ms(ω)| looks like
for such a signal, where the additional assumption has been made that
the frequency-shifted copies of M (ω) do not overlap. That is clearly the
case if ωm < ωs −ωm , that is, if ωs > 2ωm . If this condition is not satisfied
(notice that the switch contact time τ plays no role), then the adjacent
copies of M (ω) will overlap. Electrical engineers say the sampled signal
is aliased, since energy at one frequency is now mixed up with energy at
a different frequency, that is, if one thinks of frequency as the “name”
of the energy at that frequency, then we have energy going under the
different “name” of the overlapped energy. That is, going under an alias.

Now, in particular, you’ll notice that even though ms(t) is a time-
sampled version of m(t), that is, “most” of the time the switch is not
“looking at” m(t), nevertheless ms(t) still contains all the information
of m(t). That is, perfect knowledge of ms(t) is equivalent to perfect
knowledge of m(t). We can see that this is so by observing that if we
have ms(t), then we can perfectly recover m(t) by simply lowpass filtering
ms(t) and thereby select the transform copy of M (ω) centered on ω = 0.
We cannot do this, of course, if we have not sampled fast enough to
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prevent adjacent copies of M (ω) from overlapping. This result is what is
called the sampling theorem—if a bandlimited signal m(t) is sampled at
a rate more11 than twice the highest frequency at which energy is present
in m(t), then the sampling process has not lost any information. This
mathematical result generally strikes most people as counterintuitive
upon first encounter but it is true, both on paper and in real electronic
systems.

Still, as neat as this result is, it isn’t the one we are after here. We are
more interested in the two copies of M (ω) that are centered on ω = ±ωs .
If we select those two copies with a bandpass filter, and if we associate
ωs with what our AM radio transmitter calls ωc , then as we showed in
section 6.3 the bandpass filter output has the energy of m(t) cos(ωc t)
(scaled by |c1|). At last we have multiplied m(t) and cos(ωc t) together in
a really simple way—all we have to do is run m(t) into a mechanically
rotating switch spinning around at a rate greater than 500 kHz (half a
million rotations per second) and bandpass filter the result.

Yeah, right. You try building anything mechanical that spins half a
million times a second! Just don’t stand too near it. In fact, instead of the
easy-to-comprehend mechanical switch in figure 6.4.1, what is actually
used in AM radio transmitters is an electrical switch in which nothing
moves—it can be made from what is called a radio-frequency transformer (a
sophisticated cousin to the humming, black cylindrical cans you often
see attached to the tops of neighborhood power company poles bringing
60Hz a-c electricity into clusters of homes) and a handful of diodes (either
solid-state or “old-fashioned” vacuum tubes). This is the circuit I called
a modulator in the previous section and, while not exactly cheap as dirt,
it isn’t really very expensive either. You can find electrical engineering
discussions on modulator circuits in any technical book on radio.12

6.5 More neat tricks with Fourier transforms and filters.
Despite the fact that synchronous demodulation radio receivers are
relatively expensive, they are used. Why? Because they have technical
properties that can, in certain cases, be worth the cost. In this brief
section I’ll show you one such property. In the discussion of section 6.3
on AM radio, you probably came away with the idea that the different
baseband signals from different radio stations require a different carrier
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frequency ωc in order for a receiver to be able to select the baseband sig-
nal to which to listen without interference. It is true, in actual practice,
that is indeed what is done in commercial AM radio. But, it is not impos-
sible for the same carrier to “carry” more than one baseband signal. This
strikes most people as contrary to some fundamental law of “how things
should be,” but I’ll prove to you that it can be done with the best proof of
all—I’ll show you the actual circuitry (block diagrams, of course) of the
synchronous transmitter and receiver that accomplish the astonishing
feat of first placing two baseband signals on the same carrier and then
separating them without interference. And we’ll not have to write even
a single equation; Fourier diagrams will be all we need to show us the
way.

Let’s call our two baseband signals and their transforms m1(t) ←→
M1(ω) and m2(t) ←→ M2(ω). To help keep straight what our transmit-
ter and receiver are doing, I’ll use our standard triangular shape for
M1(ω), but a different shape for M2(ω), as shown in figure 6.5.1. Notice,

0 ω

M1(   )

−ωm ωm

M1L M1U

0 ω

M2(   )

−ωm ωm

M2L M2U

ω

ω

Figure 6.5.1. How the energy is distributed over frequency in two
different baseband signals
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however, that for both shapes I’ve drawn |M1(ω)| and |M2(ω)| as even,
because m1(t) and m2(t) are each real. In both cases I’ve labeled the
so-called upper and lower sidebands of the transforms; for example,
M1U is the upper sideband (ω > 0) of M1(ω) and M2L is the lower side-
band (ω < 0) of M2(ω). Then, the synchronous transmitter circuit of
figure 6.5.2 generates a transmitted signal y(t), with both baseband sig-
nals present, at the single carrier frequency ωc . The ideal LPF (lowpass
filter) and ideal HPF (highpass filter) each have their vertical skirt at
ω = ωc .

0 0

0

00

ω ω

ω

ωω

ωc−ωc ωc−ωc

ωc−ωc

ωc−ωcωc−ωc

HPF

m1(t)

Σ
+

cos(   ct )

LPF

m2(t)

y(t)
+

ω

Figure 6.5.2. A synchronous transmitter that sends two baseband signals on the
same carrier
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At each point in the transmitter circuit I’ve indicated where the
energy is, and you can see that while |Y (ω)| consists of an interesting
amalgamation of the sidebands of m1(t) and m2(t), it is nevertheless
true that |Y (ω)| is also even, as it must be since y(t) is real. And finally,
what we need to put our two scrambled baseband eggs back together
again is shown in the synchronous demodulation radio receiver of figure
6.5.3. The input at the left is a (scaled) version of the transmitted y(t)
of figure 6.5.2. And again, all of the ideal filters in our receiver have
their vertical skirts at ω = ωc . As with the speech scrambler analysis in

0 ωωc−ωc

0 ωωc−ωc

0 ωωc−ωc

HPF

cos(  ct)

LPF m1(t)

LPF

LPF

m2(t)

0 ω

0 ω

0 ωωc−   ωc

0 ω

22

ωc−   ωc 22

ω

Figure 6.5.3. A synchronous demodulation receiver that recovers two baseband
signals from the same carrier without interference
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section 6.3, these sketches follow immediately from the heterodyne the-
orem (no equations required) and application of the behavior of ideal
filters.

6.6 Single-sided transforms, the analytic signal,
and single-sideband radio.

In this final section of the last chapter of the book, I want to show
you how Fourier “thinking” explains a particularly beautiful electronic
application of complex number mathematics. In the previous analyses
of synchronous radio you surely noticed that, at various points in the
circuits being discussed, we had just half of the transform of a signal
(see figures 6.5.2 and 6.5.3 again). That was due to the presence of an
ideal highpass or ideal lowpass filter that had its vertical skirt at just the
right frequency to reject either the lower or the upper sideband of a real-
valued signal. Because of the symmetry of the upper and lower sidebands
of a real signal, sideband rejection results in no loss of information. There
is a very practical reason for doing sideband rejection. If a real-valued,
bandlimited baseband signal has energy at positive frequencies from
zero to ωm (an interval of ωm), then after heterodyning up to the carrier
frequency ωc the signal has energy at positive frequencies from ωc − ωm

to ωc + ωm (an interval of 2ωm , that is, twice as large as at baseband). If,
however, we transmit only one sideband, then all of the signal energy is
confined (at positive frequencies) to an interval of, again, ωm . That is,
transmitting only one sideband conserves frequency spectrum, a major fea-
ture of what is called single-sideband (SSB) radio. To receive (i.e., detect)
an SSB signal is, of course, a simple task (at least on paper): simply mul-
tiply the received signal by cos(ωc t) and then lowpass filter. (One does
have the usual synchronous receiver complications mentioned earlier,
that of generating at the receiver a near-perfect replica of the cos(ωc t)
signal used at a distant transmitter.)

The most obvious way to generate an SSB signal is, as already observed,
simply to use a highpass filter on the heterodyned baseband signal (to
reject the lower sideband) or a lowpass filter on the heterodyned base-
band signal (to reject the upper sideband). This was the initial method
employed by the American electrical engineer John R. Carson (1887–
1940) in the early years of the twentieth century. Carson, who worked
for the American Telephone and Telegraph Company, was searching
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for a way to allow more messages to be simultaneously sent over AT&T’s
copper transmission lines (which have a much smaller bandwidth than
modern fiber optic cables). After thinking about the symmetry of the
transform of a real signal, and realizing that the upper and lower side-
bands are redundant, he concluded that only one of them (either one)
need be transmitted. Carson filed a patent application for the filtering
approach to SSB signal generation in 1915 (granted in 1923), and when
he died at age 54 his obituary notice in the New York Times specifically
cited that invention.

Carson’s simple SSB signal generation via sideband rejection filtering
caught on quickly; by 1918 it was in use on a telephone circuit con-
necting Baltimore and Pittsburgh, and by 1927 there was commercial
SSB radio linking New York City and London (employing electronics
that could heterodyne a baseband signal of bandwidth 2.7 kHz up to
anywhere in the interval 41 kHz to 71 kHz, this system transmitted
the lower sideband). Still, while obvious, the filtering method has its
problems. It works perfectly if one has either a highpass or a low-
pass filter with a vertical skirt at the carrier frequency, which is of
course an impossibility. A “real-life” filter would have to let a bit of
rejected sideband “leak through,” or would also have to reject a por-
tion of the desired sideband in order to totally reject the undesired
sideband.

Much more elegant than brute-force filtering would be the direct gen-
eration of an SSB signal from a given bandlimited baseband signal. And
such a method does in fact exist. Called the phase-shift method (you’ll see
why soon), it was invented by Carson’s colleague Ralph V. L. Hartley
(1888–1970). Trained as a physicist, Hartley made many important con-
tributions to electronics and information theory during a long career at
the Bell Telephone Laboratories (created by AT&T as its research arm in
1925). Hartley filed for a patent in 1925 (granted in 1928), and it makes
beautiful use of Fourier theory. To start the analysis of Hartley’s SSB sig-
nal generator (I’ll do the upper sideband), let’s denote (as usual) our
bandlimited baseband signal by m(t) and write the Fourier transform
pair m(t) ←→ M (ω), where M (ω) = 0 for |ω| > ωm . Next, define a
new pair that I’ll write as z+(t) ←→ Z+(ω), where Z+(ω) = M (ω)u(ω),
where u(ω) is the unit step function in the frequency domain. That is,
Z+(ω) = 0 for ω < 0, as shown in figure 6.6.1a. Clearly, Z+(ω) is not a
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Figure 6.6.1. Piecing together the upper sideband signal generated by
Hartley’s SSB modulator circuit
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symmetrical transform (it is called a single-sided transform), and so z+(t)
is not a real-valued time function. This will not be a problem for us,
however, as we are not going to try to actually generate z+(t)—which is
good since that is an impossible task—z+(t) is merely an intermediate
mathematical entity in our calculations.

Now, recall from section 5.4 the exotic Fourier transform pair

1
2
δ(t) + i

1
2π t

←→ u(ω).

Since Z+(ω) = M (ω)u(ω) is a multiplication in the ω-domain, we know
from Section 5.3 that z+(t) is formed from a convolution in the time
domain of m(t) and the time function that pairs with u(ω), that is,

z+(t) = m(t) ∗
[

1
2
δ(t) + i

1
2π t

]
= 1

2
m(t) ∗ δ(t) + i

1
2π

m(t) ∗ 1
t

= 1
2

∞∫
−∞

m(τ )δ(t − τ)dτ + i
1

2π

∞∫
−∞

m(τ )

t − τ
dτ

or, using the sampling property of the impulse to evaluate the first
integral, we have

z+(t) = 1
2

⎡⎣m(t) + i 1
π

∞∫
− ∞

m(τ )

t − τ
dτ

⎤⎦ .

This quite odd-looking complex -valued time function is called an ana-
lytic signal, a name coined in 1946 by the Hungarian-born electrical
engineer Dennis Gabor (1900–1979)—he received the 1971 Nobel Prize
in physics for his work in holography—to describe any time function with
a single-sided transform. If you look back at section 6.2, you’ll see that the
second integral (including the 1/π factor) is what we called the Hilbert
transform of m(t), which I’ll write as m(t). Thus,

z+(t) = 1
2
[m(t) + im(t)].
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z+(t) is clearly a baseband signal—just look at Z+(ω)—and we can shift
its energy up the frequency axis to ω = ωc by multiplying z+(t) by e iωc t .
Mathematically we have

z+(t)e iωc t = 1
2
[m(t) + im(t)][cos(ωc t) + i sin(ωc t)]

= 1
2
[m(t) cos(ωc t) − m(t) sin(ωc t)]

+ i
1
2
[m(t) cos(ωc t) + m(t) sin(ωc t)].

This complex-looking, complex-valued time signal has the non-
symmetrical transform shown in figure 6.6.1b.

To get a real -valued signal that can actually be physically generated
(and so transmitted as a radio signal by an antenna), we of course need
a symmetrical transform. To accomplish that, let’s next repeat all of the
above but work with negative frequencies. That is, let’s write z−(t) ←→
Z−(ω), where Z−(ω) = M (ω)u(−ω), as shown in figure 6.6.1c. Since we
know from section 5.4 that

1
2
δ(t) − i

1
2π t

←→ u(−ω),

we have

z−(t) = m(t) ∗
[

1
2
δ(t) − i

1
2π t

]
= 1

2
[m(t) − im(t)].

Thus, if we shift the energy of z−(t) down the frequency axis to ω = −ωc

(see figure 6.6.1d) by multiplying z−(t) by e−ωc t , then you should be able
to confirm (with just a bit of easy algebra) that

z−(t)e−iωc t = 1
2
[m(t) cos(ωc t) − m(t) sin(ωc t)]

− i
1
2
[m(t) cos(ωc t) + m(t) sin(ωc t)].

The reason we did this is now apparent—if we add the transforms
of figures 6.6.1b and 6.6.1d we arrive at the symmetrical SSB transform
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m(t)

Σ
+cos(  ct)

sin(  ct)

−

SSB signal

(upper sideband)

90˚

h(t) = 1/  tπ
ω

ω

Figure 6.6.2. Hartley’s SSB signal generator

shown in figure 6.6.1e. This symmetry means we have the transform of
a real -valued time function, and thus

z+(t) + z−(t) = m(t) cos(ωc t) − m(t) sin(ωc t)

is an expression with zero imaginary part that tells us exactly how to
construct Hartley’s SSB generator if we can generate m(t). You’ll see
that figure 6.6.2 implements this expression (the box with “90◦” inside
it represents a circuit that shifts the phase of the cos(ωc t) signal to
give the required sin(ωc t)—operating at just the single frequency ωc , this
is an easy circuit to construct). The box with the noncausal impulse
response h(t) = 1/π t is, of course, the box that “makes” m(t)—it is often
called a Hilbert transformer —and of course it is impossible to make such a
noncausal box.

Well, is this all just a big joke? After all, if we can’t actually build a
Hilbert transformer then all we have is a mathematical fairy tale. You of
course know there must be an answer to this, as Hartley wouldn’t have
gotten a patent for a fairy tale. The answer, briefly, is to approximate h(t),
but of course that merely begs the question; how do you approximate an
unbounded and discontinuous (as |t | → 0) impulse response? The precise
answer is actually, I think, rather surprising, and as we develop the details
you’ll see why Hartley’s method is called the “phase-shift” or phasing
method.

For x(t) any real-valued time function, define the analytic function

z(t) = x(t) + ix(t).
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Because z(t) is analytic we can write it as

z(t) = 2x(t) ∗
[

1
2
δ(t) + i

1
2π t

]
,

from which the time convolution theorem says we can then write

Z (ω) = 2X (ω)u(ω) =

⎧⎪⎨⎪⎩
2X (ω), ω > 0,

0, ω < 0.

This should be no surprise; since z(t) was constructed to be analytic we
know it has a single-sided transform. But notice that from the defining
equation for z(t) we can also write

Z (ω) = X (ω) + iX (ω)

where x(t) ←→ X (ω), that is, X (ω) is the Fourier transform of the
Hilbert transform of x(t). Combining these two expressions for Z (ω),
we have

X (ω) + iX (ω) =

⎧⎪⎨⎪⎩
2X (ω), ω > 0,

0, ω < 0.

from which it immediately follows that

X (ω) =

⎧⎪⎨⎪⎩
−iX (ω), ω > 0,

iX (ω), ω < 0.

Now, the transfer function of the Hilbert transformer circuit is H (ω),
where X (ω) = X (ω)H (ω), and so

H (ω) = X (ω)

X (ω)
=

⎧⎪⎨⎪⎩
−i , ω > 0,

+i , ω < 0.

From this we see that |H (ω)| = 1 for − ∞ < ω < ∞, that is, the Hilbert
transformer does not affect the amplitude of its input, no matter what the
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frequency (and so it is often called an all-pass circuit), but it does affect
the phase of the input. Indeed, all negative frequency inputs are given
a +90◦ phase shift (because the transfer function is +i for ω < 0) and
all positive frequency inputs are given a −90◦ phase shift (because the
transfer function is −i for ω > 0).

Huh?
To see what the above means physically, focus your attention on some

particular frequency component in x(t); let’s call that frequency ω0.
Then, to within some (irrelevant) amplitude scale factor, we can write
that component of x(t) as cos(ω0t + θ0) = (e i(ω0t+θ0) + e−i(ω0t+θ0))/2,
where θ0 is some arbitrary phase that I’ve included just to show you its
particular value won’t, in the end, matter. Now, imagine that we simply
delay this component in time by one-fourth of a period (a time delay
circuit is just as simple, conceptually, as a piece of wire, with the delay
being directly proportional to the length of the wire). If T is the period,
and if cos(ω0t + θ0) is the input to the delay circuit, then the output is
cos[ω0(t − T /4) + θ0], that is, since ω0T = 2π then T /4 = π/2ω0 and
so the output of the delay circuit is

cos
[
ω0(t − π

2ω0
) + θ0

]
= cos

[
ω0t − π

2
+ θ0

]
= e i(ω0t−π/2+θ0) + e−i(ω0t−π/2+θ0)

2

= e−iπ/2e i(ω0t+θ0) + e iπ/2e−i(ω0t+θ0)

2
.

Since e−iπ/2 = −i and e iπ/2 = i , we see that the positive frequency expo-
nential is multiplied by −i and the negative frequency exponential is
multiplied by +i . When we take the Fourier transform of the input sig-
nal, then, the transform for ω > 0 is multiplied by −i and the transform
for ω < 0 is multiplied by +i , and so our simple time delay circuit is our
Hilbert transformer. It’s just that simple.

But if it’s so simple, then why can’t we build a Hilbert transformer?
What makes something as simple as a one-fourth period time delay cir-
cuit noncausal? The problem is that the time delay circuit has to be
a quarter-period delay not just for one frequency (like the 90◦ box in
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figure 6.6.2), but for all frequencies. Still, while we can’t build such
a circuit for all frequencies, we can now see how to build approxima-
tions to it in the frequency domain (something that is not at all obvious
when looking at the unbounded, discontinuous impulse response of
the Hilbert transformer in the time domain). We really only require the
90◦ phase-shifting to be over the finite frequency interval occupied by
our bandlimited baseband signal m(t), which has all of its energy in the
interval |ω| ≤ ωm . Such circuits can be constructed and, not only that,
they can be constructed from a handful of commonly available compo-
nents (resistors and capacitors) that you can purchase from your local
electronics store for the change in your pocket.13

Now, I should tell you that the mathematical presentation I just took
you through is not historically correct. In the classic paper describing the
New York City–London SSB radio link, for example, the mathematical
level never exceeds the use of trigonometric identities.14 The passage of
decades did nothing to change that, either; for example, in December
1956 the Institute of Radio Engineers (IRE) devoted its entire Proceed-
ings to the single topic of SSB radio, and nowhere in that entire issue do
analytic signals appear. I think we can draw two conclusions from this:
(1) the radio pioneers were very clever people who didn’t need com-
plex number mathematics to invent their circuits (but complex number
mathematics certainly makes it a lot easier to understand those circuits),
and (2) it took a very long time for even the more analytical electrical
engineers to appreciate the usefulness of the analytic signal.

One “problem” with the Hilbert transform is that it is difficult to
“see” what the transform does to a time function. (That discontinuity in
the integrand doesn’t help the intuition!) For example, is it obvious to
you that the Hilbert transform of a constant is zero? Direct calculation
of any particular Hilbert transform is almost always a tricky business;
perhaps that “calculation sting” is what kept most of the early radio
engineers away from analytic signals for such a long time. The devel-
opment since the 1980s of software packages like MATLAB has taken
nearly all of the sting out of such calculations for today’s engineers,
however. For example figure 6.6.3 shows the results of two such MATLAB-
generated Hilbert transforms for two signals (a common, ordinary pulse,
and a not so common two-cycle sinusoidal burst raised to the fourth
power).15
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Figure 6.6.3. Computer-calculated Hilbert transforms

An aside: We have actually been working with analytic signals right from
the start of this book. After all, e iω0t is a time function with energy only at
the positive frequency ω = ω0, that is, e iω0t has a single-sided transform. So,
since e iω0t = cos(ω0t) + i sin(ω0t), sin(ω0t) must be the Hilbert transform
of cos(ω0t). Now, what do you think is the Hilbert transform of sin(ω0t) (it is
not cos(ω0t))? See if you can show that x(t) = −x(t),that is, that the Hilbert
transform of the Hilbert transform is the negative of the original time function
(and so the Hilbert transform of sin(ω0t) is − cos(ω0t)). The proof is easy if
you remember the transfer function of a Hilbert transformer.16 Figure 6.6.4 shows
the result of taking the (computer-generated) Hilbert transform of the Hilbert
transform of the sinusoidal burst signal in figure 6.6.3; and, sure enough, the
result is the negative of the burst, with the slight deviations due to cumulative
roundoff errors in all of the many calculations, as well as the truncated time
span for the first Hilbert transform, that is, to faithfully reproduce the original
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Figure 6.6.4. An illustration of x(t) = −x(t)

time function (actually, its negative), the second Hilbert transform should have
knowledge of the first transform from minus infinity to plus infinity ).

Still, while the 1956 issue of the IRE Proceedings had no analytic sig-
nals, it did have something else: the reporting of a new, third way to
generate SSB signals that completely avoids the need to approximate
the noncausal Hilbert transformer.17 The author was Donald K. Weaver,
Jr. (1924–1998), then a professor of electrical engineering at Montana
State College (now Montana State University) in Bozeman. Weaver’s
stunning invention (it is included in every modern text on communi-
cation systems I’ve seen) shows that one can never be absolutely sure
that even a well-studied topic has really been exhausted. Weaver’s SSB
signal generator (shown in figure 6.6.5) is today the modulator circuit
of choice among radio engineers, and the explanation of how it works
is made transparent by simply tracking “where the energy goes” with the
aid of Fourier transforms, some simple complex number multiplications,
and the modulation/heterodyne theorem.
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Figure 6.6.5. Weaver’s SSB signal generator

Figure 6.6.6a shows the magnitude of the transform of our usual band-
limited baseband signal m(t), which of course is symmetrical since m(t)
is real. And again, as before, ωm is the highest frequency at which m(t)
has energy. Now, what you probably noticed right away about Weaver’s
circuit is that there are four heterodyne operations taking place. To start,
the energy of m(t) is shifted up and down the frequency axis twice—
once in the upper path of figure 6.6.5 by multiplication with cos(ω0t),
and again in the lower path by multiplication with sin(ω0t). (Electrical
engineers usually call these paths channels, with the upper channel called
the in-phase or I-channel, and the lower channel called the quadrature
or Q-channel, but I’ll just call them the upper and lower paths.) The
frequency ω0 is equal to 1

2ωm : ω0 is called, in the lingo of electrical
engineers, an audio subcarrier frequency. To understand the rest of figure
6.6.6, it is essential to keep in mind just what the heterodyne theorem
says. In the upper path of Weaver’s circuit, when we first multiply by
cos(1

2ωmt), the transform of that multiplier output—I’ll write F {x(t)} as
the Fourier transform of any time function x(t)—is

F {m(t) cos(ω0t)} = F
{

m(t)
e iω0t + e−iω0t

2

}
= 1

2
F {m(t)e i ωm t

2 } + 1
2

F {m(t)e−i ωm t
2 }

or, in other words, the transform of m(t) is shifted up the frequency axis
by 1

2ωm and multiplied by 1
2 , and shifted down the frequency axis by 1

2ωm
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and multiplied by 1
2 . It is almost but not exactly the same in the lower path,

where we first multiply by sin(1
2ωmt). There the transform of the output

of the first multiplier in that path is

F {m(t) sin(ω0t)} = F
{

m(t)
e iω0t − e−iω0t

2i

}
= 1

2i
F {m(t)e i ωm t

2 } − 1
2i

F {m(t)e−i ωm t
2 },

or, in other words, the transform of m(t) is shifted up the frequency axis
by 1/2ωm and multiplied by 1/2i , and shifted down the frequency axis
by 1/2ωm and multiplied by −1/2i .

These multiplication factors of 1
2 for multiplication by a cosine, and

±1/2i for multiplication by a sine, are crucial to understanding the
operation of Weaver’s circuit.

Figure 6.6.6b shows the up and downshifted baseband transform in
the upper path after the first multiplication, where you’ll notice that
the two sidebands of m(t) now overlap. This looks odd, I’ll admit, but
you’ll soon see where this is all going. Beside each shifted transform I’ve
written a “1

2” to indicate the multiplicative factor. Figure 6.6.6c shows
the output of the lowpass filter (which I’ve assumed is an ideal filter
with vertical skirts at ω = ±1

2ωm).18 And figure 6.6.6d shows the sec-
ond up and downshifted transforms in the upper path after the second
multiplication (ωc is, of course, a frequency very much greater than ωm ,
and denotes the radio frequency at which occurs the efficient radiation
of energy from an antenna). Again, there has been a multiplication by
1
2 and so in figure 6.6.6d I’ve written a “ 1

4 ” by each shifted transform
(because, dare I write this?, 1

2 · 1
2 = 1

4 ).
Starting with figure 6.6.6e, we repeat this whole business for the lower

path, except that after the first multiplication we have a multiplicative
factor of 1/2i for the upshifted transform and a multiplicative factor of
−1/2i for the downshifted transform. Figure 6.6.6f shows the output
of the lower path lowpass filter, and figure 6.6.6g shows the second up
and downshifted transforms in the lower path. Again, there has been
a second multiplication by 1

2i for the upshifted transform and a sec-
ond multiplication by − 1

2i for the downshifted transform, which should
explain the “ 1

4 ” and the “− 1
4 ” (− 1

2i · − 1
2i = − 1

4 , 1
2i · − 1

2i = 1
4 , and

1
2i · 1

2i = − 1
4 ).
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Finally, as indicated in figure 6.6.5, the signals (i.e., transforms) in the
upper and lower paths are added (see figures 6.6.6d and 6.6.6g) to give
figure 6.6.6h, the transform of the Weaver circuit output. The + 1

4 and
− 1

4 portions cancel each other to give zero, and the + 1
4 and + 1

4 add. The
result is that only the upper sideband of the original m(t) survives; the
lower sideband has self-canceled. If, instead of a final summation we had
subtracted the lower path from the upper path, then the output would
be the lower sideband. Whether one adds or subtracts can be selected in
actual practice with literally the flip of a switch.

Weaver’s circuit is one of the prettiest applications of complex num-
bers in electrical engineering that I know of, one that I think Euler,
himself—mathematician, pure and applied—would have loved. As I
mentioned before, Weaver’s discovery of his method for SSB signal gen-
eration caught electrical engineers by surprise. This reminds me of a
wonderful passage from an article on Euler’s generalization of the fac-
torial function, from just the nonnegative integers to the gamma function
which holds for all real numbers19:

George Gamow, the distinguished physicist, quotes Laplace as say-
ing that when the known areas of a subject expand, so also do
its frontiers. Laplace evidently had in mind the picture of a circle
expanding in an infinite plane. Gamow disputes this for physics
and has in mind the picture of a circle expanding on a spherical
surface. As the circle expands, its boundary first expands, but later
contracts. This writer agrees with Gamow as far as mathematics
is concerned. Yet the record is this: each generation has found
something [new] of interest to say about the gamma function.

There will, I believe, always be something new to be learned in read-
ing Euler. And that is probably as good a note as any on which to end
this book.



God, when he created the world, arranged the course of all

events so that every man should be every instant placed in

circumstances to him most salutary. Happy the man who has

wisdom to turn them to good account!

—Leonhard Euler, whose own life is a testament to his words

(from his Letters to a Princess of Germany, 3 vols., 1768–1772)

While there is a steady stream of biographies treating famous (or,
even better from an entertainment point of view, infamous) persons
in popular culture, there is still not even one book-length biography,
in English, of Euler. There are a German-language biography (1929)
and a French-language one (1927), as well as two more recent (1948,
1982) non-English works, but all are obsolete by virtue of the vast Euler-
ian scholarship that has occurred since they were written. Euler himself
wrote so prodigiously that it would be a huge undertaking for a biogra-
pher to write, with true understanding, of what he actually did. Euler
wrote, you see, more than any other mathematician in history. During his
lifetime more than five hundred(!) books and articles by him were pub-
lished (even more after his death), and his total work output accounts
for a third of all that was published in Europe on mathematics, theoreti-
cal physics, and engineering mechanics from 1726 to 1800. In addition,
there is another, equally enormous body of surviving personal letters
(nearly 3,000 of them to and from hundreds of individuals), more thou-
sands of pages of research notebooks, and voluminous diary entries
that he continuously generated from his college days until his death.
A dedicated biographer will have to read it all.
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Still, scattered all about in the journal literature are numerous and
(mostly) excellent essay-length biographical treatments on one of the
greatest mathematicians who ever lived. Several have served as both
my sources and my models. There is a lot of repetition among them,
however, and to keep this essay from degenerating into an explosion
of biographical citations I’ve simply listed my major references here in
one note.1 Unless I am specifically quoting from a particular author, I’ve
not bothered with biographical citations. Perhaps by 2107 (the quadri-
centennial of Euler’s birth) there will at last be an English-language,
book-length biography of him that our grandchildren can curl up with
next to a fireplace on a cold night.

Euler’s life unfolded, in a natural way, in four distinct stages: his birth
and youthful years in Switzerland, his first stay of fourteen years in Russia
at the Imperial Russian Academy of Sciences in St. Petersburg, his depar-
ture from Russia for twenty-five years to join Frederick the Great’s new
Academy of Sciences in Berlin, and his return at Catherine the Great’s
invitation to the St. Petersburg Academy until his death. I’ll treat each
stage separately.

Euler’s ancestors were present in Basel, a German-speaking area of
Switzerland with a population of about 15,000, from 1594 onward. Most
were artisans, but Euler’s father, Paul (1670–1745), was a trained theolo-
gian (a 1693 graduate of the theological department of the University of
Basel) and a Protestant minister. Paul’s intellectual interests were broad,
and while a student at the University he attended mathematics lectures
given by Jacob (aka James) Bernoulli (1654–1705)—one of the founders
of probability theory—at whose home he boarded. Another of the board-
ers Paul became friendly with was Jacob’s brother Johann (aka John or
Jean) Bernoulli (1667–1748), who would play an important role in the
life of Paul’s first son many years later.

Upon graduation at age twenty-three and after a short ministry at an
orphanage, Paul was appointed pastor at a church next to the university.
With that he felt secure enough to marry Margaret Brucker, herself
the daughter of a minister, in April 1706. A year later to the month,
on April 15, 1707, their first child and son Leonhard was born (Euler
grew up with two younger sisters, but his only brother—Johann Heinrich
who, following family tradition, became a painter—was born after Euler
had left home by the age of twelve, if not sooner, for his first formal
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schooling). The year after his birth Euler’s family moved a few miles
from Basel, to the village of Riehen, where young Euler spent his youth.

It was not a life of luxury. His father’s new parsonage had but two
rooms; a study and the room in which the entire family lived. This simple
life in the country with loving, educated parents certainly did nothing to
make Euler either a snob or a fool. All through his life Euler impressed
all by his calm disposition, his strong sense of practicality, and his deeply
held religious views. He was strongly influenced by his parents, and
his was at first a “home taught” education. His mother instructed him
in classical subjects (blessed with what must have been a photographic
memory, Euler could recite all 9,500 verses of Virgil’s Aeneid by heart!),
while his father introduced him to mathematics. In a short, unpublished
autobiographical sketch he dictated to his eldest son in 1767, Euler
recalled that his very first mathematical book—almost certainly given to
him by his father—was an old (1553) edition of a text on algebra and
arithmetic, and that he had faithfully worked through all 434 problems
in it. There was, however, only so much that his parents could do, so,
seeing that he was clearly an unusually talented boy, it was decided that
young Euler needed a more formal educational setting. He was therefore
sent back to Basel, to live with his now widowed grandmother (on his
mother’s side) while a student at Basel Latin school. This education
was supposed to lead, at least in Paul’s mind, to the son following in the
father’s theological footsteps.

Entering Basel Latin must have been quite a shock to the newly arrived
country boy. Corporal punishment was employed on a regular basis and
in abundance; no one would have said the rod was spared, as it wasn’t
unheard of for an unruly student to be beaten until the blood flowed.
If the teachers weren’t hitting the schoolboys, then the students did it
themselves, with classroom fist-fights mixed in between parental assaults
on the teachers! Curiously, the one subject that Euler would perhaps
have thought would make such brutality tolerable—mathematics—was
not part of the school’s curriculum. Instead, Euler’s parents found it
necessary to employ a private mathematics tutor for their son, who did
manage somehow to survive Basel Latin in one piece.

In the fall of 1720, at the age of thirteen, Euler entered the University
of Basel. To be so young at the University was not at all unusual in those
days, and it wasn’t as if he had been admitted to the local equivalent of
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Princeton, either. There were only a hundred students or so, along with
nineteen underpaid and mostly (but not all, as you’ll see) second-rate
faculty. It should be no surprise that Euler stood out in such a crowd, and
in June 1722 he graduated with honors with an undergraduate thesis
in praise of temperance. He followed that with a master’s degree in
philosophy granted in June 1724, when a mere seventeen years old,
with a thesis written in Latin comparing the philosophical positions of
Descartes and Newton. While all of this would hardly seem the stuff of
a proper education for one who would not too much later become the
greatest mathematician of his day, the pivotal intellectual event in Euler’s
life was soon to take place.

Two years before Euler’s birth, his father’s mathematics teacher at
Basel, Jacob Bernoulli, had died. He was succeeded as professor of
mathematics at Basel by his younger brother Johann, Paul’s old friend
and fellow boarder in Jacob’s home. ( Johann’s youngest son, Johann II
[1710–1790], was similarly a friend of young Euler and a fellow mas-
ter’s degree recipient in 1724.) While many of the colleagues of the
Bernoulli brothers at Basel may have been second-raters, Jacob and
Johann certainly were not. Both were mathematicians with international
reputations and, while young Euler of course never met Jacob, Johann
was to have a profound influence on him.

Johann Bernoulli could have been at several far more prestigious
places than the University of Basel, which was pretty much a back-
water institution. He had, in fact, declined multiple attractive offers
of professorial chairs in Holland because of the wishes of his wife’s fam-
ily. But just because he was at Basel didn’t mean he had to like it, and
he didn’t—he was notorious for giving short-shrift to his elementary
mathematics classes. He did, however, offer private instruction to the
few he felt promising, and Euler joined that select group—the fact that
Bernoulli knew Euler’s father certainly didn’t hurt—sometime around
1725. Probably because of his friendship with Johann II—and, through
him, with the older Bernoulli sons, Nicholas (1695–1726) and Daniel
(1700–1782)—Euler came to the attention of the Basel professor of
mathematics. As Euler recalled in his 1767 autobiography,

I soon found an opportunity to be introduced to a famous professor
Johann Bernoulli … True, he was very busy and so refused flatly to
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give me private lessons; but he gave me much more valuable advice
to start reading more difficult mathematical books on my own and
to study them as diligently as I could; if I came across some obstacle
or difficulty, I was given permission to visit him freely every Saturday
afternoon and he kindly explained to me everything I could not
understand … and this, undoubtedly, is the best method to succeed
in mathematical subjects.

Before coming under the influence of Bernoulli Euler had, in obedi-
ence to his father’s wishes, devoted himself to the study of theology,
Hebrew, and Greek, all in preparation for a life of ministry. Once
Bernoulli came to realize the promise of his young student, however,
Paul was eventually convinced that his son should follow in the footsteps
of Johann, and not his. It says much to the love and compassion Paul
must have had for his son that, even when faced with what had to be
a great personal disappointment, he stood aside in favor of what his
son so dearly wanted. Bernoulli’s ever increasing admiration for Euler’s
blossoming genius can be measured by how he addressed his former
student in their correspondence: from 1728 until Bernoulli’s death, the
salutations evolved through “The Very Learned and Ingenious Young
Man” (1728), “The Highly Renowned and Learned Man” (1729), “The
Highly Renowned and by Far Most Sagacious Mathematician” (1730),
and “The Incomparable L. Euler, the Prince among Mathematicians”
(1745). Johann Bernoulli was a man given to much professional compe-
tition and even jealousy, even with his own brother Jacob and with his
own sons,2 but not once does it seem that he challenged Euler’s superior-
ity as a mathematician. It was just so obvious that Euler was of a different
class altogether (and Bernoulli was, himself, world class).

Once he had reached the ripe old age of nineteen (!) Euler was
finished with his formal schooling, and he began to think about starting
a career as an academic. He hoped to remain in Basel, near his family,
and so when the professor of physics there died in September 1726 Euler
applied for the job. Johann Bernoulli was delighted at the prospect of
Euler joining him on the faculty, and encouraged him in his application.
As part of that application, Euler prepared what is now considered to
be equivalent to a doctoral dissertation, titled “Dissertatio physica de
sono” (“A Physical Dissertation on Sound”). Short it was, a mere sixteen
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pages, but it was to become famous, and was cited by scholars for a
century. It was essentially a research program in acoustics, which ended
with discussions on six then hotly debated special problems of physics.
As an example, one of them is now a classic included in just about all
calculus-based college freshman physics texts: what would happen, if
we ignore air friction and the earth’s motion, to a stone dropped into
a straight tunnel drilled to the center of the earth and onward to the
other side of the planet?3

In this attempt at a professorship at Basel, Euler failed—he was sim-
ply too young—but yet another far more wonderful possibility existed
for him, again because of his friendship with Johann Bernoulli (as well
as with his sons Nicholas and Daniel). At almost the same time that he
applied for the Basel position, Euler received an offer to join the new
Imperial Russian Academy of Sciences in St. Petersburg. Founded by
Peter the Great in 1724, the year before his death, the Academy was
part of Peter’s efforts to improve education and to encourage the devel-
opment of western scientific thought in peasant Russia. The Russian
Academy was created in the image of the existing scientific academies in
Berlin and Paris, not in the image of the Royal Society in London, which,
in Peter’s view, was far too independent. The Russian Academy had
direct governmental oversight. That was a feature that wouldn’t bother
Euler until after his arrival. Upon Peter’s death his widow Empress
Catherine I—not to be confused with Catherine II, better known as
Catherine the Great—who shared his desire to improve education in
Russia, became the Academy’s benefactor.

Euler’s invitation to go to Russia came about due to the cleverness
of his Basel mentor Johann Bernoulli, who was himself the original
choice of the Academy. Declining the invitation, he instead suggested
that either of his two oldest sons would be good alternatives and—
of course!—neither could go without the other. So, in 1725 Nicholas
(appointed in mathematics) and Daniel (appointed in physiology) were
off to Russia, thereby giving Euler two friends in St. Petersburg “on the
inside.” They promised their young friend that, at the first opportu-
nity, they would champion him for an appointment. That opportunity
soon came in a totally unexpected manner, when, in the summer of
1726, Nicholas suddenly died from appendicitis. Daniel assumed his
late brother’s mathematics appointment, and recommended that Euler
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be invited to fill his own now vacated spot in physiology. And so it hap-
pened that in the fall of 1726 Euler received his invitation to join the St.
Petersburg Academy as a scholar not in mathematics but in physiology!

In November Euler accepted; it was, for a young man, not an unattrac-
tive proposition, carrying a small salary combined with free lodging,
heat, and light, as well as travel expenses. In addition to Daniel Bernoulli,
the Swiss mathematician Jakob Hermann (1678–1733), who was a second
cousin of Euler’s mother, would be a colleague at St. Petersburg. Euler’s
only condition of acceptance was to ask for a delay in his departure
until the spring of 1727. His letter of acceptance cites weather con-
cerns as the reason for the delay, but his real reasons were twofold. First,
of course, was his desire to remain in Basel where the vacant physics
position decision had not yet been made. And second, assuming that
job failed to materialize (as it did not), Euler needed time to learn
some anatomy and physiology so as not to arrive in Russia an ignora-
mus. Euler spent so much time in his early years studying the “wrong
stuff”!

The academic year 1726–1727 was a “holding action” year for Euler,
but, being Euler, he didn’t just sit around with his fingers crossed hop-
ing for a possible physics position in Basel and studying anatomy for the
fall-back Russian job. He also wrote and submitted a paper to the Paris
Academy of Sciences prize competition for 1727, in which the problem
was to determine the best arrangement and size for the masts on ships,
where “best” meant achieving the maximum propelling force from the
wind without tipping the ship over. It is astonishing that Euler, still a
teenager, nevertheless took second place, losing only to Pierre Bouguer,
a professor well on his way to becoming a leading French nautical expert.
Indeed, the Paris competition problem had been selected purposely to
give Bouguer a huge head start on any competitors—he had been work-
ing on the problem for years. It must have been a disappointment to Euler
to lose—later in his career Euler would win the Paris Academy compe-
tition a total of twelve times—but in fact Bouguer’s win was a blessing in
disguise. If Euler had won, maybe he would have gotten the Basel job,
and would have taken a pass on Russia, where he would find compelling
reasons to dedicate himself, totally and without distraction, to his aca-
demic work. In April 1727, as he turned twenty, Euler left for Russia and
never set eyes on Basel again.
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After an arduous seven-week journey by boat, wagon, and on foot,
Euler arrived in St. Petersburg (then the capital of Russia) in late May,
only to learn that Catherine had just died. The future of the Russian
Academy was suddenly very much in jeopardy. The new tsar, Peter II,
was a twelve-year-old boy, and the real power in Russia lay in the shad-
ows. The nobility, who liked peasant Russia just as it was, ignorant and
pliant, resented all of the foreign German, Swiss, and French intellectu-
als who had been recruited for the Academy and so withdrew financial
support. The Academy appeared to be on the verge of physical collapse
when the nobles moved the imperial court back to Moscow, and took the
Academy’s President with them to serve as the boy tsar’s tutor. A num-
ber of the Academy’s members despaired and, as soon as they could,
returned home. But not Euler. His studies of anatomy and his second
place finish in the Paris masting competition finally paid off for him—
they brought him to the attention, of all things, the Russian Navy, which
offered him a position as a medical officer. Even if the Academy sank, at
least Euler’s ship would still be afloat, perhaps even literally! With the
medical appointment, along with his “doctoral” dissertation on sound,
we might legitimately think of Euler as “Doctor” Euler!

Turmoil at the Academy continued until 1730, when, with the death
of Peter II, Empress Anna Ivanovna’s rise to power brought some stabi-
lizing influence to the political situation. Euler’s distant relative Jakob
Hermann had resigned to return home to Switzerland, but Daniel
Bernoulli had replaced Hermann as professor of mathematics at the
Academy. Two years later Anna returned the capital of Russia to St.
Petersburg. Euler’s life flourished thereafter and, at age twenty-three,
he was made professor of physics. When Bernoulli resigned in 1733 to
accept a professorship back in Basel, Euler was selected to replace him
as the premier mathematician of the St. Petersburg Academy. His per-
sonal life took a happy turn, as well, with his marriage to fellow Swiss
Katharina Gsell (1707–1773), the daughter of a painter who taught
at the school attached to the Academy. This event was celebrated by
an Academy poet, who at one point gives us a hint as to how Euler’s
dedication to mathematics was viewed by others:

Who would have thought it,
That our Euler should be in love?
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Day and night he thought constantly.
How he wanted more to calculate numbers,
· · ·

Euler didn’t think always of numbers: the first of Euler’s thirteen
children was born late the next year.

Happily married, and the first among mathematicians in St.
Petersburg, Euler was a contented man. Both the Academy President and
its Secretary, the Prussian Christian Goldbach, were his close friends, and
his job security seemed assured. And, as long as he kept his nose firmly
planted in mathematics, his life would be equally sheltered from the
outside world of Russian political intrigue. Euler had, at last, “arrived,”
and the first period of his enormously productive career began to really
take-off. Indeed, it already had. In a letter dated December 1, 1729, for
example, Goldbach brought one of Fermat’s conjectures (that 22n + 1 is
prime for all nonnegative integers n) to Euler’s attention. By 1732 (and
probably earlier) he had shown the conjecture is false by factoring the
n = 5 case. During that same period, 1729–30, Euler discovered how
to generalize the factorial function for the nonnegative integers to the
gamma function integral, which holds for all real numbers. Before Euler,
writing (−1

2 )! would have been without meaning, but after Euler the
world knew4 that (−1

2 )! = √
π .

By 1735 Euler had solved a problem that had stumped all
mathematicians—including both of the Basel professors of mathemat-
ics, Jacob and Johann Bernoulli—for almost a century. He calculated
the exact value of ζ(s) = ∑∞

n=1 1/ns—what we today call the zeta
function—not only for s = 2 (the original problem) but for all even
integer s. This wonderful calculation made Euler’s reputation across all
of Europe as news of it spread through the mathematical world. Euler’s
old mentor back in Basel, Johann Bernoulli, was moved to say of his
brother Jacob, who had tried so hard and failed to do what Euler had
done, and had died not knowing the elegant solution Johann would live
to see, “if only my brother were still alive.” In 1735 Euler defined what has
been called the most important number in mathematical analysis after
π and e—limN →∞{∑N

n=1 1/n−ln(N )}, called Euler’s constant orgamma—
and calculated its value to fifteen(!) decimal places. In an age of
hand computation, that was itself an impressive feat. The year 1735
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wasn’t all glorious, however; he nearly died from a fever. Once recov-
ered, though, he soon hit his stride again; for example, in 1737 he found
a beautiful connection between the primes and the zeta function, which
gave him the first new proof since Euclid of the infinity of the primes.5

It was in the 1730s, too, that Euler began his fundamental studies
in extrema theory. In the “ordinary” calculus of Newton and Leibniz
one learns how to find the values of the variable x such that the given
function f (x) at those values has a local minimum or maximum. In the
calculus of variations, one moves up to the next level of sophistication:
what function f (x) gives a local extrema of J { f (x)}, where J (called a
functional) is a function of the function f (x)? One of the pioneers in
this sort of so-called variational problem was Johann Bernoulli, who in
1696 posed the famous brachistochrone problem: what is the shape of
the wire (connecting two given points in a vertical plane) on which a
point mass slides under the force of gravity, without friction, so that the
vertical descent time from the high point to the low point is minimum?
An even older question is the classic isoperimetric problem: what closed,
non–self-intersecting curve of given length encloses the maximum area?
Everyone “knew” the answer is a circle, but nobody could prove it! Those
two problems,6 and others like them, were all attacked by specialized
techniques, different for each problem. There was no general theory.

Until Euler. In 1740 he finished the first draft of his book Method of
Finding Curves that Show Some Property of Maximum and Minimum (it was
published in 1744, after he had left St. Petersburg for Berlin). In it
appears, for the first time, the principle of least action, about which I’ll say
more in just a bit. A line in an appendix to this work displays both the
religious side of Euler and the deep attraction such problems had for
him: “[S]ince the fabric of the universe is most perfect, and is the work
of a most wise Creator, nothing whatsoever takes place in the universe
in which some relation of maximum and minimum does not appear.”

It wasn’t all pure mathematics at St. Petersburg, however. In 1736
his two-volume book on mechanics appeared (Mechanics, or the Science
of Motion Set Forth Analytically), in which he made extensive use of dif-
ferential equations. This work was almost immediately recognized as a
worthy successor to Newton’s 1687 masterpiece, Principia; for example,
Johann Bernoulli stated that the book showed Euler’s “genius and acu-
men.” Not everybody felt that way, however, notably the English gunnery
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expert Benjamin Robins (1707–1751), who thought the use of differen-
tial equations to be an admission of failure (to do experiment), and to
represent an uncritical obedience to calculation. This is, of course, a
distinctly odd position to the modern mind! Robins was no fool—he was
the inventor of the ballistic pendulum, studied by every first-year college
physics student to this day—but even in the 1730s Robins’s negative view
was that of a tiny minority. Euler and Robins would cross swords, of a
sort, a few years later over a text authored by Robins, and again you’ll
see that Robins was singularly unappreciative of Euler.

In this short essay I can’t even begin to do justice to what Euler did
during his first stay in St. Petersburg, and my comments so far are a
mere sampling of his technical accomplishments, out of dozens that could
have been cited. But let me also mention here that he provided great
immediate practical service to Russia with his astronomical observations
at the St. Petersburg Observatory, work that played an important role in
bringing the science of cartography (mapmaking) in Russia up from a
primitive state to then modern standards. It was during that period that
Euler’s earlier, near-fatal brush with fever came back to haunt him—he
began to lose vision in his right eye. Euler wrote to Goldbach in 1740
to say “Geography is fatal to me,” believing that eyestrain from detailed
attention to correcting landmaps was the cause of his difficulty. (Today
it is believed that an eye abscess resulting from the earlier fever was the
more likely cause.) By the time he wrote to Goldbach, Euler was nearly
blind in the right eye. Later, a cataract in his left eye would leave him
totally blind for the last twelve years of his life.

While in St. Petersburg Euler also worked on practical engineering
problems involving naval ship design and propulsion, again using dif-
ferential equations to study the motion of objects in a fluid. He brought
all of that work together in his book Naval Science, mostly completed by
1738 while he was still at St. Petersburg, but not published until 1749,
after he had left for Berlin.

That same year saw Euler’s path cross, indirectly, that of a man he
would be involved with in a most unpleasant encounter years later. That
episode would be a war of words, and the “other side,” Voltaire, was
one of the great literary figures of those times and as much a master
of the poison-pen as Euler was of mathematics. Voltaire was the pen
name adopted in 1719 by the French writer/poet François-Marie Arouet
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(1694–1778), who, during a forced exile in London from 1726 to 1729
(as an alternative to a prison sentence for the crime of exchanging insults
with a man of higher social station than Voltaire’s), became swept up
by Newton’s theories. Voltaire had attended Newton’s funeral in 1727,
talked of that impressive event for the rest of his life, and threw himself
into writing what became a famous popularization of Newton’s philoso-
phy (Éléments de la philosophie de Newton), which appeared in 1738. It was a
time during which the conflict between Newton’s physics and Leibniz’s
metaphysics was a hot issue, and in Éléments Voltaire praised Newton
while later (in 1759), in his famous satire Candide, he spoofed Leibniz
(in the form of that work’s character Dr. Pangloss). Candide is an attack
on the view championed by Leibniz that we live in the “best of all possible
worlds,” and that all that happens is “for the best”: the quote from Euler
that opens this essay would have earned Voltaire’s deepest scorn.

In the 1738 near-miss encounter with Euler the battleground was scien-
tific, however, not literary, and while the prose of Éléments was elegant it is
clear Voltaire did not have a deep understanding of Newton’s mathemat-
ical and scientific concepts. As one writer put it, Éléments “made Newton’s
mathematics known to others if not to its author.”7 In the arena of ana-
lytical reasoning Voltaire, great writer of literary prose that he might be,
was no match for Euler. The near-encounter with Euler was the result of
the Paris Academy of Sciences prize competition, announced in 1736,
to be awarded in 1738. The Academy’s problem was for competitors to
discuss the nature of fire. This was a time before there was any concept
of a “chemical reaction,” and philosophers still talked of the Aristotelian
elements of air, earth, water, and fire as if they were fundamental entities.
It was, not to be too tongue-in-cheek, also a hot topic. Being fascinated
by science apparently convinced Voltaire that he could do science, even
though he was completely without formal training. Voltaire was not a
modest man. Euler’s entry shared first place, but Voltaire did manage
to snare an honorable mention, as did his lover Émilie du Châtelet
(1706–1749), who, by all accounts, understood science and mathemat-
ics far better than did Voltaire. She prepared, for example, the first
French translation of Newton’s Principia, published after her death.

Émilie, with whom Voltaire had begun an affair in 1733 that would
last until her early death shortly after childbirth (by a man neither
Voltaire nor her husband), was an intelligent woman who employed



336 Euler

experts in mathematics and physics as tutors. This is important in our
story of Euler because one of her instructors (and yet another lover) was
the French mathematician and astronomer Pierre Louis de Maupertuis
(1698–1759) who in 1736 led an expedition to make measurements
of the earth’s shape and in 1738 published the book La figure de la
terre, which supported the conclusion the planet is oblate and made
Maupertuis famous as “the earth flattener.” Another tutor was Samuel
König (1712–1757), who had also studied for three years in Basel
with Euler’s old mentor Johann Bernoulli. While taking lessons from
König, du Châtelet wrote a book titled Institutions de physique (published
in 1740), treating the philosophical ideas of Descartes, Newton, and
Leibniz, as well as the concepts of the natures of space, matter, force,
and free will. König and du Châtelet fell out over her book, which König
felt was simply a rehash of what he had taught his pupil. He essentially
charged her, in private conversations with others, with stealing his work.
Ten years later König would make a similar charge directed at Mauper-
tuis, a charge that resulted in Voltaire, Maupertuis, and König clashing
in a conflict that has been called one of the ugliest in the history of sci-
ence. Euler would be swept up into it as well, and none of the four men
would emerge unscathed.

The events that eventually led to that conflict started in mid-1740,
when the new Prussian monarch Frederick II (“the Great”) attempted
to entice Euler away from St. Petersburg to join his newly energized
Berlin Academy of Sciences.8 Frederick neither knew nor appreciated
mathematics but wanted Euler in his circle anyway, just because he knew
others thought Euler was a genius. Euler was simply a prize to be bought
as an ornament for his court (a type of faculty recruitment not unheard
of in modern academia). Indeed, the entire Academy may have been
just for show, at least at first: in a letter dated July 1737, to Voltaire,
Frederick wrote that a “king needed to maintain an Academy of Sciences
as a country squire needed a pack of dogs.”

Euler initially declined the Berlin offer; several months later, when
Empress Anna died leaving only an infant heir, which threw Russia
once more into political turmoil and resulted in all the “foreigners”
at the St. Petersburg Academy again being viewed with hostile suspi-
cion, Euler (at his wife’s insistence) reconsidered the king’s invitation.
He told Frederick what it would take to get him to come to Berlin,
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and in February 1741 the deal was struck. Euler’s official reason to the
St. Petersburg Academy for his wish to resign was that of health—he
claimed he needed a less harsh climate, and that he was concerned for
his eyesight. The Academy seemed to accept that, and Euler managed
to leave Russia on good terms (which would work to his advantage in the
future). His real reason for leaving was revealed shortly after he arrived
in Berlin in late July 1741, when Frederick’s mother, puzzled at why Euler
seemed unwilling to answer any questions at length, bluntly asked him
why he was so reserved, almost timid, in his speech. Euler’s answer was
equally blunt: “Madam, it is because I have just come from a country
where every person who speaks is hanged.”

When Euler came to Berlin Frederick’s new Academy was still very
much in a formative stage—there was not yet even a president. Frederick
had offered the job the year before to another person, who had declined.
Euler was therefore, at least in his mind, a candidate for the job, but so
was Maupertuis, who had also been invited (at Voltaire’s suggestion) to
Berlin by the Francophile Frederick. It would only be after many years
and disappointments that Euler would come to understand that a social
snob like Frederick would never consent to a mere Swiss burgher being
the head of his Academy, no matter how brilliant and accomplished
he might be. Whenever possible—that is, when competence was not
required—Frederick filled openings in government and military posi-
tions with nobility, and excluded commoners no matter how talented
they might be. It did Euler’s cause no good either that he also failed in
the king’s eye at being a witty conversationalist or the writer of French
poetry. (So enamored with French culture was Frederick that in 1744
he ordered all the memoirs of the Berlin Academy to be published in
French, not the usual Latin or even German.)

Simply being a mathematician hurt Euler, too. Frederick had written
( January 1738), while still crown prince, to Voltaire—with whom he had
corresponded already for two years—to tell the French writer what his
plan of study would be: "to take up again philosophy, history, poetry,
music. As for mathematics, I confess to you that I dislike it; it dries
up the mind." Time did nothing to change the king’s mind. Years later
( January 1770) he wrote to Jean D’Alembert—the French mathematician
Frederick wanted to be president of the Berlin Academy—to say “An
algebraist, who lives locked up in his cabinet, sees nothing but numbers,



338 Euler

and propositions, which produce no effect in the moral world. The
progress of manners is of more worth to society than all the calculations
of Newton.”

This was the man to whom the naive Euler bowed his head. Of his
Berlin appointment he wrote to a friend to say “I can do just what I
wish [for his technical studies]. … The King calls me his professor, and I
think I am the happiest man in the world.” Later, Euler would change his
opinion. Things got off to an unsettled start when, nearly simultaneous
with Euler’s arrival in Berlin, Frederick was off to war with an invasion of
neighboring Austria. His mind was not on either the Academy or Euler’s
possible role in it. The issue of the presidency would, in fact, remain
unresolved for five years! The king’s correspondence with Maupertuis
shows that Euler was never, ever, in the running: more than a year before
Euler’s arrival, in a letter dated June 1740, Frederick wrote to the French-
man to express his “desire of having you here, that you might put our
Academy into the shape you alone are capable of giving it. Come then,
come and insert into this wild crabtree the graft of the sciences, that it
may bear fruit. You have shown the figure of the Earth to mankind; show
also to a King how sweet it is to possess such a man as you” (my empha-
sis). When Maupertuis finally accepted in 1746, he was, in the words of
Frederick himself, to be “the pope of the Academy.” Euler received the
consolation prize of being Maupertuis’s chief deputy and director of the
mathematics class of the Academy.

Euler’s Berlin years were a time of stunning brilliance. The list of his
accomplishments is simply enormous (he prepared 380 works, of which
275 were published!), but to select just a few, let me mention analyses
of proposed government-supported lotteries, annuities, and pensions,
studies that led to Euler’s writings in probability theory; translation from
English to German of Benjamin Robins’s (mentioned earlier) 1742 book
New Principles of Gunnery, a work of tremendous interest to the warrior-
king Frederick (Robins was greatly irritated with Euler because he added
supplementary material five times longer than the original work!); author-
ship of the book Introductio in analysin infinitorum (in which he clearly
states what I have called “Euler’s formula” all through this book), a text
one prominent historian9 of mathematics has ranked as important as
Euclid’s Elements; studies in the technology of constructing optical lenses,
toothed gears, and hydraulic turbines; and finally (for this list), assorted
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studies in differential geometry, hydrodynamics, and lunar/planetary
motion. Euler’s extraordinary intellectual and physical powers were at
their peak in his Berlin period.

While denied the presidency he so desired, Euler’s administrative
responsibilities at the Academy were nevertheless extensive. He served as
the de facto president during Maupertuis’s absences, selected Academy
personnel, oversaw the Academy’s observatory and botanical gardens,
and provided oversight of numerous financial matters (most important
of which was the publication of calendars, maps, and almanacs, the sale
of which generated the entire income of the Academy). On this last mat-
ter, in particular, Euler learned early on that while Frederick might be a
mathematical novice, when it came to money the king could count. In
January 1743 Euler wrote to the king to suggest more money could be
raised by selling almanacs in the newly conquered territory in Austria. In
reply, Frederick wrote “I believe that, being accustomed to the abstrac-
tions of magnitude in algebra, you have sinned against the ordinary rules
of calculation. Otherwise you would not have imagined such a large rev-
enue from the sale of almanacs.” Two decades later the matter of almanac
revenue would drive the final wedge between Euler and the king.

Frederick’s private view of Euler, briefly hinted at in the above
response, was more openly expressed in his correspondence with others.
In an October 1746 letter to his brother, for example, the king called
Euler a necessary participant in the Academy because of his prodi-
gious abilities, but, said that persons such as Euler were really nothing
more than “Doric columns in architecture. They belong to the under-
structure, they support the entire structure.” That is, good enough to
hold the roof up, but that was it. What Voltaire and Maupertuis had,
that Euler didn’t and Frederick valued most, was the ability to gener-
ate light-hearted, clever conversation and correspondence (often at the
expense of others). The fact that Euler couldn’t compose a minuet or
a flowery poem was a fatal lacking, in the king’s view. Despite all this,
Euler’s life under Frederick seems to have been a full one, as well as one
of increasing financial well-being. Since 1750, for example, his now wid-
owed mother had lived with Euler, and in 1753 he had the resources to
purchase an estate on the outskirts of Berlin that she managed for him.

Then, in 1751, we can see the beginning of the end of Euler’s hopes
for a lifelong career in Berlin. A few years earlier, just after assuming
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the presidency of the Academy, Maupertuis put forth what he claimed
to be a new scientific principle, called least action.10 The fact that Euler
had enunciated essentially the same ideas in 1744 seems to have escaped
him, and Maupertuis claimed the principle of least action in his 1750
book Essai de cosmologie. As he wrote there, “Here then is this principle,
so wise, so worthy of the Supreme Being: Whenever any change takes
place in Nature, the amount of action [a term most ambiguously defined
by Maupertuis] expended in this change is always the smallest possible.”
Despite Maupertuis first laying claim to the presidency that Euler so
wanted, and then to a technical concept that Euler had mathematically
refined far beyond Maupertuis’s mostly theological statement and which
Euler surely felt was really his, Euler remained supportive of Maupertuis.
Then Samuel König entered.11

König, who since 1749 had been the librarian to the royal court at
The Hague, had been proposed by Maupertuis for election to the Berlin
Academy, which was done in 1749. Nonetheless, König then accused
Maupertuis of having stolen the least action concept from an October
1707 letter by Leibniz to the Swiss mathematician Jakob Hermann
(Euler’s distant relative who had been at St. Petersburg with him from
1727 to 1730), a copy of which König claimed to have seen. Accusing
the president of the Berlin Academy of plagiarism was a serious charge,
and he was of course asked to substantiate the charge. König wasn’t able
to produce the copy, and a search of the surviving letters of Leibniz
to Hermann failed to produce the original. An Academy committee,
headed by Euler, was formed to investigate this awkward mess, which
concluded that it was König who was the fraud. (Modern historians gen-
erally believe König was in the right on this matter, and that there was
indeed such a letter from Leibniz, but it still has not been found to this
day.) But that wasn’t the end of the matter. Voltaire, who had earlier
fallen out with Maupertuis over both a squabble on filling a vacancy at
the Academy and Maupertuis’s refusal to provide a false alibi to help
Voltaire escape blame in a stock swindle(!), felt he had reason to take
revenge on his previous friend. He claimed that Maupertuis had earlier
been in a lunatic asylum and, in his opinion, was still crazy! Maybe König,
suggested Voltaire, wasn’t a fraud after all.

When Frederick publicly sided with Maupertuis, Voltaire was stung
by the royal rebuff and decided to really retaliate. “I have no scepter,”
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he wrote, “but I have a pen.” The result was the 1752 satire Diatribe
du Dokteur Akakia, in which a thinly disguised Maupertuis was plainly
portrayed as an idiot: he is finally “reduced” to the principle of least
action, that is, death, by a bullet going at the square of its speed! Diatribe
made Maupertuis the laughing-stock of Europe, and the ridicule was
devastating to him. In 1753 Maupertuis returned to France and then,
only at Frederick’s demand that he return because the Academy was in
chaos with his absence, he came back the next year—only to leave again
in 1756 for good. As a supporter of Maupertuis, the episode did Euler no
good, either. In a sequel to Diatribe, Voltaire inserted a snide reference
to Euler by name. At one place Maupertuis and König are imagined to
sign a peace treaty, which includes the following passage:

our lieutenant general L. Euler hereby through us openly declares
I. that he has never learnt philosophy and honestly repents that by
us he has been misled into the opinion that one could understand
it without learning it, and that in future he will rest content with
the fame of being the mathematician who in a given time has filled
more sheets of paper with calculations than any other.

While it is said the king laughed until he cried at reading Voltaire’s
cruel spoof (thus showing he loved what passed for satiric wit more than
friendship), Voltaire’s book nonetheless was a public insult to the head
of Frederick’s Academy. The king had a bonfire made of copies of Dia-
tribe and Voltaire, too, found it expedient to return to France. He, like
Maupertuis, never returned to Berlin. The assassin had brought himself
down along with his victim.

To Euler’s despair, even with the downfall of Maupertuis the king
continued to overlook Euler as the logical person to be the next Academy
president. Frederick clearly preferred the disgraced Frenchman to the
one-eyed Swiss mathematician, even though it was Euler who was now
keeping the king’s Academy from total disintegration. There was simply
no spiritual connection between the king and the half-blind man he
mocked (behind Euler’s back) as a “limited cyclops.” So, again, the
Academy went for years without a president, with Euler again serving de
facto in that role. Then, in 1763, Frederick offered the presidency to
the French mathematician Jean D’Alembert, who declined. If offering
the job to another wasn’t enough of an insult to Euler, the year after
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D’Alembert’s refusal to come to Berlin the king named himself president!
The hurt to Euler must have been enormous. And yet he remained in
Berlin for two more years. What finally made Euler’s decision to leave
was yet one more insult from Frederick.

At the end of 1763 the King believed the Academy’s income from
the sale of its almanacs could be increased by changing the adminis-
trative structure of the Academy. That is, Euler would no longer be
the man in charge, but would be just one voice on a committee. Euler
wrote in protest, with the king replying in a sharp, unpleasant manner.
Frederick’s decision stood—Euler was, in no uncertain terms, in a cer-
tain sense “demoted.” Euler had at last had enough with this sort of
treatment, and looked for a way out. He didn’t have to look far. His way
out of Berlin had been laid, in fact, years earlier. In early July 1763 Euler
had received a letter from Grigorij Teplov, Assessor of the St. Peters-
burg Academic Chancellery, sent by the authority of Russian Empress
Catherine the Great, offering Euler the position of Director of the Math-
ematical Division of the St. Petersburg Academy. In addition, he offered
Euler the post of Conference Secretary of the Academy, and positions
for all of his sons. Euler quickly wrote back to Teplov to say

I am infinitely sensitive to the advantageous offers you have
made by order of Her Imperial Majesty and I would be partic-
ularly happy if I were in a position to profit from it immedi-
ately … if … Mr.D’Alembert or another Frenchman had accepted
the President’s position of the [Berlin] Academy, nothing could
have stopped me from my immediate resignation and I could not have
been refused under any pretext. It is understood that everyone would have
blamed me for submitting to such a President. … However, not only
did Mr. D’Alembert refuse this offer, but he subsequently did the
wrong thing by highly recommending me12 to the King, and if I
wished to give my resignation I would be met with the most obsti-
nate refusal. This would place me in a decidedly difficult, if not
impossible, situation for any subsequent steps. (my emphasis)

Euler’s comments seem to indicate that at the time he wrote he still
thought he had a chance to be named president of the Academy. By 1766
those hopes were finally dead, and Euler revisited the St. Petersburg
offer. Proving himself a tough negotiator, he got everything he asked for
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including, at last, the directorship of the St. Petersburg Academy. It took
four letters of request to Frederick to obtain permission to leave Berlin,
but in May 1766 the king finally relented and let Euler go, and in June
Euler and his family left for Russia. Of their unhappy parting, the king
wrote at the end of July to D’Alembert to say “Mr. Euler, who is in love
even to madness with the great and little bear, has travelled northward
to observe them more at his ease.” To replace Euler as director of the
mathematical class in Berlin, D’Alembert recommended to the king that
the position be offered to the Italian-born Frenchman Joseph Lagrange
(1736–1813), who accepted. In his July letter to D’Alembert, the king
thanked D’Alembert for his aid in replacing Euler, and also got in one
last insulting shot (which he somehow imagined to be funny) at Euler,
writing “To your care and recommendation am I indebted for having
replaced a half-blind mathematician by a mathematician with both eyes,
which will especially please the anatomical members of my academy.”
Such a wit was Frederick.

The final stage of Euler’s life, his last seventeen years in St. Peters-
burg, was the mirror image of the Berlin years. In St. Petersburg he was
a celebrity, and there was no greater admirer of him than the Empress
herself. His personal life, however, was not so uniformly rosy. Soon after
his arrival he lost nearly all the vision in his remaining eye, and a failed
cataract operation13 in 1771 left him almost totally blind. That same
year saw a fire destroy his home; he escaped serious injury, perhaps
death, only with the aid of a heroic rescue. And in late 1773 his wife
died; three years later he married again, to his first wife’s half-sister. The
powerful Euler intellect was not to be stopped by these events, however,
and his scientific output continued to be enormous. About half of his
total lifetime output was generated after his return to St. Petersburg. He
started off with a bang by publishing what today we would call a best-
seller, his famous Letters to a Princess of Germany.14 This work found its
origins in lessons, in the form of letters, given by Euler to a fifteen-year-
old second cousin of Frederick’s. Those letters covered a wide range of
topics, including general science, philosophy, and physics. Letters was
a huge success, with many editions in French, English, German, Rus-
sian, Dutch, Swedish, Italian, Spanish, and Danish. His more advanced
work in Russia included other books and papers on algebra, geometrical
optics, calculus, and the probability mathematics of insurance.
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Perhaps a true sign of fame, of ‘having arrived,’ is when people start
making-up stories about you. There is a famous example of this, famous,
at least, in the mathematical world, in the case of Euler. To quote a
well-known historian of mathematics,

The story goes that when the French philosopher Denis Diderot
paid a visit to the Russian Court, he conversed very freely and
gave the younger members of the Court circle a good deal of lively
atheism. There upon Diderot was informed that a learned mathe-
matician was in possession of an algebraical demonstration of the
existence of God, and would give it to him before all the Court, if he
desired to hear it. Diderot consented. Then Euler advanced toward
Diderot, and said gravely, and in a tone of perfect conviction:
“Monsieur, a + bn/n = x , donc Dieu existe: répondez!” Diderot,
to whom algebra was Hebrew, was embarrassed and disconcerted,
while peals of laughter rose on all sides. He asked permission to
return to France, which was granted.15

This story is absurd on the face of it—Denis Diderot (1713–1784) was
not a mathematical illiterate, and it is unimaginable that a man like
Euler would have participated in such a stupid stunt. Modern historians
have demonstrated quite convincingly that this tale is a fairy tale, prob-
ably started by Frederick (who greatly disliked Diderot) or one of his
sycophants.16

Euler had a long, almost unbelievably productive life, but it all came to
an end on September 18, 1783. As his biographical entry in the Dictionary
of Scientific Biography describes his final hours,

Euler spent the first half of the day as usual. He gave a mathemat-
ics lesson to one of his grandchildren, did some calculations with
chalk on two boards on the motions of balloons; then discussed
with [two colleagues] the recently discovered planet Uranus. About
five o’clock in the afternoon he suffered a brain hemorrhage and
uttered only “I am dying,” before he lost consciousness. He died
about eleven o’clock in the evening.

Analysis incarnate, as Euler was known, would calculate no more, and
he was buried with great fanfare. He lies today in the Alexander Nevsky
Lavra cemetery in St. Petersburg,17 beneath an enormous headstone
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erected in 1837. His tomb is near some of the greatest Russian musical
talents, including Mussorgsky, Rimsky-Korsakov, and Tchaikovsky.

The end came suddenly for Euler, but, as a deeply religious man, I
suspect that even if he had had some advance warning he would have
been at peace. Just after writing the words in the quote that opens this
essay, Euler went on to write “[The] idea of the Supreme Being, as
exalted as it is consolatory, ought to replenish our hearts with virtue
the most sublime, and effectually prepare us for the enjoyment of life
eternal.” Euler clearly believed there is something beyond the grave, and
it is comforting to imagine him now, vision restored with pen in hand,
finishing new calculations that have at last revealed to him the value of
ζ(3). But, no matter. Euler will never die. The brilliance of his mind, the
clarity of his thought, lives everywhere in mathematics.18
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A number of citations to my book An Imaginary Tale: The Story of
√−1 (Princeton

University Press 1998) are made in the following notes. To keep those citations from
repeating that title needlessly, the format is simply AIT followed by page numbers.

Preface

1. Boston Globe, May 16, 2002, p. A16.
2. My association of eroticism with technical creativity is not a gratuitous one.

See, for example, Arthur I. Miller, “Erotica, Aesthetics, and Schrödinger’s Wave
Equation,” in It Must Be Beautiful: Great Equations of Modern Science (edited by Graham
Farmelo), (Granta Books, 2002). The Irish mathematician and theoretical physicist
John L. Synge (1897–1995) briefly alluded to this issue, too, in his marvelously
funny and erudite fantasy novel Kandelman’s Krim ( Jonathan Cape, 1957, p. 115).
There he has one character (the Orc) remark in conversation with others, during
the novel’s extended exchange on mathematics, “I am recovering from our recent
discussion about passion and sex. . . . You will admit that the ascent from that level
to the square root of minus one calls for some adjustment.” Synge’s book ought to
be read by anyone interested in mathematics, and most certainly by all who plan to
teach mathematics.

3. The use of math in films to manipulate an audience’s perception of a character
is not new. In the 1951 movie No Highway in the Sky, for example, the hero ( James
Stewart) is supposed to be a bit of an odd duck, an aeronautical engineer who
discovers that metal fatigue (and the resulting cracks) can be fatal to jet airplanes.
To establish that he is not quite “ordinary,” we learn early on that he has been
spending time thinking about something weird called the “Goldbach conjecture.”
(You can almost hear a 1950s theater audience sucking in its collective breath, and
the scattered, horrified exclamations of “Good Lord!” in the dark.) Now, there
actually is a Goldbach conjecture, named after the Prussian mathematician Christian
Goldbach (1690–1764). The conjecture dates from a 1742 letter he wrote to Euler,
and it is easy to state: every even integer greater than 2 can be written as the sum of two
primes. Computer calculations have shown it is true for all even integers up to 1014,
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but its general truth is still an open question. In 2000 the British publisher Faber and
Faber announced a prize of $1,000,000 for a solution to Goldbach’s conjecture, if
received by them by March 15, 2002 and published by March 15, 2004 in a reputable
math journal. This was a publicity stunt to attract attention to their publication of a
novel by Apostolos Doxiadis, Uncle Petros and Goldbach’s Conjecture. There was a double
irony to the contest: first, one had to be a legal resident of either the United Kingdom
or the United States, and so Goldbach himself (if resurrected) could not have even
entered, and second, the publisher was inviting people to enter a contest—almost
surely doomed to failure (and so it was, since no proof was ever published)—based
on a novel about an old mathematician who feels his life is a failure because he spent
it all in a failed attempt to prove Goldbach’s conjecture!

4. The definitive work on Dirac, and of his views on mathematical beauty, is
Helge Kragh, Dirac: A Scientific Biography (Cambridge University Press, 1990).

5. Pollock’s method is more accurately called “drip painting,” because he simply
let paint drip off the end of a stick or through a hole in the bottom of a suspended
can as the stick or the can moved over a canvas laid flat on the ground. In the case of
the can, a gravity-driven mechanical system did all of the “creative” work. Rockwell
made subtle fun of this mechanistic way to “paint” in a cover he did for the Saturday
Evening Post in 1962—see the color plate of The Connoisseur facing p. 357 in the
biography by Laura Claridge, Norman Rockwell: A Life (Random House, 2001). For
more on the “mathematics” of Pollock’s paintings, see Richard P. Taylor, “Order in
Pollack’s Chaos,” Scientific American, December 2002, pp. 117–21.

Introduction

1. K. Devlin, “The Most Beautiful Equation,” Wabash Magazine, Winter/Spring
2002.

2. American Mathematical Monthly, January 1925, pp. 5–6. One of Peirce’s sons was
the philosopher and logician Charles Sanders Peirce (1839–1914) who led a greatly
troubled personal and professional life. Some years after his death a handwritten
note was found in one of his books in which he said of his father “He . . . had a
superstitious reverence for ‘the square root of minus one.’ ” And of his brother James
Mills Peirce (1834–1906), like their father a professor of mathematics at Harvard,
C. S. Peirce declared him to be a “superstitious worshipper of . . .

√−1.” Clearly, for
the Peirce men, the square root of minus one was also the root of some personal
conflict. See American Mathematical Monthly, December 1927, pp. 525–27.

3. Peirce’s blackboard statement is equivalent to e iπ + 1 = 0. Just raise both
sides to the ith power to get e iπ/2 = i and then square (which gives e iπ = i2). Since
i2 = −1, the equivalence is now clear.

4. Le Lionnais’s essay can be found in Great Currents of Mathematical Thought,
vol. 2 (Dover, 1971) pp. 121–58.



Notes to Introduction 349

5. For more on Dirac and his impulse function, see section 5.1. For an “explana-
tion” of why all mathematics eventually finds a “use,” see the amusing story by Alex
Kasman (a professor of mathematics at the College of Charleston, in South Carolina)
“Unreasonable Effectiveness,” Math Horizons, April 2003. Another counter-example
to Hardy’s “uselessness” criterion is found today in prime number theory. Hardy him-
self was fascinated by prime numbers and certainly thought the study of them to be
one of pure mathematical beauty. Hardy would no doubt be horrified, if alive today,
to learn they are now at the center of many modern cryptographic systems used by
practically everyone (e.g., the sending of encoded messages by governments, and
the financial transactions conducted via the Internet by individuals buying things
with credit cards).

6. The difference between a sufficient condition and a necessary one is a matter
of strength. A sufficient condition is at least as strong as a necessary one, that is,
it may demand more than is necessary. For example, it is certainly sufficient that a
map maker have ten million colors on hand—there is no map that will give him
any trouble then. That is, ten million colors are more than necessary. But only four
colors are absolutely necessary, which means there are no maps that four colors
can’t handle, but there are maps that three colors can not handle. It should be clear
that a necessary condition may not be enough to ensure whatever is at question.
A necessary and sufficient condition achieves the perfect balance between requiring
“too much” and “not enough.” Somewhat oddly, however, if one draws maps on
surfaces more complicated than a plane there are very pretty traditional (that is, they
don’t use a computer) proofs of the map coloring theorem. For example, seven
colors are sufficient and necessary to color all possible maps on the surface of a
torus (a donut). There is even a nice sufficiency-only proof for five colors for all
possible maps on a plane. There is still no “beautiful” proof for four colors being
sufficient and necessary for all possible planar maps. The complete story of the four
color theorem, as I write, can be found in Robin Wilson, Four Colors Suffice: How
the Map Problem Was Solved (Princeton University Press, 2003). More technical is the
book by Thomas L. Saaty and Paul C. Kainen, The Four-Color Problem: Assaults and
Conquest (McGraw-Hill, 1977). They tell (p. 8) the following wonderful story about
Hermann Minkowski (1864–1909), the youthful Einstein’s math teacher in Zurich:
“The great mathematician Hermann Minkowski once told his students that the four-
color conjecture had not been settled because only third-rate mathematicians had
concerned themselves with it. “I believe I can prove it,” he declared. After a long
period, he admitted, “Heaven is angered by my arrogance; my proof is also defective.”

7. K. Appel and W. Haken, “The Four Color Proof Suffices,” Mathematical
Intelligencer 8, no. 1, 1986, pp. 10–20.

8. For a long essay on the computer proof of the four-color problem (and on com-
puters and truth, in general), see Donald MacKenzie, Mechanizing Proof: Computing,
Risk, and Trust (MIT Press, 2001). For even more on computers and the four-color
problem, and also the more recent use of computers to “resolve” a famous ancient
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conjecture (Kepler’s maximum density sphere-packing problem), see George G.
Szpiro, Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of
the Oldest Math Problems in the World ( John Wiley, 2003), particularly chapter 13, “But
Is It Really a Proof?”.

9. Euler thought the equation x4 + y4 + z4 = w4 had no integer solutions.
He probably arrived at that conclusion from the observations that x2 + y2 = w2

does have integer solutions, while x3 + y3 = w3 does not (this is a special case of
Fermat’s last theorem, of course, discussed in chapter 1), but x3 + y3 + z3 = w3

does (e.g., 33 + 43 + 53 = 63). That is, in general, Euler conjectured at least n nth
powers are required to sum to an nth power. To have integer solutions for n = 5,
for example, Euler thought one needed to have at least five integers on the left, that
is, x5 + y5 + z5 + u5 + v5 = w5. In 1966 this was shown, by direct computer search, to be
false, with the discovery of the counterexample 275 + 845 + 1105 + 1335 = 1445.

10. The divergence is fantastically slow; for example, the first ten billion terms
sum to only just 23.6. An even more surprising related result is that, if one sums
the reciprocals of just the primes, then the sum still diverges. This produces a new
way, due to Euler (see AIT, pp.150–52), different from Euclid’s ancient proof, for
showing the infinitude of the primes. In 1919 the Norwegian mathematician Viggo
Brun (1885–1978) showed that the sum of the reciprocals of just the twin primes—
consecutive primes differing by 2—is finite (which unfortunately does not settle the
question of whether or not the twin primes are infinite in number, one of the most
famous open questions in mathematics). By the way, this sum, called Brun’s constant, is

B =
(

1
3

+ 1
5

)
+
(

1
5

+ 1
7

)
+
(

1
11

+ 1
13

)
+ · · · = 1.90216 · · · ,

and it was when calculating B in 1994 that Thomas Nicely, a professor of mathemat-
ics at Lynchburg College in Virginia, discovered the infamous division algorithm
flaw in the math coprocessor of Intel’s Pentium® chip (Intel had actually discov-
ered the error itself, earlier, but had decided it was “not important”). In calculating
4, 195, 835/3, 145, 727, for example, the result was 1.33373906 . . . instead of the cor-
rect 1.33382044 . . . . This affair provided yet another reason for the uneasy feeling
many have for proofs based on voluminous computer calculations.

11. You can find it, for example, in AIT, pp. 146–47.
12. See Marilyn vos Savant, The World’s Most Famous Math Problem (St. Martin’s

Press, 1993), pp. 60–61. The review cited in the text is by Nigel Boston and Andrew
Granville, American Mathematical Monthly, May 1995, pp. 470–73. Somewhat more
restrained is the review by Lloyd Milligan and Kenneth Yarnall, Mathematical Intelli-
gencer 16, no. 3, 1994, pp. 66–69. But even there vos Savant’s book is characterized as
being both superficial and full of distortions. Those reviewers also bluntly (and, in
my opinion, correctly) charge the high-IQ vos Savant with simply not knowing what
she is talking about. It is very difficult, in the face of such arrogant ignorance, to
remain temperate. So, let me instead just quote a comment, directed to vos Savant, by
the Australian mathematician Alf van der Poorten, in his book Notes on Fermat’s Last



Notes to Introduction 351

Theorem (Wiley-Interscience, 1996), p. 27: “Up a gum tree,” which van der Poorten
says is what his teachers would say in response to hearing “irrelevant nonsense.”

13. Perhaps the most elementary example possible of a realm of real integers in
which unique factorization fails is that of the positive even integers, that is, the realm
is the infinite set 2,4,6,8,10, . . . . The product of any two integers in this realm is also
in the realm (since even times even is even). Some numbers in this realm can be
factored (e.g., 4 = 2 · 2 and 12 = 6 · 2), but the rest cannot because there are no
smaller integers, All in the realm, whose product is the given integer, for instance,
2, 6, 10, 18, and 30. The integers that can’t be factored are the primes of this realm.
Unique factorization into a product of primes fails in this realm, as shown by the
counterexample 60 = 6 · 10 = 2 · 30. This single illustration (180 = 18 · 10 = 6 · 30
is another) demonstrates that unique factorization must be formally established for
each new realm. Arguing for unique factorization in the realm of the ordinary inte-
gers by simply invoking “intuition” or “obviousness” is a priori a false argument. In
chapter 1 I will tell you of a famous episode in nineteenth-century mathematics pre-
cipitated by a mathematician who made a similar, disastrous mistake when trying to
prove Fermat’s “last theorem” with complex numbers.

14. Euler’s product expansion of the sine and his original calculation of the sum of
the reciprocals of the positive integers squared can both be found in AIT, pp. 155–56
and 148–49, respectively. In chapter 4 I’ll rederive his famous sum in a different way,
using complex exponential Fourier series.

15. What Euler was actually studying is the zeta function, ζ(s) =
∑∞

n=1
1/ns . As

discussed in the text, ζ(1) diverges, and Euler showed ζ(2) is equal to π2/6. He also
successfully evaluated ζ(s) for all even integer values of s. The values of ζ(s) for s odd
remain, without exception, unknown. The values of ζ(s) for all even s are irrational,
while for odd s the irrationality (or not) of ζ(s) is known only for one specific value
of s; it was big news in the mathematical world when the French mathematician
Roger Apéry (1916–1994) was able to show (in 1979) that ζ(3) is (whatever its value
may be) irrational. Then, in 2000, the French mathematician Tanguy Rivoal showed
that, for an infinity of odd (but unspecified) s, ζ(s) is irrational. In 2001 he made this
much more specific by showing that there is at least one odd integer s in the interval
5 to 21 such that ζ(s) is irrational. That same year the Russian mathematician Wadim
Zudilin reduced the range on s to 5 to 11.

16. The formula that drove Watson to such heights of poetic passion was

∞∫
0

e−3πx2 sinh(πx)

sinh(3πx)
dx

= 1

e2π/3
√

3

∞∑
n=0

e−2n(n+1)π

(1 + e−π )2(1 + e−3π )2 · · · (1 + e−(2n+1)π )2

which is, I must admit, pretty darn awe-inspiring!
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17. These lectures were collected in book form: The Beauty of Doing Mathematics:
Three Public Dialogues (Springer-Verlag, 1985).

18. One of Charles Darwin’s friends once wrote of the great nineteenth-century
naturalist that “He had . . . no natural turn for mathematics, and he gave up his
mathematical reading before he had mastered the first part of Algebra, having a
special quarrel with Surds and the Binomial Theorem.” Quoted from volume 1 of
The Life and Letters of Charles Darwin (Basic Books, 1958), p. 146. This quotation lends
some credibility for the common attribution to Darwin of the definition of a math-
ematician as “a blind man in a dark room looking for a black cat which isn’t there.”

Chapter 1: Complex Numbers

1. From the 1943 book Mathematics for the General Reader by British mathematician
Edward Charles Titchmarsh (1899–1963), who taught at Oxford for decades. Not
everybody thinks

√−1 to be a “simple concept.” In Robert Musil’s 1906 novella Young
Törless, for example, two schoolboys who have just left a classroon after a mathematics
lecture conclude their discussion about the mystery of

√−1 with one saying

Why shouldn’t it be impossible to explain? I’m inclined to think it’s quite likely
that in this case the inventors of mathematics have tripped over their own feet.
Why, after all, shouldn’t something that lies beyond the limits of our intellect
have played a little joke on the intellect? But I’m not going to rack my brains
about it: these things never get anyone anywhere.

A very interesting psychological analysis of this literary work can be found in Harry
Goldgar, “The Square Root of Minus One: Freud and Robert Musil’s Törless,” Compar-
ative Literature (Spring 1965), pp. 117–32. As Goldgar writes of the central character’s
confusion,

A visit to the young mathematics master solves nothing; the man merely advises
Törless that he will understand later, and meanwhile might read Kant, of
whom, of course, the boy cannot make head nor tail. And so the “imaginary
numbers,” the “square root of minus one,” come to represent to Törless, and
to us, the irrational forces within him; they become, from now until the end
of the book, a controlling symbol for the unconscious.

2. The “puzzle” of
√−1 has probably not been completely vanquished, even

today. There is, for example, an amusing story told by Isaac Asimov about an argu-
ment he had in college, with a professor of sociology, who declared “Mathematicians
are mystics because they believe in numbers that have no reality.” When Asimov
asked what numbers the professor was referring to, he replied “The square root of
minus one. It has no existence. Mathematicians call it imaginary. But they believe
it has some kind of existence in a mystical way.” See Asimov’s essay “The Imaginary
That Isn’t,” in Adding a Dimension: Seventeen Essays on the History of science (Doubleday
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1964), pp. 60–70. Historically, as I discuss in AIT, the real puzzle for the early thinkers
on

√−1 was why certain cubic equations with obviously real roots had them come
out in terms of the mysterious

√−1. When I use the quadratic equation x2 + 1 = 0
as my starting point in this book, therefore, I am actually taking an approach more
modern than it is historical.

3. I am assuming you know how to multiply matrices. If that isn’t the case, here’s
a quick summary of what you need to know: if A and B are two 2 × 2 matrices, then

AB =
[

a11 a12
a21 a22

][
b11 b12
b21 b22

]

=
[

(a11b11 + a12b21) (a11b12 + a12b22)

(a21b11 + a22b21) (a21b12 + a22b22)

]
.

That is, the (j , k) entry in the product matrix is the product of the j th row vector

of A and the kth column vector of B: [aj1 aj2]
[

b1k
b2k

]
= aj1b1k + aj2b2k . A and B

are said to commute if AB = BA, a property we take for granted in the realm of the
ordinary real numbers. It is not generally true for matrices, however; for example,

if A =
[
3 1
2 6

]
and B =

[−1 1
2 0

]
, then AB =

[−1 3
10 2

]
while BA =

[−1 5
6 2

]
. And

finally, when a matrix is multiplied by an ordinary number c , one merely multiples
each entry of the matrix by that number, that is,

cA = c

[
a11 a12
a21 a22

]
=
[

ca11 ca12
ca21 ca22

]
.

4. In control theory one often encounters the strange-looking time-dependent
object eAt , which is called the state-transition matrix (the matrix A is formed from
the equations that describe how a control system moves from any one of its states
to any other of its states). Now, that is an interesting concept, raising e to a matrix
power! What could that possibly mean? Simply this: since eλt = 1 + λt + (λt)2/2! +
(λt)3/3! + · · ·, replacing λ with A and 1 with I gives the matrix

eAt = I + At + A2 t2

2! + A3 t3

3! + · · ·.

So now you see why control theorists are interested in calculating arbitrarily high
powers of matrices. The idea of forming eAt in this way is due to the American mathe-
matician William Henry Metzler (1863–1943), in an 1892 paper, in which he inserted
A into the power series expansion of any transcendental function desired, e.g.,

sin(A) =
∞∑

n=0

(−1)n A2n+1

(2n + 1)! .

The only constraint is that A have only constants for its entries, that is, A �= A(t).
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5. The story of Ramanujan is one that is at once uplifting and tragic. The great
English mathematician G. H. Hardy, who brought Ramanujan to Cambridge for a
while to learn mathematics “properly,” once wrote that his discovery of the Indian
genius was the only romantic episode in his (Hardy’s) life. You can find a good pre-
sentation of Ramunujan’s life and his work in Robert Kanigel, The Man Who Knew
Infinity, (Scribner’s, 1991).

6. This, and all the other computer-generated plots in this book, were created
with programs written in MATLAB. As a rather unsophisticated programmer my
codes are also unsophisticated (mostly brute force computations), but the power of
MATLAB more than makes up for my average programming skills. The two plots
of Ramanujan’s sum, for example, requiring together over 334,000 floating-point
operations, were generated in less than one second on an 800 MHz PC.

7. Dennis C. Russell, “Another Eulerian-Type Proof,” Mathematics Magazine,
December 1991, p. 349.

8. The reason for the possibility of much higher frequencies in electronics, as
compared to mechanical things, is that it is very tiny charge carriers (e.g., electrons)
with extremely small masses, that are doing the oscillating in electronic circuits. In
mechanical systems, it is generally relatively massive chunks of metal that are mov-
ing to and fro. For example, to achieve the required thrust for launch to orbit, the
high-pressure centrifugal fuel turbopump (6,500 pounds per square inch) for the
the space shuttle’s three main engines has to deliver liquid hydrogen fuel at such a
prodigous rate—800 gallons per second—that it has internal parts spinning at nearly
600 revolutions per second. A high-performance automobile engine (the same size
as the turbopump), when redlined on the dashboard tachometer (i.e., about to
explode), is running at “only” about 100 revolutions per second.

9. The term cycle per second has been officially replaced with Hertz, abbreviated
Hz, in honor of the German physicist Heinrich Hertz (1857–1894). In 1887 Hertz
experimentally detected electromagnetic waves at the microwave frequency of some-
where between 50 × 106 to 500 × 106 cycles per second (oops, I mean between 50
and 500 MHz) that had been predicted fifteen years earlier by Maxwell’s theory of
electromagnetism. This “name game” does have its odd aspects. Electrical engineers
still use radians per second for angular frequency—why hasn’t that been renamed?
In fact, now and then a new name has been proposed; the Steinmetz, in honor of the
German-born American electrical engineer Charles Proteus Steinmetz (1865–1923).
There is a pleasing symmetry with having Sz as the unit for radians per second to go
with Hz for cycle per second, as well as some irony (notice Steinmetz’s initials)—the
cycle per second should be Sz and radians per second should be what Hz stands for!

10. See AIT, pp. 155–56 for how to derive Wallis’s formula for π from Euler’s
infinite product for the sine. For a sketch on how to use Wallis’s integral to derive
Wallis’s formula, see E. Hairer and G. Wanner, Analysis by Its History (Springer, 1996)
(corrected second edition), pp. 233–34. Using the same approach used in the text,
you can read how to integrate sin2n(θ) and cos2n(θ) over any interval, not just 0 to
2π , in Joseph Wiener, “Integrals of cos2n(x) and sin2n(x),” American Mathematical
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Monthly, January 2000, pp. 60–61. Wallis’s integral is then simply a special case of
Wiener’s more general results.

11. Ralph Palmer Agnew, Differential Equations (second edition) (McGraw-Hill,
1960), p. 370.

12. The inequality gets its name from the French mathematician Augustin-
Louis Cauchy (1789–1857) and the German mathematician Hermann Schwarz
(1843–1921), who each discovered different forms of the inequality. The Russian
mathematician Viktor Yakovlevich Bunyakovsky (1804–1889), however, is the one
who actually first published (in 1859) the form of the inequality as derived in this
book. Bunyakovsky had earlier worked with Cauchy in Paris, where he learned
Cauchy’s methods of complex analysis (discussed in AIT, pp. 187–221).

13. Given a line segment of any length, a second line segment of length equal to
the square root of the first can easily be constructed by compass and straightedge:
see AIT, pp. 31–32, 243. I assume that it is indeed obvious to you that the other oper-
ations are also so doable. To construct

√
17 we can actually be even more direct than

the general approach. Given a line segment of unit length, erect a perpendicular
at one end. On that perpendicular use the compass to mark off a line segment of
length four. The right triangle formed by the two segments, of lengths one and four,
and its hypotenuse, has just what we need—the hypotenuse length is

√
17. For the

other square roots, however, the general construction is required.
14. An elegant construction of the 17-gon is given in H.M.S. Coxeter, Introduction

to Geometry (2nd edition) (Wiley, 1969), p. 27. It is due to the English mathematician
Herbert Richmond (1863–1948), who published it in 1893.

15. F5 = 232 + 1 = 4, 294, 967, 297, which Euler showed factors into primes
as (641) · (6, 700, 417). F5 can be factored in a flash today with the aid of modern
computers, but it was far too big for Fermat. Even in Euler’s day it was a nontrivial cal-
culation. (You can read how it was done in William Dunham, Journey Through Genius:
The Great Theorems of Mathematics ( John Wiley, 1990), pp. 229–34). But, even if F5 is
not a Fermat prime, what about the possibility of Fp being prime for p > 5? If that ever
happens, the next Fermat prime after F4 will be enormous, as it is known (as of May
2003) that Fp is not prime for every p from 5 to 32. There presently is no known sixth
Fermat prime. In 1844 the German mathematician F. G. Eisenstein (1823–1852) con-
jectured that there are an infinity of Fermat primes, and that is still an open question.
His track record on prime conjectures is not good, however, as he also conjectured

that all the numbers in the infinite sequence 22 + 1, 222+1, 2222 + 1, . . . are primes.
But just the fourth one is F16, which, as stated above, is composite.

16. The next constructable odd -gon after Gauss’s 17-gon is, of course, the
F0F2-gon = 51-gon. If there are just five Fermat primes, then the total number of con-
structable odd-gons is easy to calculate; it is the total number of ways to form products
(without repetition) from the Fermat primes using any one prime or any two primes
or any three primes and so on. This number is, in terms of binomial coefficients,(5

1
)+ (5

2
)+ (5

3
)+ (5

4
)+ (5

5
) = 5 + 10 + 10 + 5 + 1 = 31.
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17. For a step by step guide through Gauss’s construction of the regular 17-gon,
using the same approach described in the text for the 5 -gon, see Arthur Gittleman,
History of Mathematics (Charles E. Merrill, 1975), pp. 250–52.

18. Michael Trott, “cos(2π/257) à la Gauss,” Mathematica in Education and Research
4, no. 2, 1995, pp. 31–36. You can read the details of what is involved in constructing
the 257-gon, at a level a bit deeper than here, in Christian Gottlieb, “The Simple
and Straightforward Construction of the Regular 257-gon,” Mathematical Intelligencer,
Winter 1999, pp. 31–36. The author’s title is a bit of tongue-in-cheek humor, as he
ends his essay with the line “I wish the reader who wants to pursue the construction
in all details good luck.”

19. Arithmetica is a collection of 130 problems, published in thirteen volumes. It
was apparently completely lost forever when the legendary Library of Alexandria was
burned, but then many centuries later Arabic translations of six of the volumes were
discovered. Fermat’s copy of the surviving portions of Arithmetica was the 1621 trans-
lation from Greek to Latin by Claude Bachet. The problem that prompted Fermat’s
most famous marginal note required that a given square number be written as the
sum of two squares.

20. It is amusing to note that in a 1989 episode of Star Trek: The Next Genera-
tion(“The Royale”), set in the twenty-fourth century, we learn that Jean-Luc Picard
finds relaxation from his duties as a starship captain by trying to resolve Fermat’s
last theorem. As he explains to his second in command, Commander Riker, “I find
it stimulating. It puts things in perspective. In our arrogance, we feel we are so
advanced yet we still can’t unravel a simple knot tied by a part-time French math-
ematician [Fermat’s day job was as a jurist] working alone without a computer.”
Alas for Hollywood, reality made this fine sentiment “historically” wrong when, as
we all now know, Wiles beat Picard to the punch by several centuries. Its romantic
origin surely accounts for the popular fame of Fermat’s last theorem (plus being
a generalization of the Pythagorean theorem, which most people can remember
at least hearing about in the dim past of high school). The mathematical machin-
ery invented to resolve the Last Theorem is beautiful and powerful, but the actual
result is of little (if any) continuing importance in mathematics. The great Gauss
refused to work on the problem because he found it intrinsically uninteresting.
Indeed, other quite similar conjectures have been around in mathematics longer,
and even solved, without all the excitement that surrounds Wiles’s accomplishment.
Consider, for example, the Catalan conjecture. Named after the Belgian mathemati-
cian Eugène Catalan (1814–1894), it asserts that the unique solution in integers to
xm − yn = 1 is 32 − 23 = 1. That is, 8 and 9 are the only two consecutive numbers
that are powers. Catalan made his claim in 1844, but the origin of the problem is
far more ancient. The medieval French mathematician and astronomer Rabbi Levi
ben Gerson (1288–1344) proved (around 1320) that if 3m − 2n = 1, then m = 2
and n = 3. In 1738 Euler established the reverse case; if x3 − y2 = 1, then x = 2
and y = 3. Other specialized results followed in the years after Euler, but a general
proof eluded the world’s greatest mathematicians. Then, suddenly, the Romanian
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mathematician Preda Mihăilescu (at the University of Paderborn, Germany) put it
all to rest in April 2002 with an elegant proof. His was work of the highest caliber, an
absolutely first-rate intellectual accomplishment that has received much praise and
admiration from mathematicians around the world. The Catalan conjecture is now
a theorem. And yet I very much doubt we will ever hear a reference to it in a television
show (other than perhaps a NOVA episode, or something akin to that).

21. You can find the outline of a proof that unique factorization fails with the
polynomials Lamé studied in Ian Stewart and David Tall, Algebraic Number Theory and
Fermat’s Last Theorem (A. K. Peters, 2002), pp. 122–24.

22. Indeed, unique prime factorization is valid in a + ib
√

D only for the following
values of D: 1, 2, 3, 7, 11, 19, 43, 67, and 163. For why D is specified as having no
square factors, see Stewart and Tall, pp. 61–62.

23. If I were a mathematician I would say that the numbers in S are “members of
the imaginary quadratic field Q(

√−6) and they form a ring.”
24. Even in complex number systems where unique factorization holds, there are

still surprises. For example, in the ordinary integers 5 is a prime. But in the Gaussian
integers it is not. This is easy to see once you notice that 5 can be factored into the
product of two other Gaussian integers: 5 = (1+ i2)(1− i2). If you’re really observant
you might think there’s another factorization, 5 = (2+ i)(2− i). It is not hard to show,
just as done in the text, that 1+i2, 1−i2, 2+i , and 2−i are all primes in the Gaussian
integers (with the norm N (a+ib) = a2+b2), and so it appears as though we have two
different prime factorizations of 5. That probably makes you wonder why the Gaussian
integers are said to enjoy unique prime factorization. This “puzzle” occurs because
I didn’t tell you everything : prime factorization is unique only up to order (just as
with the ordinary integers) and to multiplicative factors called units. In the ordinary
integers the units are ±1, but in the Gaussian integers the units are ±1 and ±i , and
you’ll notice that i(2−i) = 1+i2. I only tell you this so you’ll know there is an answer
to the “puzzle.” If you want to read more on this, see Stewart and Tall, pp. 76–79.

25. Leibniz’s rule for differentiating an integral is

d
dt

h(t)∫
g (t)

f (x , t)dx =
h(t)∫

g (t)

∂f
∂t

dx + f {h(t), t} dh
dt

− f
{
g (t), t

} dg
dt

.

If the limits on the integral are not functions of the differentiation variable (t), then
the last two terms are zero and so the derivative of the integral is the integral of the
derivative. But that, in general, is not the case and we need all three terms. You can
find a freshman calculus derivation of Leibniz’s rule in my book The Science of Radio
(2nd edition) (Springer-Verlag, 2001), pp. 415–18.

26. We can mathematically show that g (∞) = 0 as follows:

| g (y) |=
∣∣∣∣

∞∫
0

e−uy sin(u)

u
du
∣∣∣∣ ≤

∞∫
0

∣∣∣∣e−uy sin(u)

u

∣∣∣∣du =
∞∫

0

| e−uy |
∣∣∣∣ sin(u)

u

∣∣∣∣du.
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Since e−uy ≥ 0 for all real u and y, and | sin(u)/u |≤ 1,

| g (y) |≤
∞∫

0

e−uydu =
(

e−uy

−y

∣∣∣∣∞
0

= 1
y

.

Thus, lim
y→∞ | g (y) |= 0 and our result immediately follows.

27. See, for example, Bernard Friedman, Lectures on Applications-Oriented Mathe-
matics, Holden-Day, 1969, pp. 17–20.

Chapter 2: Vector Trips

1. See AIT, pp. 92–94.
2. As far as I know this problem has not appeared elsewhere, and so I have felt free

to name it. I call it the generalized harmonic walk since, for θ = 0, p = 1+ 1
2 + 1

3 + 1
4 +···,

which, of course, is the harmonic series. In AIT I discuss a similar sort of walk, with
the steps after each spin being of lengths 1, 1

2 , 1
4 , 1

8 , · · · (see AIT, pp. 107–9). That
walk proves to be much more tractable than the walk considered here; I didn’t give
that earlier walk a name in AIT, but since I believe it to be my creation, as well, I’ll
now christen it the generalized geometric walk, for the obvious reason.

3. That symmetry was not assumed in generating the bottom right plot of
figure 2.1.1. Rather, the plot was created by letting θ vary over the entire 0◦ to 360◦
interval, and the symmetry was then looked for as a partial check on the correctness
of the MATLAB coding.

4. The discussion in this section was motivated by a challenge problem that
appeared decades ago by T. H. Matthews, in American Mathematical Monthly, October
1944, p. 475, and its solution (by Gordon Pall) the following year (same journal,
December 1945, pp. 584–85). Matthews and Pall were both at McGill University,
where Pall was a young mathematician who later went on to a distinguished career.
I know nothing of Matthews, except that at that time the registrar at McGill was one
T. H. Matthews.

5. This result often puzzles students, who wonder why the effects of flying with
and against the wind don’t just cancel. The answer is that the time spent flying with
the wind (at the faster speed) is less than the time spent flying against the wind (at
the slower speed). A much more sophisticated treatment of problems of this type
can be found in M. S. Klamkin and D. J. Newman, “Flight in an Irrotational Wind
Field,” SIAM Review April 1962, pp. 155–56.

6. That paper was, in fact, the primary motivation for this section: R. Bruce
Crofoot, “Running with Rover,” Mathematics Magazine, October 2002, pp. 311–16.
Also helpful reading was Junpei Sekino, “The Band Around a Convex Set,” College
Mathematics Journal, March 2001, pp. 110–14.

7. MATLAB has a number of very powerful differential equation solvers. If I were
really interested in getting answers of precision, I would use one of them, and not
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my quick-and-dirty code (called Euler’s method in differential equations texts, dating
from 1768). My interest here, however, is simply to demonstrate the sort of solutions
one expects.

Chapter 3: The Irrationality of π2

1. An elegant discussion of continued fraction expansions, in particular, a deriva-
tion of Lambert’s tan(x) expansion, and a proof of the irrationality of tan(x) for all
nonzero rational x , can be found in E. Hairer and G. Wanner, Analysis by Its History
(Springer, 1996) (corrected second edition), pp. 68–79.

2. Given a polynomial equation of some finite degree n ≥ 1, with integer
coefficients co through cn ,

cnxn + cn−1xn−1 + · · · + c2x2 + c1x + co = 0,

its solutions (the n values of x that satisfy the equation) are called algebraic number s.
For example, since i = √−1 solves x2 + 1 = 0 (n = 2, here) then i is an algebraic
number. The algebraic numbers include all the rationals and many (but not all)
of the irrationals. The irrationals that are not algebraic are called the transcenden-
tals. In 1873, for example, the French mathematician Charles Hermite (1822–1901)
showed that e is transcendental (Euler had shown in 1737 that e is irrational).

3. Ivan Niven, Irrational Numbers, (American Mathematical Society, 1954).
4. The fastest path to fame and glory for a young mathematician is to solve a

problem on Hilbert’s list. Some still remain unsolved, and the pot of “reputation
gold” remains a powerful lure. See Jeremy J. Gray, The Hilbert Challenge, (Oxford,
2000), and Benjamin H. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers
(A. K. Peters, 2002).

5. There is an amusing side to this work. In 1919 Siegel was in a lecture audience

when Hilbert stated his belief that 2
√

2 is “transcendental or at least an irrational
number,” but he added that he didn’t think anyone in the audience would live long
enough to see a proof.

6. The quote is from pp. 52–53 of John L. Synge’s novel, Kandelman’s Krim
( Jonathan Cape, 1957). See note 2 for the preface.

7. E. C. Titchmarsh, Mathematics for the General Reader (Dover, 1981), p. 196. The
near mystical aura that surrounds π can make even skilled mathematicians and hard-
nosed physicists a little weak in the knees. My favorite example of that sort of thing
is a passage from Richard Feynman’s well-known essay “What is Science,” Physics
Teacher, September 1969, pp. 313–20. There he recalls his teenage puzzlement over
the appearance of π in the formula for the resonant frequency of certain electrical
circuits. “Where is the circle?” (that we associate π with) in such circuits, he says he
asked himself. He ends his romantic nostalgia by asserting (p. 315) “in my heart I
still don’t quite know where that circle is, where that pi comes from.” That is simply
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Feynman being Feynman. He certainly had learned long before 1969 where the π

“comes from” and “where the circle is,” and so have you if you read section 1.4 care-
fully. As discussed there, the relationship between frequency measured in radians
per second (ω) and in hertz (ν) is ω = 2πν (there’s that rascally π !), and the “circle”
that the young Feynman searched for is just the circular path traveled by the tips
of two counter-rotating complex exponential vectors as they combine to form the
real-valued ac signals sin(ωt) and cos(ωt).

8. But perhaps this will not always be so. In a somewhat goofy 1967 episode of Star
Trek titled “Wolf in the Fold,” Mr. Spock finds great practical use for the irrationality
of π , to drive an electromagnetic evil presence out of the ship’s computer. He does
this by asking the computer for the last digit of π , and of course there isn’t a “last
digit” and that conundrum (for some less than obvious reason) gets rid of the evil
presence. An even more mysterious puzzle, relating the irrationalities of π and e , is
the question posed in the following little jingle (due to Martin Gardner):

pi goes on and on and on …
And e is just as cursed.
I wonder: which is larger
When their digits are reversed?

Less goofy is a short story about pi that appeared in a math journal many years ago.
Written by João Filipe Queiró, “The Strange Case of Mr. Jean D.”, Mathematical Intel-
ligencer, 5, no. 3, 1983, pp. 78–80, tells of a mathematics teacher who has a nightmare
dream in which the horror is the discovery, by computer, that π ’s decimal expansion
starts to repeat after the five millionth digit. That is, π is rational! In the end, of
course, the professor wakes up.

9. A completely different proof of the irrationality of π2, also at the undergrad-
uate level (but which doesn’t make use of Euler’s formula), can be found in a terrific
book by George F. Simmons, Calculus Gems. (McGraw-Hill, 1992), pp. 283–84. As pre-
sented there the proof looks much shorter than the proof here, but that’s because
a lot of steps are skipped over, just as in Siegel’s book. See also D. Desbrow, “On the
Irrationality of π2,” American Mathematical Monthly, December 1990, pp. 903–6.

10. See note 25 for chapter 1.

Chapter 4: Fourier Series

1. My sources for much of the historical discussion in the first three sections of
this chapter are the following: Edward B. Van Vleck, “The Influence of Fourier Series
upon the Development of Mathematics,” Science, January 23, 1914, pp. 113–24; H. S.
Carslaw, Introduction to the Theory of Fourier’s Series and Integrals (Macmillan, 1930),
pp. 1–19; Carl B. Boyer, “Historical Stages in the Definition of Curves,” National
Mathematics Magazine, March 1945, pp. 294–310; Rudolph E. Langer, “Fourier’s
Series: The Genesis and Evolution of a Theory,” American Mathematical Monthly,
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August–September 1947 (supplement), pp. 1–86; Israel Kleiner, “Evolution of the
Function Concept: A Brief Survey,” College Mathematics Journal, September 1989, pp.
282–300.

2. The nature of the differentiability of Riemann’s function was determined only
in relatively recent times, and it turned out that Riemann was wrong ; his function
does have points at which the derivative exists, although it is true that his function
is almost everywhere nondifferentiable. See Joseph Gerver, “The Differentiability
of the Riemann Function at Certain Rational Multiples of π ,” American Journal of
Mathematics, January 1970, pp. 33–55.

3. Newton actually stated his second law of motion in the following more general
way: “force is equal to the rate-of-change of momentum,” that is, F = d(mv)/dt =
m dv/dt + v dm/dt , where v = dx/dt is the speed of mass m (and so dv/dt is the
acceleration). If dm/dt = 0 then this reduces to the well-known “force equals mass
times acceleration.” For the launchphase of a rocket, for example, we must use the
general expression because the rocket’s mass is changing with time; as fuel is burned
and ejected in the exhaust, the rocket’s mass decreases with increasing time. For our
vibrating string problem, however, we can usually use the reduced expression (unless
the string’s mass somehow changes, for example, a cotton string, vibrating in humid
air, that becomes soggy with absorbed water and so experiences a mass increase with
increasing time).

4. All we can really say about sin(∞) and cos(∞) is that they might be zero, but
they could just as well have any value from −1 to +1. That is, lim

t→±∞ sin(t) and

lim
t→±∞ cos(t) do not exist. An old but still fascinating historical (Fourier’s work

appears more than once) and mathematical discussion on this can be found in
J.W.L. Glaisher, “On sin ∞ and cos ∞,” Messenger of Mathematics, 1871, pp. 232–44.
Glaisher (1848–1928) was a prolific (over 400 papers) and talented writer on many
things mathematical, mostly written for the trained mathematician, but also often
surprisingly within the reach of the interested, not-so-trained as well. He taught at
Cambridge all his professional life, and was president of the London Mathematical
Society from 1884 to 1886.

5. I am not going to derive the heat equation in this book. I did derive the wave
equation because of its historical position of being the first equation of theoretical
physics to be solved in the form of an infinite trigonometric series. You can find
derivations of the heat equation in literally every textbook on partial differential
equations in print. An old work (but still among the best), with many worked exam-
ples, is R. V. Churchill, Fourier Series and Boundary Value Problems, in many editions,
first published in 1941.

6. Thomson’s telegraph cable diffusion analysis predates the discovery of the
fundamental equations of electricity and magnetism, the so-called Maxwell equations
of the electromagnetic field (named after Thomson’s good friend and fellow Scott James
Clerk Maxwell), but under certain restrictions the diffusion analysis gives satisfac-
tory results. See my book Oliver Heaviside, ( Johns Hopkins University Press, 2002),
in particular, chapter 3, “The First Theory of the Electric Telegraph.”
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7. Thomson’s Fourier series and the age-of-the-Earth papers appear in Mathemat-
ical and Physical Papers (Cambridge University Press, 1882 and 1890). “On Fourier’s
Expansions of Functions in Trigonometrical Series” (1841) is on pp. 1–6 of volume 1,
and “On the Secular Cooling of the Earth” (1862) is on pp. 295–311 of volume 3.
You can find a modern historical discussion of Thomson’s mathematics in his age-
of-the-Earth analysis in my paper “Kelvin’s Cooling Sphere: Heat Transfer Theory
in the 19th Century Debate over the Age-of-the-Earth,” in History of Heat Transfer
(American Society of Mechanical Engineers, 1988), pp. 65–85.

8. Fourier’s unpublished 1807 paper vanished until rediscovered in the late
1880s, and is now available in the original French with invaluable historical commen-
tary in English; see I. Grattan-Guinness, Joseph Fourier, 1768–1830 (MIT Press, 1972).

9. The Analytical Theory of Heat appeared in English in 1878, with marginal notes
of great historical interest by the translator, Alexander Freeman, a Fellow of St. Johns
College, Cambridge. Nearly two centuries after its first appearance, Fourier’s book
still astonishes, and it should be read by any serious student of mathematics and
physics. It was reprinted by Dover Publications in 1955.

10. Fourier does indeed use this modern approach to calculate the series coef-
ficients, but only as his last technique. At first he used an extremely complicated
limiting procedure, based on differentiation. For example, to solve for the coefficients
in the trigonometric equation

1 = c1 cos(y) + c3 cos(3y) + c5 cos(5y) + · · ·

he first differentiated an even number (n) of times to obtain the infinite sequence
of equations

0 = c1 cos(y) + 32c3 cos(3y) + 52c5 cos(5y) + · · ·,
0 = c1 cos(y) + 34c3 cos(3y) + 54c5 cos(5y) + · · ·,

· · · ,

0 = c1 cos(y) + 3nc3 cos(3y) + 5nc5 cos(5y) + · · ·,
· · ·

Then, setting y = 0, he had an infinite number of linear algebraic equations with
an infinity of coefficients. To solve for them he used the first m equations, with the
assumption that he need pay attention only to the first m coefficients. Then having
solved for the first m coefficients, he determined their limiting values as m → ∞.
This whole business is nothing less than bizarre. As Professor Van Vleck (see Note 1)
wrote, “Fourier uses his mathematics with the delightful freedom and naïveté of
the physicist or astronomer who trusts in a mathematical providence.” Later he
used Euler’s method without attribution, and was apparently told of Euler’s priority:
sometime in 1808 or 1809 Fourier wrote to an unnamed correspondent (probably
Lagrange) to explain “I am sorry not to have known the mathematician who first
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made use of this method [Euler’s method for finding the coefficients of a trigono-
metric series] because I would have cited him.” See John Herivel, Joseph Fourier: The
Man and the Physicist (Oxford University Press 1975), pp. 318–19.

11. AIT, pp. 155–57.
12. An extensive history of the mathematics in this section is in the paper by Edwin

Hewitt and Robert E. Hewitt, “The Gibbs-Wilbraham Phenomenon: An Episode in
Fourier Analysis,” Archive for History of Exact Sciences 21, 1979, pp. 129–60. A very
brief note giving an outline of the history, only, had appeared earlier in Fred Ustina’s
“Henry Wilbraham and Gibbs Phenomenon in 1848,” Historia Mathematica 1, 1974,
pp. 83–84. The Hewitts’ paper, however, is a detailed mathematical discussion that
explores events well into the twentieth century. But neither paper tells us anything
about Wilbraham, himself.

13. Nature, October 6, 1898, pp. 544–545.
14. Nature, October 13, 1898, pp. 569–570.
15. Nature, December 29, 1898, p. 200 (for the Michelson and Gibbs letters), and

pp. 200–201 for Love’s letter.
16. Nature, April 27, 1899, p. 606.
17. Nature, May 18, 1899, p. 52 (for Poincaré’s letter) and June 1, 1899, pp.

100–101 (for Love’s final letter).
18. “A New Harmonic Analyzer,” American Journal of Science, January 1898, pp.

1–14. Michelson’s coauthor was the University of Chicago physicist Samuel Wesley
Stratton (1861–1931), who went on to be the founding director of the National
Bureau of Standards, as well as president of MIT (1923–1930).

19. “The Tide Gauge, Tidal Harmonic Analyzer, and Tide Predictor,” in volume 6
of Kelvin Mathematical and Physical Papers, (Cambridge University Press, 1911), pp.
272–305 (this paper was originally published in 1882).

20. See the illustration of the tidal analyzer in Crosbie Smith and M. Norton Wise,
Energy and Empire: A Biographical Study of Lord Kelvin (Cambridge University Press,
1989), p. 371.

21. A photograph of the Michelson/Stratton harmonic analyzer is the frontispiece
illustration in the book by J. F. James, A Student’s Guide to Fourier Transforms: With
Applications in Physics and Engineering (Cambridge University Press, 1995).

22. Henry Wilbraham, “On a Certain Periodic Function,” Cambridge and Dublin
Mathematical Journal 3, 1848, pp. 198–201. The text from Fourier’s Treatise that
Wilbraham cites can be found in the Dover reprint (see Note 9) on p. 144.

23. Henry Wilbraham, “On the Possible Methods of Dividing the Net Profits of a
Mutual Life Assurance Company Amongst the Members.” The date on this paper is
actually October 1856. The full title of the publishing journal is Journal of the Institute
of Actuaries and Assurance Magazine.

24. As a great fan of the Indiana Jones persona, I wish I could tell you that my
discoveries came as the result of worldwide globe-trotting with numerous narrow
escapes from death (along, of course, with a few light-hearted romantic flings
with beautiful, mysterious women who are strangely attracted to slightly portly,
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gray-bearded electrical engineering professors who wear thick glasses). Alas, all of
my detective work was done while slouched in my back-supporting chairs in front of
my computer terminals at home and the office. The one great clue to Henry was the
one he himself provided when he listed, after his name on the 1848 paper, “B.A.,
Trinity College, Cambridge.” An e-mail to the Trinity Library Reference Desk gave
me his birthdate, the names of his parents, and his school admission and graduation
dates. (My thanks to Jonathan Smith/Trinity.) From there I was off (electronically)
to Princeton University, which owns a copy of The Royal Society Catalogue of Scientific
Papers, and where a search for all of Henry’s published papers was done for me. (My
thanks to Mitchell C. Brown at Princeton’s Fine Hall Math/Physics Library.) Then,
on the Web one day, I stumbled across a searchable site devoted to the historical
description of brass memorials in all the churches of England and Wales. And there
I found entries for Henry’s parents and Henry; his memorial inscription included
the year of his death. (My thanks to the English historian William Lack for maintain-
ing this site.) And with that date in hand, I was able to obtain a copy of Henry’s will,
which opens with the confirmation that he was, indeed, a “late Fellow of Trinity,” as
well as a copy of his death certificate. (My thanks to the Chesire and Chester County
Archivist—Wilbraham lies buried in the graveyard of the Church of St. Mary the
Virgin in Weaverham, Chesire County—for promptly sending me a copy of the will,
and to the General Register Office for very prompt service on my request for a copy
of the death certificate.)

25. Harrow School, located in London, has a long and distinguished history.
Founded in 1752 under Royal Charter from Elizabeth I, it boasts a long line of
famous students, including Lord Byron and Winston Churchill. Many of the younger
readers of this book are almost surely familiar with Harrow School without knowing
it—it is the movie setting of Harry Potter’s school, Hogwarts School of Witchcraft
and Wizardry. Indeed, the real location of Professor Flitwick’s Magical Charms
Class is Harrow School’s Fourth Forum Room, upon whose walls and desks (tra-
dition has it) every Harrow student up until 1847 carved his name. If so, Henry
Wilbraham is somewhere in that room, and if a reader should happen to visit Harrow
and find Henry’s name, please let me know (sending me a photo would be even
better)!

26. In 1914 the German mathematician and historian Heinrich Burkhardt
(1861–1914) published a huge encyclopedia article on the history of trigonomet-
ric series and integrals up to 1850, and so Wilbraham’s 1848 paper just made the
cut. But, again, nobody paid any attention; for example, three years later the Scottish
mathematician Horatio Carslaw (1870–1954) published a paper in the American
Journal of Mathematics on the Gibbs phenomenon that includes the comment, on
Gibbs’s work, “it is most remarkable that its [the Gibbs phenomenon] occurrence in
Fourier Series remained undiscovered till so recent a date.” Poor Wilbraham—still
unrecognized as late as 1917. Then, at last, in 1925, both Carslaw and the
American mathematician Charles Moore (1882–1967) (who had done his doctoral
dissertation under Bôcher) simultaneously published historical notes in the widely
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read mathematics journal Bulletin of the American Mathematical Society proclaiming
Wilbraham’s priority. Not that it has done his memory much good—nearly all
electrical engineering and mathematics textbooks still ignore Wilbraham.

27. You can find a presentation of how Gauss solved for G (m) using non-Fourier
reasoning in Trygve Nagell, Introduction to Number Theory ( John Wiley, 1951), pp.
177–80.

28. For a nice tutorial on the many different possibilities for these sums, see Bruce
R. Berndt and Ronald J. Evans, “The Determination of Gauss Sums,” Bulletin of the
American Mathematical Society, September 1981, pp. 107–29.

29. See AIT, pp. 175–80. The Fresnel integrals are named after the French math-
ematical physicist Augustin Jean Fresnel (1788–1827), who encountered them in
1818 when conducting research into the nature of light. We’ll see these integrals
again in section 5.7.

30. See my book When Least Is Best (Princeton University Press, 2004), pp. 251–57.
31. You can find this formula stated in many calculus textbooks. If you want to see

two different derivations of it, see When Least Is Best (note 30), pp. 352–58.

Chapter 5: Fourier Integrals

1. See, for example, Kevin Davey, “Is Mathematical Rigor Necessary in Physics?”
British Journal for the Philosophy of Science, September 2003, pp. 439–63. Davey’s
answer of “probably not” would surely have gotten Dirac’s approval. In thinking
about Dirac’s successful use of impulses and integrals, I’m reminded of a famous
remark made by the University of Virginia mathematician E. J. McShane (1904–
1989), during his Presidential Address at the 1963 annual meeting of the American
Mathematical Society: “There are in this world optimists who feel that any symbol that
starts off with an integral sign must necessarily denote something that will have every
property that they would like an integral to possess. This of course is quite annoying
to us rigorous mathematicians; what is even more annoying is that by doing so they
often come up with the right answer.” You can find McShane’s complete address,
“Integrals Devised for Special Purposes,” in the Bulletin of the American Mathematical
Society 69, 1963, pp. 597–627. Like Dirac, McShane had an undergraduate degree in
engineering.

2. Paul Dirac, “The Physical Interpretation of Quantum Mechanics,” Proceedings
of the Royal Society of London A113, January 1, 1927, pp. 621–41.

3. Paul Dirac: The Man and His Work (Cambridge University Press, 1998), p. 3.
4. John Stalker, Complex Analysis: Fundamentals of the Classical Theory of Functions,

(Birkhäuser, 1998), p. 120. Professor Stalker was commenting on the validity of
interchanging the order of two infinite summations.

5. There is one qualification concerning this property of Rf (τ ) that I should tell
you about. If f (t) is periodic with period T , then Rf (τ ) will also be periodic with period
T , and so Rf (τ ) achieves its maximum value not only at τ = 0, but at τ = ±kT where
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k is any integer. This is generally stated in the following way: If there is a constant
T > 0 such that Rf (0) = Rf (T ), then Rf (τ ), is periodic with period T .

This is easy to prove (with the aid of the Cauchy-Schwarz inequality that we derived
in Section 1.5); if f (t) and g (t) are any two real-valued functions, then⎧⎨⎩

∞∫
−∞

f (t)g (t)dt

⎫⎬⎭
2

≤
⎧⎨⎩

∞∫
−∞

f 2(t)dt

⎫⎬⎭
⎧⎨⎩

∞∫
−∞

g 2(t)dt

⎫⎬⎭ .

If we define g (t) = f (t − τ + T ) − f (t − τ), then this inequality becomes⎧⎨⎩
∞∫

−∞
f (t)[f (t − τ + T ) − f (t − τ)]dt

⎫⎬⎭
2

≤ Rf (0)

∫ ∞
−∞

[f (t − τ + T ) − f (t − τ)][f (t − τ + T ) − f (t − τ)]dt .

Now, the left-hand side is [Rf (τ − T ) − Rf (τ )]2. The integral on the right is

∞∫
−∞

f (t − τ + T )f (t − τ + T )dt −
∞∫

−∞
f (t − τ)f (t − τ + T )dt

−
∞∫

−∞
f (t − τ + T )f (t − τ)dt +

∞∫
−∞

f (t − τ)f (t − τ)dt

which is Rf (0) − Rf (T ) − Rf (T ) + Rf (0) = 2Rf (0) − 2Rf (T ). Thus,

[Rf (τ − T ) − Rf (τ )]2 ≤ 2Rf (0)[Rf (0) − Rf (T )] = 0,

where the equality to zero follows because we are given that Rf (0) = Rf (T ). Now, the
left-hand side (something squared) can never be negative, and so the inequality is
actually an equality. That is, [Rf (τ −T )−Rf (τ )]2 = 0, which says Rf (τ −T ) = Rf (τ )

for all τ . But this is the very definition of periodicity with period T , and we are done.
6. A fascinating discussion on Einstein’s priority in the history of the Wiener-

Khinchin theorem can be found in a 1985 paper by A. M. Yaglom, “Einstein’s 1914
Paper on the Theory of Irregularly Fluctuating Series of Observations,” originally
published in Russian and reprinted in English in IEEE ASSP Magazine, October 1987,
pp. 7–11.

7. Notice that the ESD of df /dt is 1/2π | iωF (ω) |2 = ω2(1/2π) | F (ω) |2, which
is ω2 times the ESD of f (t). That tells us that the ESD of df /dt is greater than the ESD
of f (t) for |ω|> 1, that is, time differentiation enhances the energy of high-frequency
signals, that is, “noise.” For this reason, alone, engineers do not use electronic dif-
ferentiators to build analog computer circuits to solve differential equations (which
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is what most people think would be the “natural” thing to do). The reason is now
obvious; if any noise signals are present in the circuitry—and noise is practically
impossible to completely eliminate—differentiators will make the noise worse. For
that reason differential equations are solved by analog electronic circuitry based on
integrators (which suppress high-frequency noise).

8. Notice that the integrand of the integral representation for | t | is well-behaved
for all ω, including ω = 0. Recall the power series expansion for cos(x)—then

cos(x) = 1 − x2

2! + x4

4! − · · ·,

and so

cos(ωt) = 1 − (ωt)2

2! + (ωt)4

4! − · · ·,

and so

1 − cos(ωt) = (ωt)2

2! − (ωt)4

4! + · · ·,

and so

1 − cos(ωt)
ω2 = t2

2! − ω2t4

4! + · · ·,

and so

lim
ω→0

1 − cos(ωt)
ω2 = t2

2! .

And as |ω|→ ∞ it is obvious that the integrand goes to zero as 1
ω2 since the magni-

tude of the numerator is never greater than 2 for any ω and/or t . Thus, the integrand
“doesn’t do anything weird” for any value of ω, including ω = 0.

9. We could, of course, substitute in any value for t and get a “Poisson summa-
tion formula.” The use of t = 0 gives the classic result. In his derivation Poisson did
indeed use Fourier series mathematics, but in a far different way from the approach
I’ve shown you in the text. His result was, in fact, much more general than the result in
the text. See Mathematics of the 19th Century (volume 3), edited by A. N. Kolmogorov
and A. P. Yushkevich (translated from the Russian by Roger Cooke) (Birkhäuser,
1998), pp. 293–294.

10. See AIT, pp. 177–178 for the derivation of
∫∞
−∞ e−x2

dx = √
π . Then, making

the change of variables x = t
√

α gives
∫∞
−∞ e−αt2

dx = √
π/α.

11. The Gaussian pulse is not the only function with the property of being its
own Fourier transform. A whole class of functions based on what are called Hermite
polynomials also has this property. See Athanasios Papoulis, The Fourier Integral and
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Its Applications (McGraw-Hill, 1962) (in particular, see problems 6 and 7 on p. 76
and their solutions on p. 78).

12. A quite interesting little book on these functions is Richard Bellman’s A Brief
Introduction to Theta Functions (Holt, Rinehart and Winston), 1961.

13. Arthur Schuster, “On the Total Reflexion of Light,” Proceedings of the Royal
Society of London, 107A, 1925, pp. 15–30.

14. E. C. Titchmarsh, “Godfrey Harold Hardy, 1877–1947,” Obituary Notices of
Fellows of the Royal Society of London 6, 1949, pp. 447–470.

15. All of Hardy’s papers, written either alone or in collaboration with others, have
been reprinted in seven volumes totaling 5,000 pages: Collected Papers of G. H. Hardy
(Oxford University Press, 1979).

16. This paper, “A Definite Integral Which Occurs in Physical Optics,” was pub-
lished in vol. 24 (1925) of the Proceedings of the London Mathematical Society, but it is
more readily found in volume 4 of the Collected Papers (Note 15), pp. 522–23.

Chapter 6: Electronics and
√−1

1. See, for example, Michael Eckert, “Euler and the Fountains of Sanssouci,”
Archive for History of Exact Sciences 56, 2002, pp. 451–68; C. Truesdell, “Euler’s Contri-
bution to the Theory of Ships and Mechanics. An Essay Review,” Centaurus 26, 1983,
pp. 323–35; A. J. Aiton, “The Contributions of Newton, Bernoulli and Euler to the
Theory of the Tides,” Annals of Science 11, 1956, pp. 206–23; J. A. Van den Broek,
“Euler’s Classic Paper ‘On the Strength of Columns,’ ” American Journal of Physics,
July–August 1947, pp. 309–18.

2. I actually had a boss, once, who drew figure 6.2.1 on his office blackboard
for me, except that he wrote x(t) as the word problem , y(t) as the word answer, and
h(t) as the word solution. He then pointed at solution and said to his young, newest
employee, “Go get it, tiger!” (You have to be able to say stuff like that, without blush-
ing, to be a project manager.) I was fresh out of graduate school, with no experience
to tell if he was joking or not. To this day I still wonder which it was.

3. They are sometimes also called the Kramers-Kronig relations, after the Dutch
physicist Hendrik Kramers (1894–1952) and the American physicist Ralph Kronig
(1904–1995), who encountered the Hilbert transform in the 1920s when studying the
spectra of x-rays scattered by the atomic lattice structures of crystals. The expressions
derived in the text are not the only way they are written. An alternative form is based
on the observation that, since h(t) is real, we know (as explained in Section 5.1),
that R(−ω) = R(ω) and X (−ω) = −X (ω). Thus, the first Hilbert transform integral
expression in the text can be written as

πR(ω) =
∞∫

−∞

X (τ )

ω − τ
dτ =

0∫
−∞

X (τ )

ω − τ
dτ +

∞∫
0

X (τ )

ω − τ
dτ .
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In the first integral on the right make the change-of-variable s = −τ . Then,

πR(ω) =
0∫

∞

X (−s)
ω + s

(−ds) +
∞∫

0

X (τ )

ω − τ
dτ

=
∞∫

0

X (−s)
ω + s

ds +
∞∫

0

X (τ )

ω − τ
dτ = −

∞∫
0

X (s)
ω + s

ds +
∞∫

0

X (τ )

ω − τ
dτ

=
∞∫

0

X (τ )

[
1

ω − τ
− 1

ω + τ

]
dτ =

∞∫
0

X (τ )
2τ

ω2 − τ2 dτ .

Thus,

R(ω) = 2
π

∞∫
0

τX (τ )

ω2 − τ2 dτ .

If you repeat this argument for the second Hilbert transform integral expression in
the text then you should find that

X (ω) = −2ω

π

∞∫
0

R(τ )

ω2 − τ2 dτ .

4. At least we think causality is a fundamental law. It is not a consequence of any
of the other known fundamental laws of physics, and so maybe causality is not an
absolute requirement. We just think it is, based on how the world appears to behave.
That belief would be shown to be wrong when (if) the first time machine is ever
built—see my book Time Machines: Time Travel in Physics, Metaphysics, and Science
Fiction (Springer-Verlag, 1999).

5. Norbert Wiener, I Am a Mathematician: The Later Life of a Prodig y (MIT Press,
1956), pp. 168–69. A derivation of the Paley-Wiener integral is far beyond the level
of this book, but if you’re interested you can find an outline of how to do it in
Athanasios Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, 1962),
pp. 215–17.

6. This explanation, while theoretically correct, is not quite the way the electronics
in an AM radio receiver actually works. For practical engineering reasons there are
some variations (e.g., the bandpass selection filter is not tunable). If you want to read
more on the details of how AM radio really works, see my book The Science of Radio
(2nd edition) (Springer-Verlag, 2001).

7. Suppose we connect the two multiplier inputs together, which reduces the
multiplier to the special case of a single-input squarer. The output of the circuit of
figure 6.3.1 is then y(t) = x2(t), where x1(t) = x2(t) = x(t). Doubling the input to an
LTI box would double the output, but the output of a squarer obviously quadruples.
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8. The mathematics of this result was known long before AM radio was invented,
of course, but the name of the theorem is due to the American electrical engineer
Reginald Fessenden (1866–1932), who patented the multiplication idea in 1901 for
use in a radio circuit. The word heterodyne comes from the Greek heteros (for external)
and dynamic (for force). Fessenden thought of the cos(ωc t) input as the “external
force” being generated by the radio receiver circuitry itself (indeed, radio engineers
call that part of an AM radio receiver the local oscillator circuit).

9. Here’s why. The synchronous receiver of figure 6.3.3 shows a final detected
signal at the output of the lowpass filter that is proportional to m(t), which is what
we want. However, if the local oscillator signal has a phase shift relative to the distant
transmitter oscillator, then the multiplier output is r (t) cos(ωc t + θ), or, since the
received signal r (t) is proportional to m(t) cos(ωc t), the multiplier output is propor-
tional to m(t) cos(ωc t) cos(ωc t + θ) = 1

2 m(t)[cos(θ) + cos(2ωc t + θ)]. The output of
the lowpass filter is proportional not to m(t) but to m(t) cos(θ). So, a phase error
appears in the synchronous demodulation receiver as an amplitude attentuation factor,
which might not be considered a fatal problem (unless θ = 90◦, of course, because
then there is no lowpass filter output). For θ �= 90◦ you might argue that one could
counter the attenuation by simply “turning up the volume.” The problem with that
is that θ is almost certainly not a constant in time, but rather θ = θ(t). One could
listen to such a receiver only by constantly fiddling with the volume knob. Nobody
would buy such a receiver! A similar problem occurs if there is a frequency mis-
match (which I’ll leave for you to show). From a historical viewpoint, it is interesting
to note that as early as 1930 at least one patent had already been granted for a carrier
synchronization circuit remarkably similar to a method that is often used today (for
the engineering-minded reader, it was a negative feedback, phase-locked loop circuit).

10. In an actual AM radio receiver the baseband signal is recovered by an incredi-
bly simple (and cheap) circuit called an envelope detector, which avoids having to do this
last multiplication by cos(ωc t). Again, see my book The Science of Radio 6, pp. 59–60.

11. I should explain the more. This means ωs > 2ωm is required to be able to
recover m(t) from ms (t) by lowpass filtering, not ωs ≥ 2ωm . This may seem a trifling
point from the way I have drawn figure 6.4.2, since ωs = 2ωm allows the individual
spectrum copies to just touch, and not to overlap. This might not seem to be a prob-
lem (other than the theoretical impossibility of building a real lowpass filter with a
vertical skirt that can select the one copy of M (ω) centered on ω = 0), but what if
m(t) has impulses at ω = ±ωm? That would occur if m(t) has a sinusoidal component
at ω = ωm . Then ωs = 2ωm would have the impulses in adjacent copies of M (ω)

falling on top of each other. To avoid that, we must insist on ωs > 2ωm . Another way
to see this, thinking strictly in the time domain, is to suppose that m(t) is purely a
sinusoid at frequency ω = ωm . If we sample this m(t) at ωs = 2ωm , then it is possible
that each and every “look” at m(t) falls right when m(t) is going through zero, that is,
every value of ms (t) = 0! It would clearly not be possible to reconstruct our nonzero
m(t) from the “always zero” ms (t). Again, we avoid this theoretical possibility by
insisting on ωs > 2ωm .
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12. See The Science of Radio (Note 6), pp. 248–49.
13. See, for example, Sidney Darlington, “Realization of a Constant Phase Differ-

ence,” Bell System Technical Journal, January 1950, pp. 94–104, and Donald K. Weaver,
Jr., “Design of RC Wide-Band 90-Degree Phase-Difference Network,” Proceedings of
the IRE, April 1954, pp. 671–76. Weaver’s paper includes a design example (using
just six resistors and six capacitors) that, for any input with a frequency from 300 Hz
to 3 kHz, generates two outputs with a phase difference that deviates from 90◦ by
no more than 1.1◦ (he mentions in his paper that he had constructed other more
complicated circuits that had total deviations from 90◦ that never exceeded 0.2◦ as
the frequency varied over the same frequency interval). You can find a computer
simulation of Weaver’s design example in The Science of Radio (Note 6), p. 275.

14. Raymond Heising, “Production of Single Sideband for Trans-Atlantic Radio
Telephony,” Proceedings of the IRE, June 1925, pp. 291–312.

15. Figure 6.6.3 was created with the use of the MATLAB function hilbert(x),
which takes the complex-valued vector x—into which the original time function has
been inserted as the real part—and places the Hilbert transform of the real part
into the imaginary part of x. That is, MATLAB creates the analytic signal. From
the final version of x, plotting figures such as figure 6.6.3 is easy. Each of the plots
in figure 6.6.3 has a time step of 0.001 second and, on a 3 GHz machine, took a total
of 0.11 seconds to generate (after nearly two million floating point operations).

16. If y(t) = x(t), then we know that

Y (ω) =
{

−iX (ω), ω > 0,
iX (ω), ω < 0.

Since y(t) = x(t), then

Y (ω) =
{

−iY (ω), ω > 0
iY (ω), ω < 0

=
{

−X (ω), ω > 0,
−X (ω), ω < 0.

That is, Y (ω) = −X (ω) for all ω. In other words, the Fourier transform of x(t) is
−X (ω), which means x(t) = −x(t), and we are done.

17. Donald K. Weaver, Jr., “A Third Method of Generation and Detection of Single-
Sideband Signals,” Proceedings of the IRE, December 1956, pp. 1703–5. (This is the
same Weaver as in Note 13.)

18. You’ll often find electrical engineering textbooks that, in their discussion of
the Weaver circuit, stipulate that m(t) should have a nonzero width gap around ω = 0
in which there is no energy (often, however, they don’t say why). Weaver himself stip-
ulated this. If that’s the case, then the lowpass filters do not have to have vertical
skirts, which is a big plus for Weaver’s circuitry (over and above the elimination of
the need for a Hilbert transformer). In Weaver’s 1956 paper he presented the actual
electrical circuitry for a specific SSB radio signal generator (ωc = 2π · 106 Hz) with
a zero energy gap located at −300 Hz < ω < 300 Hz (absence of energy at those low
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frequencies has no appreciable affect on the intelligibility of speech or the quality of
music), and ωm = 2π · 3, 300 Hz. His ω0 was set equal to the middle of the nonzero
energy interval, i.e., ω0 = 2π((300 + 3, 300)/2) = 2π · 1, 800 Hz.

19. Philip J. Davis, “Leonhard Euler’s Integral: A Historical Profile of the Gamma
Function,” American Mathematical Monthly, December 1959, pp. 849–69.

Euler: The Man and the Mathematical Physicist

1. David Brewster, “A Life of Euler,” in Letters of Euler on Different Subjects in Nat-
ural Philosophy Addressed to a German Princess, J.&J. Harper, 1833; J. J. Burckhardt,
“Leonhard Euler, 1707–1783,” Mathematics Magazine, November 1983, pp. 262–73;
A. P. Yushkevich’s entry on Euler in the Dictionary of Scientific Biography, vol. 4, pp. 467–
84; C. Truesdell, “Leonhard Euler, Supreme Geometer (1707–1783),” in Irrationalism
in the Eighteenth Century (edited by Harold E. Pagliaro), Press of Case Western Reserve
University, 1972, pp. 51–95; Ronald Calinger, “Leonhard Euler: The Swiss Years,”
Methodology and Science, vol. 16-2, 1983, pp. 69–89; Ronald Calinger, “Leonhard
Euler: The First St. Petersburg Years (1727–1741),” Historia Mathematica, May 1996,
pp. 121–66.

2. For some discussion on this aspect of Bernoulli’s personality, see my book
When Least is Best (Princeton University Press, 2004), pp. 211, 244–45.

3. One historian (Calinger, 1983—see Note 1) says Euler “proposed the first
correct solution” to this question, and that “Euler rejected both existing opinions
that the stone would either make a dead stop at the center [of the earth] or travel
beyond it. Instead, he argued that it would rebound at the center and return by
the same path to the surface.” This is puzzling since that is not the correct answer!
A reference is given to a discussion of how this problem perplexed even the great
Newton, but that discussion reveals that the “puzzle” was essentially over the nature
of the gravitational force inside the earth. If R is the radius of the earth, and r is the
distance of the stone from the center of the earth, then of course gravity famously
varies as the inverse square of r if r ≥ R . By 1685 Newton knew that the variation of
gravity with r (for a uniformly dense spherical earth) is directly as r if r < R , and
from that it is easy to show that the stone will execute what is called simple harmonic
motion, as it oscillates sinusoidally from one side of the earth, through the center, all
the way to the other side, and then all the way back to its starting point. Then it does the
trip all over again, endlessly. It is easy to calculate that for a uniformly dense sphere
of radius R = 4, 000 miles and a surface acceleration of gravity of 32 ft/second2

(that is, the earth) one complete round trip takes 85 minutes, and that as the stone
transits the earth’s center it is moving at 26, 000 ft/second towards the other side of the
planet (there is no “center rebound”). For a complete, modern discussion on this
issue, see Andrew J. Simoson, “Falling Down a Hole Through the Earth,” Mathematics
Magazine, June 2004, pp. 171–89.
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4. See AIT, pp. 176–178, and Philip S. Davis, “Leonhard Euler’s Integral: A His-
torical Profile of the Gamma Function,” American Mathematical Monthly, December
1959, pp. 849–69.

5. See AIT, pp. 150–152.
6. Both the isoperimetric and brachistochrone problems are discussed at length,

and solved in my When Least is Best (Note 2); in particular, on pp. 200–78 there is an
introduction to the calculus of variations.

7. David Eugene Smith, “Voltaire and Mathematics,” American Mathematical
Monthly, August–September 1921, pp. 303–5. An example of the emptiness of
Voltaire’s mathematics in Éléments is found in his “explanation” of Snel’s law of
the refraction of light—he tells his readers that there is a relationship between a
light ray’s angle of incidence and angle of refraction at the boundary of two distinct
regions (e.g., air and glass, or air and water) and that this relationship involves some-
thing called a sine, but he fails to tell his readers what a sine is, because that’s too
technical! Voltaire didn’t actually think much of his readers, in fact—in a letter to
a friend before he began to write Éléments, he said his goal was “to reduce this giant
[Newton’s Principia] to the measure of the dwarfs who are my contemporaries.”

8. My primary sources of historical information on the Berlin phase of Euler’s
life include Ronald S. Calinger, “Frederick the Great and the Berlin Academy of
Sciences,” Annals of Science 24, 1968, pp. 239-49; Mary Terrall, “The Culture of
Science in Frederick the Great’s Berlin,” History of Science, December 1990, pp. 333–
64; Florian Cajori, “Frederick the Great on Mathematics and Mathematicians,”
American Mathematical Monthly, March 1927, pp. 122–30; and Ronald S. Calinger,
“The Newtonian-Wolffian Controversy (1740–1759),” Journal of the History of Ideas,
July–September 1969, pp. 319–30.

9. C. B. Boyer, “The Foremost Textbook of Modern Times,” American Mathemat-
ical Monthly, April 1951, pp. 223–226.

10. See When Least Is Best, pp.133–34.
11. See Calinger, 1969 (Note 8).
12. The relationship between Euler and D’Alembert was a complicated, pro-

fessional one, far different from the personal friendship Euler enjoyed with, for
example, Daniel Bernoulli. You can find more on this matter in the paper by
Varadaraja V. Raman, “The D’Alembert-Euler Rivalry,” Mathematical Intelligencer 7,
no. 1, 1985, pp. 35–41. This paper, while quite interesting, should be read with some
care because the author occasionally overstates his criticism of Euler. For example,
he takes Euler to task for not citing (in one of his works) Johann Bernoulli’s publi-
cation of a derivation of ζ(2). Well, why should Euler have have cited Bernoulli?—it
was Euler, not Bernoulli, who first calculated ζ(2).

13. Just the thought of an eye operation in the 1770s is probably enough to make
most readers squirm. Euler’s operation was a procedure called couching, which can
be traced back to at least 2000 b.c. With the patient’s head clamped in the hands of
a strong assistant, the doctor would use a sharp needle to perforate(!) the eyeball
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and push the cataractous lens aside to let light once again reach the retina (today,
the lens is totally removed and replaced with an artificial one). The risk was that
lens proteins would be dispersed in the eye, which would cause a severe intraocular
inflammation that could result in blindness. That’s just what happened to Euler.

14. Ronald Calinger, “Euler’s ‘Letters to a Princess of Germany’ as an Expression
of his Mature Scientific Outlook,” Archive for History of Exact Sciences 15, no. 3, 1976,
pp. 211–33.

15. F. Cajori, A History of Mathematics (2nd edition), Macmillan, 1919, p. 233.
16. See Dirk J. Struik, “A Story Concerning Euler and Diderot,” Isis, April 1940,

pp. 431–32; Lester Gilbert Krakeur and Raymond Leslie Krueger, “The Mathe-
matical Writings of Diderot,” Isis, June 1941, pp. 219–32, and B. H. Brown, “The
Euler-Diderot Anecdote,” American Mathematical Monthly, May 1942, pp. 302–3.

17. You can find a photograph of Euler’s tomb in Frank den Hollander, “Euler’s
Tomb,” Mathematical Intelligencer, Winter 1990, p. 49. Hollander says the tomb is in
Leningrad, Russia, which was true in 1990—St. Petersburg had its name changed to
Leningrad in 1924 (since 1914 it had been known as Petrograd). But in 1991 the
original name was restored. Euler was buried in St. Petersburg, and that is where
he is today. Another photograph of his tomb, as well as one of his house at #15
Leytenant Schmidt Embankment, along the Neva River, is on p. 18 of the March
2005 issue of FOCUS, the newsletter of the Mathematical Association of America.

18. For much more on the mathematics of Euler, see the really outstanding book
by William Dunham, Euler: The Master of Us All (Mathematical Association of America,
1999).



This book was written while I was still a full-time member of the electrical
engineering faculty at the University of New Hampshire, from which I
retired in 2004. Through my entire thirty-year teaching career at UNH
I received enthusiastic encouragement for my writing efforts (even dur-
ing my science fiction writing days!), and this book was no exception.
I am therefore most grateful to my former colleagues in EE, and to the
administration at UNH, for that support. UNH academic librarians Pro-
fessors Deborah Watson and Barbara Lerch helped me in countless ways
in obtaining technical information that wasn’t available at UNH. After
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the Shodor Education Foundation, for their helpful commentary. And
finally, as any honest writer will admit, there could simply be no book at
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